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Abstract 

Background  

Appropriate markers to reflect TB treatment responses are urgently needed mainly for patient care and 

their application in clinical trials. Additionally, more potent drug combinations in search for   treatment 

shortening regimen are warranted. This work reports results of the TB treatment study PanACEA MAMS 

TB 01, with nested evaluation of the Molecular Bacterial Load Assay (MBLA) for its potential use as a 

marker to determine treatment success within a research setting. 

Methods 

This study was nested within the multiple‐arm, multiple‐stage (MAMS), phase 2 clinical trial that 

contributed data set to the PanACEA Biomarkers Expansion programme (PANBIOME) study. Eligible 

patients were randomised to either the control arm or one of four experimental arms. Culture and 

MBLA were performed at baseline through to treatment completion comparatively. 

 Results 

High dose rifampicin at 35mg/kg (RIF35HZE) was superior to control [Hazard ratio 1·46, 95% CI (1·02, 

2·11)], p=0·04 for time to culture conversion to negative in MGIT at week 12, the primary endpoint. 

MBLA had the highest (19%) positive rates compared to MGIT (1.7%)  and LJ (1.2%) media at week 26. 

The median time to negative culture was 35, 55 and 97 days on LJ, MGIT and MBLA respectively.  Among 

the contaminated samples on MGIT and LJ media, MBLA reported 50.9% and 36.3 % as negative 

respectively. Furthermore, quantitative bacterial load measurements in MBLA and MGIT were 

significantly correlated (p<0.001).   

Conclusion 

A high dose of rifampicin showed superior efficacy in both MGIT and MBLA compared to the control 

regimen.  MBLA as a marker to determine treatment success bears potentials that could contribute in 

routine patient care and trial setting. However, evaluation on its implementation in routine care and its 

usefulness as an end point in trials merit consideration. 
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1 Introduction 

1.1 Global History of Tuberculosis 

Despite recent successes in diagnosis and treatment of tuberculosis (TB), more than 130 years since its 

discovery by Robert Koch [2], [3, 4], the disease continues to have a serious impact on human health 

globally. In 2014, there were an approximated 9.6 million new cases of TB (12% co-infected with HIV) 

and nearly 1.5 million died from TB worldwide especially in settings dually affected by the HIV 

pandemic. It is now estimated that TB is blamed next to HIV as a leading cause of global mortality. A 

total of 9 out of 22 high TB burden countries come from the African region and the continent 

contributed about 28% of the new cases in 2014 while contributing only 14,8% of the world’ s 

population (Figure 1) 

.  

Figure 1: Estimated incidence of TB in 2014 reproduced from WHO Global TB report 2015 

TB control efforts in the African region have failed to reach the Millennium Development Goals by 2015, 

except for the reported falling of the incidence rate. On the contrary, despite having almost two third of 

the global burden, both South-East Asia and the Pacific regions managed to meet the stated targets [5]. 

The HIV epidemic has contributed to the TB problem and both infections have been given the status of 

global emergency by the WHO (TB) in 1993 and UN (HIV) in 2001. Clearly, highest TB-HIV co-infection 
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rates are encountered in African regions, and this complicates diagnostics, therapy and disease control 

(Figure 2).  

 

Figure 2: Estimated HIV prevalence in new and relapse cases in 2014 reproduced from the WHO Global 

TB report 2015  

Apart from early diagnosis; early and effective TB treatment is considered to be a crucial cornerstone of 

TB-control. Understandably, the existing first line TB drugs entered into routine care more than two 

decades ago and are relatively ineffective in controlling TB as a public health problem over time. 

Treatment failure and relapse are reported to occur in 1-4% and 7%, respectively, of antibiotic-

susceptible TB cases [6], despite the long duration of a “directly observed treatment short-course” 

(DOTS) treatment regimen which takes at least 6 months in the management of drug susceptible (DS TB) 

and up to 24 months in Mulltidrug Resistant (MDR) TB [7]. Clinical trial data of shorter regimens show 

that at least in DS TB, the vast majority of patients are cured within four months – relapse rates for 

different regimens after four months ranged from 11% to 40% depending on regimen [6]. Thus, the 

majority of DS TB patients are over treated with the current 6 months regimen since they would have 

achieved cure already earlier, but the current assessment techniques including culture do not allow 

reliably discriminating between those patient categories and adapting treatment [8]. 

Due to the long duration of therapy and associated side effects, poor adherence especially after week 8 

of treatment has been known to occur worldwide [9, 10]. Additionally, the current rifampicin dose at 

10mg/Kg has been reported to be suboptimal [11] favouring the development of resistance TB [12]  thus 

warrants optimization of the current regimen considerably. 
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The full application of the DOTS strategy is posing more challenges particularly in the developing 

countries where most of the world’ s TB burden is located (Figure 1)Figure 1: Estimated incidence of TB 

in 2014 reproduced from WHO Global TB report 2015 and which are dually battling to control the HIV 

epidemic (Figure 2) [13]. Consequently, poor treatment adherence is leading to the emergence of drug 

resistance TB in many parts of the world, with only half of MDR TB patients globally being successfully 

treated [7]. Next to MDR TB, virtually untreatable strains of TB have been reported [14, 15], and 

concerns of an epidemic of these strains of TB are being felt across the world.  

1.1.1 The Burden of Tuberculosis in Tanzania 

Tanzania, a country in the East African region WHO estimated a population of 51,823,000 [5], and a 

2015 GDP per capita $864.9 [16] is among the 22 highest TB burden countries in the world. TB ranks 

third among causes of mortality in Tanzania, after malaria and HIV/AIDS. Estimates of TB incidence and 

prevalence originate from the first national prevalence survey of 2012/13, and are 240 and 295 per 

100,000, respectively. However, following this survey, the World Health Organization (WHO) in its global 

TB report for 2015 has reviewed the incidence and prevalence at 324 and 528 per 100,000 respectively 

[5]. The numbers of notified TB cases  has relatively been stable for the decade (Figure 3) [17]. In 2014, a 

total of 63,151 cases were noted and this  was a decline of about 4% from the notification in 2013 [18]. 

More than two third of the notified patients in 2014 came from only 10 of the 30 Tanzanian regions 

(Figure 4). During the same year, about 4.1% were previously treated cases, which include among others 

treatment failure and relapse. These numbers also have been falling for over a decade now (Figure 5) 

alongside the overall incident rate, the overall treatment success for both new and relapse cases was 

over 90%[18] which is an increase from 73% in 1995 [5]. HIV prevalence for Tanzania mainland is 

estimated at 5.1% [19], however, the TB/HIV co-infection among TB patients in 2014 was reported 

around 36%[18]. 

Estimated MDR TB cases among newly diagnosed and previously treated patients is still low at about 

1.1% and 3.1 respectively and treatment success among the relapsed cases was 73% in 2014 [5]. 

Bearing this in mind, the impact of TB is of great social and financial concerns to developed countries 

and a cause of untold morbidity and mortality in developing countries including Tanzania. 
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Figure 3: Trends in case notification rates of all forms 1979 to 2012  [17]   

 

 

Figure 4: Distribution of TB cases notified by region in 2014 as reproduced from the NTLP Annual report 
2014 [18] 
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Figure 5: Trends of previously treated TB cases notified from 2005 to 2014 as reproduced from the NTLP 
Annual Report 2014 [18] 

1.1.2 Monitoring of treatment success 

As much as new drugs and shorter regimens are needed to interrupt transmission earlier and relieve the 

health systems, appropriate markers to reflect response to TB treatment and/or predict treatment 

success are urgently needed. Firstly, to tailor TB therapy according to the “needs” of individual patients 

to achieve cure, which probably depend on bacterial load in the lungs or other site of disease, the 

infecting TB strain, and the response of the host to therapy [20]. Such tailored individualized therapy 

could benefit in two ways: shorten un-necessary long treatment in most patients and reduce side effects 

due to drug toxicities; and on the other hand, reduce treatment failure and/or relapse through 

extending treatment in patients when required.  

Further, such markers used in clinical studies of TB treatment would allow to define new study 

endpoints, which could be assessed more quickly than conventional culture with its long incubation 

period, or the clinical endpoint of lasting cure which take long observation time after treatment is 

completed. This would enhance the efficacy of new study designs which trigger recruitment stop to 

insufficiently active arms based on microbiological results, which are only available after seven (MGIT 

liquid media) or eight (LJ solid media) weeks of incubation. Such trials would be cheaper and allow faster 

evaluation of all the new TB drugs which are currently in the evaluation pipeline [21].  

In summary, any attempt to effectively monitor treatment response will assist the health system to 

better understand patients’ response to TB medication. Eventually, identification of those poorly 
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responding to TB therapy and therefore at risk of failing treatment and or developing drug resistance 

gives attending health care works an opportunity to assign the appropriate treatment [22, 23] and 

duration.  

In the last few years, several new diagnostic assays, including those targeting the pathogen and the host 

have been developed and evaluated for their capacity in TB diagnosis within different clinical settings.  

An important candidate assay under this study is based on detection of ribosomal RNA, and it is  called 

Molecular Bacterial Load Assay (MBLA).  

