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München, den 16. Dezember 2016



Erstgutachter: Prof. Georgi Dvali

Zweitgutachter: Prof. Stefan Hofmann

Tag der mündlichen Prüfung: 17. Februar 2017
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Zusammenfassung

In der Kosmologie und Quantenfeldtheorien (QFT) gibt es viele Experimente, die darauf
hinweisen, dass die Natur Quantengesetzen gehorcht. In dieser Dissertation wollen wir,
von dieser Prämisse ausgehend, die Konsequenzen untersuchen. Insbesondere folgt daraus,
dass wir jedes klassische Objekt als einen Quantenbindungszustand aus mikroskopischen
Freiheitsgraden verstehen sollten. Alle klassischen Eigenschaften müssen aus Konsistenz-
gründen aus der zugrunde liegenden Physik folgen. Dieser Denkweise folgend entwickeln
wir Methoden, um verschiedene klassische Felder durch ihre Konstituenten auszudrücken.

Unter dieser Annahme müssen QFT und dementsprechend Unitarität auch innerhalb
eines schwarzen Loches weiterbestehen. Daraus folgt unmittelbar, dass ein schwarzes Loch
ein Quantenbindungszustand sein muss. Demnach können wir das innere des schwarzen
Loches durch Hochenergiestreuexperimente untersuchen, wie dies zum Beispiel in der
Quantenchromodynamik (QCD) der Fall ist. Insbesondere wenn wir Streuenergien von
der Größe des inversen Schwarzschildradius in Betracht ziehen, folgt automatisch, dass
wir die Verteilungsfunktion der individuellen Konstituenten des schwarzen Loches bestim-
men können. Es stellst sich heraus, dass diese direkt proportional zum entsprechenden
Wirkungsquerschnitt ist.

Außerdem entwickeln wir in dieser Arbeit eine Methode um allgemeine klassische Felder
mit Hilfe von kohärenten Zuständen als Bindugszustände darzustellen. Dies erlaubt uns
eine mikroskopische Beschreibung von Solitonen zu entwickeln. Vor allem stellen wir fest,
dass die Stabilität des topologischen Solitons gegenüber dem Zerfall in Verbindung mit
einer divergierenden Besetzungszahl von langwelligen Quanten steht. Als ein weiterer As-
pekt der quantenmechanischen Beschreibung bricht das supersymmetrische Soliton alle
Supersymmtrien durch die Quantenkorrekturen, die aus einer Rückkopplung mit den indi-
viduellen Solitonkonstituenten resultieren.

Es ist nicht möglich die gleichen Techniken direkt auf das Instanton anzuwenden. Daher
bilden wir das Instanton auf ein höher dimensionales Soliton ab, welches in euklidischer
Zeit propagiert. Dementsprechend erbt das Instanton alle quantenmechanischen Eigen-
schaften des Solitons. Durch diese Beschreibung lässt sich feststellen, dass die Skalenin-
varianz des Belavin-Polyakov-Schwarz-Tyupkin (BPST) Instantons gebrochen ist, da die
Besetzungszahl direkt proportional zur Ausdehnung des Instantons ist.

Zudem untersuchen wir klassische Hintergrundmetriken in der allgemeinen Relativitäts-
theorie von dem mikroskopischen Standort aus. Zum Beispiel beschreiben wir die Anti-
de Sitter (AdS) Raumzeit mit Hilfe der oben genannten kohärenten Zustände. Folglich
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lässt sich feststellen, dass die Besetzungszahl in der Hauptmasse von AdS mit der En-
tropie der konformen Feldtheorie auf der Umgrenzung der Raumzeit übereinstimmt. Dies
verdeutlicht den quantenmechanischen Ursprung des holographischen Prinzips. Außer-
dem führt die Auflösung von AdS zu ähnlichen Quantenkorrekturen, wie jenen die wir
oben im Zusammenhang mit supersymmetrischen Solitonen eingeführt haben. Diese Kor-
rekturen beeinflußen die Propagation von Skalarfeldern durch die AdS-Raumzeit und die
korrespondierende Unruhstrahlung.



Abstract

Many experiments, for instance in cosmology and quantum field theory (QFT), imply that
nature is fundamentally quantum. In this thesis we want to take this perspective as a start-
ing point and investigate its consequences. From this point of view, every classical object
should be understood as a quantum bound state of proper microscopic degrees of freedom.
As a consequence, consistency requires that all the classical features should emerge from
these underlying physics. Following this logic, we develop methods to represent classical
fields in various examples in terms of constituents.

If we take this premise seriously, it follows that QFT and subsequently unitarity even
preexist inside a black hole. In other words, we should understand the black hole as a
quantum bound state. Therefore, we can probe the black hole interior by high energy scat-
tering experiments as it is usually done in quantum chromodynamics (QCD) for hadrons.
We would expect by default that when we consider scattering energies of the order of
the inverse Schwarzschild radius, we can measure the momentum distribution of the in-
dividual black hole constituents. Thus, we perform a consistency check that, indeed, the
corresponding cross-section is proportional to the occupation number.

As a next step, we develop the coherent state technique which can be used to rep-
resent generic classical fields as bound states. Using this method, we show how we can
treat solitons in a microscopic description. In particular, we observe that the stability
of the topological soliton can be associated with a diverging occupation number of large
wavelength quanta. In ongoing work, we consider supersymmetric solitons from this per-
spective. It turns out that supersymmetry is completely broken by the quantum effects
resulting from the back-reaction on the individual constituents.

To apply these techniques to the instanton is more subtle. Therefore, instead of defining
a coherent instanton state, we map the instanton on a higher dimensional soliton evolving
in Euclidean time. More explicitly, we manufacture a situation where a soliton tunnels
through an energetically forbidden barrier. A low energy observer which is confined to
this region interprets this effect as an instanton from his lower dimensional point of view.
Correspondingly, the instanton inherits all its features from the soliton. In this description,
we observe that the scale invariance of the Belavin-Polyakov-Schwarz-Tyupkin (BPST) is
broken, since the occupation number of the instanton is proportional to the size of the
instanton.

Furthermore, we investigate gravitational background metrics from the microscopic
point of view. However, this is still work in progress. For instance, we discuss how we can
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use the very same coherent state techniques to describe Anti de-Sitter (AdS). Most notably,
in this description the occupation number of the AdS bound state in the bulk seems to
coincide with the entropy of the conformal field theory (CFT) on the boundary. This
makes the holographic principle manifest from the quantum point of view. In addition,
the compositeness of AdS leads to quantum corrections similar to the ones we uncovered
for supersymmetric solitons. These corrections affect the propagation of a scalar in AdS
and the Unruh radiation which is observed by a Rindler observer.



Chapter 1

Introduction

There is great experimental evidence that nature is fundamentally quantum. This is im-
plied by the experimental success of the tests of quantum field theories (QFT) as, for
instance, the electroweak theory and the discovery of the Higgs particle [1], but addi-
tionally by observations of the cosmic microwave background [2]. Nevertheless, in many
occasions in physics objects are introduced on purely classical grounds. For example, in
general relativity (GR) background metrics are usually treated as fundamentally classical
objects. In particular, this means that the background does not emerge from a microscopic
quantum theory. As a consequence, back-reactions on the background are neglected by de-
fault. Furthermore, we know of many field configurations which usually arise as solutions
to the classical equations of motions in quantum field theories. In the standard framework,
these solutions are treated as purely classical backgrounds, while we consider only quantum
fluctuations around the solution on a perturbative level. However, if nature is quantum
these classical solutions which are known as solitons should have a microscopic description.
In other words, they should emerge from underlying quantum degrees of freedom.

Let us briefly clarify what is meant by ’quantum’ in this context. We should not confuse
this with the usual perturbative computation of quantum loop contributions to classical
observables. These effects always arise when we consider small quantum fluctuations on
a classical background and a non-vanishing Planck constant ~, while the back-reaction is
neglected. We will refer to this limit as semi-classical limit. On the contrary, in this work
we are interested in a resolution of classical solutions into N constituents. In other words,
we want to identify the real microscopic degrees of freedom from which the classical solution
emerges. For instance, let us consider the hydrogen atom. It can be treated as a classical
field by a low energy observer. However, when one considers scattering experiments with
exchanged energies of the order of the inverse atomic radius, one observes that the atom
has a microscopic substructure. Namely, the constituents of the atom are given as the
electron and the proton. Considering even higher energy scales, it was found in quantum
chromodynamics (QCD) that the proton as well is only a bound state of quantum degrees
of freedoms. Thus, according to these examples the true quantum case is achieved when
we take the compositeness of classical fields into account (N is finite in this case) and
additionally set ~ 6= 0. We can always obtain the semi-classical limit from the pure
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quantum case for N →∞. In this thesis we are interested in generalizing this bound state
logic to several objects in quantum field theories which are usually introduced on purely
classical grounds.

The most famous of these objects which are usually treated semi-classically is the black
hole. This case is of particular interest, since due to the proof of gravitational waves cre-
ated by black hole mergers by the LIGO experiment [3], a new era of probing gravitational
features seems to arise. Therefore, it is necessary to develop a complete understanding of
gravity and, in particular, black holes to predict future measurements. However, in the
common semi-classical description of black holes many open questions and mysteries exist
which need still to be resolved. In order to achieve this goal, Dvali and Gomez [4, 5, 6] took
first steps towards a quantum mechanical description of black holes, where the number of
black hole constituents N is finite. In contrast to the semi-classical approach, this frame-
work known as black hole portrait takes back-reactions on the background into account.
In the work of Hofmann and Rug [7], further steps were taken to quantum mechanically
describe black holes in terms of auxiliary currents. From the quantum theory point of view
any bound state resolved into a finite number of constituents should sense deviations from
the classical value due to interactions between the constituents. These effects are, of course,
highly suppressed as 1/N . As already mentioned, we can exactly recover the semi-classical
limit from the quantum picture for the N → ∞ limit. Accordingly, we can safely ignore
any constituent effects in this limit. Note that this is exactly the main assumption of the
semi-classical work of Hawking [8, 9]. The Hawking radiation computation was done in
the black hole mass MB →∞ limit. Correspondingly, the constituent number N diverges
as well. Therefore, any back-reactions are neglected in this approach. Let us assume,
for the moment, we would have established a quantum notion for black holes. How can
this help in resolving, for example, the information paradox? The answer is connected to
the back-reaction which is not neglected in the full quantum description. One can restate
the information paradox simply as: How does a pure state evolve into a mixed one? In
a full quantum description, of course, such a non-unitary time evolution does not occur.
When we allow quantum effects due to compositeness, the information is encoded in the
constituents of the black hole and the Hawking radiation.

As mentioned before this quantum bound state logic is more general and should be
applied to all classical gravitational backgrounds. In particular, in this thesis we will apply
it to the Anti-de Sitter (AdS) background which was originally proposed in [4, 6]. Of
course, this is currently of particular interest due to the AdS/Conformal Field Theory
(CFT) correspondence [10, 11, 12]. For instance, we can give an interpretation for the
holographic principle [13] in this picture, since the total number of AdS constituents in the
bulk is proportional to the number of degrees of freedoms on the boundary.

So far we we only discussed the difference between the quantum and the semi-classical
approach in the gravity context as there are many open questions which need to be an-
swered. Nevertheless, as pointed out before the reasoning presented here is much more
general. There are many other examples of classical fields in physics which can be resolved
into constituents. Take, for example, the well known Laser beam which can be seen as a
coherent state of the corresponding monochromatic photons. The coherent state [14] is, in
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some sense, the most classical quantum state, since it is the eigenvector of the annihilation
operator meaning that only higher order operators can lead to deviations from classical
results. In particular, this is the reason why we can represent the classical electric field of
a Laser as a coherent state. However, this state is still intrinsically quantum. For instance,
it contains the notion of N constituent photons of the Laser. Thus, in principle it allows
to calculate 1/N corrections for the electric field. Of course, the Laser behaves nearly
classical due to the enormous occupation number.

Since the universe is fundamentally quantum, every classical solution should have a
microscopic notion in terms of quantum degrees of freedom. Correspondingly, in this
thesis we want to extend the quantum bound state description to solitons and instantons
because these are usually treated as classical backgrounds. Note that, in contrast to the
black hole case, we are not forced to think about a new description of these objects due to
obvious inconsistencies of the semi-classical treatment. Rather, as mentioned above there
is broad evidence that implies that we live in a fundamentally quantum world. Therefore,
the only logical perspective is that every classical solution of field theory like, for example,
the soliton should be resolved into its quantum constituents. Since solitons can be seen as
some kind of standing wave, it is straightforward to apply the coherent state reasoning of
the Laser to the case at hand.

At this point, let us summarize the general philosophy of this thesis. Nature seems to
be intrinsically quantum. Therefore, let us take the perspective that every classical object
can be described in terms of constituent degrees of freedom. In the following we try to
give a consistent description for many of these objects.

The outline of this thesis is as follows. In the rest of this chapter, we give an overview of
the usual classical and semi-classical treatment. First we consider classical general relativity
and quantum field theory on curved space-time. In particular, we point out which problems
arise in this treatment for black holes. Furthermore, we present the black hole portrait by
Dvali and Gomez [4, 5, 6] which is a first proposal to represent the black hole as a bound
state of gravitons. Then we briefly discuss semi-classical solitons and instantons in sections
1.4 and 1.5, respectively. Finally, we present the essence of the AdS/CFT correspondence.

Due to the new evidence for black hole mergers, it is a very interesting question how
the microscopic structure of black holes would affect the outcome of scattering processes on
black holes. Naturally, we would expect that in the quantum treatment the corresponding
cross-section is proportional to the occupation number of constituent gravitons. In chapter
2 we perform a consistency check to show that this is, indeed, the case. To achieve this,
we use similar techniques as in deep inelastic scattering (DIS) on hadrons in QCD [15].

In the third chapter we discuss our bound state proposal for solitons put forward in [16].
In this case we use coherent states to represent solitons in terms of its quantum degrees of
freedom. We recover all the known classical results for the non-topological and topological
soliton in the first section of this chapter which is, of course, a necessary condition for every
quantum framework. Moreover, we give a physical interpretation of the different types of
quanta. We can relate the stability of the topological soliton against vacuum decay to an
infinite occupation number of long wavelength modes. In addition, we investigate solitons
in supersymmetric theories in 3.2. The results indicate that the constituent picture of
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solitons leads to 1/N type quantum effects (similar to the black hole portrait) which break
all the supersymmetries. Note, however, that this is still work in progress and some open
questions remain.

The quantum resolution of instantons is discussed in the fourth chapter. For that
purpose, we present an understanding of instantons in terms of the tunneling of solitons.
In fact, we will consider explicit situations where solitons evolving in Euclidean time are
interpreted as instantons by a low energy observer. Note that this means that we can
map instantons on solitons in one more dimension. Due to this duality the instanton
inherits the microscopic structure of the soliton if it is represented as a bound state. We
will consider many different examples like the Belavin-Polyakov-Schwarz-Tyupkin (BPST)
instanton [17] and the kink [67].

The coherent state method can also be used to describe gravitational backgrounds as
it was proposed in [4, 6]. This is done in chapter 5 for the explicit example of Randall-
Sundrum space-time [18, 19] and AdS. As mentioned before, the metric is described as
an emergent phenomenon of many quanta in a coherent state similar to the soliton. In
particular, we want to understand if this sheds a new light on the AdS/CFT correspondence
[10]. Additionally, we try to compute 1/N type corrections to the propagator of a scalar
in AdS. These could potentially affect the correspondence as well. However, there are still
many questions to be answered in this context. As an application, we can show that these
effects would lead to deviations from the thermality of the Unruh radiation in AdS [20].

Finally, in chapter 6 we give a summary and an outlook for future projects.

Conventions

In this thesis, we will use the unit convention ~ = c = 1, where ~ is the Planck constant
and c is the vacuum speed of light, respectively. In some situations, we will restore the
appropriate powers of ~ if it is necessary. When it is convenient, we put ’hats’ on the
operators to make the difference to classical functions manifest. Additionally, we will use
the ’mostly−’ convention for the Minkowski space-time in the QFT part of this thesis, while
we use the ’mostly +’ convention for GR. The Planck mass is defined as MP = 1/

√
8πG,

where G is Newton’s constant. In many occasions in this thesis we discuss quantum effects
which are suppressed as 1/N . Note that strictly speaking these effects always behave as
~/N .

1.1 Classical and Semi-Classical General Relativity

In this section we briefly review the important features of GR [21, 22] and quantum field
theory on curved space-time (reviewed for instance in [23]). For a more detailed review of
GR the reader is referred to [24, 25].

Classical GR is a geometric theory meaning that all objects move along geodesics.
These geodesics depend on the curvature in the given amount of space. The curvature is
generated by the sources of GR, i. e. the energy-momentum tensor Tµν . In particular,
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any mass or energy bends the space-time. Correspondingly, it affects the surrounding
geodesics. The dynamical object in GR which has to be determined in order to construct
the geodesics for each particle is given by the metric gµν .

Einstein formulated fundamental postulates in order to define GR. First of all, he in-
troduced the principle of equivalence stating that any mass or energy couples with the
same strength to gravity. Secondly, he claimed that physics is independent of the coordi-
nate choice. This simply means that we can switch to physically equivalent metrics by a
diffemorphism

g̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ . (1.1)

Given a curve which is parametrized by τ , we now define the corresponding tangent vector
given by uα = dxα/dτ . This curve is a geodesic if the tangent vector is parallel transported
along itself meaning simply that the covariant derivative vanishes,

Duα

Dτ
=
∂uα

∂τ
+ Γαβγu

βuγ = 0 . (1.2)

Here we introduced the Christoffel symbols

Γαβγ =
1

2
gαµ (∂γgµβ + ∂βgµγ − ∂µgγβ) . (1.3)

Note that the Christoffel symbols are not a tensor, since they do not transform according
to (1.1) under diffeomorphisms. Now we simply have to find the metric produced by the
energy-momentum tensor at hand. For that purpose, we consider the fundamental action
of GR given as the famous Einstein-Hilbert action

SEH =

∫
d4x

(√
−gM

2
P

2
(R− 2Λ) + gµνT

µν

)
, (1.4)

where MP is the Planck mass, Λ the cosmological constant, R is the trace of the Ricci
tensor Rµν and g the determinant of the metric gµν . We will clarify the meaning of Λ later
in this section. In addition, T µν is the energy-momoentum tensor acting as the source in
general relativity. The kinetic term for the metric is encoded in the Ricci tensor, since it
is defined as

Rµν = Rα
αµν = ∂µΓααν − ∂νΓααµ + ΓαβµΓβαν − ΓαβνΓ

β
αµ . (1.5)

Rµν is a measure for the curvature of the corresponding space-time and is invariant under
coordinate transformations. By varying (1.4) with respect to gµν , we obtain the equation
of motion known as the Einstein equation

M2
P

(
Rµν −

1

2
Rgµν + Λgµν

)
= Tµν . (1.6)
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Now it becomes manifest how Tµν influences the space-time metric. To determine the
geodesics of an object, we just solve equation (1.6) for the metric. The principle of equiv-
alence which was postulated by Einstein is exactly reflected in (1.6). Mass and Energy
represented by Tµν couple with the same strength to gravity. The corresponding coupling
constant is the Planck mass MP .

