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Introduction   1

I. INTRODUCTION 

 

Chronic inflammatory processes occur during onset and development of obesity in 

white adipose tissue (WAT). Activation of endothelial cells was recently shown to 

occur early during initiation of weight gain. This thesis shows regulation of 

inflammatory processes in WAT by platelets. Chronic platelet adhesion was detected 

using intravital microscopy at the endothelium of adipose tissue. This platelet 

adhesion seems to promote recruitment of white blood cells (leukocytes) to adipose 

tissue. Platelet-leukocyte interactions are a well-established phenomenon in various 

inflammatory settings of vascular inflammation.  

In the here described scientific project transgenic mice models with deficient platelet 

adhesion due to altered adhesion receptor expression and impaired platelet 

biogenesis show decrease of white blood cell accumulation in WAT. Reduced 

platelet and leukocyte adhesion provokes a significant increase in body fat. 

Therefore, the results described in this thesis indicate a potential and probably 

crucial role of platelets in chronic inflammatory processes during obesity.  
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II. LITERATURE REVIEW 

 

1. Platelets 

1.1. Definition 

 

The first characterization of platelets dated in the 19th century as small, curious 

beads or grains which accumulate to each other to irregular clusters (19). Today it is 

widely established that platelets play a crucial role in inflammatory reactions, 

immune response (232), atherosclerosis (158) and thrombus formation upon plaque 

rupture (160). Platelets function to stop hemorrhage after tissue trauma or vascular 

injury. Activation and aggregation of platelets are induced after the interaction of 

platelet receptors with matrix proteins. The most important component for this 

interaction is collagen (136), a protein in the various connective tissues, but also the 

serine protease thrombin plays a crucial role. Other components reacting with 

platelets are the von Willebrand factor (vWF) and fibronectin; they are both localized 

especially in the extracellular matrix (ECM).  

 

1.2. Anatomy and function 

 

In their resting form platelets show a diameter of 2-4 µm, circulating in a range of 

150.000 - 400.000 / µl in the bloodstream (207). The anuclear cells derive from 

megakaryocytes in the bone marrow and lack genomic DNA (109), however they 

contain megakaryocyte-derived mRNA for the synthesis of proteins (182). With a 

multitude of functions, in some aspects platelets resemble leukocytes when it comes 

to change of shape or formation of oxygen radicals (156). Platelets have an average 

lifetime of 8-9 days with a daily renewal rate (96) and can emit chemotactic factors 

for monocytes and neutrophil granulocytes (63), moreover they show cytotoxic 

activity against blood parasites (25) and tumor cells (107).  
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1.2.1. Structure and activation 

 

Inactivated platelets show a lens-shaped form (112) with an average surface area of 

8 µm2, however within activation they undergo a shape change with formation of 

pseudopods that represent protrusions of the plasma (echinospherocytes) and the 

surface area increases up to 13 µm2 (Fig. 1) (86). 

 

Figure 1: Human platelet spreading 

A human platelet undergoes a conformational change after activation on surface of fibrinogen (193)  

 

 

The platelet can be divided into four zones, from peripheral to innermost: 

1.2.1.1. Peripheral Zone 

 

The platelet plasma membrane is smooth, however high resolution electron 

microscopy revealed a rugose appearance somehow resembling the surface of the 

brain (105). These folds may provide additional membrane when platelets need to 

stretch on surfaces. Thin sections revealed that the platelet plasma membrane has a 

thicker glycocalyx than other blood cells (187). The lipid bilayer on which the 

glycocalyx rests, is a unit membrane and serves an extremely important role in the 

acceleration of clotting, a process solely found in platelets.  
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The glycocalyx is covered with glycoprotein receptors which are necessary for 

facilitation of platelet adhesion to a damaged surface, to promote platelet 

aggregation and interaction with other cells, to accelerate the process of clotting and 

to trigger full activation of the platelet (59, 111, 118, 213).   

The main glycoprotein receptors involved in hemostasis are the glycoprotein Ib-IX-V 

complex (GPIb-IX) and the integrin αIIbβ3 (GPIIbIIIa). The outside surface of the 

platelet is covered with about 25.000 GPIb-IX receptors and 80.000 GPIIb-IIIa 

receptors (254). 

In the submembrane area a regular system of thin filaments resembling actin 

filaments can be found. These filaments have an important role in the shape change 

and also in the translocation of particles and receptors over the cell surface (277). 

 

1.2.1.2. Sol-gel Zone 

 

In addition to the contractile filament system of the peripheral zone the sol-gel zone 

shows two other filament systems in the platelet cytoplasm. One is the microtubules, 

a cytoskeletal support system. The other is the actomyosin filament system, which is 

involved in internal transformation, shape change and contraction of the hemostatic 

plug and clot-retraction (138). The cytoplasmic actin filament cytoskeleton serves as 

a matrix on which all organelles are maintained separate from each other in the 

resting cell. After activation the cytoplasmic actomyosin cytoskeleton has a unique 

role in the platelet contraction and the spatial reorganization of the organelles (86).  

 

1.2.1.3. Organelle Zone 

 

Within the organelle zone, three major types of organelles can be distinguished, α-

granules, dense bodies (δ-granules) and lysosomes. There are also multivesicular 

bodies, which develop in the megakaryocyte and may serve as some kind of sorting 

station (200).  
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Some small mitochondria in the platelet cytoplasm serve an important role in energy 

metabolism. 

The most numerous of the platelet organelles are the α-granules, with a number 

depending of the size of the platelet as well as the presence of other large structures 

(e.g. glycogen) (97). α-granules contain several growth factors like insulin-like growth 

factor 1, platelet-derived growth factors, platelet factor 4 and other clotting proteins: 

thrombospondin, fibronectin, factor V (263), and von Willebrand factor (186). 

Dense bodies are smaller than the α-granule and fewer in number. They contain 

adenosine diphosphate (ADP), adenosine triphosphate (ATP), calcium, histamine 

and serotonin (178).  

 

1.2.1.4. Membranous Zone 

 

The membranous zone contains surface-connected, open-canalicular systems 

(OCS) as well as the dense tubular system (DTS). The OCS can be seen as an 

extension and invagination of the platelet cell membrane and contains tubules 

building up a canal structure to the cell center (8).  

In this way substances can be transported from the plasma to the cell center or from 

the cell organelles outward. Moreover the tubules contain large amounts of free 

calcium-ions that can be secreted into the cytoplasm to activate the platelet (243). 

 

1.3. Receptors 

 

Platelet receptors trigger the reactivity of platelets with a range of agonists and 

adhesive proteins. Due to the fact that platelets lack a nucleus and therefore cannot 

cope with different situations by protein synthesis (de novo), they need to be 

equipped with a wide range of molecules that are presynthesized with an amount of 

physiological functions and the ability to adapt to new pathological situations.  
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One possibility to do this is by altering their phenotype via receptors present in the 

membrane that get expressed on the platelet surface after activation. This fact 

causes platelets to have the highest molecular mass compared to their relatively 

small size. The major platelet receptors have an important role in hemostasis, which 

is the most import function of platelets, either after platelet activation or after an 

interaction with damaged cell walls. The first platelet receptor involved in a disorder 

has been described nearly 100 years ago (91), in the late 1970s and early 1980s a 

more detailed analysis of platelet receptors was published (11, 52, 188). 

Breakthroughs in the known platelet receptors were the description of collagen in 

1999 (51) and ADP as well as ATP in 2001 (101).  
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2. Leukocytes 

2.1. Definition 

 

Leukocytes or White Blood Cells (WBC) are nucleated cells involved in the innate as 

well as the adaptive immune system to protect the organism against infection and 

invaders. WBCs can be found in the blood, bone marrow, lymphatic organ and other 

tissues of mammals (116). All WBCs develop from a hematopoietic stem cell in the 

bone marrow via hematopoiesis and can be differentiated either by structure 

(granulocytes and agranulocytes) or cell division lineage (myeloid cells or lymphoid 

cells). This follows a further classification into the five main types: Neutrophils, 

eosinophils, basophils, lymphocytes and monocytes (Fig. 2). The human blood 

contains about 4.000 to 10.000 leukocytes / mL. 

 

 

 

 

 

 

 

 

Figure 2: Hematopoiesis 

Lymphoid and myeloid stem cells derive from hematopoietic stem cell. Lymphocytes develop from 
lymphoid stem cells; myeloid stem cells develop into neutrophils, basophils, eosinophils, as well as 

monocytes, platelets and erythrocytes (61) 
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2.2. Neutrophil Granulocytes 

2.2.1. Definition  

 

Neutrophil granulocytes (neutrophils) are the most abundant immune cells and 

belong to the innate immune system. They are rapidly recruited to sites of 

inflammation and infection via chemotaxis where they show defensive attributes as 

well as the expression and release of cytokines (117, 242) that can amplify 

inflammatory reactions by other cell-types. Pathogen defense is performed via direct 

ingestion (phagocytosis) (24, 184), release of soluble anti-microbials (degranulation) 

(40) and the generation of neutrophil extracellular traps (NETs) (31).  

 

2.2.2. Anatomy and function 

 

The term “neutrophil” originated from its staining characteristics on hematoxylin and 

eosin. In contrast to eosinophils that stained bright red and basophils that stained 

dark blue, neutrophils stained a neutral pink color. They show a diameter of about 8 

µm in the blood stream and 12-15 µm in peripheral blood smears (181). The nucleus 

of a neutrophil is multilobed, with the single lobes connected via chromatin. The 

cytoplasm contains spars mitochondria and ribosomes, a small Golgi apparatus, but 

about 200 granules. The rough endoplasmic reticulum is completely absent (276).  

Neutrophils can accumulate rapidly at a site of infection and provide a host-defense 

against invading pathogens. When an invader gets ingested the neutrophil is 

removed via apoptosis, this helps to prevent damage from healthy tissues (99, 133, 

214). Life span of a neutrophil is about 8-12 hours, however the life span can be 

prolonged in cytokine respond. The circulating neutrophils are constantly renewed 

from the bone marrow. 
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2.2.3. Signal transduction 

 

Patrolling neutrophils in the post-capillary venules get information about foreign 

invasion by changes on the surface of the endothelium or by soluble agents that 

were released from the infected tissue. Neutrophils are the first leukocytes to arrive 

at the site of infection or tissue injury. The released factors are able to promote the 

migration of the neutrophil towards the site of inflammation. Factors can be cytokines 

like Tumor necrosis factor α (TNF-α) (229) or Interleukin-6 (IL-6) (23) but also 

various products like N-Formylmethionine-leucyl-phenylalanine (fMLP) derived from 

tissue macrophages (192) or endothelial cells like C-X-C motif chemokine ligand 5 

and ligand 1 (CXCL5, CXCL1) (173, 196, 217). The initial response is adherence of 

the neutrophil to the endothelium of the vasculature followed by transmigration and 

crawling towards a chemotactic gradient (see section 2.2.4). The process of 

migration requires the activation of signaling pathways, cytoskeletal rearrangement 

as well as changes in the cell surface molecules.  

 

2.2.4. The neutrophil adhesion cascade 

 

The recruitment of neutrophils to sites of inflammation is initiated by the release of 

pathogen-associated molecular patterns from invading pathogens (PAMPs) or 

damage-associated molecular patterns released from damaged endothelial cells 

(DAMPs) (16). These signals are recognized by surface and also by intracellular 

receptors, that once activated, can secrete cytokines and chemokines that promote 

the leukocyte migration and trigger the inflammatory response (98) (Fig. 3).  

The first adhesion molecules that get expressed on the surface of the stimulated 

endothelial cells are P- and E-Selectin, expression occurs already after minutes or 

few hours. They can bind to P-Selectin glycoprotein ligand-1 (PSGL-1) and E-

selectin ligand-1 (ESGL-1) present on the neutrophil surface (249). This selectin 

signaling initiates a slow rolling process of the neutrophil, followed by strong 

adhesive contacts.  
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Figure 3: The neutrophil adhesion cascade 

Three steps of the neutrophil adhesion cascade can be differentiated: Rolling, activation and arrest. 
Rolling is mediated by selectins, activation is mediated by integrins and arrest is mediated by 

integrins. Over the years, the adhesion cascade has been enhanced with the steps of capture, slow 
rolling, adhesion strengthening and spreading, intravascular crawling, as well as paracellular and 

transcellular transmigration (145). 
 

 

 

The adhesion is mainly triggered by the activation of neutrophil integrins (LFA-1) by 

chemokines like intracellular adhesion molecule 1 and 2 (ICAM-1, ICAM-2) and 

vascular cell adhesion molecule 1 (VCAM-1) (2, 103). These interactions lead to 

transformational changes of the neutrophil via cytoskeletal rearrangement causing 

luminal crawling of the neutrophil along the endothelium until they reach the site of 

transendothelial cell migration.  

The neutrophil then crosses the endothelium transcellular via ICAM-1 or paracellular 

via platelet endothelial cell adhesion molecule 1 (PECAM-1) (47). The current 

evidence from in vivo and in vitro studies indicates that the paracellular migration is 

more prominent than the transcellullar (90% vs. 10%) (265). After transmigration the 

neutrophils can initiate their movement towards the site of inflammation through 

detecting tracks created by chemokine gradients (84).  
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3. Transmembrane Receptors  

3.1. Definition 

 

Transmembrane receptors are important proteins for communication between the 

cell and the environment. Extracellular ligands like hormones, cytokines, growth 

factors or neurotransmitters bind to the receptor and mostly trigger a change in the 

conformation of the cell receptor. This conformational change then initiates 

intracellular signal transduction. Many biological pathways are regulated by cell 

surface receptors, for example cell growth, differentiation and proliferation (66, 119, 

231, 261).  

Due to the high importance of these signal transduction pathways, a lot of diseases 

like cancer, neurodegeneration and atherosclerosis are caused by mutations in cell 

surface receptors (46, 208). 

Cell surface receptors can be divided into three classes: G protein-coupled 

receptors, enzyme-linked receptors and ion channel-linked receptors (57).  

 

3.2. Integrins 

 

Integrins are present on most cell types and consist of a heterodimer α- and non-

covalent binded β-subunit (Fig. 4) (26). These subunits are mostly involved in linking 

adhesive molecules to the cytoskeleton and can exist in two affinity states, low and 

high, altered by a cytoplasmic signal. It can be differentiated between three major 

integrin families β1, β2 and β3, which are also important for integrin classification, 

and five different Integrins, α2β1 (collagen receptor), α5β1 (fibronectin), α6β1 

(laminins), αIIbβ3 (fibrinogen and von Willebrand factor) and αvβ3 (vitronectin). 

Required for the integrin binding on ligands is the presence of cations (like Mg2+, 

Ca2+ and Mn2+), increased receptor expression on the cell surface and affinity-

modulation of the extracellular domain (74, 128).  
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Figure 4: Integrin structure. 

Diagram of Integrin α- and β- subunits. In the outer membrane surface the subunits have an adhesive 
glycoprotein that can interact with proteins (RGD) to form a binding site. On the inner cell site the 

Integrin can bind to the cytoskeleton (177). 

 

 

A fast presentation of Integrins on the platelet surface can be achieved via 

interaction and fusion of integrin-rich granules with the cell membrane (87). 

Activation of the integrin receptors is managed through a conformational change, 

induced by binding of agonists, like thrombin and ADP, with the membrane 

receptors. This process is called “inside-out-signaling” (174), whereas direct binding 

of ligands on the integrin and the related conformational change is called “outside-in-

signaling” (Fig. 5) (223). 
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3.2.1. GPIIb/IIIa-Integrin 

 

Platelet aggregation is mediated by a specific receptor, αIIbβ3, found on the surface. It 

is a member of the Integrin family, with a capacity to undergo activation and thereby 

transition from a low-affinity to a high-affinity state for the extracellular ligands (38, 

219). This transformation allows binding to fibrinogen (251) or von Willebrand factor, 

which act as bridging molecules between platelets to form aggregates. Also other 

ligands are recognized, such a vitronectin (169), fibronectin (198) thrombospondin 

(4) and CD40 (3), which help to initiate platelet adhesion to the endothelial matrix 

and platelet aggregation (197).  

 

The key role of platelet aggregation for the GPIIb/IIIa-Integrin was demonstrated 

many years ago, in particular antibody blockage of GPIIb/IIIa led to absence of 

platelet aggregation (54), defined this integrin as a potential target for antithrombotic 

therapy (95). αIIbβ3 is of the β3-subfamily of integrins together with αVβ3. The 

Integrin αIIbβ3 is found on the surface of platelets, basophils, mast cells, 

megakaryocytes and tumor cells (20), αVβ3 can be found on a lot of cell types where 

it influences cell adhesion, migration, angiogenesis and atherosclerosis (33, 37). All 

these ligands have the presence of arginine-glycine-asparatic acid sequence (RGD) 

in common, RGD contains peptides that bind to both of the β3 Integrins. 

 

When platelets are circulating in the blood, αIIbβ3 exists in a resting and low-affinity 

conformation. After the stimulation with an agonist, αIIbβ3 gets transformed to its 

higher affinity state (157). The most prominent agonist is fibrinogen. These 

conformational changes get transmitted across the transmembrane domain and 

change the conformation of the extracellular domain ligand-binding site. This leads to 

a shift from the bent conformation to an extended conformation of the extracellular 

domain that is competent to bind soluble ligands (Fig. 5). This ligand binding 

transmits signals from the receptor into the platelet (outside-in-signaling), which are 

important for platelet responses (147). 
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Figure 5: Pathway for activation of αIIbβ3. 

Inside-out-signaling can be induced by binding to a G-protein-coupled receptor. This initiates signaling 
pathways that lead to cytoplasmic tails of αIIbβ3. Talin and kindling cooperate in this activation process 

by triggering the dissociation of the subunits from the transmembrane complex. This leads to a 
conformational change in the extracellular domain, resulting in a conversion from a resting state to an 

extended conformation that is competent to bind soluble ligands (20, 202). 

 

 

 

The GPIIb/IIIa-Integrin mediates the adhesion of activated platelets on the intact 

endothelium (45, 50, 146, 203); in this way the GPIIb/IIIa-Integrin of platelets binds to 

the endothelial receptor “intracellular adhesion molecule-1” (ICAM-1) via adhesive 

bridging proteins like fibrinogen (22). This adhesion leads to an inflammatory 

reaction in vitro, triggering more adhesive characteristics of the endothelial cells 

(165). Also the von Willebrand factor plays an important role in platelet binding to 

GPIIb/IIIa via the GPIba-receptor (30, 36).  

 

 



Literature Review  15 

3.3. Selectins 

 

Neutrophils are rolling along the endothelial cell surface to migrate from the blood 

vessel into the tissue. This process is mediated by selectins, a family of cell 

adhesion molecules (CAM). There are three known members of the selectin family 

(L-, E- and P-Selectin, the prefixes were chosen according to the cell type where the 

molecules were first identified. L-Selectin is expressed on most types of leukocytes; 

P-selectin in storage granules of platelets and the endothelium and E-selectin is 

expressed on the activated endothelium. They are distributed along the leukocyte-

vascular system and can bind carbohydrate ligands. 

The first selectin described to be important for the entry of neutrophils into inflamed 

tissue was L-selectin based on monoclonal antibody (MAb) inhibition (143). It was 

also shown, that activation and migration of neutrophils accompanied with the down 

regulation of L-selectin and an upregulation of Mac-1, suggesting that L-selectin acts 

before the integrins in the adhesion process (132). It was also shown in vivo that L-

selectin mediates the leukocyte rolling; using a recombinant fusion protein blocked 

the rolling of the leukocyte (144). Over the years many studies have confirmed the 

role of all three selectins in leukocyte rolling and the initiation of leukocyte-

endothelium interactions (70, 190). And also the entry of neutrophils into the tissue 

showed to be mediated by all three selectins (120, 176). 

