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I INTRODUCTION 

 

The rising burden of cancer poses a serious global threat to human development and the well-

being of society. As published by the WHO in the Global Cancer Report 2014 [1], 8.2 million 

people die from cancer each year worldwide, 2 million alone in the US and EU. From 2012 to 

2014, the global incidence of cancer increased about 10 percent and this trend is expected to 

continue in the next decades.[1, 2] 

Carcinogenesis is a result of inherent or acquired genetic alterations and subsequently of 

dysregulated proteins.[3] Historically, the profiling of cancer specimens and subsequent 

treatment decisions were mainly based on the histopathological evaluation.[4, 5] Recently, 

advanced molecular biology techniques provided useful tools for the characterization of genetic 

alterations and the subtyping of cancer specimens.[6, 7] The identification of numerous cancer-

related gene expression profiles facilitated a deeper understanding of tumor cell biology and 

the identification of novel molecular targets for therapeutic intervention.[7-9] These targets may 

be addressed, for instance by nucleic acid (NA)-based therapies to modulate their gene 

expression in a desired manner.[10] NAs have been expected to provide high potential for the 

treatment of various diseases with genetic dysregulation, therefore great efforts have been put 

into the research on gene therapy.[11] In consequence, the number of clinical trials in this field 

has constantly risen during the last decades, and the majority of them seek new treatment 

approaches for cancer diseases (~64% of the trials).[12, 13] However, in this respect, the 

number of approved gene therapies on the global market seems low, primarily due to obstacles 

concerning the delivery process, as successful gene therapy is largely dependent on selective 

and efficient intracellular delivery of the therapeutic NA to the target cell.[14-16] Hence, the 

experiments illustrated in this thesis evaluate multifunctional carriers designed for efficient and 

save NA-based therapy.  

 

1 Tumor-selective delivery strategies for siRNA based therapy 

For the genetic treatment of diseases, NA are used to either express (e.g. via mRNA or pDNA 

[17]) or silence (e.g. via antisense oligonucleotides or siRNA [18]) selected genes and 

consequently promote, or respectively downregulate, the expression of their encoded proteins. 

Recently, the use of synthetic small interfering RNA (siRNA) emerged as a promising NA-

based treatment concept.[19] siRNA presents an attractive tool for the specific downregulation 

of essential proteins, comprising a wide clinical potential to treat various diseases induced by 
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genetic alteration [16], especially cancer.[10] Nonetheless, the treatment of cancer with siRNA 

remains a challenge in clinical trials since the requirements for a successful cure represent 

multiple demanding tasks to be fulfilled by an efficient delivery system.[20] In this regard, the 

associated barriers that might limit a tumor-selective siRNA delivery are described first, 

followed by a customized solution approach, which may increase the overall effectiveness of 

this NA-based treatment concept. 

 

1.1 siRNA therapy 

The small double-stranded RNA (dsRNA) molecules belong to the non-coding RNAs and 

interfere directly on the level of gene expression, thus offer the opportunity to specifically 

manipulate, likewise kill or cure affected cells.[21, 22] These abilities are based on a naturally 

occurring mechanism in eukaryotic cells to regulate gene expression (via microRNAs) which 

was discovered and published as RNA interference (RNAi) in 1998.[15] The 21-23 base pairs 

long siRNA molecules need to be located in the cytosol of the target cell to induce the silencing 

mechanism with synthetic siRNA for the treatment of diseases. The antisense strand of siRNA 

is incorporated into the RNA-induced silencing complex (RISC) resulting in identification and 

the subsequent RNase-mediated degradation of the target messenger RNA (mRNA). Thus, the 

disease-related mRNA is disabled and the expression of its encoded protein prevented (compare 

figure 1, steps 6 - 9).[15, 18, 23]  

For a limited range of indications (e.g. liver disease targets [20]), therapeutic siRNA delivery 

is already close to entering the clinical market, while hurdles remain to be overcome in the field 

of tumor-specific siRNA delivery.[16] Nevertheless, the pipeline is filled and the relatively 

young market of gene therapy is expected to grow at a rapid pace over the next decade.[11, 24, 

25] 

 

1.2 Challenges of siRNA in vivo delivery 

Synthetically designed, sequence-specific siRNAs represent promising treatment opportunities 

for a wide range of protein expression-associated indications.[11, 22, 26] Nevertheless, the 

synthetic molecules revealed major pharmacokinetic deficits in vivo that have significantly 

hampered their therapeutic potential.[19, 27] The nanosized (~7 x 2 nm) and negatively charged 

particles [16] are cleared from the blood circulation rapidly after in vivo application, because 

they underlay renal filtration [28] or nucleases-mediated biodegradation.[20] Thus, vehicles 

that can stably protect and shield siRNAs from the extracellular environment, enhance their size 
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to avoid clearance and furthermore circumvent siRNA triggered immune reactions are 

indispensable.[15, 29] The next challenge to be overcome by multifunctional siRNA carriers, 

is to selectively address the target tissue, which usually is a specific target cell.[30] Otherwise, 

severe side effects are likely to occur and may dramatically decrease the clinical potential of 

delivered siRNA.  

Due to their size and charge, siRNAs and other therapeutic nucleic acids, in contrast to common 

drugs, cannot diffuse passively through likewise charged lipid membranes into the cytosol of 

cells.[23, 31] As aforementioned, siRNA needs to be transported into the cytosol of the target 

cell to perform gene silencing. Hence, cell internalization, usually via the endosomal route, 

followed by endosomal release are key capabilities that have to be provided by the delivery 

system.[32] The schematic siRNA delivery process is illustrated in the following figure. 

 

 

Figure 1: siRNA in vivo delivery and mechanism of gene silencing. A simplified scheme of 
the siRNA delivery process after the intravenous injection of polyplexes in mice is shown. The 
steps 2 - 5 are commonly known as bottlenecks of siRNA-based treatment approaches. The 
steps 6 - 9 illustrate the basic mechanism of siRNA-induced gene silencing in the cytosol of a 
mammalian cell.[18] 

 

1.3 Polymeric carrier systems 

Intracellular siRNA delivery can be accomplished with a wide range of different delivery 

systems.[33] Cationic polymers, cationic peptides and liposomes are used most commonly.[20] 

The siRNA carriers need to facilitate multiple different tasks in order to successfully silence 

genes inside the target cell (compare figure 1). In this respect, strategically tailored 
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nanoparticles provide a number of favourable properties to overcome the aforementioned 

hurdles.[34] This thesis illustrates and evaluates the in vivo performance of precise, sequence-

defined, multifunctional siRNA carrier systems (Scheme of siRNA carriers is shown in figure 

2), generated by solid phase-assisted synthesis.[35-37] The small peptide-like polymers 

(‘oligomers’), which have been tested in vivo, belong to a library containing around 1000 

polycations with different structural moieties that were designed to enable gene delivery.[38-

40]  

General requirements for the in vivo usage of structures are the absence of toxic effects [41, 42] 

and immune reactions induced by the polymer, respectively the formed nucleic acid complex 

(‘polyplex’[43]) itself.[44, 45] 

For siRNA delivery, the oligomers are based on a polycationic backbone, made of artificial 

amino acids (Stp = succinoyl tetraethylene pentamine and Sph = succinoyl pentaethylene 

hexamine) that contain amino groups which are partly protonated at a neutral pH. These 

positively charged building blocks complex the negatively charged siRNA, allowing the 

formation of nanosized polyplexes.[46] Additional structural elements are introduced into the 

oligomers, establishing structure related activity profiles for the molecules.[47] Promoting 

particle stability, cysteines were incorporated into the polymeric structure and resulting in the 

formation of crosslinking disulfide bridges.[48, 49] Additionally, other stability motifs (e.g. 

tyrosins) were opted for some of the evaluated oligomers.[31] 

As aforementioned, the protection of siRNA from undesired interactions with the extracellular 

environment is essential for the nucleic acid delivery. Hence, polyethylene glycol (PEG) for 

surface shielding is an integral part of many of the tested polyplexes.[45] Surface protection 

circumvents aggregation processes and unspecific binding to non-target tissues, enabling 

passive targeting.[50, 51] Furthermore, PEG may serve as binding domain for targeting-ligands 

to further promote the specificity of the polyplexes.[52] The following figure illustrates the 

basic domains of the siRNA polyplexes used in the experiments of this thesis. 
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Figure 2: Simplified and schematic illustration of a targeted, polymeric carrier system for 

siRNA delivery. 
 

Another indispensable capability of the carrier system is to booster endosomal release after cell 

internalization. Therefore, histidines were integrated optionally for increased endosomal 

buffering capacity [53], described by Lächelt et al. [54], though for most of the illustrated 

studies additionally the endosomolytic peptide Inf7 was conjugated directly to the siRNA. This 

synthetic peptide is an analogue to the N-terminus of influenza hemagglutinin membrane 

protein HA2, ensuring cytosolic release by its high lytic activity at the typically low endosomal 

pH.[55] 

Sizes of polyplexes aimed for systemic delivery have to be in a range of 20-200 nm to 

circumvent renal filtration and furthermore to become subject of the so called tumor-selective 

enhanced permeability and retention (EPR) effect.[56] The described enhanced accumulation 

effect of nanoparticles (> 40kDa) [57] in the tumor tissue is based on the tumor-typical 

extensive angiogenesis, further supported by the high leakiness of big fenestrated vessels that 

facilitates extravasation of nanoparticles (varying degree in different tumor types [58]). 

Simultaneously, tumors provide a poor lymph drainage system. This decreases the chance for 

already extravasated nanoparticles to be cleared again.[59] The occurrence of EPR-related, 

enhanced nanoparticle accumulation in tumor tissues allows the “passive targeting” effect and 

therefore prolongs intratumoral retention.[57] However, in the following projects, “active 

targeting” strategies (see below) were chosen for additional tumor selectivity of the treatment 

approaches. 
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1.4 Receptor-specific targeting  

Firstly, carriers for therapeutic siRNA should be capable of reaching the tumor site through 

blood circulation, including the distribution of critical organs that are associated with 

degradation processes (e.g. liver, spleen) [20, 30], without sustaining a loss of function. 

Secondly, cellular uptake and cytosolic release should be influenced in an active as well as 

controlled manner.[59] Hence, the introduction of targeting ligands that address the typically 

overexpressed, complementary receptors in tumor tissues, is a promising strategy to increase 

the efficiency and safety of polyplexes [30, 60], and furthermore represents the active 

counterpart to the aforementioned ‘passive targeting’ via hydrophilic shielding domains for 

surface protection [52] or the EPR-effect.[57]  

The folate receptor (FR) has been extensively utilized for tumor targeting.[61, 62] The FR was 

selected for its striking overexpression in many malignant tumors (especially carcinomas [63]) 

compared to low or moderate expression in healthy tissues, therefore presenting a convenient 

target for tumor-specific cell uptake.[64-66] Opted ligands for FR-targeting were folic acid 

itself as well as its structural analogue methotrexate (MTX). Folate and MTX have a similar 

chemical structure (see figure 3). Therefore, selective cellular uptake occurs for both ligands 

via the same two pathways, mediated by either the folate receptors (FR) or the reduced folate 

carriers (RFC) [67], though the affinity of FR for folate is significantly higher than for 

MTX.[68] 

However, MTX additionally possesses antiproliferative potency [69] in contrast to its natural 

analogue.[70] Intracellularly, MTX affects nucleic acid biosynthesis and other metabolic 

reactions by inhibiting the enzyme dihydrofolate reductase. The enzyme is essential to reduce 

dihydrofolate to its active form. The active tetrahydrofolate is required for the de novo 

biosynthesis of thymidylate and purines, therefore ultimately of DNA and RNA.[71, 72]  

Thus, MTX presents a bifunctional alternative to selectively target and additionally affect FR-

overexpressing tumor cells.[73] Originally, the clinical use of MTX was focused on the 

treatment of various types of cancer (e.g. breast cancer, childhood acute leukemia, osteogenic 

sarcoma).[74, 75] The therapeutic application is nevertheless complicated due to occurring drug 

resistance, drug-drug interactions, a narrow therapeutic window, strong side effects and low 

bioavailability in high doses. Development of target specific drug delivery strategies is essential 

to overcome at least some of the limitations.[71, 73, 75] In low doses, MTX shows an anti-

inflammatory effect and plays a crucial role in the treatment of autoimmune diseases (e.g. 

Crohn’s disease, gold standard therapy for rheumatoid arthritis).[71, 74, 75] 
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Figure 3: Chemical structure of the FR targeting ligands folic acid and methotrexate. 
Structural differences are indicated by the red rings. 

 

The serum protein transferrin (Tf) was introduced to siRNA polyplexes in another approach 

towards receptor-mediated, selective tumor targeting. Tf has served as targeting-ligand in the 

field of nucleic acid delivery since decades.[76] The iron transporting protein promotes 

transferrin receptor (TfR)-mediated endocytosis. In addition, the Tf targeting ligand provides 

additional shielding abilities for the carrier systems.[77] The TfR is overexpressed in many 

tumor types, as it commonly occurs in proliferating cells. Hence, the TfR is a favorable target 

for tumor-specific delivery.[77, 78] Recently published, TfR-targeted siRNA delivery systems 

have so far reached phase I in clinical trials.[24] Furthermore, TfR often showed high 

expression in malignant tumors with poor prognosis in several studies, therefore TfR expression 

might be a useful tool as a prognostic marker.[79, 80]  
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2 Aims of the thesis 

 

The thesis aimed at achieving efficient tumor-specific, intracellular siRNA delivery in vivo. The 

multifunctional polycations that proofed to be most promising in preceding in vitro studies had 

to be chosen for in vivo experiments. These carriers had to be screened for their siRNA delivery 

potential (challenges illustrated in 1.2) with regard to their structural- or surface modifications 

(structure-activity relationship described in 1.3). 

In the first part, the receptor-specific targeting ability of locally applied siRNA polyplexes had 

to be explored by validating their tumoral retention. In the follow up experiment, cell 

internalization and endosomal escape had to be evaluated indirectly by the extent of tumor 

growth inhibition after the local treatment with anti-tumoral siRNA polyplexes in parallel to 

several controls.  

