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1.	Summary	
	
Histone lysine methylation plays crucial role in regulating gene activation and repression. 

Tri-methylation on histone H3K36 is considered as an active mark and enriched in the 3’ 

end of actively transcribed gene body. KDM4a is a Jumonji domain containing lysine 

specific demethylase. It selectively demethylates H3K36me3/me2 to H3K36me2/me1 and 

H3K9me3/me2 to H3K9me2/me1. Apart from its demethylase activity, so far it is not clear 

about its biological function and the regulation mechanism of KDM4a.  

In this thesis work, in vitro and in vivo demethylation assay have been established to 

validate demethylase activity of Drosophila KDM4a towards H3K36me3. Inhibitors 

targeting KDM4a have been investigated using antibody based substrate detection and mass 

spectra based substrate detection. I have shown that inhibitor JMJ-1, JMJ-4 and JMJ-6 

inhibited demethylase activity of dKDM4a towards H3K36me3 in vitro and in vivo. 

Inhibition assay results of JMJ-1, JMJ-4 and JMJ-6 from western blotting, 

immunofluorescence imaging and targeted proteomics study agreed with each other. 

LC-MS based proteomics approach has been applied to study the interactor partners of 

dKDM4a. MSL1, MSL3 and HP1a have been validated by both mass spectrometry analysis 

and western blotting detection. 

We observed single nuclear staining of H3K36me3 in bi-nucleated SL2 and L2-4 cells. 

Regulation of dKDM4a demethylase activity can be from the enzyme itself or the cofactors 

it requires. KDM4a requires α-ketoglutarate, Fe2+ and O2 as co-factors to perform 

demethylation. α-ketoglutarate is produced by IDH. In the last part of my thesis, I 

established stable cell line with IDH over-expression. Over-expression of IDH generated 

more α-ketoglutarate. Interestingly, we observed reduction of H3K36me3 upon IDH over-

expression suggesting stimulation of demethylation by Jmj-C containing KDMs.  
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Zusammenfassung	
	
Die Methylierung von Lysinen in Histonen spielt eine entscheidende Rolle bei der 

Regulation der Gen-Aktivierung und Hemmung. Eine dreifache Methylierung von Lysin 36 

am Histone H3 ist ein Zeichen aktiver Transkription und markiert das 3'-Ende des aktiv 

transkribierten Gens. Die Lysin spezifische Demethylase KDM4a enthält eine sogenannte 

Jumonji und demethyliert H3 Moleküle die an Lysin beziehungsweise an Lysin 9 

methyliert sind. Zu beginn meiner Doktorarbeit war die biologische Funktion sowie die 

Regulation dieses wichtigen Enzyms weitestgehend unverstanden.  

In meiner Doktorarbeit habe ich ein Testverfahren zur Messung der Demethylase Aktivität 

von KDM4a in vitro etabliert und damit neuartige Inhibitoren untersucht und validiert. 

Dabei konnte ich zeigen dass die Inhibitoren JMJ-1, JMJ-4 und JMJ-6 in der Lage sind die 

Demethylase-Aktivität von dKDM4a an H3K36me3 in vitro und in vivo effizient zu 

hemmen. Die Ergebnisse wurden anschliessend mit Hilfe unterschiedlicher Methoden wie 

dem Western-Blotting, der Immunfluoreszenz und der gerichteten Proteomik bestätigt. 

Neben der Untersuchung der Inhibitoren konnte ich mit Hilfe der proteomischen Analyse 

spezifische Interaktoren von KDM4a identifizieren. Die interessanten Kandidaten MSL1, 

MSL3 und HP1a konnte ich im Western Blotting bestätigen. 

Um die Regulation des KDM4a Enzyms durch die notwendigen Kofaktoren α-Ketoglutarat, 

Fe2+ und O2 besser zu verstehen, habe ich im letzten Teil der Arbeit stabile Zelllinien 

generiert, die das Enzym Isocitrat Dehydrogenase (IDH) überexprimieren. 

Interessanterweise führte eine Überexpression des IDH enzyms zu einer Reduktion der 

intrazellulären H3K36me3 Spiegel was auf eine Stimulierung der Demthylasen hindeutet. 

Diese Regulation der Enzymaktivität durch Metabolite deutet auf eine interessante 

Verbindung zwischen der epigenetischen Information und dem metabolischen Zustand 

einer Zelle hin.  
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2.	Introduction	
	
The word ‘epigenetics’ was introduced by Waddington to combine the fields of 

developmental biology and genetics in 1950s (Waddington, 1952). It mainly indicates 

heritable information that is independent of DNA sequence (Spannhoff et al., 2009). 

Epigenetic mechanisms involve DNA methylation, chromatin structure, nucleosome 

remodeling, non-coding regulatory RNA, histone variants and histone modifications 

(Katada et al., 2012).  

The major difference between genetics and epigenetics is whether changes are reversible or 

not. Genetic changes are stable and irreversible, while epigenetic changes are generally not 

stable. The epigenotype is defined as actual gene expression pattern of a specific cell 

lineage. All cell lineages derived from an organism share the expression profile of common 

housekeeping genes, which are necessary for basic cell metabolism. Specified cell lineages 

harbor specialized functions, which are performed by cell type specific proteins. The 

epigenotype of a given cell lineage indicates not only basic household genes, specific genes 

but also the repressed genes (Holliday et al., 2006). 

Among all of the epigenetic mechanisms, DNA methylation was the earliest reported 

epigenetic event. It has been described by Griffith and Mahler in 1969. Isoschizomers are a 

pair of restriction enzymes which could recognize the same DNA sequences; one digests 

un-methylated version and the other one cuts methylated version (Holliday et al., 2006). 

Discovery of DNA methylation was based on characterization of these two enzymes 

reading DNA methylation mark. 

Genetic information is highly organized in chromatin. Chromatin is a structure only found 

in eukaryotic organism. Chromatin can be categorized into two major types such as 

euchromatin and heterochromatin according to their degree of condensation (Sansoni et al., 

2014). 

Chromatin forms a compact structure, which intrinsically has a repressive function for gene 

expression. Basic unit of chromatin is nucleosome. Nucleosome remodeling can either 

tighten or loosen the DNA wrapped on histone octamer (Becker & Hörz, 2002). This can 

compact or open chromatin to regulate access of transcription factors to underlying DNA 

sequence (Zhang et al., 2011). 
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Regulation of gene expression can be manipulated not only by transcription factors but also 

regulatory non-coding RNAs on chromatin. For instance, Maenner et al. described roX 

RNA served as scaffold to recruit and activate dosage compensation complex (DCC). This 

has been done by changing secondary structure of roX RNA stem loop via ATP dependent 

RNA helicase MLE. MLE is one of the subunit of DCC complex (Maenner et al., 2013). 

Presence of different histone variants can change the structure of chromatin and alter gene 

expression profile by recruiting different transcription factors or a specific chaperone 

(Banaszynski et al., 2010). For instance, apart from canonical histone H3.1 and H3.2, there 

are two major variants for histone H3: H3.3 and CENP-A. H3.1 and H3.2 RNA expression 

peak during S phase in a replication dependent manner. H3.3 RNA is found during the 

whole cell cycle. H3.3 protein gets incorporated into actively transcribed chromatin regions 

(Hake et al., 2006; Biterge et al., 2014). H3.3 variant plays an essential role with 

chromosome decondensation during spermatogenesis both in Mus and Drosophila (Heijden 

et al., 2007; Rogers et al., 2004; Wen et al., 2014; Loyola et al., 2007). CENP-A is also 

called centromere identifier (CID) in Drosophila. It is the H3 variant specifically localizing 

in centromeric chromatin region together with constitutive centromere associated network 

proteins (Barth et al., 2014). The phosphorylated γH2A.X is a H2A variant specifically 

recruited to the DNA damage site by activated DNA damage repair machinery (Panier et al., 

2014).  

The entire genome is duplicated in S phase before cell division for both mitosis and meiosis. 

Therefore duplication of histone protein is required in order to assemble and form new 

chromatin. Heritable epigenetic information is highly controlled by post-translational 

modifications (PTMs) maintained on histones. And it is conserved during histone protein 

duplication (Scharf et al., 2009). Temporal and spatial gene expression profile is achieved 

by activating defined set of genes and meanwhile repressing another set of genes via 

dynamic PTMs on histones (Imhof, 2004). 

Histone lysine methylation has been intensively reported for residue sites including K4, K9, 

K27, K36 and K79 on histone H3 (Labbé et al., 2014), and K20 on histone H4. Meanwhile 

histone arginine methylation has also been characterized on residue sites R2, R8, R17, R26 

on histone H3 and R3 on histone H4. There are 18 acetylation sites assigned to histone 

lysine residue including K9, K14, K18, K23, K27, K36 and K56 on histone H3; and K5, 

K8, K12, K16 on histone H4; K5, K9, K13 on histone H2A; K5, K12, K15, K20 on histone 
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H2B (Bhaumik et al., 2007). Eight known phosphorylation sites on histones are T3, S10, 

T11 and S28 on histone H3; S1 on histone H4; S1 and T120 on histone H2A; S14 on 

histone H2B. Meanwhile, K119 on histone H2A and K120 on histone H2B are found to be 

unbiquitinated (Portela & Esteller, 2010; Figure 1.1). 

2.1	Histone	lysine	methylation	
	
Genetic information is stored in chromatin. The nucleosome is formed by 147 base pairs of 

DNA wrapping around a histone octamer and locked by linker histone protein H1 (Luger et 

al., 1997). Histones are small basic proteins conserved among all eukaryotic species. They 

have very high binding affinity to DNA. They share similar structure feature with a 

hydrophobic globular folding domain and a stretched out flexible N-terminus and C-

terminus region (Mosammaparast et al., 2010). Histones can be covalently modified. 

Histone modifications take place on different residue sites, different states and in a manner 

of different combinations. Posttranslational histone modifications include methylation, 

acetylation, phosphorylation, ubiquitination, glycosylation, sumoylation, ADP-ribosylation 

and so on (Holliday et al., 2006). Regulation of chromatin structure is achieved via histone 

variants and different PTMs on histone flexible tails to recruit variety of functional proteins.  

Histone lysine methylation on different residues and different states (mono-, di-, tri-) can 

serve as repressive mark or active mark. It reflects the chromatin structure to be closed or 

open. For instance, H3K4me3 is found in promoter region. It is characterized as a 

transcription activation mark together with initiating RNA Pol II occupancy for protein 

encoding genes (Guenther et al., 2007). H3K9me3 is a hallmark for heterochromatin region. 

It is recognized by the chromo-domain of Heterochromatin Protein HP1. And it acts as a 

repressive chromatin signature. H4K20me3 indicates silenced genes and is localized 

together with H3K9me3 in pericentric heterochromatin region (Schotta et al., 2004). 

H3K27me3 is described as a repressive mark maintaining the HOX genes in silent state. It 

is associated with Polycomb Repressive Complexes PRC2 and PRC1 (Cao et al., 2002; 

Eskeland et al., 2010). H3K36me3 is an active mark localized in actively transcribed gene 

body together with elongating RNA Pol II. It plays a crucial role in transcriptional 

elongation (Bell et al., 2007). H4K20me1 is set by KMT5a (also called PR-Set7 or Set8) 

and maintains  silent chromatin (Nishioka et al., 2002). H4K20me2 catalyzed by Suv4-

20h1/h2, can recruit Origin Recognition Complex (ORC) which leads to initiation of 

replication (Beck et al., 2012). 
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With the development of analytical capability, there are new types of PTMs discovered 

(Sidoli et al., 2015). However, the speed to assign corresponding catalyzing enzymes is far 

behind discovery. The major limitation is the lack of faithful assay methods. For example, 

Suv4-20 has been reported as the methyl transferase which methylates H4K20 (Schotta et 

al., 2004). But it is still not clear so far which is the demethylase for H4K20. The same 

issue also exists for acetylation, phosphorylation, ubiquitination and also other known 

covalent modifications on histones. In vitro enzyme activity assay can be ideal tool to 

clarify enzyme and substrate relationship. 

Regulation and function of PTMs on histones are intensive ongoing studies in epigenetic 

field. Histone modifiers are associated to cellular processes such as DNA replication, DNA 

repair, transcription (Carrozza et al., 2005), chromatin condensation (Schotta et al., 2004), 

cell division and so on. Therefore it is important to assign the corresponding enzymes for 

histone PTMs substrate. This is especially the case for lysine methylation with most of the 

Figure 1.1 | Common PTMs on canonical core histone H2A, H2B, H3 and H4. 
Histones are small basic proteins modified by post-translational modifications on N-terminus 
and C-terminus tails. The canonical core histones of human consist of H2A (130 aa), H2B (126 
aa), H3 (136 aa) and H4 (103 aa). They are highly conserved across eukaryotic species. The 
most abundant PTMs assigned to histone lysine are acetylation and methylation. Lysine 
methylation marks are intensively reported on H3-K4, H3-K9, H3-K27, H3-K36 and H4-K20 
(Guide to epigenetic marks card, Abcam). They are associated with most known functional 
role. Amino acid lysine, arginine, serine and threonine are present in histone N-terminus tail in 
high frequency. Histone PTMs not only functions as single modification but also as 
combinatorial form within the same peptide. They also function as combination of different 
histone tails from the same nucleosome (Feller et al., 2015). 
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sites already having functional characterization. Both high throughput fast enzyme activity 

assay methods and low throughput confident assay approaches are required for in vitro 

study. 

2.1.1	Dynamics	of	histone	lysine	methylation	
	
Histone lysine methylations are covalent chemical modifications added and removed by 

enzymatic reactions (Figure 1.2). 

Methylation of histones is catalyzed by histone methyl-transferases (HMTs). There are two 

types of lysine specific HMTs. One is characterized by SET domain containing proteins 

such as SetDB1 (Rivera et al., 2015). Another is non-SET domain containing protein such 

as DOT1 (Ng et al., 2002). Histone methylation can occur on arginine as well. Histone 

arginine is methylated by protein arginine methyltransferases (PRMTs). Rme1 and Rme2 

can be formed. The methyl group is added to arginine symmetrically or asymmetrically for 

Rme2 (Mosammaparast et al., 2010). All of the methyltransferases require S-adenosyl 

methionine (SAM) as methyl group donor (Smith & Denu, 2009). SAM is synthesized by 

methionine adenosyltransferases (MATs). MAT catalyzed the reaction of L-methionine 

with ATP in the presence of Mg2+. SAM is generated as product. Pyrophosphate and 

inorganic phosphate are generated as byproducts (Markham et al., 2008). 

SET domain containing HMTs are categorized into two classes: a) mono-methyl specific 

methyl-transferases; b) di- and tri- methyl specific methyl-transferases. Mono-methyl 

specific HMTs are represented by KMT7 (Set7/9) catalyzing methylation for H3K4me1. It 

is specified by releasing the methylated lysine after de-protonation of lysine ε-carbon-

nitrogen bond. Di- and tri- methyl specific HMTs are represented by G9a catalyzing di-

methylation and tri-methylation for H3K9. It is specified by not releasing the methylated 

lysine after de-protonation of lysine ε-carbon-nitrogen bond (Smith et al., 2009). Most of 

the histone lysine specific methyl-transferases so far characterized contain SET domain. 

KMT4 (DOT1) has been characterized to methylate nucleosomal histone H3 in core 

globular domain for K79. Its catalytic structure folding is more similar to glycine N-

methylase. It harbors an AdoMet binding motif more similar to PRMTs without carrying a 

typical SET domain (Smith & Denu, 2009; Ng et al., 2002). 

Lysine can be unmodified, mono-methylated, di-methylated or tri-methylated. The turnover 

rate of histone lysine methylation is the same as turnover of histones. For long time being, 
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lysine methylation was considered as irreversible modification (Byvoet et al., 1972; Duerre 

et al., 1974; Allis et al., 2001). This view changed with the discovery of lysine specific 

demethylases. Demethylation of lysine is catalyzed by two types of KDMs: a) the majority 

of KDMs contain a catalytic Jumonji-domain and require presence of O2. They make use of 

α-ketoglutarate and Fe2+ as co-factors to perform demethylation. They generate succinate 

and CO2 as byproducts. One methyl group is removed each reaction; b) LSD1 belongs to a 

minor group of KDMs without Jumonji-domain. It makes use of FAD as cofactor and 

 

generates FADH2 as byproduct. One methyl group is removed by each demethylation 

reaction as well (Mosammaparast et al., 2010). 

Different methylated states on different lysine residues can be read by domain specific 

histone binding proteins (Figure 1.3). And HMT or KDM catalytic domain can also be 

brought to the target substrate site by having a binding domain present in the same protein 

which recognizes proximal PTMs. The Chromo domain from HP1 specifically binds to 

H3K9me3 and H3K9me2 (Kouzarides et al., 2007). The WD40 repeat domain from EED, 

one subunit of PRC2 complex, binds to H3K27me3 (Suganuma et al., 2011). The Tudor 

domain from human KDM4a can bind to H3K4me3 or H4K20me3 (Labbé et al., 2013). 

The MBT domain repeats from L3MBTL1 recognizes H4K20me2 (Min et al., 2007). The 

PWWP domain from PSIP1 preferentially binds to H3K36me3 (Pradeepa et al., 2012). 

Figure 1.2 | Lysine methylation is a reversible modification. 
MATs catalyze the reaction of methionine and ATP in the presence of Mg2+ producing SAM. 
SAM is the general methyl group donor for methylation (Markham et al., 2008). Two categories 
of KMTs are characterized including the SET domain containing proteins as major group 
(Rivera et al., 2015) and the minor group DOT1 protein without SET domain (Ng et al., 2002). 
Histone lysine can be unmodified, mono-methylated, di-methylated or tri-methylated. 
Demethylation of lysine is catalyzed by two types of KDMs: a) the Jumonji-domain containing 
proteins; They make use of α-ketoglutarate, Fe2+ and O2 as cofactors to perform demethylation 
and generate succinate and CO2 as byproducts; b) LSD1 protein which makes use of FAD as 
cofactor to perform demethylation and generates FADH2 as byproduct. One methyl group is 
removed by each demethylation reaction (Mosammaparast et al., 2010). 
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Bromo-PWWP domain from ZMYND11 selectively binds to H3.3K36me3 (Wen et al., 

2014). The PHD (Plant Homeo Domain) from C-terminus KDM5a (also called JARID1A) 

binds to H3K4me3 (Cloos et al., 2008). The lysine adjacent or proximal residue can also be 

modified. Recruitment of specified domain containing proteins to lysine proximal residues 

may also play a role in regulating lysine methylation. For instance, Bromo domain from 

human BRG1 binds to H3K14ac and recruits BAF complex to promoter region (Vicent et 

al., 2009). Binding of 14-3-3 protein to phosphorylated H3S10 is dependent on the 

presence of adjacent H3K14ac (Walter et al., 2008). 

                   

2.1.2	Histone	lysine	demethylases	
	
Human LSD1, which is a component of the CoREST complex, is the first characterized 

lysine specific demethylase with experiment evidence. It removes the methyl group from 

H3K4me2 and H3K4me1 (You et al., 2001). LSD1 homologs are conserved among S. 

pombe (Lan et al., 2007), C. elegans (Katz et al., 2009), Arabidopsis (Liu et al., 2007), 

Drosophila (Rudolph et al., 2007), Mus and Homo Sapiens (Shi et al., 2004). 

Figure 1.3 | Histone PTMs are recognized by specified binding domains. 
Different methylation states can be recognized by different binding proteins. Chromo domain 
containing proteins bind to tri- or di- methylated histone lysine on H3K4, H3K9, H3K27 and 
H3K36. MBT domain containing proteins bind to mono- or di- methylated histone lysine on 
H3K4, H3K9 and H4K20. PHD domain containing proteins bind to tri- or di- methylated histone 
lysine on H3K4 and H3K9. Tudor domain from human KDM4a can bind to H3K4me3 and 
H4K20me3. WD40 repeat domain containing proteins bind to repressive trimethylated histone 
lysine. PWWP domain containing proteins specifically bind to trimethylated lysine. Lysine 
methylation binding proteins are also regulated by proximal amino acids’ modification. 14-3-3 
domain containing proteins bind to phosphorylated serine in histone. (Details in Table 2.1). 



Introduction 

	
15	

Demethylation by LSD1 involves amine oxidation requiring FAD as cofactor. FAD is 

reduced to FADH2 (Shi et al., 2004). 

The Jumonji-C domain containing demethylases are dependent on α-ketoglutarate as 

cofactor. They belong to a super family of dioxygenases. For these dioxygenases, α-

ketoglutarate oxidative decarboxylation and methyl group hydroxylation are coupled 

together. Methyl group is released as formaldehyde and meanwhile α-ketoglutarate is 

converted to succinate. First report of KDM activity for Jumonji-C domain proteins was 

based on detection of radioactive labeled formaldehyde release in demethylation reaction 

by Zhang’s Lab. And Jumonji-C domain containing KDMs requires presence of Fe2+ and 

O2 in catalytic center (Tsukada et al., 2006). Comparing to LSD1, which can only 

demethylate Kme2 and Kme1, the Jumonji-C KDMs are able to demethylate all 

methylation state Kme3, Kme2 and Kme1 (Mosammaparast & Shi, 2010). 

Jumonji-C domain containing KDMs show selectivity towards their substrates. This is 

achieved by the specific structure of catalytic domain. The conformation is orientated by a) 

the amino acid residues from catalytic active sites; b) the amino acid residues of substrate; c) 

the proximal amino acid residues from substrate (Figure 1.4; Ng et al., 2007; Wen et al., 

2014). 

In order to study the function of these demethylases and clarify substrate specificity for 

each KDM, it is also crucial to know the complex composition, which these KDMs may 

form with other components. Knowledge about specific substrate for KDMs can help to 

predict the role for corresponding KDM.  

KDM4a is characterized to demethylate H3K36 and H3K9 from tri-methyl to di-methyl, 

and from di-methyl to mono-methyl (Allis et al., 2007). H3K36me3 is considered as an 

active mark, enriched in 3’ end of gene body where active transcription is taking place. It is 

involved in transcriptional elongation by RNA Pol II complex (Bell et al., 2007). 

H3K36me3 mark is added by SET2. SET2 binds to RNA Pol II complex large subunit 

Rpb1 CTD region when the serine 2 from heptad repeats is phosphorylated (Eick & Geyer, 

2013). The Chromo domain of Eaf3, one component of Rpd3S in yeast, binds to 

H3K36me3 and recruits Rpd3S complex. Rpd3 complex performs deacetylation to stop 

intragenic transcription initiation (Carrozza et al., 2005). H3K36me3 is a global mark found 

in expressed exons’ 5’ end. It is also involved in alternative splicing (Hon et al., 2009). 

Determination of alternative splicing site is dependent on transcription elongation by RNA 
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Pol II recruitment. RNA Pol II binds to SET2 to set H3K36me3 mark. H3K36me3 is 

closely associated with tissue and cell type specific alternative splicing. Dysfunction of 

SET2 has shown strong effect in selecting alternative splicing sites (Luco et al., 2010). 

However up to date, it is not clear how the methylation on H3K36 is reversed after RNA 

Pol II elongation. Is there demethylase present together with SET2 constantly to switch off 

this mark? Or can the demethylase be recruited to defined loci by yet unknown mechanisms? 