E-Selectin and P-Selectin are absent from the surface of non-activated endothelial 

cells and are expressed first after an exposure of the endothelial cells to an 

inflammatory stimulus. L-selectin however is constitutively expresses on leukocytes; 

the function is controlled by regulation of the ligand. 

E-Selectin expression is triggered by cytokines, like TNF-α or Interleukin-1β (IL-1β), 

reaching maximum levels of expression on the cell surface 3-4h after the stimulation 

(14).  
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P-Selectin expression is inducible by two different mechanisms. After stimulation 

with histamine or thrombin it can rapidly be mobilized to the cell surface of 

endothelial cells within minutes or even faster within seconds on platelets. It is stored 

in α-granules in platelets as well as Weibel-Palade bodies (WPB) in endothelial cells 

(88, 100). The expression occurs within 5 to 10 minutes after stimulation; 30-60 

minutes later the protein gets already cleared from the cell surface by exocytosis. 

L-Selectin is constitutively expressed on neutrophils as well as most myeloid cells 

and a large subset of lymphocytes (143). In lymphocytes it can be downregulated 

during differentiation, however cell activation of neutrophils and lymphocytes causes 

rapid downregulation of L-Selectin. On neutrophils it gets shedded within 1-5 minutes 

after activation by a variety of activating factors like fMLP or TNF-α (93). 

 

3.4. Interactions between neutrophils and platelets  

 

Like described before, platelets adhere firmly to the inflamed endothelium by the 

GPIIb/IIIa Integrin complex via fibrinogen or von Willebrand factor anchoring. 

Activated platelets release more P-selectin from α-granules than the endothelium, 

causing likely a recruitment of leukocytes to the activated platelets and in this context 

a transmigration of the leukocyte through the endothelium (65, 273). P-Selectin 

mediated platelet-leukocyte complexes can be seen rolling along the endothelium 

after platelet activation and this induces an activation of platelet integrins (75, 83, 

171). Infusion of activated platelets into mice leads to a secretion of WPB and an 

increase in the number of rolling leukocytes (68).  

Other molecular mechanisms responsible of platelet-leukocyte interactions include a 

central role of platelet P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1), its 

counter receptor found on leukocytes. In a signaling cascade, this interaction leads 

to activation of the beta-2 integrin Mac-1 and in a firm adhesion between the two cell 

types. The interaction of P-selectin with PSGL-1 also induces upregulation of 

leukocyte tissue factor and biosynthesis of several cytokines (43). 
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4. Cytokines 

4.1. Definition 

 

The term ‘cytokine’ comes from the Greek and essentially means to put cells in 

motion. Cytokines are peptides involved in intracellular signaling and can act in 

autocrine, paracrine and endocrine way. They are produced by a wide range of cells 

including macrophages, T- and B- lymphocytes, mast cells, fibroblasts, endothelial 

cells and stromal cells and include chemokines, interleukins, interferons and Tumor 

necrosis factor (79). The primary definition of cytokines is peptides released from 

stimulated leukocytes that target other leukocytes; eighteen cytokines have been 

described according to this pattern (‘interleukin-1’ to ‘interleukin-18’) (32).  

However, the term ‘cytokine’ may be misleading, because in the meantime also 

interleukins were described who are produced by non-leukocytes and target non-

leukocytes.  

In contrast to hormones that circulate in nanomolecular concentrations in the blood, 

cytokines circulate only in picomolecular concentrations but can increase up to 1.000 

fold during inflammation or trauma. Every nucleated cell and especially endothelial 

cells and macrophages can secrete cytokines in principle (27). 

Many cytokines play key roles in inflammatory reactions, in particular Interleukin-1 

(IL-1), TNF-α, IL-6, IL-11 and Interleukin-8 (IL-8). IL-1 and TNF-α are extremely 

potent inflammatory molecules and can mediate acute inflammation (67, 194). 
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4.2. TNFα 

 

Tumor necrosis factor α (TNF-α) is an inflammatory cytokine involved in the acute-

phase reaction with the definition to increase or decrease its own plasma 

concentration in response to inflammation. It exists as a trimer (230) and is a product 

of activated macrophages and monocytes, neutrophils, fibroblasts, mast cells, as 

well as T and natural killer cells (1, 13, 89). The role of TNF-α is to regulate immune 

cells via induction of fever, apoptotic cell death and inflammation. In the central 

nervous system TNF-α has regulatory functions on crucial physiological processes 

such as the plasticity of synapses (6), learning and memory, as well as sleep 

functions (5, 12, 135). TNF-α is first synthetized as a transmembrane protein, 

cleaved into a soluble form (sTNF-α).  

 

The soluble form of TNF-α can bind to two surface receptors, TNF receptor 1 and 2 

(TNFR1, TNFR2). TNFR1 signaling results in the activation of different signal 

transduction pathways like nuclear factor-kappa B (NF-κB) and the extracellular 

signal-regulated kinase (ERK). These pathways regulate the expression of genes 

that have anti-apoptotic effects, especially the genes regulated by NF-κB (256). 

 

4.2.1. Blockage of TNF-α 

 

Inhibition of TNF-α can be achieved in two different ways. One possibility is to bind 

directly to TNF-α via monoclonal antibodies. Common drugs are Infliximab 

(Remicade®) (94), adalimumab (Humira®) (28) and certolizumab pegol (Cimzia®) 

(211).  

Another way to inhibit the function of TNF-α is to bind directly to the receptor. A 

circulating receptor fusion protein that functions as a TNF-α ligand is etanercept 

(Enbrel®) (80).  
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4.2.1.1. Infliximab 

 

Infliximab binds directly with a high affinity to the soluble and transmembrane form of 

TNF-α thus neutralizing the biological activity and inhibiting binding of TNF-α with its 

receptors. Infliximab is capable of neutralizing all forms of TNF-α (extracellular-, 

transmembrane- and receptor-bound) (48).  

With a high specificity of TNF- α, Infliximab does not bind to TNF-β, a cytokine 

produced by lymphocytes, mediating a high variety of inflammatory responses (180). 

The medical use of Infliximab demonstrated efficiency in autoimmune diseases, 

including Crohn’s disease (72), ulcerative colitis (209), psoriatic arthritis (125) as well 

as Behçet's disease (218). 

In a mouse model Infliximab showed an anti-inflammatory effect on allergen-induced 

lung inflammation of acute asthma (64) and was able to prevent colitis-associated 

carcinogenesis (131). It is also known that the immunoreactivity of infliximab stored 

at 4° C over a period of 6 weeks remains stable, implying Infliximab to be suitable for 

long-time animal experiments (7). 
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5. Adipose tissue 

5.1. Definition 

 

Already in 1987 adipose tissue (AT) was described as a ‘major site for metabolism of 

hormones’ (228) with production of endocrine factors. The characterization of leptin 

in 1994 established the theory of adipose tissue as an endocrine organ (274). In fact 

adipose tissue is a complex and essential endocrine organ with a high metabolic 

rate, to be more specific, AT produces hormones such as leptin, resistin, estrogen, 

TNF-α (127) and the adipocyte-specific hormone adiponectin (215). AT contains 

adipocytes, connective tissue matrix, nerve tissue, immune cells and the so called 

stromal vascular fraction (SVF), a rich source of preadipocytes, endothelial 

progenitor cells, T cells, B cells, mast cells, mesenchymal stem cells as well as 

adipose tissue macrophages (ATM) (204). All of these components are able to 

respond to afferent signals from the traditional hormone system as well as the 

central nervous system. The main function of adipose tissue is the storage of energy 

in form of lipids as well as the energy release. But also the expression and secretion 

of bioactive peptides, called adipokines, plays a crucial role. These adipokines can 

act in the autocrine and paracrine as well as the endocrine way. These interactive 

network functions determine AT to coordinate a variety of biological processes, such 

as energy metabolism, immune function and neuroendocrine function. 

 

5.2. Adipogenesis 

 

The precursor cells of adipocytes are called preadipocytes, a form of undifferentiated 

fibroblasts that can form adipocytes after stimulation. The process of cell 

differentiation by which preadipocytes become mature adipocytes is called 

adipogenesis (58). Key features of adipogenesis are morphological change, 

expression of lipogenic genes, production of hormones like leptin, resistin, TNF-α, as 

well as growth arrest.  
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The development of mature adipocytes from preadipocytes is a progression of the 

activation of many transcription factors. This sequence is initiated with the activation 

of transcription factors of the activating protein-1 (AP-1) family, continuing with the 

induction and expression of peroxisome proliferator-activated proteins (PPAR), a 

proadipogenic transcription factor. Other transcription factors facilitating the 

maturation of adipocytes are Signal Transducer and Activator of 

Transcription (STATs), sterol response element-binding protein-1 (SREBP-1) and 

members of the CCAAT-enhancer-binding proteins (C/EBPs) (153, 212).  

Mature adipocytes start to expand when the energy intake is higher than the 

expenditure. This process is highly regulated by counter regulator hormones like 

insulin, epinephrine, adrenocorticotropic hormone (ACTH) and glucagon. It is also 

known that mature adipocytes retain the ability to dedifferentiate in vitro into 

fibroblast-like cells, known as dedifferentiated fat cells (DFAT). These cells retain 

proliferative abilities and are able to differentiate into mature adipocytes again (163).  

 

 

5.2.1. Phases of Adipogenesis 

 

Two phases of adipogenesis can be distinguished (See Review: Rosen, 2006 (206)): 

The determination phase is characterized as a stage resulting in the conversion of 

the stem cell to the preadipocytes. The preadipocytes is morphologically identical to 

its precursor cell but has completely lost its ability to differentiate into other cell 

types. 

The terminal differentiation phase describes the stage of the preadipocytes adopting 

the characteristics of a mature adipocyte. The preadipocytes acquire the machinery 

necessary for the transport and synthesis of lipids, insulin action as well as the 

secretion of adipocyte-specific proteins. 

Thus in vitro cell lines are mostly based on preadipocytes that are unable to 

transform into other cell types, the terminal differentiation phase is quite better 
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described and investigated than the determination phase. 

5.3. Adipocyte biology 

 

Adipocytes, also known as fat cells or lipocytes are the main components of adipose 

tissue with a specialization of fat storage as energy (18). It can be distinguished 

between two typed of adipose tissue. White adipose tissue (WAT) and brown 

adipose tissue (BAT). WAT and BAT comprise two types of fat cells. Morphological 

differences between brown and white fat cells can already be observed via electron 

and light microscopy.  

 

5.3.1. White adipose tissue 

 

White adipose tissue consists of spherical cells with an average diameter of 10 mm. 

The size can increase as much as 10-fold, especially in the epididymal fat pads (49).  

The increase in size requires a confined arrangement of the adipocyte cell 

organelles, since they are situated next to a unilocular lipid droplet that occupies a lot 

of the cytosolic space. Also the nucleus is compressed between the plasma 

membrane and the fat lipids most of the time. There is a sparse mitochondria 

distribution in white adipocytes and other cell organelles, like the smooth and rough 

endoplasmic reticulum and the Golgi apparatus. Adipocytes store energy in form of 

nutrient-derived triacylglycerol lipids being the main energy reservoir in mammals 

with the highest energy density of up to 85% of the adipocyte weight consisting of 

lipids. During periods of fasting the triglycerides are released by lipolysis and enter 

the mitochondria of metabolizing cells as free fatty acids to produce ATP (234). In 

addition to fuel storage, white adipose tissue also acts as a thermal isolator, 

protecting other organs from mechanical damage.  

The role of white adipose tissue in obesity has become more important over the last 

years. WAT is now recognized as the main source of hormones involved in energy 

balance regulation, like leptin (154, 195). Also the role of adipokines being involved 

in overall metabolic regulation and the pathologies associated with obesity got more 
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significant (152). 

5.3.2. Brown adipose tissue 

 

Brown adipose tissue consists of brown ellipsoid adipocytes with sizes from 15 to 50 

µm that contain multilocular lipid droplets. All classical cell organelles are present; 

the nucleus has a central position. The most important component of brown 

adipocytes is an abundant distribution of mitochondria and the expression of the 

proton transporter uncoupling protein 1 (UCP1) (39). UCP1 generates heat by non-

shivering thermogenesis, activated by fatty acids, and increases the permeability of 

the inner mitochondrial membrane to allow for a return of protons from the inter-

membrane space back into the mitochondria.  

 

5.3.3. Fat depots 

 

For this work four major fat depots in the mouse are defined. The epididymal fat 

pads are paired gonadal, attached to the epididymis/testes in males and the 

uterus/ovaries in females. The retroperitoneal fat pads are located along the dorsal 

wall of the abdomen and surround the kidney. The inguinal fat pads are found 

anterior to the limbs, directly underneath the skin. The brown fat pads are found 

under the skin between the dorsal crests of the scapulae (155). 

 

5.4. Obesity 

 

Obesity and overweight are defined as abnormal fat accumulation that may impair 

health. The body mass index (BMI) is commonly used to classify obesity and 

overweight in adults and is an index of weight-for-height. It is calculated as the 

weight divided by the square of the height in meters (kg/m2). Overweight is defined 

with a BMI greater than 25, obese is defined with a BMI greater than 30 kg/m2. With 

a dramatic worldwide increase of obesity over the past decades, it has become one 

of the most serious public health problems of our time.  
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In fact the worldwide obesity rate has doubled since 1980 with more than 1.9 billion 

adults (over 18 years old) being overweight in 2014 (39%), 13 % being obese (264).  

Obesity and overweight are furthermore part of the so-called ‘metabolic syndrome’, a 

group of risk factors for heart disease, diabetes mellitus and stroke. Other risk 

factors being classified within the metabolic syndrome next to obesity are insulin 

resistance, impaired glucose tolerance, hypertension and hyperinsulinemia (124).  

 

5.4.1. Obesity and inflammation  

 

In 1993 Hotamisligil reported the first evidence that TNF-α disrupts the insulin-

signaling cascade in adipose tissue (104). In addition, animals lacking macrophage 

chemotactic protein-1 (MCP-1), the receptor for macrophage trafficking, were 

characterized by a decrease in macrophage infiltration into adipose tissue that 

resulted in an insulin resistance (122).  

Nowadays it has become fully accepted that the inflammation associated with 

obesity contributes to insulin resistance. There are many inflammatory mediators 

described including Interleukin-1-β (IL1-β), IL-6, IL-8, Interleukin-10 (IL-10), TNF-α 

and MCP-1. The stromal vascular fraction may also play an important role in the 

development of obesity-associated inflammation as well as insulin resistance; cells 

of the SVF have showed to secrete levels of inflammatory mediators exceeding the 

levels secreted by adipocytes (76).  

There are a number of immune cells present in lean adipose tissue. These cells 

inhibit immune cell activation, characterized by expression of anti-inflammatory 

cytokines IL-4, IL-10 and IL-13 that trigger a T-helper cell 2 (Th2)–type response 

(275). Macrophages in lean adipose tissue are a dominant immune cell population, 

represented by macrophages with an M2-like phenotype. M2 macrophages are 

mostly characterized by their ability to metabolize the repair molecule arginine to 

ornithine, which inhibits the activity of nitric oxide synthase (150), a main player in 

the regulation of inflammation. Macrophages have shown to play a key role in the 

inhibition of immune cell activation in murine fat. A failure of ATM responses results 
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in the production of pro-inflammatory cytokines like TNF-α (164, 267).  

Early phases of obesity are characterized by an increase in lipid accumulation per 

adipocyte but also by an increase in the accumulation of pro-inflammatory immune 

cells. Mice are the most common used animal models to study obesity via an 

induction of obesity by feeding the animals a high fat diet (HFD). This diet-induced 

obesity (DIO) triggers an accumulation of neutrophils, macrophages and NK cells 

already within the first weeks of HFD, measured as the production of the proteolytic 

enzyme elastase from neutrophils. Inhibition of neutrophil elastase results in 

enhanced insulin sensitivity, in vivo administration of exogenous elastase reduced 

insulin sensitivity (238).  

One of the key events in the onset of DIO inflammation and insulin resistance seems 

to be the polarization of anti-inflammatory M2-macrophages to inflammatory M1-

macrophages (150). A depletion of macrophages causes an improvement of insulin 

resistance (134). In addition macrophages seem to be the main source of pro-

inflammatory cytokines in diabetic patients (235), suggesting that macrophages are 

one of the crucial factors in the development of AT inflammation.  

Later stages of AT inflammation are characterized by necrotic cell death of 

adipocytes as a result of hypoxia (272). This necrosis results in the release of 

DAMPs that drive macrophages to produce even more pro-inflammatory cytokines. 

As a result, adipocytes are surrounded by rings of pro-inflammatory macrophages 

building “crown-like structures” (260) activating the NF-κB signaling cascade in 

macrophages and converting anti-inflammatory cytokines into pro-inflammatory 

cytokines (140) and producing even more pro-inflammatory cytokines like TNF-α 

(42). TNF-α impairs glucose uptake into adipocytes and inhibits the uptake of free 

fatty acids (FFA) (166), hallmarks of lipid metabolism. In addition TNF-α impairs the 

lipid storage capacity by suppressing the differentiation of new adipocytes from 

precursor cells by preventing the induction of PPARγ and C/EBPα, resulting in an 

inhibition of adipogenesis (41). In addition, production of TNF-α also triggers the NF-

κB pathway resulting in an inhibition of adipose tissue growth (241).  
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III. AIM OF THE STUDY 

 

Chronic inflammatory processes occur during the onset and development of obesity 

in WAT. With nearly 2 billion people being overweight worldwide (in 2014), obesity 

has become one of the most serious public health problems of our time (264). 

Furthermore, obesity and overweight are part of the so-called ‘metabolic syndrome’, 

a group of risk factors for heart disease, diabetes mellitus and stroke. Other risk 

factors are insulin resistance, impaired glucose tolerance, hypertension and 

hyperinsulinemia. Therefore, understanding the cellular mechanisms behind the 

onset and development of obesity is an important factor for a potential future 

treatment.  

With leukocytes being well-established players during obesity development, this 

thesis focuses rather on a potential role for platelets and their potential interaction 

with leukocytes in the pathogenesis of obesity.  

 

Specific aims are: 

- Analyze WAT development in wild type animals as well as animals with 

malfunctioned platelets in vivo 

- Document the adhesion of platelets and leukocytes in lean animals, as well as 

animals receiving high fat diet using intravital microscopy 

- Check for specific chemokine and cytokine expression levels in diverse fat 

tissues 

- Analyze the role of potential cytokines on adipocyte proliferation and 

differentiation in vitro 

- Design a scheme of how the interaction of leukocytes and platelets could 

influence the development of WAT  
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IV. MATERIALS & METHODS 

 

1. Research animals 

 

All experiments in this thesis have been done using mice as research animals. Mice 

are easy available, cost-efficient and have a high reproduction rate. There are 

several genetically strains available which are highly congenic and can easily be 

compared with human biological characteristics. Due to their low size, they are easy 

to handle and therefore ideal when it comes to in-vivo experiments. 

 

1.1. Wild type strain C57BL/6 

 

The inbred mouse strain C57BL/6 was created in 1921 by C.C. Little from a mating 

of Miss Abbie Lathrop at the Bussey Institute for Research in Applied Biology. It is 

the most popular mouse inbreeding strain for animal experiments, also presenting 

the genetically background for many other mouse strains.  

In this thesis the C57BL/6 mice were used for the infliximab treatment as well as the 

genetical background strain for the genetically manipulated GPIIb mice. 

