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Abstract

Recent technological developments allow genome-wide scans of gene expression levels. The
reduction of costs and increasing parallelization of processing enable the quantification of
47,000 transcripts in up to twelve samples on a single microarray. Thereby the data collec-
tion of large population-based studies was improved.

During my PhD, I first developed a workflow for the statistical analyses of case-control stu-
dies of up to 50 samples. With large population-based data sets generated I established a
pipeline for quality control, data preprocessing and correction for confounders, which re-
sulted in substantially improved data. In total, I processed more than 3,000 genome-wide
expression profiles using the generated pipeline. With 993 whole blood samples from the
population-based KORA (Cooperative Health Research in the Region of Augsburg) study
we established one of the largest population-based resource.

Using this data set we contributed to a number of transcriptome-wide association studies
within national (MetaXpress) and international (CHARGE) consortia. Here I will focus on
three studies with main contributions:

I) Association study of gene expression levels with blood pressure related phenotypes.

II) Association study investigating changes of gene expression levels associated with aging.
III) Analysis of the impact of genetic variation on the gene expression levels.

National and international collaborations substantially increased the power of the studies
and ensured independent replication. Within the German consortium we developed proto-
cols for meta-analyses and optimized preprocessing of diverse data sets.

Whole blood is particularly useful because of its easy sampling. Especially, we could show
that the impact of genetic variation is very robust and replicable within heterogeneous popu-
lation-based studies.







Zusammenfassung

Moderne technologische Entwicklungen erlauben einen genomweiten Einblick in die Ex-
pression der Gene. Die Kostenreduzierung und die Moglichkeit der Parallelisierung bei
der Probenvorbereitung erlaubt es 47.000 Transkripte in bis zu zwdlf Proben mit einem
Microarray gleichzeitig zu quantifizieren. Dadurch wird die Datenerhebung von grofseren
populations-basierten Studien erleichtert.

Wihrend meiner PhD Zeit entwickelte ich zundchst einen Arbeitsablauf fiir die statistische
Analyse von Fall-Kontroll-Studien mit weniger als 50 Proben. Mit der Generierung von
populations-basierten Datensédtzen etablierte ich eine Pipeline fiir die Qualitdtskontrolle,
die Vorbereitung der Daten und die Korrektur fiir Storfaktoren, was zu einem deutlich
verbesserten Datensatz fiihrte. Ingesamt habe ich mit dieser Pipeline mehr als 3.000 genom-
weite Expressionsprofile fiir die Auswertung vorbereitet. Mit 993 Proben aus Vollblut von
Probanden der populations-basierten KORA-Studie (Kooperative Gesundheitsforschung in
der Region Augsburg) haben wir dabei eine der gréfiten populations-basierten Ressourcen
geschaffen.

Mit diesem Datensatz haben wir zu zahlreichen transkriptom-weiten Assoziationsstudien in
nationalen (MetaXpress) und internationalen (CHARGE) Konsortien beigetragen. In dieser
Arbeit werde ich mich auf drei Studien, an denen wir maf3geblich beteiligt waren, fokusieren:
I) Eine Assoziationsstudie der Genexpressionslevel mit Phanotypen, die im Zusammenhang
mit Blutdruck stehen.

II) Eine Assoziationsstudie, die die Verdnderung der Genexpression im Alter untersuchte.
III) Eine Studie tiber den Einfluss der genetischen Variation auf die Genexpressionslevel.
Nationale und internationale Kollaborationen haben die Aussagekraft dieser Studien we-
sentlich erhoht und konnten unabhingige Replikationen sicher stellen. Im Rahmen des
deutschen Konsortiums entwickelten wir Protokolle fiir Meta-Analysen und optimierten die
Vorbereitung von verschiedenen Datenséatzen.

Dabei erwiesen sich Proben aus Vollblut wegen der einfachen Gewinnung als besonders hilf-
reich. Aufierdem konnten wir zeigen, dass vor allem der Einfluss der genetischen Variation
sehr robust und replizierbar innerhalb heterogener populations-basierter Studien ist.
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1. Introduction

In the beginning of gene expression era statistical analyses were quite simple because gene
expression levels were determined only for a few candidate genes and could be compared
graphically or by using simple statistical tests.

The development of microarrays wherein thousands of measurements for one single sample
are conducted simultaneously led to the generation of large amounts of data making statisti-
cal analyses more complex and time-consuming. These experiments started with very small
sample sizes and were mainly designed to compare cases with controls especially in humans
and mice.

The Institute of Human Genetics of the Helmholtz Center Munich was one of the first insti-
tutions that established a larger genome-wide data set of more than 300 healthy individuals
from a population-based study using whole blood. This data set provided us with an oppor-
tunity to assess gene activity across the whole genome in a hypothesis-free approach.
However soon it became clear that data analyses together with interpretation of multiple
significant hits was no longer trivial, as sample sizes were continuously growing due to the
possibility to analyze the activity of the whole genome in a short time for less money (Ra-
masamy et al., 2008).

Nowadays, the analysis of high-dimensional data is no longer an exception but rather nor-
mal and all-round. There are lots of population-based studies with large sample sizes which
are analyzed together to identify even very small effects.

This thesis reflects the development of gene expression studies from case-control studies
with small sample sizes (n<50) to studies with large sample sizes (n>7,000) using data from
different populations.

The challenges and improvements of quality control and analysis of data are shown over
time and for increasing sample sizes.

This thesis can be regarded as a guideline to analyze gene expression data obtained mainly
from whole blood but also from other tissues. On the one hand it supports statisticians
who have not worked with genetic data so far and on the other hand biologists who are not
familiar with statistical analyses of gene expression data. Therefore, both the genetic and
statistical background is given so that all analysis steps can be understood and reproduced.
Especially for the reproducibility the required R codes are provided.

The population-based phenotypes, gene expression and genetic data used in this thesis
can be obtained from KORA-PASST (project application self-service tool) on http://epi.
helmholtz-muenchen.de/. The expression data can be downloaded (without any phe-
notypes due to protection of data privacy) from ArrayExpress using the project number
E-MTAB-1708 (https://www.ebi.ac.uk/arrayexpress/).



http://epi.helmholtz-muenchen.de/
http://epi.helmholtz-muenchen.de/
https://www.ebi.ac.uk/arrayexpress/

1. Introduction

1.1. Genetic background - From DNA to gene expression

All genetic information of each human being (and of all other living organisms) is stored
in the deoxyribonucleic acid (DNA) which is unique for each individual. The structure of
the DNA was firstly described by James Watson and Francis Crick in 1953 in a Nature pub-
lication: “Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid”
(WATSON and CRICK, 1953). They introduced the double-helix structure of two strands of
nucleotides (see Figure 1.1). Each nucleotide consists of three components:

1. One base: adenine (A), cytosine (C), guanine (G) or thymine (T)
2. One sugar (deoxyribose)

3. One phosphate

Chromosome

Figure 1.1.: Structural organization of DNA in the cell nucleus:

Base pairs build up the DNA in form of a double-helix. DNA is ordered and
structured by histones and form the chromosomes. Thereby each chromosome
consists of two identical chromatids and its intersection called centromere. The
telomeres at each end of the chromosome have a protective function (McClin-
tock, 1941). Humans have 22 pairs of chromosomes and additionally two gender-
specific chromosomes (females have two X-chromosomes, males have one X-and
one Y-chromosome).

Thereby the sugar and the phosphate serve as the so-called backbone of the DNA and the
bases are attached with hydrogen bonds. In this process an A can only bond to T and a C
only to G.

The DNA can be found in the nucleus of each single cell. The different shapes and functions
of a cell are due to the different activity of genes. A gene is a defined part (ranging from a
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few kilobases to several megabases) of the DNA and consists of a certain number of coding
(exons) and non-coding (introns) regions.

The activity of the genes is called gene expression and this process consists of two steps:

1. Transcription: Generation of a copy of the gene, the so-called messenger RNA (mRNA).
In contrast to the DNA, the Ribonucleic Acid (RNA) is single-stranded and contains ri-
bose instead of deoxyribose. Additionally, the base thymine is replaced by uracil.

2. Translation: The information of the mRNA is translated to amino acids that form pro-
teins.

If variation in the DNA sequence in comparison to the reference sequence is located in the
coding region of a gene, an exchange of an amino acid could be the consequence. If one of
these changes with only one affected base pair occurs in more than 1% of the population
it is called a Single Nucleotide Polymorphism (SNP) (Wrba et al., 2007). In humans these
variants can be found on average every 500 to 1,000 base pairs and normally they are not
disease-relevant. There are three different states (genotypes) possible for each SNP. Either
an individual is homozygote for the major allele, meaning that both chromosomes carry the
same allele that is most frequent in the normal population at this locus, an individual is
homozygote for the minor allele or an individual is heterozygote, meaning that both chro-
mosomes are carrying different alleles (Ziegler et al., 2010).

The tissue specific activation and inactivation of genes can be regulated by DNA methyla-

tion which is one of the main epigenetic regulatory mechanisms (Portela and Esteller, 2010).
Epigenetics is the study of heritable changes in gene function that occur without a change
in the DNA sequence. Epigenetic mechanisms include histone modification, DNA methyla-
tion, and RNA interference (Nikolova and Hariri, 2015).
DNA methylation is the process in which a methyl group is added to the DNA, most com-
monly to cytosine if it is directly followed by guanine (Tollefsbol, 2010). Thus cytosine can
occur “normally” or in a methylated version, i.e. with an attached methyl group. The re-
gions in the DNA where the bases cytosine and guanine are only separated by a phosphate
are called Cytosine-phosphate-guanine (CpG) sites (Miller et al., 1974). CpG islands are re-
gions in the genome with a high frequency of CpG sites (Figure 1.2).
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Figure 1.2.: Categories of CpG sites:
Genomic regions with a high frequency of CpG sites are called CpG islands. The
regions 2 kb up- and downstream of CpG islands are called North and South
Shore, respectively and the flanking regions are called North and South Shelves,
respectively (Bibikova et al., 2011).
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In humans it is assumed that methylation of CpG sites or CpG islands close to the tran-
scription start site of a gene can repress gene expression (see Figure 1.3) but methylation
within the gene body might not interfere with gene expression (Jones, 2012).
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Figure 1.3.: Expected correlation of CpG sites and gene expression:
A methylated CpG site or a CpG island (genomic regions enriched in CpG sites)
might repress the expression of a neighboring gene (Nikolova and Hariri, 2015).

1.2. Gene expression studies

The principle of unidirectional information flow of genetic information was established in
the mid-1960s (Struhl, 1999) and thereby closed the gap between DNA in the nucleus and
proteins in the cytoplasm (O’Connor and Adams, 2010). Volkin and Astrachan (1956) dis-
covered that genetic information is transported from DNA and translated into proteins by
RNA.

The DNA in the nucleus consists of exons and introns and is transcribed to RNA molecules
by enzymes called RNA polymerases (see Figure 1.4). The RNA is single-stranded and com-
plementary to one strand of the DNA. The non-coding regions are removed and the re-
maining exons are spliced together. Next, the messenger RNA is exported to the cytoplasm
and the transcripts are translated to chains of amino acids which finally form the proteins
(O’Connor and Adams, 2010).

This highly complex process including transcription of gene and translation to protein is
called gene expression. Gene regulation determines the amount and time point of specific
gene products and can occur in each step (Maston et al., 2006). The mechanisms for re-
gulation of gene expression levels occur mostly at the level of transcription (Holstege and
Young, 1999).

A high proportion of gene regulation is a result of an interaction between DNA sites (bind-
ing sites) and proteins that bind to these sites, so-called transcription factors. They can either
bind to promoters (to initiate the transcription), enhancers (to enhance the transcription) or
to silencers (to repress the transcription). Promoters, enhancers, and silencers are short parts
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Figure 1.4.: Shematic diagram of gene expression:

The DNA in the nucleus, divided in exons (blue) and introns (green), is tran-
scribed to a pre-mRNA molecule (red regions align with blue exons and green
regions align with introns of DNA). Next, mRNA is build by removing introns
and splicing of exons. The newly formed mRNA is exported from the nucleus
to the cytoplasm and translated to proteins which consists of different amino
acids (here illustrated by different colors) (O’Connor and Adams, 2010). Figure
is taken from www.nature.com/scitable.

of DNA and are normally located close to the transcription start site of the regulated gene
(Pennacchio et al., 2013; Blackwood and Kadonaga, 1998; Maston et al., 2006). Mostly, tran-
scription factors interact with other proteins (coactivator and corepressor) to result in an up-
or down-regulation of a gene, meaning the rate of transcription is increased or decreased,
respectively.

After transcription of DNA to mRNA there can be some post-transcriptional regulation to
determine the amount of mRNA that is translated to proteins. Post-transcriptional regula-
tion also includes mechanisms to manipulate RNA transport or stability.

Finally, genes can be regulated in translational and post-translational steps. This includes all
stages of protein biosynthesis and chemical modifications of proteins (Mehta, 2009).

Microarrays measure the current level of a transcript and provide information about gene
activity.
Variation in gene expression levels does not necessarily result in defined clinic symptoms but
may lead to complex diseases or influence quantitative traits like BMI or height. In contrast,
diseases like Mendelian disorders represent an extreme consequence of genetic variation
(Cheung et al., 2003).

Most gene expression studies were performed to investigate differences between special
conditions in gene expression levels. Although there are studies analyzing only a set of
genes the focus of this thesis is the analysis of genome-wide microarray data, of up to 30,000
transcripts.
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Generation and quantification of gene expression levels are not as robust as genome data. In
various tissues (Petretto et al., 2006) and cellular states (Gerrits et al., 2009) different genes are
expressed and measurable. The RNA levels are more susceptible to experimental design of
the study, to technical and biological variables, and to environmental factors. The variability
of gene expression data can be used to identify differentially expressed genes that are altered
by traits or diseases.

The analysis of the transcriptome aims to include the complete set of mRNA molecules at
a given time point from a defined cell type or tissue (Cornelis and Hu, 2013). Mostly, these
transcriptome-wide analyses are conducted in whole blood as it is easily available.

1.2.1. Case-control studies

Case-control studies are a type of observational studies in which samples from two different
groups are compared for a better understanding of underlying biology and pathomecha-
nism and to identify biomarkers. The “cases” are usually patients suffering from a disease
or individuals with a particular condition (for example high BMI), whereas the “controls”
are the individuals that are healthy (or are at least not affected by the disease of the cases) or
do not have the same conditions (for example low BMI). In comparison to population-based
studies, in which the general population is investigated, in case-control studies the controls
are accurately chosen (for example they fit to the cases in age, gender and other sociodemo-
graphic variables) to optimize the power for the identification of small differences between
the two groups. In this way it is possible to investigate even rare diseases with a small sam-
ple size.

In gene expression studies using whole blood usually the expected effects in gene expression
levels between the groups are quite small as there is not always a direct connection between
blood and the investigated disease and the genes of interest are not differentially expressed
in blood. There are some possibilities to avoid this problem:

e Analysis of the affected tissue.
Lots of genes are not expressed in every tissue and especially in whole blood. When
analyzing rare diseases sample sizes are usually small and therefore it is possible to
investigate the affected tissue.

e High contrast between cases and controls.
To increase the contrast between the groups it is necessary to have homogenous cases
and controls. In the optimal situation each case gets one or more matched control based
on variables that are expected to be confounders (Rose and Laan, 2009).

e Analysis of selected genes.
To reduce the number of tests it could be useful to restrict the analysis on a predefined
set of genes.

In practice it is not always possible to meet all these criteria. Mostly, the limitation is to
investigate the affected tissue as there are high ethical standards that do not allow to conduct,
for example, biopsies on healthy individuals. Therefore the selection of cases and controls
or the exclusion of samples with bad quality is even more important.
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1.2.2. Population-based gene expression studies

Large cohort studies are usually based on individuals who represent the normal population.
In these cohorts there are no specific tissues available and due to ethical reasons most of the
time only blood is taken -as easily available sample- from the voluntary study participants.
However, it could be shown that up to 80% of all genes are expressed in whole blood (Liew
et al., 2006). Therefore population-based transcriptome-wide association studies are mostly
conducted on whole blood samples using phenotypes that are accessible (e.g. BMI, height,
age, blood pressure,...) or studying diseases that are quite common in the normal population
(e.g. diabetes, hypertension,...). As usually large sample sizes and appropriate replication
cohorts are available there is high power to detect small effects even when not having the
optimal tissue.

1.2.3. Genome-wide association studies

Just like the measurement of gene expression levels, it is also possible to determine the geno-
types of hundred of thousands SNPs on microarrays. The development of this technique
was the beginning of genome-wide association studies (GWAS). In a GWAS genetic varia-
tion is analyzed genome-wide to identify genetic loci that are associated with the trait of
interest. The starting point of this era was the publication from Klein et al. (2005) who in-
vestigated 103,611 SNPs from 96 AMD (age-related macular degeneration) patients and 50
controls followed by the Wellcome Trust Case Control Consortium in 2007 which analyzed
almost 400,000 SNPs from 16,000 samples suffering from seven different diseases namely
bipolar disorder, coronary artery disease, Crohn’s disease, hypertension, rheumatoid arthri-
tis, type 1 diabetes, and type 2 diabetes (Consortium, 2007; Visscher et al., 2012). Since then
thousands of GWAS have been conducted and thousands of associations with diseases or
phenotypes have been identified.

GWAS are performed to determine a so-called quantitative trait locus (QTL), a genetic lo-
cus that is associated with any quantitative phenotype or variable. Normally, the result of a
GWAS is a list of SNPs which are associated with the disease (for example diabetes or car-
diovascular diseases) or the trait (for example BMI or height) of interest. Most of the SNPs
are located in intronic or even in intergenic regions and the function is not clear (Mehta et al.,
2012).

1.2.4. eQTL studies

Jansen and Nap (2001) first introduced the concept of the genome-wide analysis of genetic
and gene expression data (Li and Deng, 2010). As the molecular mechanism that is respon-
sible for the association between the genetic locus and the phenotype is often not clear, gene
expression data can help to understand the functional consequences of SNPs. This became
more important because of the constantly increasing number of GWAS identifying SNPs in
non-coding regions. So far, more than three thousand loci have been identified to be associ-
ated with a disease or a trait. These loci are all summarized in the GWAS catalog (Hindorff
et al., 2009).

With the development of expression-microarrays it is now possible to investigate the impact
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of genetic variation on gene expression levels systematically and independent from GWAS
results. Gene expression levels are treated as quantitative phenotypes and analyzed genome-
and transcriptome-wide to identify expression QTLs (eQTLs).

An eQTL is a locus in the DNA that influences the expression level of one or more genes (Al-
bert and Kruglyak, 2015) and is mainly identified in population-based studies. eQTL studies
provide the opportunity to detect transcriptional regulatory relationships on a genome-wide
level (Fehrmann et al., 2011).

There are two different kinds of associations between gene expression levels and genetic
variation that were described first by Haldane et al. (1941) and were mostly classified ac-
cording to their physical distance (Gilad et al., 2008).

o cis-eQTLs:
According to the original definition cis-acting elements have an influence on allele-
specific gene expression. This includes for example promoter regions, silencer or en-
hancers (Gilad et al., 2008). cis-eQTLs are often synonymous with local eQTLs (Albert
and Kruglyak, 2015), meaning that the SNP is close to the regulated gene (Michaelson
et al., 2009).

o trans-eQTLs:
trans-acting elements regulate the expression of both alleles (Gilad et al., 2008). Mostly,
the locus is located far away from the regulated gene (distant eQTL), either on the same
or on a different chromosome.

When using microarrays it is not possible to measure allele-specific gene expression. There-
fore it is not possible to definitely distinguish between mode of action of cis- and trans-
eQTLs. Consequently, in eQTL studies it has been common to name all local eQTLs cis-
eQTLs and all distant eQTLs trans-eQTLs (Albert and Kruglyak, 2015).

So far, there is no common threshold to separate cis- and trans-eQTLs. It varies from 100 kb
(Dixon et al., 2007) to 1 Mb (Hao et al., 2012). We defined “close” between SNP and regulated
gene as less than 500 kb upstream and downstream of the transcription start and end site,
respectively (see Figure 1.5).
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Figure 1.5.: Definition of effects of SNPs on gene expression levels in cis and trans:
If the SNP is located less than 500 kb (or any other small predefined distance)
from the expression probe on the same chromosome the eQTL is called cis-eQTL.
If the SNP is located further away on the same chromosome or on an other chro-
mosome than the expression probe, the eQTL is called trans-eQTL.
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1.2.5. Statistical processing of gene expression data

Gene expression data are the result of several complex sample preparation and measure-
ment steps followed by the computational translation of signals from microarrays into data
points (Hartemink et al., 2001). Therefore there are lots of possibilities where variability of
data could be caused by technical instead of biological factors of interest. As a consequence,
experiments have to be prepared carefully to remove or at least reduce the technical vari-
ability and increase the probability to detect real biological relevant signals. There are many
challenges in the analysis of gene expression data and the research on finding the optimal
way for the preprocessing and analysis is still ongoing.

One characteristic of gene expression analysis is the p > n situation, meaning that the
number of investigated features p is much larger than the sample size n. When using micro-
arrays, up to 50,000 data points can be measured per sample. A study cohort only consists
of a few hundred to thousand individuals. Not all statistical methods can handle this prob-
lem and multivariate models have to be applied carefully. Especially when analyzing gene
expression data from studies with a small sample size the study design has to be considered
with caution to get a homogenous study population.

After choosing the optimal set of samples, problems can occur during the measurements
in the laboratory. As mentioned before, gene expression levels are influenced by several
environmental and technical factors especially batch effects. To make expression data com-
parable across different studies, it is mandatory to standardize all experimental steps and
the following data preprocessing steps should include variance stabilization and normaliza-
tion methods. Lastly, suitable statistical models are needed that are able to exclude variance
due to technical known and unknown factors.

Additional variance in the data set can be the result of outliers. A sample can be an out-
lier due to several reasons. For example a bad quality of RNA can lead to overall lower
expression levels and thereby decrease the number of detectable genes. Another possibility
is sample mixing in each step of the experiments. Especially when men and women samples
are mixed problems can occur in any gender-specific analysis because of highly different ex-
pression patterns on sex-specific chromosomes. Therefore the data set can be improved by
identification and removal of outliers and potential mixed samples before analysis to har-
monize the data set and reduce the variance.

Gene expression analyses are often performed to identify differentially expressed genes
between two or more different groups of samples. These differentially expressed genes can
be used to obtain insights in diseases or serve as clinical biomarkers. In this approach all
measured transcripts are investigated one by one and this results in are large number of
statistical tests. To avoid false positive hits multiple testing correction methods have to be
applied.

Gene expression data are biological data that usually do not follow the assumptions of the
distributions of standard statistical models (Du et al., 2010). This has to be kept in mind when
applying parametric approaches and could maybe be a reason for nonparametric models.
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In order to avoid type I error, results have to be confirmed in an independent data set
of comparable population structure. Alternatively, data can be analyzed in a meta-analysis
with the additional advantage that this increases the sample size and thus the power to
detect small differences or effects. Meta-analyses or analysis in large data sets can result
in large lists of potentially interesting genes. Statistical or bioinformatical tools are able to
identify relations between these results or identify enriched biological pathways (Krumsiek
etal., 2011).

1.3. Outline of this thesis

The main focus of this thesis is the analysis of whole genome expression data. An overview
of the outline of this thesis is given in Figure 1.6. Within the framework of this thesis six
studies are described which display various different characteristics.

Parkinson patients NBIA patients
versus controls versus controls
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Transcriptome-wide
association studies
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eQTL studies
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Figure 1.6.: Overview of conducted studies

1. They were conducted using different study designs: case-control studies (Chapter 3),
quality control studies (Chapter 4), transcriptome-wide association studies (Chapter
5), and eQTL studies (Chapter 6).

2. The expression of genes was measured in different samples/populations: a Parkinson
case-sontrol sample (Section 3.2), a NBIA (Neurodegeneration with Brain Iron Accu-
mulation) case-control sample (Section 3.3), and population-based studies (Chapter 4,
5, and 6).
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3. They aimed to address different research questions such as: a) Identification of dif-
ferentially expressed genes in case-control studies (Chapter 3), b) Optimization and
standardization of quality control and analysis (Chapter 4), and c) Identification of as-
sociations using population-based data (Chapter 5 and 6).

The six studies conducted within the framework of this thesis are described in detail in the
following section. An overview of these studies is given in Table 1.3.

Case-control studies

In Chapter 3 two case-control studies with small sample sizes are introduced to show arising
problems in analysis of gene expression data sets with small sample sizes. In the first case-
control study (Section 3.2), we identified genes that were differentially expressed in single
cells from brain in Parkinson patients and age-matched controls. Results were followed up
in young controls to describe Parkinson’s disease as accelerated aging. In the second case-
control study (Section 3.3) we compared patients suffering from NBIA to controls using a
different expression array system than in all other projects described in this thesis (i.e. arrays
from Affymetrix instead of those from Illumina). The aims of both studies were:

e The development of an optimal preprocessing pipeline including the selection of the
samples to obtain a homogenous data set.
For this purpose, expression data were normalized and clustered to identify and re-
move outliers.

e The identification of differentially expressed genes between patients and controls.
Expression levels of selected genes (Parkinson study) or transcriptome-wide expres-
sion levels (NBIA study) were compared to identify differentially expressed genes.

e The identification of molecular mechanisms.
Differentially expressed genes were used to identify pathways which explain relations
between the underlying genes and the disease phenotype.

Quality control studies

Chapter 4 can be seen as the basis for all further analyses in population-based data sets. It
describes the development of quality control steps from a manual quality control in a small
cohort (N=381) to a common data preparation and analysis strategy in a large consortium
consisting of three population-based studies with altogether more than 3,000 individuals.
The overall aims were:

¢ To explore robustness and variability of gene expression data by analyzing biological
and technical replicates.
Therefore, blood was taken from three voluntary individuals three times at three dif-
ferent time points. Gene expression was measured to compare the inter- and intra-
variability between all three samples.

e To optimize preparation of samples in the laboratory.
Experimental processing for a larger data set of more than 3,000 samples was stan-
dardized and different amounts of RNA were compared to obtain expression data with
comparable intensity levels.

11



1. Introduction

¢ To optimize preparation of data.
With increasing sample size we were able to exclude sample outliers based on different
criteria, like cluster outliers, mixed samples or samples with bad RNA quality.

e To identify technical and clinical variables that influence gene expression levels.

In order to create three comparable data sets the most important pre-requisite for a joint
consortium analysis of population-based studies was the standardization of prepro-
cessing steps. Two variance stabilization methods were compared (log2 versus vari-
ance stabilization transformation). Using different approaches, we tried to uncover
main technical influences on variation of gene expression levels. We investigated the
effects of SNPs in probe sequences by calculating the association between gene expres-
sion levels of transcripts having a SNP in the probe sequence and the corresponding
SNP.

In summary, all steps were conducted with the objective to reduce disturbing variability in
the data in order to create comparable data sets. Combined analysis in consortia are now
easy to conduct due to the development of harmonized data sets.

Transcriptome-wide association studies

In Chapter 5 two different phenotypes (age and blood pressure related phenotypes) were
analyzed on a transcriptome-wide scale. Each phenotype was analyzed in three different
populations.

The first population-based association study (Section 5.1) was conducted to identify genes
which are associated with phenotypes related to blood pressure such as systolic and dias-
tolic blood pressure, pulse pressure, and hypertension.

The second population-based study (Section 5.2) was focused on age-related gene expres-
sion. The power to identify age-related expression patterns is limited in a population with
1000 samples who are older than 60. However, we contributed with our data to a meta-
analysis of more than 7,000 samples with a large range of age (20 years to 100 years).

eQTL studies

In Chapter 6, we investigated the impact of genetic variation on gene expression levels in an
eQTL study in two different data sets of 322 and 890 samples. The aims of the studies were:

o To identify genetic determinants of gene-expression in cis and trans (i.e. cis- and trans-
eQTLs).
We identified cis- and trans-eQTLs on transcriptome- and genome-wide scales. For
trans-eQTLs we also searched for what we called “master regulatory sites”. These loci
simultaneously influence the activity of several genes.

¢ To analyze the robustness and reproducibility of eQTLs in whole blood across different
studies.
All eQTLs that have been identified in the eQTL studies described in this thesis were
tested for replication in all together three different independent data sets. As one of

12
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these data sets showed differences in the preprocessing of gene expression samples it
was of particular interest to explore the robustness of eQTLs.

¢ To validate if whole blood can be used as a surrogate tissue.
We compared the identified cis-eQTLs in whole blood to publicly available eQTL re-
sults observed in other tissues (liver, lymphoblastoid cell lines, monocytes, b-cells, and
lung tissue, respectively).

Taken together, this thesis shows the analysis of whole-transcriptome expression data in dif-
ferent settings (different study design and various different study populations) with the aim
to explore various important research questions.

One major limitation in whole genome expression data are small effect sizes that require
large sample sizes in order to detect effects on a genome-wide scale.

We started with about 20 samples in case-control studies and ended up with several thou-
sand samples in transcriptome-wide association and eQTL studies, respectively (see Figure
1.7).

The development of increasing sample sizes required improved methods for data prepro-
cessing and analysis which are summarized in this thesis.

o
o |
o
~
o
o _|
o
[] Te)
N
® a
Q
[=%
£ 3 | y
T 9
0 ™ °
o
o _|
o
—
[ ]
o - e o °
Case-control studies Quality studies Association studies eQTL studies

Study design

Figure 1.7.: Sample sizes in the gene expression studies described in this thesis:
Each study was conducted in three different populations with increasing sample
sizes. We performed two different association studies with two different phe-
notypes: blood pressure related phenotypes (indicated with squares) and aging
(indicated with triangles).
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N [ Study design Tissue | Study population Aim Trait | Chapter | Reference |
17 | Case-control Single cells | Parkinson patients, Disease-specific 3.2.3 Elstner et al. (2009)
from brain | old controls identification
24 | Case-control Single cells | Parkinson patients, of biomarkers disease | 3.2.4 Elstner et al. (2011)
from brain | young/old controls and
20 | Case-control | whole blood | NBIA patients, controls targets 3.3 Hartig et al. (2011)
381 | Quality control | whole blood | KORA F3 Development of 41
2,463 | Quality control | whole blood | KORA 54, F4, FAOGTT quality controlled quality | 4.2
3,358 | Quality control | whole blood, | MetaXpress preprocessing and variables | 4.3 Schurmann et al. (2012)
monocytes analysis strategy
377/989 Association whole blood | KORA F3/F4 Identification of genes 511
5,907 Association whole blood, | MetaXpress, MESA associated with blood 512 Mueller et al. (2014)
monocytes blood pressure pressure
7,017 |  Association whole blood | CHARGE related phenotypes 513 Huan et al. (2015)
381 Association KORA F3 Identification of 5.2.1 Mehta (2009)
993 Association whole blood | KORA F4 age-related age 522
7,074 Association CHARGE phenotypes 523 Peters et al. (2015)
322 Association KORA F3 Identification genetic 6.1 Mehta et al. (2012)
890 Association whole blood | KORA F4 of cis- and variation 6.2 Schramm et al. (2014)
6,913 Association CHARGE trans-eQTLs 6.3 Westra et al. (2013)
Table 1.1.: Overview of conducted studies:

In all studies gene expression data were analyzed transcriptome-wide with different traits of interest.

