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Abbreviations  

ACC 1-aminocyclopropane-1-carboxylate 

AmpR ampicillin resistance 

BP band pass (filter type for fluorescence microscope) 

cDNA complementary deoxyribonucleic acid  

CmR chloramphenicol resistance 

Cy3 cyanine dye 3 

Cy5 cyanine dye 5 

DAPG 2, 4-diacetylphloroglucinol 

DMSO dimethylsulfoxid 

DNA deoxyribonucleic acid 

EDTA ethylenediaminetetraacetic acid 

EmR erythromycin resistance 

et al. et alii, and others 

EtOHabs absolute ethanol 

Fig. figure 

Fluos 5(6)-carboxyfluorescein-N-hydroxysuccinimidester 

GmR gentamycin resistance 

i.e. that is  

Kb kilo base pairs 

KmR Kanamycine resistance 

LP long pass (filter type for fluorescence microscope) 

MCS multi cloning site 

OD optical density 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

RNA ribonucleic acid 

RT room temperature 

rRNA ribosomal ribonucleic acid 
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RpR rifamycin resistance 

SmR streptomycin resistance 

TellR tellurite resistance 

TcR tetracycline resistance 

Tris Tris (hydroxymethyl)-aminomethan 

UV ultraviolet 

v/v volume/volume 

w/v weight/volume 

x-gal 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside 
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1 Introduction 

1.1 Plant growth promoting rhizobacteria (PGPR) 

The rhizosphere soil surrounding plant roots contains many times more microbes than the bulk 

soil (Lugtenberg and Kamilova 2009). Among the rhizosphere bacteria there is a category named 

PGPR characterized by their ability to promote plant growth and health. These PGPR can be 

classified into rhizospheric and endophytic bacteria based on the colonization behavior. The 

former ones only colonize the root surface (rhizoplane), such as some Azospirilli (Bloemberg and 

Lugtenberg 2001) while the latter ones can additionally penetrate into roots and grow inside of 

plants such as Gluconacetobacter diazotrophicus (Alqueres et al. 2012). Growth of various plants 

was shown to be affected by their root associated PGPR, for instance maize, rice, sugarcane, 

sorghum, wheat, lettuce, radish, pine, and rape. PGPR species are widely distributed across the 

phylogentic tree, however, many of the isolates can be classified as Pseudomonas or Bacillus 

(Vessey 2003). 

PGPR activity is influenced by or even dependent on plant root exudates. The roots provide 

soluble nutrients for their growth which includes mostly organic acids, making up 83% of the 

total amount of exudates, as well as photosynthates, sugars and the polyamine putrescine. Also a 

vast range of insoluble chemical compounds are released from roots (e.g. cellulose, lignin, 

proteins) (Liu et al. 2012a). Due to this high abundance of nutrients, PGPR can multiply in the 

rhizosphere and colonize the root surface. For example, Pseudomonas putida PCL1444 can reach 

a tenfold increase in cell numbers in the presence of grass seedling in soil (Liu et al. 2012a). On 

the other hand, the exudates can also include some toxic secondary metabolites that inhibit some 

microbes, providing a selection advantage to the resistant ones.  

1.2 Microbial ecology of rhizobacteria and endophytes 

Microbe-host interactions cover a wide spectrum, from pathogenic to beneficial and even 

symbiotic interactions in plant and animal/human hosts (Berg et al. 2005, Mendes et al. 2013). 

This extremely large scope of interaction types can be found even within a single bacterial genus, 

like Burkholderia (Angus et al. 2014) or Herbaspirillum (Balsanelli et al. 2012) and even within 



Introduction 

 

4 

one species as recently reported for Pantoea ananatis (Sheibani-Tezerji et al. 2015). Plant growth 

promotion by rhizosphere-associated, root colonizing microbes is a well-documented 

phenomenon (Dessaux et al. 2010). It can be considered as a symbiotic and synergistic microbe-

plant interaction, although no particular symbiotic organs exist. Benefits of these more or less 

loose associations can be observed particularly when the plant is challenged by limiting nutrient 

supply, by abiotic stresses like hypersaline conditions or lack of water, or when attacked by 

pathogens (Raaijmakers et al. 2009).  

This beneficial effect of PGPR is accieved by several mechanisms: Some PGPR can help to 

dissolve and complex insoluble phosphate into orthophosphate which can be taken up by plants. 

Some siderophores released by PGPR help to transfer chelate insoluble polyhydroxy ferric 

complex to soluble Fe3+ complex which can be taken up by active transport mechanisms (Saharan 

2011). A number of diazotrophic PGPR are known like Herbaspirillum spp. Gluconacetobacter 

diazotrophicus or Azoarcus spp. These bacteria contain nif genes which encode nitrogenase 

catalyzing atmospheric N2 into ammonia and make it thus accessible to plants. These PGPR can 

also promote plant  nitrate absorption (Mantelin and Touraine 2004). PGPR can also change the 

morphology and physiology of roots to enhance water and nutrients uptake mostly by 

phytohormonal interactions. For example Azospirillum brasilense, which is well documented to 

increase cereal yield by up to 30% (Song et al. 2011), produces phytohormones including 

gibberellins, cytokinins and auxin to stimulate plant development (Van Loon 2007). Several GAs 

were isolated from seven species of Acetobacter, Azospirillum and Bacillus PGPR (Bottini et al. 

2004). Auxins are the most important plant hormone produced by Azospirillum, Bacillus and 

Pseudomonas spp. (López-Bucio et al. 2007). PGPR can ameliorate plant growth when inhibited 

by ethylene through a decrease in ACC (1-Aminocyclopropane-1-carboxylic acid) content. The 

decrease of ethylene through the degradation of the precursor ACC by ACC-deaminase activity is 

an efficient mechanism for well performing PGPR (Glick et al. 2007). Several volatiles with low 

molecular weight, such as 2, 3-butanediol and acetoin, are produced by B. amyloliquefaciens 

IN937a and GB03. They significantly promote Arabidopsis growth and enhance the area of 

leaves (Ryu et al. 2003). 

Finally, PGPR exhibit also direct or indirect disease inhibition. The direct way is through 

antagonism with pathogens and nutrient competition. The indirect way includes induction of 



Introduction 

 

5 

plant systemic resistance which is called ISR (induced systemic resistance) and enhances the 

ability to suppress subsequent pathogen infection. For example, inoculation of the rhizosphere 

with Pseudomonas spp. enhanced the immunity of barley to the necrotrophic fungal pathogen 

Gaeumanomyces graminis causing “take-all-disease” and induced resistance to leaf pathogen 

Rhynchosporium secalis (Fröhlich et al., 2011). 

 

1.3 Quorum sensing 

Quorum sensing (QS) is a well-known universal communication mechanism in bacteria. In Gram 

negative bacteria, AHLs (N-acyl homoserine lactones) are used as signaling molecules known as 

auto-inducer (AI). In recent years several studies have shown that AHLs as pure substance can 

arouse similar beneficial effect in plants as the producing PGPR (Schikora, A et al. 2014).  

1.3.1 QS in Gram-negative bacteria 

Quorum sensing communication is based on a constitutive low synthesis rate of an AI signaling 

molecule. When the AI accumulates and surpasses a certain threshold concentration, the AI binds 

to the regulator protein R. The formed complex activates the synthesis gene I and other specific 

genes. The first QS system to be studied was the lux system in Vibrio fisheri. These bacteria are 

located inside of the light organ of fish and squid. When the density of bacteria increases towards 

a threshold level they start to luminesce. This density dependent luminescence is mediated by the 

autoinducing signaling compound N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6HL).  

AHLs are composed of two parts. One is the lactone ring which is the conserved structure among 

various AHLs; the second is the acyl side chain which determines the specificity of AHLs (Fuqua 

and Eberhard 1999). There are three main types of variation: The side chain can differ in length 

from 4 to 14 C-atoms, there can be either no substitution, a carbonyl or a hydroxyl group at the 

C3-atom, and the saturation of the acyl side chain can vary (fig. 1.1). This specification is 

determined by the acyl-binding pocket of AHL binding proteins, e.g. LuxR, which precisely fits a 

particular side-chain moiety. (Vannini et al. 2002, Zhang et al. 2002). 
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Fig 1.1: Structures of different AHLs (Eberl, L. 1999). 

1.3.2 QS in pathogenic bacteria 

Various QS systems are found important for several phythopathogenic bacteria to gain virulence. 

In Rhizobium radiobacter C58 the conjugation and transfer of the tumor inducer (Ti) plasmid is 

controlled by QS to cause crown gall in host plants (White and Winans 2006). The QS molecule 

3-oxo-C8 HSL synthesized by qseI in Pantoea stewartii, controls its EPS synthesis and virulence 

(Von Bodman and Farrand 1995). 3-oxo-C6 HSL is synthesized by carI in Erwinia carotovora, 

and essential for its pathogenicity via control of the production of carbapenem, pectolytic 

enzymes, endoglucanases, proteases and secretion of harpin (Pirhonen et al. 1993). Pseudomonas 

aeruginosa is an opportunistic pathogen in cystic fibrosis patients. Its pathogenicity is quorum 

sensing dependent (O'Loughlin et al. 2013). In Xanthomonas oryzae pv. oryzae the quorum 

sensing regulator gene oryR is a global regulator controlling motility and chemotaxis (Gonzalez 

JF 2013). QS Controls the synthesis of the virulence factor EPS which protects P. stewartii subsp. 

stewartii from being recognized by the host plant (Koutsoudis et al. 2006). 

3-OH palmitic acid methyl ester (3-OH PAME) plays an important role as QS signal molecule in 

Ralstonia solanacearum. 3-OH-PAME controls the production of EPS and some exoenzyme. 3-

OH PAME enhanced the expression of EPS and exoenzymes and decreases motility and 

siderophore synthesis (Flavier et al. 1997). The diffusible signal factor DSF is a fatty acid 

derivative with similar structure as AHLs in Xanthomonas campestris. DSF regulates the 
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expression of exoenzymes and synthesis of cyclic glucans as well as pigment formation in strain 

8004 (Vojnov et al. 2001). 

In summary, quorum sensing systems are important mediators for bacterial virulence. QS 

manipulation could be a potentially effective way to control diseases caused by bacteria (Helman 

and Chernin 2015). 

1.3.3 QS in PGPR 

QS plays not only an important role in plant pathogenic bacteria, but also in a wide range of 

PGPR functions including their beneficial phenotypes (Robson et al. 1997). QS can enhance the 

resistance of bacteria to oxidative, osmotic, thermal and heavy metal stress (García-Contreras et 

al. 2015). The QS molecules in Azospirillum lipoferum are associated with rhizosphere 

competence and adaptation to plant roots (Boyer et al. 2008b). In P. fluorescens 2p24 QS is 

involved in its biocontrol and colonization ability on wheat roots (Wei and Zhang 2006). AHL is 

important for Burkholderia phytofirmants PsJN to efficiently colonize roots of Arabidopsis 

thaliana plants and for its beneficial interactions (Zuniga et al. 2013). QS is involved to regulate 

functions linked to rhizosphere competence and adaptation to plant roots in A. lipoferum B518 

(Wisniewski-Dyé and Vial 2015). In P. aeruginosa pupa3 isolated from a rice rhizosphere, QS is 

involved in the regulation of plant growth-promoting traits (Steindler et al. 2009). A. brasilense 

biofilm formation which is controlled by QS can be promoted by soil born bacteria P. putida 

X236 and root exudates of maize. The soil born bacterium P. putida x236 promoted biofilm 

formation of A. brasilense indicating the potential to create a co-inoculum with A. brasilense. 

Furthermore, root exudates of maize plants inoculated with A. brasilense provoke a raise in its 

biofilm formation activity (Cerqueira 2015). In addition, QS was also shown to be important to 

gain biocontrol ability in the colonized host plant. For example, colonization of tomato roots by 

QS deficient mutants of Serratia liquefaciens MG1 and P. putida IsoF showed a reduced 

induction of systemic resistance in tomato to leaf pathogen Alternaria alternata (Schuhegger et al. 

2006). 
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1.4 AHL-mediated interkingdom signaling 

AHLs produced by plant root-associated rhizobacteria are synthesized at the root surface 

(Gantner et al. 2006) causing plant responses which specifically depend on certain AHL species. 

AHL-compounds with a short to medium C-side chain such as C6-HSL, 3-oxo-C6-HSL, and 3-

oxo-C8-HSL can be transported into the shoot (Götz et al. 2007, von Rad et al. 2008). Thus, short 

side chain AHLs can significantly promote root growth in Arabidopsis, while long side chain 

AHL like N-dodecanoyl-DL-homoserine lactone (C12-HSL) and N-DL-tetradecanoyl-

homoserine lactone (C14-HSL) failed to promote root growth but stimulate systemic pathogen 

resistance depending on the ethylene and jasmonic acid pathways (Liu et al. 2012b, van Rad et al. 

2008, schikora et al. 2011). For instance, the C14-HSL can reinforce the systemic resistance to 

the obligate biotrophic fungi Golovinomyces orontii and towards the hemibiotrophic bacterial 

pathogen Pseudomonas syringae pv. tomato DC3000 in Arabidopsis (schikora etal. 2011). This 

resistance is achieved by cell wall reinforcement such as callous deposition and lignification of 

cell walls and increasing the accumulation of phenolic compounds which depend on the salicylic 

acid or oxylipin pathway (Schenk et al. 2014). Other genes including auxin responsive promoter 

GH3 and chalcone synthase genes CHS1, CHS2 and CHS3 are activated in M. truncatula via root 

treatment by 50uM 3-oxo-C12-HSL (Mathesius et al. 2003). In addition to the length of side 

chains, the functional groups at the C3 position of AHLs are relevant for AHLs to exhibit specific 

functions in stimulating the formation of adventitious roots and expression of auxin response in 

mung bean- seedlings (Bai et al. 2012).  
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Fig. 1.2: The primary innate immunity can be localized (A) or systemic (B) (Henry et al. 2012). 

1.5 Pathogen resistance in plants 

1.5.1 PAMP/MAMP triggered immunity  

Plant cell membrane located pattern recognition receptor (PRR) proteins sense pathogenic and 

beneficial bacteria via their pathogen/microbe associated molecular patterns (PAMP/MAMP) 

which trigger a serial resistance response. This process taking place locally at the infection site is 

referred to PTI (PAMP- triggered immunity) (Nicaise et al. 2009). Ligands which can cause plant 

PTI include various molecular patterns, such as the flagellin, EF-Tu factor, peptidoglycans 

(PGNs), lipopolysaccharides (LPS), RNP-1, bacterial siderophore pseudobactin and chitin (Gust 

et al. 2007, Erbs et al. 2008). Plant PRRs are plasma membrane-localized receptor-like kinases 

(RLK) or receptor-like proteins (RLPs) with an extracellular domain for the recognition of 

PAMPs like flagellin, EF-Tu, PGN, or lipopolysaccharides (LPS) (Zipfel 2014). 
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After binding the ligands the activated receptor kinases cause immediate reaction including the 

plasma membrane receptor endocytosis, which involves phosphorylation and ubiquitination as 

well as activation of heterotrimeric G protein (Salomon and Robatzek 2006). These reactions are 

followed by plant downstream signaling including ion fluxes of H+, K+, Cl- and Ca2+, 

transcriptional reprogramming and an oxidative burst. Cascade activation of micriotubule 

associate protein kinases (MAPKs) leads to the activation of key WRKY-type transcription 

factors. This cascade finally activates the expression of resistance genes such as PR-1 and PR-5 

which inhibit growth of pathogens (Gómez-Gómez and Boller 2000).  