H3K9me3 is thought to be a repressive mark localized in heterochromatin region including 

pericentromere and telomere. Chromo domain from HP1 recognizes and binds to H3K9me3 

and H3K9me2. In addition, HP1 recruits more SUV39H to the region and further enforces 

H3K9 methylation. Therefore heterochromatin region is spread and maintained (Maison & 

Almouzni, 2004). H3K9me3 is also found in promoter region and gene body of 

transcriptionally repressed genes (Sims & Reinberg, 2009). This also supports the 

hypothesis that H3K9me3 is a repressive mark. In agreement with that H3K4me3 and 

H3K9ac are active marks, methylation of H3K9 is associated with H3K4 hypomethylation 

and H3K9 hypoacetylation during X chromosome inactivation (Heard et al., 2001). KDM4a 

may reverse the functions of H3K36me3 and H3K9me3 by changing the methylation state 

in these two sites. 

 

2.2	Previous	work	on	KDM4a	

2.2.1	Enzymatic	related	KDM4a	function	
	

Figure 1.4 | Binding of peptide substrate to hKDM4a catalytic domain 
a    Peptide H3.3_7.14 with H3K9me3 binding to catalytic pocket formed by JmjN and JmjC; 
b    Peptide H3.3_31.41 with H3K36me3 binding to catalytic pocket formed by JmjN and JmjC. 
(Figure adapted from Ng et al., 2007) 
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Human KDM4a (EC 1.14.11) selectively catalyzes demethylation of H3K36me3/me2 to 

H3K36me2/me1 and H3K9me3/me2 to H3K9me2/me1, but not H3K36me1 to H3K36me0 

and H3K9me1 to H3K9me0 (Couture et al., 2007). And hKDM4a prefers H3K9 to H3K36 

as substrate (Black et al., 2012). Full length hKDM4a has 1064 amino acids. It includes 

catalytic region Jmj-N and Jmj-C domain, linker region, one PHD domain, one Zinc finger 

domain and two Tudor domains (Figure 1.5). 

Crystal structure of hKDM4a catalytic region 1-359 aa in presence of α-ketoglutarate 

analog (Ng et al., 2007) has identified residue His188, Glu190 and His276 as iron binding 

sites; Tyr 132, Asn198 and Lys206 are α-ketoglutarate binding sites. Ng et al. have also co-

crystallized hKDM4a with peptide including H3K9me3 (H3.3_7.14: peptide of histone H3 

Ala7 to Lys14) and peptide including H3K36me3 (H3.3_31.41: peptide of histone H3 

Ser31 to Tyr41) (Figure 1.4). The H3K9me3 peptide binds to substrate pocket in a W-shape 

conformation with downstream residues of H3 Ser10_Thr11_Gly12_Gly13 also interact 

with the pocket. The H3K36me3 peptide binds to substrate pocket in a U-shape 

conformation. In this paper, they further showed the evidence that phosphorylation of H3 at 

position Ser10 abolished KDM4a demethylation activity at Lys9.  

In 2013, Black et al. demonstrated that over-expression of hKDM4a gives rise to extra 

DNA copy of 1q12, 1q21 and Xq13.1 locus based on cytogenetic band analysis. While the 

global chromosome stability is not disturbed. Active demethylase activity and intact Tudor 

domain are required to generate these copy gains. The same regions are observed to gain 

extra copies in KDM4a up-regulated tumors. Regions with extra copies have re-replication 

and occupancy of DNA polymerase. MCM and KDM4a are also increased in these regions. 

In contrast, occupancy of HP1γ is decreased. However, over-expression of Suv39h1 or 

HP1γ antagonizes these copy gains. Hypothetical mechanisms proposed for the origin of 

certain genome region copy number change include: a) stalled replication forks during 

DNA amplification. This generates tandem duplication; b) DNA breaks and repair 

intermediates are recognized as primers. This initiates re-replication and leads to 

duplication of a genome region or deletion; c) DNA polymerases collide between head and 

tail during elongation. The copy gain caused by KDM4a can accumulate within 24hrs 

during S phase. This is dependent on the demethylase activity of it (Black et al., 2013). 

Instable chromosome and altered copy number of certain genome region associated with 

disease have also been observed in Sotos syndrome, breast cancer and ovarian cancer 
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(Berdasco et al., 2009; Kelly et al., 2010). But it is not clear what the driving force to 

promote site-specific copy number alteration is. 

Apart from demethylase activity towards H3K36me3/me2 and H3K9me3/me2, hKDM4a 

has been found binding to methylated H4K20 via its Tudor domain. This binding occurs 

before recruitment of 53BP1 protein to DNA damaged site in double-strand break response 

(Panier et al., 2014). Meanwhile, hKDM4a has been found to catalyze demethylation of 

linker histone H1.4K26 (Trojer et al., 2009). 

The major KDM enzymes in fruit fly are highly conserved from human (Lloret et al., 2008). 

In D. melanogaster, most of them have single gene encoding each enzyme. In comparison, 

multiple genes and multiple enzymes are involved in single lysine residue demethylation 

catalysis in human. In fact, fruit fly and human share highly conserved signaling pathways, 

regulation of cell proliferation and molecular functions of homologs. Among all known 

human disease related genes, one third of them have counterparts in D. melanogaster (Bier 

et al., 2005). All of these conservation and simplicity features make fruit fly a promising 

model organism to study the regulation of human disease relevant genes. 

Core catalytic domainsof hKDM4a and dKDM4a homologs share 63 % identity and 80 % 

similarity (Figure 1.5). dKDM4a selectively catalyzes demethylation of H3K36me3/me2 to 

H3K36me2/me1 both in vitro and in vivo, but not H3K36me1 to H3K36me0. dKDM4a has 

shown preference to methylated H3K36 as a substrate in comparison to methylated H3K9. 

This is based on the observation that over-expression of dKDM4a leads to reduction of 

H3K36me3 signal while the H3K9me3 signal has no variation. Knock down of dKDM4a 

has shown dramatic increase for H3K36me3 but only slightly increase for H3K9me3. 

However in vitro demethylation assay with recombinant dKDM4b has shown stronger 

demethylation of H3K9me3 instead of dKDM4a (Lin et al., 2008). 

                               

Figure 1.5 | Conserved core catalytic domain of KDM4a in H. sapiens and D. 
melanogaster 
hKDM4a core catalytic domain region 1-359 aa and dKDM4a 1-372 aa share 63 % identity 
and 80 % similarity. See alignment of protein sequence in appendix 2 (Figure 6.2). 



Introduction 

	
19	

dKDM4a is observed to have RNA peak expression within embryonic stage 0 to 6 hours 

according to modENCODE Temporal Expression Profile. dKDM4a mutant flies showed 

shorter life span for male. Phenotype of showing extension-twitching wing and courtship 

song inter male ones are observed in these mutant flies (Lorbeck et al., 2009).  

2.2.2	Interacting	factors	of	KDM4a,	H3K36me3	and	H3K9me3	
	
It is known about the demethylation enzymatic activity of hKDM4a towards H3K36me3 

and H3K9me3. But the biological function of KDM4a is more dependent on the 

macromolecule complexes formed by KDM4a and its interactors. It is also dependent on 

the complexes formed by H3K36me3 or H3K9me3 together with its individual interactors 

before KDM4a demethylation activity occurs. Recent characterized interaction partners for 

KDM4a, H3K36me3 and H3K9me3 are listed in Table 2.1. 

Table 2.1| Interaction partners of KDM4a, H3K36me3 and H3K9me3 
	

	

	

	

	

	

KDM4a	

	

	

	

Interactor	name	

	

Species	

	

Binding	information	

	

Reference		

CG16972	 D.	mel	 Co-IP	 Rhee	et	al.,	2014	

CG34163	 D.	mel	 Co-IP	 Rhee	et	al.,	2014	

CG10911	 D.	mel	 Two-hybrid	 Giot		et	al.,	2003	

EcR	 D.	mel	 Co-IP,WB	 Tsurumi	et	al.,	2013	

HP1	 D.	mel	 Co-IP	 Alekseyenko	et	al.,	2014	

Ino80	 D.	mel	 Co-IP	 Lowe	et	al.,	2014	

Df31	 D.	mel	 Co-IP	 Guruharsha	et	al.,	2011;	

Guruharsha	et	al.,	2012	

miR-1005	 D.	mel	 RRI	 	

	

Schnall-Levin	et	al.,	2010	

miR-1014	 D.	mel	 RRI	

miR-14	 D.	mel	 RRI	

miR-275	 D.	mel	 RRI	

	

	

	

	

	

	

	

	

H3K36me3	

MSL3	 D.	mel	 Chromo	domain	 Larschan	et	al.,	2007;		

Sural	et	al.,	2008	

Eaf3	 S.	cerevisiae	 Chromo	domain	 Carrozza	et	al.,	2005	

PHF19	 Mus	 Tudor	domain	 Brien	et	al.,	2012	

PSIP1	 Mus	 PWWP	domain	 Pradeepa	et	al.,	2012	

Brpf1		 Mus	 PWWP	domain	 Vezzoli	et	al.,	2010	

Dnmt3a		 Mus	 PWWP	domain	 Dhayalan	et	al.,	2010	

MSH-6	 H.	sapiens	 PWWP	domain	 	

	

Vermeulen	et	al.,	2010	

	

NSD1		 H.	sapiens	 PWWP	domain	

NSD2	 H.	sapiens	 PWWP	domain	

N-PAC	 H.	sapiens	 PWWP	domain	

MRG15	 H.	sapiens	 Chromo	domain	 Zhang	et	al.,	2006;		

Luco	et	al.,	2010	

HIRA	 Mus	 Chaperon		 Lin	et	al.,	2014	

HiRA	 D.	mel	 Chaperon	 Loppin	et	al.,	2001;		
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Loppin	et	al.,	2005	

ZMYND11	 Mus	 Bromo-PWWP	domian	 Wen	et	al.,	2014	

	

	

	

H3K9me3	

HP1	 D.	mel	 Chromo	domain	 Schotta	et	al.,	2002;		

Brehm	et	al.,	2004	

Cbx5	 H.	sapiens	 Chromo	domain	 	

	

Vermeulen	et	al.,	2010	

	

Cbx3	 H.	sapiens	 Chromo	domain	

Cbx1	 H.	sapiens	 Chromo	domain	

CDYL2	 H.	sapiens	 Chromo	domain	

CDYL	 H.	sapiens	 Chromo	domain	

Despite of demethylase enzymatic activity, some of dKDM4a regulated genes do not have 

H3K36me3 mark. This has raised up the question that dKDM4a may play functions 

unrelated to demethylase activity (Crona et al., 2013). KDM4a protein contains a PxVxL 

motif and binds to HP1. HP1 recognizes H3K9me3 (Schotta et al., 2002). PxVxL motif is 

found in also other HP1 binding factors (Thiru et al., 2004). 

Although the protein interactors of KDM4a, H3K36me3 and H3K9me3 can give a hint 

about the biological functions that KDM4a plays, regulation of KDM4a and especially 

function beyond demethylation enzymatic activity still need to be addressed. 

2.3	Therapeutic	strategy	targeting	epigenetic	modifiers	
	
Epigenetic modifiers program the covalent modifications on histones in a dynamic manner. 

Different modification marks and replacement of histone variants have been associated 

with diseases and cancer (Vardabasso et al., 2014). For instance, methylation, acetylation 

and ubiquitination have been reported to regulate transcription events. Phosphorylation is 

mainly involved in regulating cell cycle (Bhaumik et al., 2007). Dysfunction of epigenetic 

modifiers is frequently observed in disease progression of patients (Table 2.2). Plasticity of 

histone modifications programmed by epigenetic modifiers has triggered the inspiration to 

target them as therapeutic strategy for related diseases. 

2.3.1	Disease	related	KDM4	epigenetics	
	
Dysfunction of Jmj-C containing demethylases is commonly involved in human diseases 

and cancers due to the critical functions they play in DNA replication, encoding gene 

transcription, cell programming, differentiation and development (Cloos et al., 2008). 

KDM4 subfamilies of the Jmj-C domain containing encoding genes include KDM4a, 

KDM4b, KDM4c, KDM4d, KDM4e and KDM4f in human. Meta-analysis of gene RNA 

Co-IP:	Co-immune	precipitation.	RRI:	RNA-RNA	interaction.	WB:	western	blotting.		
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expression levels of KDM4 members among human normal tissues demonstrates the 

regulation of KDM4 members may fellow different pathways (Labbé et al., 2013). KDM4c 

has been found amplified in cerebellar tumors accompanied by amplification of several 

genome regions including 1p22 (Ehrbrecht et al., 2006). KDM4c has also been found up-

regulated in oesophageal squamous carcinomas. Knockdown of KDM4c by RNAi delayed 

cell proliferation (Cloos et al., 2006). Interaction between KDM4c and androgen receptor 

(AR) allows demethylation of H3K9me3 by KDM4c on AR targeted genes in an androgen 

dependent manner (Wissmann et al., 2007). 

Over-expression of KDM4a has been reported in lung cancer, breast cancer and ovarian 

cancer (Labbé et al., 2013). Up regulation of KDM4a in ovarian cancer patients based on 

RNA-Seq data is significantly correlated with shorter mean time to death. For KDM4a 

over-expression patients, it is 23 months, comparing with 35 months for the patients 

without KDM4a changes (Berry et al., 2012; Black et al., 2013).   

Table 2.2 | Disease associated epigenetic dysfunction 
Epigenetic	
aberration		

Responsible	
enzyme	

Disease		 Epigenetic	
alteration		

Comments		 Reference	

DNA	methylation		 DNMT1,	DNMT3A,	
DNMT3B	and	
DNMT3L		

Rett	syndrome		 Inability	to	‘read’	
DNA	methylation		

MECP2	mutation		
	

Egger	et	al.,	
2004;	
Urdinguio	et	
al.,	2009;	
Feng	et	al.,	
2009	

	 Diabetes		 Hypermethylation	of	
PPARGC1A	promoter		

	 Villeneuve	et	
al.,	2010	

	 Cancer	 Global	
hypomethylation,	
hypermethylation	of	
some	CpG	island	
promoters,	including	
CIMP		

	 Jones	et	al.,	
2007;	Fouse	
et	al.,	2009;	
Egger	et	al.,	
2004	

	 Systemic	lupus	
erythematosus		
	

Hypomethylation	of	
CpG	islands	at	
specific	promoter	
regions		

Decreased	DNMT1	
and	9	DNMT3B	
expression		

Javierre	et	al.,	
2010	

	 ICF	syndrome		 Hypomethylation	at	
specific	sites		

DNMT3B	mutation		 Egger	et	al.,	
2004;	
Urdinguio	et	
al.,	2009;	
Feng	et	al.,	
2009	

	 ATR-X	

syndrome	

Hypomethylation	of	
specific	repeat	and	
satellite	sequences		

ATRX	mutation		
	

Egger	et	al.,	
2004;	
Urdinguio	et	
al.,	2009	

Histone	acetylation		 HATs	and	HDACs		 Rubinstein-
Taybi	
syndrome	

Hypoacetylation		 Mutation	in	gene	
encoding	CBP,	a	
known	HAT		

Egger	et	al.,	
2004;	
Urdinguio	et	
al.,	2009;	
Feng	et	al.,	
2009	

	 Diabetes			
	

Hyperacetylation	at	
promoters	of	
inflammatory	genes		

	 Villeneuve	 et	
al.,	2010	

	 Asthma	 Hyperacetylation		 Increased	HAT	 Adcock	 et	 al.,	
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activity	and	
decreased	HDAC	
activity		

2005	

	 Cancer	 H4K16	acetylation	
loss		

Hypomethylation	
of	DNA	repetitive	
sequences		

Jones	et	al.,	
2007	

Histone	methylation		 HMTs	and	HDMs		 Cancer	 H4K20me3	loss		 Hypomethylation	

of	 DNA	 repetitive	

sequences	

Jones	et	al.,	
2007	

	 Sotos	
syndrome	

Decreased	

H4K20me3	 and	

H3K36me3	

Loss	of	function	of	
NSD1,	a	HMT		

Berdasco	et	
al.,	2009	

	 Huntington’s	
disease		

Increased	H3K9me3	
and	possibly	
increased	H3K27me3	

Increased	
expression	of	the	
HMT	ESET;	
enhanced	PRC2	
activity		

Urdinguio	et	
al.,	2009	

miRNA	expression		 N/A		 Cancer		 Decreased	miR-101		 Increased	EZH2,	
H3K27me3	

Varambally	et	
al.,	2008;	
Friedman	et	
al.,	2009	

	 	 Decreased	miR-143		 Increased	
DNMT3A		

Ng	et	al.,	
2009	

	 	 Decreased	miR-29		 Increased	
DNMT3A	and	
DNMT3B		

Fabbri	et	al.,	
2007	

	 	 Increased	miR-21		 Decreased	PTEN		 Calin	et	al.,	
2006	

	 	 Increased	miR-155	 Lower	survival	
rates	

Yanaihara	et	
al.,	2006	

2.3.2	Epigenetic	therapies	
	
Many of disease pathologies are derived from genomic instability caused by epigenetic 

aberration. The reversible feature of epigenetic modifications makes them ideal targets for 

pharmacology (Wang et al., 2014). The switch of epigenetic marks often leads to abnormal 

transcriptional profile and protein expression profile. Therefore, inhibitors of epigenetic 

modifiers have a high therapeutic potential. Currently, there are several small molecule 

drugs approved by American Food and Drug Administration (FDA) for modulating 

epigenetic marks. They have already proceeded to different phases of clinical trials. For 

instance, hydralazine is used as DNA demethylating agent in clinical trials. SAHA is a 

HDAC inhibitor approved by FDA to target histone acetylation as a paradigm (Kelly et al., 

2010).  

A loss or gain of enzymatic function of KDM4a leads to deregulation of H3K36me3 and 

H3K9me3. This can directly induce oncogene activation and tumor suppressor gene 

repression. So far 3 types of KDM4 family inhibitors have been reported. They are either 

mimics for the two cofactors: α-ketoglutarate or bivalent iron; or mimics for substrates: 

Table	adapted	from	Kelly	et	al.,	2010.	Comments	describe	the	possible	reasons	for	corresponding	diseases.	
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H3K36me3 or H3K9me3 (Labbé et al., 2013). High perspective for tumor and cancer 

therapy is held by them. But up to date, FDA has not approved any histone methylases and 

demethylases targeting drugs. 

2.4	Application	of	Mass	Spectrometry	
	
Mass spectrometers separate gas-phase ions according to their mass-to-charge ratio and 

detect them in proportion to their abundance. These gas-phase ions can also undergo a 

controlled fragmentation within the mass spectrometer. The resulting fragment ions 

together with the fragmented molecule (parent ion) can be then used to identify the 

molecule of interest (Hoffmann & Stroobant, 2007). 

In the case of peptides and proteins, the coupling of separation techniques like liquid 

chromatography (LC) or capillary electrophoresis (CE) (Busnel et al., 2010) prior to the 

mass spectrometer allows on-line analysis of the separated molecules. During last two 

decades, continuous developments in sample preparation (Rappsilber et al., 2007), 

chromatography, ionization, mass analyzers and detectors have led to the possibility to 

identify and quantify thousands of proteins in one single analysis (Schubert et al., 2012; 

Sansoni et al., 2014). Currently, several research fields like drug discovery, clinical analysis, 

food quality control, metabolomics (Zimmermann et al., 2014) and specially proteomics are 

taking advantage of technological improvements in the field of mass spectrometry. 

2.4.1	Mass	Spectrometry	based	proteomics	
	
Systems biology requires not only information from the genome or the transcriptome, but 

also from proteins in order to understand the biological function of the studied system 

(Tyers & Mann, 2003). Mass spectrometry is the tool of choice because of a) protein 

sequencing accuracy based on accurate molecular mass information generated by mass 

spectrometry (Kinter & Sherman, 2000); b) capability of analyzing low abundant proteins 

from complex biology samples; c) high throughput measurement and deep sequencing. 

Two different approaches are currently used to identify and quantify proteome: shotgun and 

targeted approaches. Shotgun approach is more suitable to discovery driven purpose and 

targeted proteomics fits to more quantitation application for specified signal (Picotti et al., 

2013). 

With the help of sequenced whole genome information, in silico translation has been 

performed to predict theoretical proteome database for a given species (Krug et al., 2011; 
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Tyers & Mann, 2003). Combined with chemical derivatation approach and enzymatic 

digestion (Bonaldi et al., 2004) as well as database search algorithms (Cox et al., 2011), 

peptides are mapped to proteins. High resolution and accuracy achieved from different 

mass spectrometer renders the capability to identify isotopic patterns and complicate 

isobaric structure. In addition, shotgun proteomics makes use of affinity purification such 

as immunoprecipitation as enrichment strategy for bait. Identification of protein 

interactome is achieved based on spectrum library in silico. Targeted proteomics with 

selected ion monitoring (SIM) strategy is applied to measure specified clusters of peptides 

with complex mixtures. But up to date, only few species such as yeast (Picotti et al., 2013), 

have been measured with full coverage of proteome using mass spectrometry based 

proteomics study. And this is mainly due to shortage of analytical capability. 

2.4.2	Analysis	of	PTM’s	by	Mass	Spectrometry	
	
PTMs on histones are chemical modifications added to histone proteins after they are 

translated. Most of the modifications are edited in the nucleus (Olsen & Mann, 2013). But 

some are also placed immediately after translation in the cytosol (Rivera et al., 2015). 

Histone PTMs mainly refer to methylation, acetylation, phosphorylation, ubiquitination as 

mentioned in Figure 1.1. Histone PTMs do not only function as single mark but also in 

combination with an extensive crosstalk between each other (Kouzarides, 2007). This leads 

to recruitment of variable binding proteins which form different macromolecular complexes 

responding to different signaling pathways (Suganuma et al., 2011). The complexity and 

flexibility posed by histone PTM identification and quantitation analysis makes mass 

spectrometry the first strategy to use to systematically study global histone PTM profile 

upon stimuli (Feller et al., 2015). Mass spectrometry allows a high throughput and high 

speed analysis of histone PTMs and is also the ideal tool for de novo PTM discovery (Dai 

et al., 2014).  

2.5	Metabolomics	and	epigenetics	
	
Recent studies have illustrated the response of reactive oxygen species and mitochondrial 

integrity (Møller et al., 2010). They regulate chromatin landscape via kinases, methylases 

and acetylases. They play important role in aging process (Salminen et al., 2014; Chin et al., 

2014). Emerging evidence of dysfunction for metabolic enzymes in cytosol have shown to 

shape the epigenetic profile in cell nucleus. For example, homocitrate synthase catalyzes 

reaction of acetyl-CoA and α-ketoglutarate. It has been shown to be a bifunctional enzyme 
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involved in lysine biosynthesis in cytoplasm. It is also able to acetylate histone in cell 

nucleus in yeast (Scott et al., 2010). Small molecular metabolite like α-ketoglutarate (α-KG) 

has been reported to increase the longivity in C. elegans. It reduces ATP synthase activity 

and inhibits TOR pathway. α-KG binds to the ATP synthase subunit β (Chin et al., 2014). 

Emerging data has shown that epigenetic marks serve as sensors and translators of 

metabolism to change gene expression profile. This is based on the plasticity feature of 

histone PTMs and DNA methylation (Katada et al., 2012). On the other hand, even 

different human populations with different epigenome can be traced back by metabolite 

profiles (Menni et al., 2013). All the evidence indicates that metabolism can be the driving 

force to initiate variation on epigenetic mark and further on bring phenotype change. 

2.5.1	Influence	of	metabolites	on	epigenetic	marks	
	
Metabolism, consisted of catabolism and anabolism, is an important feature of organism to 

express its life activity. Most of metabolic reactions are dependent on enzyme catalysis. 