 

1.2. Genetically modified animals 

 

The strain GPIIb-/- is characterized by a genetical defect on the GPIIb-locus. The 

defect suppresses the expression of the platelet-specific GPIIb-IIIa-receptor that 

plays a crucial role in the platelet-adhesion on the endothelium. GPIIb deficient mice 

show Glanzmann’s thrombasthenia, an extremely rare coagulopathy. Due to the 

defective levels of the glycoprotein IIb/IIIa, a receptor for fibrinogen, platelet-

fibrinogen-bridging is impaired, thus bleeding time is significantly prolonged.  
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GPIIb-/- mice have been created by Prof. J. Frampton (University of Oxford, 

Department of Pharmacology, United Kingdom)(73). 

 

1.3. Animal Breeding 

 

Animal breeding took place as a bigamy mating in our own animal facility. One buck 

was put together with two female animals. The animals were separated after a 

certain time, or at the latest when the female animals got pregnant. Pubs were 

separated from their mother animals after an upbringing phase of 4 weeks, male and 

female animals were then kept separately. 

 

1.4. Animal Husbandry 

 

Animal husbandry happened at the Medizinische Klinik und Poliklinik I, Ludwig-

Maximilians-Universität München under SPF conditions (“Specific Pathogen Free”). 

SPF includes closed barrier system with personnel lock, material lock, pass-through 

autoclave and overpressure-ventilation. Cages were renewed every week, after 

washing by 80°C and autoclaving by 120°C.  

Animals were held in IVC-system (individual ventilated cages) polysulfone-cages 

type M III (TECNIPLAST, Germany) with a maximum of 3 female animals per cage, 

male animals were held in individual cages. The cages were opened under 

appropriate transfer-stations. The mice got standard chow (Haltungsfutter V 1536, 

Altromin, Germany) and sterile tap water ad libitum. Food, water and litter were 

autoclaved in the animal husbandry only. The temperature measured 20-23°C with a 

stable air humidity of approximately 60%. The sleep-wake-cycle was set to 12h light 

and 12h dark, controlled by a time switch.  

As an appropriate enrichment the cages were equipped with red plastic-houses 

(TECNIPLAST, Germany), sterile pulp paper and coarsely litter to enhance nest-

building and animal welfare.  

 



Materials & Methods  29 

The SPF-status of the animals was controlled regularly testing Sentinel-animals for 

specific pathogens. 

The entire animal experiments were approved by the government of Upper-Bavaria 

(Regierung von Oberbayern) pursuant to §8 of the German Protection of Animals Act 

(Deutsches Tierschutzgesetz, TierSchG, May 2006) 
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2. Operation Methods 

 

2.1. Anesthesia 

 

Surgeries were initiated using inhalation narcosis with Isoflurane (cp-pharma, 

Germany) and oxygen. Isoflurane was given using an evaporator (3% Isoflurane 

mixture). The usage of Isoflurane helps to reduce stress and the injury risk for the 

animals; therefore the entire surgeries were initiated in this way. Animals were set 

into a narcotic-chamber consisting of plexiglas®, which is easy to clean and sterilize, 

connected to the evaporator. After the inhalation of Isoflurane and the extinct of the 

startle reflexes, animals were taken carefully out of the chamber and then injected 

intraperitoneally (i.p.) with a triple-narcosis to bring them into the surgical tolerance-

stadium. After injection the animals were layed into a shaded paper-box to reduce 

noises and optical stimuli. Operation was started after the interdigital reflex 

extinguished as well. The triple-narcosis consisted of Medetomidin (Dorbene vet 1 

mg/mL, Pfizer GmbH, Germany), Fentanyl (Fentanyl 0.5 mg Rotexmedica GmbH, 

Germany) und Midazolam (Midazolam-hameln 5 mg/mL, Hameln Pharmaceuticals 

GmbH, Germany).  

Medetomidin, a α2-agonist, functions as a sedative-hypnotical analgesic with 

muscle-relaxing and analgesic effects. As side effects it has depressing impact on 

the cardiovascular and the respiratory system.  

Fentanyl is a synthetic generated opioid with a highly efficient pain inhibition. Side 

effects can be psycho-motoric symptoms and depression of the respiratory system. 

Midazolam, a benzodiazepine, has sedative and muscle-relaxing effects. 

For a proper usage of general anesthesia, the three narcotics should always be 

injected together.  

The animals got a mixture of 0.5 mg/kg Medetomidin, 0.05 mg/kg Fentanyl and 5.0 

mg/kg Midazolam, diluted with sterile NaCl (isotonic saline solution, Fresenius, 

Germany) as a total capacity of 0.35 mL. The triple narcosis was injected i.p., 10-20 

min after the injection the animals should reach the surgical tolerance-stadium III2. 
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Pulse and respiratory frequency, as well as the continuous extinction of the 

interdigital reflex were checked in regular intervals. The animals lay on a heating mat 

(Dehner, Germany) to guarantee a homothermic state, oxygen was given via a 

respiratory mask. 

 

2.2. Tail vein injection 

 

The administration of fluorescently labeled dye was done via tail vein injection using 

an appropriate restrainer (Broome HAR- 52-04, Föhr Medical Instruments GmbH, 

Germany), which was cleaned properly after usage to avoid pheromonally-induced 

stress. 

To stimulate dilation of the tail veins it was helpful to warm them via putting a glove 

filled with warm tap water directly on top of the tail for a few seconds. The tail was 

taken on its upper end between middle finger and trigger finger to pond the venous 

blood after disinfection of the puncture with Octeniderm (Schülke & Mayr GmbH, 

Germany).  

The stain was injected over a catheter intravenously (i.v.), consisting of a 10 cm long 

polyethylene tube (Portex, 0,28 mm ID 0,61 mm OD, Smiths Medical International, 

USA) equipped with a cannula (30 G, BD Microlance, Becton Dickinson Labware, 

USA) combined with a 1 mL syringe (B. Braun, Germany). The cannula was inserted 

into the dilated Vena coccygea laterals and afterwards the substance was injected 

evenly. 

 

2.3. Cardiac blood withdrawal  

 

To obtain large amounts of blood for platelet isolation and labeling the mouse was 

anesthetized as described above. After reaching the narcotic state the mouse was 

put on a heating mat in dorsal position and disinfected in the thorax area. The skin 

was severed using a sterile operation-scissor.  
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A 2 mL syringe (B.Braun, Germany) combined with a 30 G cannula was injected 

vertical, diagonal to the hind leg, between the first and the second ridge. Blood was 

taken slowly to prevent pre-activation, 100 µL sodium citrate was provided in the 

syringe to prevent coagulation. 

 

2.4. Platelet isolation and labeling  

 

For platelet labeling approximately 1.5 to 2 mL whole blood was needed, furthermore 

it was crucial that the donor mouse had the same genotype as the recipient mouse. 

Mice should also be age and sex-matched. Whole blood was filled with Tyrodes (pH 

6.5) up to 2 mL total capacity. 

After first centrifugation (20 min, 66 G, brake off, RT) platelet rich plasma (PRP) was 

slowly taken off using a transfer-pipette, transferred into a new FACS-tube, filled up 

with Tyrodes (pH 6.5) up to 4 mL total capacity and labeled using Rhodamine B (2 

mg/mL). After incubation at room temperature (RT) in the dark for 3 min, the blood 

was centrifuged again (10min, 1230 G, brake on). Supernatant was discarded, the 

pellet was resuspended in 4 mL Tyrodes (pH 6.5) and in the next step centrifuged 

(10min, 1230 G, brake on) again. The pellet was resuspended in 250 µL Tyrodes pH 

6.5 and 250 µl Tyrodes pH 7.4. All of the steps were performed carefully to prevent 

platelets form being activated during the isolation process. 100 µL of the Tyrodes-

platelets-mixture were measured using a hematology-analysis-device (ABX Micros 

ES 60, Axonlab, Germany) to obtain the exact platelets count. Afterwards it was 

calculated how much Tyrodes-platelet-mixture was needed to produce a platelet-

suspension with a concentration of 120.000 platelets / µL using an Excel-Sheet 

(Microsoft, USA). The isolated and stained platelets mostly lasted for up to two 

recipient mice. 

 

 

 

 



Materials & Methods  33 

2.5. Neutrophil labeling 

 

The neutrophils were labeled using CD45 antibody (Anti-Mouse, Alexa Fluor ® 488, 

Clone: 30-F11, 0,5 mL@1,0 mg/mL, eBioscience, USA). Alexa Fluor ® 488 has a 

maximum emission of 519 nm after excitation at 488 nm (Fig. 6). 20 µL antibody 

were drawed into a syringe submitted with 180 µL NaCl. To prevent fading of the 

dye, the injection should be done directly before imaging. The antibody was injected 

via tail vein (see 2.2.). 

 

Figure 6: Excitation and emission spectrum of Alexa Fluor ® 488 

Alexa Fluor ® 488 is best excited at 488 nm and emits light with a maximum of 519 nm (BioLegend 
spectral data (17) 

 

2.6. Mouse preparation for intravital fluorescence-microscopy  

 

Preparation of the anesthetized mouse started after reaching the surgical tolerance-

stadium III2. The mice were weighed at first and then laid dorsal on a heating mat 

(IOW-3704, Föhr Medical Instruments GmbH, Germany), the snout was put into an 

oxygen mask, connected to an Isoflurane and oxygen evaporator. The abdominal 

region was shaved (Ermila Magnum Handy, Wahl, Germany), unhaired using 

depilatory cream (Veet, Germany), cleaned and disinfected.  
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Operation was done under a stereo-microscope (Zeiss, Germany); a swan-neck-light 

(Zeiss, Germany) illuminated the operation field in an optimal way.  

Right before the intervention the Rhodamine B labeled platelets from the donor mice 

as well as the CD45 antibody (Anti-Mouse, Alexa Fluor ® 488, Clone: 30-F11, 

eBioscience, USA) were given via tail vein injection. 

 

 

2.7. Surgical operation 

 

Operation of the visceral fat pad started after the mouse reached the surgical 

tolerance stadium III2. After disinfection of the skin the mouse was fixed using 

adhesive tapes (Transpore, Germany). The abdominal skin was carefully grabbed 

using a fine forceps (FST, USA) and a lateral incision was performed cranial with a 

surgical scissor (FST, USA), afterwards the upper skin layer was carefully removed 

from the peritoneum. The skin was then fixed laterally on a foam rubber stage using 

a cannula (30 G, Braun, Germany). To ensure isothermal conditions, the whole 

incision area was kept warm and wet using 37°C warm sodium chloride (Braun, 

Germany), which was retained in a tube-like stage made of foam rubber. A small 

incision was made lateral in the peritoneum to get access to the visceral fat pad. The 

fat pad was grabbed using a wet cotton swap and carefully shifted onto the laterally 

pinned skin. A coverslip placed on the fat pad served as a lens in combination with a 

drop of sodium chloride (Fig. 7).  
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Figure 7: Surgical preparation of the visceral fat pad 

After performing a lateral incision of the abdominal skin the visceral fat pad is slowly shifted outside. 
All of the surgical operation steps are performed under wet and warm conditions to feature a natural 

environment. 

 

 

2.8. Fat pad removal 

 

To get a detailed overview about the weight gain in different fat pads, it was 

important to do a proper fat pad removal. Also the size and weight of the organs 

were measured in this way. The fat pad removal started with the perfusion of the 

mouse with 0.9% NaCl. Therefor the mouse got an inhalation narcosis with 

Isoflurane in the narcotic chamber. After the extinct of the startle reflexes, the mouse 

was slowly taken out of the narcotic chamber and terminated via neck fracture. 

Afterwards the body weight was measured. The mouse was laid dorsal onto a 

polystyrene mat and fixed with adhesive tape. The body was wetted and disinfected 

with Ethanol (70%); a couple of tissues were put underneath for an optimal liquid 

absorption.  
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After an abdominal incision the sternum was opened cranially. The right heart 

ventricle was punctured and the left ventricle was perfused with 20mL sterile saline 

(0.9% NaCl). The skin was incised caudally and the uppermost skin layer was 

dissected carefully from the peritoneum. Afterwards the skin was pinned laterally 

onto the polystyrene mat. The subcutan located lymph nodes were removed 

carefully and discarded. Next the subcutan fat pad was removed; left and right side 

were weighed separately from each other.  

All of the removed fat pads were stored, one part for histologic analysis in 

paraformaldehyde and the other part at -80°C in liquid nitrogen for real-time PCR 

analysis. 

The peritoneum was opened caudally and the peritoneal skin was likewise pinned 

laterally onto the polystyrene mat. The epididymal fat pads were removed; also the 

intraperitoneal located fat at the digestive tract was removed and added to the 

epididymal fat depot.  

The retroperitoneal fat pad was be found directly next to the kidneys and was 

removed equally.  

The mouse was then put ventral onto the mat, the fur was wetted and disinfected 

with Ethanol (70%) again, and the skin located cranially above the scapula was 

sliced. The brown fat pads were found directly subcutaneous between the dorsal 

crests of the scapulae and were removed as well. 

After the fat pad removal it was important to weigh solely the carcass. This meant to 

remove all of the organs out of the peritoneum and the thorax, as well as the removal 

of the skin. The extremities were cut off likewise. The tail was removed and the 

animal was decapitated. Afterwards the pure carcass was weighed.  

The elevated fat pad and animal weights were documented properly (according to 

chapter 3.5.) and then inserted into an Excel sheet. The data of the body weight, the 

individual fat pads as well as the carcass weight were furthermore transferred to 

SigmaPlot (Chapter 3.4.) for graphical and statistical analysis. 
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2.9. Chimera Creation 

 

2.9.1. Isolation of bone marrow cells 

 

For the bone marrow isolation two GPIIb-/- as well as two GPIIb+/+ respectively were 

used. The animals got an inhalation narcosis with Isoflurane in the narcotic chamber. 

After the extinct of the startle reflexes, the mice were taken out of the narcotic 

chamber and terminated via cervicale dislocation. After the mice were terminated the 

extremities were cut off, femur and tibia were dissected and freed from surplus tissue 

using a scalpel. Epiphyses were severed in the area of the metaphysis. The bone 

marrow cavity was rinsed with a brown cannula (26G) using sort buffer, that 

consisted of 1-fold PBS, 2 mM Ethylenediaminetetraacetic acid (EDTA) and 2% fetal 

bovine serum (FBS) through a 70 µm mesh into a new 50 mL Falcon tube. The 

solution was centrifuged for 5 min at 300G, 4°C, acceleration 5, brake 9. The 

supernatant was carefully discarded and the pellet was resuspended in 1 mL 

ammoniumchloride (NH4CL) and afterwards incubated for 5-7 min at 4°C. The 

solution was then filled up with 10-20 mL sort buffer and centrifuged for 5 min at 300 

G, 4°C, acceleration 5, brake 9 again. The cells were resuspended in 1 mL sort 

buffer, diluted 1:10 and the cell count was determined using the counting chamber. 

At least 5 million bone marrow cells should be used per recipient animal. The cells 

were resuspended and later on injected in a maximum of 300 µL NaCl per mouse.  

 

2.9.2. Irradiation process 

 

Two C57BL/6 mice were put into an autoclaved box at a time. Mice were not situated 

in boxes longer than 3 hours due to animal welfare conditions. The recipient animals 

being irradiated had the same genotype and sex as donor mice and were of similar 

age.  
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Irradiation was performed using a radiation-unit Mueller RT-250 (200 kV, 10 mA, 

Thoraeus filter, 1 Gray in 1 min 52 s) with a dosage of 6 Gray per mouse, resulting in 

duration of 11 min 20 sec (Fig. 8). Irradiation was repeated once 12-14 hours later. 

The irradiation process resulted in elimination of bone marrow cells. 

4 h after the second irradiation animals received previously isolated bone marrow 

cells from donor animals via tail vein injection as described above. 5 million bone 

marrow cells per recipient animal, diluted in a maximum of 300 µL NaCl were 

applied. After injection the animals were brought into a specialized chimera 

husbandry room. The animals received acid, autoclaved drinking water (pH 3.1) with 

an addition of an antibiotic for 2 weeks (Cotrimoxazol, 5 mL / L).  

About 12 weeks after the irradiation the animals were ready to be used for the fat 

pad removal (described in chapter 2.8.) and the evaluation of the animal and fat pad 

weights.  

Figure 8: Schematic overview of the chimera creation process 

C57BL/6 mice receive GPIIb wt or GPIIb KO bone marrow cells respectively. After a radiation of 6 
Gray the animals are ready for further experiments after 12 weeks. Figure modified (259) 
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2.10. High Fat Diet Regime 

 

The animal groups were set to seven per genotype. Mice were age and sex-

matched. Animals who were planned to serve as platelet donors in experimental set-

ups with high fat diet regime underwent an identical feeding regime as recipient 

mice. 

For adaption of the gastro-intestinal flora animals received a control diet for one 

week before the experiment. This control diet contained 10% metabolizable energy 

from fat (C1090-10, 4% raw fat content, Altromin, Germany).  

After this one-week initial phase the animals were split into two groups. One group 

received normal chow (Haltungsfutter V 1536, Altromin, Germany) for two more 

weeks, the other group received a high fat diet with 60& of the metabolizable energy 

from fat (C1090-60, 34% rat fat content, Altromin, Germany), also for two more 

weeks. 

Food and water was available ad libitum over the whole experiment duration.  

The animals were weighed twice a week, at the same time of day, to observe the 

weight development as well as the state of health.  

After two weeks mice were prepared for intravital microscopy analysis as described 

in chapter 2.7. and imaged using an epifluorescence microscope. Again the number 

of rolling and adherent WBCs and also the number of transient adherent and firm 

adherent platelets were counted and further evaluated as described in chapter 3.3. 

and the following.  
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3. Intravital epifluorescence video microscopy 

 

Epifluorescence microscopy enabled analysis of cells that were labeled with specific 

fluorescent dyes in in vivo models. The technique was based on the fact that 

fluorophores absorb short-wave stimulation light and emit it as long-wave light. 

Platelets were isolated and stained as described above using Rhodamine B. 

Rhodamine B, a dye from the group of Rhodamine, a Xanthen derivative, had 

already been described in the early 20th century (179). Rhodamine B (Fig. 9) 

reached it maximum absorption between 542 and 554 nm and its emission at a 

maximum of 600 nm in a neutral and aqueous solution (226).  

 

Figure 9: Structural formula of Rhodamine B 

By choosing specific filters the epifluorescence microscope could be set to different spectral-light-
areas, as a result only short-wave light reached the dyed cells. Filter in front of a camera let pass 

solely long-wave light around 600 nm to exclude remaining excitation-light. 

 

 

3.1. Structure of the epifluorescent microscopy 

 

The working area consisted of different parts. One part was the surgery space, which 

guarantees optimal oxygen care of the mice together with a heating mat, the surgical 

instruments and a swan-neck light. The other part was the epifluorescence 

microscope (Olympus BX54WI, Japan) with the illumination system MT20-E 150 W 

xenon arc burner (Olympus, Japan) and a charge-coupled device (CCD) camera 

(ORCA-ER, Hamamatsu Photonics, Japan).  
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The third part was a computer (Fujitsu, Japan) with an analysis software Cell-R 

(Olympus, Japan) and a monitor (Samsung, South Korea). Data was directly stored 

on the computer, a copy was burned onto a DVD for backup. 

 

 

3.2. The epifluorescence microscope 

 

Figure 10: Optical path of the epifluorescence microscope 

The epifluorescence microscope requires a near-monochromatic illumination from the light-source 
only xenon-arc lamps can provide. Light with a special excitation wavelength is focused through the 

objective lens and encounters the specimen. The specimen emits a fluorescence light that gets 
focused to the detector (175) 
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The term “fluorescent” referred to a microscope that uses fluorescence light to 

generate an image. Fluorescent dyes got excited with light of a specified wavelength, 

right before emitting light in another wavelength. Optical filters removed scattered 

light (Fig. 10). The structures that wanted to be analyzed could be stained with 

specific fluorochromes. In this study, neutrophils and platelets (Chapter 2.4. and 2.5.) 

were stained as mentioned above and injected directly via tail vein right before the 

imaging process.  