However, pathogenic bacteria evolved strategies to bypass the host immunity response. As 

corresponding response, the plant evolved R proteins to recognize the pathogen effectors and 

prime a longer lasting and more potent resistance. This process is called effector triggered 

immunity (ETI), which often results in apoptotic hypersensitive reaction (HR) (Dangl and Jones, 

2001). 

1.5.2 ISR caused by PGPRs and their derivates 

There is also a systemic immune response of plants to an initial pathogen attack which is called 

systemic acquired resistance (SAR), mostly mediated by salicylic acid (SA). Quite different from 

this pathogen triggered response is however the response of plants to beneficial rhizobacteria 

associated with plant roots. These bacteria can also induce or prime a systemic resistance 

response termed induced systemic resistance (ISR). In most cases ISR involves jasmonic acid (JA) 

and ethylene (ET) rather than SA as signal mediators (fig. 1.2). Numerous studies have reported 

the ability of PGPR to promote plant health via ISR include Pseudomonas, Serratia, Bacillus, and 

Azospillum, but there are also some nonpathogenic plant growth promoting fungi (PGPF) e.g. 

Fusarium oxysporum, Trichoderma, and Piriformospora indica (tab. 1), which exhibit a similar 

effect. Various PGPR components from Pseudomonas, Bacillus and Serratia are able to cause 

ISR in many host plants which mainly include membrane pattern molecules such as LPS and 

flagella. Furthermore, some antibiotics, for instance DAPG, pyocyanin,the siderophore 

pyoverdine, plant hormones like salicylic acid, AHL quorum sensing molecules, cyclic 

lipopeptides as massetolid A, fengycins, and volatiles such as 2R, 3R-butanediol (tab. 2) can be 

causal agents (Ryu et al. 2004). 
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Table 1.1: PGPR or PGPF caused ISR in different plants. 

PGPR Plants Pathogen References 

Pseudomonas fluorescens WCS417r carnation Fusarium oxysporum Schippers 1992 

Pseudomonas and serratia cucumber Colletotricbum orbiculare Wei et al. 1991 

Serratia marcescens 90-166 
crop plants and 

Arabidopsis 
Colletotrichum orbiculare van Loon et al. 1998 

Pseudomonas fluorescence CHA0 Arabidopsis Peronospora parasitica Iavicoli et al. 2003 

P. aeruginosa 7NSK2 and Serratia 

plymuthica IC1270 
rice Magnaporthe oryzae 

De Vleesschauwer et 

al. 2008 

Pseudomonas fluorescens WCS374r rice M. oryzae  
De Vleesschauwer et 

al. 2008 

Pseudomonas putida LSW17S  Arabidopsis 
Fusarium oxysporum f. sp. 

Lycopersici.  
Ahn et al. 2007 

Pseudomonas fluorescens strain 

MKB158 
barley Fusarium fungi Petti et al. 2010 

Pseudomonas fluorescens S97 bean  P.syringae pv. tomato DC3000 Pieterse et al. 2014 

Pseudomonas fluorescens tomato Ralstonia solanacearum  Murthy et al. 2014 

Rhizobium radiobacter barley  powdery mildew  Sharma et al. 2008 

Bacillus amyloliquefaciens and B. 

subtiliscan 
Arabidopsis Erwinia carotovora Ryu et al. 2004 

B. pumilus 
cucumber  

tomato 

Erwinia tracheiphila and 

cucumber mosaic virus  
Zehnder et al. 2000 

B. mycoides resistance  sugar beet Cercospora beticola Bargabus et al. 2002 

B. sphaericus  loblolly pine Cronartium quercuum 
Choudhary and Johri 

2009 

Azospirillum brasilense REC2 and 

REC3  
strawberry Colletotrichum acutatum M11 Tortora et al. 2011 

Penicillium sp. GP16-2 Arabidopsis  
Pseudomonas syringae pv. 

Tomato DC3000 
Hossain et al. 2008 

T. barzianum T39, and Piriformospora 

indica  
Arabidopsis  abiotic and biotic stress Waller et al. 2005 

Penicillium sp. GP 16-2 Arabidopsis P. syringae Hossain et al. 2008 

Glomus mossae   tomato phytophthora Pozo et al. 2002 

Fusarium oxysporum f.sp. radicis-

lycoperisici (FORL)  
barley 

Blumeria graminis f. sp. hordei 

(BGH) 
Nelson 2005 

Fusarium isolate AHD  palm seedlings Fusarium El Hassni et al. 2004 
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Table 1.2: PGPR components causing ISR in different plants 

ISR elicitors PGPR 
Pathogens 

resistance 
Plants References 

lipopolysaccharide 
P. fluorescens  

strain WCS417 

P. syringae pv. 

tomato 
Arabidopsis Van Wees  et al. 1997 

flagella P. putida WCS358 

Botrytis cinerea, 

Collectotrichum 

lindemuthianum 

bean and tomato Meziane et al. 2005 

pyoverdine P. fluorescens CHA0 TNV tobacco Maurhofer et al. 1994 

Salicylic acid P. aeruginosa 7NSK2 
Tobacco mosaic 

virus TMV 
tobacco De Meyer et al. 1999 

DAPG P. fluorescence CHA0 
Peronospora 

parasitica 
tomato Audenaert et al. 2002 

pyocyanin P. aeruginosa 7NSK2 B.cinerea Arabidopsis Audenaert et al. 2002 

AHLs Serratia liquefaciens MG1 
Alternaria 

alternata 
potato Schuhegger et al. 2006 

 Massetolid A P. fluorescence SS101 
Phytophthora 

infestans 
tomato Tran et al. 2007 

2R,3R-butanediol B. subtilis GB03 

Erwinia 

carotovora subsp. 

carotovora 

Arabidopsis Ryu et al. 2004 

fengycins  B. subtilis S499 Botrytis cinerea Bean and tomato Ongena et al. 2007 

lipopolypeptides and 

polyketides  
B.amyloliquefaciens FZB42 Rhizoctonia solani 

Arabidopsis, 

Lettuce,  

and tobacco 

Chowdhury et al. 2015 

1.5.3 Mechanism of ISR priming process 

Until now the mechanism of the ISR-eliciting root colonizing microbes and the signaling 

pathways triggering specific plant defense in leave tissues is not completely clear. One described 

phenomenon named “priming” involves a substantial transcriptional reprogramming in the host 

plant leading to the upregulation of the transcription of defense-related genes like PR genes. In 

consequence, host resistance capacity is enhanced once the infection process is started. This 

process is JA-dependent (Memelink 2009). Plants which are in priming state have faster and 

stronger defense responses upon pathogen invasion. One root-specific R2R3-type MYB 

transcription factor (MYB72) is essential for the onset of ISR caused by P. 

fluorescenceWCS417r and P. putida WCS358r as well as PGPF Trichoderma (Segarra et al. 

2009). All the results indicate that MYB72 plays an important role in the node of convergence in 

the ISR signaling pathway triggered by various beneficial microbes. It was found that compared 

to the SAR response the priming status requires less cost to the plants (Walters et al. 2008). The 
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ability to activate an SA-independent ISR pathway is common for beneficial microbes, involves 

JA and ET and occurs in a broad range of plant species (Van Loon and Bakker 2005). For 

example Serratia marcescens 90-166, P. protegens CHA0, and P. fluorescens Q2-87, and PGPF 

Penicillium sp. GP16-2, Trichoderma barzianum T39, and P. indica caused ISR in Arabidopsis 

thaliana (Pieterse et al. 2014). B. amyloliquefaciens FZB42 produces secondary metabolites such 

as lipopolypeptides and polyketides, essential for causing plant ISR via JA /ET pathway, which 

contributes to the disease suppression towards the pathogen Rhizoctonia solani (Chowdhury et al. 

2015). Pseudomonas fluorescens WCS374r triggers ISR in rice against M. oryzae depending on 

the JA or ET-modulated signaling pathway (Djonović et al. 2007). Only few studies suggested 

that ISR may also depend on the SA-signaling pathway, such as in Rhizobacter (Audenaert et al. 

2002). Also in Bacillus thuringiensis induced resistance to Ralstonia solanacearum was found 

via the SA-dependent signaling pathway (Takahashi et al. 2014). Moreover, in some cases, like in 

mycorrhized maize plants, the activation of ISR defense-related genes involved the activation of 

SA- and JA-dependent pathways. However, ISR required the NPR1 protein like in SAR (Stein et 

al. 2008).  

Several enzymes are involved in ISR-triggered defense response by P. fluorescens, B. pumilus 

and B. subtilis including peroxidase (POX), phenol oxidase (Chen et al. 2009), phenylalanine 

ammonia lyase (PAL) and beta-1, 3-glucanase during ISR (Udayashankar et al. 2011, Vanitha 

and Umesha 2011). Additionally, proteinaceous elicitors have been shown to facilitate the ISR-

effect caused by Piriformospora indica in barley (Molitor and Kogel 2009). Trichoderma virens, 

an endophytic beneficial fungus in maize activated PR1, PR2, PR5 genes and the heat-shock 

protein 70 (hsp70) (Djonović et al. 2007). Moreover, the metabolite fengycins of Bacillus subtilis 

caused ISR in potato, leading to higher accumulation of plant phenolics derived from the 

phenylpropanoid metabolism (Ongena et al. 2005). This pathway is also well known to be 

stimulated concomitantly with the activation of plant defense reactions (Dixon et al. 2002). 

Most interestingly, also AHLs can be an important elicitor in ISR. Serratia liquefaciens MG1 

producing C6 and C8-AHLs was shown to induce systemic resistance in tomato plants 

(Schuhegger et al. 2006). C4-HSL, C8-HSL, and 3-oxo-C8-HSL produced by Serratia 

marcescens strain 90-166 is important for ISR induction in tobacco (Ryu et al. 2013). QS-

dependent ISR is elicited by S. marcescens 90-166 in a pathogen dependent manner leading to 
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resistance against Pectobacterium carotovorum subsp. carotovorum and Pseudomonas syringae 

pv. tabaci. 

1.6 Acidovorax radicis N35  

Acidovorax radicis N35 is a wheat endophytic PGPR belonging to the β-Protebacteria (Willems 

and Gillis 2005, Li et al. 2011). A. radicis N35 can colonize barley roots on the surface as well as 

endophytically and promote plant growth. However, its growth promoting ability was not 

detectable anymore after the bacterium has undergone a spontaneous genetic modification which 

is termed phase variation. In this phase or phenotypic variants, named N35v, the only detecable 

conserved genetic difference was a deletion in the mismatch repair gene mutL, which might result 

in changes in the transcriptional regulation patterns of the variant strain (Li et al 2012). Thus, the 

variant strain shows significant differences to the wild type. The v-strain is turbid in liquid 

medium and forms smooth colonies on agar plates while the wild type sediments in liquid 

medium and forms rough colonies on solid medium. This phenotype variation is irreversible. 

When plants were inoculated with wild type and phenotypic variants individually, no apparent 

differences in colonization behavior were observed. However, when A. radicis wild type and 

phenotypic variants were co-inoculated in a 1:1 mixture, N35 was more successful in 

colonization (Li et al. 2012). Therefore, the phenotypic variants possess reduced fitness in plant 

root colonization relative to the parental strain. In addition to its efficient root colonization ability, 

A. radicis stimulated growth of barley plants in nutrient poor soil (Li et al. 2012). After 4 months 

of growth, dry weight of A. radicis N35 inoculated barley plants was significantly increased by 

40% relative to non-inoculated control plants. Plants inoculated with the phenotypic variant N35v, 

showed no significant increase (13%) compared to the non-inoculated control plants. A 

significant increase of 20% in shoot biomass was observed in N35 inoculated plants over the non-

inoculated control, while the plants inoculated with the phenotypic variant showed no significant 

increase (Li et al. 2012). Thus, A. radicis N35 is able to promote plant growth under nutrient 

limiting conditions. While swarming and colonization were diminished, siderophore and lipase 

production were unaffected by phenotypic variation. Phenotypic variation had also no influence 

on AHL production. 
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One luxI/R type QS system exists in A. radicis N35 and its dominant QS-auto inducer molecule is 

3-OH-C10-HSL. The corresponding AHL synthase gene is the luxI type araI (Li 2010). Based on 

the A. radicis N35 genome sequence, a 555 bp fragment was identified with high homology to 

the I-type biosynthesis gene, araI. The araI homologe was deleted by directed insertion 

mutagenesis in strain N35 (Li 2010) leading to an AHL-deficient mutant phenotype. The AHL-

deficient mutant was unaffected in swarming motility and in siderophore and lipase production, 

traits that are often regulated by QS. In contrast, the AHL-deficient mutant was a less efficient 

root colonizer than the wild-type strain as tentatively shown by co-inoculation of the wild type 

and the araI::tet mutant (Li 2010).  

1.7 Flavonoid biosynthesis 

Flavonoids are phenylpropanoid metabolites in plants. Several thousand flavonoids have been 

identified. The diversity comes from the combination of a number of skeleton structures with 

various modifications including glycosylation, acylation or polymerization (Hassan and 

Mathesius 2012).  

The main two flavonoids in barley are saponarin and lutonarion in an approximate ratio 4.5:1. 

They are beneficial agents for barley health in case of diseases caused by oxidative damage 

(Kamiyama and Shibamoto 2012). Saponarin isolated from barley sprouts exhibits anti-oxidant 

(Vitcheva et al. 2011), antimicrobial (Basile et al. 1999), hepatoprotective activities and anti-

inflammatory effects (Seo et al. 2014). In barley, saponarin and lutonarin synthesis starts from the 

general phenylalanine metabolism catalyzed by an endoplasmic reticulum cytoplasmic surface-

located multi-enzyme complex (CHS, CHI). The first committed step is catalyzed by a chalcone 

synthase (CHS) to form naringenin by the condensation of three molecules of malonyl-CoA and 

one molecule of 4-coumaroyl-CoA followed by chalcone isomerase (CHI) to catalyze ring 

closure (Hassett et al. 1999). Then naringenin is catalyzed into isovitexin via an unclear process. 

Only trace amounts of isovitexin accumulates in barley, since most of it is immediately processed 

to saponarin via an UDP-Glc flavone glucosyltransferase (OGT), which is soluble and cytosolic 

(Fig. 1.3). Saponarin is transported into the vacuoles through accumulation via H+ antiporters 

which are energized by a pH gradient (Wink 1997). Saponarin and lutonarin accumulate in the 

primary leaves of barley to protect its DNA from UV-B damage. Like other flavonoids, saponarin 
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was speculated to be transported to sink organs by long distance transport via ABC-transporter or 

MATE-transporter (Zhao and Dixon 2010).  

Other flavonoids like proanthocyanidin and dihydroquercetin are involved in barley defense 

response against Fusarium species via inaction of several enzymes which includes microbial 

cellulases, xylanases, and pectinases, chelation of metals necessary for enzyme activity, and/or 

formation of special physical barrier to hinder pathogen attack (Skadhauge et al. 1997). 

