
A non Gaussian model for the lateral

dose evaluation in hadrontherapy:

development and Treatment Planning

System implementation

Valentina Elettra Bellinzona

Pavia, München

2016

elettra.vbell@gmail.com




A non Gaussian model for the lateral

dose evaluation in hadrontherapy:

development and Treatment Planning

System implementation

Valentina Elettra Bellinzona

A thesis submitted for the degree of

PhilosophiæDoctor (PhD) for Università degli Studi di Pavia
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Abstract

Challenging issues in Treatment Planning System for hadrontherapy are

the accurate calculation of dose distribution, the reduction in memory

space required to store the dose kernel of individual pencil beams and the

shortening of computation time for dose optimization and calculation.

In this framework, the prediction of lateral dose distributions is a topic of

great interest [2] because currently, a Double Gaussian parametrization

[3],[4] is typically used as approximation although other parameteriza-

tions are also available [5],[6],[7]. The best accuracy for this kind of

calculations can be obtained by Monte Carlo (MC) methods [8], at the

expense of a long computing time.

As alternative, we propose a flexible model based on the full Molière the-

ory for Coulomb multiple scattering [9]. The use of the original equations

of the theory allows to remove free parameters for the electromagnetic

interaction with the advantage of full accuracy with a reasonable increase

in the computing time. The contribution of the nuclear interactions are

also fully taken into account with a two-parameters fit on FLUKA sim-

ulation [10],[11] and this part is added to the electromagnetic core with

a proper weight [12]. The model has been validate with MC simulations

and with Heidelberg Ion-Beam Therapy Center (HIT) experimental data.

In a second step, the model has been inserted in a research Treatment

Planning System CERR - A Computational Environment for Radiother-

apy Research [13],[14] at the Ludwig-Maximilians-Universität München,

to compare its result against the ones obtained with the currently used

Double Gaussian parametrization to evaluate the lateral energy deposi-

tion.

A quantitative comparison has been done to evaluate the difference be-

tween a treatment plan obtained using the Double Gaussian parametriza-

tion and a treatment plan obtained using the model calculation, in the

cases of a single beam and a full treatment plan in homogeneous water

phantom and also a plan is performed in presence of inhomogeneities.



Extended outlines

Chap.1 presents a general introduction to hadrontherapy, with a focus

on the problem of the calculation of the lateral beam profile, introducing

its importance in clinical practice.

Chap.2 describes an original model based on Molière theory for Coulomb

multiple scattering [9], to calculate the lateral beam profile. First, the

pure electromagnetic part is explained, whit its validation with MC cal-

culation, followed by the explanation of how the nuclear part is added

to obtain a model that takes into account all the relevant interactions

in proton-therapy contest. Hereafter, the model validation against MC

simulations and experimental data is presented. At the end, the gener-

alization at the two dimensional case is presented with the application

of the theory of non-Gaussian cases.

Chap.3 introduces the treatment planning systems workflow, preceded

by an overview of the clinical volumes definition and clinical require-

ments. A focus is given on CERR - A Computational Environment for

Radiotherapy Research [13],[14] treatment planning systems, explaining

its characteristics and the dose evaluation process. Within this, a special

attention is paid to the lateral dose calculation and the model implemen-

tation process. The dose optimization process and the general treatment

quality quantifications follow. At the end, the comparison between the

Geant4 and FLUKA simulation results is given, since the model has been

validated on FLUKA simulation and CERR databases are built bases on

Geant4 simulation results.

Chap.4 aims to present the results obtained by implementing our model

in the CERR workflow. The model takes as input energy and depth auto-

matically from the TPS workflow, and evaluates the lateral beam profile

requires for the treatment. The dose obtained using this method is com-

pared with the one obtained using the currently used Double Gaussian

approximation.

First, the case of a single beam in homogeneous water phantom is studied

for several energies and depths, and the results are validated on Geant4

simulations. A quantitative analysis is performed using a Kolmogorov-

Smirnov test and a lateral width evaluation. After, a full treatment plan

is studied with the same tests of the previous case, and an additional

analysis of the residuals and the DVH are also shown. To conclude,



an inhomogeneous phantom is considered, studying the impact of the

presence of fat and bone tissues on the lateral profile calculation.



Zusammenfassung

Eine der anspruchsvollsten Herausforderungen in der Bestrahlungspla-

nung von Ionenstrahltherapie ist die präzise Berechnung der Dosisverteilung

im Patienten, die Reduktion des Speicherbedarfs der Dosiskernel von

einzelnen Pencil-beams, sowie die Verkürzung der Rechenzeit für Do-

sisoptimierung und berechnung [2]. In diesem Rahmen ist die Berech-

nung der lateralen Protonen-Dosisverteilungen ein Thema von großem

Interesse, da momentan eine Double Gaussian Parametrisierung [3],[4]

als Näherung verwendet wird, obwohl weitere Parametrisierungen ex-

istieren [5],[6],[7]. Die größte Genauigkeit für diese Art von Berech-

nungen kann mit Monte Carlo (MC) Simulationen erzielt werden [8],

jedoch auf Kosten langer Laufzeiten. Als Alternative wird in dieser Ar-

beit ein flexibles Modell vorgeschlagen, welches auf der vollständigen

Moliere-Theorie für Multiples Coulomb Streuung basiert [9]. Die Ver-

wendung der originalen Gleichungen der Theorie erlaubt die Reduktion

der freien Parameter für die elektromagnetischen Wechselwirkungen, was

den Vorteil der vollen Genauigkeit mit einer moderaten Erhöhung der

Rechenzeit vereint. Der Beitrag von nuklearen Wechselwirkungen wird

mit einem zwei-Parameter Fit an FLUKA Simulationen [10],[11] berück-

sichtigt und dieser Anteil wird dann zu dem elektromagnetischen Core

mit einer Gewichtung addiert [12]. Das Modell wurde in das Forschungs-

Bestrahlungsplanungssystem CERR A Computational Environment for

Radiotherapy Research [13],[14] implementiert, um die Ergebnisse bei der

lateralen Dosis-Deposition mit der momentan verwendeten Double Gaus-

sian Parametrisierung zu vergleichen. Ein quantitativer Vergleich wurde

durchgeführt zwischen den Bestrahlungsplänen die einmal mit der Dou-

ble Gauss Parametrisierung und einmal mit dem vorgeschlagene Mod-

ell berechnet wurden. Das untersuchte Szenario beinhaltete Pläne die

entweder für einzelne Strahlen verschiedener Energien in einem homo-

genen Wasserphantom, ein voller Bestrahlungsplan in einem homogenen

Wasserphantom, sowie einzelne Strahlen verschiedener Energien für ein

Phantom mit Inhomogenitäten berechnet wurden.



Abstract

Temi di grande interesse nell’ambito dello sviluppo dei Software per il

calcolo di piani di trattamento per adroterapia (Treatment Planning Sys-

tem (TPS)), sono la riduzione dei tempi computazionali del calcolo e

dell’ottimizzazione della dose, e la riduzione della memoria richiesta per

l’archiviazione della dose di ogni singolo fascio (pencil beam).

In questo contesto, la valutazione della distribuzione laterale della dose

è un argomento di grande interesse [2] in quanto attualmente viene uti-

lizzata una funzione a doppia gaussiana [3],[4] come approssimazione,

che risulta non completamente accurata. Altre parametrizzazioni sono

disponibili [5],[6],[7]; anch’esse rimangono però approssimazioni. La

migliore accuratezza per questo tipo di calcolo della dose viene ottenuta

utilizzando le tecniche Monte Carlo (MC)[8] che richiedono però tempi

computazionali molto lunghi.

In alternativa, questo lavoro propone un modello flessibile e analitico

basato sulla teoria completa di Molière per la valutazione dello scatter-

ing multiplo di Coulomb [9]. L’utilizzo delle equazioni originali di questa

teoria permette di rimuovere ogni parametro libero per il calcolo delle in-

terazioni elettromagnetiche, ottenendo cos̀ı il vantaggio di un’accuratezza

pari a quella del metodo MC ma con tempi di calcolo di molto inferi-

ori. Il contributo delle interazioni nucleari è considerato tramite un fit,

con soli due parametri, sulle simulazioni MC FLUKA [10],[11]. La fun-

zione viene aggiunta alla parte analitica elettromagnetica assegnando ad

entrambe un fattore di peso di senso fisico, calcolato appropriatamente

[12]. Il modello cos̀ı ottenuto è stato validato con simulazioni MC e con

dati sperimentali del centro di adroterapia di Heidelberg, Heidelberg Ion-

Beam Therapy Center (HIT).

Successivamente, il modello è stato inserito nel TPS di ricerca CERR - A

Computational Environment for Radiotherapy Research [13],[14] presso

l’università di Monaco Ludwig-Maximilians-Universität München, per

confrontare i risultati ottenuti valutando piani di trattamento che utiliz-

zano l’approssimazione gaussiana per il calcolo della dose, con piani di



trattamento che utilizzano il modello per il calcolo della dose stessa.

Uno studio quantitativo è stato svolto considerando i casi di: singoli fasci

di energia fissata in un fantoccio di acqua omogeneo, un piano di tratta-

mento completo (come caso reale della pratica clinica, che considera più

fasci di diverse energie e posizioni) in un fantoccio di acqua omogeneo,

e infine i casi di singoli fasci a energie fissate in fantocci che presentano

disomogeneità.



Chapter 1

Introduction to the lateral

spread of an hadrontherapy

beam

1.1 Particle therapy

14.1 million: The number of new cancer cases diagnosed in 2012 worldwide.

8.2 million: The number of cancer deaths in 2012 worldwide.

21.7 million: The number of new cancer cases expected to be diagnosed in 2030.[15]

Particle radiotherapy treatments constitute about the 1% of the total number of

treatments for patients receiving radiotherapy worldwide. In the recent past, there

is a significant interest by all groups involved in this technology, that is emerging as

one of the prime modality of cancer treatment [16]. From 1954 through 2014, a total

of 137,179 patients across the world have been treated with all forms of particle

therapy (Fig.1.1) since it was first started in Berkeley at the Lawrence Berkeley

Laboratories (LBL) in 1954.

Why particle therapy?

The answer is based on two main characteristic of ions, one is on the physics be-

haviour and the second on the radio-biological aspect.

High-energy beams of charged nuclear particles like protons and heavier ions offer

significant advantages for the treatment of deep-seated local tumours in comparison

to conventional megavolt photon therapy. Their physical depth-dose distribution in

tissue is characterized by a small entrance dose and a distinct maximum near the

end of range with a sharp fall-off at the distal edge, called Bragg peak (see Sec.1.2).

Taking full advantage of the well-defined range and the small lateral beam spread,

modern scanning beam systems allow delivery of the dose with millimetre precision.

9
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HADRONTHERAPY BEAM

Figure 1.1: Facilities in clinical operation and the number of patients treated from

1955 to 2014.

In addition, projectiles heavier than protons such as carbon ions exhibit an enhanced

biological effectiveness in the Bragg peak region caused by the dense ionization of in-

dividual particle tracks, that cause an increased amount of cluster damages resulting

in reduced cellular repair while LET1 is increasing. This makes them particularly

attractive for the treatment of radio-resistant tumours localized near organs at risk

[18].

More specifically, the physical advantage is due to the characteristic depth−dose pro-

file, analytically based on the Bethe-Bloch formula described by the Bragg curve,

named after Sir William Henri Bragg who investigated the slowing down of α par-

ticles in air [19]. Many years later Wilson [20] proposed the application of protons

and heavier ions for precision exposures in radiotherapy. A comparison of depth-

dose profiles for electromagnetic (radiation X-rays and mega-volt photon beams)

and particle beams (protons and carbon ions) is reported in Fig.1.2.

For high-energy photons mostly used in conventional therapy nowadays the ini-

tial dose build-up, mainly caused by forward scattered Compton electrons, shifts

the peak dose by a few centimetres away from the surface of the patient’s body,

thereby improving the target-to-entrance dose and sparing the radiosensitive skin.

In contrast to photons, the dose profiles of protons and heavier ions are character-

ized by a distinct narrow peak at the end of their path. The position of this peak

can be precisely adjusted to the desired depth in tissue by changing the kinetic en-

ergy of the incident ions, by summing several peak a highly conformal dose region

1Linear energy transfer (LET) is the average amount of energy a particular radiation imparts

to the local medium per unit length; ie: Energy per Length [17].

10



1.1 Particle therapy

Figure 1.2: Energy deposited by different particles in function penetrate depth. Pro-

tons and carbon ions deposit most of their energy at a specific depth, with the Bragg

Peak curve, whereas photons used in conventional X-rays tend to leave energy all along

their path [1].

can be achieved the spread-out Bragg-peak with the possibility of covering (even

small) tumour volumes with high accuracy. But heavy ions (unlike protons) exhibit

also a characteristic dose tail behind the Bragg peak, which is caused by secondary

fragments i.e. mainly projectile fragments, produced in nuclear reactions along the

stopping path of the ions, resulting in a complex radiation field [21].

Under the biological point of view [18], protons and heavier ions have different radio-

biological effectiveness1 (RBE), protons have a similar biological effect as photons

at the same absorbed dose in the plateau region, and higher RBE on the peak re-

gion that anyway remains lower respect to the one of heavy ions; them show higher

effectiveness ranging from low RBE values in the plateau region to a significant

enhancement in the Bragg peak [22]. The reason for this higher RBE is the high

ionization density produced by the carbon ion as it traverses a cell, and this results

in more disruptive damage to the DNA double helix.

Furthermore, heavy ions also have a lower Oxygen-Enhancement Ratio2 (OER). Both

the higher RBE and the lower OER, especially in and around the Bragg peak, can

1 The relative biological effectiveness (RBE) is the ratio of biological effectiveness of one type

of ionizing radiation relative to another, given the same amount of absorbed energy. The RBE is

an empirical value that varies depending on the particles, energies involved, and which biological

effects are deemed relevant. It is a set of experimental measurements.

RBE = DX
DR

where DX is a reference absorbed dose of radiation of a standard type X, and DR is the absorbed

dose of radiation of type R that causes the same amount of biological damage. Both doses are

quantified by the amount of energy absorbed in the cells.
2 The Oxygen-Enhancement Ratio (OER) is defined as the ratio of radiation doses during lack

of oxygen compared to no lack of oxygen for the same biological effect.