Note, however, that this feature is not unique to gravity, but can also be achieved
in certain scalar field theories [26]. Similarly, the principle of coordinate invariance is
not unique. To understand this, one has to keep in mind that it simply means that we
should use redundancies to implement the correct number of degrees of freedom in the
corresponding field. Obviously, this is similar to usual gauge theories where we use gauge
redundancies instead of coordinate invariance. This will become more clear below.

As nature is quantum, let us take a further step and try to understand gravity from
the QFT point of view. When trying to quantize the full Einstein-Hilbert action (1.4) one
runs into several problems. First of all, since the Hamiltonian of gravity is zero, we cannot
easily apply the canonical quantization method as for other classical field theories like
Maxwellian theory1 [27]. Secondly, treating the metric as a quantum field ĝµν the highly
non-linear operators in (1.4) like the determinant term

√
−ĝ lead to an infinite series of

higher order operators when expanded. The appearance of the non-renormalizable terms
in the Lagrangian was a puzzle for some time, since the Standard Model contains usually
only renormalizable or super-renormalizable terms. We further elaborate on this topic
in a moment, but first let us discuss the usual strategy to combine quantum theory and
gravity which is called QFT on curved space-time. As was pointed out above, this is a
purely semi-classical treatment, since it does not allow for the resolution of the classical
background, but only takes finite ~ effects into account. This means that one considers
small quantum fluctuations around the classical metric gµν , but neglects any back-reactions
on gµν . Starting from pure Einstein gravity, we therefore obtain an interacting quantum
theory of these massless fluctuations. As it turns out, these are spin 2 particles referred to
as gravitons. From this point of view, it makes more sense to uniquely define GR as the
interacting theory of massless spin 2 particles. The equivalence principle and coordinate
invariance directly follow from this statement.

Accordingly, the strategy to quantize the theory is as follows. We do not quantize the
whole metric ĝµν , but simply consider small quantum fluctuations known as gravitons on
top of the classical background gµν . For that purpose, we split the metric as follows

ĝµν → gµν +
1

MP

ĥµν . (1.7)

We have to include the factor of MP to canonically normalize the graviton ĥµν . Let us

stress, again, that only ĥµν is a quantum field, while the background metric stays classical.
Consequently, the graviton corresponds to the gauge boson responsible for gravitational

1 The Hamiltonian of GR is simply a constraint which has to vanish. This is, of course, problematic
since in usual quantum theories the Hamiltonian generates time translations. However, in classical GR all
coordinates are treated on equal footing.
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interaction. Note that we will from now on denote the graviton quantum field by hµν instead

of ĥµν . In the context of general relativity, the gauge symmetries are called diffeomorphisms
and exactly correspond to the coordinate invariance of the classical metric in equation
(1.1). As in gauge theories, the diffeomorphism invariance is used to enforce constraints
on the symmetric tensor field hµν such that only two propagating degrees of freedom
remain [27]. In contrast to the photon, the graviton has two symmetric space-time indices.
Correspondingly, it is a spin 2 boson.

As mentioned above, the Einstein-Hilbert Lagrangian contains non-renormalizable in-
teraction terms for the graviton even in the semi-classical description. However, from a
modern effective field theory point of view this is not a problem [28, 29, 30]. These irrel-
evant operators are simply suppressed for energies far below the Planck mass. When the
energy scale approaches the Planck scale, we have to include higher order operators to still
obtain the correct results. One could argue that such a theory would not be predictive, but
this is not true. Before doing any computations, we have to determine up to which energy
scale we want to be predictive. Then we have to do a finite amount of measurements to
determine the coefficients of the contributing operators.

Of course, this strategy only works as long as we consider energy scales ΛUV < MP .
For energy scales above the Planck scale, all the dimensionless couplings are at least of
order one. Accordingly, we cannot trust perturbation theory anymore at this point. This
simply means that a new, unknown type of physics comes into play at those scales which
unitarizes the theory. The most famous approach to UV complete general relativity is
possibly String Theory [31, 32] which tries to solve the problem by introducing a hard UV
cut-off by replacing point particles by strings. In this thesis we will always operate far
below the Planck scale such that we do not have to consider any kind of UV completion.

There are many classical objects in our universe like planets with masses M � MP .
Thus, one could argue that already at the level of Newtonian mechanics the unitarity bound
is violated. Of course, this is not the case, since we do not need to include anti-particles
for extremely massive non-relativistic objects. Consequently, planets can only occur as
external legs in an effective field theory description. For sure they cannot run in loops
causing unitarity violations.

Note that already in equation (1.7) we see the MP suppression for higher order graviton
operators. With this in mind we can expand the Einstein Hilbert action to linearized order
in the graviton as is for instance shown in [33],

Sh =

∫
d4x

(
−1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µhµν∂νh+

1

2
∂λh∂

λh

)
. (1.8)

Here we considered a Minkowski background gµν = ηµν and defined h = hµµ. To go to a
non-trivial background, we have to perform the simple replacement ∂α → ∇α, since the
covariant derivative contains all the background information. Now we can simply apply the
Hamilton method as is, for example, described in [33] to quantize the system by imposing
non-vanishing equal time commutators for the graviton and its conjugated momentum Π

[h(x),Π(y)]x0=y0 = i~δ(3)(~x− ~y) . (1.9)
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We can express the graviton in terms of creation and annihilation operators âk and â†k to
fulfill this requirement via the usual free wave expansion

hµν(x) =

∫
d3k√

(2π)32ω(k)

∑
λ

(
εµν(λ)âke

ikx + ε∗µν(λ)â†ke
−ikx

)
. (1.10)

Here we introduced the polarization tensor εµν . As for usual quantum field theories, we can
compute correlators by using Wick’s theorem. For instance, we find the following graviton
propagator

〈0|Thµν(x)hαβ(y)|0〉 = ∆grav
µναβ(x− y) =

∫
d4k

−i
k2 + iε

eik(x−y)Sµναβ , (1.11)

where we introduced the tensor structure

Sµναβ = ηµαηνβ + ηναηµβ − ηµνηαβ . (1.12)

Now we have everything in place to, for instance, write down the Feynman rules of the
theory or compute the partition function of the theory. As mentioned above, introducing
a background metric would simply lead to a coupling to a classical background field. Fur-
thermore, we could include the graviton self-interaction by including the next-to leading
order term of the form (∂h)2h/MP . Of course, this is the first non-renormalizable operator
and is suppressed as ΛUV /MP . This approach now allows to compute quantum corrections
to classical observables via contributions from higher loop diagrams.

1.1.1 Anti-de Sitter Space-Time

Anti-de Sitter space-time is one of the simplest special space-times. It is characterized by
a negative cosmological constant Λ which leads to many interesting features. In general,
we can represent d + 1 dimensional AdS as a hyperboloid embedded in d + 2 dimensions
[11],

− x2
0 − x2

d+1 +
d∑
i=1

x2
i = −R2

AdS . (1.13)

Here RAdS is the AdS curvature radius. This leads to the line element of the global patch
of Anti-de Sitter given as

ds2 = R2
AdS

(
−cosh2ρ dτ 2 + dρ2 + sinh2ρ dΩ2

d−1

)
, (1.14)

where dΩ2
d−1 represents the solid angle. It possesses the maximal symmetry group SO(d,2),

but in contrast to Minkowski it is a hyperbolic space.
The coordinate system we will mostly use here is the Poincaré patch which covers half

of the AdS. The corresponding metric is given as

ds2 =
R2
AdS

z2

(
dz2 + dxµdxµ

)
, (1.15)
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where the index µ corresponds to the usual Minkowski coordiantes. The z coordinate
denotes the conformal direction. In some sense, AdS can be seen as a Minkowski space at
each z, but conformally rescaled. Due to the large symmetry of pure AdS we can easily
compute its Ricci scalar

R =
−(d+ 1)d

R2
AdS

. (1.16)

Additionally, for a d+1 dimensional AdS, we can express Λ in terms of its curvature radius
RAdS

Λ =
−d(d− 1)

R2
AdS

. (1.17)

Brown and Henneaux [34, 35] showed that we can associate an asymptotic symmetry
group to the boundary of AdS. However, in contrast to Minkowski which is invariant
under the BMS symmetry group [36, 37, 38, 39] the boundary of AdS preserves conformal
symmetry. This is reflected by the fact that no massive particle can reach the boundary
of AdS. Thus, in some sense AdS acts as a box imprisoning the massive particles. We will
get to this point again when we discuss the AdS/CFT correspondence in section 1.6.

1.1.2 Semi-classical Black Holes

In classical general relativity, there exists a special solution which is called the black hole
or Schwarzschild solution [24, 40]. The gravitational pull of such an object is large enough
to trap light on its horizon. Any object of mass M whose physical radius rp is smaller
than the Schwarzschild radius rg = 2GM fulfills this requirement. The line element for
this Schwarzschild solution is given as

ds2 = −
(

1− rg
r

)
dt2 +

1(
1− rg

r

)dr2 + r2dΩ2 . (1.18)

As usual, the line element can be computed from the metric via ds2 = gµνdx
µdxν . In

general, this is the metric for any object of mass M for r � rp. The black hole simply
corresponds to the special case rp < rg. Note that although this metric is ill defined at
rg = r, nothing special happens at this point for an infalling observer. This is simply an
artefact of a wrongly chosen coordinate system. In principle, we can get rid of this problem
by introducing Kruskal coordinates [24]

ds2 =
4r3

g

r
e−r/rg

(
−dT 2 + dX2

)
+ r2dΩ2 , (1.19)

where we performed the coordinate transformation

T =

√
r

rg
− 1er/2rgsinh

(
t

2rg

)
, (1.20)

X =

√
r

rg
− 1er/2rgcosh

(
t

2rg

)
(1.21)
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for the exterior of the black hole and

T =

√
1− r

rg
er/2rgcosh

(
t

2rg

)
, (1.22)

X =

√
1− r

rg
er/2rgsinh

(
t

2rg

)
(1.23)

for the interrior where r < rg. As one can see, the time and the radial coordinate exchange
their roles at the Schwarzschild radius. Therefore, we cannot define a global timelike Killing
vector for the interior and the exterior. This usually happens for time dependent back-
grounds. Notice that this property ultimately leads to the Hawking radiation phenomenon
which we will consider below.

The r = rg surface is called the event horizon, since we cannot exchange information
with any object which passes the Schwarzschild surface. Thus, by no means we can test
the Kruskal coordinates in the interior on classical grounds without entering the black
hole. However, obviously an observer inside the black hole cannot communicate with the
exterior. The only true classical singularity of this background occurs at r = 0 where the
curvature of the black hole diverges.

To compute the famous Hawking radiation of a black hole, let us allow quantum fluc-
tuation on top of this classical background. Naively, we can interpret this effect as follows.
A pair of particles created near the event horizon could be separated by the gravitational
pull. Consequently, an anti-particle would enter the black hole, while the other one escapes
as Hawking radiation.

Let us be more explicit at this point and repeat the computation of Hawking [8, 9]. We
want to work in the semi-classical limit during this computation:

~ 6= 0 ; MB and MP →∞ keeping rg fixed. (1.24)

Consider now a quantum scalar field φ propagating on this background. It satisfies the
free wave equation

∇2φ = 0 . (1.25)

At this point, the derivative operator ∇2 already contains the background as the covariant
derivative contains all the metric dependent Christoffel symbols. Since φ fulfills the usual
equal time commutation relation, we can expand it in terms of creation and annihilation
operators â and â†

φ =
∑
i

(
αiâi + α∗i â

†
i

)
, (1.26)

where the αi are the corresponding mode functions which have to satisfy the equation
of motion (1.25). The âi and â†i are defined as creating and annihilating quanta at past
infinity

âi|0−〉 = 0 . (1.27)
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Furthermore, they satisfy the usual algebra

[âi, âj] = 0 ; [âi, â
†
j] = δij . (1.28)

At the same time, we can define the scalar field in terms of a different set of creation and
annihilation operators b̂j, b̂

†
j, ĉj, ĉ

†
j which act on a different vacuum. The b̂j create scalar

particles at future infinity, while the ĉj create particle going in the black hole. Thus, we
obtain

φ =
∑(

βib̂+ β∗i b̂
†
i + γiĉ+ γ∗i ĉ

†
i

)
. (1.29)

Here the γi and βi are again the mode functions which have to fulfill the equation of motion.
In particular, they might behave differently than the αi, since the corresponding operators
are defined on the future vacuum

b̂i|0+〉 = 0 (1.30)

ĉi|0+〉 = 0 . (1.31)

The Hawking radiation is explicitly encoded in the difference of the vacua. To be more
explicit, we can relate the different creation and annihilation operators via a Bogoliubov
transformation. Correspondingly, there is a non-zero occupation number of b̂-quanta from
the point of view of the vacuum at past infinity |0−〉,

〈ni〉 = 〈0−|b̂†i b̂i|0−〉 ∝
1

(eω/Tg − 1)
. (1.32)

Here ω is the frequency of the Hawking quanta. This is exactly the spectrum of the
radiation of a black body with temperature Tg = 1/rg.

It is the thermality of the spectrum which leads to the conclusion that there is an
information paradox, since thermal radiation cannot contain any information. This would
mean that measuring all the radiation of the black hole for an infinite time we could not
gather any knowledge about the quanta which fell into the black hole. From a quantum
mechanical perspective, this means that the black hole undergoes a non-unitary time evo-
lution because starting from a pure state we arrived at a mixed state described by a density
matrix.

1.2 Black Hole Information

To analyze the black hole from a quantum information point of view, let us consider the
argument of Page [41, 42]2. For that purpose, we view the Hawking radiation and the
black hole as two quantum mechanical subsystems (with dimension n and m, respectively)
of the same total Hilbert space of dimension nm. We assume that unitary time evolution is

2A useful review of the information paradox is, for example, given by [43].
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preserved, since it is fundamental in quantum mechanics. If we consider a pure black hole
state under this assumption, it can only evolve again into a pure state. In other words,
the total density matrix for black hole and Hawking radiation still satisfies ρt = ρ2

t .
Nevertheless, the subsystems can be in a mixed state. As usual, we can determine their

density matrices by tracing over the other subsystem. Consequently,

ρBH = trHRρt (1.33)

ρHR = trBHρt , (1.34)

where ρBH and ρHR are the density matrices of the black hole and the Hawking radia-
tion, respectively. We can define an entanglement entropy for both subsystems using the
definition of von Neumann

SBH = −trBHρBH logρBH = −trHRρHRlogρHR = SHR . (1.35)

Page defines the notion of information of the black hole IBH as the difference between the
maximal entropy (log m) for the black hole and the entanglement entropy in (1.35). The
information of the radiation IHR is defined accordingly,

IBH = log m− SBH (1.36)

IHR = log n− SHR . (1.37)

The smaller subsystem is nearly fully entangled and therefore contains hardly any
information. It holds

IHR ∼
m

2n
(1.38)

for 1 < m < n. This situation, however, is changed after a certain period of time which is
called Page time tP . After this amount of time, the Hilbert space of the Hawking radiation
is larger than the one of the black hole. Correspondingly, the radiation cannot be totally
entangled anymore with the black hole. In turn, the radiation starts to convey information
according to equation (1.37).

The results of Page seem to be in total contrast to the ones of Hawking who found
a completely thermal spectrum which cannot contain any information. To resolve this
problem, one has to take a look at the time scales involved. The Page time is naturally
given by the time scale which is needed to radiate away half of the black hole. If one trusts
Hawking’s computation, it is then given by

tP ∼MB . (1.39)

Thus, since Hawking considers an infinitely heavy black hole, it takes an infinite amount of
time until information starts to leave the black hole. According to Page, even if one could
prove that no information comes out by perturbative processes, nothing could prevent
non-perturbative processes to do so.
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To summarize, if one considers a finite mass black hole, the Hawking radiation contains
information as soon as half of the black hole is radiated away. In some sense, there exists
no information paradox by default, since in a full quantum picture a unitary time-evolution
is guaranteed. This is basically, the starting assumption of the black hole portrait of Dvali
and Gomez we consider in the next section.

Standard Approaches

There are several different attempts to resolve the information paradox. As a remark, let
us briefly comment on the two most common approaches. The first strategy tries to tackle
the problem within the description of semi-classical black holes itself. Most famously,
Susskind et al. proposed the concept of black complementarity [44, 45]. Their proposal
states that it is unphysical to assume that there exists a pure physical state describing both
the interior and the exterior of the black hole, since an outside observer could never gain
any information about the interior. Without such a global superobserver, there seems to
be no contradiction to assume that an infalling observer can retrieve the information after
some time. Before evaporating, the information is stored on a stretched horizon which can
contain all the microscopic degrees of freedom. However, one of the main assumptions of
this proposal states that that an infalling observer should observe nothing special when
he enters the black hole. This is questioned by the work of Polchinski et al. [46] who
showed that this set-up necessarily leads to a firewall surrounding the black hole. Thus,
this strongly hints that semi-classical solutions to the unitarity problem seem not to work
so far.

The second type of solutions is based on string theory like the fuzzball proposal [47]
or matrix models [48]. In these frameworks, however, the question arises why we have to
introduce physics in the deep UV to resolve a problem which even occurs on extremely
large scales. More explicitly, consider a large black hole of Schwarzschild radius rg � LP ,
where LP is the Planck length. At these energy scales, we can totally trust common
quantum gravity, since usually we expect new degrees of freedom to become important
only at the Planck scale. Nevertheless, unitarity is violated by semi-classical black holes
at these scales. Thus, it has to be clarified why a problem arising at macroscopic scales
should be resolved by physics affecting a highly disconnected energy regime.

A third option is to resolve the black hole in its quantum degrees of freedom and is
discussed in the next section.

1.3 Black Hole Portrait

At this point, let us discuss the black hole portrait by Dvali and Gomez [4, 5, 6]. In contrast
to the semi-classical approach, the portrait gives a full quantum picture of the black hole.
This means that the black hole is not treated as a classical background, but is resolved
into its quantum degrees of freedom. As argued in the beginning of this chapter, this is a
very reasonable perspective as many experiments indicate the fundamental quantumness of
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nature. The different physical limits (classical, semi-classical, quantum) are shown in table
1.1. Obviously, if we work in a full quantum picture, unitary time evolution is guaranteed

classical ~→ 0 MB, MP →∞, MB/M
2
P fixed

semi-classical ~ 6= 0 MB, MP →∞, MB/M
2
P fixed

quantum ~ 6= 0 MB, MP finite

Table 1.1: The table shows the different physical limits, where MB is the black hole mass
and MP is the Planck mass.

by default. This leads, for instance, to the automatic resolution of the information paradox,
since no pure state can evolve into a mixed state in such a description of black holes3.