Historically, the Observational of Early Bactericidal Activity (OEBA) TB was the first study in which MBLA 

was compared to a conventional culture endpoint. This study occurred before PANBIOME. Methods and 

results of this study are briefly displayed in this work for the purpose of comparison to the larger, much 

more comprehensive PANBIOME study.  

OEBA TB was a single treatment group, unblinded, observational clinical study conducted in Tanzania at 

NIMR- MMR and Kilimanjaro Clinical Research Institute (KCRI), which was done in time before MAMS 

started in these centres. The study recruited adult males and females with newly diagnosed, 

uncomplicated, smear-positive, pulmonary TB, who were then hospitalized for the duration of at least 

17 days and were given standard TB treatment as per the Tanzanian national guidelines. Culture and 

MBLA were tested from overnight sputa from NIMR-MMRC patients.  

Data analysis, Culture and MBLA tests were performed as described in the publication [24] which 

explored the MBL Assay as a measure of quantitative bacterial load. OEBA-TB was registered in the Pan 

African Clinical Trials Registry (pactr.org) under PACTR201209000394102 

 

1.2 Literature review – high-dose rifampicin, SQ109 and Moxifloxacin as new 

principles in treatment of tuberculosis 

Effective treatment and early diagnosis of TB remain the cornerstone of TB control – these are 

important to prevent adverse disease outcomes to the patient, but also to interrupt disease 

transmission to others. Both rely on a functional TB control programme as part of the health system.  

The long duration of the current standard regimen is a burden to patients and to the health system, and 

thus is an obstacle to effective TB control [9, 10]. A search for different new drugs and/or regimens is 

one of the priority aims in the STOP TB Global Plan to End TB [25]. Of great interest, is the evaluation of 

these candidates and/or regimen in the pipeline for their potential as treatment shortening drugs and 

regimen. Shortening and optimizing the treatment of DS TB is generally considered as an important 
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strategy for halting the continued spread of TB, since this is expected to  increase  adherence [26], rapid 

reduction in infectiousness hence transmissibility potential, and decreasing the development of new 

drug resistance [12]. 

However, clinical trials to develop new drugs or regimen for TB treatments remain complex. Preclinical 

animal models do not always translate well to efficacy in humans [27]. Furthermore, the example of 

moxifloxacin showed a discordance between encouraging results in some phase 2 studies including 

fluoroquinolones, with a high percentage of patients who converted to negative culture status at month 

2 and shorter time to culture conversion; so advancement to  phase III trials was recommended [28]. 

Using this evidence a trial for evaluation of Moxifloxacin in Tuberculosis (REMoxTB), the largest 

contemporary phase III trial, was therefore designed to shorten the standard TB therapy to four months, 

but this proved to be unsuccessful [26]. As shown in this pathway, the said phase 2 trial had good results 

on developing a phase III using a marker of treatment success, of which did not translate into the 

intended aim of treatment shortening. Better markers for treatment success for earlier phases of TB 

drug trials are therefore needed. 

High – dose rifampicin 

Rifampicin (RIF) inhibits the β-subunit of the DNA-dependent RNA polymerase which is a multi-subunit 

enzyme in Mtb  synthesis [29, 30]. From this mechanism of action, RIF has bactericidal activity and 

furthermore it is reported as a sterilizing drug that continues to kill persisting bacilli during the entire 

treatment period [31, 32]. Under the current standard regimen, RIF is used at a dose of 10 mg/kg, which 

corresponds to 450-600 mg per day, has been reported in murine studies of TB treatment to be on the 

lower end of the active dose range [33, 34], and achieves suboptimal exposures in a large fraction of 

patients [11], increasing their risk to acquire drug resistance. Pharmacodynamics studies in both mice 

and humans with pulmonary TB disease suggested that higher RIF doses will increase efficacy [32]. An 

increase in RIF dose is expected to increase the exposure and peak concentration in plasma and, in turn, 

at other sites of action. It is hoped that such an increase in drug concentrations will enhance efficacy 

more than toxicity, corresponding to a concentration-response curve as depicted in Figure 6. Eventually, 

such an increased RIF dose could lead into an enhanced sterilizing activity and a decrease in treatment 

duration for pulmonary TB. 
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Figure 6: Pharmacodynamics: ideal concentration-response-toxicity curve, from [35]..  

At least 14 clinical trials have explored the idea of rifampicin high doses with different dosages. A meta-

analysis indicated a favourable outcome during  culture conversion especially at doses more than 900mg 

per day, and it was observed to be safe and therefore, high dose rifampicin was recommended in this 

context [36, 37].  One trial of the PanACEA consortium had evaluated the highest RIF dosage given to 

date, at 35 mg/kg during 14 days - encompassing monotherapy and in combination with standard TB 

drugs, to evaluate the safety and tolerability, pharmacokinetics and bacterial load response. 

Surprisingly, even the dosage of 35mg/kg  was well tolerated, all patients finished the study treatment, 

and there was a trend for increasing bactericidal activity across increasing doses in that study [38].  

SQ109 

Sequella medicinal compound 109 (SQ109) is a new agent being developed for TB treatment  and thus 

far its efficacy in animal models have shown synergistic effect with RIF to eliminate Mtb alongside a 

decline in mycobacterial colony-forming units (CFU) in lungs and spleen of mice and prevented 

progression to lethal TB disease [39]. Furthermore, results form a DOTS-like treatment study 

substituting ethambutol with SQ109 in a mouse model indicated a more rapid decrease in mycobacterial 

load at the end of week eight of TB treatment. Findings from healthy volunteers showed no safety 

concerns [40]. Further analysis from a two-week EBA study (LMU-IPMH-SQ109-01) indicated that SQ109 

alone, or in combination with RIF lacked bactericidal effect during 14 days of treatment among drug 

susceptible pulmonary TB patients at oral doses  of up to 300 mg [41], which was not unexpected since 

efficacy in the mouse was obvious only at later stages of therapy, after 30 days [42]. However, alone or 

in combination with RIF, SQ109 was safe and well tolerated [41]. Evaluation on prolonged drug 

exposures beyond 2 weeks was deemed necessary in the treatment of DS pulmonary TB to assess the 

drug’ s efficacy and possibly the treatment shortening potential.  
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Moxifloxacin 

Most of fluoroquinolones are currently used as second line in treating MDR TB. However Moxifloxacin 

(MOX) which is approved for various indications worldwide, was considered sufficiently active to 

perform large-scale clinical trials for its potential in shortening DS TB treatment. Over time Moxifloxacin 

has shown to be safe [43] including in recently completed and ongoing TB drug trials at different phases. 

Moxifloxacin has a demonstrable bactericidal effect in animal models, early and long time exposures in 

humans [44].  

Substituting ethambutol (EMB) with moxifloxacin yielded higher sputum culture conversion rates at 

week 8 [28, 45] in some phase II studies, equivocally in another trial [46]. However, the substitution of 

isoniazid (INH, rather than EMB) with moxifloxacin did not show significant changes in bacteriological 

response after 8 weeks of TB treatment [27]. In all these trials, the Moxifloxacin- containing regimen 

was found to be well-tolerated. 

Such findings have contributed to starting the largest contemporary phase III trial in TB, the REMox TB 

study which evaluated two treatment-shortening regimens whereby moxifloxacin replaced EMB and INH 

in different arms during a four-month treatment course. The findings from the REMox trial has 

confirmed that the two shorter regimens with moxifloxacin led to faster culture conversion to negative. 

Nevertheless, these shorter arms had significantly more relapses of TB during follow-up [26], showing 

that this increased bacterial killing obviously was not enough to shorten therapy to four months. 

However, the safety of moxifloxacin and its activity against TB have paved ways for continued testing as 

a component of other novel TB regimens with a number of trials including the PanACEA MAMS TB 01 

trial.  

1.2.1 The PanACEA MAMS TB 01 trial 

These three novel treatment options were available to the PanACEA consortium whereby they were 

combined into one study known as PanACEA MAMS TB 01 trial, to be evaluated simultaneously, while 

saving cost through a shared control arm, and an innovative study design. This study was designed to 

include several experimental arms, minimising patient numbers whilst retaining power and a level of 

significance commonly expected for phase 2 studies. It employed the use of the Multiple Arm, Multiple 

Stage (MAMS) trial design, a methodological approach previously used mostly in cancer drug trials, 

which allows to stop experimental arms from recruitment during the study, if they do not achieve pre-
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defined efficacy thresholds. In collaboration with MRC UK, Clinical Trials Unit, the PanACEA consortium 

adapted upon recognizing the promise of this trial design.  

 

1.3 Literature review – measuring tuberculosis treatment success 

The current standard: sputum culture and smear  

Currently, reliable biomarkers for monitoring TB treatment or predicting successful treatment of 

pulmonary tuberculosis do not exist.  

The markers which were mostly evaluated in the past include a) sputum culture status after 2 months of 

treatment  b) measurement of sputum bacterial load and its change over time by using Time To 

Positivity (TTP) in the most widely spread liquid culture system, Mycobacterial Indicator Tube (MGIT), a 

semi-automated incubator system. MGIT detects organism growth by a colour change in an indicator 

followed by oxygen consumption, and a shorter time to positivity would be associated to a higher 

bacillary load in the inoculum.  