Flavonoids support plant abiotic (UV light) and biotic resistance due to their antioxidant, 

fungicide, bactericide and anti-pest properties (Treutter 2005, Cushnie and Lamb 2011, Hassan 

and Mathesius 2012). Specific flavonoids secreted by legumes can also induce Nod-gene 

expression in Rhizobium leading to the nodule formation in the host plant. Nod gene-inducing 

flavonoids also increased AHL-synthesis in Rhizobium strains (Perez-Montano et al. 2011). 

Secreted flavonoids by legumious plants can function as signal molecules for Rhizobium. The 

flavonone naringenin can stimulate Azorhizobium colonization of lateral roots via crack invasion 

leading to an increased number of lateral roots per plant (Webster et al., 1998). The occurrence of 

flavonoids such as anthocyanin accumulation in cotton leaves is taken as an indicatior of 

resistance to the bacterial blight pathogen Xanthomonas campestris pv. malvacearum 

(Kangatharalingam et al. 2002).  
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Fig. 1.3: The phenylpropanoid pathway (Besseau et al. 2007). 
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Flavonoid synthesis was found to be affected by various biotic and abiotic factors. For example, 

the colonization by the mycorrhizal fungus Glomus versiforme elevated the transcription of 

flavonoid synthesis important genes (PAL) and chalcone synthase (Hassan and Mathesius 2012). 

The PGPR Chryseobacterium or Azospirillum were found to be able to elicit plant flavonoid 

exudation when colonizing soybean roots (Dardanelli et al. 2010). Colonization of barley leaves 

by the pathogenic fungus Blumeria graminis f. sp. Hordei (Bgh) stimulated the expression of 

HvCHS2, a chalcone synthase in barley leaves. Drought stress and UV light caused flavonoid 

accumulation in leaves of two different cultivars of wheat and barley (Christensen et al. 1998). 

AHLs trigger flavonoid biosynthesis and the transcription of different flavonoid metabolite-

related genes. Exogenous 3-oxo-C12-HSL can stimulated chalcone synthesis gene expression at 

root sites of AHL-treated white clover roots. 3-oxo-C14-HSL could upregulate flavonoid 

metabolite genes including chalcone isomerase, glycosyltransferase, and flavonoid 3´-

monooxygenase in Arabidopsis (Mathesius et al 2003). C12 and C16-HSL were used to treat 

roots of M. truncatula, their effect on flavonoid metabolism was found to be dependent on AHL 

concentration and length of treatment (Mathesius et al. 2003, Schenk et al. 2014). 

1.8 Objectives 

PGPR exhibit many beneficial effects to colonized plant roots, which include promotion of plant 

growth, enhancing plant resistance via direct antibiotic production or indirect ISR stimulation. 

QS system using AHLs as autoinducer were found to be important for PGPR to establish these 

beneficial effects. Flavonoids are secondary metabolites which are also involved in plant 

resistance to biotic and abiotic stress and their synthesis were found to be affected by QS signals.  

Based on this information, several questions were proposed to be studied in the A. radicis N35 

barley interaction:  

1. Does QS influence plant growth promotion in A. radicis N35?  

2. Does QS influence root colonization in N35?  

3. Does QS of N35 contribute to plant response and specificity to flavone biosynthesis? 
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2 Material and methods 

2.1 Cultivation of bacteria 

2.1.1 Bacterial strains and plasmids 

Table 2.1 Strains specifications 

Orgamism Relevant characters Reference 

Acidovorax radicis N35 
Wild type isolated from surface sterilized wheat roots, rough 

colony surface, flocculation in liquid medium 
Klein, 2003 

A. radicis N35v 
Phenotype variant of N35, smooth colony surface, no 

flocculation in liquid medium 
Li, 2010 

A. radicis N35 araI::tet AHL negative mutant, TcR Li, 2010 

A. radicis N35 GFP &  

A. radicis N35v GFP  

KmR, chromosomally labeled with GFP (green fluorescent 

protein) 
Li, 2010 

A. radicis N35 YFP &  

A. radicis N35v YFP 
KmR, labeled with YFP Li, 2010 

A. radicis N35 araI::tet GFP KmR labeled with GFP This study 

A. radicis N35 araI::tet YFP KmR labeled with YFP This study 

A. radicis N35 araI::tet C 
KmR, complemented araI::tet mutant, labeled with GFP or 

YFP 
This study 

Serratia liquefaciens 

MG44 

AHL negative mutant, host for AHL biosensor pBAH9, 

Amp, TcR & SmR 
Eberl et al., 1996 

Agrobacterium tumefaciens 

A136 
pCF218, pCF372 

Stickler  

et al. 1998 
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Table 2.2: Plasmid 

Plasmids Relevant characters Reference 

pCR2.1-TOPO AmpR, KmR; lacZα,  Invitrogen, Carlsbad, USA 

pEYFP AmpR, lacZ, eYFP carrier vector  Clontech, CA, USA 

pJBA28 
AmpR, KmR; carrier plasmid for mini-Tn5-Km-PA1/04/03-RBSII-

gfpmut3*-T0-T1 
Andersen et al. 1998 

pBBR1MCS-2 KmR; lacZα, cloning vector  Kovach et al. 1995 

pBAH9 KmR, green fluorescent AHL sensor plasmid for C4-C14-HSL Huber, unpublished 

pEX18Gm 
GmR, oriT+, sacB+, gene replacement vector with MCS from 

pUC18 
Hoang et al. 1998 

pEX18Tc 
TcR, oriT+, sacB+, gene replacement vector with MCS from 

pUC18 
Hoang et al. 1998 

pRK600 
CmR, ColE1 oriV RP4 tra+ RP4 oriT, helper strain for conjugation 

mating 

Figurski and 

Helinski, 1979 

pMLBAD-aiiA 
TellR, aiiA lactonase gene in expression vector, lactonase activity 

induced by 0.2% arabinose 
Wopperer et al. 2006 

2.1.2 Media and buffers 

Unless otherwise noted all solid media were prepared with 15 g agar per liter. pH was adjusted 

with 0.1 M NaOH or 0.1 M HCl. 

2.1.2.1 Bacteria culture medium 

NB (Nutrient Broth) medium (No. 4, Fluka, Steinheim, Germany):  

Meat peptone   5 g 

Meat extract  3 g 

ad H2Odem.  1.0L 

Adjust to   pH 7.0 

 

LB (Luria-Bertani) medium (Bertani, 1951, modified):  

Peptone from casein 10 g 

Yeast extract  5 g 

NaCl   5 g 

ad H2Odem.  1000 ml 
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Adjust to  pH 7.0 

 

Yeast Mannitol Broth M716: 

Yeast Mannitol Broth is used for cultivation of Rhizobium species. 

Composition 

Ingredients g / L 

Yeast extract 1.0 

Mannitol 10.0 

Dipotassium phosphate 0.5 

Magnesium sulphate 0.2 

Sodium chloride 0.1 

Calcium carbonate 1.0 

Final pH (at 25°C) 6.8±0.2 

**Formula adjusted, standardized to suit performance parameters 

2.1.2.2 Fungi culture medium 

Composition: 

Ingredients g/L 

Potato extract 4.0 

Dextrose 20.0 

Agar 15.0 

Final pH 5.6 +/- 0.2 at 25°C 

Store prepared media below 8°C, protected from direct light. Store dehydrated powder, in a dry 

place, in tightly-sealed 

Containers at 2-25°C. 
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2.1.2.3 Barley culture medium 

Table 2.3: Hoagland medium composition 

  stock solution molecular weight 100% 

Macronutrients M g/mol mg/L mM ml/L 

KNO3 1  101.11 606.6 6 6 

Ca(NO3)2.4H2O 1  236.00 944.64 4 4 

NH4H2PO4 1  115.03 230.2 2 2 

MgSO4.7H2O 1  246.48 246.48 1 1 

Micronutrients   g/mol mg/L µM ml/L 

KCl 

 

74.55 3.73 50.03 

1 

H3BO3 

 

61.83 1.55 25.07 

MnSO4.H2O  169.01 0.34 2.01 

ZnSO4.7H2O  287.54 0.58 2.02 

CuSO4.5H2O  249.68 0.12 0.48 

H2MoO4(85% MoO3)  161.97 0.09 0.56 

CoCl2.6H2O  237.93 2.0 8.41 

Na2SeO3  172.94 0.1 0.58 

NiSO4.6H2O  262.86 0.06 0.23 

Iron g/l g/mol mg/L µM ml/L 

C14H18N3O10FeHNa 10 468.15 10.0 21.36 1 

Murashige & Skoog medium prod.No M0221.0050 (Duchefa Biochemie, RV Haarlem) 
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2.1.3 Selective agents 

Table 2.4: Antibiotics and medium supplements 

Medium supplements Abbr. Activity mechanisms Solvent Concentr. 

Ampicillin Amp 
β-lactam antibiotic, inhibition of the 

synthesis of peptidoglycan  
50% ethanol 100 mg/l 

Kanamycin ultra-pure Km 

aminoglycoside, inhibition of protein 

synthesis by binding to 30S ribosomal 

subunit 

Ultra-pure water 50 mg/l 

Tetracycline  Tc 
inhibition of protein synthesis by binding to 

30S ribosomal subunit 
methanol 20 mg/l 

Rifampicin  Rp 
inhibition of RNA synthesis by binding to 

the RNA polymerase 
DMSO 100 mg/l 

Chloramphenicol  Cm 
inhibition of the formation of peptide bonds 

by binding to 50S ribosomal subunit 
50% ethanol 10 mg/l 

Trimethophrim  Tm 
interference with the production of 

tetrahydrofolic acid 
DMSO 100 mg/l 

Gentamycin  Gm 
inhibition of protein synthesis by binding to 

the 30S ribosomal subunit 
ultra-pure water 20 mg/l 

Streptomycin ultra-pure Sm 
inhibition of protein synthesis by binding to 

30S ribosomal subunit 
water 50 mg/l 

Tellurite  Tell oxidizing agent  ultra-pure water 100 mg/l 

5-bromo-4-chloro-3-

indolyl-beta-D-

Galactopyranosid 

X-gal substrate for ß-galactosidase dimethylformamide 40 mg/l 

2.1.4 Cultivation of microorganisms 

Sterile wire loops and tooth picks were used for inoculation of bacterial strains in liquid and solid 

media. All microorganisms were re-cultivated every 3-4 weeks and stored at 4 ºC. Glycerol 

stocks were used for long time preservation. For preparation of glycerol stocks microorganism 

were grown over night. The strains were stored at -80 ºC. 

2.2 Cultivation of barley 

2.2.1 Barley in monoxenic system 

2.2.1.1 Monoxenic system  

The monoxenic system is suitable for the inoculation of defined bacterial strains on plant roots. 

Barley seedlings were grown in glass tubes (Ø 30 mm, Schott glass, Mainz, Germany) filled 6 cm 
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in height with sterilized quartz sand (Ø 1.0-2.5 mm, Sakret, Ottobrunn). 10 ml MS medium was 

supplied for plant nutrition. Plants were grown at 16 ºC/12 ºC day/night cycle, 50% relative 

humidity and a photo period of 12 h. Barley plants were cultivated for a maximum of 3-4 weeks 

in this system. 

2.2.1.2 Seed sterilization 

Barley seeds (Hordeum vulgare var. Barke) were obtained from Saatzucht Josef Breun GmbH 

(Herzogenaurach, Germany). Seeds used in the monoxenic system were surface sterilized to 

eradicate fungi and bacteria. Barley seeds were shaken in 1% (v/v) Tween 20 for 1 min then in 

70% ethanol for 2 mins and incubated in 2% NaOCl for 20 min. Then they were washed with 

H2Odem. 5 times and incubated in 600 mg/l penicillin and 250 mg/l streptomycin solution for 30 

min. Finally, the seeds were incubated on NB plates at 30 ºC, letting them germinate for 2 days. 

After this period they were inspected for contaminations and only uncontaminated seedlings were 

selected for inoculation. 

 

2.3 Localization of bacteria on barley roots 

2.3.1 Inoculation of barley roots with bacteria 

An overnight culture of different bacterial strains was harvested at 5000 g (Eppendorf 5417R, 

Eppendorf, Hamburg, Germany) for 5 min at RT and the supernatant was discarded. The cells 

were washed twice with 10 ml of 1x PBS by centrifugation/ resuspension and thereafter 

suspended in 10 ml 1x PBS. The optical density (OD) of cells was measured at a wave length of 

435 nm using a spectral photometer (CE3021, Cecil, Cambridge, England). The cell density was 

adjusted to an OD435nm 1.5 for A. radicis N35 and A. radicis N35 araI::tet. This culture density 

corresponds to 108cfu /ml (Li, 2010). For the inoculation of single bacterial strains, the seedlings 

were incubated in the bacterial suspension for 1 h at room temperature. Finally, the seedlings 

were transferred to a monoxenic or soil system. 
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2.3.2 Root harvest 

Barley roots were harvested after 2 weeks growth in monoxenic system and 2 months in soil 

system. After removing the quartz sand or soil particles, roots were cut from the shoots and 

washed several times with 1x PBS to detach only loosely attached bacteria or particles. The 

harvested roots were divided in two groups. One was used for the microscopic detection of 

colonizing bacteria, the other for the measurement of the weight to study the growth promotion 

effect by inoculated bacteria.  

 

2.3.3 Roots for microscopic detection of bacteria 

For fluorescence in situ hybridization (FISH, see 3.7.1) washed roots were incubated in 4% PFA 

at 4 °C overnight then fixed with serial ethanol concentrations 50%, 80% and 100% to dehydrate 

the samples. At the last step, the roots were placed on a paper towel to soak the remaining ethanol. 

They were transferred to an objective slide for final drying. After hybridization in hybridization 

buffer, the roots were washed with washing buffer. Thereafter, roots were put on a microscope 

slide in a small droplet of citifluor. Since thin roots samples float during microscopy, a cover slip 

was placed on top. The sample was then observed with a CLSM.  

2.4 Microscopy 

2.4.1 Epifluorescence microscopy 

For the visualization of bacterial pure cultures probe an epifluorescence microcope Axionplan 2 

(Zeiss, Oberkochen, Germany) was used equipped with a water immersion objective (C-

Apochromat, 40x1.2 Korr). The light source was a mercury short arc reflector lamp.  

Table 2.5: Data of filter systems used in epifluorescence microscopy 

Fluorophores Excitation filter Beam splitter Emission filter 

Green fluorescence, Fluorescein and GFP and YFP BP 470/40 FT 495 BP 525/50 

Orange red fluorescence:Cy3 BP 545/25 FT 570 BP 605/70 

Cy5 BP 640/30 FT 660 BP 690/50 
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2.4.2 Confocal microscopy 

For the visualization of the GFP- or YFP-tagged A. radicis N35 cells colonizing barley roots, 

freshly harvest roots of barley were embedded in Citifluor and placed on a glass slide. The 

fluorescence derived from fluorescent proteins was detected using a LSM 510 Meta (Zeiss, 

Oberkochen, Germany). In this CLSM there are two different excitation lasers: one is an argon 

ion laser which can excite GFP or fluorescein at 488nm, the other one is a helium neon lasers 

providing excition wavelengths at 543nm and 633nm, which is specific for Cy3 and Cy5 

respectively. The three resulting emission colors were combined and shown as red, blue and 

green (RGB) images. Root and plant material in general shows autofluerescence in all three 

fluorescence channels. In order to discriminate between specific fluorophore and 

autofluorescence usually not more than two different fluorophores were use, so that at leats one 

fluorescence channel showed only autofluorescence. 

