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“.…¡Moito sabés, miña vella, 
moito de sabiduría! 
¡Quen poidera correr mundo 
por ser como vós sabida! 
Que anque traballos se pasen 
aló polas lonxes vilas, 
tamén ¡que cousas se saben!, 
tamén ¡que cousas se miran!… 
 
…Amén, miña vella, amén; 
mais, polas almas benditas, 
hoxe dormirés nun leito 
feito de palliña triga, 
xunta do lar que vos quente 
ca borralliña encendida, 
e comerés un caldiño 
con patacas e nabiza. ….” 
 
Rosalia de Castro, 1863 
 
 
 
 
A mi abuela Estrella  
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1. INTRODUCTION 
 

 

Depriving a tissue of its blood supply leads to a severe cellular dysfunction and ultimately cell 

death, resulting in serious consequences for the tissues and the whole organism (58). Ischemia-

reperfusion injury (IRI) is a vital problem in organ transplantation as no organ can be 

transplanted without suffering from ischemia and posterior reperfusion injury (72, 100). IRI 

constitutes an acute inflammatory process by which cells or organs are damaged first by 

temporary ischemia, hypoxia and accumulation of toxic metabolites and later by reperfusion due 

to cell activation (118). This process involves cell surface adhesion molecule expression (99), 

which is crucial for the recruitment and infiltration of effector cells in the reperfused tissue (14, 

10, 69, 146). These mechanisms are also involved in the rejection process of transplanted solid 

organs (5, 66, 71). Activation of endothelial cells (EC) and white blood cells (WBC), in 

particular neutrophils, is one of the main underlying mechanisms in IRI (185, 195).  

IRI is strongly associated with the localisation of neutrophils in the ischemic regions, which 

occurs within the initial hours of reperfusion. After implantation of an allograft, host blood 

perfuses the donor organ, triggering a cascade of receptor ligand interactions (51, 73) responsible 

for endothelial damage and cell activation (151). Emigration of neutrophils is evident both by 

histological (4, 133) and cytological methods (200). Presence of neutrophils in the tissue due to 

reperfusion causes injury beyond the ischemic aggression, as interventions against adhesion 

properties of neutrophils and leukotactic activity have significantly reduced the amount of 

damaged tissue (83, 103, 104, 113-115, 203). 

IRI is also associated with the production of oxygen-derived free radicals (OFR), that cause cell 

membrane damage as well as oedema and have a very important role in activating the 

complement cascade (109), resulting in the rapid expression of the adhesion molecules on the 

endothelial cell surface, thus enhancing the reperfusion injury (86, 122). OFR include the 
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superoxide anion and the hydroxyl ion. OFR can be cytotoxic to cellular components as a result 

of degradation of proteins and nucleic acids and lipid peroxidation of membranes and may not be 

controlled by endogenous anti-oxidative mechanisms such as superoxide dismutase (135). 

At the time of reperfusion, the EC surface becomes a site of intense interaction between different 

types of leukocytes and their adhesion molecules, leading to intermediate adhesion (rolling) 

through the action of selectins and to permanent adhesion of the leukocytes to the EC (sticking) 

triggered by integrins. Different molecules including tumor necrosis factor-alpha (TNF-α), 

intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule (VCAM) rapidly 

undergo conformational changes that increase their avidity for endothelial ligands for both 

lymphocytes (ß2 integrin leukocyte function associated antigen) and neutrophils (ß1 integrin 

very late antigen-4) (27, 65, 116). These interactions between oxygen radicals, adhesion 

molecules, activated WBC and EC may represent the key step in the process of intragraft antigen 

recognition by allowing the lymphocytes and the neutrophils to migrate into the graft, initiating 

or developing processes which lead to allograft destruction (101, 168). Transendothelial 

migration of WBC, especially lymphocytes and neutrophils, are also stimulated by means of 

local endothelial chemokine activation (112). 

Long-term outcome of the graft may also be influenced by IRI and subsequent acute rejection 

episodes related to endothelial and vascular damage (169). Organs that are used for 

transplantation undergo varying periods of cold ischemia. Long periods of cold storage result in 

an increased susceptibility to damage upon reperfusion (95). For this reason organ preservation is 

fundamental for the outcome of transplanted organs.  

To summarise, it is evident that immunological interactions leading to activation of different 

WBC subsets play an essential role in IRI and later outcome of graft survival, so that 

immunosuppression becomes a vital tool to prevent and treat these phenomena.  



 9

During vertebrate evolution the immune system has evolved in such a way that it is able to 

distinguish self from nonself. The necessity for such an advanced antigen recognition system lies 

on the fact that an infected host first needs to identify pathogens before it can initiate their 

elimination. During ontogenesis the immune system is educated to avoid reacting against self 

structures (autoantigens). This process of eliminating or controlling self reactivity does not 

always reach the level of perfection as is reflected by the existence of a large number of 

autoimmune disorders. In these types of diseases, immunocompetent cells or their products 

mount pathological reactions towards autoantigens. Susceptibility or resistance develop many 

types of autoimmune diseases controlled by multiple genetic components. Candidates are the 

polymorphic gene products of the major histocompatibility complex (MHC) and those of the T-

cell-receptor system which are involved in the initial steps of immune recognition (163). In 

addition, activated T-cells and many other immunocompetent cells have the capacity to secrete a 

large variety of cytokines. These so-called biological response modifiers play a key role in the 

immune system since they control the potential to augment or diminish the strength of 

immunological responses. At the other end of the spectrum of immune regulation, one finds the 

problems that clinicians face in bone marrow and solid organ transplantation. The recipient's 

immune system may recognize structures on foreign tissues (alloantigens) resulting in the 

rejection of the graft. Especially the gene products of the MHC are known to act as major 

barriers for successful transplantation. Besides immunosuppressive protocols, matching of MHC 

alleles between donor and recipient is known to have beneficial effects on graft survival. 

The crucial role of immunological mechanisms in the rejection of grafts was first demonstrated 

by Medawar (120) in 1944, who discovered important characteristics of this process, such as 

latency or memory induction. The involvement of cellular and humoral mechanisms in the 

immune response was described by Mitchinson in 1954 (128). Essential investigations in the 

field, e.g., the HLA-system or the differentiation of T- and B- cells were carried out in the 60´s 
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(37, 56, 126, 163). At the same time the first immunosuppressive drugs, corticosteroids, were 

developed. 

The initial experiments performed with cytotoxic agents such as benzene, toluene or irradiation 

were interrupted due to the undesirable side-effects and high rates of morbidity and mortality 

(181). Non-selective antiproliferative agents such as Cyclophosphamide, Azathioprine and 

Micophenolic acid analogues were used, alone or in combination with steroid therapy (15, 62, 

87, 153, 173). This resulted in an improvement of the transplant outcome while it maintained 

considerable harm to the patients due to their toxicity (150). Drugs that inhibit cytokine synthesis 

such as Cyclosporine A, Tacrolimus or cytokine receptor binding monoclonal antibodies such as 

anti-CD25 as well as inhibitors of signal transduction like Syrolimus improved the 

immunosuppressive therapy by prolonging the graft survival (141), diminishing the acute 

rejection episodes and permitting the reduction of steroids (150) in the therapy with the 

subsequent diminution of the side-effects. However, they show a high nephrotoxicity in 

combination therapies and other undesirable adverse events such as hypertension, neurotoxicity 

and hyperlipidaemia (141). 

Specific molecules against EC ligands, T-cell receptors or G-protein-ligand are used still 

experimentally and although the results are very promising they are not used in clinical protocols 

at the moment (2, 127).  

Despite these latest improvements of immunosuppressive agents the IRI paradigm is still a main 

obstacle in organ transplantation, vascular damage and graft rejection as most of the 

immunosuppressive agents are specific for one action yet not covering the whole spectrum of 

possible endothelial-molecular-cellular interactions. 

There is, however, a group of drugs named generally polyclonal antilymphocyte preparations, 

which may alleviate the ischemia/reperfusion paradigm, as they show a modulatory effect in the 

immune system not only against the cellular mechanisms but also against the humoral 
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mechanisms, including adhesion molecules (33, 187). This thesis will focus on the action of 

antithymocyte globulins (ATG) upon ischemia-reperfusion injury.  

Antileukocyte sera (ALS) were first described in 1899 by Metchnikoff. He proposed that 

xenoantibodies coat foreign cells, leading to their destruction (124, 125), a proposal that led to 

the application of animal antihuman polyclonal antibodies to reduce rejection reactions in 

clinical practice decades after. Several species were investigated to see which one would be the 

best source of ALS for its application on human beings. Horse would be “a priori” the best 

source due to the large quantity of product available in an individual animal. However, the 

efficacy of horse antibodies varies considerably. Sheep and goats were also dismissed due to 

their unreliability. Rabbits were identified as the best antibody producers despite the small 

quantity of serum available per animal. The antibodies present in these sera were generally 

named antilymphocyte, i.e., thymocyte globulins. 

These antibodies bind to cell surface receptors, thereby opsonizing lymphocytes for complement-

mediated lysis or reticuloendothelial cell-dependant phagocytosis. ATGs recognise most of the 

molecules involved in the T-cell activation cascade such as CD2, CD3, CD4, CD8, CD11a, 

CD18, CD25, HLA DR and HLA class I (24). Although lymphocyte depletion constitutes the 

primary mechanism of the immunosuppressive effects of ATG, other mechanisms such as 

blocking of adhesion molecules and apoptosis induction are involved. 

As explained above, depletion and modulation of peripheral blood B- and T-cells is the main 

effect of ATG (129, 166, 183, 211). T-cell depletion involves active cell death, demonstrated by 

annexin V binding (41) and TUNEL analysis (157). Maximal depletion occurred in blood by 

means of a complement-dependent lysis. A second mechanism of T-cell depletion would be an 

activation-associated apoptosis, Fas- and TNF-independent (52, 53). Profound 

immunosuppression is evidenced by a peripheral blood T-cell lymphocyte count of less than 150 

T-cells/ml (88). Monitoring of the lymphocyte subsets (CD2, CD3, CD4, CD5, CD7, CD8, 
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CD14, CD19 and CD25) confirmed the broad range of T-cell specifities of ATGs (1, 55, 160, 

190). Over 85% depletion was shown after the first two weeks of treatment for CD2, CD3, CD4, 

CD8, CD25, CD56 and CD57 lymphocytes while monocytes underwent less marked depletion 

and B-cells were almost unaffected (19). ATGs present also functional effects on preactivated T-

cells, which may be relevant in their activity on acute cellular rejection. ATG induces Fas-

Ligand (Fas-L) (CD95L) and TNFα expression on resting T cells (22). OKT3 shares this 

property although it is more active on preactivated than on resting T cells (7). Induction of Fas-L 

expression on resting cells is completely inhibited by Cyclosporine, decreased by corticosteroids 

but only marginally affected by Rapamycin. Preactivated T-cell blasts as well as NK-cells may 

also be attacked by ATGs by a mechanism of Antibody-Dependant Cellular Cytotoxicity 

(ADCC) (134). 

In addition to depletion and apoptosis induction, some major functional effects are also achieved 

by ATGs such as modulation of leukocyte surface antigens (23) and blocking of adhesion 

molecules (20), both being relevant to transplantation. 

Modulation by ATG applies to molecules that control T-cell activation (T-cell receptors CD2, 

CD3, CD4, CD5, CD6, CD8) and also to molecules involved in leukocyte endothelium 

interaction such as the ß2 integrins, especially LFA1 (CD11a). Even low concentrations of ATG 

induce a nearly complete disappearance of LFA1 on monocytes, granulocytes and lymphocytes 

(91). 

Blocking of adhesion molecules at high dosage is another property of ATGs. Important 

lymphocyte activation molecules such as ß1 and ß2 integrins and even endothelial inflammatory 

molecules such as ICAM1 are efficiently blocked by ATG (23). This property may reduce one of 

the most important features of IRI, the deleterious effects of reperfusion in the microvasculature 

of tissues and solid organs.  
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These properties have also an outstanding clinical relevance. ATGs are included in many clinical 

protocols as pre-induction therapy and post-transplantation therapy (12, 31, 78, 102) in spite of 

their side effects (85, 111, 131, 171). These unique properties of ATG preparations, not achieved 

by other immunosuppressive agents, make ATG an interesting subject of study as lymphocyte 

antigens and adhesion molecules play a crucial role in IRI. 

 

AIM OF THE STUDY 

 

Among others, IRI is a major problem in organ transplantation. Polyclonal ATGs are able to 

block the main cellular features of IRI, including cell activation and release of inflammatory and 

adhesion molecules. At the time, three different polyclonal ATGs from three companies are 

available. These drugs do not have a common origin and therefore may possess different 

molecular and clinical properties. All of them have been raised in rabbits although from different 

antigens. ATG-Fresenius (S) ® (Fresenius GmbH, Bad Homburg, Germany) is serum from 

rabbits which have been immunized with the Jurkat cell line while Thymoglobuline® (Imtix-

SangStat, California, USA) and Tecelac® (Biotest GmbH, Dreieich, Germany) are developed 

from rabbit immunization with human thymocytes. Our objective was to test the influence of 

these three different pATGs on ischemia/reperfusion injury in a non-human primate model as 

well as to compare their activity. To study the influence of ATGs on IRI, the following 

parameters were evaluated: 

• WBC subpopulations 

• Influence on blood parameters 

• WBC activation and co-activation 

• Tissue infiltration and damage 
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2. MATERIAL AND METHODS 

 

2.1. Animals 

This study was approved by the Bavarian government (N° AZ-211-2531-33/2000). The animals 

in which our experiments were performed were monkeys, from two different species, 

cynomolgus monkeys (Macacca fascicularis) and baboons (Papio hamadryas). The distribution 

in gender and age between the different monkeys as well as the body weights are given in the 

table 1. 

14 cynomolgus monkeys (Macacca fascicularis) and 5 baboons (Papio hamadryas) were 

purchased from two different centres (DPZ 1, ZVM2) and housed in the husbandry of the Institute 

for Surgical Research (ISR) for two days prior to the experiments. Animals were feed with fresh 

fruit, vegetables and pellets3. The animals were handled according to the directives from ISR and 

the local Bavarian government. 

The animals were assigned to four groups according to the ATG used for the perfusion 

experiments. The blood of all monkeys was of blood group 0. 

 

 

 

 

 

   Table 1: Distribution of the animals according to species, sex, age and weight. 

    

 

                                                 
1 Deutsches Primatenzentrum , 37077 Göttingen, Germany 
2 Zentrale Versuchstierhaltung der Innenstadt. Klinikum LMU, München, Germany 
3 ssniff Mü Z©; ssniff Versuchstier-Diäten GmbH, Soest, Germany 

Species Number Male Female Age (months) Weight (Kg) 

Cynomolgus 14 8 6 52,57 + 35,84 4,02 + 0,85 

Baboon 5 3 2 47 + 27,29 5,38 + 3,58 
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Species Biotest Fresenius Merieux Control 

Cynomolgus 4 3 4 3 

Baboon 2 1 1 1 

      
     Table 2: Distribution of the animals according to ATG 
 

2.2. Donors 

300 ml of blood were taken from 19 different volunteers 1 hour prior to the begin of the 

reperfusion. Both male and female donors were accepted. In some cases a second donation was 

needed and obtained from a different donor. All donors were free from chronic or acute diseases. 

The blood was collected with a butterfly catheter4 and stored in 50 ml syringes5  previously 

rinsed with heparin6 in an incubator maintaining a constant temperature of 37°C. The blood of all 

donors was of blood group 0.  

 

2.3. Design of the Groups 

Isolated limbs of the animals were considered as single experiments except those in which 

perfusion was not possible due to technical reasons. The limbs were classified into eight different 

groups according to the ATG present in the perfusing blood and the length of the ischemia time. 

The polyclonal ATGs employed were: 

• Tecelac ®, ATG-Biotest, Biotest GmbH, Germany 

• ATG-Fresenius (S)®, Fresenius kabi GmbH, Bad Homburg, Germany 

• Thymoglobuline®, ATG-Merieux, Imtix-SangStat, California USA 

 

 

                                                 
4 LEM 21 G-0,80© pfm Produkte für die Medizin; 50996 Köln, Germany 
5 Braun Injekt 50ml B.Braun Melsungen AG, 34209 Melsungen, Germany 
6 Heparin-Natrium Braun 25000 i.e. B.Braun Melsungen AG , Melsungen, Germany 
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The ischemia times ranged from: 

• Short Ischemia (SI): 60 + 10 minutes 

• Long Ischemia (LI): 120 + 10 minutes 

 

 A total of 60 single experiments was performed and divided into groups named according to the 

ATG used and the ischemia time as follows: 

Group Abbreviation Number of experiments 

Biotest Short Ischemia BSI 11 

Fresenius Short Ischemia FSI 7 

Merieux Short Ischemia MSI 7 

Control Short Ischemia CSI 9 

Biotest Long Ischemia BLI 9 

Fresenius Long Ischemia FLI 5 

Merieux Long Ischemia MLI 4 

Control Long Ischemia CLI 8 

 
Table 3: Design of the experimental groups. 
 

2.4. Anaesthesia and surgical procedure 

The animals were pre-medicated by an intramuscular (i.m.) injection of 15 mg/kg of Ketamine7, 

2 mg/kg of Xylazine8 and 0,1 mg/kg Atropine9. After 10-20 minutes the animals were intubated 

                                                 
7 Ketavet© Pharmacia & Upjohn GmbH 91058 Erlangen, Germany 
8 Rompun© BayerVital GmbH 51368 Leverkusen, Germany 
9 Atropinsulfat Braun 0,5mg. B.Braun Melsungen AG ,34209 Melsungen, Germany 
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with the help of an animal laryngoscope10 using an endotracheal guide11 and ventilated by means 

of a ventilator12. Ventilator settings were adjusted to obtain normocapnia. 

Catheterisation of the internal jugular vein was performed in order to have an access for the 

intravenous administration of narcotics, analgesics, muscle relaxants and electrolytes. 

Anaesthesia was maintained by continuous intravenous injection of 0,08 mg/kg/h Fentanyl13 and 

9, 6 mg/kg/h of Midazolam14. The internal carotid artery was also catheterised and the catheter 

connected to a computer15 by means of a signal transducer16, controlling heart rate and systolic as 

well as diastolic pressure. The limbs of the animal were carefully shaved and disinfected with an 

external antiseptic17. The animals were then fixed in supine position on a special vacuum pouch.  

The surgical procedure consisted of isolating the main arterial and venous vessels of both arms 

and legs so that we could perfuse each of them apart from the main body circulation. This 

operation was performed first in the right inferior extremity and then in the left one. A 

longitudinal incision in the inguinal flexure along the sartorious muscle after trespassing the 

muscle fascia was performed, allowing us to dissect the adjacent tissues to the common femoral 

artery before the division of the lateral femoral artery. Catheterisation of both arterial and venous 

vessels with plastic catheters as well as flushing of the limb with  Ringer’s Lactate of a 

temperature of 4°C were performed, draining the monkey’s blood out of the limb and inducing 

cold ischemia. 