The quantum description for the black hole is introduced by representing it as a bound
state. In particular, the black hole is made out of N quantum constituents from this
point of view. Since we consider black holes of finite mass, the corresponding occupation
number N is finite as well. As we will see, this will lead to finite corrections to the Hawking
spectrum of the order 1/N . Although these corrections seem to be very small, they can
still unitarize the Hawking radiation.

The constituents of the black hole are given as gravitons in the black hole portrait. This
is a natural choice for several reasons. First of all, we know that black holes also exist in pure
Einstein gravity, where the graviton is the only quantum particle we know of. Furthermore,
as we will see below it is exactly the derivative structure of the graviton self-coupling which
allows to construct black hole bound states of arbitrary size. These constituent gravitons
are longitudinally polarized. In contrast to the usual transversal gravitons, the off-shell
gravitons allow for the formation of bound states. Note, however, that the constituent
gravitons behave completely differently than usual transversal gravitons. They simply
cannot exist as asymptotic S-matrix states and have a non-trivial dispersion relation.
Correspondingly, they can only exist in the bound state itself. In order to form black holes
in this framework, one has to claim that the overlap between the asymptotic and the bound
state quanta is non-zero.

For every bound state, the constituents have to be confined in a certain spatial volume.
Additionally, there exists a momentum distribution of the bound state quanta. One of the
crucial points of the black hole portrait is that the wavelength of the constituent gravitons
is given by the Schwarzschild radius. Of course, this also means that we can only consider
black holes with physical size rp = rg, since otherwise the gravitons cannot be confined
inside the bound state. The mass of the black hole is simply given as the sum over the
energy of the N constituents

MB = N
1

rg
, (1.40)

3Note that it was shown in [49] that we do not need to consider a concrete quantum model for the black
hole in order to resolve the paradox. As soon as we take back-reactions on the black hole into account (MB ,
MP finite), it directly follows that corrections to the thermality of Hawking radiation become important
after Page time. These corrections are not exponentially suppressed.
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where all gravitons contribute the same amount of energy. Note that this is only an
approximation. The real momentum distribution of the constituent gravitons should be
smeared out by a corresponding profile. Accordingly, it cannot be completely narrow in a
more realistic approach. With this assumption, we can reexpress the classical parameters
of the black hole in terms of the quantum parameters N and MP

MB =
√
NMP , (1.41)

rg =
√
NLP , (1.42)

where LP is the Planck length.
Naively, one could expect that the gravitational attraction between the constituents

should be very strong. Therefore, totally unknown physics should dominate in this picture.
To show that this is not true, let us compute the individual coupling of the gravitons of
wavelength λgrav = rg

α =
L2
P

λ2
grav

=
1

N
. (1.43)

Here we focused on the lowest order graviton self-coupling term to compute α. Of course,
this is much smaller than 1 in such way that we operate far below the Planck scale. For
instance, for a solar mass black hole it holds

N ∼ 1076 . (1.44)

Correspondingly, we can neglect all the higher order interactions, since they are suppressed
by even higher powers of α. This is also the reason why we can safely neglect loop con-
tributions in this framework simply because we are far from the point of strong individual
graviton interaction. Let us stress at this point that this description breaks down for small
black holes because for MB ∼ MP it follows N ∼ 1 such that the individual coupling
becomes order 1 as well.

The bound state system we are describing here has the crucial feature that the coupling
is the same for every constituent4. This is usually a property of Bose-Einstein condensates.
Furthermore, all constituents of a condensate share the same quantum state. Dvali and
Gomez claim that we can always represent the black hole as such a Bose-Einstein conden-
sate of gravitons [50]. Naively, we could ask the question, why such a condensate does not
decay if the individual coupling is extremely small. Note, however, that we can still have
large collective effects due to the large occupation number N . Usually, we define the ’t
Hooft coupling

λtH = Nα . (1.45)

in large N gauge theories to measure the collective coupling. The crucial difference to,
for example, large N QCD [51, 52] is that we can have black holes of arbitrary N in

4Clearly, this feature is very special to gravity, since the coupling is universal.
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gravity, while N is fixed in QCD5. Notice that the black hole condensate is in a very
special situation, where

λtH = 1 . (1.46)

This means that the condensate is at the quantum critical point. Therefore, the black hole
is, in contrast to usual macroscopic objects, very far away from classicality. Let us stress
again, that although the gravitons are weakly coupled individually, the black hole enters
the quantum critical regime due to the large collective effects. Additionally, we can make
the observation that λtH does, in fact, not depend on N , but is always 1 for the black hole
condensate. This is totally unknown in usual Bose-Einstein condensates and is exactly
related to the highly non-trivial derivative graviton self-coupling. In other words, it is a
special property of quantum gravity.

Consequently, the black hole always corresponds to a situation where the gravitons
are maximally packed. In particular, the binding potential and the kinetic energy of the
graviton are of the same order

Ekin = ~αN
1

λgrav
, (1.47)

V (r) = ~αN
1

r
, (1.48)

since the gravitational wavelength λgrav ∼ rg. Again, this is related to the quantum
criticality of the black hole. At this point, quantum depletion becomes highly probable
reflecting that constituent gravitons can easily leave the black hole, since the confining
potential is of the same order as the kinetic energy. Of course, this is related to the
Hawking radiation.

Before evaluating the corresponding depletion rate, let us briefly discuss the black hole
state. Since the black hole is described as a Bose condensate, the corresponding state can
simply be viewed as a Fock state of N constituent gravitons in one mode

|B〉 ∼ (a†1/rg)
N |0〉 . (1.49)

Note, again, that these creation operators do not create asymptotic quanta. To guaran-
tee consistency, the black hole state must have a non-zero overlap with a Fock state of
N asymptotic gravitons. As a consequence, the black hole can be formed in scattering
processes [53]. In this article, Dvali et al. consider the scattering of two ultra-planckian
gravitons into N gravitons in the final state.

The criticality of the Bose condensate of gravitons is ultimately linked to the thermality
of the black hole. In other words, gravitons can easily leave the condensate via usual
quantum scattering processes. In contrast to other bound states, black holes can exist for
any occupation number N . The black hole always stays at the quantum critical point even

5This is reminiscent of the fact that in the QCD context N is given by the gauge group SU(N) which
is fixed.
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when the occupation number changes as λtH is independent of N . As a consequence, a
black hole can decay completely via a series of black holes of smaller occupation number,
but still at the critical point. Correspondingly, Hawking radiation occurs in a full quantum
treatment as a byproduct of such a process. Obviously, this property is unique for black
holes and GR.

In the black hole portrait, we can easily approximate the corresponding black hole
decay rate from the bound state point of view. For that purpose, we simply consider
the two-to-two scattering of constituent gravitons. Due to this scattering, a graviton can
obtain enough kinetical energy to leave the black hole. This process is depicted in figure
1.1. To leading order in 1/N , we obtain

Γ = N2α2 1

rg
=

1

rg
. (1.50)

Here N2 occurs due to the multiplicity of gravitons, while 1/rg is the energy scale of the
outgoing quanta and α2 is simply the coupling. For α = 1/N we exactly recover Hawking’s
result. Restoring the Planck constant ~, we subsequently obtain the Hawking temperature
as in the semi-classical description

T =
~√
NLP

=
1

rg
. (1.51)

To compute this result we neglected quantum effects which are suppressed as 1/N . Neglect-
ing these contributions corresponds to the limit N →∞ which is exactly the semi-classical
limit where Hawking’s calculation is valid. Based on these ideas, the Hawking evaporation
was further investigated in [54].

Figure 1.1: Quantum depletion by a 2 → 2 scattering process of constituent gravitons
(curly lines).

Let us now consider the situation of finite N . Of course, the total occupation number
changes in this case due to the radiation

dN

dt
= − 1√

NLP
+O(1/N3/2) . (1.52)
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This already explains the negative heat capacity of black holes. It is related to the fact
that the occupation number is decreasing in time. Since the occupation number is not
constant, we obviously get corrections to the decay rate. These are exactly the quantum
corrections which are responsible for the purification of the Hawking radiation. In par-
ticular, they are not exponentially suppressed as usual perturbative corrections when we
consider fluctuations around the saddle point. Rather, they are suppressed as 1/N and
become order one after Page time tP .

In other words, if we wait until half of the black hole is evaporated (tP ∼ MB/2),
information starts to leave the black hole. It is simply encoded in the 1/N corrections
to Hawking radiation as Page suggested. Clearly, it is not surprising that the results are
in accordance with Page, since both approaches claim that unitarity is a fundamental
concept of nature. As a consequence, there is no black hole paradox in this formalism.
The black hole constituents all evolve unitarily simply because they are quantum objects.
Accordingly, the 1/N corrections unitarize the Hawking radiation.

Similarly, we can consider the no hair theorems [55, 56, 57, 58, 59, 60] from this point
of view. They state that the only charges we can attribute to a black hole are its mass
MB, its angular momentum and its electrical charge Q. Let us investigate the theorem in
the black hole portrait as in [5]. For that purpose, we assume that the black hole has some
global charge B. Again, we can measure it by scattering processes, but the decay rate
for quanta with global charge is suppressed as B/N . This follows from considering again
2 → 2 scattering with the difference that charged quanta only have a occupation number
B. Hence, we obtain

ΓB = NBα2 1

rg
, (1.53)

dB

dt
= − B

N3/2lP
. (1.54)

When considering the semi-classical limit N →∞, these effects vanish and the black hole
seems to have no hair. On the contrary, the full quantum treatment reveals that black
holes can, indeed, have quantum hair6.

Additionally, the black hole portrait sheds a new light on the Bekenstein entropy [62, 63]
and how we can understand fast scrambling [64]. In the articles [65, 66] Dvali et al.
consider a toy model of a complex scalar on a ring to mimic the behaviour of the black
hole constituents in the interior of the black hole,

H =

∫
ddx

(
~2

2m
∇φ†∇φ− g

2
(φ†φ)2

)
. (1.55)

This model still captures many of the black hole features like attractive interaction and
condensation of scalars. One can explicitly determine the time scale after which fluctuations
around the mean field background become important. This quantum break time can be

6Note that it was shown in [61] that skyrmion black holes have hair even on a classical level.
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found to be

tb ∼ log N . (1.56)

This is the time scale directly related to the quantum depletion of the Bose Einstein
condensate, since quantum effects become important when enough gravitons have left the
condensate due to scatterings.

To summarize the work presented in this section, we can treat black holes as Bose
condensates of N constituent gravitons. All typical results like geometry and Hawking
radiation can emerge from this condensate. In particular, this treatment resolves the
information paradox, since it avoids the unphysical N →∞ limit.

1.4 Solitons

1.4.1 Soliton in 1 + 1 dimensions

In general, solitons are solutions to non-linear equations which are non-dissipating. More-
over, they possess a certain energy and are localized on a corresponding length scale. For
instance, in 1 + 1 dimensions the simplest of these objects is the kink which will be mostly
considered in this section, but we will also briefly treat the magnetic monopole in higher
dimensions. For a more detailed review of solitons the reader is, for instance, referred to
[67].

Topological Soliton

The kink is obtained as a solution to the classical equation of motion corresponding to the
action

S =

∫
dxdt

[
∂µφ∂

µφ− g2

(
φ2 − m2

g2

)2
]
, (1.57)

where g is the coupling and m the mass of the scalar field φ. Note that the canonical
dimension of φ in 1 + 1 dimensions is zero, while the dimension of g is one. The vacuum of
this theory is degenerate due to the spontaneously broken Z2 symmetry (φ → −φ). The
two corresponding vacua are

φ =
m

g
for x→∞ and (1.58)

φ = −m
g

for x→ −∞ . (1.59)

The solution to the equations of motion known as kink profile is

φtop(x) =
m

g
tanh(mx) , (1.60)
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Figure 1.2: The kink profile versus the spatial direction x. For x → ±∞ the scalar field
acquires the vacuum expectation values ±m

g
.

which is shown in figure 1.2. The soliton has a modulus, since the theory is invariant under
shifting the kink center in the spatial direction. A very interesting feature of this object
is its topological charge. It guarantees that the kink or topological soliton is protected
against decay into the non-topological sector. To make the topological charge Q manifest,
we use the Bogomol’nyi split

S =

∫
dxdt

([
∂µφ± g

(
φ2 − m2

g2

)]2

∓ 2(∂µφ)g

(
φ2 − m2

g2

))

=

∫
dt


∫
dx

[
∂µφ± g

(
φ2 − m2

g2

)]2

∓2

∫
dxg∂x

(
φ3

3
− φm

2

g2

)
︸ ︷︷ ︸

Q

 . (1.61)

Since the last term is a total derivative, we can identify it with topological charge of the
model. The ± sign refers to the kink or anti-kink solution, respectively. To classify the
topological structure of the theory, one introduces the concept of homotopy. Two functions
are homotopic if they can be continuously deformed into each other. In particular, this
is not the case anymore if there exists a topological charge and a corresponding non-
trivial vacuum structure. We cannot deform the kink to a topologically trivial mapping.
This is simply rephrasing the statement that the kink is stable due to the conservation of
the topological charge. The vacuum structure at hand corresponds to a non-trivial first
homotopy group

π0(Z2) = Z . (1.62)

This measures the winding around the one dimensional sphere. In particular, the winding
number is given as the topological charge Q.
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Figure 1.3: The non-topological soliton profile versus the the spatial direction x.

As mentioned in the beginning, every soliton has an associated finite energy

Etop =

∫
dx

[
∂µφ∂

µφ+ g2

(
φ2 − m2

g2

)2
]

=
8m3

3g2
. (1.63)

Note that the energy is always given by the typical energy scale m times the inverse
dimensionless coupling

Non-Topological Soliton

Similary to the kink, there also exists a non-topological soliton when we interchange the
signs of the mass and the interaction term

S =

∫
dxdt

[
∂µφ∂

µφ−m2φ2 + g2φ4
]
. (1.64)

In contrast to the topological soliton, the vacuum is obviously non-degenerate in this case.
Correspondingly, the theory is topologically trivial which also means that it has a trivial
homotopy group according to our previous statements. As a consequence, the solitonic
solution to this theory known as bounce is not protected against decay into the vacuum.
It is given as

φnon−top =
m√
2g

sech(mx) , (1.65)

which is depicted in figure 1.3. This solution interpolates between the following field values

φ = 0 for x→ −∞ (vacuum) ,

φ =
m

g
for x = 0 (not stable) ,

φ = 0 for x→ −∞ (vacuum) .
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Interpreting x as the time, the field starts at the vacuum φ = 0 reaches φ = m√
2g

and

bounces back to the starting value. This solution is topologically not protected and can
accordingly decay into the Minkowski vacuum. This effect is known as false vacuum decay
investigated by Coleman in [68, 69].

Still this profile describes a legitimate soliton with the corresponding energy given by

Enon−top =
2m3

3g2
. (1.66)

It is worth mentioning that the energy is of the same order as the one of the topological
soliton.

1.4.2 Supersymmetric Soliton

In this section we review supersymmetry and in particular the supersymmtric soliton.
Coleman and Mandula [70] showed that we cannot extend the Poincaré algebra without
trivializing the theory (all scattering angles are fixed). However, there is a loophole to this
proof when we consider the symmetry of transforming bosons into fermions and vice versa.
This extension of the Poincaré algebra leads to the super-Poincaré algebra. Note that
supersymmetry necessarily implies that every boson has a supersymmetric super-partner
of the same mass. For a more detailed discussion of supersymmetry the reader is referred
to [71, 72, 73, 74].

These additional symmetries are generated by the supercharges Qα, Q̄α̇, where we intro-
duced Weyl indices [67]. In the following we are only interested in N = 1 supersymmetry.
This leads to the following algebra (additionally to the usual commutators)

{Qα, Q̄α̇} = 2(σµ)αα̇(Pµ + Zµ) ,

[Qα, Pµ] = 0 ,

[Mµν , Qα] = i(σµν)βαQβ .

Here the σµ are the Pauli matrice and Zµ is the central charge which commutes with all
the other generators. Furthermore, Pµ generates spatial translations, Mµν generates the
Lorentz transformations and σµν is defined as

σµν ≡ 1

4
(σµσ̄ν − σν σ̄µ) . (1.67)

In general, a state |sol〉 is supersymmetric when it is annihilated by all the super charges

Qα|sol〉 = 0 . (1.68)

Now let us turn to a concrete supersymmetric theory, where a soliton solution exists. For
that purpose, consider the 1 + 1 dimensional Wess-Zumino model with semi-classical (kink
not resolved microscopically) Lagrangian given as

L =
1

2

[
∂µφ∂

µφ+ ψ̄iγµ∂µψ −
(∂W
∂φ

)2

−
(∂2W
∂2φ

)
ψ̄ψ

]
, (1.69)
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where ψ is a two-component Majorana spinor which is simply the fermionic superpartner
of the bosonic scalar field φ and the γµ matrices satisfy the standard Clifford algebra. The
Dirac γµ matrices in 1 + 1 dimensions can be represented in terms of the Pauli matrices
σµ:

γ0 = σ2 ,

γ1 = iσ3 .

In order to define interaction terms respecting supersymmetry, we usually use the super-
potential W (Φ) as a tool allowing for an easy construction of supersymmetric theories. In
the particular model at hand, it is given by

W =
m2

g
φ− g

3
φ3, (1.70)

where the parameters are defined in accordance with the non-supersymmetric kink. Thus, g
is simply the coupling constant, while m is the mass. From equation (1.69), we observe that
m is the bosonic as well as the fermionic mass parameter which, of course, is a necessary
condition for a supersymmetric theory. Furthermore, the bosonic part of (1.69) is obviously
the same as the Lagrangian for the ordinary kink in equation (1.57). Correspondingly, this
theory has a similar classical kink solution. In general, we would expect that a solitonic
background should break the supersymmetries. However, there are some critical solutions
which preserve some of the supersymmetries.

For that purpose, we perform the standard Bogomol’nyi completion trick, while keeping
ψ = 0 for the moment. In particular, we can bring the Hamiltonian to the form

H =

∫
dx

1

2

[
(∂xφ)±

(
m2/g − gφ2

)]2

∓
∫
dx∂xφ

(
m2/g − gφ2

)
. (1.71)

Our intention is to find the critical solitonic solution minimizing the classical energy. Ob-
viously, this is the case when the first term vanishes. Thus, the Bogomol’nyi-Prasad-
Sommerfield (BPS) condition

OBPS ≡ ∂xφ±
(
m2/g − gφ2

)
= 0 (1.72)

has to be satisfied. The critical classical profile can be found by solving this equation.
Notice that the ± sign corresponds to the anti-kink and kink solution, respectively. We
will focus only on the kink solution which is given as

φtop(x) =
m

g
tanh(xm). (1.73)

The classical supersymmetric kink profile is the same as the usual kink given in equation
(1.60). One could ask the question, how it is possible that this solution preserves some
part of the supersymmetry. Clearly, there is not any fermionic kink in the theory. The
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answer is related to the criticality of the kink. On the critical solution, the total energy of
the kink is simply given by the second term of equation (1.71). We can rewrite this term
as a total derivative

H =

∫
dx∂xW =W(x =∞)−W(x = −∞) = Z , (1.74)

where Z is the topological charge of the kink. The topological charge is equivalent to the
central charge of the supersymmetry algebra of the theory. We can bring the algebra to
the form

{Q1, Q1} = H − Z , (1.75)

{Q2, Q2} = H + Z . (1.76)

Accordingly, on the kink solution corresponding to H = Z the charge Q1 annihilates the
soliton state, while Q2 does not. In other words, evaluating the charges on the kink state
we arrive at

Q1|sol〉 = 0 , (1.77)

Q2|sol〉 6= 0 . (1.78)

Consequently, this simply means that half of the supersymmetries are preserved. Thus, we
refer to this solution as 1/2 BPS.