Besides this standard mode there is also a so called lambda mode available in the used LSM 

system. Lambda mode allows the identification and separation of very similar emission spectra of 

fluorophores, such as GFP with a maximum emission wavelength of 510 nm versus YFP with 

530 nm. In this study this lambda mode was used for GFP and YFP separation when both 

fluorescence proteins were used for labeling of A. radicis N35 and its araI::tet mutant strain in 

colonization studies. The image analysis was performing using Zeiss software LSM Image 

Browser Version 3.5. Further specifications of the CLSM are shown in the following table. 

Table 2.6: Characteristics of fluorophores, as well as filter and laser system 

Fluorophores  
Excitation 

maximum (nm) 

Emission 

maximum (nm) 

Laser Type 

(nm) 
Beam splitter Filter 

GFP  498  509 Argon488  
NFT490 

HFT488/543 
BP 500-550 

YFP   514 527 Argon 488 
NFT490 

HFT488/543 
BP 500-550 

Fluos Argon  490, 494 520, 525 488 NFT490 HFT488/543 BP 500-550 

Cy3  514, 552, 554 566, 570 
Helium-Neon 

543  
HFT 488/543 LP 560 

Cy5   649 666, 670 
Helium-Neon 

633 

HFT 

UV/488/543/633 
LP 650 
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2.5 Plant growth promotion measurement 

2.5.1 Plant growth in phytochamber at axenic conditions 

After surface sterilization and germination of barley seeds on NB medium for two days, they 

were placed into sterilized glass tubes containing 50 g glass beads and 10 ml MS liquid medium. 

Barley seedlings were grown under phytochamber condition with light time and dark time for 12 

hours respectively. A day temperature of 23°C and night temperature 18°C were used. 

After two weeks barley seedlings were harvested and the total, root and shoot weights were 

measured. 

2.5.2 Plant growth in greenhouse at unsterile conditions 

After germination of barley seeds in wet paper towel for 2 days the seedlings were inoculated 

with A.radicis N35 and araI::tet mutant respectively for one hour in a 108 cells per ml bacterial 

suspension. Inoculated seedlings were placed into pots filled with commercial “Graberde” 

(nutrient limited substrate, Alpenflor, Weilheim, Germany) mixed with sand (v/v 1:1). Each pot 

(10cm height, 8cm diameter) was filled with the same volume of soil substrate. 1l tap water was 

added to initially water the pots. For each treatment 15 pots with only one plant per pot were 

cultivated for two weeks or 2 months. The plants were watered twice a week. Throughout the 

experiment, the plants were fertilized once each week with Hoagland solution (10ml 50x stock, 

diluted in 1l water). Barley plants were grown under greenhouse conditions at temperatures of 

15-25°C during the day and 10-15°C during the night. 

 

2.6 AHL detection methods 

2.6.1 Biosensor analysis 

AHL-production of A. radicis N35 wild type, as well as the AHL-negative and araI 

complemented mutants of A. radicis N35 were examined via sensor plasmids pCF218 and 

pCF372 in A. tumefaciens A136. These two plasmids bear traR- and traI-lacZ fusion genes, 

respectively. The system shows highly efficient detection of AHLs (Stickler et al. 1998). The 
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biosensor strain was streaked onto the center of LB or NB agar plate containing 40µg/ml X-gal, 

and the tested bacterial strains were cross-streaked near the biosensor. The plates were incubated 

at 30 °C in the dark for 24-48 hours. The detection of AHL production was observed based on the 

blue color development near the cross-over place between the AHL-biosensor A136 and A. 

radicis N35 or its araI::tet mutant.  

2.7 Molecular genetic methods 

2.7.1 Fluorescence in situ hybridization  

2.7.1.1 Preparation of 5% paraformaldehyde solution 

2.5 g PFA was dissolved in 45 ml H2Odem which was warmed to 60-65 °C applying dropwise 10N 

NaOH until the solution became clear. Afterwards 5 ml 10x PBS was added. At last, pH=7.2-7.4 

was adjusted when the solution had cooled to room temperature. The 5% PFA solution was 

sterile filtered with 0.45 μm filter (Millipore) and stored at 4 °C for one day and in -20 maximum 

for one week. 

2.7.1.2 Oligonucleotide probes  

Oligonucleotide probes were labeled with different dyes which include fluorescein (Fluos), Cy3 

and Cy5. Cy3 and Cy5 were obtained from Thermo Electron (Ulm, Germany). The working 

solution was prepared in nuclease free water and the concentration for Cy3, Cy5 was 30µg/ml 

and for Fluos 50µg/ml, which was measured with NanoDrop ND-1000 (NanoDrop, Wilmington, 

USA; 2.7.4).  
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Table 2.7: Oligonucleotide probes  

Probe Specificity 
Binding 

position1 Probe sequence 5’-3’ FA2% Reference 

EUB 338I3 

Bacteria without 

Planctomycetales, 

Verrucomicrobiales 

16S, 338-355 GCTGCCTCCCGTAGGAGT var. 
Amann et 

al.,1990 

EUB 338II3 Planctomycetales 16S, 338-355 GCAGCCACCCGTAGGTGT var.  Daims et al.,1999 

EUB 338III3 Verrucomicrobiales 16S,338-355 GCTGCCACCCGTAGGTGT var.  Manz et al.,1992 

Rhi1247 

Rhizobium sp., 

Agrobacterium sp., 

Ochrobacterium sp., 

some Azospirillum sp., 

few Sphingomonas sp. 

16S,1247-1252 TCGCTGCCCACTGTG 35 
Sharma et al., 

2008 

ACISP145 

Acidovorax radicis 

N35 and N35v, 

Acidovorax defluvii, 

Acidovorax facilis 

16S, 145-162 TTTCGCTCCGTTATCCCC 35 
Rothballer, 

unpulished 

1, position in ribosomal nucleotides of E.coli (Brosius et al., 1981) 

2, % formamide in hybridization buffer 

3, probes, EUB338I, II, and III were mixed in equal molars 

2.7.1.3 Fixation of bacterial cultures and roots  

For fixation of bacterial cell cultures 2 ml mid logarithmic liquid culture was harvested by 

centrifugation at 5000x g for 3 min at RT. Then, these cells were re-suspended in 200 μl 1x PBS, 

600 µl of 5% PFA was added (resulting in a 4% PBS/PFA mixture) and incubated at 4 °C for 1.5 

h. Roots were fixed by adding 4% PFA directly and incubation at room temperature for 2 hours. 

After fixation, cells as well as roots were washed twice with 1x PBS and stored in 50% 

PBS/EtOHabs (v/v) at -20 °C.  

2.7.1.4 Hybridization with oligonucleotide probes 

1-5 µl bacterial pure culture was placed on epoxy coated slides (Roth, Karlsruhe, Germany) after 

dehydration in 50, 80 and 100% ethanol for 3 minutes successively. After the last dehydration 

step in ethanol, the slices were placed into the clean bench to dry for 10 mins to guarantee there is 

no ethanol left on the sample slice. Then, 8 µl hybridization buffer containing 35% formamide 

plus 1 µl of each oligonucleotide probe were mixed and dripped on the wells containing the 
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sample. The slices were placed into 50ml falcon tubes and transferred into 46°C for 1.5 hours for 

hybridization. The slides were washed with washing buffer at 48 °C in a water bath for 20 

minutes. After drying the slide, a small droplet of Citifluor was added to cover the slide for 

microscopy. 

Washed roots were cut into about 2 cm long pieces and put into 2 ml Eppendorf tubes for 

dehydration using 50, 80 and 100% ethanol for 3 minutes successively. After the last step in 

ethanol, the roots were placed on paper towel for drying. Then the roots were transferred into 

40µl hybridization buffer containing 5µl of each hybridization probe. The tubes were incubated 

at 46°C for 2 hours for hybridization. Afterwards, the roots were washed with washing buffer for 

20 minutes. As the CLSM system is based on an inverse microscope, the roots were placed 

directly on a cover slip in a small droplet of Citifluor without using an objective slide. To prevent 

floating, small root pieces were covered with a second cover slip. 

 

The composition of hybridization and washing buffers: 

Hybridization buffer:  

NaCl (5M) 360 μl 

Tris/HCl (1M, pH 8) 40 μl 

Formamide 700µl 

Ultra pure H2O 900µl 

SDS (10%w/v) 2 μl 

Washing buffer:  

Tris/HCl (1M, pH8.0) 1 ml 

Na-EDTA (0.5M, pH 8.0) 500 μl 

NaCl (5M) table 700µl 

add ultra pure water 50 ml 

SDS (10% w/v) 50 μl 
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2.7.2 DNA isolation 

2.7.2.1 Plasmid isolation 

Briefly, bacterial cultures were centrifuged and the pellets were processed with NucleoSpin 

Plasmid Kit (Machery-Nagel, Düren, Germany) according to the manufacturer’s protocol. Lysis 

was performed in alkaline buffer neutralized with A3 buffer. After centrifugation, the supernatant 

was loaded to a silica matrix column, which binds DNA. Then, the colunms were washed and 

eluted with elution buffer AE and quantification of DNA was performed with NanoDrop 1000. 

Plasmid samples were storaged at -20°C. 

2.7.2.2 Chromosomal DNA isolation 

Chromosomal DNA isolation of a bacterial pure culture was carried out with FastDNA SPIN Kit 

for soil (MP biomedicals, IIIkirch, France). Briefly, DNA was liberated from the cells via 

mechanical shaking by lysing matrix E containing a mixture of ceramic and silica particles, 

homogenization and protein solubilization. The released DNA was loaded to a silica matrix 

column which was eluted with DNA elution buffer.DNA samples were stored at -20 °C. 

2.7.3 DNA purification 

DNA after enzymatic manipulation, PCR products or DNA extracted from TAE agarose gels was 

purified with NucleoSpin Extract II kit (Machery-Nagel). Then DNA was bound in the presence 

of chaotropic salts to a silica membrane and was released with elution buffer.  

2.7.4 Quantification of DNA concentration 

DNA concentrations were measured by NanoDrop ND-1000 (NanoDrop, Wilmington, 

USA). This spectrophotometer has a light source spectrum of 220-750 nm which can be used to 

measure the absorbance of DNA, RNA, proteins and dyes. A 2μl DNA droplet was measured at 

230 nm, 260 nm and 280 nm, respectively. The data were analyzed by software ND-1000 V3.1.  

In particular, the ratios 260/230 and 260/280 were calculated for evaluating the purity of DNA. 
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Oligonucleotide probes after 200 times dilution were also determined using NanoDrop ND-1000 

by measuring the absorbance at 495 nm for Fluos, 550 nm for Cy3 and 650 nm for Cy5, 

respectively.  

2.7.5 Enzymatic DNA modification 

2.7.5.1 Digestion of DNA with restriction endonuclease 

The restriction endonucleases from Fermentas (St. Leon-Rot, Germany) or New England 

BioLabs (Frankfurt am Main, Germany) were used to digest DNA following the protocol 

supplied from these manufacturers. For analysis, 200 ng DNA was digested with 2 to 5 U 

restriction endonuclease in 10 μl volume and the buffer was incubated at specific temperature 

(mostly 37 °C) for 16 h. For cloning construction, 1-5 μg DNA in 20-50 μl volume with 10 U 

restriction endonuclease were incubated for 16 h. After digestion, the enzyme was inactivated 

through heat and DNA was purified using PCR purification kit. 

2.7.5.2 Dephosphorylation of linear DNA 

1 U alkaline phosphatase (Fermentas) and 5 μl 10 x reaction buffer, in total 50 μl reaction 

mixture, were used to catalyze the release of 5’-phosphate terminal groups from DNA to inhibit 

re-ligation of linear DNA at 37 °C for 30 min. Afterwards, alkaline phosphatase was inactived at 

85 °C for 15 min.  

2.7.5.3 Ligation of DNA 

5U T4 DNA ligase (Fermentas) and 5 μl 10 x ligation buffer in 50µl volume was used to catalyze 

the formation of a phosphodiester bond between 5’-phosphate and 3’-hydroxyl termininal groups 

of a vector and an insert. Three times in molar amounts of insert DNA fragments in total less than 

10µg/ml DNA was applied. This reaction was performed at 16°C overnight for 16 hours. 

Afterwards, the ligase was inactivated at 65 °C for 10 min. 

2.7.6 Gel electrophoresis 

DNA samples were mixed with 6x loading dye solution (Fermentas) and loaded into the wells of 

the horizontal electrophoresis system of Peqlab (VWR, Erlangen, Germany) using 1% or 2% gels 
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with 0.5 μg/ml ethidium bromide (Roth, Karlsruhe, Germany) and 1x TAE buffer (made from 

50x TAE buffer, AppliChem). DNA samples were separated at 120 mA and detected under UV 

light (λ=312 nm) in a trans-illuminator (Biostep, Johnsdorf, Germany). The performance of the 

PCR was documented and edited with the Argus X1 documentation system (Biostep, Johnsdorf, 

Germany). The desired DNA fragments were cut using an xtracta (Biozym, Oldendorf, Germany) 

and purified using a PCR and gel purification kit (see 3.7.3). 

 

2.7.7 Amplification of specific DNA fragments by PCR 

2.7.7.1 PCR primer 

The primers used in this work were synthesized by Sigma Genosys (Steinheim, Germany). 

Some of the primers contained a recognition site of a restriction enzyme with two additional 

protective bases at the 5’ end. Stock primer concentration was 100 pmol/μl and the final working 

solution in the PCR mix was 0.2 pmol/µl. 

Table 2.8: PCR and sequencing primers1 

Name Sequence(5’-3’) Application Annealing temperature (ºC) 

M13F GTAAAACGACGGCCAG For insertion fragment in 

pCR2.1-TOPO vector  
50 

M13R CAGGAAACAGCTATGAC 

AHLsyn-s2 GCCAGCTTGTCATAGGACTC AHL synthase araI gene of 

A. radicis N35 
55 

AHLsyn-as2 ATGCACCTCCAGAAAACG 

eYFP-for CGCCCAATACGCAAACC 
eYFP 50 

eYFP-rev GTTGGAATTCTAGAGTCG 

AraIF CGGGATCCTCACTGGCACCGGAT 
Insert into pscA-amp/kan 57 

AraIR CGGAATTCATGCGCATCACCTCCG 

2.7.7.2 Standard PCR 

Standard PCR was perfomed in 50µl volume mix with 10x PCR buffer 5 µl, Q buffer 10 µl, 10x 

coralload 5 µl, dNTP 200 µM, specific primer 0.2 pM each, and 2.5 U top Taq DNA polymerase. 

The templates were either bacterial cells or 100 ng DNA sample. Nuclease free water was added 

to fill the sample up to 50 µl. For colony PCR, toothpicks were used to transfer bacterial cells 

from a colony on a plate to 100 μl 1xPBS suspension. 1µl of this suspension was used as 

template. 
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The thermocycler PeqStar 96X (VWR, Erlangen, Germany) was applied for the standard PCR. 