OER = Radiation dose in hypoxia
Radiation dose in air

.
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be a considerable advantage in tumor cell killing, particularly for resistant tumor

cells.

1.2 Dose deposition and lateral beam shape

Analytically, the Bragg curve is the results of three interactions processes [17]

• stopping, that cause the slow down of the particles trough ionization process.

• scattering, that mainly affect deflection of the beam from the original direction.

The most relevant process is the multiple Coulomb scattering (MCS).

• nuclear interactions that cause the fragmentation of the target (and of the

projectile in the case of particles heavier than protons) and result in a contri-

bution to the lateral beam broadening and a nuclear fragmentation tail after

the peak. In addition this effect cause also a reduction of the beam fluence.

Focusing on the lateral beam shape (on the plane perpendicular to the beam axis),

the previous cited effects result in a broader shape, compared to the one expected

from the one given by pure electromagnetic calculations.

Figure 1.3: Calculated beam spread for protons and 12C ions in a typical treatment

beam line. The particle beam is parallel with an initial FWHM (Full Width at Half

Maximum) of 5 mm, and passes through the nozzle, including a thin vacuum window

and beam monitors and enters a water absorber patient at 1 m distance from nozzle

exit.

Figure courtesy of U. Weber, Rhön-Klinikum AG

The angular deflection is mainly due to the Multiple Coulomb Scattering (MCS).

In a first approximation, the MCS angular distribution is nearly Gaussian, because

12



1.2 Dose deposition and lateral beam shape

its the sum of many small random deflections; for this reason, the most simple solu-

tion nowadays is to approximate it with a Gaussian or a double Gaussian function

(See Chap.3)

However, its not exactly Gaussian: the theory does not really apply because

large single scatters in the target, though rare, are not quite rare enough [23]. The

complete angular distribution has a Gaussian core with a single scattering tail.

The theoretical challenge is to predict the exact form of the MCS angular distribution

and to predict its characteristic width as a function of proton energy as well as

scattering material and thickness.

Several theories have been published from 1930s [24],[25],[26],[27] but so far the most

elegant and accurate theory for incident protons is that of Molière [28] written in

German and improved by Bethe [29]; a remarkable effort point of this theory [3] is

its validity for any kind of particles and targets (see Chap.2 ).

In clinical practice, a sharp lateral penumbra is essential for sparing critical organs

adjacent to the target volume [17]. This happens to be one of the most attractive

features of the proton beam. The lateral penumbra achievable in the patient depends

on the design of the beam delivery system and also the nature of interaction between

protons and tissues in the patient. For scattering, the lateral beam penumbra is

affected by the source size and source position, the position of the aperture, the

range compensator, the air gap between the compensator and patients body surface,

and naturally, the depth of tissue that the beam must penetrate before reaching the

target volume.

So, the possibility of modelling and predict the lateral spread of a proton beam is

indeed a topic of actual interest, in order to chose the best dose set up that has to

be delivered to the patient, and to ensure that the delivered dose is equal to the

planned one.
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Chapter 2

A non Gaussian model for

lateral displacement calculation

In this chapter a new computational model for the calculation of the lateral deflection

of a proton pencil beam in water will be presented.

The model is based on the full Molière theory, taking into account the energy loss and

the effects of mixtures and compounds. Concerning the electromagnetic part, the

model has no free parameters and is in very good agreement with the FLUKA Monte

Carlo (MC) code. The effects of the nuclear interactions are parametrized with a

two-parameters tail function, adjusted on MC data calculated with FLUKA. The

model, after the convolution with the beam and the inclusion of detector response,

is in agreement with recent proton data in water from HIT. The model gives results

with the same accuracy of the MC codes based on Molière theory, with a much

shorter computing time [9].

In the first section of this chapter, the pure electromagnetic Molière theory will be

presented, considering also the generalization to compound and mixture and the

energy loss process. Thereafter, the explanation of how nuclear interactions are

taken into account will follow. The validation of the model’s prediction results will

be given comparing them with Monte Carlo simulation and experimental data. To

complete the treatise, a generalization in 2D plan will be evaluated.
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2. A NON GAUSSIAN MODEL FOR LATERAL DISPLACEMENT
CALCULATION

2.1 Electromagnetic core: Molière theory

Particles passing through matter suffer repeated elastic Coulomb scattering from

nuclei although with a lower probability. Considering that, a considerable number

of nuclei have a greater mass than the incoming particles, the energy transfer is

negligible, but each scattering center adds a small deviation to the incoming particles

trajectory. Even if this deflection is small the sum of all the contribution adds a

random component to the particle’s path which proceeds with a zig-zag path Fig.2.1.

As a result, an incoming beam after a thickness of material shows a divergence

greater than the initial one.

Figure 2.1: Effect of Multiple Coulomb Scattering

Three situations can be considered:

1. Single scattering. When the thickness is extremely small and the probability

to have more than one interaction is negligible. This situation is well described

by the Rutherford formula [30].

2. Plural scattering. When the number of Coulomb scattering increases but re-

mains under few tens of interactions [31].

3. Multiple scattering. When the thickness increases and the number of inter-

actions become high; the angular dispersion in a first approximation can be

modeled as Gaussian.

In an hadrontherapy contest the most common situation is for sure the multiple

scattering, since the considered depths are within human body scale. It is the main

process that causes the beam broadening and the lateral beam shape, so it is im-

portant to carefully evaluate it since it mainly affects the final lateral beam shape

(with nuclear tails addiction, see 2.2) in a treatment plan.

The expression of angular distribution is not known exactly in a closed functional
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2.1 Electromagnetic core: Molière theory

form. However, some theories derive a set of formulae, usually obtained in the frame-

work of transport theory, that can be computed numerically. Here we use the MCS

Molière’s theory.

Many numerical analyses and comparisons with data ([32], [33]) have shown that

the Molière theory [28] describes very well the MCS for protons at energies below

1GeV and that in this energy range it is completely equivalent to others more recent

approaches [34].

In order to provide a mathematical formulation of the problem, let us initially

ignore the energy loss of the incident particle and assume that the target is of a

homogeneous material. The theory is based on the standard transport equation, the

Bessel transforms and the small angles approximation (sin θ v θ).

In order to define the problem, first the two main angles are introduced as (see

Fig.2.2):

• χ, which stands for the net angle after a single scattering event

• θ, which is the total angle after multiple scattering events occur traversing a

thickness t

If z is the incident beam direction, the MCS of a particle passing through a target

of thickness t can be expressed as a function of the particle angle θ, with respect to

z.

17
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CALCULATION

Figure 2.2: Schematic representation of the two main angles of the theory, χ and θ.

The target is described as an homogeneous media of thickness t(cm) and volume

number density N(atoms/cm3).

Now, the standard transport equation is applied to the number of particles in

the angular interval dθ after a path of t:

∂f(θ, t)

∂t
= −Nf(θ, t)

∫
σ(χ)χdχ + N

∫
f(|θ̂ − χ̂|, t)σ(χ)χdχ (2.1)

where σ(χ)χdχ is the differential scattering cross section into the angular interval

dχ centred around the angle χ, |θ̂ − χ̂| is the vector in the plane that represents

the direction of the particle before the last scattering and dχ̂ can be expressed as

dχ̂ = χdχdφ
2π where φ stands for the azimuth of the vector dχ in the plane.
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2.1 Electromagnetic core: Molière theory

The function is separable in polar coordinates and is circularly symmetric, so to

solve Eq.2.1 Bessel transforms are applied:

f(θ, t) =

∫ ∞
0

ηdηJ0(ηθ)F (η, t) (2.2)

obtaining

F (η, t) =

∫ ∞
0

θdθJ0(ηθ)f(θ, t) (2.3)

where J0(ηθ) is the Bessel function of zero order.

The Bessel transform of order zero is essentially the 2-dimensional Fourier transform

of a circularly symmetric function. With no loss of generality, the two dimensional

space can be described in polar coordinate system (r, θ), therefore the Fourier trans-

form is now written in these polar coordinates as the integral on θ of the Bessel

function:

F (k) =

∫ ∞
r=0

dr

∫ 2π

θ=0
dθf(r, θ)eik̂r̂ =

∫ ∞
r=0

dr

∫ 2π

θ=0
dθf(r)eikr cos(θ) (2.4)

The relation between F (k) and f(r) in terms of J0 is obtained by integrating on θ:

F (k) = 2π

∫
rdrf(r)J0(kr) (2.5)

f(r) =
1

2π

∫
kdkF (k)J0(kr) (2.6)

Now the convolution theorem can be applied on the Bessel transform; it ensures

that the Bessel transform of the convolution of two functions is equal to the product

of the Bessel transforms of the functions. Let h(y) be the convolution between two

generic functions f(x) and g(x):

h(y) = f(x) ∗ g(x) =

∫
f(|ŷ − x̂|)g(x)dx̂ (2.7)

the Bessel Transform of h(x) is:

H(η) =

∫
dxdyf(|ŷ − x̂|)g(x)e−2πi(ŷ·η̂) (2.8)

by defining t̂ = x̂− ŷ Eq.2.8 becomes:

H(η) =

∫
dxg(x)

(∫
dtf(t)e−2πi(x̂+t̂)·η

)
(2.9)

=

∫
dxg(x)e−2πi(x̂·η̂)

(∫
dtf(t)e−2πi(η̂·t̂)

)
(2.10)

= G(η)F (η)

Based on the Molière’s calculation, the following identity can be expressed:∫
f(|x̂− ŷ|)g(y)dŷ =

∫ ∞
0

G(y)F (y)J0(xy)dy (2.11)
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The result of the convolution theorem can be applied to the second term of Eq.2.1:

∂F (η, t)

∂t
= −NF (η, t)

∫
σ(χ)χdχ+NF (η, t))

∫
σ(χ)J0(ηχ)dχ̂ (2.12)

= −NF (η, t)

∫
[1− J0(ηχ)]σ(χ)χdχ

and integrating t, the following expression is obtained

F (η, t) = eΩ(η)−Ω0 (2.13)

with

Ω(η) = Nt

∫ ∞
0

σ(χ)χdχJ0(ηχ) (2.14)

and Ω0 = Ω(0) is the total number of collision.

Finally the solution of Eq.2.1 is obtained inserting Eq.2.2 in the antitransform of

2.13

f(θ, t) =

∫ ∞
0

ηdηJ0(ηθ)e[−Nt
∫∞
0 σ(χ)χdχ(1−J0(ηχ))] (2.15)

It is mandatory to point out that this solution is exact for any scattering law under

the assumption of small angle approximation.

At this point, referring to Eq.2.15, Molière sets

Ntσ(χ)χdχ =
2χ2

cχdχq(χ)

χ4
(2.16)

where q stands for the ratio between the real and the Rutherford scattering, and χc

is the characteristic single scattering angle, which is one of the two main parameters

of this theory, it is connected to the RMS of the scattering angle and it will be

described hereafter.

The equivalence in Eq.2.16 is based on the consideration that the σ, for scattering

cross section from atoms, decreases rapidly for large χ and follows the Rutherford

law 1
χ4 , whereas is complicated by the electron screening effect, only for angles of

the order of:

χ0 =
}
p · a

=
}
p

Z1/3

0.885a0
∼ 4.216 · 10−6Z

1/3

p
(2.17)

where }/p = λe = 2, 43 · 10−12 is the de Broglie wavelength of electrons, a the Fermi

radius, Z the atomic number number of the target1 and a0 ≡ }2
mec2

= 0.52918 ·
10−8cm, the Bohr radius. The ratio q(χ) is 1 for large χ and decreases to zero at

χ = 0 where the main drop occurs.

1In all this work, capital letter for atomic and mass number will be referred to the target, instead

letters will refers to the incident particle.
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2.1 Electromagnetic core: Molière theory

2.1.1 Derivation of the crucial parameters

The first factor is the characteristic single scattering angle χc introduced in Eq.2.16;

it represents the independent angle part of the Rutherford cross section. The total

probability of single scattering through an angle greater than χc is equal to one (that

means that it takes into account the RMS of the angle).

Its expression can be written as

χ2
c =

4π
(
e2

}c

)2
(}c)2%Z2z2

p2β2
(2.18)

where % = Nt is the surface number density.

By introducing the target mass thickness x = ρt (g/cm2) and the equivalence Nt =

NAx/A with the usual meaning of the symbols, this equation can be rewritten as

χ2
c =

4πNA
x
AZ

2z2e4

p2v2
(2.19)

= 0.1569 · 10−6 x

A

Z2z2

p2β2

with p (GeV/c) is the momentum and e2/}c ∼ 1/137 is the fine structure constant.

Now, taking the logarithm of Eq.2.13 and inserting Eq.2.16 in Eq.2.14 the following

formula is obtained:

− lnF (η, t) = Ω0 − Ω(η) (2.20)

= 2χ2
c

∫ ∞
0

χ−3dχ [1− J0(χη)] q(χ)

Here Molière made a fundamental consideration; he realized that this integral can

be calculated considering that the important values of η will be at least of the order

1/χc and q becomes appreciably different from 1 only for χ ∼ χ0 � χc where χ0

is the screening parameter of Eq.2.17. This leads to the possibility of splitting the

integral at certain angle k like:

χ0 � k � 1/η ∼ χc (2.21)

and so, in Eq.2.20,∫ ∞
k

χ−3dχ [1− J0(χη)] q(χ) =

∫ ∞
k

χ−3dχ [1− J0(χη)] · 1

and for the other part of the integral
∫ k

0 the argument of the Bessel function is small

and it is performed the substitution 1− J0(χη) = 1
4χ

2η2.

With this considerations, Molière defined the second main parameter of this theory,

the characteristic screening angle χa as:

− lnχa = lim
k→∞

[∫ k

0
q(χ)dχ/χ+ 1/2− ln k

]
(2.22)
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From this definition, Molière obtained [29]:

Ω0 − Ω(η) =
1

4
χ2
cη

2

[
b− ln

(
1

4
χ2
cη

2

)]
(2.23)

=
1

2
χ2
cη

2 (− ln(χaη) + 0.616) (2.24)

where b represents the natural logarithm of the effective number of collisions in the

target, and is defined as

b = ln

(
χ2
c

χ2
a

− 0.154432

)
(2.25)

= ln Ω0 − 0.154432

In order to simplify Molières fundamental equation 2.15, a new variable y = ηχc is

defined, and Eq.2.23 is inserted in the Eq. 2.13:

f(θ)θdθ =
θdθ

χ2
c

∫ y=Γ

0
dyJ0

(
θ · y
χc

)
exp

[
−y

2

4

(
b− ln

(
y2

4

))]
y (2.26)

This is called Molière’s transformed equation. The motivation for evaluating the

integral only until y = Γ can be found in [29].