Only light able to excite the fluorescence dye passed the excitation filter. It was 

important that the excitation filter prevents light of the same wavelength in which the 

fluorescence dye glows from getting through. A dichroic mirror mirrored the 

excitation light to the objective, resulting in a fluorescing specimen. This emitted light 

had a higher wavelength than the excitation light and passed the dichroic mirror 

towards the ocular and the CCD camera. The emission filter was an additional 

barrier to prevent reflected excitation light coming from the specimen from reaching 

the ocular. 

 

3.3. Procedure of the epifluorescence microscopy 

 

After clicking “database”  “administration”  “new database” the database is 

named after the experimental date in the format YYMMDD. The camera was set up: 

“Binning” 2x2 (672x512 pixel), “exposure time”: 30 ms, “brightness adjustment” was 

set to automatic. The laser was set depending on the used fluorochromes: “NIBA” for 

Fluor ® 488 stained neutrophils, “Rhod B” for Rhodamine B stained platelets, 

“Acri/Rho” for the dual view of neutrophils and platelets.  

The epifluorescence microscopy started with a first orientation within the fat pad area 

and the search for large and small vessels through the ocular. After the objective 

was adjusted to an adequate area the software was configured in the same way. The 

fat pad was visualized in a 200x magnification. The camera was set into the live 

mode via and a video could be recorded. 
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3.4. Data evaluation with Microsoft Excel 

 

Neutrophils and platelets per video were counted. The file “IVM-Excel” was opened 

and the mouse and the video were named.  

The following values were inserted into the excel sheet: vessel diameter in µm, 

vessel length in µm, WBC adherent, WBC rolling, platelets adherent and platelets 

transient adherent.  

Excel now calculated the factor to norm the vessel length to 500 µm (500 / vessel 

length) and the vessel radius (0.5 * vessel diameter). Also the half cylinder barrel 

was calculated via (vessel length * π * vessel radius) and this value was also normed 

to 150.000 qm² (150.000 / half cylinder barrel).  

This normed value was used to calculate the number of adherent WBC corrected to 

150.000 µm², rolling WBC corrected to 150.000 µm², adherent platelets corrected to 

150.000 µm², as well as transient adherent platelets corrected to 150.000 µm², via 

multiplying the values of the manually counted cell with this normed half cylinder 

barrel value. These values could be quantified and plotted using SigmaPlot® (Systat, 

Germany).  

 

3.5. Documentation 

 

Whenever an animal was used for an experiment, a proper experimental protocol 

had to be made. This protocol provided information about the genetical background 

of the mouse, the genotype, the date of birth, the sex as well as the weight. Every 

operation step had to be logged. The most important thing was also to mention the 

reference number of the animal experiment proposal (Tierversuchsantrag) over 

which the experiment was reported. It was also of high importance to log the amount 

and time point of narcosis given to the animal during the duration of the procedure. 
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In experiments about the fat pad and organ removal it had further be logged which 

organs and fat pads were removed as well as the specific weight of the different fat 

pads.  

4. In vitro culture of adipocytes 

 

To study the effect of different substances on the development and proliferation of 

adipocytes, it was necessary to switch into an in vitro model additionally to the 

intravital experiments. 

 

4.1. Maturation of preadipocytes 

 

The murine 3T3-L1 preadipocytes were bought from ZenBio, Inc, USA (SP-L1-F, 

3T3-L1 Preadipocytes Cryopreserved, 500.000 cells / vial) and stored in liquid 

nitrogen until usage.  

The 3T3-L1 cell line derived from mouse 3T3 cells is a well-established cell line for 

the research on adipose tissue. The cells show a fibroblast like morphology and can 

differentiate into an adipocyte like phenotype (92).  

For beginning the PM-1-L1 preadipocyte medium was warmed up to 37°C in the 

water bath for around 30 min. The frozen 3T3-L1 cells were heated up for 2 min in 

the water bath as well. 10 mL of the PM-1-L1 medium were put into a 15 mL Falcon 

tube and the 3T3-L1 cells were added. After a centrifugation for 5 min, 265G, brake 

on, the cell pellet was resuspended in 10 mL PM-1-L1 medium and added into a cell 

culture flask. Afterwards, the cell culture flask was put into a humified incubator, 37 

°C, with 5-10% CO2. The medium was changed every 2-3 days until cells reached 

confluency of approximately 70-80%.  

After reaching 70-80% confluency the medium was completely removed from the cell 

culture flask and the flask was washed with 10 mL Ca2+ and Mg2+ free phosphate 

buffered saline (PBS). 2 mL Trypsin heated to 37°C were added into the flask and 

together incubated for 3 min at 37°C. Cells were detached carefully from the base by 

tapping the flask. To stop the Trypsin activity at least the twice the amount of PM-1-
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L1 medium was added. 

 

 

The cell culture flask was rinsed and the medium was transferred into another 50 mL 

Falcon tube. After centrifugation at 265 G for 5 min at RT, with brake, cells were 

resuspended in 2 mL PM-1-L1 medium. In the next step cells were transferred into a 

12-well-plate. Cells were counted with a “Neubauer-Zählkammer” counting chamber, 

20.000 cells were transferred per well. 

 

1.2 mL PM-1-L1 medium were submitted into the wells. The plate was put into the 

incubator for 6-8 days, until the cells reached 100% confluency. Medium was 

changed every 2 days. According to different experiment setups the cells were co-

incubated with different substances during their maturation phase (for details see 

below) 

After the cells were confluent there was an additional incubation time of 48 hours 

without medium change before the initiation of the differentiation phase. 

 

4.2.  Differentiation of preadipocytes into adipocytes 

 

The PM-1-L1 medium was first completely removed and 1.2 mL of DM-2-L1 

differentiation medium added per well. After an incubation of 72h the DM-2-L1 

medium was removed and 1.6 mL of the adipocyte maintenance medium (AM-1-L1) 

added. Medium was changed every 2 to 3 days. After 14 days cells were suitable for 

experiments. 

 

4.3. Sudan III staining  

 

The Sudan III staining is a fat-soluble dye that is used to stain nonpolar substances 
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(Fig. 11), in this case lipids for a better visualization and the possibility to quantify the 

cell sizes in vitro (106).  

 

Figure 11. Structural formula of Sudan III 

The Sudan III dye has a reddish brown appearance and is used to stain triglycerides, lipids and 
lipoproteins (227) 

 

 

The Sudan III solution was prepared by weighing in 300 mg Sudan III powder with 

100 mL Isopropanol (99%). 15 mL of the Sudan III solution were mixed with 10 mL of 

deionized (DI) H2O and then incubated for 10 min at RT. This solution was stable for 

about 2 hours and was supposed to be filtered directly before usage. 

The adipocyte maintenance medium AM-1-L1 was removed from wells and wells 

were washed with PBS. After the removal of PBS the cells were first fixed with 

Paraformaldehyde (4%) for 60 min at RT. The Paraformaldehyde was then removed 

and the wells were washed with PBS again. Afterwards 1.5 mL Isopropanol (60%) 

were added and incubated for 5 min at RT. Isopropanol was removed, 1.5 mL Sudan 

III solution were added in each well and after incubation for 5 min at RT and removal 

of Sudan III solution cells were washed with 1.5 mL tap water. The cell nuclei were 

stained using 1.5 mL of hematoxylin, incubation for 1 min at RT and rinsed. For 

storage the wells should also be covered with tap water to prevent drying. 

 

4.4. Adipocyte growth evaluation 
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The evaluation was made using a phase contrast microscope (Axiovert, Zeiss, 

Germany). The microscope was set to 20-fold magnification (Objective 1x), phase 

contrast 1, 7.4 V illumination. The software was set to mono, 1300x1030 pixel, 

standard, illumination 20 ms.  

Wells were centered and photographed without magnification. One photo was taken 

per well, saved as JPEG and transferred to a computer for further evaluation with 

ImageJ (National Institutes of Health, USA). 

Data was evaluated and quantified using SigmaPlot. 

 

4.5. Neutrophil Isolation 

 

Within the in vitro experiments adipocytes were co-incubated with 

polymorphonucelar neutrophils (PMN) 

 

4.5.1. Preparation of the Percoll gradient 

 

An isotonic Percoll solution was mixed with 90% Percoll (45 mL) and 10% 10-fold 

PBS (5 mL). This worked best if all the substances were brought to 4 °C before. 

Three different Percoll concentrations were prepared.  

- 72% Percoll (10 mL): 7.2 mL isotonic Percoll + 2.8 mL 1x PBS 

- 64% Percoll (10 mL): 6.4 mL isotonic Percoll + 3.6 mL 1x PBS 

- 52% Percoll (10 mL): 5.2 mL isotonic Percoll + 4.8 mL 1x PBS 

 

 

Afterwards 3 mL of each Percoll concentration were pipetted into a 15 mL Falcon 

tube. The 72% concentration was first, then came the 64% and the 52% 

concentration was added last. The gradient was set on ice afterwards. 
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4.5.2. Preparation of the bone marrow 

 

After neck-dissection on anaesthetized mouse extremities were cut off, femur and 

tibia were dissected and freed from surplus tissue using a scalpel. Epiphyses were 

severed in the area of the metaphysis. The bone marrow cavity was rinsed with a 

brown cannula (26G) using 1-fold PBS through a 40 µm mesh into a new 50 mL 

Falcon tube. The solution was centrifuged for 5 min at 300G, 4°C. The supernatant 

was discarded and the pellet resuspended in 1 mL 1-fold PBS and afterwards 

pipetted onto the previously prepared Percoll gradient.  

 

4.5.3. Isolation of the PMNs 

 

The gradient was centrifuged at 1000G, 30 min, 4°C. After centrifugation two red and 

one white layer within the gradient were visible. The white layer, containing PMNs 

was pipetted into another 50 mL Falcon tube together with 50 mL 1-fold PBS and 

centrifuged again at 300G, 5 min, 4°C. The supernatant was discarded and the pellet 

resuspended in 3 mL 1-fold PBS again. After diluting the solution 1:10 with 1-fold 

PBS, 20 µL were transferred into the “Neubauer Zählkammer” counting chamber and 

evaluated as described in chapter 4.1.  

 

4.6. Co-Incubation of Adipocytes with diverse substances 

 

To examine the effect of diverse substances on the adipocyte proliferation, the cells 

were co-incubated on different days during their maturation and differentiation phase 

for 24 h each as described below. 
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4.6.1. Co-incubation with stimulated platelets 

 

Platelets were isolated from donor mice as described in chapter 2.4. and counted. 

The platelet solution was diluted 1:10 using Tyrodes buffer and activated with ADP 

(5 µM stock solution, 9 µL / mL platelet solution) for 5 min at RT. Per well a total 

count of 2 * 106 / mL platelets was added, resulting in a concentration of 1.2 mL (2.4 

* 106), platelets diluted in 200 µL tyrodes buffer. The adipocytes were co-incubated 

with platelets for 24 h and the medium was renewed afterwards. The following 

protocol was used for the co-incubation studies: 

Differentiation day 1: 

- Addition of 1 mL DM-2-L1 medium 

- Incubation for 24h 

Differentiation day 2: 

- Addition of the calculated platelet amount 

- Incubation for 24h 

- Removal of platelets and medium 

- Renewal of DM-2-L1 medium 

Differentiation day 3: 

- Incubation for 24h 

Maturation day 8: 

- Addition of the calculated platelet amount 

- Incubation for 24h  

- Removal of platelets and medium 

- Renewal of AM-1-L1 medium 

Maturation day 14: 

- Addition of the calculated platelet amount 



Materials & Methods  50 

- Incubation for 24h 

- Removal of platelets and medium 

- Renewal of AM-1-L1 

4.6.2. Co-incubation with stimulated platelet supernatant 

 

The platelets were isolated from donor mice as described in chapter 2.4. and 

counted. The platelet solution was set to 100.000 platelets / mL and resuspended in 

1 mL tyrodes buffer pH 6.5 and 1 mL tyrodes buffer pH 7.4. The solution was 

activated with ADP (5 µM stock solution, 9 µL / mL platelet solution) for 5 min at RT 

and centrifuged at 1230G for 10 min. The supernatant was then added to the 

adipocytes according to the following protocol: 

 

Differentiation day 1: 

- Addition of 1 mL DM-2-L1 medium 

- Incubation for 24h 

Differentiation day 2: 

- Addition of the calculated supernatant amount 

- Incubation for 24h 

- Removal of supernatant and medium 

- Renewal of DM-2-L1 medium 

Differentiation day 3: 

- Incubation for 24h 

Maturation day 8: 

- Addition of the calculated supernatant amount 

- Incubation for 24h  

- Removal of supernatant and medium 

- Renewal of AM-1-L1 medium 

Maturation day 14: 
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- Addition of the calculated supernatant amount 

- Incubation for 24h 

- Removal of supernatant and medium 

- Renewal of AM-1-L1 

4.6.3. Co-incubation with stimulated neutrophils 

 

PMNs were isolated from donor mice as described in chapter 4.5.3. and counted 

using the counting chamber. The neutrophil solution was diluted 1:10 using PBS and 

activated with phorbol myristate acetate (PMA) (Calbiochem, Merck Millipore, 

Germany, 20 ng/ mL neutrophils) for 5 min at RT. Per well a total count of 2 * 105 / 

mL neutrophils was added, resulting in an end concentration of 1.2 mL (2.4 * 105), 

neutrophils diluted in 200 µL PBS. The adipocytes were co-incubated with the 

neutrophils for 24 h and the medium was renewed afterwards. The following protocol 

was used for the co-incubation studies: 

 

Differentiation day 1: 

- Addition of 1 mL DM-2-L1 medium 

- Incubation for 24h 

Differentiation day 2: 

- Addition of the calculated neutrophil amount 

- Incubation for 24h 

- Removal of neutrophils and medium 

- Renewal of DM-2-L1 medium 

Differentiation day 3: 

- Incubation for 24h 

Maturation day 8: 

- Addition of the calculated neutrophil amount 

- Incubation for 24h  

- Removal of neutrophils and medium 
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- Renewal of AM-1-L1 medium 

 

 

 

Maturation day 14: 

- Addition of the calculated neutrophil amount 

- Incubation for 24h 

- Removal of neutrophils and medium 

- Renewal of AM-1-L1 

 

 

4.6.4. Co-incubation with unstimulated neutrophils 

 

The neutrophils were isolated from donor mice as described in chapter 4.5.3. and 

counted using the counting chamber. The neutrophil solution was diluted 1:10 using 

PBS. Per well a total count of 2 * 105 / mL neutrophils was added, resulting in an end 

concentration of 1.2 mL (2.4 * 105), neutrophils diluted in 200 µL PBS. The 

adipocytes were co-incubated with the neutrophils for 24 h and the medium was 

renewed afterwards. The time protocol was identical to chapter 4.6.3.. 

 

 

4.6.5. Co-incubation with unstimulated neutrophils and stimulated platelets 

 

The neutrophils were isolated from donor mice as described in chapter 4.5.3., 

platelet isolation followed the protocol in chapter 2.4., platelets were counted using 

the counting chamber. The neutrophil solution was diluted 1:10 using PBS and 

added to the activated platelets diluted in tyrodes. Per well a total count of 2 * 105 / 

mL neutrophils and 2* 106 / mL platelets were added. The adipocytes were co-

incubated with the neutrophils and platelets for 24 h and the medium was renewed 
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afterwards. To improve the cellular environment for the combination of platelets and 

neutrophils Ca2+ (100 mM) and MG2+ (100 mM) were added to the tyrodes buffer 

beforehand. 

 

 

 

Differentiation day 1: 

- Addition of 1 mL DM-2-L1 medium 

- Incubation for 24h 

Differentiation day 2: 

- Addition of neutrophils and platelets 

- Incubation for 24h 

- Removal of neutrophils, platelets and medium 

- Renewal of DM-2-L1 medium 

Differentiation day 3: 

- Incubation for 24h 

Maturation day 8: 

- Addition of neutrophils and platelets 

- Incubation for 24h 

- Removal of neutrophils, platelets and medium 

- Renewal of AM-1-L1 medium 

Maturation day 14: 

- Addition of neutrophils and platelets 

- Incubation for 24h 

- Removal of neutrophils, platelets and medium 

 

4.6.6. Co-incubation with TNF-α  
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Another group of adipocytes was co-incubated with recombinant murine TNF-α 

(ImmunoTools, Germany), 10 ng / mL as well as 1 ng / mL respectively. The TNF-α 

stock solution was 100 µg dissolved in 1 mL sterile H2O, diluted 1:100 to produce 72 

ng as well as 7.2 ng in 200 µL sterile H2O, resulting in an end concentration of 10 ng 

as well as 1 ng dissolved in 1200 µL. 

 

Differentiation day 1: 

- Addition of 1 mL DM-2-L1 medium 

- Incubation for 24h 

Differentiation day 2: 

- Addition of TNF-α 

- Incubation for 24h 

- Removal of TNF-α and medium 

- Renewal of DM-2-L1 medium 

Differentiation day 3: 

- Incubation for 24h 

Maturation day 8: 

- Addition of TNF-α 

- Incubation for 24h 

- Removal of TNF-α and medium 

- Renewal of AM-1-L1 medium 

Maturation day 14: 

- Addition of TNF-α 

- Incubation for 24h 

- Removal of TNF-α and medium  

- Renewal of AM-1-L1 

 



Materials & Methods  55 

4.6.7. Co-incubation with ADP 

 

Adipocytes were also co-incubated with ADP to examine if this stimulus alone 

already has an effect on the adipocyte proliferation. The ADP was added in the same 

concentration as described in chapter 4.6.1., dissolved in tyrodes, also the co-

incubation protocol was identical to chapter 4.6.1.. 

 

4.6.8. Co-incubation with PMA 

 

Adipocytes were also co-incubated with PMA to examine if this stimulus alone 

already has an effect on the adipocyte proliferation. PMA was added in the same 

concentration as described in chapter 4.6.3., dissolved in PBS, also the co-

incubation protocol was identical to chapter 4.6.3.. 

 

4.6.9. Co-incubation with Tyrodes 

 

The cells were co-incubated solely with tyrodes as a control group to check whether 

the cell cultural work steps influence the adipocyte proliferation. 200 µL tyrodes pH 

7.0 were added per well. The time-protocol was identical to chapter 4.6.1..  

 

4.7. Adipocyte preparation for ELISA quantification 

 

To check for the expression of the cytokine TNF-α, the adipocytes were co-incubated 

comparatively to chapter 4.6., but in this setting, co-incubation took place after 

adipocytes were completely maturated at day 18 and incubation time was reduced to 

a time of 3 hours. The ELISA process can be looked up more precisely in chapter 

5.1. 
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5. Infliximab Setting 

 

The mice were treated with Infliximab® (MSD, Germany), a monoclonal antibody 

against tumor necrosis factor alpha for 6 weeks. Afterwards the TNF-α expression 

was measured using a suitable ELISA Kit. 

60-70 day old C57BL/6 mice received an intraperitoneal administration of 6.25mg/kg 

Infliximab® or vehicle (aqua ad iniectabilia) intraperitoneally. Animals were treated 

once a week over 6 weeks. Body weight was measured once a week, directly before 

the treatment. After 6 weeks, mice were anesthetized and fat pads were removed as 

described above.  

Blood serum was collected and TNF-α serum concentrations were determined using 

ELISA according to manufacturers’ instructions (R&D Systems, USA).  

 

5.1. ELISA quantification 

 

For the quantification of the TNF- α concentrations in the blood serum and the in 

vitro supernatant enzyme linked immunosorbent assays (ELISA) were used. The 

ELISA Kit was used according to manufacturer’s instruction (R&D Systems). 