Naturally, the question arises why the BPS condition is not spoiled by quantum effects.
We can answer this question in the semi-classical treatment by introducing bosonic and
fermionic quantum fluctuations around the classical background kink. These are simply
represented by the fermion operator ψ̂ which we neglected in the beginning of this section
and a bosonic fluctuation φ̂ which is small compared to φtop.

One of the features of supersymmetry is that it protects the BPS condition. In par-
ticular, renormalization effects due to quantum loops will not break supersymmetry on a
quantum level [71]. This corresponds to the fact, that for each bosonic loop there always
exists a canceling fermionic counterpart.

This concludes this brief review of supersymmetric kinks.

1.4.3 Monopole in 3 + 1 dimensions

In this section we will focus on magnetic monopoles which arise in more complicated
situations. For that purpose, we consider the Georgi Glashow model [33, 67] with a matter
sector containing a real scalar field φa in the adjoint representation. Additionally, there is
a gauge field Aaµ with the gauge group SU(2) in the theory. Note that the index a refers to
the scalar components in SU(2) space. We use the three Pauli matrices σa as basis vectors.
The corresponding Lagrangian is given as

L = − 1

4g2
Ga
µνG

aµν +
1

2
Dµφ

aDµφa − λ
(
(φa)2 − v2

)2
. (1.79)
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Here we used the following definitions for the field strength tensor Ga
µν and the covariant

derivative Dµφ
a

Ga
µν = ∂µA

a
ν − ∂νAaµ + εabcAbµA

c
ν (1.80)

and

Dµφ
a = ∂µφ

a + εabcAbµφ
c , (1.81)

where g is the gauge coupling. The last term of the Lagrangian (1.79) enforces a non-trivial
vacuum structure for the scalar field at |x| → ∞

φa = vδa3 . (1.82)

The vacuum still has a U(1) symmetry, since the breaking pattern is SU(2)→U(1). Using
color rotation, one can bring the direction of the vacuum vector always to this form. Of
course, this amounts to simply choosing a certain gauge condition which in this case is
called the unitary gauge.

What we presented so far is simply the usual Higgs mechanism [75]. Correspondingly,
the gauge fields A1

µ and A2
µ form the massive W± bosons, while A3

µ stays massless, since
the vacuum is invariant under color rotations around the third axis. However, this model
contains solitons which are topologically stable. In order to see this, note that φaφa is
constrained to the sphere of radius v2. Mapping the coordinate sphere corresponding to
the monopole on this group space sphere, we find a non-trivial homotopy group

π2(SU(2)/U(1)) = Z . (1.83)

The winding number of the mapping, again, reflects the topological charge of the soliton.
We call these solitons magnetic monopoles because they create a long-ranged Coulomb
type magnetic field. In particular, this is the reason why we need to consider a vacuum
structure still allowing one massless gauge field A3

µ.
To see how the Coulomb type magnetic field arises, we consider the energy of a monopole

Emono =

∫
d3x

[
1

2g2
(Ba

i )2 +
1

2
Diφ

aDiφa
]
. (1.84)

Here we made the assumption that the magnetic and the scalar field should be time inde-
pendent. The magnetic field Ba

i is simply extracted from the magnetic field strength

Ba
i = −1

2
εijkG

a
jk . (1.85)

Repeating the Bogolmonl’nyi split for equation (1.84), we obtain

Emono =

∫
d3x

1

2

(
Ba
i

g
−Diφ

a

)2

+DiB
a
i

g
φa︸ ︷︷ ︸

vq

 , (1.86)
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where we used the equation of motion for the magnetic field. The second term is simply
a total derivative which we associated with the topological charge in the previous section.
For the magnetic monopole, however, it can be interpreted as the magnetic charge q. To
understand this more properly, let us apply the law of Gauss to the second term in equation
(1.86). Far away from the monopole, the scalar field φa takes the vacuum expectation value
as is described in equation (1.82) leading to

q =

∫
S

dA
1

g
B3
i . (1.87)

This is nothing, but the magnetic analog of Gauss’s law, where B3
i is the magnetic field

of the monopole and S denotes the integration surface. Since the charge on the left-hand
side is constant, we obtain the usual Coulomb type 1/r2 scaling behavior for large radii r.
Consequently, the charge can be expressed as

q =
4π

g
. (1.88)

Obviously, the energy of the monopole is minimized when the BPS condition

Ba
i

g
−Diφ

a = 0 (1.89)

is satisfied. This leads to the energy of the critical monopole

Emono = qv . (1.90)

Note that we can, in principle, use the BPS equation (1.89) to determine the profile for
the scalar field and the gauge field as it can be done for the kink solution. However, so far
this was only done approximately.

This concludes this small review on different types of solitons.

1.5 Instantons

So far we only considered topological objects with a codimension smaller than the dimen-
sion of space-time. Instantons, however, have the same codimension as there are space-time
dimensions. They are saddle point solutions to the Euclidean path integral. In contrast
to solitons, we usually refer to instantons as describing tunneling processes due to their
dependence on Euclidean time.

Note that the occurrence of instantons requires, in general, a non-trivial vacuum struc-
ture. First, we will discuss the instanton for the double-well potential in 0 + 1 dimensional
quantum mechanics. In the second subsection we discuss Yang-Mills instantons in 3 + 1
dimensions. For a more detailed review of instantons the reader is referred to [67].
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1.5.1 Instanton in 0 + 1 dimensions

The Langrangian of the double-well instanton is quite similar to the one of the kink in
1 + 1 dimensions

L0+1 = (∂tφ)2 − g2(φ2 − m2/g2)2 . (1.91)

This potential has two degenerate minima at φ = ±m/g at t = ±∞. The instanton profile
simply describes the tunneling between both vacua. Note that the profile is basically the
same as for the solitonic kink as will become important in chapter 4. However, the instanton
depends on the Euclidean time t instead of the spatial coordinate x. The corresponding
profile is given as

φinst(t) = ± m
g

tanh(tm) . (1.92)

The instanton has a modulus corresponding to the translational invariance of the instanton
center t0. For simplicity we will set t0 = 0. The instanton action now plays the role of the
soliton energy,

Sinst = 8m3/3g2 . (1.93)

In contrast to the solitonic kink, the action comes into play because instantons are defined
to have a finite action instead of a finite energy. This is why they can give a non-zero
contribution to the path integral.

Starting from the path integral, we can actually obtain multi-instanton contributions
to partition functions. For instance, there exist instanton-anti-instanton situations which
are considered in detail in [76]. In this context, the modulus becomes physical, since the
instanton-anti-instanton interaction depends on the distance between both objects.

1.5.2 Yang-Mills Instanton

Similar to the case we just considered, Yang-Mills theory has a non-trivial vacuum structure
as well. In particular, there exist instanton solutions in Yang-Mills which describe tunneling
processes between the non-trivial prevacua of this theory [17]. To investigate this, consider
the Euclidean action of pure Yang-Mills without any matter fields

S =

∫
d4x

1

4
Ga
µνG

a
µν =

1

8

∫
d4x
(
Ga
µν − G̃a

µν

)2
+

8π2

g2
Ga
µνG̃

aµν . (1.94)

Here the non-abelian field strength tensor Ga
µν is defined as Ga

µν = ∂µA
a
ν−∂νAaµ+gfabcAbµA

c
ν ,

while G̃a
µν = 1/2εµναβG

a
αβ is its dual, fabc is the structure constant and g is the Yang-

Mills coupling. The second term can be expressed as the total derivative of the Chern-
Simons current Kµ. This term, of course, can be identified with the topological charge
corresponding to this solution

8π2

g2
Ga
µνG̃

aµν = ∂µ

[
8π2

g2
2εµναβ

(
Aaν∂αA

a
β +

g

3
fabcAaνA

b
αA

c
β

)]
=

8π2

g2
∂µK

µ . (1.95)
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The topological charge Q is simply given as the integrated zero component

Q =

∫
d3xK0 . (1.96)

As for the topological soliton, this charge corresponds to a winding number labeling the
non-trivial homotopy class of the theory

π3(SU(2)) = Z . (1.97)

We now have everything in place to define the true vacuum state in pure Yang-Mills. It
is given as a superposition of the prevacua of topological charge n. The vacuum |Ψθ〉 is
called θ-vacuum, since it contains an additional free parameter,

|Ψθ〉 =
∑
n

einθ|Ψ〉n . (1.98)

In particular, the θ angle is crucial for the question of strong CP violation [77] and is
correspondingly linked with the axion [78, 79, 80]. Note, however, that an instanton is an
object which allows to switch from one prevacuum to another. Therefore, it is always a
topological charge attributed to the instanton given by the difference of the charges of the
prevacua.

The action of the instanton (1.94) is critical if the BPS condition G = G̃ is fulfilled.
This leads to the classical profile of the self-dual BPST instanton

Aaµ =
2

g
ηaµν

xν
x2 + ρ2

, (1.99)

Ga
µν = −4

g
ηaµν

ρ2

(x2 + ρ2)2
, (1.100)

where the ’t Hooft symbols ηaµν are defined in [67]. The instanton has eight moduli in
total. Four moduli are given by the position of the center in Euclidean space x0 we set to
zero. Furthermore, the instanton possesses a size modulus ρ and three moduli reflect the
orientation in SU(2) space. The action of the critical instanton with charge Q = 1 is then
simply given as

Sinst =
8π2

g2
. (1.101)

The BPST instanton is one of the very few situations, where we actually know the exact
solution for the profile of a topological object.

1.6 AdS/CFT Correspondence

To conclude this chapter, we review the main features of the AdS/CFT Correspondence
[10, 11]. In general, the AdS/CFT conjecture states that certain conformal field theories on
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the boundary of AdS space-times are dual to superstring theories on the AdS background in
the bulk. This general concept is known as holography, since bulk physics can completely
be captured by its boundary degrees of freedom. In particular, Maldacena conjectured
in [10] that N = 4 Super Yang-Mills theory (SYM) in 3 + 1 dimensions is dual to type
IIB superstring theory on the product space AdS5 × S5, where S5 simply means that five
dimensions are compactified on a circle. The reason for this compactification is simply
that type IIB superstring theory is 10 dimensional. Note that the gauge group of SYM is
given by SU(N) in this case.

First, let us answer the question how Maldacena came to his conjecture. For that
purpose, consider N marginally separated D3 branes embedded in the (9 + 1) dimensional
space-time of superstring theory. In type IIB superstring theory, we can excite closed
strings on empty space, while open strings always have to end on the D3 branes. If we
take the low energy limit (energies far below the string scale 1/ls), only massless degrees
of freedom can be excited. The effective open string theory reduces to N = 4 U(N) SYM,
while the low energy effective theory for the closed strings corresponds to IIB supergravity.

This can be understood in the following way. On the one hand, open strings with both
ends on one brane are massless excitations exhibiting a U(1) symmetry. On the other hand,
open strings which end on two different branes have a finite mass given by the separation of
both branes. However, when we consider the low energy limit, where all N branes coincide,
the symmetry group is enhanced to an U(N) group. In other words, in the low energy
limit all the strings which were massive become massless because the separation of the D3
branes vanishes. Note that finally the gauge group of the boundary field is SU(N), since
one U(1) group corresponds to moving the whole set of branes.

On the contrary, the situation for closed massless strings is different. As already men-
tioned, their theory reduces to supergravity in the low energy limit. The background metric
is dominated by the N D3 brane set-up leading to the line element

ds2 =
1√

1 +
R4
AdS

y4

ηijdx
idxj +

√
1 +

R4
AdS

y4
(dy2 + y2dΩ2

5) . (1.102)

Here dΩ2
5 is the five dimensional solid angle of the compactified extra dimensions, while y

denotes the non-Minkowskian direction and the radius is simply expressed in terms of the
string coupling R4

AdS = 4πgsNα
′2. Here α

′
denotes the Regge slope. Now the crucial point

is simply that surprisingly, for the near horizon limit y � RAdS (corresponding to the low
energy limit), we recover the AdS space-time from this metric

ds2 =
R2
AdS

z2

(
ηijdx

idxj + dz2
)

+R2
AdSdΩ2

5 , (1.103)

where we used the redefinition z = R2
AdS/y. In other words, in the low energy limit the

closed string theory reduces to supergravity on the background geometry AdS5×S5 in the
bulk. In the same limit the open string theory leads to a conformal field theory with a
gauge group SU(N) confined on a 3 + 1 dimensional brane. In principle, the AdS/CFT-
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duality can be summarized as

N = 4 SYM in 3 + 1 d = Type II B Superstring Theory on AdS5 × S5 . (1.104)

Let us now discuss the different parameters on both sides of the duality. On the one hand,
the gauge theory is characterized by the gauge coupling gYM and N . On the other hand,
the supergravity contains the string coupling gs and N as well. Note, however, that N has
a different interpretation on the supergravity side as the number of coincident branes. The
couplings are connected via

gs =
g2
YM

4π
. (1.105)

In addition, we can express the gravity parameters in terms of the ratio of AdS radius and
string length

R4
AdS

l4s
=

(
R2
AdS

α′

)2

= 4πgsN = λtH . (1.106)

where we introduced the ’t Hooft coupling

λtH = g2
YMN . (1.107)

We are mostly interested in the weakly coupled limit. As can be seen from(
RAdS

L
(10)
P

)4

∼ N , (1.108)

this is the case when the number of fields behaves asN →∞. Note that the ten dimensional
Planck length is given as L

(10)
P = g

1/4
s α

′1/2.
The crucial reason for this phenomenon to be a duality is connected to the coupling

regimes. As it turns out, the strongly coupled gravity theory is dual to the weakly coupled
field theory and vice versa. To clarify this statement, consider the Maldacena limit, where
we take, additionally to N � 1, the ’t Hooft coupling λtH � 1. Correspondingly, the
CFT is strongly coupled in this regime. Additionally, it directly follows that R2

α′
� 1. As

a consequence, in this limit the gravity is not only weakly coupled, but additionally in
the low energy regime. Thus, the duality connects a strongly coupled gauge theory with a
weakly coupled classical gravity. This is an extremely useful feature as it allows to make
predictions on strongly coupled regimes by investigating weakly coupled physics.

In order for both theories to be equivalent, their partition functions must be the same.
For that purpose, let us investigate how the correspondence can occur and follow the work
of Witten [11]. First of all, we make the observation that AdS in 5 dimensions and a CFT
on Minkowski exhibit the same symmetry group. The boundary of AdS5 is simply four
dimensional Minkowski space-time M4. However, the symmetry group of AdS5 is SO(2, 4)
which corresponds to the conformal group for M4. Consequently, a dual field theory on
the boundary must be conformal.

To investigate the partition functions on both sides of the duality, let us consider a
massless scalar field φ obeying the classical equations of motions in AdS5. We denote φ0
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as the non-normalizable restriction of φ to the boundary. If the correspondence is true, φ0

should act as a source for conformal operators on the boundary. In other words, on the
one hand the theory on the boundary is defined by the generating functional

〈e
∫
φ0O〉CFT , (1.109)

where O denotes an opearator of the CFT. Note that in the massless scalar case the
conformal dimension of O is d. On the other hand, we can of course compute the partition
function of classical supergravity

Zsugra(φ) = e−Ssugra(φ) , (1.110)

where Ssugra is the classical supergravity action. Therefore, the conjecture simply means
that both partition functions are equivalent,

Zsugra(φ0) = 〈e
∫
φ0O〉CFT . (1.111)

Let us stress at this point, that this is true in the limit of strongly coupled conformal
field theory, while supergravity is weakly coupled. In particular, it allows to solve strongly
coupled conformal theory by solving weakly coupled supergravity which is, of course, much
simpler.

We can also generalize this logic to massive scalar fields. Solving the classical equations
of motion for φ in this case, we find no solution which smoothly goes to a constant at the
boundary. This of course makes sense, since the boundary is conformal. Thus, no massive
particles should reach the boundary to spoil scale invariance.

Additionally, this has implications for O on the boundary. Its conformal dimension is
changed to

∆ =
1

2

(
d+

√
d2 + 4m2R2

AdS

)
. (1.112)

Correspondingly, the conformal dimension of the operators which are sourced by φ0 is
affected. Another interesting feature of the correspondence is related to the fact that it
correlates a gravity theory in 4 + 1 dimensions with a field theory in 3 + 1 dimensions. We
usually refer to this property as holography. Obviously, this is related to the Bekenstein
bound of the entropy S = Area/4GN , where GN is the Newton constant. In fact, it was
shown [81, 82] that AdS exactly saturates this bound,

Area

4GN

= S ∼ N2δ−2 . (1.113)

In particular, Susskind and Witten counted the degrees of freedom on the field theory side
with the UV cut-off δ and found that it matched to the number of degrees of freedom of
the boundary of AdS with an IR cut-off δ.

This concludes this small review of the AdS/CFT correspondence.
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Chapter 2

Resolution of the Black Hole Bound
State in Scattering Experiments

In classical general relativity it is impossible for an external observer to extract information
about the black hole interior. According to the no hair theorem [55], the Schwarzschild
black hole is solely characterized by its mass MB. As a consequence, we can describe the
black hole exterior completely in terms of geometry as was done in section 1.1. However,
it was shown by Duff [83] that the same result is obtained by taking a field theory per-
spective. In order to obtain the full non-linear general relativity, an infinite amount of
tree-level scattering processes of weakly coupled gravitons has to be resummed . In other
words, we can understand the black hole exterior in terms of geometry as well as in a
quantum-mechanical S-matrix description. Since only tree-level diagrams are involved in
the computation of Duff, it is purely classical, but it can easily be generalized to include ~
quantum contributions as well. We simply have to take quantum loops into account.

Now let us turn to the black hole interior. In the usual geometric description, there
exists an event horizon, since inside the black hole the role of time and radial distance
are interchanged such that we cannot construct a globally defined time-like Killing vector.
This was already described in the beginning of section 1.1.2. From the QFT point of view,
this violates the fundamental law of unitary time evolution. Thus, we cannot find a QFT
description for the black hole interior leading to the same results as the geometric descrip-
tion. As was already pointed out in section 1.2, this ultimately leads to the information
paradox when we consider QFT in curved space-time as the non-unitary time evolution
inevitably leads to the evolution of pure states into mixed states.