One fundamental result of Molière’s Theory is that the scattering is described by

a single parameter: the screening angle χa and the angular distribution depends

only on the ratio χa/χc. Also, the distribution function f(θ) is independent of the

shape of the differential cross section dσ, and only the final form of the function

f(θ) depends on the form of σ(θ). The general assumption is

%σ(χ) = 2χ2
cQ(χ) (2.27)

where Q(χ) is the angular part of σ(χ).

The explicit form of Q(χ) can be obtained assuming a screened Coulomb potential

in the Born approximation [35]:

V (r) = (
zZe2

r
e−µλ0r) (2.28)

where λ0 = Z1/3

0.468·10−8 is the reciprocal of the Fermi radius a[cm], and a0 = }2
mec2

=

0.52918 · 10−8 cm is the Bohr radius.

So,

Q(χ) =
1

(χ2 + χ2
a)

2
=

1

(χ2 + (µχ0)2)2
(2.29)

within this formula, the electrons screening is taken into account by χa.

The main parameters are related as in the following equation:
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2.1 Electromagnetic core: Molière theory

χ2
a = µ2χ2

0 (2.30)

µ2 =

(
1.13 + 3.76

z2Z2

1372β2

)
To obtain an easier evaluation of f(θ), Molière replaces the exponential factor of

V (r) with a function, derived from the Thomas-Fermi theory given by a sum of

three exponentials [29]. Furthermore, to determine the screening angle χa, Molière

used his original calculation of the single scattering by a Thomas-Fermi potential

and the solution was realized by means of the Wentzel−Kramers−Brillouin method1

instead of Born approximation (the final formula for the differential cross section

is numerical and only approximate). Once the final form of the differential cross

section has been obtained, to evaluate the total number of collisions, Molière makes

two considerations:

1. Since the scattering angle χc is connected to the RMS of the scattering angle,

taking into account the integral of Eq.2.27 and 2.29, the number of collisions

in a finite target leading to deflections in a given range of χ is∫ 2π

0

∫ ∞
χc

σ(χ)χdΩ = 1 (2.31)

This quantity can be easily evaluates if χa � χc, which is true for any physical

target thickness.

2. In Eq.2.29, χa is a cut-off angle, due to screening of nuclear charge by orbital

electrons; that, for distant collisions, eliminates the divergency as the 1/χ4

law, .

So for large χ the scattering from atoms is characterized by the rapid decrease

of σ, and it becomes complicated if χ ∼ χ0

So, the total number of collisions is given by:

%

∫ ∞
0

σ(χ)χdχ =

∫ ∞
0

2χ2
c

χ

(χ2 + χ2
a)

2
dχ (2.32)

=
χ2
c

χ2
a

≡ Ω0 (2.33)

The main points of this theory are the following:

1 Wentzel−Kramers−Brillouin (WKB) is a method for finding approximate solutions to a time-

independent one-dimensional differential equation with spatially varying coefficients.
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• the scattering is described by just a single parameter, the screening angle χ2
a

• the angular distribution depends only on the ratio between χa/χc, the screen-

ing angle to the scattering angle

• The distribution function f(θ) is insensitive to the differential cross section dσ

provided that dσ goes over into Rutherford law for large angles.
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2.1.2 Projected angle distribution

Based on these results, the projected angle θx can be evaluated to predict the par-

ticles distribution on the projected plane, perpendicular to the beam direction. By

geometrically projecting Molières transformed equation 2.26, the following distribu-

tion is obtained [36]:

f(θx)dθx =
dθx
πχ2

c

∫ Γ

0
cos

(
θxy

χc

)
exp

[
−y

2

4

(
b− ln

(
y2

4

))]
dy (2.34)

and, in the small angle approximation, the relation between the projected angles

in the traverse plane xy and the spatial angle is a geometric construction

θ =
√
θ2
x + θ2

y (2.35)

Now, setting x = ϑ2, y is changed in u = B1/2y, and the distribution function is

expanded in a power series in 1/B as

f(θ)θdθ = ϑdϑ
[
f (0)(ϑ) +B−1f (1)(ϑ) +B−2f (2)(ϑ) + ...

]
(2.36)

and using characteristic multiple scattering angle

f(θ) =
1

2
· 1

2πθ2
M

[
f (0)(ϑ) +B−1f (1)(ϑ) +B−2f (2)(ϑ) + ...

]
(2.37)

where:

• f(ϑ)n is expressed as

f(ϑ)n =
1

n!

∫ inf

0
uduJ0(ϑu)e−

u2

4

[
u2

4
ln

(
u2

4

)]n
(2.38)

• f (0)(ϑ) is a Gaussian distribution of θM standard deviation

f (0)(ϑ) = 2e−ϑ
2

= 2 exp

(
− θ

χ
√
B

)2

= 2 exp

(
− θ√

2θM

)2

(2.39)

• f (1)(ϑ) has the following form

f (0)(ϑ) = 2e−x(x− 1)[Ei(x)− lnx]− 2(1− 2e−x) (2.40)

where Ei is the exponential integral function.

This functions have a behaviour of the type

ϑ > 2⇒ f (1)(ϑ) > f (0)(ϑ)
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instead

forϑ >> 1 ⇒ f (0)(ϑ) ∼ −e (2.41)

⇒ f (1)(ϑ) ∼ 2ϑ−4

⇒ f (2)(ϑ) ∼ ϑ−(2n+ 2)

This last statement leads the series 2.37 to converge even faster at large ϑ than at

little ones; so f (0)(ϑ) + B−1f (1)(ϑ) is a good approximation for the distribution at

any angle.

Since x and y are independent, and the media is homogeneous, it can be assumed

without losing generality, that θx and θy have the same distribution (so, the same

mean square) and the mean square angles relation is

〈θ2〉 = 2〈θ2
x〉 (2.42)

Considering that the distribution in Eq. 2.34 can be divided into a Gaussian

core shape and an additional tail term, in the precedent equation a Gaussian RMS

can be introduced as:

θR ≡
√
〈θ2〉 = χc

√
B (2.43)

where B is the solution of the equation

B − lnB = b (2.44)

and it can be approximated with the Scott formula [36] based on the total number

of collisions obtained in Eq.2.32:

B = 1.153 + 1.122 ln Ω0 (2.45)

This approximation is valid within 2 − 3% and so, B is linearly related to b in the

region of interest.

With these relations, the connection between the RMS of the space angle and

the projected one can be written as:

θxR =
θR√

2
=
χc
√
B√

2
(2.46)

For a matter of usefulness, the total angular distribution is expressed in terms

of a reduced angle variable ϑ that is the angle measured in unit of χc
√
B

ϑ =
θ

χc
√
B

(2.47)

.
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2.1.3 Compound and mixture generalization

Since the theory is valid for any kind of particle and media, let us generalize this

equations for the case of mixtures and compounds, and in particular for the example

of a water molecule (a motivation to chose water molecule as reference material

to validate the model, is that currently in clinical practice each human tissue is

expressed in water equivalent tissue). The equation of χc and χa now will extended

from a single atom to a sum of ni constituents of Zi atomic numbers and Ai atomic

mass. So, for a water molecule

ZM =
∑
i

niZi = 10 , (2.48)

AM =
∑
i

niAi = 18

Equation 2.19 becomes:

χ2
c =

∑
i

χ2
ci = χ2

W

x

p2β2
(2.49)

where χ2
W is the the energy loss independent part (see Sec.2.1.4) given by

χ2
W = 0.1569 · 10−6 z

(2Z2
H + Z2

O)

AM
(2.50)

with ZH = 1, ZO = 8.

The generalization of χa is not so easy because the logarithmic function of the

Bessel transform of the cross section, i.e. that gives the effective number of events,

depends both on lnχ2
a and χ2

c as reported in Eq.2.23:

lnχ2
a =

1

χ2
c

∑
i

χ2
ci lnχ2

ai (2.51)

where χ2
c and χ2

ci are defined in Eq.2.49, χ2
ai are calculated from 2.59 substituting

Z = Zi, i = H, O, ZH = 1, ZO = 8.

If a molecule is considered, another correction has to be performed; effectively the

incident particle is scattered by atomic electrons as well as by the screened Coulomb

field of the nucleus. To consider this, the Fano’s solution [33],[37] is applied, which

requires the modification of equation 2.51 as:

lnχ2
a =

1

χ2
c

∑
i

χ2
ci

(
lnχ2

ai −
Di

Zi

)
(2.52)

with (2.53)

Di = ln

 1130

Z
4/3
i

(
1
β2 − 1

)
+ ui −

β2

2
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where Di is the Fano correction [36],[37] uH = 3.6 and uO = 5.0 (these values

are calculated based on [37]).

At this point the total angular distribution of particles passed through a thickness

x has been obtained and a closed formula is given even for the projected angle, as

for the spatial angle.

This result is valid for any kind of mixture and component. Now it has to be

considered that in hadrontherapy the above-mentioned thickness is a considerable

path in human body, so this ideal equations have to be modified to take into account

the energy loss process.

2.1.4 Energy loss

To include the energy loss process in the theoretical formulation, one has to consider

that both χc and χa parameters explicitly depend on the quantity pβ. So, the

problem can be solved if one finds the dependence of these quantities on the water

thickness x traversed. Defining p(x) and β(x) the current values at the depth x in

the target Eq.2.49, we have:

χ2
c = χ2

W

∫ x

0
dt

1

p2(t)β2(t)
(2.54)

The value of p(x)β(x) for charged particle of initial momentum pβ, after traversing

a thickness x, is given by [38]:

(p(x)β(x))2 = p2β2
(

1− x

R

)k
(2.55)

where R is the range for that particle of incident momentum p, and k is a parameter

evaluated using Schneider formulae [39] as :

k = 1.0753 + 0.12e−0.09ρX0 (2.56)

This formula is fairly accurate for many materials of density ρ(g/cm3) and radiation

length X0(cm). The accuracy has been tested up to a distance of 0.99 ·R resulting

to be within 2% both for protons and carbon ions.

To provide a completely analytical evaluation of the range R, in Eq.2.55, a very

accurate formula is used, based on [40]

R(cm) =
1

ρ

AM
ZM

N∑
n=1

αnE
pn
I Enk (2.57)

where Ek(MeV ) is the incident kinetic energy, EI(eV ) the mean ionization potential

of the medium and AM , ZM are the result of 2.48. This model has been tested with

EI = 77.0eV as suggested in [41]. For water and protons of incident kinetic energy
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order αi pi

1 6.84690e-04 0.4002

2 2.26769e-04 0.1594

3 -2.46100e-07 0.2326

4 1.42750e-10 0.3264

Table 2.1: Parameters used for the range calculations of Eq.2.57

Ek < 300 MeV, a sum with N = 4 gives results accurate to a more than 0.5% [40].

The coefficients αi and pi are reported in Tab. 2.1.

So, inserting the range formula given by Eq.2.57 in Eq.2.54 the following equation

is obtained:

χ2
c = χ2

W

1

p2β2

∫ x

0

1(
1− t

R

)k dt (2.58)

= χ2
W

R[(1− x/R)1−k − 1]

(k − 1) · p2β2

This is the form of χc parameter valid for any compound taking into account the

energy lost after a thickness x.

The calculation of χa is much more complicated and cannot be obtained in

closed form. Applying equations 2.55 to the general form of χa in Eq. 2.51,2.50, the

following equation is obtained:

lnχ2
a =

1

χ2
c

0.1569 · 10−6z2

AM

∑
i

niZ
2
i

p2β2

∫ x

0

ln[µ2
iχ

2
0i]−

Di
Zi(

1− t
R

)k dt (2.59)

where AM is from Eq.2.48, µi is a function of β(x) and χ0i is a function of p(x). They

can be calculated using Eq.2.17, 2.59 with Zi = ZH , ZO and χc from Eq.2.58. This

formula can be evaluated with good precision with the Simpson numerical integration

rule because of the smooth behaviour of the integrand. In water, integration steps

of 0.5 cm are enough to provide good accuracy. Since µi and χ0i depend on p and β

separately, we have to calculate them from the current product p(x)β(x) resulting

during the numerical integration.

Starting from the known product p(x)β(x) ≡ ω from Eq.2.55:
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p(x)β(x) ≡ ω =
p2(x)

Ex
=
E2
x −m2

Ex
↓

E2
x − ωEx − m2 = 0

↓

Ex =
1

2
( ω +

√
ω2 + 4m2) , (2.60)

p(x) =
√
E2
x −m2 , β(x) =

p(x)

Ex
. (2.61)

where Ex is the relativistic total energy of the projectile.

2.1.5 Lateral displacement

So far, the angular distribution of an incident beam that passes a layer of any kind

of mixture is obtained, taking into account also energy loss effect in addition to the

pure Molière distribution.

At this point it is useful to obtain a general formula, that permits the passage from

the angular to the spatial displacement. By referring to Fig.2.3, the RMS yM of the

transverse displacement on a measuring plane at distance x due to a layer t is given

by (x− t)θxR, where the angle is given by Eq.2.46.

y∆

x

x−tt

D

Figure 2.3: Schematic view of lateral displacement yM of the angular distribution on

the transverse plan.

As it explicitly stands, the angular squared rms is a product of χ2
c

√
B. The first

argument depends on the thickness x, while the second one depends on the thickness

in a logarithmic way. This fact is inevitable and is present in many formula that
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calculate the angular rms, as in the Highland [42] one.

What is the physical meaning?

Physically, it means that two successive layers act in a dependent manner, because

the second layer receives trajectories deflected by the first one.

Based on this consideration, the usual Gottschalk procedure [33] is applied, so χ2
c

contributions are combined in quadrature, and multiplied for an average value of B.

Taking into account the energy loss from equations 2.54-2.58, considering 2.46,2.49

and replacing x →
∫

dt, than by adding in quadrature all the χ2
c contributions, for

a thickness x and a detector plane placed at a distance D ≥ x, we obtain:

yM =
χW
√
B√

2pβ

[∫ x

0

(D − t)2(
1− t

R

)k dt

]1/2

(2.62)

The B contribution is calculated from equation 2.44 with the final values of χ2
c and

χ2
α from equations 2.58 and 2.59. From equation 2.45, this corresponds to the use

of the mean number of collisions, taking into account all the relevant processes.