After Infliximab treatment blood was collected via cardiac blood withdrawal and 

serum was centrifuged at 300G, 15 min, 4°C. 

In case of cell culture experiments supernatant was taken, centrifuged (300G, 15 
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min, 4°C) and subjected to ELISA analysis. 

 

5.1.1. Performance of the ELISA 

 

The samples were stored at -80°C at brought to RT before usage. The samples and 

the standard series were used as a dual approach. 

 

For the standard series the Mouse TNF-α Standard was first reconstituted with 

deionized water to produce a stock solution of 7000 pg/mL. After adding 900 µL of 

the calibrator diluent (RD5K for cell culture supernatant, RD6-12 for serum samples) 

to a 700 pg/mL tube, 200 µL of the appropriate Calibrator diluent were added into the 

remaining tubes. The stock solution was used to produce a dilution series (Fig. 12). 

 

Figure 12: Production of the standard series 

The TNF-α Standard was reconstituted with deionized water and was then used to produce the 
standard series. At first 100 µL were added into the 700 pg/mL tube. Afterwards 200 µL were 

transferred into the next tube and so on.  

 

The appropriate Calibrator diluent served as the zero standard and the 700 pg/mL as 

the high standard. From each sample as well as the standard series 50 µL were 

pipetted into the 96 well ELISA plate. The plate was covered and incubated at RT for 

2h on an ELISA plate shaker (Heidolph Duomax 1030, Heidolph Instruments, 

Germany). After the incubation the wells were emptied completely and washed using 

250 µL wash buffer (20 mL wash buffer concentrate were mixed with 500 mL 
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deionized water before). The wash procedure was performed 5 times. Afterwards 

100 µL Mouse TNF-α Conjugate were added to each well and incubated at RT for 2h 

again. The wash steps were repeated as described above. 100 µL of the Substrate 

solution were added to each well and the plate was incubated dark at RT for 30 min. 

Afterwards 100 µL of the Stop solution was added directly into each well. 

 

 

 

5.1.2. ELISA data evaluation 

 

Directly after the stop solution was added the chemical reaction was measured using 

an ELISA plate reader (Infinite F200, Tecan Deutschland GmbH, Germany). The 

software icontrol 1.9 (Tecan Austria GmbH, Austria) then measured the absorption of 

the colored wells. The data was prepared as an Excel sheet and further evaluated 

using an online software tool (myassays.com). The tool calculated the concentration 

of TNF-α per well in ng/mL. The different groups were then compared and 

statistically evaluated using SigmaPlot. 
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6. Analysis of Fat pad vascularization  

 

6.1. Principle of the two-photon microscopy 

 

Two-photon microscopy was used to determine the vascularization level in fat pads 

of whole mount specimen of GPIIb-KO mice and controls. It was an imaging 

technique that was able to perform fluorescent imaging in the living tissue up to 100 

µm in depth. In this way it was possible to perform a three-dimensional in vivo 

analysis in different kinds of tissues over a certain time period (62). Maria Göppert-

Mayer established the theoretical basis of the excitation of two photons in 1931 and 

this photo-physical effect was further verified experimentally in 1963 by Kaiser and 

Garret (121).  
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Figure 13: Jablonski diagram for one-photon (a) and two-photon (b) excitation.  

Two photons arrive simultaneously within a few femto-seconds and excite the electrons of the 
fluorochromes. The femto-second laser source provides sufficient intensity for two-photon absorption 

within a single pulse but is still low enough to avoid damage of the specimen (137, 233). 
 
 

In the excitation process a fluorophore was excited by a simultaneous absorption of 

two infrared photons (Fig. 13).  

 

The one-photon microscope involved the excitation of a fluorophore by a single 

photon, typically in the ultraviolet spectra range. The simultaneous absorption of two 

less energetic photons could generate the same excitation process if the sum of the 

energies of two photons was greater than the energy gap between ground state and 

excited state of the molecule. 

 

6.2. Structure of the two-photon microscope 

 

The two-photon microscope (TrimScope, LaVision BioTec, USA) was composed of a 

titanium-sapphire laser (MaiTai, Spectra Physics, Germany) with a wavelength range 

from 700-1000 nm. An optical-parametric oscillator (OPO) enhanced the excitation 
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wavelength to 1100-1600 nm and increased the imaging depth with a higher 

resolution. The dichroic mirror reflected the excitation light to the objective and 

towards the specimen. Fluorescence was created and raster scanning in three 

dimensions (x-y-z) constructed an image. Afterwards the same objective collected 

the emission signal and transmitted it through the dichroic mirror along the emission 

path.    

 

6.3. Whole mount staining 

 

6.3.1. Injection of the primary antibody 

 

To evaluate the vessel structure of fat pads in GPIIb +/+ and GPIIb -/- mice a CD144 

primary antibody was injected via tail vein to stain the vascular endothelial Cadherin 

(20 µL, Anti-Mouse, Clone: eBioBV13, 20 µg, eBioscience, USA), diluted in 180 µL 

NaCl 0.9%. After 1h incubation transcardial perfusion was performed to reach 

bloodlessness. The method of tail vein injection and transcardial perfusion were 

described in more detail in chapter 2.2. and 2.8.  

 

 

6.3.2. Secondary antibody staining  

 

For whole mount staining subcutaneous fat pads were removed as described in 

chapter 2.8. and transferred into a 1.5 mL Eppendorf tube and fixated with 

paraformaldehyde (4%) for 30 min in the dark at RT. After washing with PBS the 

secondary antibody was added. The secondary antibody was diluted 1:100 in a 1.5 

mL Eppendorf tube. Therefor 500 µL PBS were mixed with 5 µL Alexa Fluor ® 594 

(donkey anti Rat IgG, 2 mg/mL, Thermo Fisher Scientific, USA). The fat pad was 

added and incubated for 1 hour in the dark at RT and afterwards washed with PBS. 
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6.3.3. Fat pad imaging using 2-photon microscopy 

 

Right before the imaging process fat pads were washed with PBS again to remove 

possible unbound antibodies. Fat pads were fixed onto a histology-case filled with 

modeling clay using cannulas and immediately covered with 0.9% NaCl to prevent it 

from drying. The whole mount was put under the 2-photon microscope (LaVision, 

Biotech, Germany) and Imspector software (LaVision, Germany) set to: 

- 3D-Scan 

- Laser: Wavelength 820 µm 

- Size: 558x558 

- Pixel: 837x837 

- Step Size: 2 µm 

- Frequency: 800 

- Line Average: 2 µm 

- Channel: Red, green, blue 

The range was set to 100 µm using the Cell-R software. Per fat pad a total of 6-8 

videos in different areas were recorded. 

 

 

6.3.4. Data evaluation with IMARIS 

 

The two-photon scans were analyzed using IMARIS imaging software (Bitplane, 

Switzerland).  

After analysis a spreadsheet was opened showing different parameters (Area, 

Volume, X-Position). This spreadsheet was “saved as” an Excel file and opened in a 

separate Excel window. The ratio between total fat pad volume and the vessel 

volume (Surface) per fat pad was evaluated as percentage. The ratio values of all 

videos taken from one fat pad were averaged and statistically and graphically 

evaluated using SigmaPlot.  
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7. Statistical Analysis 

 

Statistical analysis was performed using SigmaPlot 12.5 ® (Systat Software Inc., 

Germany). Results with a p-value smaller than 0.05 were considered as statistically 

significant.  Before testing for statistical significance SigmaPlot ® proofed the data for 

being normally distributed using the Shapiro-Wilk-test. After passing the normal 

distribution test data was compared between the wild type group and the Knockout 

animals in the in vivo settings, the untreated with the treated cells for the in vitro 

setting, as well as the untreated with the treated group in the infliximab setting. In 

each case the Student’s t-test was used. If the data did not pass the test for normal 

distribution the Mann-Whitney U test was used. 

For using the statistical tests mean values of each groups were counted and 

compared. Also the standard error of the mean was calculated using SigmaPlot ®. 
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Mean values and standard errors were presented using bar charts. For some 

experiments dot-plots were used for better overview. Here the mean value and the 

standard error of the mean were indicated in the text. 
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V. RESULTS 

 

The thesis addresses the role of platelets and leukocytes in adipose tissue 

vasculature. Therefore, it was analyzed whether platelets interact with activated 

endothelium of adipose tissue vessels. In vivo microscopy was performed in wild 

type versus GPIIb deficient mice. It was further tested, whether platelet adhesion 

assisted leukocyte recruitment and status of adipose tissue mice.  

 

1. Platelet and leukocyte adhesion in visceral WAT 

 

In the here described scientific project the role of platelet adhesion and the 

recruitment of WBC during the initiation of adipose tissue inflammation is evaluated. 

In the first part of the project, performed by PhD-Student Tristan Konrad, platelet 

dynamics in subcutaneous fat depot microcirculation were evaluated. Therefore 8-

10-week old lean αIIb-deficient mice, which lack αIIbβ3-surface expression, as well as 

wild type control animals were used. Using in vivo microscopy, T. Konrad found 

constant low grade platelet adhesion in the microcirculation of subcutaneous tissue, 

which was abolished in the αIIbβ3-deficient mice. Lack of platelet adhesion culminated 

in increased body fat in αIIbβ3-deficient mice. Additionally, Alexa Fluor ® 488 labeled 

CD45 antibody was infused to visualize leukocyte dynamics in subcutaneous 

adipose tissue vessels of lean, wild type or αIIbβ3-deficient 8-10 week old mice. T. 

Konrad found only rare firm leukocyte adhesion. No significant differences between 

leukocyte adhesion in animal groups was found, though data show a tendency in 

reduced leukocyte adhesion in αIIbβ3-deficient mice compared to controls 

(unpublished data). In the pathogenesis of obesity current data described more 

prominent inflammatory processes and WBC actions in visceral compared to 

subcutaneous WAT (35, 77). In a consecutive part of the project I thus analyzed 

platelet and leukocyte dynamics in the visceral WAT of lean 8-10 week old αIIbβ3-

deficient mice and controls.  
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In the first part of the project epifluorescent in vivo microscopy was performed to 

study platelet and CD45+ WBC dynamics in the microcirculation of visceral white 

adipose tissue of lean wild type and αIIbβ3-deficient mice. Fluorescently labeled 

platelets and Alexa Fluor ® 488 labeled CD45 antibody were administered to wild 

type or αIIb-deficient 8-10 week old mice and platelet and WBC adhesion analyzed. 

Transient and firm adherent platelets were mitigated in αIIb-deficient mice (transient 

adherent platelets: p-value 0.013, n = 6, 57.62 ± 11.62 vs. 16.88 ± 7.01, firm 

adherent platelets: p-value 0.009, n = 6, 28.19 ± 7.59 vs. 3.08 ± 1.97) (Fig. 14). 

 

 

 

 

 

 

 

 

 

 

Figure 14: Number of transient and firm adherent platelets 

Platelet adhesion in visceral WAT vasculature was evaluated in GPIIb deficient mice versus wild type 
control. The number of transient adherent as well as firm adherent platelets is reduced in the GPIIb 

deficient mice versus controls (p-value 0.01 and 0.009) 

 

Platelets adhered to visceral fat pad endothelium in lean GPIIb wild type mice (Fig. 

15). This effect was almost abolished in the GPIIb Knockout mice, platelets passed 

through the vasculature without firm or transient adhering to the endothelium. 
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Figure 15: Rhodamine B labeled platelets in GPIIb wild type and Knockout mice 

Representative freeze images of in vivo microscopy of visceral fat pad vasculature shows firm 
frequent platelet adhesion in GPIIb +/+ animals (white arrows) that is virtually abolished in GPIIb -/- 

mice. 

 

Unlike in platelet adhesion dynamics number of rolling WBC remained stable in 

GPIIb deficient mice (p-value 0.562, n = 6, 151.701 ± 19.62 vs. 133.47 ± 23.18) and 

reduced firm leukocyte adhesion in αIIb-deficient mice was found though this effect 

did not reach statistical significance (p-value 0.180, n = 6, 56.98 ± 14.19 vs. 24.02 ± 

5.52) (Fig. 16). The intravital microscopy revealed rolling and adherent WBC in 

GPIIb wt as indicated by arrows. Rolling and adherent WBCs were also detected in 

GPIIb deficient mice in comparable numbers (Fig. 17). 

Chronic platelet and leukocyte adhesion was detected already in lean 8 to 10 week 

old mice. Moderate leukocyte recruitment occurred in both, GPIIb wild type and 

Knockout mice. Visualization of platelet and leukocyte dynamics was restricted when 

using epifluorescent microscopy because of insufficient optical penetration depth in 

more obese adipose tissue. Also, visualization time was restricted due to insertion of 

tissue damage upon prolonged imaging processes. Although leukocyte adhesion 

events occur already in early stages of fat pad metabolism the analysis using this 

imaging technique was not satisfactory to address consecutively arising questions.  

Thus multiple experimental settings like multi-photon microscopy in WAT were tested 

allowing for prolonged visualization of leukocyte dynamics but in our hands it was 

impossible to reach satisfactory fat tissue stabilization without induction of 

mechanical injury to the visualized adipose tissue.   

We hence used the following set of experiments to address how platelet and WBC 

recruitment reacted in a more advanced stage of obesity. 
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Figure 16: Number of rolling and adherent leukocytes 

WBC adhesion in visceral WAT vasculature was evaluated in GPIIb deficient mice versus wild type 
control. The number of rolling WBC was not reduced in Knockout animals (p.value 0.56) compared to 

wild type mice. WBC adhesion is decreased in GPIIb deficient mice compared to controls (p.value 
0.18). 

 

 

 

 

 

 

 

 

 

Figure 17: Alexa Fluor ® 488 labeled leukocytes in GPIIb wild type and Knockout mice 

Representative freeze images of in vivo microscopy of visceral fat pad vasculature shows firm 
frequent leukocyte adhesion in GPIIb +/+ animals (white arrows) and GPIIb -/- mice. Adherent WBC 

were reduced in GPIIb deficient animals compared to controls. No differences were detected in rolling 
leukocytes between GPIIb deficient and wild type animals. 
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In a next step immunohistological quantification and FACS analysis were used to 

analyze whether chronic inhibition of platelet adhesion culminated in decreased 

leukocyte recruitment to WAT in more advanced stages of WAT expansion. 

Subcutaneous and visceral WAT were harvested of body weight matched 16-17-

week old sex-matched αIIb-deficient and wild type mice and prepared for 

immunohistological and FACS analysis. For the immunohistological analysis of 

leukocyte recruitment WAT was paraffin-embedded, sectioned and stained using a 

monoclonal rat anti-CD45 antibody. The CD45 positive cells were quantified and 

related to the analyzed area (Fig. 18).  

 

Figure 18: CD45+ cell count in WAT of wild type and GPIIb deficient mice 

Left side: Number of CD45+ cells in WAT was evaluated in GPIIb deficient mice versus wild type 
control. The number of CD45+ cells was reduced in Knockout animals (p-value 0.046) compared to 

wild type mice.  
Right side: Representative freeze images of immunohistochemical microscopy of WAT shows 

reduced number of CD45+ cells in GPIIb deficient animals compared to wild type mice (Scale = 20 
µm).  

 

Number of CD45+ cells was reduced in GPIIb deficient mice (p-value 0.046, n = 6, 

2.34 ± 1.59 vs. 1.22 ± 0.62) compared to wild type mice.  

Immunohistological analysis revealed that leukocyte recruitment to WAT was 

impaired in αIIb-deficient mice compared to wild type controls.  
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2. Effect of High Fat Diet on platelet and leukocyte adhesion 

 

The next question was whether platelet adhesion was relevant to assist leukocyte 

adhesion even upon provocation of high-grade inflammatory response in WAT. 

Talukdar et al. showed an aggravation of WAT inflammatory reaction and leukocyte 

recruitment upon high fat or high caloric diet.  

The experiment was set up with 7-week-old αIIb-deficient mice or controls that were 

subjected to high fat diet or control chow. After a control diet for 1 week the animals 

were held on a high fat diet or continuous control diet for 2 weeks respectively. 

Fluorescently labeled platelets and Alexa Fluor ® 488 labeled CD45 antibody were 

administered. At the age of 10 weeks in vivo microscopy of visceral fat depots was 

performed and platelet as well WBC dynamics were evaluated.  

 

Figure 19: Number of rolling and adherent leukocytes normal chow vs. HFD 

WBC adhesion in visceral WAT vasculature was evaluated in wild type mice receiving normal chow 
versus wild type animals that received HFD for 2 weeks respectively. The number of rolling as wells 
as the number of adherent WBC was increased in HFD group compared to animals that received a 

normal diet (p-value 0.005 and 0.09).  
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The number of rolling WBC increased in the HFD group (p-value 0.005, n = 5-6, 

151.70 ± 19.62 vs. 254.08 ± 18.43). There was a tendency to an increase in the 

number of adherent WBC in mice on a HFD (p-value 0.09, n = 5-6, 56.98 ± 14.19 vs. 

105.83 ± 22.58) compared to animals that received normal chow (Fig 19). 

 

Figure 20: Number of rolling and adherent leukocytes normal chow vs. HFD 

WBC adhesion in visceral WAT vasculature was evaluated in Knockout mice receiving normal chow 
versus Knockout animals that received HFD for 2 weeks respectively. The number of rolling 

leukocytes increased slightly in the Knockout animals that were fed a HFD compared to Knockout 
animals that received normal chow (p-value 0.18). No differences were detected in the number of 

adherent WBC in Knockout animals that received a HFD compared to Knockout animals that were fed 
normal chow (p-value 0.34).  

 

 

The number of rolling WBC increased slightly in the HFD group (p-value 0.18, n = 6, 

133.47 ± 23.18 vs. 199.48 ± 40.84) compared to the normal diet group. There was 

nearly no difference in the number of adherent WBC in knockout mice on a HFD (p-

value 0.34, n = 6, 24.03 ± 5.52 vs. 31.85 ± 5.26) compared to Knockout animals that 

received normal chow (Fig. 20, Fig. 21). 
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Figure 21: Alexa Fluor ® 488 labeled leukocytes in GPIIb wild type and Knockout mice after 
high fat diet for 2 weeks 

Representative freeze images of in vivo microscopy of visceral fat pad vasculature shows firm 
frequent leukocyte adhesion in GPIIb +/+ animals after HFD for 2 weeks (white arrows) and GPIIb -/- 

mice after HFD for 2 weeks. WBC adhered firmly to the endothelium in wild type animals after HFD as 
well as Knockout animals after HFD for 2 weeks respectively. 

 

 

 

There was no effect of the HFD on the number of transient adherent platelets (p-

value 0.88, n = 5-6, 57.62 ± 11.63 vs. 60.24 ± 11.33) and the number of adherent 

platelets respectively (p-value 0.29, n = 5-6, 28.19 ± 7.59 vs. 17.62 ± 4.90) (Fig. 22, 

Fig. 23). 

There were similar results in the GPIIb deficient mice concerning the platelets. No 

effect of the HFD on the number of transient adherent platelets was detected (p-

value 0.204, n = 6, 16.88 ± 7.01 vs. 5.06 ± 4.21) and there was no effect on the 

number of adherent platelets respectively (p-value 0.43, n = 6, 3.047 ± 1.97 vs. 0 ± 

0) (Fig. 24). 
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Figure 22: Number of transient adherent and firm adherent platelets normal chow vs. HFD 

Platelet adhesion in visceral WAT vasculature was evaluated in wild type mice receiving normal chow 
versus wild type animals that received HFD for 2 weeks respectively. No differences were detected in 
the number of transient adherent platelets and firm adherent platelets between the wild type animals 
that received normal chow for 2 weeks and the animals that received HFD for 2 weeks (p-value 0.88 

and 0.29).  