In summary, these markers are not able to predict the treatment outcome on an individual level with 

enough certainty, but are useful as efficacy endpoints in cohorts of TB drug trials [47, 48]. Sputum 

culture conversion after 2 months of treatment, time to sputum culture conversion to negative, and the 

speed of decline of bacterial load as measured by TTP, are surrogate markers of sterilizing activity [49]. 

This were validated against the more meaningful clinical endpoint of cure or relapse in British MRC 

studies, and in the REMox TB study[26, 47, 50, 51]. Follow-up of TB patients for relapse has revealed 

that a two-month sputum culture positivity is correlated with treatment failure or relapse, but that 

predictive accuracy on an individual bases is low[48, 52] with reported geographical and population 

variation , only at 50% sensitivity to detect a later relapse [49, 53].  

Methodologically, culture is beset by overgrowth from opportunist microorganisms present in the 

sputum, which multiply during culture and can invalidate the results failing to ascertain study end points 

or treatment outcome.  Further, culture does also fail to capture a population of bacteria that do not 

grow in culture but are viable, and most likely are associated to later relapse [32, 47, 54]. 

Recent studies have evaluated the time to positivity (TTP) in the MGIT culture displayed by automated 

culture like MGIT, which has also shown promise as a predictor of relapse [55].  TTP is a good measure 

of the quantity of viable Mtb  in sputum, however this method is complicated by contamination with 
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other organisms. The long duration  experienced by MGIT  to confirm results causes additional concerns  

on clinical decision both in routine and trial settings.. 

Sputum smear microscopy is widely used at health centre levels in the first line to establish TB diagnosis 

but also to monitor treatment success among sputum smear positive patients in developing countries 

including Tanzania. The test is inexpensive, simple to perform and detects the most infectious group of 

patients[56, 57]. However, results are investigator dependent and well trained technicians are scarce in 

resource-constrained countries. Microscopy is unable to differentiate between live and dead bacilli, 

drug resistant strains, and can not accurately discriminate non-tuberculosis mycobacteria (NTM) from 

Mtb . Further, the rising HIV epidemic, leads to increasingly smear-negative disease patterns with about 

50% smear negative patients treated for TB. As reported, its sensitivity remain low in children and HIV 

patients[58] a critical subpopulation of patients that merit a concern, so these patients could not be 

monitored by microscopy in any case.  

In smear positive disease, even with an experienced microscopist, it has a low sensitivity with poor 

predictive value regarding treatment outcome, and thus WHO abandoned recommendation to extend 

treatment based on a positive two-month smear as it led to massive overtreatment [47, 59, 60] [58, 

61].Therefore, these limitations potentially impede the quality and extent of its use in treatment 

monitoring and eventually its impact on TB control. 

 

Molecular methods 

Monitoring of Mycobacterial DNA in sputum  

Endorsed by WHO in December 2010 as a new test, Xpert MTB/RIF is a rapid novel molecular test for TB 

diagnosis detecting DNA in sputum specimens and Rifampicin resistance[62]. As a diagnostic assay, it 

attains higher sensitivity than smear microscopy, thus detecting both smear-positive and negative 

cases[63]. The reported ability of Xpert assay to detect TB in smear negative patients further encourages 

exploration of this rapid test for monitoring of treatment success in this subpopulation.  A multicenter 

study evaluated the performance of Xpert MTB/RIF as a potential test for monitoring of TB treatment 

outcome among sputum smear and culture positives. It was found that Xpert MTB/RIF positive rates 

lagged behind the conventional methods and remain high (27%) at the end of treatment (6months) 

compared to 3% and 4% for Solid LJ and liquid MGIT culture respectively. Therefore excludes the assay 

as a tool for monitoring TB treatment success [64]. Additionally, the assay has been shown to be inferior 

to culture on its application for monitoring early bactericidal effects of TB therapy in sputum [65]. 
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Failure to differentiate between viable, dead and free DNA released from degraded organisms remains 

as the major limitation of mycobacterial DNA amplification in monitoring TB treatment, including the 

Xpert MTB/RIF assay.  

Mycobacterial mRNA and rRNA 

 An alternative surrogate biomarker is mycobacterial messenger RNA (mRNA) and ribosomal RNA 

(rRNA), present in sputum and other body samples.  Previous studies have identified Mtb RNA species in 

sputum and it is possible to quantify these [66, 67]. Of nucleic acid species, mRNA or rRNA appear to be 

the most promising surrogate markers of treatment response as it has been validated as a measure of 

viable bacteria[68],. Unlike Mtb  DNA, RNA in sputum is likely to be cleared rapidly after initiation of 

tuberculosis therapy and this could provide an accurate assessment of TB treatment success on real 

time as a measure Mtb  viability. The mRNA is present in small quantity, prone to degradation and 

unstable [67] offering challenges in its limit of detection as opposed to rRNA which is plenty and stable. 

Based on this background, the Molecular Bacterial Load (MBL) Assay was developed - a real time PCR, 

culture free biomarker that measures TB bacterial load (BL) in patient sputum by detecting the decline 

of Mtb specific 16S rRNA during anti-tuberculosis therapy [24, 69]. These studies have provided baseline 

data on in vitro test performance of the assay and the recent study further compared the MBL assay 

with solid culture during the OEBA study which was also done at the NIMR-Mbeya Medical Research 

Centre.  During this preliminary exploration the assay showed a decline of bacterial load during initial 

treatment [24]. Noticeably, the assay uses cfu-based standard curve to quantify bacterial load translated 

as described in the methods below. 
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2 Rationale and Objectives 

As described above,  accurate, rapid, inexpensive and convenient TB markers to predict TB cure and 

relapse are needed for patient management and disease control particularly in high TB burden settings 

including Tanzania. Next to a reliable tool for monitoring TB treatment response, more potent drug 

combinations using current and/or new drugs  with high bactericidal and sterilizing abilities are 

importantly needed. With this background the PanACEA MAMS TB 01  trial (explained  above and below) 

evaluated various new drugs and  regimens for their potential to shorten the current TB treatment 

duration. 

On one hand, several new assays are currently available with variable reported potential diagnostic 

capabilities. However, in this study we aimed at evaluating a Molecular Bacterial Load (MBL) assay 

which is an RNA based assay as a marker for monitoring treatment responses among TB patients  

treated with different drug combinations.  The PanACEA Biomarkers Expansion Programme (PANBIOME) 

in which the MBL Assay was nested, evaluated patients which were taken from the aforementioned 

MAMS trial. In this PhD work, we compared the MBL assay against the  conventionally known liquid and 

solid culture media.  
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3 Methodology 

This PhD was nested in multiple studies overtime and therefore various methodologies were employed 

respectively. 

3.1 The PanACEA MAMS TB 01 study  

This study contributed data that were used under the context of the PANBIOME study explained below.  

3.1.1 Study design  

This was a multiple‐arm, multiple‐stage (MAMS), phase 2, open label, randomized, controlled clinical 

trial in seven African sites (three from Tanzania, four from South Africa). The study compared the 

efficacy and safety of four experimental drug regimens with a standard control regimen in patients with 

smear positive, pulmonary tuberculosis (TB). The control arm included isoniazid, rifampicin standard, 

pyrazinamide, ethambutol (HRZE). There were four experimental arms; isoniazid (INH), RIF 35 mg/kg, 

pyrazinamide (PZA or Z), EMB (HR35ZE) in which high RIF at 35mg/kg body weight was used; INH, RIF at 

standard dose,  PZA, SQ109 300 mg (HRZQ) in which SQ109 replaced EMB; INH, RIF 20 mg/kg, PZA, 

SQ109 300mg (HR20ZQ) in which SQ109 replaced EMB and RIF was increased to 20mg/kg and INH, RIF 20 

mg/kg, PZA, Moxifloxacin 400 mg (HR20ZM) whereby high RIF at 20mg/kg was used with Moxifloxacin 

replacing EMB.  

Experimental treatment was given for 12 weeks (3 months), followed by the standard RIF and INH for up 

to 26 weeks (6 months). Standard treatment consisted of HRZE given for eight weeks, followed by RH to 

complete 26 weeks of treatment.  

The primary endpoint of the MAMs trial was time to stable culture conversion to negative in liquid 

media. This was defined as the time from baseline to the first of two negative weekly sputum cultures 

(up to week 12, which was the end of experimental treatment) without an intervening positive culture in 

liquid media. There were several secondary end points including Time to stable culture conversion to 

negative on solid media (defined as two negative cultures without an intervening positive culture), and 

time to culture conversion  (converting from positive to negative) in liquid and on solid culture media at 

each time in the course of treatment. Nevertheless, Mycobacteriology endpoints explored at acquisition 

of resistance against rifampicin, pyrazinamide, Isoniazid, ethambutol and Moxifloxacin during the 

treatment. Genome sequencing as a strain typing method allowing to differentiate true relapse from 

reinfection is planned. However these secondary endpoints are currently being examined and shall be 

reported beyond the scope of this work.  
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The study sample size was calculated using a target hazard ratio for culture conversion over control of 

1.8; in order to improve upon the hazard ratio seen for Moxifloxacin in the Oflotub phase II study, which 

was 1.7 [28]. 124 patients in the control arm, and 62 in each experimental arm were required to detect 

the target hazard ratio at a power of 90% and 5% type I error likelihood. With four experimental arms, 

this would have resulted in 372 patients. 