The cycle program included initial denaturation at 94°C for 3 min followed by 35 cycles at 94 °C 

for 30 sec, annealing at temperatures based on specific primer pairs for 1 minute and elongation 

at 72 °C for 1-2 minutes. With a further elongation step at 72 °C for 10 min the program was 

finished. 

2.7.8 Cloning of PCR amplicons 

PCR amplicons were ligated into the TOPO TA cloning vector using T4 ligase after digestion 

with the same restriction endonuclease (Invitrogen, Carlsbad, USA). Then, the recombinant 

vector was transformed into E.coli competent cells using the Invitrogen kit. 100 μl transformed 

cultures were spread on LB agar plates containing 50 mg/l kanamycin and 40 mg/l X-gal and 

incubated overnight at 37 °C. The colonies containing plasmid inserts with PCR amplicons in the 

multi-cloning site appeared white on selective antibiotic plates. Colonies containing the empty 

vector showed blue color. Several white colonies were picked and the confirmation of correct 

cloning included colony PCR, plasmid isolation and digestion. 

2.7.9 DNA sequence analysis 

2.7.9.1 DNA sequencing using ABI 3730 Analyzer 

Sequencing of PCR products and plasmid DNA was performed using the BigDye Terminator Kit 

v3.1 (Applied Biosystems, Foster City, USA) applying specific sequencing primers and 

annealing temperatures. Sequencing reactions for the ABI 3730 analyzer (Applied Biosystems) 

were prepared and purified by ethanol precipitation according to the manufacturer’s instructions.  

2.7.9.2 Sequence data analysis 

The sequencing data of the ABI 3730 sequencer were analyzed using the freeware Bioedit 

Sequence Alignment Editor. Homologous sequences were searched for by BLAST 

(http://blast.ncbi.nlm.nih.gov/) (Altschul etal., 1997). All open reading frames were identified by 

the ORF Finder program (open reading frame finder, 
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http://www.ncbi.nlm.nih.gov/gorf/gorf.html). For translation of DNA sequences to protein 

sequences, ExPASy, http://www.expasy.ch/tools/dna.html was used. 

2.7.10 DNA transfer into gram-negative bacteria 

2.7.10.1 Preparation of electro-competent cells 

1 l culture of the recipient strains (e.g. isolate N35) was grown overnight at 37 °C and shaking 

until OD600 reached 0.5. The bacterial culture was cooled on ice for 15 min and centrifuged at 

5000x g and 4 °C for 15 min. The bacterial pellet was washed twice with ice cold ultra-pure water 

and one time with 10% ice cold glycerol. At last, the cells were suspended in 2 ml 10% ice cold 

glycerol, aliquoted in small volumes (e.g. 50 μl) and stored at -80 °C. 

2.7.10.2 Electroporation procedure 

Plasmid DNA can be transferred into competent bacterial cells through local perforations of the 

cell wall caused by an externally applied electrical field. High salt contents in DNA samples (e.g. 

ligation products) were reduced by drop dialysis against ultra-pure water for 30-60 min. 

Plasmid DNA was purified using nitrocellulose membranes, pore size 0.025μm (Merck Millipore, 

Darmstadt, Germany) to remove the salt. 300-500 ng DNA was added to the competent cells 

suspension, which was chilled on ice for 30 min. The mixture was pipetted into a cold 

electroporation cuvette (electrode distance 2 mm, VWR Peqlab, Erlangen, Germany). The 

electroporation was accomplished using a Gene Pulser (Bio-Rad, Munich, Germany) with a 

voltage of 2.5 kV for 4.5-5.5 msec. Immediately after electroporation, 1 ml SOC or NB medium 

was added to the bacterial suspension, followed by incubation at optimal growth temperature for 

1 h or more to allow the recovery of the cells and expression of antibiotic resistance markers. 

Finally, the cells were spread on selective agar plates. 

2.7.11 Plasmid construction 

To determine the endonuclease restriction sites, Clone Manager Version 5.02 (Scientific & 

Education software, Durham, USA) was used to analyze multi-cloning sites sequences of 

plasmids. DNA was isolated and digested with restriction enzymes. After digestion and 

http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://www.expasy.ch/tools/dna.html
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purification using NucleoSpin Plasmid kit for the vector and insert DNA were ligated. The 

ligation product was transferred into competent cells via electroporation and spread onto selective 

agar plates. After incubation at 37 °C for 16 hours the resulting colonies were picked and grown 

in liquid medium. The DNA inserts were confirmed by restriction analysis or colony PCR. 

2.7.12 GFP and YFP labelling 

2.7.12.1 GFP labelling of N35 and N35v  

The vector pJBA28 (a mini-Tn5 derivative located on a pUT vector) was used for chromosomal 

GFP labeling of A. radicis N35. This plasmid contains a transposon cassette with kanamycin as 

selective marker and a constitutively expressed GFP reporter gene. Its replication depends on the 

pir origin and therefore the plasmid cannot replicate after transferring into strain N35. pJBA28 

was transferred into electrocompetent cells of A.radicis N35 via electroporation. GFP labeled 

bacteria were selected by kanamycin resistance and its GFP fluorescence was verified by a 

binocular microscope (Zeiss, Lumar V12).  

2.7.12.2 YFP labeling by plasmid transformation 

The enhanced yfp gene (eYFP) was cloned and ligated with broad host range vector pBBR1MCS-

2 to form pBBR1MCS-2-eYFP which was transferred into electrocompetent cells of A. radicis 

N35 araI::tet mutant via electroporation. The eYFP labeled bacteria were selected by kanamycin 

resistance and YFP specific fluorescence was verified via the λ- mode of the CLSM. 

2.7.13 Knockout mutagenesis via a gene replacement vector 

The target gene araI was ligated into the pEX18 suicide vector, which was also used for mutant 

construction. The plasmid carrying the mutant gene cassette was transformed into A. radicis N35. 

After plating on selective agar, several colonies grew on selective plates. After inoculation at 

37°C for 24 hours colonies were picked and grown in NB medium and then spread on to 10% 

sucrose and tetracycline antibiotic plates for the second crossover between vector and 

chromosome. This resulted in the replacement of wild type gene with mutant gene while the 

vector was discarded. For details see Li (2010). 
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2.8 Statistics 

The length and weight data from the barley growth promotion experiment were analyzed with 

Microsoft Office Excel 2010 and sigma plot software. The difference analysis (T-test) was 

performed with sigma plot 10.0 (Systat, Erkrath, Germany). 

2.9 RNA-seq 

For plant cultivation see 3.5.2. The barley seedlings were harvested 1 day and 10 days after 

inoculation with the bacteria. Shoot parts were frozen in liquid nitrogen and stored at -80°C 

freezer. RNA was isolated using RNeasy Mini kit (Qiagen) and quantified using NanoDrop1000. 

Requirements for RNA quality were that OD260/280 and OD260/230 were higher than 2.0 and 

the amount for RNA more than 500ng. The RNA integrity was measured by bioanalyzer 2100 

RNA 6000 nano kit from agilent technologies. cDNA was generated using the high capacity 

cDNA reverse transcription kit by Applied Biosystems. cDNA-libraries were sequenced using 

HiSeq 2500 (Illumina) in single read mode and running 100 cycles. The library construction and 

sequencing was done as a service provided by the “Kompetenzzentrum Fluoreszente Bioanalytik 

(KFB)” of the University of Regensburg. The bioinformatics analysis was performed as described 

in Dugar et al. (2013). The alignment of reads, coverage calculation, gene-wise read 

quantification, and differential gene expression were performed in cooperation with Klaus Meyer 

and Eva Trost from the Research Unit Plant Genome and Systems Biology (PGSB) at the 

Helmholtz Center Munich using READemption which was relying on segemehl version X 

(Hoffmann et al. 2009), DEseq version V. Visual inspection of the coverage was performed using 

the integrated genome browser (IGB) developed by the PGSB.  

2.10   RT-qPCR 

Total RNA was isolated using RNeasy plant mini kit (QIAGEN) according to the manufacturer´s 

instruction. cDNA was generated using high capacity cDNA reverse transcription kit (applied 

Biosystems). Quantitative PCR (RT-qPCR) was performed using the primers of table 2.9 

applying the KAPA SYBR FAST RT-qPCR Kit (VWR Peqlab, Erlangen, Germany) on a Real-

time RT-qPCR system (peqSTAR 96Q). All primer pairs were verified by melting curves 
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showing only one peak and a slope value close to -3.33. Transcript accumulation was analyzed 

using relative quantification with the software sigma plot. The q-PCR results are the average of 

three technical repetitions per sample and five independent plant inoculation experiments. 

Table 2.9: Primer used in RT-qPCR analysis 

Genes Primer sequence Gene names 

MLOC_67149 
AAGGCATGGGAGATGGTTGG 

TATCATGGCGTCCCACACG 
F-Box family-3(fb-3) 

MLOC_10956 
GCCAGAAGCCATATCTGCAC 

GCAGAAAAACTCACCGGAGC 
UDP-glycosyltransferase-like protein (UGT) 

MLOC_58764 
TGACACCCCTGCTTCGTTAG 

ACGACAGCGACCTGTGTTAG 
4-coumarate:CoA ligase (4-CL) 

MLOC_5324 
CTTCGACGCACTTGTCTCGG 

ACTGCGACCCCTTGATCTCC 
Chalcone-flavonone isomerase (CFI) 

MLOC_74116 
CCGACTACCCGGACTACTAC 

TGTACCTCTTCCTGATCTGCG 
Chalcone synthase (CHS) 

MLOC_72837 
TGCTGCACAACTTTCACTCC 

ACTGAAACTCCCATCCCAGC 
Chaperone protein (DnaJ) 

MLOC_59602 
ACTGAAACTCCCATCCCAGC 

TAGACCCTCCGCTGGTATCC 
E3 ubiquitin-protein ligase (PRT1) 

MLOC_5618 
TTCATCAGCTACCCCATCTACC 

CTCCTTCTTGTCCGAGGCAG 
Heat shock protein 90 (HSP90) 

2.11 Measurement of flavonol glycosides in barley  

 Barley leaves or roots were cut from the plant and placed immediately in liquid nitrogen. About 

150 mg of frozen plant material were homogenized in liquid nitrogen in a small mortar and about 

50 mg of this homogenate was transferred to a 2 ml Eppendorf tube pre-cooled with liquid 

nitrogen. All the samples were kept in liquid nitrogen to prevent from thawing. 10 µl of methanol 

(HPLC-grade) was added for every mg of sample material. The samples were then thoroughly 

vortexed for 1 h on a lab shaker at 700 rpm in the dark. Before centrifugation for 10 min at 11000 

rpm, the samples were vortexed again. The supernatants were transferred to a new cap and stored 

at -80°C until HPLC measurement. For HPLC analysis, a reversed-phase HPLC system was 

applied. A linear gradient over 45 min was applied with 100% solution A (2% formic acid 

containing 0.1% ammonium formate) to 100% solution B (0.1% ammonium formate in 88% 

methanol) and maintained for another 5 min. Finally, the absorbance of the eluent was measured 

at 280 nm (Yin et al., 2012)
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3 Results 

3.1 AraI gene determines 3-OH-C10-HSL production in A. radicis N35 

The homologous AHL synthase gene araI could be identified in the genome sequence of A. 

radicis N35 by homologous sequence blast using known lux I type genes. To investigate the 

function of QS in A. radicis N35, an AHL-deficient mutant has been constructed using the 

recombination method by Dan Li in her PhD thesis by introducing the tetracycline resistance 

gene tet (1.5 Kb) into the araI gene. (Li 2010). A complemented araI strain was produced in this 

thesis by expressing the wild type araI gene using the broad host range plasmid pBBR1MCS2 in 

the araI::tet mutant strain. The successful construction of the araI::tet mutant and complemented 

strains was confirmed using PCR and sequencing (Fig. 3.1A). To characterize the AHL 

production abilities, the AHL biosensor Agrobacterium tumefaciens A136 (carrying pCF218 or 

pCF372) was applied. This strain has been used successfully to detect various types of AHLs, 

especially C10-HSL including the hydroxyl- or oxy-derivates at the C3 position (Stickler et al. 

1998). Fig. 3.1B shows the result of an indicator plate with the biosensor A. tumefaciens A136 in 

the center and the wild type A. radicis N35, the araI::tet mutant and its complementary strain. 

AHL production is indicated by the blue color development only with the wild type and the 

complemented araI::tet mutant. The correct phylogenetic authenticity of these bacterial strains 

was confirmed using FISH with the probes shown in material and methods (M&M). 

To further analyze the quantity of AHL production in wild type, araI::tet mutant and 

complemented araI::tet mutant, these bacteria were introduced to barley seedlings. Aliquots of 

the root MS medium were analyzed using biosensor A136. The complemented araI::tet mutant 

produced very high amounts of AHL when colonizing barley roots (data not shown). This 

indicated that probably due to the construction of the complementation, an overproduction of 

AHL was the consequence. This may cause erotic responses of the plants, since the AHL may 

reach subtoxic or toxic levels.  
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A B 

 

Fig. 3.1: AHL production by A. radicis N35.  

A, PCR-assay using an araI specific primer to detect the araI gene in A. radicis N35 wt, A. radicis N35 

araI::tet mutant, and A. radicis N35araI::tet C (complemented strain). B, Application of AHL biosensor 

strain A. tumefaciences A136 (harbouring traI-lacZ fusion plasmid) to detect AHL production by these 

three strains. The blue color represents AHL production. 

3.2 Competitive colonization 

To be able to analyze, if AHL production and QS of A. radicis N35 has an influence on the 

ability to colonize barley roots, differentially GFP/YFP-labeled wild type and araI::tet mutant 

strains (construction see M&M) were applied. Single strains and a mixture of equal amounts of 

these differentially labeled wild type and araI::tet mutant cells were applied to barley roots, and 

the barley seedlings were cultivated under axenic conditions for one week. After harvesting and 

washing the roots, the colonization behavior of wild type and araI::tet mutant on the roots was 

examined using confocal microscopy in the lambda mode, which can distinguish GFP from YFP 

emitted fluorescence based on the specific spectrum character. The YFP-fluorescence of the wild 

type strain is shown in red while the GFP fluorescence of the araI::tet mutant is shown in green 

color. Both wild type and araI::tet mutant colonized barley roots well when applied alone, 



Results 

41 

although the araI::tet mutant showed more a single cell colonization pattern and less biofilm 

formation. When the A. radicis N35 wild type and araI::tet mutant were applied as a 1:1 mixed 

inoculum, the wild type clearly predominated colonization over the QS mutant strains (Fig. 3.2). 

This indicates that AHL- production by A. radicis N35 is important for its competitive 

colonization ability on barley roots. 

 

Fig. 3.2: Colonization of A. radicis N35 wt and araI::tet mutant on barley roots, detected by CLSM 

lambda mode. A: YFP-labeled A. radicis N35 form biofilm structure in the main root part and root hair 

part. B: The GFP-labeled A. radicis N35 araI::tet mutant. C and D: 1:1 mixture of YFP-labeled A. radicis 
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N35 wt and GFP- labeled A. radicis N35 araI::tet mutant. In these images blue color represents 

autofluorescence of root cell walls, the red color represents YFP labeled A. radicis N35 wild type and the 

green color indicates the GFP labeled A. radicis N35 araI::tet mutant. Cell suspensions of A. radicis N35 

and its araI::tet mutant strain with OD600=1.5 were mixed in 1:1 ratio. 2 days old germinated barley 

seedlings were inoculated for one hour and then grown for one week under axenic conditions as described 

in M&M. CLSM-analysis was performed under the lambda mode to visualize GFP- and YFP-fluorescence 

simultaneously.  