Major functions of metabolism are to a) acquire nutrients, b) convert nutrients to building 

blocks for the organism, c) assemble the building blocks to macromolecules such as DNA, 

protein and lipid. Meanwhile all the energy required for life activity and special functional 

molecules are also from metabolism process. The tricarboxylic acid cycle (TCA) plays a 

central role in metabolism. It generates metabolic intermediates. One of the key metabolites 

is α-ketoglutarate. It serves as cofactor for dioxygenases such as TET domain containing 

DNA demethylases, Jumonji-C domain containing histone demethylases and hypoxia 

inducible factor (Cairns et al., 2013). Another key metabolite acetyl-CoA is the donor for 

histone acetyl-transferases (Salminen et al., 2014). SAM is a small metabolite produced by 

methionine adenosine transferase (MAT). Variance of SAM regulates H3K9 methylation 

(Katoh et al., 2011) and H3K4me3 (Mentch et al., 2015). 

2.5.2	Regulation	of	metabolic	enzyme	
	
Regulation of metabolic enzyme is done by different signaling pathway and PTMs on those 

enzymes (Lee et al., 2014). Metabolic enzymes are the sensors for nutrients. Epigenetic 

modifiers are the sensors for metabolites. Metabolic enzymes and histones may share the 

same PTM’s modifiers. Dysfunctions of metabolic enzymes are described in many diseases 

(MacDonald et al., 2009).  

2.5.3	Characterization	of	IDH	
	



Introduction 
 

26	
	

Isocitrate dehydrogenase (IDH) is a metabolic enzyme. It converts isocitrate to α-

ketoglutarate via oxidative decarboxylation reaction. There are two categories of IDH, one 

is NAD dependent (IDH-NAD, EC 1.1.1.41). IDH-NAD corresponds to the human 

homolog IDH3. It is localized mainly in mitochondrial. The other one is NADP dependent 

(IDH-NADP EC 1.1.1.42). It is localized both in cytosol and mitochondrial. IDH-NADP 

corresponds to human homolog IDH1 in cytoplasm and IDH2 in mitochondrial (Labussiere 

et al., 2010). The reaction from isocitrate to α-ketoglutarate is one of the rate-limiting steps 

in TCA cycle and is irreversible. 

Deregulation of IDH directly affects the mitochondrial electron transport chain, 

mitochondrial respiration, oxygen consumption, carbon flux in the TCA cycle (Sweetlove 

et al., 2010; Williams et al., 2010) and hormone metabolism. 

Naturally occurring single amino acid point mutation of IDH1 R132H and IDH2 R172H 

confers the enzymes new catalysis function. Instead of producing α-KG, 2-

hydroxyglutarate (2-HG) is formed as product (Rohle et al., 2013). 2-HG has similar 

chemical structure to α-KG. It is a competitive inhibitor for enzymes using α-KG as 

cofactor (Xu et al., 2011). IDH1 and IDH2 mutations are found in >70 % of the patients 

with lower grade gliomas. IDH1 R132H mutation accounts for >95 % of all mutations for 

IDH1. Cells with IDH1 R132H mutation have increased 2-HG concentration. IDH1 R132H 

mutation is closely associated with global DNA hyper methylation (Turcan et al., 2012). 

IDH1 R132H mutation is considered as a prognostic mark for gliomas. Inhibitors targeting 

the mutant IDH1 have already been reported. Demethylation of H3K9me3 has been 

observed upon inhibitor treatment for IDH1 R132H (Rohle et al., 2013). Deliminated IDH 

enzymatic activity reduces the α-KG level and increases HIF-α level. HIF-α is a 

transcriptional factor promoting the tumor cell growth with low oxygen content (Zhao et al., 

2009). 
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2.6	Aim	of	the	work	
	
Genetic information is highly organized in chromatin. The basic unit of chromatin is 

nucleosome. Nucleosome is formed by DNA wrapping around histone octamer. Histones 

are small basic proteins. Histones contain many lysine and arginine residues. Therefore 

histones can be heavily decorated by covalent chemical modifications.  

In our lab, we are interested in histone post translational modifications. Histone PTMs may 

constitute a histone code. Inheritance of epigenetic information is based on the conservation 

of histone PTMs during cell division. The aim of this thesis is to characterize histone lysine 

demethylation. I focused my work on the following 4 points. 

Part 1: KDM4a inhibitor screening 

The intrinsic dynamic and plasticity feature of epigenetic marks is acquired by functions of 

epigenetic modifiers. They are closely associated with diseases and cancer. This highlights 

the demand to develop small molecular drugs to target epigenetic modifiers. Up regulation 

of KDM4a has been found in more than 40 % of ovarian cancer patients. It is closely 

related to shorter survival time (Black et al., 2013). Up to date, there are no bona fide 

KDM4a inhibitors to target this enzyme as therapeutic strategy. 

Part 2: Functional analysis of dKDM4a 

Drosophila melanogaster has less encoding gene redundancy compared to humans. It is a 

great model organism to study human disease related gene regulation. In this thesis, MS 

based proteomics experiment has been performed to study the protein interactome of 

dKDM4a. Investigation of complexes formed together with dKDM4a is performed in order 

to clarify the biological functions of dKDM4a. 

Part 3: Characterizing dynamic of H3K36me3 at single cell level 

H3K36me3 mark reflects the defined transcriptional profile at a given physiological 

condition. It is dependent on the cell type and external stimuli. Bulk analysis of H3K36me3 

averages the signal to heterogenous cell population and physiological status. It is not clear 

about the single cell variation for H3K36me3 mark. 

Part 4: Whether manipulation of metabolic enzyme IDH brings effect for epigenetic 

marks in nuclear? 
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KDM4a’s cofactor α-ketoglutarate is generated outside the nucleus by the metabolic 

enzyme isocitrate dehydrogenase (IDH). It is the cofactor for dKDM4a in nuclear to 

catalyzing demethylation. Over-expression of IDH has been performed in order to study its 

direct effect to dKDM4a’ activity in vivo. 
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3.	Results	

3.1	KDM4a	inhibitor	screening	

3.1.1	Selection	of	small	molecular	fragments	
	
Alteration of epigenetic marks often results in chromatin architectural changes and genomic 

instability. Chromatin architecture is regulated by post translational modifications on DNA 

and histones. The intrinsic dynamic and plasticity feature of epigenetic marks was regulated 

by functions of epigenetic modifiers. Close association between epigenetics with diseases 

and cancer highlights the demand to develop small molecular drugs to target epigenetic 

modifiers. For instance, up regulation of KDM4a has been found in more than 40 % of 

ovarian cancer patients. And this is closely related to shorter survival time (Black et al., 

2013). In this thesis work, we investigated to establish different methods to study the 

putative inhibitors against KDM4a in vitro and in vivo. 

The starting point of this study is the collaboration of our lab with Chroma 

THERAPEUTICS in order to discover and verify small molecular drugs of targeted cancer 

therapy. They have performed a high throughput screening of 20000 fragments library. The 

library is designed against the crystal structure of recombinant human KDM4a protein 

catalytic domain residue 1-359 aa. High throughput screening was carried out based on 

formaldehyde dehydrogenase coupled demethylation assay detection. In this detection 

method, demethylation was detected by releasing of formaldehyde in a coupled reaction. 

420 hits were obtained with < 1 µM inhibition potency for 1 µM hKDM4a enzyme. 150 

fragments were selected to determine IC50 by LC-MS detection in vitro. LC-MS 

measurement has been applied to detect product formation from demethylation directly. 65 

fragments out of 150 investigated have shown 1 µM < IC50 < 510 µM for 1 µM hKDM4a. 

30 fragment hits out of 65 with low micromolar IC50 values were subjected to co-

crystallization studies with hKDM4a. These 30 fragments are categorized in 3 structural 

classes. 130 putative crystals were prepared for X-ray analyze. Co-crystals were not formed 

despite the fact that those selected hits did inhibit hKDM4a activity in vitro with low IC50 

values (Figure 3.1 a). 

6 hits from the 30 investigated fragments in co-crystallization studies were selected by us to 

perform further analysis. They have sub-micromolar IC50 no more than 10 µM. Chemical 

structures of the 6 compounds are depicted in Figure 1b. JMJ-1, JMJ-2, JMJ-3, JMJ-4, JMJ-

5 and JMJ-6 are used to refer to corresponding structures. IC50 values in Figure 3.1 b were 
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determined by in vitro demethylation assay using LC-MS analysis. It was performed with 

recombinant protein from hKDM4a residue 1 to 359 aa covering the core demethylase 

catalytic domain Jmj-N and Jmj-C. Recombinant hKDM4a protein was fused to N-terminus 

His tag and expressed in bacteria system. It was purified by Nickel column via 6×His tag 

affinity binding, size-exclusion chromatography and polished over an anion exchange 

column. 

This study focused on investigating the inhibitory activities of selected 6 compounds 

(Figure 3.1 b) with Drosophila KDM4a enzyme in vitro and in vivo. 

3.1.2	Potential	targets	of	selected	fragments:	Jumonji	domain	containing	proteins	in	
human	and	fruit	fly	
	
In order to clarify the potential targets for selected small molecular compounds, in silico 

identification of proteins containing Jumonji domain specific fold were obtained from 

Conserved Domain Architechture Retrieval Tool (CDART). Filtering has been performed 

with [cl18224] for Jmj-C superfamily domain and [cl15840] for Jmj-N domain. The 

taxonomy of INCLSPAN [9605] for Homo Sapiens and INCLSPAN [7227] for Drosophila 

Melanogaster were used individually. 259 proteins contain Jmj-C domain and 72 proteins 

contain Jmj-N domain from human. 20 proteins contain Jmj-C domain and 10 proteins 

contain Jmj-N domain from fruit fly (see Figure 3.2 a). 

20 proteins were identified by retrieving Jmj-C [cl18224] INCLSPAN [7227] from 

Drosophila melanogaster (database 2014 May). Schematic illustration of these 20 proteins 

is indicated in Figure 3.2 b. 14 proteins were reported from literature which are indicated in 

bold name in the figure. The remaining 6 proteins were theoretically predicted. All 20 

proteins with Jmj-C domain falls in 7 clusters: KDM4 subfamily, UTX subfamily, KDM2 

subfamily, Jarid2 subfamily, KDM3 subfamily, PSR subfamily and Lid subfamily. KDM4 

subfamily contains both Jmj-N domain [cl15840] and Jmj-C domain [cl18224] in proximity. 

Apart from these two characterized conserved domain, no other conserved domains have 

been found in KDM4 subfamily. 

There are 6 proteins in the KDM4 subfamily in Drosophila melanogaster. It consists of 

isoform KDM4a transcriptional variant a, isoform KDM4a transcriptional variant b, 

isoform KDM4b transcriptional variant a, isoform KDM4b transcriptional variant b and 

other two predicted proteins MIP04757p and AT26080p1. However, there is no 

experimental evidence for the expression of these predicted isoforms. 
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3.1.3	Establish	demethylase	enzyme	activity	assay	in	vitro	
	
Recombinant full length Drosophila KDM4a protein was fused to N-terminus Strep tag. It 

was expressed in insect cell Sf21 using bacmid DNA via baculo virus transfection. 

Figure 3.1 | Screening potent hKDM4a inhibitors 
a    20000 fragments against human KDM4a catalytic domain crystal structure obtained with 
residue 1-359 aa has been selected. High throughput screening has been performed for inhibition 
assay of demethylation by formaldehyde release detection. 420 fragments shown inhibition 
activities with < 1 µM concentration. 150 hits were selected to determine IC50 by LC-MS 
detection based demethylation assay. 65 fragments shown 1 µM < IC50 < 510 µM. 30 hits were 
selected to perform co-crystallization studies with recombinant hKDM4a core catalytic domain. 
No co-crystals were obtained. 
b    Chemical structures and IC50 are indicated for 6 hits selected for analysis with Drosophila 
KDM4a protein. 
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Isolation of dKDM4a protein was performed by Strep-tag affinity purification. Strep-tactin 

sepharose beads were used. Purified dKDM4a was eluted with D-Desthiobiotin. The 

purified enzyme was in buffer W with 20 % glycerol. Preparation details can be found in 

method section. To test in vitro enzymatic activity of dKDM4a, an increasing amount of 

dKDM4a enzyme was incubated together with 10 µM of peptide substrate in addition of co-

factors α-ketoglutarate and Fe2+ at 26 oC for 20 min (see Figure 3.3 a). H3.3_31.41 

containing trimethylated lysine in K36 was used as substrate. 

 

 

As shown in Figure 3.3, H3K36me3 was demethylated to H3K36me2 and H3K36me1. 

Negative control has been done with same reaction setting without adding dKDM4a. Mass-

to-charge values of H3K36me3, H3K36me2 and H3K36me1 were measured by MALDI-

Figure 3.2 | In silico identified Jumonji domain containing proteins 
a    259 proteins in human contain Jmj-C domain specific fold and 72 proteins contain Jmj-N 
domain specific fold. 20 proteins in fly contain Jmj-C domain specific fold. 10 proteins contain 
Jmj-N domain specific fold. Bioinformatic identification is performed by CDART from NCBI. 
b    Schematic illustration of 20 proteins containing Jmj-C domain [cl18224] folding in Drosophila 
Melanogaster. Different conserved domains are illustrated in upper right corner. 
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ToF Mass Spectrometer Voyager-DE STR (Applied Biosystems). It detects the 14 Dalton 

mass shift when one methyl group is removed. Mass spectra were indicated in Figure 3.3 b. 

The most abundant ion species was set as 100 % intensity. Relative intensities of all the 

other ions species to the most abundant ion are indicated in y axis. Mass-to-charge 

              

	

 
m/z value is displayed in x axis. The matrix α-cyano-4-hydroxycinnamic acid was applied 

to assist peptide to absorb energy from laser and desorb. All the ion species formed by co-

crystalization with α-cyano-4-hydroxycinnamic acid carry one positive charge. Peptide 

obtained one proton and got ionized as MH+ which ended up as the m/z value displayed in 

Figure 3.3 b. 

3.1.4	KDM4	inhibitors	in	vitro	investigation	
	

Figure 3.3 | HDM in vitro assay 
a    Schematic illustration of histone demethylation reaction in vitro. Recombinant full 
length drosophila KDM4a catalyzed demethylation of H3K36me3 to H3K36me2 in the 
presence of α-ketoglutarate, O2 and Fe2+. Meanwhile α-ketoglutarate was converted to 
succinate. One molecule of CH2O and one molecule of CO2 were released as byproducts. 
b    Spectra of the peptide H3.3_31_41 with H3K36me3 modification shown here 
indicating the demethylation of H3K36me3 to H3K36me2 and H3K36me2 to H3K36me1 
by dKDM4a in vitro. 
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Figure 3.4 | dKDM4a inhibition assay in vitro 
a    Enzyme dynamic curve of dKDM4a. Time course of 0, 5, 10, 20, 40, 60, 80, 120, 180 min 
was applied to demethylation reaction with 1 µM of dKDM4a enzyme and 10 µM of H3K36me3 
peptide. 
b    Inhibitor JMJ-1 concentration was titrated with 0, 200, 400, 800, 1200, 1600, 2000, 2400 nM 
into 1 µM dKDM4a enzyme. 
c    Inhibitor JMJ-4 concentration was titrated with 0, 1, 5, 10, 20, 50, 100, 200 µM into 1 µM 
dKDM4a enzyme. 
d    Inhibitor JMJ-6 concentration was titrated with 0, 1, 5, 10, 20, 50, 100, 200 µM into 1 µM 
dKDM4a enzyme. 
e    IC50 values of JMJ-1, JMJ-2, JMJ-3, JMJ-4, JMJ-5 and JMJ-6 were indicated in y axis with 
µM as unit. 
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In order to determine the linear phase of the in vitro demethylation reaction, 1 µM of 

dKDM4a was incubated with 10 µM of H3K36me3 peptide for 0, 5, 10, 20, 40, 60, 80, 100 

and 120 min (Figure 3.4 a). Experiment has been performed in triplicates. Relative 

intensities read from H3K36me2 and H3K36me3 peptide spectra have been re-integrated as 

percentage of H3K36me2/(H3K36me2 + H3K36me3). This is depicted as intensity in 

Figure 3.4 a for y axis. Average values of three replicates are indicated in y axis and 

standard deviation is displayed as error bars. X axis indicates the time point investigated as 

minute. The enzymatic reaction was linear for at least 20 min. Reaction was restricted after 

40 min and reached plateau phase after 120 min. No more demethylation product has been 

formed between 120 min and 180 min. Therefore, the reaction products were measured 

after 20 min in the following inhibition assay in Figure 3.4 b, c, d. 

Dosage response curve of inhibitor JMJ-1, JMJ-4 and JMJ-6 are indicated in Figure 3. 4 b, 

c, d. Average values of three replicates are indicated in the y axis and standard deviation are 

displayed as error bars. Demethylation activity of 20 min from Figure 3.4 a was calculated 

as 100 % of enzyme activity. Different inhibitors at different concentration were incubated 

with 1 µM dKDM4a enzyme for 5 min at room temperature before the reaction was 

initiated by the addition of substrates. In Figure 3.4 b, inhibitor JMJ-1 concentration was 

titrated with 0, 200, 400, 800, 1200, 1600, 2000, 2400 nM. Enzyme activity percentage is 

indicated in y axis. Inhibitor JMJ-1 concentration with nM as unit is indicated in x axis. In 

Figure 3.4 c, inhibitor JMJ-4 concentration was titrated with 0, 1, 5, 10, 20, 50, 100, 200 

µM. Inhibitor JMJ-4 concentration with µM as unit is indicated in x axis. In Figure 3.4 d, 

inhibitor JMJ-6 concentration was titrated with 0, 1, 5, 10, 20, 50, 100, 200 µM. 

Experiment control has been done with 10 % DMSO (v/v) concentration pre-incubation 

with 1 µM dKDM4a enzyme before demethylation reaction was set up. And the final 

DMSO (v/v) concentration in the reaction was 1 %. 1 % DMSO (v/v) did not inhibit 

dKDM4a demethylase activity in vitro. 

IC50 values of inhibitor JMJ-1, JMJ-4 and JMJ-6 were calculated from the dosage response 

curve illustrated in Figure 3.4 b, c, d. Fitting formulas used to calculate IC50 values were as 

following:  

JMJ-1 : y = -0.0392x + 106.86, R² = 0.9636, unit for y is nM; 
JMJ-4 : y = -0.5966x + 119.65, R² = 0.9996, unit for y is µM; 
JMJ-6 : y = -15.782x + 98.925, R² = 0.9991, unit for y is µM. 
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For inhibitor JMJ-2, JMJ-3 and JMJ-5, no inhibition effects were observed when incubating 

500 µM of inhibitors with 1 µM dKDM4a enzyme individually. Therefore the IC50 for 

those three compounds were considered > 500 µM. No determinations of IC50 value were 

performed with them.  

3.1.5	dKDM4a	demethylase	activity	towards	H3K36me3	in	vivo	
	
To establish a dKDM4a over-expressing stable cell line, dKDM4a full length encoding 

sequence in pHFHW vector was transfected into low passage SL2 cells. X-tremeGENE HP 

DNA Transfection Reagent was used for transfection. dKDM4a was fused to 3×Flag-3×HA 

tag at the N-terminus. In Figure 3.5 a, over-expression was induced by heat shock at 37 oC 

for 20min via Hsp70 heat shock promotor. It was followed by 1 hour release at 26 oC after 

induction. Cells were de-attached and seeded in coverslides to make them settle down for 

30 min. Immunofluorescence staining was performed as described in the methods. 

Fluorescent signal were recorded immediately after the slides preparation. Staining of HA 

tag represented dKDM4a over-expression. Monoclonal rat primary antibody α-HA R001 

3F10 from Rothe was used. Donkey anti rat Alexa 488 was used as secondary antibody 

which gave the green signal in merge channel. Staining of H3K36me3 was performed using 

polyclonal rabbit primary antibody Ab9050 from Abcam. Donkey anti rabbit Alexa 647 

was used as secondary antibody which gave the magenta signal in merge channel. Final 

concentration of 0.5 µg/ml DAPI was used to stain DNA as control to indicate the distance 

of the cells to the detector. This gave the blue signal in merge channel. Grayscale was used 

to display single channel image in order to get optimized visualization. White scale bar 

indicated 20 µm. Exposure times for DAPI, HA and H3K36me3 were 15 ms, 120 ms and 

400 ms individually. The same display parameters have been applied for the same channel. 

Western blotting has been performed to detect variation of H3K36me3 signal upon 

dKDM4a over-expression in SL2 cells (Figure 3.5 b). dKDM4a over-expression was 

verified by western blotting using an anti Flag antibody and an anti tubulin antibody as 

loading control. Acid extracted histone proteins were used to detect variation of H3K36me3 

upon dKDM4a over-expression. Histone H3 was used as loading control. Over-expression 

was induced by 20 min heat schock at 37 oC and followed up by 1 hour release at 26 oC. 
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3.1.6	Inhibitor	JMJ-1,	JMJ-4	and	JMJ-6	inhibited	dKDM4a	demethylase	activity	towards	
H3K36me3	in	vivo	verified	by	antibody	based	substrate	detection	
	

Figure 3.5 | dKDM4a demethylated H3K36me3 in cell 
a    Immuofluorescent detection was performed by staining HA tag to indicate over-expression of 
dKDM4a and staining H3K36me3 to indicate the variation of dKDM4a substrate. Same exposure 
time for same channel and same display setting was applied in the fluorescent signal analysis. 
DAPI staining of DNA was used as control to indicate the distance of the cells to the detector. 
Grayscale was used to display single channel image. White scale bar represented 20 µm. 
b    Western blotting against Flag tag indicating over-expression of dKDM4a, blotting against 
Tubulin was used as proteins loading control; acid extracted histone proteins were used to detect 
variation of H3K36me3 upon over-expression of dKDM4a using histone H3 as loading control. 
Over -expression was induced by 20 min heat shock at 37 oC and followed up by 1 hour release at 
26 oC. 
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Drosophila cell line L2-4 has been used to investigate inhibition effect of dKDM4a 

inhibitors in vivo. 100 µM of inhibitor JMJ-1, JMJ-4 and JMJ-6 were added to the culture 

medium individually and incubated at 26 oC for 48 hours. Equivalent amounts of solvent at 

final concentration of 1 % DMSO (v/v) and no treatment conditions were used as control 

groups. Cell pellets were harvested and followed by nuclei isolation. Acid extraction has 

been performed with nuclei fraction. Extracted histone proteins were separated by SDS-

PAGE gel followed by western blotting detection or LC-MS/MS measurement. A 

schematic illustration of the workflow with histone proteins were indicated in Figure 3.6 a. 

Histone proteins in SDS-PAGE gel were stained by coomassie G250 as shown in Figure 

3.6 b. Variation of dKDM4a substrate H3K36me3 was detected by western blotting using 

anti-H3K36me3 specific antibody. Comparing to L2-4 cells with no treatment, 1 % DMSO 

(v/v) treatment led to decrease of H3K36me3. Cells treated with 100 µM final 

concentration of inhibitor JMJ-1, JMJ-4 and JMJ-6 individually shown increased level of 

H3K36me3 based on antibody detection by western blotting. Total histone protein H3 was 

used as loading control (see Figure 3.6 c). Chemiluminescence detection was applied using 

ECL Prime Western Blotting Detection Reagent from Amersham. 