As the systemic delivery is imperative for the treatment of many human tumors, the second part 

aimed at improving tumor-specific delivery after intravenous application. As basis, a 

systemically accessible mouse tumor model for FR-targeting had to be established. By 

intravenous biodistribution studies, tumor-specific siRNA delivery of preselected polyplexes 

had to be evaluated via Cy7-labeled siRNA and further improved by structural or surface 

modifications. Consequently, the most promising formulations complexed with therapeutic 

siRNA had to be applied for subsequent functional verification of gene silencing by qRT-PCR 

analysis. 
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II LABORATORY ANIMALS AND HOUSING 

 

1 Mouse strains 

1.1 NMRI-nude mice 

Female Rj: NMRI-Foxn1nu/Foxn1nu mice were obtained from Janvier Labs (Le Genest-St-Isle, 

France). This mouse type goes back to an inbred albino stock in the 1960s. Today, the outbred 

mouse strain is characterized by a mutation in the Foxn1 gene, which causes thymus aplasia 

and affects keratinization in the epidermis and the hair follicle. The resulting lack of T-cell 

immunity and nudeness are key properties for the use as xenograft models and for in vivo 

bioimaging studies. 

 

1.2 BALB/c mice 

Female BALB/cByJRj mice were purchased from Janvier Labs (Le Genest-St-Isle, France). 

The inbred, albino mouse is immuno-potent, calm and simple to keep, thus may serve as sentinel 

mouse or in syngeneic tumor models (e.g. with M109 cell line). 

 

2 Housing 

2.1 Keeping conditions 

The animal housing was maintained according to the standards based on §11 (Absatz 1; Satz 1; 

Nr.1) of the German law for animal protection “Tierschutzgesetz” (TierSchG).[81] Mice were 

housed in isolated ventilated cages under specific pathogen-free conditions that were verified 

on a regular basis as described in 2.3.  Newly arrived mice were acclimated for at least 7 days 

prior to experiments. A 12 h day/night interval, optimized temperature (~22°C, respectively 

~24°C for nude mice) and humidity (50-70%) were provided and controlled daily. Light and 

sound intensity were adapted to a maximum of 200 Lux, respectively 40dB. Enriched cages got 

refreshed once a week with dust-free bedding (ABEDD Vertriebs GmbH, Österreich) and light 

protected cottages, wooden tubes and nest building material. Mice were kept in groups of 2-5 

animals per cage and their welfare was verified daily by an animal care attendant and a 

veterinarian. 
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2.2 Nutrition  

Food (Teklad laboratory animals diet, ENVIGO, UK) and water were provided sterilized and 

ad libitum. 

 

2.3 Health monitoring 

In order to maintain the specific pathogen-free environment, health monitoring was performed 

four times a year according to FELASA recommendations. A specified pathogen free 

environment is essential to exclude unspecific influences on the experiments caused by 

pathogens and moreover to achieve reproducible results.[82] 

 

3 Research proposal for animal experiments 

All animal studies were performed according to the terms stated in the research proposal 

“Entwicklung von Sequenz-definierten Oligomeren als Träger für die zielgerichtete 

Einbringung neuer molekularer Therapeutika in Tumore“ that was approved by the local animal 

ethics committee and the government of Oberbayern at the 26th of May 2014, valid for 5 years. 

The experimental settings and procedures, described in the proposal, were planed according to 

the guidelines of the German law for animal protection/ TSchG [81] and its by-laws.[83]  

Study-specific assessment sheets were designed to score the observed behavior, appearance, 

and body condition of the mice, as well as the measured weight loss, tumor volume and the 

frequency of applied sedations. The sum of scores indicates the impairment to health and 

welfare for each individual animal and defines the rules for the proceeding experiment (e.g. 

more intense observation or euthanasia). 

The approved proposal contains four experimental sections that are aimed to develop and 

evaluate sequence-defined oligomers for tumor-specific delivery of molecular therapeutics. The 

first section deals with the establishment of a mouse tumor model, suitable for the systemic 

delivery of FR-targeted carriers. Since the 15th of October 2015, the newly established L1210 

model has partly replaced the KB model in systemic delivery experiments, as KB tumors were 

found to be less suitable for systemic applications. The relevant authorities were informed about 

these and any further planned changes in design of the study. The following 3 sections illustrate 

the settings and procedures of fluorescent biodistribution, gene silencing/ gene expression and 

consequent treatment experiments. 
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III MATERIALS AND METHODS 

 

1 Materials  

1.1 Cell culture 

Material Source 

Folate-free RPMI 1640 medium Invitrogen, (Karlsruhe, Germany) 

DMEM medium Invitrogen (Karlsruhe, Germany) 

PBS (phosphate buffered saline) Biochrom (Berlin, Germany) 

FCS (fetal calf serum) Invitrogen, (Karlsruhe, Germany) 

Trypsin EDTA solution  Biochrom (Berlin, Germany) 

Cell culture plates, flasks TPP (Trasadingen, Switzerland) 

L-alanyl-L-glutamine Biochrom (Berlin, Germany) 

Neuro-2a (N2a) cells 

ATCC® CCL-131™ 

murine neuroblastoma cell line 

American Type Cell Collection (ATCC) 

(Wesel, Germany) 

KB cells  

ATCC® CCL-17™ 

human carcinoma cell line 

ATCC  

(Wesel, Germany) 

L1210 cells 

murine leukemia cell line 

Kindly provided by Prof. Philip S. Low, 

Department of Chemistry (Purdue University, 

USA) 

M109 cells 

murine carcinoma cell line 

Kindly provided by Prof. Alberto Gabizon 

Faculty of Medicine (Hadassah-Hebrew 

University, Israel) 
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1.2 In vivo experiments 

Material Source 

Isoflurane CP®  CP-Pharma (Burgdorf, Germany) 

Bepanthen® Bayer Vital GmbH  

(Leverkusen, Germany) 

Syringes, needles  BD Medical (Heidelberg, Germany) 

Multivette 600 (EDTA-coated tubes) Sarstedt (Nümbrecht, Germany) 

HBG  

(HEPES buffered 5% glucose, pH 7.4) 

HEPES: Biomol (Hamburg, Germany) 

Glucose monohydrate: Merck (Darmstadt, 

Germany) 

Matrigel® Matrix (356231) Fisher Scientific GmbH (Schwerte, 

Germany) 

 

1.3 Histology 

Material Source 

Mayer’s haematoxylin solution Sigma-Aldrich (Steinheim, Germany) 

Eosin Y  Sigma-Aldrich (Steinheim, Germany) 

  

1.4 Polymeric structures 

Oligomers were synthesized by Dr. Ulrich Lächelt (postdoc at Pharmaceutical Biotechnology, 

LMU), Philipp Klein and Dongsheng He (PhD study at Pharmaceutical Biotechnology, LMU). 

ID Sequence 

640 K(dPEG24-E4-MTX)-K(Stp4-C)2 

356 C-Stp4-K-(PEG24-FolA)-Stp4-C 

188 A-dPEG24-K(Stp4-C)2 

454 C-Y3-Stp2-[(OleA)2-K]K-Stp2-Y3-C 

595 CRC-Y3-Stp2-[(OleA)2-K]K-Stp2-Y3-CRC 

386 C-Stp3-K-(Stp3-C)2 

873 K-(PEG24-FolA)-K-[K-Sph4-C-TNB)2]2 

762 K-(PEG24-FolA)-K-[H-K-((H-Stp)3-H-C)2]2 
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1.5 siRNAs 

Material Source 

siCtrl  

AuGuAuuGGccuGuAuuAG dTsdT 

CuAAuAcAGGCcAAuAcAU dTsdT 

 

Axolabs (Kulmbach, Germany) 

 

siEG5 

ucGAGAAucuAAAcuAAcu dTsdT 

AGUuAGUUuAGAUUCUCGA dTsdT 

 

Axolabs (Kulmbach, Germany) 

 

Cy7-labeled siAHA1  

with a hexyl thiol modification at the 

5  end of the sense strand and a Cy7 dye at 

the 5  end  

sense: C6-ss-C6-5 -GGAuGAAGu 

GGAGAuuAGudTsdT-3  

antisense: 5 -(Cy7) (NHC6)ACuAAUCUC 

cACUUcAUCCdTsdT-3 )  

Axolabs (Kulmbach, Germany) 

 

Inf7 peptide 

 

Biosyntan (Berlin, Germany) 

*capital letters: standard RNA ribonucleotides 
*small letters: 2 -methoxy-RNA;  
*s: phosphorothioate 
 

siRNA-Inf7 conjugates: contain the pH-triggered fusogenic peptide Inf7 [55](sequence: GLFE 

AIEG FIEN GWEG MIDG WYGC) covalently linked to the 5´-end of the siRNA sense strand 

as described in Dohmen et al.[28] 

Conjugates were provided by Dongsheng He and Philipp Klein (PhD study at Pharmaceutical 

Biotechnology, LMU). 
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1.6 Instruments 

Instrument Source 

Cordless animal shaver GT 420 ISIS Aesculap Suhl GmbH (Suhl, Germany) 

Caliper DIGI-Met Preisser (Gammertingen, Germany) 

IVIS Lumina Caliper Life Science (Rüsselsheim, Germany) 

Tissue embedding Leica EG1150 Leica Microsystems GmbH (Wetzlar, Germany) 

Microtome Leica RM2265 Leica Microsystems GmbH (Wetzlar, Germany) 

Paraffin floating bath  MEDAX GmbH & Co. KG (Neumünster, Germany) 

Olympus BX41 Olympus (Hamburg, Germany) 

Zeiss Cell Observer SD Carl Zeiss AG (Göttingen, Germany) 

 

1.7 Software 

Software Provider 

Graph Pad Prism 5 software Graph Pad Software (San Diego, USA) 

Living Image 3.2 Caliper Life Science (Rüsselsheim, Germany) 

 

2 Methods 

2.1 Cell culture 

Murine neuroblastoma (N2a) cells were cultured in Dulbecco´s modified Eagle´s medium 

(DMEM 1 g/l Glucose). Whereas human cervix carcinoma cells (KB), murine lymphocytic 

leukemia cells (L1210) and murine lung carcinoma cells (M109) were cultured in folate-free RPMI 

1640 medium at 37 °C in 5 % CO2 humidified atmosphere. All media were supplemented with 

10% FCS and 4 mM stable glutamine. 

 

2.2 In vivo experiments 

All animal experiments were performed according to guidelines of the German law for the 

protection of animal life and were approved by the local animal ethics committee (compare 

.3). 

The tumor volume was measured daily by caliper and calculated as [0.5 x longest diameter x 

shortest diameter2] as stated by Xu et al.[84] The body weight was recorded every second day 

until tumors reached a measurable size, then on a daily base. 
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2.2.1 Intratumoral retention of methotrexate (MTX)-directed siRNA nanoplexes 

5 x 106 KB cells were injected subcutaneously in the nape of 10 week old female NMRI-nude 

mice. After sufficient tumor growth (volume: 500-800 mm3), the animals were randomly 

divided into 3 groups (n=3) and anaesthetized with 3% isoflurane in oxygen to perform near 

infrared (NIR) imaging. Polyplexes containing 50 µg of Cy7-labeled siRNA (N/P 16) in 50 µL 

of HBG were injected intratumorally. Fluorescence was measured with a charge coupled device 

(CCD) camera after 0, 0.5, 1, 4, 24 h, followed by a daily rhythm until the animals were 

sacrificed after 144 or 160 h. Color bar scales were equalized by IVIS Lumina system with 

Living Image software 3.2 (Caliper Life Sciences, Hopkinton, MA, USA) in order to analyze 

the efficiency of fluorescence signals, subsequently the intratumoral retention of polyplexes 

was evaluated. 

 

2.2.2 Intratumoral treatment with MTX-directed siRNA nanoplexes  

8 week old female NMRI-nude mice were randomly divided into 6 groups (n=6). Left flanks of 

the animals were subcutaneously injected with 5 x 106 KB cells. Two days after tumor 

inoculation, mice were treated intratumorally with polyplexes containing 50 µg of siRNA at 

N/P 16, corresponding amount of plain oligomer or MTX, each solved in 50 µL of HBG. One 

control group remained untreated. Treatments were repeated 3 times a week (on days 2, 4, 7, 

10, 14 and 17). Tumor growth was monitored daily and animals were sacrificed after exceeding 

a tumor volume of 1000 mm3 or any other animal protection related criteria (e.g. spontaneously 

occurring tumor ulceration or significant weight loss). Kaplan-Meier survival analysis was 

performed to compare the lifetime after treatments among different groups. 

 

2.2.3 Cell culture and in vivo growth of folate receptor (FR)-overexpressing tumor 

models 

For M109 cells, syngeneic 6 week old BALB/c mice were purchased and injected 

subcutaneously in 3 groups of 4 mice (n=4) per cell dosage (using 0.5, 1 and 2 x 106 M109 cells 

in 150 µl of PBS). After 4 weeks, 3 animals with bigger tumors were sacrificed for recultivation 

of the in vivo passaged cells in vitro. Those cells were reinjected after multiplying with the 

optimized dose of 2 x 106 in 2 groups (n=6). Cells were diluted in 150 µl of PBS for one group, 

the other group received cells in 75 µl PBS mixed with 75 µl of Matrigel. After sufficient tumor 
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growth (500-700 mm3) mice were treated intravenously via tail vein using Cy7-labeled siRNA 

polyplexes for biodistribution studies.  

For L1210 cells, 6 week old NMRI-nude mice were purchased and injected subcutaneously in 

3 groups of 4 mice (n=4) per cell dosage (using 0.5, 1 and 2 x 106 L1210 cells in 150 µl of 

PBS). In the follow up growth experiment, optimized doses of 0.5 and 1 x 106 (n=6) were 

injected in 150 µl of PBS. After sufficient tumor growth (500-700 mm3) mice were injected 

with Cy7-labeled siRNA polyplexes for biodistribution studies. 

 

2.2.4 Biodistribution studies in FR-overexpressing tumor models 

Tumor bearing mice of the growth experiment for M109 and L1210 cell lines were treated in 

groups of 1 - 5 animals. All polyplexes contained 50 µg of siRNA (50% Cy7-labeled) and were 

solved in 250 µL HBG. Mice were injected intravenously into the tail vein and anaesthetized 

in 3% isoflurane in oxygen. NIR fluorescence bioimaging was performed at 0 min, 15 min, 30 

min, 1 h, 4h and 24 h after injection by a (CCD) camera using IVIS Lumina system. Color bar 

scales were equalized by Living Image software 3.2 (Caliper Life Sciences, Hopkinton, MA, 

USA) for the subsequent analysis of the biodistribution profile.  