A more common case is the one in which it is necessary to find the displacement at

the plane of distance x, and to obtain such result it is sufficient replace the term

D − t in the integrand with x− t.
When D = x, Microsoft Mathematics gives a rather simple analytical solution for

the integral in Eq.2.62:

yM =
R2[2R(1− x/R)3−k − 2kx+ 6x− 2R]

(k − 1)(k − 2)(k − 3)
− Rx2

k − 1
, k > 1 . (2.63)

Other more complicated analytical expressions can be found when x < D ≤ R and

D > R.

So, the RMS from Eq.2.62 corresponds to the RMS of the projection on the

measuring plane of the RMS θxR from Eq.2.46 of the Gaussian core of the angular

distribution. Therefore, the factor

δ =
yM
θxR

=
yM
√

2

χc
√
B

(2.64)

=

∫ x

0

(z − t)2

(1− t/R)k
dt

/∫ x

0

1

(1− t/R)k
dt . (2.65)

represents the scale factor that allows the passage from the angular to the spatial

distribution observed after the passage of a thickness x. The change of variable

therefore is

δ =
y

θx
→ θx =

y

δ
, (2.66)

and Eq.2.34 becomes

fM (y) =
1

πχcδ

∫ Γ

0
cos

(
yη

χcδ

)
exp

[
−η

2

4

(
b− ln

η2

4

)]
dη (2.67)
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2.2 Nuclear effects

So far a completely analytical formulation is obtained to describe the pure electro-

magnetic part of the multiple scattering process. The obtained equations predict

the electromagnetic particle distribution both in the spatial angle and on the trans-

verse plan after traversing a slab x; they are valid for any particles and any kind of

compound and mixture, without the use of free parameters.

But in order to have an evaluation of the distribution of the particles in the matter

when large thicknesses are involved, as in the case of hadrontherapy, nuclear inter-

actions have to be taken into account. Since this work is performed for proton in

water, the only fragmentation of the target will be considered (on the contrary, if

one want to deal with carbon ions, also the projectile fragmentation has to be taken

into consideration).

So,to complete the Molière distribution, an additional term is added. This term

describes the interaction of non primary particles that affect the tails and accounts

for the primary protons fluence decrease. This effect plays an important role, since

the nuclear reactions cause a decrease of the primary proton fluence with about 1%

per cm of depth [12].

Potential scattering, which induces transitions between different states of the

nucleus, is the dominant process for protons. However at therapeutic energies (E <

300 MeV), a minor contribution arises also from nuclear reactions that results in the

production of secondary particles and heavy recoils.

In the case of protons in water, the total nuclear cross-section for proton−nucleus

interactions is often calculated only taking into account the p −16 O reactions [12].

The main reactions induced by protons on Oxygen, as Ulmer suggests, are:

p+ 16
8 O ⇒ n+ 16

9 F

p+ 16
8 O ⇒ p+ n+ 15

8 O

p+ 16
8 O ⇒ p+ p+ 15

7 N

p+ 16
8 O ⇒ α+ 13

7 N (2.68)

p+ 16
8 O ⇒ d+ 15

8 O

n+ 16
8 O ⇒ p+ 16

7 N

n+ 16
8 O ⇒ p+ n+ 15

7 N

Considering these reactions Ulmer [12] provides a formula for the determination of

the percentage Wp of events without nuclear interactions (primary protons), as a

32



2.2 Nuclear effects

function of the traversed thickness, for protons of incident kinetic energy Ek and

range R in water, at a distance water thickness x:

Wp =
1

2

[
1−

(
Ek − Eth

m

)f x
R

] [
1 + erf

(
R− x
τ

)]
, (2.69)

where erf is the error function, f is a parameter of value f = 1.032, m(MeV ) is the

proton mass, Eth = 7MeV is the 16O threshold energy of the Coulomb barrier.

The parameter τ takes into account the range variation due to the straggling

along the beam path and can be parametrized as [40]

τ = 0.0179651452 ·Rt (2.70)

where

t =

{
0.9352 if R ≥ 1cm

1.1763 if R < 1cm

This formula has been implemented in the GEANT4 code [43] and is used for

protons with Ek < 300MeV . It gives approximatively a linear decrease, which

reaches about 78% at a depth of 40 cm for Ek = 300MeV , followed by a sharp

fall-off to zero within a range of about 1 cm, determined by the straggling parameter

τ .

Once the weight of the nuclear interactions has been parametrized, its influence

on the secondary build up contribution has to be described, to evaluate the total

energy lateral deposition.

As Soukup suggests [6], a Cauchy-Lorentz distribution is used to parametrize the

nuclear tail contribution:

t(x) =
1−A exp

[
− x2

2b2σ2
n

]
πb
(
x2

b2
+ 1
) (2.71)

where the three free parameters are the amplitude A, the Half Width Half Maximum

(HWHM) b and the variance σ2
n.

The total normalized final distribution for the lateral displacement, is then given

by adding 2.71 to the electromagnetic part:

f(x) = WpfM (x) + (1−Wp)
t(x)∫ +∞

−∞ t(x)dx
, (2.72)

where fM (x) is the distribution of Eq.2.67 and Wp is the weight from Eq.2.69. Both

fM (x) and t(x) are normalized to unit area.

The free parameters A and b contained in equations 2.71, 2.72 are determined by

fitting a FLUKA Monte Carlo simulation (see Sec.2.4.2) for the lateral displacement
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distributions with the nuclear interaction switched on; during the fit procedure good

results were obtained with the variance fixed at the value of σ2
n = 1. The behaviour

of these parameter has also been studied as a function of normalized depth for the

two energies; evidences show that a parametrization with Chebyshev polynomials

well describes the parameters with third and eighth degree respectively and this

makes the model faster to be calculated in water (in case of a different material, the

nuclear parametrization has to be recalculated again by fitting a new MC simulation,

and the parameters have to be simply stored in a different database.).

The difference, with respect to the pure electromagnetic case, is evident on the

tails of the curve, for the larger deviations. (see Sec. 2.4.2)

2.3 Model summary

Here a short summary of all the model steps is presented, to have a synthetic overview

of the overall procedure:

1. As input, the model needs the kinetic energy of the projectiles in GeV, the

water thickness x, the particle type (A,Z) and the ionization potential I. The

momentum p and β are calculated with the standard formulae.

The energy can be also a energy distribution with energy spread and different

beam positions and σ like in current clinic practise. This particular case is

treated for the model validation and described in Sec.2.4.2

2. The characteristic single scattering angle χc is calculated with Eq.2.54

3. Then, the other crucial parameter, the parameter χα is calculated from Eq.2.59.

4. The parameters b and B are calculated from Eq.2.25 and 2.44.

5. Afterwords, the displacement yM is calculated from Eq.2.62.

6. So, with all the previous results, the Molière Coulomb multiple scattering

distribution fM (y) for the lateral displacement can be evaluated using Eq.2.67.

7. Now, the nuclear effects are included using the Cauchy-Lorentz distribution

t(x) in Eq. 2.71; it depends on two free parameters determined from the fit of

the FLUKA simulated data

8. The weight factor Wp that evaluates the percentage of protons that have only

had electromagnetic interactions is calculated with Eq.2.69
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9. The total distribution that consider all the relevant interactions is obtained by

adding the nuclear parametrization t(x) to the Molière function fM (y) properly

weighted by Wp. In this way the complete evaluation is given in Eq.2.72.

2.4 Validation

Equation 2.72 gives a complete description of proton displacement in water, taking

into account all relevant interactions, i.e. electromagnetic interactions described by

Molière theory and nuclear interactions considered by additional parametrization.

So the results of this calculation have to be validated.
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Two types of tests are performed:

1. the prediction of electromagnetic lateral distribution, by comparing the model

evaluation with Monte Carlo ones (without nuclear interactions), reported in

Sec.2.4.1.

2. the model complete lateral distribution accounting for all the interactions com-

pared with Monte Carlo simulation (whit all possible interaction) and experi-

mental data, reported in Sec.2.4.2.

In this section, a description of the used MC setup is given, followed by the beam

profile description and the clinical experimental data.

2.4.1 Electromagnetic core results

As a first comparison, the pure Molière theory results have been compared with

the MC prediction, by using two different codes, FLUKA [44],[45] and MCNP6 [46].

FLUKA uses a special transport algorithm, based on Molière’s theory of multiple

Coulomb scattering improved by Bethe [47], and takes into account correlations

between path length corrections and scattering angle, and also between the lateral

deflection and the scattering angle [47], [48]. MCNP6 instead is based on the full

Goudsmit-Saunderson model of multiple scattering as described in [49].

Both simulations have been performed by switching off all the nuclear interactions,

and evaluating only the pure electromagnetic ones. The comparisons have shown

that the prediction of the model are fully in agreement with those of both FLUKA

and MCNP6. As a case in point, typical result are shown in Fig.2.4.

2.4.2 Complete model results

The complete model calculations take into account all the relevant interaction that

occur in a proton-therapy context. The results are compared in this section with

both FLUKA MC simulation and experimental data. The choice of FLUKA code

is motivated by the fact that it is the MC code used in HIT, where the data have

been acquired.

The initial particles distribution is the exact beam set up of HIT center, performed

by using a phase space file.

FLUKA set up

FLUKA simulations were performed with the HADROTHE setting for a proton

beam; this allows to take into account:
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Figure 2.4: Comparison between the analytical model (red line), FLUKA (blue his-

togram) and MCNP6 (green histogram, slightly below the line on the log scale) in water

for 200 MeV protons at a depth of 18 cm in log (left) and decimal (right) scale. All the

nuclear effects (target fragmentation) are excluded.

• electromagnetic interactions

• inelastic form factor corrections to Compton scattering and Compton profiles

• low-energy neutron transport to thermal energies

• fully analogue absorption for low-energy neutrons

• complete particle transport (by setting threshold at 100 keV for all particles

except for neutrons where is 10− 5eV)

• full multiple scattering, by setting threshold at minimum allowed energy for

both primary and secondary charged particles;

• delta rays production (threshold at 100keV).

The simulations involved 107 primaries, batched in 10 · 106 histories each to reduce

the variance of the scored quantities.

The geometry was set to account for the exact geometry in which the experi-

mental data were acquired:

• Nozzle−isocenter1 distance is 112.6 cm
1 The point in space of the convergence of the three axes of rotation in radiation therapy; the

intersecting point of the axis of rotation of the gantry, the collimator, and the treatment couch.

The gantry rotation defines a horizontal axis which intersects a vertical axis defined by the rotation

of the treatment couch. The treatment collimators also rotate about an axis pointing through the

isocentre.

The placement of the radiation isocenter plays an important role in treatment planning because

ideally the isocenter should be placed in the center of the target volume, usually a tumour.
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• phantom is a water parallelepiped of dimensions :

x : [−5, 5] cm, y : [−5, 5] cm, z : [0, 32] cm

• word is an air parallelepiped of dimensions :

x : [−30, 30] cm, y : [−30, 30] cm, z : [−115, 32] cm

Figure 2.5: Simulation geometry setup

Scoring is ENERGY setting, to collect all the energy deposition within a mesh

defined as a cartesian grid of x : 1 bin[−3, 3] cm, y : 300 bin[−3, 3] cm, z : 2000 bin[0, 20] cm.

To reproduce the data, the beam conditions, the phase−space of the HIT beam

line was used as input for simulations with a statistic of 108 initial particles. These

phase-spaces (see Fig.2.6 (left)) were obtained from separate FLUKA simulations

carried out at HIT, including the detailed modelling of the large area ionization

chambers and multi−wire proportional chambers of the BAMS according to the

manufacturer [4]. The beam scanning process of the line was simulated with a

dedicated source routine, similar to the one described in [50].
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Figure 2.6: Lateral profiles of the original phase space at the isocenter for 158.58MeV

proton beam at z = 0 cm depth (left) and lateral beam divergences at z = 16.55 cm

(right), obtained by replacing water with vacuum. The solid lines is the fit with the

function of Eq.2.73 before the convolution with the model.
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An additional FLUKA simulation was performed to calculate the particles trans-

port in a geometry made of air, but with the water target region replaced by vacuum,

to take into account only the divergence generated prior to entrance in the target.

These simulations have been studied at every thickness of interest and the resulting

lateral displacement due only to the beam optics, have been taken into account into

the model by parametrizing them with a the following function:

b(y) =
a

s
exp

[
− y2

2s2

]
+

b · c
(y2 + c)2

(2.73)

where a and s are amplitude and sigma of the Gaussian respectively, b and c are

amplitude and parameter of the hyperbolic (à la Rutherford) term [5].

The resulting lateral profile is then given by the convolution between the distri-

bution of Eq.2.73 and that of Eq.2.72 for water:

F (y) = f ∗ b ≡
∫
f(t)b(y − t)dt . (2.74)

Another effect that should be considered, in the comparison between theory and

data, is that due to the detector size (see Sec.2.4.2). For the considered data, this

effect can be taken into account through the parabolic normalized resolution function

[51]

S(x) =
2

πR2

√
R2 − x2 when x < R , 0 otherwise, (2.75)

where x is the lateral position and R is the effective detector radius, quoted as

R = 0.145 cm. To correct for these effects, we convolute this function with our

final distributions of Eq.2.74, after the convolution with the beam. The results of

this second convolution, as already noted by Schwaab etal (2011), have a very small

effect for all the cases considered here. For this reason we will neglect the detector

size effects in the following.

The behaviour of the two free parameters A and b that describe the nuclear effects

as a function of the normalized depth is reported for two energies in Fig.2.7.

Figures also report the values of the coefficients of the best fit of Chebyshev poly-

nomials of third and eighth order at the same energies used to fit the the parameters

trend. The fit can improve the computational time without loosing significantly

the accuracy. Another way, is to create a database of these parameters at different

energies and depths with the model. Therefore for the evaluation of the nuclear

parameters, two different approaches are possible: the fit of the lateral distribution

tails (which requires a set of pre-calculated MC distribution) or the use of a pre-

compiled external database. The latter solution does not require in advance for a full

MC simulation and reproduces the same results. The two approaches are equivalent
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Figure 2.7: Behaviour of the free parameters A and b as a function of normalized

depth for 81.49 MeV (upper) and for 158.58 MeV (lower).

both in accuracy and in calculation time.