 

 

Figure 23: Rhodamine B labeled platelets in GPIIb wild type and Knockout mice after high fat 
diet for 2 weeks 

Representative freeze images of in vivo microscopy of visceral fat pad vasculature shows firm 
frequent platelet adhesion in GPIIb +/+ animals (white arrows) that received HFD for 2 weeks that is 

virtually abolished in GPIIb -/- mice after high fat diet for 2 weeks. 
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Figure 24: Number of transient adherent and firm adherent platelets normal chow vs. HFD 

Platelet adhesion in visceral WAT vasculature was evaluated in Knockout mice receiving normal chow 
versus Knockout animals that received HFD for 2 weeks respectively. No differences were detected in 
the number of transient adherent platelets and firm adherent platelets between the wild type animals 
that received normal chow for 2 weeks and the animals that received HFD for 2 weeks (p-value 0.204 

and 0.43).  
 

 

 

Comparing the number of rolling WBCs between the wild type and the Knockout 

animals both fed a HFD for 2 weeks showed no differences (p-value 0.26, n = 5, 

254.08 ± 18.43 vs. 199.48 ± 40.84). Importantly, WBC adhesion was significantly 

impaired in αIIb-deficient mice compared to wild type siblings after consuming high fat 

diet for 2 weeks respectively (p-value 0.008, n = 5, 100.65 ± 25.42 vs. 31.85 ± 5.26) 

(Fig. 25).  
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Figure 25: Number of rolling and adherent leukocytes wild type vs. KO fed a HFD 

WBC adhesion in visceral WAT vasculature was evaluated in wild type mice receiving high fat diet for 
2 weeks versus Knockout animals that received high fat diet for 2 weeks. No differences were 

detected in the number of rolling leukocytes in wild type animals that received HFD compared to 
Knockout animals that received HFD for 2 weeks respectively (p-value 0.26). The number of adherent 

WBC was significantly reduced in Knockout animals that were fed a HFD for 2 weeks compared to 
wild type animals fed a HFD for 2 weeks (p-value 0.008). 

 
 
 

 

Comparing the number of transient adherent platelets between the HFD groups, 

similar results to the normal diet groups were confirmed. There was a decrease in 

the number of transient adherent platelets in GPIIb deficient mice fed a HFD for 2 

weeks (p-value 0.002, n = 5, 60.244 ± 11.33 vs. 5.06 ± 4.21) compared to wild type 

mice that received a HFD for 2 weeks. There was also a decrease detected in the 

number of adherent platelets in the GPIIb deficient mice fed a HFD for 2 weeks (p-

value 0.03, n = 5, 17.61 ± 4.90 vs. 0 ± 0) compared to wild type animals that 

received a HFD for 2 weeks (Fig. 26).  
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Figure 26: Number of transient adherent and adherent platelets wild type vs. KO fed a HFD 

Platelet adhesion in visceral WAT vasculature was evaluated in wild type mice receiving high fat diet 
for 2 weeks versus Knockout animals that received high fat diet for 2 weeks. There was a significant 
decrease in the number of transient adherent and firm adherent platelets in Knockout animals that 
received a HFD for 2 weeks compared to wild type animals that received HFD for 2 weeks (p-value 

0.002 and 0.03). 

 

 

A significant increase in platelet and leukocyte recruitment was found in the setting 

of high fat diet versus control chow. Importantly, WBC adhesion was impaired in αIIb-

deficient mice compared to wild type siblings after consuming high fat diet.  

Together, platelet-assisted leukocyte adhesion to microvasculature of adipose tissue 

seems to play a pivotal role in lean mice and high fat diet fed animals.   
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3. Fat pad and body weight measurement  

 

As a consecutive step experiments were designed to analyze the effect of blocked 

platelet adhesion and consecutive impairment in leukocyte recruitment to adipose 

tissue phenotype. Therefore, body weight and carcass weight of sex-matched 16-17 

week old αIIb-deficient mice and their wild type controls as well as weight of the 

subcutaneous, visceral, retroperitoneal and brown fat depots were measured. Serum 

leptin concentrations and adipocyte size were measured.  

The GPIIb deficient mice showed a crucial increase in the subcutaneous, visceral as 

well as the retroperitoneal fat pad compared to the wild type animals. The brown fat 

pad showed no increase as typically not relevantly expanding in the setting of 

obesity. No difference in carcass weight was detected, which excluded growth of the 

musculo-skeletal system as the source of weight gain. This initial work was also 

performed by PhD-student T. Konrad and served as the reference point for my 

following experiments.   

The experiments were done using 10-16 week old, sex-matched GPIIb deficient 

mice and their wild type counterparts. Again, body weight and the white fat pads as 

well as the carcass weight were evaluated. The macroscopic view revealed 

significant differences in the white fat pad development already (Data determined by 

Echtler et al.). The fat pad of the αIIb-deficient mice was considerably larger than of 

the wild type counterparts (Fig. 27). 

 

Figure 27: Comparison Fat pad appearance between GPIIb wild type and Knockout 

The fat pad collected from a GPIIb wild type mouse (left side) was substantial smaller than the one 
taken from a GPIIb deficient mouse (right side) (Scale = 2 mm) 
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3.1. GPIIb deficient and wild type mice  

 

T. Konrad analyzed whether there are differences in the body weight between GPIIb 

deficient mice and their wild type counterparts and was able to show a weight 

increase in GPIIb deficient animals compared to wild type controls.  

He also measured serum leptin levels between GPIIb deficient and wild type 

animals, showing higher serum leptin levels in αIIb-deficient mice compared to wild 

type animals. 

T. Konrad also analyzed the adipocyte size and showed an increase of adipocyte 

size in GPIIb deficient mice compare to wild type mice. Further metabolic screenings 

revealed no differences in food consumption, energy expenditure or physical activity 

in αIIb-deficient mice versus controls. This excluded that the observed differences in 

the WAT depend on alterations of energy intake/uptake, kinesic behavior or 

metabolism. 

A set of experiments were performed to assess in more detail whether the observed 

effects was really a platelet-mediated process. As described αIIb-Expression is 

restricted to the hematopoietic lineage (73). Early bone-marrow resident 

hematopoietic progenitors and megakaryocytes, as well as platelets and some mast 

cells are known to express αIIb. Using whole mount embryo staining techniques 

Emambokus et al. could not detect any further tissue αIIb-expression.  
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3.2. GPIIb deficient and wild type bone marrow chimera mice 

 

Bone marrow chimera of αIIb-deficient and wild type mice were created to restrict the 

GPIIb ablation to the hematopoietic system for a further verification that platelets are 

crucial for the regulation of WAT inflammation. Therefore 8-week-old female 

C57Bl/6J mice were sublethally irradiated and received either αIIb-deficient or wild 

type bone marrow cells of female donor mice. 16 weeks after the transplantation the 

body weight and fat pad weight was measured.  

Figure 28: Total WAT quantification between GPIIb deficient and wild type chimera mice 

Total WAT weight was evaluated in C57Bl/6J mice after receiving wild type or αIIb-deficient bone 
marrow cells. There was a significant increase in the total WAT weight evaluated in C57Bl/6J mice 

after that αIIb-deficient bone marrow cells compared to evaluated in C57Bl/6J mice that received wild 
type bone marrow cells (p-value 0.04). 

 

 

A measurement of the total WAT amount revealed an increase in the GPIIb deficient 

chimera mouse group (p-value 0.04, n = 6, 0.477 ± 0.034 vs. 0.567 ± 0.0153) 

compared to the wild type chimera group (Fig. 28).  

A closer look at the single fat pads of bone marrow chimera mice revealed an 

increase in the visceral fat (p-value 0.12, n = 6, 0.26 ± 0.03 vs. 0.31 ± 0.01) as well 

as in the abdominal fat pad (p-value 0.005, n = 6, 0.08 ± 0.01 vs. 0.12 ± 0.01).  
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The subcutaneous fat pad did not increase in GPIIb deficient mice (p-value 0.66, n = 

6, 0.14 ± 0.01 vs. 0.135 ± 0.01) as being directly exposed to the irradiation, which 

badly influences the fat pad formation (Fig. 29).  

The brown fat in the GPIIb deficient mice showed no weight gain (p-value 0.66, n = 

6, 0.10 ± 0.01 vs. 0.11 ± 0.01), as brown adipose tissue is mainly responsible for 

energy production and not energy storage.  

Figure 29: WAT depots of GPIIb deficient and wild type chimera mice in detail 

WAT and BAT depot weight was evaluated in C57Bl/6J mice after receiving wild type or αIIb-deficient 
bone marrow cells. There was an increase in the visceral and abdominal WAT weight in C57Bl/6J 

mice after receiving αIIb-deficient bone marrow cells compared C57Bl/6J mice that received wild type 
bone marrow cells (p-value 0.12 and 0.005). No differences were detected in the subcutaneous WAT 

and the brown fat pad weight in C57Bl/6J mice after receiving αIIb-deficient bone marrow cells 
compared to C57Bl/6J mice that received wild type bone marrow cells (p-value 0.66 and 0.65) 

 

The generation and evaluation of GPIIb bone marrow chimera mice substantiated 

the notion, that platelets, which abundantly surface-express αIIbβ3-integrin integrin, 

mediate the observed regulatory processes of WAT expansion.  
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4. Analysis of fat pad vascularization 

 

Our group also tested whether an alteration of WAT expansion could also be 

observed in other transgenic mice with impaired platelet function. For this reason, 

the fat depots of NFE2-deficient mice on a mixed C57BL/6 x SV129 background 

were analyzed. The NFE2 mice show a disturbed megakaryopoiesis and 

homozygous animals reveal virtually no circulating blood platelets with a smaller 

number of remaining functional platelets (142). As a result, the animals show 

frequent bleeding events and anemia.  

Since novel vessel formation or growth of pre-existing vessels might play a role in 

adipose tissue expansion, we analyzed whether alterations in fat pad circulation 

occurred in αIIb-deficient mice versus control. 

For this reason, vessels were stained using a CD144-antibody; the subcutaneous fat 

depots were collected and subjected to multiphoton microscopy. The vessel 

structure was visualized 3-dimensionally and the vessel density was determined 

(Fig. 30).  

Evaluation of the vessel structure in the subcutaneous fat pads of GPIIb deficient 

mice and their wild type counterparts revealed no difference between the two groups 

(p-value = 0.892, t-test, n = 4, wt mean = 1.93 ± 0.21, KO mean = 1.87 ± 0.67) (Fig. 

31), implicating that differences of cell interactions within the various phenotypes are 

mainly due to the impaired GPIIb Integrin functions and not due to vascular 

variations and the related changes in cell counts. 
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Figure 30: Three-dimensional visualization of CD144 stained subcutaneous fat pad vasculature 

Representative freeze images of two photon microscopy of subcutaneous fat pad vasculature.          
No differences between GPIIb deficient mice and their wild type counterparts were detected          

(scale = 25 µm).  
 

 

From the first part of the thesis it can be concluded that chronic platelet adhesion 

occurs in adipose tissue vasculature even at early stages of adipogenesis. This 

platelet adhesion enables leukocyte recruitment to WAT depots in the process of fat 

depot expansion. 

Local adhesion of platelets is impaired in αIIb-deficient mice; this was paralleled by a 

decrease in leukocyte adhesion and an increase in WAT enlargement. Latter was 

reflected by the expansion of WAT depots (subcutaneous, visceral and 

retroperitoneal) as well as body weight. The carcass weight remained unaltered in 

knockout animals showing that the increase in weight was not due growth of the 

musculo-skeletal system. 

As a following step of the project the underlying factors of the observed effects were 

further analyzed. Chemokine mRNA-expression analysis in subcutaneous fat depots 

of αIIb-deficient and control animals were evaluated. No difference in the expression 

of Chemokine ligand 1 (CXCL1), which is one of the first factors to be released in the 

neutrophil signal transduction cascade on the site of inflammation, was found (p-

value 0.13, n = 4, 0.97 vs. 0.73) between wild type and Knockout animals. 
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Figure 31: Quantification of vessel per fat pad volume in subcutaneous fat pad 

Vessel volume per fat pad volume in subcutaneous WAT was evaluated in wild type mice versus 
GPIIb Knockout animals using two-photon microscopy. No differences were detected in the 
percentage of vessel per fat pad between wild type and Knockout animals (p-value 0.89).  

 

There were also no differences in the expression of Chemokine ligand 5 (CXCL5) (p-

value 0.58, n = 4, 0.46 vs. 1.62) and Chemokine ligand 2 (CXCL2) (p-value 0.87, n = 

4, 1.04 vs. 1.00), that also play a crucial role in the inflammatory leukocyte signal 

transduction cascade, between wild type and GPIIb deficient mice. The levels of the 

inflammatory marker Interleukin 6 (IL-6) was also comparable between the two 

groups (p-value 0.26, n = 4, 1.52 vs. 0.53). 

Despite the detected increase in WAT expansion in αIIb-deficient mice, Tumor 

necrosis factor α (TNF-α) mRNA-expression was significantly reduced in 

subcutaneous WAT of αIIb-deficient animals compared to their wild type counterparts 

(p-value 0.04, n = 4, 0.64 vs. 0.42). There were reports of TNF- α deficient animals 

that showed enlarged WAT depots after receiving high fat diet (210).  

Therefore, it was further tested whether platelets and leukocyte recruitment could 

affect TNFα expression of adipocytes and adipocyte biology.  
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5. In vitro culture of adipocytes  

 

The different behavior of platelets and leukocytes after adherence to the 

dysfunctional endothelium of the adipose tissue vasculature consists of their 

influence on adipocyte biology. While leukocytes could directly interact with 

adipocytes after transmigration into the adipose tissue and thus change the TNF-α 

expression levels of these cells, platelets could influence adipocytes only via 

paracrine effects. Platelets probably might release pro-inflammatory substances 

while interacting with the dysfunctional endothelium of adipose tissue.  

When presumed that platelets after becoming adherent to the dysfunctional 

endothelium of the adipose tissue vasculature would release multiple, partly pro-

inflammatory substances could in this way influence adipocytes only in a paracrine 

manner. Leukocytes, in contrast could - apart from paracrine effects mediated by 

adherent platelets - additionally directly interact with adipocytes after transmigration 

into the adipose tissue and by this way change TNF-α expression in adipocytes.  

For this reason murine 3T3-L1 preadipocytes were purchased from ZenBio, Inc. 

(USA). These cells derived from mouse 3T3 cells and are well established for the 

research on adipose tissue and show a fibroblast like morphology with the ability to 

differentiate into an adipose like phenotype over a period of 14 days (Fig. 32).  

Preadipocytes were delivered and seeded at passage number 8 and splitted until 

passage number 10, the cells grew in density and developed a fibroblast-like 

structure (Fig. 32 A). After a strict differentiation phase of three days the 

preadipocytes started to enrich with lipids (Fig. 32 B). This process took about 14 

additional days with further enrichment of triglyceride lipids, forming larger lipid 

droplets (Fig. 32 C) and resulted in mature adipocytes with one large lipid vacuole 

(Fig. 32 D).  

Experiments were done during the differentiation phase as well as with mature 

adipocytes after the developmental process took place. 
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Figure 32: Preadipocyte to adipocyte development 

The cells were stained using Sudan III for a better visualization. The development/maturation process 
took about four weeks from the preadipocyte to the mature adipocyte (Scale = 20µm).  

 

 

5.1. TNF-α ELISA after adipocyte treatment 

 

Murine mature adipocytes were co-incubated with different substances after the 

developmental processes were finished to evaluate whether these pro-inflammatory 

substances released by platelets and leukocytes could influence the TNF-α 

expression in adipocytes. The adipocytes were co-incubated with ADP-activated 

platelet supernatant, activated platelets, isolated murine polymorphonuclear 

leukocytes (PMA activated or unstimulated) or controls for 3 or 6 hours, washed and 

adipocyte TNF-α protein expression was assessed 18 hours thereafter. 

While no TNF-α expression was detectable in controls (ADP, PMA, Tyrodes), a 

robust TNF-α expression was found in adipocytes treated with activated PMNs 

(mean = 133.24 ± 8.21, n = 3) and unstimulated PMNs (mean = 139.97 ± 9.62, n = 

3). Treatment with platelet supernatant had no effect on TNF-α production in murine 

adipocytes (Fig. 33). Also co-incubation with activated platelets had no effect on the 

TNF-α expression. However, the combination of activated platelets with 

polymorphonuclear leukocytes, as well as the combination of inactivated platelets 

with PMNs caused TNF-α expression. 

A B C D 
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Figure 33: Cell culture supernates TNF-α levels after stimulation 

Treatment of mature adipocytes for 3h after development phase revealed TNF-α expression in the 
groups treated with PMNa, PMN, PLTa+PMN and PLT+PMN. 

 

 

5.2. Adipocyte proliferation evaluation 

 

After getting a first impression on the TNF-α expression levels of mature adipocytes, 

cells were treated with TNF-α and other substances already during their 

differentiation phase as well as during the maturation phase to evaluate their 

proliferation behavior. 

Cells were treated a total of three times each 24 hours. The first treatment was 

during day two and day three of the differentiation phase, the second treatment at 

day 8 of the maturation phase and the third treatment on day 14 of maturation 

phase. 
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Figure 34: Area covered with adipocytes 

A significant reduction of area covered with adipocytes was detected in the groups treated with PMNa, 
PMN, PLTa SN and TNF-α compared to cells treated with tyrodes buffer. No differences were 

detected in the groups treated with PLTa+PMN, PLTa, PBS+PMS and Tyrpdes+ADP compared to 
cells treated with tyrodes buffer (* = significance vs. Tyrodes group). 

 

 

The proliferation was measured as the percentage of covered area per well using a 

phase contrast microscope. For a better differentiation the cells were first stained 

using Sudan III, however using ImageJ for evaluation made staining unnecessary as 

the experiments were repeated.  

There was a decrease in the adipocyte covered area in the PMNa group compared 

to the control group treated with Tyrodes buffer (p-value 0.001, n = 2 biological 

replicates, 6 technical replicates, 41.03 ± 2.58 vs. 57.83 ± 2.25), in the group treated 

with PMN (p-value 0.002, n = 2 biological replicates, 6 technical replicates, 43.29 ± 

2.52), in the group treated with PLTa SN (p-value 0.03, n = 2 biological replicates, 6 

technical replicates, 49.27 ± 2.63), as well as in the group treated with TNF-α 1ng (p-

value 0.001, n = 2 biological replicates, 6 technical replicates, 44.49 ± 1.67) and the 
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group treated with TNF-α 10ng (p-value 0.001, n = 2 biological replicates, 6 technical 

replicates, 38.43 ± 2.21). There was a decreasing tendency in the group treated with 

PLTa (p-value 0.18, n = 2 biological replicates, 6 technical replicates, 53.19 ± 1.05). 

The groups treated with PLTa + PMN (p-value 0.73, n = 2 biological replicates, 6 

technical replicates, 56.46 ± 3.1), PBS + PMA (p-value 0.28, n = 2 biological 

replicates, 6 technical replicates, 60.88 ± 1.44) and Tyrodes + ADP (p-value 0.65, n 

= 2 biological replicates, 6 technical replicates, 59.09 ± 1.38) did not differ from the 

Tyrodes treated control group (Fig. 34). 

 

Figure 35: Microscopic images of adipocyte covered wells 

Representative images of microscopy of adipocytes in vitro after stimulation with different substances 
 (scale = 300 µm). 

 

 

Different treatments of adipocytes resulted in a proliferation change. This was 

detectable already by eye as seen in Figure 35. The groups treated with TNF-α 

showed obvious changes in the area covered with adipocytes. These significant 

changes occurred also in the groups with leukocytes (PMNa and PMN) as well as 

the platelet supernatant group. 
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6. TNF-α blockade via Infliximab  

 

For further evidence, that reduced TNF-α production in a lean mouse model 

culminated in an expansion of white adipose tissue, TNF-α was blocked in vivo and 

the fat deposition weight was evaluated as described before. 