KORA is the abbreviation for Kooperative Gesundheitsforschung in der Region Augsburg (Cooperative Health Research in the Region
of Augsburg). It is a population-based study consisting of several surveys such as F3, 54 or F4. MetaXpress is a consortium consisting
of three population-based studies with available gene expression data measured in whole blood and monocytes, respectively. MESA
is the abbreviation for US Multi-Ethnic Study of Atherosclerosis and is a population-based study. CHARGE (The Cohorts for Heart
and Aging Research in Genomic Epidemiology) is a large international consortium and consists of several European, American, and
Australian population-based studies.
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2.1. Study population and consortia

2.1.1. KORA

KORA (Kooperative Gesundheitsforschung in der Region Augsburg - Cooperative Health
Research in the Region of Augsburg) exists since 1996 in the region of Augsburg in the south
of Germany and builds on MONICA (Monitoring of trends and determinants in cardiovas-
cular disease) (Holle et al., 2005). It is a regional research platform for population-based
surveys and follow-up studies and a cohort of more than 18,000 subjects are actively fol-
lowed up to date.

Four cross-sectional healthy surveys S1 to S4 have been performed at five years intervals
each containing independent random samples with German nationality from Augsburg city
and sixteen communities from the adjacent counties. All study participants were asked for
sociodemographic variables, risk factors (smoking, alcohol consumption, physical activity,
etc.), medical history and family history of chronic diseases and some more clinical parame-
ters.

The KORA F3 (follow-up study of KORA S3) samples were collected between 2003 and
2004 and 2,974 individuals were included. Additionally the genotypes of 1,388 samples were
collected.

The measurement of gene expression levels in KORA S4 and F4 was a project in colla-
boration with the DDZ (Deutsches Diabetes Zentrum - German Diabetes Center Diisseldorf)
and therefore the aim of the study was the early diagnosis and the prediction of diabetes.
Testing for pre-diabetes in a large population is only possible with a time-consuming oral
glucose tolerance test (OGTT). Normal and easy fasting blood glucose monitoring methods
miss about 40% of the undetected diabetics.

Blood was taken from fasting subjects and the fasting blood glucose levels were determined.
Then 75g of dextrose was drunk, two hours later blood was taken and the blood glucose
level was determined again. So the reaction of the body to supply of glucose could be identi-
fied. Altogether three blood probes of each sample were available: a baseline measurement
(KORA 54), a follow-up measurement around eight years later (KORA F4) and the measure-
ment after the oral glucose tolerance test (KORA F4 OGTT).

Additionally there are several clinical and sociodemographic variables available and the ge-
netic variation.

2.1.2. SHIP-TREND

SHIP is a population-based project in West Pomerania, a region in the northeast of Germany.
For all projects in this thesis samples from the SHIP-TREND study were used. Baseline ex-
aminations for this study started in 2008. From the total population of West Pomerania com-

15



2. Material and methods

prising approximately 210,000 inhabitants, a stratified random sample of 8,016 adults was
drawn. Stratification variables were age, sex, and city/county of residence. By the end of
2012, 4,420 samples have been examined. The detailed study design and sampling methods
are described by Volzke et al. (2010). All analyses in the SHIP-TREND study were conducted
by Dr. Claudia Schurmann or Dr. Alexander Teumer.

2.1.3. ECGUT

The Biobank of the Estonian Genome Center of the University of Tartu (EGCUT) is based
on a population-based study which collected data of more than 50,000 individuals. In com-
parison to the KORA F4 data the age distribution of EGCUT reflects the age distribution of
the adult Estonian population. We worked together with Eva Reinmaa who conducted the
analysis in the EGCUT data set.

2.1.4. GHS

The Gutenberg Health Study (GHS) is designed as a community-based, prospective, obser-
vational, single-center cohort study in the Rhine-Main area of Western Germany (Wild et al.,
2010). All participants (50% males) live in Mainz and the district of Mainz-Bingen and are
between 35 and 74 years of age. Baseline examinations of 15,000 study participants were per-
formed between 2007 and 2012. All analyses were conducted by Arne Schillert and Christian
Miiller.

2.1.5. MetaXpress

In 2011 the MetaXpress Consortium was founded within the DZHK - Deutsches Zentrum
fiir Herz-Kreislauf-Forschung (German Center for Cardiovascular Research). MetaXpress
consists of three large German study cohorts with available gene expression data:

e GHS (Mainz, Liibeck, Hamburg)
Described in Section 2.1.4

e KORA F4 (Munich)
Described in Section 2.1.1

e SHIP-TREND (Greifswald)
Described in Section 2.1.2

Aim of the project is the common analysis of gene expression data associated with cardiovas-
cular phenotypes, like obesity (BMI, Waist-to-hip ratio), hypertension (systolic and diastolic
blood pressure, pulse pressure), and diabetes (fasting glucose, 2h-glucose).

The experimental procedure was almost identical for KORA F4 and SHIP-TREND and slight-
ly different for GHS (see Figure 2.1). One reason for this is that samples from KORA F4 and
SHIP-TREND were both proceeded in Munich using the same protocol. Additionally for
both cohorts gene expression was measured in whole blood while GHS used monocytes.
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KORA F4 : '
993 samples - 1 Storage time:
Age: 70+ 5.4 | @856 days .
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PAX blood
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i I Amplification —> Hybridization

and labelin
EALLEND Storage time: , Automated / (96 in para"gI)
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Age: 50  13.7 k @ 204 days RNA isolation _‘«;;? ﬁ

GHS Enrichment  Manual RNA Storage time:

1374 samples -~  ©of 7 isolation @ 314 days
Age: 55+ 11.1 monocytes

Figure 2.1.: MetaXpress - Experimental procedure

2.1.6. CHARGE

CHARGE is the abbreviation for “The Cohorts for Heart and Aging Research in Genomic
Epidemiology” Consortium. It consists of several European, American, and Australian
population-based studies. With the expression data of KORA F4 we contribute to the work-
ing group “Gene Expression”.

2.2. Useful software for the analysis and visualization of gene
expression data

2.2.1. GenomeStudio

The GenomeStudio software from Illumina is useful to convert the scanned data to expres-
sion values and to show first quality parameters. It can also be used to do some basic ana-
lyses and graphics. But with an increasing number of samples a high amount of RAM is
required to upload all samples in one project.

One quality score is the detection p-value which indicates the probability that the observed
expression value of a transcript is significant higher than the background noise. All samples
(if they are from the same tissue) should have an comparable number of detected transcripts.
A low number could be an indication for a poorly processed sample and therefore the num-
ber of detected transcripts is a good overall quality score (Illumina, 2007).

17



2. Material and methods

2.2.2. R and Bioconductor

R is a open source software environment for statistical computing and it is available for
download at http://www.r—project.org/. It can be used on UNIX, Windows and Ma-
cOS. It is especially helpful to handle large data sets but could also be used as a calculator.
Problem specific code-packages are available on an internet platform (cran) which are made
available by other R users. Specifically the Bioconductor (www.bioconductor.org)is an
extension of R and was developed to analyze biological data sets (Huber et al., 2015). The
following two lines are necessary to install Bioconductor with the basic packages:

Listing 2.1: Installing Bioconductor with basic packages

source (” http://bioconductor.org/biocLite .R”)
biocLite ()

The following R packages were used for the analysis in this thesis:

e lumi
This Bioconductor package was used for the normalization of the gene expression data.

o affy
This Bioconductor package was used for the preprocessing the data obtained from the
expression chip of Affymetrix.

e cluster
This package was used to cluster the gene expression data.

e ggman (Turner, 2014)
A user-friendly function to create Manhattan plots.

e nlme
This package was used to calculate linear mixed models.

2.2.3. PLINK

PLINK is a toolset for the analysis of genome-wide associations and the simple handling
of large genetic data. It can be downloaded for free from http://pngu.mgh.harvard.
edu/~purcell/plink/. A variety of questions could be addressed but in this thesis it
was mainly used to filter SNPs according to different criteria and to calculate associations
between SNPs and gene expression levels.

PLINK is a command line program and needs the genotypes to be in two files.

o MAP-file
This file contains the chromosome, the rs-number for the SNP, the genetic distance (this
is set to zero in the KORA data), and the position of the SNP (in bp units).

e PED-file
This file is in the same order as the MAP file and contains the genotypes for each samp-
le. The first and the second column contain the family and the sample ID (identical for
KORA), the third and fourth column contain the paternal and maternal ID (set to zero
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in KORA data), the fifth column contains the sex information (1=male, 2=female), and
the sixth column contains a phenotype if necessary (set to -9 in KORA data). The
following columns contain the genotypes in two columns per sample indicating the
two different alleles.

To calculate the association between any kind of phenotype and the genotypes the following
code could be used:

Listing 2.2: Calculation of genome-wide association using PLINK

plink

—file genotypes
——assoc

—pheno phenotype. txt
—recode

2.2.4. SNAP

SNAP (SNP Annotation and Proxy Search) is a web-based tool to calculate the linkage dis-
equilibrium (LD) between two SNPs or to search for proxy SNPs! (Johnson et al., 2008). The
tool can be found on https://www.broadinstitute.org/mpg/snap/.

The LD is calculated from real data obtained from the HapMap project.

Proxy SNPs are indicated due to the LD structure, the localization on the genome and the
availability on commercial genotype platforms. This tool is very helpful if data from two
different genotype platforms should be compared because usually the genotyped SNPs are
not identical.

2.2.5. GWAS catalog

The NHGRI GWAS catalogonhttps://www.ebi.ac.uk/gwas/ was initially founded by
the NHGRI (National Human Genome Research Institute) (Hindorff et al., 2009) and later
improved by the European Bioinformatics Institute (EMBL-EBI) (Welter et al., 2014). The
aim was to collect the results from all published GWAS and make them available online. On
August, 25th 2015 the catalog contains

e 2,269 studies
e 15,020 SNPs
e 16,831 SNP-trait associations

All associations with p-value < 1.0 x 10~° published until May 2014 are shown in Figure
2.2.

A proxy SNP is a SNP that could replace another SNP and is highly correlated with this SNP (correlation
coefficient is greater than 0.8)
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Figure 2.2.: Published SNP-trait association from the GWAS catalog from May 2014:

The distribution of all associations from published GWAS with p-value < 1.0

10~° on the chromosomes is shown.
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2.2.6. Ingenuity Pathway Analysis Software

Ingenuity pathway analysis software (IPA) is a commercial software and can be downloaded
fromhttp://www.ingenuity.com/. Itis based on an internal library of pathways and is
calculating a p-value for each canonical pathway by using the probability that the pathway
occurs by chance. Therefore the right-tailed Fisher’s exact test with an optional Benjamini-
Hochberg correction is applied.

Lists of genes can be uploaded to identify enriched pathways. The disadvantage of this

software is the cost intensiveness but it is justified by the fact that the data base is always
up-to-date.

2.2.7. Circos

Circos is a perl-based command line program to create plots that show connections be-
tween data points. Because of its circular layout it is optimal to show connections across
the genome. The software can be downloaded free of charge from http://circos.ca/.

©
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$

Figure 2.3.: Example circos plot

Figure 2.3 shows an example for a circos plot created with Circos. Here a SNP (rs12151621)

is significantly associated with six different genes (PNKD, CALHM1, DYNLRB2, ZNF93,
GHRHR, MLH3). The code for creating this figure is as follows:
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Listing 2.3: Creating a circos plot

<colors>
<<include etc/colors.conf>>
<<include etc/brewer.conf>>
</colors>

<fonts>
<<include etc/fonts.conf>>
</fonts>

<<include ideogram.conf>>
<<include ticks.conf>>

<image>

<<include etc/image.conf>>

</image>

karyotype = data/karyotype/karyotype.human.hgl9. txt
chromosomes_units = 1000000
chromosomes_display_default = yes

# Links (are defined in <links> blocks)
<links>

Z =
radius =
bezier_radius

.975r
2r

o o o

<link segdup>

show = yes

color = black_a5
thickness 5

file = links. txt
record_limit 5000
</link >

</links>

##Adding Probe Gene Labels

<plots>

<plot>

type = text

color = black

file = gene.labels. txt
r0 = 1.07r

rl = 1.5r

show_links = yes

link_dims = 4p,4p,8p,4p.,4p
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link_thickness = 4p

link_color = red

label_size = 25p

label_font = condensed

padding = Op

rpadding = Op

</plot>

</rules>

<<include etc/housekeeping.conf>>
restrict_parameter_names* = no

The files “etc/colors.conf”, “brewer.conf”, “fonts.conf”, “ideogram.conf”, ”ticks.conf”, “im-
age.conf”, “housekeeping.conf” and “data/karyotype/karyotype.human.hg19.txt” are in-
cluded within the software. The files “links.txt” and “gene.labels.txt” have to be created.

The file “links.txt” contains the information about the two data points that should be con-
nected. The two data points need one common identifier (column 1 in Table 2.1). The second
column shows the chromosome, then the start and the end position of the gene or the SNP,
respectively (for SNPs the start and end position is identical).

eQTL1 hs2 85934498 85934498
eQTL1 hs2 219187917 219211515
eQTL2 hs2 85934498 85934498
eQTL2 hs10 105213143 105218648
eQTL3 hs2 85934498 85934498
eQTL3 hsl6é 80574853 80584539
eQTL4 hs2 85934498 85934498
eQTL4 hs19 20011786 20045765
eQTL5 hs2 85934498 85934498
eQTL5 hs7 31003635 31019141
eQTL6 hs2 85934498 85934498
eQTL6 hsl4 75480466 75518235

Table 2.1.: Example file for creating a circos plot: “links.txt”

The file “gene.labels.txt” (Table 2.2) contains information about every single data point:
chromosome (column 1), start position (column 2), end position (column 3), and the label
(column 4).

hs2 85934498 85934498  rs12151621
hs2 219187917 219211515 PNKD
hs10 105213143 105218648 CALHM1
hsl6 80574853 80584539  DYNLRB2
hs19 20011786 20045765  ZNF93

hs7 31003635 31019141 GHRHR
hs14 75480466 75518235 MLH3

Table 2.2.: Example file for creating a circos plot: “gene.labels.txt”

23



2. Material and methods

After preparing these two files the circos plot will be plotted by typing;:
perl bin/circos —-conf circos_hotspotl.conf outputdir "/..."
—-outputfile plot.png

2.3. Statistical methods

2.3.1. Linear regression models

Linear models are usually applied to determine the influence of one or more covariables
(21, ..., z) on a response variable (y). Normally the basic model looks like this:

ylzﬂo—i_ﬂlxll_‘_"i'ﬁkxzk"i'ezv izla"an
where €, ..€, are independent and identical distributed (i.i.d) unobservable errors with
E(e;) =0, Var(e;) = o

The response variables y and the errors € can be summarized in the vectors y and € and all
the covariables in a matrix to get the matrix notation:

y=XpB+e
Now the f3;s (summarized in the vector /) can be estimated by the least-square method:
B=(x"Xx)"'xTy

This works only if the matrix X7 X can be inverted, meaning that the inverse A~! of a matrix
A exists if and only if A is regular (JA| # 0) and has the property AA~! = A=1A = I.

The result is an unbiased (E (E) = [3) estimator with minimal variance. But numerically the
calculation of the least-square estimator is inappropriate therefore the QR-decomposition is
used. It is the decomposition of a matrix into an orthogonal? and a right triangular matrix.

To test whether one of the covariables z; has an impact on the dependent variable y the
following hypotheses are used:

Hoiﬁjzo, leﬁj;«éO

If Hy is true the covariable z; has no impact on the dependent variable. The test statistic for
this hypothesis is

9j
where 7} is the estimated standard derivation of 3. The null hypothesis is rejected if
T;| > ti_a2(n—p—1)

In R the command for the linear regression is

%A square matrix A is orthogonal if AA” = AT =T
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Listing 2.4: Calculation of a linear regression using R

Im(outcome ~ variablel + wvariable2 + ...)

In the genetic field for the decision of a test problem only the so-called p-values are used
(Dastani et al., 2012) . The p-value is the probability of obtaining a value of the test statistic at
least as extreme as the one that was actually observed, given that the null hypothesis is true.
Because p-values are probabilities the values are always between 0 and 1. So the advantage
of using p-values is that comparing different test statistics is possible (Fahrmeir et al., 2003).

When analyzing gene expression data the linear regression is applied when the influence
of different phenotypes (for example age, sex, BMI, and so on) on the gene expression levels
is investigated. But it is also used to analyze the effect of SNPs on gene expression levels.
Here an additive effect is assumed, meaning that the effect of two mutations is twofold in
comparison to one mutation (see Figure 2.4). This is called an additive genetic model (Gieger
et al., 2008).

If additional to the fixed effects 5 a random effect should be considered a linear mixed
model has to be calculated. An main example for the application is the repeated measure-
ment of the same individual. Here the subject effect is included in the model as a random
effect. In R the linear mixed model is implemented in the package n1lme:

Listing 2.5: Calculation of a linear mixed model with a random subject effect using R

library (nlme)
Ime (outcome ~ variablel + variable2 + ..., random = ~ 1|subject)

T
|
g L1
5 T
: T
s A
g T
— —
AA AB BB

Figure 2.4.: Additive effect of polymorphisms on gene expression levels

If the independent variable is binary, the linear regression is identical to the standard t-test
that compares two means from two independent groups (see Section 2.3.3).

2.3.2. Sobel test

The Sobel test is used to calculate if the effect of an independent variable A on the dependent
variable B is mediated by a third variable, the so-called mediator (see Figure 2.5).
The test statistic is given by (Sobel, 1982)
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Mediator

Independent variable Dependent variable

Figure 2.5.: Mediation scheme:
a is the regression coefficient for the association between the independent vari-
able and the mediator and s, is the standard error of this association. b is the
coefficient for the association between the mediator and the dependent variable,
adjusted for the independent variable and s, the corresponding standard error.

axb
2462 4 g2 % 52
\/b * 55 + a* x si

Thereby a is the regression coefficient for the association between the independent variable
and the mediator and s, the corresponding standard error of the linear regression model. b
is the coefficient for the association between the mediator and the dependent variable, ad-
justed for the independent variable and s; the corresponding standard error.

tSobel =

When calculating the Sobel test with data from a meta-analysis and using the z-scores the

test statistic is
YAV,

Daope] = —i22
el 7T 23
with Z; is equal to a2 and Z; is equal to b.

In R the Sobel test could be calculated using

Listing 2.6: Calculation of Sobel test using R

mediation. test (mediator.var, independent.var, dependent.var)

2.3.3. Analysis of variance (ANOVA)

The analysis of variance (ANOVA) is the generalization of the t-test and could be used to
compare more than two groups. The test statistic of a t-test is

X-Y
L= S s im)

where S% = ((n — 1)S% + (m — 1)5%)/(n + m — 2) is the variance of the two independent
groups. The ANOVA takes also the variance between the groups into account which results
in the following test statistic:
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variance between groups S (Y =Y )2/ -1)

variance within groups Zi[:l > i (Yij — Y.:)/(n—1I)

where [ is the number of groups and n; the number of samples in group i (Fahrmeir et al.,
2003). The p-value of the ANOVA only indicates that there is an overall difference between
the groups but not between which groups. Therefore it is necessary to compare post-hoc all
groups pairwise.

In R the ANOVA could be calculated with the function

Listing 2.7: Calculation of an ANOVA using R

aov (outcome ~ group.variable)

2.3.4. Fisher's exact test

The Fisher’s exact test is used to analyze the association between two groups and two dif-
ferent characteristics which can be displayed in the following contingency table:

group 1 | group2 | row sum
trait 1 a b a+b
trait 2 C d c+d
column sum a+c b+d a+b+c+d=n

If there is no association between the groups the probability for any kind of values is deter-
mined by the hypergeometric distribution:

@) (a+D0)c+d)!(a+ )b+ d)!
(Ge) alblcldin!

p =
In R the p-value could be determined using:

Listing 2.8: Calculation of Fisher’s exact test using R

fisher.test(rbind( c(a,b), c(c,d) ) )

The Fisher’s exact test could be used for example to test if a population is in Hardy-
Weinberg-Equilibrium (Wigginton et al., 2005).
A population is in Hardy-Weinberg-Equilibrium if the distribution of the genotypes is the
same across several generations (without mutation, migration and with randomly pairing)
(Victor, 2007). Assuming two alleles A and B the probability for genotype AA, genotype BB
and genotype AB respectively is

P(AA) = P(A)?> P(BB)=P(B)> P(AB)=2P(A)P(B)
so that

P(AA)+ P(AB) + P(BB) = P(A)? + 2P(A)P(B) + P(B)> = [P(A) + P(B)]* =1
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2.3.5. Multiple testing problem

When analyzing gene expression data, often each gene is analyzed separately and therefore
a high number of statistical tests is necessary and performed. Doing k independent tests the
probability o* for getting a false positive result is

of=1-(1-a)

When choosing an « of 0.05 and doing 1000 tests the chance for a false positive result is

af=1-(1-0.05)100=1-529%1072 ~ 1

To handle the problem of an increasing false positive rate there are different commonly used
methods:

e Controlling the family-wise error rate (FWER)
In genetics mostly the Bonferroni correction is used because it is easy to apply. Either
the observed p-value is multiplied by the number of performed tests or the significance
level is divided by the number of performed tests.

o Controlling the false discovery rate (FDR)
This method is less conservative than controlling the FWER. Table 2.3 shows the sum-
mary of a multiple testing situation.

# declared # declared >
non-significant | significant

# true null hypotheses U V mo
# non-true null hypotheses T S m —mo
> m— R R m

Table 2.3.: Number of errors committed when testing m null hypotheses (from Benjamini
and Hochberg (1995)). Hereby only R is an observable variable, the others are
random.

The false discovery rate (). is the expectation of the random variable Q = V/(V + 5)
(proportion of rejected null hypotheses which are wrongly rejected)’:

Qe =E(@Q) = E{V/(V +5)} = E(V/R)

In case all null hypotheses are true (s = 0 and v = 7), the FDR equals to the FWER.
Here @ = 0ifv =0and @ = 1if v > 0. Then you get P(V > 1) = E(Q) = Q.. So
controlling the FDR means controlling the FWER in a weak sense.

Benjamini and Hochberg (Benjamini and Hochberg, 1995) mentioned the procedure to
control the FDR in the following way (Dudoit et al., 2002):

Assuming that it is planned to test m null hypotheses H;, Hs, ..., Hy,, with p-values

*Definition: if V + S = 0, Q is defined to be 0
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D1, P25 s Pm, Where pqy < p(g)... < p(y) are the ordered p-values and H ;) is the ac-
cording hypothesis to p(;). To control the FDR (at significance level o) it has to be
defined that

J* :max{j :pj < ]a}
m
Then all hypotheses H; for j = 1,...5* will be rejected.
Finally the adjusted equivalent p-values are
m

s : 71}
pj =, min {mm(kpk )

e Permutation
Churchill and Doerge (1994) introduced the idea of permutations for microarray expe-
riments. It can be used to estimate the significance level for each gene separately. The
disadvantage is that it is very computer-intensive, especially for large sample sizes
when the p-values have to be calculated for all possible permutations. The concept for
the permutation test is:

1. Choose any statistical test
2. Analyze the gene of interest and calculate the test statistic

3. Permute the samples and calculate the test statistics for each permutation (nor-
mally about 1,000 permutations)

4. Compute the percentage of events where the permuted test statistic is higher than
the “real” test statistic to obtain the p-value

2.3.6. Pearson‘s and Spearman‘s correlation coefficient

The correlation coefficient is a measurement for the relation between two traits. The Pear-
son’s correlation coefficient is defined by

_ > iy (v —T)(yi — 7)
Vi (@i =) 0 (v — 7)?

r

where —1 <r < 1.

This coefficient was used to determine the correlation between two SNPs which are coded
by 0, 1, 2 or when using the imputed data®, the values range between 0 and 2.

The formula of the Spearman’s correlation coefficient is identical to those of the Pearson’s
correlation coefficient but applied on the ranks of the data:

_ Xia(rg(wi) —Tgx)(rg(yi) — Tgy)
Vi (rg(wi) =7gx)2 Y0 (rg(yi) — Tgy )

r

where
n

Mx = rgle) = - S i= (n+1)/2
=1 ;

=1

“When genotype data are imputed the determined SNPs are used to impute the missing SNPs. So for each
imputed SNP the probability for each genotype is given.
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n
S VA

=1 7,:1
The Spearman’s rank correlation test is based on the correlation coefficient and is a non-
parametric alternative to the linear regression. In R it could be calculated by

Listing 2.9: Calculating Spearman’s rank correlation test using R

cor.test(x,y, method = “‘Spearman’’)

2.3.7. Agglomerative clustering

The aim of clustering gene expression data is to identify outliers that show a different ex-
pression pattern than all other samples. Here the agglomerative clustering was used. This
means that the number of clusters is not predefined and in the beginning each sample be-
longs to one small cluster. This small clusters were added together until no further similar-
ities between two clusters could be identified. The distance between two samples could be
calculated in different ways. The most commonly used distance is the Euclidean distance:

dist(z,y) = v/ (x1 — y1)2 + . + (20 — Yn)?

The result of the clustering is normally shown in a dendrogram (Rahnenfiihrer, 2004) to
visualize the following information:

e Associated clusters are next to each other and connected by a line.

e The length of the connecting line is the average distance between the observations in
the two clusters.

e The variation in the clusters on the left side is smaller than the variation in the clusters
on the right side of the dendrogram.

The R package cluster and more precisely the function agnes () with default settings
was used to cluster all data.

2.3.8. Principal component analysis

The principal component analysis (PCA) is used to reduce the dimension of large data sets
without loosing information. Therefore a set of unrelated and orthogonal variables, the so-
called principle components (PC), were determined. Principal components are linear com-
binations of the original variables. The first PC is explaining most of the variance of the
original data. The remaining PCs are explaining less variance in a descending order. For
genetic data the PCA (especially the first two PCSs) is sometimes used to identify outliers or
clusters in the data.

IfY' = (Y1, ..., ) is a m-dimensional vector of random variables with expectation x and
covariance matrix ¥ (for expression data Y; represents the expression values of probe i and
so on) the aim is to identify new uncorrelated variables 7, ..., Z,,, in which

Z = CLU}/l + CLQJYQ + ...+ CLm] =a, Y
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where CL; = (a1, a2, ..., am;) is a vector of constant variables. To avoid arbitrary scales it is
normalized to a%a; = Y7}, az ; = 1. The most important condition is the maximization of
Var(Z;) = Var(a?X).

The so-called loadings a;; are determined by applying a singular value decomposition where
X is decomposed to

Y = UDV?

where the matrices U and V are column orthogonal so that UU = VIV = I and D is a
diagonal matrix.

The PCA is implemented in the R function prcomp (). For all analyses in this thesis the
following setups which returns the Eigen-vectors (so-called Eigen-genes when working with
gene expression data) were used :

Listing 2.10: Calculating a PCA using R

pc <— prcomp(data, retx = TRUE, center = TRUE, scale. = TRUE)
ev <— as.data.frame(pc$rotation)

e retx = TRUE
The rotated variables are returned.

e center = TRUE
The variables are shifted to be zero centered.

e scale. = TRUE
The variables are scaled to have unit variance before the analysis.

The principal component analysis was used to determine the influence of technical vari-
ables on the gene expression levels and to reduce the variance in the data by adjusting for
a certain number of Eigen-genes. It is also the basic principle for the Eigen-R? algorithm
(Chen and Storey, 2008). The Eigen—R2 can be calculated for each kind of variable to deter-
mine the proportion of variance that is explained by this variable. This algorithm consists of
four steps:

1. Y is an m x n expression matrix with m probes and n samples. With the singular value
decomposition this matrix is decomposed to Y = UDVT. U and V are column ortho-
gonal and D is a diagonal matrix.

2. Each column of V is denoted by v; and the user can specify a model of v; on the in-
dependent variable z for getting fitted values v;, where i = 1,2,...,n. Then the R? is
calculated with the following formula:

0% 20y — 1)

oy 2jo1(vij —0i)?

3. The proportion of variation that is explained by v; is calculated with the formula
2

d;

L 72

1=1 4]

Here d; represent the Eigen-value of the i-th Eigen-vector.

2
R5 =

T =
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4. At last the overall Eigen-R2 is calculated by:

n
Figen — R? = Z TI'iR%\Z,
=1

The algorithm is implemented in the R-package eigenR2 and was originally available on
the Biconductor homepage. Now it can only be downloaded from the author’s homepage:
www.genomine.org/eigenr2/. The default settings were used which means that the
models were fitted by least squares.

2.4. Genotyping of KORA F3 and F4 samples

The genotypes of KORA F3 and F4 were determined using so called SNP chips, a microarray-
based technology. The genotyping of KORA F3 was performed using the Affymetrix 500K
array set while KORA F4 was performed using the Affymetrix 6.0 chip.

The genotype data were quality controlled and imputed using IMPUTE (Howie et al., 2009)
in the Institute of Epidemiology at the Helmholtz Center Munich.

2.4.1. Filtering of SNPs in KORA F3

The SNPs were filtered using the same criteria as Doring et al. (2008). In total there were
500,568 SNPs and PLINK was used to filter out all SNPs that pass the following criteria:

1. Not on X-chromosome: 490,032 autosomal SNPs are remaining.
2. Genotyping efficiency < 95%: 49,325 SNPs have more than 5% missing values.

3. Minor allele frequency < 5%: 10,1323 SNPs were excluded because the frequency of
the less frequent allele is less than 5%.

4. Deviation from Hardy Weinberg equilibrium tested with Fisher’s exact test: 4,232 SNPs
were excluded.

All together 335,152 SNPs were selected for the subsequent analysis.

The used PLINK code was:

Listing 2.11: Filtering of SNPs using PLINK

—file KORA _Genotypes
—geno 0.05
—maf 0.05
—hwe 0.000001
—fisher
—model
—recode
—out KORA_Genotypes_snps_filtered
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2.4.2. SNP selection in KORA F4

Genotype data of 993 samples from KORA S4 and F4 are available. PLINK was used to filter
the SNPs according to common filter criteria that were also used for the KORA F3 data:

e Starting with 692,637 SNPs

e 136 markers to be excluded based on HWE test (p < 1e7 %)
e 56 SNPs failed missingness test (GENO > 0.05)

e 75,555 SNPs failed frequency test (M AF < 0.05)

e Resulted in 616,941 SNPs

The positions of the SNPs were checked in a database and updated.
The major and minor alleles and the minor allele frequency of each SNP were determined
with the PLINK command —-freq.
SNPs with more than one hit in the database or with hits on the mitochondrial-chromosome
(n = 26) were excluded from further analysis (all together n = 2,790 SNPs).

2.5. Measuring of gene expression levels

The development of microarrays allows to measure the expression levels of thousands genes
simultaneously. The two largest providers of these arrays are Illumina and Affymetrix, two
American companies that develop and sell products for the analysis of genetic information.
With only one exception the expression arrays of Illumina are used and therefore the work
flow for Illumina expression data is described here more in detail.

2.5.1. Experimental protocol for measuring gene expression using lllumina
arrays

The blood was collected in PAX tubes at the KORA study center in Augsburg and imme-
diately transported to the Institute of Human Genetics of the Helmholtz Center in Munich.
The PAX tubes were stored overnight at room temperature according to the manufacturers
instructions and then further stored at 4°C until required.

The quality of the RNA was measured with the Agilent Bioanalyzer. The Bioanalyzer is
an automated bio-analytical device to perform the quality control of DNA and RNA samp-
les (Mueller et al., 2000). The most informative output is the RNA integrity number (RIN)
(Schroeder et al., 2006) which ranges from 1-10. A RIN number of 1 indicates that the RNA is
destroyed by enzymes (degraded RNA) while a RIN number of 10 indicates an intact RNA
sample.

The amount of RNA was determined using the Invitrogen Ribogreen kit.