            

Figure 3.6 | Inhibitor JMJ-1, JMJ-4 and JMJ-6 inhibited dKDM4a demethylase 
activity towards H3K36me3 in vivo detected by WB 
a.    L2-4 cell nuclei fraction has been isolated from cell pellet, acid extraction has been applied 
to isolate histone proteins. Histone proteins have been immobilized in SDS-PAGE gel and 
followed up by western blotting and LC-MS/MS detection. 
b.    SDS-PAGE gel separation of acid extracted histone proteins from L2-4 cells, protein bands 
were visualized by coomassie blue staining. 
c.    L2-4 cells were cultured with 100 µM of inhibitor JMJ-1, JMJ-4 and JMJ-6 individually for 
48 hours. Cells with no treatment and 1 % DMSO have been used as control. Blotting against 
H3K36me3 indicated variation of dKDM4a substrate and blotting against histone H3 total 
protein was used as loading control. 
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Immunofluorescence imaging experiment has been performed to investigate the inhibition 

response at a single cell level as shown in Figure 3.7.  

The same treatments setup as western blotting have been applied. L2-4 cells with no 

treatment, L2-4 cells treated with final concentration 1 % DMSO (v/v), L2-4 cells treated 

Figure 3.7 | Inhibitor JMJ-1, JMJ-4 and JMJ-6 inhibited dKDM4a demethylase 
activity towards H3K36me3 in vivo detected by immunofluorescence imaging 
Five experiment conditions have been applied: L2-4 cells with no treatment, L2-4 cells treated 
with 1 % DMSO (v/v), L2-4 cells treated with 100 µM final concentration of inhibitor JMJ-1, 
JMJ-4 and JMJ-6 individually. Cells were incubated at 26 oC for 48 hours before harvest for 
immunofluorescence microscopy detection. DAPI staining of DNA was used as control to 
indicate the distance of the cells to the detector. Staining of H3K36me3 indicated the variation 
of dKDM4a substrate response upon five conditions applied here. Grayscale was used to 
display single channel image. Blue staining represented DNA, magenta staining represents 
H3K36me3 in merge channel. White scale bar represented 10 µm.	
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with 100 µM final concentration of inhibitor JMJ-1, JMJ-4 and JMJ-6 individually. Cells 

were incubated at 26 oC for 48 hours before harvest for immunofluorescence microscopy 

detection. DAPI staining of DNA was used as control to indicate the distance of cells to 

detector which gave the blue signal in merge channel. H3K36me3 staining was performed 

using polyclonal rabbit primary antibody Ab9050 and donkey anti rabbit Alexa 647 as 

secondary	antibody which gave the magenta signal in merge channel.	

Grayscale was used to display single channel image in order for an optimized visualization. 

The scale bar indicates 10 µm. Exposure time for DAPI channel was 15 ms and for 

H3K36me3 channel was 150 ms. The same display parameters have been applied for the 

same channel.	

3.1.7	Dosage	response	of	L2-4	cells	growth	curve	to	inhibitors	

		 	

																																														 	

Figure 3.8 | Inhibitors’ dosage response to L2-4 cells growth curve 
Time	course	of	0,	24,	48,	72,	96	hours	has	been	applied	to	L2-4	cells	treated	with	10	µM, 50 
µM, 100 µM of inhibitors as three group a, b c. Each group consisted of L2-4 cells with no 
treatment (dark blue line), L2-4 cells treated with DMSO (red line), L2-4 cells treated with JMJ-
1 (green line), JMJ-4 (purple line) and JMJ-6 (light blue line). Mean value of cell density from 4 
biological replicates was indicated as cell numbers (million cells per ml) plotted in y axis. The 
error bar indicated standard derivation.	



Results 

	
41	

L2-4 cells were seeded with density of 1 million cells per ml as starting point. Time course 

of 0, 24, 48, 72, 96 hours has been applied to investigate inhibitor effect on cell growth. 

Three groups of experiments have been done in 4 replicates. First group: L2-4 cells with no 

treatment, L2-4 cells treated with 1 % DMSO (v/v), L2-4 cells treated with 100 µM final 

concentration of inhibitor JMJ-1, JMJ-4 and JMJ-6 individually (Figure 3.8 a). Second 

group: L2-4 cells with no treatment, L2-4 cells treated with 0.5 % DMSO (v/v), L2-4 cells 

treated with 50 µM final concentration of inhibitor JMJ-1, JMJ-4 and JMJ-6 individually 

(Figure 3.8 b). Third group: L2-4 cells with no treatment, L2-4 cells treated with 0.1 % 

DMSO (v/v), L2-4 cells treated with 10 µM final concentration of inhibitor JMJ-1, JMJ-4 

and JMJ-6 individually (Figure 3.8 c).  

In Figure 3.8 a, b, c, time course was displayed in x axis, cell density was displayed in y 

axis. Data points indicate the mean value from 4 biologic replicates and error bar indicated 

standard deviation. Growth curve of L2-4 cells with no treatment is represented by a dark 

blue line, L2-4 cells treated with DMSO are represented by a red line, L2-4 cells treated 

with JMJ-1 JMJ-4 and JMJ-6 are represented by a green line, purple line and light blue line 

respectively. 

3.1.8	Inhibitor	JMJ-1,	JMJ-4	and	JMJ-6	inhibited	dKDM4a	demethylase	activity	towards	
H3K36me3	in	vivo	verified	by	targeted	proteomics	based	substrate	detection	
	
Conventional detection methods using antibody such as western blotting and immune 

fluorescence imaging, can be misleading due to a lack of antibody specificity. In order to 

validate the results from antibody based substrate detection, targeted proteomics based 

substrate detection has been performed. Spiketides have been applied as internal standard to 

assign each modification to right ion chromatography elution peak (Figure 3.9 a). 

The basic workflow is outlined in Figure 3.9 b. In short, histone protein bands were 

separated by SDS-PAGE gel, and cut out. Unmodified and mono-methylated lysines of 

histone were protected from trypsin digestion by propionylation (Villar-Garea et al., 2008). 

Spiketides with Q-tag were added and digested together with the gel separated histones. 

After trypsin digestion, light peptide of interest from native protein and heavy peptide of 

interest from spiketide were generated. The heavy spiketide has exactly same amino acid 

sequence and modification as light version, but only differs by a C-terminus isotopically 

labeled arginine. Heavy spiketide was always 10 Da heavier than corresponding light 
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peptide. Acid extraction has been performed to recover the peptides after tryptic digestion 

from gel. Peptides were loaded to reversed phase Ultra High Performance Liquid 

 

Figure 3.9 | Methods development 
a    Biological sample investigated in this study consisted of fly cell line L2-4 cell with no 
treatment, treated with DMSO, JMJ-1, JMJ-4 and JMJ-6 individually. Two strategies have been 
applied to study the enzyme and substrate relationship: antibody based substrate detection 
including western blotting and immune fluorescence imaging and targeted proteomics based 
substrate detection by including internal standard to do relative quantitation.  
b    Workflow for targeted proteomics: proteins of interest were immobilized in SDS-PAGE gel; 
protein band was cut out and subjected to propionylation; spiketides library have been added in 
and digested together with protein in gel; peptides from tryptic digestion have been recovered 
from gel using acid extraction and loaded to UHPLC column to separate; peptides eluted from 
UHPLC were ionized by nano electro spray ionization and sprayed into TT6600 mass 
spectrometer; precursor ions with m/z of interest were selected in the first quadrupole and full 
mass spectrum of fragmented ions were acquired in the ToF mass analyzer; PeakView® 2.1 and 
MultiQuant 3.0 software were used for data analysis. 
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Chromatography (UHPLC) to separate. Peptides eluted from UHPLC were subjected to 

Electro Spray Ionization and measured by a TT6600 mass spectrometer. TT6600 consists 

of quadrupole, quadrupole and a ToF mass analyzer. Peptides with m/z of interest, both 

light and heavy versions have been selected in the first quadrupole. Collision induced 

dissociation was performed by the second quadrupole using collision energy which was 

tailored for the peptides m/z of interest. 

Mass spectra of fragmented ions, together with precursor ions were acquired by Time of 

Flight mass analyzer. Data analysis has been done with PeakView® 2.1 for identification 

and with MultiQuant 3.0 for relative quantitation. 

3.1.8.1	Identification	of	H3K36me3	among	H3.27.40	peptides	by	LC-MS/MS	
	
Extracted ion chromatogram from UHPLC separated peptides are shown in Figure 3.10 a. 

The heavy spiketide peptide generated by trypsin digestion containing H3K36me3 

(KSAPATGGV-Lys(Me3)-KPH-R*) is used as an example to explain how to assign 

modification to the right peak. This peptide was protonated to carry positive charge. The 

most abundant ions are triply charged by the uptake of three protons (H+). It accounted for 

a m/z value of 533.3425 for H3K36me3. Precursor ion for m/z of 533.3 was selected to 

target peptide containing H3K36me3 spiketide and accumulated for 40 milliseconds. This 

ended up with 6 sec peak width at Full Width Half Maximum Height (FWHM) as indicated 

in Figure 3.10 b and c. Collision energy used particularly for m/z of 533.3 was 30.3 %.   

Table 3.1 m/z for 8 modifications in peptide H3.27.40 precursor ions and fragmented 

ions b : y series from heavy spiketides 

	

Light peptides ion chromatogram peak assignments have been done by using corresponding 

heavy spiketides. They were co-eluted together with each other. In the spiketides library 

applied in this study, there were 8 modifications for peptide H3.27.40 having m/z of 533.3 

for triply charged ion state. This included H3K27me3, H3K36me3, H3K37me3, 
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H3K27me1K36me2, H3K27me2K36me1, H3K27ac, H3K36ac and H3K37ac (Figure 3.10 

c). Most prominent collision generating b and y series of fragmented ions were investigated.  

     

     

Identification and assignment of each ion chromatogram peak for particular modification 

have been validated by the presence of diagnostic fragmented ion. The diagnostic ions that 

are unique for each modification are shown in Table 3.1 and Figure 3.10 d. Darker blue 

indicated m/z for fragmented ions shared between different modifications and lighter blue 

indicated m/z for unique fragmented ions to the specific modification. Quantitation of each 

ion chromatogram peak has been done with the abundant diagnostic fragmented ions 

(Figure 3.10 d). Ion peak intensity was extracted by integrating the area under the peak. 

Figure 3.10 Identification of H3K36me3 from peptide H3.27.40 spiketides 
a    BPC ion chromatogram indicated peptides separation by UHPLC in retention time range of 
29.3 to 32.3 min. 
b    BPC ion chromatogram indicated selected precursor ions with m/z 533.3 for triply charged 
peptides in retention time range of 29.3 to 32.3 min. 
c    Ion chromatogram peak assignment for 8 modifications in H3.27.40 spiketides with m/z 533.3. 
They assigned to seven peaks separated by UHPLC. From left to right peak identification: 1st 
peak: H3K37me3, 2nd peak: H3K27me3, 3rd peak: H3K36me3, 4th peak: H3K27me2K36me1, 5th 
peak: H3K27me1K36me2, 6th peak: H3K27ac and H3K37ac, 7th peak: H3K36ac. 
d    Extracted fragmented ion b3 chromatogram with m/z 343.20 used as diagnostic ion for 
H3K36me3 in retention time range of 29.3 to 32.3 min. From left to right peak identification: 1st 
peak: b3 from H3K37me3, 2nd peak: b3 from H3K36me3, 3rd peak: b3 from H3K37ac, 4th peak: b3 
from H3K36ac. 
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3.1.8.2	Quantitation	of	dKDM4a	substrates	H3K36me3/me2	and	H3K9me3/me2	by	LC-
MS/MS	
	

               

Ion intensity value by integrating the area under the chromatogram peak has been used as 

the value for quantitation. This reflected the peptides ion abundance. Relative quantitation 

of H3K36me3 has been done by taking the RQ (Relative Quantitation) value. RQ value = 

(H3.27.40_K36me3_b3 Light / H3.27.40_K36me3_b3 Heavy) / (H3.41.49_unmodified 

Light * H3.54.63_unmodified_y7 Light / H3.41.49_unmodified 

Heavy/H3.54.63_unmodified_y7 Heavy). H3.27.40_K36me3_b3 Heavy spiketide signal 

has been used to normalize liquid chromatography column peptide response. 

H3.41.49_unmodified Light peptide signal versus heavy spiketide signal ratio has been 

used to normalize the LC loading material for each protein band in SDS-PAGE. 

H3.54.63_unmodified_y7 Light peptide signal versus heavy spiketide signal ratio has been 

Figure 3.11 Relative quantitation of H3K36me3/me2 and H3K9me3/me2 by LC-
MS/MS 
Heat map of RQ values of histone H3 H3K36me3/me2 and H3K9me3/me2. Histones were 
prepared from fly cell line L2-4 cells with no treatment, treated with DMSO, JMJ-1, JMJ-4 and 
JMJ-6 individually. Three replicates for each treatment have been included. H3K36me3 = 
H3.27.40_0.3.0; H3K36me2 = H3.27.40_0.2.0; H3K9me3 = H3.9.17_3.0.0; H3K9me2 = 
H3.9.17_2.0.0. 0 = unmodified; 2 = dimethylation, 3 = trimethylation. Z-Score 0 = mean RQ 
value of the row. Color code indicates the distance to the mean. White color indicates missing 
value. 
3 amino acid residues for peptide H3.9.17:              H3.9.17_K9.S10.K14 
3 amino acid residues for peptide H3.27.40:            H3.27.40_K27.K36.K37 
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used to normalize the MS/MS fragmentation respond. RQ values from three replicates were 

indicated in Figure 3.11. 

RQ value for H3K36me2 = (H3.27.40_K36me2_b3 Light / H3.27.40_K36me2_b3 Heavy) / 

(H3.41.49_unmodified Light * H3.54.63_unmodified_y7 Light / H3.41.49_unmodified 

Heavy / H3.54.63_unmodified_y7 Heavy). RQ values from three replicates were indicated 

in Figure 3.11. 

RQ value for H3K9me3 = (H3.9.17_K9me3 Light / H3.9.17_K9me3 Heavy) / 

(H3.41.49_unmodified Light / H3.41.49_unmodified Heavy). RQ value for H3K9me2 = 

(H3.9.17_K9me2 Light / H3.9.17_K9me2 Heavy) / (H3.41.49_unmodified Light / 

H3.41.49_unmodified Heavy) (see Figure 3.11).  

3.2	Functional	analysis	of	dKDM4a	
	
Apart from already known demethylase enzyme activity, biologic function of dKDM4a is 

dependent on the location of complex formed with the presence of dKDM4a. In order to 

study the complex formed together with dKDM4a, investigation of dKDM4a interactome 

has been performed by applying shotgun proteomics approach using mass spectrometry.  

Full length of dKDM4a was fused to a 3×Flag-3×HA tag at the N-terminus using the 

expression vector pHFHW. The fly cell line SL2 was used to establish dKDM4a over-

expression stable cell line. SL2 wild type cells and SL2 with dKDM4a over-expression 

cells were cultured in parallel. They were expanded to large scale to prepare nuclei protein 

extract by salt precipitation using (NH4)2SO4. Nuclei protein extract has been applied to 

anti-Flag M2 beads to fish Flag tagged dKDM4a and its interactors by affinity immune 

precipitation. Proteins enriched from SL2 wild type cells and dKDM4a over-expression 

SL2 cells were loaded in parallel in SDS-PAGE gel. Peptides recovered from cut out bands 

after trypsin digestion were desalted online before sent for LC-MS/MS measurement. 

HPLC and Orbitrap XL mass spectrometer were applied. Nano-electrospray was used as 

ion source. Collision energy used for all collision induced dissociation (CID) was 30 % for 

all fragmentation to acquire MS/MS spectra. Peptide identification and protein mapping 

have been done by Andromeda peptide search engine integrated in MaxQuant (Cox et al. 

2011). The search was performed against dmel-all-translation-r5.24 fasta database. This 

database was used to generate theoretical tryptic peptides from whole translation of 

Drosophila melanogaster genome release version 5.24 fasta DNA sequence. The 
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translation was assembled by 6 possible open reading frames from Watson strand and Crick 

strand. 

Raw mass spectra data acquired from LC-MS/MS were identified by Andromeda algorism. 

They were quantified using label free quantification based on iBAQ value by MaxQuant 

software (see workflow indicated in Figure 3.12 a and protein list identified by mass 

spectrometer in appendix). Oxidation on methionine, carbamidomethyl on cysteine and 

acetyl on protein N-terminus residue have been included as fixed modification during 

alignment  with theoretical database. 20 ppm of mass tolerance has been applied. Match 

between runs of 2 min time window was included. Statistic analysis indicated by volcano 

plot (Figure 3.12 b) was performed by Perseus software. One experiment set consisted of 

proteome pulled down by Flag IP from dKDM4a over-expression SL2 cells and wild type 

SL2 cells as control. Three replicates of each experiment set have been performed. After 

removing the proteins from contamination and reverse translation, 1337 proteins have been 

identified in total. Protein IDs (Identities) have been defined by FlyBase (http://flybase.org) 

and converted to gene names. All the proteins identified with P value ≤ 0.05 in t-test 

analysis have been taken into consideration. In Appendix 3, light blue indicated P value ≤ 

0.01. Dark blue indicated 0.01 ≤ P value ≤ 0.05. The rest were indicated as black color. 

Proteins with particular interest of this study have been pointed out in Figure 3.12 b. Star 

members of Dosage Compensation Complex (DCC) have been validated by western 

blotting (Figure 3.12 c). Validation of known dKDM4a interactor HP1a was investigated 

by western blotting with all three replicates shown in Figure 3.12 d. Molecule mass weight 

of Hp1a is 23.185 kDa. This has been shown as the major band in the blotting. Additional 

band in position of roughly 100 kDa has shown up in anti-Hp1a blotting after dKDM4a IP. 
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Figure 3.12 | Proteome analysis of dKDM4a 
a    Workflow of proteomics analysis for dKDM4a 
b    Statistic analysis of proteins identified from anti-Flag IP pull down of nuclei protein extract 
with wild type SL2 cell and dKDM4a over-expression SL2 cell. 
c    Validation of anti-Flag affinity IP enrichment of Flag-tagged dKDM4a, MSL1, MSL3 and 
MoF by western blotting. 
d    Validation of HP1a interaction with dKDM4a by western blotting. 
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3.3	Single	nuclear	staining	of	H3K36me3	in	bi-nucleated	SL2	and	L2-4	cells	
	
H3K36me3 is a mark tightly associated with actively transcribed gene body during 

elongation. Origin of tumor cells may well start from dysfuction of transcriptome profile in 

single cell. Immune fluorescence imaging has been applied to investigate H3K36me3 

variation in single cell level with SL2 cells and L2-4 cells from fly. Single nulcear staining 

of H3K36me3 has been observed in bi-nucleated cells using antibody detection visualized 

by immune fluorescence signal shown in Figure 3.13 a and b. 

3.4	Over-expression	of	IDH	led	to	a	reduction	of	H3K36me3	
	

      	

Demethylase activity of Jumonji domain containing KDM proteins was conferred by the 

presence of cofactors including bivalent iron, reactive oxygen and α-ketoglutarate. α-KG is 

the intermediate metabolite from tricarboxylic acid cycle. Whether manipulating the co-

factors can also regulate Jumonji demethlyase enzyme activity, it is still an open question. 

Here we investigated KDM4a substrates H3K36me3 variation upon IDH over-expression 

by IF, WB and MS analysis. Stable SL2 cell line with IDH over-expression has been 

established. IDH (Isocitrate Dehydrogenase) oxidizes isocitrate to α-ketoglutarate 

accompanied with reduction of NAD+ or NADP+ to NADH or NADPH. Drosophila IDH 

(CG7176) encoding sequence was constructed in vector pMK33-CFH-HAstop bought from 

BDGP. 

Figure 3.13 | Immune Fluorescence imaging for H3K36me3 in fly bi-nucleated cell 
DAPI staining of DNA was used as control to indicate the distance of the cells to the detector. 
Magenda signal represented intensity of H3K36me3. Bright field channel visualized bi-nuclear 
in single cell. IF staining of L2-4 cells were illustrated in a and IF staining of SL2 cells were 
illustrated in b. Scale bar represented 5 µm. 
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3.4.1	Over-expression	of	IDH	led	to	reduction	of	dKDM4a	substrate	H3K36me3	
	
Staining of HA indicates IDH over-expression. Substrate of Jumonji domain containing 

KDMs was represented by H3K36me3. H3K36me3 signal was reduced upon over-

expression of dIDH (CG7176) induced by cooper sulfate. This was detected by immune 

fluorescence imaging (Figure 3.14 a) and validated by western blotting (Figure 3.14 b). 

DAPI staining of DNA was included as control to indicate the distance of the cells to the 

detector. White scale bar represents 20 µm. White arrow points to cells showing strongest 

reduction of H3K36me3 signal upon over-expression of IDH. Exposure time for each 

channel used here were 20 ms for DAPI, 150 ms for IDH-FH, 600 ms for H3K36me3. 

Same display parameters were applied in order to compare signal from same channel 

between different biological samples. 

 

3.4.2	Global	histone	methylation	analysis	upon	over-expression	of	IDH	
	

Figure 3.14 | Over-expression of IDH led to reduction of dKDM4a substrate 
H3K36me3 
a    Immune fluorescence imaging of wild type SL2 cells and IDH-FH transfected SL2 cells. 
Cells were stained with anti-HA primary antibody representing IDH, anti-H3K36me3 
representing substrate of KDM4a. 
b    Western blotting against Flag tag indicating over-expression of dIDH. Blotting against 
Tubulin was used as total protein loading control. Blotting against H3K36me3 from wild type 
SL2 cells and IDH-FH over-expression stable cells were displayed. Blotting of H3 was included 
as histone protein loading control. 
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Global histone lysine methylation variation upon IDH over-expression in SL2 cells has 

been investigated by LC-MS/MS analysis. Peptides and amino acid residues investigated in 

this data set were H3.9.17_K9.S10.K14, H3.27.40_K27.K36.K37, H3.54.63_K56, 

H3.73.83_K79. Unmodified peptide H3.41.49_un was used as normalization signal. Acid 

extracted histones from three biological replicates of wild type SL2 cells and IDH-FH over-

expression SL2 cells were included. 29 modifications were indicated in Figure 3.15. Taken 

H3K36me3 as example, RQ value = (H3.27.40_K36me3 Light / H3.27.40_K36me3 Heavy) 

/ (H3.41.49_unmodified Light / H3.41.49_unmodified Heavy). Mean RQ value of the row 

was set as 0. Color code indicated the distance to the mean value. Missing values from 

measurement were indicated as white color. Histogram shown in the upper left corner 

indicated numbers of the sample showing particular Z-score. Targeted proteomics has been 

applied using UHPLC-TT6600. Synthetic peptides with modifications of interest have been 

applied to assign each chromatogram peak. Precursor ion ms chromatogram signal has been 

used for relative quantification. 
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Figure 3.15 | Histone methylation analysis of IDH over-expression SL2 stable cell line 
RQ values from precursor ions measured by UHPLC-TT6600_MRM were indicated as heatmap. 
RQ values = precursor ion chromatogram Light/Heavy ratio of each modification normalized by 
precursor ion chromatogram Light/Heavy ratio of H3.41.49_un. 29 modifications on histone H3 
were characterized. Z-Score 0 = mean of the row, color code indicates the distance to the mean. 
White color indicates missing value. 
3 amino acid residues for peptide H3.09.17:             H3.9.17_K9.S10.K14 
3 amino acid residues for peptide H3.27.40:             H3.27.40_K27.K36.K37 
1 amino acid residue for peptide H3.54.63:               H3.54.63_K56 
1 amino acid residue for peptide H3.73.83:               H3.73.83_K79 
0 = unmodified, 1= mono-methylation, 2 = di-methylation, 3 = tri-methylation, p = 
phosphorylation, a = acetylation. 
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3.4.3	Generating	IDH	mutants	cell	line	
	
In order to validate the association of reduction effect on histone lysine methylation upon 

over-expression of IDH with its enzymatic activity, stable cell lines with over-expression of 

enzymatic null IDH mutants were established. Single nucleic acid point mutation was 

induced by QuikChangeTM Site-Directed Mutagenesis Kit using mutagenic primers. IDH 

(CG7176) mutants constructed in vector pMK33-CFH-HAstop with CuSO4 promoter have 

been generated in SL2 cells. 