Mice of one polyplex group were sacrificed at different time intervals after injection to perform 

ex vivo imaging of organs and tumors. 

 

2.2.5 Histologic evaluation of FR-overexpressing tumors 

Tumors of M109, L1210 and KB cell lines were harvested, dissected, afterwards fixed in 

formalin and embedded into paraffin. Embedded tumors were cut with a microtome into 5.0 

m slices and stained with haematoxylin and eosin (HE staining). Results were analyzed and 

documented using an Olympus BX41 microscope. 

 

2.2.6 Systemic biodistribution of targeted siRNA polyplexes 

All biodistribution experiments were performed in 6 - 8 week old NMRI-nude mice. 

All polyplexes contained 50 µg of siRNA (50% Cy7-labeled) and were solved in 200-250 µL 

HBG. Mice were injected intravenously via tail vein and anaesthetized in 3% isoflurane in 

oxygen. NIR fluorescence bioimaging was performed at 0 min, 15 min, 30 min, 1 h, 4h and 8 

h/ respectively 24 h after injection by a (CCD) camera using IVIS Lumina system. Color bar 
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scales were equalized by Living Image software 3.2 (Caliper Life Sciences, Hopkinton, MA, 

USA) for the subsequent analysis of the biodistribution profile. 

 

2.2.6.1 Transferrin receptor (TfR)-targeted cationic lipo-oligoamino amide 454  

5 × 106 N2a cells were injected subcutaneously into the left flank of the animals. Imaging 

experiments were performed in triplicate and 10 days after tumor cell inoculation, when tumor 

volume reached about 800 mm3. Polyplexes were prepared and administered as previously 

described, complexed at N/P 6, using AHA1 siRNA (50% Cy7-labeled) for subsequent 

quantitative reverse transcription polymerase chain reaction (qRT-PCR). 

At 8 h after the systemically applied treatment and in the same narcosis of the final in vivo 

imaging, animals were sacrificed. Organs (including lung, liver, kidney, and spleen) and tumors 

were collected for further investigation by qRT-PCR. 

qRT-PCR was performed with Wei Zhang (postdoc at Pharmaceutical Biotechnology, LMU) 

using the following method described in Zhang et al [85].: Total RNA was isolated from organs 

and tumors of different groups using peqGOLD TriFast method (PEQLAB, Germany), and 

cDNA synthesis was performed using 1 g of total RNA with qScript microRNA cDNA 

synthesis kit (Quanta BioScience, USA). qRT-PCR was implemented with PerfecTa SYBR 

Green SuperMix (Quanta BioScience, USA) on a LightCycler 480 system (Roche, Germany) 

using miR-191 as housekeeper. Primers used are shown as follows; miR-191 forward: 

GCGCAACGGAATCCCAAAAG, AHA1 forward: GAGACTAATCTCCACTTC (Sigma-

Aldrich, Germany). Ct is the difference between Ct (threshold cycle) values of the measured 

RNA of interest and the housekeeper RNA, meaning a normalization to the housekeeper. Thus, 

2 − ct represents the relative quantity of the target RNA. It assumes an exponential growth and 

a doubling of product in each PCR cycle. 

 

2.2.6.2 FR-targeted cationic lipo-oligoamino amides 454 and 595 

1 × 106 L1210 cells were injected subcutaneously into the left flank of the animals. Imaging 

experiments were performed in triplicate as soon as tumor volumes reached about  

500-700 mm3. Polyplexes were prepared and administered as previously described, complexed 

at N/P 10, using AHA1 siRNA (50% Cy7-labeled) for subsequent qRT-PCR. Animals were 

sacrificed 8 h after the intravenously applied treatment and in the same narcosis of the final in 

vivo imaging. Organs (including lung, liver, kidney, and spleen) and tumors were collected for 

further investigation by qRT-PCR.  
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qRT-PCR was performed with Katharina Müller (PhD study at Pharmaceutical Biotechnology, 

LMU) using the following method described in Müller et al. [86]: RNA was extracted from 

organs using peqGOLD TriFastTM (PEQLAB Biotechnology GmBH, Germany) according to 

the manufacturer’s protocol. RNA (1 g) was transcribed with qScript microRNA cDNA 

synthesis kit (Quanta BioScience, USA) into cDNA. qRT-PCR was performed using PerfecTa 

SYBR Green SuperMix (Quanta BioScience, USA) on a LightCycler 480 system (Roche, 

Germany) with miR-191 as a housekeeper. Following primers were used: miR-191 forward, 

GCGCAACGGAATCCCAAAAG, and AHA1 forward, GAGACTAATCTCCACTTC 

(Sigma-Aldrich, Germany). Results were analyzed using the CT method. 

 

2.2.6.3 FR-targeted combinatorial siRNA polyplexes 

0.5 – 2 × 106 L1210 cells were injected subcutaneously into the left flank of the animals. 

Imaging experiments were performed in groups of 3 - 4 mice as soon tumor volume reached 

about 500-800 mm3. Polyplexes were prepared and administered as previously described, 

complexed at N/P 16. In the same narcosis of the final in vivo imaging, animals were sacrificed 

for ex vivo imaging of tumors and organs at different time intervals (15 min - 24 h) after 

polyplex injection.  

 

2.2.7 Tumoral gene silencing 

In vivo experiments were performed as described in Lee et al.[87]: Female 8 week old NMRI-

nude mice were injected subcutaneously with 1 × 106 L1210 cells. 

When tumors reached 500 mm3, mice were randomly grouped (n=5) and injected with 

polyplexes into the tail vein. Treatment with siRNA polyplexes containing 50 g of siEG5-Inf7 

or siCtrl-Inf7 at N/P 16, was performed twice, 48 h and 24 h before euthanasia. As a part of 

terminal procedure, blood samples were obtained by cardiac puncture for blood biochemistry 

examinations. To isolate plasma, blood samples were collected in EDTA-coated tubes 

(Multivette 600, Sarstedt, Nümbrecht, Germany) and centrifuged at 3000 rpm for 7 min. The 

supernatant was analyzed for clinical biochemistry parameters: alanine aminotransferase 

(ALT), asparate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine in the 

Clinic of Small Animal Medicine, Faculty of Veterinary Medicine, Ludwig-Maximilian-

Universität München. 

The tumors were harvested and homogenized, afterwards total RNA was extracted using Trifast 

(Peqlab, Erlangen, Germany) according to the manufacturer's protocol. The reverse 
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transcription and qRT-PCR was performed by Dian-Jang Lee (PhD study at Pharmaceutical 

Biotechnology, LMU) as described in Lee et al. [87]: Quantitative real-time polymerase chain 

reaction (qRT-PCR) was performed to determine the mRNA level of EG5 gene in transfected 

cells. L1210 cells (1.5 × 105/well) were seeded in 900 L of medium onto 6-well plates. The 

cells were treated with 100 L of polyplexes with siEG5-Inf7 or siCtrl-Inf7 (N/P 16) with a 

final siRNA concentration of 370 nM and incubated for 24 h. Total RNA was isolated with the 

miRCURY RNA Isolation Kit (Exiqon, Vedbaek, Denmark) followed by reverse transcription 

using Transcriptor High Fidelity cDNA Synthesis Kit (Roche, Mannheim, Germany) according 

to the manufacturers' protocols. Quantitative RT-PCR was performed in triplicates on a 

LightCycler 480 system (Roche, Mannheim, Germany) using UPL Probes (Roche, Mannheim, 

Germany) and Probes Master (Roche, Mannheim, Germany) with GADPH as housekeeping 

gene. The following probes and primer sequences were used: murine GAPDH (ready-to-use in 

UPL), and EG5 (UPL Probe #100) forward: TTCCCCTGCATCTTTCAATC, reverse: 

TTCAGGCTTATTCATTATGTTCTTTG). Results were analyzed by the CT method. CT 

values of GAPDH were subtracted from CT values of EG5. CT values of siRNA-transfected 

cells were calculated as percentage relative to untreated control cells.  

 

2.3 Statistical analysis 

Statistical analysis is calculated using GraphPadPrism™ software. Results are presented as 

mean value ± S.E.M (if not indicated elsewise). Unpaired T-tests were performed and p-values 

< 0.05 were considered as significant (*p < 0.05; **p < 0.01; ***p < 0.001, NS = no 

significance). 

 



  Results 

23 
 

IV RESULTS  

 

1 Intratumoral administration of MTX-directed siRNA nanoplexes 

Based on promising in vitro efficacy of the MTX-directed polymer  K(dPEG24-E4-MTX)-

K(Stp4-C)2 [73] (see scheme 1), in combination with the therapeutic EG5 siRNA (siEG5) [88] 

and endosomolytic peptide Inf7 [55], the following experiments investigate the in vivo 

performance and the therapeutic potential of these polyplexes after intratumoral application. 

The experiments were performed together with Dian-Jang Lee (PhD study at Pharmaceutical 

Biotechnology LMU) in folate receptor overexpressing KB tumor-bearing NMRI-nude mice. 

In line with previous intratumoral administration studies, doses of 50 µg of siRNA per injection 

solved in 50 µL of HBG were applied intratumorally.[28, 47, 88]  

 

 

 
Scheme 1: MTX-conjugates for siRNA delivery. Overview of the in vitro 
evaluated polymeric structures with different glutamylation degree (n) of MTX.[73] For in vivo 
experiments, the tetraglutamylated (n=5) 640 conjugates were selected for polyplex formation. 
Stp-units (+); lysine (K); PEG shielding domain ( ). The graphic illustration is provided 
by Dr. Ulrich Lächelt (postdoc at Pharmaceutical Biotechnology, LMU) [73] and Dian-Jang 
Lee (PhD study at Pharmaceutical Biotechnology, LMU).[89] 

 

1.1 Intratumoral retention - efficacy of MTX as targeting-ligand 

Folate receptor targeted, polymeric carrier-based siRNA delivery concepts already achieved 

promising results in the previous work of Dohmen et al.[28]  

The following imaging experiment was set to evaluate targeting ability and intratumoral 

retention time of MTX-directed siRNA polyplexes in vivo. The MTX-oligomer conjugate 640 

proofed to perform best in vitro compared to other tested MTX formulations [89] and was 

subsequently chosen to compete against folate-directed (positive control, 356) and untargeted 
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(negative control, 188) polyplex analogs in vivo. Intratumoral retention was measured time 

dependent by detection of polyplex-incorporated Cy7-labeled siRNA via near infrared (NIR) 

fluorescence imaging after a single intratumoral application of polyplex-groups. 

In order to save animals, previously tested intratumoral retention of free siRNA (as additional 

negative control) was omitted, as we already found proof for it being washed out of tumor tissue 

in less than 24h.[28]  

The acquired imaging results confirm the targeting ability of MTX in vivo and provide evidence 

that both targeted siRNA polyplexes (folate-based 356 and MTX-based 640) remained in the 

tumor site 5 days longer than untargeted siRNA polyplexes (188). The retention time of MTX- 

and folate-conjugates was comparable (Figure 4A).[89] 

Interestingly, 7 days after treatment, the ex vivo imaging (Figure 4B) even revealed a prolonged 

residue of labeled siRNA in the 640 group compared to the fully cleared siRNA polyplexes of 

the 356 group.  

 

 

 

Figure 4: Intratumoral biodistribution of siRNA polyplexes in NMRI-nude mice bearing 
subcutaneous KB tumors determined by NIR fluorescence bioimaging. A) Time-dependent 
retention of Cy7-labeled siRNA after intratumoral application with MTX-conjugated oligomer 
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640 (upper panel), folate-conjugated positive control 356 (middle panel) or untargeted negative 
control 188 (lower panel) serving as carriers. B) Ex vivo imaging of harvested tumors at 168 h 
after injection of siRNA polyplexes. Experiments were performed in triplicate; a representative 
animal of each group is shown. Illustrations are provided by Lee et al.[89] 

 

Clearance occurred as expected via renal filtration (Figure 5), due to the small particle size (~ 

6 nm).[90] Bladder and kidney signals were detectable for the first 4 h after intratumoral 

treatment.[89] 

 

 

Figure 5: Renal clearance of siRNA polyplexes observed over 4 h after intratumoral injection, 
detected by NIR imaging in KB tumor-bearing nude mice. The upper panel represents MTX-
conjugated polyplex 640, then the folate-conjugated 356 in the middle panel followed by 
untargeted negative control 188 (lower panel). The polyplex-incorporated Cy7-labeled siRNA 
was detected in the kidneys (blue arrows) and the bladder (yellow arrows) as indicated. 
Experiments were performed in triplicate; one representative mouse per group is shown. The 
illustration is adapted from Lee et al.[89] 

 

1.2 Intratumoral treatment of MTX-directed EG5 siRNA nanoplexes  

The intratumoral retention study did not reveal any significant advantage of either MTX-based, 

or folate-based conjugates. Both targeting strategies did significantly prolong intratumoral 

retention of Cy7-labeled siRNA polyplexes compared with untargeted polyplexes, displayed in 
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figure 4. Nevertheless, tetraglutamyl-MTX targeting ligand is expected to improve tumor cell 

killing ability of polyplexes after incorporation in cells in contrast to folate.[73] 

Consequently, the following study was set to investigate the antitumoral potency of the 

bifunctional MTX targeting ligand combined with anti-mitotic EG5 siRNA in comparison to 

structurally similar folate-based siEG5 polyplexes.  