One to two interim analyses were planned, when 28 and 50 patients in the control arm would have 

reached the primary endpoint. Experimental arms would be stopped from recruitment with a hazard 

ratio <1.09 (first) or <1.23 (second analysis). 

Patients were randomly allocated to receive the control regimen and one of the four experimental arms 

in the ratio of 2:1:1:1:1 respectively. All eligible patients were centrally randomized using a web-based 

computerized algorithm system that was developed and maintained by the clinical trials unit at the 

Medical Research Council (MRC). Minimization with a random element of 80% was used, stratifying on 

study site, baseline bacterial load reported by Xpert MTB/RIF (high vs. low), and HIV status. The 

minimization approach was used to balance the composition of the stated treatment arms with regards 

to prognostic factors. 

In the course of the study, a telephonic follow up call was introduced to patients at 3 and 6 months 

within a time window of ±2 weeks after study completion, but at least once, in their best interest. 

Designated staff with an ability to ascertain on the wellbeing of the stud participants through oral 

information were designated to make this telephonic follow up. Participants found not clearly doing well 

were invited to the study site for further investigations on a possibility of experiencing TB  relapse or 

treatment failure. Investigations made, included clinical, chest radiography and sputum culture if a 

sample was obtained. 

3.1.2 Study population 

Within the MAMs trial, subjects were enrolled once met all inclusion criteria and none of the exclusion 

criteria. In summary, eligibility entailed a written informed consent, being adult with at least 18 years of 

age, having a body weight ranging from 35 to 90 kg. Furthermore, having newly diagnosed, not 

previously treated pulmonary TB confirmed to be rifampicin sensitive by Xpert MTB/RIF, and having 

positive sputum smear microscopy of at least 1+ on the IUATLD/WHO scale ascertained in the research 

laboratory. HIV-infected patients with a CD4 count of more than 200 cells/mm3 where eligible if local 

ethics committees accepted antiretroviral treatment being withheld until month 3 (after intensive 

phase) which was necessary to avoid potential of interactions with SQ109. However none of them were 

recruited in Tanzania, due to the national guideline recommending initiation of ART within two weeks 
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for HIV infected TB patients regardless of their CD4 counts. Female patients were not included in the 

trial if they were confirmed to be pregnant or breastfeeding. 

3.1.3 Study procedures 

Both early morning and spot sputum samples were collected from enrolment at baseline on a weekly 

basis up to 12 weeks (intensive), and monthly during the continuation phase up to week 26. In this trial, 

early morning samples were preferably tested by mycobacterial culture in liquid and on solid media, 

with the spot specimen being used as a back up. Safety assessments included safety laboratory testing 

at weeks 1, 2, 4, 6, 9, 12, 14 after start of therapy; and physical examinations at every visit.  

3.1.4 Culture 

 Eligible patients attended the clinic on a weekly basis from baseline up to week 12, and there after at 

weeks 14, 17, 22 and 26. Sputum samples for smear and culture tests were taken on two days prior to 

treatment as well as during all visits in the course of treatment. The collected sputa samples were 

decontaminated with 2% NaLC/NaOH for 15min at room temperature and concentrated using a 

refrigerated centrifuge at 4°C and RCF of 3000g.500L and 200L aliquots of the concentrated pellet 

were inoculated into liquid culture, the Mycobacterial Growth Indicator Tube (MGIT) and incubated in 

the Bactec MGIT 960 system and on Lowenstein-Jensen (LJ) solid medium as previously reported [26]. 

Additionally, assessment of sensitivity profiles of Isoniazid, rifampicin and ethambutol (IRE) in a  liquid 

culture susceptibility testing for baseline and Mtb  positive isolates after treatment week 12 was 

performed following  the same procedures described earlier [26] Mtb culture confirmation were 

performed through microscopic examination of the acid fast bacilli (AFB) cording after Ziehl-Neelsen 

(ZN) staining followed by identification of the Mtb  antigen (MPT64) by a rapid immune chromatograph 

test (TB Ic). Additionally, we used blood agar plates to detect false positive cultures for Mtb with 

suspicious of bacteria and fungi contaminants. Therefore, sputum samples were considered 

contaminated if flagged positive on MGIT culture and showed one or more of the following: growth on 

blood agar plates, fungal hyphi on the confirmatory ZN stain or AFB positive on the confirmatory ZN 

stain, but a negative MPT64 Ag test (for all sites in Tanzania) and/or samples visibly contaminated for 

example with fungi. For samples without contamination, time to positivity in liquid culture (TTP) was 

documented in days. A culture negative result was declared if the liquid culture media remained 

negative up to 42 days or no growth detected on solid media agar up to 56 days of incubation at 37°C. 

Other study procedures and details are presented in the main MAMS paper [1]which is in press for 
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publication at the time of thesis submission. The PanACEA MAMS TB 01 was registered at 

ClinicalTrials.gov with an identifier number NCT01785186 

3.1.5 Data analysis 

Data from the MAMS study were analysed by the trial statisticians at the Medical Research Council 

(MRC) Clinical Trials Unit (CTU), using Stata 13.1 (Statacorp, College Station, Texas).  A Cox proportional 

hazards model was used to analyse time-to-event data, resulting from time to achievement of the 

primary endpoint of two successive negative cultures. Results were used unadjusted for interim analysis. 

Results in this work and the publication are presented unadjusted, and adjusted for minimization 

variables (HIV status, Xpert MTB/RIF cycle threshold, centre). In addition, baseline time to positivity in 

liquid culture as a measure of bacterial load was used for adjustment. The proportional hazards 

assumption was tested using Schoelfeld residuals, with p <0.5 considered evidence for non-

proportionality. For patients who did not achieve the primary endpoint within 12 weeks, their time to 

culture conversion was censored at week 12, or at the time of study withdrawal. All analyses had been 

laid down in the statistical analysis plan before database lock. 

Safety was analysed by displaying the proportion of adverse events by arm without statistical testing.  

Patients analysed in this work are defined by a modified intention-to-treat population (mITT). This 

includes patients who received at least one dose of study treatment and who had evidence of RIF 

susceptibility on phenotypic test.  

3.1.6 Ethical consideration 

The PanACEA MAMS TB 01 protocol and other associated research documents were approved by the 

Ethics Committee of the University of Munich (LMU), Mbeya Medical Research and Ethics Committee 

(MMREC), IRB at the Kilimanjaro Clinical Research Institute (KCRI), Moshi, National Research and Ethics 

Committee at the NIMR HQ as well the  Tanzania Food and Drugs Authority (TFDA), and all South African 

site Ethics committees and the Medicines Control Commission (MCC) as regulatory agency of South 

Africa. All ethical principles guiding the conduct of human research were adhered to in accordance to 

the Declaration of Helsinki. Written informed consent was obtained from all participants or in the case 

of illiterate participants, in the presence of a literate witness. 
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3.2 PANBIOME  

3.2.1 Study design 

The PanACEA Biomarkers Expansion programme (PANBIOME) study was developed as a strategy where 

African centres work closely with designated European academic partners (The University of St. 

Andrews (USTAN) in UK, University of Munich (LMU). The sites where patient recruitment took place 

included; NIMR-Mbeya Medical Research Centre (NIMR-MMRC),  Kilimanjaro Clinical Research Institute 

(KCRI) in Tanzania; Insituto Nacional de Saude (INS) Maputo, Mozambique and College of Medicine 

University of Malawi, Blantyre Malawi. Among other objectives, PANBIOME explored the potential of 

the Molecular Bacterial Load (MBLA to replace conventional culture and for concordance with culture to 

predict differences between treatment regimens. 

 

3.2.2 Study population 

Analysis for PANBIOME was based on a total of 100 patients who were enrolled in the MAMS trial at two 

Tanzanian sites namely NIMR-MMRC and KCRI. These patients had either a sputum smear or Xpert 

MTB/RIF positive with a HIV negative result (refer the explanation above on MAMs trial in Tanzania). 