Therefore, Infliximab (Remicade®), a chimeric monoclonal antibody directed against 

TNF-α ligand and membrane-bound TNF-α or a vehicle (NaCl, 0.9%) was given 

intraperitoneally once a week over 6 weeks to adult C57BL/6 mice. The mice were 

weighed directly before the treatment. After the treatment period mice as well as 

their fat pads were weighed again. TNF-α serum levels were assessed using ELISA 

to evaluate a successful TNF-α blockade (Fig. 36). 

 

Figure 36: Measurement of serum TNF-α levels using ELISA 

Serum TNF-α levels were evaluated in wild type mice receiving a vehicle for 6 weeks and mice 
receiving Infliximab for 6 weeks. Serum TNF-α levels were significantly decreased in mice treated with 

Infliximab compared to vehicle treated mice (p-value 0.02).  

 

After 6 weeks of treatment clearly reduced TNF-α serum levels in animals treated 

with Infliximab (starting age 60-70 days) were found compared to vehicle control (p-

value = 0.02, n = 5-6, 3.19 ± 0.26 vs. 2.17 ± 0.26).  
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Infliximab treatment provoked an increased body weight gain compared to vehicle 

controls (p-value = 0,01, n = 6, 1.63 ± 0.28 vs. 2.88 ± 0.32) (Fig. 37).  

 

Figure 37: Total weight gain after Measurement of serum TNF-α levels using ELISA 

Weight gain was evaluated in wild type mice receiving a vehicle for 6 weeks and mice receiving 
Infliximab for 6 weeks. Weight gain was significantly increased in mice treated with Infliximab 

compared to vehicle treated mice (p-value 0.01).  

 

Already after 6 weeks of treatment, the animals that received Infliximab showed a 

clear and prominent increase in weight gain. This highlights the crucial role of TNF-α 

in the development of WAT and the inflammatory characteristics during 

adipogenesis.  

To get an even more detailed impression of the weight gain in mice treated with 

Infliximab, the mice were anesthetized after the 6-week treatment and the fat pads 

were measured as described before. 

All analyzed WAT depositions showed clear enlargement in Infliximab® treated 

animals, compared to vehicle treated groups, although results did not reach 

significance after 6 weeks of treatment (Fig. 38) (WAT total weight p-value 0.37, n = 

9, Infliximab mean = 0.74 ± 0.09, vehicle mean = 0.63 ± 0.06, subcutan fat pad p-

value 0.33, n = 9, Infliximab mean = 0.24 ± 0.02, vehicle mean = 0.22 ± 0.02, 

visceral fat pad p-value 0.48, n = 9, Infliximab mean = 0.38 ± 0.07, vehicle mean = 

0.33 ± 0.04, abdominal fat pad p-value = 0.17, n = 9, Infliximab mean = 0.10 ± 0.01, 

vehicle mean = 0.08 ± 0.01).  
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Figure 38: White fat pad measurement after Infliximab and vehicle treatment 

WAT total weight and WAT weight was evaluated in wild type mice receiving a vehicle for 6 weeks 
and mice receiving Infliximab for 6 weeks. No differences were detected in the visceral fat pad 

between animals treated with Infliximab and animals treated with the vehicle (p-value 0.48). There 
was a decrease in subcutaneous and abdominal fat pad weight in animals treated with Infliximab 

compared to vehicle treated animals (p-value 0.33 and 0.17). 

 

Interestingly, there was a clear increase in subcutaneous as well as abdominal fat 

pads of animals treated with Infliximab. Although the treatment lasted only 6 weeks it 

leads to this results, highlighting the important role of TNF-α in the development of 

WAT again.  
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To summarize, chronic platelet and leukocyte adhesion to vasculature of white 

adipose tissue was detected already at early stages of WAT expansion. Using 

immunohistochemical analysis and in vivo microscopy impairment of platelet 

adhesion by a lack of αIIb-β3 integrin was detected, that consecutively culminates in 

diminished leukocyte recruitment to WAT depots in lean and HFD-fed mice, resulting 

in an increased WAT expansion.  

In vitro analysis of adipocytes revealed that leukocytes not only delivered TNF-α to 

WAT but also were able to provoke upregulation of TNF-α expression in adipocytes. 

Co-incubation of adipocytes with leukocytes or TNF-α inhibited adipocyte growth.  In 

line, subcutaneous fat depots of αIIb-deficient animals revealed reduction of recruited 

leukocyte numbers in the WAT, reduced TNF-α expression and expanded white 

adipose depots. Consequently, blocking TNF-α in vivo with Infliximab provoked 

weight gain in a lean mouse model.  

In this way, a novel axis in adipose tissue homeostasis was revealed with platelet-

assisted leukocyte recruitment that provoked upregulation of TNF-α expression and 

in this way -at least in part- control fat pad expansion.  
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VI. DISCUSSION 

1. Experimental procedure 

1.1. Choice of mouse strain 

 

The mouse was chosen as a research animal because of its easy to manipulate 

genetics on one side, as well as its short reproduction time on the other side 

including a large number of descendants. That is why there are many genetical 

knockout strains available for addressing various immunological questions.  

Working in an animal model is necessary to address the role of platelets and 

neutrophils in the pathogenesis of obesity not only in an in vitro model, but also with 

in vivo experiments. The animal model allows for analysis of platelet-leukocyte 

interactions as well as observation of animal behavior and physiology under certain 

conditions like a different feeding regime but it makes it also possible to compare the 

pathophysiology of different genotypes.  

The GPIIb Knockout strain was chosen, because it facilitates the analysis of 

potentially platelet driven and GPIIb mediated effects and the platelet dependent 

interactions with leukocytes in the pathogenesis of obesity. Due to the crucial role of 

the GPIIb (αIIbβ3) integrin in the platelet adhesion and fibrinogen-mediated activation 

process, a knockout of this integrin enables a highly appropriate animal model for 

studying platelet dependent effects (38, 219). Besides fibrinogen-mediated activation 

and aggregation processes (102, 108) the GPIIb/IIIa complex is highly important for 

platelet adhesion to the intact endothelium (203, 244) as well as signal transduction 

after binding (168, 197). The GPIIb receptor also mediates the adhesion of platelets 

on the dysfunctional endothelium (240, 244) and triggers secretion of various pro-

inflammatory cytokines via outside-in-signaling (90, 220-222, 224). 
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2. Discussion of results 

2.1. Platelet and leukocyte adhesion in visceral fat 

 

In vivo microscopy of visceral adipose tissue revealed, that firm platelet adhesion to 

the vasculature of WAT already occurred during the initiation of obesity in the 

subcutaneous fat pad of GPIIb wild type mice. The data suggest, that the observed 

chronic platelet adhesion consecutively facilitates recruitment and infiltration of 

leukocytes into adipose tissue. This again culminates in a restriction of adipose 

tissue expansion.  

With attenuation of platelet adhesion in GPIIb deficient mice as well as lack of 

platelets in NFE2 Knockout mice enhanced WAT expansion compared to the wild 

type counterparts can be observed. 

An activation of endothelial cells is also described as endothelial dysfunction, 

representing an early pathophysiological feature in many acute and chronic 

inflammatory processes. Platelets also act as a major player in the initiation of the 

atherogenic process by adhering to the vascular endothelium before the 

development of manifest atherosclerotic lesions (158). The integrin GPIIb/IIIa on 

platelets mediates platelet aggregation and triggers platelet adhesion to the exposed 

extracellular matrices as well as dysfunctional endothelial cells contributing for 

instance to the pathogenesis of cerebral Ischemia/Reperfusion injury (161). Platelets 

also act as a major player in the initiation of the atherogenic process by adhering to 

the vascular endothelium before the development of manifest atherosclerotic lesions 

(158) and the progression of deep vein thrombosis (DVT). They have been shown to 

promote leukocyte recruitment (158) and stimulation of neutrophil dependent 

coagulation, here revealing a functional crosstalk between platelets and neutrophils 

(253).  

Also in adipose tissue endothelial activation has been shown to be a common 

feature of chronic inflammatory processes (262, 268). 

Upon activation the endothelial cells shift towards an increase in pro-adhesive 

properties by upregulation of P-Selectin (149) and other endothelial cell adhesion 

molecules like E-selectin, ICAM-1 and VCAM-1 (55). This reveals a reduction in/ 
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downregulation of endothelial nitric oxide synthetase (61) as well as upregulation of 

surface deposition of adhesion molecules like von Willebrand factor (141) allowing 

for even more adhesion of circulating blood cells.  

Platelet adhesion represents a typical response to endothelial activation with strong 

effects on subsequent inflammatory processes. For this reason, it was analyzed to 

what extent platelets interact with activated endothelium of adipose tissue 

vasculature. To do so, in vivo microscopy was performed in wild type versus αIIbβ3-

deficient transgenic mice. 

Endothelial activation occurs in many forms of pathogenensis with chronic 

inflammation like Rheumatoid Arthritis (10), Systemic Lupus Erythematosus (266) or 

Psoriasis (29). Also in obesity endothelial activation seems to occur  (183). 

Endothelial activation leads to platelet adhesion in atherosclerosis/I/R-injury/ DVT 

(158-161, 253). In these examples of vascular inflammation platelet adhesions 

supports WBC recruitment and in this way further aggrevates inflammatory 

processes (253). In vivo microscopy here shows platelet adhesion in visceral 

fatpads. Neutrophil accumulation seems to enhance, however significance is not 

reached in lean anmals, it has to be mentioned, that subtle effects might be lost due 

to the small time window within the intravital microscopic analysis. However, an 

enhanced accumulation of leukocytes was found in adipose tissue seven weeks later 

by performing flow cytometric and immunohistological analysis compared to the wild 

type animals. 

 

The depots of adipose tissue occur in multiple visceral and subcutaneous fat pads of 

the body. There is strong clinical evidence indicating adipose distribution is important 

since central obesity is typically associated with metabolic and vascular 

complications (82). Especially the visceral fat pad is not only a simple fat-storage 

side but rather has to be understood as an endocrine organ with high inflammatory 

potential (53).  
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Figure 39: Model of leukocyte and platelet interation on adipose microvasculature endothelium 

The scheme gives an overview of how the interaction of leukocytes (blue) and platelets (red) on the 
micovasculature endothelium take place. The cell components can be distinguished by color. 

 
 

 

The adhesion of platelets on endothelial rolling leukocytes is the initial step of a 

multistep process. This process leads to an extravasation of white blood cells to sites 

of inflammation. The first part of the thesis suggests that this model is also true for 

the vasculature of adipose tissue (Fig. 39). 

The platelets may also interact with the endothelium in the absence of 

perceptible/visible morphological damage. They probably may stick to an apparently 

intact endothelium that is inflamed and influenced by stimuli from site of adipose 

tissue. A mechanism by which adipose tissue inflammation promotes the vascular 

dysfunction is unclear, however endothelial dysfunction has already been described 

in obese children (15, 247).  
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Recruitment of leukocytes to vascular injury after interaction with activated platelets 

is a rapid response that is initially mediated by release of endothelial components 

like von Willebrand factor and P-Selectin. 

P-Selectin mediates platelet adhesion but also initiates the process of leukocyte 

rolling (250). Activated platelets at the site of vascular damage play a pivotal role in 

leukocyte accumulation, also for example in growing thrombi (253) and may 

therefore also be from high importance in the recruitment and migration of 

leukocytes through the vessel wall. 

After van Willebrand factor mediated activation platelets form complexes with 

leukocytes via PSGL-1 (139). These platelet-leukocyte complexes promote 

activation of leukocytes. Furthermore these complexes also produce chemokines, 

that might facilitate the recruitment of leukocytes into adipose tissue after deposition 

to the vessel wall (255). 

 

2.2. Effect of High Fat Diet on platelet and leukocyte adhesion 

 

Experiments illustrate how an impaired platelet adhesion in αIIbβ3 (GPIIb) or 

complete lack of platelets (NFE2) culminates in significant WAT expansion. This was 

shown in early studies of our group performed in GPIIb and NFE2 deficient mice. It is 

known that chronic inflammatory processes in obesity are enhanced when high fat 

diet is administered. Talukdar et al found a significant increase of neutrophil 

infiltration adipose tissue in mice, that were held on a HFD for two weeks. Putting the 

animals on a high fat diet also provoked high-grade inflammatory response (238). In 

conforming fashion increase in platelet and WBC adhesion was shown in lean 

versus HFD controls.  
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Free Fatty Acids (FFA) must cross the capillary endothelial cells to be available for 

adipocytes. After consuming a high fat diet or even a high fat meal, excessive FFA 

formation might trigger acute inflammatory events in the adipose tissue. These 

inflammatory events are likely to result in exposure of vWF (148, 252) and fast 

displacement of P-Selectin to the endothelial cell-surface (162). An upregulation of 

endothelial cell adhesion molecules was also demonstrated in healthy patients 

following intake of high fat meals (225).  

Actions of the microcirculation caused by high fat diet might more importantly trigger 

a GPIIb dependent firm platelet adhesion after interaction with vWF, resulting in 

platelet interaction with leukocytes and moreover trafficking of leukocytes into 

adipose tissue. 

Most intriguing outcome of the high fat diet experiments was the impaired WBC 

adhesion in αIIbβ3-deficient mice compared to wild type siblings due to a reduced 

GPIIb dependent firm platelet adhesion and furthermore a reduced platelet and 

leukocyte interaction. 

It has to be mentioned that the experimental setup was able to replicate and confirm 

the hypothesis of Talukdar et al., showing an increase in the number of migrating 

neutrophils into the adipose tissue after high fat diet already in Wild type mice.  

It was not only feasible in our experimental setup to show a significant increase in 

the number of rolling leukocytes even after two weeks of HFD, but also an obvious 

trend indicating an increase in the number of adherent leukocytes, performed in wild 

type animals.  

The number of rolling WBC increased slightly in the HFD Knockout group, indicating 

not only a role of P-Selectin binding to Leukocytes via PSGL-1 (129, 170, 185) but 

also a prominent role of platelet interaction with leukocytes that facilitates the 

migration of leukocytes into adipose tissue. Less platelet adhesion to the 

endothelium due to the GPIIb deficiency led to less interaction of platelets with 

leukocytes and therefore less leukocyte migration to adipose tissue. 

Data is consistent to what you have already seen in immunohstochemical analysis 

with reduced WBC accumulation in GPIIb deficent mice compared to the Wildtype 

group. 
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Taken together, the sheer numbers of rolling and adherent WBC were smaller in 

Knockout animals than in their wild type counterparts due to the αIIbβ3-deficient 

genotype along with platelets incapable of adhering to the endothelium via vWF and 

consequently unable to assist leukocytes migrating into the adipose tissue.  

However, HFD raised these numbers in both genotypes by confronting leukocytes 

with a quite more dysfunctional endothelium through to diet-induced release of FFA 

linked with displacement of endothelial vWF and P-Selectin. 

This allowed us detecting the most intriguing outcome of this HFD experiment. 

Although the difference in rolling leukocytes between wild type and Knockout 

animals both fed a HFD might not differ that much from each other by presenting just 

a slight increase in the wild type group, difference between the adherent leukocytes 

is quite remarkable. There is an explicit decrease in the number of adherent 

leukocytes in αIIbβ3-deficient animals compared to wild type mice both fed a HFD.  

This effect can again be attributed to the HFD induced higher count of rolling and 

adhering leukocytes, illustrating the very likely platelet specific role of leukocyte 

assistance in migrating into adipose tissue after platelet interaction with leukocytes. 

The distinctness of this effect would not have been possible to demonstrate in a lean 

animal model to this extent.  

Additionally, comparison of transient adherent and firm adherent platelets in a HFD 

setting remains identically to the previously described lean experimental setting, 

proving that the high caloric diet had no impact on the platelet behavior but obviously 

changed leukocyte dynamics significantly. 
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2.3. Fat pad and body weight measurement 

2.3.1. Transgenic GPIIb deficient and wild type mice 

 

In a next step it was tested whether the observed decrease in WBC adhesion had 

functional effects on adipose tissue phenotype. To do so body weight was measured 

in transgenic GPIIb wild type and Knockout mice. 

Evaluation of body weight and fat pad analysis already revealed significant fat pad 

expansion in GPIIb-deficient mice compared to wild type controls (Konrad et al., 

unpublished data). Dong et al. found that Mice deficient in ICAM-1 became 

spontaneously obese in old age (69), which also supports our findings of a 

connection between impaired cell adhesion to the adipose tissue endothelium and 

increase in body weight. In contrast, Yang et al. found, that P-selectin deficiency 

protects against an increase of body weight after high-fat diet (271), affirming a 

crucial role of GPIIb integrin mediated platelet adhesion resulting in platelet-

leukocyte interaction and leukocyte migration into adipose tissue, as examined in 

this thesis. 

The body weight was again measured in transgenic GPIIb wild type and Knockout 

mice to further evaluate the link between platelet-leukocyte interaction on the 

dysfunctional endothelium in adipose tissue and the potentially related WAT 

expansion 

The visceral fat pad is the most crucial representative for meta-inflammatory 

processes, meaning inflammatory responses like cytokine production (104), 

activation and recruitment of circulating leukocytes (260) and the remodeling of 

adipose tissue (110).  Therefore, it was directly and most likely influenced by 

leukocyte-platelet mediated migration of leukocytes into the adipose tissue. The 

retroperitoneal and the subcutaneous fat pad showed also expansion in the 

experimental setup as well, however not in the extent of the visceral fat.  

The brown fat pad was not affected by weight gain, as is main function presents heat 

production by non-shivering thermogenesis. It does not store energy in form of fat. 

However, in some cases it was hard to distinguish between BAT and WAT as the 

brown fat was somehow covered by a thin layer of white fat pad.  
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The animals showed no differences in carcass weight, this ruled out that weight gain 

occurred only due to enhanced musculoskeletal growth. 

Serum leptin levels revealed a significant increase in αIIbß3 deficient animals. 

Typically correlating with the BMI (56), leptin levels are also reported to correlate 

with a number of endocrine substances such as insulin and thyroid hormones (115). 

The primary function of leptin is to appear as an anti-obesity hormone by 

suppressing the hungry feeling in the hypothalamus (172). Being expressed primarily 

by adipocytes, the correlation of fat pad weight and serum leptin levels detected in 

this work seems completely comprehensible. 

The associated increase of adipocyte size in αIIbß3 deficient animals also supports 

position of literature. Obesity is defined as enlargement of adipose tissue to store 

surplus energy intake. Two possible mechanisms are the increase in cell number 

(Hyperplasia) as well as the increase in cell size (Hypertrophy). While hyperplastic 

growth appears only at early stages of adipose development (21), hypertrophic 

growth is more common, meeting the need for additional fat storage capacity (114).  

Being crucially influenced by the lack of platelet-leukocyte mediated migration of 

leukocytes into the adipose tissue, αIIbß3 deficient animals develop larger adipocytes 

due to hypertrophic growth. Leukocyte migration seems somehow to control and 

mitigate energy intake of adipocytes. Absence of this trigger compels adipocytes to 

cope with their high-energy rate by hypertrophic events.  

To validate in this first part of the project that the observed effects are in fact platelet 

driven effects, mRNA analysis was performed in a large selection of adult tissues to 

assess whether probably so far unidentified αIIbß3-expression occurred in adult 

mouse tissues. As already mentioned, αIIbß3 is also expressed in bone-marrow 

resident hematopoietic progenitors and megakaryocytes (78),  as well as in some 

mast cells (189). 