3.3 Plant Growth Promotion  

3.3.1 Plant growth promoting effect  

To assess an AHL dependent growth promoting effect on barley, seedlings were inoculated with 

A. radicis N35 wild type or the araI::tet mutant strain or not inoculated as control. Barley 

seedlings were grown under axenic conditions in the growth chamber or under un-sterile soil 

conditions in the greenhouse (see M&M). After two weeks / two months in the soil system or two 

weeks in the axenic system, barley plants were harvested and total plant fresh weight as well as 

shoot and root length were measured (Fig.3.3). In the soil system, a significant growth promotion 

effect on total plant fresh weight was found after inoculation with A. radicis N35 and araI::tet 

mutant only after two months. In the axenic growth system, no significant stimulation of fresh 

weight could be observed after inoculation with the wild type strain after two weeks. When the 

colonization of roots was analyzed using the FISH method, A. radicis N35 cells could not be 

detected after two months in the soil system (Fig. S1). In the axenic system, the colonization by A. 

radicis N35 was very well detectable using the FISH method  
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Fig. 3.3: Total fresh weight (TFW) of barley obtained after two weeks (A) and two months (B) grown in 

soil and total fresh weight of barley obtained after two weeks growth under axenic condition with or 

without inoculations (C). a: no significant difference, b:  significant difference at level p<0.05. 

3.4 Barley transcriptome analysis 

To be able to investigate, which plant genes were differentially regulated in barley leaves after 

inoculation with the AHL producing A. radicis N35 wild type strain in comparison with un-

inoculated control plants and plants inoculated with the AHL deficient araI::tet mutant strain, a 

RNA-seq experiment and a series of specific RT-qPCR tests were performed. In the barley leaf 

transcriptome a number of gene transcripts were significantly enhanced or suppressed by A. 

radicis N35 or the araI::tet mutant at 10 days post inoculation (dpi) compared to the un-

inoculated control plant. 

3.4.1 RNA-sequencing pre-experiment 

To determine the right time points for RNA isolation, GFP-labeled A. radicis N35 was used to 

analyze the colonization behavior at different time points in the axenic growth system (M&M). 

As shown in fig 3.4, one day after inoculation, A. radicis N35 was only visible at the surface of 
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the roots in a scattered colonization mode. After one week, the bacteria formed sessile 

microcolony- or biofilm-like structures, most of which were found especially in the region of root 

hairs. Similar sessile structures were found in the apoplast region. After 10 days only few bacteria 

were found on the surface and many bacteria penetrated into the roots. In order to analyze the 

response of barley at different time points after inoculation of A. radicis N35, 1 and 10 dpi were 

selected as sampling time points. 
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3.4.2 RNA-sequencing (RNA samples) 

1 day and 10 days after bacterial inoculation and incubation in axenic system, the second 

youngest leaves of barely seedlings were harvested for RNA isolation using RNeasy Mini kit 

(Qiagen) following the protocol as described in (1.9). Barley seedlings without any inoculation 

Fig. 3.4: Colonization of 

barley roots by GFP-

labeled A. radicis N35 in 

a monoxenic system at 

different time points 

after inoculation (1 to 10 

dpi as indicated in the 

pictures). 
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were used as control. RNA samples were quantified and their integrity was verified as descibred 

in 3.9. Measured by bioanalyzer 2100 RNA 6000 nano kit from agilent technologies.  

Table 3.1:. Characterization of RNA samples for sequencing was isolated from barley leaf samples. 

Sampling time (dpi) treatments 
RNA 

ng/ul OD260/OD280 OD260/OD230 

1-1 

Ck 508 2.05 2.39 

A. radicis N35 427 1.91 2.42 

A. radicis N35 araI::tet 126 1.92 2.25 

1-2 

Ck 449 1.87 2.43 

A. radicis N35 535 2.01 2.42 

A. radicis N35 araI::tet 426 2.01 2.32 

10-1 

Ck 376 1.96 2.35 

A. radicis N35 510 1.99 2.40 

A. radicis N35 araI::tet 384 1.96 2.36 

10-2 

Ck 453 2.04 2.32 

A. radicis N35 875 2.05 2.40 

A. radicis N35 araI::tet 525 2.03 2.37 

3.4.3 RNA-seq results (genes category) 

Dozens of gene transcripts of barley leaves were enhanced or suppressed by A. radicis N35 wt or 

araI::tet mutant inoculation at 1dpi and 10dpi (Fig.3.5 A and B). As compared to the 

uninoculated control plants, these genes were divided into three groups: (i) QS-independent, 

general MAMP-triggered responses (Tables 3.2 and 3.3), when gene expression was affected 

by inoculation with both A. radicis N35 and araI inoculation in the same manner; (ii) QS-

dependent regulation (Table 3.4 and 3.5), when specific gene transcription occured only after 

inoculation with A. radicis N35 wild type and not with the araI::tet mutant; and (iii) most 

interestingly, a QS-deficient regulation (Tables 3.6 and 3.7), when specific genes were 

upregulated, which were not detected in the control plants and the Wt-inoculated plants. There 

was also a clear plant development dependent effect apparent, because almost no identical gene 

transcripts were found at 1dpi and 10dpi. In this study, seven genes were further selected for RT-

PCR verification, since their functions are well known in plant resistance pathways. 
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Fig. 3.5: Transciptome analysis in barley leaves by RNA-sequencing. mRNA was isolated from barley 

leaves 1 day (A) and 10 days (B) after root inoculation with A. radicis N35, the araI::tet mutant, and from 

not inoculated plants (ck) respectively. For the heatmap CARMAwdb 1.5 software 
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(https://carmaweb.genome.tugraz.at/carma/) was used. Red (upregulated) and green (downregulated) 

colors represent an at least 3-fold difference in the amount of detected gene transcripts for the respective 

gene between the analyzed samples. 

 

3.4.3.1 QS-independent general MAMP-triggered responses 

Several plant responses towards bacterial inoculation at 10 dpi were directed to different 

posttranscriptional reactions (tab. 3.2). E.g. a DNA methylation related gene (the Tudor domain-

containing protein) assists in H3K9me3 localization and DNA methylation (Cheng, J.C. et al. 

2012). tRNA methylation related genes (Trm6) were found in mammalian cells and are known to 

methylate the adenosine 58 of the initiator methionine tRNA (tRNAi
met). This helps to stabilize 

its structure which is important for its function in tumor genesis (Macari, F etal. 2015).  

Another category of genes was coding for chaperones including the 17.5 kd heat shock protein, 

HSP90, and chaperone clbp. The pollen allergen bet V 1-D/H gene was induced only at 10dpi, 

while common protein kinase expression was upregulated already at 1 dpi (tab. 3.3). 
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Table 3.2: List of QS-independent regulated plant genes expressed differently at 10 dpi in plants 

inoculated with A. radicis N35 and its araI ::tet mutant as compared to the uninoculated control plants 

(ck). The analysis of RNA seq reads was performed in cooperation with Dr. Eva Trost and Dr.Klaus 

Meyer from HMGU/PGSB. 

Gene Name 
Log2 fold change to CK 

N35 araI::tet mutant 

MLOC_54481 Tudor domain-containing protein 3 -7.34 -6.93 

MLOC_59602 E3 ubiquitin-protein ligase PRT1 -3.99 -3.71 

MLOC_68945 
tRNA (Adenine-N(1)-)-methyltransferase 

non-catalytic subunit (trm6) 
-3.54 -3.40 

MLOC_63473 Nuclear pore complex protein Nup205 2,14 -2,68 

MLOC_72290 Chlorophyll a-b binding protein 2 2.39 1.59 

MLOC_32229 17.5 kDa class II heat shock protein 1.80 1.61 

MLOC_13045 Multiprotein bridging factor 1 1.58 1.73 

MLOC_6787 17.4 kDa class I heat shock protein 3 1.93 1.75 

MLOC_58758 Chlorophyll a-b binding protein 2 2.39 1.78 

MLOC_54379 
Heavy metal transport/detoxification 

superfamily protein LENGTH=352 
2.67 1.86 

MLOC_75175 Heat-shock protein, putative 1.90 1.97 

MLOC_74116 Chalcone synthase 2.04 2.43 

MLOC_20041 Lipid transfer protein 1.82 2.18 

MLOC_50979 Chaperone clpb, putative 2.08 2.23 

MLOC_5618 Heat shock protein 90 2.30 2.25 

MLOC_72040 Pentatricopeptide repeat-containing protein 3.71 2.97 

MLOC_56051 Chlorophyll a-b binding protein 2 2.39 2.98 

MLOC_5168 Beta-amylase 2.39 3.17 

MLOC_9995 Jasmonate ZIM-domain protein 3 3.49 3.83 

MLOC_33369 
Retrotransposon protein, putative, 

unclassified 
-4.30 Infinite 

MLOC_57345 Major pollen allergen Bet v 1-D/H Infinite Infinite 
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Table 3.3: List of plant genes expressed at 1 dpi differently in plants inoculated with A. radicis N35 as 

well as its araI::tet mutant (QS-independent). The analysis of RNA seq reads was performed in 

cooperation with Dr. Eva Trost and Dr.Klaus Meyer from HMGU/PGSB. 

 

Gene Name 
Log2 fold change to CK 

N35e araI::tet mutant 

MLOC_44415 Protein kinase, putative Infinite Infinite 

MLOC_75843 Kinesin, putative Infinite -2.82 

3.4.3.2 QS-dependent regulation 

Changes in expression level only visible after inoculation with the A. radicis wild type were 

scarce. One example is the upregulation of histone lysing methyltransferase MEDEA at 10 dpi 

(table 3.4).  

 

Table 3.4: List of plant genes expressed at 10 dpi differently only in plants inoculated with A. radicis N35 

(QS-regulated). The analysis of RNA seq reads was performed in cooperation with Dr. Eva Trost and 

Dr.Klaus Meyer from HMGU/PGSB. 

 

Gene Name Log2 fold change to Ck 

MLOC_67149 F-box family-3 -7.34 

MLOC_58431 80 kD MCM3-associated protein, putative -3.91 

MLOC_11419 Protein kinase superfamily protein LENGTH=579 1.37 

MLOC_59476 
BTB/POZ domain-containing protein 

LENGTH=548 
2.57 

MLOC_66526 
Oxidoreductase, zinc-binding dehydrogenase family 

protein LENGTH=329  
3.36 

MLOC_20784 Glycerol kinase-like protein 6.68 

MLOC_1303 Histone-lysine N-methyltransferase MEDEA  8.34 
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Table 3.5: List of plant genes expressed at 1 dpi differently only in plants inoculated with A. radicis N35 

(QS-regulated). The analysis of RNA seq reads was performed in cooperation with Dr. Eva Trost and 

Dr.Klaus Meyer from HMGU/PGSB. 

 

Gene Name Log2 fold change to CK 

MLOC_10398 
Lipid A export ATP-binding/permease protein 

MsbA 

-2.51 

MLOC_64967 
Eukaryotic aspartyl protease family protein 

LENGTH=474 

2.75 

MLOC_44183 Major facilitator superfamily antiporter 6.68 

3.4.3.3 QS-deficient regulation 

Inoculation with the araI::tet mutant caused specific changes in the transcription of many genes, 

which were not visible in response to inoculation with the wildtype or in the control samples. 

This included arginine N-methyltransferase 6, which was downreguated at 10 dpi, while 

pennelpropanoid metabolism pathway genes were upregulated (tab. 3.6). At 1 dpi inoculation of 

the mutant caused different expression changes, including the upregulation of 1-

aminocyclopropane-1-carboxylate oxidase 1, which can catalyze the synthesis of ethylene and 

ethylene transcription regulator (tab. 3.7). This result indicates that the araI::tet mutant may 

cause responses in the ethylen-dependent pathway. 

 

 

 

 

 

 

 

 



Results 

54 

Table 3.6: List of plant genes expressed at 10 dpi differently only in plants inoculated with A. radicis N35 

araI::tet mutant (QS-deficient). The analysis of RNA seq reads was performed in cooperation with Dr. 

Eva Trost and Dr.Klaus Meyer from HMGU/PGSB. 

 

Gene Name Log2 fold change to CK 

MLOC_36614 Aminoacyl-tRNA synthetase -7.66 

MLOC_19129 Protein arginine N-methyltransferase 6 -6.95 

MLOC_53416 Protein phosphatase, putative -6.39 

MLOC_53511 Remorin family protein LENGTH=486 -5.87 

MLOC_62596 Pseudo response regulator -5.43 

MLOC_63231 Natural resistance-associated macrophage protein, 

putative 

-2.68 

MLOC_52019 CBL-interacting protein kinase 30 -1.81 

MLOC_58764 4-coumarate:CoA ligase 1.51 

MLOC_5324 Chalcone--flavonone isomerase 1.57 

MLOC_10956 UDP-glycosyltransferase-like protein 1.69 

MLOC_822 Alpha-glucosidase-like 1.75 

MLOC_13672 EST D48432(S14625) corresponds to a region of the 

predicted gene 

1.94 

MLOC_12681 BCL-2-associated athanogene 6 LENGTH=1043 2.05 

MLOC_7936 transcript_IBSC 2.18 

MLOC_72837 Chaperone protein dnaJ 2.20 

MLOC_66363 Ribonuclease 3 2.30 

MLOC_64658 Coiled-coil domain-containing protein 25 2.41 

MLOC_64305 Chalcone synthase 2.43 

MLOC_18785 2-oxoglutarate (2OG) and Fe(II)-dependent 

oxygenase-like protein 

2.93 

MLOC_55585 Deoxyribose-phosphate aldolase 4.29 

MLOC_76334 DNA mismatch repair protein mutS 4.54 

MLOC_7481 CRAL-TRIO domain-containing protein 4.55 

MLOC_47898 Protein of unknown function (DUF 3339) 14.16 
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LENGTH=69 

MLOC_30326 Early nodulin 20, putative infinite 

MLOC_54267 Pectinesterase infinite 

MLOC_38677 Flavoprotein wrbA infinite 

MLOC_67517 golgin candidate 4 LENGTH=725 infinite 
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Table 3.7: List of plant genes expressed at 1 dpi differently only in plants inoculated with A. radicis  N35 

araI::tet mutant (QS-deficient). The analysis of RNA seq reads was performed in cooperation with Dr. 

Eva Trost and Dr.Klaus Meyer from HMGU/PGSB. 