The reference for analysis of Drosophila melanogaster IDH enzymatic null mutants is the 

encoding sequence of Gene bank: NM_168265 for human IDH1 (Table 3.2). 

Table 3.2 Molecular analysis of Drosophila IDH mutants 
 

Mutant 
 

Molecular alteration 
Corresponding to human 

mutant 
Yang et al., 2010 

 DNA residue in ORF Codon Amino acid Amino acid 
IDH_111 331-333 ACT>GCT T111A IDH1_T77A 
IDH_128 382-384 TCG>GCG S128A IDH1_S94A 
IDH_166 496-498 CGC>CAC R166H IDH1_R132H 
	
Over-expression of IDH protein level has been validated by western blotting using anti-

Flag antibody to detect IDH-FH C-terminus tag shown in Figure 3.16. 

	

Figure 3.16 | IDH mutants 
stable cell line 
Stable cell lines with over-
expression of IDH enzymatic 
null mutants have been 
established in SL2 cell. a     
Schematic illustration of point 
mutations; b    Validate of over-
expression for wild type IDH and 
mutated IDH by western blotting 
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4.	Discussion	

4.1	KDM4a	inhibitor	screening	
	
Fragment based drug discovery starts with selecting the target of interest. In the case of 

targeting protein enzymes, fragment library design is based on the relevant crystal structure 

if available. Screening method is selected to determine the binding affinity of the fragments 

to target. In silico docking has been applied to filter out fragments which have lower 

binding affinity to the target. The top hits with low binding energy and high selectivity 

towards target of interest can be synthesized directly or combined together to synthesize. 

The modified molecules are subjected to experimental assay to determine binding affinity. 

High throughput experimental assay screening has to be applied to filter out redundant 

structures. 2 or 3 cycles of elaboration are needed before generating lead compound which 

is qualified to go through optimization steps in medicinal chemistry. (Figure 4.1 adapted 

from DesJarlais et al., Chapter 6, Methods in ENZYMOLOGY, Volume 493) 

                             

 

 

The 6 small molecule inhibitors investigated in this study have gone through 2 periods of 

test with human KDM4a by Chroma Therapeutics as shown in Figure 3.1 a.  We have 

performed the 3rd round of in vitro testing using the Drosophila KDM4a enzyme. 

dKDM4a shares 63 % identity and 80 % similarity with the core catalytic domain of 

Figure 4.1 | Fragment based drug discovery workflow 
General workflow to develop small molecule drugs against target. 
Figure adapted from Methods in Enzymology, 2011. 



Discussion 

	
55	

hKDM4a (see Appendix 2) used in the in vitro demethylase assay.  

In this study, bioinformatic analysis identified 259 proteins in human and 20 proteins in D. 

mel containing a Jumonji C domain (Figure 3.2 a). 13 of them have been experimentally 

validated and are expressed in D. mel (Klose et al., 2006). The small molecular fragments 

were selected against hKDM4a core catalytic region Jmj-N and Jmj-C domains to target the 

binding sites to substrate or cofactors as illustrated in Figure 1.4. The trial performed by 

Chroma Therapeutic to construct co-crystal structure with hKDM4a and the compounds 

investigated in this study were not successful. Therefore, the particular binding behavior for 

each compound is not clear yet. Km for hKDM4a reported by O2 consumption coupled 

KDM assay was 31 µM and Kcat was 104 min-1 (Cascella et al., 2012). In general, Jmj-C 

containing KDMs have low binding affinity to substrate and low turn over rate which 

indicating the possibility of low binding affinity of the inhibitors as well. This could well 

be the reason why the hKDM4a did not form co-crystal structure with inhibitors 

investigated in this study shown in Figure 3.1 b, despite the fact that all the 6 compounds 

shown inhibition against hKDM4a with low IC50 values. 

Table 4.1 Proposed targeting sites 

 

As shown in Figure 3.1 b, inhibitor JMJ-1 and JMJ-4 molecular structures containing 

hydroxyl residue (-OH) categorize themselves to hydrophilic molecules. They may 

potentially target acidic amino acid residues such as Asp 135, 311, 191 and Glu 169, 190 

in the enzyme catalytic pocket shown in the crystal structure (Figure 1.4 and Table 4.1). 

Inhibitor JMJ-2 molecular structure contains thioacyl residue (O=S=O) and carbonyl 

residue (-C=O). JMJ-6 contains carbonyl residue (-C=O). These residues categorize JMJ-2 

and JMJ-6 with strong negative charge. Therefore they may target to positively charged 

amino acids such as Arg 309, Lys 241, 314. Inhibitor JMJ-3 and JMJ-5 structures contain 

ether residue (-C-O-C-). This categorizes themselves with strong polar. They may target to 

Asn 86, 290, Ser 288, 316 and Thr 167. Among these 13 proposed targeting amino acid 

residues, 11 aa are identical for hKDM4a and dKDM4a (Table 4.1).  
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However, relevant report for cellular concentration of α-ketoglutarate in E.coli was in the 

range of 30 to 145 µM (Zimmermann et al., 2014). From authors’ point of view, molecules 

targeting the binding sites for α-ketoglutarate may need higher dose to inhibit KDM4a 

enzyme in vivo. This is due to the higher concentration of α-ketoglutarate present in cells 

than in recombinant enzyme purified from insect expression system. It contains only the α-

ketoglutarate molecule when it is isolated from other component in the cell.  

Lysine demethylation reaction produces equal amount of demethylated product and 

formaldehyde molecule. Therefore demethylation can be measured by either direct product 

or byproduct formaldehyde. Lysine demethylation also consumes equivalent amount of O2 

and α-ketoglutarate. O2 consumption coupled to FDH assay was also developed to measure 

demethylation reaction (Cascella et al., 2012). In the high throughput assay from fragment 

library screening against hKDM4a core catalytic domain, demethylation is detected by 

coupled FDH reaction. This reaction measures the release of formaldehyde. The byproduct 

formaldehyde is oxidized to formic acid by dehydrogenase. Meanwhile NAD+ is reduced 

to NADH which leads to variation of photo absorbance at 340 nm wavelength (Lizcano et 

al., 2000). IC50 values of hKDM4a have been determined by measuring demethylated 

product directly detected by LC-MS. In this study, we applied a MALDI-ToF detection 

method to directly measure product formation. It overcomes the error prone issue of 

formaldehyde based detection and time consuming issue of LC-MS detection. 

Jmj-C domain alone is enough to confer demethylase activity. But the selectivity of KDM4 

subfamily towards H3K36me3 and H3K9me3 is conferred by adjacent Jmj-N domain. Jmj-

N domain offers supporting structure for catalytic pocket. And the linking region of 

hKDM4 regulates its localization in the chromatin via miRNA (Zoabi et al., 2014). 

dKDM4a consists of Jmj-N (aa 17-59), linking region (aa 60-180), Jmj-C (aa 182-298) 

(Figure 3.2 b). Linking region of Jmj-N and Jmj-C domain for KDM4a is also highly 

conserved between human and fly. Therefore, the linker region can be ideal targeting 

region specifically for KDM4 subfamily shown in Figure 3.2 b. One of the binding sites for 

α-ketoglutarate, Tyr 132 indicated in Uniprot database is located in this region. 

In general, dKDM4a has low catalysis activity. Demethylation in vitro assay with enzyme : 

substrate ratio 1 : 10 keeps in linear phase within 20 minutes and reaches plateau after 2 

hours as shown in Figure 3.4 a. Therefore reaction of enzyme : substrate ratio 1 : 10 at 20 

minutes activity has been taken as standard setting for inhibitor test. Dosage response curve 
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of inhibitors JMJ-1, JMJ-4 and JMJ-6 has been shown in Figure 3.4 b, c, d. The closer for 

titration concentration range to the true IC50 value, the more accurate for the IC50 value 

read out. IC50 values calculated from Figure 3.4 b, c, d were shown in Figure 3.4 e. 

Inhibitor JMJ-2, JMJ-3 and JMJ-5 have not shown inhibition when used at a concentration 

of 500 µM with 1 µM enzyme, therefore IC50 have been indicated as > 500 µM. Inhibitors 

JMJ-1 and JMJ-6 have shown similar IC50 values for both hKDM4a and dKDM4a. 

Inhibitor JMJ-4 IC50 value for dKDM4a is higher than hKDM4a.  

The binding affinity between histone modification and different categories of binding 

domains containing proteins (Figure 1.3) falls in µM to mM range. This is considered to be 

weak binding (Nikolov et al., 2013). A Kd > 1 mM would hardly qualify for a specific 

binding. IC50 values for inhibitor JMJ-1, JMJ-4 and JMJ-6 for both hKDM4a and 

dKDM4a investigated in this study show coincidence with this range. 

In order to validate these inhibitors in cells, immune fluorescence imaging has been 

performed to confirm the dKDM4a enzyme activity at the single cell level. As shown in 

Figure 3.5 a, over-expression of dKDM4a was indicated by HA tag staining using an anti-

HA antibody. Corresponding H3K36me3 signal was decreased upon FH-dKDM4a over-

expression. This result indicated dKDM4a shows demethylase activity towards H3K36me3 

when over expressed in a cell line. This supports the data obtained by Lloret-Llinares 

(Lloret-Llinares et al., 2008). The results were validated by western blotting in Figure 3.5 b. 

L2-4 cells with no treatment, treated with 1 % DMSO, 100 µM JMJ-1, 100 µM JMJ-4 or 

100 µM JMJ-6 individually have been set as one group of experiment. H3K36me3 substrate 

for dKDM4a has been detected after 48 hours treatment (Figure 3.6, Figure 3.7 and Figure 

3.9). Figure 3.6 c shows an increase of the H3K36me3 signal upon dKDM4a inhibitor 

treatment especially for JMJ-6 as detected by western blotting. A treatment of L2-4 cells 

with 1 % DMSO has a lower H3K36me3 signal. The results are consistent with Figure 3.6, 

Figure 3.7 and Figure 3.11 using different detection method. Accumulation of Fe2+ has 

been reported upon DMSO treatment (Friend et al., 1971). This can promote demethylase 

activity of Jumonji KDMs. This may account for the decrease of H3K36me3 signal we 

observed with DMSO treatment. In Figure 3.8, 1 % and 0.5 % DMSO treatment to L2-4 

cells shown growth delay. 0.1 % DMSO treatment shown no observed growth delay to L2-

4 cells. Therefore, DMSO at 1 % and 0.5 % concentration is not an ideal control. Cells 

treated with 100 µM inhibitor JMJ-4 did not grow. It is not clear whether it has toxic effect 
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to the cells. In comparison, cells treated with inhibitor JMJ-6 shown strongest increase for 

H3K36me3, but no severe growth delay. Inhibitor JMJ-1 and JMJ-6 treatment shown 

similar growth behavior with corresponding DMSO.  

Three methods have been used in this study to measure the inhibitors’ effect in cells as 

shown in Figure 3.9 a. Antibody based substrate detection faces the problem of antibody 

specificity and sensitivity issue. The detection is particularly limited when PTMs on 

histones are low abundance. Among all detectable PTMs on histone H3 peptide 27 to 40, 

H3K36me3 consists of 1.175 % H3K36 sites; H3K36me2 consists of 0.366 %; H3K36me1 

consists of 2.05 %; 96.113 %f H3K36 site maintains not modified; H3K36ac consists of 

0.278 %. These caused some problems for detecting H3K36me3 by western blotting using 

H3 protein as loading control. Among all detectable PTMs on histone H3 peptide 9 to 17, 

H3K9me3 consists of 43.04 %; H3K9me2 consists of 23.7 %; H3K9me1 consists of 4.6 %; 

27.78 % of H3K9 site maintains not modified (Feller et al., 2015). Antibody detection 

detects only one PTM for one site and does not give any information about the PTMs in 

proximal residues. A targeted proteomics strategy using synthetic spiketides gives the 

advantage to detect not only one PTM on single site but also combinatorial PTMs on 

proximity sites. It also overcomes the time consumed to generate a new antibody or the 

possibility that antibody for certain PTM can not be generated at all. LC-MS/MS sample 

preparation was illustrated in Figure 3.9 b. Chemical derivatization was applied to protect 

histone proteins from over-digestion. One of the disadvantages of in gel digestion is low 

peptides recovery rate from gel. For PTMs lower than 1 % abundance, in solution digestion 

should be considered. Due to ion suppression effects during ionization for light and heavy 

peptides with same PTM, heavy spiketides have to be added at a similar concentration as 

the light peptides. UHPLC gives nice chromatogram peak separation. Targeted precursor 

ion selection by TT6600 from AB Sciex can sufficiently enrich low abundant PTMs’ 

peptides. Chromatogram peak assignment has been done by observing all the fragmented 

ions for heavy spiketide shown in Table 3.1 and Figure 3.10 for each PTMs. Precursor ion 

for H3K36me3 elutes shortly before H3K27me2K36me1 as shown in Figure 3.10 c. 

Quantitation can be done by either precursor ion (Figure 3.10 c and Figure 3.15) or 

prognostic fragmented ion such as b3 as shown in Figure 3.10 d and Figure 3.11. 

In Figure 3.11, all the experiments from replicate 3 clustered together with low intensity 

indicating too less protein materials were started with. Low amount of light peptides and 

high amount of corresponding heavy spiketides lead to mask of signal detection. Clustering 
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is strongly guided by heavy spiketides. In replicate 2, increases of H3.27.40_0.3.0 and 

H3.27.40_0.2.0 have been validated for JMJ-1, JMJ-4 and JMJ-6 but not H3.9.17_2.0.0 and 

H3.9.17_3.0.0. In replicate 1, increases of H3.27.40_0.3.0 and H3.27.40_0.2.0 have been 

validated for JMJ-1, JMJ-4 and JMJ-6 but not H3.9.17_2.0.0 and H3.9.17_3.0.0. 

To assess the technical variability of the machine, intensity values of the unmodified 

spiketide H3.41.49_un were measured in 40 runs. 200 fmol of this peptide was equally 

loaded in each run shown in Figure 4.2. The intensity value for the same amount of peptide 

loaded on the UHPLC column varies up to 7 fold. This indicates that technical variability is 

still big and signal normalization needs to be applied. 

	

4.2	Function	of	KDM4a	in	human	and	Drosophila	melanogaster	
	
Leaky expression without heat shock induction was observed for SL2 that was stably 

transfected with dKDM4a. The leaky expression of dKDM4a was used to express Flag-

KDM4a, anti-Flag IP purification to avoid an overexpression artifact brought by heat shock. 

Mild IP wash has been performed. Samples were eluted from the beads by boiled rather 

Figure 4.2 | Running control of unmodified heavy spiketide H3.41.49_un 
200 fmol spiketide H3.41.49_un was loaded in the UHPLC column in each run. 40 runs was 
randomized and run sequentially. Same parameters were applied for data extracting. 
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than by Flag peptide elution. Therefore enrichment of FH-KDM4a by anti-Flag IP was not 

very strong as shown in Figure 3.12 a. But it is validated in Figure 3.12 b as strongest 

protein showing t-test difference in Flag-dKDM4a proteome. In addition, all histone 

proteins His2A, His2B, His3.3, His4 and His1 have been observed in the protein list 

enriched by FH-dKDM4a (See appendix Mass Spect list). His2Av was also enriched by 

FH-dKDM4a. 

MSL3 containing Chromo domain which binds to H3K36me3 was validated being enriched 

in the dKDM4a elution (Figure 3.12 b) and further confirmed by western blotting (Figure 

3.12 c). This supports the finding about co-presence of MSL3 and H3K36me3 in actively 

transcribed X chromosomal gene body (Straub et al., 2013). In addition, DCC component 

MSL1 was also enriched.  

dKDM4a protein contains the binding motif PxVxL to HP1a (Thiru et al., 2004). 

Enrichment of HP1a by FH-dKDM4a is validated as positive control in Mass Spect protein 

list and western blotting (Figure 3.12 b and Figure 3.12 d). In addition, there is a higher 

molecular weight protein band at about 100 kDa observed in the Flag IP enriched FH-

dKDM4a proteome detected by anti-HP1a western blotting. It is unclear what this 

additional protein band is. 

Human KDM4a has not only conserved domains for demethylase catalysis activity but also 

assistant binding domains to bring the demethylase activity to target sites (Figure 1.5). 

Apart from its demethylation activity of KDM4a, it is also acclaimed recently that KDM4a 

is localized in heterochromatin region of the genome. This has nothing to do with catalytic 

activity of demethylation. As it is reported for LYS20 which functions as a homocitrate 

synthase and meanwhile is also a noncanonical HAT enzyme. It is a critical enzyme in both 

metabolic pathway and chromatin organization (Scott et al., 2010). This raised up the 

question whether KDM4a may also be a bifunctional protein. What would be the other role 

of KDM4a if there is one more? 

dKDM4a protein consititution is more similar to protein hKDM4d lacking the targeting 

domains compared to hKDM4a, hKDM4b and hKDM4c (Lloret et al., 2008). And human 

KDM4e and KDM4f are considered as pseudogenes for hKDM4d. The encoding region for 

hKDM4a, hKDM4b and hKDM4c in human genome are 1p34.1, 19p13.3 and 9p24.1 

respectively. The encoding region for hKDM4d, hKDM4e, hKDM4f are together in 11q21 

which is considered as triplicated retrotransposons of KDM4 family gene (Katoh et al., 
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2004). hKDM4a, hKDM4b and hKDM4c are ubiquitously expressed in most of human 

tissues, while hKDM4d is specifically expressed in testis based on the RNA-seq data 

(Labbé et al., 2013).  

RNAi targeting dKDM4a inhibited cell growth for SL2 and L2-4 cells, we hardly harvested 

enough material for analysis. This agrees with the finding that hKDM4c knock-down has 

shown reduced cell proliferation for U2OS and KYSE150 cell line (Cloos et al., 2006). 

According to the Drosophila Interactions Database (http://www.droidb.org), among 

dKDM4a interaction network, DF31 and bunch of mir RNA are predicted to interact with 

dKDM4a. We did not find DF31 enriched by FH-dKDM4a in t he list of interactors. This 

may due to the cell line we used does not contain testis tissue.  

In mouse, histone variant H3.3 is deposited into sex chromosomes in meiotic prophase 

during spermatogenesis (Heijden et al., 2007). This fits to the finding hKDM4d is 

specifically expressed in testis and demethylase activity shows preference towards 

H3.3K36me3 variant.  

Ubiquitination mediated degradation has been used to regulate the abundance of KDM4 

subfamily proteins in cells (Tan et al., 2011; Rechem et al., 2011). hKDM4d localization on 

chromatin was dependent on RNA binding to N-terminus aa 115 to 236 and C-terminus aa 

348 to 523 in U2OS cell line (Zoabi et al., 2014). dKDM4a may follow the same regulation 

mechanism. 

4.3	Human	disease	related	genes	therapeutic	study	using	fly	cell	
	
I used SL2 and L2-4 cell lines, which are derived from embryonic stage of 20-24 hours 

Drosophila Melanogaster. The SL2 cell line displayed many types of morphology: 

aroundish cells, spindle shape cells, macrophage-like cells, epithelial-like cells. The major 

portion of the cell population is roundish cell with the macrophage-like cells comprised less 

than 5 %. Roundish cells, spindle shape cells and epithelial-like cells have prominent 

nucleus and large nucleolus with normally diploid chromosomes (Schneider, 1972). The 

heterogeneity of SL2 cell population may account for bias of H3K36me3 bulk analysis. 

Drosophila cell lines are ideal tools to study gene function because of a) the simple and 

easy way to establish stable transgenic cell lines and b) the possibility to effectively knock 

down target genes by RNA interference. Drosophila also has a lower genetic redundancy 
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compared to mammals making mutation likely more penetrant. With mutant fly background, 

defined mutant cell line with more homogeneous population can be acquired compared 

with stable transformation. Finally, large scale of material can be produced by large scale 

cultures (Baum & Cherbas, 2007). 

The observation of increasing H3K36me3 signal by WB and IF upon treatment of L2-4 

cells with compounds CHR-1, CHR-4 and CHR-6 indicated that these three compounds 

successfully penetrated into the cell and reached dKDM4a in the nucleus. 

One of the major challenges of potential epigenetic therapies is the specificity to the targets 

(Kelly et al., 2010). The small molecules investigated in this study were designed to target 

KDM4a. But they may also inhibit other Jumonji containing KDMs. Therefore the other 

histone lysine methylations should also be investigated in order to exclude side effect of 

these inhibitors. 

4.4	Mass	spectrometry	application	
	
Conventional biochemical analysis detection method such as western blotting or immune 

fluorescence imaging relies on specific antibody raised upon immune reaction for the 

antigen of interest. Usually, only a single protein or PTM is detected in each experiment. 

Mass spectrometry can potentially detect multiple signals by single run. However, a major 

challenge of MS for biomolecules is the transfer of the intact molecule into the gas phase 

during ionization process. Two major ionization techniques have been developed, matrix-

assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) (Karas & 

Hillenkamp, 1988; Fenn et al., 1989). 

The molecular mass range for analysis by MALDI-ToF is from 100 to 200000 Da. This 

type of mass spectrometers provides resolution from 400 to 50000 and measurement 

accuracy of 0.005 % to 0.2 % (Bonaldi et al., 2004). Since predominantly singly charged 

ions are produced by MALDI ionization, it is possible to analyze low and medium 

complexity mixtures of sample with MALDI-ToF. It fits well to detect alteration of 

substrate after enzyme catalysis with mass shift such as methylation, demethylation, 

acetylation, deacetylation, phosphorylation and dephosphorylation and so on. In this 

application, the mass of expected products is known and formation of the product can be 

measured directly. 
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During ESI ionization process, peptides are protonated to carry different state of charge 

after ionization. The charge state of the protonated peptide ions can be determined from the 

isotopic distribution pattern. Difference of 1 mass unit between the two isotopic peaks 

indicates the charge state being 1+; difference of 0.5 mass unit indicates the charge state 

being 2+; difference of 0.3 mass unit indicates the charge state being 3+ (Trauger et al., 

2002).  

Proteomics is a useful tool to study systems biology. Development of ion source ESI makes 

it possible to analyze complex samples separated by LC directly online coupled to MS such 

as Orbitrap, Triple ToF or Q exactive. Intensity based absolute quantification (iBAQ) using 

Adromeda search engine gives the possibility to do statistical analysis for identifying and 

quantifying complex proteome. 

Normally for biomedical or biological researches, the expected output from MS-based 

measurements is the quantitive difference for targeted proteins between samples. However, 

there are also cases which require absolute quantification of the protein of interest. (Picotti 

et al., 2012) To achieve absolute quantification with precision, one possible strategy is to 

apply AQUA peptides as internal standard. AQUA peptides are isotopically labeled target 

peptides. They have the identical chemical features as the native peptides. In this study, 

spiketides have been applied as function of AQUA peptides. 