To reach the arm vessels we started with a transversal incision in the axilar region, following the 

opposite order as in the lower extremities (first left arm, then right arm). Once located, the 

brachial artery was fixed with two threads and the axillary vein was isolated. After having 

                                                 
10 Intubationssysteme Draeger, Germany 
11 Safety-Flex© Mallinckrodt Medical; Athione, Ireland. 
12 100-IVB Infant Ventilator; Sechrist Industries.Inc, Anaheim, USA 
13 Fentanyl© Janssen GmbH, Neuss, Germany 
14 Dormicum© H. La Roche AG, Grenzach Whylen, Germany  
15 AMD 486. Digital GmbH, Germany 
16 Plugsys©, HugoSachs Elektronik. March-Hugstetten, 79232 Germany 
17 Kodan©, Shülke&Mair GmbH, Norderstedt, Germany 
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dissected both vessels we ligated them and catheterised them with plastic catheters of 0,9 mm to 

1,1 mm diameter. The arm was then flushed with Ringer’s Lactate18 of 4°C temperature via the 

artery. Our purpose was not only to drain the monkey arm’s blood but also to minimise the 

reperfusion injury by means of reducing the time of warm ischemia and to study the effect of 

different ischemia times in the tissues . 

A plastic string19 placed close to the hip respectively shoulder joint was used for compression in 

order to prevent reflux of the perfusing human blood into the systemic circulation. Blood gases 

as well as cell counts were evaluated in arterial blood samples from the animal during the 

surgical preparation. 

 

2.5. Preparation of human blood 

The haematocrit of the blood used to perfuse the monkey limbs was adjusted to a value of 30% 

(+ 2%) by adding Krebs-Henseleit-buffer20 (144). This facilitates the perfusion by decreasing the 

viscosity of the blood without jeopardising tissue oxygenation (194). For intravital microscopy 

(IVM), plasma was stained with sodium fluoresceine21 and the leucocytes with Rhodamine 6-G 

(0,096 mg/ml)22 (97), added to the blood prior to the reperfusion. 

The three different ATGs23 were added to the human blood 30 minutes before the perfusion with 

a standard dosage of 1ml/kg. The human blood was perfused at a constant temperature of 37 C° 

into the animal limbs through the arterial vessel with the help of a perfusion system that will be 

explained in further chapters.  

 

                                                 
18 Ringer’s-Lactat-Infusionslösung; B.Braun Melsungen AG, 34209 Melsungen, Germany 
19 ISR LMU. München, Germany 
20 ISR-LMU; München, Germany 
21 Fluoresceinisothiocyanate Isomer I, Sigma Chemical Co., St. Louis, USA 
22 Rhodamin© Merck, Darmstadt, Germany 
23 ATG-Biotest, Biotest GmbH, Dreieich, Germany 
    ATG-Fresenius, Fresenius kabi GmbH, Bad Homburg, Germany 
    ATG-Merieux, Imtix Sangstat, California, USA 
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2.6. Perfusion system 

The perfusion system (Fig. 1) (194) consisted of a custom made steel blood reservoir24 with a 

volume of 500 ml. The blood was pumped from the reservoir into a custom-made aluminium 

oxygenator25 by means of a roller pump26. Both reservoir and oxygenator were equipped with a 

heating system27, allowing maintenance of a constant blood temperature of 37 °C (194). A 

computer28 was linked to the system via either a pressure transducer29 or a flow probe30, allowing 

to adjust both parameters. The human blood flowed through a hemo-filter (pore size: 60µm.)31 

and a bubble trap 32 and was finally directed to the isolated arterial vessel of the limb. After 

circulation through the limb, the blood was drained from the vein and re-directed to the reservoir.  

 

2.7. Intravital Microscopy 

Intravital microscopy (IVM) was performed to investigate the microcirculatory parameters and 

endothelial-leukocyte interaction. For this purpose we stained the plasma with sodium 

fluoresceine and the leukocytes with Rhodamine 6-G before placing the human blood into the 

system. Heparin served as anticoagulant. 

A capillary window was opened in the surface of the elbow for the upper limbs and below the 

knee for the lower. During perfusion, microcirculation of these capillary windows was directly 

investigated using a fluorescence intravital microscope33 with epi-illumination and different filter 

blocks34. The IVM investigation is the main subject of the doctoral thesis of D. Chappell. The 

                                                 
24 ISR-LMU, München, Germany 
25 ISR-LMU, München, Germany 
26 IPS,Ismatec SA, Zürich, Switzerland 
27 ISR-LMU, München, Germany 
28 AMD-486DX,Digital GmbH, München, Germany 
29 COMP DT-Xx, Ohmeda, Murray-Hill, NJ, USA. 
30 Transonic Flow Probe, Transonic Systems Inc. Ithaca, NY, USA 
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microscopic pictures were transferred via a CCD-camera35 to a video monitor36 and recorded 

with a SVHS video recording unit37. The system settings are illustrated in figure number 1. 

 

 

 

 

 

 

 

Figure 1: Perfusion system (with permission, Xenotransplantation 2001 8:95) 

 

2.8. Blood samples. Blood parameters 

2.8.1. Monitoring of the animal 

Blood samples were collected during the two different phases of our experiments. During the 

surgical procedure, 2 ml blood samples were taken with the help of a 2 ml syringe38 from the 

carotid artery at the time points 0, 15, 30, 45, 60, 90, 120 minutes. These samples were 

transported in Eppendorf cups39 and analysed with a Cell Counter40 to measure the following 

blood parameters during the surgical procedure: leukocytes, erythrocytes, platelets, haematocrit 

and haemoglobin. The same blood samples were used at the time points 0, 30 and 60 minutes to 

measure the PO2, PCO2, pH and HCO3 levels with the help of a gas analyser. Additional samples 

were collected in order to measure gas levels when needed to control the state of the animal. 

                                                 
35 C2400-08,Fa.Hamamatsu Photonics,Herrsching, Germany 
36Wv-5470, Panasonic, München, Germany 
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38 Braun Injekt 2ml B.Braun Melsungen AG, 34209 Melsungen, Germany 
39 Sarstedt, 51588 Nümbrecht, Germany 
40 Coulter© Counter Ac T8, Coulter Electronics. Ltd , Luton, UK 
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Blood samples were collected from the donated blood before and after the blood was diluted to a 

haematocrit of 30% and the parameters mentioned above were also measured. These blood 

samples were named –1 for the donor blood and 0 for the diluted blood.  

 

2.8.2. Blood samples during the perfusion 

During the perfusion of the limbs, blood samples were collected from the perfusion system. 2 ml 

arterial blood samples were taken at the time points 1, 5, 10, 15, 30, 45 and 60 minutes after 

onset of reperfusion to measure blood parameters of the perfusate, storing these 14 ml ( 2 ml x 7 

time points) of  blood to perform cytological and immunocytochemical studies. At the time 

points 1, 15, 30, 45 and 60 minutes 2 ml of blood were collected to measure the oxygenation 

level of the perfusate.  

Blood parameters studied in our experiments were: 

• Erythrocytes (RBC) : Expressed in x106/µL 

• Leukocytes (WBC) : Expressed in x10³/µL 

• Platelets (Plat) : Expressed in x10³/µL 

• Haematocrit (Hct) : Expressed in % 

• Haemoglobin (Hb) : Expressed in mg/dl 

2.9. Smears 

Blood smears were performed to evaluate and quantify the presence and morphology of myeloid 

and erythroid cells in whole blood. Blood was anticoagulated with heparin. One drop of well 

mixed blood was spread over a glass slide41, dried and stained by hand or automatically with: 

- May-Grünwald solution42 for    3-4 minutes 

- Aqua dest. rinsing43                   2 minutes 

                                                 
41 Menzel-Glaser GmbH, München, Germany 
42 ISR-LMU, München, Germany 
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- Giemsa solution44 (1/20)   for    15-20 minutes 

- Aqua dest. rinsing                      2 minutes 

 

The dyes were prepared freshly and filtered daily. After drying, the slides were covered with a 

plastic slide45. A general view for rough information was performed using a x100 magnification, 

while x400-x600 magnifications were used to evaluate preparations with a light microscope46.  

 

2.10. Cyto-immunological Monitoring (CIM) 

CIM is a non invasive and non traumatic method for diagnosing inflammatory events in the 

postoperative phase of transplantation. CIM is based on the observation that lymphocytes as well 

as their activated forms disseminate from the rejecting graft modulating the recipient’s lymphoid 

organs (64). 

CIM consists of two tests. The first of them is a fast cytological differentiation of white blood 

cells separated from the peripheral blood that inform roughly about inflammatory events. This 

test should be used when there is no clinical sign of rejection or inflammation. The second test is 

called extended test and consists of the differentiation of mononuclear cell subpopulations by 

immunological methods and should be applied immediately in case of clinical signs of acute 

rejection or infection. We performed CIM as a reliable method to establish the diminution and 

activation of these cell populations. 

After the smear was prepared, the rest of the blood was separated over a Ficoll-Hypaque gradient 

of a density of d=1,077 according to the method of Böyum (64). 0,5 ml of blood mixed with the 

                                                                                                                                                             
43 B.Braun Melsungen AG 34209 Melsungen, Germany 
44 ISR-LMU, München, Germany 
45 Dako GmbH, Hamburg, Germany 
46 Carl Zeiss,37030 Göttingen, Germany 
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same amount of PBS47 were carefully layered over 0,5 ml of Ficoll. Every micro tube48 (1,5 ml) 

was spun at 3200 rpm for 2 minutes in a centrifuge49 and the interphase ring consisting of 

mononuclear cells was transferred to a new microtube and washed two times with PBS. The 

mononuclear concentrate was divided into the machine cuvettes50 and centrifuged for 5 minutes 

at 500 rpm. After this procedure the cytopreps were dried and stained following the May-

Grünwald-Giemsa technique or frozen for immunoperoxidase staining and further 

immunohistochemical studies. 

Cytological slides of the mononuclear concentrate were studied according to a fixed schedule of 

microscope magnification. A general view for rough information was performed using x100 

magnification, while x400-x600 were used to evaluate preparations with no signs of activation. 

In case of cell activation x1000 magnification was employed. Evaluation was performed with the 

help of a light microscope. All immature and polymorphonuclear cells were taken into 

consideration. 

 

2.11. Biopsies 

Biopsy material was obtained from muscle and connective tissue from the limbs of the monkeys 

at the end of the experiment. The biopsies were snap-frozen in liquid nitrogen51 at a temperature 

of –192 C° and stored at –80 C° in an industrial fridge52 for later immunohistological 

investigation. Other specimens were stored in 8% formaline53  for 48 to 72 hours and fixed in 

                                                 
47 Biochrom KG, D-1000 Berlin, Germany 
48 Nunc Cryo Tube© vials, Nalge nunc International, Denmark 
49 Centrifuge 5415 C©, Eppendorf GmbH, 23331 Hamburg, Germany 
50 Eppendorf GmbH, 23331 Hamburg, Germany 
51 Messer Griesheim, 57555 Euteneuen, Germany 
52 Colora UF85-4605©, Colora MessTechnik, Germany 
53 Apotheke Klinikum Großhadern-LMU, München, Germany 
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paraffin54 for later immunohistochemical and histological studies. The biopsies were assigned to 

eight groups according to the ATG employed and the ischemia duration. 

Histological sections of 6 µm were cut from the paraffin-embedded tissue, dehydrated and fixed 

in xylol55 for later immunohistochemical studies. 

The frozen biopsies were cut in 4-µm to 7-µm cryostat56 sections at a temperature of –15 C°, air-

dried and fixed in acetone57 for 10 minutes. H/E was performed in one of every ten slices to 

check the adequate orientation of the preparation. 

 

Group Frozen Biopsies Paraffin blocks 

BSI 20 20 

FSI 14 14 

MSI 12 12 

CSI 10 10 

BLI 16 16 

FLI 10 10 

MLI 8 8 

CLI 8 8 

 
Table 4: Distribution of the biopsies within study groups according to the technique employed. 
 

2.12. Histological and immunohistochemical techniques 

Histological and immunohistochemical techniques were performed to evaluate the state of the 

WBC subpopulations, the infiltrate associated to IRI and the cytotoxic effect of the drugs 

employed. Several techniques were used in order to localise the different types of cells, vessels 
                                                 
54 Dako GmbH,Hamburg, Deutschland 
55 Apotheke Klinikum Großhadern-LMU, München, Germany 
56 Microm HM 560, Microm GmbH, 69190 Waldorf, Germany 
57 Apotheke Klinikum Großhadern-LMU, München, Germany 
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and muscle fibres. It was also important to determine the localisation of the cell subsets related to 

the duration of ischemia. These different histological techniques are described as follows:  

 

• Haematoxylin / Eosin (H/E):  

The H/E staining is one of the most often performed histological techniques due to the great 

cellular details obtained by means of a simple procedure. Haematoxylin stains the nuclei of the 

cells with a dark blue colour. Eosin stains the muscle fibres and fibrin with red and the cytoplasm 

of cells with a pale pink colour. Haematoxylin is a cationic colorant while Eosin is an anionic 

colorant belonging to the xanthenes family. 

The preparations were introduced for four minutes in Haematoxylin58, washed with PBS and 

introduced in Eosin59 (solution 1%) during 1-2 minutes. After washing with ethanol60 70% to 

eliminate the rests of Eosin, the slices were covered with a plastic or glass slide, fixed with 

balsam or synthetic glue61. 

 

• Masson’s Thrichrome: 

This technique allows us to differentiate muscle fibres, cell nuclei, fibrin and collagen. Nuclei, 

centrosomes and secreting granules are dyed black, muscle fibres red and collagen blue. The 

preparations are immersed in Eosin solution 30 minutes after deparaffination, washed with aqua 

dest.62, immersed for 30 minutes in a Haematoxylin solution and again washed with aqua dest. 

After that, differentiation in alcohol is performed during 10-30 minutes and the preparations are 

                                                 
58 Apotheke Klinikum Großhadern-LMU, München, Germany 
59 Apotheke Klinikum Großhadern-LMU, München, Germany 
60 Apotheke Klinikum Großhadern-LMU, München, Germany 
61 Dako Diagnostika GmbH,22047 Hamburg, Germany 
62 Apotheke Klinikum Großhadern-LMU, München, Germany 
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stained with fuchsine63 for 5 minutes, washed with aqua dest. and covered with a plastic or glass 

slide. The histological slides are then mounted and fixed with balsam or synthetic glue. 

 

• Granulocyte Esterase (GE): 

This technique allows differentiation of granulocytes from other WBC. Granulocytes are stained 

in a dark violet colour with black nuclei in contrast to no positive staining of lymphocytes and 

monocytes.  

The preparations are immersed for 30 seconds in formaldehyde solution64, afterwards washed 

with aqua dest., then immersed shielded from light during 30 minutes in ASDCL solution65 

(Fast-Red violet66 + Sodium Nitrite + Buffer + Chloroacetate) , washed with aqua dest., stained 

for two minutes with simple Mayer´s Haematoxylin solution, washed with normal water, then 

washed with aqua dest. and finally air dried and covered with a plastic slide. 

 

• CD45 (LCA) : 

The primary antibody anti-CD45 is also called Leukocyte Common Antigen (LCA) due to its 

capacity to stain all cell subsets of WBC by staining the tyrosin-phosphatase present in signal 

transduction of these cells. We were interested in demonstrating the presence or absence of WBC 

after the perfusion with or without ATG. We performed this immunohistochemical staining 

according to standard rules, described in continuation, using an anti-human monoclonal antibody 

from mouse67 . 

                                                 
63 Apotheke Klinikum Großhadern-LMU, München, Germany 
64 Apotheke Klinikum Großhadern-LMU, München, Germany 
65 Apotheke Klinikum Großhadern-LMU, München, Germany 
66 Dako Diagnostika GmbH,22047 Hamburg, Germany 
67 Dako Diagnostika GmbH,22047 Hamburg, Germany 
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The immunohistochemical procedure was performed in 4 nm cryostat sections, air dried and 

fixed in acetone68 for 10 minutes. After incubation with human serum in phosphate-buffered 

saline (PBS)69 for 10 minutes, the sections were incubated with 100 ml of 1:100 and 1:250 

dilutions, in PBS, of the primary antibody overnight at 4 C°. The secondary reaction was 

performed according to Hsu et al.(77) with an ABC complex70 for indirect immunostaining. The 

immunoreaction was developed with 3; 3´-diaminobenzidine tetrachloride71 (DAB) and H2O2
72

 

to prevent cross reactions with endogenous peroxidase, dehydrated and mounted in a glass 

mountant73. 

• Interleukin 4 (IL-4) 

Interleukin 4 (IL-4, B-cell growth factor-1, BSF-1) is a T-cell derived cytokine that plays an 

important role in the activation of resting B-cells, being irreplaceable in the process of activation 

of Th2 lymphocytes.The same procedure as explained for CD45 was applied in this case, using 

an anti-human monoclonal antibody74 against interleukin 4. Immunostaining of IL-4 was 

performed to determine whether ATG had an influence on the cellular expression and release of 

this cytokine and subsequently on the activation of helper lymphocytes. 

• Thrombocytes and Endothelial Cells (CD31) : 

Thrombocytes were stained with indirect immunoperoxidase to localise their presence, 

aggregation and participation in thrombus formation. Immunostaining was done with an anti-

human monoclonal antibody for CD3175. 

                                                 
68 Apotheke Klinikum Großhadern-LMU, München, Germany 
69 Apotheke Klinikum Großhadern-LMU, München, Germany 
70 Sigma GmbH, Hamburg, Germany  
71 Dako Diagnostika GmbH,22047 Hamburg, Germany 
72 Apotheke Klinikum Großhadern-LMU, München, Germany 
73 Dako Diagnostika GmbH,22047 Hamburg, Germany 
74 R&D Systems, Waldorf, Germany 
75 Dako Diagnostika GmbH,22047 Hamburg, Germany 
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The immunohistochemical procedure was performed in 4-7 µm paraffin sections, air dried, and 

fixed in acetone for 10 minutes. After incubation with human serum in phosphate-buffered saline 

(PBS) for 10 minutes, the sections were incubated with 100 ml of a 1:10 dilution, in PBS, of the 

primary antibody at 4°C overnight. The secondary reaction was performed with the streptavidin-

biotin LSAB©76 complex for indirect immunostaining. The immunoreaction was developed with 

3; 3´-diaminobenzidine tetrachloride and H2O2 to prevent cross reactions with endogenous 

peroxidase, dehydrated and mounted in a glass mountant. 

 

• Fibrin:  

Fibrin was stained according to Weiger’s technique. This method allows to differentiate fibrin 

(homogeneous, brilliant pink) from muscle fibres (red). After deparaffination the slices were 

fixed in Chrome77 and treated with permanganate78 . The nuclei were stained with Lithium 

Carmine79, washed in aqua dest., drained in filter paper80, stained with Gentian violet81 for 15-20 

seconds, drained in filter paper, stained with Lugol solution82 for 15-20 seconds, drained in filter 

paper, differentiated with Aniline Oil83 and covered with a plastic or glass slide. 