However, the black hole interior has never been tested. We have a priori no reason
to trust the geometrical description inside the black hole because it obviously leads to
inconsistencies. Therefore, we want to take a different perspective. Since nature is funda-
mentally quantum, we assume that an unitary time evolution should be granted everywhere
such that we can work in a usual QFT description. This perspective was already discussed
in the introduction and is basically the starting assumption of the black hole portrait [4]
presented in section 1.3 and of the auxiliary current description of black holes [7]. It states
that there must be some bound state description of black holes in terms of N microscopic
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degrees of freedom. As was explained in section 1.3, such a microscopic description of
black holes inevitably leads to quantum corrections due to the compositeness which scale
as ~/N . Note that this does not mean that the results of QFT on curved space-time are
never valid. Instead, since Hawking considers the semi-classical limit N ∝ MB → ∞,
he neglects these quantum effects which are responsible for the purification of Hawking
radiation. We can always obtain the semi-classical limit if we consider N → ∞ . As a
remark, let us stress that in this description the only fundamental space-time is given by
Minkowski space, while all the other space-times can be viewed as quantum-mechanical
bound states.

In some sense, we can compare the reasoning to QCD. First, protons were viewed as
elementary particles characterized by its Casimir invariants of the Poincaré group, i. e. spin
and mass. However, experiments implied that there should exist a proton substructure. In
particular, this means that hadrons are only a suitable descriptions for low energies, while
for high energies we have to take their constituents into account.

As was already pointed out in the introduction, Dvali and Gomez recently proposed the
black hole portrait [4] to describe black holes as bound states of gravitons. Furthermore,
Hofmann and Rug took first steps in [7] to put these ideas in a more formal context by using
auxiliary currents to construct a proper black hole bound state. In this chapter we are not
interested in the concrete model to construct a black hole bound state |B〉. Rather, we
start from the assumption that QFT is fundamental. Therefore, unitary time evolution is
always granted. This directly implies that the black hole should consist of some quantum
degrees of freedom. The main goal of this chapter will be to give a concrete example
of embedding a microscopically resolved black hole in a high energy scattering process.
Clearly, we expect that the outcome of scatterings on the resolved black hole depends on
the occupation number of constituents. More explicitly, we are interested in relating the
momentum distribution of black hole constituents with the scattering cross-section.

Obviously, the bound state resolution is very closely related to similar questions in
QCD. In particular, bound states constructed from a large number of constituents N were
first introduced by ’t Hooft. In [51] he considered the large N limit of a SU(N) gauge
theory which gives rise to planar dominance and 1/N as a suitable expansion parameter.
Furthermore, Witten investigated baryons consisting of N quarks from this point of view
[52]. Assuming that SU(∞) is still confining, he showed that the baryon mass scales as
M ∝ N . Note that the black hole portrait gets to the same result, since MB = Nr−1

g as in
(1.40).

In the QCD context one usually considers scattering processes of leptons on protons
to obtain information about the interior of the proton. In particular, in deep inelastic
scattering leptons emit photons of high virtuality which are absorbed by the proton [15].
Measuring the recoil of the lepton allows to reconstruct the structure functions of the
proton. These structure functions contain all the non-perturbative bound state information
about the proton’s interior. This is only possible because the high energetic photon can
probe the interior of the proton. Therefore, it can encode the non-perturbative information
leading to color confinement in the cross-section. Let us stress that the lepton can still
be treated perturbatively as an asymptotic particle. Notice that the scattering amplitude
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factorizes in a perturbative part containing the lepton kinematic and a non-perturbative
part. Since Shifman et al. [84, 85] showed how the internal structure of hadrons can
be described in a mean-field language, one can explicitly identify the non-perturbative
contributions in this context.

The purpose of this chapter is to provide a consistency check that assuming there is a
microscopic description of black holes, the occupation number of constituents appears in
scattering amplitudes. More explicitly, we want to scatter on a black hole with a scalar field
in order to obtain non-perturbative information about the black hole encoded in the black
hole structure functions. In order to probe the black hole interior, we consider processes
where a graviton of high virtuality is exchanged. As soon as we assume that QFT is also
valid inside the black hole, there must be some microscopic degrees of freedom absorbing
the graviton. In other words, the black hole has to be a bound state of constituents. Note
that we treat the Schwarzschild radius of the black hole in this context as the charge radius
of the proton. This means that it sets the length scale for the confinement of the black
hole constituents. Furthermore, let us remark that there are, clearly, some differences
between GR and QCD. First of all, QCD is asymptotically free, while GR is not. As a
consequence, we cannot consider the limit of infinite virtuality for the graviton because this
would violate perturbative unitary in the exterior. However, in the energy regime far below
the Planck mass we can still resolve large black holes. Secondly, the black hole constituents
are individually weakly coupled as well as was, for instance, shown in [4]. Nevertheless,
they get confined due to large collective effects. Note that the work presented in in this
chapter is closely related to the original work [86].

First, in section 2.1 we describe the set-up of a black hole absorbing gravitons of high
virtuality emitted from a scalar particle scattering on the black hole. Secondly, in section
2.2 we show how we can represent the absorption part of the scattering amplitude in terms
of the time ordered forward Compton scattering amplitude. Finally, in sections 2.3 and
2.4 we present a method how we can use the operator product expansion to reexpress
the forward scattering in terms of derivatives of the momentum distribution of black hole
constituents.

2.1 Microscopic Structure of the Black Hole

As the aim of this chapter is to present how the microscopic substructure of a black hole
emerges in scattering experiments, let us embed it in a certain S-matrix process. In the
S-matrix framework, Duff [83] showed how we can reconstruct the geometrical features of
gravitational objects from the quantum mechanical point of view. However, this treatment
is semi-classical. In particular, the black hole is introduced as a classical external source.
Since we are interested in the resolution of the black hole, let us not consider scatterings
on the black hole introduced as an external source, but as an internal source with its own
Hilbert space.

Let us briefly comment on the black hole Hilbert space. We can distinguish the Hilbert
space H1 for elementary particles like gravitons in our case and an additional one H2
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describing composite objects like, for instance, the black hole. These Hilbert spaces can be
split up in a part containing asymptotic scattering states and one containing bound states,

H1 = Hs
1 ⊕Hb

1 ,

H2 = Hs
2 ⊕Hb

2 .

The crucial point is simply that we can describe bound states of elementary particles in Hb
1

as scattering states of composite particles in Hs
2 at the kinematical level. As was argued

above, the quantum mechanical description ensures a unitary time evolution everywhere.
Clearly, in such a description the black hole described in Hilbert space Hs

2 is a quantum
bound state with constituents given in Hb

1.
In principle, the microscopic structure can be resolved for large virtual momenta. Note,

again, that the event horizon of the black hole in this description is a semi-classical artefact.
It is similar to the charge radius of a proton in QCD. Thus, information can leave the black
in this quantum resolution treatment. Nevertheless, taking the limit N → ∞ we simply
recover all the semi-classical features of the usual black hole [4, 7]. In this case, all the
microscopic quantum effects which affect scattering experiments and Hawking radiation
vanish leading to the assumption that no information can leave the black hole1.

Obviously, for energy scales below the inverse length scale of the bound state it behaves
effectively as an external source where geometrical concepts emerge from resumming tree-
level diagrams of gravitons [83]. This leads to the geodesic motion in the background of
a Schwarzschild source. In other words, for r > rg we simply observe a classical 1/r–
potential. However, it is worth mentioning that such a low energy observer can never
distinguish a black hole from any other object of the same mass due to Birkhoff’s theorem
[24].

On the contrary, if the black hole is not classical, but a quantum object, while Minkowski
metric is the only fundamental space-time, we should be able to probe its interior by
measuring the outcome of high energy scattering processes. This means that we consider
processes of sufficiently high exchanged virtual momentum q. Of course, the energy bound
for the resolution is simply given by the inverse size of the black hole,

− q2 > r−2
g . (2.1)

It is crucial to notice that we do not need to include new gravitational degrees of freedom
for such scattering experiments as long as we stay below the Planck scale. Correspondingly,
we obtain the upper bound

− q2 < M 2
P (2.2)

for the virtuality. For small black holes the microscopic description breaks down when
MP ∼ r−1

g . At these scales, new degrees have to be taken into account. However, for large
black holes our description should be completely sensible.

1As was already pointed out, Hawking exactly considers this limit in his computation (MB →∞).
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Now let us discuss a certain experimental set-up to microscopically resolve the black
hole. For that purpose, we consider a massless scalar field φ as a probe particle. This scalar
field is simply coupled to pure linearized Einstein gravity corresponding to the action

S =

∫
d4x

[
1

2
hµνε

µν
αβh

αβ +
1

MP

hµνT
µν

]
. (2.3)

Here εµναβ is the linearized kinetic term of the graviton in Minkowski space-time2 as in
equation (1.8). The energy-momentum tensor of the scalar field is given as

T µν =
1

2
Sµναβ∂αφ∂βφ , (2.4)

where Sµναβ = ηµαηνβ + ηµβηνα − ηµνηαβ. In order to probe the black hole, we consider
an ingoing field φ scattering on an individual constituent of the black hole by emitting a
virtual graviton which is interchanged between φ and the constituent (figure 2.1). If the
virtuality of the graviton is in the desired energy regime, one can in principle measure the
black hole interior.

Figure 2.1: The left figure shows the tree-level diagram for the scattering experiment we
consider in this chapter. A scalar field scatters on a black hole bound state with constituent
degrees of freedom. As usual, the wiggly line denotes the propagator of the virtual graviton
which is exchanged between the scalar field and the black hole. In the right figure, the
black hole is resolved into N constituents to properly visualize the scattering on individual
constituents.

The one-graviton exchange amplitude on tree-level can be achieved by expanding the
interaction Lagrangian to second order. If we do not truncate the external legs using the
LSZ reduction formula, this amplitude simply reads

A(2)(x1, x2) = i2

M 4
P

∫
d4z1d

4z2 Pµν(z1, z2;x1, x2)Nµν(z2) .

Here we split the amplitude into a perturbative part P containing the kinematics of the
probe particle and the exchanged graviton and a non-perturbative part N which carries

2Since Minkowski is the only fundamental space-time from our point of view, this is the logical choice.
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all the non-trivial information about the black hole interior. In particular, the N part is
evaluated in the black hole state |B〉, while P is evaluated in the usual Minkowski vacuum
|0〉. The black hole state |B〉 contains all the non-perturbative bound state information.
As was already mentioned, there are several approaches to describe black holes in terms of
bound states [4, 7]. However, we are only interested in extracting bound state information
under the assumption that QFT and unitary time evolution is fundamental. Note that the
perturbative and the non-perturbative part of the amplitude are defined as

Pµν = 〈0|Tφ(x2)Tαβ(z1)φ(x1)|0〉 ∆αβµν(z1, z2) ,

Nµν = 〈B′| :Tµν : (z2)|B〉 (2.5)

with |B′〉 denoting the black hole state after the absorption of a virtual graviton. Fur-
thermore, ∆αβµν is the free graviton propagator. Tµν is the energy momentum tensor of
the individual constituent of the black hole and must not be confused with the energy-
momentum tensor Tαβ of the scalar field. In other words, we consider a process where the
probe scalar field directly interacts with an individual bound state graviton (see also figure
2.1). As was pointed out above, this is only a suitable approximation in the energy regime
given by equations (2.1) and (2.2).

Note that we would obtain the semi-classical scattering results when Nµν is given as
the classical energy-momentum tensor of the black hole. Accordingly, the black hole would
simply be treated as an external source. However, we will follow the logic that there is
some black hole substructure encoded in |B〉.

Using similarity transformations on the black hole state, we can bring the non-perturbative
part to the form

N (z2) ≈ e−i(P
′−P )·z2〈B′| :T : (0)|B〉 , (2.6)

where P ′ and P denote the black hole momentum after and before the graviton absorption,
respectively. Now we truncate the external φ legs to obtain the scattering amplitude

〈B′φ′|Bφ〉(2) = −i(2π)4δ(k′ + P ′ − k − P ) α 2
g

×〈B′| :Tµν : (0)|B〉 ∆µναβ(k′ − k) Sαβρσ
k′ρkσ

k′0k0
. (2.7)

with the coupling αg ≡ 1/(4πM 2
P ).

In order to obtain the total cross section σ(B′φ′ ← Bφ), we have to compute the
absolute square of the truncated amplitude. Additionally, we integrate over the whole set
of intermediate bound states in the theory leading to

k′0
dσ

d3k′
=

2

F(φ)
|αg∆(k′ − k)|2 Eαβµν(k, k′)Aαβµν(B; k, k′) . (2.8)

where F(φ) is simply the ingoing flux of φ particles and ∆ now refers to the scalar part
of the graviton propagator. On the one hand, the emission tensor Eµναβ contains the
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kinematic information about the asymptotic scalar field and the virtual gravitons. It is
simply given as Eµναβ = QµνQαβ with

Qµν = 4π2 Πµναβ(k′ − k) Sαβρσ
k′ρkσ

k′0k0
. (2.9)

Here we introduced the graviton polarization tensor

Πµναβ(q) ≡ πµ(απβ)ν − πµνπαβ (2.10)

πµν(q) ≡ ηµν −
qµqν
q2

, (2.11)

where k, k′ denote the on–shell asymptotic momenta of the ingoing and outgoing scalar
field, respectively. On the other hand, the absorption part is defined as

Aαβµν = 1
2π

∫
d4x e−i(k

′−k)·x〈B|Tαβ(x)Tµν(0)|B〉 . (2.12)

This part of the amplitude contains the non-trivial information about the resolved black
hole. In particular, this information is encoded in the non-perturbative effects which
govern this part of the amplitude. Notice that the amplitude completely factorizes in a
perturbative part containing the probing scalar field and a non-perturbative part.

The agenda of the next sections will be to represent the absorption part in terms of the
constituent occupation number.

2.2 Time Ordering

Since the non-perturbative contribution given by the absorption tensorAαβµν is not ordered
in time, we will proceed in this section to represent the absorption tensor in terms of
causal correlation functions. The procedure we use is analogous to similar methods in
QCD in the framework of DIS, where the microscopic structure of hadrons is probed [15].
Correspondingly, we closely follow the DIS line of thought and start by expressing the
absorption tensor in terms of the forward scattering Compton amplitude which contains a
time ordered product.

First of all, we search for a relation between Aαβµν and a tensor built from Tαβ(x)Tµν(0).
Inserting a complete set of physical states (including bound states) in between the energy-
momentum tensors at x and 0 in (2.12) and additionally using space-time translations we
arrive at

Aαβµν = 1
2π

∫∑
B′

(2π)4δ(q + P − P ′)〈B|Tαβ(0)|B′〉〈B′|Tµν(0)|B〉 .

Here the exchanged momentum is q ≡ k − k′, while P and P ′ denote the momenta of
the wave packets representing the ingoing and outgoing black hole, respectively. Note
that we used here the translational invariance of the black hole state |B〉 to show that



40 2. Resolution of the Black Hole Bound State in Scattering Experiments

〈B|Tαβ(x)|B′〉 = 〈B|eiPxTαβ(0)e−iPx|B′〉 = 〈B|Tαβ(0)|B′〉. Accordingly, we can bring the
absorption tensor to the form

Aαβµν = 1
2π

∫
d4x eiq·x〈B|[Tαβ(x), Tµν(0)]|B〉 . (2.13)

As in deep inealastic scattering, we define the absorptive part of the Compton amplitude
Cαβµν In particular, it describes the forward scattering of a virtual graviton off a black hole,

Cαβµν = i

∫
d4xeiq·x〈B|T Tαβ(x)Tµν(0)|B〉 . (2.14)

Cαβµν exhibits the wanted time ordering. However, we still have to find the concrete
representation of Aαβµν in terms of the forward scattering amplitude. Therefore, we insert
again a complete set of states in equation (2.14) leading to

Cαβµν =

∫∑
B′

(2π)3δ(P′−P−q)
P ′0−P 0−q0−iε 〈B|Tαβ|B

′〉〈B′|Tµν(0)|B〉 . (2.15)

At this point, it is convenient to define the Abs function as

Abs ω−1 ≡ [(ω − iε)−1 − (ω + iε)−1]/(2i)

leading to Abs(P ′0 − P 0 − q0 − iε)−1 = πδ(P ′0 − P 0 − q0). As the final result of this
subsection it follows

πAαβµν(B; q) = Abs Cαβµν(B; q) . (2.16)

Thus, we can always express the absorption tensor in terms of the time ordered forward
Compton scattering amplitude in this way. Notice that this derivation is completely gen-
eral, since we did not use any specifics about |B〉, Tαβ or GR in order to derive the result.

2.3 Operator Product Expansion of the Absorption

Tensor A
Having established the time-ordering for the energy-momentum operators, let us now dis-
cuss how we can extract the non-perturbative bound state information in this framework.

Interestingly, the method presented here is extremely general in the sense that we do not
have to specify |B〉 in order to show that the correlator 〈B|T Tαβ(x)Tµν(0)|B〉 occurring in
(2.14) can be represented in terms of the occupation number of bound state constituents.
As mentioned above, we only have to assume that |B〉 represents a bound state with some
non-trivial substructure. In general, there is no reason why normal ordered products of
constituents or in other words condensates should vanish in this state. These condensates
contain all the non-perturbative physics leading to the confinement of the gravitons in the
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black hole. In a concrete calculation it follows that normal ordered products occurring when
we use Wick’s theorem do not vanish when evaluated in the bound state. More explicitly,
we can always represent the time ordered product of the constituent energy-momentum
tensors in terms of the normal ordered bi-local operator Oµν(x, 0) ≡ :∂µh(x)∂νh(0):, where
h(x) represents the constituent field,

T Tαβ(x)Tµν(0) = 1
4
SρσαβS

λπ
µν Cσλ(x) Oρπ(x, 0) .

The black hole state expectation value of Oρπ(x, 0) contains all the non-perturbative bound
state information we want to extract, while Cαβ(x) ≡ 4〈0|T∂αh(x)∂βh(0)|0〉 denotes the
correlation with respect to the perturbative vacuum, given as

Cαβ(x) = − 2

π2

x2ηαβ − 4xαxβ
(x2)3

. (2.17)

In other words, this part simply corresponds to the perturbative propagation of the bound
state constituent. To extract the bound state information encoded in O(x, 0), we simply
expand it in terms of local operators. This is equivalent to employing a operator product
expansion. In particular, we Laurent expand the corresponding propagator. Hence, the
Taylor part of the series can be written as

h(x) = exp (x · ∂z)h(z)|z=0 . (2.18)

In this chapter we are solely interested in parton level results. Nevertheless, it is easy to
introduce gauge interactions between the constituents if we use the covariant derivative
instead of the partial derivative. However, using equation (2.18), we can express Oµν(x, 0)
in terms of an infinite series,

Oµν(x, 0) =
∞∑
j=0

1
j!
O[j]
µν(0) , (2.19)

O[j]
µν(0) ≡ :(x · ∂z)j∂µh(0)∂νh(0) : (2.20)

Note that this procedure is analogous to the operator product expansion performed in DIS.
To relate the local expansion operators to the forward scattering amplitude, we have to
evaluate them in the black hole state,

〈B|O[j]
µν(0)|B〉 = κ (xαP

α)j 〈B|h(r)h(0)|B〉PµPν , (2.21)

where κ denotes a combinatoric factor. Here a simple point–split regularisation has been
employed (r2 → 0).