Patients were randomised to receive either the standard or one of the four experimental arms as 

described above. While usually early morning sputum samples were used for MAMS efficacy 

measurements using liquid culture in MGIT, spot samples were used for molecular assessment using the 

MBL assay. Spot sputa samples were homogenized using a magnetic stirrer for 30 minutes at room 

temperature and mixed with 4M Guanidine thiocyanate (GTC) using the 1:5 ratio of sputum GTC 

volume. The GTC used was prior been mixed with 1% of β-mercaptoethanol to preserve RNA. Resulting 

sputum-GTC suspension were aliquoted into 2mL aliquots and stored at -80°C until the day of RNA 

extraction for MBL assay 

3.2.3 Culture 

Only samples from the two Tanzanian sites (NIMR-MMRC and KCRI) was used and the procedures 

employed are explained in section 3.1.4 

3.2.4 Molecular Bacterial Load Assay (MBLA) performance 

Preserved sputum samples were allowed to thaw at room temperature for 1hr and aliquots pooled 

together into a sterile and RNA free falcon tube to obtain the 5mL sputum volume in GTC. Same internal 
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control used for PANBIOME study of 100l of Mycobacterium marinum at 104 CFU/m was spiked to each 

falcon tube containing sputum-GTC samples prior to RNA extraction. The mixture was centrifuged at 

3000g for 30 min and the cell sediment were re-suspended in lysis buffer, the RNA pro blue solution (MP 

Biomedicals IIIkrich, France) and bead homogenized for 40sec at 6000rpm using the FASTPrep 

instrument. RNA was extracted using FASTprep RNA kit (MP Biomedicals, IIIkrich, France) according to 

the manufacturer’s instructions. DNAase treatment at 37°C for 1hr was performed to remove the 

Genomic DNA from RNA extracts using the Ambion Turbo DNase kit (Life Technologies, Lithuana). 

Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was performed using a 

RotorGene 5plex platform (Qiagen) using primers and dual labelled probes (Taqman) targeting 16S rRNA 

specific for Mtb and transfer messenger RNA (tmRNA) for the internal control  of M. marinum. All 

primers and probes were procured from MWG Eurofins, Munich, Germany and lyophilized following the 

manufacturer’s instructions. The optimal RT-PCR cycling conditions were 30 min at 50°C for reverse 

transcription, 15min at 95°C for denaturation, and 40x cycling at 94°C for 45sec and finalized with 60°C 

for 60sec.  The cycle threshold (CT) was translated into bacterial load (BL) using cfu based standard 

curve calculated from samples performed in the same run or separately but on the same machine and 

imported into the analysis after the reaction. Therefore, it uses the cfu based standard curve to 

translate CT generated by PCR into bacterial load.  In this case, The study adapted similar positive 

control BCG standards (BCG NCTC 5692) used in the PANBIOME project for the high positive (107 cfu/mL) 

and low positive (103 cfu/mL) which were spiked in artificial sputum following similar procedure used for 

patient samples prior to RNA extraction. RNase free molecular grade water was used as negative control 

and included in each assay run.  

3.2.5 Data Analysis 

Data from PanBIOME was analysed using Stata 14.1 (Statacorp, College Station, Texas). For each visit, a 

maximum of one MBLA result was available, while there may have been more than one culture results 

available due to repeated inoculation after finding a culture contaminated, or multiple cultures ordered 

by the investigators.  

For comparisons of positive and negative results, a negative MBLA result was assumed when the 

bacterial load result from MBLA was zero, and a positive result if it was higher than zero. 

For quantitative comparisons between MGIT TTP and MBLA as measures of bacterial load, TTP was 

log(10) – transformed, since log(10)TTP had previously been found to be normally distributed, while TTP 
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was not [41]. For these comparisons, TTPs found in contaminated cultures defined as having a positive 

blood agar plate after 48h incubation were censored since these were assumed to have been influenced 

by the contaminant. Also, TTPs of negative MGIT cultures (42 days) and negative MBL results were 

censored. The degree of correlation was assessed using the Spearman rank test. 

Cox proportional hazards analysis was used for the time to culture conversion, or MBL conversion to 

negative, respectively. The culture or MBL conversion endpoint was defined in analogy to the MAMS 

study as the time to the first of two successive negative results from two weekly visits without an 

intervening positive or contaminated result. Unlike the MAMS main analysis where patients were 

censored at 12 weeks if they did not achieve the primary endpoint since this was the end of 

experimental treatment, in this analysis we censored patients at 26 weeks, and a value of 26 weeks was 

assumed.  
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4 Results 

4.1 The PanACEA MAMS TB 01 study  

4.1.1 Study population 

From May 2013 to March 2014, seven African sites screened a total of 632 patients, from which 365 

were allocated to different arms through randomization. The CONSORT flowchart for recruitment and 

retention is included as Figure 7.  

The two Tanzanian sites namely; NIMR-Mbeya Medical Research Centre and Kilimanjaro Clinical 

Research Institute, which later produced MBL data, contributed in the MAMS 52 and 51 patients 

respectively [1]. 

The first interim analysis was conducted in February 2014, and resulted in stop of recruitment to both 

arms containing SQ109, reducing the total sample size. 

Patients across all arms had similar baseline characteristics for prognostic factors as seen in Table 1, and 

baseline drug resistance was not much different across groups (Table 2). 

Two patients were excluded from the modified ITT analysis population due to phenotypic RIF resistance, 

which was diagnosed after treatment had started. 
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Figure 7: the CONSORT flowchart of screening, follow-up and patient retention in the study reproduced 

from [1] 
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Characteristics Control  RIF35HZE RIFQHZ RIF20QHZ RIF20MHZ Total 

Total 

randomised*  
123 63 59 57 63 365 

Age (yrs) - 

median (IQR) 

34 (26 to 

41) 

33 (23 to 

40) 

32 (25 to 

40) 

34 (27 to 

41) 

31 (24 to 

38) 

33 (26 to 

40) 

Male 94 (76%) 42 (67%) 38 (64%) 45 (79%) 39 (62%) 258 (71%) 

Weight (Kg) - 

median (IQR) 

54 (49 to 

59) 

52 (47 to 

58) 

53 (47 to 

57) 

53 (49 to 

56) 

52 (48 to 

61) 
53 (49-58) 

HIV Positive 9 (7%) 4 (6%) 5 (8%) 3 (5%) 3 (5%) 24 (7%) 

Ethnicity       

Black 101 (82%) 51 (81%) 50 (85%) 50 (88%) 48 (76%) 300 (82%) 

White 0 (0%) 1 (2%) 0 (0%) 1 (2%) 0 (0%) 2 (1%) 

Mixed 19 (15%) 11 (17%) 9 (15%) 6 (11%) 15 (24%) 60 (16%) 

Other 3 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (1%) 

Xpert MTB/RIF 

cycle threshold 

- median (IQR) 

16 (14 to 

19) 

17 (14 to 

20) 

17 (14 to 

19) 

16 (14 to 

18) 

16 (14 to 

19) 

16 (14 to 

19) 

Table 1: Baseline characteristics of MAMS patients. * An additional 3 patients were randomised in error 
and did not start treatment or remain in follow-up and are therefore not included in this table.  



 

 

24 

 

 

Sensitivity 

testing 
Control  RIF35HZE RIFQHZ RIF20QHZ RIF20MHZ Total 

Phenotypic resistance to rifampicin 

Resistant 0 (0%) 0 (0%) 1 (2%) 1 (2%) 0 (0%) 2 (1%) 

Sensitive 112 (91%) 59 (94%) 54 (92%) 53 (93%) 56 (89%) 334 (92%) 

Missing 11 (9%) 4 (6%) 4 (7%) 3 (5%) 7 (11%) 29 (8%) 

Phenotypic resistance to INH 

Resistant 3 (2%) 0 (0%) 3 (5%) 1 (2%) 1 (2%) 8 (2%) 

Sensitive 109 (89%) 59 (94%) 52 (88%) 53 (93%) 55 (87%) 328 (90%) 

Missing 11 (9%) 4 (6%) 4 (7%) 3 (5%) 7 (11%) 29 (8%) 

Phenotypic resistance to Moxifloxacin 

Resistant 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Sensitive 115 (93%) 59 (94%) 55 (93%) 54 (95%) 56 (89%) 339 (93%) 

Missing 8 (7%) 4 (6%) 4 (7%) 3 (5%) 7 (11%) 26 (7%) 

Phenotypic resistance to ethambutol 

Resistant 0 (0%) 0 (0%) 0 (0%) 1 (2%) 0 (0%) 1 (0%) 

Sensitive 112 (91%) 59 (94%) 55 (93%) 53 (93%) 56 (89%) 335 (92%) 

Missing 11 (9%) 4 (6%) 4 (7%) 3 (5%) 7 (11%) 29 (8%) 

Phenotypic resistance to pyrazinamide 

Resistant 4 (3%) 2 (3%) 2 (3%) 0 (0%) 4 (6%) 12 (3%) 

Sensitive 110 (89%) 57 (90%) 53 (90%) 55 (96%) 53 (84%) 328 (90%) 

Missing 9 (7%) 4 (6%) 4 (7%) 2 (4%) 6 (10%) 25 (7%) 

Table 2: Baseline drug resistance of MAMS patients 
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4.2 Efficacy of experimental arms  

4.2.1 Monitoring of treatment response through culture based methods 

 

Figure 8:  Kaplan Meier curve for time to culture conversion in liquid MGIT media (A) and on solid 
Lowenstein–Jensen (LJ) media (B) as per mITT. Reproduced from [1] 

A 

B 
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In Kaplan Meier analysis, patients in arms RIF35HZE and RIF20MHZ achieved more rapid culture 

conversion when MGIT liquid media was used as the endpoint (Figure 8A). On solid media, differences 

between arms were less pronounced. (Figure 8B) 

 

 Control RIF35HZE RIFQHZ RIF20QHZ RIF20MHZ Total 

Total in analysis 
(mITT) 