 

 

2.13. Histological evaluation 

Semiquantitative evaluation of the histological section was done in seven tissue fields per biopsy, 

chosen by coincidence. Different criteria of evaluation were considered according to the staining 

performed. This method is extensively described in the literature (17, 38, 74, 149). We have 

                                                 
76 Dako Diagnostika GmbH,22047 Hamburg, Germany 
77 Apotheke Klinikum Großhadern-LMU, München, Germany 
78 Apotheke Klinikum Großhadern-LMU, München, Germany 
79 Apotheke Klinikum Großhadern-LMU, München, Germany 
80 Dako Diagnostika GmbH,22047 Hamburg, Germany 
81 Apotheke Klinikum Großhadern-LMU, München, Germany 
82 Apotheke Klinikum Großhadern-LMU, München, Germany 
83 Apotheke Klinikum Großhadern-LMU, München, Germany 
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modified the one described by Koo et a. (95). The following criteria were established for the 

histological evaluation: 

 

• Muscle damage: loss of architecture, necrosis or signs of ischemia were considered: 

- normal architecture: 0 

- light damage: 1 

- moderate damage: 2 

- severe damage: 3 

• Soft tissue infiltration: Connective tissues present in the biopsy as well as connective 

perimisial structures were considered. 

- any WBC in these structures: 1 

- more than 10 cells per field: 2 

- more than 25 cells per field: 3 

• Vascular infiltration: Cells present in the vascular spaces were considered, free or attached to 

the endothelial walls. 

- free cells in the vessels: 1 

- free and attached to the endothelial cells: 2 

- free cells, attached cells, granulocytes, occluding or almost occluding 

the vessel lumen: 3 

• Perivascular infiltration: Presence of WBC in any tissue adjacent to the vessels: 

- presence of cells attached to endothelial walls: 1 

- presence of cells in perivascular connective tissue: 2 

- presence of cells in perivascular connective tissue and muscular 

tissue:3  
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• Muscular infiltration:  

-     no cells in muscle fibres: 0 

- 1-5 cells pro muscular fibre: 1 

- >10 cells pro muscular fibre: 2 

- >25 cells pro muscular fibre: 3  

Results are expressed as the mean values obtained from the different fields studied. The 

preparations were labelled with a code and evaluated blindly. 

 

Fibrin, Masson’s T and CD31 immunostaining were performed to localise fibrin and thrombus 

formation and the criteria were established as follows: 

• Presence of fibrin or thrombocytes in the vascular spaces: 

- presence of fibrin or thrombocytes without occlusion: 1 

- occlusion of the vessel: 2  

- occlusion of the vessel and destruction of the vascular or endothelial 

integrity: 3 

A fixed number of vessels, n=7, were studied blindly per section. The results are expressed as the 

mean of the sections studied. 

The immunoreaction with IL4 was classified as positive or negative depending on the presence 

or absence of this molecule in the sections studied. 

 

2.13. Statistical analysis 

Statistical descriptive analysis of the results was performed with Excel84. Data are presented as 

median + standard deviation. The analytical studies were performed with Excel and S-plus 

                                                 
84 Office XP, Microsoft©, NJ, USA 
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statistical programmes85. The method employed was Analysis of Variance (ANOVA) for 

different variables. The variable “time of perfusion“ was studied with Excel. After ANOVA, 

Tukey’s test for normally distributed values and Dunnet’s or Dunn’s tests for non normally 

distributed values were used for posterior multiple comparisons. The variables studied with S-

plus were “drug” and “time of ischemia”. Scheffe´s test was employed “a posteriori” when 

statistical significances were detected between the groups for the variables “time of ischemia” 

and “drug”. We used Scheffe´s test as we needed tests appropriate for multiple comparisons. 

Multiple comparison tests are characterised by considering the number of tests that could be 

made. Scheffe´s test is a valid, fairly conservative test, sufficiently generalised to be applicable 

to unequal designs. Applying this test, all possible contrasts can be tested for significance, or 

confidence intervals constructed for corresponding linear functions of parameters (184).  

The analytical graphics were designed applying the smooth/splining technique to the previously 

mentioned statistical tests. Nonparametric function estimation with stochastic data, otherwise 

known as smoothing, has been largely studied (32). Smoothing spline ANOVA models are a 

versatile family of smoothing methods that are suitable for both univariate and multivariate 

problems. This method allows constructing multivariate models with ANOVA. Statistical 

significance was accepted when p<0, 05. 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
85 S-plus ©, Microsoft©, NJ, USA 
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3. RESULTS 

3.1 Blood Parameters 

Median and standard deviation values of the following parameters: WBC, RBC, platelets, 

haematocrit and haemoglobin for every time point are presented in the following pages. 

Statistical analysis to investigate the differences between groups was performed. Time point 0 

(blood diluted to a haematocrit of 30%) was taken as control for the study of “time of perfusion” 

as variable. 

3.1.1. WBC 

• Short Ischemia: BSI-FSI-MSI-CSI 

The number of circulating WBC in PB of the CSI showed no decrease. In contrast to this, the 

number of WBC was significantly decreased during reperfusion in the FSI group (p<0.05; Tukey 

test). Decreases of the number of WBC of BSI and MSI showed no statistical significance.  

Fig. 2: WBC-Short Ischemia: Number of WBC in peripheral blood during the reperfusion in SI time. Values are 

given as median and standard deviation. *Time point vs. Control [Time point 0] (p<0, 05)  
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• Long Ischemia: CLI, FLI, BLI, MLI 

The number of circulating WBC in PB of the CLI showed no significant decrease. In contrast to 

this, the number of WBC was significantly decreased during reperfusion in the FLI group 

(p<0,05; Tukey test). Decreases of the number of WBC of MLI showed no statistical 

significance (figure 3). However, reperfusion in the BLI group showed a significant decrease in 

the number of WBC after the 15 minute (p<0,05, Tukey test).  

 

Fig. 3: WBC-Long Ischemia: Number of WBC in peripheral blood during the reperfusion in LI time. Values are given 

as median and standard deviation. *Time point vs. Control [Time point 0] (p<0, 05) 
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• Ischemia Time: p = 0.056 

Scheffe´s test (p < 0.05) was applied “a posteriori” to the drug and the ischemia time variables to 

determine which groups presented differences between them according to the following factors: 

• The number of circulating WBC in the three ATG groups was statistically lower than   

the number of WBC in the control group both for SI and LI times (p<0,05).  

• Applying the test to the ischemia time, only the group Merieux presented significant 

differences between short time and long time of ischemia, showing a higher number of 

WBC in MLI than in MSI (p<0,05).  

These significances can be expressed graphically through smoothing-spline of ANOVA and 

Scheffe´s test, allowing one to create a theoretical model of the variable in relation to the groups 

studied. 
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Fig. 4: Smoothing-Spline of WBC: The number of circulating WBC in the three ATG groups was statistically lower 

than the number of WBC in the control group both in SI and LI times (*Control vs. Biotest-ATG; § Control vs. 

Fresenius-ATG; # Control vs. Merieux-ATG: p<0,05). 

* 
§ 
# 
 

* 
§ 
# 
 



 35

-20 0 20 40 60

-20 0 20 40 60

TIME

1

2

3

4

5

6

7

1

2

3

4

5

6

7

W
BC

SI
LI

CONTROL BIOTEST

FRESENIUS MERIEUX

Blood Parameters: WBC

 

Fig. 5: Smoothing-Spline of WBC: Only Merieux-ATG groups experienced statistically significant differences 

between long and short ischemia in the number of WBC, these being significantly higher in LI times (# Merieux LI 

vs. Merieux SI: p< 0,05). The other groups, including control, showed no statistical significance. 

 

3.1.2 RBC  

 

• Short Ischemia: BSI-FSI-MSI-CSI 

Analysis of the circulating number of RBC during perfusion with human blood treated with a 

standard dosage of ATG (1mg/kg) after a short ischemia period showed the following results. 

CSI, MSI and FSI groups presented no significant variation of the number of RBC during the 

reperfusion. BSI group, however, showed a significant increase of the number of circulating 

RBC at the end of the reperfusion (p< 0,05, Dunn’s test). 
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Fig. 6: RBC-Short Ischemia: Number of RBC in peripheral blood during the reperfusion in SI time. Values are given 

as median and standard deviation. *Time point vs. Control [Time point 0] (p<0, 05) 
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reperfusion.  
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Fig. 7: RBC Long Ischemia: Number of RBC in peripheral blood during the reperfusion in LI time. Values are given 

as median and standard deviation. *Time point vs. Control [Time point 0] (p<0, 05)                                                                           
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Fig. 8: Smoothing-Spline of RBC for SI and LI: The number of RBC in the three ATG groups  was significantly 

higher than the number of RBC in the control group both in SI and LI ischemia times (*Control vs. Biotest-ATG; § 

Control vs. Fresenius-ATG; # Control vs. Merieux-ATG: p<0,05). 
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Fig. 9: Smoothing-Spline of RBC for SI and LI: No differences according the ischemia time were found within the 

groups. 
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3.1.3. Platelets 

 

• Short Ischemia: BSI-FSI-MSI-CSI 

Analysis of the number of circulating platelets in peripheral blood throughout reperfusion with 

human blood after short ischemia showed the following results. In the short ischemia groups 

only the BSI group showed a statistically significant decrease of the number of platelets during 

the reperfusion (p< 0,05, Tukey’s test).  

 

Fig. 10: Thrombocytes-Short Ischemia: Absolute numbers of platelets in PB during reperfusion after SI time. 

Observe the decrease of the number of thrombocytes in the Biotest-ATG group (BSI). Values are given as median 

and standard deviation. *Time point vs. Control [Time point 0] (p<0, 05) 
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Analysis of the number of circulating thrombocytes after long ischemia showed the following 
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reperfusion (p< 0,05, Tukey’s test). In contrast to this, FLI and CLI showed no significant 

differences.  

 

Fig. 11: Thrombocytes-Long Ischemia: Absolute numbers of platelets in PB during the reperfusion after LI time. 

Observe the decrease of the number of thrombocytes in the Biotest-ATG group (BSI). Values are given as median 

and standard deviation. *Time point vs. Control [Time point 0] (p<0, 05) 

 

The number of peripheral thrombocytes showed differences between the ATG groups and 

control as well as differences within the ATG groups. Variable “drug” showed a statistical 

significance of p< 0,001, while “ischemia time” showed no general significance. Scheffe´s test 

was applied to “drug” and “ischemia time” variables to assess further differences within the ATG 

and the control groups. According to the ATG added, the results were as follows: The numbers 

of platelets remained at values between 100 and 250 x 10³/µL for both the control groups and the 

Fresenius groups. The numbers of platelets for the Merieux and the Biotest groups decreased. 

The statistical significance accepted was p< 0, 05. Control showed a statistically significant 
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higher number of platelets when compared with Biotest and Merieux groups for both long and 

short ischemia times. 

Applying the Scheffe´s test to the ischemia time, only the Merieux ATG group showed a 

significant difference on the number of peripheral thrombocytes with different ischemia times. 

The number of thrombocytes was higher in the MLI group. Control and the other two ATG 

groups showed no significant difference. However, the ischemia time as an independent variable 

has an influence when comparing the different drugs in short other long time of ischemia. ATG-

Fresenius presents no statistical difference in number of platelets when compared to the Merieux 

group in LI Time, although this difference exists in the SI time. By means of smoothing-spline a 

multivariate model of the number of platelets under these conditions was designed (Figs. 12, 13). 
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Fig. 12: Smoothing-Spline of Thrombocytes for SI and LI : The number of platelets in the control group was 

significantly higher than the number of platelets in the Biotest-ATG and Merieux-ATG groups  both for short and 

long ischemia times. Number of platelets of the Fresenius-ATG group was significantly higher than the number of 

thrombocytes of the Merieux-ATG group (*Control vs. Biotest-ATG; # Control vs. Merieux-ATG; § Fresenius-ATG 

vs. Merieux-ATG: p<0, 05). 
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Fig. 13: Smoothing-Spline of Thrombocytes for SI and LI : After statistical analysis, only the Merieux ATG group 

showed a significant difference in the  number of  peripheral thrombocytes with different ischemia times, the amount of 

thrombocytes being higher in the LI group. (# Merieux LI vs. Merieux SI: p<0, 05) 
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Fig. 14: HCT in %- Short Ischemia: haematocrit in % during the reperfusion after SI time. Values are given as 

median and standard deviation. *Time point vs. Control [Time point 0] (p<0, 05)  

 

• Long Ischemia: BLI, FLI, MLI, CLI 

Analysis of the haematocrit during reperfusion with human blood after a LI period expressed the 

following variations. BLI and FLI presented a statistically significant increase of the Hct at the 

end of the reperfusion (p< 0,05, Dunn’s test). In contrast to this, CLI and MLI experienced no 

significant variation. 

Fig. 15: HCT in %- Long Ischemia: haematocrit in % during the reperfusion in LI time. Values are given as 

median and standard deviation. *Time point vs. Control [Time point 0] (p<0, 05) 
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As explained in material and methods the blood was diluted with Krebs-Henseleit-Buffer 

solution to a haematocrit of 30%. The variations of this value were studied with statistical 

methods and the results compared within the different groups. Ischemia time as a variable 

showed no statistical signification. However, “drug”, taken as variable, showed statistical 

signification with p<0,001. After applying the Scheffe´s test to the “drug” variable, we 

observed that the decrease of haematocrit of the control groups was statistically significant 

with a p<0.05. This difference exists also when the analysis is performed for both times of 

ischemia. 
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Fig. 16: Smoothing-Spline of haematocrit in %: The Hct in the three ATG groups  was significantly higher than in 

the control group both in short and long ischemia times (*Control vs. Biotest-ATG; § Control vs. Fresenius-ATG; # 

Control vs. Merieux-ATG: p<0,05). 
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Fig. 17: Smoothing-Spline of haematocrit in %: No statistically significant differences were found according to the 

length of the ischemia times within the study groups. 
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Fig. 18: Hb (g/dl)-Short Ischemia: Amount of Hb of the study groups after a SI period. Values are given as 

median and standard deviation. *Time point vs. Control [Time point 0] (p<0, 05)  

• Long Ischemia: 

Haemoglobin values in the different study groups after a LI period showed the following results. 

BLI and FLI presented a statistically significant increase of the Hct at the end of the reperfusion 

(p< 0,05, BLI: Dunn’s test; FLI: Dunnet’s test). In contrast to this, CLI and MLI experienced no 

significant variation. 

Fig. 19:Hb (g/dl)-Long Ischemia: Amount of hb of the study groups after a LI period. Values are given as median 

and standard deviation. *Time point vs. Control [Time point 0] (p<0, 05) 
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The haemoglobin values are substantially related to the values of erythrocytes and haematocrit. 

Therefore they present a similar behaviour after ATG treatment. The “ischemia time”, taken as 

variable alone, showed no significant differences between the ATG groups and the control 

groups. “Perfusion time” and “drug” presented statistically significant differences for p< 0,001. 

When we consider the variable “drug” , the values of haemoglobin in the ATG groups are higher 

than in the control groups, the same as happened before with erythrocytes and haematocrit. The 

differences between them after applying the Scheffe´s test are statistically significant (p<0, 05). 

There are no variations when we study the drug group dependent on the ischemia time. A 

multivariate model for haemoglobin values with smoothing is shown in the next figures (Figs. 

20, 21). 
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Fig. 20: The haemoglobin amount (g/dl) in the three ATG groups was significantly higher than in the control group 

both in short and long ischemia times (*Control vs. Biotest-ATG; § Control vs. Fresenius-ATG; # Control vs. 

Merieux-ATG: p<0,05). 
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Fig. 21: Smoothing-Spline of haemoglobin amount: No statistically significant differences were found according to 

the length of the ischemia times within the study groups. 

 

 

 

 

 

 

 

 

 

 

 

 



 49

3.2 Smears 

The percentages of lymphocytes, neutrophils and monocytes were measured as described in 

Material and Methods. Eosinophil and LGL percentages are not shown as their values are not 

significant for the study. Results for the different ATGs are assigned according to the time of 

ischemia. Short ischemia (SI) time was 60 + 10 minutes and long ischemia (LI) 120 + 10 

minutes. Descriptive and comparative results for each group are expressed as median + standard 

deviation in the graphics. The results are presented according to the following order: first the 

results of SI groups, then of the LI groups. Comparisons between groups and between different 

times of ischemia are shown at the end of each parameter. 

 

3.2.1 Lymphocytes 

 
• Short Ischemia: BSI, FSI, MSI, CSI 

Blood smears were performed with samples obtained from everyone of the four groups studied to 

evaluate the percentage of lymphocytes in PB and to compare it between the different ATG 

groups and control groups. In SI groups the samples were taken from the system after a period of 

short ischemia (60 + 10 minutes). No significant differences in the percentage of lymphocytes 

during the reperfusion were found within the groups. 
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Fig. 22: Lymphocytes-Short Ischemia: Percentage of lymphocytes in PB smears during the reperfusion after a 

SI period ( median and standard deviation are expressed in %). 

 

• Long Ischemia: BLI, FLI, MLI, CLI 

The percentage of lymphocytes in the LI groups is expressed in the following tables and figures. 

No significant differences in the percentage of lymphocytes during the reperfusion were found 

within the groups. 
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Fig. 23: Lymphocytes -Long Ischemia: Percentage of lymphocytes in PB smears during the reperfusion after a 

LI period (median and standard deviation are expressed in %). 
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The number of lymphocytes differentiated by means of cytology blood smears was substantially 

diminished in the ATG groups as compared to the control groups. Statistical tests with ANOVA 

were performed between groups according to the time of perfusion, the time of ischemia and the 

drug employed. After analysis, only the variable “drug” presented statistical significance, with a 

p < 0.001. Scheffe´s test was applied to further investigate this significant difference between 

groups. There is a statistically significant decrease in the number of lymphocytes in all the ATG 

groups when compared to the control group (p<0,05). “Ischemia Time” as variable did not show 

significant differences except for the Merieux group, presenting lower values of lymphocytes in 

the LI group (p<0.05). These results are expressed as a multivariate model of smoothing for 

ANOVA in the next figure. 
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Fig. 24: Smoothing-Spline of lymphocytes according to the drug and ischemia time: The percentage of lymphocytes 

in the three ATG groups was statistically lower than in the control group, both after SI and LI times (*Control vs. 

Biotest-ATG; § Control vs. Fresenius-ATG; # Control vs. Merieux-ATG: p<0,05). 
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Fig. 25: Smoothing-Spline of lymphocytes according to the drug or ischemia time: Only Merieux-ATG groups 

experienced statistically significant differences between long and short ischemia percentage of lymphocytes, being 

significantly higher in SI time (# Merieux SI vs. Merieux LI p< 0.05). The other groups, including control, showed 

no statistical significance. 
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time of perfusion. 

Neutr-CSI

0
20
40
60
80

100

-1 0 1 5 10 15 30 45 60

Time

N
eu

tr
 %

Neutr-CSI

 
 
# 
 

Neutr-FSI

0

10
20

30

40
50

60

70
80

90

-1 0 1 5 10 15 30 45 60 
Time

Neutr-FSI 



 53

Fig. 26: Neutrophils-Short Ischemia: Percentage of neutrophils of the different study groups during the reperfusion 

(median and standard deviation are expressed in %). Note: the decrease of the % of neutrophils in the control group 

in comparison to the three ATG groups. 