The RNA obtained from whole blood is usually not enough for a microarray experiment
and furthermore it is not labeled. Therefore, a step of amplification combined with reverse
transcription and labeling with Biotin is required before the sample can be processed on the
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Collection of blood in PAX tubes in Augsburg

J Transport to Munich

PAX tubes stored at room temperature overnight, then at 4°C

i

RNA Isolation from whole blood

Quality check using Bioanalyzer l Quantification using Ribogreen

RNA is amplified, reverse transcribed, and biotin-labeled into cRNA

i

cRNA hybridized on Illumina microarray

i

Washing, blocking, detection, and scanning of microarrays

i

Quality control of data using BeadStudio

i

Data analysis

Figure 2.6.: Experimental workflow for measuring gene expression using an Illumina expres-
sion array in KORA F3
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microarray. The Illumina Total Prep RNA amplification kit was used to generate biotiny-
lated, amplified cRNA out of 500ng RNA for hybridization with Illumina arrays.

The Illumina system uses a direct hybridization assay, whereby gene-specific probes are
used to detect labeled RNA. Each bead in the array contains a sequence-specific probe of
50 nucleotides. Illumina offers three whole-genome formats: 6-sample (used for KORA F3),
8-sample and 12-sample (used for KORA F4). Each array in the matrix consists of thousands
to tens of thousands of different oligonucleotide (short, single-stranded parts of RNA) probe
sequences. Multiple copies of each bead type are present in the array, on average ~ 30 copies
per probe.

In KORA F3 1500ng and in KORA F4 3000ng of cRNA was used for the hybridization on the
Mumina HumanWG-6 v2 (KORA E3) or the Illumina HumanHT-12 v3 (KORA S4 and F4)
Expression BeadChip.

The Illumina Bead Array reader was used to image the Bead chips. After scanning, the
raw data was imported from the Illumina BeadStudio (used for KORA F3 data) software
which was replaced in 2009 by the GenomeStudio (used for KORA F4 data).

The main difference between KORA F3 and F4 was that the samples in KORA F3 were
used directly after the blood draw. The samples were transported immediately to the Helm-
holtz Center and the RNA was isolated. For the S4 and F4 samples the blood was also
collected in PAX tubes, but then they were frozen until the RNA isolation. The S4 samples
were partly frozen up to ten years. Another difference is that the F3 samples were processed
individually however the F4 samples were processed in groups of 96.

2.5.2. Analyzing gene expression data using Affymetrix arrays

Blood samples (19ml of peripheral blood) were taken from patients and their healthy siblings
under fasting conditions after informed consent. 2.5ml of the blood were collected directly
in PAXgene Blood RNA tubes (PreAnalytiX) and were stored for six months at —70°C. The
RNA extraction was done using the PAXgene Blood RNA Kit (Qiagen).

1pg of RNA of each sample was used to reduce the globin with the Ambion GLOBINclearTM
Kit. The following steps were done with both probes of each sample.

RNA and cRNA quality control was carried out using the Bioanalyzer (Agilent) and quantifi-
cation using Ribogreen (Invitrogen). The concentration was measured with the NanoDrop.
200ng of RNA were reverse transcribed into cDNA and biotin-UTP-labeled the RNA using
the GeneChip WT Terminal Labeling Kit from Ambion.

This was the only project where the cRNA was hybridized to the Affymetrix GeneChip
Human Gene 1.0 ST Array. Washing steps were carried out in accordance with the Affymetrix
protocol. The quality of the expression data was checked with the Affymetrix Software Ex-
pression Console and due to bad quality of the RNA two samples were removed from further
analysis and 19 samples passed all quality criteria. The statistical analysis was done using
the Bioconductor package affy. The expression values were calculated with the function
rma (Irizarry et al., 2003) and were by default logarithmized and normalized with the quan-
tile normalization (see Figures 2.7 and 2.8). The R code for the transformation of the raw
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Figure 2.7.: Not normalized samples Figure 2.8.: Normalized samples

expression data to a data frame with normalized values with the affy package is as follows:

Listing 2.12: R code for using the Bioconductor package affy

library (affy)

pd <— read.AnnotatedDataFrame(”Info.txt”, header=T, row.names=1)
raw.data <— ReadAffy(filenames=rownames(pData(pd)), phenoData=pd)
rma.data <— rma(raw.data)

expr.data <— exprs(rma.data)

2.5.3. Normalization of microarry data

Microarray experiments are very susceptible to small changes in the protocol. Therefore the
optimal way would be to perform all measurements on the same day by the same person
under exactly the same conditions. Of course this is normally not possible especially for large
sample sizes and even if samples are processed on the same day on the same amplification
plate there might be differences in the signal intensities (see Figure 2.9).

One possibility to ensure the comparability of several samples is to normalize the expression
values before further analyses.

2.5.3.1. LOESS normalization

Cleveland (1979) introduced the LOESS normalization which is the abbreviation for LOcal
regrESSion.

The non-parametric local regression is applied on logarithmized and MA-transformed data
(Dudoit et al., 2002) where M and A are calculated by:

M = samplel — sample2

A = 1/2(samplel + sample2)
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Figure 2.9.: Quality plot to illustrate the necessity of normalization:
The quality plot from the GenomeStudio shows eight arrays that were processed
at the same time on the same amplification plate. Nevertheless, the eight dif-
ferent arrays differs substantially when comparing the average signal of the hy-
bridization controls.
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It is assumed that the response variable y; is explained by a smooth function f(z;)+¢; (where
i =1,...,n). To identify the f(z) the following algorithm is used (Fahrmeir et al., 2007):

1. The k nearest neighbors of z are defined by N(z) where the neighborhood N(z) =
i:d; €dqy,...,dgy and d(yy, ...d(y) are the ordered distances d; = |z; — 2|

2. Define the largest distance of two data points by

A(z) = max |z; — z;
(2) m,eN(z)\ il

3. Weights are defined by

wA(z)(Zaz’L>:K( A(Z) )7
where K is a tricube core function
A= fuP)?, iffzl <1
K(u) = { 0, otherwise

4. f(2)is calculated by (weighted) least squares based on the data points in the neighbor-
hood N(z).

The normalization was performed using the R function loess () with default settings. The
smoothing parameter which defines the size of the neighborhood was set to 0.1. The dis-
advantage of this normalization is that one sample has to be chosen as reference sample.
Depending which sample is chosen the results could differ appreciably.

2.5.3.2. Quantile normalization

The aim of the quantile normalization is to equalize the distribution of each sample (Bolstad
et al., 2003).

The concept of the normalization is shown here with random numbers:

1. Start with the raw data:

Samplel Sample2 Sample3

Genel 10 300 1100
Gene2 100 200 15
Gene3 1000 5 300

2. Order the data within each sample and calculate the mean for each row:

Samplel Sample2 Sample3 Mean

Quantilel 10 5 15 10
Quantile2 100 200 300 200
Quantile3 1000 300 1100 800
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3. Replace the raw data by the mean:

Samplel Sample2 Sampled Mean

Quantilel 10 10 10 10
Quantile2 200 200 200 200
Quantile3 800 800 800 800

4. Restore the order of the original data:

Samplel Sample2 Sample3

Genel 10 800 800
Gene2 200 200 10
Gene3 800 10 200

In R the quantile normalization is implemented in the package 1umi which was developed
for the analysis of Illumina data but could also be used for any kind of expression data.
The normalization function is called 1umiN () where different normalization methods can
be applied. The quantile normalization is performed by using

Listing 2.13: Normalize expression data using R

lumiN (data, method = “‘quantile’”)

2.5.4. Preparation of gene expression data for eQTL studies
2.5.4.1. KORA F3

Altogether there are 48,701 probes on the Illumina HumanWG-6 v2 expression array. For
the first analyses the number of probes was reduced by using only these that are significant
detected in more than 5% of the samples. In KORA F3 this results in 13,767 probes.

Later it was decided to keep also probes with low expression levels because replication co-
horts were available to verify also effects in low-expressed probes. Therefore the 50bp se-
quences of each probe were mapped to the human reference sequence hgl8 and all probes
were kept that mapped uniquely or had only up to two mismatches per probe. 7,292 probes
did not map uniquely, so 41,409 probes remained and were used for analysis. Of these
probes, 27,623 mapped to annotated transcripts and 13,786 mapped to intergenic regions.

2.5.4.2. KORA F4

On the Illumina HumanHT-12 v3 array are 48,803 expression probes. For the analyses the
probes were mapped by Alexander Teumer to the available mRNA sequences of the UCSC
genome annotation database (hg19). 28,691 probes could be perfectly mapped to an unique
mRNA or to known transcripts or annotated RefSeq genes. These probes map to 18,606 dif-
ferent RefSeq genes.

For further analyses probes that could not be mapped or mapped to intergenic regions were
removed.

For the eQTL analysis it was decided to reduce the technical variance in the data by ad-
justing for a determined number of Eigen-genes (this is described in detail in Section 4.3).
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First, a principal component analysis was conducted and different numbers of Eigen-genes
(five to 100 in steps of five) were removed from the data by keeping the residuals in a linear
model with expression as dependent and Eigen-genes as independent variables®. Addition-
ally the uncorrected and for age and gender corrected data were used.

PLINK was used to test systematically the association of all SNP-probe combinations for all
different data sets. PLINK calculates linear regression models with additive effects of SNPs
where the direction of the regression coefficient represents the effect of each extra minor al-
lele (i.e. a positive regression coefficient means that the minor allele increases the expression
levels). Due to a limitation of memory capacity only combinations with a p-value below
1% 10~7 were stored.

Listing 2.14: Calculation of association between gene expression levels and genotypes using

PLINK
—file KORA_Genotypes_snps_filtered
——assoc
—pheno expression_adjusted . txt
—all —pheno

—pfilter le—7

The number of significant probe-SNP-combinations and transcripts (p-value threshold =
6.02 x 1072 and 2.81 x 10712 for cis- and trans-eQTL, respectively) were plotted (Figures 2.10
and 2.11). Also mean standard error, beta, and explained variance R?. The optimal number
of Eigen-genes was graphically determined.

For the cis-analysis the highest number of significant eQTLs was observed when correcting

for 55 Eigen-genes. Correcting for more Eigen-genes led only to marginal more significant
hits and the mean standard error did not get smaller any longer.
For the trans-analysis the most hits were obtained when correcting for 25 Eigen-genes. Using
more Figen-genes even worsened the result. These results were similar to the results from
Fehrmann et al. (2011). They removed 50 Eigen-genes for cis- and 25 Eigen-genes for trans-
analysis, respectively.

2.6. Comparison of cis-eQTL results in KORA F4 with published
cis-eQTLs

We compared the cis-eQTLs from whole blood with already published cis-eQTLs in different
tissues. The following publications were considered:

1. Fairfax et al. (2012) - eQTLs in monocytes and b-cells
Total RNA from monocytes and b-cells from 283 healthy volunteer was quantified us-
ing the Illumina HumanHT-12 v4 BeadChip. eQTLs were calculated for 29,022 expres-
sion probes and 651,210 SNPs (from Illumina Human OmniExpress-12v1.0 BeadChips)
using linear and Spearman’s rank models (because of little differences in both models

*In the original publication the Eigen-genes were misleadingly called principle components. That is the reason
for slightly different figures in the original publication and this thesis.
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Figure 2.10.: Number of unique significant cis-eQTL probes for different numbers of re-
moved Eigen-genes in KORA F4:
The expression levels were adjusted for different numbers of Eigen-genes and
the association between adjusted expression levels and genotypes were calcu-
lated. The number of unique significant cis-eQTL with p-value < 6.02 * 10~ is
plotted.
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Figure 2.11.: Number of unique significant trans-eQTL probes for different numbers of re-

moved Eigen-genes in KORA F4:

The expression levels were adjusted for different numbers of Eigen-genes and
the association between adjusted expression levels and genotypes were calcu-
lated. The number of unique significant trans-eQTL with p-value < 2.81 % 10712
is plotted.
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only eQTLs that reached threshold in both analyses were carried forward). cis was de-
fined as a 2.5 Mb-interval on either side of probe with a p-value threshold of 1 * 1073.
To compare the results Table S1 from the original publication was downloaded which
consists of 82,346 SNP-probe interactions.

2. Fehrmann et al. (2011) - eQTLs in whole blood

RNA from whole blood from 1,469 European samples was investigated. Illumina Hu-
man HT-12 and H8v2 arrays were used which resulted in 52,061 unique probes were
analyzed, representing 19,609 unique genes. Additionally 289,044 common SNPs (II-
lumina HumanHap300 platform) were analyzed. eQTLs were calculated using the
non-parametric Spearman’s rank correlation. The FDR was controlled at 0.05 by per-
muting expression phenotypes 100 times. An eQTL was defined as cis-eQTL if the
distance from probe midpoint to the SNP was < 250 kb. Supplement Table S1 with
65,535 entries was downloaded to compare the results.

3. Zeller et al. (2010) - eQTLs in monocytes

Monocyte cells from 1,490 European samples were analyzed using 675,350 SNPs from
the Affymetrix Genome-Wide Human SNP Array 6.0 and 12,808 well characterized
detected genes from the Illumina HT-12 v3 BeadChip. The associations were calculated
using the ANOVA and were checked with the Kruskal-Wallis test®. For 2,477 genes a
cis-eQTL (distance between SNP and gene is less than 1 Mb) with a p-value less than
5.78 * 107!2 (Bonferroni threshold) could be observed and they are summarized in
Supplement File S1.

4. Schadt et al. (2008) - eQTLs in liver

Liver samples of 427 Caucasian samples were analyzed using an Agilent expression
array which consists of 34,266 known and predicted genes of which 39,280 probes.
The Kruskal-Wallis test was used for analyzing association between expression traits
and 782,476 SNPs (Affymetrix 500K genotyping array plus Illumina 650Y panel) and
the FDR (10%) was used for multiple testing correction. cis-eQTLs were defined as
interactions where the distance between probe and SNP is <1 Mb. As the comparison
of cis-eQTLs was already done by Zeller et al. (2010) the table was downloaded from
Zeller et al. (2010) (Supplement File S4).

5. Stranger et al. (2007b) - eQTLs in LCLs

The Eppstein-Barr virus-transformed lymphoblastoid cell lines of 270 individuals from
HapMap consortium (30 Caucasian trios of northern and western European origin, 45
unrelated Chinese individuals from Beijing, 45 unrelated Japanese individuals from
Tokyo, 30 Yoruba trios from Ibadan, Nigeria) were anaylzed using 14,925 expression
probes from the Illumina WG-6 v1 BeadChip and about 290,000 SNPs (HapMap). The
Spearman’s Rank Correlation test was performed. cis-eQTLs were defined as the dis-
tance from probe genomic midpoint to SNP genomic location was < 1Mb and the
significance threshold was determined using 10,000 permutations of expression phe-
notypes. As the comparison of cis-eQTLs was already done by Zeller et al. (2010) the
table was downloaded from Zeller et al. (2010) (Supplement File S2).

6. Innocenti et al. (2011) - eQTLs in liver
The study consists of three independent sample collections:

®The Kruskal-Wallis test is the non-parametric version of the ANOVA. It considers the ranks of the values.
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10.

e discovery set: primary liver tissues at University of Chicago (n=206)
e replication set: primary liver tissues at University of Washington (n=60)
e replication set: published set of liver eQTL data (Schadt; n=266)

The genotyping was performed on Illumina SNP arrays (Illumina quad-610 and 55k,
consisting of more than 500,000 SNPs) and gene expression was measured on Agilent
and Illumina expression arrays (14,703 genes were surveyed in the reference study,
11,245 RefSeq genes in all three studies). An eQTL was indicated as cis-eQTL when
the distance between SNP and TSS was less than 250 kb and eQTL were calculated
using a Bayesian regression. Supplement Table S1 was downloaded with eQTLs for
all genes. According to the publication all genes with Bayes Factors > 5 (1,173 genes)
were selected for comparison with KORA eQTLs.

Sasayama et al. (2013) - eQTLs in whole blood - Japanese samples

RNA from whole blood from 76 Japanese samples was analyzed using 534,404 auto-
somal SNPs (Illumina HumanOmnil-Quad BeadChip) and 30,465 expression probes
(Agilent Human Genome 4x44 K array). The Spearman’s rank correlation test was
used to calculate the association between gene expression and genotype and an eQTL
was indicated as cis-eQTL when the SNP was within 1 Mb upstream or downstream
of the gene. The significance threshold was 3.1 % 10712 (Bonferroni correction). Supple-
ment Table S4 was downloaded which includes 3,883 SNP-probe pairs.

Hao et al. (2012) - eQTLs in lung

Lung samples from 1,111 individuals (409 samples from Laval, 363 samples from Gron-
ingen, 339 samples from UBC) were analyzed using 51,627 expression probes (custom
Affymetrix array) and all SNPs from the [llumina Human1M-Duo BeadChip array. A
cis-eQTL was defined as an association between an expression probe and the SNP in
which the SNP is located within 1 Mb distance of the probe. eQTLs were calculated
using the Kruskal-Wallis-Test with applying a FDR correction of 10%. Results were
downloaded from Supplement Table S2a which consists of 17,049 entries.

Dixon et al. (2007) - eQTLs in LCLs

The Eppstein-Barr virus-transformed lymphoblastoid cell lines from 400 children from
families recruited through a proband with asthma were collected. 408,273 SNPs (Il-
lumina Sentrix Human-1 Genotyping BeadChip and Illumina HumanHap300 Geno-
typing BeadChip) and 54,675 transcripts (Affymetrix U144 Plus 2.0 GeneChip) were
analyzed. Associations were calculated using a linear model with a Bonferroni correc-
tion which leads to a significance threshold of 1.2 ¥ 10~7. The maximum distance for
cis-eQTLs was 100 kb upstream or downstream of the gene. As the comparison of cis-
eQTLs was already done by Zeller et al. (2010) the table was downloaded from Zeller
et al. (2010) (Supplement File S3).

Goring et al. (2007) - eQTLs in lymphocytes

Lymphocytes of 1,240 samples from San Antonio Family Heart Study using 20,413 ex-
pression probes (Illumina WG-6 vl BeadChip) and 432 SNPs from the Human Map-
Pairs Genome-Wide Screening Set Version 6 and 8 from Research Genetics were ana-
lyzed. A linear model was used to test for association between expression levels and
SNPs and an FDR of 5%. As the comparison of cis-eQTLs was already done by Zeller
et al. (2010) the table was downloaded from Zeller et al. (2010) (Supplement File S5).
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3. Analysis of gene expression data in case-control
studies

3.1. Introduction to case-control studies

Case-control studies are a type of observational studies in which samples from two different
groups are compared. The “cases” could be patients suffering from a disease or individuals
with a particular condition (for example high BMI), whereas the “controls” are the individu-
als that are healthy (or are at least not affected by the disease of the cases) or do not have the
same conditions. In comparison to population-based studies in which the general popula-
tion is investigated the case-control studies have lower sample sizes and the controls should
be accurately chosen to ensure identification of even very small differences between the two
groups.

The advantage of case-control studies is that it is possible to study rare diseases because the
patients are already affected by the disease when they are included in the study. The better
the controls fit to the cases (for example in age, gender and other sociodemographic vari-
ables) the higher the power to detect also small differences even when having small sample
sizes.

Case-control studies in which genome-wide gene expression levels should be compared be-
tween two or more groups have to be designed carefully. As the expected effects between
the groups and the sample sizes are usually quite small the selection of cases and controls
have to be quite homogenous. Additionally it has to be considered that some samples have
to be excluded due to bad quality. But the advantage is that it is possible to measure the
gene expression levels in the affected tissues, at least for the patients. If it is not possible to
obtain the right tissue from the patients or due to ethical reasons it is not possible to get the
relevant tissue of the controls the expression is measured in whole blood because it is easily
accessible and cheap.

In the following section two different case-control studies are presented (see Table 3.1). In
both studies, patients with a neurodegenerative disorder are compared. In the first study
patients with Parkinson’s disease are compared to young and old controls and in the sec-
ond study patients with two different subgroups of NBIA are compared to controls. In both
studies gene expression was measured genome-wide using two different expression chips
from Illumina and Affymetrix respectively. For the Parkinson study it was possible to use
the affected tissue while for the NBIA project whole blood was used.

Parkinson study NBIA study
Controls young and old controls one control group
Patients Parkinson patients two different subgroups of NBIA
Analyzed tissue single cells from brain whole blood
Used expression platform [lumina Affymetrix

Table 3.1.: Comparison of two case-control studies
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Old controls Disease Patients
76.8 &= 9.8 years 78.6 & 6.5 years
6 males/3 females T 7 males/1 female

Aging

l

Young controls
52.7 £ 2.4 years

7 males

Figure 3.1.: Experimental design of Parkinson study.
The age is depicted as mean + standard deviation.

3.2. Neurodegeneration and aging

The aim of the study was the identification of differentially expressed genes between patients
and controls using genome-wide expression data obtained from single cells from brain that
were isolated postmortem by Dr. Matthias Elstner in Newcastle, UK. Additionally the ef-
fect of aging should be analyzed by also comparing the patients to a second control group
consisting of younger controls, as well as both control groups, one against each other.

3.2.1. Parkinson‘s disease and aging

Parkinson’s disease (PD) is a neurodegenerative disease and starts with problems of the
movement: shaking, slowness of movement, rigidity and difficulty with walking. It is as-
sumed that the reason for Parkinson’s disease is an interaction of genetic and environmental
factors (Sulzer, 2007). The trigger for the disease is the degeneration of dopaminergic neu-
rons of the substantia nigra. This is a normal process of aging but in patients with Parkin-
son’s disease this process is accelerated. The reason for the massive loss of the dopaminergic
neurons is so far not clarified. A multi-causal development seems likely with genetic and
environmental factors or severe medical conditions (like stroke or tumors).

To identify differentially expressed genes altogether three groups were analyzed: Parkinson
patients, age-matched controls and younger controls (see Figure 3.1). The young controls
were used to detect differences between normal aging processes and processes that could be
explained by the disease.

As most changes in gene expression levels should occur in the brain of the patients neu-
rons were extracted from the substantia nigra and RNA was isolated from 100 neurons
per sample. The patients were clinically well-documented Parkinson patients and the age-
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matched controls are without any neurological disease. In Figure 3.2 the experimental design
from case selection over RNA isolation to the data analysis is shown.
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Figure 3.2.: Workflow for genome-wide expression profiles from single cells:
The frozen midbrains were sectioned at 20um thickness, neurons were identified
by toluidine stain and neuromelanin pigment, RN A was extracted from 100 neu-
rons, two rounds of In vitro transcription yielded in > 31,9 cRNA and was used
for hybridization on Illumina WG-6 v1 expression chips.

3.2.2. Data preparation and analysis

The data set consisted of gene expression data from the Illumina WG-6 v1 BeadChip of 48
probes from 28 different samples (eleven Parkinson patients, seven young controls and ten
old controls). The raw expression values were extracted from the BeadStudio to R, logarith-
mized and different normalization methods were applied. The LOESS normalization was
graphically determined to be the optimal normalization method for these data (for details
see (Heim, 2008)). Next, all probes were clustered using the R function agnes (). The den-
drogram is shown in Figure 3.3. The twelve samples that clustered separately were excluded
from further analyses due to possible quality problems. For all remaining samples that were
measured twice the mean expression value was calculated and used for the analysis. Finally
the data set consisted of eight PD samples, seven young controls and nine old controls.

Due to the small sample size the power to detect any differentially expressed genes was
quite low. One possibility was to reduce the number of performed tests to increase the sig-
nificance threshold and reduce the multiple testing problem. Therefore the number of ex-
pression probes was reduced before the analysis by choosing only 8,491 out of 47,312 probes
that were significantly detected in all samples, meaning that the expression level of these
probes is significantly higher than the background noise (detection p-value below 0.05).
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Dendrogramm of normalized data
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Figure 3.3.: Dendrogram of all samples from the Parkinson study:

All twelve samples that clustered in the right branch were excluded for further

analyses due to potential quality problems.
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3.2. Neurodegeneration and aging

3.2.3. Identification of a new risk gene for Parkinson‘s disease

To identify differentially expressed genes between Parkinson patients and controls, all nine
old control samples were compared to the eight patient samples using the t-test (Elstner
et al., 2009). When applying a Bonferroni correction only four probes remained significant:
MTND2, PDXK, SRGPA3 and TRAPPC4 (see Table 3.2 and Figure 3.4). The upregulation of
the genes MTND2 and PDXK could be confirmed by real-time Polymerase Chain Reaction
(PCR). This technology is usually used to amplify and quantify a DNA molecule. The results

of the real-time PCR are shown in the upper two figures of Figure 3.4.

Gene Definition Fold Change | p-value Biological process

MTND2 | Homo sapiens NADH! up 1.70 1.14 % 10~7 | ATP? synthesis coupled
dehydrogenase, electron transport
subunit 2 (complex I)

PDXK Homo sapiens pyridoxal | up 1.32 3.27 x 107% | Pyridoxine biosynthetic
(pyridoxine, vitamin B6) process
kinase

SRGPA3 | Homo sapiens SLIT- up 1.23 5.65 % 107% | Signal transduction
ROBO Rho GTPase
activating protein 3

TRAPPC4 | Homo sapiens trafficking | down 1.69 5.8+ 1079 | ER® to Golgi vesicle-
protein particle complex 4 mediated transport

Table 3.2.: Differentially expressed genes between patients and old controls:
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Figure 3.4.: Differentially expressed genes between Parkinson patients and old controls:

The light gray boxes represent the PD samples and the black boxes the controls.
The small boxes in the upper two figures show the result of the gene expression
measurement by real-time PCR.
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3. Analysis of gene expression data in case-control studies

3.2.4. Differences in expression patterns for Parkinson‘s disease and aging

To identify genes that are influenced not only by Parkinson’s disease but also by normal ag-
ing the seven young controls were taken into account (Elstner et al., 2011). The young con-
trols were compared to the old controls and the Parkinson patients by applying an ANOVA.
The Benjamini-Hochberg correction was used to control the false discovery rate. This re-
sulted in 409 probes with p-value <0.01, 1,661 probes with p-value <0.05 and 2,953 probes
with p-value <0.1. The final threshold was set to 0.05. The significant probes could be
mapped to 1,608 different genes using the Ingenuity Pathway Analysis Software (IPA).

i) i) iii) iv)

PD-specific Age-specific Aging & PD Mixed a) Mixed b) Mixed c)
166
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Figure 3.5.: Parkinson’s disease as accelerated aging:

Following ANOVA analysis (FDR 5%), a total of 1,661 transcripts were signif-
icantly altered between the three groups: young controls (YC), age-matched
(old) controls (OC) and PD. We mainly found three patterns of alterations: i)
PD-specific: 1,185 transcripts were differentially expressed in Parkinson patients
(435 up-regulated in PD and 750 down-regulated in PD, respectively) ii) Age-
specific: 256 transcripts were differentially expressed only in young controls (147
up- and 109 down-regulated, respectively) iii) PD as accelerated aging: 78 tran-
scripts were nominally significant (p < 0.05) differentially expressed between
YC, OC and Parkinson patients, but the effects were going in the same direction.
The numbers in brackets indicate the number of transcripts with p-value > 0.05.
Only 54 transcripts were showing a different pattern.

To distinguish between expression patterns that are PD-specific or age-specific a t-test
was conducted between young and old controls, young controls and patients and old con-
trols and patients with a nominal p-value threshold of 0.05. Remarkably, all hits were not
distributed equally across all possible patterns. The most common pattern was PD-specific,
meaning that the expression level was almost identical in young and old controls and de-
creased or rather increased in the patients. In the second common pattern the expression
levels differed only in young controls (age-specific pattern). The third common pattern de-
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3.3. Gene expression in patients with mitochondrial disorders

scribed Parkinson’s disease as accelerated aging because the expression level increased/de-
creased in the old controls and even more in the patients. All exact numbers and all other
possible patterns can be seen in Figure 3.5.

The age- (n=256) and PD-specific (n=1185) gene lists were used for a pathway analysis with
IPA (Table 3.3).

Canonical pathway p-value | 1 /| | main direction
Specific for aging

cAMP!-mediated signaling 295E-03 | 5/2 | 1
GABA? receptor signaling 3.16E-03 | 1/3 ||
Sphingolipid metabolism 9.33E-03 | 2/3 | |
Aminophosphonate metabolism 1.26E-02 | 0/3 ||
RARS3 activation 1.66E-02 | 5/1 |1
Cardiac-adrenergic signaling 1.86E-02 | 3/2 | 7t
Methionine metabolism 2.63E-02 | 0/3 ||
Selenoamino acid metabolism 2.88E-02 | 0/3 ||
Glucocorticoid receptor signaling 3.39E-02 | 6/1 | 71
G-Protein coupled receptor signaling 4.07E-02 | 5/1 |1
IL%-22 signaling 4.07E-02 | 2/0 | 1
Estrogen receptor signaling 4.07E-02 | 2/2 | +
TNFR2° signaling 437E-02 | 2/0 |7
Glycosaminoglycan degradation 468E-02 | 2/1 |1
Aging and PD

Nicotinate and nicotinamide metabolism 1.62E-02 | 3/1 | 7t
Agrin interactions at neuromuscular junction | 1.86E-02 | 2/1 | 1
Regulation of actin-based motility by rho 3.39E-02 | 1/2 ||
PAK® signaling 355E-02 [ 1/2 | |
Purine metabolism 3.63E-02 | 2/5 |
Huntington’s disease signaling 3.80E-02 | 2/3 ||
Pantothenate and CoA” biosynthesis 437E-02 | 0/2 |

Table 3.3.: Canonical pathways specific for aging and for Parkinson’s disease:
For the pathway analysis 1,185 PD-specific transcripts and 256 age-specific tran-
scripts were used as input for the Ingenuity Pathway Analysis Software.
ICyclic adenosine monophosphate, 2gamma-Aminobutyric acid, *Retinoic acid
receptor, Interleukin 22, ®Tumor necrosis factor receptor 2, 6p21 activated kinase,
"Coenzyme A

3.3. Gene expression in patients with mitochondrial disorders

As the main focus of my working group is the genetic of mitochondrial disorders, there were
performed some gene expression measurements on patients with mitochondrial disorders.

The mitochondria are the so-called power-plants of the cells. Defective mitochondria may
cause failure of metabolism. The most common and best studied mitochondrial defects are
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3. Analysis of gene expression data in case-control studies

defects of the respiratory chain. Defects of the respiratory chain cause a cellular energy
deficiency and lead to neurodegenerative disorders. Most of the time the central nervous
system, the skeletal muscle or the heart are affected because they have a high energy rate.
Mitochondrial disorders are a very rare disease with a prevalence of 1:50,000.

This project was a collaboration with Dr. Monika Hartig and Dr. Arcangela Iuso from the

Institute of Human Genetics of the Technical University in Munich (Hartig et al., 2011) on
NBIA.
Neurodegeneration with Brain Iron Accumulation (NBIA) is a neurodegenerative disorder.
It comprises a very homogeneous group of neurodegenerative disorders with various com-
binations of symptoms. The only commonality are the abnormal high levels of brain iron
which can be diagnosed with MRI (Magnetic Resonance Imaging)(TIRCON). There are ten
subgroups of NBIA (see Figure 3.6) and the investigated patients are from the following two
groups:
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Figure 3.6.: Subgroups of NBIA:
In addition to the different subgroups of NBIA (displayed with the causal gene)
also diseases like Parkinson’s disease or Alzheimer or aging can cause iron accu-
mulation in the brain.
Adopted from http://Tircon.eu.

Friedreich, Parkinson,
Alzheimer, Aging

e The most common form is PKAN (pantothenate kinase associated neurodegeneration)
which is caused by mutations in the PANK2 gene. An indication for PKAN is the so-
called ”Eye of the tiger”-sign in the MRI.

e MPAN (mitochondrial membrane protein-associated neurodegeneration) is caused by
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3.3. Gene expression in patients with mitochondrial disorders

mutations in the C190rf12 gene.