Using the subcutaneous KB tumor model and intratumoral application mode, we treated mice 

repetitively starting 2 days after tumor inoculation. Five different treatment/ control groups 

were formulated to further distinguish between the possible therapeutic effects of selected 

conjugate components. On the one hand, there was the MTX conjugate 640/siEG5-Inf7 

complex, and on the other hand the same oligomer conjugate but complexed with siCtrl-Inf7, 

to analyze the therapeutic potency of mitosis inhibiting siEG5 in combination with the cytotoxic 

MTX targeting ligand. Moreover, this should validate the contribution of siEG5 to the 

antitumoral efficacy of the polyplex. In addition, free MTX in the equivalent dose as 

incorporated inside the polyplexes was applied in one control group. The folate-based conjugate 

356/siEG5-Inf7 served as a further important control to investigate the therapeutic influence of 

MTX targeting ligand (negative control) and siEG5. To evaluate a possible effect of the small 

MTX-targeted polymers itself, we used free 640 (without siRNA dependent complexation). All 

groups were compared with untreated, tumor-bearing control animals. Aside from tumor 

growth and weight development, we recorded the survival of mice post treatment for Kaplan-

Meier statistical survival analysis.[89] 

Treatment with all siRNA polyplex groups resulted in significantly reduced tumor growth 

compared to untreated control group, evaluated 5 days after treatment and illustrated in figure 

6B. Encouragingly, the combination of dual-functional MTX targeting ligand with siEG5-Inf7 

proved to be the most effective. By the end of the treatment period, the combinatorial 

formulation strikingly reduced the subcutaneous tumor to a nearly not palpable size. On day 25, 

eight days post the last treatment, there were only little scars left where the tumors used to be 

(Figure 6C).[89]   
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Figure 6: In vivo evaluation of the antitumoral potential of MTX-conjugated siRNA 

polyplexes after local application in KB xenograft model. A) Therapeutic efficacy illustrated 
by tumor growth curve of MTX-directed 640-based polyplexes (with siEG5-Inf7 or siCtrl-
Inf7), free 640 oligomer or folate-directed 356/siEG5-Inf7 polyplexes and compared with 
untreated animals (n=6 per group). B) The tumor volume of indicated groups measured and 
compared 5 days after the last treatment (day 22). C) Representative subcutaneous KB tumors 
grown, respectively inhibited under indicated treatment procedure, pictures taken 8 days after 
the last treatment (day 25). Illustrations and graphs are adapted from Lee et al.[89] 

 

Half of the 640/siEG5-Inf7 group survived until the study was ended (day 70) without any sign 

of recurrence, others showed returning tumor growth from day 32 on (Figures 6A and 7).[89] 
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Figure 7: The Kaplan-Meier survival curve of the mice, treated as indicated. Tumors of 
640/siEG5-Inf7 treatment group, largely disappeared by day 22. Three of six mice did not show 
recurrence until the end of the study (day 70). The graph is adapted from Lee et al.[89] 

 

According to the varying inhibition of tumor growth in the different control groups, it seems 

that binding MTX to a carrier and even more complexation with siRNA increases antitumoral 

potential.  

Free MTX of equivalent doses did not inhibit the rapid tumor growth [89] (up to 1000 mm3 of 

volume in ~25 days), whereas polymer bound MTX at least revealed some minor retardation, 

reaching the final tumor volume within ~35 days (Figure 7). Interestingly, complexation of 640 

with siCtrl-Inf7 achieved significant inhibition of tumor growth compared with free 640 

polymers, illustrated in figure 6B. 

In summary, these findings suggest a therapeutic advantage of MTX in polyplexes over the free 

or only polymeric bound form. The folate-based 356/siEG5-Inf7 group did not result in a 

significant tumor growth retardation (comparable to free 640). Nevertheless, pronounced 

necrosis of tumor tissue occurred in both siEG5-Inf7 containing conjugate groups (356 and 640 

polyplexes). Tumor necrosis transitioned into an active healing process, especially in the 

animals with clearly inhibited tumor growth of 640/siEG5-Inf7 group. Remaining scars in these 

animals’ flanks gradually faded only days after the last treatment (day 17) [89], illustrated in 

the following figure. 
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Figure 8: Course of the active healing process after KB tumors “melted” in a necrotic manner. 
The phenomenon occurred in relation with treatments in 640/siEg5-Inf7 group (or 356/siEg5-
Inf7 group, though without healing as tumors continued to grow). The healing time was 
different for individual mice, however the wounds eventually disappeared as shown in the 
representative pictures from the tumor site treated with 640/siEg5-Inf7. The illustration is 
provided by Lee et al.[89] 

 

Animal welfare was monitored every day and summing up by evaluation of behavior, outward 

appearance and of the body weight curve, the treatment was tolerated well. Though we observed 

a temporary stagnation of body weight in the animals treated over the second half of treatment 

period, an encouraging weight gain followed after the last treatment at day 17 (compare figure 

9).[89] The quick recovery indicates the absence of macroscopically detectable, subacute or 

chronic side effects during the observed post treatment period. 

 

Figure 9: Body weight course displayed for all groups over the treatment period, followed by 
recovery time. Differences between treatment groups and controls approximated progressively 
within 18 days after the last treatment, which was performed at day 17. The graph is adapted 
from Lee et al.[89]  

 



  Results 

30 
 

Summarizing, these results suggest promising therapeutic potential of siEG5-Inf7 polyplexes, 

illustrated in figure 10A. Importantly, their antitumoral efficacy can be significantly boosted by 

introducing the FR-responsive, tetraglutamyl-MTX targeting-ligand (Figure 10B).[89] 

 

Figure 10: Indirect validation of the anti-tumor efficiency determined for polyplex 
components, augmented to bear therapeutic potential. Therefore, growth inhibition was 
compared by group means of tumor volume, measured 1 day (day 18) or 13 days (day 30) after 
the last treatment. Panel A) shows the evaluation of growth inhibition caused by siEG5, 
comparing 640/siEg5-Inf7 and 640/siCtrl-Inf7 group, while B) presents the therapeutic 
influence of the cytotoxic MTX-targeting-ligand, comparing bifunctional MTX-conjugated 
640/siEG5-Inf7 with the folate-conjugated equivalent. Graphs are adapted from Lee et al.[89] 
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2 Evaluation of a FR-responsive in vivo tumor model for systemic delivery  

In the following experiments, we compared attributes (growth, shape, structure and 

vascularization) of two FR-overexpressing cell lines [91] in vivo. Receptor status of utilized 

cell lines was verified by Dian-Jang Lee (PhD study at Pharmaceutical Biotechnology, LMU) 

and confirmed to be comparable with the FR-overexpressing, cervix carcinoma KB cell line 

(already established and used in vitro/ in vivo in our lab). 

Both of the selected cell lines are of murine origin, M109, a lung carcinoma cell line syngeneic 

to BALB/c mice [92, 93] and L1210 lymphocytic leukemia cells derived from DBA-2 mice 

[94, 95]. The study was aimed to establish a FR-overexpressing tumor model with high taking 

rates, simultaneous growth development and reproducible growth rates. Furthermore, a well 

vascularized tumor increases the chances for polyplexes to extravasate into tumor tissue after 

intravenous injection.[58] Experiments were performed together with Dian-Jang Lee (PhD 

study at Pharmaceutical Biotechnology LMU). 

 

2.1 In vivo growth properties 

The growth experiment was split in two parts to optimize the settings of procedure in terms of 

applied cell dose (first doses based on [91, 96, 97]), necessity of possible growth booster like 

in vivo passaging, or the application with Matrigel.[98, 99] For the M109 cell line, an in vivo 

passaging was required to enhance taking rates and growth speed of the tumor cells before 

starting with the second part of the in vivo growth experiment (formerly routinely used to 

maintain M109 cell line [93, 100]). Recultivated cells were injected with the optimized dose of 

2 million cells per animals, additionally Matrigel was used for one group in the second part to 

further improve their in vivo growth. This resulted in an increase of the taking rate for M109 

tumors from 58% in the first to 100% in the second part of the experiment. However, M109 

cells injected with Matrigel still grew much slower (size of 500 mm3 from day 29) than L1210 

cells in NMRI-nude mice (size of 500 mm3 from day 12), though Matrigel quickened growth 

of M109 tumors compared to the group with PBS only.  

L1210 tumors presented taking rates of 100% through all parts of the experiments without the 

need of in vivo passaging or Matrigel. They grew reliably in low cell doses of 0.5 - 1 million 

cells, furthermore displaying superiority over the M109 tumors in BALB/c mice in terms of 

homogenous, simultaneous and reproducible growth.  
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Figure 11: Tumor growth experiments of two FR-overexpressing cell lines. For each cell 
line, experiments were split in two parts (n=4 - 6 mice per group) in order to optimize 
experimental settings (e.g. cell dose). A) M109 cells of different doses were injected 
subcutaneously in BALB/c mice. The first and second part are displayed in the same graph. 
After the first part of growth experiment, tumors were harvested for re-cultivation in vitro, 
subsequently, the in vivo passaged cells were reinjected in the second approach, additionally, 
Matrigel was opted as growth booster. B) L1210 cells grew well with all applied cell numbers, 
though 0.5 and 1 million cells per mice were chosen in the second step, as these doses exhibited 
slightly more homogeneity in their growth profile.  

 

2.2 Ex vivo tumor imaging and histology  

To evaluate the in vivo performance of both tumor models and examine the 

bioaccessibility/permeability of tumors for our carriers, Cy7-labeled siRNA polyplexes were 

applied intravenously and tumor signals were measured in vivo and ex vivo. There was a limited 

number of tumor bearing mice for M109 cell line, since the taking rate was only 58% and 

tumors were used for in vivo passaging in the first part, as well as for histology in the second 
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part of the growth experiment. Therefore, the siRNA accumulation comparing biodistribution 

were performed to a smaller extend than originally expected. However, we compared one 

formulation carrying Cy7-labeled siRNA for ex vivo tumor signals in both models. The 

exhibited tumor signal was measurable after 15 min comparable for both tumor models (Figure 

12A). Though with another conjugate the ex vivo tumor signal was measurable for L1210 

tumors only, displayed in figure 12B.  

 

Figure 12: Tumoral biodistribution after intravenous (i.v.) administration of different FR-
targeted polyplex formulations carrying 50% Cy7-labeled siRNA, detected via NIR 
bioimaging. A) Tumoral signals were measured ex vivo, 15 min after systemic application of a 
combinatorial polyplex (386+873/ Cy7-siRNA). B) After administration of 762-based 
polyplex, ex vivo signals were detectable only for L1210 tumors. 
This study was of an explorative character, as group sizes were limited for M109 tumor model, 
due to reasons described above.  

 

After animals were sacrificed, tumors with sizes of about 600-800 mm3 were dissected and 

examined macroscopically. M109 cells built round-shaped tumors, definitely delimited from 

other mouse tissues, showing only rarely skin adhesions. Besides, tumors appeared as a pale 

white-rose and solid mass, though many fine red hairlines indicating blood vessels already on 

a macroscopic level. The leukemia cell line instead, presented flat but more extensively growing 

tumors with irregular shapes, showing high tendency for adhesions to skin and connective tissue 

of the mice. Already visible through the skin, harvested L1210 tumors appeared to be more 

intensively dark blue colored than M109 tumors, indicating more widely distributed blood 

residues in the leukemia cell based tumor (Figure 13). 
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Figure 13: The pictures display the macroscopic examination of harvested tumors, 
comparing both cell lines. The upper panel presents tumors straight after harvesting, while the 
lower panel shows the tumors in cross-section.  

 

Histologic evaluation was performed with paraffin embedded, eosin-haematoxylin (HE) stained 

tumor slices and aimed to compare tissue-structure and vascularization of both tumor types on 

a microscopic level. As additional control, slices of the folate-overexpressing KB tumors (also 

used for intratumoral application in the former experiments) of a similar size were harvested 

and screened. KB tumors have already been shown to be poorly vascularized by Smreka et al. 

[58], therefore they are a useful tool to compare the provided degree of vasculature to the other 

tumors. Not surprisingly, the M109 and KB tumors, both solid carcinomas, exhibited 

similarities of structure, while the leukemia cell line presented different features. Both in vivo 

round-shaped, well-delimited carcinomas displayed an “organ-like” structure with capsule 

(yellow arrows in figure 14) and rudimentarily indicated compartmentation (yellow curly 

brackets in figure 14) in the histologic view. The L1210 tumors were not equipped with a 

capsule or any other organizational structures (Figure 14, upper panel).  

In terms of vascularization, erythrocytes were found all over the tissue sample, disseminated in 

small capillaries or even less organized in the intercellular matrix of L1210 tumors 

(dissemination of multiple ‘free’ erythrocytes found in most of the L1210 sections, figure 14). 

The M109 tumors displayed a more organized, “organ-like” form of perfusion, providing proper 

blood vessels of different sizes (blue arrows in figure 14), that were distributed well in the 

tissue. The KB tumor samples presented a similar perfusion system (blue arrows in figure 14, 
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middle panel), but the distribution of blood vessels was not as frequently as in M109 tumors 

(Figure 14, lower panel). 

 

Figure 14: Histologic examination of FR-overexpressing tumor types based on either the 
M109, L1210 and or KB cell line. HE-stained tumor cross-sections were analyzed with an 
Olympus BX41 microscope. The upper panel displays an overview of structure, while the 
middle and lower panel includes representative sections for the different types and degrees of 
tumor vascularization The scale bars represent 200 µm in the upper panel, 20 µm in the middle 
and lower panel for M109 sections, while for L1210 they show 100 µm in the upper panel, 20 
µm in the middle and lower panel. In the KB sections, the scale bars express 200 µm in the 
upper panel, 50 µm in the middle panel and 20 µm in the lower panel.  

 

To sum up the outcome of performed experiments, both the carcinoma and leukemia originated 

tumors, provided sufficient connection to the circulatory system of the mice and presented 

comparable accessibility for one of the tested polyplex formulations, though L1210 displayed 

higher tumor accumulation for the other tested formulation. 
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3 Systemic tumor-targeted siRNA delivery  

The systemic evaluation of targeted carriers for in vivo siRNA delivery presented the 

consequent step after confirming the therapeutic potential of intratumorally applied siRNA 

nanoparticles. Tumor-specific delivery was aimed at by the intravenous administration of 

exclusively surface-shielded and receptor targeted formulations. The provided mouse tumor 

models were selected for their overexpressed receptor status and favorable bioaccessibility. 