• Long Ischemia: BLI, FLI, MLI, CLI 

The percentage of neutrophils in blood smears was also investigated in LI groups. No significant 

differences were found within the study groups according to the time of perfusion. 

Fig. 27: Neutrophils-Long Ischemia: Descriptive graphics of the percentage of neutrophils of the different study 

groups during the reperfusion (median and standard deviation are expressed in %). 
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groups were observed with the help of descriptive statistics. Further analysis was performed with 

ANOVA. Time of ischemia, drug and time of perfusion were selected as dependent variables. 

Time of perfusion and time of ischemia did not show any significant difference in the percentage 

of neutrophils in the general statistical study, while “drug” as a variable presented statistically 

significant differences of the % of neutrophils within the different groups with a p<0,001. 

Scheffe´s test to study the intragroup differences for a statistical significance was performed “a 

posteriori” taking “drug” as independent variable. Control groups presented significantly less 

neutrophils when compared to the ATG groups (p<0.05). However, considering ischemia time as 

an independent variable, there is no significance between control and the ATG-Fresenius group 

in the LI time, while the other groups results remain unaltered. 

                                           Smears: Neutrophils 
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Fig. 28: Smoothing-Spline of neutrophils according to the drug or ischemia time: The % of neutrophils in the three 

ATG groups was significantly higher than in the control group for SI time. Percentage of neutrophils in the Biotest-

ATG and the Merieux ATG groups was significantly higher than in the control group after LI time (*Control vs. 

Biotest-ATG; § Control vs. Fresenius-ATG; # Control vs. Merieux-ATG: p<0, 05). 
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Fig. 29: Smoothing-Spline of neutrophils: No statistically significant differences were found according to the length 

of the ischemia times within the study groups. 

 

3.2.3 Monocytes 

• Short Ischemia: BSI, FSI, MSI, CSI 

Blood smears were performed to evaluate the percentage of monocytes in PB and compare the 
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the graphics. No significant differences were found within the study groups according to the time 

of perfusion.  
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Fig 30: Monocytes-Short Ischemia: Percentage of monocytes during the reperfusion after a SI period (median and 

standard deviation are expressed in %). 

 

• Long Ischemia: BLI, FLI, MLI, CLI 

The percentage of monocytes in the different groups was assessed. A different scale has been 

employed also in the long ischemia groups. No significant differences were found within the 

study groups according to the time of perfusion. 

Fig. 31: Monocytes-Long Ischemia: Percentage of monocytes during the reperfusion after LI time (median and 

standard deviation are expressed in %).  
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The percentage of monocytes did not present much variation between groups in the 

cytological studies. ATG-Merieux group presented a significant increase of monocytes in LI, 

considering Ischemia as independent variable.  
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Fig. 32: Smoothing-Spline of monocytes: No significant differences were found after statistical analysis. 
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Fig. 33: Smoothing-Spline of monocytes according to ischemia time: Only Merieux-ATG groups experienced 

statistically significant differences between SI and LI percentage of monocytes, being significantly higher in LI 

times (# Merieux SI vs. Merieux LI p< 0.05).  
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3.2.4. Microphotographs 

 

The following figures are microphotographs obtained from the smears performed with every 

blood sample. The high number of smears evaluated does not allow us to present all the images. 

These pictures try to reflect the standard behaviour of both the control and study groups. As a 

general rule, more mononuclear cells in whole blood can be observed in the control groups and 

more polymorphonuclear cells are to be seen in the study groups. All pictures are shown as 

microscope magnifications. 

 

1. Biotest Short Ischemia: BSI 

 

Fig. 34: Higher proportion of polymorphonuclear cells was observed in the ATG groups. However, mononuclear 

cells were also seen (Fig. 34-A x20). Damaged WBC can be observed at a higher magnification after treatment with 

ATG (Fig. 34-B x100) 
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2. Biotest Long Ischemia: BLI 

 

Fig. 35: In the BLI group, a higher percentage of lymphocytes than in other ATG groups was observed at the 

beginning of the reperfusion (Fig. 35-A x20). No significant differences were detected between the ATG groups. 

Segmented granulocytes were seen at a higher magnification (Fig. 35-B x100) 

 

3. Fresenius Short Ischemia: FSI 

 

Fig. 36: In the FSI group, few mononuclear cells were observed both at low and high magnification (Fig. 36-A x20, 

Fig. 36-B x100) 
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4. Fresenius Long Ischemia: FSI 

 

Fig. 37: More cells were seen in the FLI group in comparison to FSI group, although no statistically significant 

difference was observed. Presence of mononuclear cells was low in comparison to polymorphonuclears. (Fig-37-A 

x20, Fig. 37-B x100) 

 

5. Merieux Short Ischemia: MSI 

Fig. 38: A lower amount of cells was seen in the MSI group in comparison to the control groups. There were more 

polymorphonuclear cells (Fig. 38-A x40) although lymphocytes were also observed (Fig. 38-B x100) 
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6. Merieux Long Ischemia: MLI 

 

Fig. 39: MLI group presented fewer lymphocytes than the MSI group, but a higher percentage of monocytes (Fig. 

39-A x40). At a higher magnification, a segmented polymorphonuclear cell is shown (Fig. 39-B x100) 

 
7. Control Short Ischemia: CSI 

 

Fig. 40: CSI group presented a higher number of mononuclear WBC (Fig. 40-A x40, Fig. 40-B x100) 
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8. Control Long Ischemia: CLI 

 

Fig. 41: At the end of the reperfusion, the CLI group presented a high number of cells per smear. The percentage of 

lymphocytes was much higher than other WBC in comparison to the ATG groups. (Fig. 41-A x20, Fig. 41-B x40) 
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3.3. CIM 

Descriptive results for each group are presented as median + standard deviation in the graphics. 

Comparisons between groups are described in the text and shown in the figures. The results are 

expressed according to the following order: first results of the SI groups are shown, then of the 

LI groups. Analysis of the time of perfusion is performed taking 0 as control point (blood diluted 

to 30% Hct). Comparisons between groups and between different times of ischemia are also 

shown. 

 

3.3.1 Lymphocytes 

• Short ischemia: BSI, FSI, MSI, CSI 
 
 
CIM of the four groups studied evaluated the percentage of lymphocytes differentiated in WBC 

subpopulations. The results were compared between the ATG and control groups. In SI groups 

the samples were taken from the system after a period of short ischemia (60 + 10 minutes). CSI 

and MSI showed no significant differences according to time of perfusion. In contrast to this, the 

percentage of lymphocytes decreased in the BSI and FSI ATG groups throughout the 

reperfusion. (p<0,05; BSI: Dunn’s test; FSI: Tukey’s test). 
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Fig. 42: Lymphocytes-Short Ischemia: Percentage of lymphocytes in CIM in the different study groups after a SI 

period (median and standard deviation are given in %). *Time point vs. Control [Time point 0] (p<0, 05).  

 
• Long Ischemia: BLI, FLI, MLI, CLI 
 

CIM was performed in samples obtained from every of the four groups studied to evaluate and 

compare the percentage of lymphocytes. In these groups the samples were taken from the arterial 

branch of the system after a LI period. MLI presented a statistically significant decrease of the 

percentage of lymphocytes throughout the reperfusion (p<0,05; MLI: Tukey’s test). In contrast to 

this, no significant differences were observed in CLI, BLI and FLI groups. 
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Fig. 43: Lymphocytes-Long Ischemia: Percentage of lymphocytes with CIM after a LI period (median and standard 

deviation are given in %). *Time point vs. Control [Time point 0] (p<0, 05). 

 

The percentage of lymphocytes as WBC subpopulation was investigated according to three 

different variables: “time of perfusion”, “drug” and “time of ischemia. Differences between the 

groups were studied showing that both the variables “drug” and “perfusion time” presented 

statistical significance, with a p< 0.001 (as shown in the previous graphics). Factor “ischemia 

time” showed no significance in the general test. Scheffe´s test was applied to further investigate 

this significant difference between groups for the “drug” variable. The percentage of 

lymphocytes of the three ATG groups presented a statistically significant decrease when 

compared to the control group throughout the reperfusion process (p<0, 05). This significance 

remained unaltered when the groups were compared according to the time of ischemia. In the 

particular tests between groups, no significance for “ischemia time” was found. 
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Fig. 44: Smoothing-Spline of lymphocytes (CIM): The percentage of lymphocytes among WBC in the three ATG 

groups  was significantly lower than in the control group both in SI and LI times (*Control vs. Biotest-ATG; § 

Control vs. Fresenius-ATG; # Control vs. Merieux-ATG: p<0,05). 
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Fig. 45: Smoothing-Spline of lymphocytes according to ischemia time: No statistically significant differences were 

found according to the length of the ischemia times within the study groups. 
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3.3.2 Neutrophils 

 
• Short Ischemia: BSI, FSI, MSI, CSI 
 
The percentage of neutrophils in differentiated WBC subpopulation was compared within the 

different ATG groups and the control groups. The samples were taken from the arterial branch of 

the system after a SI period (60 + 10 minutes) and processed as described before. BSI and FSI 

groups experienced a significant increase of the percentage of neutrophils (p<0,05; Tukey’s test). 

MSI and CSI, however, showed no statistically significant differences. 

 

 

 
Fig. 46: Neutrophils-Short Ischemia: Percentage of neutrophils after a SI period (median and standard deviation 

are given in %). *Time point vs. Control [Time point 0] (p<0, 05). 

 
• Long Ischemia: BLI, FLI, MLI, CLI 

CIM was performed in samples obtained from each of the four groups studied to evaluate the 

percentage of neutrophils within the different groups and compare the obtained results. MLI 

Neutr-BSI

0

20

40

60

80

100

-1 0 1 5 10 15 30 45 60

Time

N
eu

tr
. %

Neutr-BSI

Neutr-FSI

0
10
20
30
40
50
60
70
80
90

-1 0 1 5 10 15 30 45 60

T ime

Neutr-FSI

Neutr-MSI

0

20

40

60

80

100

-1 0 1 5 10 15 30 45 60

Time

N
eu

tr
 %

Neutr-MSI

Neutr-CSI

0
20
40
60
80

100

-1 0 1 5 10 15 30 45 60

Time

N
eu

tr
 %

Neutr-CSI

*   *  *   *   *  *   *  * 

*   *   *         *    



 68

presented a significant intragroup increase of the percentage of neutrophils throughout the 

reperfusion. In contrast to this, BSI, FSI and CSI showed no statistically significant difference. 

 

Fig. 47: Neutrophils-Long Ischemia: Percentage of neutrophils in the different study groups after a LI 

period(median and standard deviation are given in %). *Time point vs. Control [Time point 0] (p<0, 05). 

 

The relative number of neutrophils was investigated in the different experiment groups and the 

results obtained were compared according to three different variables: “time of perfusion”, 

“drug” and “time of ischemia”. Statistical tests with ANOVA were performed showing statistical 

significance for “time of perfusion” and “drug” with a p<0,001. “Time of ischemia” presented a 

significance of p=0,084. Taking “drug” as independent variable, the Scheffe´s test showed that 

there is statistical significance between the percentage of neutrophils in ATG-Fresenius and 

ATG-Biotest groups, this being higher in the ATG-Biotest groups (p<0,05). No drug showed 

statistical differences for the percentage of neutrophils dependent on the length of the ischemia 
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time. However, the difference between the ATG-Fresenius and ATG-Biotest groups could only 

be demonstrated for the short ischemia time when we accepted “time of ischemia” as 

independent variable and drug as dependent variable in the Scheffe´s test (p<0,05). No 

significance for this difference was accepted in the LI time between both groups while the 

percentage of neutrophils in the control group was lower than in the three ATG groups in LI 

time.  
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Fig. 48: Smoothing-Spline of neutrophils (CIM): The percentage of neutrophils of the Biotest-ATG group was 

significantly higher than the percentage of neutrophils in the Fresenius-ATG group only in the SI time. The 

percentage of neutrophils in the control group was lower than the three ATG groups in LI time ($ Fresenius-ATG 

group vs. Biotest-ATG group; *Control vs. Biotest-ATG; § Control vs. Fresenius-ATG; # Control vs. Merieux-ATG: 

p<0,05). 
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Fig. 49: Smoothing-Spline of neutrophils: Only the control groups showed significant differences between SI and LI 

times, being the percentage of neutrophils higher in the SI time. (* Control SI vs. Control LI p < 0, 05) 

 
 
 
3.3.3. Monocytes 
 
 
• Short Ischemia: BSI, FSI, MSI, CSI 
 
The relative percentage of monocytes within the absolute number of WBC was evaluated with 

CIM in the SI groups. Median and standard deviation values for every time point are expressed 

in %. Due to the reduced percentage of monocytes in relation to the absolute to percentage of 

WBC, the scale in the graphics is limited 50%. BSI and MSI groups showed a statistically 

significant decrease of the percentage of monocytes after time point 0 (p<0,05; Dunn’s test). In 

contrast to this, FSI and CSI presented no significant differences. 
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Fig. 50: Monocytes -Short Ischemia : Percentage of monocytes in the different study groups after a SI period 

(median and standard deviation are given in %). *Time point vs. Control [Time point 0] (p<0, 05). 

 

• Long Ischemia: BLI, FLI, MLI, CLI 
 
Percentage of monocytes in differential counting of WBC was performed for LI groups. Median 

and standard deviation values for every time point are expressed in %. BLI and MLI groups 

presented a significant decrease of the percentage of monocytes after time point 1. FLI and CLI,  

however, showed no statistically significant differences. 
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Fig. 51: Monocytes-Long Ischemia: percentage of monocytes (CIM) after LI period (median and standard deviation 

are given in %). *Time point vs. Control [Time point 0] (p<0, 05). 

 
Analytical study of the differences between ATG groups and control groups showed no 

significances according to the variable “time of ischemia” while statistical significance was 

obtained for “drug” and “time of perfusion” (p<0.01). Applying Scheffe´s test and using “drug” 

as independent variable, significance was found between the lower values of the ATG groups 

and the higher values of the control groups. Statistical differences between ATG groups and 

control groups were the same in LI groups. However, in SI groups only ATG-Biotest showed 

statistically significant lower values than the control group. 
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Fig. 52: Smoothing-Spline of monocytes: The percentage of monocytes in the three ATG groups was statistically 

lower than the number of WBC in the control group in LI times, while only Biotest-ATG group presented lower 

values in the SI time. (*Control vs. Biotest-ATG; § Control vs. Fresenius-ATG; # Control vs. Merieux-ATG: p<0, 

05). 
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Fig. 53: Smoothing-Spline of monocytes: No statistically significant differences were found according to the length 

of the ischemia times within the study groups. 

 

3.3.4. Microphotographs 

 

The following microphotographs were taken from the analysed CIM slides. Although it is not 

possible to show pictures from all the samples performed due to the place restrictions we think 

they reflect the general behaviour of the groups studied. Note the relative higher number of 

mononuclear cells in the control group when compared to the treated groups and the higher 

number of polymorphonuclear cells present in the study groups. All the microphotographs are 

given as microscope magnifications. 
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1. Biotest Short Ischemia  

 
Fig. 54: Biotest SI group presented a high number of neutrophils in comparison to the other ATG groups. 

Polymorphonuclear cells are shown in the pictures (Fig. 54-A x20, 54-B x100). 

 
 
 
2. Biotest Long Ischemia  
 
 

 
Fig. 55: Biotest LI group presented a high number of neutrophils in comparison to other WBC. Polymorphonuclear 

cells are shown in the pictures (Fig. 55-A x40, 55-B x100). 
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3. Fresenius Short Ischemia 
 

 
 
Fig. 56: Fresenius SI group presented a lower percentage of neutrophils than Biotest-ATG group in CIM. However, 

more neutrophils than other mononuclear cells were observed (Fig. 56-A x20, Fig. 56-B x100). 

 
 
4. Fresenius Long Ischemia 
 
 

 
Fig. 57: Fresenius LI presented more polymorphonuclear cells than mononuclear cells, however, mononuclear cells 

were observed (Fig. 57-A x40, Fig. 57-B x100). 
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5. Merieux Short Ischemia 
 
 

 
Fig. 58: Merieux SI showed, like the other ATG groups, a lower amount of cells in the preparations studied. This 

group also presented more neutrophils than mononuclear cells (Fig. 58-A x40, Fig. 58-B x100). 

 
6. Merieux Long Ischemia 
 
 

 
Fig. 59: MLI group presented a higher amount of polymorphonuclear cells in comparison to other WBC (Fig. 59-A 

x40, 59-B x100). 
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7. Control Short Ischemia 
 

 
Fig. 60: CSI group presented a higher density of cells in the preparation. At the same time, there were more 

mononuclear cells than in the ATG groups, mostly lymphocytes (Fig. 60-A x40, 60-B x100). 

 
 
8. Control Long Ischemia 
 
 

 
Fig. 61: A higher amount of mononuclear cells was also observed in the CLI group. Cellular density was higher 

than in the ATG-groups, as observed in the pictures (Fig. 61-A x20, Fig. 61-B x100) . 
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3.4.Histology and Immunohistochemistry 

 

3.4.1 Results 

Histological and immunohistochemical techniques were performed to assess the muscle damage 

after different times of ischemia and after reperfusion. In addition, samples were analysed for 

leukocyte infiltration in connective, vascular, perivascular and muscular tissue as well as for the 

vascular presence of fibrin.  

Results are expressed as the mean result + standard deviation obtained from the different fields 

studied. The preparations were evaluated randomly and blind. The criteria were arbitrarily 

established although based on previous works in the literature (17, 38, 74, 149):  

• Muscle damage: loss of architecture, necrosis or signs of ischemia were considered: 

- normal architecture: 0 

- light damage: 1 

- moderate damage: 2 

- severe damage: 3 

• Soft tissue infiltration: Connective tissues present in the biopsy as well as connective 

perimisial structures were considered. 

- any WBC in these structures: 1 

- more than 10 cells per field: 2 

- more than 25 cells per field: 3 

• Vascular infiltration: Cells present in the vascular spaces were considered, free or attached to 

the endothelial walls. 

- free cells in the vessels: 1 

- free and attached to the endothelial cells: 2 
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- free cells, attached cells, granulocytes, occluding or almost occluding 

the vessel lumen: 3 

• Perivascular infiltration: Presence of WBC in any tissue adjacent to the vessels: 

- presence of cells attached to endothelial walls: 1 

- presence of cells in perivascular connective tissue: 2 

- presence of cells in perivascular connective tissue and muscular tissue: 

3  

• Muscular infiltration:  

-     no cells in muscle fibres: 0 

- 1-5 cells pro muscular fibre: 1 

- >10 cells pro muscular fibre: 2 

- >25 cells pro muscular fibre: 3  

Results are expressed as the mean values obtained from the different fields studied. The 

preparations were labelled with a code and evaluated blindly. 