There is an early and a late onset form of both subgroups, whereas the early onset form

is the classical type and is characterized by a rapid progression and a life expectancy of less
than 20 years.
In this study blood samples were taken from children suspected to suffer from one of the two
different subgroups of NBIA and their healthy siblings and expression was measured using
the Affymetrix GeneChip Human Gene 1.0 ST Array (see Section 2.5.2). Each sample was
measured twice whereas in one measurement globin was reduced. The expression values
were calculated in R using the Bioconductor package af fy with the function rma (Irizarry
et al., 2003) and were by default logarithmized and normalized with the quantile normal-
ization. Afterwards all samples were clustered using the agnes function from R-package
cluster. Three outliers could be identified and were removed from further analysis (right
branch of the dendrogram in Figure 3.7).
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Figure 3.7.: Dendrogram of NBIA samples:
The expression levels of 41 samples were clustered and three outliers (in the right
branch of the cluster) were identified and excluded for the further analysis.

To also take globin-reduced samples into account we calculated linear mixed models. By
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3. Analysis of gene expression data in case-control studies

this we compared the expression levels of patients having a mutation in C19rf12 (N = 7)
with the seven controls and patients having a mutation in PANK2 (N = 6) with the controls.
The expression probes were sorted by p-value and the top 500 probes with lowest p-values
were used for a pathway analysis with Ingenuity. Additionally we conducted a pathway
analysis in C190rfl12-coregulated genes identified in a healthy population (KORA; N=381).
This population-based study is presented in detail in 2.1.1. In all three analyses pathways

that are related to mitochondrial functions are identified (see Table 3.4).

C190rf12 co-regulation
in controls (n=381)

Diff. expression in MPAN
(n=6) versus controls (n=7)

Diff. expression in PKAN
(n=7) versus controls (n=7)

Fatty Acid Biosynthesis
(4.64E-00)

Valine, Leucine and Isoleucine
Degradation (5.86E-04)

Protein Ubiquitination
Pathway (4.11E-03)
Propanoate Metabolism

(5.33E-03)

Fatty Acid Elongation in
Mitochondria (1.18E-02)

Natural Killer Cell
Signaling (2.49E-08)

Prolactin Signaling (1.36E-05)
Fcg Receptor-mediated
Phagocytosis in Macrophages

and Monocytes (1.62E-05)

Growth Hormone
Signaling (6.25E-05)

Mitochondrial Dysfunction
(2.5E-03)

Cholecystokinin/Gastrin-
mediated Signaling (1.03E-03)

Mitochondrial Dysfuntion
(2.7E-03)

Oxidative Phosphorylation
(3.72E-03)

Natural Killer Cell
Signaling (4.92E-03)

Folate Biosynthesis
(7.33E-03)

Table 3.4.: Results of pathway analysis for NBIA patients versus controls:
Pathway analyses were conducted using Ingenuity Pathway Analysis Software
using three different gene lists. The first column shows the result from a
healthy population-based study (KORA) where genes that were co-regulated with
C190rf12 were identified. For the second column six MPAN patients were com-
pared to seven controls and for the third column seven PKAN patients were com-
pared to the same controls.

3.4. Summary and discussion

The difficulty when analyzing gene expression data from case-control studies is the rela-
tively small sample size in comparison to the large number of measured gene expression
probes. To avoid this problem a few possibilities are available and were applied on the two
data sets.

First of all a homogeneous data set is important because one extreme outlier could distort
the whole result and lead to wrong conclusions. For both data sets we used clustering to
identify samples with potentially bad quality and removed them from further analysis even
if this reduced the sample size rigorously (in the Illumina data twelve out of 48 samples were
removed as they were cluster outliers).

To decrease the multiple testing problem the expression probes in the Parkinson project were
limited by using only expression probes that are above the detection threshold. For the NBIA
project this was not possible because Affymetrix does not provide a score like the detection
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p-value that indicates if the expression level is significant above the background. Therefore
all probes were used. Due to the fact that no gene was differentially expressed when cor-
recting for multiple testing, the 500 top hits were selected for a pathway analysis and this
yielded in pathways that are related to mitochondrial functions.

However the sample size was very small in both studies, the obtained results of both studies
were the beginning of future work.

The biggest advantage of the Parkinson study is that the expression levels were measured
in the affected tissue and that there are two different kinds of control groups. We identified
a differential expressed gene between old controls and patients namely PDXK. This gene
converts vitamin b6 from the nutrition in its active form. Epidemiological studies showed
a decreased risk for Parkinson’s disease in individuals with a high vitamin b6 level (de Lau
et al., 2006). With our data we confirmed that the intake of vitamin b6 could decrease the
risk for Parkinson’s disease .

With the first results from the NBIA project it was possible to justify that a larger study is ne-
cessary and helpful. It was the precursor experiment of a larger project with a larger sample
size, planned in the near future (see Chapter 7).
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4. Improvement and development of quality control of
gene expression data

The development of microarray technologies, the associated reduction of costs, the improve-
ment of quality and reduced time requirement for experiments enables now the determina-
tion of gene expression levels in population-based studies with larger sample sizes. When
we started to establish a genome-wide expression data set in a population-based study, for
comparison only data sets with few samples were available. Therefore the experimental set-
tings have to be established first before measuring all samples. We started with KORA F3,
improved the protocols in KORA F4 and finally standardized all procedures and protocols
in the German gene expression consortium MetaXpress.

4.1. Biological and technical replicates and manual quality
control: KORA F3

Divya Mehta measured the gene expression of 381 samples of the KORA F3 cohort using
the Illumina HumanWG-6 v2 BeadChip in the context of her dissertation (Mehta, 2009). The
KORA F3 cohort was among the first cohorts with genome-wide expression data. There
were no comparable data sets available at this time so that a quality control protocol had to
be established and validated.

4.1.1. Biological and technical replicates

The first question to address was how robust and reproducible gene expression levels from
whole blood samples are. In the beginning it was unknown to which extent the expres-
sion levels differ from day to day and from individual to individual. Before the expression
levels were measured in the KORA F3 samples the experimental protocol was validated by
measuring three different samples (1-3) at three different time-points (a-c). Three healthy
voluntary males from the Institute of Human Genetics were recruited and blood was taken
under fasting conditions three times once a week. The expression values were normalized,
Pearson’s correlation coefficient was calculated and all samples were plotted pairwise (Fig-
ure 4.1). All correlation coefficients were greater than 0.95 however not all nine samples
could be measured on the same array as one array can only be loaded with six samples in
parallel.

As differences between the three measurements of one individual are negligible the expres-
sion levels seems to provide a good overview of the gene activity and it was started to mea-
sure all samples with available PAX tubes from KORA F3.
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Figure 4.1.: Scatterplot matrix of three technical and biological replicates:
The upper panels show the Pearson’s correlation coefficient between technical
and biological replicates, which is always greater than 0.95, indicating a very
high correlation between all technical and biological replicates.
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4.1. Biological and technical replicates and manual quality control: KORA F3

4.1.2. Quality control

The first quality score that can be obtained for each sample after RNA isolation is the RNA
integrity number (RIN). The RIN can reach values between 1 and 10 in which 1 means totally
degraded! RNA and 10 nondegraded RNA (Schroeder et al., 2006). The RIN in the analyzed
KORA F3 samples ranged from 2.3 to 8.4. One reason for this large range of the RIN might
be the badly organized management of the PAX tubes. All PAX tubes from one day were
collected and transported via cab from the study center in Augsburg (where the blood was
taken) to the Institute of Human Genetics (where the RNA was isolated). The storage time
and temperature of the PAX tubes was not standardized and varied a lot.

It could be assumed that samples with high quality, indicated by a high RIN, have a high
number of detected genes. The number of detected genes per sample could be obtained from
the GenomeStudio (the software from Illumina that allows the quality control and some ba-
sic analyses). It indicates the number of genes that are significantly higher expressed than
the background noise. To verify the assumption that samples with a higher RIN also have
more detected genes, a linear regression model was calculated. Testing the effect of the RIN
on the number of detected genes a direct significant relationship could be observed with a
p-value of 2.99 x 10~!® (see Figure 4.2). Surprisingly, there are also samples with a very small
RIN (< 5) but more than 8,000 significant detected genes.

However, it is difficult to make a statement on low expressed genes (gene level is less than
the background noise). We kept also samples with lots of low expressed genes for the reason
that power to detect significant changes in the expression levels increases with sample size.

10000 14000

6000

Number of detected genes

2000

RIN

Figure 4.2.: RIN versus number of detected genes in KORA F3:
A higher RIN leads to significant more detected genes (p-value of linear regres-
sion = 2.99 x 10718),

'RNA in cells is not very stable to allow a continuous degeneration. This process is done with enzymes
(RNasen).
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When processing several hundred samples in parallel there is a risk for sample mixing.
Since gender of the probands was given, one way to identify mixed samples is to take ad-
vantage of the sex-specific expression pattern. Naturally women should have low expression
values for all Y-genes. Therefore the expression pattern of all genes on the Y-chromosome
was inspected graphically and three samples with high expression levels however they are
indicated to be female or the other way round were excluded.

4.1.3. Processing of the data

To ensure the comparability of gene expression levels of samples that were measured on dif-
ferent days and on different arrays, all 381 samples were normalized trying three different
normalization methods (rank invariant, LOESS and VSN normalization). The samples were
compared graphically to determine the LOESS normalization as the optimal normalization
method (for more details see (Heim, 2008)).

The data set consisted now of 381 samples and the expression levels of 48,701 probes per
sample. When analyzing all probes separately the number of performed tests was obviously
quite high and the number of false positive hits increased (multiple testing problem). To
face the multiple testing problem we reduced the number of probes. One way was to use
only probes that are significantly detected in more than 5% of all samples. “Significantly
detected” means in this case that the detection p-value was less than 0.01 in more than 19
out of 381 samples. Using this threshold the number of probes was reduced from 48,701 to
13,767. Applying a Bonferroni correction the threshold for significance changed just from
0.05/48,701 = 1.03 * 107 to 0.05/13,767 = 3.6 x 10~° but the number of performed tests is
reduced by a third and speeded up the analysis, respectively.

4.2. Validation of new technology: KORA F4

The experiences gained from the first experiments with KORA F3 were used to establish
an even larger whole-genome gene expression data set. PAX tubes were available for more
than 1,000 samples from KORA F4. Additionally there were samples from baseline survey S4
which were frozen for several years. For most of participants who were non diabetics there
were blood samples collected after an oral glucose tolerance test (OGTT). Expected quality
for the S4 samples was low after the long freezing time and therefore the focus was led on
the KORA F4 samples as better comparability to other expression data was expected.

4.2.1. One or two arrays per sample?

The KORA F3 samples were measured using the [llumina HumanWG-6 v2 Bead Chip which
contains on average about 30 beads per probe. This array was no longer available when
starting the measurement of the KORA F4 data. Another array was introduced by Illumina
(IIlumina HumanHT-12 v3) and due to the lower price and the advantage that 12 samples
instead of 6 could be measured in parallel the HumanHT-12 v3 array was used for the fol-
lowing experiments. The advantage was that two of this new arrays were cheaper than one
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4.2. Validation of new technology: KORA F4

of HumanWG-6 v2 arrays. The disadvantage of the HT-12 v3 array was that it was not clear
in the beginning if the quality of the data could be worse due to the fact that it contains only
half amount of beads (n = 15) per probe compared to the HumanWG-6 v2 array.
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Figure 4.3.: Histogram of deviations between expression values when using two different
arrays per sample:
Twelve samples were measured on two different arrays. Weighted means were
calculated for each probe of each sample using the number of beads as weights.
One array has on average 15 beads per probe and two arrays ~30 beads accord-
ingly. The largest deviation from the weighted mean is 12% and 99.9% of the
deviations are less than 5%.

To figure out if two arrays are necessary to get the same result as with using only one
array the first twelve samples were measured on two different arrays. For each of the twelve
samples the deviation of expression values was calculated for every probe on the array. For
97% of the probes the deviation was less than 5%. Further the probe specific weighted mean
was calculated by using the number of beads per probe as weight. The largest deviation from
the weighted mean was 12% and 99.9% of the deviations are less than 5%. (see histogram
in Figure 4.3). Double measurement did not improve the quality but would duplicate the
work. Therefore we stayed with only one array per sample.

4.2.2. Amount of cRNA, scanner regulation, and amount of RNA

To establish and optimize the protocol for gene expression measurement four samples were
measured three times and we used the “number of detected genes” as quality criterion.

¢ Different starting amounts of RNA were tested (100ng and 200ng RNA)
= 200ng RNA led to higher number of detected genes.

e Different amounts of cRNA for hybridization were tested (750ng cRNA, 1.5ug cRNA,
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and 3p.g cRNA)
= 3ug cRNA showed the highest amount of detected genes.

o Different scanner settings were tested (default: gainl, gain2, and gain4)
= No difference was observed between all settings and therefore the default regulation
gainl was chosen.

4.2.3. Establishment of a comprehensive quality-controlled data set

In total, RNA was isolated from 3,301 PAX tubes from KORA 5S4, F4 and F4 after the oral
glucose tolerance test (F4 OGTT). For 391 PAX tubes the amount or quality of RNA did not
meet the quality criterion and was therefore excluded. Bad quality was defined by a RIN < 6
(especially the samples from KORA S4 had low RINs (< 3)) to ensure a more homogenous
data set. In addition we defined a threshold for the number of detected genes > 6,000 which
further excluded 25 samples. Due to the limited number of detected genes (< 6,000) in the
first run, we measured 327 probes two times. Ten probes were measured three times and
four probes four times. Sixteen probes (corresponding to nine different samples) were not in
the KORA data base and were not allowed to be used for further analysis.

Altogether 341 probes were measured more than one time: 135 F4 samples, 126 F4 after
OGTT samples and 80 S4 samples. We could not observe that samples with an impaired
glucose have to be measured more often than samples with a normal glucose.

Finally we ended up with a data set consisting of expression levels of 2,509 samples with
more than 6,000 detected genes.

For further processing all expression values were log2-transformed and normalized using
the quantile normalization. To identify outliers all samples were clustered using the whole
expression profile and thereby three outliers (three S4 samples) were identified and were
removed from the data set (the dendrogram is shown in Appendix A.1).

In a second step we controlled for sample mixing by determine the gender of a sample
by clustering of samples due to the expression of probes that are located on the sex chromo-
somes. Female samples should have very low expressed probes on the Y- and males should
have low expressed probes on the X-chromosome. To spot mixed samples, all three cohorts
were clustered using only probes that were located on X- and Y-chromosome. 35 probes of
all three cohorts were deleted due to wrong classification (see Table 4.1). More than half of
the wrongly classified samples were from the S4 cohort (57%). In KORA F4 only 5 out of 998
samples (0.5%) have been mixed or contained unusual X-Y gene expression levels.

cohort males | wrong | females | wrong
males females

S4 360 11 317 9

F4 504 1 494 4

F4 OGTT || 403 6 420 4

Table 4.1.: Gender classification in KORA 54, F4, and F4 OGTT:
The gender of each sample was determined by clustering all expression probes
that are located on X- and Y-chromosomes.
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After removing all outliers and mixed samples there were altogether 657 5S4 samples, 993
F4 samples and 813 F4 OGTT samples which were amplified on 32 different amplification
plates. For about half of the samples (N = 460) three measurements from the three different
time points were available (see Figure 4.4).

S4 F4

F4 OGTT

Figure 4.4.: Overlap of samples from KORA 54, F4, and F4 OGTT

4.3. Common quality controlled preprocessing and analysis
strategy: MetaXpress

In 2011 the MetaXpress Consortium was founded within the DZHK - German Center for
Cardiovascular Research (Deutsches Zentrum fiir Herz-Kreislauf-Forschung). MetaXpress
consists of three large German study cohorts with available gene expression data:

e KORA F4 (Munich)
Described in Section 2.1.1.

e GHS (Mainz, Liibeck, Hamburg)
Described in Section 2.1.4.

e SHIP-Trend (Greifswald)
Described in Section 2.1.2.

Firstly the methodological aspects of the data preprocessing should be standardized in all
three participating cohorts to ensure the comparability. Since there was no gold standard for
expression data preprocessing, we compared available methods to stabilize the variation of
the expression data and defined a set of confounders with impact on this variation.

In MetaXpress, we analyzed gene expression levels in terms of specific nRNA abundances
in whole blood (SHIP-TREND and KORA F4) or blood monocyte samples (GHS). The de-
scriptive statistics of the participants and parameters analyzed in the studies are provided
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in Table 4.2. Despite higher age of the participants of KORA F4 (mean age = 70.4 years) than
in SHIP-TREND (mean age = 50.1 years) and GHS (mean age = 54.7 years) and the storage
time of the samples was longer in KORA F4 (855 days) than in SHIP-TREND (204 days) and
GHS (314 days), there are no large differences between the three cohorts.

] Variable (mean/SD) H SHIP-TREND \ KORA F4 \ GHS ‘
Sample size 991 993 1374
Storage time* 204.0£153.8 | 855.5+179.4 | 314.4+£91.6
RNA integrity number (RIN) 8.56+0.50 8.68+0.61 9.36+0.43
Females (%) 555 (56.0) 493 (49.6) 622 (48.4)
Age [years] 50.1£13.7 70.4+5.4 54.7£11.0
Body height [cm] 169.8+9.0 165.3£8.8 | 171.0+£9.3
Body weight [kg] 79.0£151 | 789+13.7 | 79.1+15.5
Body mass index [kg/m?] 27.3+4.6 28.9+4.5 27.0+4.6
Hip circumference [cm] 101.349.6 107.849.3 100.54+9.6
Waist circumference [cm] 88.0+12.9 98.6+12.1 93.5+13.4
Waist-to-hip ratio 0.87+0.09 0.91+0.08 | 0.9310.09
White blood cell count [Gpt/1] 5.72+1.48 6.004+1.80 7.04+3.81
Red blood cell count [Tpt/1] 4.63+0.39 4.50+0.40 4.69+0.41
Hematocrit 0.42+0.03 0.41+0.03 0.42+0.03
Hemoglobin [mmol /1] 8.62+0.74 8.69+0.75 9.10+0.74
Platelets [Gpt/]] 225.7+50.3 2447+65.1 | 271.5+67.9
Serum C-reactive protein [mg/1] NA 3.05+£6.27 | 3.78+4.92
High density lipoprotein [mmol/1] 1.48+0.37 1.43+0.36 1.47+0.40
Serum triglycerides [mmol/1] 1.424+0.85 1.50+0.84 | 1.464+0.91
Active smokers [%] 214 (22.0) 66 (6.7) 239 (18.6)
Systolic blood pressure [mmHg] 124.4+16.9 128.7+20.0 | 132.2+17.8
Diastolic blood pressure [mmHg] 76.61+9.8 74.0+£10.1 | 83.549.68

Table 4.2.: Descriptive statistics of MetaXpress cohorts:
*Storage time: Time between blood sampling and RNA isolation (SHIP-TREND
and KORA F4) or time between RNA isolation and RNA amplification (GHS)
[days].
Serum C-reactive protein was not available in SHIP-TREND.

All statistical analyses were performed in each cohort separately. Dr. Claudia Schurmann
and Dr. Alexander Teumer were responsible for the SHIP-TREND analysis, Arne Schillert
and Christian Miiller for the GHS analysis and I performed all analysis on the KORA F4 data
set.

4.3.1. Variance stabilization transformation versus log2 transformation

Gene expression levels can reach values between zero (not expressed) and infinite (very high
expressed). Thereby most of the expression levels are between zero and 100 which is iden-
tical to or below the background level. For any kind of parametric statistic a symmetrical
distribution is assumed and therefore the values are usually logarithmized before the ana-
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lysis. It is irrelevant if the logio, loge or logs is used. Biologists mostly prefer the log, scale
because these values are easier to understand. The whole blood data sets from KORA F4
and SHIP-TREND were already on log2 scale whereas the monocyte data set from GHS was
prepared using the variance stabilization transformation (VST). For the log2 transformation
the average signal per probe (calculated from the about 15 beads per probe) is used. In com-
parison to the log?2 transformation the VST (for details see Appendix A.2.1) takes all single
measurements of each probe for each bead on the Illumina array into account.

Comparing the log2 expression values to the VST expression values the average values per
probe are almost identical for large intensity values (> 2°) in all three cohorts, but the log2
values are recognizably smaller for low intensity values (see upper left part of Figure 4.5).
This is consistent with already published results (Lin et al., 2008). To compare the effects
of the two different transformations we created a random normal distributed phenotype
(N(0,1)) and calculated the associations for all expression probes with this uncorrelated phe-
notype by using a linear regression model. Further we used the body mass index (BMI)
which is known to be highly correlated with gene expression levels in monocytes (Zeller
et al., 2010) and whole blood (Xu et al., 2011). For both phenotypes the absolute effect sizes
and the standard errors (SE) from the linear model were smaller when applying the VST in
low intensity values (see Figure 4.5 for BMI and Figure A.2 for the random phenotype). This
resulted in highly correlated association p-values (R? = 0.9956 in KORA F4). Therefore we
concluded that there is no relevant difference between both transformation methods. As the
log2 transformation is most often used, easier to apply and to interpret all three data sets
were log2-transformed.

4.3.2. Determination of factors influencing gene expression

To identify technical variables with influence on gene expression levels principal compo-
nent analysis was conducted in all three data sets. More than 96% of the variance in the
expression data is explained by the first Eigen-vector (the so called Eigen-gene)? in all three
cohorts. This result was independent of the applied variance stabilization method and the
used tissue (see Figure 4.6).

In the SHIP-TREND data set it was additionally tested if more or less variance is explained
by the first Eigen-vectors when excluding all probes with low intensity values (detection p-
value less than 0.01 in at least 50% of the samples). No difference could be observed between
the log2 transformation and the VST even when excluding the probes with low intensity val-
ues (see two upper figures of Figure 4.7). More than 95% of the variation in the expression
levels is explained by the first Eigen-vectors.

Xu et al. (2011) also analyzed the impact of the first principal components on the variation
of the gene expression levels. He investigated 24 whole blood samples measured on the
Affymetrix GeneChip. In comparison to our results in this data set only 28.2% of the varia-
tion in the expression levels was explained by the first principal component. To test if this
difference was due to the different sample sizes we selected a random sample of 24 individu-
als and calculated how much of the variation is explained by the first Eigen-vectors. For our

’In the original publication the Eigen-vectors were misleadingly called principal components however the
Eigen-vectors were meant.
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Figure 4.5.: Comparison of VST- and log2-transformed expression values in association with
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Despite those differences the p-values are highly correlated (r2=0.9956).
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Figure 4.6.: Explained variance by the Eigen-genes in KORA F4, GHS, and SHIP-TREND:
The explained variance is depicted for the first 100 Eigen-genes in all three co-
horts for the two different transformations (log2 transformation and VST). More
than 95% of the variance is explained by the first Eigen-gene in all three cohorts,
independent from the transformation.
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data we could not see a difference between the original and the reduced sample size. In the
reduced subset of 24 samples the first Eigen-vector explains 97.3% of the variation in the ex-
pression data (see figure in the left lower corner of Figure 4.7). To investigate whether techni-
cal issues due to the different expression platforms (Illumina versus Affymetrix) could cause
this large differences the whole SHIP-TREND data set was adjusted for technical factors (Am-
plification batch, sample storage time and RIN). Now the first Eigen-vector just explained 5.9%
of the variation of gene expression (see figure in the right lower corner of Figure 4.7). This
result suggested that the Eigen-vectors are highly correlated with technical factors and the
differences to the data set from Xu et al. (2011) might be explained by the sample preprocess-
ing (96 samples in parallel on one amplification plate) or the Illumina array (twelve samples
on one array).

To identify the variables with the highest impact on the variation of expression levels the
Eigen-R? was calculated for 25 technical, biological and clinical variables which were avail-
able in all three cohorts (and the Serum C-reactive protein as it is known to be associated
with expression levels of some genes in whole blood). The Eigen-R? is a measurement for
the explained variance of predefined variables. The Eigen-R? are shown in Table 4.3 for all
three cohorts separated in technical and non-technical factors.

Most of the variance of expression levels in all three cohorts can be explained by the Illu-
mina chip design (twelve samples per array). The highest value of 48.18% in KORA F4 can
be explained by the higher number of samples that were processed. In KORA the expres-
sion was measured in S4, F4 and F4 OGTT at once and therefore the factor representing the
INlumina chip number has more levels. In GHS only 26.55% of the variation was explained
by the Illumina chip. One reason for this is the most optimal preprocessing of the samples.
Since all samples were prepared on the same day the variation due to technical variables
was smaller than in SHIP-TREND and KORA.

Beside those observations all Eigen-R? values were similar in all three cohorts. Only for
blood cell-related factors (white and red blood cell count, hematocrit, and hemoglobin) we
observed differences between the whole blood and the monocyte data.

Additionally to the calculation of the Eigen-R? the Eigen-genes were correlated with the
same technical, biological, and clinical variables. Figure 4.8 shows the results for KORA F4
and Figure 4.9 for all three cohorts, respectively. For most technical variables the highest
correlation was observed with one of the first five Eigen-genes but they are correlated with
almost all Eigen-genes. The highest correlation was observed for the plate design which is
highly correlated with the Illumina chip due to the distribution of 96 samples from one plate
on eight arrays (twelve samples per array).

4.3.3. Reduction of unexplained variance by adjustment for covariates

To reduce the unexplained variance in the linear regression models the same phenotypes as
in Section 4.3.1 were used (BMI and the random phenotype). We first included systematically
up to 100 Eigen-genes in steps of five to the linear model, saved the adjusted R? values and
calculated the means for each cohort separately. We could reduce the unexplained variance
by about 30% when adding 50 Eigen-genes to the linear regression model (see Table 4.4 and
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Figure 4.7.: Explained variance by the first 100 Eigen-genes for different filter methods in
SHIP-TREND:
In SHIP-TREND it was tested if different filtering methods reduced the explained
variance by the Eigen-genes. The upper two figures show the difference between
using all expression probes that are available on the array (all probes) and using
only the significantly detected probes (filtered) for the log2 transformation and
VST, respectively.
The figure at the bottom left shows the difference between all and filtered probes,
but using only 24 random samples. Only in the figure at the bottom right the
explained variance by the first Eigen-gene is reduced to less than 10%. These data
were adjusted for the technical variables (amplification plate, RIN, and sample
storage time). The filtering of probes shows the same result.
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] Parameter \ SHIP-TREND \ KORA F4 \ GHS ‘
[Nlumina Chip (12 samples per array) 33.75% 48.18% | 26.55%
RNA amplification batch (96 well plate) 20.18% 24.30% | 12.44%
Storage time [days]* 2.86% 1.60% 1.70%
Month of blood sampling 18.72% 3.31% 8.11%
Time of blood sampling [h] 0.20% 0.41% 0.61%
RNA integrity number 1.36% 0.77% 0.29%
Sex 0.95% 0.87% 1.51%
Age [years] 0.58% 0.45% 0.30%
Body height [cm] 0.54% 0.48% 0.82%
Body weight [kg] 0.59% 0.60% 0.51%
Body mass index [kg/m2] 0.68% 0.54% 0.35%
Hip circumference [cm] 0.60% 0.41% 0.27%
Waist circumference [cm] 0.77% 0.67% 0.52%
Waist to hip ratio 0.65% 0.70% 0.82%
White blood cell count [Gpt/1] 0.89% 0.74% 0.23%
Red blood cell count [Tpt/1] 0.38% 0.35% 0.65%
Hematocrit 0.47% 0.46% 0.83%
Hemoglobin [mmol /1] 0.50% 0.42% 1.03%
Platelets [Gpt/1] 0.32% 0.27% 0.63%
High density lipoprotein [mmol/1] 0.49% 0.48% 0.48%
Serum triglycerides [mmol/1] 0.68% 0.87% 0.23%
Active smokers [%] 0.36% 0.23% 0.26%
Systolic blood pressure [mmHg] 0.41% 0.15% 0.26%
Diastolic blood pressure [mmHg] 0.37% 0.14% 0.19%
Serum C-reactive protein [mg/1] NA 0.30% 0.26%

Table 4.3.: ’Eigen—R2 values for technical and non-technical variables in KORA F4, SHIP-
TREND, and GHS:
*Storage time means the time between blood sampling and RNA isolation in
KORA F4 and SHIP-TREND and between RNA isolation and amplification in
GHS. Serum C-reactive protein was not available in SHIP-TREND.
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Figure 4.8.: Correlation of covariables with the first 50 Eigen-genes in KORA F4:

indicated with a triangle. (CRP: Serum C-reactive protein, GLUK2a: 2h-glucose
level (after glucose tolerance test), GLUKIa: fasting glucose level, HABA1C: gly-
cated hemoglobin, DBP: diastolic blood pressure, SBP: systolic blood pressure,
WHR: waist-hip-ratio, PLT: platelets, HCT: hematocrit, RBC: red blood cell count,

The smaller the p-value the larger the dots. The smallest p-value per covariable is
WBC: white blood cell count)
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Figure 4.9.: Correlation of Eigen-genes with several factors in KORA F4, GHS, and SHIP-

TREND:

The smaller the p-value the larger the dots. The smallest p-value per variable is
indicated with a triangle. Grey dots show a missing trait in the cohort.

On the y-axis are depicted: Illumina chip (pCHIP), RNA amplification batch (pAMP),
month of blood sampling (mDON), RNA isolation batch (96 well plate) (pISO), signal-
to-noise ratio (StNR), month of RNA isolation (mISO), number of detected genes (Det-
Gene), percentage of neutrophils (Neutro), percentage of lymphocytes (Lympho), stor-
age time (Time), RNA integrity number (RIN), serum triglyceride concentrations (TG),
white blood cell count (WBC), waist circumference (WAIST), body mass index (BMI),
body weight (WEIGHT), alanine aminotransferase concentrations (ALAT), high density
lipoprotein concentrations (HDL), serum magnesium concentration (MG), hip circum-
ference (HIP), lactate dehydrogenase concentrations (LDH), vitamin B12 concentrations
(B12), partial thromboplastin time (PTT), serum calcium concentrations (CA), serum li-
pase concentrations (LIP) and serum potassium concentrations (K).
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Figure 4.10). Adding more than 50 Eigen-genes to the model did not further decreased the

unexplained variance.
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Figure 4.10.: Mean unexplained variance in KORA F4, SHIP-TREND, and GHS for BMI (A)

and the random phenotype (B):

A linear regression was conducted in all three cohorts with expression levels
as dependent variable and BMI or the random phenotype as independent vari-
able. Systematically more Eigen-genes were added to the model, the adjusted
R? values were saved and the mean was calculated for each number of Eigen-

genes.

In addition we compared the effect sizes, standard errors, and p-values when adding dif-
ferent covariates to the linear model. According to the results that we obtained from the
Eigen-R? calculation we used mainly technical variables (because they explain most of the
variation in the expression data) to further reduce the residual variance. We therefore com-
pared ten different models for BMI and the random phenotype:

gene expression ~ BMI/random phenotype +

e nothing

e age + sex

e age + sex + technical variables (amplification plate, RIN, sample storage time)

e technical variables (amplification plate, RIN, sample storage time)

e technical variables + first Eigen-gene

o technical variables + number of significant detected genes

o technical variables + Signal-to-noise-ratio (comparison of measured signal with back-

ground level)
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removed Eigen-genes BMI Random Phenotype
0 1.00 1.00
1 098 0.98
2 0.90 0.90
3 0.87 0.87
4 0.85 0.85
5 0.83 0.83
6 0.79 079
7 078 0.78
8 0.77 077
9 0.76  0.76
10 0.75 0.75
15 072 0.72
20 071 071
25 0.70 0.70
30 0.69 0.69
35 0.68 0.68
40 0.67 0.67
45 0.66 0.66
50 0.66  0.66
55 0.66  0.66
60 0.65 0.65
65 0.65 0.65
70 0.64 0.64
75 0.64 0.64
80 0.64 0.64
85 0.63 0.63
90 0.63 0.63
95 0.63 0.63
100 0.62 0.62

Table 4.4.: Mean unexplained variance for BMI and the random phenotype in KORA F4:

A linear regression with expression levels as dependent variable and BMI or the
random phenotype as independent variables was conducted. Systematically dif-
ferent numbers of Eigen-genes were added to the model, the adjusted R? values
were saved, and the mean was calculated for each number of Eigen-genes.
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e 50 Eigen-genes
e age + sex + technical variables + cell types

e technical variables + all non technical variables (white blood cell count, red blood cell
count, hematocrit, and mean platelet in KORA F4)

The mean standard errors for all models were calculated for all three cohorts (Table 4.5). The
lowest mean standard error could be observed for the 50 Eigen-genes for the random pheno-
type in all three cohorts. The standard errors were reduced by 21%, 27%, and 25% compared
to the unadjusted models in SHIP-TREND, KORA F4, and GHS, respectively.