In line with previous systemic applications, doses of 50 µg of siRNA per injection solved in 

200 - 250 µL of HBG were applied intravenously. [28, 47] The targeted formulations selected 

for experiments in 3.1 – 3.3 all were previously found to be very effective in gene silencing in 

vitro in tumor cell culture.[85-87] 

 

3.1 TfR-targeted cationic lipo-oligoamino amide 454 

In the following experiment, the systemic in vivo biodistribution profile of TfR-targeted,  

T-shaped lipo-oligomer 454 [C-Y3-Stp2-[(OleA)2-K]K-Stp2-Y3-C] siRNA polyplexes was 

investigated in N2a tumor-bearing nude mice. This mouse tumor model was chosen for its 

reliable vascular permeability and TfR overexpression. Two polyplex groups were injected 

intravenously together with a free siRNA group (n=3). Distribution profiles were analyzed via 

NIR imaging and qRT-PCR, both. One injection group contained TfR-targeted 454/siRNA 

polyplexes, whereby siRNA was further conjugated with endosomolytic peptide Inf7 

(454/Tf&Inf7) (see scheme 2). The second group was injected with unmodified 454/siRNA 

polyplexes (454) to evaluate the influence of multifunctional Tf targeting ligand and Inf7 

polyplex modification.[85] 

 

 
Scheme 2: The formation of Tf&INF7-modified siRNA polyplexes, based on lipo-oligomer 
454 presented in a simplified scheme. K, Y, and C in 454 represent the corresponding (L) -
amino acids in one-letter code. The graphic illustrations are provided by Dr. Wei Zhang 
(postdoc at Pharmaceutical Biotechnology, LMU).[85]  
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The initial biodistribution was observed via NIR fluorescence bioimaging over the first 8 h and 

is displayed in figure 15A, with regard to intratumoral accumulation of the Cy7-labeled siRNA 

(tumor site is indicated by yellow arrows). In the first 15 min after administration, siRNA 

polyplexes of 454 and 454/Tf&Inf7 spread throughout the whole body along with the blood 

circulation. After 30 min, polyplexes of both groups mainly accumulated in liver and lung, 

indicated by the detection of Cy7-labeled siRNA. Nonetheless, there was no acute toxicity 

observed in any of the groups.[85] 

Unfortunately, an early decrease of fluorescent signals was measured, although slightly slower 

than in the free siRNA control group (presented in figure 15B). Intact siRNA polyplexes display 

a size of 107 nm for 454 to 244 nm for 454/Tf&Inf7 group that would not allow renal 

clearance.[16] Therefore, this remarkable decay of fluorescence plus the early prominent 

bladder signals point out a lack of in vivo stability and dissociation of the polyplexes.[85]  

Nonetheless, 454/Tf&Inf7 group presented an observable tumor-associated siRNA 

accumulation, detectable via NIR over the first hour, in contrast to the unmodified 454 polyplex 

group (Figure 15A). At 8 h after injection, Cy7 signals had largely disappeared (Figure 15B), 

presumably due to the early decay of polyplexes and the subsequent renal clearance of the small 

Cy7-labeled siRNA (~7 x 2 nm size, 14 kDa molecular weight).[16] 

The AHA1-siRNA distribution profile via qRT-PCR at 8 h after the treatment in figures 15 C 

and D presents the more sensitive siRNA quantification method. As already indicated by 

fluorescence imaging results, the siRNA mainly accumulated in liver and lung, while less lung 

accumulation was observed for the shielded 454/Tf&Inf7 group than for 454 group.[85] For 

liver accumulation, results were reverse (Figure 15 D).  

The tumoral siRNA quantification confirmed the NIR-detected superiority of 454/Tf&Inf7 

group over the 454 group with a twofold enhanced AHA1-siRNA dose in the tumors, displayed 

in figure 15C.[85] 

Tumoral accumulation of additional controls (including 5% albumin modified 454/albumin 

and Tf-targeted without Inf7 polyplex-group which is indicated as 454/Tf) were measured and 

compared to 454/Tf&Inf7, unmodified 454 and free siRNA. In figure 15D), the controls 

indicate a possibly TfR-independent passive accumulation of siRNA in the tumor site, as the 

454/Tf group could not reach the enhanced intratumoral siRNA amount of 454/Tf&Inf7.[85] 

Interestingly, polyplexes with control protein albumin showed higher siRNA accumulation than 

454/Tf, too. Nevertheless, only the Tf-containing polyplexes would be expected to be actively 

endocytosed (as demonstrated in prior in vitro work). In summary, the observed lack of in vivo 

stability overshadowed encouraging tumor accumulation of 454/Tf&Inf7 group.[85] 
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Figure 15: In vivo distribution of 50% Cy7-labeled AHA1 siRNA in N2a tumor-bearing mice. 
The performed bioimaging of systemic administration experiments is displayed in A) images 
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for 454/Tf&Inf7 are shown in the upper panel and for 454 polyplexes in the lower panel. The 
dorsal view is presented and the tumor site is indicated by yellow arrows. In B), the ventral 
view shows siRNA clearance probably caused by the dissociation of 454/Tf&Inf7 polyplexes 
(upper row), but slower as compared to the clearance profile of free siRNA (lower row). 
Bioimaging experiments were performed in triplicate, one representative mouse of each group 
is shown. Graphs in C) and D) (generated by Dr. Wei Zhang, postdoc at Pharmaceutical 
Biotechnology, LMU) illustrate the accumulation of siRNA in tumors and organs determined 
by qRT-PCR ( Ct method) at 8 h after intravenous injection. C) represents the tumor 
accumulation comparing all groups. In D), the siRNA accumulation in organs of 454/Tf&Inf7 

treated animals compared to 454 treated group is shown. Data is presented as relative quantity 
of AHA1 RNA, mean + SD (n=3). Illustrations and graphs are adapted from Zhang et al.[85] 

 

3.2 FR-targeted cationic lipo-oligoamino amide 454 and 595  

The analogous experimental setting in L1210 tumor mice was chosen to examine the systemic 

biodistribution performance of siRNA polyplexes of 454 (C-Y3-Stp2-[(OleA)2-K]K-Stp2-Y3-C) 

and 595 (CRC-Y3-Stp2-[(OleA)2-K]K-Stp2-Y3-CRC), modified with a novel post-PEGylation 

strategy and folate as targeting ligand (see scheme 3). In addition, the stabilizing influence of 

the twin disulfide-forming cysteine–arginine–cysteine (CRC motif) [49] on polyplex-based 

siRNA delivery was investigated in vivo.[86] 
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Scheme 3: A) Simplified and schematic illustration of the lipo-oligomer based polyplex 

formation (1.), followed by a post-PEGylation process (2.). As the T-shaped lipo-oligomer 
may serve 454 or the CRC-motif (indicated by red rings in B) stabilized 595, likewise. B) The 
structural schemes for both lipo-oligomers are shown. K, Y, and C in the represent the 
corresponding (L) -amino acids in one-letter code; OleA = oleic acid; Stp = succinoyl 
tetraethylene pentamine. The graphic illustrations are provided by Katharina Müller (PhD study 
at Pharmaceutical Biotechnology, LMU).[86] 

 

NIR imaging and qRT-PCR were used to acquire distribution profiles of both post-PEGylated 

conjugates 454/AHA1-siRNA and 595/AHA1-siRNA (50 % Cy7-labeled siRNA). The FR-

overexpressing L1210 tumor model (as established in Results, section 2) was selected for the 

systemic application of the folate-containing nanoparticles. 

A distribution pre-experiment was performed via NIR bioimaging in tumor free mice, using 3 

equivalents of gE4-FolA-PEG for both oligomers. The initial distribution images displayed a 

rather short circulation time, due to rapid decay of polyplexes indicated by massive siRNA 

elimination via kidneys (Figure 16 A) upper panel, yellow arrows indicate bladder signals of 

differing intensity). Surprisingly, the degradation of the post-PEGylated, FolA-modified 

polyplexes (N/P 10) appeared to be faster than the clearance of TF-modified 454 siRNA 

polyplexes (N/P 6) as evaluated in parallel (Figure 16A). The early and prominent bladder 

signals (yellow arrows) of the post-PEGylated conjugates were even reminiscent of those of 

free siRNA. Moreover, fluorescence mostly disappeared within 1 h, corresponding to the 

systemic application of free siRNA (Figure 17A).[85, 86] 

To investigate the relation between post-PEGylation and decreased stability, we continued the 

experiment by evaluating the previously used 3 equivalents against lower PEGylation degrees 

(2 and 1.5 equivalents) for both oligomers. Lower PEGylation degrees gradually improved 

stability, as shown in figure 16B.  Encouragingly, the 1.5 equivalents of gE4-FolA-PEGylation 

enhanced in vivo stability remarkably, while the in vitro efficacy kept unaffected by the 

modification of the PEGylation degree.[86] Subsequently, ex vivo measured Cy7-signals in 

liver and lung were still detectable at 8 h after application, when the 1.5 equivalents of gE4-

FolA were used for PEGylation, in contrast to the first in vivo approaches using the 3 
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equivalents PEGylation degree (Figure 16C) Unfortunately, we could not test lower degrees 

than 1.5 as they resulted in particle agglomeration in vitro and therefore were ruled out for in 

vivo use.[86] 
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Figure 16: Time-dependent biodistribution of Cy7-siRNA polyplexes based on 454 or 595 
after intravenous administration (n=3) in tumor-free mice. Signals were measured via NIR 
imaging in vivo and ex vivo and the results of one representative mouse of each group is shown. 
In A), differently modified and prepared polyplexes based on lipo-oligomer 454 were compared 
for their stability, represented through bladder signals of differing intensity (yellow arrows) in 
the ventral view. In the upper panel core 454 polyplexes were formed at N/P 10 and post-
PEGylated with 3 equivalents (equiv.) of gE4-FolA. The lower panel shows animals treated 
with 454/Tf polyplexes. In the latter case, the 454 oligomer was prepared at N/P 6 and surface-
modified with transferrin via a PEG linker. 
In B) the CRC-motif stabilized 595-based polyplexes present the gradual improvement of 
stability by lowering the degree of post-PEGylation from 3 to 1.5 equivalents of gE4-FolA. The 
ventral view allows the comparison of the elimination of dissociated polyplexes via the 
fluorescence degree of Cy7-labeled siRNA in the bladders. 
The ex vivo imaging of organs at 8 h after injection, comparing 595 with 454-based post-
PEGylated polyplexes prepared with 1.5 to 3 equivalents of gE4-FolA is displayed in C). In 
terms of stability, a moderate superiority of post-PEGylated 595 over post-PEGylated 454 
polyplexes was indicated by higher efficiency of the Cy7-signals in liver and lung observed for 
1.5 and 2 equivalents of gE4-FolA. Illustrations are adapted from Müller et al.[86] 

 

Throughout the presented pre-experiments, CRC-motif stabilized 595-based siRNA polyplexes 

were found to be slightly superior to 454-based polyplexes in terms of stability (compare figure 

16C). Therefore, 595 with a 1.5 equivalents gE4-FolA-PEGylation degree was subsequently 

applied in L1210 tumor-bearing mice for the qRT-PCR supported measurement of siRNA 

distribution.[86] 

Free siRNA, 595-based polyplexes without PEGylation (595) and PEGylated polyplexes 

without targeting ligand (595/Mal-PEG) served as controls. Cy7-signals were present for up to 

8 h post treatment, detected via NIR imaging for all 595-based conjugates (Figure 17A). 
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Whereas for free siRNA, the signal completely disappeared between 1 h and 4 h after the 

treatment, due to renal clearance, presented in the lowest panel of figure 17A.[86]  

Unmodified 595 polyplexes appeared to be the most stable of all tested siRNA carriers, while 

pronounced bladder signals of 595/Mal-PEG and 595/gE4-FolA-PEG still indicated a stability 

issue, probably related to their surface-modification.[86] Finally, the animals were sacrificed 

for subsequent qRT-PCR analysis of organs and tumors. 

Consistent with previously published distribution data [31, 85] and NIR imaging results (blue 

and red arrows, figure 17A), all polyplexes mainly accumulated in liver and lung. Nonetheless, 

the reduced lung accumulation of shielded versus unshielded polyplexes (already presented in 

Results, section 3.1) was reproducible. qRT-PCR even confirmed that lung accumulation of 

595/gE4-FolA-PEG was lower than of 595/Mal-PEG (Figure 17C), indicating decrease of 

undesired accumulation in vital organs like lungs through advanced shielding and targeting 

strategy.[86] 

Tumoral Cy7-signals were observed in all 595-based groups at some point in the first hour after 

polyplex application as presented in figure 17B, but were not measurable anymore at 4 h after 

treatment. Quantified via qRT-PCR and normalized to lung accumulation, the highest siRNA 

residue was detected in the unmodified and most stable 595 group, followed by the targeted 

595/gE4-FolA-PEG polyplexes, that were superior to the untargeted equivalents 595/Mal-

PEG (Figure 17D).[86] 
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Figure 17: Final distribution experiment using 595-based siRNA polyplexes which were 
applied into the tail vein of NMRI-nude mice, bearing subcutaneous FR-overexpressing L1210 
tumors. The optimized post-PEGylation degree of 1.5 equivalent was used to prepare the 
595/gE4-FolA-PEG formulation. (n=3 mice per group)  
In A), the time-dependent biodistribution is illustrated for 595/gE4-FolA-PEG, control 
polyplexes and free siRNA, using 50% Cy7-labeled siRNA which was detected via NIR 
imaging. Ventral view of one representative mouse per group is shown. The blue arrow 
indicates a lung signal, the red one a liver signal, and the yellow one a bladder signal. The lateral 
view in B) presents the tumor site of all 595-based siRNA polyplex groups at 0 min and 1 h 
after injection. Graphs in C) and D) (generated by Katharina Müller, PhD study at 
Pharmaceutical Biotechnology, LMU) show the distribution of AHA1 siRNA in organs and 
tumors as quantitated by qPCR analysis, at 8 h after the treatment with indicated formulations. 
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The graph in C) provides information on the siRNA accumulation in lungs. Data is presented 
as relative quantity of AHA1 RNA, mean + SD (n=3) while the bars in D) represent the 
normalized tumor to lung distribution ratio of quantified siRNA for the differently modified 
variations of 595-based polyplexes. Illustrations and graphs are adapted from Müller et al.[86]  
 

Acute toxicity was not observed in any of the treatment groups. However, consistent with the 

Tf-targeted lipo-oligomers (Results, section 3.1) which were tested in parallel to the described 

pre-experiment, the in vivo performance of post-PEGylated polyplexes was still limited by 

lacking particle stability, despite the encouraging improvement through CRC motif integration 

and optimized PEGylation degree.[86] 

 

3.3 FR-targeted combinatorial polyplexes 

The described experiments were performed to evaluate the in vivo performance of polypex-

combinations designed out of a library containing sequence-defined polycationic, 

oligoaminoamide-based oligomers.[38, 101] Physicochemical properties of polyplexes were 

optimized by covalent coupling of two oligomer-types (see scheme 4) with different favourable 

structural moieties (e.g. target-specificity, surface-protection, strong siRNA binding activity), 

hence uniting required properties for efficient and tissue specific siRNA delivery, enabling in 

vivo gene silencing.[87] 

 

 

Scheme 4: FR-targeted combinatorial polyplexes. The functional elements are presented in 
a simplified, schematic illustration that is provided by Dian-Jang Lee and Dr. Dongsheng He 
(PhD study at Pharmaceutical Biotechnology, LMU).[87]  
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The NIR-imaging of Cy7-labeled polyplex combinations was terminated at varying time-

intervals after systemic treatment to perform ex vivo imaging of harvested tumors (and organs), 

in order to confirm the origin of the in vivo detected signals in a more sensitive and precise way. 