 

Gene Name Log2 fold change to CK 

MLOC_64906 Histone H2A -3.11 

MLOC_77667 High mobility group family -3.08 

MLOC_12156 Microtubule-associated protein-like -2.76 

MLOC_37098 Receptor-like protein kinase -2.60 

MLOC_45226 Vacuolar import and degradation protein VID27 -2.42 

MLOC_35155 Histone H2A -2.17 

MLOC_64189 Kinesin like protein -2.04 

MLOC_76747 Histone H2B -1.99 

MLOC_7518 copper ion binding LENGTH=250 -1.75 

MLOC_72040 Pentatricopeptide repeat-containing protein 2.01 

MLOC_65674 Blue copper protein 2.86 

MLOC_68610 
D-arabinono-1,4-lactone oxidase family protein 

LENGTH=591 
2.98 

MLOC_70078 1-aminocyclopropane-1-carboxylate oxidase 1 3.06 

MLOC_61465 Acyl-[acyl-carrier-protein] desaturase 3.23 

MLOC_26534 Wound induced protein 3.68 

MLOC_78997 Early light-induced protein 4.57 

MLOC_10400 Ribosomal protein L18 infinite 

MLOC_39185 
B12D protein NADH-ubiquinone reductase 

complex 1 MLRQ subunit 
infinite 

MLOC_51143 
Ethylene responsive transcription factor 

2bpathway) 
Infinite 

Footnote: infinite ratios resulted from very low expression in the control. 

3.4.3.4 Genes selected for RT-qPCRanalysis 

Interestingly, RNA-seq results from leaves after 10dpi indicated that the transcription of several 

flavonoid-synthesis pathway genes (Besseau et al. 2007) were upregulated only in the case of 
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inoculation with the araI::tet mutant, including UDP-glycosyltransferase-like protein (UGT), 

chalcone-flavonone isomerase (CFI), chalcone synthase (Hassett et al. 1999), and 4-coumarate-

CoA ligase (4-CL). Also the flavonoid response gene DnaJ was found to be upregulated only 

after inoculation with the araI::tet mutant. In addition, two ubiquitin E3 ligase, F-box family-3 

gene and the E3 ubiquitin-protein ligase PRT1 were chosen due to their roles in plant immunity.  

3.5  Transcript analysis of selected plant genes by RT-qPCR 

3.5.1 Primers designed for RT-qPCR 

Specific primers for RT-qPCR were developed to detect candidate genes (tab. 2.9, M&M). These 

primers were validated based on the slope of the standard curve (value is about -3.3) and the 

melting curve (only one clear peak), see supplementary fig. S2.  

3.5.1.1 RT-qPCR of flavonoid synthase related genes  

The expression of four flavonoid synthase genes UGT, 4-CL, CFI and CHS and the chaperone 

protein DnaJ were tested by q-PCR analysis with 5 replications. All these flavonoid synthase 

genes were significantly up-regulated in plants inoculated with A. radicis N35 araI::tet mutant, 

while they were unaffected or slightly down-regulated in plants after inoculation with A. radicis 

N35 wild type (Fig. 3.6 A). The two flavonoid synthesis inhibitors F-box protein 3 and E3 

ubiquitin-protein ligase (PRT1) were down-regulated in leaves of wild type and mutant 

inoculated barley plants. This effect was more pronounced in plants inoculated with the araI::tet 

mutant (Fig. 3.6 B). 

Two chaperone coding genes, HSP90 and dnaJ, were also tested using q-PCR. HSP90 was 

upregulated after inoculation with Wt amd araI::tet mutant, while dnaJ was upregulated only 

after mutant treatment (Fig. 3.6 C).  
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Fig. 3.6: Q-PCR analysis of the 

expression of genes under the 

influence of A. radicis N35 wild type 

and the araI::tet mutant. Barley 

seedlings were not inoculated 

(control, CK) or inoculated with A. 

radicis N35 wild type or the araI::tet 

mutant, respectively. Cultivation was 

performed monoxenically for 10 

days (see M&M). Then one leave 

was taken in the three leaves 

stadium, RNA was isolated, and q-

PCR was performed from transcribed 

cDNA. Statistical analysis was 

applied using one way ANNOVA. 

Same letter means no significant 

different, different letter means 

significant difference (p<0.05). 

(A) Flavonoid biosynthesis pathway 

genes: 4-coumarate CoA ligase (4-

CL), chalcone-flavonone isomerase 

(CFI), chalcone synthase (CHS), 

UDP-glycosyltransferase-like protein 

(UGT) 

(B) Fb-3, F-Box family-3 and E3 

ubiquitin-protein ligase (e3ul)  

(C) Heat shock protein 90 and DnaJ 

(heat shoch protein 40) 
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3.6 Flavonoid content measurement 

The HPLC analysis of flavonoid contents revealed that in the leaves of the tested barley cultivar 

Barke the amount of saponarin was generally higher than of lutonarin. In plants inoculated with 

the A. radicis N35 araI::tet mutant, the contents of lutonarin and saponarin were increased more 

than twice as compared to plants inoculated with the wild type or un-inoculated controls (Fig. 

3.7). Also lutonarin and saporanin methylether derivatives reached almost twice the levels in the 

araI::tet mutant as compared to wild type and un-inoculated control plants. These results 

corroborate the results of gene transcriptome profiling by RNA-seq and q-PCR, that the 

production of N-acylhomoserine lactones in A. radicis N35 plays an important role in controlling 

the flavonoid production in barley leaves during the process of colonization by A. radicis.   
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Fig. 3.7: Accumulation of flavonoids in barley leaves measured by HPLC. The flavonoid components are: 

(A) lutonarin, (B) saponarin, (C) lutonarin-4-methylester. (D) An unidentified flavonoid derivative. a: no 

significant difference, b: significant difference at level p<0.05. 
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4 Discussion 

4.1 The role of Quorum sensing in bacteria-plant interactions 

4.1.1 Biofilm formation and root colonization ability determined by QS 

The AHL-defective A. radicis mutant was found to be less successful in root colonization (Fig. 2), 

which indicates a role of QS for the colonization ability of this species. The QS-deficient araI::tet 

mutant strain showed colonization mostly by single cells spread randomly over the root surface, 

while the N35 wild type cells aggregated and formed biofilms at the root surface. This result 

corroborates the observation by Li (2010), who showed in a 1:1-mixture of GFP-labeled N35 

wild type cells and the SYTO orange labeled araI::tet mutant that only a few mutant cells 

colonized the roots, while wild type cells showed dense colonization. In A. radicis N35, also 

phenotypic variants showed reduced root colonization. However, in contrast to araI::tet mutants, 

these variants had much reduced ability of plant growth promotion (Li et al. 2012). The reduced 

colonization of the araI::tet mutant could be caused by a reduced tolerance towards reactive 

oxygen species (ROS) released by barley roots upon first contact with microbes as has been 

found in the case of the endophyte Gluconacetobacter diazotrophicus during colonization of rice 

roots (Alqueres et al. 2013). In this case, ROS-quenching enzymes catalase and superoxide 

dismutase of the endophyte have a major role in the degradation of ROS released by the host 

plants during early host defense. In P. aeruginosa, QS was found to be involved in stress 

tolerance, and luxI type QS-deficient mutants (lasI, rhlI, and lasR, rhlR) have defective 

expression of catalase (CAT) and superoxide dismutase (SOD). These mutants were more 

sensitive to oxidative stress than the parental strain (Hassett et al. 1999). Therefore, the 

hypothesis is that in the araI::tet mutant of A. radicis N35, ROS-quenching enzymes were 

reduced or even lacking as compared to the wildtype. Another study showed that the QS based 

anti-oxidative tolerance may inhibit to quench quorum sensing activities and may contribute to 

prevent social cheating (Garcia-Contreras et al. 2015). In the co-inoculation experiment, the 
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quorum sensing araI::tet mutant may behave even as a quorum sensing cheater, because it does 

not produce AHL. 

The positive influence of AHL-mediated QS on biofilm formation was shown in several studies. 

For instance, in P. fluorescence 2p24, the pcoI coded AHL synthase mutant resulted in seriously 

decreased biofilm formation, leading to less root colonization ability (Wei and Zhang 2006). In P. 

aeruginosa, a quorum sensing lasI mutant formed flat undifferentiated biofilms which are more 

sensitive to the biocide sodium dodecyl sulfate than the wild type. These flat biofilm types of 

AHL-defective mutants could be restored by exogenous addition of AHLs (Davies et al. 1998). 

Also in Sinorhizobium fredii SMH12, micro-colony biofilm formation was found to be regulated 

by QS and in Rhizobium spp. the biofilm formation is dependent on the production of AHLs 

(Davies et al. 1998, Rinaudi and Giordano 2010, Perez-Montano et al. 2014). It could even be 

shown, that the exopolysaccharide production in Sinorhizobium fredii NGR234 was modified by 

AHL production (Krysciak et al. 2014). In the Acidovorax sp. strain MR-S7, exogenous addition 

of AHLs could promote biofilm formation (Kusada et al. 2014). The importance of QS for 

biofilm formation could be due to secretion of important compounds like extracellular DNA, the 

biosurfactant rhamnolipid and the secretion of the BapA protein as shown in P. aeruginosa 

(Tolker-Nielsen 2015). Furthermore, QS compounds play an important role in Pseudomonas 

fluorescence 2p24 for its colonization on wheat roots and development of biocontrol ability 

towards the take-all disease fungus (Wei and Zhang 2006). In Burkholderia phytofirmans PsJN, 

QS was also found to be important for its competitive biofilm formation and efficient 

colonization of Arabidopsis thaliana roots (Zuniga et al. 2013). Thus, there is an increasing 

knowledge about the important role of AHLs in plant beneficial rhizosphere bacteria and 

endophytes in diverse plant systems and their involvement in different mechanisms of plant 

growth promotion.  

A colonization related plant gene (coding for the remorin protein) was found in transcriptome 

analysis of Medicago truncatula in response to inoculation with a QS mutant of S. meliloti 

(Lefebvre et al. 2010). Remorin protein is a membrane associated protein, which was found to 

interact with symbiotic receptors. It was shown to be specifically induced during root nodule 

symbiosis of Medicago truncatula and Sinorhizobium meliloti, possibly working as plant specific 
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scaffolding protein (Lefebvre et al. 2010). This gene may also be involved in A. radicis N35 

colonization, because it was downregualted in barley by N35 araI::tet mutant inoculation (Table 

3.6). 

4.1.2 QS importance in plant growth promotion 

According to our results, production of 3-OH-C10-HSL by A. radicis N35 is not a determinant 

factor of A. radicis N35 to promote barley growth, because both Wt and araI::tet mutant exhibit 

comparable PGPR activity, at least at the conditions tested (Fig.3.3). There was a similar 

conclusion in a study of Azospirillum lipoferum, since its AHL inactivation had no deleterious 

effect on the phytostimulation (Boyer et al. 2008a). However, in hydroporic axenic culture, 

addition of pure 3-oxo-C10-HSL could promote barley shoot length, root fresh weight and lateral 

roots formation (Götz-Rösch 2015). Furthermore, the addition of short carbon chain C6-HSL and 

C8-HSL caused alteration of the plant hormone auxin/cytokinin to promote roots elongation in 

Arabidopsis (von Rad et al. 2008, Liu et al. 2012). However, there is no information available if 

3-OH-C10-HSL also shows the same influence on auxin regulation in barley or any interaction 

with other functions of PGPR, which were shown to be involved in promoting plant growth 

including N2 fixation, phosphate solubilization, biocontrol activites and rhizosphere competence 

(Imran, A., 2014, Annals of Microbiology). Furthermore, A. radicis N35 is producing auxin itself 

which is a functional plant hormone supporting root development and plant growth under 

controlled conditios. Maybe its production is QS-independent. However, several QS independent 

activities may contribute to PGPR-phenotype. 

4.2 Systemic transcription analysis of barley 

The transcription analysis of barley plants towards inoculation with A. radicis N35 wt and 

araI::tet mutant revealed numerous interesting insights in the complex perception process of 

plants in response to the colonization by bacteria, in this case by a beneficial entophyte. 

According to the detailed colonization studies, 1 dpi and 10 dpi time points were selected, 

because they represent first association and advanced biofilm-like and endophytic colonization 
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states, respectively. In general, at 10 dpi more and quite different plant responses were recorded 

during root colonization of Wt and araI::tet mutant. 

In the 1dpi samples more plant genes were changed by inoculation with N35 araI::tet mutant than 

with the wild type. This may already indicate that the barley response to N35 araI::tet mutant was 

more pronounced than to the Wt producing AHL.  

Several heat shock proteins were found to be upregulated in both Wt and N35 araI::tet mutant 

treatment. HSP90 and several small HSP are known to be important for plant resistance. The 

HSP90 is known to interact with SGT1 and RAR1 to form complexes with R-proteins to mediate 

the plant resistance to pathogens. For example in rice, the HSP90 binds with its co-chaperone 

Hop/sti1 leading to chitin response and anti-fungal immunity (Park and Seo 2015b). An HSP20 

member is known to specifically interact with I-2, which confers resistance to Fusarium 

oxysporum by accumulation of I-2. Another HSP20 from Nicotiana tabacum (NtsHSP) was 

shown to be involved in disease resistance in plants. Disease symptoms caused by Ralstonia 

solanacearum are enhanced in NtsHSP-silenced plants (Park and Seo 2015a). This indicates that 

in both Wt and N35 araI::tet mutant, inoculation enhanced to some extent biotic and abiotic 

resistance in barley. In addition, another heat shock protein DnaJ, identical with heat shock 

protein 40, was shown to be upregulated only in N35 araI::tet mutant treatment together with 

flavonoid biosynthesis genes (Fig 6). It also plays a role in cell death and disease resistance in 

Nicotiana benthamiana leaves. HSP40 was demonstrated to function in plant immunity, as 

overexpression of HSP40 causes HR-like cell death and silencing of HSP40 enhances 

susceptibility to soybean mosaic virus in soybean (Liu and Whitham 2013). 

Another plant physiological important gene, which was found induced after inoculation with both 

Wt and N35 araI::tet mutant is the pentatricopeptide repeat-containing protein (PPR). This gene 

was upregulated at 1dpi and 10 dpi by inoculation with the araI::tet mutant, but only upregulated 

at 1dpi with the Wt. This protein is involved in RNA-editing in plants and is important for 

general key plant physiological processes like photosynthesis, leaf development and pigmentation 

as well as response to abiotic stress (Barkan and Small 2014). Thus, increase of the expression of 

PPR-encoding genes is expected to improve the fitness and growth vigor of plants.  
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Some genes were specifically expressed after inoculation with the araI::tet mutant. Flavonoid 

synthesis pathway genes were upregulated only after araI::tet mutant treatments, which included 

F3H, CHS, CHI, and UGT. The upregulation of all these genes was confirmed by Q-PCR. 

Another flavonoid synthesis related gene is 2-oxo-glutarate and Fe (II)-dependent oxygenase like 

protein (2-OG). 2-OGs include several enzymes: FNS1, (flavone synthase I); FLS, (flavonol 

synthase); LDOX, (leucoanthocyanidin synthase); F6H, (flavone-6-hydroxylase); ANS, 

(anthocyanidin synthase); FHT, (flavanone 3 beta-hydroxylase). These enzymes catalyze 

desaturation of naringenin and its derivate dehydrokaempferol as substrates or add hydroxyl 

group to form different flavonoids (Farrow and Facchini 2014).  

MYB transcription factor (Stracke et al. 2007) and epigenetic regulation were generally found to 

be involved in systemic transcription control and especially in the flavonoid biosynthesis process 

(Sharma et al. 2016). In systemic transcriptom analysis, an epigenetic gene for ribonuclease III 

was upregulated in barley leaves at 10 dpi araI::tet mutant treatment. Ribonuclease III (dicer like 

protein, DIL) can cut double stranded RNA to form microRNA (miRNA) and siRNA. miRNAs 

have important regulation functions via posttranscription interference mechanism to regulate the 

leaves of gene transcripts. For instance, in Arabidopsis the antibacterial resistance is regulated 

through miR393 (Navarro et al. 2006). Moreover, miRNA control MYB transcription factors in 

Arabidopsis which contribute to promote flavonoid synthesis (Sharma et al. 2016). Thus, after 

inoculation with the araI::tet mutant, epigenetic regulation was affected. 