123 63 58 56 63 363 

Number of patients achieving culture conversion definition by end of study (26 weeks) 

MGIT liquid 
media 

101 (82%) 51 (81%) 44 (76%) 48 (86%) 52 (83%) 296 (82%) 

LJ solid media 117 (95%) 59 (94%) 59 (97%) 54 (96%) 59 (94%) 345 (95%) 

Primary analysis to 12 weeks (MGIT culture) 

Cumulative 
probability of 
culture 
conversion  

70.1% 79.9% 65.2% 58.6% 78.7%  

Time to 
conversion: 
median (IQR) 

62 (41-83) 48 (34-69) 63 (48-83) 66 (41-83) 55 (41-69)  

Adjusted hazard 
ratio (95% CI)*, p 
for difference 
from control 

 
1.78  
(1.22, 2.58) 
p=0.003 

0.85  
(0.57, 1.27) 
p=0.42 

0.76  
(0.50, 1.17) 
p=0.21 

1.42  
(0.98, 2.05) 
p=0.07 

 
Hazard ratio 
(95%), unadjusted 

 
1.46 (1.02, 
2.11) 

0.90 (0.60, 
1.34) 

0.76 (0.50, 
1.16) 

1.34 (0.93, 
1.93) 

  p=0.04 p=0.60 p=0.21 p=0.12 

Solid LJ culture to 12 weeks (secondary) 

Cumulative 
probability of 
culture 
conversion by 12 
weeks 

97.3% 100.0% 94.4% 94.2% 98.0%  

Median time to 
culture 
conversion (25th-
75th centiles) 

27 (13-48) 20 (7-41) 20 (7-48) 20 (11-44) 29 (20-48)  

Adjusted hazard 
ratio (95%)* 

 1.23 (0.89, 
1.69) 

0.91 (0.66, 
1.27) 

0.98 (0.70, 
1.38) 

0.77 (0.56, 
1.06) 

   p=0.21 p=0.58 p=0.93 p=0.11 

Hazard ratio 
(95%), unadjusted 

 1.28 (0.93, 
1.75) 

1.02 (0.73, 
1.41) 

1.06 (0.76, 
1.47) 

0.90 (0.65, 
1.23) 

  p=0.13 p=0.92 p=0.74 p=0.50  

Patients in arm RIF35HZE converted to negative culture earlier compared to those in the control arm in 

liquid MGIT media when analysed up to week 12, which was the primary study endpoint. A median time 



 

 

27 

 

to stable culture conversion of 48 (34-69) days was recorded in RIF35HZE as opposed to 62 days for the 

control (41-83).  

In Cox proportional hazards analysis, the unadjusted hazard ratio for RIF35HZE compared to control was 

1·46, 95% CI (1·02, 2·11), p=0·04 (Error! Reference source not found.). Adjustment was done for site, 

baseline bacterial load, GeneXpert cycle threshold and HIV status, which were thought to be important 

prognostic markers. With the exception of baseline bacterial load which was not available at 

randomization, these were used for balancing groups at randomization in the minimization algorithm 

employed. This yielded an adjusted hazard ratio of 1·78, 95% CI (1·22, 2·58), p=0·003. The other 

experimental arms RIFQHZ, RIF20QHZ and RIF20MHZ did not show significant difference in time to culture 

conversion in liquid media until week 12.  However, the RIF20MHZ arm nearly reached significance with 

the largest effect (adjusted hazard ratio 1·42, 95% CI (0·98, 2·05), p=0·07).  In the RIF35HZE arm, the 

highest proportion (79.9%) of patients achieved a conversion to negative culture of any arm, with arm 

RIF20QHZ having the smallest proportion (58·6% ), and control registering third with 70.1% of patients 

achieving the primary endpoint. 

There was no significant difference in time to stable culture conversion on solid LJ media between any of 

the experimental arms and the control group when data were censored at any time points including 

week 8 and 12 and this was the secondary end point within the MAMs trial. 
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 Control RIF35HZE RIFQHZ RIF20QHZ RIF20MHZ Total 

Total in safety analysis 123 63 59 57 63 365 

Patients with at least one AE 92 (75%) 53 (84%) 49 (83%) 42 (74%) 49 (78%) 
285 

(78%) 

Patients with at least one Grade 

3,4 or 5 AE 
13 (11%) 9 (14%) 7 (12%) 7 (12%) 9 (14%) 45 (12%) 

Patients with at least one Grade 

3,4 or 5 AE considered probably 

related or related 

1 (1%) 3 (5%) 0 0 4 (6%) 8 (2%) 

Patients with at least one Serious 

AE 
6 (5%) 4 (6%) 4 (7%) 5 (9%) 4 (6%) 23 (6%) 

Deaths 0 1 0 0 0 1 

Total number of patients with 

treatment changed due to hepatic 

AE 

2 (2%) 5 (8%) 0 (0%) 3 (5%) 0 10 (3%) 

Number of patients with 

treatment changed due to hepatic 

AE –symptomatic or meeting 

protocol criteria* 

2 (2%) 3 (5%) 0 (0%) 3 (5%) 0 8 (2%) 

Treatment changed due to hepatic 

AE – not fulfilling protocol criteria 

and not being symptomatic* 

0 2 (3%) 0 0 0 2 (1%) 

Table 3: Summary of safety profiles of  participants in relation to adverse events as reproduced from [1]  
*Protocol criteria for treatment interruption due to hepatic AE: elevation of AST and/or ALT >3x, but less 
than 5x the upper limit of normal WITH associated symptoms or  elevation of AST and/or ALT >5x the 
upper limit of normal irrespective of the presence of symptoms. 

A total of 365 patients who took investigational medicinal drugs were included in the safety analysis 

from which only 12% (45/365) experienced adverse event (AE) of a severity grade of at least grade 3, 4 

or 5, graded in CTCAE 4.0 . Patients in the control and experimental arms had relatively similar 

proportions of reported adverse events ( Table 3). One patient died 14 weeks after completion of  

experimental treatment (RIF35HZE), shortly before continuation treatment was completed, with 

unexpected onset of chest pain just before death. A second patient successfully completed the standard 
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TB medication however died during the follow up period after developing a relapse. The patient had an 

underlying pneumoconiosis that was related to the reported mining activities in Tanzania.  Protocol 

criteria for treatment interruption due to hepatic AE was reached by eight patients during the 

experimental period  (Table 3).  

4.3 Validation of the MBLA against classical culture methods in PANBIOME, a substudy of  PanACEA 

MAMS TB 01 

4.3.1 Population included in the PANBIOME study 

This study utilized data from a subset of patients who were enrolled into the MAMS trial, at the National 

Institute of Medical Research-Mbeya Medical Research Centre (NIMR-MMRC) and Kilimanjaro Clinical 

Research Institute (KCRI) in Tanzania from May 2013 to March 2014. NIMR-MMRC and KCRI contributed 

52 and 51 patients respectively into the MAMS trial. 

In addition to the early morning sputum sample submitted for the MAMS primary endpoint assessment, 

a spot sputum sample was preserved for later performance of MBLA. Results of this test were then 

compared with culture results from the MAMS database.  

Altogether, there were results of 1,597 MBLA tests, 2,101 MGIT cultures and 2,082 LJ cultures, available.  

4.3.2 Comparisons of positive and negative results among different tests  

The three methods were compared for their categorized positive, negative,  and contaminated results 

on each visit. Visits with a positive LJ had negative MBL results only in 9.1%. Conversely, In visits with a 

negative LJ result however, MBL was positive in 47.4 % , a much higher percentage (Table 5) . This 

means that more patients are declared free of TB disease if LJ is used as tool for monitoring TB 

treatment success.   

  MGIT  Liquid medium 

  Negative Positive Contamin

ation 

Missing Total 

MBLA Negative 260 63 423 30 776 

Positive 174 690 350 59 1,273 

Missing 46 38 57 2 143 

Total 480 791 830 91 2,192 
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Table 4: Comparison between MBLA and MGIT media: qualitative negative/positive results. Since there 
may be more than one culture result per visit, the MBLA result may have used for comparison to culture 
more than once. 

  LJ Solid medium 

  Negative Positive Contamin

ation 

Missing Total 

MBLA Negative 668 48 33 0    749 

Positive 695 454 52 2 1,203 

Missing 102 24 6 0 132 

Total 1,465 526 91 2 2084 

Table 5: Comparison between MBLA and LJ media: qualitative negative/positive results. Since there may 
be more than one culture result per visit, the MBLA result may have used for comparison to culture more 
than once.  

In 7.9 % of visits with positive MGIT cultures, a negative MBLA was seen; as opposed to 36.2 % of visits 

with negative MGIT cultures, which had a positive MBLA result (Table 4). 

Of the 91 contaminated samples on LJ solid media with no evaluable end points, the MBLA reported 

33/85 (36.3 %) as being negative. Whereas MBLA showed 50.9 % negative results among the 

contaminated samples using liquid culture medium (Table 4, Table 5). 