Encouragingly, the described covalent coupling of oligomers, resulting in combinatorial 

polyplexes, improved the in vivo performance in comparison to polyplexes which were based 

on the single oligomers. The in vivo imaging in figures 18A and B shows tumor accumulation 

profiles of the targeted combinatorial polyplexes (TCPs) 386+873/Cy7-siRNA [87] and 

356+454/Cy7-siRNA, and furthermore the ‘single’ polyplexes-components in the co-

formulations (386/Cy7-siRNA, 873/Cy7-siRNA, 356/Cy7-siRNA and 454/Cy7-siRNA). While 

the untargeted 386-based polyplexes appeared to literally detour around the tumor region, the 

PEGylated and FR-targeted, DTNB-modified 873-based polyplexes displayed moderate tumor-

associated signals at 30 min post the intravenous application. Those signals, however, could not 

be confirmed by ex vivo imaging.[87] In contrast, the co-formulation of aforementioned 

polymers presented tumor-signals for up to 1 h after the intravenous treatment (confirmed also 

by ex vivo imaging, figure 18A). Furthermore, the combinatorial optimization of polyplexes 

resulted in prolonged circulation time due to enhanced stability as illustrated figures 18C and 

D. For both TCPs, the ‘single’ polyplexes were fully cleared at 4 h after the treatment, while 

the co-formulations where still detectable, though mainly in liver and bladder.[87] 

Encouragingly, the co-formulation of the surface-shielded and folate-directed 356 with the 

cationic lipo-oligomer 454 which promotes siRNA binding and increases the polyplexes size, 

even displayed less bladder signals than TCP 386+873/Cy7-siRNA. The same applied to 

‘single’ polyplex-components of own components, indicating increased stability (Figure 18D). 

However, as presented in Figures 18A and B, the in vivo signals of TCPs completely 

disappeared at 24 h after the treatment, thus causing no residue.[87]  
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Figure 18: Biodistribution of optimized combinatorial siRNA polyplexes in L1210 tumor-
bearing nude mice determined by NIR fluorescence imaging. A) and B) present time-dependent 
distribution of Cy7-labeled siRNA after intravenous injection. The lateral view of animals 
allows to observe the tumor site, while arrows with different fillings indicate the degrees of 
tumor accumulation. The results for co-formulation of the untargeted oligomer 386 with the 
DTNB-modified, surface-shielded, FR-targeted oligomer 873 as well as the respective single 
oligomer-based control polyplexes are shown in A), while biodistributions of co-formulation 
of PEG-shielded, FR-targeted 356 with lipo-oligomer 454 and respective controls are illustrated 
in B). 
The respective ventral view of animals presented in A) and B) is provided in figures C) and D). 
This perspective allows to observe the accumulation of Cy7-siRNA in liver and lungs, and 
moreover their elimination via bladder signals for up to 24 h. 
Experiments were performed with 3–4 animals per group; a representative mouse of each group 
is shown. The illustrations presented in A) and C) are adapted from Lee et al.[87] 

 

Interestingly, a tumor-specific Cy7-signal was observed in vivo for up to 30 min after injection 

of 356+454/Cy7-siRNA co-formulation (Figure 18B). These in vivo signals were verified by ex 
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vivo measurement of harvested tumors that detected a strong fluorescence which was present 

for over 2 h post the treatment, illustrated in figure 19B. 

 

 

Figure 19: Ex vivo imaging of harvested tumors at different time intervals after the treatment 
with optimized combinatorial Cy7-siRNA polyplexes in L1210 tumor-bearing nude mice 
determined by NIR fluorescence imaging. A) Tumors were harvested at 15 min, 1 h or 4 h after 
intravenous injection of TCP 386+873 and its respective controls. B) Tumors were harvested 
at 30 min, 2 h or 4 h after intravenous injection of TCP 356+454 and its respective controls, 
including an untargeted combinatorial polyplex (188+454), that exhibits a similar structure to 
356+454 but is missing the folate-conjugation. C) Tumors were harvested at 15 min, 30 min 
and 1 h after injection of 50µg of free Cy7-siRNA. 
Experiments were performed with 3–4 animals per formulation. The illustrations presented in 
A) and C) are adapted from Lee et al.[87] 

 

In sum, the poor pharmacokinetics of free siRNA got enhanced remarkably through 

complexation in TCPs. While free siRNA did not accumulate in the tumor site as shown in 

figure 19C, NIR-measured ex vivo signals of TCPs were detectable for up to 2 h (compare 

figures 19A and B). These encouraging results provided ground to experiment in vivo gene 

silencing as the following step.[87] 

For qRT-PCR-based evaluation of gene silencing, Inf7 modified EG5-siRNA was used to 

complex TCPs for treatment groups. Additionally, TCPs were formulated with siCtrl-Inf7 as 

control groups. Intravenous treatments were performed twice in a 24 h interval and mice were 

euthanized 48 h after the first treatment. The tumors were harvested for siRNA extraction and 
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mRNA expression levels of EG5 gene were compared to untreated animals. The TCP 386+873 

complexed with siEG5-Inf7 reduced the EG5 gene expression by 46% [87], while 356+454 

silenced the EG5 gene expression with twofold significance by 65%. (Figure 20). However, the 

equivalent formulation with siCtrl-Inf7 showed only trifling effects on the mRNA level of EG5 

in comparison to tumors of untreated control mice [87], excluding unspecific effects on gene 

expression caused by the polyplexes themselves. 

 

 

Figure 20: Gene silencing efficiency of FR-targeted combinatorial polyplexes in L1210 
tumor-bearing mice. The mRNA level of EG5 gene was measured via qRT-PCR of harvested 
tumors after twofold intravenous treatments. EG5 gene expression is expressed in % of 
untreated controls. The groups (n=5) were treated with 386+873/siEG5-Inf7 respectively 
siCtrl-Inf7 [87] or 356+454/siEG5-Inf7 respectively siEG5-Inf7. The qRT-PCR analysis was 
performed by Dian-Jang Lee (PhD study at Pharmaceutical Biotechnology, LMU).  

 

To monitor the animals’ well-being during the treatment process, we measured bodyweight 

daily and examined blood parameters (ALT, AST BUN, creatinine) to observe possible side 

effects on the vital organs liver and kidney (Figure 21). Both presented high Cy7 accumulation 

observed via NIR imaging of TCPs (Figure 18). An elevation, compared to untreated control 

mice, was only found for creatinine in the 386+876/siEG5-Inf7 group.[87] None of the other 

parameters were influenced by the treatment (Figure 21b). The weight courses were not affected 

by the treatments with any of the formulations either (Figure 21a).  

In conclusion, TCP siEG5-Inf7 treatment reduced gene expression remarkably, in absence of 

any acute side effects.[87] 
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Figure 21: Health analysis and screening for possible side effects in mice that were treated 
with TCPs. A) Body weight course over the treatment period observed for both TPCs and 
compared to that of untreated but tumor-bearing mice. The intravenous injections were 
performed at day 13 and 14, respectively 12 and 13 as indicated by the red arrows. The table in 
B) presents clinical biochemistry parameters (ALT, AST, creatinine and BUN). When animals 
were sacrificed for RNA extraction of tumors (48 h after the first and 24 h after the second 
treatment), the plasma was obtained and analyzed. Indicated reference range at the top of the 
table is provided by the breeder Janvier Labs and is valid for female NMRI-nu/nu mice of the 
same age that are not treated or tumor-bearing.[102] The second row of the table presents the 
internal untreated control that contains L1210 tumor-bearing mice which were otherwise 
handled in the same way and time schedule. N=5 for TCP groups and n=3 for untreated group. 
The graphs and table regarding 386+873 are adapted from Lee et al.[87] 
* shows a significant difference between the untreated control and 386+873/siEG5-Inf7 treated 
group. 
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V DISCUSSION 

 

1 Intratumoral administration of MTX-directed siRNA nanoplexes 

The efficiency of siRNA therapy is mainly hampered by its poor pharmacokinetic properties 

(compare Introduction, section 1.2.). To achieve the goal of tumor-specific, intracellular siRNA 

delivery in vivo, an optimized combination of recent in vitro and in vivo findings was developed 

and tested. Dohmen et al.[28] presented a significantly prolonged retention of folate targeted 

siRNA polyplexes compared to untargeted siRNA polyplexes and free siRNA after intratumoral 

injection in KB tumors. A similar structure but conjugated with FR-responsive methotrexate 

(MTX) instead of folic acid (FolA) was chosen for the current work.  

The in vivo stability of structurally similar FolA-PEG siRNA polyplexes was already 

investigated by retrieval of these polyplexes from the urine of intravenously injected mice (Fig. 

S16 and S17 in Dohmen et al. [28]). Therefore, we could exclude a major degradation of the 

polyplexes after intratumoral injection.[89]  This finding was quite helpful as we can only detect 

Cy7-labeled siRNA using near infrared imaging, consequently have no information about the 

intactness of the polyplexes. The observed particle stability is provided by disulfide formation 

of cysteines which stabilize the polycationic oligomer backbone necessary for siRNA polyplex 

formation by intermolecular crosslinking.[46, 48, 89]  

To increase the solubility of the polyplexes and prevent undesired immune reactions, a 

polyethylene glycol (PEG) chain had been introduced into the carrier oligomer for surface-

shielding against undesired interactions with body fluids in the extracellular tumor matrix (e.g. 

blood components, collagens, proteoglycans or hyaluronic acid).[45, 50, 51]  

MTX was opted in respect of its FR-responsiveness [67] and to additionally increase the 

therapeutic potential of EG5-siRNA nanoplexes by its cytotoxic power.[71] Thus, the folate 

analogue had to accomplish two major tasks. Firstly, MTX was needed to direct the nanoplexes 

towards their intended site of action and to facilitate cell entry via the folate receptor or folate 

carrier. Secondly, once inside the target cell, MTX is expected to deploy its anti-proliferative 

effect [70] that is enhanced through synthetic polyglutamylation of MTX, as proven by Lächelt 

et al.[73] (compare scheme 1).[89] 

The bioimaging study in the current work provided evidence for a comparable targeting ability 

of MTX and FolA, this was ascertained by equally enhanced retention times of both structurally 

analogous siRNA polyplexes (640/Cy7-siRNA-Inf7 and 356/Cy7-siRNA-Inf7, compare figure 

4A). However, these imaging results only evidenced the increased tumor retention of the 
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polyplexes due to the targeting ligand, whereas no information about the polyplex 

internalization, endosomal release and subsequent therapeutic siRNA efficiency was provided.  

The subsequent treatment experiment was performed to proof the assumed therapeutic potential 

of MTX-directed 640/siEG5-Inf7. EG5-siRNA (siEG5) is known to inhibit mitosis after 

cytosolic release, by knockdown of an essential cell-cycle protein (kinesin spindle protein = 

KSP, also referred to as eglin-5, EG5).[89, 103, 104] Therefore, siEG5 represents a powerful 

tool to fight rapidly dividing cancer cells.[105] However, in the first place, the synthetic siEG5 

needs to be delivered into the cytosolic compartment of the target cells, before its gene silencing 

effect can actually be exploited for antitumoral efficacy.[106]  

2’OMe-modified siRNAs were chosen to circumvent toll-like receptors (TLR)-mediated 

immune responses, so called off-target effects [105, 107], which consequently excluded 

undesired inflammatory reactions that could have influenced tumor growth in an unspecific 

way.[89, 105] Furthermore, conjugation of endosomolytic peptide Inf7 (established by Plank 

et al. [55]) to siRNA was performed in order to overcome the hurdle of endosomal release and 

to enable cytosolic release of both the combinatorial anti-tumor weapons siEG5 and MTX.  

Many cancer therapies are hampered by toxicity in non-target tissues or intrinsic, respectively 

acquired drug resistance.[108, 109] Hence, combinatorial treatment with different antitumor 

agents is a common strategy to overcome those kind of limitations.[110, 111] Combinatorial 

treatment strategies facilitate lower doses and subsequently reduce toxicity without influencing 

effectiveness.[89, 112] Additionally, they increase the chances of circumventing intrinsic 

resistance and minimize acquired drug resistance by combining two different cell-killing 

pathways, consequently augmenting cytotoxicity.[113, 114] 

In our approach to combine two antitumor weapons that work inside the same target cell and 

for the same goal but with different mechanisms, we united a RNAi based therapeutic with the 

standard cancer drug methotrexate in one multifunctional nanoparticle.[89] 

The significant superiority of 640/siEG5-Inf7 over 640/siCtrl-Inf7 (compare figures 6B and 

10A) displays the expected mitosis inhibiting effect of EG5 siRNA. Furthermore, the presented 

results confirm the augmented combinatorial effect of MTX with RNAi based therapy (Figures 

6 - 8).  

Moreover, the results suggest that siRNA complexation generally improves the antitumoral 

efficacy (Figures 6 and 7) by presumably prolonged retention in the tumor tissue, dependent on 

nanoparticle formation.[89] Free 640 polymer might be cleared more rapidly (as well as 

previously experienced with free siRNA [28]), as no nanoparticle formation is possible without 

the negatively charged siRNA for complexation (or positively charged polymer in respect of 
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free siRNA).[36] The enhanced endosomolytic release boosted by Inf7 peptide could be another 

advantage of the polyplex formation.[55]  

Figure 7 indicates that therapy with an equivalent dose of cytotoxic DHFR inhibitor MTX in 

unbound form did not retard the tumor growth at all, further highlighting the improved 

pharmacokinetics of the standard drug due to polyplex linkage.[70, 89, 115]  

The stressful treatment process or tumor necrosis associated discomfort in siEG5-treated groups 

likely caused the temporary stagnation of body weight recorded in most animals over the 

treatment period, displayed in figures 8 and 9.[89] Besides that, we encouragingly did not 

observe any medical condition or side effects caused by the treatment (over 70 days observation 

time for the surviving animals of 640/siEG5-Inf7), indicating a target-tissue specific effect of 

our formulation. 