 

Fibrin, Masson’s T and CD31 immunostaining were performed to localise fibrin and thrombus 

formation and the criteria were established as follows: 

• Presence of fibrin or thrombocytes in the vascular spaces: 

- presence of fibrin or thrombocytes without occlusion: 1 

- occlusion of the vessel: 2  

- occlusion of the vessel and destruction of the vascular or endothelial 

integrity: 3 

 

The immunoreaction with IL4 was classified as positive or negative depending on the presence 

or absence of this molecule in the sections studied. 
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Muscle damage, connective and muscle tissue infiltration as well as presence of fibrin in the 

vessels are presented in the following table ( table 5). The values are expressed in mean + 

standard deviation. ANOVA was employed to perform the statistical analysis. 

 

CSI FSI BSI MSI CLI FLI BLI MLI  
mean St. D mean St. D mean St. D mean St. D mean St. D mean St. D mean St. D mean St. D 

Muscle 
Damage 

 
2,6 

 
0,51 0,9 0,73 

 
1,1 0,73 1,2 0,63 2,8 0,42 1 0,66 1,6 0,69 1,4 0,51

Connect. 
Infiltration 

 
2,5 

 
0,52 1,1 0,31 

 
1,2 0,42 1,3 0,48 2,3 0,67 1,3 0,48 1,4 0,51 1,3 0,48

Vascular 
Infiltration 

 
2,3 

 
0,48 1,1 0,31 

 
1,3 0,48 1,4 0,51 2,4 0,69 1,5 0,52 1,5 0,52 1,3 0,48

Perivasc. 
Infiltration 

 
2,3 

 
0,67 1,2 0,42 

 
1,3 0,48 1,3 0,48 2,3 0,67 1,2 0,42 1,4 0,51 1,5 0,52

Muscular 
Infiltration 

 
2,4 

 
0,69 0,5 0,52 

 
0,4 0,51 0,4 0,51 2,7 0,48 0,4 0,51 0,6 0,51 0,9 0,79

Presence 
Fibrin 

 
1,9 

 
0,56 0,3 0,48 

 
1,2 0,63 0,8 0,63 2,2 0,63 0,8 0,63 1,3 0,67 1,1 0,56

 

Table 5: Histological criteria: Values for Control and ATG groups 

 

These results are also expressed in the following figures to illustrate the differences between the 

studied groups. Morphological differences were typical within the control and ATG groups. 

Control groups´ muscle presented more necrosed fibres, loss of normal muscular tissue 

architecture, areas of haemorrhage and massive and diffuse infiltration of leukocytes in almost 

all the biopsies studied. On the other hand, the ATG groups presented less muscle damage, with 

slight infiltration of the perivascular areas and almost no presence of WBC in the muscular 

tissue. 
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Fig. 62: Muscle damage: ATG groups showed less muscle damage than control groups in short and long ischemia 

times. Biotest groups showed differences between different ischemia times. (*Control Vs. Biotest-ATG; § Control Vs. 

Fresenius-ATG; # Control Vs. Merieux-ATG; $ BSI vs. BLI: p<0,05). 

 

WBC Infiltration

0
0,5

1
1,5

2
2,5

3
3,5

CSI FSI BSI MSI

Connect. Inf.
Vasc. Inf
Perivasc. Inf
Musc. Inf

 

Fig. 63: Leukocyte infiltration in the SI  groups 
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Fig. 64: Leukocyte infiltration in the LI groups 
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Fig. 65: ATG groups showed lower infiltration than the control groups for both ischemia times. Fresenius-ATG 

group showed less perivascular and muscular infiltration than the other ATG- groups after LI time. (*Control vs. 

Biotest-ATG; § Control vs. Fresenius-ATG; # Control vs. Merieux-ATG; $, +, FLI vs. BLI and MLI: p<0.05). 
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Fig. 66: Fibrin and CD31+: ATG groups presented lower fibrinoid aggregates and CD-31 positive reaction than 

the control groups for both ischemia times. Fresenius-ATG group and Merieux-ATG group showed more intense 

reaction in LI times. Fresenius-ATG group showed less intense reaction than the other ATG-groups in SI time 

(*Control vs. Biotest-ATG; § Control vs. Fresenius-ATG; # Control vs. Merieux-ATG; $, +, FSI vs. BSI and MSI: 

p<0.05). 

Comparisons within the different groups using the above mentioned criteria presented statistical 

differences on the muscle damage, leukocyte infiltration and presence of fibrin between the ATG 

groups and the control groups. ATG groups showed less muscle damage, leukocyte infiltration 

and vascular presence of fibrin compared to the untreated groups together and taken one by one 

in separate comparisons. Individual comparisons were performed “a posteriori” to detect further 

significances between the groups.  

§    *     # 

§    *     # 
   
   $ 
     
    + 

§     *     # 
   §     *     # 
   $ 
   + 
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All treated groups presented less muscle damage than the control groups. When considering 

ischemia time as independent variable, statistical analysis showed differences only between the 

Biotest groups, with more muscle damage being observed in the LI biopsies. No statistical 

differences in muscle damage were observed within Biotest and Merieux groups both in short 

and long times of ischemia. In contrast to this, Fresenius presents less muscle damage than the 

other ATG groups both in SI and LI times. 

When leukocyte infiltration was analysed according to the explained criteria, ATG groups 

showed statistically significant diminution of infiltration in comparison to the control groups in 

every parameter studied: connective, perivascular, vascular and muscle tissue infiltration both in 

SI and LI times (p<0.05).  

The ATG groups were compared one-by-one to detect differences in the various criteria studied. 

No differences were found between the study groups according to connective and vascular tissue 

infiltration, both in SI and LI times. No differences were found in SI time while studying 

perivascular tissue infiltration. However, Fresenius-ATG groups presented statistically 

significant lower values than the other study groups in perivascular tissue infiltration in the LI 

time (p<0.05). Muscle tissue infiltration presented no significant variances in the SI time groups 

although these differences were present in the LI groups, where the Fresenius-ATG group 

showed less muscle infiltration than the other study groups. 

The differences between study groups treated with the same drug, only varying the ischemia 

time, were studied, these differences only being statistically significant in the case of the 

Merieux-ATG group, with significant higher values of leukocyte infiltration in the LI group. 

Presence of fibrin and activated platelets as well as endothelial cells (CD31+) was studied. 

Control groups showed statistically significant higher values than the study groups both in long 

and short ischemia times (p<0.05). Intragroup differences according to the length of ischemia 

time were only significant in the Fresenius-ATG and Merieux-ATG groups, both presenting 
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higher values of CD31-like immunoreaction and fibrin in the LI groups. After one-to-one 

comparison between the drug groups, Fresenius-ATG group showed statistically significant 

lower values than the other groups in SI time, while no statistically significant differences were 

detected between the study groups within the LI time. 

 

Presence or absence of IL-4 was studied as described before, without considering the different 

ischemia times. Statistical significance between the control groups and the ATG groups was 

detected with student’s t-test. Expression of IL-4 measured by immunohistochemical means was 

significantly higher in the control groups than in the study groups. 

 

Biopsy Control Biotest Fresenius Merieux 

+++ 11/12 1/12 0/12 0/12 

++ 1/12 1/12 1/12 0/12 

+ 0/12 3/12 1/12 1/12 

0 0/12 7/12 10/12 11/12 

 

Table 6: Positive immunoreaction for IL-4 was found mostly in the control group. 

 

 

In the following pages, microphotographs of the control and study groups with the performed 

histological and immunohistochemical techniques will be shown. The pictures will be 

commented after each group of images. All pictures are shown as microscope magnifications.  
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3.4.2. Hematoxiline/Eosin 

3.4.2.1 Control Short Ischemia 

 

Fig. 67:In the control group, massive and diffuse infiltration and inflammation phenomena can be observed. Note 

the extensive infiltration on the picture 67-a. Necrosis and hemorrhagic features as well as tissue infiltration are to 

be seen in the second picture. Infiltration of the connective perivascular tissue is described in the microphotograph 

67-c (arrow). Morphological characteristics of these infiltrates are shown in the picture 67-d. Note: the segmented 

nucleus of the neutrophils adherent to the endothelial cells (67-d, arrow). 

67-a x5 

67-d x40 67-c x20  

67-b x10 

* 
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 3.4.2.2: Biotest Short Ischemia 

 

 

Fig. 68: BSI group presents a well conserved muscular structure and low tissue infiltration. However, the 

aggregation of platelets and fibrin formation in the small vessels is characteristic. These aggregates usually include 

WBC (Fig.68-a). Vessel occlusion is signaled with a * symbol. In the picture 68-d, hemorrhagic phenomena can be 

observed, with extra-vasated erythrocytes in the histological preparation. 

 

 

*
* 

* 

*

68-a x10 68-b x10 

68-c x10 68-d x20 
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 3.4.2.3: Fresenius Short Ischemia 

 

Fig. 69: Lower muscle damage than in the control group was detected in the FSI group. The muscle structure is well 

conserved (69-a, 69-b). However, areas of ischemic tissue can be observed in the external perimeter of some 

muscular fibers (arrows, 69-b). Leukocyte infiltration into connective, vascular, perivascular and muscular tissue is 

slight and comparable to untreated human muscle sections (69-d). Most of the endothelial structures show neither 

loss of structure nor adherence of WBC. (x 10, 20: microscope magnifications) 

 

 

 

 

 

69-a x5 69-b x5 

69-c x20 
69-d x40 
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 3.4.2.4: Merieux Short Ischemia 

 

 

Fig. 70: Biopsies of the Merieux Short Ischemia group present a well defined muscular and vascular structure. Only 

slight damage was found. However, perivascular and vascular infiltration was observed in some of the biopsies, 

showing cellular presence on the connective perivascular tissue (70-c) or included in aggregates on the vascular 

lumen (70-d). Some of the vessels presented accumulation of fibrin or degradation materials without occluding the 

vascular lumina, as shown in the figures 70-c and 70-d. (*, x 10,20 : microscope magnifications) 

 

 

* 

70-a x5 70-b x10 

70-c x20  70-d x20 

*
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3.4.2.5: Control Long Ischemia 

 

Fig. 71: Biopsies obtained from CLI group show massive loss of structure, fiber necrosis and hemorrhagic 

phenomena of muscle. In the picture 71-a, necrosis of muscle fibers can be observed. Infiltration of perimisial tissue 

is shown on the second picture (71-b). Necrosis and ischemic features can be observed at a low magnification on the 

third image (71-c). Please note the diffuse infiltrate present on the muscle surface. The photograph 71-d shows some 

vessels situated between damaged muscle fibers.   

 

 

 

 

 

 

71-d x40 

71-b x20 71-a x5 

71-c x10 
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 3.4.2.6: Biotest Long Ischemia 

 

 

Fig. 72: These microphotographs from the BLI group show a well conserved muscle structure  and no muscle 

infiltration (Fig. 72-a, arrows). However, there are WBC present on vascular and perivascular structures (Fig. 72-b 

superior arrow, Fig. 72-c). WBC included in an aggregate adherent to the endothelial wall can be observed in the 

picture 72-b (inferior arrow). Some vessels, mostly venous, present fibrinoid aggregates even occluding the vascular 

lumen, as shown in the picture 72-d (arrow). 

 

 

 

 

 

72-a x10 

72-c x20 

72-b x20 

72-d  x40 
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 3.4.2.7: Fresenius Long Ischemia 

 

 

 

Fig. 73: FLI group presents a well-conserved muscle structure with slight tissue damage (fig. 73-a, 73-b). Necrosis 

is observed in isolated fibers (73-a, arrow). Vascular lumen are not occluded (73-c, 73-d, arrows) and show no or 

slight infiltration or WBC adherent to endothelia (73-c, 73-d). Perivascular and perimisial connective tissue show 

low WBC presence. 

 

 

 

 

 

73-a  x5 73-b  x10 

73-d x40 73-c  x20 
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 3.4.2.8: Merieux Long Ischemia 
 
 

 
 
Fig. 74: MLI group shows no leukocyte infiltration in most of the biopsies. The muscular tissue is well structured 

(74-a), although ischemic damage of the muscle is to be seen in some of the histological sections (74-b, §). There is 

slight connective tissue and vascular infiltration in comparison to control groups although presence of WBC in 

some perivascular spaces can be observed (74-d, arrow). MLI presents, however, a higher incidence of fibrinoid 

aggregates in vascular spaces (* 74-b, 74-c) than the SI group of the same drug.  

 

 

 

 

 

74-c x20 74-d x20 

74-a x5 74-b x10 

§ 
* 
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3.4.3 Leukocyte infiltration: Immunohistoreaction to CD45 and granulocyte esterase 

Immunostaining with granulocyte esterase and CD45 is presented in the following 

microphotographs. The upper images correspond to granulocyte esterase while the lower 

represent the CD45 immunoreaction. All pictures are shown as microscope magnifications.  

 3.4.3.1: Control Short Ischemia 

 

Fig. 75: In the upper images, belonging to the CSI group,  perimisial and perivascular presence of neutrophils can 

be observed. PMN aggregates are present on both images. Some neutrophils are present in muscular tissue, as 

shown at a low magnification on the left hand side picture. Positive immunoreaction for CD45 was found in the CSI 

group in all previously defined structures (75-c, 75-d, arrows). On the left hand side, CD45 stained cells can be seen 

in perivascular and connective tissue (arrow). On the right hand side, positive cells adhering to the endothelial wall 

can be observed (arrow). 

75-a x20 75-b x40 

75-c  x40 75-d x40 
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 3.4.3.2: Biotest Short Ischemia 

 

 

Fig. 76: Biopsies from to the BSI group show intravascular presence of neutrophils (76-a, arrow), adhering to the 

endothelial wall in some cases as demonstrated with granulocyte esterase staining e.g. on the picture 76-b (arrow). 

This group shows slight muscular and connective tissue infiltration. Most positive CD45 immunoreactions are found 

in perivascular or vascular spaces (76-d, arrow). 

 

 

76-a x20 76-b x40 

76-d x40 76-c x20 
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 3.4.3.3: Fresenius Short Ischemia 

 

 

Fig. 77: FSI group shows slight presence of neutrophils in muscular and connective tissue (77-a, 77-b). Presence of 

these WBC could be demonstrated in perivascular connective tissue in a very low quantity (Fig. 77-a, arrow). 

Focusing on vascular areas, presence of PMN was much lower than in the control and the other study groups. 

CD45-like immunoreaction was observed in few vascular spaces and could scarcely be detected in muscular tissue 

(77-c, 77-d, arrow). 

 

 

 

 

 

77-a x20 77-b x40 

77-c x20 77-d x40 
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3.4.3.4: Merieux Short Ischemia 

 

 

Fig. 78: Granulocyte esterase reaction for the MSI demonstrated presence of few PMN, mostly localized in 

connective or perivascular areas (78-b, arrow). Some neutrophil aggregates were to be seen attached to the 

vascular wall, as seen on the left hand side picture (78-a, arrow). Positive cells for CD45 were located in the 

vascular spaces, as shown on the right lower picture (78-d, arrows). Muscular and connective tissue showed slight 

other no infiltrates of CD45+ cells. 

 

 

 

78-a x20 78-b x20 

78-c x20 78-d x40 
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3.4.3.5: Control Long Ischemia 

 

Fig. 79: Biopsies of the CLI group show diffuse muscular, connective and perivascular neutrophil infiltration, as 

demonstrated by means of granulocyte esterase staining. In the left hand side picture (Fig. 79-a), many positive cells 

can be observed in these structures. Aggregates of PMN were found attached to the endothelial wall and in the 

perivascular connective tissue (Fig. 79-b, arrow). Positive staining for CD45 was detected in all of the structures 

studied, most of the positive cells being located in perivascular tissue (Fig. 79-c, arrow). However, presence of 

CD45+ cells in connective tissue was also detected (79-d, arrow) in higher amounts than in the study groups. 

 

 

79-a x20 79-b x40 

79-c x40 79-d x40 
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3.4.3.6: Biotest Long Ischemia 

 

 

Fig. 80: Positive reaction for granulocyte esterase was found in the BLI mostly in form of aggregates attached to the 

endothelial wall or in the perivascular connective tissue (Fig. 80-b, arrows). However, not all the vessels presented 

such formations, as shown on the left hand side picture (Fig. 80-a, arrow). CD45-like immunoreaction was mostly 

detected in intravascular or adherent WBC aggregates (Fig. 80-d, arrow), showing slight muscle affectation (Fig. 

80-c).  

 

 

 

 

 

80-a x20 

80-c x20 

80-b x40 

80-d x40 
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3.4.3.7: Fresenius Long Ischemia 

 

 

Fig. 81: Positive staining for granulocyte esterase could be observed in the FLI group in the vascular spaces (81-a, 

81-b, arrows). However, the incidence of aggregates attached to the endothelial wall was not as high as in the other 

study groups. Positive CD45 immunoreaction was observed in the same locations (81-c, 81-d, arrows), showing 

slight positive or no reaction at all the muscular structures. 

 

 

 

81-a x20 81-b x40 

81-c x20 81-d x40 
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3.4.3.8: Merieux Long Ischemia 

 

Fig. 82: The biopsies belonging to the MLI groups showed differences when compared to the same drug short 

ischemia group. More PMN positive staining was found, especially in vascular and perivascular spaces (Fig. 82-b, 

arrow). Positive esterase staining was also found in muscular tissue (Fig. 82-a, arrow), although in low quantity. 

Positive immunoreaction for CD45 was found in perivascular and vascular spaces (Fig. 82-c, arrows), as well as in 

connective tissue. However, this fact was not generalized, as most of the vessels showed slight or no infiltration 

(Fig. 82-d). 

 

 

 

 

 

82-a x20 82-b x40 

82-c x20 82-d x20 
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3.4.4: Fibrin, platelets and EC: Weiger`s technique, Masson’s Thrichrome and CD31-

Immunoreaction 

The following microphotographs focus on the vascular structures. The left upper image 

corresponds to Masson’s Thrichromic. The upper right picture corresponds to Weiger`s 

hematoxiline (specific for fibrin). The lower pictures show immunoreaction to CD31 (PECAM).  

 3.4.4.1: Control Short Ischemia 

 

Fig. 83: The upper images from the CSI group show vascular occupation and perivascular loss of structure (83-a, 

83-b, arrows). Masson’s reaction shows a damaged muscle with extended areas of haemorrhage (83-a, *). CD31 

immunoreaction shows positive staining on endothelia with activated thrombocyte aggregates in the vascular lumen 

and adherence to the endothelial wall (83-c, 83-d, arrows). 

83-a x20 83-b x40 

83-c x20 83-d x40 

* 
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3.4.4.2: Biotest Short Ischemia 

 

Fig. 84: BSI group shows presence of fibrinoid aggregates in the small vessels, as can be seen in the two upper 

pictures (84-a, 84-b). However, the muscle is well structured and no signs of ischemia or necrosis are observed. In 

the lower pictures, CD31-like positive immunoreaction is detected in endothelia ( 84-c, arrow) and in small cellular 

aggregates adherent to the endothelial wall of small vessels (84-d, arrow). 

 

 

 

 

 

 

84-a x10 84-b x10 

84-c x20 84-d x40 
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 3.4.4.3: Fresenius Short Ischemia 

 

 

Fig. 85: The vessels belonging to the FSI group are well conserved. None or few fibrinoid aggregates are seen in 

the vascular spaces with Masson’s Thrichrome technique (Fig. 85-a, arrow). However, presence of fibrin between 

the muscle fibers was detected in low quantity (Fig. 85-b, arrow). Positive immunoreaction for CD31 was weak 

(Fig. 85-c) and limited to endothelia (Fig. 85-d, arrow).Few  positive intravascular or perivascular cell aggregates 

including activated thrombocytes were observed.   