Mean SE

Phenotype | additional covariates
(besides phenotype) SHIP-TREND KORA F4 GHS

Random none 0.0060256 0.007050737  0.005558932

phenotype | age+sex 0.0060040 0.006928487  0.005541641
age+sex+technical 0.0054934 0.006401871  0.005288458
technical 0.0055128 0.006413871 0.005305218
technical+Eigen-genel 0.0054879 0.00637871  0.005004323
technical+detected genes 0.0054451 0.006270553 -
technical+signal-to-noise ratio | 0.0054482 0.006290344 -

50 Eigen-genes 0.0047421 0.005124327  0.004193441
age+sex+technical+cell types | 0.0054243 - -
technical+all non technical 0.0055731 - -

BMI none 0.0013035 0.001547339  0.001149232
age+sex 0.0013500 0.001547741 0.001172341
age+sex+technical 0.0012342 0.001425894 0.001121818
technical 0.0011932 0.001425156  0.001099153
technical+Eigen-genel 0.0011921 0.001416861 0.001094797
technical+detected genes 0.0011854 0.001409976 -
techCov-+signal-to-noise ratio | 0.0011949 0.0014139%46 -

50 Eigen-genes 0.0012536 0.001264766  0.001055827
age+sex+technical+cell types | 0.00123254 - -
technical+all non technical 0.01305295 - -

Table 4.5.: Mean standard errors after different covariate adjustments:

The mean standard errors (for all probes) were calculated in each cohort for linear
models with gene expression as dependent and BMI or the random phenotype
as independent variable. Different covariates were added to the model. Missing

covariates in cohorts are indicated with a dash.

cell types: percentage of lymphocytes, neutrophils, monocytes, eosinophils and
basophils, detected genes: number of genes with detection p-value less than 0.01,
technical: RNA amplification batch, RIN, and sample storage time, non-technical:
parameters with an Eigen-R? > 0.3% in SHIP-TREND, signal-to-noise ratio: Com-

parison of measured signal to background level.

For BMI the mean standard error decreased with adjusting for 50 Eigen-genes. Three
Eigen-genes (5, 7 and 28) are correlated with BMI (see Figure 4.8) and further all significant
associations were lost if we adjusted for these three Eigen-genes. For almost all available
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Figure 4.11.: Comparison of different adjustments in KORA F4 for BMI:

Linear models with gene expression as dependent and BMI as indepen-
dent variable were calculated. The models were adjusted for age + gender
(age.gender), amplification plate + RIN + sample storage time (tech), ampli-
fication plate + RIN + sample storage time + white blood cell count + red blood
cell count + hematocrit + mean platelet (tech.clin) and, 50 Eigen-genes (50PCs),
respectively. In the gray boxes the standard errors and in the white boxes the
effect sizes of these different models are shown.
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covariates significant associations with at least one Eigen-gene were observed and therefore
we do not recommend to include them in the linear model.

Since adjustment for the technical variables RNA amplification batch, RIN, and the sample
storage time (time between blood sampling and RNA isolation in SHIP-TREND and KORA
F4 and time between RNA isolation and amplification in GHS) decreased the standard er-
rors for both phenotypes by about 8% we decided to use those three variables for all further
analyses.

The mean standard error increased when we adjusted for sex and age in the BMI regression
model in comparison to the unadjusted model. This might be explained by the correlation
between BMI and sex (p-value of t-test = 0.01699 in KORA F4).

For further analyses we wanted to establish a KORA F4 data set that was already adjusted
for the three relevant technical variables (RNA amplification batch, RIN, and the sample
storage time). Firstly, I adjusted the expression values for KORA S4, F4, and F4 OGTT data
together for these variables by calculating a linear model with gene expression as depen-
dent and the technical variables as independent variables and kept the residuals from these
models. To test whether the explained variance was reduced in the residuals I calculated
the Eigen-R? for the amplification plate as this was the variable with the highest explained
variance in KORA F4 (Eigen-R? = 24.30%). In the residuals the Eigen-R? in KORA F4 for the
amplification plate was still 3.83% and 11.61% in S4. This might be due to the unbalanced
distribution of the samples from the three studies on the amplification plates (see Table 4.6).
Especially the 54 samples were distributed unequally.

Therefore I secondly split the data set in the three studies (S4, F4, and F4 OGTT) and then
adjusted for the technical variables. This approach reduced the explained variance by the
amplification plate to 2.06 * 10715% in S4 and 2.41 * 1071%% in F4, respectively.

Applying the above described method to the three cohorts separately reduced the explained
variance of the amplification plate more efficiently. The residuals of this second approach
were regarded as the best optimized expression data set and was used for all following
projects.

4.3.4. SNPs in probes

SNPs that are located within a probe sequence on the array could cause a decrease in the
hybridization efficiency and reduce the signal intensities due to a lower binding efficiency.
This could cause false positive results when analyzing these probes. Therefore 8,898 probes
that cover exactly one exon and could be mapped uniquely to an annotated UCSC transcript
((Kent et al., 2002), (Dreszer et al., 2012)) were analyzed systematically to test whether the
SNP influences the expression level. Of these transcripts 3,376 (38%) contain at least one
SNP according to the 1000 Genomes?® reference panel (Altshuler et al., 2010).

In SHIP-TREND for 986 individuals the genotyping information was known. 24% of the
probes contained a polymorphic SNP with a minor allele frequency greater than 0.01 (7%)
and 0.05 (4%) respectively. For 1,561 probes containing 2,128 SNPs the effect of the SNP on
the expression level was analyzed using linear regression adjusted for sex, age, and the first
50 Eigen-genes. Out of these, 55% of the SNPs were associated with an decreased signal

3The 1000 Genomes Project was the first project with the aim to sequence a large number of individuals to
provide public available data to analyze the genomic variation in humans.
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Plate all probes | used probes | 54 | F4 | F4 OGTT
Plate01 87 55 7 |28 20
Plate02 60 60 18 | 24 18
Plate03 108 81 10 | 36 35
Plate04 111 80 24 | 28 28
Plate05 100 83 20 | 33 30
Plate06 90 85 32128 25
Plate07 96 88 22 | 34 32
Plate08 96 1 0] 0 1
Plate09 36 32 11 | 10 11
Plate09a 51 46 15 | 18 13
Plate10 79 72 10 | 27 35
Platell 100 94 38 | 35 21
Plate12 98 84 22 | 33 29
Plate13 97 92 52 | 20 20
Plate14 96 92 0|53 39
Platel5 99 9 0 | 56 40
Platel6 97 79 2 | 44 33
Platel7 70 55 2 |36 17
Plate18 96 94 0 |51 43
Plate19 98 86 2 | 45 39
Plate20 121 78 11 | 40 27
Plate21 92 91 0 | 52 39
Plate22 100 96 0 | 56 40
Plate23 86 64 2 | 38 24
Plate24 96 94 9 | 48 37
Plate25 67 48 11 | 20 17
Plate26 97 70 8 | 29 33
Plate27 91 76 27 | 26 23
Plate28 9 81 66 | 9 6
Plate29 96 88 88 1 0 0
Plate30 76 66 0|29 37
Plate31 96 79 7910 0

Table 4.6.: Distribution of KORA samples on amplification plates:
The distribution of all KORA samples having gene expression data available on
the amplification plates is shown. The numbers of “all probes” and “used probes”
differ because of the excluding of some samples due to bad quality.
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intensity. Surprisingly, for 45% of the SNPs the effect was in the opposite direction than ex-
pected.

KORA F4 individuals were genotyped with different arrays. Only 70 of the 2,128 SNPs were
investigated. But it was seen that the effects are in both directions, negative (55%) and posi-
tive (see Figure 4.12).

In summary, the results look more randomly than systematically and we cannot exclude a
decrease in the hybridization efficiency without seeing a systematic scheme. Conclusively,
we recommend not to exclude probes including SNPs within their sequence but point to-
wards an additional investigation when this probe shows significant further results.
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Figure 4.12.: Effect of SNPs within a probe sequence on expression levels in KORA F4:

The mean expression levels of all probes containing a SNP (66 probes) in the
KORA F4 data set is plotted against the effect sizes of the linear model with
expression level as dependent variable and SNP as independent variable. Each
spot displays the effect of a SNP on a probe. Associations with significant p-
values after Bonferroni correction (p< 2.3 x 10~°) are colored in red and with
p-values below 0.05 are colored in orange. For 55% the effect of the SNPs was
negative, meaning that the SNP was associated with a decreased signal inten-
sity.

4.3.5. Annotation

INlumina arrays contain both, probes that map to a well annotated transcript and probes
which map to a potential transcript. The probe annotation from Illumina is only updated
when a new array is introduced and it is normally not up to date. Therefore Dr. Alexander
Teumer mapped all probe sequences to the available mRNA sequences of the UCSC genome
annotation database (version 12/06/2009, February 2009 assembly of the human genome,
HG19). Out of all probes, 28,691 probes could be perfectly mapped to known transcripts or
annotated RefSeq genes.
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The updated annotation file provides the date genome positions of all mappable probes and
is now in use for all analyses.

4.4. Summary and discussion

In the beginning of my PhD there were no other large population-based studies with expres-
sion data and no standards for the quality control. One aim of my thesis was to optimize
expression data for analysis. Since our research is in a very active and new field some of
the methods we tried in the beginning are no longer up to date, for example the exclusion
of expression probes to reduce the number of tests. In KORA F3 probes that are not de-
tected significantly in more than 5% of the samples were excluded from further analysis.
This approach is nowadays no longer recommended because even low signals reflect low
expression values and several studies have shown that results based on low signal probes
contain valuable information and can be replicated.

The improvement in experimental processing steps from KORA F3 to KORA F4 are shown
in Figure 4.13. The variation in the detected genes was smaller in KORA F4 although it con-
sists of more samples (standard deviation in KORA F3 is 2,587 in KORA F4 922). In KORA F3
each sample was transported separately to the Helmholtz Center and not all samples were
treated identically. The KORA F4 samples were all frozen in the study center in Augsburg
and then transported together to the Helmholtz Center. This is reflected in the quality of
the RNA. The KORA F4 data set is more homogenous than the F3 data set as the selection
criteria for samples was more stringent (RIN > 6 and number of detected genes > 6,000).

KORA F3 KORA F4

14000
14000

10000
10000

6000
L

Number of detected genes
6000

Number of detected genes
L

2000
2000

Figure 4.13.: RIN versus number of detected genes in KORA F3 and KORA F4:
The correlation between RIN and detected genes is significant for both cohorts
(p-value = 2.99 x 107'® for KORA F3 and p-value = 7.63 * 1075 for KORA F4),
but if the RIN increases by one in KORA F3 the average number of detected
genes increases by 731, in KORA F4 just by 190. The low RIN in KORA F4 was
a measurement error from the Bioanalyzer and therefore this sample was also
used for further analysis.

Currently the most frequently used normalization method for large data sets is the quan-
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tile normalization. In 2010, when the KORA F4 samples were ready to analyze 1,240 samples
with expression data were published by Dubois et al. (2010). They used the same array and
suggested the quantile normalization because it works without any assumptions.

When joining the MetaXpress consortium it was necessary to agree on a common proto-
col for all quality steps. As SHIP-TREND samples were measured in Munich experimental
settings of these two data sets were almost identical. When SHIP-TREND samples were
measured in Munich, KORA data were already ready-to-use and therefore they adopted
most of our quality steps to their data set. The exclusion of outliers and potentially mixed-
up samples was done in each cohort separately and no common strategy for this procedure
was developed.

The normalization was the same for each cohort. The only difference was that both other
cohorts first normalized the data and then logarithmized it. As this does not make a dif-
ference for all further analysis we changed the order for the KORA F4 data to ensure better
comparability.

Since no guideline for quality control and preprocessing of expression data measured with
the Illumina HumanHT12 BeadChip was available it was developed during several meet-
ings with the data analysts working in the MetaXpress consortium.

1. Installation of the GenomeStudio Software from Illumina is necessary to obtain the
expression levels from the scanned data.

2. Create a new project and select all samples that should be analyzed. If the number of
samples is very high this step has to be done several times.

3. Impute all missing values (normally less than ten values per sample).

4. Ensure the quality of each sample by excluding samples with less than 6,000 signifi-
cantly detected genes (detection p-value < 0.01).

5. Export the expression values with an unique identifier (e.g. Illumina ProbelD) as csv-
file.

6. Install R from http://www.r-project.org/ and install the Bioconductor package
lumi with the following R command:

source ("http://bioconductor.org/biocLite .R”)
biocLite (”"lumi”)

7. Load the expression data to R by typing:

data <— read.csv(”ExpressionData.csv”)

8. Normalize the data (quantile normalization) and perform a log2 transformation by
using the 1umi package:

library (lumi)
norm.data <— lumiN(data, method = “quantile”)
norm.data.log <— lumiT (norm.data, method = ”"log2”)
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9.

10.

11.
12.

Use the expression levels of genes on sex-specific chromosomes to identify mixed
samples.

When analyzing associations between expression levels and phenotypes always con-
sider RNA amplification batch, RIN, and the sample storage time as covariables. For
eQTL studies use the Eigen-vectors, the so called Eigen-genes to remove most of the
technical variation from the data and increase the number of significant eQTLs.

Use an updated annotation file.

As probes containing SNPs are not excluded, have a closer look at these probes after
analysis of the data.
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5.1. Gene expression and blood pressure related phenotypes

High blood pressure is a major risk factor for several cardiovascular diseases. The phe-
notypes “systolic” and “diastolic blood pressure”, as well as “pulse pressure” (difference
between diastolic and systolic blood pressure) were chosen to be analyzed within the Meta-
Xpress Consortium. On August, 19th 2015, 51 studies identifying 416 associations concern-
ing several blood pressure traits were found in the GWAS catalog (for example (Newton-
Cheh et al., 2009), (Levy et al., 2009), (Ehret et al., 2011)). In spite of a lot of known loci the
proportion of explained variance is very small. The International Consortium of Blood Pres-
sure (ICBP) calculated an explained variance for all 29 identified and reported loci of about
one percent in the general population (Ehret et al., 2011).

We hypothesized that an association study between gene expression and blood pressure
might help to close the gap between estimated and explained variance for blood pressure.
All of the so far published studies analyzing gene expression and blood pressure did not
replicate their results or had small sample sizes:

e Leonardson et al. (2010) analyzed 40 Caucasian males from the greater Reykjavik area
in Iceland and identified 896 significant associations with systolic and 3,329 with dias-
tolic blood pressure using a p-value threshold of 0.0001. No replication of these hits
was performed.

o Zeller et al. (2010) analyzed 1,490 monocyte samples from Germany (GHS study, see
Section 2.1.4) and identified 48 expression traits that were associated with systolic
blood pressure and 18 with diastolic blood pressure, respectively. These results were
also not replicated.

e Bull et al. (2004) compared gene expression levels between 15 patients suffering pul-
monary arterial hypertension and 6 healthy controls. Of all analyzed genes, 28 had a
p-value below 0.01. Two genes could be verified using qPCR.

o Korkor et al. (2011) compared three patients suffering hypertension to three healthy
controls. By this, 49 differentially expressed genes were identified. Ten of these genes
could be verified using qPCR.

5.1.1. Results from KORA F3/F4

In KORA F3 and F4 the association between gene expression levels and systolic and diastolic
blood pressure was analyzed. As individuals taking anti-hypertensive drugs could falsify
the results, the analyses were also repeated without these individuals (N=173 in KORA F3
and N=571 in KORA F4). In KORA F3 377 samples and in KORA F4 989 samples were
analyzed. The linear regression model for both cohorts was the following:

expression level ~ phenotype + age + sex + BM I + technical variables
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with the technical variables being RIN, sample storage time, and amplification plate in
KORA F4 and RIN in KORA F3.

When analyzing all KORA F4 samples only one gene was significantly associated with sys-
tolic (p-value = 2.84 x 107%) and diastolic (p-value = 4.22 x 10~%) blood pressure. The gene
is called FOSB and is located on chromosome 19. In 990 SHIP-TREND samples p-values for
this gene are 1.51 * 107% (diastolic blood pressure) and 1.47 x 10~% (systolic blood pressure)
respectively.

When including only subjects that did not take anti-hypertensive drugs no gene was sig-
nificantly associated with systolic or diastolic blood pressure. The p-values for FOSB were
2.32%107% (systolic blood pressure) and 2.95 x 10~% (diastolic blood pressure), respectively.

Cohort KORA F3 | KORA F4
Sample size 377 989
diastolic BP (mm Hg) 83.2 74.0
systolic BP (mm Hg) 136.7 128.7
Samples taking drugs 173 571
diastolic BP (mm Hg)(without drugs) 84.97 75.4
systolic BP (mm Hg)(without drugs) 136.6 128.5

Table 5.1.: Study description of KORA F3/F4 for blood pressure related phenotypes

5.1.2. Results from MetaXpress

Altogether, results of the association studies on blood pressure phenotypes in whole blood
of KORA F4 participants were not promising. In contrast, several significant hits could be
identified in the monocyte sample of the GHS. Therefore, monocyte samples plus samples
from the US Multi-Ethnic Study of Atherosclerosis (MESA) cohort were used as discovery
panel (N= 2,549) and whole blood samples from KORA F4 and SHIP-TREND were used
as replication cohorts (Mueller et al., 2014). All four studies used the same linear regres-
sion model for the three phenotypes diastolic and systolic blood pressure, as well as pulse
pressure:

expression level ~ phenotype + age + sex + BM I + technical variables

Results from GHS and MESA were meta-analyzed and an association was called significant
if the Benjamini-Hochberg adjusted p-value was below 0.05. P-values of these associations
were assessed in KORA F4 and SHIP-TREND. If the p-values in both studies were below
0.05 and the direction of the effect was consistent, the gene was chosen for validation in a
clinical trial (TEAMSTA!). A qPCR was performed to measure the expression level of each
of the eight candidate genes in 613 hypertension patients before and after a six-month treat-
ment with anti-hypertensive drugs. For the analysis the patients were divided in responders
(systolic blood pressure decreased > 10mmHg) and non-responders (systolic blood pressure
decreased < 2mmHg) and in both groups both time-points were compared separately.

All eight genes showed significant differences between start and end point of the clinical trial

1“This was a multicenter, multinational, 8-week randomized, double-blind, parallel-group study that evaluated
the efficacy and safety of two SPCs of telmisartan/amlodipine (T/A) compared with amlodipine monother-
apy in patients with uncontrolled hypertension.” (Neldam et al., 2011)
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(p-value < 0.05/8=0.00625) . These eight genes were CEBPA, CRIP1, F12, LMNA, MYADM,
TIPARP, TPPP3, and TSC22D3.

5.1.3. Results from CHARGE consortium

The blood pressure project in CHARGE included 7,017 samples from six population-based
studies, namely Framingham Heart Study (FHS), EGCUT, Rotterdam Study (RS), InCHI-
ANTI, SHIP-TREND and KORA F4 (Table 5.2).

Gene expression levels were associated with three phenotypes, namely systolic (SBP) and di-
astolic (DBP) blood pressure, and hypertension (HTN) with hypertension being defined as
SBP > 140 mm Hg or DBP > 90 mm Hg. For each expression probe a linear model adjusted
for age, sex, BMI, cell counts (if available) and technical covariates (RIN, sample storage
time, and amplification plate in KORA) was applied. FHS used a mixed model to adjust for
family structure.

FHS | EGCUT RS InCHIANTI | KORA F4 | SHIP-TREND
Sample size 3,679 972 604 597 565 600
Age 514+12 | 36=£14 5818 71£16 7245 46+13
SBP (mm Hg) | 118+15 | 122+16 | 132+20 132420 129421 120+15
DBP (mm Hg) | 74+9 7610 | 82+11 78+10 73+£11 7519
Hypertension 11% 19% 35% 45% 26% 12%

Table 5.2.: Characteristics of the six study cohorts included in meta-analysis on blood pres-
sure related phenotypes:
Individuals receiving anti-hypertensive treatment were excluded from the analy-
sis. Hypertension was defined as SBP > 140 mm Hg or DBP > 90 mm Hg.

As gene expression levels of all six cohorts were measured using two different platforms
(FHS used Affymetrix, while all others used Illumina) the analysis was conducted in two
steps (Figure 5.1). At first, panels using different platforms were analyzed separately and
the significant hits were replicated in the panel using the other platform and secondly, both
panels were meta-analyzed (This was possible for an intersecting set of 7,717 genes that were
measured with both platforms). Results are summarized in Table 5.3.

The meta-analysis of all six cohorts resulted in 34 significant differentially expressed genes
(Table 5.4) associated with either SBP (21), DBP (20), or HIN (5), whereat expression levels
of ten genes are associated with more than one phenotype. For 33 of these genes a cis- and
for 26 a trans-eQTL in whole blood was identified in an eQTL study (Westra et al., 2013).

Gene CHR | FHS p-value | Illumina p-value | Meta p-value
SBP Signature genes

SLC31A2 9 1.2E-13 9.9E-11 <1E-16
MYADM 19 2.2E-14 2.2E-12 <1E-16
DUSP1 5 1.1E-08 3.7E-07 2.0E-14
TAGLN2 1 1.0E-06 1.3E-06 5.8E-12
CD97 19 1.4E-07 1.6E-05 1.0E-11
BHLHE40 3 4.3E-06 6.4E-07 1.2E-11
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MCL1 1 7.5E-07 1.5E-06 1.4E-11
PRF1 10 2.5E-09 1.0E-03 1.6E-11
GPR56 16 3.5E-09 3.0E-03 3.9E-11
PPPIR15A 19 1.7E-09 2.8E-05 1.5E-08
FGFBP2 4 5.8E-06 1.5E-03 3.3E-08
GNLY 2 3.6E-05 3.0E-04 4.0E-08
FOS 14 1.6E-11 3.6E-05 4.8E-08
NKG7 19 1.9E-05 8.8E-03 9.4E-07
GRAMDIA 19 2.1E-05 1.8E-02 1.1E-06
GLRX5 14 1.3E-05 3.5E-02 1.5E-06
TMEM43 3 3.0E-04 2.4E-03 2.3E-06
TIPARP 3 1.3E-07 3.3E-04 2.6E-06
AHNAK 11 4.1E-04 4.0E-03 5.2E-06
PIGB 15 5.3E-04 1.9E-03 6.1E-06
TAGAP 6 5.7E-12 7.1E-04 6.4E-06
DBP Signature genes

BHLHE40 3 2.3E-06 2.8E-06 2.7E-11
ANXAI 9 1.2E-09 6.3E-03 6.5E-11
PRF1 10 3.2E-07 5.7E-04 6.7E-10
KCNJj2 17 3.9E-06 2.6E-04 4.9E-09
CLC 19 2.6E-06 5.7E-04 5.8E-09
CD97 19 1.6E-06 1.1E-03 7.4E-09
IL2RB 22 3.0E-06 2.4E-03 2.5E-08
S100A10 1 2.4E-07 9.9E-03 4.0E-08
GPR56 16 1.1E-06 1.7E-02 5.5E-08
TIPARP 3 1.3E-04 2.8E-04 1.4E-07
HAVCR?2 5 3.8E-04 1.8E-04 2.4E-07
PTGS2 1 2.2E-05 9.0E-03 1.0E-06
MYADM 19 1.7E-08 8.6E-05 1.1E-06
ANTXR2 4 5.2E-06 5.5E-02 1.7E-06
OBFC2A 2 7.2E-06 3.8E-02 1.8E-06
GRAMD1A 19 1.4E-05 7.8E-02 2.8E-06
ARHGAP15 2 1.1E-03 1.5E-03 5.2E-06
FBXL5 4 2.1E-05 5.5E-02 5.3E-06
SLC31A2 9 1.0E-08 2.6E-03 5.4E-06
VIM 10 5.5E-06 2.0E-01 6.2E-06
HTN Signature genes

SLC31A2 9 1.9E-05 2.1E-06 1.8E-10
MYADM 19 1.2E-08 6.2E-04 3.0E-07
TAGAP 6 3.2E-05 5.3E-03 7.3E-07
GZMB 14 1.1E-11 9.6E-04 1.4E-06
KCNJj2 17 8.4E-04 5.5E-04 1.7E-06

Table 5.4.: Significantly associated genes for blood pressure related phenotypes:
Linear models were calculated for three different phenotypes (SBP, DBP, and hy-
pertension) in FHS, all cohorts that used Illumina arrays, and in meta-analysis of
all cohorts.
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Figure 5.1.: Analysis framework for gene expression study on blood pressure related pheno-
types

SBP DBP HTN
Illumina cohorts 6 1 1
replicated 6 1 1
Affymetrix cohort 73 31 8
replicated 10 (of 55) | 5 (of 22) | 2 (of 8)
Meta-analysis 21 20 5

Table 5.3.: Results from gene expression study on blood pressure related phenotypes:
Number of significant genes for all three phenotypes using two different expres-
sion platforms. “Significant” was defined as Bonferroni corrected p-value below
0.05. Not all significant genes from the Affymetrix panel were available on the
[Nlumina array. The number of available genes is displayed in brackets.
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5.2. Gene expression and aging

As demonstrated in Section 3.2 aging is one of the main factors for age-related diseases like
Parkinson’s disease, Alzheimer or cardiac infarction. Therefore, many of the studies listed
in the GWAS catalog (n=98) are linked to aging (August, 10th 2015). In comparison, only 52,
36, and 9 studies are listed for BMI, height, and hair color, respectively. But as genetic is just
a static investigation, it is very interesting to analyze gene expression levels as an indicator
for gene activity.

5.2.1. Results from KORA F3

In the beginning of the gene expression era assumptions were not very stringent. The first
published results from KORA F3 (Mehta, 2009) on the association between gene expression
and aging did not consider any confounders. The model was:

expression level ~ age

This model was applied to the 13,767 probes that were significantly detected in more than
5% of the samples. This resulted in eleven probes significantly associated with aging after
Bonferroni correction (see Table 5.5).

Gene | CHR Probeld old gene name from Illumina | p-value
LRRN3 | CHR7 | ILMN_1773650 | LRRN3 1.33E-08
SGK223 | CHR8 | ILMN_1766236 | DKFZP761P0423 2.92E-07
GPR18 | CHR13 | ILM N _1780368 | GPR18 4.07E-07
CD248 | CHR11 | ILM N _1726589 | CD248 4.16E-07
ANXA2R | CHR5 | ILMN_1675465 | C5ORF39 9.14E-07
CCR7 | CHR17 | ILMN_1715131 | CCR7 1.53E-06
OCIAD2 | CHR4 | ILMN_1700306 | OCIAD2 1.76E-06
ILMN_1674983 | LOC387841 2.79E-06
FBL | CHR19 | ILM N _1719205 | FBL 3.36E-06
PCEDI1B | CHR12 | ILM N _1712431 | FAM113B 3.37E-06
CHR6 | ILMN_1804935 | VNN3 3.49E-06

Table 5.5.: Significantly associated genes in KORA F3 with aging

Expression levels of these eleven probes were used to create a prediction model for age.
All significantly associated probes were simply included in one linear model:

age = 81 * LRRN3 + By  DKFZP761P1 + B3 + GPR18 + 84 + CD248 + B * LOC389289
+B6 * CCR7 + 57 +* LOC387841 + Bg x* OCIAD?2 + Bg * VNN3 + 510 *LY9
—|—511 x FAM113B +€

For 25% of the samples the difference between chronological and predicted age was less
than 2.5 years. For 50% the difference was between 2.5 and 8 years and for the remaining
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Figure 5.2.: Age-specific gene expression in KORA F3:

The age is plotted versus the expression level of the most significant gene:
LRRN3

samples it was more than 8 years.

For a better comparison of these results the analysis was repeated using all available
probes on the array and using sex and RIN (as technical variable for KORA F3) as covari-
ables. This resulted in five significant associations between gene expression and age (CD248,
SGK223, GPR18, LRRN3, and NELL?2).

5.2.2. Results from KORA F4

KORA F4 expression data are highly affected by batch effects. Nevertheless, the associations
between gene expression and aging were calculated identically as in KORA F3, to show that
missing covariates that influence gene expression levels could lead to false positive associa-
tions. Therefore, the linear model was calculated once without any covariables and once ad-
justed for sex and technical covariables (RIN, sample storage time, and amplification plate).
To compare the results from F4 to F3 the models were also calculated in a random subset
of KORA F4 with the same sample size as in F3 (N=381). Results of these comparisons are
shown in Table 5.6.

Unadjusted | Adjusted | Overlap
N=993 | 370 194 83
N=381 |74 45 13
Overlap | 64 31

Table 5.6.: Number of genes significantly associated with age in KORA F4

Due to the known strong batch effects in KORA F4 results of the unadjusted model might
be false-positive findings and not directly comparable to the results of KORA F3. This
demonstrated that the consideration of technical variables bisected the number of significant
hits. It also shows that in the KORA F4 data more probes are associated with age, although
the age distribution in both data sets is similar. There is even a wider age range in KORA F3
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compared to KORA F4 (see Figures 5.3 and 5.4).
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Figure 5.3.: Histogram of age distribution in KORA F3 and F4

When using the model adjusted for sex and technical variables in KORA F4, 194 expres-
sion probes were significantly associated with age. Four of these loci were also identified in
KORA F3 (CD248, GPR18, LRRN3 and NELL?). For SGK223 the p-value was marginally not
significant (p = 1.67 x 107°%). A Bonferroni threshold of 1.02 * 10~% was applied.

5.2.3. Results from CHARGE consortium

The association between gene expression and aging was the first project of the gene expres-
sion working group of the CHARGE consortium. Six independent cohorts with expression
levels measured in whole blood were included in the analyses resulting in a total of 7,074

samples:

e EGCUT: N=1,086 (described in 2.1.3)

e FHS-2nd generation: N=2,446 (Framingham Heart Study, consists of three generations
of participants, in the 2nd generation (1971) the offspring of the first generation from

1948 were investigated)

o InCHIANTI: N=698 (Invecchiare in Chianti - aging in the Chianti area, population-

based prospective study in Italy)

e KORA F4: N=993 (described in 2.1.1)

e RS III: N=881 (Rotterdam Study III, population-based prospective study, all samples

are older than 45)

Frequency

e SHIP-TREND: N=970 (described in 2.1.2)
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Figure 5.4.: Boxplot of age in KORA F3 and F4

5.2.3.1. Association between gene expression and age

Out of 11,908 genes with significant expression levels, 2,228 were significantly associated
with age in the discovery stage with p-value < 4.2 x 107%. The association was tested us-
ing linear models adjusted for technical variables, cell counts (not available in KORA F4),
smoking, and fasting status (in KORA F4 there were eight non-fasting samples). For replica-
tion, 7,909 whole-blood samples from seven different cohorts were available and 1,497 genes
could be replicated with p-value < 2.2 * 107°.