Experimental data

In order to validate the predictions of the model in a realistic clinical situation of

proton beam in water phantom, the model’s results are compared with experimental

data acquired at the HIT Heidelberg Ion Beam Therapy Center [51].

These dosimetric measurements were performed in a water phantom with en-

trance window at the treatment isocenter, using a special arrangement of 24 Pin-

Point ionization chambers (PTW Freiburg, type 31015, 0.030 cm3 active volume)

with six rows of four chambers aligned in lateral offset patterns (in beam-eye view)

not to shadow each other, and controlled by a step motor. Lateral profiles were

sampled at different depths in water by repeated acquisitions at horizontally shifted

positions of the detector block for irradiation of a vertically scanned line pattern

of 10 cm length and 1 mm scanning step size. Therapeutically relevant doses of
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1 − 2Gy were delivered as an acceptable compromise between irradiation time and

signal noise, especially in the low dose region. More details of the experimental setup

can be found in [51].

The reported comparisons refer to initial beam energies of 81.49MeV and 157.43MeV

and respectively beam sizes of 17.55mm and 10.7mm FWHM in air at the isocenter.

The errors on the data range from 2% to 15%, going from the high dose points to

the lowest dose regions.

Selection of results

A selection of the obtained result is shown: in figures 2.9-2.12 the data are compared

with the prediction of FLUKA and of the analytical model of section 2.1.5. In any

analyzed case, the model’s calculations agrees very well with both FLUKA and the

experimental data.

To quantify the level of agreement we have performed a Kolmogorov Smirnov test

(Kolmogorov et al 1933) between our calculation and the FLUKA distribution. The

model pass the test with a good p-value and we use the maximum distance D re-

turned by the test to estimate the different fits quality in a relative manner as a

function of depth. The good agreement is quantified by the maximum value of D

obtained in our study, that is 7 · 10−3 (Fig.2.8).

Figure 2.8: Maximum distanceD obtained from the Kolmogorov Smirnov test between

the model and the FLUKA simulation.

Considering that D is a parameter that does not have a universal statistical

meaning, in case of binned data this is a well accepted practice. The comparison

with the analogous MC calculation in case of a mono-energetic pencil beam shows

as well a good agreement but with the advantage that calculation is much faster

than the simulation. The computational time of the code for the evaluation of

the projected distribution is mainly determined by the evaluation of the integral of
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Figure 2.9: Comparison between analytical model, FLUKA simulation and experi-

mental data for 81.49 MeV in water for a thickness of: z=1.57 cm in logarithmic (left)

and linear (right) scales. The curves are normalized to the maximum of the FLUKA

histogram, obtained by fitting the highest dose channels with a smooth curve. In the

normalization zone the error of the data points is 2% (see section 2.4.2).

Eq.2.67 this integral in our code is computed only once for each depth and stored

in a database that can be read and interpolated at any subsequent call. In this way

the calculation time is reduced in average by a factor 2.

Therefore, the comparisons show that the model predictions have the same ac-

curacy of the Monte Carlo codes, but with much shorter computational time;this

aspect is reported quantitatively in the next session.
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Figure 2.10: As in figure 2.9 with z=4.57 cm. Bragg peak is at 5.38 cm
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Figure 2.11: As figure 2.9 with E=157.43 MeV and z=11.55 cm.
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Figure 2.12: As figure 2.11 with z=16.55 cm. Bragg peak is at 17.23 cm
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2.4.3 Beam scan result

To test a possible proton-therapy clinical application of the model, a beam scan

is evaluated (see Sec.3.4) To reproduce this technique, the single beam profile is

shifted in the beam perpendicular direction to paint a lateral scan with a given

step, as in Fig.2.13. Within an homogeneous material, the calculation is performed

only once and the profile is simply shifted by adding the single contributions to the

dose. The result is compared with the MC prediction: the source routine is modified

simultaneously with the model’s single distribution lateral shift. In these conditions,

on a DELL XPS computer with an INTEL core I7 (8 cores), with 3.6 GHz CPU,

16 Gbyte RAM and a 64 bit configuration, we have estimated that the computing

time of the full lateral profile, using the aforementioned database for the Molière

integrals, is about 3 s for each depth: hence for example the time required for 100

depths is about 5min, to be compared with 90 min taken by the full MC simulation

with a statistics of 107 primaries.
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Figure 2.13: Lateral dose profile for a beam scan for the energy 81.49MeV . In green

a subset of the original single beams is shown.
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2.5 From one dimensional to two dimensional distribu-

tions

Up to now, the lateral distribution of a proton beam passing through a layer of

thickness t has been obtained, both for the spatial angular distribution and for the

projected angle ones. A symmetry condition for x and y coordinates has assumed,

fx(θ) ≡ fy(θ).
In practices, to evaluate the lateral dose profiles, the scattering angle θ of the Molière

theory [29] is replaced by the two projected angles θx and θy for a beam initially

parallel to the z axis [9], [3]. This approach simplifies the mathematics of the

tracking algorithms and allows the seamless convolution of the multiple scattering

distribution with any initial beam profile, at the price of working with the marginal

instead of the complete distributions. In order to provide a model useful for the

clinical application, the combined x, y 2D distribution is essential.

Figure 2.14: Example of a bidimensional Gaussian distribution

In the case of a Gaussian distribution, the solution is easier since it is always

possible to reconstruct the joint distribution by multiplication of the two marginal

distributions (Fig.2.14); in general:

f(x, y) = fx(x) · fy(y) (2.76)

=
1

2πσXσY
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

− 2ρ(x− µX)(y − µY )

σXσY

])

where ρ is the correlation between X and Y , σX > 0, σY > 0 and µ =

(
µX

µX

)
.

A base theorem of probability theory states that if two random variables are

independent, they must be uncorrelated (ρ = 0). The reverse is generally true for

45



2. A NON GAUSSIAN MODEL FOR LATERAL DISPLACEMENT
CALCULATION

Gaussian distributions only. Indeed the above mentioned property for the joint dis-

tribution reconstruction is true for any pair of arbitrary chosen axes, only if the

variables are Gaussian.

So, what if the case is not Gaussian?

• The joint distribution can not be simply calculated as f(x, y) = fx(x) · fy(y)

for any arbitrary chosen orthogonal axis

• Two non-Gaussian distributions fx(x), fy(y) with cylindrical symmetry are

necessarily dependent

These implications results from the Papoulis’s theorem [52], that states that:

if the property 2.76 is valid for any pair of arbitrary chosen orthogonal axis, then

the variables X and Y are necessarily Gaussian.

This is for instance the case of multiple Coulomb scattering, where the long tails

due to rare single scattering events and also to nuclear interactions modify the ideal

Gaussian profile; it can be shown that the projected angles θx,θy of the multiple

Coulomb scattering theory are uncorrelated but not independent. In the case of

cylindrical symmetry, the radial 2-D distribution can be calculated from the pro-

jected ones by applying the Papoulis’ theorem [53]; its application is described in

the following section.
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X-Y plane reconstruction in cylindrical coordinates

Let us consider a normalized distribution f(x, y) ≥ 0 in the x−y plane with circular

symmetry; this can be expressed as:

f(x, y) = f̂(r) , r =
√
x2 + y2 . (2.77)

The marginal distribution fx(x) of f(x, y) on the x axis is:

fx(x) =

∫ ∞
−∞

dyf(x, y) =

∫ ∞
−∞

dyf̂(r)dy = 2

∫ ∞
0

f̂(
√
x2 + y2) (2.78)

This equation defines the projection operator that transforms f̂(r) into fx(x) by

preserving the normalization. It is important to underline that the relation can be

inverted to obtain f̂(r) from fx(x), i.e. to obtain the joint distribution from the

marginal one, under the essential hypothesis of circular symmetry. The procedure

is described in [52],[53], and in this work the main steps will be applied.

First, the following function has to be defined:

h(r) =

∫ ∞
−∞

fx(
√
t2 + r2)dt =

∫ ∞
−∞

∫ ∞
−∞

f̂(
√
t2 + r2 + y2)dydt (2.79)

where the last term comes from Eq.2.78.

Passing in polar coordinates t = ρ cos θ, y = ρ sin θ, one obtains :

h(r) = 2π

∫ ∞
0

f̂(
√
r2 + ρ2)ρdρ . (2.80)

And with the substitution v2 = r2 + ρ2, the following formula is obtained:

h(r) = 2π

∫ ∞
r

f̂(v)vdv . (2.81)

in which the specific lower limit should be notated.

Then, the Leibnitz rule of differentiation is applied under the integral sign, in order

to evaluate the final formula:

f̂(r) = − 1

2πr

dh(r)

dr
(2.82)

The Eq.s 2.79, 2.82 just obtained, are the solution to reconstruct the 2D distribution

with cylindrical symmetry, starting from a non Gaussian 1D projected distribution,

to be used instead of Eq.2.76:

fx = fy → f̂
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2.6 Conclusion

This chapter has presented a pencil beam model based on Molière theory, able to

predict the lateral deflection in water with the same accuracy of current MC codes

and with shorter computational time.

The model takes into account all the relevant interactions, the electromagnetic part

is purely analytical without any free parameter, and the nuclear reactions are also

considered using a parametrization with only two parameters. A systematic study

has been also presented to evaluate such parameters and strongly reduce the compu-

tational time. So the model evaluates both the particle deflected angle distribution,

and the spatial displacement on a detecting plane. The comparison with data, at

two different energies, shows very good agreement between data, model and MC

calculation.
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Chapter 3

Treatment Planning system

implementation

In this chapter the CERR (A Computational Environment for Radiotherapy Research)[13],

[14] treatment planning system (TPS) will be described. After a general introduc-

tion on the system principles and the general concepts of TPS, the attention will be

focused on the settings for the lateral dose calculation.

3.1 Introduction

In current clinical practice, plans are generated with a software application called

Treatment Planning System (TPS), using an iterative trial-and-error process. As a

first step medical physicist and doctors identify the regions of interest (see Sec.3.2)

by contouring them on CT images of the patient. These parameters are sets of input

to the software. The main distinction between all the available software is forward

or inverse planning.

Forward process is mainly based on the experience of human operators that

makes a first choice of beam angles, weighting factors for the various clinical crite-

ria, and other parameters. A 3D dose calculation algorithm in the TPS is then used

to automatically optimize beam profiles and calculate the resulting dose distribution,

based on the patients planning CT-scan. If the dose distribution is unacceptable or

if the operator and treating physician see room for improvements, the operator will

change some parameters (again based on experience) to generate a next, dose dis-

tribution, and so on. Reasons for stopping the iterative process may be that the

dose distribution is considered satisfactory and/or the physician and operator may

not see how new parameter adjustments could further improve the patients dose.

With this procedure, the final dose distribution will generally depend on the skills
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and available time of the operator and the physician. The process may be very

labour-intensive, taking up to several days for an individual patient and there is

no guarantee for an optimal trade-off between objectives, nor is there a guarantee

that for the same tumour dose, dose delivery to the most important healthy tissues

cannot be further reduced.

Inverse treatment planning, is a inverse process that starts from the dose con-

strains required by physicians and evaluates the input parameters (such as beam

angles, energies and beam positioning) to satisfy them. The process is automati-

cally done by performing the minimization of a quadratic dose objective function

ps
(
Di −D0

i

)2
, where Di is the dose in voxel i, D0

i is the prescribed dose and ps a

importance weight factor. The minimization of this function is called optimization

(described in Sec.3.5), and leads to maximize of the dose that has to be delivered to

the target and in the meanwhile to minimize of the dose to non-target regions. In

this thesis a inverse treatment planning system has been chosen, and a description

of the steps (see Fig.3.1) required to use it is given in following sections.

Figure 3.1: Schematic flowchart of a inverse treatment planning system

3.2 Clinical volumes

When delivering a radiotherapy treatment, parameters such as volume and dose

have to be specified ad priori for different purposes.

The official definitions are given by ICRU (International Commission on Radiation
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Figure 3.2: The diagram shows the various volumes to be considered. GTV is the

volume as seen by physicians. CTV is the volume calculated according to the patho-

logical knowledge of usual local invasion by cancer. PTV is a compromise taking into

account various physiological phenomena (respiration, difficulties in positioning the pa-

tient, patient movement) as well as the Internal Margin (IM) to be added to CTV

to compensate for internal physiologic movements and variation in size, shape, and

position of the CTV during therapy in relation to an internal reference point and its

corresponding coordinate system, and the Set-up Margin (SM) for patient movement

and set-up uncertainties. Normal tissue (in dark green) is included in the PTV. The

arrows show various attempts to reduce parasitical irradiation, the ideal being of course

the smallest volume (ICRU Report no. 62 (25).

Units and Measurements) reports, primarily in Report 50, 62, 78 and 83 and the

main elements are:

• Gross Tumour Volume (GTV) The GTV is the gross palpable or visi-

ble/demonstrable extent and location of the malignant growth.

• Clinical Target Volume (CTV) The CTV is a tissue volume that contains

a GTV and/or subclinical microscopic malignant disease, which has to be

eliminated. This volume thus has to be treated adequately in order to achieve

the aim of the therapy (cure or palliation). For external beam therapy, margins

will have to be added around the CTV to compensate for the effects of organ

and patient movements and inaccuracies in beam and patient set up.

• Planning Target Volume PTV The PTV is a geometrical concept, and

it is defined to select appropriate beam sizes and beam arrangements, taking

into consideration the net effect of all the possible geometrical variations and

inaccuracies in order to ensure that the prescribed dose is actually absorbed

in the CTV.
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Another set of structure are defined depending on the treatment used:

• Treated Volume (TV) is the volume enclosed by an isodose surface, selected

and specified by the radiation oncologist as being appropriate to achive the

purpose of treatment (e.g., tumour eradication, palliation).

• Irradiated Volume (IrV) is that tissue volume which receives a dose that

is considered significant in relation to normal tissue tolerance.

• Organs at Risk (OR) are normal tissues whose radiation sensitivity may

significantly influence treatment planning and/or prescribed dose.

3.3 CERR - A Computational Environment for Radio-

therapy Research

CERR (Computational Environment for Radiotherapy Research) [13], [14] is an

open source radiation therapy tool written in MATLAB (www.mathworks.com). It

provides a convenient and powerful software environment to develop and prototype

treatment planning concepts, offering the possibility of reading computed tomog-

raphy scans, contouring structures on them and converting the informations into

MATLAB matrix. It provides the ability to extract treatment plans from many dif-

ferent planning systems using the widely available AAPM/RTOG archiving mecha-

nism, and offers various tools to quantify the dose distribution and the comparison

between different plans.