 

 

 

 

 

85-a x20    85-b x10 

85-c x20 85-d x40 
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3.4.4.4: Merieux Short Ischemia 

 

 

Fig. 86: MSI group demonstrated low presence of fibrinoid aggregates in perimisial and intramuscular vascular 

spaces. Most of the positive reactions were found in the perimisial or endomisial connective tissue vessels (Fig. 86-

a, arrow). Positive reaction for the Weiger`s technique was also observed in the connective tissue adjacent to the 

muscle fibers (Fig. 86-b, arrow). CD31-like immunoreaction was detected in vascular endothelia (Figs. 86-c, 86-d), 

showing no presence of positive reactions in the vascular lumina or thrombocyte aggregates. 

 

 

 

86-a x20 

86-c x20 

86-b x20 

86-d x40 
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 3.4.4.5: Control Long Ischemia 

 

Fig. 87: CLI group biopsies’ analysis with conventional techniques showed diffuse muscle damage and 

haemorrhage, presence of huge fibrinoid aggregates in the vascular spaces and general muscle damage (Figs. 87-a, 

87-b, arrows, *). Positive immunoreaction for CD31 was observed both in endothelia and in adherent cells (Fig. 87-

c, arrow). Intravascular aggregates showing positive immunoreaction could also be seen (Fig. 87-d, arrow)  

 

 

 

 

87-a x20 87-b x40 

87-c x20 87-d x40 

* 
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 3.4.4.6: Biotest Long Ischemia 

 

Fig. 88: Presence of fibrinoid structures and positive reaction for fibrin were demonstrated in vascular spaces of the 

BLI group. However, these findings were not present in all the vessels. On the upper left hand side, a small 

accumulation of cells in the vascular lumen can be observed (Fig. 88-a, arrow). On the right hand side, a fibrin 

aggregate with cells included is shown (Fig. 88-b, arrow). CD31 immunostaining showed the same phenomena as 

the non-specific techniques. In both pictures the presence of CD31-positive aggregates and cells can be observed 

(Figs. 88-c, 88-d, arrows). 

 

 

 

88-a x20 88-b x40 

88-c x20 88-d x40 
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 3.4.4.7: Fresenius Long Ischemia 

 

Fig. 89: FLI group shows low presence of fibrinoid aggregates in the small vessels, the bigger vessels being 

permeable, as can be seen in the left upper picture (Fig. 89-a, arrow). Furthermore, the muscle is well structured 

and little presence of fibrin is observed (Fig. 89-b, arrow). In the lower pictures, CD31-like positive 

immunoreaction is detected in endothelia as well as in cellular aggregates adherent to the endothelial wall of small 

vessels (89-c, 89-d, arrows). 

 

 

 

 

89-a x20 89-b x10 

89-c x20 89-d x40 

*
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3.4.4.8: Merieux Long Ischemia 

 

Fig. 90: Masson’s Thrichrome shows fibrinoid or cellular aggregates present in the vascular lumina of the Merieux 

long ischemia group (Fig. 90-a, arrow). Fibrinoid structures are observed in the perivascular space (Fig. 90-b, 

arrow). This fact is confirmed by the CD31 immunostaining, as shown in the lower pictures (90-c, 90-d arrows) 

were cellular aggregates show positivity for CD31, thus demonstrating the existence of thrombocytes on these 

structures.  

 

 

 

 

 

90-a x20 90-b x20 

90-c x20 90-d x40 
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3.4.5: IL-4 Immunoreaction 

 

 3.4.5.1: Control Group 

 

 

Fig. 91: Positive immunoreaction for the monoclonal antibody anti-IL-4 was found in the control groups in 

connective, vascular and muscular structures (Figs. 91-a,-b,-c,-d). In the upper left picture, stained cells in all these 

structures are shown (Fig. 91-a, arrows). Endothelial expression of IL-4 is shown in the right upper picture (Fig. 

91-b, arrows). The cellular expression of IL-4, surrounding a WBC (Fig. 91-c, arrow) or between two WBC in the 

figure 91-d can be observed in the lower pictures at a higher magnification. 

91-a x20 

91-c. x40 

91-b x40 

91-d x100 
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 3.4.5.2. Study groups and negative control of the technique 

 

Fig. 92: No or low immunoreaction was observed in the study groups. We can observe in the pictures that the 

muscle and connective tissues are free from positive staining for IL-4 (92-a,-b,-c). However, as can be seen in the 

left upper picture, there are cells showing immunoreaction for IL-4 in muscular tissue in the Biotest-ATG group 

(Fig. 92-a, arrows). The right bottom picture is a negative control of the technique, performed by substituting the 

primary antibody for PBS (Fig. 92-d). 

 

 
 
 
 
 
 
 
 

92-a x20 

92-c  x20 

92-b x20 

92-d x20 
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4. DISCUSSION 

 

4.1. Discussion of material and methods 

 

4.1.1 Ischemia-Reperfusion Injury and Transplantation 

Organ, tissue and cell transplantation has achieved impressive results in the last three decades as 

a treatment modality for patients with end-stage organ diseases (148). Since the first successful 

heart transplantation (11) in Cape-Town took place, transplantation was thought to be the easiest 

solution to improve the life quality of many patients as well as the key to life’s prolongation. 

However, it was not easy to achieve the actual status in this field. First, this achievement can be 

attributed to the development of advanced technical skills and technological means. Advances in 

surgical technique have improved the recovery time of the patients (60, 186, 202), decreased the 

mortality in those surgical procedures (106), treated congenital end-stage diseases at low ages 

(138, 189), diminished the use of long-term medical devices such as dialysis thus improving life 

quality. Second, the development of immunosuppressive agents has considerably reduced the 

number of organ rejections and subsequent transplantation failure (177) as well as controlled the 

incidence of graft vs. host disease (179). This development is related to research in 

transplantation immunobiology, which has much improved our understanding of the alloimmune 

response and the complex mechanisms undergoing cell and cytokine interaction (148). However, 

other problems are still to be solved and among them is ischemia/reperfusion injury. 

In organ transplantation, IRI is a multifactorial process that leads to organ damage and primary 

graft dysfunction (82). Cessation of blood flow deprives the cell and subsequently the grafted 

organ of energy metabolism and appropriate activity. Different mechanisms are implied in IRI 

such as macrophage and leukocyte interactions, microcirculatory changes, release of oxygen-

derived free radicals, nitric oxide and calcium metabolism, endothelial cell molecules and 
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inflammatory mediators. There is little question about IRI importance upon transplantation 

processes and multiple studies to investigate all these molecular and cellular events associated to 

the deleterious effects of IRI are being carried out.  

 

4.1.2 Polyclonal antibodies 

 

Multiple strategies have been designed to avoid or lessen the cellular and tissue derangements 

produced after reperfusion. Use of immunosuppressive agents such as Tacrolimus (182, 212), 

Rapamycin (159), Cyclosporine (107, 132, 159), anti-CD11 monoclonal antibodies (155) and 

OKT3 (178) have been suggested. Antibodies blocking other molecules present in IRI have been 

employed, e.g. anti-endothelin receptor (147), adenosine (121), different antibodies anti-adhesion 

molecules, complement and  activating factors (123, 136), anti- oxygen-derived free radicals or 

arachidonic acid inhibitor (16, 170), calcium-channels blocker (48), allopurinol and superoxid 

dismutase (68), etc. Physical methods have been suggested as possible strategies to block IRI, 

among them leukocyte depletion pre-reperfusion (105, 175), changes of perfusion times and 

temperature (143), or different preservation and storage solutions (84, 110, 172). Organ or tissue 

preconditioning with different methods has also been performed by means of heat (119), gas 

(167) or drugs (208). Gene therapy against certain activation molecules and endothelial 

compounds of the reperfusion process has been developed without definitive results (54, 81, 

154). As the number of immunosuppressive agents increases, the election of the correct agents 

for a precise therapy becomes more difficult. This is one of the reasons why the mechanism of 

these different drugs and their effect on the immune cells must be accurately studied and 

described. Polyclonal ATGs are antibody preparations obtained by immunization of horses or 

rabbits with human lymphocytes from definite cell lines (8) or suspended human thymocytes 

(193, 198) and with a wide clinical application. The mechanism by which polyclonal 
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antilymphocyte preparations suppress immune responses is not fully understood, but T-cell 

depletion and immune modulation on a molecular level are included (166, 211). ATGs contain a 

variety of antibodies recognizing key receptors on T-cells, being able to inactivate or kill them, 

thus reversing the rejection process.  

ATGs have been and, in some cases, still are used in the clinical practice in a broad spectrum of 

therapeutical activities in different fields. One of the most important is transplantation. 

Polyclonal ATGs have been employed as induction therapy (28, 75, 137, 207), concomitant 

immunosupression (29, 76, 79), treatment of graft vs. host disease (34, 76, 161), acute rejection 

therapy (18, 26, 152). They have been employed in aplastic anaemia (199, 201), treatment of 

autoimmune diseases, such as lupus (130) or rheumatoid arthritis (192) and skin diseases, e.g. 

cutaneous lymphoma (43) or contact allergy (174). These drugs cause, however, a wide range of 

adverse reactions, which sometimes superpose the possible benefit of their administration. The 

most common are cardiopulmonary reactions (108), fever (94), elevation of TNF-α in plasma 

(39), concomitant infection with CMV (98, 180, 204), hypersensitivity to rabbit or horse proteins 

(158) or serum sickness with cutaneous manifestations (36). 

To our knowledge, this is the first time that the effect of pATGs upon IRI has been investigated. 

Our choice was based on the wide range of cellular and molecular effects explained in the 

introduction of this work which could have an influence on the establishment and development 

of IRI and its associated features. It is also, to our knowledge, the first time that the three existing 

polyclonal antibodies on the German market, Fresenius-ATG © (Fresenius, Bad Homburg, 

Germany), Tecelac© (Biotest Pharma GmbH, Dreieich, Germany) and Thymoglobuline©(Imtix-

Sangstat California, USA)],  are compared with each other. 
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4.1.3 The animal model 

 

Transplantation and xenotransplantation experiments can be performed either by experimental 

organ or tissue transplantation or by using artificial perfusion systems where donor organs can be 

perfused with allogeneic blood, xenogeneic blood or blood components (59, 142). Ex vivo 

perfusion of an organ or a tissue with a perfusion system is valuable in establishing the relative 

value of the factors involved in the rejection process. Several models have been designed to 

perfuse isolated organs with allogeneic or xenogeneic blood ex-vivo to investigate not only 

inflammation (140) or rejection phenomena (206), but also interactions between different drugs 

and vascular endothelia (25) or tissue response to definite antigens (90). Pascher et al. (145) 

defined a suitable model for perfusing isolated organs simulating the normal physiological 

conditions. In these systems the organ is isolated and connected to an artificial circulatory circuit 

to perfuse it at physiologic pressure, normothermia and oxygenation conditions (50, 145). 

Furthermore, these models allow obtaining tissue specimens for histopathological studies, 

measurement of functional parameters, the test of different drugs as potential therapeutic agents 

for IRI or acute rejection (59). Perfusion of isolated limbs is considered an ex-vivo perfusion 

model, as no systemic interactions are present after the access to general blood circulation is 

avoided. 

Our model was designed to study the interactions between antithymocyte globulins (ATG) and 

cells or tissues during ischemia reperfusion injury, to assess the potential effect of these drugs as 

therapeutical agents in IRI. These polyclonal antibodies are directed against human cells; 

therefore the experiments had to be performed using human blood. However, this experimental 

set-up cannot be applied to humans, both due to ethical and legal reasons. To test these 

polyclonal antibodies under in vivo condition, a model of perfusion in non-human primates was 

designed, although there are legal restrictions on performing research with primates. The ethical 
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issues are much more complicated than in research with other animal species due to the 

behavioural similarities of men and these primates and the pressure of certain anti-animal-

research groups. Our choice of non-human primates is related to the similarities of the non-

human primate endothelia with human endothelia (80, 210) and thus the possibility of obtaining 

comparable and clinically valid cell interactions when these vessels were perfused with human 

blood of the corresponding blood group. Although our model can be criticized for employing 

two different species, immunological concordance, morphological vascular similarities and the 

impossibility of other in vivo experiments to test the effect of ATGs in IRI may still allow us to 

extract valid conclusions from our results.  

Perfusion of isolated limbs is extensively used in the literature as a valid model to test different 

drugs without affecting the systemic circulation (45, 50, 196). Our model is designed to evaluate 

the results obtained in the capillary superficial net of muscle vessels and to extrapolate it to the 

microcirculation of sinusoidal organs. That is because, due to its functional similarities (10, 209), 

superficial circulation of the extremities, especially upper muscle and dermis, reproduces the 

capillary circulation of most of the solid organs. Our technical set-up has also been extensively 

discussed, demonstrating no cell activation or damage as well as no cellular interactions during 

the process of reperfusion (144). 

 

 

4.1.4 Evaluation of the results 

 

To evaluate the results obtained, different methods and techniques were applied. The number of 

blood cells and other blood parameters in PB were counted to monitor the state of the animal 

during the surgical procedure and the reperfusion process. The number of WBC was studied to 

assess the cytotoxicity of the three different ATGs applied to PB. The number of RBC and 
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platelets were also measured to differentiate a possible toxic effect of the employed drugs. These 

methods have been extensively described in the literature to evaluate the immunological and 

macrohaemodynamic situation of patients during (3, 49) and after transplantation (164, 191), or 

animals during research procedures (42). 

Peripheral blood smears are of current use in some clinical procedures, such as haematological 

and oncologic diagnostic (9). Blood smears were also performed to examine the state of the 

various cell subpopulations in peripheral blood and to test the toxicity of certain drugs or 

procedures. We have used this cytological tool for various reasons. First of all it was our 

objective to correlate the morphological findings with the cell numbers obtained in the PB 

counting. A second reason was to investigate possible erythrocyte malformations due to the 

cytotoxic effect of ATGs. Another reason was to assess the cellular variation of the different 

WBC subpopulations in answer to IRI and the three different drugs employed and to compare 

them.  

Cyto-immunological monitoring is a non invasive tool used in the clinic and in experimental 

research allowing one to differentiate the various subpopulations of lymphocytes and their 

activated forms (63). This tool has a special importance because it permits one to distinguish 

between different inflammatory events. With CIM we studied the behaviour of the different 

subpopulations of WBC isolated from peripheral blood. It allowed monitoring the activation of 

WBC and the relationship between the different cell subpopulations during the reperfusion injury 

and with the three different immunosuppressive agents employed. CIM has been used in 

experimental procedures to investigate the extent of acute rejection, graft damage or infection 

and other inflammatory processes (64, 92, 176, 188). 

Routine histological techniques such as staining with haematoxylin-eosin or Masson’s 

Thrichrome are usually performed in experimental and clinical procedures to evaluate the extent 

of histological lesions, the intensity of tissue inflammation, tissue damage or leukocyte 
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infiltration (46, 117, 197). They can also be employed to detect fibrosis in the vascular bed or 

presence of fibrinoid aggregates (6, 13, 93). We used haematoxylin-eosin, Masson’s  thrichromic 

and Weiger’s haematoxylin staining to investigate the general state of the reperfused muscle, the 

extent of leukocyte infiltration and muscle damage as well as fibrosis, necrosis or thrombosis 

phenomena. 

Leukocyte infiltration, inflammatory mediators and neutrophil-mediated tissue injury are 

important factors in the development and latter consequences of IRI. These cellular factors were 

studied by means of immunohistochemical methods. All of them play an important role during 

IRI as CD45 (LCA) shows positive reactions to WBC and granulocyte esterase is also expressed 

on neutrophils. CD31 (PECAM) is an adhesion molecule leading leukocytes to adhesion through 

endothelial and platelet activation. Stainings with CD45, CD31 and granulocyte esterase were 

performed in our experiments to evaluate the presence of WBC in different tissues, activation of 

platelets leading to leukocyte adhesion and neutrophil-mediated cytotoxicity. These techniques 

have often been employed not only in the study of IRI but also in other inflammatory events (47, 

61, 67, 139). 

IL-4 is a central cytokine involved in the development of inflammation and in the regulation of 

the cooperating T-lymphocyte response (205). T helper lymphocytes play an important role in 

IRI as they are able to activate other WBC subpopulations such as NK cells or macrophages 

(57). We investigated the effect of ATGs on the expression and release of IL-4 by 

immunohistochemical means and correlated these results with tissue damage and further cell 

activation. 

The evaluation of the histological and immunohistochemical staining was scored by two 

independent observers. Minor difference on the scoring was resolved by agreement. Semi-

quantitative analysis was performed and the results classified according to previously established 

criteria that graded the muscle damage, leukocyte infiltration, vascular damage and the 
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presence/absence of IL-4. These evaluation methods are accepted in the literature (38, 95) as a 

reliable tool for studying tissue damage and morphological changes in rejection and IRI. 

The statistical evaluation of the results was performed by means of different statistical 

techniques. Descriptive statistics were presented by median + standard deviation, a method 

commonly used in the literature (184). Analytical study of the groups by means of ANOVA is 

recommended to compare different groups and permitted us to investigate the effect of taking 

different variables as dependent or independent. Scheffe´s correction is one of the methods 

employed to correct the global results of ANOVA when comparing groups one-by-one. Our 

choice to use nonparametric function estimation with stochastic data or smoothing-spline as a 

method to design a multivariate model for each group is due to the versatile behaviour of these 

models and their fair correlation with the analytical study of the groups. 

Analysis of several study groups with dependent and independent variables as well as correction 

of the results and construction of multivariate models are well-established methods for 

scientifical statistical analysis (32, 184).  

 

4.2 Discussion of the results 

 

4.2.1 Influence of ATG on peripheral blood counts 

 

The absolute number of circulating WBC during the reperfusion was reduced in the ATG groups 

when compared to the control group. Our results are in agreement with other clinical and 

experimental studies. This reduction may be related to the lymphocytotoxicity of these 

polyclonal antibodies (156) and at the same time to the higher induction of apoptosis of 

peripheral lymphocytes through CD95 ligand (52, 53). When comparing the groups one-by-one, 

only the Merieux-ATG group showed a lower number of peripheral WBC in short ischemia, 
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suggesting a reduction of the lymphocytotoxic activity parallel to the increase of the ischemia 

time. No data supporting or negating this fact have been found in the literature.  

With respect to RBC, the ATG groups present higher values of circulating erythrocytes in 

comparison to the control group. This reduction of circulating RBC may be due to the presence 

of haemorrhage and muscle damage in the control groups during the reperfusion and also to the 

increased number of thrombi or fibrinoid aggregates present in the vessels and the capillary net 

of the control groups compared to the treated groups.  

These facts, higher incidence of haemorrhage, muscle damage and higher presence of fibrin, 

thrombi and fibrinoid aggregates in the control groups may, in the same way, be related to the 

increased values of RBC, haemoglobin and haematocrit presented by the ATG groups in 

comparison to the control groups. In fact, although the haematocrit was set in 30% to enable a 

better circulation through the perfusion system, all blood related parameters suffered a parallel 

decrease in the control groups, significantly more severe than the decrease of the ATG groups.  