Clearly, the local operator on the right hand of (2.21) accounts for the occupation num-
ber density. In fact, this means that the forward scattering amplitude and correspondingly
the absorption is directly related to a sum over the graviton occupation number in the black
hole and its higher derivatives. Of course, this result is not surprising when we assume
that the black hole has a microscopic substructure.
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2.4 Analytic properties of the Forward Scattering Am-

plitude C
Now let us directly relate the absorption tensor with the occupation number density using
the analytic properties of the Compton scattering amplitude. As a first step, we employ
the Ward-Takahashi identity corresponding to diffeomorphism invariance to determine the
tensorial structure of the Compton amplitude Cαβµν(q, P ). It is fixed to be Cαβµν(q, P ) ∼
θαβµν(q, P ) ≡ Πab

αβΠmn
µν ηbmPaPn which, of course, makes the source conservation manifest.

Secondly, we Laurent expand the non-perturbative operators Oµν(x, 0) to leading order up
to O(qαP

α/P 2). Thus, we arrive at

Cαβµν(q, P ) = 〈B|h(r)h(0)|B〉 θ(q, P )αβµν
−i
2π2

∞∑
j=−∞

Cj(q)u
j . (2.22)

Here, the coefficients Cj are calculable and turn out to be momentum independent. Fur-
thermore, we introduce the expansion parameter u ≡ −P 2/q2 � 1. This parameter is the
gravitational analog of the inverse Bjorken scaling variable occurring in deep inelastic scat-
tering experiments. However, the obvious difference between those parameters is related to
asymptotic freedom. In contrast to QCD, we cannot consider the infinite momentum limit,
since gravity becomes strongly coupled at Planckian scales. Nevertheless, the large black
hole mass MB provides us with a natural expansion parameter. More explicitly, for virtual
momenta −q2 � M2

P it is clear that u = −P 2/q2 = −M2
B/q

2 becomes an extremely good
expansion parameter. Note that it is still possible to resolve the black hole substructure
as long as −q2 > 1/rg.

Fixing the virtual momentum q2 = −Q2, Cαβµν exhibits similar to hadrons in QCD a
discontinuity at

u∗ = MB
2(M ′B−MB)

(
1− M ′2B −M

2
B

Q2

)
� 1 . (2.23)

Correspondingly, C has a single, isolated pole at u∗ � 1. In contrast to QCD, no branch
cut occurs to leading order in MB. This is simply reminiscent of the fact that we work in
the limit M ′

B/MB − 1 ≈ 0. Obviously, when we do not suppress these 1/N -type effects, we
obtain a continuum of black holes with slightly different quantum numbers leading to the
usual branch cut.

On the one hand, we are interested in the parameter space u > 1, since u ∈ [−1, 1] is the
unphysical region (see figure 2.2). On the other hand, the radius of convergence covers only
the region u ∈ [−1, 1]. Thus, we use the analytic properties of the scattering amplitude
to directly project onto all the different Laurent-coefficients by a contour deformation
of an intergration path in the complex u plane which, in particular, should enclose the
discontinuity points −u∗, u∗. It follows∫ 1

0

dζ ζk−2Aαβµν(q, P, ζ) = Ck−1

4π2 〈B|h(r)h(0)|B〉 θαβµν(q, P ) (2.24)
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Figure 2.2: The integration contour in the complex u-plane is depicted. While the left
figure shows the integration contour given by the radius of convergence, the right figure
displays the physical parameter u-region (P 2 > Q2). Sending the radius of the circle to
infinity, we can relate the physical and the unphysical region by performing a contour
deformation.

with ζ ≡ 1/u denoting the graviton virtuality relative to the black hole target mass.
In other words, all moments of the absorption tensor with respect to ζ are directly

proportional to the constituent distribution inside the black hole. This implies that the
cross-section satisfies

dσ/d3k′ ∝ 〈B|h(r)h(0)|B〉 , (2.25)

which is exactly the desired result of this chapter. It simply means that we can determine
the black hole bound state information encoded in the constituent occupation number
〈B|h(r)h(0)|B〉 by measuring the cross-section in high energy scatterings on the black
hole. Note that this result is, of course, not surprising, but seems to be completely generic
for all bound states.

2.5 Conclusions and Summary

Finally, let us draw a conclusion. This chapter was dedicated to give a concrete example of
embedding a microscopically resolved black hole in a high energy scattering process. The
starting assumption of this chapter was to assume that QFT is fundamental everywhere
such that a unitary time evolution is always granted. As a consequence, it inevitably
follows that we can extract information about the black interior when we consider the
scattering regime−q2 > 1/r−2

g . As we would expect by default, the bound state information
given by the occupation number directly appears in scattering experiments. In particular,
we adopted the DIS techniques of QCD to high energy scatterings on black holes. For
−q2 < M2

P , we do not need to introduce new physics to obtain these results. If it is
possible in the future to perform such high energy scatterings on large black holes, we
could in principle obtain information about the black hole constituent occupation number
〈B|h(r)h(0)|B〉 from the cross-section. Note that the results obtained in this chapter are
independent of a special choice of bound state construction.
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Chapter 3

Coherent State Picture for Solitons

In section 1.3 we reviewed the method of Dvali and Gomez [4] to represent black holes in
terms of bound states of gravitons. Following the philosophy that nature is fundamentally
quantum, one can ask the question if it is possible to apply a bound state description to
other classical objects in different theories. The answer is, of course, that there is no reason
why it should be unique to gravity that we should represent classical entities as quantum
bound states. In fact, we know of many examples like the proton, where experimental
results suggested that a bound state description should be employed.

In this chapter we want to address solitons from the bound state perspective. In
particular, we want to present a concrete technique to represent solitons as a quantum
bound state of microscopic degrees of freedom. To achieve this task, we will present a
method to represent the soliton as a quantum coherent state.

As already mentioned in the introduction, coherent states are a quite effective method
to describe laser beams in quantum terms. In some sense, coherent states are the most
classical quantum states, since coherent state expectation values of one point functions are
equal to the classical field values. Therefore, Barnich [87] used coherent states to describe
the classical Coulomb field of an electric charge in terms of quantum constituents. Nat-
urally, these constituents where given as longitudinally polarized photons. Since solitons
and instantons behave classical as well, it is a logical perspective that we can represent
them using coherent states. We will discuss this in more detail below.

Although the philosophy is similar to the black hole case, one can still argue that we
are not forced to implement a constituent quantum picture for solitons. In contrast to
the black hole, we do not obtain obvious inconsistencies (like the information paradox)
by maintaining a classical soliton. Therefore, one could in principle ask why it should be
necessary to represent solitons as bound states. However, it seems unnatural that this is
the case, since all the experiments imply that nature is fundamentally quantum.

Thus, to summarize the purpose of this chapter will be the following. We want to
represent the classical soliton solution of various examples in terms of the proper quantum
degrees of freedom. In other words, instead of the semi-classical description of solitons
where the solitonic background is classical, we want to present a full quantum picture
for the soliton. Of course, the model has to satisfy certain requirements. Namely, by



46 3. Coherent State Picture for Solitons

consistency we should be able to obtain all the classical results at least to leading order.

Let us briefly clarify, semi-classicality in this context. As for the black model discussed
in section 1.3, we can distinguish two different kinds of quantum contributions. The usual
semi-classical treatment only considers ~ quantum corrections on top of a fixed, classical
background. In this chapter we are interested in a full quantum picture of the background
which in particular takes quantum mechanical back-reactions on the soliton into account.
These effects usually are of the order ~/N , where N is the total number of solitonic con-
stituents.

In the first section of this chapter, we apply the constituent picture to different types
of solitons. Then we discuss supersymmetric solitons from this point of view in section 3.2.

3.1 Corpuscular Soliton

Before starting to discuss the soliton, let us refer to the original work [16] on which this
section is based.

The basic idea is, as it was extensively mentioned before, to write down a framework
to represent the classical solitons as a coherent state of N constituents. These constituents
should not be confused with usual asymptotic particles. On the contrary, they exist only
confined in the soliton. Obviously, the constituents are interacting in order for them to stay
confined in the soliton. The resulting potential leads to a dispersion relation which is, in
general, different from a free one. To make this manifest, we will refer to the constituents
as corpuscles. Note that the corpuscles can never be viewed as free asymptotic particles.
We will further clarify the nature of the corpuscles in section 3.1.3.

The only way we can usually make sense of a particle in physics is if it is weakly cou-
pled. For instance, in QCD quarks are only useful degrees of freedom to describe physics
when they are in the weak regime. In the strong regime (large distances), hadrons are
the sensible object. Correspondingly, the coherent state picture for solitons makes only
sense in the regime where the corpuscles are individually weakly coupled. Additionally,
we have to mention that usually the occupation number of bound states scales like the in-
verse relevant dimensionless coupling of the constituents. Subsequently, the weak coupling
regime automatically corresponds to a large occupation number of corpuscles meaning that
solitons become fundamental in the strong coupling regime because N ∼ 1. According to
[4], in the black hole case we can consider bound states of arbitrary size1, since due to the
derivative self coupling of gravitons the individual energy of the constituents enters in the
dimensionless coupling. On the contrary, the occupation number for solitons is fixed by
the parameters of the theory.

As a remark, let us mention that the resolution into bosonic corpuscles should not be
confused with the well known phenomenon of Sine-Gordon solitons which can be described
in terms of fermions. In [88, 89] it was shown that there is a one-to-one correspondence
between strongly coupled fermions in the Thirring model and usual Sine-Gordon solitons

1Of course, this is only true as long as MB > MP .
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[88, 89] when we identify the strongly coupled fermion number with the topological charge
of the soliton.

Let us briefly comment on the different aspects we want to discuss in this section. First
of all, we will show that we obtain consistently all classical results for various types of
solitons in this new framework. Secondly, we want to give a new understanding for the
topological charge of topological solitons in the corpuscular picture. Usually, the topo-
logical charge is defined purely classical. In particular, it is always conserved and cannot
decay via any quantum process. The coherent state formalism allows us to distinguish
between two types of quanta. Since we can determine the momentum distribution of the
quanta, we can distinguish quanta which contribute to the mass of the soliton and quanta
which are solely responsible for the topological charge of the soliton. The first type occurs
in every bound state we know of. Their momentum distribution has a maximum at the
inverse length scale we can attribute to the bound state. However, the corpuscles forming
the topological charge are a completely new concept in the soliton coherent state descrip-
tion. It is possible to express the quantum mechanically resolved soliton as a convolution
of the topological and the energetical sector. To illustrate this further, we can denote this
statement as

soliton = (topology)× (energy) . (3.1)

Similarly, we can express the soliton state |sol〉 as a tensor product of the energetic |E〉
and the topological state |t〉 leading to

|sol〉 = |t〉 ⊗ |E〉 . (3.2)

Of course, such a split becomes trivial for the non-topological soliton we discuss in section
3.1.1 simply because their topological sector is trivial.

To really identify the topological quanta of the soliton it is helpful to first compare
the topological and the non-topological soliton. Note that the coherent state philosophy
allows to easily extract the occupation number in each mode Nk of the constituents by
using Fourier techniques. Using the knowledge about Nk, we can now compare both. The
crucial difference is the fact that for the topological soliton the occupation number of the
infinite wavelength quanta N0 diverges due to a 1/k-type pole. However, these quanta do
not contribute to the mass of the soliton.

To understand this behavior, we need to simply remind us of the fact that topology is a
feature usually attributed to the boundary of the theory. Consequently, only the extremely
long wavelength modes can account for topological properties, since exactly these modes
can contain asymptotical information. In this sense, we can view topology as a Bose sea
of zero momentum modes.

Quantum mechanically, it is exactly this divergence of the total occupation number N
which reveals why the topological charge is conserved. Correspondingly, the topological
soliton cannot decay into the topologically trivial vacuum |0〉. To understand this more
properly, let us take a closer look at the corresponding decay amplitude

〈sol|0〉 ∼ e−N . (3.3)
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Here we used some coherent state properties we will explain below. Since N → ∞, in
particular due to the N0 modes, this amplitude vanishes in the topological case. On the
contrary, the non-topological soliton is not protected by such a divergence such that it is
unstable. This phenomenon is usually known as false vacuum decay.

In the first subsections we use the coherent state picture to describe non-topological
solitons and topological solitons. Then we will make the topology-energy split manifest.
Finally we address the soliton-anti-soliton interaction. Notice that we will not be interested
in computing 1/N type quantum corrections in this section, but we will consider them when
we discuss the corpuscular supersymmetry breaking in section 3.2.

3.1.1 Coherent State Picture of the Non-Topological Soliton

We start our discussion on the resolution of solitons in terms of corpuscles with the non-
topological soliton. The analysis presented here will be similar to the original work [16].
The main purpose of this subsection is to show how classical results emerge in the quantum
treatment.

We will consider here the non-topological soliton in 1+1 dimensions. The corresponding
model was already introduced in section 1.4.1. As already mentioned there, we consider
the Lagrangian

L = (∂µφ)2 − m2φ2 + g2φ4 , (3.4)

where for the mass and the coupling holds m2 and g2 > 0, respectively. As mentioned
in section 1.4.1, this theory has a classical stable vacuum φ = 0 at x = ±∞, while the
solution

φnon−top(x) =
m√
2g

sech(mx) (3.5)

describes the motion of the field from the vacuum value to the unstable value φ = m/
√

2g
and back. Of course, the energy of this soliton can be computed when we use (3.4) and
(3.5),

Enon−top =

∫
dx
[
(∂xφnon−top(x))2 + m2φ2

non−top − g2φ4
non−top

]
=

2m3

3g2
. (3.6)

Let us now briefly discuss the semi-classical picture to make the difference to the full quan-
tum corpuscular treatment of solitons manifest. Usually, one introduces small quantum
fluctuations around this background. We denote the corresponding annihilation and cre-
ation operators in momentum mode k by b̂k and b̂†k. Notice that the non-trivial soliton
background state |sol〉 is the vacuum for these operators,

b̂k|sol〉 = 0 . (3.7)

This treatment allows to compute ~-type quantum corrections when we evaluate the corre-
sponding loops, but it does not take back-reactions on the soliton background into account.

The crucial part of this thesis is that we want to do something completely different.
We want to understand the background state |sol〉 itself as a bound state made out of a
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totally new type of constituents or corpuscles. In other words, we consider a different type
of quantum effect related to the quantum nature of the background. Of course, we could
always consider the usual semi-classical treatment on top of the constituent framework. As
already mentioned, we refer to these quanta as corpuscles and denote their creation and
annihilation algebra as âk and â†k. These corpuscles behave totally different than the usual

particles. In contrast to usual quanta as are given by b̂k and b̂†k, corpuscles do not exist
as asymptotic S-matrix states. Furthermore, we can distinguish both classes of quanta by
their vacuum

âk|0〉 = 0 (3.8)

b̂k|sol〉 = 0 , (3.9)

where |0〉 is the true Minkowski vacuum. In principle, these corpuscles should be governed
by a fundamental Hamiltonian such that solitons emerge from the corresponding low en-
ergy effective theory. However, since we are not powerful enough to determine the true
microscopic theory, we will use a different approach.

The basic idea is that the soliton bound state |sol〉 can be represented as a coherent
state of these corpuscles. This seems natural because the coherent state is the most classical
quantum state. Every other quantum state would simply exhibit even more severe quantum
effects than the ones we are uncovering when using the coherent state formalism. First of
all, we have to identify the Fock space which the âk and â†k span. For that purpose, we
Fourier Transform the classical field,

φnon−top(x) =
√
l

∫
dk√
4π|k|

(eikxαk + e−ikxα∗k) , (3.10)

where the αk and α∗k are the corresponding Fourier coefficients depending on momentum
k and 2πl is the regularized volume of space. These coefficients are just complex functions
given by

α∗kαk = π
|k|
2l

1

g2
sech2

(
πk

2m

)
. (3.11)

Correspondingly, we can reexpress the mass of the soliton given in (3.6) simply in momen-
tum space

Enon−top =

∫
k

|k|α∗kαk , (3.12)

where we introduced
∫
k
≡ l
∫
dk.

To implement the corpuscular resolution, we promote the classical Fourier coefficients
to the corpuscular annihilation and creation operators âk, â

†
k. These still fulfill the usual

creation-annihilation algebra

[âk, â
†
k′ ] =

1

l
δ(k − k′) , (3.13)
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for momenta k, k′. Consistency requires that we have to obtain the classical results to
leading order. For that purpose, consider the field operator resulting from promoting the
Fourier coefficients

φ̂(x) =
√
l

∫
dk√
4π|k|

(eikxâk + e−ikxâ†k) . (3.14)

Let us stress at this point that this is not a free wave expansion. In particular, since we
simply Fourier transformed the classical result (3.5) which is time independent, no time
component is occurring in the argument of the exponential functions. This is, of course,
only possible because these corpuscles can only exist in the presence of a bound state,
but not as asymptotic S-matrix states pointing out that the corpuscles are interaction
eigenstates. Nevertheless, the dispersion to leading order is ωk = |k|. We will comment on
this below. Matching with the classical solution implies the condition

〈sol|φ̂(x)|sol〉 = φnon−top(x) . (3.15)

Note that this is a matching condition solely on the level of the one point function. Corre-
spondingly, only higher n-point functions can lead to corpuscular (1/N type) corrections.
Obviously, this implies the condition

〈sol|âk|sol〉 = αk (3.16)

for the corpuscular Fock state operators. Representing the soliton in terms of coherent
states constructed from the corpuscular annihilation and creation operators âk, â

†
k, the

situation is extremely simplified because the coherent state is an eigenvector for the anni-
hilation operator.

Having established a way to achieve the classical results from the quantum perspective,
we can now construct the coherent state |sol〉. Since we need an eigenvector for each âk,
the total coherent state can be expressed as a product state over coherent states |αk〉 each
satisfying âk|αk〉 = αk|αk〉,

|sol〉 =
∏
⊗k

|αk〉 . (3.17)

The expression for the |αk〉 is well known in the literature [14]:

|αk〉 = e−
1
2
|αk|2eαkâ

†|0〉 = e−
1
2
|αk|2

∞∑
nk=0

αnkk√
nk!
|nk〉 . (3.18)

Here the |nk〉 are the number eigenstates in a given mode, where nk is the corresponding
occupation number. In particular, this means that

|nk〉 ∼ (â†k)
nk |0〉 . (3.19)
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As mentioned above, we want to understand the soliton as a coherent bound state of N
constituents. Therefore, we have to answer the question where N arises in our framework.
For that purpose, note that we normalized the Fourier transform in equation (3.10) in such
a way that the Fourier coefficients are dimensionless. Correspondingly, the creation and
annihilation operators are dimensionless as well. We have to normalize the operators with
the dispersion relation of the corresponding constituents. Otherwise, we would not get
the desired creation and annihilation algebra given in equation (3.13). Here the dispersion
relation is to leading order given as

ω(k) = |k| . (3.20)

We will come back to the implications of the dispersion relation in a moment. Since
the operators are dimensionless, we can explicitly interpret their expectation values as
occupation numbers Nk in a momentum mode k for the coherent state |αk〉. This simply
amounts to

Nk ≡ 〈sol|â†kâk|sol〉 = α∗kαk . (3.21)

Using this and equation (3.11), we notice that the k . m modes are mostly occupied.
These are exactly the modes which give the main contribution to the energy as (3.12)
suggests. Hence, the dominating modes are exactly given by the size of the soliton as one
would expect for any bound state.