Within the input geometry, PTV is fixed and the outside region is called WORLD;

furthermore a safety margin of +1cm in each direction x, y, z is added, creating

the structure PTV+1. The aim of the plan is to delivery dose at PTV avoiding to

irradiate the world, by setting as non-target region the volume PTV+1 (see Fig. 3.3)

This geometry is divided in voxel and saved in a MATLAB matrix; for the

purpose of this work, the set-up is an homogeneous water box phantom of 30× 30×
30cm3 with different PTVs, as described in Chap.(CERR Results)

3.4 Dose evaluation

After the geometry is acquired and the structures are delineated, the calculation of

the dose can start. The dose delivery technique of CERR is the spot (or beam) scan-

ning technique. In this technique, the pencil beam transported to the beam nozzle

by the beam transport system is directly sent into the patient without interacting

with any scattering or energy-modulation devices. An orthogonal pair of magnetic
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Figure 3.3: Screenshot of CERR interface; the three gray windows are the different

cutting planes. The structures are displayed in different colours, in this case WORLD

(green), PTV (red) and PTV+1 (cyan). The dose distribution is illustrated in colours

with the intensity colour scale on the left.

dipoles is used to steer the thin beam to reach the full lateral extent of each tar-

get volume elements (voxels). The dose distribution is delivered by placing specific

Bragg peaks in the patient one location at a time on a discrete grid (spot scanning)

and then one layer at a time by varying the beam energy [30].

Figure 3.4: Schematic representation of beam scanning method

Each voxel that composes the discrete grid is correlated with a structure, e.g.

CTV, OAR .. and to each of them have a weight factor wij . Based on this assignment

the different incident beam directions are chosen. The fluence matrix is defined

separately for each beam in the isocenter plan, perpendicular to the beam direction.

The sum of all selected PB in each voxel i creates in this way the SOBP, and the
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total dose results in

D =
∑

i∈PTV
Di =

∑
i∈PTV

∑
j∈PB

wjDij (3.1)

where the matrix Dij is the dose of PB j in each voxel i and the weight factor

wj accounts the weight of each PB.

This process is a inverse process since the system evaluates the best assembly of

beams (energy and position) to cover the PTV without irradiating the surrounding

tissues .

Within this technique, the axial and the lateral dose distribution are described sep-

arately and convoluted; so, assuming z the beam direction, D in Eq. 3.1 can be

expressed as

D =
Dxy∫
Dxy

∗Dz (3.2)

The longitudinal dose Dz is evaluated with a lookup table (LUT) produced using

Geant4 simulations (see Sec.3.7.1) and the lateral dose contribution is described in

next section.

In CERR the user has to set the beam direction, the initial σ0, to account for

the beam spread, the target region (PTV) and the non-target region (PTV+1, and

also the WORD); thereafter the system begins the PB selection.

The definition of Pencil Beam differs from the definition used in the previous parts

of the thesis: mono-energetic spots with the same central axis are summarised to a

Pencil Beam, while a spot is one single Bragg peak;

Spot : single Bragg peak (Fixed energy Ej and position xi, yi)

PB =
∑n

j=0 Spoti;j(Ej , xi, yi) (Several energies in coaxial positions i)

Beam =
∑m

k=0 PBs (Several energies and positions)

A grid of pencil beams is placed for each beam direction to cover the lateral

shape of the tumour (see 3.5). The grid has an equidistant binning of 0.5 cm steps

in a plane perpendicular to the irradiation direction (lateral), and the spots have

an initial σ0 = 0.4 cm in order to obtain a realistic configuration in clinical practice

[54].

After the positions of the spot grid, the depths in beam direction are determined;

for this purpose the depth of each voxel that has to be irradiated, is expressed in

terms of the water equivalent path length (WEPL) and the beams are selected based

on their energy.
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Figure 3.5: Schematic representation of beam scanning method

CERR has a database of Geant4 simulations, created by irradiating a homoge-

neous phantom (0 HU 1) with protons of 30 to 250 MeV in 1 MeV steps; based on

those results, for each energy the range is tabulated using the definition of distal

dose falloff, i.e. position where the dose has decreased to 80% of the maximum

dose. The reason for this choice is the fact that for a monoenergetic proton beam,

the 80% fall-off position coincides with the mean projected range of a proton, that

is the range at which 50% of the protons have stopped.

If the desired range of a PB lies in between these discrete steps, the Bragg-peak

of the next higher energy is shifted to the desired range by a simplified range shifter.

The range shifter is approximated as material of the necessary water equivalent

thickness in the beamline well before entering the patient.

So, the system selects the energies required to cover the tumour area and the

positions of the spots between all the possible configurations given by the explained

grid.

1The Hounsfield unit (HU) is a quantity commonly used in computed tomography (CT) scan-

ning to express CT numbers in a standardised and convenient form. Hounsfield units, created by

and named after Sir Godfrey Hounsfield, are obtained from a linear transformation of the measured

attenuation coefficients. This transformation is based on the arbitrary definitions of air and water:

HUair = −1000, HUwater = 0, obtaining HU = 1000× µ−µwater
µwater−µair
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3. TREATMENT PLANNING SYSTEM IMPLEMENTATION

Figure 3.6: Beam structure: One beam direction is divided into parallel Pencil Beams.

The PBs are placed on a equidistant (lateral) grid and CERR chooses the PBs that hit

the CTV. Every chosen PB is sub- divided into spots. One spot reflects one (available)

particle energy. The spots have different weights to perform a Spread-out Bragg peak

(SOBP).

3.4.1 Lateral dose evaluation

In CERR the lateral dose distribution is currently calculated, for each PB, using

two normalized 2D Gaussian functions.

Dxy1(x, y) =
1

2πσ2
1

· exp

(
−(x2

b + y2
b )

2σ2
1

)
(3.3)

Dxy2(x, y) =
1

2πσ2
2

· exp

(
−(x2

b + y2
b )

2σ2
2

)
where xb and yb are relative coordinates centred on beam axis, and σ1, σ2 are read

in a LUT based on the energy and depth (see Sec.3.7).

The two contributions are separately multiplied with two separate longitudinal dose

vectors

D1(x, y, z) = Dz1 ·Dxy1 (3.4)

D2(x, y, z) = Dz2 ·Dxy2

and then the total dose is calculated as the sum of both contributions

D(x, y, z)[Gy] = D1 +D2 (3.5)

One of the original contributions of this thesis is the update of this method using

the lateral values evaluated with the model described in chap.2:
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3.5 Optimization process

As inputs parameters the model requires the depth z, the energy E and the ioniza-

tion potential Ei. For each depth the function gives a 2D matrix in the x, y plane

Vmod[MeV/cm3], that stores in each voxel(i,j) the value of the lateral dose deposition.

Vmod =

∑
i

∑
j ∆Ei,j

∆V
≡ ε[MeV/cm3]] (3.6)

where i runs over x coordinate and j on y coordinate. This matrix is automatically

read by CERR, that interpolates xb and yb at intermediate points.

Since ε[MeV/cm3] is the energy deposition and CERR requires the dose, a

conversion is made; the dose is defined as the energy deposited per unit mass

of the irradiated medium and it is measured in Gy (Gray), 1Gy = 1J/Kg. To

obtain the dose as input for CERR calculation, considering the water medium

(ρH2O
∼= 0.001[Kg/cm3]), this simple conversion is performed

D[Gy] =
ε

ρH2O ∗ 1.602 · 1019
= ε ∗ 6.24 · 109 (3.7)

3.5 Optimization process

The optimization process is a multi-criterial problem, i.e. it involves more than one

objective function to be optimized simultaneously, since usually a single solution

that simultaneously optimizes each objective does not exist. Since the tumour has

to be irradiated to a high dose, and healthy surrounding tissues should be avoided

as much as possible, the process has to find the best set-up for:

• coplanar beam orientation

• treatment angles and beam weights

• intensity modulated beams

Optimizing both beam directions and intensity profiles is a huge mathematical multi-

criteria, non-convex1, discrete combinatorial problem that cannot be solved directly.

The first two problems can be considered as a combinatorial optimisation problems,

whereas the last one has been referred to as an ’inverse problem’[55],[56]. Only the

last one will be described since the set-up that has been chosen for the purpose of

this thesis, has only one parallel beam (a complete description of the overall opti-

mization process can be found in [57]).

1Non convex problem is a problem of non linear programming, i.e. the optimization may have

multiple locally optimal points and it can take a lot of time to identify whether the problem has no

solution or if the solution is global.
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Figure 3.7: Schematic view of the CERR lateral dose evaluation.
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3.6 Treatment quality quantification

The inverse problem (or inverse process), concerns the determination of the

selection of the optimal weights of the preselected PBs to ensure the delivery of an

uniform dose in the PTV, according to the physicians prescription. So it works back

from a dose prescription to the determination of the best beam profiles that can

produce such a dose distribution.

The problem of obtaining a uniform dose in PTV, minimizing in the meanwhile the

dose on surrounding tissues, is reduced to the minimization of the quadratic objective

function

F (w) =
∑
i∈S

(
Di(w)−D0

i

)2
(3.8)

where Di(w) is the result of the evaluation in 3.1 and D0
i is the desired dose in

structure.

Minimizing this equation that runs all over the voxel j in structure S, leads to the

optimal weight for each spot to be used in order to obtain the prescribed dose.

Another weight factor ps has to be introduced to take into account critical structures;

it is called penalty factor since it assigns a different importance to each structure.

With this additional consideration Eq.3.8 is rewritten as:

F (w) =
∑
S∈A

(
ps
∑
i∈S

(Di(w)−D0)2

)
(3.9)

with A stands for the set of considered structures.

Using penalty factors ensures that the different consequences of the quadratic de-

viations
(
Di(w)−D0

i

)2
for different structures can be adapted to medical require-

ments.This is done by setting to 0 the dose D0 of structure S where the dose should

be reduced, i.e. organs at risk (OARs) [58],[59]. Generally, the importance factors ps

are equal for all voxels in an organ [60]. In CERR the minimization is performed by

a built-in function fmincon, which uses a gradient based optimization algorithm [61].

So, the optimal weights are determined by minimising the objective function

F (w) = min with ωj ≥ 0∀j. The side condition means that the number of particles

per spot cannot be negative. A spot j with ωj = 1 typically consists of 1 · 106

particles.

3.6 Treatment quality quantification

Visual analysis of the dose distribution, particularly in association with the anatom-

ical data, is one of the major ways that physicians and treatment planners use to

make decisions about how the treatment plan should be optimized or if it can be
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3. TREATMENT PLANNING SYSTEM IMPLEMENTATION

Figure 3.8: Example DVH of a CTV. The area highlighted in orange is correlated

with the mean dose. The determination of V98 is indicated by the two black arrows.

accepted. Several dosimetric end points have been defined in ICRU Reports No. 23

and 50 for this purpose.

3.6.1 Dose-Volume-Histogram

A qualitative isodose distribution superpositioned over computed tomographic (CT)

data is often insufficient to provide qualitative data for the Radiation Oncologist to

determine the adequacy of a patient treatment plan. A more quantitative result

is necessary which modern treatment planning systems provide in statistical analy-

sis plots known as dose-volume histograms (DVHs). These plots describe the dose

throughout the volume of each structure contoured within the plan. On the x-axis

the relative dose is plotted, on the y-axis the relative volume reaching the dose is

plotted. Therefore, this means that a DVH plot indicates the relative volume re-

ceiving at least a certain dose. For an ideal treatment the DVH of a CTV would

be a rectangle with 100% dose for 100% of the volume, while the OAR should be a

rectangle with 0% for 100% of the volume.

The average dose that a volume receives, can be interpreted as the area under the

DVH line, and is called mean dose.

Other useful values for the quantification of the quality of the plan are the Rel-

ative Volume V95 and V98. V98 is the relative volume that receives at least 98% of

the dose, and it is determined on DVH as in Fig.3.8
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3.7 MC database comparison

3.7 MC database comparison

CERR evaluates the required ranges and the σ1, σ2 in Eq.3.3 used for the lateral

dose evaluation, by using Monte Carlo database values. Since the databases have

been created using Geant4 ( GEometry ANd Tracking) [62], [63] where the model is

based on FLUKA simulations1, to avoid any possibility of mismatches the two codes

results have been compared to test their consistence.

3.7.1 Geant4

The Geant4 simulation is executed for mono-energetic protons in water.

The resolution of the scoring mash grid in this simulation is 0.01 cm. Hence the

cuts for secondary electrons as well as for photons and for positrons are set to

0.005 cm. Tests have shown that smaller cuts only increased the computation time

but had no influence on the output data [58]. Physical interactions in Geant4 are

activated by using predefined C++ class packages in which cross sections and the

cut off are specified the. The physics list used to create the database of CERR is

QGSP BIC HP [63] (comparable to the one in the Hadrontherapy advanced Geant4

example).

Material is homogeneous water with mean excitation energy of 68.327eV2, density

ρ = 1.0055 g/cm3 and elements of volume composition of:

Element volume percentage

O 0.45070

C 0.41751

H 0.10950

N 0.01902

S 0.00163

Cl 0.00163

The number of initial particles is 106 and the score matrix is a 30× 30× 30 cm3

cube of 1 mm resolution.

3.7.2 FLUKA

FLUKA simulation uses the hadrontherapy set-up and the same values of Geant4

for water, with the same media definition. The score matrix is equal to previous one

and the output score is Energy.

1Code used at HIT and CNAO centres
2 Here, a different value for the mean excitation energy is used with respect to the value I=77

eV in Sec.2.1.4, since the test aims to reconstruct the parameters used in CERR. To be consistent,

also the new simulations of FLUKA use this value.
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3. TREATMENT PLANNING SYSTEM IMPLEMENTATION

Figure 3.9: Plot of the comparison between Geant4 and FLUKA values of FWHM,

Full Width 80% Maximum (FW80M) and Full Width 95% Maximum (FW95M), for

Zrel = 20%, 60%, 80%, 90% at E = 158MeV

3.7.3 Comparison Results

The comparison of several energies and depths shows a good agreement between the

two MC code results. A selection of the results is shown for comparison; the two MC

codes are in good agreement both for the lateral distribution Fig.3.10, 3.11, and for

the longitudinal distribution 3.12. Range and Full Width Half Maximum (FWHM)

are compatible. A quantitative check is summarized in Fig.3.9 where the FWHM

and the width at 80% and 95% of the maximum have been evaluating for relative

depths of Zrel = 20%, 60%, 80%, 90%.