In order to study the stoichiometry of macromolecular complex such as the DCC 

components enrich by dKDM4a (Figure 3.12 and protein list in Appendix 3), QconCATs 

strategy can be applied as function of AQUA peptides. QconCATs peptides can be used to 

quantify heterologous expression of targeted protein with isotopic labeled internal standard. 

By adding a known amount of QconCATs to the native sample, which serves as internal 

reference, target proteins can be quantified accordingly. The drawback is one may get 

differential digestion efficiency due to the context of the sequence where QconCATs 

peptides derived from. (Picotti et al., 2012) 

Targeted proteomics by selecting specific precursor ions of interest has been conferred with 

the name of next generation of mass spectrometry. It robustly selects precursor ions of 

interest by quadruple mass spectrometer via Multiple Reaction Monitoring (MRM). In 

TToF TT6600, Time of Flight mass analyzer is integrated after CID fragmentation cell 

which can acquire full spectra of MS/MS ions and precursor ions. MS/MS spectra 

chromatogram can be extracted via computational tool. Quantitative analysis can be done 

with MS or MS/MS signal. 
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4.5	H3K36me3	quantitation	and	its	biological	function	

4.5.1	Quantitation	of	H3K36me3	methylation	by	WB	and	IF	
	
H3K36me3 is a highly dynamic modification associated with actively transcribed gene 

body upon onset of transcription elongation. Therefore H3K36me3 deposition is dependent 

on active transcription in a temporal and spatial manner. Since each individual cell and cell 

type can define the expression profile in general. H3K36me3 level can differ from single 

cell. 

Based on the in vitro inhibition assay with the inhibitors and the inhibitors treatment in cell 

data set I have presented here (Figure 3.4, Figure 3.6, Figure 3.7 and Figure 3.11), I acclaim 

that H3K36me3 signal was increased upon inhibition of dKDM4a enzymatic activity. 

Bulk scale analysis approaches such as western blotting can easily mask the active 

transcription loci for H3K36me3 response. Because it averages H3K36me3 signal to whole 

chromatin region and whole cell population. It easily gives a pseudo output of not showing 

any effect, despite the fact of enlarging the native signal by orders of magnitude combining 

primary antibody, secondary antibody and HRP-ECL detection. The fact of observing 

several fold enrichment from WB detection reflects the alteration from active transcripts 

signal averaged by whole chromatin region and whole cell population. So the several fold 

signal enrichment from WB could be concentrated at active transcription loci for 

H3K36me3 response up to thousands fold alteration. 

This signal masking issue can be partially addressed by immune fluorescent imaging via 

microscopy detection where the H3K36me3 signal can be measured in a single cell. 

Therefore the signal masking by heterogenious cell population from bulk analysis is 

eliminated. But the H3K36me3 signal in IF we observed is still after magnification of 

several orders of magnitude. The disadvantages coming with IF staining and microscopy 

detection are the cross-reactions between different secondary antibodies conjugated to 

fluorophore and signal overlapping. This is due to the close wave length the chosen 

fluorophores needed for excitation and emission.  

4.5.2	Quantitation	of	H3K36me3	methylation	by	targeted	LC-MS/MS	analysis	
	
According to Feller et al., single modification H3K36me3 contributes to approximately 

1.10 % of the total histone H3 protein. It functions not only as single mark but also in 

combination with other proximal modification on lysine residues (Feller et al., 2015). 
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Analysis of low abundant PTM is challenging due to the detection limit of the mass 

spectrometer. Application of targeted proteomics for ion transition with defined m/z value 

enriches precursor ions of interest. Due to ion suppression between light naturally present 

peptide ions and isotopically labeled spiketide ions, amount of spiketides included must 

take consideration of naturally occurred stoichiometry for corresponding PTM peptide 

signal. Here I applied 200 fmol of heavy spiketide for each PTM signal in the peptide 

library, this led to ion suppression during ionization especially for the low abundant PTMs. 

1 to 1 ratio for heavy and light peptide ions with same modification is suggested. 

Normalization should be included not only for material loading on the LC column such as 

using unmodified peptide H3.41.49_un but also for MS/MS fragmentation event. Decision 

of choosing MS/MS ions to do quantitation is based on: a) prognostic feature using a 

particular fragmented ion for the precursor ion; b) relative abundance of the chosen MS/MS 

ion among all fragmented ions. Regarding normalization, histone protein band intensity can 

also be normalized by coomassie blue staining. 

4.5.3	Biological	function	of	H3K36me3	
	
H3K36me3 is an active mark which is found in the 3’ region of the gene encoding body 

and the 5’ exons of the active transcription (Bell et al., 2007). Inhibition of demethylases 

targeting H3K36me3 could induce the accumulation of this mark thereby stimulating 

expression of the underlying gene. 1.10 % of total histone H3 protein showing H3K36me3 

may indicate there is 1.10 % of the genome being actively transcribed at a given time point 

for SL2 fly cell line. Active transcripts consist of 5.99 % constitutive exons, 65.50 % 

alternatively spliced exons and 28.51 % alternative skipped exons according to the 

clustering of exons by Mayer et al. in human cell line (Mayer et al., 2015). It might be that 

the alternative spliced exons accounting for the most variation of H3K36me3 modification. 

Therefore, the variation of H3K36me3 could be highly dependent on the cell type under 

investigation and the homogeneity of the cell population.  

During cell division, genetic information must be faithfully transmitted from parental cell 

to the two daughter cells precisely. The whole genome has to be de-condensed and 

replicated in order to get the entire cell duplicated. Meanwhile histones also need to be 

duplicated with high fidelity of PTMs on them. In SL2 and L2-4 fly cells, bi-nucleated cells 

are frequently detected (Figure 3.13). The origin of these cells is still unclear but 

interestingly the two nuclei show a dramatically different H3K36me3 staining pattern. If 
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these cells are resolved into two individual cells, the difference in H3K36me3 would result 

in two very different epigenetic landscaples similar to what is observed in asymmetric 

divisions during stem cell differentiation or the development of tumor cells. 

4.6	Metabolomics	and	epigenetics	
	
Mutations of metabolic enzymes such as fumarate hydratase and succinate dehydrogenase 

deregulate the level of fumarate and succinate. These mutations have shown to inhibit 

histone demethylation via Jmj-C containing KDMs (Xiao et al., 2012). In this study, we 

observed a decrease of H3K36me3 in nuclei of cells over-expressing IDH (IDH1-NADP) in 

cytoplasm (Figure 3.14 a). Over-expression of IDH generates more α-ketoglutarate, we 

asumme that all Jmj-C domain containing proteins which use α-ketoglutarate as cofactors 

could potentially get influenced by it. Therefore we have analyzed all abundant histone 

methylations upon over-expression of IDH (Figure 3.15). These analyses show that most of 

the methylation signals on histones are reduced upon IDH over-expression. Considering the 

clustering is strongly guided by missing value in this data set, further analysis need to be 

done in order to make conclusion. 

In order to validate the correlation of IDH enzyme activity with the decrease effect on 

histone methylation, I have generated stable cell lines over-expressing IDH carrying 

various mutations. Molecular analysis of Drosophila IDH mutants are shown in Table 3.2 

and validation of stable cell line over-expression are shown in Figure 3.16. IDH enzyme 

null mutants from human have been taken as reference to generate mutants for dIDH (Yang 

et al., 2010). 
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5.	Material	and	methods	

5.1	Material	

5.1.1	Inhibitors	investigated	in	this	study	
 
Structure		 MW:		

g/mol	
Name	[Chemical	name]	

		 	

157.2	 JMJ-1	
	
[4-cyclopropyl-5-mercapto-4H-1,2,4-triazol-3-ol] 

		 	

247.3	 JMJ-2	
	
[N-(thiophen-2-ylsulfonyl)pivalamide]	

		 	

286.3	 JMJ-3	
	
[N-(1-(2,5-dimethoxyphenyl)ethyl)isonicotinamide]	

		

	

292.3	 JMJ-4	
	
[4(1H)-Quinazolinone, 2,3-dihydro-3-hydroxy-2-(2-
quinoxalinyl)-] 

	

297	 JMJ-5	
	
[1-(2-methoxybenzyl)-4-(pyridin-2-
ylmethyl)piperazine]	

	

331.4	 JMJ-6	
	
[N-(5-ethyl-1-(2-morpholinoethyl)-2-oxoindolin-3-
yl)acetamide]	
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5.1.2	Chemicals	
	
All common chemicals were purchased from Pharmacia, E. Merck, Pierce, Promega, Roche, 
Roth, Sigma. 
Special requirement for this work: 
Name Source 
Ferrous Sulfate Heptahydrate Sigma-Aldrich 
α-Ketoglutaric Acid Sodium Salt Sigma-Aldrich 
Sodium ascorbate Sigma-Aldrich 
2-Hydroxyglutaric Acid Disodium Salt Santa Cruz Biotech 
Propionic anhydride VWR 
Dithiothreitol Roth 
Iodoacetamide Roth 
Image-iT FX signal enhancer  Invitrogen 
Trifluoroacetic acid VWR 
Acetonitril Roth 
Vectashield mounting medium H-1000 Vector Labs  
Normal goat serum Dianova 
α-cyano-4-hydroxy-cinnamic acid Sigma 

5.1.3	DNA	and	Protein	Markers	
	
Name  Source 
GeneRuler 1kb DNA ladder New England BioLabs 
123bp DNA ladder Invitrogen 
100bp DNA ladder New England BioLabs 
peqGold Prestained Protein Marker Ⅳ peQlab 
peqGold Prestained Protein Marker Ⅴ peQlab 

5.1.4	Enzymes	and	Kits	
	
Product Company 
Taq DNA Polymerase VWR 
Pfu Turbo DNA Polymerase Agilent 
Restriction endonucleases  NEB 
Gel extraction Kit Qiagen 
Miniprep Kit Qiagen 
RNeasy Mini Kit Qiagen 
Maxiprep Kit Qiagen 
ClarityTM Western ECL Substrate Kit BIO-RAD 
ECLTM Prime Western Blotting Detection 
Reagent  

GE Healthcare 

ECL Kit (enhanced chemoluminescence) GE Healthcare 
QuikChangeTM Site-Directed Mutagenesis Kit Stratagene 
T7 MEGAscript® Kit Ambion 
Trypsin Gold, Mass Spectrometry Grade Promega 
Bio-Rad Protein Assay  BIO-RAD 

5.1.5	Primers	
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	 Oligo	name	 Sequence		 Description	

1	 Jmjd2a-1fw	 5’-AAAAAGCAGGCTCCGCCATGTCCACGAGATCTTCAT-

3’	

pDONR/zeo	

2	 Jmjd2a-2rev	 5’-AGAAAGCTGGGTCTCAATCCTCGTCGTCAAGTG-3’	 pDONR/zeo	

3	 KDM4A-1020rev	 5’-AGAAAGCTGGGTCTCACAGCCAATTATCGTATC-3’	 pDONR/zeo	

4	 attB1-fw		 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3’	 pDONR/zeo	

5	 attB2-rev		 5’-GGGGACCACTTTGTACAAGAAAGCTGGGT-3’	 pDONR/zeo	

6	 FP312	 5’-

TTAATACGACTCACTATAGGGAGACAATGGATGTGAAC

GAAACG-3’	

RNA	interference	

7	 RP312	 5’-

TTAATACGACTCACTATAGGGAGATCCTCGTCGTCAAG

TGTGAG-3’	

8	 FP400	 5’-

TTAATACGACTCACTATAGGGAGAAACTCCCAACCATT

GCGTCT-3’	

RNA	interference	

9	 RP400	 5’-

TTAATACGACTCACTATAGGGAGACATATTTGTTTGCA

CGAATT-3’	

10	 GST-FP	 5’-

TTAATACGACTCACTATAGGGAGAAGTTTGAATTGGGT

TTGGAGTTTCC-3’	

RNA	interference	

control	

11	 GST-RP	 5’-

TTAATACGACTCACTATAGGGAGATCGCCACCACCAAA

CGTGG-3’	

12	 KDM4A-735	 5’-TCGCCATAAGATGACCATGA-3’	 For	q-PCR	

13	 KDM4A-843	 5’-GCCGAAGGGAAATGTAATCA-3’	

14	 KDM4A-34	 5’-CAGAACAAAGTGCCCCGTAT-3’	 For	q-PCR	

15	 KDM4A-135	 5’-TAAGTGTGCTCCCCGAGACT-3’	

16	 M13-FP	[uni_21]	 5’-TGTAAAACGACGGCCAGT-3’	 For	sequencing	

17	 M13-RP	[rev_29]	 5’-CAGGAAACAGCTATGACC-3’	

18	 T7-FP	 5’-TAATACGACTCACTATAGGG-3’	 For	sequencing	

19	 T7-RP	 5’-CTAGTTATTGCTCAGCGGT-3’	 	

20	 ON130pMT	fw	 5’-CATCAGTTGTGGTCAGCAGC-3’	 For	sequencing	

21	 ON152pMT	rev	 5’-CAATCCTAAACCCATTTGC-3’	 For	sequencing	

22	 pMK33-CFH-HAstop	 5'-CTAAGCAGCAGCGTAATCTG-3'	 For	sequencing	

23	 CG7176_RA	385-409	

R132H	fw	

5’-GTGATCGGTCACCATGCCCACGCC-3’	 For	R132H	point	

mutation	

24	 CG7176_RA	385-409	

R132H	rew	

5’-GGCGTGGGCATGGTGACCGATCACAATAG-3’	 For	R132H	point	

mutation	
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All	the	primers	were	synthesized	by	Eurofins	MWG.	
All	the	sequencing	was	done	by	GATC.	

5.1.6	Buffers	

5.1.6.1	Buffer	composition	for	DNA	samples	
	
Orange G 5 × DNA loading dye: 0.3 % (w/v) Orange G 

Ethidiumbromid staining DNA with agarose gel: 

Stock solution of EtBr: 10 mg/ml of ethidiumbromid (MW: 394.294 g/mol) in water. Use 1 

to 100 dilution in agarose gel. 

0.8 % to 1.5 % (w/v) of agarose gel was used to separate DNA fragment. 

5.1.6.2	Buffer	composition	for	protein	samples	
	
6 × Laemmli buffer: 300 mM Tris pH6.8; 12 % SDS; 60 % Glycerol; 1.2 % 

Bromphenolblue, 5 % β-mercaptoethanol, store in -20 °C. 

Coomassie G250 stainnig buffer for SDS PAGE gel: 

25	 CG7176_RA	218-244	

T77A	fw	

5’-GCGCCACAATCGCTCCCGACGAGAAGC-3’	 For	T77A	point	

mutation	

26	 CG7176_RA	218-244	

T77A	rew	

5’-GCTTCTCGTCGGGAGCGATTGTGGCG-3’	 For	T77A	point	

mutation	

27	 CG7176_RA	270-294	

S94A	fw	

5’-GATGTGGAAGGCGCCCAACGGTACC-3’	 For	S94A	point	

mutation	

28	 CG7176_RA	270-294	

S94A	rew	

5’-GGTACCGTTGGGCGCCTTCCACATC-3’	 For	S94A	point	

mutation	

29	 CG7176-762-rew	 5'-GCGTCCATCGTACTTCTTCA-3'	 For	sequencing	

30	 CG7176-390-fw	 5'-CGGTACCATCCGTAACATCT-3'	 For	sequencing	

31	 CG6439-934-rew	 5'-TGGGATTAGCCACGTTCTTG-3'	 For	sequencing	

32	 CG6439-511-fw	 5'-CTAAGCAGCAGCGTAATCTG-3'	 For	sequencing	

33	 ON231	GAPDH1	

RT_fw	

5’-GTGACCTACGCAGAAAGCTAG-3’	 For	q-PCR	

34	 ON232	GAPDH1	

RT_rev	

5’-GCTATTACGACTGCCGCTTTTTC-3’	

35	 ON233	

tub97E_RT_fw	

5’-GAGCAAGAACAGCAGCTACTTTGT-3’	 For	q-PCR	

36	 ON234	

tub97E_RT_rev	

5’-CACCTTGACGTTGTTGGGAAT-3’	
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Working solution: 0.25 % Coomassie G250, 50 % Methanol, 10 % Acetic Acid 

5.1.7	Vectors	
	
Vector name Promotor Tag Expression 

system 
Bacteria 
resistance 

Selection  

pOT2 T7  Bacterial Chloramphenicol    
pNIC28-Bsa4 T7 N-HIS6 Bacterial  Kanamycin   
pDONR/ZEO T7  Bacterial Chloramphenicol  Zeomycin  
pDEST17 T7 N-HIS6 E.coli Ampicillin   
pDEST10-
OneStrep 

Polyhedrin C-ONE-
Strep/8His/
TEV 

Baculoviral Ampicillin   Gentamycin 

pHFHW Hsp70 N-3×Flag-
3×HA 

Insect Ampicillin   Puromycin  

pMK33-C-
TAP-Flag-
HA-BD 

Metallothi
onein 

C-Flag-HA SL2/L2-4 Ampicillin  Hygromycin  

pGEX-6P-1 T7 GST Bacterial Ampicillin   

5.1.8	Plasmid	
	
Gene name  Vector   Description  
hJMJD2a_1-359 pNIC28-Bsa4 Bacterial expression, purify over Nickel 

column 
dKDM4a pOT2 Commercial plasmid containing coding 

sequence 
dKDM4a pDONR/ZEO For Gateway entry cloning 
dKDM4a pDEST17 Bacterial expression, purify over Nickel 

column 
dKDM4a pDEST10-OneStrep Insect expression, purify over Strep-

tactin sepharose beads 
dKDM4a pHFHW For stable cell line over-expressing 

dKDM4a  
dIDH1_wt pMK33-C-TAP-Flag-

HA-BD 
For stable cell line over-expressing 
dIDH1_wt  

dIDH1_111 pMK33-C-TAP-Flag-
HA-BD 

For stable cell line over-expressing 
dIDH1_111 

dIDH1_128 pMK33-C-TAP-Flag-
HA-BD 

For stable cell line over-expressing 
dIDH1_128 

dIDH1_166 pMK33-C-TAP-Flag-
HA-BD 

For stable cell line over-expressing 
dIDH1_166 

dIDH1_111_128 pMK33-C-TAP-Flag-
HA-BD 

For stable cell line over-expressing 
dIDH1_111_128 

5.1.9	Bacteria	strains	E.	coli		
	
Bacteria strain Infor. 
DH5α from Life Technologies F-, lacl-, recA1, endA1, hsdR17, (lacZYA-

argF), U169, F80dlacZM15, supE44, thi-1, 
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gyrA96, relA1 (Hanahan D, 1985) 
Rosetta (DE3) pLysS from Novagen F- ompT hsdSB(rB-mB-) gal dcm (DE3) 

pLysSRARE (argU+, argW+, cam+, ileX+, 
glyT+, leuW+, proL+)  
 

5.1.10	Cell	culture	material	
	
Cell line Origin  Infor. Culture Medium  
SL2 Drosophila 

melanogaster 
 

Semi-adherent,  
Doubling time 93 hrs, 
Oregon R embryos, 20 to 
24 h 

Schneider's + 10 % FCS, 
Penicillin, final concentration 
at 100 units/ml 
Streptomycin, final 
concentration at 100 µg/ml 

L2-4 Drosophila 
melanogaster 

Sub-clone of SL2 Schneider's + 10 % FCS, 
Penicillin, final concentration 
at 100 units/ml 
Streptomycin, final 
concentration at 100 µg/ml 

Sf21   Sf-900 II SFM containing 
10 % FCS and 100 µg/ml 
Gentamycin final 
concentration 

	
Item  Source  
Trypan blue Sigma  
Hemocytometers Bright-Line Reichert 
Plastic-wares : 
6-well plate, 25-cm2 T flask, 75-cm2 T flask, 
150-cm2 T flask 

Greiner Bio-One GmbH 

Cryovial Roth 
Isopropanol cell freezing container NALGENETM 
Incubator maintaining 26 oC LMS Cooled Incubator 
Laminar flow hood Thermo Scientific HERA Safe 
Inverted compound microscope Leica 
X-tremeGENE HP DNA Transfection 
Reagent 

Roth 

Hygromycin B PAA 
Puromycin PAA 
Penicillin GIBCO 
Streptomycin GIBCO 
Schneider’s Drosophila Medium GIBCO 
Fetal Calf Serum Sigma 

5.1.11	Chromatography	material	
	
Beads/ Column Source 

					Protino®	Ni-NTA	Column	1	ml	 MACHEREY-NAGEL	
Gelfiltration	column	Superose	6	 Amersham	
Gelfiltration	column	Superdex	200	 Amersham	
Gluthathione-Sepharose-4B	 VWR	
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Anti-Flag	M2	Affinity	Gel	 Sigma		
MonoQTM	5/50	GL	 Amersham	
Strep-Tactin	Sepharose	 IBA	

5.1.12	Antibodies	
	
Primary	
antibodies	

Resource		 Dilution	for	
western	
blotting	

Secondary	
antibodies	

2nd	Ab	Dilution	for	
ECL	

α-H3K4me3 Diagenode	 1:1000	 α-rabbit	 1:5000	
α-H3K36me3	 Abcam	 1:2000	 α-rabbit	 1:5000	
α-H3K36me2 	 1:5000	 α-rabbit 1:5000	
α-H3K9me3 Diagenode	 1:1000	 α-rabbit 1:5000	
α-H3K9me2 Millipore	 	 α-rabbit 1:5000	
α-H3K9me2 ActiveMotif	 	 α-rabbit 1:5000	
α-H3	 Abcam	 1:1000	 α-rabbit	 1:5000	
α-H2B	101-11 	 1:50	 α-rat 1:5000	
α-Flag	 Sigma	 1:5000	 α-mouse	 1:5000	
α-HA-Biotin	
A058	

E.Kremmer	 1:3000	 α-rat	 1:5000	

α-HA	R001	3F10 Rothe	 1:50	 α-rat 1:5000	
α-Tubulin	 Sigma		 1:5000	 α-mouse	 1:5000	
α-HP1	A049	 	 1:1000	 α-rabbit	 1:5000	
α-HP6	(umbrea) 	 1:500	 α-rabbit 1:5000	
α-MOF	 P.	Becker	 1:2000	 α-rabbit	 1:1000	
α-MSL1	 P.	Becker	 1:1000	 α-rabbit	 1:1000	
α-MSL2	 P.	Becker	 1:500	 α-rat	 1:2000	
α-MSL3	1C9-5 P.	Becker	 1:50	 α-rat 1:2000	
α-MSL3	Rb74 P.	Becker	 1:1000	 α-rabbit 1:2000	
α-H4K16ac Santa	Crutz	 1:500	 α-rabbit 	
α-streptavidin-
HRP	

Biolegend	 1:2000	 	 	

α-mouse-HRP	 Amersham		 1:10000	 	 	
α-rabbit-HRP	 Amersham	 1:10000	 	 	
α-rat-HRP	 Amersham	 1:10000	 	 	
α-mouse-IRDye	
800	

Biomol		 1:10000	 	 	

α-rabbit-IRDye	
800	

Biomol	 1:10000	 	 	

α-rat-IRDye	800 Biomol	 1:10000	 	 	

5.1.13	Synthetic	peptides	
	
For	peptide	H3.27.40	

Peptide	sequence	
Modification	
K27_K36_K37	 ID	

STGGV-Lys(Me3)-KPHRY - 3 - Peptide 31-41 H3.3 
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ARKSAPATGGVKKPH-R*--Qtag - - - Peptide 25-40 
ARKSAPSTGGVKKPH-R*--Qtag - - - Peptide 25-40 H3.3 
ARLys(Me)-SAPATGGVKKPH-R*--Qtag 1 - - Peptide 25-40 
ARKSAPATGGV-Lys(Me)-KPH-R*--Qtag - 1 - Peptide 25-40 
ARKSAPATGGVK-Lys(Me)-PH-R*--Qtag - - 1 Peptide 25-40 
ARLys(Me2)-SAPATGGVKKPH-R*--Qtag 2 - - Peptide 25-40 
ARKSAPATGGV-Lys(Me2)-KPH-R*--Qtag - 2 - Peptide 25-40 
ARKSAPATGGVK-Lys(Me2)-PH-R*--Qtag - - 2 Peptide 25-40 
ARLys(Me3)-SAPATGGVKKPH-R*--Qtag 3 - - Peptide 25-40 
ARKSAPATGGV-Lys(Me3)-KPH-R*--Qtag - 3 - Peptide 25-40 
ARKSAPATGGVK-Lys(Me3)-PH-R*--Qtag - - 3 Peptide 25-40 
ARLys(Ac)-SAPATGGVKKPH-R*--Qtag a - - Peptide 25-40 
ARKSAPATGGV-Lys(ac)-KPH-R*--Qtag - a - Peptide 25-40 
ARKSAPATGGVK-Lys(ac)-PH-R*--Qtag - - a Peptide 25-40 
ARLys(Me)-SAPATGGVK-Lys(Me)-PH-R*--Qtag 1 - 1 Peptide 25-40 
ARLys(Me)-SAPATGGV-Lys(Me)-KPHR*--Qtag 1 1 - Peptide 25-40 
ARLys(Me)-SAPATGGV-Lys(Me2)-KPHR*--Qtag 1 2 - Peptide 25-40 
ARLys(Me2)-SAPATGGV-Lys(Me)-KPH-R*--Qtag 2 1 - Peptide 25-40 
ARLys(Me2)-SAPATGGV-Lys(ac)-KPH-R*--Qtag 2 a - Peptide 25-40 
ARLys(ac)-SAPATGGV-Lys(Me2)-KPH-R*--Qtag a 2 - Peptide 25-40 
ARLys(ac)-SAPATGGV-Lys(Me3)-KPH-R*--Qtag a 3 - Peptide 25-40 
	
Synthetic peptide for histone protein H3.3 amino acid residues 31_41 was used as substrate 

for HDM assay in vitro. 