For the replicated genes it was tested whether they were also significantly associated with
age in samples with different ancestry or in different tissues (Table 5.7). Due to the low num-
ber of samples for African Americans (n=359) and two brain tissues (n=394) the number
of genes associated with age was quite low (27%, 19%, and 26%, respectively). But for the
larger samples of Native (n=1,457) and Hispanic (n=1,244) Americans the rates were quite
high (71% and 74%, respectively). To investigate whether the effects of age on gene expres-
sion levels are also existent in populations with different ancestry or in other tissues higher
sample sizes comparable to that of discovery cohorts will be required.

5.2.3.2. Age prediction

The prediction of age using expression levels results in the so-called “transcriptomic age”.
The difference between the chronological and the transcriptomic age (here called Aage)
could be explained by the biological age.

For the age prediction in all participating CHARGE cohorts a formula was applied for each
cohort separately by using all expressed genes and calculate the meta-analysis without the
relevant cohort. That way, an own prediction formula was generated for each individual of

each cohort:
Z =3 w,mbry
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Ancestry/tissue sample size | expressed genes | genes with p<0.05
Native Americans 1,457 95% 1,005 (71%)
Hispanic Americans 1,244 40% 440 (74%)
African Americans 359 99% 392 (27%)
Cerebellum brain tissue 394 58% 163 (19%)
Frontal cortex brain tissue 394 58% 229 (26%)

Table 5.7.: Significantly associated genes with aging in different tissues:
The expression levels of all genes that could be replicated in 7,909 samples were
tested for association with age in different tissues and in samples with different
ancestry. Due to low sample sizes in the samples from different tissues, the num-
ber of replicated genes was quite low (<30%).

where 7,(;) is the expression level of the i-th probe in the cohort and br = (R4 I\/n)~'h.
Here, R is the correlation matrix between expression probes in a reference sample, I is the
identity matrix, A is a parameter that was optimized in the BSGS cohort, n is the sample size

and b is defined as .

Vn + 22

with z being the test statistic from the meta-analysis. In a last step the predicted age was
scaled:

b=

o
Zs = page + (£ — pz) * —=
oz

with jiq4e and 044 being the mean and standard deviation of the chronological age and 1z
and o7 the mean and the standard deviation of the predicted age Z.

The correlation between the chronological and the transcriptomic age was significant in
all cohorts with p-values < 2% 1072% (in KORA the p-value was 1.71 % 10~2°) and the average
difference was 7.8 years (in KORA 4.84 years). The small difference in KORA F4 shows no
indication for a very remarkable prediction because the standard deviation of age is only 5.4.
The results from KORA F4 are shown in Figure 5.5.

For all samples the difference between the chronological and the transcriptomic age was
calculated. Samples having a positive Aage were predicted to be older than they are. This
could be a hint that they age faster than other individuals. Therefore, it was tested whether
the Aage was associated with biological phenotypes known to be correlated with the chrono-
logical age. The p-values for the correlation adjusted for chronological age of the meta-
analysis and of KORA F4 are shown in Table 5.8. When assuming the Bonferroni threshold
of 0.05/12 = 4.17 % 1073 as significance threshold, only fasting glucose levels were positively
correlated with Aage in KORA F4, meaning that individuals that have a higher Aage also
have higher fasting glucose levels which could be an indication for type 2 diabetes. In the
meta-analysis also systolic and diastolic blood pressure, total and HDL cholesterol levels,
BMI, and waist-hip-ratio were positively correlated with Aage (see Table 5.8).

5.2.3.3. Analysis of gene expression, methylation, and chronological age

It is known that not only gene expression but also methylation changes along with higher
age (Richardson, 2003). Therefore, methylation data were additionally analyzed. Methy-
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5.2. Gene expression and aging

Transcriptomic age vs Chronological age
Correlationr = 0.348 ; r2 = 0.121 pvalue = 1.71e-29
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Figure 5.5.: Chronological versus predicted age in KORA F4
KORA F4 meta-analysis
Phenotype of Interest Effect P n || Zscore P Direction n
Sex (0=male, 1=female) 0.0007 | 8.33E-01 | 984 || -27.610 | 5.76E-03 —+—+-+ 8,836
Systolic BP (mmHg) 0.2752 | 3.03E-02 | 983 || 98.510 | 6.78E-23 | ++++++++ | 8,571
Diastolic BP (mmHg) 0.0187 | 7.64E-01 | 983 || 77.200 | 1.16E-14 | ++++++++ | 8,568

Total cholesterol (mmol/L) | -0.0031 | 6.38E-01 | 984 || 54.190 | 5.99E-08 | +++++-++ | 8,688
HDL cholesterol (mmol/L) | -0.0018 | 4.28E-01 | 984 || 44.630 | 8.07E-06 | +++++-+- | 8,687
Fasting glucose (mmol/L) 0.4725 | 1.56E-03 | 984 || 69.330 | 4.11E-12 | ++++++?? | 7,330
Body Mass Index (kg/m2) | 0.0804 | 5.18E-03 | 984 || 53.860 | 7.21E-08 | ++++++++ | 8,829

Waist Hip Ratio 0.0011 | 2.52E-02 | 984 || 33.800 | 7.25E-04 | ++??++++ | 4,837
Hand grip strength (kg) na na na | -15.120 | 1.31E-01 | ++?-2??? | 3,651
Renal function na na na 0.8740 | 3.82E-01 +++-+2?-72 | 7,317
Mini Mental State Exam na na na || -13.130 | 1.89E-01 =227 1,492
Current smoking 0.0025 | 1.07E-01 | 984 || 55.100 | 3.59E-08 +-?+++— 7,379

Table 5.8.: Association between transcriptomic age and age-related phenotypes:
The association between transcriptomic age and age-related phenotypes was cal-
culated using different subgroups of the meta-analysis having the according phe-
notype. The p-values are displayed for KORA F4 and the meta-analysis.
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Methylation

Chronological age Gene expression

Figure 5.6.: Mediation of age-expression relationship by methylation

lation data from the Illumina 450K array were available for seven cohorts including KORA
F4. Altogether there were 3,073 samples with KORA F4 being the largest cohort with 735
samples.

Only 135,230 CpG sites located in a 250kb window around all 1,497 genes significantly as-
sociated with the chronological age were analyzed. The window size was chosen based on
a prior publication of Bonder et al. (2014) which showed that gene expression is most likely
influenced by methylation of a CpG site within this distance.

Three models were calculated in each cohort for all CpG sites:
Model 1 : methylation ~ age + covariates

Model 2 : expression ~ methylation + covariates
Model 3 : expression ~ methylation + age + covariates

The covariates in all three models were sex, fasting and smoking status, cell counts (not avail-
able in KORA F4) and technical variables. The results of all models were meta-analyzed and
the significance threshold was defined as 0.05/135,230 = 3.7 1077,

For 31,331 CpG sites significant association between methylation and the chronological age
(model 1) could be observed and 12,280 CpG sites were correlated with expression levels of
a nearby gene (model 2).

To test whether the association between gene expression and chronological age was medi-
ated by methylation (see Figure 5.6) the Sobel test was applied (Sobel, 1982) where the Sobel

z-score was calculated by
AVA

Z = ——
Sobel \/m

with Z; being the Z-score from model 1 and Z; being the Z-score from model 3.

83% of the age-associated genes (1,248 out of 1,497) had at least one mediating CpG site
whereas each gene was mediated by one to 154 CpG sites.

5.3. Summary and discussion

In the last chapter I presented two different association studies with gene expression data in
whole blood. Initially, we investigated the impact of phenotypes related to blood pressure
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on gene expression levels and afterward we analyzed the effect of aging on gene expression
levels. For both association studies we started with the small KORA F3 data set, then an-
alyzed the KORA F4 data set and finally contributed with the KORA F4 data set to a meta
analysis of the CHARGE consortium. The blood pressure phenotypes were additionally an-
alyzed in the MetaXpress consortium.

The impact of blood pressure on gene expression levels (or vice versa) seems to be quite
small, at least in whole blood. This could be a reason why no significant association was
found in 377 KORA F3 samples and just one significant association was detected in 989
KORA F4 samples. But due to the fact that the association between systolic/diastolic blood
pressure and the expression level of FOSB was not identified in the MetaXpress and the
CHARGE consortium, the relevance of FOSB has yet to be validated.

At least two of the eight genes that were identified in the MetaXpress study could be con-
firmed in the CHARGE data: MYADM and TIPARP with TIPARP being linked to blood pres-
sure at least partly via SNP rs3184504 (Levy et al., 2009). This SNP was identified in a GWAS
to be associated with blood pressure and was also a trans-eQTL for TIPARP and five other
genes that were associated with blood pressure (FOS, PP1R15A, TAGAP, S100A10, FGBP2).
Functional characterization of the eight candidate genes that were identified in the mono-
cyte samples, replicated in the whole blood samples, and validated in the clinical trial is still
ongoing.

The association of gene expression and age was analyzed in three different studies. Firstly,

in the smallest study KORA F3 with 381 samples, secondly in the larger KORA F4 study with
993 samples, and lastly in a consortium of 7,074 samples. As can be seen in Figure 5.7 the
number of significant hits increased with the sample size.
When using the adjusted model (for sex and technical variables) in 993 KORA F4 samples
194 expression probes were significantly associated with age. Four of these were also identi-
fied in 381 KORA F3 samples (CD248, GPR18, LRRN3 and NELL?2). For SGK223 the p-value
was only marginally not significant (1.67 * 107%). The Bonferroni threshold was 1.02 x 10~°.
Out of 194 significant genes in KORA F4, 150 were analyzed in 7,074 samples of the CHARGE
consortium and 130 of them were also significant in the discovery cohort and 105 addition-
ally in the replication cohort.

The age prediction in KORA was very difficult and biased because of the small age range
in the data set. In KORA F3, the age ranged from 51 to 84, in KORA F4 from 62 to 81. As
can be seen in Figure 5.8 the age distribution in the other cohorts was wider and therefore,
the results of the age prediction were more precise when using the correlation between pre-
dicted age and chronological age as a marker for a “good” prediction.

To improve the age prediction the methylation data could be taken into account as it was
shown that 31,331 CpG sites were correlated with chronological age and 83% of the age-
associated genes had at least one mediating CpG site. For KORA F4 and the Rotterdam
Study two epigenetic age predictors ((Horvath, 2013) and (Hannum et al., 2013)) were avail-
able and were compared to the transcriptomic predictor. Both prediction methods were
positively correlated with the transcriptomic predictor. But the epigenetic predictor was
associated with different clinical phenotypes (transcriptomic predictor was associated with
systolic blood pressure, waist-hip-ratio, and smoking, Horvath predictor only with waist-
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Figure 5.7.
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Manhattan plots of results from association study between gene expression and
aging in KORA F3, F4, and CHARGE:

The genomic location of each expression probe (meaning the TSS of the transcript
to which the probe was mapped) is plotted against the -logl0(p-value) of the
result from the association between gene expression level and age. The red lines
indicate the Bonferroni significance threshold.
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Figure 5.8.: Chronological age versus transcriptomic age in all participating cohorts of gene
expression working group in CHARGE
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hip-ratio, Hannun predictor with fasting glucose, waist-hip-ratio, and smoking)Z. Therefore,
a combination of both prediction methods (epigenetic and transcriptomic prediction) would
make sense and should be tested in a larger sample size.

In conclusion, a large list of age-associated genes was identified in the meta-analysis with
7,074 samples. The gene expression levels from whole blood could be used as biomarker to
predict the biological age. The transcriptomic age prediction in combination with the epige-
netic age prediction could be used to identify subjects that have a higher biological age and
therefore a higher risk to suffer any age-related disease.

*These models were adjusted for chronological age, sex, and BMI.
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To identify the influence of genetic variation on gene expression levels eQTL studies are per-
formed to identify SNPs which affect expression levels of nearby or distant genes. Ideally
eQTLs help to detect molecular mechanism underlying a SNP-phenotype association iden-
tified in a GWAS (Gilad et al., 2008).

The first eQTL studies were conducted in less than 100 samples ((Stranger et al., 2005), (Che-
ung et al., 2005)). However, sample sizes increased fast to nowadays more than 5,000 samp-
les (Westra et al., 2013) and will soon increase further to more than 20,000 samples (ongoing
project within the CHARGE consortium).

We started the first eQTL study using 322 samples from the KORA F3 cohort (Mehta et al.,
2012), continued with 890 samples from the KORA F4 cohort (Schramm et al., 2014) and
participated as replication cohort with 740 KORA F4 samples in a large eQTL consortium
(Westra et al., 2013). The following chapter describes the development and differences in
eQTL studies with increased sample sizes.

6.1. Mapping of whole-blood cis- and trans-eQTLs in KORA F3

Aims of this first eQTL study were:

e The identification of eQTLs in whole blood of human samples.
e Analysis of the robustness and reproducibility across different studies.

e Exploration whether whole blood eQTLs allow the identification of functional variants
observed in GWAS.

6.1.1. Identification of cis- and trans-eQTLs

The analysis of 41,409 expression probes and 335,152 SNPs yielded in 4,802,373 SNP-probe
combinations with the SNP being located within +/—500kb from the transcription start and
end site. The 500kb window was determined by comparing the number of significant asso-
ciations between SNPs and expression probes for different window sizes (see Figure 6.1).
Linear models using log-transformed and normalized expression levels as dependent and
SNP, age and gender as independent variables were calculated for each SNP-probe pair in
322 KORA F3 samples with expression and genotype data. An additive model was assumed
where the homozygous major allele is coded with 0 and the homozygous minor allele is
coded with 2 (see Figure 2.4).
When using the stringent Bonferroni correction (threshold = 1.03 x 107%), 2,149 significant
SNP-probe pairs corresponding to 363 different eQTLs were identified. These associations
were distributed equally across the genome (see Figure 6.2). The SNPs with the lowest p-
values are located close to the transcription start site (Figure 6.3) which supports the thres-
hold of 500kb for cis-eQTLs.
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Figure 6.1.: Number of significant SNP-probe combinations for different window sizes in

KORA F3:

The distance between gene and SNP (in bp) is plotted against the number of sig-
nificant cis-associations to determine the optimal window size. Using a window
size of more than 500kb leads to less significant hits due to the higher number of
tests and the lower Bonferroni threshold of significance.
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Figure 6.2.: Manhattan plot of significant cis-eQTLs in the KORA F3 discovery cohort:

The genomic position of each SNP is plotted against the -log10(p-value). The red
line indicates the Bonferroni threshold of significance.
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Figure 6.3.: Plot of distance between SNP and transcription start site in KORA F3:

The difference between the genomic position of the SNP and the TSS is plotted
against the -log10(p-values). The red dots show the associations where the SNP
is located within the transcripts. The histogram additionally shows the distribu-
tion of the associations.
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Furthermore, 50 of the 363 probes contained a SNP annotated within its probe sequence by
the Illumina chip using the re-annotation pipeline from Barbosa-Morais et al. (2010). Using
SNAP, we determined the correlation between the SNP within the probe and the identified
eQTL SNP. For ten eQTLs R? was higher than 0.7 and we could not exclude that the SNP
within the probe is responsible for the changes of the expression level. For all other eQTLs
R? was either lower or could not be determined because of a low minor allele frequency
(< 1% for 20 SNPs) of the SNP within the probe. We did not exclude probes with SNPs from
the analysis which is consistent with other published studies (Murphy et al., 2010; Emilsson
et al., 2008).

The trans-analysis was conducted using the software PLINK and like for the cis-analysis
the linear model was also adjusted for age and gender. Due to large linkage disequilibrium
blocks trans-hits were limited to SNPs being on a different chromosome than the probe or
the distance between probe and SNP being greater than 4 Mb. The Bonferroni threshold
of significance was 3.6 * 10712, With these stringent criteria we identified 37 SNP-probe
pairs corresponding to 8 eQTLs. Because of this small number of trans-eQTLs we could not
observe any master regulators or eQTL hotspots.

6.1.2. Adjusting for possible confounders in the KORA F3 discovery cohort

Due to the fact that whole blood is used to measure gene expression levels it is sometimes
recommended to adjust for different cell types. Therefore we also included the number of
white and red blood cell counts to the linear model. 352 (97%) of the 363 eQTLs remained
significant.

6.1.3. Replication of whole-blood eQTLs in two independent cohorts

For replication we used the independent cohorts KORA F4 and SHIP-TREND.
All significant associations were tested in 740 KORA F4 samples and 653 SHIP-TREND sam-
ples. The summary of the replication is shown in Figure 6.4.

It was decided to use two different thresholds of significance: The most stringent variant
by using the threshold from the discovery cohort and the less stringent threshold of p < 0.05.
This way we were able to replicate 98.6% of cis- and 40% of trans-eQTLs using p < 0.05 and
81.8% of cis- and 20% of trans-eQTLs when applying the discovery Bonferroni threshold of
significance.

6.1.4. Comparison of results with published peripheral blood eQTLs

In addition to replications in KORA F4 and SHIP-TREND the eQTLs were compared to
eQTLs detected in whole blood in 1,469 individuals and available online (Fehrmann et al.,
2011). They also used the Illumina HumanHT-12 chip but a different genotyping platform
(Illumina HumanHap 300). We only compared identical SNP-probe pairs. Due to the differ-
ent platforms, the overlap contained about 50,000 SNPs. In spite these technical limitations
32% (117 out of 363) of the cis- and 14% (one out of seven) of the trans-eQTLs were identi-
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Discovered eQTLs in KORA F3

cis trans
2149 (363) SNP-probe pairs (transcripts) 65 (14)
1 1
1701 (303) 1351 (291) SNP-probe pairs {transcripts) 37 (10) 25(8)
835% 80.2% %tested transcripts 71.4% 57.1%
KORAF4 KEORAFd-& in population KORAF4 KORA F_@‘&,
SHIP-TREND) SHIP-TREND
Bonferroni p-value Bonferroni
p<1.04x 104 p<005 threshold psS54x102 p<005

|||\|| !—kﬁ!—k;l

KORAF4 || KORAF4& KORAF4 || KORAF4 & KORAF4 | KORAF4& KORAF4 || KORAF4&

Rl e ) , lati - Lo
SHIP-TREND| SHIP-TREND| population SHIP-TREND) SHIP-TREND|
92 7% 81.8% 99.3% 98.6% %replication of transcripts 50% 50% 60% 75%
1553 (281) || 1164(248) | | 1695(301) || 1341(287) | SNP-probe pairs {transcripts)  19(5) 1@ 24 (6) 16(6)

Figure 6.4.: Flowchart of the number of eQTLs from KORA F3 discovery cohort tested and
replicated in KORA F4 and SHIP-TREND

cal in both studies. This additional replication indicates a high reproducibility of eQTLs in
whole blood.

6.1.5. eQTL mapping of complex trait-associated variants

In a next step all GWAS hits published so far were downloaded from the GWAS catalog. In
October 2011, 1,058 GWAS studies for 566 different traits were available and we could test
7,995 unique SNP-probe pairs in KORA F3. For this analysis imputed genotypes were used
to maximize the number of SNPs.

Of the 3,699 unique SNPs, 639 SNPs were nominally associated with the expression level of
the reported transcript. After Bonferroni correction (threshold of significance = 6.25 x 107°)
79 SNPs remained significant. 43 of these SNPs were already described to be associated with
the expression level of the relevant transcript. 28 SNPs are located on chromosome 6 in the
HLA-region and because of the high LD structure of this region their biological significance
remains unclear.

Eight of the SNPs were not reported to be an eQTL in any tissue previously. These eight
novel findings are summarized in Table 6.1.

Especially in cases where the SNP is reported to be correlated with several genes the ex-
pression results could allow prioritization of this transcript compared to other candidates
that are located close to the SNP. This is remarkable because blood is not related to all of
these traits.
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GWAS GWAS trait SNP Gene ProbelD p-value adjusted RZ beta First author
locus
1 Beta thalassemia ~ rs2071348 HBE1 6520176 0.283414  -0.00503376 -0.18484 Nuinoon M.
hemoglobin E disease 152071348 HBG2 6400079 5.38E-08  0.09514532 0.52015
152071348 HBG2 6620605 0.030536  0.00723574 -0.01432
rs2071348 HBG2 940181 0.365623 -0.00315586 0.006403
152071348 HBG1 4150187 1.94E-06 0.07676854 0.443254
152071348 HBD 6250037 0.195357 -0.00360737 -0.11191
152071348 HBBP1 7100747 0.881443 -0.00768138 -0.00186
2 Crohn’s disease 152058660 IL18RAP 6770424 0.154442 -0.00297075 -0.01054 Franke A.
152058660 IL18RAP 5130475 2.68E-15 0.18068679 -0.44984
152058660 IL12RL2 NA NA NA NA
152058660 IL18R1 1500328 0.698045  -0.00654905 -0.01298
152058660 IL1RL1 670411 0.909656  0.00344823 -0.00091
152058660 ILIRL1 3870753 0.349253  -0.00614557 -0.00746
3 Graves’ disease 159355610 RNASET?2 5310131 7.05E-19  0.21555351 0.27063 Chu X.
159355610 FGFR1OP 6580446 0424956  -0.00652282 -0.00825
4 Body mass index 157359397 SH2B1 6620092 0.133159  0.00166276 0.032315  Speliotes E.K.
157359397 APOB48R 2070044 0927515 0.0020211 0.002928
157359397 SULT1A2 1740113 0.095138  0.01485394 -0.01268
157359397 SULT1A2 1980554 0.316768  -0.00467373 0.010131
1s7359397 AC138894.2  NA NA NA NA
1s7359397 ATXN2L 990524 0.21315 0.00104259 0.007658
157359397 ATXN2L 1300541 0.227558 -0.001122 0.007915
157359397 ATXN2L 5720435 0.668993 -0.00590007 0.005323
157359397 TUFM 6270735 4.89E-10 0.10666734 0.139009
5 Systemic lupus rs131654 HIC2 7050673 0.210732 -0.00152262 -0.01773 Han J.W.
erythematosus rs131654 UBE2L3 770523 0.179421 0.00400821 0.011055
rs131654 UBE2L3 1050360 1.24E-06 0.06346902 -0.15129
6 Asthma rs11078927 GSDMB 6620170 4.02E-18 0.20898095 -0.22407 Torgerson D.G.
7 Alzheimer’s disease 156859 PVRL2 2570544 7.03E-07 0.07723456 -0.18595 Abraham R.
Alzheimer’s disease 16859 TOMM40 3400747 0.462314 0.00170593 0.013467 Naj A.C.
(late onset) 156859 APOE 4150338 0.686794  -0.00123172 0.002674
8 Alcohol dependence 158062326 SYT17 730725 5.72E-07  0.0710058 0.798277  Lydall GJ.
rs8062326 ITPRIPL2 2710551 0.998 0.003417 0.001

Table 6.1.: List of eight novel GWAS catalog eSNPs (SNP that is associated with gene expres-
sion level) significantly associated with expression levels of the reported transcript
in KORA F3.

6.1.6. Summary of eQTLs in KORA F3

We performed a genome-wide eQTL mapping study in 322 KORA F3 samples and used 740
KORA F4 and 653 SHIP-TREND samples as replication cohorts. Due to the small sample size
of the discovery cohort the power to detect eQTLs was relatively small. Nevertheless, we
identified 363 cis- and 8 trans-associations. Using a p-value threshold of 0.05 we could repli-
cate 98.6% of cis- and 40% of trans-eQTLs. Additionally we found eight novel GWAS catalog
eSNPs that are significantly associated with expression levels of the reported transcript in
the KORA F3 data set.

6.2. eQTL study in KORA F4

In the last chapter the eQTL analysis that was conducted in 322 KORA F3 subjects was de-
scribed. A high number of cis-eQTLs could be replicated, but an identification of trans-
eQTLs was difficult due to the problem of multiple testing and the relatively small sample
size. Therefore, this analysis was repeated in 890 KORA F4 individuals with available gene
expression levels and genotypes. The expectation was to increase the number of significant
eQTLs because of the higher sample size and an improved quality of expression data.

6.2.1. Discovery of cis- and trans-eQTLs for KORA F4

Altogether, 4,210 eQTLs reached genome-wide significance when applying the most conser-
vative Bonferroni correction (p-value threshold = 6.02 * 1072 and 2.81 % 10~!2 for cis- and
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trans-eQTLs, respectively). 4,116 of these eQTLs were defined as cis-eQTLs (p-value range
= 6.1 % 10729 — 6.0 * 107Y) when using the same window size as for the KORA F3 data
(500kb). The 4,116 cis-eQTLs corresponded to 3,449 RefSeq genes (HG19). The remaining
161 SNP-probe associations were defined as trans-eQTLs. After removing SNPs that are in
high LD (R? > 0.7) using SNAP, 94 genomic loci out of the 161 SNP-probe associations with
an impact on several distant genes remained (p-value range = 2.8 * 107248 — 2.8 x 10712).

6.2.1.1. Detailed description of cis-results

The definition of a cis-eQTL as being in a 500kb window around the transcription unit re-
sulted in 8,308,092 possible SNP-probe combinations in the data set, consisting of 616,941
different SNPs and 28,691 expression probes. The linear model with expression probe (ad-
justed for 55 Eigen-genes) as dependent and SNP as independent variable was calculated
for each combination. After applying Bonferroni correction 55,593 SNP-probe combinations
had a p-value below 6.02 x 1072 and were identified to be significantly associated. The dis-
tribution of p-values of all calculated SNP-probe combinations across the chromosomes is
shown in Figure 6.5.

Lots of probes are associated with SNPs that are located very closely (Figure 6.5). As many

Figure 6.5.: Manhattan plot of cis-results in KORA F4:
The genomic position of the SNP is plotted against the -log10(p-value). The red
line indicates the Bonferroni threshold of significance.

of these SNPs could be in high LD they might not describe different eQTLs. Hence, we re-
stricted the results to the top-SNP per probe and kept only the SNPs with the lowest p-value.

eQTLs with low p-values are located in close proximity to the transcription start site (see
Figure 6.6). This finding replicates the observation in KORA F3. Furthermore, it supports
the restriction of cis-effects to a 500 kb window as a larger window size would not result in
more meaningful hits.
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Figure 6.6.: Distance of the SNP to transcription start site for significant cis-eQTLs in KORA
F4:
The distance between the TSS and the SNP is plotted against the -log10(p-value).
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6.2.1.2. Detailed description of trans-results

All expression probes that were associated with a SNP that is located in a distance of more
than 500 kb we tested whether the probe was also associated with a SNP in cis. Only if these
two SNPs were not in the same LD block the association was called a trans-hit. For 77 ex-
pression probes the trans-SNP was highly correlated with the cis-SNP (R? > 0.5, tested with
SNAP). Additionally, the LD was assessed for all SNPs residing on the same chromosome
that were associated with the same transcription probe. This resulted in 94 remaining dif-
ferent trans-eQTLs (see circos plot in Figure 6.7 and a list of all trans-eQTLs in Appendix A.1).

~NA-LINCO00115

~HDAC1
~TXNDC12~CCDC23

S
5 &
Gpgy Gﬂaﬂ
Ny A
myq '?ADg'D "
Famigg, — GAST DC?‘M
ALoX12 BE!

PDP':'DUSzL»
HCBPY -
TP53TG3B- ZNrage- |

SNORAL0
~WASHIP~
NA-ERND2-
KIAADLOL ™y

GLDN- L CMT2

GUCY1A3
TRAPPCI1
~GUSBP;
~NA
Pany

Coey,
LIANETEY . ez
WS Wiss,
/]
A0,
‘40;,’28«

LOC283070~

Figure 6.7.: Circos plot of trans-hits in KORA F4:
All significant frans-associations on all chromosomes in KORA F4 are shown.
The orange lines indicate hits where the SNP and the expression probe are on

different chromosomes while the black lines show associations on the same chro-
mosome.
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Altogether 74 loci are associated with just one probe, seven with two probes, seven with
three probes, two with four probes, one with five probes, one with six probes, one with seven
probes, one with 13 probes and one with 14 probes.

6.2.2. Replication of cis- and trans-eQTLs in two independent studies

The SHIP-TREND study from Greifswald and the EGCUT study from Estonia were used as
replication cohorts using an R script prepared by Claudia Schurmann.
The SHIP-TREND samples were prepared almost identical as the KORA samples. RNA was
isolated in Greifswald and then sent to the Helmholtz Center for the remaining steps. In
contrast, the EGCUT study is based on samples of non-fasting individuals and blood was
taken during the whole day (see Figure 6.8). Additionally, they used a different blood stor-
age system (Tempus tubes instead of PAX tubes). It is already known that usage of PAX
tubes and Tempus tubes results in heterogeneous measurements and it is recommended not
to use data from these two systems in a joint analysis (Menke et al., 2012).

The preparation of the 890 KORA F4, 976 SHIP-TREND, and 842 EGCUT samples is de-

B KORAF4
0 EGCUT

250
|

150
|

Frequency

100
|

50
!

T T T T T T T T
gam 10am 12am 2pm 4pm Gpm 8pm  10pm

time

Figure 6.8.: Comparison of times of blood collection in KORA F4 and EGCUT:
While the KORA F4 blood samples were all taken in the morning before eleven
o’clock in EGCUT the blood was taken the whole day.

scribed in Table 6.2 to indicate differences and similarities between the three cohorts.

All significant probe-SNP combinations were taken forward for replication in both replica-
tion studies and for that purpose either the identical or a proxy SNP (if the identical SNP
was not available the proxy SNP was determined using SNAP) was used. Based on previ-
ous data assessment studies the replication studies decided to adjust their linear models for
50 (cis) and 25 (trans) Eigen-genes. We indicated an eQTL as significantly replicated if the
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p-value was below 1.21 % 1075 for cis and 3.1 * 10~ for trans, respectively (0.05 divided by
the number of conducted tests).

Study N Age Gender Fasting RNA RNA isolation Expression Genotyping Imputation
status collection Chip
KORA 890 70.57 448 males, fasting (8 PAX PAXgene Tllumina Affymetrix 6.0
F4 +5.42 442 females non-fasting tubes Blood miRNA HumanHT-
samples) Kit 12v3
SHIP- 976 50.12 428 males, all fasting PAX PAXgene Mllumina Tllumina IMPUTE
TREND +13.74 548 females tubes Blood miRNA HumanHT- HumanOmni2.5- v2.1.2.3
Kit 12v3 Quad
EGCUT 842 37.16 415 males, non-fasting Tempus Tempus Spin Illumina Illumina IMPUTE
+15.60 427 females tubes RNA Isolation HumanHT- Human370CNV v2.2.3
Kit 12v3

Table 6.2.: Study description of KORA F4, SHIP-TREND, and EGCUT

Of all 4,116 significant eQTLs we were able to replicate 3,847 (91%) in at least one of the
studies. As expected from the previous results the number of replicated cis-eQTLs was
higher than the number of replicated trans-eQTLs (92% versus 84%). A comparison of p-
values is shown in Figure 6.9.
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Figure 6.9.: Comparison of p-values for eQTL replication between KORA F4, SHIP-TREND,
and EGCUT:
The p-values of all significant associations in KORA F4 are plotted against the
p-values from SHIP-TREND and EGCUT. Red dots represent all hits that are
replicated in both replication cohorts, blue dots are hits that are only replicated
in SHIP-TREND, and green dots only replicated in EGCUT, respectively. The
pink dots show all hits that could not be replicated.