Taking into account the agreement that is obtained by these results, the model

evaluation using FLUKA simulations and CERR double Gaussian calculation, based

on GEANT simulations, can be considered consistent, and no difference between

them can be due to the MC codes difference.
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3.7 MC database comparison

Figure 3.10: Comparison of the lateral energy distribution between Geant4 (red curve)

and FLUKA (blue curve) for a proton beam of initial σ = 0.8cm and energy E =

158MeV, at a normalized depth of zrel = 20%

Figure 3.11: As in 3.10 for a normalized depth of zrel = 80%
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3. TREATMENT PLANNING SYSTEM IMPLEMENTATION

Figure 3.12: Comparison of the energy distribution between FLUKA (top) and Geant4

(bottom) for a proton beam of initial σ = 0.8cm and energy E = 158MeV
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Chapter 4

CERR Results

The purpose of this chapter is to present the results obtained including the model

introduced in Chap.2, in the CERR TPS. To study the possible improvements that

can be obtained using the model, the same treatment plan has been optimized using

the current Double Gaussian (DG) approximation and the model for the lateral

calculations, and both have been compared with the MC plan re-evaluation (MC

Opt ReCalc) as reference.

First, a single beam dose deposition study will be presented, showing the comparison

between the DG, the model and the MC curves, for different energies and depths

of clinical interest along the beam axis. Next the study of a full treatment plan

dose deposition will be explained, as an outlook to give an idea of the differences

achieved in a more realistic case. Subsequently, results obtained in a phantom with

inhomogeneities will be considered.

4.1 Single beam

In order to test the effective benefits of introducing the model in the TPS instead of

the current DG approximation, several treatment plans have been evaluated using

only one beam of 107 particles. The same plan has been optimized by CERR, using

the DG parametrization, then the model calculation for the calculation of the lateral

profile, and each plan has been re-evaluated with MC Opt ReCalc. The single beam

is not a realistic clinical case, but it is well suited to show the different lateral shapes

obtained using the two different approaches, highlighting the possible improvement

in the accuracy that can be obtained for each beam.

4.1.1 Phantom set up

In order to select only one single beam in CERR (see Sec.3.4), with fixed energy

and position, the choice of the position of the PTV has to be changed in order to let
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4. CERR RESULTS

the system select the right range of energies needed to hit the target; CERR selects

these energies using a LUT that associates the energy to the position at 80% of the

peak dose (before the peak) as in Fig.4.1.

Figure 4.1: Plot of CERR database of the position at 80% of the peak dose (before

the peak) versus the energy. This curve is used by the TPS to select the beams that

are needed to achieve the best dose delivery to the PTV region.

For this purpose an homogeneous water phantom of 30× 30× 30 cm3 with 1 mm

voxel size, was used as WORLD, in which the target PTV of 1× 1× 1 cm3 has been

moved along the Z axis, to select the desired range of energies to cover it. A 3D

margin of 1 cm expansion was set around the PTV to obtain the safety margin for

the treatment in which the dose has to be minimized [13],[14],[58]. Then, manually,

a weight of 0 has been assigned to all the sublets contained in the selected energy

range group, except the selected one, resulting in a mono energetic beam. With this

method, the following energies have been studied: 64 MeV, 148 MeV, 195 MeV.

These are in the range of a clinical interest case, and each beam has a initial spread

of σ0 = 0.4 cm.

4.1.2 Lateral beam comparison

For each energy, two separate treatment plans were evaluated; one using the DG

lateral parametrization and one using the model results. Later on, each plan was

recalculated with the MC Opt ReCalc: one of the two optimized plans1 is exported

as a voxelized geometry in DICOM files; from these, the density of each voxel is read

as HU and converted in density ρ [g/cm3] using a LUT [64]. The beam information

is exported as well and with the CT is used as input for the simulation using 107

1 Since is the case of a single beam, the two plans are equivalent in terms of optimization

because the only parameter that the optimizer could change is the amplitude, that does not affects

the normalized lateral beam shape.
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4.1 Single beam

Figure 4.2: Example of geometry set up displayed in CERR interface. The world is

a parallelepiped of water of 10 × 10 × 30 cm3 displayed in green, the PTV in red, is

1× 1× 1 cm3 positioned at a depth of 20 cm and the cyan region is the safety margin

in which the dose has to be minimized by the optimizer, it is delineated following the

clinical requirements, adding 1 cm3 to the PTV.

initial particles (simulation details are described in Sec.3.7.1).

A selection of results is reported here, plotting the lateral profiles obtained within

this procedure, for different normalized depths1 . In the displayed plots, both the

DG and the model show a discontinuity point at the same position. This is due to

the fact that the system, to reduce the computational time, stores in two different

vectors the values that are considered as high dose points and the ones considered as

low dose points and two different weights are assigned to these vectors; this results

in a discontinuity at the passage point from one vector to the the second one.

1 Normalized depth(Zrel) refers to the depth normalized to the position of the Bragg Peak:

Zrel = Z · 100/ZBP
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4. CERR RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Lateral profile of the dose deposition evaluated by CERR TPS, in loga-

rithmic scale for a single beam of energy E=60 MeV at a relative depth of Zrel = 50%

(a) and Zrel = 95% (b); the same for E=148 MeV (c),(d) and E=195 MeV (e),(f).

The blue curve represents the dose calculated using the DG lateral approximation to

evaluate the plan, in red, the one obtained using the model to evaluate the same plan

and the green one is the MC Opt ReCalc.
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4.1 Single beam

4.1.3 Kolmogorov-Smirnov test

To quantify the difference between the two approaches, a two sample Kolmogorov-

Smirnov test [65] is performed evaluating the p-value1 obtained when comparing

the DG versus the MC and the p-value between the model and the MC. The test

is evaluated at the 5% significance level for several depths. In Fig.4.4, the plots of

results are reported for each energy, at a Zrel = 0%, 20%, 50%, 95%.

As the plots show, the model has higher values with respect to the DG ones (that

means a better agreement), for all the analysed cases, and the agreement between

the DG and the MC tends to decrease with the increase of the depth and the energy

(except for the depth Z=0% where both the model and the DG are in good agreement

with the MC). This behaviour is due to the fact that the parametrization with the

DG function of the real case, is more difficult for large depths because the nuclear

interactions play an increasing relevant role and the function assumes a less smooth

behaviour.

4.1.4 Lateral width

The lateral beam shape of the three curves, normalized per area, has been tested

evaluating the different lateral sizes of each curve as the FWHM ( Full Width at Half

Maximum), FW20%M ( Full Width at 20% Maximum), FW10%M ( Full Width at

10% Maximum) and FW0.5%M ( Full Width at 0.5% Maximum). The plots of the

results are shown in Fig.4.5,4.6,4.7 for three different energies at four relative depth

each: Zrel = 0%, 20%, 50%, 95%. Also this test shows a good agreement between

the model and the MC evaluation for all the analysed cases; the FHWM values of the

three different curves are in good agreement for all the energies, and the differences

between the model (in agreement with the MC, for all the depths) and the DG is

increasing by increasing the depth and the energies. Furthermore, the DG curves

show a small underestimation of the lateral width except on the FW0.5%M, where

there is a net overestimation of the dose, as it can be also seen in Fig.4.3.

This finding is due to the fact that the DG parametrization is not fully accurate,

and an overestimation of the width is preferable to an underestimation one, so the

σ2 value that are automatically chosen to evaluate the function, based on the energy

and depth (see Sec.3.4.1), are considered broader to reach this purpose.

1 The two sample Kolmogorov-Smirnov test is a nonparametric test that compares the cumu-

lative distributions of two data sets. This test reports the maximum difference between the two

cumulative distributions, and calculates a p-value from that; this value quantify the probability

that the two cumulative frequency distributions would be as far apart as observed [66].
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4. CERR RESULTS

(a)

(b)

(c)

Figure 4.4: P-value results of Kolmogorov-Smirnov test for the energy E=64 MeV (a),

E=148 MeV (b), E=195 MeV (c) at the relative depths of Zrel = 0%, 20%, 50%, 95%.

A linear interpolation of the points is added to improve visualization. The DG values

are displayed in blue, the model ones in red.
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4.1 Single beam

(a) (b)

(c) (d)

Figure 4.5: Plots of the values for the FWHM (a), FW20%M (b), FW10%M (c)

and FW0.5%M (d) for a single beam of energy E=64 MeV at relative depths of Zrel =

0%, 20%, 50%, 95%.
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4. CERR RESULTS

(a) (b)

(c) (d)

Figure 4.6: Same as in Fig.4.5 for a single beam of energy E=148 MeV.
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4.1 Single beam

(a) (b)

(c) (d)

Figure 4.7: Same as in Fig.4.5 for a single beam of energy E=195 MeV.
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4.2 Full treatment plan

After the results for a single beam are obtained, a full treatment case is considered.

The plan is a geometrical case, chosen in order to show the possible application and

future development of the implementation of the model. In this case the PTV and

Figure 4.8: Full treatment plan dose deposition using the model results to evaluate

the lateral beam shape, displayed in CERR interface. The geometry set up is a world of

water of 10× 10× 30cm3 displayed in green, the PTV in red, is 1× 1× 1cm3 positioned

at a depth of 20 cm and the cyan region is the safety margin in which the dose has

to be minimized by the optimizer, it is delineated following the praxis requirement,

adding 1 cm3 to the PTV. The lateral cutoff is extended until 5 cm, to study the lateral

differences between the different approaches, while the default one is normally evaluated

at 2σ; this is the reason for which in the WORLD area, a blue dose region is displayed.

the WORLD are chosen in as in Fig.4.8. The system was allowed to choose the full

set of energies to obtain the best isodose in the PTV region; the dose prescription

was 2 Gy. With this geometry, the selected energies were 193 MeV, 195 MeV, 198

MeV, 200 MeV, 202 MeV. As for the case of the single beam, a plan is evaluated

using the model and then a second one with the DG parametrization. Both plans

were revaluated with the MC Opt ReCalc1 as described in Sec.4.1.2. To study the

lateral shape, the lateral cut off2 has been set at the maximum level of 5 cm.

A selection of the results for the lateral beam shape is shown in Fig.4.9. The model

is in good agreement with its MC Opt ReCalc, while the agreement between the

1 In this case, the plans have been separately reevaluated because the optimization process varies

different parameters, i.e. the range shifter, the weight of each beam, and not only the amplitude as

in the case of the single beam.
2 The value of the distance perpendicular to the beam axis, after which the dose is not calculated

any more
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4.2 Full treatment plan

DG and its MC Opt ReCalc is lower. So the model can be considered as a better

description of the lateral energy deposition compared to the DG approximation. But

from this first comparison, it is not possible to establish which plan is better; this

test aims only to compare the lateral accuracy of the two curves, taking as reference

the two different MC re-evaluation for the two different curves. To evaluate the

quality of the treatment plan, a Dose Volume Histogram (DVH) analysis has been

calculated.

75



4. CERR RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Lateral profile of the dose deposition evaluate by CERR TPS, for a full

treatment plan. Fig. (a), (c), (e), show the comparison between the dose evaluated

using the DG lateral approximation to evaluate the plan in blue and the DG MC Opt

ReCalc in cyan, is shown for relative depths of Zrel = 20%, 50%, 95%. Fig. (b), (d),

(f), show the same comparison but using the model, in red and its MC Opt ReCalc in

green.
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4.2 Full treatment plan

4.2.1 Dose Volume Histogram

A DVH is a graphical representation of the dose that is received by normal tissues

and target volumes within a 3-D radiation therapy plan [67]. It provides information

on the volume of a structure receiving a given dose over a range of doses. Fig.4.10,

4.11, 4.12, show cumulative DVH; they represent the percentage or absolute volume

receiving greater than or equal to the value in the corresponding dose bin. These

DVH were obtained using a phantom as in Fig.4.8, by expanding the PTV in X and

Y direction by 3 cm, because the reported PTV was an interesting case of study

for the lateral profiles analysis, but it was too small to analyse the dose deposition

by a DVH. The nominal dose for this treatment was 2 Gy. The DVH of the DG

and its MC Opt ReCalc is presented in Fig.4.10, where a general overdosing in the

regions is visible except for the WORLD one. The same comparison for the model

and its MC Opt ReCalc is reported in Fig.4.11; in this case the model evaluations is

in better agreement with the MC, even if is not fully accurate. This is mainly due

to the fact that the longitudinal dose is not calculated by the model, but based on

CERR LUT and in region after the Bragg peak the model has still to be enhanced.

Finally, Fig.4.12 shows the direct comparison between the model DVH and the DG

ones; the delivered dose to the PTV is almost equal in the two cases but the dose

on surrounding healty tissues ((PTV3D+1)-PTV) is lower with the model.

Overall one can conclude that a plan obtained using the model for the lateral evalua-

tion of the dose, is a promising candidate instead the DG ones in terms of treatment

quality.
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4. CERR RESULTS

Figure 4.10: DVH calculated by CERR, for the PTV, the safe margin of PTV + 1 cm

and the WORLD regions, both for the plan obtained with the DG (blue curves) and its

MC Opt ReCalc (cyan curves).

Figure 4.11: Same as in Fig.4.10 for the model (red curves) and its MC Opt ReCalc

(green curves).
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4.2 Full treatment plan

Figure 4.12: Same as in Fig.4.10, comparing the results of the DG (blue curves) and

the model ones (red curves).
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4.2.2 Kolmogorov-Smirnov test

As for the single beam case, to quantify the discrepancy in the lateral profile results,

a Kolmogorov-Smirnov test is performed. This time, the test compares the model

versus its MC Opt ReCalc and the DG versus its MC Opt ReCalc. The p-value

trends, reported in Fig.4.13, are in good agreement with the single beam test, show-

ing a better accuracy between the model evaluation with the model MC Opt ReCalc

instead than the DG with the DG MC Opt ReCalc

Figure 4.13: P-value results of Kolmogorov-Smirnov test for the the full treatment

plan dose evaluation,at the relative depths of Zrel = 0%, 20%, 50%, 95%. The points

are joined by a segmented line to improve visualization. The DG values are displayed

in blue, the model ones in red
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4.2 Full treatment plan

4.2.3 Residual analysis

The residual1 analysis is performed for the XY plane, orthogonal to the beam direc-

tion, to quantify the spatial the difference of two cases:

1. DG − DG MC Opt ReCalc

2. model − model MC Opt ReCalc

at relative depths of Zrel = 50%, 80%, 95%. In Fig.4.14−4.16, a clear difference of

the halo can be seen for the case (1) versus case (2); furthermore the difference for

the DG case increases with the increase of the depth and the energy, while for the

model it remains almost constant (showing a good agreement with the MC).