Now everything is in place to compute the total number of constituents N . For that
purpose, we simply have to integrate over all modes

N ≡
∫
k

Nk =

∫
k

α∗kαk . (3.22)

Let us comment on the dispersion relation and the special meaning of the Fock space
operators in this case. The â†k, âk should not be confused with creation and annihilation

operators of asymptotic propagating quanta of the theory as, for instance, the b̂†k, b̂k oper-
ators introduced above. Rather, they span a Fock space for a totally new type of quanta.
In particular, this statement is reflected in the dispersion relation of the quanta.

Naively one could interpret the dispersion in equation (3.20) as the dispersion of a
free asymptotic particle, but the constituents are strongly interacting collectively. In fact,
classically the potential term is of the same order as the kinetic term due to the special
form of the solution. Correspondingly, the total classical energy of the profile is given as
twice its kinetical energy. Thus, to leading order in 1/N , we can represent the energy of
the soliton as

Enon−top =

∫
k

|k|Nk =
2m3

3g2
. (3.23)

Note that in the full quantum treatment the dispersion gets corrected. In particular, the
equivalence of kinetical and potential term only holds on the classical level. The higher
order operators in the potential term

−m2φ̂2 + g2φ̂4 (3.24)
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automatically lead to 1/N -type corrections to the dispersion relation. In this subsection
we neglect those effects, since we want to show how the classical results are obtained in
the new framework to leading order. How to compute corrections is shown explicitly in
section 3.2.

To conclude this subsection, we evaluate the stability of the non-topological soliton in
the quantum picture. For that purpose, we compute the total occupation number using
(3.11) and (3.22),

N =
m2

g2

(
4

log(2)

π

)
. (3.25)

Notice that this finiteness of the total occupation number (3.25) explicitly reflects the
instability of the vacuum φ = 0. As presented in [68, 69], the vacuum φ = 0 is not the true
vacuum, but can decay. This phenomenon occurs, since this kind of soliton has no conserved
topological charge to protect it. The decay process occurs via bubble nucleation. As the
classical vacuum is a zero energy state, the critical bubble is a zero energy configuration
interpolating between φ = 0 and φ > m/g.

We can obtain the same result in our formalism and it is directly connected to the
finiteness of the total occupation number N . In general, the overlap of a coherent state
|sol〉 with occupation number N and the Minkowski vacuum is given by

〈0|sol〉 ∝ e−N/2 . (3.26)

This can easily be derived from our coherent state representation (3.17), but is also known
from the original literature [14]. Combining (3.25) and (3.26) while restoring ~, we can
express the overlap in terms of the parameters of the theory

〈0|sol〉 = e
−

( log(2)2
π )m2

~g2 . (3.27)

This is clearly not suppressed such that such a decay, in general, is possible. Note,
however, that the overlap does, in fact, vanish in the classical limit, where we send ~→ 0
while keeping the mass and the coupling finite.

This sheds a new light on the bubble nucleation process in the classical picture. From
the quantum mechanical point of view, the false vacuum decay appears due to to interme-
diate coherent states which have non-zero overlap with the classical vacuum. This simply
corresponds to the fact that coherent states are not energy eigenstates. Only for the clas-
sical N → ∞ limit we recover a energy eigenstate such that the overlap becomes zero
again.

In the next subsection we shall discuss the topological soliton which is, on the contrary,
stabilized by its topological charge.

3.1.2 Coherent State Picture of the Topological Soliton

As already advertised, we want to discuss the topological soliton in this subsection. Like in
the non-topological case, we want to recover the classical results from the quantum picture.
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Therefore, we consider only leading order effects in the first part of the section. In section
3.1.4 we will discuss quantum implications and the topology-energy split. Note that this
section is closely related to the original work [16].

The Lagrangian of the classical topological soliton is given as in section 1.4.1,

L = (∂µφ)2 − g2(φ2 − m2/g2)2 . (3.28)

The main difference to the non-topological case is the non-trivial vacuum structure of
the theory at hand. In particular, φ acquires two different vacuum expectation values
φ = ±m/g at x → ±∞. The corresponding solution is known as ’kink’ and interpolates
between both vacua

φtop(x) = ± m
g

tanh(xm) . (3.29)

Essentially, the philosophy we want to follow is the same as in section 3.1.1. We want to
understand the classical profile as an emergent effect of a resolved quantum bound state.
For that purpose, we assume that the topological soliton can be represented as a coherent
state |sol〉 of corpuscles.

In accordance with the non-topological case, we claim that there exists a corpuscular
Fock space spanned by âk and â†k satisfying the same algebra as in equation (3.13). To
obtain the correct classical limit, their expectation values are again simply identified with
the Fourier coefficients of the classical profile. Thus, we can define the occupation number
in each mode as

Nk = 〈sol|â†kâk|sol〉 = α∗kαk = π
|k|
l

1

g2
csch2

(
πk

2m

)
. (3.30)

Here we can see that the dispersion relation is again given as ω = |k|. We will comment
on this in the next subsection.

As for the non-topological case, we can determine the energy of the topological soliton
by integrating over the occupation number times the energy in each mode

Etop =

∫
k

|k|Nk =
8m3

3g2
, (3.31)

which is the well known classical result. Since we used the property that the potential
term is classically the same as the kinetical term, this is an approximation up to leading
order in 1/N .

3.1.3 Corpuscular Algebra vs. Asymptotic Algebra

As already mentioned, the corpuscles cannot exist as asymptotic S-matrix states. In par-
ticular, they are interaction eigenstates. To understand this more properly, let us consider
for the moment usual asymptotic S-matrix particles with Fock state operators b̂k, b̂

†
k. The

time evolution of these quanta is governed by the free Hamiltonian for these particles with
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some interaction potential V (b̂k, b̂
†
k) added. Correspondingly, the total Hamiltonian is given

as

ĤS(b̂k, b̂
†
k) =

∫
dkωfreeb̂

†
kb̂k + V (b̂k, b̂

†
k) , (3.32)

where ωfree is the free dispersion relation of these quanta. As long as the interaction terms
are small we can use usual perturbation theory to compute amplitudes for the asymptotic
quanta. Note that ĤS is diagonal on the perturbative vacuum.

Now let us consider the corpuscles from this point of view. Classically, the topological
soliton corresponds to the critical solution of minimized energy. This simply means that
the soliton satisfies the BPS condition

∂xφtop = g

(
φtop −

m

g

)2

. (3.33)

Of course, this is far from a slight correction to the free propagation, since the potential
term and the kinetical term are of the same order. Non-perturbative physics dominate the
solitonic bound state. Accordingly, the Hamiltonian for the asymptotic quanta ĤS is not
diagonal on the soliton state.

Therefore, we introduce the corpuscles âk, â
†
k as a new type of non-asymptotic quanta

to circumvent these problems. Using these corpuscles, we can build up the coherent soliton
state in such a way that we obtain the classical results by matching the one-point function.
Correspondingly, these quanta have nothing in common with the S-matrix objects.

On the contrary, they are much more similar to quarks which are the constituents
of baryons in QCD. The corpuscles can only exist in a bound state and have a typical
wavelength given by the size of the soliton (QCD scale for the Baryon). Using the matching
condition

〈sol|φ̂(x)|sol〉 = φtop(x). (3.34)

we can construct the coherent soliton state and express the soliton energy in terms of the
corpuscles

E =

∫
k

ω(k)〈sol|â†kâk|sol〉 , (3.35)

where ω(k) = |k| is the corpuscular dispersion. This dispersion looks like the free one of
the S-matrix quanta only because the BPS condition basically allows to diagonalize the
Hamiltonian classically. However, this is only true to leading order. If we want to consider
the true quantum theory, we must not use the classical BPS condition to diagonalize the
Hamiltonian, but we have to consider the corpuscular Hamiltonian

Ĥcorp =
1

2

∫
k

ω(k)â†kâk + V (φ̂) , (3.36)

where V (φ̂) denotes the potential for the scalar field. From this form of the Hamiltonian,
we can now compute 1/N -type quantum corrections by simply considering commutation
relations. This will be done explicitly in section 3.2. However, it is important to stress
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that, in contrast to the asymptotic Hamiltonian, the corpuscular Hamiltonian is diagonal
on the soliton state to leading order in 1/N

〈sol|Ĥcorp|sol〉 =

∫
k

ω(k)〈sol|â†kâk|sol〉+O(1/N) . (3.37)

Of course, we can relate the corpuscular quanta with the S-matrix quanta, since we know
that the energies in both sets ups have to match. This means that the expectation value
of the corpuscular and S-matrix Hamiltonian has to fulfill

〈sol|ĤS(b̂k, b̂
†
k)|sol〉 = 〈sol|Ĥcorp(âk, â

†
k)|sol〉 . (3.38)

To solve this for an explicit relation between âk, â
†
k and b̂k, b̂

†
k is an extremely hard task.

Additionally, notice that the corpuscular vacuum is different from the S-matrix vacuum.
This is reminiscent of the fact that both Hamiltonians are diagonal on different states.

As a final remark, let us mention that the dispersion relation occurring for the corpuscles
is non-trivial when we take corpuscular 1/N corrections into account. The corpuscles can
never be viewed as free particles as they are interaction eigenstates. In fact, the corpuscles
have zero frequencies. This property is usually attributed to tachyons with momentum
equal to the absolute value of their mass corresponding to an infinite tachyon speed.

Since tachyons cannot exist as asymptotic states, but only in certain bound states, it
makes totally sense to view the corpuscles in such a way. However, note that this is only a
way to interpret the soliton constituents which does not change any physically measurable
result.

3.1.4 Topology-Energy decomposition of Solitons

In the corpuscular approach, it is possible to get a completely new understanding of the
emergence of energy and topology of the soliton. To make this statement manifest, we
compute the total occupation number N of the topological soliton,

N =

∫
k0

dkNk ∼ −log(k0)|k0→0 →∞ . (3.39)

Naively, one could think that this divergence tells us that the quantum approach makes
no sense in this case. To clarify this, let us investigate why this divergence arises. The
occurrence of the divergence is related to the non-trivial topological charge of the soliton.
Notice that the charge is associated with the boundary properties of the theory. In total
accordance, this divergence occurs due to a 1/k-type singularity in the occupation number
Nk. Clearly, only these infinite wavelength modes can reach the boundary as exactly these
modes can be associated with the topological charge.

Since it is the crucial point of this section, let us be even more explicit. We know that
the non-trivial vacuum structure at x → ±∞ is responsible for the topology. Therefore,
only the infinite wavelength modes k = 0 can account for this effect.
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One could ask, why there is an infinite number of zero momentum corpuscles responsible
for the creation of the topology of the solution, but this is even a necessary condition due
to the fact that the topological charge is conserved. No quantum process can change an
infinite occupation number in a measurable way. Consequently, the charge stays untouched
with respect to quantum fluctuations.

Now we can understand why the topological soliton is stable and cannot decay via bub-
ble nucleation as the non-topological soliton. The amplitude for a decay to the Minkowski
vacuum is given as

〈0|sol〉 ∝ e−N/~ = e−
1
~∞ , (3.40)

where we used equations (3.26) and (3.39). The divergence is, in some sense, the quantum
mechanical manifestation of the stability of the topological soliton. As we would expect,
the amplitude even vanishes for the non-topological soliton (finite N) in the purely classical
regime ~→ 0.

These results naturally lead to the question how the classical energy can be finite when
the number of corpuscles diverges. The answer is simply that the 1/k-pole is canceled, since
each corpuscle contributes an energy of order k. Most of the energy in equation (3.31) is
contributed by the quanta with wavelength of the order 1/m (Nm ∼ m2

~g2 ), while the zero
momentum modes do not contribute at all to the energy. Correspondingly, although the
total number of quanta N diverges, non vanishing quantum processes affecting the energy
exist, since the local occupation number of quanta contributing to the energy is finite.

Due to this observation, it makes totally sense to make the split of quanta contributing
to the energy and the topology manifest. For that purpose, we can represent the soliton
as the convolution of an energy and a topology profile

soliton = ( topology ) ? ( energy ) .

One could ask why we use a convolution to connect both profiles. The reason is connected
to the method we use to quantize the theory. The occupation number Nk is simply given
by the squared Fourier coefficient of the classical profile. To represent the soliton profile as
a topological and an energy profile, we thus use the fundamental theorem of convolution.

In particular, we can split the soliton state in a part which is the eigenvector of the
annihilation operator accounting for energetical quanta |E〉 and its topological counterpart
|t〉

|sol〉 = |t〉 ⊗ |E〉.

Let us now split the kink soliton profile (3.29) in two parts. First of all, we identify the
sign function with the property

sign(x) ? f(x) = +
1

2

∫ x

−∞
f(x′)dx′ − 1

2

∫ ∞
x

f(x′)dx′ , (3.41)

as being responsible for the topology. We have two reasons for this claim. First, it accounts
for the right topology in configuration space. Namely, φ = ±m/g at x → ±∞. Secondly,
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when we go to Fourier space it exhibits a 1/k-pole which is responsible for the topology.
Hence, we can represent the classical soliton profile as

φtop(x) =
m

g

(
sign ? sech2

)
(mx) . (3.42)

Here the sech2 function corresponds to the energy part of the profile. At this point, we can
make an intriguing observation. The part of the profile purely contributing to the energy
of the topological soliton is equivalent to the total profile of the non-topological profile
squared.

In order to use the convolution theorem in full glory, we define the Fourier transform
of the scalar soliton field given in (3.29) in terms of dimensionless integrals

φtop(mx) =
1

2

∫
d( k

m
)√

4π( k
m

)

(
αke

i( k
m

)xm + h.c.
)
. (3.43)

To make the split explicit, we express αk as

αk = tk(k/m)ck(k/m) , (3.44)

where the tk and the ck are the Fourier coefficients of the the sign profile and the energetic
profile, respectively. These are given as

tk =
i√
k
, (3.45)

and

ck =
√
πm

k

g
csch

( πk
2m

)
(3.46)

when we normalize them properly. Let us discus the behavior of these functions. We
can make the observation that the tk exhibit a 1/k-type pole which we associated to the
topology from the quantum point of view.

The ck do not possess such a pole, but they account exactly for the total energy of the
profile. Namely, the k ∼ m modes which have a wavelength of the order of the extension
of the profile are dominant in this expression. Typically, this is a usual behavior of bound
state constituents. For instance, according to [4] the occupation number of gravitons in
the black hole has its dominant contribution from quanta of wavelength given by the
Schwarzschild radius.

Following our standard procedure, we want to view these coefficients as expectation
values of the corresponding creation and annihilation operators t̂†k, t̂k and ĉ†k, ĉk evaluated
in the states |t〉 and |E〉, respectively. Consequently, they satisfy the eigenvalue equations

ĉk|ck〉 = ck|ck〉 (3.47)

and

t̂k|t〉 = tk|tk〉 . (3.48)
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In order to establish the quantum framework properly, the operators have to satisfy the
commutation algebra

[t̂k, t̂
†
k′ ] = δ(k − k′)

[ĉk, ĉ
†
k′ ] = m2δ(k − k′) .

Notice that both operators act on different Fock spaces. Correspondingly, they create two
different sets of states |tk〉 and |ck〉. We can compute them simply by using equation (3.17)
and substitute â†k for t†k′ and ĉ†k′ , respectively. The corresponding product states can be
identified with |t〉 and |E〉,

|t〉 ≡
∏
k

|tk〉 , (3.49)

|E〉 ≡
∏
k

|ck〉 . (3.50)

Let us consider the overlap between the soliton state and the Minkowski vaccum

|〈0|sol〉|2 = e−
∫
dk|αk|2 . (3.51)

Now we can use the split and try to evaluate the amplitude simply for the topological part
|t〉 of the soliton state. Accordingly, we find simply

|〈0|t〉|2 = e−
∫
dkt∗ktk = e−

∫
dk/|k| = 0 . (3.52)

Indeed, |t〉 correctly accounts for the topological features of the soliton. Any other state
with a different topological coherent state |t′〉 will have a zero overlap with |t〉. Therefore,
we can always view the vacuum of a topological Hilbert space as a Bose sea explicitly given
by the infinite wavelength corpuscles.

Let us recapitulate what we learned. We can split the Fock state operators for the
corpuscles of the topological soliton in two parts. The non-trivial topology of the kink is
constructed via an infinite occupation number of topological quanta corresponding to the
operators t̂†k and t̂k. In particular, we can construct the coherent state |t〉 representing the
topological sector from this quanta.

The second type of corpuscles ĉ†k and ĉk accounts for the energy of the kink. These
quanta have a finite occupation number peaked around the wavelength of the order of the
length scale associated to the the kink. However, this occupation number is of the same
order as for the non-topological soliton.

Clearly, if we define the creation and annihilation operators via âk = t̂kĉk , they can no
longer satisfy the standard algebra for Fock state operators. However, this does not mean
that we cannot make sense of the corpuscles. As extensively mentioned above, they are
quite different from usual S-matrix quanta. In particular, they have zero frequencies which
is related to the fact that the corpuscles can only occur in a bound state. Therefore, the
corpuscles do not necessarily need to satisfy the same requirements as standard asymptotic
quanta.
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In principle, we could try to apply the same split to the topologically trivial soliton.
For that purpose, notice that we can represent its profile as

(δ ? sech) (x) , (3.53)

where the δ function is responsible for the topology. Of course, this split is trivial and
accordingly the energy coherent state we would construct is equivalent to the soliton state
we constructed in the previous section. In particular, the eigenvalue of the topological
operators is simply ∼ 1. As mentioned before, this means that the occupation number
of topological quanta is finite. Thus, the non-topological soliton is not protected against
decay.

Topological Charge and Energy in the Decomposition Picture

We observed that the expectation values of the topological quanta t̂k exhibit a pole at
k = 0 which is tied to the conservation of the topological charge of the soliton. One can
ask the question how we have to explicitly define the topological charge Q in this context.
Naturally, one would expect that it is determined by the order of the pole at hand. We
can extract it using the Cauchy principal value

|Q| = 1

π
ImPV

∫
dk〈t|t̂†k t̂k|t〉 . (3.54)

The general strategy to extract the topological charge for a given classical solution is to
identify the infrared divergence in Fourier space responsible for the Bose sea of topological
quanta. Obviously, we can always reexpress the Fourier coefficients as the infrared divergent
part multiplied by the rest. This naturally leads to the convolution in position space.