4.3.3  Positive/negative results of MGIT, LJ and MBL over time 

MGIT final results 

Visit (weeks of treatment) 

0 2 4 8 12 17 26 

Negative (%) 0 (0) 5 (4.0) 9 (7.2) 37 (28.6) 42 (32.8) 50 (36.7) 75 (43.1) 

Positive (%) 103 (97.1) 96 (76.8) 76 (60.8) 39 (30.2) 15 (11.7) 7 (5.1) 3 (1.7) 

Contamination (%%) 2 (1.8) 21 (16.8) 33 (26.4) 43 (33.3) 67 (52.3) 79 (61.7) 93 (53.4) 

Missing (%) 1 (0.9) 3  (2.4) 7 (5.6) 10 (7.7) 4 (3.1) 0 (0) 3 (7.4) 

Total 106 125 125 129 128 136 174 

Table 6: Qualitative liquid MGIT media final results per visit from baseline to the end of treatment. Note: 
contaminated samples may have been re-treated and re-inoculated; final results may be not 
contaminated. Due to this, there may be more than one result per sample, patient and visit.  
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LJ final results Visits (weeks of treatment) 

 

0 2 4 8 12 17 26 

Negative (%) 27 (25.9) 38 (32.2) 54 (45.0) 99 (84.6) 
105 

(88.9) 

105 

(90.5) 

152 

(92.6) 

Positive (%) 71 (68.2) 79 (66.9) 62 (51.6) 13 (11.1) 4 (3.3) 4 (3.6) 2 (1.2) 

Contamination (%) 6 (5.8) 1 (0.8) 4 (3.3) 5 (4.3) 9 (7.6) 7 (6.0) 10 (6.1) 

Total 104 118 120 117 118 116 164 

 
Table 7: Qualitative solid LJ media results from baseline to end of treatment. Note: contaminated 
samples may have been re-treated and re-inoculated; final results may be not contaminated. Due to this, 
there may be more than one result per sample, patient and visit.  

 

MBLA Result  Visits (weeks) 

 

0 2 4 8 12 17 26 

Negative (%) 0 4 (4.2) 13 (13.3) 32 (33.7) 61 (64.2) 54 (62.1) 68 (80.9) 

Positive (%) 94 (100) 91 (95.8) 85 (86.7) 63 (66.3) 34 (35.8) 33 (37.9) 16 (19.1) 

Total 94 95 98 95 95 87 84 

 
Table 8: Qualitative MBLA final results from baseline to the end of treatment. Missing results were not 
due to assay failure but due to missing sample. 

Overall negative readouts increased with time of treatment and across the three evaluated methods 

(Table 6,  

Table 7 and  

Table 8, Figure 9).  

The MGIT contamination rates at both sites rose from 1.9% at baseline to more than a half (53.4%) at 

week 26 (Table 6). Contamination rate in LJ was lower and did not exceed 10% of all results at any given 

time. 

Notably, the molecular bacterial load assay (MBLA) was not affected by contamination, and no assay 

inhibition was noted; there was no any invalid/error results reported in the MBLA ( 
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Table 8), hence no missing data due to assay problems. Missing MBLA results were solely due to missing 

sample. 

LJ culture turned negative much earlier in treatment than MGIT culture. Even at baseline, 25.9% of LJ 

cultures were negative, while no negative MGIT cultures were seen at that time point, indicating a 

relatively low bacterial load in the study population which was picked up by the more sensitive MGIT 

culture only. 

It was noted that especially late in treatment, MBLA was more frequently positive, compared to the 

culture methods as treatment progressed (examplified by 19.0% for MBLA, 1.7% for MGIT media and 

1.2% for LJ at the end of treatment (Table 6,  

Table 8, Figure 9 ). 

 

Figure 9: percent of positive tests of all tests with valid results over treatment. Contaminated cultures 
and missing results are excluded. 
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4.3.4  Comparison of quantitative bacterial load measured by MBLA and MGIT culture 

A direct comparison between log10 time to positivity from the MGIT system, and quantification of the 

bacterial load by MBLA was performed. For this, all visits were censored that either had negative or 

missing MBL results, or negative, missing or contaminated MGIT results, since in the latter case the time 

to positivity in the MGIT culture would not have been a reflection of MTB multiplication and 

metabolism, but much abbreviated by the contaminating organism and its consumption of oxygen.  

This analysis shows a significant correlation (p<0.001) between both quantitative readouts, although the 

correlation is not very strong (Error! Reference source not found. A).  

Figure 10: Scatterplot of correlation between MGIT log10 time to positivity (TTP) and MBL.  
A: PANBIOME study, entire study period.  
B: OEBA, reproduced from Honeyborne et al, 2014; 
C: PANBIOME study, data from up to day 14 for comparison to OEBA dataset. R= Spearman rho to describe the 
degree of correlation. 

r= - 0.4871 

r= -0.4081 

A 

B
 A  

C
 A  
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Next, a direct comparison between the published dataset from the OEBA study [24], which showed a 

stronger correlation between the two quantitative readouts (Error! Reference source not found. B), and 

the dataset from this study (PANBIOME) was performed. For this, all PANBIOME visits that occurred 

after day 14 were censored, to match OEBA sampling which had been done only up to day 14 of 

treatment (Error! Reference source not found. C). This confirmed that the correlation between both 

tests’ quantitative readouts as measured by Spearman rank test was significant in both studies, but less 

strong in PANBIOME (r = -0.4081 compared to r=-0.7961 in OEBA).  

The decrease of bacterial load measured by MBLA is similar to that in liquid MGIT culture presented by 

the noted increase in time to positivity (TTP).  Over the period of six months of treatment, the mean 

bacterial load declined from 5.12  1.3log10CFU/ml (mean ± standard deviation) at baseline, to 2.65  

1.6log10CFU/ml  at week 8 (months 2) and 0.80  1.2log10CFU/ml at week 12 and 0.34  0.74 

log10CFU/ml (mean ± standard deviation) at week 26 (month six).  Similarly, TTP as bacterial load 

measurement of liquid MGIT culture increased from 5  3 days at baseline to 17  11 days, 28   16 days 

and 32   15 by week 8, 12 and 26 of the corresponding duration of treatment, respectively – in this 

analysis, a negative MGIT culture had a TTP of 42 days assigned. 
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4.3.5 Comparison between culture-based and MBLA-based time to negativity endpoints  

 

 

 

 

 

 

 

 

 

Figure 11: Kaplan-Meier curve comparing time to conversion to negative, defined as two successive 
negative results without an intervening positive or missing result, between all three methods, 
patients of all treatment arms combined. 
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 Control RIF35HZE RIFQHZ RIF20QHZ RIF20MHZ 

A:  Hazard ratios using MGIT culture at week 12 

Unadjusted hazard ratio 1.90 1.24 1.61 1.71 

(95% CI) (1.00 - 3.61) (0.63 - 2.45) (0.84 - 3.10) (0.89 - 3.29) 

p for difference from control 0.049 0.538 0.154 0.106 

B: Hazard ratios using MBLA at week 12 

Unadjusted hazard ratio 1.30 1.19 1.23 2.24 

(95% CI) (0.69, 2.45) (0.61,2.32) (0.63, 2.39) (1.23, 4.10) 

p for difference from control p=0.415 p=0.601 p=0.538 p=0.008 

  

Table 9: Hazard ratios for culture conversion of different experimental treatment arms over control; A: 
using MGIT; B: using MBLA 

A comparison between the hazard ratios for culture conversion over control of different treatment arms 

was done between the MGIT primary study endpoint, and the experimental MBLA-based conversion 

endpoint. In both instances, the definition of culture conversion of two successive negative sputum 

samples without an intervening missing or positive results was used, concordant with the primary 

MAMS study analysis.  

In the PANBIOME patient dataset, which is a subset of the MAMS study, the RIF35HZE arm showed a 

hazard ratio which was higher than 1; with borderline significance in MGIT (Table 9: Hazard ratios for 

culture conversion of different experimental treatment arms over control; A: using MGIT; B: using 

MBLA). Conversely, the RIF20ZM arm, which was not significantly superior to control using the MGIT 

endpoint, showed significantly superior performance in the MBLA endpoint.   

Altogether, there were moderate differences in hazard ratios using MGIT or MBLA as detection assays. 

However, in all cases confidence intervals for arms overlapped between use of both methods. 
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 p25 p50    p75 

LJ 21 35 63 

MGIT 41 55 83 

MBLA 62 97 153 

 

Table 10: Comparison between culture methods and MBLA for time to last positive in days 

To counter-check the results on negative samples for an influence of potentially missing results, a 

comparison of time to last positive result was done (Table 10). This showed that the median time to 

negative culture was 35, 55 and 97 days on LJ, MGIT and MBLA platforms respectively. A time to the last 

positive result was recorded correspondingly 49, 67 and 101 days. MBLA, therefore gave more time to 

follow patients under treatment as opposed to the classical culture media. Culture based methods 

would declare more patients to have ceased excreting bacteria sooner than the molecular bacterial load 

assay.  
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5 Discussion 

Monitoring of TB treatment success amid the search for new drugs and /or regimen is of paramount 

importance. This not only in the routine setting where individualized care is mainly practiced but in 

therapeutic trials as well for the control TB worldwide to be realized.  