Figure 4.14: Net difference between the dose deposition in Gy, obtained for the treat-

ment using DG lateral parametrization and the relative MC Opt ReCalc (left) and

using the model evaluation compared in the same way with the MC re-evaluation for

the model (right); both for the relative depth Zrel = 50%.

1The difference between the observed value of the dependent variable and the predicted value

is called the residual. Each data point has one residual.

Residual = Observed value − Predicted value, in this case the predicted values are the MC values.
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4. CERR RESULTS

Figure 4.15: Same as in Fig.4.14 for the relative depth Zrel = 80%.

Figure 4.16: Same as in Fig.4.14 for the relative depth Zrel = 95%.
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4.3 Inhomogeneities

4.3 Inhomogeneities

Currently, CERR treatment plans are produced assuming the phantom as homo-

geneous water, treating all the materials in equivalent water media by converting

the different densities in different Water Equivalent Path Lengths (WEPL). But it

has to be considered that if a particle beam is passing trough interface between two

media of different densities (and therefore relative stopping powers), it undergoes

different Coulomb scattering events [68].

As last step of this work, a preliminary study of how do density heterogeneities

affect the lateral profiles characteristics will be presented (the problem of range un-

certainty is not treated here).

For this purpose, two cases have been considered; first a parallelepiped of bone was

placed in the phantom, before the PTV, as in Fig.4.17, and second the same plan

has been evaluating with a parallelepiped of fat. For both phantoms, two plans are

evaluated using a single monochromatic beam as for the previous cases (Sec.4.1)),

using the DG and the model for the lateral dose calculations. Since the model is

implemented in CERR, it is set to evaluate the lateral profiles using water. But the

better solution as a future perspective would be to use it with the real materials to

give a more accurate evaluation of the scattering processes (see Chap.2). The MC

Opt ReCalc of the plan, is evaluated using real materials composition.
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4.3.1 Bone

A parallelepiped of bone of 10×10×4 cm3 is inserted in the water phantom at a depth

of 14 cm as in Fig.4.17. The bone has a density of ρbone = 1.698 g/cm3 (HU=1000),

Figure 4.17: Geometry set up displayed in CERR interface. The same as in Fig.4.2

with the inclusion of an inhomogeneity region of a parallelepiped of bone of 10×10×4cm3

at a depth of 14 cm.

a mean excitation energy of Ibone = 103, 15 eV and an element composition reported

in Tab.4.1.

Element Volume %

H 0.04521

C 0.21016

N 0.03890

O 0.42090

Mg 0.00171

P 0.08808

S 0.00278

Ca 0.19225

Table 4.1: Geant4 element composition for bone

The lateral beam profiles of a beam of energy E = 183 MeV are presented in

Fig.4.18 for a relative of depth of Zrel = 50% before bone, Zrel = 70% inside bone

and relative depths of Zrel = 80%, 95% after bone.
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(a) (b)

(c) (d)

Figure 4.18: Lateral profile of the dose deposition evaluate by CERR TPS, at a

relative depth of Zrel = 50% (a), Zrel = 70% (b), Zrel = 80% (c) and Zrel = 95%

(d), in logarithmic scale, for a single beam of energy E = 198 MeV in presence of a

bone inhomogeneity. The blue curve represents the dose evaluated using the DG lateral

approximation, in red, the one obtained using the model to evaluate the same plan and

the green the MC Opt ReCalc.
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The model shows a good agreement with the MC Opt ReCalc, also after the inho-

mogeneity. To quantify this result, a Kolmogorov-Smirnov test has been performed,

and the results are reported in Fig.4.19. The test confirms the agreement between

the model and the MC Opt ReCalc, for all the depths, and a good p-value for the

double Gaussian before the bone, while it is consistently decreasing after the bone

inhomogeneity due to the approximation of the Gaussian function that increase with

the increment of the depth (in this case, bone has a much higher density compared

to water, that results in a longer WEPL, so in a deeper Z).

Figure 4.19: P-values results of Kolmogorov-Smirnov test for for a single beam of

energy E = 198 MeV, in presence of a bone inhomogeneity schematically represented

with the gray bar. Results are reported for a relative of depth of Zrel = 50% before

bone, Zrel = 70% inside bone and relative depths of Zrel = 80%, 95% after bone. A

segmented line that connects points is added to improve visualization. The DG values

are displayed in blue, the model ones in red.

In addition, the lateral beam shape of the three curves, normalized per area,

has been tested evaluating the different lateral sizes of each curve as in Sec.4.1.4.

The values of the FWHM, FW20%M, FW10%M and FW0.5%M are reported in

Fig.4.20 for a relative of depth of Zrel = 50% before bone, Zrel = 70% inside bone

and relative depths of Zrel = 80%, 95% after bone. Also this test confirm the good

agreement between the model and the MC Opt ReCalc for all the analysed cases;

the values of FWHM, FW20%M, FW10%M of the double Gaussian are comparable

with the MC for all the depths before bone, while they are less accurate after the
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inhomogeneity showing an overestimation of the dose that increase with the increase

of the depth. Instead, the values for the FW0.5%M of the DG are not accurate for

all the depths (excluded 0 depth).

(a) (b)

(c) (d)

Figure 4.20: Plots of the values for the FWHM (a), FW20%M (b), FW10%M (c)

and FW0.5%M (d) for a single beam of energy E = 198 MeV, in presence of a bone

inhomogeneity schematically represented by with the gray bar, at the relative depths

of Zrel = 0%, 20%, 50% before bone, and 70% inside bone, 80%, 95% after bone.
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4.3.2 Fat

In this case a parallelepiped of fat of 10 × 10 × 4 cm3 is inserted replacing bone in

Fig.4.17. The fat has a density of ρfat = 0.9528 g/cm3 (HU=-100), a mean excitation

energy of Ifat = 63.86eV and an element composition reported in Tab.4.2.

Element Volume %

H 0.11527

C 0.64204

N 0.00440

O 0.23716

Na 0.00114

Table 4.2: Geant4 element composition for fat

As for the case of bone inhomogeneity the lateral beam profiles were analysed.

To study the same geometry, the beam energy has changed with respect to previous

phantom, obtaining E = 183 MeV; the results are shown in Fig.4.21 for a relative

of depth of Zrel = 50% before fat, Zrel = 70% inside fat and relative depths of

Zrel = 80%, 95% after fat.
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(a) (b)

(c) (d)

Figure 4.21: Lateral profile of the dose deposition evaluate by CERR TPS, at a

relative depth of Zrel = 50% (a), Zrel = 70% (b), Zrel = 80% (c) and Zrel = 95%

(d), in logarithmic scale, for a single beam of energy E = 183 MeV in presence of a

fat inhomogeneity. The blue curve represents the dose evaluated using the DG lateral

approximation to evaluate the plan, in red, the one obtained using the model to evaluate

the same plan and the green one is the MC Opt ReCalc.

Also in this case, the model presents a good agreement with the MC Opt ReCalc,

for all the the depths. The agreement of the DG is better respect to the case of bone

inhomogeneity since the scattering and nuclear effects have a less relevant role for

fat as well as the absorption. The Kolmogorov-Smirnov test confirms these results,

shown in Fig.4.22. The models values are accurate before the fat, and slightly

decrease at greater depths. The DG presents the same behaviour but with lower

p-values, especially for deep relative depths. This can be due, to a poor evaluation

of the absorption process, which is not taken into account by the model and DG.

But the accuracy of the model is still satisfactory because the MCS events are fully

considered.
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Figure 4.22: P-values results of Kolmogorov-Smirnov test for for a single beam of

energy E = 183 MeV, in presence of a fat inhomogeneity schematically represented by

the gray bar, at the relative depths of Zrel = 0%, 20%, 50% before fat, Zrel = 70%

inside fat and Zrel = 80%, 95% after fat. A linear interpolation of the points is added

to improve visualization. The DG values are displayed in blue, the model ones in red.

The heterogeneity does not affects the accuracy in the evaluation of the lat-

eral width for the model, as results from the evaluation of the FWHM, FW20%M,

FW10%M and FW0.5%M, reported in Fig.4.23 for the relative of depths of Zrel =

50% before fat, Zrel = 70% inside fat and relative depths of Zrel = 80%, 95% after

fat.

The DG, instead shows an underestimation of the dose for the FW20%M, FW10%M

and a consistent overestimation of the dose for the FW0.5%M, that increases with

the increasing of the depth (0 depth excluded).

4.4 Conclusion

The dose deposition of several plans calculated with the CERR TPS has been studied

by comparing the lateral dose profiles obtained with the model calculations and the

DG ones, using the Geant4 MC Opt ReCalc as reference. Starting with the case of

a single beam in an homogeneous water phantom, several energies and depths have

been analysed; the model showed a good agreement with the MC, and an improve-

ment in the accuracy of the lateral dose calculation compared with the DG results

(Fig.4.3,4.6). The differences of the DG are increasing with the increase of the depth
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(a) (b)

(c) (d)

Figure 4.23: Plots of the values for the FWHM (a), FW20%M (b), FW10%M (c)

and FW0.5%M (d) for a single beam of energy E = 183 MeV, in presence of a fat

inhomogeneity schematically represented by the gray bar, at the relative depths of

Zrel = 0%, 20%, 50% before fat, and 70% 80% 95% after fat.
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and the energies, since the scattering increases as well and the function approxima-

tion presents a non smooth behaviour, with a general slight underestimation of the

the dose and an overestimation on the tails at FW0.5%M (see Fig.4.5,4.6,4.7).

A full plan has been studied as well, and also in this case, the model agrees very

well with its MC Opt ReCalc, while the DG is not so accurate compared with its

MC Opt ReCalc(Fig.4.9). From the analysis of the DVH, one can conclude that the

usage of the model can lead to an improvement in the treatment quality, since the

dose in the PTV surrounding area is lower for the model with respect to the DG,

at the same dose in the PTV (Fig.4.12); furthermore, the dose evaluated with the

DG is less accurate with respect to the one with the model if one compares the two

results with the respective MC Opt ReCalc as in Fig.4.10,4.11. This means that the

predictions of the model are more similar to the predictions of the MC with respect

to the ones of the DG.

As last study case, inhomogeneous phantoms have been studied considering fat and

bone tissues. Even if the model performs the calculation in water-equivalent approx-

imation, its accuracy is still good and, as a future perspective, can be improved by

using the model to evaluate real materials, to better predict the lateral scattering.

Based on these results, one can conclude that the model can be a good candidate to

replace the DG approximation to enhance the dose calculation accuracy.
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Chapter 5

Conclusions

The first part of this thesis presents a new pencil beam model based on the Molière

theory, that allows to analytically predict the lateral deflection of a particle beam

traversing a thickness of any kind of material, with the same precision of MC codes

but with much shorter computational time [5].

The model avoids free parameters for the electromagnetic interaction, and fully

takes into account nuclear effects in the tail of the lateral displacement with a

two-parameters function. It has been validated in homogeneous water for proton

beams with a systematic study on several energies in the range of clinical interest

(60 MeV < E < 250 MeV), comparing the results against FLUKA MC simula-

tions and HIT data. Since the comparison with data and MC shows very good

agreement, the model can be proposed to be used instead the currently used DG

parametrization; this solution can enhance the accuracy of the lateral profile evalu-

ation in hadrontherapy practice, that can be a critical parameter especially in the

case of deep tumours near to organs at risk.

A paper that describes the complete version of the model that allows the calculation

of the thee-dimensional dose, including the XY plan lateral dose (2.5) and also the

BP accurate position, is currently in preparation [69]. Since the model is much faster

that the MC but with the same accuracy in water, as a future perspective it can

be proposed for the online beam monitoring to replace the MC mode, and also as a

powerful and flexible tool for the forward dose evaluation.

A future step will be the study of the effects of different materials and the geom-

etry, including interfaces and the use of other particles already clinically used, e.g.

Carbon ions, α particles.

In the second part of this work, a Matlab - C++ code has been developed to

insert the model in the CERR TPS in order to test the differences between the TPS
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dose calculation by using the current DG function and the model. First, the case of

a single mono energetic beam in homogeneous water phantom has been considered,

with a systematic study on several energies and depths; the results of the compari-

son between the model and the DG calculations have been validated against Geant4

simulations1 , a quantitative study has been done using a Kolmogorov-Smirnov test

and a lateral width verification. Furthermore, the scenario of a complete treatment

plan in water phantom was studied, testing a small PTV at a considerable depth

(20 cm), as an example of a possible clinical difficult case. The same statistical tests

were done, and in addiction the residual analysis and the DVHs were studied. Also

in this case the accuracy between the model and its MC re-evaluation was better

than the DG ones, especially for the deeper depths and higher energies.

As last step, heterogeneous phantoms were considered with a bone and fat inclu-

sions.

The results show a good agreement between the model and the MC for all the

analysed cases, and an higher accuracy with respect to DG approximation. The

computational time to obtain an optimized treatment plan by using the DG is com-

parable with the ones by using the model calculation2 ( '3 min for a single beam

with a geometry as in Fig.4.2 ) and much lower respect to MC revaluation ( '4 hours

as magnitude order for the same set-up with a statistic of 107 initial particles).

Overall, a promising perspective would be to implement the model in TPS to

substitute the DG calculation, to have a sensible improvement of the lateral dose

evaluation; the further step could be also to use the model accounting for inho-

mogeneities (not as WEPL but with real materials composition) and to create a

database of lateral dose profile with the model, as for example the matrix used in

this work, to have a fast and precise LUT that requires as input only energy and

depth.

1 A comparison between the MC code of FLUKA and Geant4 has been performed first, to

make sure that the differences between the model (validated on FLUKA) and DG of CERR and

CERR itself (based on Geant4 ) could not be due to the differences between the codes results. The

comparison shown in 3.7 ensure the compatibility between the two simulations results.
2 This comparison refers to the time of using the model for which a database was created for

each energy (the computational time to create a single matrix on the same computer on which the

time mentioned above were been evaluated, is '2.5 min)
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