When we compared the single replication rates separately in SHIP-TREND and EGCUT
we observed a slightly higher replication rate in EGCUT (82% - 85% cis- and 72% trans-
eQTLs) than in SHIP-TREND (78% - 81% cis- and 75% trans-eQTLs). This was in contrast
to the a priori hypothesis of a higher replication rate in SHIP-TREND due to more similar
study characteristics and data handling. This indicates a high robustness of whole blood
eQTLs in contrast to whole blood gene expression profiles.
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6.2.3. Correlation of mitochondrial SNPs with expression probes

Out of all identified SNPs, 26 SNPs were located within the mitochondrial DNA. The mito-
chondrial DNA (mtDNA) is double-stranded, circular and located in the mitochondria. It
consists of 16,569 basepairs (http://www.ncbi.nlm.nih.gov/nuccore/251831106)
and 37 genes. For one of the SNPs all samples had the same genotype and therefore this
SNP was excluded from the analysis. Because it was not clear a priori if only cis-effects
could be observed, 25 Eigen-genes were used as covariates in the linear model.

Thirteen SNPs were associated with at least one probe when applying a Bonferroni correc-
tion (p-value < 3.94 x 1078). This corresponded to six different probes two of which did
not match to the genome and to two different chromosomes respectively. LOC653566 and
RNF113A were associated with seven SNPs. The expression levels of these two genes were
correlated (Pearson’s correlation coefficient r? = 0.37). Four SNPs (rs3915952, rs28359172,
rs28359178 and rs3088309) were correlated with expression levels of a probe that could not
be matched to the mRNA. The results are shown in Table A.2.

The expression levels of 834 probes were associated with at least one SNP with a p-value
below 1 * 1073. These probes were used for a pathway analysis. Only 538 of the 834 probes
were annotated in the Ingenuity database and were included in the pathway analysis. When
applying a Benjamini-Hochberg correction for the Fisher’s Exact p-value no pathway was
significant. The top pathway “Role of NFAT (nuclear factor of activated T-cells) in Cardiac
Hypertrophy” had a corrected p-value of 0.656. Our finding is in line with a few publications
about a relation between mitochondria and cardiac hypertrophy (Rosca et al., 2013).

6.2.4. Comparison of results with published cis-eQTLs from different tissues

It is known that gene expression levels vary across different cell types. However, as whole
blood cells are easily to obtain and analyze, it is interesting to investigate if it is a suitable
surrogate tissue and also reflect transcriptional relationships of other tissues. Therefore, we
compared our results to already published eQTLs in different cell lines and tissues. Unfortu-
nately, databases provided by other studies and publicly available were mostly restricted to
cis-eQTLs ((Fehrmann et al., 2011), (Sasayama et al., 2013), (Fairfax et al., 2012), (Zeller et al.,
2010), (Schadt et al., 2008), (Stranger et al., 2007a), (Innocenti et al., 2011), (Dixon et al., 2007),
(Hao et al., 2012)). We therefore limited our comparison to the cis-results.

Zeller et al. (2010) already did the comparison of their eQTLs in monocytes with published
data. They used datasets of eQTLs in liver (Schadt et al., 2008), lymphoblastoid cell lines
((Dixon et al., 2007) and (Stranger et al., 2007b)), and lymphocytes (Goring et al., 2007). We
additionally compared our eQTLs to eQTLs in whole blood ((Fehrmann et al., 2011) and
(Sasayama et al., 2013)), in monocytes ((Zeller et al., 2010), (Fairfax et al., 2012)), in b-cells
(Fairfax et al., 2012), in lung tissue (Hao et al., 2012) and in liver tissue (Innocenti et al.,
2011).

All studies are shortly presented in Section 2.6 and results of the cis-eQTL comparison are
summarized in Table 6.3.

The comparison of eQTLs across different tissues was not easily to address. Usage of dif-
ferent expression platforms and different versions of expression arrays made comparison
challenging. Therefore, only genes with identical names were included.

We observed an overlap of 65%-68% with two more cis-eQTL studies conducted in whole
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] First author \ Tissue \ Year \ N \ cis eQTLs \ available \ identical ‘

Schramm whole blood 2014 | 890 3,449

. monocytes 7,468 5,694 1,764
Fairfax brcells 20T1 | 283 | (agy 5073 | 1,354
Zeller monocytes 2011 | 1,490 2,477 2,323 1,620
Schadt liver 2008 | 427 1,525 1,401 642
Stranger lymphoblastoid cell lines | 2007 | 90 412 378 229
Fehrmann whole blood 2011 | 1,469 5,928 4,194 2,250
Innocenti liver 2011 | 206 1,173 1,057 487
Dixon lymphoblastoid cell lines | 2007 | 400 727 659 373
Goring lymphocytes 2007 | 1,240 6,684 6,163 1,768
Sasayama | whole blood 2013 | 76 308 252 171
Hao lung 2012 | 1,111 9,138 7,556 2,252

Table 6.3.: Comparison of cis-eQTLs to cis-eQTLs in different tissues:
We compared the replicated cis-hits to online availabe cis-eQTLs in different tis-
sues. Available means here that we analyzed the same gene and identical means
it was significant in our data.

blood and 51%-70% with cis-eQTL studies conducted in primary monocytes and lympho-
cytes from whole blood or blood-derived lymphoblastoid cell lines (LCLs) (see Table 6.3).
Additionaly, we observed major cross-tissue similarity when comparing our results to those
of eQTL studies conducted in b-cells, lung, and liver tissue (40-70%, Table 6.3).

6.2.5. Functional properties of significant whole blood cis- and trans-eQTLs

The Ingenuity Pathway Analysis (IPA) software was used to relate whole blood eQTLs in
cis and trans to known pathways. Only the replicated eQTLs were included and most of
them were annotated in the Ingenuity data base (3,720 out of 3,768 cis-eQTLs and 139 out
of 144 trans-eQTLs, respectively). When applying the Benjamini-Hochberg correction two
significant canonical pathways with p-values below 2.28 x 10~2 and ten with p-values below
3.45 x 1072 could be identified for the cis- and trans-eQTLs, respectively (see Table 6.4).

6.2.6. Master regulatory loci

In the significant trans-list we identified 21 eQTL-SNPs that were significantly associated
with expression levels of two or more genes. Four of these SNPs had an impact on the
expression level of five or more genes and were therefore called “master regulatory loci”
(Table 6.5). These loci are:

e Hotspot 1 on chromosome 2: rs12151621 (2:85934499) upstream of ATOHS.
Genes: PNKD, CALHM1, DYNLRB2, ZNF93, GHRHR, MLH3
Displayed in Figure 6.10.
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Transcripts associated with cis-eQTL | [

Significant Canonical Pathways -log(B-H p-value) | Molecules

NAD Salvage Pathway II 1.89 NT5C3B,NT5C3A,ACP2 NMRK1,NT5E,NT5M,
ACP1,NT5C2,ACP5NMNAT3,ACPL2, ACPP

Glutathione Redox Reactions I 1.64 GSR,GSTT1,GPX3,MGST1,MGST?2,

GPX4, GPX7,PRDX6,MGST3,GSTK1

Transcripts associated with trans-eQTL

Significant Canonical Pathways -log(B-H p-value) | Molecules

Allograft Rejection Signaling 4.38 HLA-DRB4,HLA-A HLA-DRB3,HLA-DQA1,HLA-DQBI,
HLA-DPB1

Cytotoxic T Lymphocyte-mediated 4.38 HLA-DRB4,HLA-A HLA-DRB3,HLA-DQA1,HLA-DQB1,

Apoptosis of Target Cells HLA-DPB1

OX40 Signaling Pathway 4.30 HLA-DRB4,HLA-A HLA-DRB3,HLA-DQA1,HLA-DQB1,
HLA-DPB1

Antigen Presentation Pathway 3.93 HLA-DRB4,HLA-A HLA-DRB3,HLA-DQA1,HLA-DPB1

Cdc42 Signaling 3.33 HLA-DRB4,HLA-A, HLA-DRB3 HLA-DQA1,MYL4,
HLA-DQB1,HLA-DPB1

Dendritic Cell Maturation 2.64 HLA-DRB4,HLA-A, HLA-DRB3,CREB1,HLA-DQA1,HLA-DQB1,IL37

Graft-versus-Host Disease Signaling 246 HLA-A HLA-DQA1,HLA-DQB1,IL37

Crosstalk between Dendritic Cells and 236 KIR2DL5B,HLA-DRB4,KIR2DL5A, HLA-A, HLA-DRB3

Natural Killer Cells

Communication between Innate and 1.54 HLA-DRB4,HLA-A , HLA-DRB3,IL37

Adaptive Immune Cells

Autoimmune Thyroid Disease Signaling 1.46 HLA-A,HLA-DQA1,HLA-DQB1

Table 6.4.: Results of pathway analysis for cis- and trans-eQTLs in KORA F4:
3,720 cis-eQTL genes were annotated in IPA and two significant pathways with
p-value < 2.28 « 1072 were identified. For trans-results, 139 genes were annotated
and ten significant pathways with p-value < 3.45 * 10~2 were identified.

e Hotspot 2 on chromosome 3: rs1344142 (3:56857433) in ARHGEF3 involved in osteo-
porosis and rs12485738 (3:56865776, p14.3) in ARHGEF3.
Genes: MMRN1, ITGB5, PROS1, NAT8B, ALOX12, TSPANY, CALD1, GP9, CLECI1B,
PARVB, GUCY1A3, CTDSPL, ITGB3
Displayed in Figure 6.11.
This locus was already reported by Meisinger et al. (2009) and Fairfax et al. (2012).

e Hotspot 3 on chromosome 11: rs10742583 (11:5248641) and rs12786766 (11:5225505) in
HBB.
Genes: ADCK2, PTDSS1, ASAP1, RAD51C, DTYMK, HDAC1, PWP1, TRAPPC11, SYNE2,
CNBP, WDR59, GPS1, WDR37
Displayed in Figure 6.12.

e Hotspot 4 on chromosome 12: rs10784774, rs2231700, rs11177577, rs2603089, rs11177644
upstream of LYZ.
Genes: EID2B, AFMID, CDKN2AIPNL, ITPK1-AS1, SHCBP1, CREB1, KIAA0101
Displayed in Figure 6.13.
This locus was also already reported by Fairfax et al. (2012).

All master regulatory loci could be replicated in both replication studies. Surprisingly, all
these eQTLs were not found to be significant cis-eQTLs, although one of the loci (on chro-
mosome 12) was already identified to be a cis- and trans-eQTL in monocytes (Fairfax et al.,
2012). The cis-association was observed in a much smaller sample size of 283 individuals
indicating a monocyte specific effect or at least a very small effect in whole blood.
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SNP* ChrSNP | Gene of SNP [ Probe.Id Gene of probe Chrgene [ n BETA SE Pvalue
rs12151621 2 N/A ILMN_2282282 MLH3 14 888 0.1904 0.01396 1.312e-38
2 N/A ILMN_1679130 CALHM1 10 888 0.1424 0.01326 2.244e-25
2 N/A ILMN_1697317 DYNLRB2 16 888 0.1389 0.01285 1.124e-25
2 N/A ILMN_1652161 PNKD 2 888 0.1407 0.01227 1.892e-28
2 N/A TLMN.1724158 ZNF93 19 888 0.09093 0.0125 7.624e-13
2 N/A TLMN.1740186 GHRHR 7 888 0.07777 0.00913 6.929e-17
1512485738 3 ARHGEF3 ILMN_1787919 PARVB 22 890 -0.1362 0.01922 2.769e-12
3 ARHGEF3 ILMN_1729453 TSPAN9 12 890 -0.1682 0.02039 5.695e-16
3 ARHGEF3 ILMN.1668374 | ITGB5 3 890 | -0.1388 0.01918 9.885e-13
3 ARHGEF3 TLMN_2392189 CTDSPL 3 890 -0.1302 0.0172 9.16e-14
3 ARHGEF3 TLMN.1743290 GP9 3 890 -0.1793 0.02214 1.823e-15
3 ARHGEF3 TLMN.1730487 CALD1 7 890 -0.08874 0.01179 1.263e-13
3 ARHGEF3 TILMN.1713731 ALOX12 17 890 -0.1091 0.01538 2.607e-12
3 ARHGEF3 ILMN.1691264 | NAT8B 2 890 | -0.1413 0.01871 1.055e-13
3 ARHGEF3 ILMN.1671928 | PROS1 3 890 | -0.1616 0.01783 7.819¢-19
3 ARHGEF3 ILMN.1808590 | GUCY1A3 4 890 | -0.1073 0.01453 3.579%-13
3 ARHGEF3 ILMN.1660114 | MMRN1 4 890 | -0.08856 | 0.01129 1.231e-14
3 ARHGEF3 ILMN.1745103 | CLECIB 12 890 | -0.1498 0.02055 6.809e-13
rs10784774 12 N/A TLMN_2334242 CREB1 2 889 0.1903 0.0123 5.329e-48
12 N/A ILMN 2182482 | SHCBP1 16 889 | 0.189 0.009911 | 3.288¢-68
12 N/A ILMN 2095653 | AFMID 17 889 | -0.1173 0.009898 | 3.367e-30
12 N/A ILMN 2412521 | KIAA0101 15 889 | 0.1283 0.009883 | 2.183e-35
12 N/A ILMN.2134381 | ITPK1-AS1 14 889 | 0.09329 0.01308 2.021e-12
12 N/A ILMN 2051900 | EID2B 19 889 | 0.1495 0.01267 5.998e-30
12 N/A ILMN.2130078 | CDKN2AIPNL | 5 889 | 0.07231 0.009745 | 2.737e-13
rs10742583 | 11 N/A ILMN.1743049 | PWPI 12 890 | -0.1424 0.01076 1.198¢-36
1 N/A ILMN.1688753 | PTDSS1 8 890 | 0.2389 0.01192 5.786e-74
1 N/A ILMN.1769319 | CNBP 3 890 | 0.1136 0.01028 1.015e-26
1 N/A ILMN.1752086 | TRAPPCI11 4 890 | -0.07452 | 0.009111 | 9.90le-16
11 N/A ILMN.1727458 | HDACI 1 890 | 0.1139 0.01002 4.303e-28
11 N/A ILMN.1795428 | WDR59 16 890 | -0.0939 0.009298 | 8.944e-23
11 N/A ILMN.1795876 GPS1 17 890 0.06541 0.007896 4.36e-16
11 N/A ILMN-1690963 ASAP1 8 890 0.1099 0.01438 5.594e-14
11 N/A ILMN_1663132 ADCK2 7 890 0.0939 0.01212 2.552e-14
11 N/A ILMN_1716445 DTYMK 2 890 0.09812 0.01061 1.688e-19
11 N/A ILMN_1796464 WDR37 10 890 0.09877 0.009316 8.254e-25
11 N/A ILMN_1754579 SYNE2 14 890 0.06739 0.008484 5.915e-15
11 N/A ILMN.1695386 | RAD51C 17 890 | 0.09094 0.01153 8.906e-15

Table 6.5.: Master regulatory loci:
We defined master regulatory loci as eQTLs with simultaneous impact on the ex-
pression of at least five genes. Only the SNP which displayed strongest associa-
tions in the region is displayed.

6.2.7. Comparison of cis- and trans-results with the published GWAS catalog

On July, 18th 2012 the GWAS catalog consisted of 1,310 publications including 6,603 SNPs
(according to the information on the homepage). The whole catalog was downloaded and
consisted of 10,421 SNP-gene combinations (10,099 unique). 214 were deleted because no
SNP and no gene were reported (NR). The SNP-gene combinations that were reported by
more than one study were merged and altogether 8,566 unique combinations were system-
atically compared to the cis- and trans-results. There were 4,471 unique genes of which 3,508
could be found in our annotation file.

In the first step the overlap between the reported genes and the eQTL genes was determined
and for the corresponding SNPs all proxy SNPs with R? > 0.7 were selected using SNAP.
181 gene-SNP combinations of the GWAS catalog could also be found in the list of signifi-
cant cis-hits, either with the exactly same SNP as reported or with a SNP that was in high
LD (R? > 0.7) with the reported SNP. Two SNPs as well as four genes could additionally be
found in the list of significant trans-hits.

In addition, when we looked up GWAS hits in our hits we identified 565 reported genes
in the cis-list, 16 of which were also in the trans-list. Three SNPs of this list are also in the
trans-list.

Of the 6,966 gene-SNP combinations that were not in the cis-list, ten genes and 13 SNPs were
in the trans-list.
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6.2. eQTL study in KORA F4

We focused on the 746 genes that were both eQTL-genes and reported to be associated with
a clinical or any other phenotype. These findings could be helpful to improve the knowledge
about the reported associations and to identify mechanisms underlying the SNP-phenotype
association.

As this project was a collaboration with the Diabetes Center in Diisseldorf we were par-
ticulary interested in genes that were reported to be associated with diabetes-relevant phe-
notypes. One SNP (rs592423, located on chromosme 6) of our list was reported to be as-
sociated with adiponectin (low levels of adiponectin could increase the risk for diabetes,
while high levels lead to a protection against diabetes) (Dastani et al., 2012). We identified a
trans-association with the expression level of a type 2 diabetes gene called IGF2BP2 (insulin-
like growth factor 2 mRNA-binding protein 2) on chromosome 3 (p-value = 1.2 x 10713). As the
adiponectin levels two hours after an oral glucose tolerance test were available for 738 KORA
F4 samples, we tested if there was a correlation between this level and the gene expression
level. Because the p-value for this association was below 0.05 (p=0.025) we hypothesized
that there might be a possible effect of rs592423 on adiponectin level via the expression of
IGF2BP?2 (see Figure 6.14).

Circulating adiponectin
levels

Transcript level

P=1.2*1013

_—
chre chr. 3g27.2 |
rs592423 IGF2BP2 - Insulin-Like Growth Factor 2

mMRNA-Binding Protein 2
Associated with type 2 diabetes

Figure 6.14.: Triangular relationship between eQTL-SNP rs592423, gene expression level of
IGF2BP2 in trans, and adiponectin

In the GWAS catalog several SNPs are reported to be associated with different clinical
phenotypes (with so-called pleiotropic associations). In our data we identified two SNPs
that on the one hand had an impact on several gene expression levels and on the other hand
showed such pleiotropic effects:
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e SNP rs10784774, which was published to affect height (Gudbjartsson et al., 2008), pul-
monary function decline (Imboden et al., 2012), and response to diuretic therapy (Turner
et al., 2010) in GWAS.

e SNP rs12485738 with reported associations for creatinine levels (Chambers et al., 2010),
blood pressure (Wain et al., 2011), chronic kidney disease (Kottgen et al., 2010), and
mean platelet volume (Meisinger et al., 2009; Soranzo et al., 2009).

For the SNP rs12485738 we could provide evidence for a triangular relationship between
the SNP, mean platelet volume (measured in 889 KORA F4 samples) and gene expression
activity of nine out of the twelve annotated genes.

’ Mean Platelet Volume

SNP Transcript levels
P<2.8*1012
Chr 3 Chr. 3
rs12485738 ITGB5 GP9 PROS1  CTDSPL
e —
Chr. 4

GUCY1A3

TSPAN9

—>
CHE 17 eemie—

ALOX12

i I
chr. 22

PARVB

Figure 6.15.: Triangular relationship between eQTL-SNP rs12485738, gene expression levels
in trans and mean platelet volume:
For nine out of twelve significant trans-eQTL genes for rs12485738 we could
identify significant triangular relationships between SNP, mean platelet volume
and gene expression levels.

6.2.8. Comparison of cis-eQTLs with metQTLs

In the KORA F4 samples also metabolite concentrations are measured in whole blood. And
due to the fact that it has already been observed that metabolic phenotypes could combine
genetic and environmental factors to explain complex disorders (Suhre and Gieger, 2012) the
cis-eQTLs were compared to results obtained from a GWAS of metabolic traits. This GWAS
was conducted in 1,809 samples from KORA F4 and the results were replicated in 422 samp-
les of the TwinsUK study. Thereby, 163 metabolic traits that were measured in whole blood
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were analyzed. Illig et al. (2010) identified 18 SNPs that were associated with several metabo-
lites or the ratio of two metabolites, so-called metabolomic quantitative trait loci (metQTLs).
These results are available in the Supplement Table 2 of the original publication.

Of these 18 SNPs six SNPs (rs174547, rs211718, rs8396, rs541503, rs272889, and rs964184)
were also cis-eQTLs in our data set (see Table 6.6). To identify triangular relationships bet-
ween transcriptomics, genomics, and metabolomics the missing association between gene
expression and the metabolite concentration or the ratio of two metabolites was calculated.
Additionally, p-values for the SNP-metabolite association and the p-values for the SNP
- gene expression association were determined in the smaller subset. For these analyses
metabolomic and transcriptomic data of 717 KORA F4 samples were available.

In this effort we identified three significant triangular relationships:

1. SNP rs541503 which is located upstream of PHGDH (Phosphoglycerate Dehydrogenase)
was associated with the expression level of PHGDH (p-value = 4.14 x 10~ !!) and with
the metabolite Serine (Ser, p-value = 2.59 * 1073). The expression level of PHGDH
was also associated with the metabolite concentration (p-value = 9.38 x 10~%). The
triangular relationship is illustrated in Figure 6.16.

Phenotypes

Breast Cancer

Ser-PTC

Metabolite concentration

”
*$ Kz\&
) &
a2 S
< 0,
‘ Transcript level
P=4.14*101
Chr1 - I
rs541503 PHGDH Phosphoglycerate dehydrogenase

Energy metabolism

Figure 6.16.: Triangular relationship between genomics, metabolomic, and transcriptomics -
PHGDH

2. SNP rs174547 is located intronic of FADS1 (Fatty Acid Desaturase 1) and was associated
with the expression level of FADST (p-value = 2.055 * 10~!4) and additionally with
the neighboring gene TREM258 (Transmembrane Protein 258, p-value = 3.075 x 1071%).
The p-value for the association between SNP and the metabolite ratio PC aa C36:3 /
PC aa C36:4 (Phosphatidylcholine diacyl C36:3 / Phosphatidylcholine diacyl C36:4)
was 3.58 % 107%9. The expression levels of both FADS1 and TREM258 were significantly
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correlated with the metabolite ratio (p-value = 1.56 %1072 and 1.68% 1073, respectively).
The triangular relationship is shown in Figure 6.17.

Phenotypes PC aa C36:3

Lipid metabolism: PC aa C36:4
LDL cholesterol,
HDL cholesterol and

Metabolite ratio

triglycerides
2
Y

Glucose metabolism: Q& &,

. *
fasting glucose and *'\9 N7

. % <5
homeostatic model ) &
assessment B (HOMA-B) < &
Sk

Sx
Other phenotypes: ‘)O.T,
Crohn’s disease and

P=3.08*10* and 2.06*101*

Transcript level

resting heart rate

Chr11 - =

TMEM258 Transmembrane protein 258
FADS1 Fatty acid desaturase 1,
Polyunsaturated fatty acid biosynthesis

rs174547

Figure 6.17.: Triangular relationship between genomics, metabolomic, and transcriptomics -
FADS1

3. SNP rs211718 is located upstream of ACADM (Acetylcoenzyme A Dehydrognase) and
was associated with the expression level of this gene (p-value = 1.778 * 1073!) and
with two different metabolites: C6(C4:1-DC) (Hexanoylcarnitine (Fumarylcarnitine),
p-value = 3.72%1071%) and the ratio C12 / C10 (Dodecanoylcarnitine / Decanoylcarni-
tine, p-value = 3.87 % 1072%). The expression level of ACADM was correlated with both
metabolite and the metabolite concentration (p-value = 1.28 * 1073 and 9.60 x 1073,
respectively). Figure 6.18 displays this triangular relationship.

Illig et al. (2010) and Suhre et al. (2011) described that all these three SNPs were known
to be associated with clinical traits as cardiovascular disease, resting heart rate, Crohn’s dis-
ease, and glucose as well as lipid metabolism for rs174547, medium-chain acyl-coenzyme A
dehydrogenase deficiency for rs211718, and breast cancer for rs541503. In addition, PHGDH,
FADS1, and ACADM are all enzymes encoding genes with functions in human lipid meta-
bolism.

6.2.9. Summary of eQTLs in KORA F4

The eQTL study using data from KORA F4 was at the time of publication one of the largest
studies analyzing both cis- and trans-eQTLs genome-wide in whole blood. 91% of the eQTLs
could be replicated in at least one of the two replication cohorts although, there were some
systematic differences in the study design between the discovery and one replication cohort.
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Phenotypes
C6(C4:1-DC)

Medium-Chain Acyl-

Coenzyme A Dehydrogenase Metabolite concentration
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‘ Transcript level
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Chr1 - - I
rs211718 ACADM Acyl-coenzyme A dehydrogenase,
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Figure 6.18.: Triangular relationship between genomics, metabolomic, and transcriptomics -

ACADM
Illig et al. Schramm et al.
(N=1,809) (N=717)
SNP Chr Probe Id Gene Metabolic trait p-value! p-valuel p-value? p-value®
1s541503 1 1704537 PHGDH Ser-PTC 3.06707 | 259703 [ 414~ 1T | 9.3870%
rs211718 1 1778104 ACADM C6(C4:1-DC) 1.74—12 372715 | 178731 | 1.28703
rs174547 | 11 | 1786759 | TMEM258 | ££2aCs6:3 | 3g5=102 | 355=69 | 308714 | 168703
1211718 | 1 1778104 | ACADM g}g 514734 | 387724 | 178731 | 960703
rs174547 | 11 1670134 FADSI1 Pg aa 52%43 3.95—12072 1.49—22 2.06—1;* 1.28_22
PCaa : — — — —

rs174547 | 11 1670134 FADSI1 Prascaed 3.88 o 3.58705 2.06711 1.56702
1541503 1 1704537 PHGDH L= 5.62 1.49 4.14 4.71

15272889 5 1685057 SLC22A4 c5 2.88705 547705 | 3.24709 | 770702
rs272889 | 5 | 1699357 | sLc2245 | YelZPTC 7.69710 | 477799 | 450728 | 1.15701
rs272889 | 5 | 2050911 | SLC22A4 %Z’Tc 7.69710 | 477709 | 175717 | 167701
rs174547 11 1786759 | TMEM258 PC aa C38:4 3.95727 1.49715 | 3,08~ 1% | 3.0170!
rs8396 4 1758034 ETFDH SM (OH) C24:1 1.60-9° 2.49701 | 9.2719 | 3.30701
15272889 5 2050911 SLC22A4 c5 2.88 705 5.47705 | 175717 | 371701
rs964184 11 1778668 TAGLN PC aa C34:2 1.3070° 1.19792 | 1.14710 | 420701
15272889 5 1699357 SLC22A5 c5 2.88 705 5.4779% | 450728 | 4.59701
15964184 11 1791912 SIDT?2 % 2,22~ 11 4.33701 | 463709 | 4.8870!
18396 4 1758034 ETFDH oL ISRl 8.2271° 547711 | 9.27719 | 5.92701
rs964184 1 1791912 SIDT2 PC aa C34:2 1.30705 1.19792 | 4.63709 | 7.04701
1272889 | 5 1685057 | SLC22A4 Yal=PTC 7.69710 | 477709 | 324709 | 794701
5964184 11 1778668 TAGLN %‘?2%2 222711 433791 | 1.14710 | g.53701

Table 6.6.: Results of cross-associations for congruent metQTL- and eQTL-SNPs:
For six SNPs that were both, cis-eQTLs and metQTLs, we calculated the associa-
tion between transcriptomics, genomics, and metabolomics.
lindicates the p-value for the association between the SNP and the metabolic trait
or the ratio of two metabolic traits
%indicates the p-value for the association between the SNP and the transcript level
3indicates the p-value for the association between the transcript level and the
metabolic trait or the ratio of two metabolic traits
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Together with the large overlap of eQTLs in other tissues there was evidence that whole
blood might be an informative and useful tissue for the determination of regulatory effects
and useful for biomarker studies.

In this study we combined data derived from multiple omics-technologies (i.e. genotypes,
metabolomics, and transcriptomics) and could show that such an approach is useful to iden-
tify triangular relationships.

6.3. Replication of eQTLs in CHARGE consortium

With the KORA F4 gene expression and genotype data we also participated in a joint effort
of the CHARGE consortium. In this project the KORA eQTL data were used to replicate
findings of the discovery cohorts.

One CHARGE investigator Harm-Jan Westra, developed a java-based tool to calculate cis-
eQTLs faster than using R or PLINK. The software can be downloaded athttps://github.
com/molgenis/systemsgenetics/tree/master/eqtl-mapping-pipeline. Asin-
put it requires raw expression data and imputed genotype data.

The discovery set consists of 5,311 samples from seven studies, namely

e EGCUT (n=891)

InCHIANTI (n=611)

Rotterdam Study (n=762)

Fehrmann (n=1,469)

HVH (n=106)

SHIP-TREND (n=963)

DILGOM (n=509)

Altogether, 1,513 trans-eQTLs including 346 unique SNPs having an effect on 430 differ-
ent genes were detected using 4,542 SNPs from the GWAS Catalog that had already been
published with different traits or diseases. 52% of these significant associations could be
replicated in 740 samples of the KORA F4 study. The second replication cohort was the
Brisbane Systems Genetics Study (BSGS) which also had expression data from whole blood.
This study consists of 862 samples and due to the larger sample size 79% of all significant
hits could be replicated. When using both studies for a meta-analysis 89% were significantly
replicated and beside significance 97% showed consistent allelic direction. This rate was 91%
in KORA F4 only.

6.4. Summary and discussion

In summary, three different eQTLs studies were conducted using different sample sizes. The
aim of all studies was mainly to show that whole blood is a useable tissue for eQTL studies.
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6.4. Summary and discussion

Our two eQTL studies could demonstrate the high robustness and reproducibility of genet-
ically determined regulatory effects in whole blood. In both studies high replication rates
could be observed and for the larger KORA F4 study there was also a high overlap with
eQTLs in other tissues.

When comparing the numbers of significant cis- and trans-eQTLs in Table 6.7 it is conspicu-
ous that the difference of significant hits from 322 samples to 890 is relatively much higher
(more than ten times more hits for cis- and trans-eQTLs) than from 890 to 5,311 samples
(1.4 times more hits for cis- and 2.4 times more hits for trans-eQTLs, respectively) indicating
that the number of detectable eQTLs in whole blood might not be infinitely. Nevertheless, a
larger eQTL study is already in progress and eQTLs are calculated in the framework of the
eQTLGen Consortium. It will finally consist of more than 20,000 samples and we will join
with the KORA F4 data.

Cohort KORA F3 KORA F4 CHARGE
Samples 322 890 5,311
Number of tested SNPs (cis) 335,152 616,941 1,962,237
Number of tested SNP probe pairs (cis) 4,802,373 8,308,092 11,172,453
Bonferroni threshold (cis) 1.03E-8 6.02E-9 4.5E-9
Number of significant cis-eQTLs 363 3,449 4,690
Number of tested SNP probe pairs (trans) | 13,878,309,168 | 17,867,228,301 | 153,134,630
Tested SNPs 335,152 616,941 4,542
Tested expression probes 41,409 28,961 34,061
Bonferroni threshold (trans) 3.6E-12 2.81E-12 3.3E-10
Number of significant trans-eQTLs 8 94 223

Table 6.7.: Summary of eQTL results from KORA F3, KORA F4, and CHARGE

In all eQTL analyses decribed above linear regression models were used to assess the as-

sociation between SNPs and gene expression levels. However, linear regression requires
normal distribution and in spite of extensive efforts to normalize transcriptomics data the
normalization is an approximation. Beside the linear regression the Spearman’s rank corre-
lation test is often used to test the association between SNP and gene expression levels in
eQTL studies (Sul et al., 2015). Its advantage is that this is a non-parametric test and it is
quite robust to any deviations from the normal distribution. The software PLINK is not able
to calculate this test, therefore, the analysis was repeated only for all possible cis SNP-probe
combinations in KORA F4.
The results of the comparison between the linear model and the Spearman’s rank correlation
test are summarized in Table 6.8. 96% of the expression probes that were significant when
analyzing all SNP-probe combinations using a linear model were also significant when us-
ing the Spearman’s rank correlation test indicating comparability of both tests in our data
set. For future eQTL projects it could be debated if it makes sense to prefer Spearman’s rank
test for a better comparability with results from other cohorts.