Furthermore, the inoculation with the araI::tet mutant downregulated the expression of ubiquitin 

E3 ligase genes F-box protein 3 and E3 ubiquitin ligase PRT1, both belonging to the E3 ligase. 

The former one is a ring-finger E3 ligase, the latter one is playing an important role in the 

ubiquitination of proteins involved in the cell cycle and plant immunity. F-box protein 

contributes to the specificity of SCF target protein and mediates the SCF complex into proximity 

with functional E2 protein (Marino et al. 2012). PRT1 functions as an ubiquitin protein ligase in 

the heterologous host. In Arabidopsis, PRT1 functions encodes a 45 kD protein with two ring-

finger domains and one ZZ domain, mediating the degradation of N-end rule substrates with 

aromatic termini such as F-dihydrofolate reductase instead of those with aliphatic or basic amino-

termini (Stary et al. 2003).  
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4.3 Saponarin and lutonarin production  

Compared with A. radicis N35 wild type, the colonization of roots by the 3-oxo-C10-HSL 

deficient araI::tet mutant caused an accumulation of saponarin and lutonarin in barley leaves 

(Fig. 6). This indicates that 3-oxo-C10-HSL itself or bacterial components induced by 3-oxo-

C10-HSL are involved in the induction/expression of flavonoid biosynthesis in the host plant. A 

direct stimulatory effect of AHLs on the induction of flavonoid biosynthesis was found in 

Medicago truncatula. In this case, 3-oxo-C12-HSL was shown to activate the transcription of 

chalcone synthase genes in white clover roots (Mathesius et al. 2003). In the A. radicis N35 - 

barley interaction, a different AHL (3-OH-C10-HSL) is operating, which may have caused an 

inhibition of flavonoid biosynthesis. In A. thaliana, the influence of the length of the acyl chain 

and the substitution at the C3-atom were shown to cause different systemic responses (Schikora 

et al. 2011). The contrasting response of barley to 3-OH-C10 HSL may also be due to the fact 

that the monocotyledonous barley may respond differently to AHLs than the dicotyledonous 

white clover. On the other hand, since QS autoinducers are able to regulate bacterial surface 

exopolysaccharide production (Krysciak et al. 2014), the lack of AHLs in the A. radicis araI::tet 

mutant could also have resulted in considerable changes in the surface exopolysaccharide 

structure and this may have caused a different plant response.   

Flavonoids can help plants to acquire resistance towards various biotic and abiotic stresses 

(Treutter 2005). The enhanced accumulation of the two flavonol glycosides saponarin and 

lutonarin in barley leaves caused by the colonization of the roots by the A. radicis N35 araI::tet 

mutant is an example for this kind of defense response. The expression of several flavonoid 

biosynthesis genes were upregulated due to inoculation with the A. radicis N35 araI::tet mutant 

(Fig.3.6A). This clearly indicated that the AHL-deficient mutant strain activated a defense 

response which was not activated in the 3-OH-C10-HSL producing N35 wild type. Three closely 

related R2R3-MYBs transcription factors (MYB11, MYB12 and MYB111) redundantly activate 

the transcription of early flavonoid biosynthesis genes (EBGs). The UDP-glycosyltransferases 

UGT91A1 and UGT84A1 together with CHS, CHI, and F3H, FLS1 are controlled by this 

R2R3MYB factors in Arabidopsis (Stracke et al. 2007). However, no data were obtained for the 
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regulation at the transcriptional level. The flavonoid accumulation is not only regulated at the 

transcriptional, but also at the post-transcriptional level through PAL degradation mediated by 

Kelch domain containing F-box (KFB) complexes leading to the suppression of the 

phenylpropanoid pathway (Feder et al. 2015). In this study, it could be demonstrated by the 

transcriptomic sequencing results and confirmed by q-PCR, that the expression of F-box protein 

and E3 ubiquitin-protein ligase were downregulated in the presence of A. radicis N35 wild type 

and even more in the araI::tet mutant (Figure 3.6). F-box family proteins are components of the 

SCF-protein complex, which is involved in the proteome degradation pathway. This process is 

for example important for plant development and immunity response to various stress condition 

(Thines et al. 2007). In addition, also an upregulation of dnaJ expression after inoculation with 

the araI::tet mutant was shown to be mediated by transcription factor SG7 MYB. Its expression 

was found to correlate with flavonoid related genes and to be under the control of MYB 

transcription factors (Stracke et al. 2007). The upregulation of dnaJ expression also correlated 

with the upregulation of the flavonoid biosynthesis genes and flavonoid accumulation. DnaJ may 

also be involved in salt stress resistance and known to interact with HSP70 in the heat shock 

resistance process (Zhu et al. 1993). Since dnaJ expression was also found to be involved in 

regulation of saline tolerance, it is reasonable to test whether the higher expression of dnaJ will 

also result in increased salt stress tolerance by the plants.  

As mentioned in the introduction flavonoids can be transported through the whole plant to help 

plant suffer biotic and abiotic stress. It is reasonable to test in further experiments whether the 

increased flavonoid levels are secreted outside of roots which inhibited the QS mutant growth 

and colonization because they are known as bactericides too.  

4.4 Integrated role of AHLs by A. radicis in plant perception 

Due to common evolutionary history of plants and microbes, an elaborate system of mutual 

detection, cooperation or deterrence has developed. In the first recognition step, the most 

important role plays the plant’s innate immune system recognizing MAMPs and diverse 

microbial elicitors. On the microbial side the response to plant surface structures and exudates 

has a central role in recognition. The quorum sensing communication system of rhizobacteria 
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based on AHL compounds may be considered as an integrated part in the invade perception 

process of bacteria by plants. In the plant growth beneficial endophyte A. radicis N35 3-OH-C10-

HSL is the dominant AHL (Fekete et al. 2007). Many Gram-negative plant pathogenic 

rhizobacteria also synthesize AHLs, although with different chain lengths and other functional 

groups. Since the onset of virulence is regulated by these autoinducers, the plant needs to learn 

about the presence of AHLs in its vicinity as soon as possible. In the case of pathogens, the 

network of multiple interactions may conclude to initiate full expression of the defense cascade, 

while in the case of beneficial endophytes, which lack PAMP signals, the plants´s defense 

response is dampened or completely suppressed allowing a cooperative interaction. There are 

several examples, that AHL compounds applied to rooting solutions of plants can exert diverse 

beneficial effects on plants, which include growth promotion as well as priming or induction of 

pathogen resistance in the host. This was shown in different plant species, such as M. truncatula, 

tomato, Arabidopsis thaliana, and barley (Mathesius et al. 2003, Schuhegger et al. 2006; von Rad 

et al. 2008, Schenk et al. 2014, Hartmann and Schikora 2002, schikora et al. 2016). However, it is 

much less clear, what role AHLs of a beneficial root colonizing bacterium play in the concert of 

interaction with all the other compounds of plants’ recognition and perception systems. In the 

current study, it could be shown, that the production of 3-OH-C10-HSL during the colonization 

process by the plant growth promoting, endophytic A. radicis N35 is able to efficiently influence 

the plant response and reduce or even prevent the onset of a defense cascade. Whether this is 

caused by a direct interaction of AHLs with plants or by an indirect effect through the induction 

of e.g. different surface structures of the bacteria in the presence of AHLs, which are not 

recognized as a pathogenic signal, is not known yet. Nevertheless, the response of barley plants 

to A. radicis N35 wild type is characterized by the absence of expression of several genes 

involved in flavonoid biosynthesis in the plant possibly leading to less or even no defense 

response. Even a priming effect for a defense response was deleted. Apparently, the 3-OH-C10-

HSL production is playing a major role in this process. Future detailed studies need to focus on 

the role of the quorum sensing compound 3-OH-C10-HSL in the regulation of gene expression 

influencing fine structure modification of the cell surface lipo- and exopolysaccharides or of type 

III secretion systems or other transport systems potentially involved in Acidovorax radicis N35 

and other PGPR interactions. As a first step in this direction, a study has been published recently 
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showing that type III secretion system does not play an effective role in the ISR response caused 

by PGPR P. fluorescence 2p24 (Liu et al. 2015). 
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5 Summary and general outlook 

In this study, barley and root endophytic A. radicis N35 were used as interaction model to 

investigate the role of AHL-mediated QS in root associated bacterial colonization, plant growth 

promotion, and plant systemic response. Results pointed out that the biofilm formation was only 

observed in A. radicis N35 wild type while the QS mutant was randomly scattered on the root 

surface. However, the plant growth promotion property was not attenuated in the QS mutant. QS 

dependent and QS independent plant transcripts related to the systemic response were identified 

using RNA-seq. HSP90 is an conserved protein which is involved in the systemic response to Wt 

and QS mutant, while the higher flavonoid components were only found when plants were 

inoculated with the QS-deficient A. radicis N35 araI::tet mutant. This different response pattern 

may attributed to AHL-controlled surface components of the mutant bacteria or / and to direct 

AHL effects on the plants. 

Further studies need to focus on a detailed comparative transcriptome study of A. radicis N35 

wild type and araI::tet mutant in culture as well as in the association with roots. Furthermore 

comparison of the response of barley to a pathogen with the response to a PGPR like A. radicis 

N35 and its araI::tet mutant may help to further elucidate details of bacteria-plant interactions. 

.



Abstract 

 

71 

6 Zusammenfassung: 

Acidovorax radicis N35 ist ein endophytisches Bakterium, das die Entwicklung von Weizen und 

Gerstenpflanzen optimiert. Die Wahrnehmung der Pflanzen kontte durch RNA seq, qPCR und 

ausgewählten Metabolitanalysen charakterisiert werden. Es zeigte sich, dass Gerstensämlinge 

spontan auf die Bakterienbesiedlung durch eine Umprogrammierung der Genexpression und 

Priming von Verteidigungsreaktionen reagieren. Insbesondere sollte die Rolle der Quorum-

Sensing Auto-Induktoren vom N-Acyl-Homoserin-Lacton (AHL) -Typ bei der Pflanzenreaktion 

analysiert werden. A. radicis N35 produziert 3-Hydroxy-C10-homoserinlacton (3-OH-C10-HSL) 

als Haupt-AHL-Signalsubstanz. In dieser Arbeit wurde der Einfluss von 3-OH-C10-HSL, das A. 

radicis N35 produziert, auf Gerstensämlinge durch Vergleich zwischen Wildtyp und einer araI-

Insertionsmutante untersucht, die keine AHL-Produktion zeigte. Der Vergleich der 

Inokulationseffekte zwischen A. radicis N35 Wildtyp und araI::tet mutante ergab 

bemerkenswerte Unterschiede: Während Pflanzen durch den N35 Wildtyp in biofilmähnlichen 

Strukturen besiedelt wurden,  trat die araI::tet mutante an der Wurzeloberfläche als einzelne 

Zellen auf. Außerdem überwog der Wildtyp bei der Besiedlung nach einer gemischten 

Inokulation des Wildtyps und der araI::tet mutante. Trotzdem konnte ein deutlicher 

Pflanzenwachstumsförderungseffekt 2 Monate nach der Inokulation von Gerste mit dem Wildtyp 

und der araI::tet mutante im Boden nachgewiesen werden. Der A. radicis N35 Wildtyp zeigte 

weniger Induktion von frühen Abwehrreaktionen in der Pflanzen-RNA-Expressionsanalyse, 

allerdings verursachte die araI::tet mutante z.B. erhöhte Expression von Flavonoid-

Biosynthesegenen, was durch die Akkumulation von mehreren Flavonoidverbindungen wie 

Saponarin und Lutonarin in Blättern von wurzelinokulierten Gerstensämlingen bestätigt wurde. 

So lässt sich schließen, dass die Synthese von 3-OH-C10-HSL durch A. radicis Auswirkungen 

auf die Kolonisierungseffizienz von Pflanzenwurzeln und die Wahrnehmung durch die 

Wirtspflanze hat. 
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Abstract: 

Acidovorax radicis N35 is a plant growth promoting endophytic bacterium in wheat and barley. 

The perception by plants can be characterized using RNAseq, q-PCR and selected metabolite 

analyses. It could be shown, that barley seedlings are quickly responding to bacterial colonization 

by a reprogramming of gene expression and priming of defense responses. Especially, the role of 

quorum sensing auto-inducers of the N-acyl homoserine lactone (AHL) type in the perception by 

plants should be analyzed. A. radicis N35 produces 3-hydroxy-C10-homoserine lactone (3-OH-

C10-HSL) as major AHL-compound. In this communication the influence of A. radicis N35-

produced 3-OH-C10-HSL on barley seedlings was investigated by comparing wild type and an 

araI insertion mutant, lacking AHL-production. The comparison of inoculation effects of the A. 

radicis N35 wild type and the araI::tet mutant discovered remarkable differences. While the N35 

wild type colonized plant roots effectively by forming biofilm-like structures on the root surface, 

the araI::tet mutant occurred at the root surface as single cells. In addition, in a mixed inoculum 

of wild type and araI::tet mutant, the wild type was predominant in colonization compared to the 

araI::tet mutant. Nevertheless, a significant plant growth promotion effect could be shown after 

inoculation of barley with the wild type and the araI::tet mutant in soil after 2 months. A. radicis 

N35 wild type showed less induction of early defense responses in plant RNA-expression 

analysis, whereas the araI::tet mutant caused e.g. increased expression of flavonoid biosynthesis 

genes, which was corroborated by the accumulation of several flavonoid compounds like 

saponarin and lutonarin in leaves of root inoculated barley seedlings. Thus, it can be concluded, 

that the synthesis of 3-OH-C10-HSL by A. radicis has implications on the colonization efficiency 

of plant roots and the perception by the host plant barley. 

.
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Fig S1:  A. radicis N35 and A. radicis araI::tet mutant colonization of barley roots in soil for 2 weeks and 

2 months detected using FISH method. A. radicis N35 is always shown in purple. In the top row (2 weeks 

samples) All bacteria can be detected by EUB 338 Cy3 probe which are depicted in red. Acidovorax 

radicis N35 detected by ACISP145 Cy5 whichi are depicted in blue. Acidovorax radicis  n35 can be 

detected by both EUB and ACISP145 probe which are depicted in purple. In the bottom row (2 months 

samples) Acidovorax radicis N35 can be detected by both EUB338 Cy5 which is depicted in blue and also 

by ACISP Cy3 which is depicted in red so it was shown in purple color. . A, D: Control; B, E: A. radicis 

N35; C, F: A. radicis araI::tet mutant. The white arrow are labeled A.radicis N35 cells. 
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Fig S2: RT-qPCRprimer melting curves. Q1: F-Box family 3, Q13: E3 ubiquitin-protein ligase PRT1, Q15: 

Heat shock protein 90, Q20: UDP-glycosyltransferase-like protein, Q24: Chaperone protein dnaJ common, 

Q29: 4-Coumarate: CoA ligase, Q30: chalcone-flavonoine isomerase, Q32: chalcone synthase. 
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