Finally, this experimental treatment setting highlighted the advantage of 640/siEG5-Inf7 over 

formerly used 356/siEG5-Inf7 (illustrated in figure 10B), therefore evidences the improved 

efficacy of the combinatorial treatment strategy.[89] The dual antitumoral power of 

methotrexate plus EG5 siRNA even resulted in a recurrence-free healing process of 50 percent 

of the 640/siEG5-Inf7 group until the end of the study (Figure 7). 

Despite these encouraging results, there are still remaining challenges of successful siRNA 

delivery left to cope with.[16, 23] We chose the local application path to circumvent rapid renal 

filtration of our small sized nanoparticles (only ~ 6 nm), experienced with analogous Fol-PEG 

siRNA polyplexes after intravenous administration in Dohmen et al.[28] However, most tumor 

types are not accessible via local application, consequently tissue-specific, stable polymeric 

carriers with increased sizes and sufficient surface-shielding need to be evaluated for systemic 

siRNA-based treatment.  
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2 Folate receptor-overexpressing in vivo tumor model for systemic delivery 

The utilization of animals in scientific and medical research is a subject of heated debate in 

many industrial countries.[116] A lot of times, reliable predictions for the translation into 

humans cannot be provided by animal models, due to genetic or physiological differences, 

especially for cancer research. Nevertheless, animal models serve as powerful tools for the 

development of novel treatment approaches, by collection of indispensable preclinical in vivo 

information.[117, 118] 

The selection of a suitable mouse tumor model is one key factor in the design of an animal-

based cancer research studies and may facilitate rapid scientific progress in the optimization of 

therapeutic strategies.[117, 119]. In the previous project, FR-overexpressing subcutaneous 

human KB tumors were treated intratumorally with small FR-targeted nanoparticles, achieving 

promising results (Figures 6 and 7). For the local application, a solid, well-encapsulated tumor 

with less frequent blood vessels, indicating poor vascularization [58], was a suitable model to 

support the retention of injected FR-targeted particles, subsequently enhancing the chance for 

cell targeting and internalization of therapeutic components. As aforementioned, local 

application of therapeutics is not suitable for most of the human cancer types. However, for 

systemic delivery of siRNA, not only the abilities of the developed carriers but also the 

bioaccessibility of the induced tumors influences the outcome of the study.[120] Therefore, the 

following project was aimed to establish a mouse tumor model in our lab, which would be 

suitable for systemic delivery of FR-targeted siRNA carriers. 

The newly evaluated FR-overexpressing cell lines are of murine origin. The M109 cell line is 

syngeneic to the BALB/c mouse strain, as it is based on a spontaneous neoplasm in an 18-

month-old BALB/c mouse that occurred in 1964, eventually called the Madison lung 

carcinoma.[92, 93] The suspension growing L1210 cell line was originally derived from 

lymphocytic leukemia in ascites from in an 8-month old, female DBA-2 mouse.[94, 95, 121] 

The validated folate receptor status (performed by Dian-Jang Lee, PhD study at Pharmaceutical 

Biotechnology, LMU) was found comparable and sufficiently high for both cell lines. For the 

following experiments with intravenously applied FR-targeted formulations (illustrated in 

Results, sections 3.2 and 3.3), we finally chose the leukemia L1210 cell line to induce 

subcutaneous tumors in immunodeficient NMRI-nu/nu mice. Since the reliable, simultaneous 

and homogenous growth, requiring only a low number of cells (0,5 - 1 x 106) for inoculation 

(Figure 11B), was considered to be advantageous for the reproducibility of the desired FolA-

responsive mouse tumor model. Multiple factors are known to influence the delivery of particles 

into the tumor tissue [58], for instance tumoral vascularization [122], occurring necrosis [123] 
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and interstitial pressure in solid tumors, though all these factors are more or less interrelated 

with tumor size.[120] As shown in Harrington et al. [120], there is a relation between liposome 

uptake and the variation of tumor vascular volume with tumor size. Therefore, a homogeneity 

of tumor size in treatment experiments is desired. However, the M109 tumors grew at different 

speeds for the individual mice, and therefore caused high standard deviations in terms of tumor 

volume observed over the growth course. Thus L1210 tumors were selected over M109, though 

the described issues could be mitigated by in vivo passaging and support through Matrigel 

(Figure 11A).  

Nevertheless, the caliper measurement of L1210 cell line appeared more inconvenient as the 

shape of tumors is quite flat and irregular in comparison to the round shaped M109 tumors 

(compare figure 13). The explorative biodistribution results could not sufficiently proof 

superiority of one over the other tumor model, however, confirmed the essential permeability 

for nanosized polyplexes (Figure 12A) 386+873 co-formulation: 104 nm [87] and B) 762-based 

polyplexes: 576 nm [101]). Histology of middle sized tumors reasserted distinct vascularization 

for both models, though by a differently structured vasculature as illustrated in figure 14. The 

chaotic structure and highly leaking vasculature (many free erythrocytes disseminated in the 

intercellular matrix in figure 14) of L1210 was not surprising for a leukemia cell line. The M109 

tumor presented a similarly strong vasculature but showed a more ‘organ-like’ organization of 

structure. Moreover, the M109 tumor mass kind of resembled the KB carcinoma structure, 

though the density of blood vessels was found higher in the M109 tumor sections compared to 

those of KB tumors (Figure 14).  
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3 Receptor-responsive systemic siRNA delivery  

In the intratumoral treatment experiment as described before, we successfully treated mice with 

multifunctional, targeted siRNA nanoparticles which displayed a size of ~ 6 nm.[89] Despite 

the encouraging results, most of human tumors actually are not accessible via local application 

route. However, the systemic and tumor-specific delivery of RNAi-based therapeutics is still in 

its infancy [16, 25, 85], yet reaching a relatively low number of representatives in clinical 

studies, though steadily growing.[124, 125]  

Consequently, our next step was the evaluation of enlarged, well-defined, multifunctional 

siRNA carriers for systemic delivery, which avoid renal filtration and biodegradation, and thus 

show enhanced circulation time.[38, 39] Prolonged circulation time is favorable to improve the 

polyplexes’ chances for extravasation into the tumor tissue [29, 30], moreover, well-sized 

nanoparticles (in the range of ~20 - 200 nm) may additionally promote the aforementioned EPR 

effect.[57, 126] 

 

3.1 TfR-targeted cationic lipo-oligoamino amide 454 

The in vivo performance of TfR-targeted cationic lipo-oligoamino amide 454 complexed with 

siRNA (size: ~100 nm) and equipped with varying surface modifications (size: up to ~250 nm) 

was investigated after systemic application. The targeted TfR is overexpressed on the surface 

of malignant cells in many tumor types [79, 80], including the surface of the N2a cell line, 

employed in the current experiment. N2a is of murine origin, derived from a spontaneous 

neuroblastoma in a strain A albino mouse [121] and commonly known to induce well 

vascularized tumors [58], thus providing sufficient permeability for nucleic acid delivery 

systems. The multifunctional Tf-ligand was introduced to the polyplexes via PEG linkage in 

order to increase their specificity for TfR-overexpressing N2a tumor cells, thus preventing side 

effects in non-target cells. Recently, systemic in vivo application of Ran siRNA delivered by 

Tf-modified, oligoethylenimine derivative polyplexes resulted in 80% gene silencing, inducing 

apoptosis in N2a tumors of mice.[127] Even more encouraging, cyclodextrin polymer-based 

siRNA carriers have reached human clinical testing for tumor-targeted therapy. Here, the Tf-

targeted nanoparticles were administrated intravenously into patients.[124]  

Tf is not only an efficient and time-tested natural targeting-ligand [24, 76-78], but additionally 

proved surface protecting abilities.[77] For the evaluated system, the large human serum-

protein (80 kDa) could not be linked directly to the oligomeric structure without sustaining a 

loss of nucleic acid binding ability, therefore the surface has been post-modified with Tf-PEG 

after siRNA complexation by the lipo-oligomer.[85, 128] In combination, PEGylation and Tf-
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modification represent a useful shielding domain to prevent unspecific reactions with body 

fluids that can lead to deadly aggregation processes [129] or biodegradation.[44, 130] For 

enhanced cytosolic release the endosomolytic peptide Inf7 was opted to further improve the 

targeted siRNA carrier, even though the repeated 1,2-diaminoethane motifs for stable siRNA 

binding and enhanced endosomal release by proton sponge effect [54, 131] were already 

integrated in the T-shaped lipo-oligomer.[85] 

Additional shielding domains of 454/Tf&Inf7 group resulted in reduced lung accumulation of 

siRNA compared with the unmodified 454, as presented in figure 15D. However, highest 

overall siRNA accumulation was found in the liver.[85] This finding is consistent with previous 

imaging studies of 454 polyplexes [31] and presumably related to the uptake by the 

reticuloendothelial system (RES) which’s components (e.g. phagocytic cells in liver and spleen) 

represent a commonly known obstacle for the successful delivery of nanoparticles. This 

phenomenon of RES-dependent degradation of polyplexes should be contained by surface 

modifications (e.g. PEG-shield).[20, 29, 30] Though, the higher liver accumulation in the 

shielded and Tf-targeted 454/Tf&Inf7 group compared to unmodified 454 polyplexes might be 

related to the receptor status of the tissue, as the liver exclusively expresses a high number of 

TfR-2 receptors that may play a role in the accumulation processes.[132]  

Encouragingly, the quantified tumor accumulation was highest for the 454/Tf&Inf7 group. 

Interestingly, the ligand-independent, passive targeting plays an important role since controls 

like shielded but untargeted 454/Albumin group attained a better accumulation effect than 

454/Tf (Figure 15C).[85] The shielded and targeted 454/Tf formulation only accomplished a 

tumoral siRNA accumulation comparable to unmodified 454 polyplexes. This is not surprising 

as similar biodistribution of nontargeted and TfR-targeted polyplexes has been reported before 

in Bartlett et al.[133] The main role of Tf is in active endocytosis into the cell after receptor 

binding, a step which takes place after polyplexes have already located to the tumor.  

Polyplex formation increased the retention of siRNA remarkable (for up to 7h) compared to the 

application of free siRNA as shown in figure 15B. However, stability issues still were observed 

throughout the imaging process, especially for the surface modified 454-based polyplexes.[85] 

Presumably, therefore, the general efficiency of the siRNA delivery into tumors occurred 

limited by the relatively short circulation performance.[29, 59]  Increased in vivo stability of 

siRNA carrier systems is vital for successful treatment approaches [134] with systemic RNAi 

based therapy, therefore needs to be optimized for future delivery approaches.[85] 
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3.2 FR-targeted cationic lipo-oligoamino amides 454 and 595 

The in vivo performance of FR-targeted cationic lipo-oligoamino amide 454 in comparison to 

the twin disulfide-forming cysteine–arginine–cysteine (CRC motif) stabilized analog 595 was 

investigated after systemic application. The siRNA polyplexes obtained surface protection to 

avoid unspecific reactions with e.g. blood components [44, 135], by a novel post-PEGylation 

strategy. Optionally, the in vitro optimized tetra- -glutamyl folic acid (gE4-FolA) was 

introduced to specifically target FR-overexpressing L1210 tumor cells.[86] The surface 

modifications resulted in precise nanoparticles with sizes between 100 and 200 nm that are 

well-adapted for systemic application, as both, biodegradation processes followed by rapid 

renal clearance [90] and also inadvertant in vivo aggregation [129] processes should be 

prevented.[86] Furthermore, the size range is suitable for polyplexes to become subject of the 

EPR effect, additionally enhancing chances for accumulation in the tumor site.[57] However, 

consistent with the observations of in parallel tested TfR-targeted polyplexes, in vivo 

destabilization turned out to be the limiting factor for the systemic siRNA delivery by these 

lipo-oligomer based carrier-systems, which operated efficiently and specifically in vitro.[85, 

86]  Oligomer 454 was replaced by the CRC-motif stabilized 595. The stabilizing effect of this 

twin disulfide-forming cysteine–arginine–cysteine motif relies on covalent interactions via 

disulfide bridge formation.[49] In addition, the PEGylation degree was adapted, all in respect 

to improved stability. As illustrated in figure 16B, lower PEGylation degrees gradually 

improved stability, though 1.5 equivalents were the lowest degree that still allowed the forming 

particles of suitable sizes for in vivo application. Particle formation using lower degrees lead to 

formation of large aggregates in vitro [86], which could possibly clog capillaries of vital organs, 

inducing severe side effects or even a deadly pulmonary embolism. However, in spite of the 

described optimizations for the in vivo setup, 595/gE4-FolA-PEG still degraded too quickly to 

reach proper circulation times, thus sufficient siRNA accumulation in the tumor site could not 

be achieved.[29, 59]  

Nevertheless, the in vivo performance of currently tested lipo-oligomers displayed detectable 

signals for up to 8 h, whereas 356 nanoparticles were completely cleared by kidneys after only 

half of the circulation time, as shown in the previously published systemic application of the 

smaller (~ 5.8 nm) siRNA polyplexes based on polymer 356.[28] This indicates a desirable size 

related avoidance of renal clearance. Encouragingly, sufficient surface-protection through the 

post-PEGylation strategy, improving the ‘passive targeting’[50, 51, 57], plus the tissue specific 

targeting-ligand FolA for ‘active targeting’[52], reduced an undesired accumulation in the lung 
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(consistent with 454/Tf&Inf7 in 3.1) and liver for 595/gE4-FolA-PEG polyplexes compared 

to unmodified 595 group (Figures 17A and C).[86]  

In conclusion, the presented lipo-oligomer based, tumor-targeted conjugates provide a 

favorable size and efficient surface-protection, resulting in reduced siRNA residues in lung and 

liver compared to their unmodified analogs. However, an improvement in terms of particle 

stability is necessary to increase the efficiency of polyplexes for tumor-specific delivery [23, 

86, 134], though tumor-associated accumulation was temporarily observed via NIR imaging as 

displayed in figure 17B. 