For the eQTL analyses in KORA F3 and F4 the multiple testing problem was solved by
applying a Bonferroni correction. Although this correction is very conservative and strin-
gent the large sample sizes of the discovery cohort (KORA F4) and of the replication cohorts
allow to identify and verify a still high number of true-positive cis-eQTLs. In the eQTL
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Figure 6.19.: Manhattan plots of cis-eQTLs in KORA F3, F4, and in CHARGE:
The genomic position of the SNPs is plotted against the -log10(p-value). The
read line depicts the Bonferroni threshold of significance.
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Linear model | Spearman’s rank test | Overlap
significant SNP-probe combinations 55,592 55,051 52,503
significant unique probes 4,116 4,106 3,958

Table 6.8.: Comparison of results obtained from linear regression and Spearman’s rank cor-
relation test for cis-hits in KORA F4:
The calculations were conducted for 8,308,092 possible SNP-probe combinations
in 890 KORA F4 samples. The significance threshold was 6.02 * 107 (Bonferroni
threshold).

project of CHARGE standard procedure for calculating p-values in eQTL studies was used:
the permutation (but they also indicated the number of significant hits for the Bonferroni
correction). The advantage is that it also takes into account the LD structure of the genome
which is not considered when using Bonferroni correction (Sul et al., 2015). The disadvan-
tage and the reason why it was not possible for us to use it for the trans-calculation is that it
is very time- and computer-intensive. In the CHARGE consortium this problem was mini-
mized by reducing the number of analyzed SNPs and by doing only ten permutations which
is quite below the standard of several thousand permutations (Sul et al., 2015).

Wright et al. (2014) published the last eQTL study so far using more than 2,500 samples. This
almost reached dimensions of GWAS which normally also apply a multiple testing correc-
tion that is based on Bonferroni. Normally here a significance threshold of 5 * 107 is used
which takes the LD structure into account.

The advantage of the eQTL studies in KORA F3 and F4 was that we were able to calculate
the associations between all expression levels and all available SNPs and due to the lower
number of significant hits we were able to perform some additional analyses like the com-
parison of our two replication cohorts of KORA F4. In spite of various systematic differences
in the study design of the two replication samples (fasting versus non-fasting status of parti-
cipants, time of blood collection, and different laboratory tools, namely, PAXgeneTM versus
TempusTM tubes) replication overlaps of both replication samples were comparable (78%
and 82%). Together with a total replication overlap of 91% in at least one of the samples this
demonstrates a high robustness and reproducibility of genetically determined regulatory ef-
fects in whole blood. Consequently, whole blood gene expression provides a means for the
discovery of biomarkers which are of clinical relevance for the perturbation of the system in
a disease status.

Finally, we could include metabolomics data to show that eQTL studies provide a hypothesis-
free approach to link genetic variation with human metabolism.
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7. Summary and outlook

The progress and rapid advances in the field of gene expression data during my PhD project
was highly visible and is continuously ongoing.

We started with two case-control studies with small sample sizes. In one study we compared
eight Parkinson patients with nine old controls. This resulted in the discovery of four differ-
entially expressed genes (Elstner et al., 2009). The inclusion of seven young controls allowed
us to describe Parkinson’s disease as accelerated aging (Elstner et al., 2011).

In the second case-control study 13 NBIA patients were compared to six controls. Here, no
significant differentially expressed gene could be identified, but the top 500 genes were used
for a pathway analysis and showed pathways that are significantly related to mitochondrial
functions (Hartig et al., 2011). Nevertheless the second project was the beginning of a large
NBIA study (TIRCON project). Within the framework of this study the gene expression lev-
els of 41 patients and 42 controls were determined. In comparison to all data that were used
in this thesis no arrays were used but the RNA was sequenced. In comparison to array-
based methods sequencing is less susceptible to technical artifacts, much more accurate and
not limited by background noise for low signals. Despite of all the advantages so far arrays
were much often used due to the lower costs. Now the RNA-sequencing is getting cheaper
and therefore more lucrative also for larger sample sizes.

Therefore we started to analyze the gene expression levels obtained from RNA-sequencing
of 41 PKAN patients with 42 healthy age-matched controls. Similar to the preprocessing of
data from arrays the raw values have to be normalized before the analysis. Here we used
the FPKM values (for details see A.2.2) that consider the number of mapped reads and the
length of the genes.
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Figure 7.1.: Dendrogram of RNASeq data of 42 controls and 41 NBIA patients
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In a next step an outlier was detected by clustering all samples using all expression values
(see Figure 7.1). For this sample a mistake in the laboratory was already reported and a repe-
tition is in progress. The expression levels of the remaining 40 patients and 42 controls were
compared using a linear model adjusted for age and gender. Especially the age could be an
important confounder due to the fact that younger patients are more likely to be affected by
a more severe form of the disease.
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pvalue = 1.08322211437214e-06

Figure 7.2.: Experiment using RNASeq data: Differentially expressed gene between controls
and NBIA patients:
When comparing 40 NBIA patients and 42 controls using a linear model adjusted
for age and gender, one gene was differentially expressed when applying the
Benjamini-Hochberg correction.

When applying the Bonferroni correction no gene was differentially expressed between
the controls and the patients. Using the Benjamini-Hochberg correction, we could identify
one gene called CLDN16 (see Figure 7.2), but the expression level of this gene was quite low
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(< 1) and we cannot guarantee that the effect is not due to background noise. So far no other
data set with the same patients is available and the result cannot be replicated. As the mea-
surement of more samples is in progress, we hope that we can verify this result in a higher
sample size or identify some other interesting candidate genes.

The first eQTL study using RNA sequenced data of 156 individuals was published already
(Sul et al., 2015) and it should be only a question of time that these data are available for the
KORA samples. Then, all analyses conducted in this thesis can be repeated in a data set with
higher quality.

After the case-control studies we established one of the first larger gene expression data
set from a population-based study namely KORA F3 in Munich. This data set was used to
establish the first quality scores and optimize the experimental protocol. At this time-point
it was one of the largest studies with 381 individuals. We could improve the quality of this
data set and establish an even more homogenous data set with the samples from the KORA
F4 cohort. When this data was ready for analysis, the German consortium MetaXpress was
founded to harmonize the analysis of genome-wide expression data. We herein established
a well-structured analysis protocol.

The KORA F3 and F4 data sets were used to analyze the effects of different phenotypes and
variables on the expression levels. We started with blood pressure related phenotypes which
seem to have a small impact on expression levels in whole blood. Even in the large CHARGE
consortium with more than 7,000 samples only 34 genes could be identified that are associ-
ated with one of the phenotype (diastolic/systolic blood pressure or hypertension).

The impact of age on the expression levels is much higher. Here the findings in KORA F3
and F4 increased from five to 194 significantly associated genes. In the large CHARGE con-
sortium with more than 7,000 samples we identified almost 1,500 significant genes that could
be replicated in an independent cohort.

Lastly, it was analyzed if the genetic variation changes the expression levels of genes in cis or
in trans. With 322 KORA F3 samples we detected 363 cis- and eight trans-associations and in-
creased this number with 890 KORA F4 samples to 3,449 cis- and 94 trans-associations. With
this sample size the eQTL study was one of the largest whole genome eQTL analysis that
analyzed effects in both cis and trans in whole blood samples in European populations so
far. Even in the much larger eQTL study of CHARGE with 5,311 samples not all trans-effects
were determined as they were using only SNPs that are reported in the GWAS catalog at this
time-point. The next study in CHARGE is already in progress and it is planned to include
more than 20,000 samples to analyze both cis- and trans-effects genome-wide.

The next project is the genome-wide analysis of gene expression levels with methylation,
which already started. For the analysis of gene expression and age we analyzed for signif-
icantly associated genes the impact of methylation on gene expression levels. Additionally,
we tested if the effect of aging on the expression levels is mediated by methylation. We
identified 1,248 age associated genes (83%) that had at least one mediating CpG site whereas
each gene had between one and 154 mediating CpG sites.

To analyze these effects genome-wide we have to consider the high number of CpG sites
(more than 450,000) and the fact that we do not know if these effects are only visible in cis
(< 500 kb distance between gene and CpG site) or also in trans. To conduct these calculations
in an acceptable speed and time, our collaborators from the Framingham Heart Study (FHS)
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7. Summary and outlook

developed a GPU-based code that reduced the calculation time from several weeks to just 20
minutes. The disadvantages of this program are, that it is not very flexible and can calculate
linear models only without any further covariables. We avoided this problem by adjusting
the data for all relevant covariables before the calculation.

Using the Bonferroni correction we could identify in this way 3,422 cis- and 39,859 trans-
associations. The replication (especially of the high number of trans-associations) is still on-
going. In a next step it is also possible to include genetic data to identify also SNPs that are
responsible for the variation in the methylation and expression levels and to see if expression
levels are a consequence of methylation or the other way round.
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A.1. List of abbreviations

ANOVA Analysis of variance

BMI Body mass index

BP  Blood pressure

CHARGE The Cohorts for heart and aging research in genomic epidemiology
c¢DNA Coding deoxyribonucleic acid

cRNA Coding ribonucleic acid

DBP Diastolic blood pressure

DNA Deoxyribonucleic acid

DZHK Deutsches Zentrum fiir Herz-Kreislaufforschung - German Center for
Cardiovascular Research

ECGUT Biobank of Estonian Genome Center of the University of Tartu
eQTL Expression quantitative locus

FDR False discovery rate

FWER Family-wise error rate

GHS Gutenberg Health Study

GWAS Genome-wide association study

HTN Hypertension

IPA Ingenuity pathway analysis software

KORA Kooperative Gesundheitsforschung in der Region Augsburg - Cooperative Health
Research in the Region of Augsburg

LD Linkage disequilibrium
MAF Minor allele frequency
mRNA Messenger ribonucleic acid

NBIA Neurodegeneration with brain iron accumulation
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OGTT Oral glucose tolerance test

PC  Principal component

PCA Principal component analysis
PCR Polymerase chain reaction

PD Parkinson’s disease

QC  Quality control

qPCR Quantitative real-time polymerase chain reaction
QTL Quantitative trait locus

RIN RNA integrity number

RNA Ribonucleic acid

SBP Systolic blood pressure

SE Standard error

SNP Single nucleotide polymorphism
TSS Transcription start site

VST Variance stabilization transformation

A.2. Statistics

A.2.1. Variance stabilization transformation

The variance stabilization transformation (VST) was developed to stabilize the variance of
gene expression data measured with Illumina arrays. In comparison to the log2 transfor-
mation (which is based on the average expression level of each probe), it takes the several
measurements of one probe into account.

The following steps have to be performed to find a function % for Y where the variance of
the transformed Y is independent from the mean (Lin et al., 2008):

1. All background probes with detection p-values higher than a predefined threshold
(normally 0.01) are selected as it is assumed that these probes measure the background
noise.

2. The variance of the background noise is estimated (called c3).
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3. The following formula is used to calculate ¢; and ca:

v(u) —cg = cru+ co

where v(u) is the relationship between the mean « and the variance v of the measure-
ment Y and can be displayed in a quadratic form

v(u) = (sp/my)*(u—a)® + 02 = (cru+ 2)* + ¢3

where m,, and s, are the mean and the standard deviation of e” (coming from the
general model Y = a + pe” + ¢€), a is the offset of the general model, and o, is the
standard deviation of .

4. The transformed values are calculated using;:

h(y) = 1/cy arcsin(ca/+/c3 + c1y/+/c3), when c3 > 0
Y) = 1/c1In(ce + c1y), when c3 =0

It can be shown that the VST-transformed values are close to the log2-transformed values
for high expression values.
The VST is implemented in the Bioconductor package 1umi (Du et al., 2008).

A.2.2. RNA Sequencing and FPKM

RNA sequencing is a next-generation sequencing based technology to measure the gene ex-
pression levels. The RNA is converted to a library of cDNA fragments and each molecule is
sequenced from both ends (pair-end sequencing). In our lab the Illumina HiSeq2500 was
used which produces reads with a length of 100 base pairs. Afterward the reads were
mapped to a reference genome (Wang et al., 2009).

To take the number of mapped reads and the length of genes in account, the expression val-
ues are indicated as FPKM values. FPKM is the abbreviation for Fragments Per Kilobase of
transcript per Million mapped reads.

A.3. Tables and Figures

genomic  top CHR  Probeld Gene CHR P-value P-value P-value
locus  SNP SNP Gene KORA  SHIP-TREND EGCUT
1 1510736767 11 ILMN_2336609 SYTL2 11 1.60E-21 6.65E-15 5.29E-08
2 1rs862242 5 ILMN_1653039 10 1.75E-153 7.71E-191 6.01E-262
3 rs2141180 3 ILMN_1654946 ZSCAN18 19 2.76E-17 7.99E-19 2.34E-18
3 1rs9859077 3 ILMN_1658173 ZNF418 19 2.67E-12 2.39E-03 2.77E-04
3 rs2141180 3 TLMN_1724052 ZNF814 19 1.98E-23 4.89E-06 1.84E-16
3 rs2141180 3 ILMN.1726368 ~ ZNF135 19 5.49E-14 1.16E-03 8.74E-05
4 rs6600227 16 ILMN.1658957 1 4.93E-15 1.63E-13 5.30E-09
5  rs12485738 3 ILMN.1660114 ~ MMRN1 4 1.23E-14 8.20E-09 2.62E-05
5  rs12485738 3 ILMN.1668374  ITGB5 3 9.89E-13 8.66E-19 5.63E-06
5  rs12485738 3 ILMN.1671928 ~ PROS1 3 7.82E-19 6.38E-12 1.26E-09
5 1512485738 3 ILMN-1691264 NAT8B 2 1.06E-13 5.56E-13 1.49E-01
5 1512485738 3 ILMN.1713731 ALOX12 17 2.61E-12 1.84E-15 1.22E-03
5 1512485738 3 ILMN-1729453 TSPAN9 12 5.69E-16 2.76E-21 2.76E-12
5 1512485738 3 ILMN_1730487 CALD1 7 1.26E-13 1.43E-15 1.76E-03
5 151344142 3 ILMN_1733324 ITGB3 17 6.35E-13 8.77E-16 8.61E-08
5 1512485738 3 ILMN_1743290 GP9 3 1.82E-15 7.40E-18 2.10E-05
5 1512485738 3 ILMN_1745103 CLEC1B 12 6.81E-13 2.01E-07 1.28E-01
5 151359142 6 ILMNL_1767766 PRDX2 19 5.38E-16 4.48E-16 3.84E-17
5 1512485738 3 ILMN_1787919 PARVB 22 2.77E-12 9.84E-23 2.28E-10
5  rs12485738 3 ILMN.1808590 ~ GUCY1A3 4 3.58E-13 6.38E-12 3.22E-10
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5 1512485738 3 ILMN_2392189 CTDSPL 3 9.16E-14 1.76E-18 5.16E-10
5 1510463053 5 ILMN_1798557 FAM153A 5 3.38E-21 5.34E-13 5.75E-06
6 1510252204 7 ILMN_1660927 FAM185A 7 1.08E-18 1.12E-05 7.31E-02
7 159272346 6 ILMN_1661266 6 7.15E-116 7.00E-164 5.71E-108
7 15502771 6 ILMN_1752592 HLA-DRB4 6 5.90E-45 7.07E-60
7 159272346 6 ILMN_1791534 6 2.09E-17 4.99E-30 2.57E-12
7 1rs9272346 6 ILMN_2159694 HLA-DRB4 6 4.43E-29 2.55E-32 1.74E-13
7 1rs9272346 6 ILMN_2165753 HLA-A 6 9.51E-18 3.83E-37 2.40E-06
8 rs10742583 11 ILMN_1663132 ADCK2 7 2.55E-14 1.18E-15 4.30E-11
8 1510742583 11 ILMN_1688753 PTDSS1 8 5.79E-74 6.46E-47 7.35E-64
8 1510742583 11 ILMN_1690963 ASAP1 8 5.59E-14 5.75E-16 7.16E-06
8 1510742583 11 ILMN_1695386 RADS51C 17 8.91E-15 2.20E-03 4.85E-21
8 1510742583 11 ILMN_1716445 DTYMK 2 1.69E-19 5.17E-13 3.92E-09
8 1510742583 11 ILMN_1727458 HDAC1 1 4.30E-28 3.82E-26 8.63E-34
8 1510742583 11 ILMN_1743049 PWP1 12 1.20E-36 1.65E-79 6.68E-14
8 1510742583 11 ILMN_1752086 TRAPPC11 4 9.90E-16 6.92E-32 5.60E-06
8 1510742583 11 ILMN_1754579 SYNE2 14 5.92E-15 4.37E-04 3.73E-19
8 1510742583 11 ILMN_1769319 CNBP 3 1.01E-26 2.18E-33 1.55E-11
8 1510742583 11 ILMN_1795428 WDR59 16 8.94E-23 1.79E-24 2.43E-04
8 1510742583 11 ILMN_1795876 GPS1 17 4.36E-16 3.88E-21 5.88E-06
8 1510742583 11 ILMN_1796464 WDR37 10 8.25E-25 1.74E-09 3.00E-17
9 159939012 16 ILMN_1667034 PDPR 16 5.82E-15 5.21E-08 7.06E-17
9 159939012 16 ILMN_1778013 PDPR 16 6.95E-15 2.70E-05 2.87E-11
10 rs225245 17 ILMN_1671686 EPB49 8 1.22E-12 2.96E-16 7.43E-21
10 1rs225245 17 ILMN_1697529 RNF10 12 4.15E-16 1.87E-19 291E-10
11 rs12933929 16 ILMN_1671809 DuUsP22 6 2.37E-23 8.98E-24 1.21E-17
11 1512933929 16 ILMN_1813275 DUSP22 6 1.99E-25 2.70E-28 8.31E-23
11 1512933929 16 ILMN_2159152 TP53TG3B 16 2.45E-15 3.60E-07 3.32E-06
12 153779106 7 ILMN_1673337 PMS2CL 7 1.50E-22 4.52E-06 3.84E-04
13 1510417909 19 ILMN_1673991 ATIC 2 4.29E-21 1.28E-31 4.45E-27
14 156901565 6 ILMN_1676459 ZNF785 16 5.20E-14 1.25E-08 3.43E-04
15 152856553 16 ILMN_1678730 NOMO1 16 3.36E-21 1.49E-09 8.08E-03
15 152856553 16 ILMN_2126957 NOMO1 16 1.38E-13 6.82E-13 1.16E-04
16 154130579 19 ILMN_1680388 1 4.74E-14 2.61E-06 1.94E-22
17 1512669559 7 ILMN_1684255 MYL4 17 2.32E-16 2.97E-13 251E-14
17 1512669559 7 ILMN_1695058 SLC38A5 X 1.10E-16 5.61E-14 1.72E-15
17 1512669559 7 ILMN_1787526 C20RF88 2 4.72E-33 2.17E-41 2.67E-16
18 153745902 19 ILMN_1685843 KIR2DL5B 19 6.25E-24 5.69E-06 3.32E-15
18 153745902 19 ILMN_1793451 KIR2DL5B 19 3.12E-56 9.86E-30 2.45E-26
18 153745902 19 ILMN_2415650 KIR2DL5B 19 5.33E-38 6.07E-12 2.56E-20
19 15845787 20 ILMN_1688318 FRGIB 20 4.56E-24 4.55E-33 5.24E-12
20 rs10861779 12 TILMN_1692962 CTDSP2 12 1.65E-15 3.55E-19 1.41E-06
21 rs13053817 22 ILMN_1697286 SF3A1 22 5.57E-13 1.89E-14 1.34E-05
22 1512151742 2 ILMN_1652161 PNKD 2 1.89E-28 9.91E-08 7.22E-30
22 1512151621 2 ILMN_1679130 CALHM1 10 2.24E-25 3.31E-12 4.24E-26
22 1512151621 2 ILMN_1697317 DYNLRB2 16 1.12E-25 1.14E-08 8.48E-35
22 1512151621 2 ILMN_1724158 ZNF93 19 7.62E-13 1.24E-04 2.30E-09
22 1512151621 2 ILMN_1740186 GHRHR 7 6.93E-17 9.43E-03 1.51E-16
22 1512151621 2 ILMN_2282282 MLH3 14 1.31E-38 1.50E-20 1.59E-44
23 155750715 22 ILMN_1697710 IL37 2 5.30E-27 6.02E-18 9.25E-11
24 15592423 6 ILMN_1702447 IGF2BP2 3 1.20E-13 3.82E-15 4.04E-16
25 1512189695 6 ILMNL_1702866 LINC00115 1 9.77E-37 4.50E-09 8.02E-16
26 156854996 4 ILMN_1703246 SBF1 22 1.86E-13 7.79E-16 1.85E-04
27 157165535 15 ILMN_1703538 AIF1 6 5.58E-38 1.18E-14 9.65E-39
28 1511247355 15 ILMN_1704376 GLDN 15 1.43E-19 3.61E-33 8.91E-11
29 1511642055 16 ILMN_1709747 EXOG 3 1.75E-16 4.37E-13 2.51E-08
30 154792935 17 ILMN_1710207 FAM178A 10 8.44E-13 2.94E-30 4.69E-02
31 15199448 17 ILMN_1712657 BPTF 17 1.45E-94 3.07E-20 3.16E-10
31 rs199448 17 ILMN_1743621 C170RF69 17 1.45E-43 1.38E-16 7.21E-18
31 rs199448 17 ILMN_1772603 LOC644172 17 2.69E-144 3.26E-54 4.27E-07
31 rs199448 17 TLMN_1784428 MGC57346 17 1.32E-103 5.49E-72 1.29E-46
32 15700415 7 ILMN_1712721 GAST 17 1.69E-16 3.33E-10 5.30E-17
33 154390943 3 ILMN_1712936 GCFC1 21 7.59E-36 5.29E-27 3.34E-16
34 15615672 6 ILMN_1717261 HLA-DRB1;HLA-DRB3 6 7.45E-21 7.30E-06 9.68E-26
35 1511130549 3 ILMN_1717793 CI190RF33 19 1.32E-12 1.74E-05 2.39E-02
36 151476415 21 ILMN_1732467 OR2AG1 11 3.05E-27 1.36E-22 5.08E-25
37 157005151 8 ILMN_1738793 ZNF71 19 2.14E-36 3.09E-21
38 1510814410 9 ILMN_1739199 WASH3P 15 5.85E-22 9.84E-05
39 1512612045 2 ILMN_1739942 FAM117B 2 9.94E-15 9.09E-18 7.19E-16
40 1511171739 12 ILMN_1740094 BEND4 4 1.62E-67 2.90E-54 1.05E-13
40 1511171739 12 ILMN_1753440 DCAF16 4 1.55E-17 2.77E-20 1.66E-05
40 1511171739 12 ILMN_2180866 RPS26P11 X 2.80E-248 3.53E-280 3.26E-17
41 1512744267 1 ILMN_1745885 POLR2F 22 3.74E-13 2.04E-25 2.26E-02
42 15791900 6 ILMN_1749070 HLA-DPB1 6 3.26E-21 2.89E-23 1.05E-24
43 157708899 5 ILMN_1754156 FLJ45340 7 1.14E-32 1.65E-21 1.28E-02
44 rs470119 22 ILMN_1761321 KREMEN2 16 1.13E-13 1.97E-05 2.33E-22
45 rs4704164 5 ILMN_1770498 GUSBP1 5 3.01E-19 3.17E-08 9.37E-13
45 rs4704164 5 ILMN_1780700 GUSBP2 6 7.79E-14 4.68E-06 1.62E-12
45 154704164 5 ILMN_1813191 5 6.61E-38 3.40E-41 6.97E-31
46 152244468 9 ILMN_1772888 17 1.23E-41 2.66E-38 9.55E-45
47 152217065 15 ILMN_1775590 SCAND2 15 9.76E-16 1.54E-05
48 152942219 8 ILMN_1778213 STK33 11 1.80E-19 2.57E-08 1.85E-01
49 1511871616 17 ILMN_1779572 PLEKHM1 17 2.61E-84 4.35E-80 8.26E-21
50 157395116 11 ILMN_1783753 TXNDC12 1 2.20E-46 2.49E-16
51 152353678 19 ILMN_1784352 CCM2 7 3.52E-18 3.37E-05 1.18E-10
52 1512936834 17 ILMN_1789407 FAM18B2 17 6.02E-32 3.34E-05 1.66E-19
53 154447245 12 ILMN_1791297 8 2.60E-28 1.88E-10
54 154895441 6 ILMN_1792455 TMEM158 3 6.10E-15 7.12E-23 1.67E-12
54 154895441 6 ILMN_1796678 HBG2;HBG1 11 7.41E-18 1.88E-38 7.22E-32
54 154895441 6 ILMN_2084825 HBG2 11 5.54E-16 6.61E-34 9.36E-28
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55 1510172646 2 ILMN_1796678 HBG2;HBG1 11 1.40E-19 5.28E-27 1.99E-12
55 1510172646 2 ILMN_1806710 ESPN 1 2.52E-23 7.43E-19 1.03E-13
55 1510172646 2 ILMN_2084825 HBG2 11 1.93E-17 1.91E-23 2.12E-12
57 159534145 13 ILMN_1802023 OR7E156P 13 8.26E-13 1.20E-01 2.20E-07
58 15291040 16 ILMN_1803945 6 4.34E-15 2.60E-15 1.66E-10
59 rs225245 17 TLMN_1806349 SLC6A8 X 2.83E-14 1.12E-21 6.33E-06
60 rs6503934 17 ILMN.1810274 HOXB2 17 2.79E-20 1.14E-10
61 rs10000012 4 TLMN_1811443 AVP 20 4.92E-32 1.11E-07 2.38E-31
61 rs10000012 4 TLMN_2406439 SPTBN4 19 4.26E-18 9.52E-08 4.77E-26
62 rs1317548 10 ILMN_1906187 LOC283070 10 3.26E-25 1.71E-30 1.33E-18
63 15642112 1 ILMN_2050023 CCDC23 1 8.58E-19 1.14E-20
64 1510784774 12 ILMN_2051900 EID2B 19 6.00E-30 3.30E-11 6.16E-68
64 1510784774 12 ILMN_2095653 AFMID 17 3.37E-30 8.42E-45 1.10E-118
64 1510784774 12 ILMN_2130078 CDKN2AIPNL 5 2.74E-13 6.28E-09 4.50E-36
64 1510784774 12 ILMN_2134381 ITPK1-AS1 14 2.02E-12 2.40E-15 3.93E-34
64 1510784774 12 ILMN_2182482 SHCBP1 16 3.29E-68 5.99E-54 3.59E-145
64 1510784774 12 ILMN_2334242 CREB1 2 5.33E-48 2.65E-59 1.61E-86
64 1510784774 12 ILMN_2412521 KIAA0101 15 2.18E-35 8.33E-21 1.89E-51
65 154723226 7 ILMN_2089977 FKBPIL 7 6.28E-31 1.06E-28 4.99E-28
66 1510203656 2 ILMN_2094416 PLGLB2 2 1.11E-61 6.23E-173 1.77E-63
67 1510950029 7 ILMN_2118663 ZNF117 7 5.43E-24 6.49E-18 7.18E-25
68 153810444 19 ILMN_2134224 ATP13A1 19 3.48E-28 7.74E-46 1.72E-15
69 154665083 2 ILMN_2142752 MANSC1 12 2.68E-12 3.22E-06 2.53E-07
70 rs3748144 8 TLMN_2144088 FDFT1 8 6.45E-14 5.26E-09 1.53E-02
70 rs3763114 5 ILMN_2313926 CDC42SE2 5 1.73E-12 1.48E-11 6.30E-01
71 rs8058597 16 ILMN_2147105 16 6.22E-173 2.11E-79 4.64E-32
72 rs1555823 10 ILMN_2151056 CI100RF32 10 4.23E-21 6.28E-14 2.61E-17
73 rs11673276 19 ILMN_2175715 KIR2DS5 19 1.52E-59 3.84E-36
74 152912495 8 ILMN_2199439 CA2 8 1.37E-12 7.94E-16 3.03E-24
75 157921218 10 ILMN_2209578 AGAP6 10 9.43E-16 1.72E-06 1.57E-05
76 1510116248 9 ILMN_2276758 POFUT1 20 1.45E-12 1.05E-22 7.64E-58
77 1513048152 21 ILMN_2291619 RAB3IP 12 3.03E-34 4.16E-26 4.82E-21
78 1511633427 15 ILMN_2320480 15 1.42E-18 3.72E-09 3.02E-06
79 153917989 1 ILMN_2334242 CREB1 2 4.51E-18 1.61E-04 1.44E-03

Table A.1.: Significant trans-eQTLs in KORA F4

ILMN.1724609  ILMN.1743078 ILMN.1780382  ILMN.1786388  TLMN.1816342  ILMN_2408645
Matched Genes ~ SLC2A8 LOC653566 RNF113A SPCS2,LOC653566
Matched CHR 9 1 X 17
QC comment  good no matched mRNA  good good good >1 matched chr

rs28358576  5.04E-02 6.35E-01 3.95E-51 1.26E-34 6.19E-01 3.33E-12
153928306 6.50E-28 3.27E-05 1.98E-04 4.85E-02 1.20E-01 2.82E-01
152854131 7.22E-02 4.12E-01 3.01E-01 9.89E-02 1.42E-11 9.38E-02
rs9743 7.11E-03 9.64E-02 1.84E-110 3.84E-59 8.31E-01 1.23E-22
rs28358280  5.45E-03 9.80E-02 5.57E-116 1.07E-60 7 47E-01 4.65E-23
rs3915952  6.25E-01 8.95E-11 2.53E-03 4.52E-03 6.09E-01 6.00E-01
rs28358285  4.47E-02 1.49E-01 5.66E-74 1.45E-37 9.25E-01 1.03E-13
rs2853493  1.06E-02 8.06E-01 8.09E-26 8.82E-17 2.37E-04 1.40E-04
rs2853498  5.28E-02 4.82E-01 3.64E-21 3.61E-14 1.82E-03 4.60E-04
rs28359172  2.40E-02 6.34E-14 3.85E-03 2.66E-02 6.89E-01 5.12E-01
152853503 2.18E-01 4.71E-01 1.43E-01 1.17E-01 5.56E-10 1.75E-01
1528359178 3.30E-02 2.44E-14 3.02E-03 1.70E-02 4.95E-01 7.45E-01
153088309 4.84E-01 7.79E-11 1.68E-03 2.48E-03 5.99E-01 6.95E-01

Table A.2.: Significantly associated expression probes with at least one mitochondrial SNP:
Associations were calculated between all expression levels and all mitochondrial
SNPs using a linear regression model adjusted for 25 Eigen-genes. The displayed
SNPs were significantly associated with at least one expression probes. Signifi-
cant associations with p-value < 3.94 x 1078 are shown in bold.
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A. Appendix

Figure A.1.: Cluster of all KORA 54, F4, and F4 OGTT samples having expression data:
The expression levels of 2,509 samples were clustered using the agglomerative
clustering implemented in the R package cluster. Three S4 samples clustered
separately (at the top of the cluster) and were therefore called outliers and were
removed for further analyses.
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A.3. Tables and Figures
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Figure A.2.: Comparison of VST and log? transformation for a random phenotype in KORA
F4:
The figures show the difference between the VST- and log2-transformed expres-
sion values in association with a random normal distributed phenotype. Each
dot represents one probe and the color code is given in the legend of the plots.
Differences are observed for the mean intensity values for low intensity values,
for betas, and for standard errors of betas. Despite those differences the p-values
are highly correlated (r?=0.9939).
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