Synthetic peptides for histone protein H3 amino acid residues 25_40 with an isotopically 

labeled arginine at the C-terminus were used as spike tides to identify the correct retention 

time for corresponding natural peptides and as internal standard for relative quantitation of 

histone modifications. 

Annotation: “-”: unmodified residue; “1”: lysine mono-methylation; “2”: lysine di-

methylation; “3”: lysine tri-methylation; “a”: lysine acetylation. 

For peptide H3.9.17 

Peptide	sequence	
Modification	
K9_S10_K14	 ID	

ARKSTGGKAP-R*--Qtag - - - Peptide 7-17 
AR-Lys(Me)-STGGKAP-R*--Qtag 1 - - Peptide 7-17 
AR-Lys(Me2)-STGGKAP-R*--Qtag 2 - - Peptide 7-17 
AR-Lys(Me3)-STGGKAP-R*--Qtag 3 - - Peptide 7-17 
ARKSTGG-Lys(Ac)-AP-R*--Qtag - - a Peptide 7-17 
ARK-pS-TGGKAP-R*--Qtag - p - Peptide 7-17 
ARK-pS-TGG-Lys(Ac)-AP-R*--Qtag - p a Peptide 7-17 
AR-Lys(Ac)-STGGKAP-R*--Qtag a - - Peptide 7-17 
AR-Lys(Ac)-STGG-Lys(Ac)-AP-R*--Qtag a - a Peptide 7-17 
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AR-Lys(Me)-STGG-Lys(ac)-AP-R*-Qtag 1 - a Peptide 7-17 
AR-Lys(Me2)-STGG-Lys(ac)-AP-R*-Qtag 2 - a Peptide 7-17 
AR-Lys(Me3)-STGG-Lys(ac)-AP-R*-Qtag 3 - a Peptide 7-17 
	
Synthetic peptides for histone protein H3 amino acid residues 7_17 with isotopically 

labeled arginine at the C-terminus were used as spike tides to identify correct retention time 

for corresponding natural peptides and also as internal standard for relative quantitation of 

histone modifications. 

Annotation: “-”: unmodified residue; “1”: lysine mono-methylation; “2”: lysine 

dimethylation; “3”: lysine trimethylation; “a”: lysine acetylation; “p”: serine 

phosphorylation. 

For peptide H3.41.49 

Peptide	sequence	
	

ID	
RYRPGTVALR*-Qtag No modification Peptide 40-49 

 
Peptide	H3.41.49	was	used	as	loading	control	of	H3	protein	amount. 
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5.2	Methods	

5.2.1	General	DNA	and	RNA	sample	methods	
	
PCR setup and cycle 
10 × reaction buffer, 50 ng of dsDNA template, 2.5 pmol/µl forward primer, 2.5 pmol/µl 

reverse primer, 200 µM of each dNTP, 0.05 U/µl of DNA polymerase, fill up to final 

volume with ddH2O.  

95 °C 4 min, 25 cycle of [94 °C 30 sec, 62 °C 30 sec, 72 °C 1 min/kb of DNA fragment], 

72 °C 10 min, 4 °C 5 min.  

Restriction enzyme digestion 
1 µg of DNA template, 10 × reaction buffer, 1 U of restriction enzyme, fill up to final 

volume with ddH2O. Digestion was performed at 37 °C for 3 hours and product was 

analyzed by running agarose gel electrophoresis.  

Single point mutation generation 
Assign target mutation site and corresponding DNA site. Mutagenic primers were designed 

to make sure both of primer should contain the mutation. In the case of having target gene 

ORF in a plasmid, single point mutation was generated by QuikChangeTM Site-Directed 

Mutagenesis Kit from Stratagene according to its manuscript. Plasmid after including target 

mutation site was sequenced to confirm mutagenesis. 

Transformation of DH5α competent cells 
No less than 200 ng of plasmid was transformed to 100 µl of DH5α competent cells. The 

mixture was incubated on ice for 30 min. Heat shock at 42 °C for 90 sec was performed. 

The cells were stabilized on ice for 5 min. Add 500 µl of LB and shake at 37 °C, 350 rpm 

for 1 h. The cells were plated on LB plate with antibiotic for selection. After incubation at 

37 °C overnight, check the single colony the next day. 

Plasmid amplified from bacteria E. coli was extracted by Miniprep Kit from Qiagen 

according to its handbook. Concentration of the plasmid was determined by NanoDrop ND-

1000 Spectrophotometer. DNA sequencing and oligo nucleotide synthesis were done by the 

company Eurofins Genomics in this study if not mentioned else particularly. 

5.2.2	Cell	culture	
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For fly cell line SL2 and L2-4 maintenance, Schneider’s media was complemented with 10 % 

heat inactivated fetal calf serum and 100 U/ml Penicillin-G and 100 µg/ml streptomycin. 

Cells were split every 3 or 4 days down to 20 % of confluence. 

To prepare a frozen cell stock, a fully confluent T 75 flask was used. Cells were detached 

from the flask by pipetting, centrifuged at 1200 rpm for 5 min, resuspended in freezing 

medium containing 10 % DMSO, 40 % Schneider Media and 50 % heat inactivated FCS. 

Resuspended cells were frozen in aliquots of 1 ml in cryo vial. 

To thaw frozen cell stocks, cells were quickly warmed up to thaw and transferred to 10 ml 

of fresh complete medium, centrifuged at 1200 rpm for 5 min, resuspended in fresh 

complete medium. 

Loss of function and gain of function experiment 
 
Knockdown procedure 
A plasmid containing gene ORF of interest was taken as PCR template. Primers were 

applied to include T7 promoter to flank both side of linear DNA product. PCR was 

performed by using Taq DNA polymerase and cycling at 95 oC 4 min, 25 cycle of [94 oC 

30 sec, 62 oC 30 sec, 72 oC 30 sec], 72 oC 10 min. Concentration measurement and quality 

control of PCR product were done by NanoDrop 2000 spectrophotometer. PCR product 

was run in 1 % agarose gel to check the fragment size and later on purified by QIAquick 

Gel Extraction Kit according to its manuscript. Amplicon of GST was used as negative 

control for knock down.  

In vitro transcription was done by MEGAscript T7 Kit from Ambion according to its 

manuscript using 1 µg of DNA template and yield should be around 100 µg per reaction. 

Concentration measurement and quality control of dsRNA was done by NanoDrop ND-

1000 spectrophotometer. 

L2-4 cells in log growth phase were used. Culture medium was changed from containing 

FCS to without FCS but with Penicillin and streptomycin. 5 ml of cells were seeded at 

density of 2.0 million cells per ml in T75 flask. Adding 50 µg of dsRNA, the mixture was 

gentally shaked for 10 min at room temperature. Then incubation was done for 50 min at 26 
oC, followed by adding 10 ml culture medium containing FCS with Penicillin and 

streptomycin. After incubation for 7 days, cells were harvested and subjected to extract the 

total RNA according to manuscript of RNeasy® Mini. First-strand cDNA was synthesized 



Material and methods 
 

78	
	

by SuperScript®III First-Strand Synthesis System for RT-PCR Kit. qPCR was performed 

using Fast SYBR® Green Kit by Light Cycler 480. 

	
Establishment of stable cell line over-expressing gene of interest 

Low passage cells were seeded at 2.5 million cells in 3 ml complete culture medium in 6-

well plate one day before transfection. In this work all the transfection were done by X-

tremeGENE HP DNA Transfection Reagent according to its product protocol for insect 

cells. 2 µg of plasmid DNA in diluent was mixed up with 4 µl of transfection reagent. The 

mixture was allowed to stay at room temperature to form complex. The mixture of HP 

reagent and DNA complex was added dropwise to the cells. After 48 hours of incubation, 

one third of the cells were brought in selection medium, and the rest two thirds of the cells 

were induced to check transfection efficiency. 

In this work, dKDM4a SL2 stable cell line was established by co-transfection of pHFHW-

dKDM4a with puromycin resistant plasmid in 10 to 1 ratio. Selection was done by applying 

10 µg/ml of puromycin in the culture medium and 20 min of 37 oC heatshock was 

performed to induce the expression.  

All the IDH cell line and IDH mutant cell lines were transfected by either pMK33-IDH-

CFH or pMK33-IDH_mutant-CFH plasmid which contains hygromycin resistant gene in 

the plasmid. Selection was done by applying 250 µg/ml of hygromycin B in the culture 

medium and 250 µM of CuSO4 was included to induce the expression. 

5.2.3	Immune	Fluorescence	staining	for	microscope	detection	
	
The cells were de-attached, transfered to coverslip and allowed to settle down for 30 min at 

room temperature. The coverslip was transfered into 12-well plate and washed with PBS 

for 10 min. Cells were immersed in 3.7 % formaldehyde in PBS for fixation 10 min at room 

temperature. They were washed twice with PBS for 10 min each and permeabilized with 

0.25 % Triton X-100 in PBS on ice for 6 min. Cells were washed twice with PBS for 10 

Figure 5.1 | Scheme of RNAi targeting region for dKDM4a 
dsRNA was transcribed in vitro from dKDM4a coding sequence region 1173 to 1484 nt. 
qPCR primers for amplification were designed against dKDM4a coding sequence region 34 to 
135 nt. 
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min each, transfered to parafilm and blocked with Image-IT® FX signal enhancer for 1 hour. 

This was followed by overnight incubation at 4 oC with primary antibody diluted in 5 % 

normal goat serum in PBS. The cells were washed in 12-well plate with 0.1 % Triton X-

100 in PBS for 10 min twice and incubated typically 1 hour at room temperature with 

corresponding secondary antibody diluted in 5 % normal goat serum in PBS. Cells were 

washed in 12-well plate with 0.1 % Triton X-100 in PBS for 10 min twice. Mount was done 

with DAPI in Vectashield to stain DNA and the coverslip was sealed on microscope slide. 

Fluorescence signal picture was acquired by Axiovert 200 and analyzed by Fiji software.  

5.2.4	General	protein	sample	methods:	
	
Isolate proteins by SDS-PAGE electrophoresis.  
Protein samples were mixed together with Laemmli loading buffer, heat-denatured at 95 °C 

for 5 min, loaded on SDS-PAGE gel. The gel was run in Invitrogen XCell SureLockTM 

Electrophoresis cell chamber at 200 V voltage until the dye front reaches the gel edge. 

Coomassie stain and de-stain 
SDS-PAGE gel was stained for 25 min in coomassie staining buffer containing 0.25 % 

Coomassie G250, 50 % methanol and 10 % acetic acid. It was de-stained in 10 % acetic 

acid overnight. 

Western Blotting 
The gel was de-assembled from electrophoresis device. In order to transfer the protein to 

PVDF membrane, it was re-assembled from negative electrode to positive electrode in the 

order with wet sponge - Whatman paper - gel - PVDF membrane - Whatman paper - wet 

sponge. Protein was transfered from gel to PVDF membrane in Bio-Rad Mini Trans-

Blotting Cell chamber. 

Transfering was done in cold room 400 mA 1 h for small histones or 300 mA 2h for 

general proteins or 50 mA overnight for big size proteins. 

The membrane was de-assembled and marked with the protein side. It was blocked in 5 % 

(w/v) milk/PBS or 3 % BSA in PBS/0.1 % Tween for at least 1 h at RT on a shaker in order 

to get rid of unspecific background. The membrane was blotted with primary antibody 

against the protein of interest with a proper dilution in 1 % (w/v) milk/PBS for overnight in 

cold room or 3 h at RT. Washing was done with 0.1 % Tween/PBS for 3×10 min at RT. 

The membrane was blotted with secondary antibody conjugated with HRP for 1 min to 1 h 
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which is depended on the intensity of the signal. It was washed with 0.1 % Tween/PBS for 

4×10 min at RT. 

Detection of signal was done by chemiluminescence using Amersham ECL Prime Western 

Blotting Detection Reagent RPN2232. Detection solution A and B were mixed with 1:1 

ratio and 500 µl of this mixture was used for one 6×8 cm2 membrane. The mixture was 

loaded on a Saran film. The membrane was placed with protein side down. Incubate the 

reaction for 5 min at RT. 

The solution was drained off and the membrane was wraped with Saran film. The signal 

was exposed from membrane to a sheet of autoradiography film. 

Reversible protein staining with ponceau S 
After proteins were transferred onto the PVDF membrane, the membrane was incuabated in 

Ponceau S Staining Solution at room temperature for 5 minutes. Protein bands were 

visualized. The membrane was washed with distilled water and shortly immersed in 0.1 M 

NaOH solution. Protein bands started to disappear after 10-30 seconds. The membrane was 

washed with distilled water for 2-3 minutes.  

Strip western blotting membrane    
The membrane was incubated in 0.2 M Glycine pH2.4 for 15 min at RT on a shaker. 

Washing was done with 0.1 % Tween/PBS for 3×10 min at RT.  

Whole cell extract by RIPA buffer 
Cell pellet was resuspended in RIPA buffer containing 0.1 % SDS, 0.5 % Deoxycholate, 

0.5 % NP40, 1mM EDTA, 50 mM Tris pH7.5 and 150mM NaCl, in addition of proteinase 

inhibitors. Samples were votexed shortly and incubated at 4 oC for 10 min. Laemmli buffer 

was added and sample mixture was incubated at 95 oC, 5 min for denaturing protein before 

loading the sample into SDS-PAGE Gel. 

Nuclear extract preparation 
I collected up to 10 billion cells and they were centrifuged at 1000 g for 20 min at 4 oC. 

Cell pellet was resuspended in PBS and separated into two 50ml-falcon tubes. 

Centrifugation and wash were repeated. Then cells were resuspended in ice cold Buffer A 

consisting of 10 mM HEPES pH7.6, 15 mM KCl, 2 mM MgCl2, 0.1 mM EDTA, 1 mM 

DTT and	supplied with complete protease inhibitors. The suspension was placed on ice for 

30 min to break cell membrane by swelling followed by homogenization with B. Braun S 

fit pestle in cold room. The homogenized sample was mixed with Buffer B in 10 to 1 
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volume ratio. Buffer B consisted of 50 mM HEPES pH7.6, 1 M KCl, 30 mM MgCl2, 0.1 

mM EDTA, 1 mM DTT and was supplied with complete protease inhibitors. Centrifugation 

was done at 8000 g for 25 min at 4 oC and the pellet was nuclei fraction. Mixture of Buffer 

A and Buffer B in 9 to 1 volume ratio was added to the nuclei pellet in addition with 0.4 M 

(NH4)2SO4 for final concentration. The mixture was rotated in cold room for 25 min and 

followed by Ultracentrifugation with Ti 70 at 40000 rpm for 1.5 hours at 4 oC. Supernatant 

containing the nuclei protein was transferred into a Ti 45 tube and solid (NH4)2SO4 was 

added to reach final concentration of 0.3 g/ml. Nuclei protein was precipitated and 

centrifuged at 15000 rpm for 35 min at 4 oC. The pellet was dissolved in Buffer C 

consisting of 25 mM HEPES pH7.6, 150 mM KCl, 12.5 mM MgCl2, 0.1 mM EDTA, 1 mM 

DTT, 10 % glycerol (v/v) and supplied with complete protease inhibitors. 

Extracted nuclei protein was dialyzed against Buffer C with 3 changes for 1 liter 1 hour 

each at 4 oC. Dialyzed proteins were centrifuged, aliquoted and snap chilled in liquid 

nitrogen. Protein concentration was determined by Bradford using BSA as standard with 

known concentration and detecting the readout from spectrophotometer at 595 nm wave 

length. Extracted nuclei protein could be stored in - 80 oC for months before use. 

Protein concentration measurement 
200 µl of protein dye was taken from Bio-Rad Protein Assay, known concentration of BSA 

dilution series were diluted in the same buffer as protein sample. Absorbance value was 

detected by Spectrophotometer at wave length 595 nm. Standard curve of absorbance value 

against concentration was made. Protein sample concentration was calculated according to 

the standard curve by reading absorbance value. 

5.2.5	lysine	demethylation	in	vitro	assay	
	
Generation of recombinant dKDM4a enzyme by Baculo virus-insect cell expression 
system 
Low passage Sf21 cells were seeded with 0.8 million cells in 2 ml complete culture 

medium, namely Sf900 II SFM complemented with 10 % FCS and 100 µg/ml Gentamycin 

as final concentration, in 6-well plate. Cells were allowed to attach to the bottom for 1 hour 

at 27 oC. Transfection was done by X-tremeGENE HP DNA Transfection Reagent 

according to its product protocol for insect cells. Here 2 µg of bacmid DNA was used. 

Transfected cells were incubated at 27 oC for 3 days, take the supernatant of culture and 

label it as P1. SF21 cells were splited down to 0.5 million cells per ml density, and P1 was 

diluted in 1 to 100 ratio. 20 ml cells were infected with 10 µl dilution to amplify 
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baculovirus. Supernatant of culture was harvested after 7 days and labeled as P2. P2 was 

used to infect Sf21 cells to express protein. 

Strep-tagged dKDM4a protein purification 
Strep-tagged dKDM4a over-expression Sf21 cells were lysed in buffer W containing 100 

mM Tris-Cl pH8.0, 150 mM NaCl in addition of complete protease inhibitors. Sonification 

was done to break cell membrane and high speed centrifugation was performed to clarify 

the lysate. Supernatant was applied to Strep-tactin sepharose beads equilibrated by buffer 

W and packaged in flow through column. The beads were washed with 5 column volume of 

buffer W. Strep-tagged dKDM4a was eluted by 3 column volume of 2.5 mM D-

Desthiobiotin in buffer W. Glycerol was added to 20 % of the total volume. Samples were 

aliquoted in small fraction, chilled in liquid nitrogen and stored at - 80 °C. 

Protein concentration was determined by LI-COR Odyssey with known concentration of 

BSA providing standard curve loaded in SDS-PAGE gel together with sample protein. 

His-tagged hKDM4a protein purification 
Bacteria culture expressing recombinant hKDM4a residues 1-359 amino acids was 

resuspended in buffer A consisting of 50 mM HEPES pH7.6, 500 mM NaCl, 20 mM 

Imidazole, 0.5 mM DTT, in addition of complete proteinase inhibitor including PMSF, 

Leupeptin, Aprotinin, Pepstain. The cell membrane was broken by sonication. The sample 

mixture was added with Triton X-100 to final concentration of 0.5 %, rotated at 4 °C for 30 

min. Centrifugation at 18000 rpm for 30 min at 4 °C. Supernatant was loaded to the super 

loop and assembled in AKTA-UPC 900 purification system. Nickel column was 

equilibrated with 5 fold column volume of buffer A until the conductivity reached a new 

plateau. The sample was injected from super loop and flowed with buffer A at 1 ml/min for 

10 min. Buffer B consisted of 50 mM HEPES pH7.6, 500 mM NaCl, 300 mM Imidazole, 

0.5 mM DTT, in addition of complete proteinase. 25 min 7 % of buffer B, 93 % of buffer A 

was applied to get mixture of 40 mM Imidazole to wash away the unspecific binding 

materials. His-tagged hKDM4a proteins was eluted 10 min by 250 mM Imidazole by 

mixing 80 % buffer B and 20 % buffer A. Fractions from elution were collected and loaded 

on SDS-PAGE gel. 

HDM assay 
1 µM of KDM4a enzyme and 10 µM H3K36me3 peptide as substrate were incubated 

together with 100 µM FeSO4, 100 µM α-ketoglutarate, 500 µM Ascorbic acid, 50 mM 

HEPES pH 7.6, 50 mM NaCl at 26 oC for 20 min.  
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KDM4a kinetics 
The demethylation reaction was incubated at 26 oC from 0 to 180 min. At each time point 

of 0 min, 5 min, 10 min, 20 min, 40 min, 60 min, 80 min, 100 min, 120 min, a aliquot of 

reaction was taken out and quenched by 0.2 % TFA. 

MALDI-ToF analysis of demethylation in vitro 
HDM assay after reaction was concentrated and de-salted by C 18 resin column using Zip 

Tips (Millipore). Purified substrate and product peptides were spotted to target plate 

together with saturated α-cyano-4-hrdroxy-cinnamic acid in 0.1 % TFA / 80 % ACN. 

Mass spectra were acquired by Applied Biosystems (Framingham, CA, USA) Voyager DE 

STR with mass range from 800 to 1500 amu according to the method described by (Bonaldi 

et al., 2004). 

KDM4a inhibition assay by inhibitor in vitro 
1 µM of enzyme and inhibitor dilution series were pre-incubated for 5 min at room 

temperature. The rest of HDM assay components were added before measuring the enzyme 

activity with 20 min incubation at 26 oC by MALDI-ToF. 

5.2.6	Proteomics	sample	preparation	
	
Flag tag affinity purification 
Equal amount of Anti-Flag® M2 Affinity Gel slurry was taken for each sample. It was 

shortly spun down to settle the beads. The beads were equilibrated with 10 fold of beads 

volume of the same buffer as the sample dissolved in, here for instance, Buffer C as 

described in Nuclear extract preparation was used. Flag-tagged protein extract was applied 

to the beads. The mixture was rotated at 4 oC for 3 hours, washed with Buffer C for 10 min 

at 4 oC for 3 times. Elution of purified Flag-tagged protein was done by adding laemmli 

buffer to the beads and boiling at 95 oC for 10 min. 