No expression was detected in most tested organs. Slight mRNA-levels in liver and 

kidney were found probably most due to platelet contamination. However, mRNA 

analysis affirmed the theory that platelet resident αIIbß3 as being solely accountable 

for the platelet-leukocyte mediated adipose tissue development. 
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2.3.2. GPIIb deficient and wild type bone marrow chimera mice 

 

For further test whether it was a platelet specific process that influenced WAT 

expansion in Knockout mice, bone marrow chimera mice were created to distinguish 

the contribution of hematopoietic cells versus non-hemapoietic cells (270). After 

sublethally irradioation, 8-weeks old C57Bl/6J wildtype animals either received αIIbß3 

or wildtype bone marrow cells of sex matched donor mice. Body weight and fat pad 

weight were assessed 16 weeks after transplantation. 

The total WAT amount showed an increase in the GPIIb deficient chimera group 

compared to their wild type counterparts. 

Once more, αIIbß3-deficient bone-marrow chimera revealed a significant increase in 

WAT expansion, implying transplantability of the GPIIb integrin mediated effect. This 

further substantiates the notion, that αIIbβ3-integrin expressing platelets mediate the 

observed regulatory processes in WAT expansion. 

Brown fat pad as well as the carcass weight of Knockout and wild type chimeric mice 

were from equal measure in both genotypes. This again confirmed the previous 

findings in transgenic mice. Besides the fact that the brown fat pad is not influenced 

when it comes to weight gain due to its exclusive non-shivering thermogenesis 

behavior it also demonstrates once more, that the weight gain measured in GPIIb 

deficient animals was due to expansion of WAT and excluded a growth of the 

musculo-skeletal system as weight gain source. 

 

2.4. Analysis of fat pad vascularization 

  

Vascularization of the fat pads was analyzed using multiphoton microscopy to 

identify the potential role of de novo vessel formation or growth of pre-existing 

vessels within the expansion of adipose tissue. 

Work of our group showed GPIbα-mediated platelet-leukocyte interactions to directly 

support innate immune cell recruitment and further promote arteriogenesis in a 

mouse model of hindlimb ischemia (44). 
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Hence, multiphoton microscopic analysis was used to investigate whether 

differences in cellular interactions on the dysfunctional adipose tissue endothelium 

as well as alterations of WAT expansion rates were only due to significant 

differences in novel vessel formation or vessel growth within these genotypes.  

Arteriogenesis, usually linked to an increase in blood pressure, is also related to an 

upregulation of inflammatory cytokines and cell adhesion receptors. After increase of 

shear stress, monocyte chemo-attractant protein-1 (MCP-1) is highly expressed on 

the surface of vessel walls. This accompanies also with increased levels of TNF-α 

and matrix metalloproteinase (MMP). MMP remodel the space around the vessel, 

providing space for expansion (248). Also nitric oxide (NO) is reported to be a major 

factor in vessel diameter enlargement in response to increased blood flow (245).  

However, no difference in vessel density between the groups was found, thus 

eliminating the hypothesis, that the observed effects described in the previous 

chapters were ascribed to changes and differences in vessel formation between the 

genotypes. 

 

2.5. In vitro culture of adipocytes 

2.5.1. TNF-α ELISA after adipocyte treatment 

 

To further investigate underlying determinants of the observed effects, chemokine 

mRNA-expression in subcutaneous fat depots of wild type and GPIIb Knockout 

animals was performed revealing significantly reduced expression of TNF-α (mRNA) 

in αIIbβ3-deficient animals. In line, enlarged WAT depots were reported in TNF-α 

deficient animals after receiving HFD (210). For this reason, impact of platelet and 

leukocyte recruitment on TNF-α expression as well as adipocyte biology and 

proliferation was tested. 

One of the most important questions remaining still incompletely addressed is the 

nature of the original TNF-α expression trigger in adipose tissue.  
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While obesity in rodents and humans is associated with an increase in apoptotic and 

necrotic adipocytes (237), it is also well known, that WAT expansion is associated 

with increased adipocyte death due to the limited capacity of adipocyte expansion.   

Proper immune function is closely linked to nutritional status, prompting the 

possibility that also the type of dietary components, like specific fats, may play a role 

in the regulation of adipocyte inflammation (126). 

Experiments described here showed no TNF-α expression after stimulation with ADP 

alone. Though ADP is an important factor for glucose utilization (205), respectively 

nutritional  status, its influence on adipocyte cytokine expression might not be that 

important when administered alone. 

PMA, representing a di-ester of phorbol and a potent tumor promoter, triggers the 

activation of Protein Kinase C (PKC). Although PKC is widely expressed in 

adipocytes as well as preadipocytes, stimulation via PMA does not effect TNF-α 

expression. It is more likely that PKC involved signaling pathways get activated via 

TNF-receptor 1 (TNFR1) after stimulation with TNF-α. Stimulation with Tyrodes, 

serving as negative control, revealed absolutely transparent results by not 

influencing the expression of TNF-α at all. 

TNF-α expression was detectable after adipocytes were treated with stimulated 

PMNs as well as unstimulated PMNs. Looking at the results it is striking, that the 

amount of expressed TNF-α is nearly identical in the PMNa and PMN group. A 

possible explanation for this observation could be a potential activation even of 

unstimulated PMNs due to time and temperature limitations. Therefore, results of 

PMNa and PMN were on similar levels. 

It seems that the pure presence of leukocytes in our setup influence the expression 

of TNF-α and that it makes no difference whether the leukocytes were previously 

activated or not.  

In obese patients, their grade of adiposity highly correlates with increased numbers 

of adipose tissue neutrophils, expressing neutrophil elastase (269) and significantly 

more hyperoxides than compared to lean individuals (34). Neutrophil elastase is 

closely linked to expression of cytokines, like TNF-α, as revealed from previous 

studies (9).  
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Hyperoxides are involved in apoptosis of cells and therefore in the activation of 

macrophages, leading to a pro-inflammatory state in obesity. Hereby, neutrophils 

contribute to adipose tissue inflammation in the early stages of obesity and are likely 

linked to cytokines, like TNF-α. 

This was also confirmed by treating the cells with a combination of platelets and 

leukocytes. While treatment with platelets alone had no effect on the expression of 

TNF-α, combination with leukocytes restored the previous described effect of 

expression. It made no difference, whether the platelets were activated or not in our 

setup. However, the both combinations with platelets revealed slightly lower levels of 

TNF-α serum levels compared to PMNa and PMN single groups. This could be 

partially due to diminished reactivity of neutrophils after complex forming with 

platelets and an accompanied altered effect on adipocyte TNF-α expression 

behavior. But importantly, the pure presence of neutrophils (and probably their 

secreted compounds) was the limiting factor in the TNF-α ELISA setting. 

Furthermore, it has to be mentioned that in vivo cytokine action results from a 

complex interplay between networks of pro- and anti-inflammatory cytokines (258). It 

is therefore likely that a coordinate regulation of anti-inflammatory cytokines such as 

IL-10 may play a role in both TNF-α expression and action in vivo, difficult to transfer 

into an in vitro setting.  

 

2.5.2. Adipocyte proliferation evaluation 

 

The experiments done previously were targeted at the expression profiles of mature 

adipocytes after stimulation with various substances. However, during the progress 

of adipogenesis, the differentiation phase from preadipocytes to adipocytes in vitro 

as well as the approximately 14-day long maturation phase is a critical step in the 

development of adipose tissue (236). For this reason, it was a consistent step to 

treat the premature adipocytes in a comparable way like previously described and 

the proliferation behavior was checked. 
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The experiments showed, that the proliferation/maturation of adipocytes decreased 

after they were treated with activated leukocytes. The same was true for the co-

incubation with inactivated leukocytes. Previous studies revealed a potential role of 

leukocytes in the regulation of adipogenesis via Interleukin-17 (IL-17), also after 

stimulation with PMA as described in chapter II 4.6.3 (85, 151).  

The group treated with the supernatant of activated platelets showed a decrease in 

proliferation behavior as well. Activated platelets, mainly releasing soluble CD40, 

may contribute to adipogenesis. In humans a close link between soluble CD40 

Ligand (sCD40L) and BMI was found (246). This sCD40L is most likely to interact 

with CD40 found on adipocytes and stromal adipose fraction. After being activated, 

CD40 induces adipose cytokine secretion (199) and a dose dependent expression of 

inflammatory cytokines IL-6 and IL-8 (167), major regulators of adipose tissue 

metabolism. 

The group treated solely with activated platelets showed no effect on adipocyte 

proliferation. This may be due to the fact that leukocytes are able to interact with 

adipocytes directly after transmigration. Platelets are quite unlikely to be interacting 

with adipocytes, rather than interacting via paracrine effects. This paracrine effects 

can be detected in the platelet supernatant group but they lack in the setting 

described here and therefore have no influence on the proliferation behavior of 

adipocytes in vitro. 

The most prominent decrease of adipocyte proliferation was found in the groups 

treated with TNF-α. Being significantly reduced on mRNA levels in the fat pad of 

GPIIb deficient mice and on the other hand overexpressed after stimulation with 

diverse substances, TNF-α probably links cytokine expression in adipose tissue with 

adipocyte development and proliferation. The tumor necrosis factor receptors 

(TNFR) may not have catalytic activity itself; instead they can transmit signals by 

recruiting intracellular proteins (adapter-proteins). These adapter-proteins can 

interact with domains of cytoplasmic sections of the receptors to activate specific 

downstream signals.  

Several adapter complexes are linked to the death domain of tumor necrosis factor 

receptor 1 (TNFR1-DD) that has been closely linked to mediate many effects on 
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adipocyte biology (41, 60). TNFR1-DD is responsible for the cytotoxic signals 

induced by TNF-α, for example TNF-α induced cell death in adipocytes (201).  

 

TNFR1-DD is also linked to the activation of nuclear factor-kappa B (NFκB), 

activated by TNF-α, mediating metabolic dysregulation (113) and controlling cell 

proliferation (123, 216). Moreover, inhibition of NFκB has shown to lead to an 

increase in human adipogenesis (71).  

Interestingly, groups treated with a combination of activated platelets and leukocytes 

did not significantly chance the proliferation behavior of adipocytes. This setup was 

used to further investigate a potential role of platelet and leukocyte interaction in the 

development of obesity. However, the previous experiments focused on an 

interaction to facilitate migration of leukocytes to the adipose tissue. Since migration 

was not examined directly in this proliferation assays, it may be, that although 

leukocytes and activated platelets formed complexes, these complexes did not 

further affect the proliferation behavior of adipocytes in vitro. 

Co-incubation of tyrodes and ADP did not influence adipocyte differentiation or 

proliferation, as mentioned in literature (191) and it is also reflected in the here 

described experiments. Stimulation with tyrodes alone revealed absolutely 

transparent results by not influencing the proliferation behavior of adipocytes. Also 

stimulation with PMA mainly triggering activation of Protein Kinase C in adipocytes 

did not affect the proliferation behavior as described in literature (81), 

comprehensible also in the experiments performed here.  

 

2.6. TNF-α blockage via Infliximab  

 

To further dissect a potential link of reduced TNF-α production in a lean mouse 

model culminating in expansion of WAT, TNF-α was blocked in vivo and the fat pad 

weight was evaluated as described above. Infliximab (Remicade®) is a chimeric 

monoclonal antibody directed against soluble and membrane-bound TNF-α and has 

shown to have considerable anti-inflammatory effects even in a mouse model by 

successfully blocking TNF-α effects (64).  
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In this project, reactivity of Infliximab was confirmed by ELISA, showing significantly 

reduced serum TNF-α levels in animals that were treated with Infliximab once per 

week, over a period of 6 weeks.  

Infliximab provokes a significant weight gain in all of the treated animals. The weight 

gain was triggered by significant increased fat pad weight. All analyzed WAT depots 

showed enlargement, although not in a significant manner. 

These findings once more support the theory of a platelet dependent leukocyte 

migration to WAT in the pathogenesis of adipose tissue inflammation. In addition to 

the direct effect of Infliximab blocking TNF-α activity in WAT resulting in increased fat 

pad formation, there is also connection at another level:  

Already inhibition of ICAM-1; impairing leukocyte binding, adhesion and furthermore 

leukocyte transmigration into the tissue; leads to a significant WAT expansion in 

mice (69, 257). Same findings were also confirmed in mice with deficiency of the 

integrin αMβ2 (Mac-1), ICAM-1 counter receptor expressed on leukocytes (69). 

Increased WAT expansion was also found in TNF-α deficient animals after receiving 

HFD (210).  

Also in humans, treatment with Infliximab causes significant weight gain, for example 

in the treatment of Crohn’s disease (130) or Psoriasis (239).  

Taken together, the results described here support a role of TNF-α in adipose tissue 

biology. In similar fashion to TNF-α deficient animals, which have been reported to 

show significantly higher weight gain after HFD than wild type animals (210), direct 

blockade of TNF-α also leads to an increase of WAT formation, even after a 

treatment of 6 weeks. It is absolutely likely that TNF-α expression in adipose tissue 

leads to activation of NFκB, influencing adipocyte proliferation and adipogenesis. 
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3. Summary 

 

In conclusion a previously unknown role of platelets in the pathogenesis of obesity 

and homeostasis of body weight was identified by this work. Platelets chronically 

adhere to vessels of the inflamed adipose tissue and in this manner support 

leukocytes migrating into adipose tissue to regulate chronic inflammatory processes 

in the pathogenesis of obesity. The data supports the concept that impairment of 

immune cell accumulation in WAT allows for an increase in body fat and obesity.  

 

 

 

Figure 40: Model on adipocyte proliferation in GPIIb wild type animals 

In the presence of functional GPIIb integrin (grey) platelets (red) support leukocytes (neutrophils, blue) 
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migrating into the adipose tissue and in this way regulate adipocyte proliferation via TNF-α (yellow).  

 

 

 

Platelet αIIbβ3 integrin mediates binding to the endothelial receptor ICAM-1 via 

adhesive bridging proteins like vWF. Adherent platelets facilitate leukocyte 

accumulation, partially by formation of platelet-leukocytes complexes. In addition, 

leukocytes get activated after interaction with platelets and migrate into the adipose 

tissue via intracellular adhesion molecules. Within the adipose tissue activated 

leukocytes seem to trigger the expression of TNF-α and might provoke release of 

further, so far unidentified pro-inflammatory cytokines, which transmit signals by 

recruiting intracellular adapter-proteins. These adapter-proteins might enable 

downstream signals, closely linked to the activation of NFκB. NFκB could probably 

control metabolic dysregulation, leading to inhibition of cell proliferation and a 

potential decrease of adipogenesis (Fig. 40). 
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Figure 41: Model on adipocyte proliferation in GPIIb Knockout animals 

In the absence of functional GPIIb integrin (grey) platelets (red) cannot support leukocytes 
(neutrophils, blue) migrating into the adipose tissue. In this way adipocyte proliferation is not 

influenced via TNF-α (yellow).  

 

 

 

With deficient αIIbβ3 integrin on platelets they cannot bind to the endothelium, at the 

same time interaction with leukocytes via platelet-leukocyte complexes is impaired. 

Less platelet adhesion to the endothelium in GPIIb deficient mice was confirmed by 

intravital microscopy. In addition, platelet interaction with leukocytes is down 

regulated, resulting in less migration of leukocytes into the adipose tissue, as 

confirmed by Immunohistological experiments. Moreover, expression of TNF-α and 

other pro-inflammatory cytokines is reduced as seen in mRNA analysis and in vitro 

assays. Activation and effect of NFκB might be reduced, leading to uncontrolled 

adipocyte proliferation and the increase of WAT formation (Fig. 41), as detected in 

the weight development of GPIIb-deficient animals compared to wild type mice. The 

same effect was also repeated after inhibiting the TNF-α expression in BL/6 mice 

using Infliximab, resulting in an increased weight gain even after 6-week treatment 

compared to vehicle treated mice. 

To this date a role of so far unidentified platelet-mediated effects on obesity may not 

be completely ruled out. It is from high priority to further examine exact platelet and 

leukocyte mechanisms during adipose tissue inflammation for a better understanding 

of normal body weight maintenance. 

Chronic inflammatory processes were identified in WAT during onset and promotion 

of obesity, with endothelial activation and transmigration of leukocytes after 

interaction with platelets during the initiation of weight gain. It can be concluded, that 

platelets regulate inflammatory processes of the adipose tissue, as shown in chronic 

platelet adhesion to adipose tissue vasculature, which seems to promote white blood 

cell recruitment to adipose tissue. 

Transgenic mice with malfunction in platelet adhesion showed decreased white 

blood cell accumulation in the WAT, resulting in significantly increased body fat 

mass. There is an essential role of platelets and leukocytes in chronic inflammatory 
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processes during initiation and development of obesity. 
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VIII. ABBREVIATION LIST 
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A:  Arteria (lat.) 

AA:  Amino acid 

Aa:  Arteriae (lat.) 

Ab:  Antibody 

Abbr:  Abbreviation 
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ApoE:   Apolipoprotein E 
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Bm:  Bone marrow 

BSA:  Bovine serum albumin 

°C:  Degree Celsius 

CCL2:  Chemokine (C-C motif)  ligand 2 
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DAMPs: Damage associated molecular patterns 

DNA:  Desoxyribonucleinacid 

E.g.:  Exempli gratia 

eGFP: Enhanced green fluorescent protein 

F1:  Filial generation 1 



Abbreviation List  117 

F2:   Filial generation 2 

FACS: Fluorescence activated cell-sorting system 

FCS: Fetal calve serum 

f.i.:  For instance 

Fig:  Figure 

g:  Gramm 

GP:  Glycoprotein 

GFP:  Green fluorescent protein 

h:  Hour 

ICAM-1: Intracellular adhesion molecule-1 

ICAM-2: Intracellular adhesion molecule-2 

IL-1b: Interleukin 1 beta 

IL-4: Interleukin 4 

IL-6: Interleukin 6 

IL-8: Interleukin 8 

IL-10: Interleukin 10 

IL-11: Interleukin 11 

IL-13: Interleukin 13 

IL-17: Interleukin 17 

i.p.:  Intraperitoneal 

i.v.:  Intravenous 

IVC:  Individually ventilated cages 

kg:  Kilogram 

kDa:   Kilo Dalton 

KO:  knockout 

LDL:   Low density lipoprotein 

LPS:  Lipopolysaccharide  

M.:  Musculus (lat.) 
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m:  Meter 

Mac-1:  Macrophages-1 antigen 

min:  Minutes 

µg:  Microgram 

µl:  Microliter 

µM:  Micromolar 

µm:  Micrometer 

MMP:   Matrix metalloproteases 
  
ml:  Milliliter 

mm:  Millimeter 

mM:  Millimolar 

ms:  Millisecond 

nm:  Nanometer 

n:  Number 

NaCl:  Natrium chloride 

NE:  Neutrophil elastase 

NET:  Neutrophil extracellular traps 

NKC:  Natural killer cell 

PBS:  Phosphate Buffered Saline 

PCR:  Polymerase chain reaction 

PECAM: Platelet endothelial cell adhesion molecule  
 
PFA:  Paraformaldehyde 

pH: numeric scale to specify acidity of basicity of an aqueous solution 

Plt: Platelet 

PMN: Polymorphonuclear neutrophil 

PRP:  Platelet rich plasma 

PSGL-1: P-selectin glycoprotein  
ligand 1  
 



Abbreviation List  119 

rcf:  Relative centrifugal force 

resp.:  Respectively 

RNA:  Ribonucleic acid  
 
rpm:  Rounds per minute 

RT:  Room temperature 

s.:  Second 

s.c.:  Subcutan 

SD:  Standard deviation 

SEM:  Standard error of the mean 

Tab:  Table 

TNF-α:  Tumor necrosis factor α 

V:  Vena (lat.) 

VCAM-1: Vascular cell adhesion molecule-1 

VE-cadherine: Vascular endothelial-cadherin  
 
vs: Versus 

vWF:  Von Willebrand Factor 

WAT:  White adipose tissue 
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