The number of circulating thrombocytes had a particular behaviour that may be separately 

discussed. The number of thrombocytes in the control groups was already higher at the 

beginning of the reperfusion when compared to the ATG groups. This fact suggests a relative 

toxicity of ATGs to platelets, a conclusoin supported by the property of ATGs to recognize 

antigens expressed in non-lymphoid cells (platelets, endothelium, etc.) as shown by Bonnefoy-

Berard et al (21). During the following reperfusion process, the values of platelets in the 

Fresenius-ATG groups decreased parallel to the control groups while the number of circulating 

thrombocytes in the Merieux-ATG and Biotest-ATG groups decreased significantly. This finding 

may be related to the different origin of the three ATGs: both Merieux and Biotest ATGs 

deriving from human thymocytes, Fresenius from a cultured Jurkat cell line. However, no 

previous investigation to support these theories was found in the literature. A further 
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investigation to test in vitro toxic properties of ATGs against blood components is 

recommended.  

 

4.2.2 Influence of ATG on peripheral blood smears 

 

Blood smears were performed to evaluate the behaviour of the different WBC subpopulations in 

whole blood both for the control and the ATG groups as well as to test the influence of ATGs on 

the different types of WBC after a period of ischemia and later reperfusion.  

A significant decrease of the number of lymphocytes in the ATG groups in comparison to the 

control groups both in SI and LI times is observed. This finding shows a good correlation 

between the morpho-cytological study and the counts obtained from PB. Diminution of 

lymphocytes was constant for all the ATG groups, but showing significant differences between 

them, probably related to lymphocytotoxicity and apoptosis induction of ATGs for this WBC 

subpopulation. There is, however, a significant difference in the Merieux-ATG group according 

to the “time of ischemia” variable. In the PB counts, the number of WBC in the LI group was 

higher than in the SI group, while in the blood smears the percentage of lymphocytes was higher 

in the SI group. In our opinion, the relative increase of WBC in peripheral blood of the long 

ischemia group is related to the increase of neutrophils, having no direct relation with the 

percentage of lymphocyte in the preparation. 

The percentage of neutrophils in PB counted in whole blood smears showed a significant 

difference between control and study groups. The percentage of neutrophils is significantly 

higher in the ATG groups than in the control groups although the number of circulating WBC is 

lower. This may be explained by the lymphocyte depleting activity of ATGs. The number of 

circulating WBC is fundamentally reduced due to the lymphocyte depletion. Therefore there is a 
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reduction of the percentage of lymphocytes and consequently a higher percentage of neutrophils 

in the extensions.  

The same occurs when studying the percentage of monocytes, although in this case, the 

percentage of these cells does not change significantly during the reperfusion. 

In the microphotographs presented, the presence of mononuclear cells is much higher in the 

control groups than in the ATG groups both in SI and LI times. In the latter, one finds more 

polymorphonuclear cells. That is consistent with the results shown and the relative increase of 

PMN in the ATG groups due to the lymphocytotoxic properties of these drugs. Occasional 

presence of damaged erythrocytes was documented although it had no relation to the drug 

employed or the time of ischemia. 

 

4.2.3 Influence of ATGs on WBC subpopulations  

 

Cyto-immunomonitoring has been used to study inflammatory events in the field of 

transplantation, as explained before. With the help of this technique we studied the influence of 

the ATGs upon the behaviour of the different WBC subpopulations. These data are also shown in 

percentage, meaning that the values of the different subgroups of cells are relative to the total of 

WBC in the cytological preparation. CIM results are consistent with the percentages of WBC 

shown in whole blood and blood smears. The percentage of lymphocytes in CIM was 

significantly lower in the ATG groups than in the control groups. This is explained by the direct 

lymphotoxicity of ATGs and the increased rate of apoptosis in this cell subpopulation. No 

differences were found related to ischemia time in this part of the study.  

Neutrophil and monocyte percentages also presented a parallel behaviour to the whole blood 

smears and were higher in the ATG groups than in the control groups. However, the Biotest-

ATG group presented lower values of neutrophils when compared to the Fresenius-ATG group 
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in the SI time and lower values than the other groups in the percentage of monocytes also in the 

SI time. This may be explained by the presence of eosinophils and LGLs in some of the samples 

of the Biotest-ATG group which are not shown although counted, perhaps modifying the 

percentage of neutrophils and monocytes. 

The microphotographs revealed a higher presence of PMN in the ATG groups. The nuclear 

modifications of these cells suggest regeneration of this cell subpopulation after cellular damage. 

The nuclei of the PMN are hypersegmented and these cells show in some ATG groups’ 

membranous damage. A higher presence of mononuclear cells is observed in the control groups 

during the reperfusion.  

 

4.2.4 Influence of ATGs on tissue, vascular damage and leukocyte infiltration  

 

All groups treated with one of the three different ATGs presented less muscle damage than the 

control groups. The differences were statistically significant. As could be observed in the 

microphotographs shown, the tissue samples of the control groups presented a high rate of fibre 

necrosis, wide areas of haemorrhage and areas of diffuse infiltration throughout the muscular and 

connective tissue. Biochemical features such as release of OFR or proinflammatory cytokines 

and cellular features such as neutrophils and endothelial cell activation are mainly responsible 

for this muscle damage and loss of structure (96). Focusing on the cellular features, the presence 

of infiltrating neutrophils and other WBC such as lymphocytes or macrophages in tissue was due 

to an increase in the release of proinflammatory mediators and adhesion molecules provoked by 

the activation of endothelial cells after reperfusion (35). This cellular activity may be decreased 

by ATGs, as no comparable muscle damage was observed on the ATG groups.  

The muscle damage observed has a tight relationship to the extent of the leukocyte infiltration in 

muscular, vascular, connective perivascular and perimisial tissue. Decrease of leukocyte 



 123

infiltration was observed by immunohistochemical staining with CD45 and granulocyte esterase 

in all the ATG groups in comparison to the control groups. Differences between the ATG groups 

were restricted to the LI time. After LI, the Fresenius-ATG group showed less muscle and 

perivascular tissue infiltration in one-by-one comparison with the other two ATG groups. These 

differences were not found in connective or vascular infiltration according to the study criteria. 

Merieux-ATG groups showed more general infiltration after LI than after SI, consistent with the 

previously explained results for PB counts and blood smears. These differences may be related to 

the different origin of the three ATGs. 

WBC presence in tissue after reperfusion is directly related to increased neutrophil adhesion and 

activation of immune and endothelial cells (165). Although the exact nature of interactions 

between endothelial and cellular adhesion molecules has not been clearly defined, a decrease of 

WBCs present in muscle and muscular vessels as well as a reduction in the number of infiltrating 

neutrophils in the same area suggest that ATG may play a role in blocking the process of 

transendothelial leukocyte migration. This anti-inflammatory action might be due to the 

lymphocyte depletion and subsequent decrease of the activation of endothelial cells after 

reperfusion or might be related to a direct effect on adhesion molecules and proinflammatory 

mediators. Both hypotheses are partially supported by our data, as less endothelial or vascular 

damage is strongly associated to a diminution of the circulating WBC observed in PB counts, 

smears and CIM and to a decrease of the extent of tissue infiltration. However, decrease of CD-

31 and IL-4 expression also partially supports the direct blocking of adhesion molecules and 

proinflammatory cytokines. In any case, further experiments must be performed to define the 

exact mechanism of action of ATGs in preventing leukocyte transendothelial migration and 

subsequent muscle damage after reperfusion. 

 Vascular obliteration related to fibrin or fibrinoid aggregate formation as well as to endothelial 

and thrombocyte activation was measured by means of histological (Masson’s Thrichrome, 
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Weiger`s Haematoxylin) and immunohistochemical (CD31) techniques. Control groups showed 

more presence of fibrin and positive reaction for CD31 than the ATG groups. Activated 

thrombocytes adhered to the endothelial cells or were included in vascular aggregates. They were 

observed in most of the biopsies studied both in SI and LI. ATG groups, however, showed a 

lower presence of positive reaction for CD31 and fibrin staining as compared to the control 

groups. The intragroup differences observed for the ATG groups may be related to the different 

origin of the three ATGs.  

Decrease of the positive reaction for CD31 (PECAM) can explain the diminution of the 

transendothelial leukocyte migration, as CD31 is one of the most important adhesion molecules 

implied in this process (35, 58). In fact, many publications assert that decrease of the expression 

of PECAM attenuates reperfusion injury (30, 47) and ameliorates the outcome of the reperfused 

tissue (89). This fact supports the hypothesis that ATGs have a protective effect upon IRI by 

direct blocking adhesion molecules or by diminution of the production of these molecules as a 

consequence of leukocyte depletion.  

Cellular inflammation and infiltrating WBC in tissue also lead to muscle damage. Demonstration 

of IL-4 in our model is related to a higher WBC presence and greater muscle damage. This fact 

may be related to a participation of IL-4 in the proinflammatory cascade accompanying IRI as an 

activator of Th2 helper lymphocytes. Therefore, inhibition of IL-4 release might result in a 

decrease of the cooperation between lymphocytes, decrease of other inflammation molecules 

such as TNF-α or IL-2  and subsequently less endothelial activation and vascular damage (44, 

162). ATG groups show in our model significantly less presence of IL-4 than the control groups. 

These results are consistent with the hypothesis that IL-4 release may have a proinflammatory 

role in muscle ischemia reperfusion injury. 
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5- SUMMARY AND CONCLUSIONS 

 

Background:  

Ischemia-reperfusion injury (IRI) is a non-specific, antigen independent event, which 

significantly influences the outcome of transplanted organs. Anti-thymocyte globulins (ATGs) 

are used to prevent acute rejection after transplantation, to induce immunosuppression and to 

overcome graft vs. host disease or haematological disorders. ATGs induce apoptosis and 

complement-mediated cell death in peripheral T-lymphocytes and have the potential to inhibit 

leukocyte adhesion by directly binding to adhesion molecules. We analysed, by means of 

cytology, histology and Immunohistochemistry, the microvasculature and the different blood 

cell-subpopulations upon ischemia/reperfusion after induction of immunosupression by three 

different ATGs.  

 

Material and Methods: 

Extremities of cynomolgus monkeys were flushed with Ringer’s lactate solution at 4 C° via 

either the femoral or the brachial artery. After 60 minutes of ischemia the limbs were reperfused 

with human blood of the corresponding blood group (BG 0). ATGs were added to the blood, 

diluted to a haematocrit of 30 % with Krebs-Henseleit-buffer, 20 min prior to the reperfusion.  

Perfusion was carried out in a re-circulatory perfusion system. The limbs (n=60) were assigned 

to four groups: Biotest-ATG group (n=20), Fresenius-ATG group (n=12), Merieux-ATG (n=11) 

and control group (without ATG; n=17). The perfused muscle was investigated using intravital 

microscopy to determine the influence of ATGs on the microcirculation. Monitoring of 

haematological parameters was performed and counts of RBC, WBC, platelets, haematocrit and 

haemoglobin were realised. Cytology and Cyto-immunological-monitoring (CIM) were 

performed in blood samples taken at different time points (0,1,5,10,15,30,45 and 60 min) after 
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onset of reperfusion. Biopsies from muscular tissue were taken after the experiments. 

Histological and immunohistochemical techniques were used to investigate the vascular damage 

and the distribution of WBC in vascular, perivascular and muscular tissue, applying semi-

quantitative analysis to evaluate the results. 

 

Results and conclusions: 

The following conclusions may be drawn from the results: 

• Monitoring of the haematological parameters showed a decrease in the number of WBC 

in the treated groups compared to the control groups. The amount of RBC, haemoglobin 

and the haematocrit was significantly higher in the treated groups than in the control 

groups. 

• ATG-Biotest and Merieux-ATG groups showed a decrease in the number of circulating 

platelets in comparison to Fresenius-ATG and control groups. 

• Cytological and CIM studies demonstrated significant differences in lymphocytotoxicity 

and depletion of peripheral lymphocytes in the ATG groups in comparison to the control 

groups.  

• Histological and immunohistochemical analyses showed a decrease in vascular and 

perivascular infiltration as well as muscle inflammatory reactions after ATGs treatment.  

• Expression of IL-4 was reduced in the ATG groups when compared to the control group. 

• ATGs influence IRI, having a positive effect on the outcome of reperfused tissues  

 

.  
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6- ZUSAMMENFASSUNG 

 

Hintergrund: 

Der Ischämie-Reperfusionsschaden ist ein unspezifischer, Antigen unabhängiger 

pathophysiologischer Prozess, welcher bedeutenden Einfluß auf das Überleben transplantierter 

Organe hat. Antithymozyten-Globuline (ATGs) werden als Immunsuppressiva in der Therapie 

akuter Abstoßungsepisoden und zur Unterdrückung der Graft vs Host Disease sowie 

hämatologischer Funktionsstörungen eingesetzt. ATGs führen zu Apoptose und Komplement 

vermitteltem Zelltod, wobei die direkte Bindung an Adhäsionsmoleküle die Leukozyten-

Adhäsion hemmt.  

Wir haben mittels Zytologie, Histologie und Immunhistochemie den Einfluß dreier 

verschiedener ATGs auf die Mikrozirkulation sowie die unterschiedlichen Zellsubpopulationen 

nach Ischämie/Reperfusion untersucht. 

 

Material und Methoden: 

Arterie und Vene der Extremitäten von Affen (M. fascicularis) wurden isoliert, mit 4 C° kalter 

Ringer-Laktatlösung gespült und nach einer Ischämiezeit von einer bzw. zwei Stunden über die 

femorale bzw. brachiale Arterie mit Blutgruppen-kompatiblen Humanblut reperfundiert. 

Dem mit Krebs-Henseleit-Puffer auf einen Hämatokrit von 30% verdünntem Blut wurden ATGs 

20 Minuten vor der Reperfusion zugefügt. Die Perfusion wurde mit Hilfe eines 

Perfusionssystems rezirkulierend durchgeführt. Die Extremitäten (n=60) wurden entsprechend 

dem Versuchsansatz vier verschiedenen Gruppen zugeteilt: Biotest-ATG Gruppe (n=16), 

Fresenius-ATG Gruppe (n=16), Merieux-ATG Gruppe (n=12) und eine Kontroll-Gruppe (ohne 

ATG; n=16). Während der Perfusion wurde die Mikrozirkulation der perfundierten Muskulatur 

mittels Intravital-Mikroskopie untersucht. Neben der Bestimmung hämatologischer Parameter, 
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wurden die Anzahl der Rot Blutzellen (RBZ), weiß Blutzellen (WBK), Thrombozyten sowie die 

Hämatokrit- und Hämoglobinspiegel im Perfusat zu verschiedenen Zeitpunkten bestimmt. 

Zytologische Untersuchungen und zyto-immunologisches Monitoring (CIM) wurde in 

Blutproben, welche zu unterschiedlichen Zeitpunkten (0,1,5,10,15,30,45,60 Min.) abgenommen 

wurden, durchgeführt. 

Nach den Versuchen wurden Biopsien von Muskelgewebe entnommen. Histologische und 

immunhistologische Techniken wurden angewandt, um den Einfluß der ATGs auf die Integrität 

des Gewebes und die Infiltration der weißen Blutzellen (WBZ) im vaskulären, perivaskulären 

und muskulären Gewebe semi-quantitativ zu analysieren. 

 

Ergebnisse und Folgerungen: 

• Die hämatologische Untersuchung ergab eine signifikante Reduktion der zirkulierenden 

WBZ in den behandelten Gruppen im Vergleich zu der Kontrolle. Die Anzahl der RBZ, 

sowie der Hämatokrit und der Hämoglobinspiegel waren im Vergleich zur Kontrolle 

signifikant erhöht. 

• Die Anzahl zirkulierender Thrombozyten in den ATG-Biotest und Merieux-ATG Gruppen 

war im Vergleich zu Fresenius ATG Gruppe und Kontrolle signifikant reduziert. 

• Die zytologische Untersuchung sowie das CIM zeigten signifikante Unterschiede hinsichtlich 

der Lymphzytotoxizität und der Depletion peripherer Lymphozyten in den ATG Gruppen im 

Vergleich zur Kontrolle.   

• Die histologische und immunhistochemische Analyse ergab eine reduzierte vaskuläre und 

perivaskuläre Infiltration, sowie eine Verminderung der Inflammation des muskulären 

Gewebes nach Behandlung mit ATG. 

• Die Expression von IL-4 war in den ATG Gruppen signifikant niedriger als in der Kontrolle. 
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7- APPENDIX: Tables 

The values of all the parameters studied distributed into groups are presented in this appendix. 

Values are shown as median + standard deviation. 