Proteomics sample in-gel tryptic digestion 
Immuno precipitated proteins from Flag tag affinity purification using nuclear extract of 

dKDM4a over-expressing SL2 cell line and wild type SL2 cell line as control were 

separated by SDS-PAGE gel and cut into 8 fractions. De-staining was done with 50 % 

acetonitrile (ACN) / 20 mM NH4HCO3 buffer at 37 °C for 60 min. After washing with 

water for two times, the gel pieces were dehydrated with 100 % ACN for 3 × 10 min. 

Reduction of cysteine bisulfate bond was applied by rehydrating the gel pieces with 10 mM 

DTT (1,4-Dithiothreitol) in 20 mM NH4HCO3 buffer and incubating 1 hour at room 
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temperature. Alkylation was performed by adding 55 mM Iodoacetamide (IAA) in 20 mM 

NH4HCO3 buffer. The gel pieces were washed with 20 mM NH4HCO3 buffer once and 

dehydrated with 100 % ACN for three times. Tryptic digestion was performed at 37 °C 

overnight by rehydrating the gel pieces with trypsin in 20 mM NH4HCO3 buffer. 1 µg of 

trypsin was applied per 50 µg proteins. Acid extraction was followed the next day. 50 µl of 

50 % ACN / 0.25 % TFA was applied to the gel pieces and incubation was done at 37 °C 

for 10 min repeat once. 50 µl of 100 % ACN was applied to the gel pieces and repeated 

once. Solutions were pooled from each step for the same sample together and dried in 

Speed vacuum. The resulting peptides were dissolved in 0.1 % FA to acidify before loading 

on the LC column. 

	

Proteomics sample LC/MS/MS measurement 
Samples were prepared by in gel tryptic digestion before LC-MS/MS runs. Three IP pull 

down replicates ended up with 48 samples with each 90 min LC-MS/MS runs. For 

proteomic analysis, reversed-phase UPLC system DIONEX Ultimate 3000 RSLC (75 µm × 

15 cm C 18 Reprosil pure 2.4 µm Dr. Maisch) from Thermo Fisher Scientific was coupled 

on-line with nano-electrospray ionization and LTQ Orbitrrap XL mass spectrometer from 

Thermo Fisher Scientific. 

Proteomics sample data analysis 

Figure 5.2 | Recovery tryptic digested peptides from immobilized protein in SDS-
PAGE gel. 
The proteins were separated by SDS-PAGE gel according to their size. They were immobilized 
in the gel by methanol fixation in the staining steps to prevent from diffusion out from the gel 
during tedious buffer changing steps. Peptides generated from tryptic digestion were much 
smaller in size comparing to proteins, therefore could diffuse out from gel and extracted by acid. 
The strong hydrophobic peptides may bind to the polyacrylamide gel and hard to be recovered 
(adapted from Kinter & Sherman, 2000). 
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Raw file data was analysed using MaxQuant Version 1.2.2.5 for protein identification and 

quantification using Andromeda search engine against dmel-all-translation-r5.24 fasta 

database. Quantification was performed by integrating the area under the extracted ion 

chromatogram peak of the corresponding ion. Protein IDs identified from contamination 

database and reverse transcription database were excluded. Missing values were imputed by 

shifting the Gaussian distribution of validated data values with 0.3 of the width and 1.8 of 

standard deviation downwards. Output file from MaxQuant was subjected to statistical 

analysis by Perseus based on iBAQ value.  

5.2.7	Histone	sample	preparation	

5.2.7.1	Acid	Extraction	of	Histones	from	Drosophila	SL2	or	L2-4	cells	
	
Cells were centrifuged at 1500 rpm for 10 min at 4 °C, washed once with PBS and 

centrifuged again. Cell pellet was resuspended in ice cold PBS containing 0.3 % of Triton 

X 100 and complete protease inhibitors. Samples were rotated for 10 min at 4 °C and 

centrifuged at 3500 rpm for 10 min at 4 °C. The pellet was nuclei fraction. The nuclei 

fraction was centrifuged and resuspended in ice cold 0.4 M HCl. Acid extraction was 

performed overnight at 4 °C. Supernatant was transferred to molecularporous membrane 

tubing with MWCO of 6-8000 after centrifugation. Samples were dialyzed against 3 

changes of 1 liter of 100 mM acetic acid for 1 hour each at 4 °C. Finally, the samples were 

transferred to 1.5 ml cold Eppendorf tube and freezed in -80 °C for 10 min before 

lyophilization. Resuspended histones in loading dye Laemmli buffer were boiled for 5 min 

at 95 °C. 

5.2.7.2	Histone	in-gel	tryptic	digestion	
	
Histone protein bands were separated in SDS-PAGE gel, visualized by Coomassie G250 

dye staining, cut into pieces, de-stained with 50 % ACN / 50 mM ammonium bicarbonate 

at 37 °C for 60 min. After washing with water for two times, acylation step was performed 

by adding 1 µl of propionic anhydride together with 1 M ammonium bicarbonate in 50 µl 

volume to the sample and incubated at room temperature for 30 min. Washing step was 

repeated for three times. 50 % ACN was added to the sample and incubated at 37 °C for 15 

min. Dehydration was performed by adding 50 µl of 100 % ACN to the gel pieces. 

Proteolytic enzyme trypsin was incorporated into the gel piece by rehydrating with solution 

containing trypsin in 50 mM ammonium bicarbonate in addition of 0.5 pmol for each of the 

spiketides. Digestion was incubated at 37 oC overnight. In gel acid extraction was 
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performed the next day in six steps. Step 1, collect the solution from trypsin digestion for 

each sample. Step 2, wash gel pieces with 50 mM of ammonium bicarbonate. Step 3, 

dehydrate with 50 % ACN / 25 mM ammonium bicarbonate. Step 4, acid extraction with 5 % 

formic acid. Step 5, dehydrate with 50 % ACN / 2.5 % formic acid. Step 6, dehydrate with 

100 % ACN. Solutions from step 1 to 6 were pooled for the same sample together and dried 

by speed vacuum. Peptide dry powder was resuspended in 0.1 % trifluoroacetic acid (TFA) 

to acidify. 

All reagents used here for mass spectrometry work were MS and HPLC grade quality. 

																 	
	

																 	

5.2.7.3	Peptide	desalting	by	C	18	stage	tips	and	carbon	tips	
	
C 18 stage tips and carbon tips were conditioned by 100 % methanol, wetted by 80 % ACN 

/ 0.1 % TFA and equilibrated by 0.1 % TFA. Peptide solution was loaded twice on C 18 

stage tips and the flow through was loaded on carbon tips twice. The tips were washed 

three times with 0.1 % TFA and peptide was eluted in 80 % ACN / 0.25 % TFA. The 

elution of the same sample from C 18 stage tips and carbon tips were pooled together in LC 

tube. The sample was dried in speed vacuum and resuspended in 0.1 % TFA before load on 

the UHPLC column. 

5.2.7.4	Histone	sample	LC/MS/MS	measurement		
 

Figure 5.3 | Schematic illustration of propionylation strategy application.  
Propionylation was applied to block trypsin cleavage after unmodified and mono-methylated 
lysine to make trypsin digestion behave as Arginine-C cleavage enzyme. 
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For histone analysis, reversed-phase UHPLC system DIONEX Ultimate 3000 RSLC (75 

µm x 15 cm C 18 Reprosil pure 2.4 µm Dr. Maisch) was coupled on-line with nano-

electrospray ionization and Triple ToF TT6600 mass spectrometry from AB Sciex. 

	

5.2.7.5	Histone	modification	analysis	
Raw files with “.wiff” format acquired from Triple ToF mass spectrometer TT6600 were 

analyzed by PeakView V 2.1 and MultiQuant 3.0. Quantitation of the peptide was done by 

integrating the area under the LC chromatogram peak. This was defined as MS1 

quantitation. In the case of different modifications with same mass-to-charge value within 

same peptide sequence, and the peaks were not distinguishable from each other by MS1, 

quantitation was done by integrating the area under the LC chromatogram peak of extracted 

diagnostic fragmented ion. This was defined as MS2 quantitation. Identification of different 

modification on peptide was done by PeakView V 2.1. Single modification quantitation 

among different samples was done by PeakView V 2.1. Multiple modification signal 

quantitation among multiple samples were done by MultiQuant 3.0 using MQ4 peak 

integration package. 

Figure 5.4 | UHPLC data acquisition program 
NC pump flowed at 0.285 µl/min. Nano spray speed was 50 nl/sec. Samples were loaded to the 
column from 0th to 5th min with 4 %B after injection, gradient was applied from 4 % to 35 % of 
B starting from 5th min to 20th min; 35 % to 90 % of B starting from 20th min to 22th min; 90 % 
of B was kept from 22th min to 29th min; gradient dropped from 90 % to 4 % of B starting from 
29th min to 30th min; 4 % of B was kept from 30th min to 65th min to regenerate the column. A = 
0.1 % TFA (v/v), B = 100 % ACN (v/v), %A + %B = 100 %. 
Survey scan was performed first for each LC/MS/MS run. Multiple reaction monitoring (MRM) 
was applied to target the parental ion and collision energy were calculated according to the mass 
over charge and peptide bond feature for each peptide of interest. 
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6.	Abbreviation	and	appendix	

6.1	Abbreviation	
	
ADP Adenosindiphosphate 
Ala Alanine 
AR Androgen receptor 
Asn Asparagine 
ATP Adenosine-5’-triphosphate  
ATR-X Alpha-thalassemia X-linked 
BRG1 Transcription activator 
Cbx1, 3, 5 Chromobox homolog 1, 3, 5 
CDYL Chromodomain protein, Y- like 
CENP-A Centromeric protein A 
CIMP CpG island methylator phenotype 
Co-IP Co- Immunoprecipitation 
CoREST Co-repressor to REST 
CTD C-terminus domain 
Da Daltons  
DCC Dosage compensation complex 
Df31 Decondensation factor 31  
dKDM4a Drosophila Lysine specific demethylase 4 A 
dKDM4B Drosophila Lysine specific demethylase 4 B 
DNA Deoxyribonucleic acid 
Dnmt3a DNA methyl transferase  
DOT1 Disrupter of telomeric silencing  
Eaf3 Component of the Rpd3S histone deacetylase complex 
EcR Ecdysone receptor 
EED Polycomb group (PcG) protein 
FAD Flavin adenine dinucleotide 
FADH2 Reducted FADH2 
G9a Lysine specific methyltransferase 
Glu Glutaminc Acid 
Gly Glycine 
H1, H2A, H2B, 
H3, H4 

Histone protein  

HAT Histone acetyltransferase 
HDAC Histone deacetylase  
HDM Histone demethylase 
HIRA Histone cell cycle regulator 
His Histidine 
hKDM4a Human Lysine specific demethylase 4 a 
HMT histone methyltransferase 
HP1 Heterochromatin protein 1  
HP1γ Heterochromatin protein 1  γ 
ICF immunodeficiency, centromere instability and facial anomalies 
Ino80 A member of the SNF2 family of ATPases 
IP Immunoprecipitation  
JARID1A Jumonji, AT rich interactive domain 1A 
Jmj-C Jumonji C 
KDM4A Lysine specific demethylase 4 A 
KDM4B Lysine specific demethylase 4 B 
KDM4C Lysine specific demethylase 4 C 
KDM4D Lysine specific demethylase 4 D 
KDM4E Lysine specific demethylase 4 E 
KDM4F Lysine specific demethylase 4 F 
KMT5A Lysine specific methyltransferase 5 a 
L3MBTL1 Lethal (3) malignant brain tumor-like 3 
LC-MS Liquid chromatography mass spectrometry 
LSD1 Lysine specific demethylase 1 
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Lys Lysine 
MALDI-ToF Matrix Assisted Laser Desorption Ionization – Time of Flight 
MAT Methionine adenosyltransferases 
MLE Maleless  
MSL3 Male-specific lethal 3 
N-PAC Cytokine-like nuclear factor 
NSD1 Nuclear receptor-binding, su(var), enhancer-of-zeste and trithorax domain-

containing protein 1  
NSD2 Nuclear receptor-binding, su(var), enhancer-of-zeste and trithorax domain-

containing protein 2 
ORC Origin recognition complex 
PHD Plant homeodomain  
PHF19 PhD finger protein 19 
PR-Set7 PR-SET domain containing protein 7  
PRC1/2 Polycomb repressive complex 1/2  
PRMT Protein arginine methyltransferase  
PSIP1 PC4 and SFRS1 interacting protein 1 
PTM Post translational modification 
PWWP Proline-Tryptophan- Proline-Tryptophan motif 
RNA Ribonucleic acid  
RNA Pol II RNA polymerase II 
RNA-Seq RNA-Sequencing 
RNAi RNA interference  
Rpd3S Reduced potassium dependency 3 S 
RRI RNA RNA interaction 
SAHA Suberoylanilide hydroxamic acid 
SAM S-adenosyl methionine 
Ser Serine 
SET Suppressor of position effect variegation 3-9, SU(VAR)3-9; Enhancer of zeste, 

E(Z) and Trithorax, Trx  
Set8 SET domain containing 8 
SRM Selected reaction monitor 
SUV39H Suppressor of position effect variegation 3-9  homolog 
Suv4-20h1/h2 Suppressor of variegation 4-20 homolog 1 / homolog 2 
TCA Tricarboxylic acid 
Thr Threonine 
TOR Target Of Rapamycin 
Tyr Tyrosine 
ZMYND11 Zinc finger, MYND- type containing 11 
α-KG α- ketoglutarate 
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6.2	Appendix	1	
	

	
	
	
	
	
	
	
	
	
 

 

Figure 6.1 | Protein sequence alignment of KDM4 family in Drosophila 
melanogaster 
Pink box indicates Jmj-N domain; blue box indicates Jmj-C domain. 
“*” illustrates the identical amino acids present in both hKDM4a and dKDM4a. 
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6.3	Appendix	2	
	

		 	
 

 

 

 

 

 

 

 

 

Figure 6.2 | Protein sequence alignment of hKDM4a residue 1-359 aa and dKDM4a 
residue 1-372 aa 
Core catalytic region of hKDM4a 1-359 aa and dKDM4a residue 1-372 aa shares 63 % 
identities and 80 % similarities. On top of the sequence, red dots depict the binding sites of 
cofactor α-ketoglutarate and Fe2+; Blue dots depict the key structure sites apart from binding 
sites. “*” illustrates the identical amino acids present in both hKDM4a and dKDM4a. 
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6.4	Appendix	3	
	
iBAQ 
1306 
wt 

iBAQ 
1325 
wt 

iBAQ 
1546 
wt 

iBAQ 
1306 
KDM4a 

iBAQ 
1325 
KDM4a 

iBAQ 
1546 
KDM4a 

-Log 
t-test 
p value 

 
t-test 
Difference 

Current 
symbol 

15.725 16.550 16.476 23.836 23.398 24.882 3.960 7.788 CG16972 
12.741 12.323 12.392 15.508 15.023 15.136 3.822 2.737 - 
12.559 12.050 12.159 14.388 14.691 14.876 3.471 2.395 CG33107 
11.512 11.141 11.444 16.694 17.590 19.325 2.946 6.504 CG18190 
11.117 11.179 10.391 15.041 17.111 16.217 2.885 5.227 Atac3 
11.768 11.212 12.762 17.141 18.709 19.715 2.782 6.607 VhaAC39-1 
12.133 11.671 13.205 16.215 15.918 16.900 2.756 4.008 CG7987 
11.704 11.535 11.938 14.304 13.406 14.240 2.714 2.257 RAF2 
11.949 10.328 11.557 16.850 17.314 15.451 2.677 5.260 Ppt1 
13.910 14.784 14.650 16.843 16.848 16.308 2.616 2.218 msl-1 
22.121 21.666 21.544 23.085 23.631 23.430 2.604 1.605 14-3-3epsilon 
11.845 9.738 12.978 18.838 20.799 18.599 2.588 7.892 HP6 
11.483 11.894 11.893 15.138 14.392 16.200 2.522 3.486 SdhB 
17.115 15.951 15.148 20.147 19.435 20.009 2.464 3.792 mTTF 
10.614 11.806 11.820 15.884 17.182 14.996 2.448 4.607 CtsB1 
17.022 15.134 16.294 19.431 19.998 20.580 2.411 3.853 CG3902 
14.418 17.604 15.565 23.800 27.933 24.412 2.408 9.519 KDM4A 
15.513 15.183 15.167 19.033 20.181 17.981 2.372 3.777 26-29-p 

9.474 10.515 11.879 15.644 18.789 18.354 2.353 6.973 Jafrac2 
11.945 10.806 11.725 14.670 13.924 13.639 2.291 2.586 MESR4 
22.462 21.904 22.573 23.598 24.397 24.278 2.272 1.778 FK506-bp1 
11.620 10.445 10.386 15.482 16.731 14.066 2.218 4.610 CG4866 
11.319 13.901 10.776 17.038 19.593 19.001 2.215 6.545 CG14932 
17.471 16.776 17.088 18.446 18.323 18.077 2.164 1.170 Rpn13 
19.130 19.791 18.647 23.187 23.986 21.734 2.163 3.779 Su(var)205 
19.857 19.701 19.460 20.350 20.462 20.238 2.161 0.677 eIF-4E 
13.758 13.094 12.731 16.705 15.601 17.864 2.097 3.529 CG14200 
10.873 10.866 10.335 12.959 15.444 14.906 2.072 3.745 Cwc25 
12.341 11.156 10.216 14.920 14.145 14.217 2.067 3.189 CG10979 
17.227 15.481 16.276 18.604 19.009 19.461 2.063 2.697 RpL12 
14.609 15.281 16.059 17.164 17.398 17.657 2.039 2.090 CG11982 
14.340 16.229 15.357 10.795 12.518 10.184 2.022 -4.143 Drat 
18.368 18.482 18.021 19.390 20.359 19.632 2.019 1.504 Tap42 
20.204 18.841 19.344 21.252 21.491 22.014 2.013 2.123 epsilonCOP 
18.780 19.111 19.481 21.555 20.483 21.998 1.967 2.221 zetaCOP 
10.826 11.967 14.107 16.154 17.569 17.450 1.958 4.758 RpL15 
11.228 12.917 13.006 14.816 15.040 15.114 1.950 2.606 CG9044 
17.031 16.688 17.056 17.921 19.036 18.318 1.905 1.500 Nup37 
10.824 11.006 12.841 14.902 14.104 15.531 1.898 3.289 G9a 
15.594 15.716 14.273 17.566 18.899 17.463 1.883 2.782 CG11920 
14.276 11.390 11.351 16.522 17.083 16.106 1.861 4.232 Thiolase 
13.419 13.811 13.684 15.705 14.561 15.021 1.843 1.458 Sap130 
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12.089 12.068 12.360 16.730 18.283 14.618 1.828 4.371 CG16721 
20.186 20.486 19.356 21.480 23.003 23.037 1.815 2.497 SF2 
21.311 23.364 23.986 16.950 19.383 19.097 1.777 -4.410 betaTub97EF 
11.720 11.973 9.393 14.062 14.670 14.273 1.769 3.306 - 
16.558 19.009 19.856 22.356 22.071 23.406 1.745 4.137 l(1)G0004 
10.989 13.744 12.260 15.015 17.093 16.805 1.743 3.973 Mfap1 
16.155 17.746 17.505 12.649 14.619 11.058 1.725 -4.360 CG32066 
12.832 13.612 14.195 15.197 14.890 15.745 1.683 1.731 tho2 
11.326 11.990 8.900 17.341 13.893 16.356 1.676 5.125 BRWD3 
10.823 10.852 12.689 14.657 13.684 15.954 1.670 3.310 E(bx) 
20.466 21.213 21.543 22.372 23.278 24.128 1.662 2.186 Chd64 
15.568 14.961 16.752 17.560 17.990 17.660 1.662 1.976 Surf6 
15.362 15.493 16.610 17.092 18.531 18.112 1.638 2.090 Brms1 
12.690 11.018 11.998 13.988 17.282 17.231 1.633 4.265 CG6018 
11.083 14.700 14.620 17.637 17.710 19.840 1.617 4.928 LRR 
15.734 14.920 16.342 18.508 18.504 16.960 1.614 2.326 DCP1 
12.456 11.901 12.374 15.731 18.542 14.687 1.604 4.076 sel 

17.593 19.554 19.646 21.890 21.338 21.038 1.598 2.491 His2A:CG3161
8 

17.036 15.978 18.994 12.752 14.577 11.372 1.589 -4.436 CG32086 
18.625 19.030 18.166 19.889 21.207 19.923 1.589 1.732 Nurf-38 
11.536 11.407 10.203 13.137 15.226 13.180 1.587 2.799 mab-21 
10.544 14.015 11.007 15.142 17.641 16.315 1.586 4.511 msl-3 
11.434 11.317 12.710 15.030 13.802 13.418 1.576 2.263 Br140 
12.165 11.987 10.606 13.738 13.458 15.341 1.558 2.593 tlk 

17.383 19.104 20.059 21.349 21.406 21.972 1.554 2.727 His2B:CG1794
9 

14.229 16.028 14.162 17.319 16.532 17.238 1.552 2.223 Prp38 
8.123 12.276 11.158 14.437 17.561 15.212 1.545 5.218 MCPH1 

13.978 16.780 16.856 18.603 19.390 20.246 1.542 3.542 Ge-1 
20.993 21.222 22.199 22.479 23.380 23.078 1.530 1.508 14-3-3zeta 
12.549 14.127 13.914 16.030 19.880 21.504 1.526 5.608 fax 
13.810 14.641 13.823 15.891 14.921 16.267 1.522 1.602 mu2 
16.449 19.070 16.759 14.640 11.577 9.651 1.513 -5.470 Hdac3 
12.297 15.851 12.859 16.509 18.598 18.183 1.488 4.094 Pdp1 
15.598 10.532 12.826 17.154 17.897 19.966 1.470 5.354 tmod 
12.121 16.584 15.313 10.415 10.930 8.866 1.458 -4.603 CG10737 
14.994 14.535 16.051 12.564 13.981 11.921 1.456 -2.371 FKBP59 
16.918 15.619 12.858 18.442 19.027 19.562 1.453 3.879 eIF-5A 
11.622 15.026 14.829 16.578 18.653 19.689 1.452 4.481 su(sable) 
18.193 18.192 17.243 20.562 20.728 18.805 1.448 2.156 CG7945 
12.305 13.126 14.230 15.812 15.280 18.104 1.434 3.178 Lk6 
18.960 19.698 18.169 20.991 22.284 20.298 1.432 2.249 DnaJ-1 
20.756 19.023 22.330 13.714 13.184 18.239 1.412 -5.657 regucalcin 
18.210 17.965 18.711 19.815 20.499 22.715 1.402 2.714 lva 
13.804 11.979 10.649 14.196 16.121 16.095 1.392 3.327 CG1024 
13.513 13.891 14.239 14.612 15.660 16.558 1.347 1.729 dbr 



Abbreviation and appendix 
 

94	
	

15.739 10.217 12.026 16.801 17.131 18.156 1.314 4.702 CG12262 
18.172 17.981 16.635 19.059 19.102 18.771 1.308 1.382 eIF4AIII 
15.418 17.514 17.041 18.252 20.400 18.858 1.306 2.512 CG11577 
20.783 20.742 21.597 21.641 22.949 23.238 1.302 1.569 Gie 
10.476 10.650 12.173 12.362 16.010 16.004 1.302 3.692 CG42748 
17.606 19.389 17.877 16.819 16.779 16.633 1.300 -1.547 srp 
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