5.1 PanACEA MAMS TB 01  

Our study indicates that sputum culture conversion in MGIT liquid medium was accelerated in the arm 

with high rifampicin at 35mg/kg, compared to the control regimen. However, the rapid  reported 

sputum conversion in the RIF35HZE arm was  less pronounced in the LJ solid medium. This is contrary 

from the findings of the REMox trial that evaluated two Moxifloxacin-containing regimens and did not 

find a difference between both media with regards to culture conversion [26]. Rifampicin is  effective  

against actively dividing and non-replicating persisting bacteria that are drug tolerant [70]. Higher 

rifampicin doses are likely to kill this subpopulation effectively as shown both in  models [32, 70] and in 

humans [38, 71, 72]. As opposed to solid LJ culture, liquid culture has been documented to detect non 

replicating persisters [73] and therefore the reported higher RIF35HZE  efficacy in liquid media  suggests 

an enhanced bactericidal activity of this regimen to these bacilli. Comparatively the four experimental 

regimen had relatively similar safety profiles to the control regime with lower number of hepatic 

adverse events being reported.   

In summary, the MAMS study showed that high doses of RIF are safe and can accelerate culture 

conversion. At a dose of 35mg/kg, the effect of high RIF was more pronounced than at 20mg/kg, in line 

with other studies that assessed this dose where increased efficacy could only be described in a meta-

analysis of several studies [37]. Pharmacokinetic and pharmacodynamics assessments are underway and 

will help in understanding this phenomenon further.  

SQ109 did not show any additional efficacy over EMB, which it replaced in this study. It is possible that 

the drug itself has activity, but this was not enough to be superior to that of EMB in the control arm. 

Further, SQ109 metabolism is induced by RIF as demonstrated in the phase IIa – study. It is possible that 

this effect in MAMS was stronger than seen during the first 14 days, which will be known when 

pharmacokinetics data are analysed.   

In taking high RIF further, it has to be stated that the current dose of 35mg/kg does not seem to be the 

highest dose that can be safely employed, and further increase may be possible. It therefore may be 

reasonable to test even higher doses of RIF for enhanced efficacy and for their toxicity. 
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In the landscape of new TB treatment interventions, high RIF is attractive since it is a licensed compound 

for decades now and would not have to undergo submission at regulatory agencies and long review 

delays. 

5.2 MBLA validation results 

Laboratory methods to measure treatment success using nucleic acids have been studied for almost two 

decades ago [24, 64, 67-69, 74]. However, there is no any molecular tool that has been deployed as a 

marker for monitoring treatment success. It is currently understood that molecular assays aiming at 

DNA like Xpert MTB/RIF are hampered by prolonged DNA detection even up to six month post TB 

treatment [64]. Conversely, mRNA is known for its availability in  small quantity, prone to degradation 

and unstable [67] therefore a notable short half-life that has its eventual challenges on the limit of 

detection.  In this study we report findings that encompasses the use of the MBLA which determines 

bacterial load (BL) for up to  six months in sputum of TB patient by detecting  Mtb  specific rRNA during  

the course of TB treatment. It has been shown that RNA degrades faster than DNA when Mtb  are killed 

by anti-TB drugs and therefore offers a platform for both TB diagnosis and real-time monitoring of 

treatment success [24, 69]. 

We have shown that culture methods like MGIT liquid medium would declare patients free of disease 

faster than the MBLA.  Interestingly, the treatment arm RIF20HZM containing moxifloxacin showed 

significantly superior performance when the MBLA was used as an endpoint. This could be the 

combined bactericidal effect caused by high RIF and moxifloxacin on the bacterial populations detected 

by MBLA, but not by MGIT, as previously reported [26, 32, 38]. However, fewer patients were included 

in the MBLA sub-study within the PANBIOME study as opposed to the parent MAMS trial [1], lifting the 

power of such statements. 

We have demonstrated that MBLA allows a longer and consistent follow up profiles for TB patients  as 

highlighted by higher proportions of positive, compared to the  MGIT and LJ media as treatment 

progressed. This is important as it allows enough time to ascertain the study end points and treatment 

successes. Additionally, there are more positive MBLA readings at any given time point  than MGIT  

results could. This might be due to a subpopulation of bacteria that cannot be cultured in MGIT[69] but 

could  be picked up by the MBLA. A mouse model showed several functional forms of bacilli including 

sub-dormant, semi-dormant and rifampicin-tolerant persisters which are likely to survive anti-

tuberculous activity much longer during the  treatment period than actively replicating bacilli [75].  
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Our study shows that there is no much difference with regards to positivity rates between the MBLA and 

MGIT medium during the first half of the treatment period, thereafter the former detected more TB 

than the latter. Conversely, the analysis of the MAMS endpoint using either MGIT or MBLA did not show 

a difference during the entire treatment period. This may be due to missing data from MGIT due to 

contamination, which would have led to reaching the endpoint later.  

As recently reported from the OEBA study, MBLA correlates with MGIT TTP while patients are on 

treatment due to the decline in the bacterial load [24, 69]. Though less pronounced, our study still 

demonstrates the correlation between MBLA and MGIT TTP as treatment progresses. It should be 

emphasized that in the OEBA study, all tests were done from the same, homogenized sputum sample 

[24]. However, in the PANBIOME study, cultures were done mostly from the early morning sample, and 

the spot sputum samples were being preserved for later testing with MBLA. This is expected to 

significantly add to between test variation, caused by a high variation in bacterial load between the two 

analysed sputum samples.  

In both situations, time to get results in MGIT medium  increases with decrease in bacterial load 

compared to the MBLA which gives out results within 4 hours regardless of the bacterial load and at any 

given time point.  It is well understood that MGIT takes up to 42 days of culture time to declare the final 

result and this delay information that could assist prompt clinical judgement. Therefore, this delay 

further limits its wide application as a method for monitoring TB treatment response. 

As previously documented [24, 69], our study has continued to confirm that throughout the treatment 

period, the MBLA is very unlikely to produce missing data. Another advantage is MBLA specificity for 

MTB complex organisms - primers are specific for M. tuberculosis complex 16S rRNA. In the Tanzanian 

setting, many cultures turn positive with non-tuberculous mycobacteria which need to be distinguished 

from MTB complex by further testing; while an MBLA result does not need further verification.  

 In this study, we have shown that MBLA is promising and bears several advantages over the 

conventional culture methods as the means of monitoring TB treatment success which include being 

fast, sensitive and contamination free. Currently, a rapid, cheap and improved biomarker for monitoring 

success to TB treatment is urgently needed in the TB field particularly in developing countries like 

Tanzania. It would be of great help in patient management by predicting early on in the course of 

treatment any emergence of ineffectiveness of therapy or relapse of the disease. A predictor of 

treatment response would possibly help to reduce duration and costs of drug trials based on its use as a 
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surrogate marker [21, 53]. Nevertheless, it would as well define which TB patients can best benefit from 

the current move towards treatment shortening regimen[76]. 

Our study has several limitations. Currently, the MBLA can only be compared to standard culture based 

methods which are  known for being inaccurate in predicting treatment outcome. As we have shown, 

more culture results were not evaluable at the end of the treatment due to contamination thus failing to 

elucidate the sensitivity and specificity of MBL Assay. Additionally, this study captured only two relapse 

cases due to time constraints (length of follow up; at least12months), which were not enough to 

validate the ability of the MBLA to predict such important and meaningful clinical outcomes among TB 

patients. However, during the course of the study, patients were followed up telephonically up to 6 

months post treatment. This was assumed as a proxy measure to explore any treatment failure or 

relapse as stated in the study design above.  

Furthermore, the recruitment of participants receiving different TB medication (standard and/or 

experimental) in this study causes cohort heterogeneity. Therefore, the detection of these surrogate 

markers could be affected by the type of drug combinations the patient is receiving. We did not aim to 

explore differing mechanism of action within experimental arms rather in comparison with the control 

regimen.  

Bearing this in mind, the reported dynamics may not present the reality in routine care where only one 

regime is in use. On the other hand, this heterogeneity is also a plus for the study, since we have been 

be able to assess whether the studied surrogate markers reflect those differences adequately.  Lastly, 

absence of HIV infected patients in the Tanzanian sites as explained above further precludes the 

generalisation of these findings in real setting as stated above, TB and HIV overlap geographically.   
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6 Conclusion 

We have presented that high rifampicin at a dosage of 35mg/kg body weight decreases the time to 

negative culture conversion in MGIT medium faster than the control. The utilization of MBLA as a rapid 

means to monitor TB treatment response bears a great  potential to contribute in TB patient 

management eventually control. Unlike culture, there are no additional tests to confirm any MBLA 

results, it provides response to TB treatment in real time without being affected contamination 

challenges while offering long time follow up of TB patients. However, studies including implementation 

in routine care, exploring  MBLA as a study end point in trials and evaluation in childhood TB merit 

further consideration, as well as studies validating MBLA against the true clinical endpoint, relapse or 

failure. Eventually, application of MBLA could offer TB diagnosis and monitoring opportunities to make  

same day clinical judgements at an individual patient and clinical trial level. 
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