 

3.3 FR-targeted combinatorial siRNA polyplexes  

The systemic siRNA treatment is hampered by poor pharmacokinetics of the small particles 

[19, 27], therefore polymeric carrier-based siRNA delivery was evaluated in previous 

distribution experiments. Polyplexes were based on one well defined oligomer (e.g. 356 or 454) 

which met the requirements for siRNA delivery in vivo more or less [28, 31], and therefore 

presented advantages and disadvantages in their biodistribution profiles.[85, 86] Forming stable 

and well-shielded, targeted particles, 356 polyplexes were too small in size and resulted in 

immediate renal clearance after intravenous application.[28] 454-based polyplexes were sized 

more favorably but could not profit from enhanced circulation time, due to insufficient in vivo 

stability which was partly caused by the integration of surface shielding and targeting 

components.[85, 86] In the current approach, single polymers were mixed or covalently coupled 

in co-formulations and screened in biodistribution experiments using subcutaneous L1210 

mouse tumor models. Confirmed by NIR-imaging, the co-formulation of 386 for efficient 

siRNA binding covalently coupled with PEG-folate-conjugated 873 for surface shielding and 

FR-targeting (respectively the mixing of lipo-oligomer 454 with the shielding and targeting 

oligomer 356) proofed the concept’s validity.[87] Both types of combinations achieved 

prolonged circulation times for up to 4h, compared with their ‘single polyplex’ components or 

free siRNA which Cy7-signals were mostly disappeared 4h after systemic application (Figures 

18 and 15B). As indicated by the NIR imaging experiment, additionally, both polyplex 

combinations did not cause residues in other organs that could induce subacute or chronic side 

effects on non-target tissues (no detectable signals at 24 h after intravenous application as 

displayed in figure 18). The ex vivo NIR-imaging revealed notable intratumoral siRNA 

accumulations for up to 1 h after the treatment with 386+873 and up to 2 h after the application 

of 356+454 co-formulation. Whereas figure 19 further presents that ex vivo tumor signals could 

not be detected for free siRNA or single polymer-based polyplex-controls. Encouraged by these 
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promising results, in vivo gene silencing was evaluated with both polyplex-combinations 

(386+873 and 356+454). To enhance the chance of endosomal escape of the FR-targeted 

formulations, Inf7-conjugated siRNA was chosen for all polyplex-groups.[87]  Impressively, 

the combination of PEG-folate-conjugate 356 with lipo-oligomer 454 knocked down more than 

half (65%) of the EG5-gene expression on mRNA level compared to untreated control animals, 

followed by 386+873 co-formulation that reached 46%. Moderate superiority of 356+454 over 

386+873 could be explained by a slightly advanced distribution profile (less immediate bladder 

signals and prolonged intratumoral retention, figure 18 and 19), indicating higher in vivo 

stability.[134] The treatment with polyplexes containing siCtrl-Inf7 resulted in EG5 gene 

expression which was comparable to the untreated control, excluding unspecific influence 

caused by the carriers themselves.[87] 

Thus, there were no observations signaling acute toxicity or any impairment to health. We 

additionally performed blood biochemistry to exclude side effects on non-target tissues. 

Analyzed parameters ALT and AST (ALT = alanine aminotransferase and AST = aspartate 

aminotransferase), also called ‘liver enzymes’, are indicators for damage of liver cells [136, 

137], while elevation of blood urea nitrogen (BUN) or creatinine signal renal dysfunction 

related issues.[138] The evaluation of clinical blood parameters did not show any alarming 

elevations, despite of detected siRNA accumulation in liver and kidney during the first hours 

(fully cleared after 24 h, figure 18). Though the creatinine measured for 368+873/siCtrl-Inf7 

group was increased compared to the untreated internal control animals, it was still far lower 

than the creatinine reference range provided by the breeder of the employed mouse strain (data 

sheet of NMRI-nu/nu mice by Janvier Labs [102]).[87] Therefore, the health analysis, summing 

up weight observation, behavior and blood biochemistry, did not indicate formulation-related 

acute toxicity or malfunction of liver and kidney.  

Taking together the measured tumoral gene silencing activity and further the absence of acute 

toxicity in vital organs, the tested carrier-systems proved efficient siRNA delivery into target 

cells, as well as cytosolic release, and therefore are covering bottlenecks of siRNA delivery.[16, 

23, 87] 
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VI SUMMARY 

Cancer represents a global threat to human well-being as it is a leading cause of death 

worldwide and its incidence is steadily increasing. The development of new therapeutic 

modalities is imperative as common treatment strategies often lack efficiency and the 

prevention remains difficult for this wide field of multifactorial caused diseases. The research 

of this thesis aimed at the evaluation and improvement of novel treatment approaches based on 

therapeutic nucleic acids. However, the successful treatment of cancer with genetic therapeutics 

such as based on a synthetic, short interfering RNA (siRNA) which operates through an 

intracellular mechanism, is dependent on intracellular and furthermore target-specific delivery. 

Therefore, we investigated the in vivo performance of sequence-defined and highly 

functionalized polymeric carrier systems in regard to their required capabilities for tumor-

specific and intracellular siRNA delivery.  

The first set of experiments demonstrated the capabilities of the standard drug methotrexate as 

a targeting-ligand and subsequently the therapeutic potential of 6 nm sized, targeted siRNA 

nanoparticles upon intratumoral administration. The combined cytotoxic effect of methotrexate 

and the anti-mitotic EG5 (eglin-5) siRNA resulted in efficient tumor growth inhibition. 

Impressively, tumors disappeared recurrence-free in half of the treatment group.   

The next project describes the evaluation and establishment of a FR-overexpressing mouse 

tumor model suitable for systemic delivery. Two murine cell lines, M109 and L1210, provided 

comparable bioaccessibility validated by histologic examination and explorative biodistribution 

data based on NIR fluorescence imaging. Since L1210 leukemia cells presented favorable and 

convenient growth properties, this cell line was selected for future FR-targeted systemic 

delivery experiments. 

The third part of the thesis assessed several tumor-targeted siRNA delivery systems for 

intravenous, systemic delivery. Lipo-oligomeric carriers formed with siRNA 100-200 nm sized 

nanoparticles which were equipped with different surface modification. These were screened 

for their in vivo distribution profiles comparing the time-dependent accumulation of 

fluorescently labeled siRNA in the organs and the tumor site via NIR bioimaging. Some of the 

surface modification strategies required further in vivo optimization, before the amount of 

delivered siRNA was quantified by a qRT-PCR method. The bioimaging results indicated 

instability issues, limiting the circulation time and consequently the efficient siRNA delivery 

to the tumor site. Nevertheless, encouragingly, the developed strategies for surface modification 

achieved a decreased siRNA accumulation in non-target tissues, like lung or liver.  
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In the final experiments, polycationic oligomers and lipo-oligomers with complementary 

capabilities were co-formulated to combine their strengths, while simultaneously resolving their 

weaknesses. These combinatorial ternary polyplexes exhibited tumor specific accumulation of 

the delivered, fluorescently labeled siRNA after intravenous application. Consequently, the 

most promising combinatorial polyplexes were selected for a tumoral gene silencing assay 

using the anti-mitotic and thus antitumoral EG5 siRNA. Encouragingly, the two tested 

formulations resulted in a significant knockdown (46% and 65%, respectively) of the EG5 gene 

in the harvested tumors, as confirmed by qRT-PCR analysis.  

Summarizing, the thesis deals with the in vivo evaluation of innovative polymeric carrier 

systems for tumor-specific siRNA delivery, with the aim to perform therapeutic gene silencing 

in a safe and efficient manner. The encouraging results represent a promising starting point to 

improve the RNAi based cancer treatment by further investigations. 
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VII ZUSAMMENFASSUNG 

Mit stetig steigender Tendenz repräsentieren Krebserkrankungen die häufigste Todesursache 

weltweit und stellen folglich eine globale Bedrohung für das menschliche Wohl dar. Die 

Entwicklung von neuen therapeutischen Modalitäten ist zwingend notwendig, da es 

vorhandenen Behandlungsstrategien oft an Effizienz mangelt und sich die Prävention für dieses 

weite Feld multifaktoriell bedingter Erkrankungen als äußerst schwierig erweist.  

Die Dissertation „In vivo Bewertung von polymerischen Nano-Trägersystemen für auf siRNA 

basierende Krebstherapeutika“ präsentiert Forschungsprojekte, welche innovative, auf 

Nukleinsäure-Therapie (z.B. siRNA) beruhende Behandlungsansätze im Maus-Tumormodell 

evaluieren und optimieren.  

Die erfolgreiche Behandlung von Krebs, mittels auf RNA-Interferenz (RNAi) basierender 

Modulation der Genexpression, ist von der spezifischen Einschleusung therapeutischer siRNA 

ins Zytosol der Zielzelle abhängig. Folglich lag der Untersuchungsschwerpunkt hinsichtlich der 

in vivo Wirksamkeit von Sequenz-definierten und hoch funktionalisierten Polymeren in der 

tumorspezifischen und intrazellulären siRNA Anlieferung. 

Das erste Experiment demonstriert die Fähigkeit des Standard-Therapeutikums Methotrexat in 

innovativer Form als Polymer-gebundenen Targeting Liganden zu fungieren, und das 

therapeutische Potential der damit hergestellten 6 nm großen, Rezeptor-spezifischen siRNA-

Nanopartikeln nach intratumoraler (lokaler) Verabreichung. Die kombinierte zytotoxische 

Wirkung von Methotrexat als bifunktionellen Targeting Liganden und der anti-mitotischen 

EG5 (eglin-5) siRNA führte zu einer effizienten Hemmung des Tumorwachstums. Bei der 

Hälfte der behandelten Tiere erfolgte eine eindrucksvolle Tumor-Eradikation unter Ausbleiben 

von Rezidiven innerhalb der Beobachtungszeit. 

Der nächste dargestellte Schritt beschreibt die Etablierung eines Folat Rezeptor (FR)-

überexprimierenden Maus-Tumormodells, welches der nachfolgenden Evaluierung von 

intravenös (systemisch) verabreichten Teststrukturen dienen soll. Die Tumore von zwei 

murinen Zelllinien (M109 und L1210) erwiesen eine relativ vergleichbare Zugänglichkeit für 

getestete Strukturen, jeweils validiert durch histologische Untersuchungen und explorative 

Bioverteilungsstudien, die mittels Nah-Infrarot (NIR) Fluoreszenz-Bildgebung durchgeführt 

wurden. Die L1210-Zelllinie präsentierte jedoch günstigere Wachstums-Eigenschaften und 

wurde daher für künftige Experimente mit FR-gezielten, intravenösen Applikationen von 

Teststrukturen ausgewählt. 

Folglich untersucht der dritte Teil der Dissertation die Tumor-gerichteten siRNA Transport-

Systeme nach deren intravenösen Applikation. Lipo-Oligomere als Trägerstrukturen wurden 
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mit unterschiedlichen Oberflächenmodifikationen ausgestattet. Die in vivo Verteilung in 

Organen und Tumor wurde zeitabhängig mittels fluoreszenzmarkierter siRNA und NIR 

Bioimaging untersucht und verglichen. Einige der Oberflächenmodifikationsstrategien 

erforderten weitere in vivo-Optimierung bevor die endgültige Quantifizierung von siRNA 

Anreicherung in verschiedenen Organen mittels qRT-PCR durchgeführt wurde. Die 

Bioimaging Ergebnisse wiesen auf Stabilitätsprobleme hin, welche die Zirkulationszeit der 

Träger begrenzten und somit auch einen effizienten siRNA Transport zum Tumor 

beeinträchtigten. Trotz der Stabilitätseinbußen ist hierbei die verminderte siRNA Anreicherung 

in Nicht-Zielgeweben (z.B. Lunge, Leber), erreicht durch entsprechende 

Oberflächenmodifikationsstrategien, positiv zu bewerten. 

Im letzten Experiment wurden Co-Formulierungen von siRNA mit je zwei verschiedenen 

Oligomeren, beziehungsweise Lipo-Oligomeren eingesetzt und die Tumor-spezifische 

Anreicherung nach intravenöser Applikation der fluoreszenzmarkierten siRNA Polyplexe 

mittels NIR-Bildgebung detektiert. Für die verwendeten ternären Co-Formulierungen wurden 

Oligomere mit komplementären Fähigkeiten kombiniert, um deren Stärken in Summe zu nutzen 

und gleichzeitig eventuelle Schwächen zu kompensieren. In Folge wurden die beiden 

vielversprechendsten Kombinations-Formulierungen für Gen-Silencing Experimente mittels 

der anti-mitotischen EG5 siRNA ausgewählt. Die qRT-PCR Analyse der entnommenen 

Tumore zeigte erfreulicherweise einem signifikanten Knockdown der EG5 Gen Expression 

(46%, beziehungsweise 65%) durch beide getesteten Formulierungen. 

Zusammengefasst beschäftigt sich die Arbeit mit der in vivo Evaluation von innovativen 

Polymer-basierenden Trägersystemen für tumorspezifischen siRNA Transport. Zielsetzung war 

ein sowohl sicheres, als auch effizientes therapeutisches Gen-Silencing. Die ermutigenden 

Ergebnisse stellen sowohl einen vielversprechenden Ansatz für eine auf RNAi basierende 

Krebsbehandlung, als auch einen Ausgangspunkt für weitere Untersuchungen dar. 
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IX  APPENDIX 

 

4 Abbreviations

ALT alanine transaminase 

 

AST aspartate transaminase 

 

BUN blood urea nitrogen 

 

CCD charge-coupled device 

 

Cy7 cyanine 7 

 

DNA deoxyribonucleic acid 

 

dsRNA 

 

double-stranded RNA 

e.g. exempli gratia (for example) 

 

EDTA ethylenediamine tetraacetic acid 

 

FolA folic acid 

 

FR folate receptor 

 

FELASA Federation of European Laboratory Animal 

Science Associations 

 

HBG hepes buffered glucose 

 

HE  

 

haematoxylin and eosin  

h hour(s) 
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i.v. intravenous(ly) 

 

i.t. intratumoral(ly) 

 

MTX methotrexate 

 

min minutes 

 

miRNA micro RNA 

 

mRNA messenger ribonucleic acid 

 

PEG polyethylene glycol 

 

PBS phosphate buffered saline 

 

RNA ribonucleic acid 

 

RNAi ribonucleic acid interference 

 

RNase ribonuclease 

 

qRT-PCR reverse transcription polymerase chain 

reaction 

 

Stp succinoyl tetraethylene pentamine 

 

Sph succinoyl pentaethylene hexamine 

 

SD standard deviation 

 

SEM standard error of the mean 
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Tf transferrin 

 

TfR transferrin receptor 
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