App 1.1.- Blood parameters 

App 1.1.1.-WBC 

 BSI FSI MSI CSI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 6,45 1,1705 6,45 0,8255 5 1,7742 9 2,7809 

0 3,92 0,7488 4,4 0,8280 3,3 1,3427 6,8 1,9602 

1 2,95 0,6124 3,3 0,7348 2,8 0,9571 5,9 3,9016 

5 2,9 0,7064 2,6 0,6129 2,4 1,2149 5,3 1,5093 

10 2,65 0,7160 2,3 0,5033 2,1 1,1870 3,55 1,9091 

15 2,55 0,9109 2,3 0,5219 2,1 0,9945 3,65 2,4748 

30 2,7 0,8354 1,9 0,4353 1,9 1,1840 1,5 1,9157 

45 2,2 1,0714 1,6 0,5468 1,6 1,2436 2,5 1,6802 

60 2,25 1,0342 2 0,7805 1,55 0,0707 2,6 1,2503 

 

Tab. 1: WBC-Short Ischemia: Number of WBC in PB. Values for every time point are expressed in number of cells x 

10³/µL 

 BLI FLI MLI CLI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 6,45 1,1846 6,1 0,7996 6,75 1,7075 9 2,8598 

0 4,15 0,5343 4,2 0,4615 4 1,1672 6,3 2,7624 

1 2,65 1,1519 3,2 0,5856 4,15 1,8266 5,1 2,21698 

5 2,7 0,9008 2,7 0,3193 3,45 1,4854 3,65 2,568 

10 2,65 0,7740 2,6 0,5727 3,2 1,3744 5,1 2,4724 

15 2,85 0,5873 2,3 0,3633 3,1 1,4974 4,05 1,2120 

30 2,6 0,6664 2,2 0,2607 2,55 1,0801 3,8 1,1344 

45 2,2 0,2810 2,1 0,1923 1,9 0,9609 2,8 0,70946 

60 2,25 0,7176 1,88 0,2178 2,3 0,5033 3,45 1,4849 

Tab. 2: WBC-Long Ischemia: Number of WBC in PB. Values for every time point are expressed in number of cells x 

10³/µL 
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App. 1.1.2.- RBC 
 

 BSI FSI MSI CSI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 5,095 0,3628 4,93 0,5676 4,79 0,4527 4,87 0,2885 

0 3,53 0,1943 3,4 0,2559 3,43 0,1109 3,47 0,4029 

1 3,375 0,3295 3,4 0,7274 3,52 0,4872 3,45 1,1664 

5 3,525 0,4471 3,35 0,6986 3,52 0,3440 3,33 0,7249 

10 3,615 0,5395 3,42 0,7135 3,5 0,202 3,34 0 

15 3,705 0,5149 3,33 0,8312 3,49 0,2135 3,38 0,0707 

30 3,875 0,5549 3,55 0,6945 3,44 0,5029 3,4 1,3741 

45 3,85 0,5889 3,92 0,5908 4,24 0,7442 3,3 0,4147 

60 4,26 0,8616 3,98 0,7166 3,285 0,6293 3,31 0,5200 

 

Tab. 3: RBC-Short Ischemia: Number of RBC in PB.  Values for every time point are expressed in number of cells x 

106/µL 

 

 BLI FLI MLI CLI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 4,705 0,4915 4,93 0,6565 5,185 0,455 4,315 0,4936 

0 3,355 0,2312 3,4 0,2306 3,475 0,2242 3,39 0,4445 

1 3,255 0,4305 3,49 0,2847 3,42 0,27702 3,46 0,7469 

5 3,315 0,5207 3,54 0,5558 3,36 0,2808 3,18 1,4345 

10 3,465 0,3605 3,59 0,2338 3,5 0,2542 2,9 1,0128 

15 3,495 0,2633 3,55 0,2977 3,615 0,3092 3,26 0,5899 

30 3,795 0,5576 3,91 0,4403 3,81 0,4011 3,38 0,8441 

45 4,165 0,5572 4,06 0,6333 4,19 0,5416 3,45 0,5676 

60 4,21 0,6321 4,02 0,7984 4,32 0,8083 3,12 0,791 

 

Tab. 4: RBC-Long Ischemia. Number of RBC in PB.  Values for every time point are expressed in number of cells x 

106/µL 
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App. 1.1.3. Platelets 

 

 BSI FSI MSI CSI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 220 63,13 210 59,688 192 44,679 274 43,482 

0 162,5 49,00 151 64,86 138 38,379 188 29,593 

1 119 52,770 146 19,093 128 31,100 140,5 33,826 

5 97,5 48,113 149 33,585 82 47,975 155 26,368 

10 108,5 52,151 145 36,404 118 34,095 157,5 0,7071 

15 88 52,415 137 26,333 108 28,342 154 8,4852 

30 86 50,974 132 64,605 93 24,513 140 52,252 

45 59 41,764 122 68,670 80 35,98 133 74,332 

60 64 29,518 117 93,811 115 38,37 119 12,342 

 

Tab. 5: Thrombocytes-Short Ischemia: Number of platelets in PB. Values for every time point are expressed in 

number of cells x 10³/µL 

 

 BLI FLI MLI CLI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 212 67,744 210 71,578 242 20,832 270,5 45,919 

0 160,5 52,512 151 75,457 154,5 51,990 176,5 41,126 

1 106 38,536 152 17,908 155 34,635 137,5 22,911 

5 91,5 36,492 148 41,644 156 30,309 134 71,092 

10 105,5 56,505 148 40,228 132 28,099 202 43,675 

15 69 58,585 140 52,276 127 23,614 136 22,278 

30 79 44,468 128 40,350 108,5 24,102 158 54,995 

45 73,5 44,159 128 39,268 98,5 30,490 147 54,921 

60 66,5 54,020 120 33,484 57 30,347 129,5 19,091 

 

Tab. 6: Thrombocytes-Long Ischemia: Number of thrombocytes in PB. Values for every time point are expressed in 

number of cells x 10³/µL 
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App. 1.1.4.Haematocrit 
 
 

 BSI FSI MSI CSI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 45,05 3,5139 45,5 5,0753 43,6 5,1250 38,6 2,6758 

0 30,8 1,4931 29,6 1,5126 31,5 1,1757 30,6 3,2957 

1 30,3 2,0465 29,6 6,9158 30,05 4,7053 30,8 10,140 

5 30,8 3,3028 30,3 6,4523 30,9 3,5888 29,8 6,3749 

10 31,2 4,2536 31,3 6,6725 31,3 1,9475 29,9 0,1414 

15 32,55 4,0083 30,5 7,5627 31,9 2,0958 30,25 0,6363 

30 34 3,8818 32,3 6,0717 30,3 4,3665 30,1 11,869 

45 33,8 4,2149 35,3 6,2353 34,55 6,061 29,7 2,783 

60 36,9 6,3443 35 5,9733 29,5 3,9597 29,9 4,050 

Tab. 7: HCT-Short Ischemia: haematocrit in % before and after dilution. 

 
 

 BLI FLI MLI CLI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 41,55 4,1379 43,5 5,4550 48,8 4,1931 38,75 3,4372 

0 30,4 1,5099 29,6 1,4024 30,95 1,6713 30,35 3,1784 

1 29,2 2,9794 30,9 2,6949 31,05 3,3491 27,05 6,1190 

5 29,15 3,8354 31 4,5025 31,35 1,7858 28,6 13,389 

10 30,35 2,3998 31,9 2,1349 32,2 1,7757 25,6 8,8017 

15 31,75 1,9449 31,1 3,0792 32,35 1,8779 29,15 5,4178 

30 35 4,1262 34,3 4,7072 33,55 3,2176 30,3 7,4503 

45 37,15 4,2589 36,8 7,4031 36,9 3,8974 29,2 5,2204 

60 38,5 5,5568 35,3 8,4690 38 6,3437 27,7 7,0710 

 

Tab. 8: HCT-Long Ischemia: haematocrit in % before and after dilution 

. 

 
 
 



 133

App. 1.1.5. Haemoglobin 
 
 

 BSI FSI MSI CSI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 15,05 1,2035 14,6 1,8087 14,1 2,023 13,9 0,8173 

0 10,6 0,8530 9,9 0,7184 10,3 0,7114 10,3 1,4060 

1 10,7 0,9057 10,3 1,9146 10,8 1,4138 10,6 3,9041 

5 10,95 1,0340 10,3 1,8680 10 1,3246 9,9 2,2576 

10 10,65 1,4945 10,8 1,9171 10,4 0,7967 10,35 0,6363 

15 11,15 1,3680 10,8 2,2825 11,1 1,0014 10,55 0,9192 

30 11,75 1,1400 11,3 1,9659 10,9 1,5565 10,1 4,2335 

45 11,7 1,1150 11,8 1,6118 11,7 2,1238 10,3 1,1590 

60 12,6 1,5793 12 2,1562 9,7 0,8485 10,5 1,3276 

 

Tab. 9: Hb-Short Ischemia: Amount of haemoglobin during the reperfusion after a SI period. 

 
 
 

 BLI FLI MLI CLI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 13,6 1,4232 14,6 1,9603 16,15 1,5649 12,8 1,1923 

0 10,45 0,7946 9,9 0,5449 10,6 0,7274 10 1,0264 

1 10,4 0,9818 10,1 0,7791 9,85 0,668 9,5 2,1173 

5 10,2 1,4030 10,4 1,2136 10,1 0,5 9,7 4,3431 

10 10,65 1,0192 10,8 0,7968 10,3 0,5477 9,3 2,9517 

15 11,2 1,0077 10,8 0,8700 10,45 0,6849 10,2 1,2419 

30 11,80 1,2668 11,5 1,1631 10,75 1,2027 9,9 1,9537 

45 12,8 1,6317 11,6 2,0005 11,5 1,285 9,9 0,7767 

60 13,3 2,1229 11,8 2,5449 12,1 2,0663 9,35 1,9091 

 

Tab. 10: Hb-Long Ischemia: Amount of haemoglobin during the reperfusion after a LI period. 
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App. 1.2.-Smears 

App. 1.2.1. Lymphocytes 

 

 BSI FSI MSI CSI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 30 13,69 28 12,12 54 14,76 39,5 20,14 

0 44 12,33 50 21,94 34 14,57 38 36,90 

1 40 8,51 28 16,02 42 14,24 50,5 41,71 

5 31 12,64 38 15,10 46 6,75 69 26,50 

10 44 19,49 29 25,37 48 9,94 58,5 53,03 

15 35 6,80 43 21,11 40 14,95 58,5 44,54 

30 31 7,14 30 18,41 40 9,21 94 32,33 

45 34 5,62 30 16,10 35 9,55 59 46,66 

60 29 7,27 32 20,17 24 5,50 88 26,15 

 

Tab. 11: Lymphocytes-Short Ischemia: Percentage of lymphocytes in PB smears after a period of SI (median and 

standard deviation are expressed in %). 

 

 BLI FLI MLI CLI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 32 13,64 24 8,67 35,5 11,57 39 16,25 

0 44 12,57 50 19,54 48 16,35 70 23,57 

1 50 22,58 36 21,33 25 18,09 32 20,42 

5 44 16,72 28 17,30 38 5,61 59 23,44 

10 30 18,00 28 16,04 32,5 11,09 63 26,65 

15 32 6,75 28 20,94 35,5 14,47 60,5 17,83 

30 37,00 9,17 30 19,21 29 11,75 69 17,38 

45 32 15,46 25 22,77 25,5 27,53 50 45,25 

60 26 17,31 24 23,55 21 9 52,5 36,06 

 

Tab. 12: Lymphocytes-Long Ischemia: Percentage of lymphocytes in PB smears after a period of LI ( median and 

standard deviation are expressed in %). 
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App.1.2.2 Neutrophils 
 

 BSI FSI MSI CSI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 58 13,33 61 8,99 44 12,73 55,5 18,73 

0 47 13,88 44 19,48 49 13,43 49 36,59 

1 55 10,18 45 14,07 51 14,85 45 41,01 

5 60 11,46 46 18,67 48 6,21 36,5 26,16 

10 49 15,57 53 23,71 50 10,46 37 49,49 

15 60 6,22 55 22,13 51 16,65 38,5 43,13 

30 63 5,99 59 16,58 58 5,47 29,5 38,89 

45 58 5,77 58 14,97 60 5,12 37,5 44,54 

60 62 10,46 48 18,21 69 4,04 4 24,82 

 

Tab. 13: Neutrophils-Short Ischemia: Percentage of neutrophils of the different study groups during the reperfusion 

after a SI period (median and standard deviation are expressed in %). 

 

 BLI FLI MLI CLI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 57 13,02 65 7,39 56,5 8,84 55 14,36 

0 47 13,26 44 17,60 43 11,16 26 20,55 

1 44 22,56 54 21,89 73,5 20,07 66 26,85 

5 54 16,87 58 29,35 53 10,37 40,5 22,41 

10 58 16,95 55 20,48 58,5 14,72 35 29,56 

15 58 14,43 50 24,26 60,5 13,04 33,5 21,07 

30 56 9,77 40 25,40 62 16,58 16 20,29 

45 60 17,17 32 22,42 62 22,41 41,5 50,20 

60 66 18,87 40 25,54 70 11,01 37,5 43,13 

 

Tab. 14: Neutrophils-Long Ischemia: Percentage of neutrophils of the different study groups during the reperfusion 

after a LI period (median and standard deviation are expressed in %). 
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App. 1.2.3. Monocytes. 

 

 BSI FSI MSI CSI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 8 4,02 9 3,77 6 4,19 5 2,58 

0 8 2,34 8 4,15 6 1,97 8 2,88 

1 6 3,73 4 1,60 3 2,96 4,5 0,70 

5 5 3,25 5 3,03 3 3,35 4 5,29 

10 7 3,90 3 4,18 6 5,61 4,5 3,53 

15 5 2,94 5 2,26 1,5 6,28 3 1,41 

30 4 3,14 7 2,54 2 3,20 5 1 

45 5 4,54 6 2,50 2 4,38 3,5 2,12 

60 5 3,71 6 3,09 4 2,51 7 3,21 

 

Tab. 15: Monocytes; Short Ischemia: Percentage of monocytes during the reperfusion after a SI time (median and 

standard deviation are expressed in %). 

 

 BLI FLI MLI CLI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 8 4,02 10 3,43 6 4,19 6 2 

0 7 2,85 8 4,43 7,5 2,62 8 4,50 

1 4 3,54 4 3,19 4 3,30 3 4,35 

5 4 3,45 5 2,30 7 1,5 4 4,52 

10 8 3,04 3 2,34 6,5 2,08 4 3,05 

15 6 3,31 3 3,27 4,5 1,41 7 3,46 

30 5 1,51 4 1,94 7,5 6,70 10 4,04 

45 6 2,22 5 2,54 5 5,59 7,5 3,53 

60 6 3,76 6 3,56 8 3,51 8,5 6,36 

 

Tab. 16: Monocytes-Long Ischemia: Percentage of monocytes during the reperfusion after a LI time (median and 

standard deviation are expressed in %). 
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App. 1.3.-CIM 

App. 1.3.1. Lymphocytes 

 

 BSI FSI MSI CSI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 73 14,19 69 4,25 56,5 13,21 32 0 

0 64 20,83 62 21,28 62 14,18 50 16,97 

1 39 17,33 65 14,86 36 26,49 64 7,07 

5 30 6,04 39 13,16 42 13,59 85 28,21 

10 32 13,77 29 12,53 36 17,68 22 0 

15 23 9,80 30 10,62 34 19,79 11 0 

30 26 6,28 28 13,56 33,5 9,89 57 55,15 

45 27,5 7,32 42 23,22 27 14,24 29 0 

60 22 6,01 36,5 16,09 45 17,03 62 48,08 

 

Tab. 17: Lymphocytes-Short Ischemia: Percentage of lymphocytes with CIM after a SI period. (median and standard 

deviation are expressed in %). 

 

 

 BLI FLI MLI CLI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 72 7,99 69 5,01 63 8,42 62 0 

0 54 24,59 66 25,80 66 10,50 63 1,41 

1 41 10,86 39 19,25 41 21,31 29 0 

5 39,5 11,78 41 12,32 35,5 10,42 78 22,62 

10 41 14,95 36 17,22 37 7,54 68,5 34,64 

15 32,5 15,58 33 13,88 29 10,78 61 32,52 

30 28,00 11,43 34 13,44 33 13,50 58,5 48,79 

45 38,5 15,31 41,5 17,68 23,5 5,73 49 46,66 

 24 14,82 25 12,50 24 14,50 16 0 

 

Tab. 18: Lymphocytes-Long Ischemia: Percentage of lymphocytes with CIM after a LI period. (median and standard 

deviation are expressed in %). 
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1.3.2. Neutrophils 

 

 BSI FSI MSI CSI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 0 16,01 0 0 1,5 3,50 60 0 

0 8 23,72 11 27,68 21,5 21,23 26,5 31,81 

1 49 18,34 27 22,26 60,5 28,12 24 0 

5 64 7,69 50 19,67 56 23,51 26 36,76 

10 62 12,52 62 17,73 59 19,62 69 0 

15 68 10,12 60 14,78 65 20,49 84 0 

30 69 8,44 62 16,31 63 10,03 35,5 50,20 

45 63,5 10,47 44 20,13 69,5 13,83 66 0 

60 74 5,40 59,5 16,49 53 33,04 33 46,66 

 

Tab. 19: Neutrophils-Short Ischemia: % of neutrophils after a period of SI. (median and standard deviation are 

expressed in %). 

 
 

 BLI FLI MLI CLI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 0 9,77 0 0 0 4,5 21 24,04 

0 22 28,96 11 32,76 15 13,01 45 12,72 

1 46 11,97 42 25,71 33 19,73 28 0 

5 52,5 10,69 52 15,75 56 32,53 22,5 23,33 

10 55 11,64 54 15,05 59 6,94 30 32,52 

15 62 13,27 55 15,11 57 11,06 42 41,01 

30 63,5 14,75 54 12,70 62 8,62 42 49,49 

45 57 17,70 42,5 16,89 67,5 3,51 46 45,25 

60 68 15,70 59 16,56 74 19,54   

 

Tab. 21: Neutrophils-Long Ischemia: % of neutrophils after a period of LI. (median and standard deviation are 

expressed in %). 
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App.1.3.3. Monocytes 

 

 BSI FSI MSI CSI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 23 10,03 29 4,68 42,5 13,61 8 0 

0 18 13,26 20 15,22 12 10,27 23,5 14,84 

1 7 3,74 9 8,38 4,5 3,61 14 0 

5 5 4,816 9 6,50 3 5,472 10 7,07 

10 3 4,70 5 6,06 1,5 4,35 7 0 

15 4 4,03 4 7,38 2,5 1,36 5 0 

30 4 5,23 6 3,46 1 0,81 6 2,82 

45 5 4,05 5 5,43 1 1,5 4 0 

60 3 1,83 4 2,33 2 19,92 4 0 

Tab. 21: Monocytes -Short Ischemia: % of monocytes (CIM) after a SI period (median and standard deviation are 

expressed in %). 

 
 BLI FLI MLI CLI 

Time Median Sta.De. Median Sta.De. Median Sta.De. Median Sta.De. 

-30 28 12,98 28 5,06 34 10,66 0 0 

0 15 10,77 18 13,74 27 12,66 17 24,04 

1 9 8,39 18 10,22 7,5 2,16 8,5 12,02 

5 3 3,02 7 5,49 3 4,19 5 7,071 

10 6,5 2,87 6 2,44 6 4,12 8,5 12,02 

15 4,5 2,67 7 3,36 2 4,61 4 5,65 

30 4 2,60 3 5,41 3 1 2,5 3,53 

45 4 3,50 6 4,85 4 5,47 2,5 3,53 

60 3 4,50 1 8,38 7 5,50 3 0 

Tab. 22: Monocytes-Long Ischemia: % of monocytes (CIM) after a LI period (median and standard deviation are 

expressed in %). 
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App. 1.4: Histological results 

 

CSI FSI BSI MSI CLI FLI BLI MLI  
mean St. D mean St. D mean St. D mean St. D mean St. D mean St. D mean St. D mean St. D 

Muscle 
Damage 

 
2,6 

 
0,51 0,9 0,73 

 
1,1 0,73 1,2 0,63 2,8 0,42 1 0,66 1,6 0,69 1,4 0,51

Connect. 
Infiltration 

 
2,5 

 
0,52 1,1 0,31 

 
1,2 0,42 1,3 0,48 2,3 0,67 1,3 0,48 1,4 0,51 1,3 0,48

Vascular 
Infiltration 

 
2,3 

 
0,48 1,1 0,31 

 
1,3 0,48 1,4 0,51 2,4 0,69 1,5 0,52 1,5 0,52 1,3 0,48

Perivasc. 
Infiltration 

 
2,3 

 
0,67 1,2 0,42 

 
1,3 0,48 1,3 0,48 2,3 0,67 1,2 0,42 1,4 0,51 1,5 0,52

Muscular 
Infiltration 

 
2,4 

 
0,69 0,5 0,52 

 
0,4 0,51 0,4 0,51 2,7 0,48 0,4 0,51 0,6 0,51 0,9 0,79

Presence 
Fibrin 

 
1,9 

 
0,56 0,3 0,48 

 
1,2 0,63 0,8 0,63 2,2 0,63 0,8 0,63 1,3 0,67 1,1 0,56

 

Tab. 23: Values obtained after semi-quantitative analysis of the histological and immunohistochemical sections. 

Results expressed as mean + standard deviation 
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