In the decomposition picture, the energy of the soliton is an emergent effect of many
quanta each contributing an energy given by the dispersion relation. Thus, to leading order
the energy is simply given as

Es =

∫
d(k/m)〈E|ĉ†kĉk|E〉 . (3.55)

Note that the ĉ†k, ĉk are dimensionful, since we shifted the 1/k pole to the topological
quanta. Starting from (3.55), we can now easily prove that most of the quanta have
wavelength ∼ 1/m. Furthermore, the total number of energetic quanta can be obtained as

NE = m−1

∫
d(k/m)〈E|ĉ†kĉk|E〉 =

8m2

3g2
. (3.56)

This is of the same order as for the non-topological soliton.
So far we discussed the decomposition picture only to leading order in 1/N . Obviously,

this is justified for the topological quanta whose occupation number diverges which is again
connected to the conservation of the topological charge. However, for the energetical part
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quantum corrections are measurable, since NE is finite. To include these effects we have
to consider instead of the leading corspuscular Hamiltonian

Ĥcorp =
∑
k

ĉ†kĉk , (3.57)

the full corpuscular Hamiltonian including all the interaction terms

Ĥcorp =
∑
k

ĉ′
†
kĉ
′
k + interaction terms . (3.58)

Here the prime indicates that we include quantum corrections. Naively, one could think
that it is enough to include the interaction terms, but note that we used the dispersion
relation to properly normalize the corpuscles. Obviously, it gets corrected as well when we
include quantum effects. However, to explicitly compute the dispersion relation is quite a
task, since we would have to find a Bogoliubov transformation which properly diagonalizes
the Hamiltonian.

The interaction terms are induced by the φ̂4 and terms φ̂3 terms in the original La-
grangian. Correspondingly, they should be of the form∑

k1,k2,k3

ĉ′k1 ĉ
′†
k2
ĉ′k3 ĉ

′†
k1+k2−k3 + ... . (3.59)

As mentioned earlier, the classical soliton has a zero mode corresponding to shifting
the kink center. In other words, it is the Goldstone mode which occurs due to the breaking
of the continuous translation invariance. A shift y of the profile corresponds to the phase
factor for the energetical Fourier coefficients2 of the form

ĉk → eiyk ĉk. (3.60)

We easily see that (3.57) and (3.59) are invariant under such a shift. Therefore, the
corpuscular resolution does not affect the zero mode of the kink.

3.1.5 Quantum meaning of the Soliton-Anti-Soliton interaction

The quantum reasoning can also be applied to interactions between soliton and anti-
solitons. In this case, we have to be careful, since we do not know the exact classical
solution to the equations of motion. Due to the non-trivial interaction between both soli-
tons the solution should, in principle, be time dependent. Therefore, let us consider the
case of a small interaction between a widely separated soliton and an anti-soliton. In this
limit we can basically define the corpuscular picture for the complete configuration. This
allows for a corpuscular representation of the interaction energy.

2In principle, the shift could also be seen as acting on the topological quanta.
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Given a soliton-anti-soliton configuration separated by the distance a, the small inter-
action limit amounts to a � m−1, where 1/m is the typical length scale associated to the
individual solitons. The corresponding static solution is given as

φs,s̄ =
m

g

(
tanh(m(x+ a/2))− tanh(m(x− a/2)− 1

)
. (3.61)

Note that this configuration can be visualized as the one dimensional analog of a ’bubble’,
where the vacuum inside the ’bubble’ is m

g
and outside it is simply −m

g
.

To implement the quantum picture, we follow our procedure and define the expectation
values of the corspuscular creation and annihilation operators in the soliton-anti-soliton
coherent state |s, s̄〉 simply as the Fourier coefficients of φs,s̄

αk =
√
πmi

√
k

g
csch

( πk
2m

) (
1− e−iak

)
. (3.62)

At this point, we have to mention that the classical soliton-anti-soliton configuration is
topologically trivially. The topological charge of the separated soliton and the anti-soliton
add up to 0. Correspondingly, we observe no pole at k = 0 for the αk we would associate
to a topological charge. This means that we can restrict our analysis to the energetical
corpuscles.

From this point, let us now try to evaluate the interaction energy explicitly. In general,
there are two alternative ways to proceed. On the one hand, we can simply define energetic
quanta ĉk, ĉ

†
k and ˆ̃ck, ˆ̃c

†
k we discussed in section 3.1.4 for the separate soliton and anti-soliton,

respectively. Notice that both profiles have the same individual energy. They are only
shifted by a distance a. Thus, the operators and correspondingly the Fourier coefficients
are simply related via a phase factor

ˆ̃ck → eiakĉk. (3.63)

We still consider the limit of small interaction energy. Therefore, the soliton and the anti-
soliton coherent states we can construct from these Fock state operators are approximately
eigenstates of the Hamiltonian. Denoting them as |E〉 and |E〉a for the shifted soliton, the
interaction energy is simply

Eint = 〈E|H|E〉a . (3.64)

The overlap amplitude between both solitons only depends on the energetical quanta,
since the topological sector is trivial. There is a direct link between the overlap and
the interaction energy which corresponds to a non-trivial mixing of both solitons. More
concretely, we can evaluate

|〈E|E〉a|2 = |
∏
k

〈ck|eiakck〉|2 = e−2
∫
dk |ck|2(1−cos(ak)) . (3.65)

Using the known expression for the ck and the soliton energy Es given in equation (3.55),
this amounts to

|
∏
k

〈ck|eiakck〉|2 = exp
(
− 2Es + 32

m3

g2
(am)e−2am

)
. (3.66)
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Here the second part in the exponential corresponds to the interaction energy.
On the other hand, we can use a slightly different strategy which allows to determine

the corpuscular Hamiltonian. In a similar way as before, we define the two corpuscular
algebras ĉk, ĉ

†
k and ˆ̃ck, ˆ̃c

†
k for the soliton and the anti-soliton, respectively. Considering the

a� 1/m limit, we express the soliton-anti-soliton quantum state as a product state of the
individual solitons

|s, s̄〉 = |sol〉 ⊗ |sol〉 . (3.67)

Each state can individually be decomposed in a topological and an energetical part. Note
that the topological sector of the individual solitons is not trivial. The decomposition is
given as

ĉk|s, s̄〉 = (|ts〉 ⊗ ck|Es〉)⊗ (|ts̄〉 ⊗ |Es̄〉) , (3.68)
ˆ̃ck|s, s̄〉 = (|ts〉 ⊗ |Es〉)⊗ (|ts̄〉 ⊗ c̃k|Es̄〉) . (3.69)

The eigenvalues of the energy coherent states are the same as for the separate solitons

ĉk|s, s̄〉 = eiak/2
√

m3

π
πk
gm

csch
(
πk
2m

)
|s, s̄〉 , (3.70)

ˆ̃ck|s, s̄〉 = −e−iak/2
√

m3

π
πk
gm

csch
(
πk
2m

)
|s, s̄〉 . (3.71)

When we represent the quantum field of the full profile φ̂ in terms of the two kinds of
energy operators, they mix. To leading order3, the Hamiltonian becomes

H =

∫
d(k/m)

(
ĉ†kĉk + ˆ̃c†k

ˆ̃ck + ĉ†k
ˆ̃ck + ˆ̃c†kĉk

)
. (3.72)

Obviously, the interaction energy between the soliton and the anti-soliton is represented
by the corpuscular mixing term +ĉ†k

ˆ̃ck. Evaluating the Hamiltonian in the quantum state
|s, s̄〉, we arrive at

H = 2Es −
8m3

g2
(−1 + (am)coth(am))csch2(am) . (3.73)

We have not used the large a limit up to this point. When we apply the a � 1/m limit,
equation (3.73) reduces to

2Es − 32
m3

g2
(am)e−2am . (3.74)

This is, of course, the same result as in equation (3.66). Note that the interaction be-
comes order one when am ∼ log(Es/m) which corresponds to the logarithmic correction
investigated in [76, 90].

3As for the single soliton situation, we obtain 1/N type quantum corrections to this Hamiltonian we
will not consider in this section.
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Pseudo-Goldstone mode

As pointed our above, the soliton itself has a zero -mode corresponding to the spontaneously
broken translational invariance. In the interaction case, the energy explicitly depends on
the position of both kinks. This reflects the dependence of the interaction strength on
the separation a of the solitons. From the corpuscular Hamiltonian point of view, this
becomes manifest in the mixing terms ∼ ĉ†k

ˆ̃ck which are obviously not invariant under
transformations of the form

ĉ†k → eiykĉ†k ,
ˆ̃ck → e−izk ˆ̃ck . (3.75)

Each individual soliton possesses a separate symmetry group U(1)S corresponding to the
zero mode. Since the interaction term obviously only depends on the separation distance,
the symmetry breaking pattern becomes

U(1)S × U(1)S̄ → U(1)diag . (3.76)

Half of the symmetries are conserved because we can always shift both profiles by the same
amount b without affecting the interaction energy. This corresponds to the case y = z = b.
Correspondingly, one Goldstone mode is preserved, while the other one becomes a pseudo-
Goldstone mode. Notice that in the limit a → ∞ the interaction term vanish such that
the full symmetry is restored. Accordingly, a second Goldstone mode occurs.

3.2 Corpuscular SUSY Breaking

So far we presented how to construct a consistent quantum picture for classical solitons.
In principle, nothing prevents us for from applying this logic to supersymmetric solitons.
Correspondingly, this section is dedicated to establish a quantum description for super-
symmetric kinks. Note, however, that this is still work in progress as there are still some
open questions.

In general, the strategy is analogous to the one presented in the previous section.
Fourier transforming the classical solution for the supersymmetric kink, we interpret the
corresponding Fourier coefficients as expectation values of quantum corpuscular Fock op-
erators evaluated in a coherent state built from this operators.

To motivate why we should apply the resolution picture to solitons in supersymmetric
theories, we take a closer look at the classical story. The usual BPS saturated kink preserves
exactly half of the supersymmetries. Accordingly, the usual scalar quantum fluctuations
with Fock operators bk and b†k defined on top of the classical background have fermionic
superpartners of the same mass.

Now let us turn to the full quantum picture which was introduced in this chapter. In
the supersymmetric case, the resolution of the background kink could have dramatic conse-
quences. This was first observed in [91]. In particular, all the supersymmetries seem to be
broken in the microscopic description. Physically, we can give a very intuitive explanation
for this phenomenon. By establishing a quantum picture for the supersymmetric kink, we
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introduce new bosonic constituent degrees of freedom represented by the corpuscular Fock
operators âk and â†k which do not have any fermionic counterpart.

To make this computationally manifest, we investigate the BPS condition, since it has
to be satisfied when part of the supersymmetry should be preserved. When the kink
is microscopically resolved, we observe that we obtain 1/N -type quantum effects which
cannot be canceled by loop effects of the usual quantum fluctuations bk and b†k.

Additionally, it turns out that a mass splitting is induced between the fermions and
the asymptotic bosons indicating that supersymmetry is completely broken. The complete
break-down of supersymmetry on the corpuscular quantum state induces the appearance
of a second Goldstino

|ψ2〉 = Q|sol〉 (3.77)

related to the fact that the second supersymmetry charge does not annihilate the soliton
state. In this section we will present how to compute 1/N effects in the corpuscular picture
in this particular example.

First, we consider the classical picture and afterwards we implement the quantum
view. Since it is the first time in this work we are concretely interested in 1/N quantum
corrections, we will present two different methods to extract them. In section 3.2.2 we show
how these corrections to the BPS equation arise in the commutator method. Secondly, in
section 3.2.3 we will consider the Bogoliubov method.

3.2.1 Coherent state picture for the supersymmetric kink

As explained in section 1.4.2, there are certain supersymmetric models where solitonic
solutions occur. In particular, we discuss the classical kink solution in the 1+1 dimensional
Wess-Zumino model which saturates the BPS condition in equation (1.72). Accordingly,
half of the supersymmetries are semi-classically preserved on the non-trivial background
state |sol〉. For completeness let us write down the corresponding classical Lagrangian
already given in (1.69),

L =
1

2

[
∂µφ∂

µφ+ ψ̄iγµ∂µψ −
(∂W
∂φ

)2

−
(∂2W
∂2φ

)
ψ̄ψ

]
(3.78)

with the superpotential

W (φ) =
m2

g
φ− g

3
φ3. (3.79)

As in section 1.4.2, ψ is a two-component Majorana spinor. Correspondingly, it is the
fermionic superpartner of the bosonic scalar field φ. For m, g > 0 this Lagrangian has a
classical kink solution

φsol(x) =
m

g
tanh(xm). (3.80)
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The crucial point of this model is given by the fact that the kink satisfies the BPS equation

OBPS ≡ ∂xφsol ±
(
m2/g − gφ2

sol

)
= 0 (3.81)

such that half of the supersymmetries are preserved. We do not expect that usual quantum
corrections spoil the supersymmetry, since the non-renormalization theorem protects the
superpotential on the semi-classical level against quantum corrections. We can understand
this theorem when we consider bosonic and fermionic fluctuations around the classical
background. Since the corresponding quantum loops always have opposite signs, these
contributions always cancel due to same mass of both particles.

We can introduce the corpuscular quantum picture in an analog way as in section 3.1.2.
First, we Fourier transform the classical solution φsol like in equation (3.10) and promote
the Fourier coefficients αk to corpuscular annihilation and creation operators âk and â†k.
To obtain the correct classical result to leading order in 1/N , the expectation values of the
operators in the soliton state have to be equivalent to αk.

Let us stress that these corpuscular Fock operators are completely different from the
quantum fluctuations around the supersymmetric kink whose Fock space is spanned by b̂k
and b̂†k. In contrast to the usual asymptotic algebra b̂k and b̂†k, the âk and â†k can only exist
inside the bound state and not as asymptotic quanta. In particular, they are interaction
eigenstates. Subsequently, they have in general a non-trivial dispersion relation. There
also exist fermionic fluctuations around the background, but it is important to note that
the soliton is solely created out of bosonic corpuscles.

Defining a coherent kink state with these quanta as in equations (3.17) and (3.18) we
can match the expectation value of the âk and â†k with the classical Fourier coefficients.
Correspondingly, we can determine the occupation number as in equation (3.30). The mass
of the supersymmetric kink is as well defined as in equation (3.31) (for ψ = 0).

Although equation (3.31) looks like a theory of a free scalar field, it contains highly
non-linear dynamics. On the semi-classical level, the potential term is of the same order
as the kinetical term as can be seen from the BPS condition (3.81). Since the Hamiltonian
satisfies the BPS condition on this level, it is approximately diagonalized up to corrections
of order 1/N . As a consequence, we can use the diagonal Hamiltonian

H = (∂xφ)2 (3.82)

to extract the dispersion ω(k) = |k| for the corpuscles to leading order. If we take the full
corpuscular picture into account, we would obtain 1/N corrections to the dispersion. As
a remark, let us mention that no factor 1/2 occurs in the Hamiltonian in equation (3.82).
This is reminiscent of the fact, that the potential and the kinetical term are of the same
order. In other words, this is not simply the kinetic term, but the sum of kinetic and
potential term.

Analogous to section 3.1.4, we can split the corpuscles in energetical quanta ck and
topological quanta tk, where tk and ck are defined as in (3.45) and (3.46), respectively.
Accordingly, the supersymmetric kink state amounts to

|sol〉 = |t〉 ⊗ |E〉 (3.83)
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with |E〉 and |t〉 satisfying equations (3.47) and (3.48), respectively. Subsequently, the
topological charge which is equivalent to the central charge can be written in terms of
topological quanta as in (3.54). Note that the number of topological quanta diverges due
to the corresponding pole structure.

However, the number of energetical quanta is finite and given as

NE = m−1

∫
d(k/m)〈E|ĉ†kĉk|E〉 =

8m2

3g2
. (3.84)

This fact will become important when we consider 1/N corrections in the next step.

3.2.2 Corpuscular Corrections: Commutator Method

Let us now try to determine how non-vanishing 1/N type corrections to the BPS equation
arise in the corpuscular picture. Obviously, this would automatically imply that all the
supersymmetries are broken on the full quantum corpuscular level. We present here two
slightly different methods to approach this topic. In this section we discuss the commutator
method, while in section 3.2.3 we show how we can achieve the same results using a
Bogoliubov approach. However, let us stress at this point that the results presented here
are far from complete as some questions regarding the corpuscular dispersion relation
remain. We further elaborate on this below.

First of all, consider the BPS equation (3.81) in the corpuscular treatment. In the
quantum picture, this classical equation is promoted into an operator statement, since the
classical field is given as the expectation value of the corresponding field operator. In
other words, every classical field solution in the BPS equation has to be substituted by
the corresponding operator given in (3.14). If half of the supersymmetry is still preserved
in the corpuscular picture, the BPS operator has to vanish everywhere on the corpuscular
coherent kink state,

〈sol|O2
BPS|sol〉 = 〈sol|

(
∂xφ̂±

(
m2/g − gφ̂2

))2

|sol〉 . (3.85)

In the following, we will try to show that this condition is violated locally by corpuscular
quantum corrections. Before getting into the computation, let us remind ourselves that on
the trivial vacuum state |0〉 the BPS equation should be fulfilled. To achieve this, we have
to account for unwanted vacuum effects by properly normal ordering. Correspondingly, we
have to investigate quantum corrections to the BPS equation while subtracting vacuum
effects,

〈sol|O2
BPS|sol〉 − 〈0|O2

BPS|0〉 . (3.86)

We will come back to this point. For the moment let us start to present the method to
compute quantum corrections. It simply amounts to using commutation relations to bring
the BPS operator in a normal ordered form. In the vacuum state the normal ordered parts
obviously vanish. However, in the non-trivial soliton state the normal ordered products
correspond to the Fourier coefficients αk which can be related to the occupation number
and accordingly to the classical field values.
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For instance, let us consider the quartic term 〈sol|φ̂4|sol〉 occurring in the BPS condi-
tion. Using the commutation algebra for the corpuscular Fock operators âk, â

†
k, we arrive

at

〈sol|φ̂4|sol〉 ∼ φ4
sol + ~φ2

sol + ~2 . (3.87)

Here we restored the corresponding powers of ~. Each power of ~ corresponds to the eval-
uation of a commutator. The first term in the first line is simply the classical value, but
the second term corresponds to an actual 1/N -type quantum correction. Note that only
operators which are at least of the third order in φ̂ can lead to corpuscular corrections.
This can be understood as follows. Only terms which contain commutators as well as nor-
mal ordered contributions correspond to corpuscular corrections, since the purely normal
ordered terms correspond to the classical profile. Clearly, such a mixing can only occur for
terms of at least third order.

We still have to answer how to treat the third term in (3.87). This term only contains
commutators. As can be seen from

〈0|φ̂4|0〉 ∼ ~2 , (3.88)

it would even preexist in the Minkowski vacuum state. We know how to deal with vacuum
contributions in quantum field theories. One has to properly normal order the correlator,
i. e. subtract the vacuum contributions. Subtracting (3.88) from (3.87), leads to

φ̂4 → φ̂4 − 〈0|φ̂4|0〉 . (3.89)

Obviously, the third term in (3.87) vanishes when we redefine the correlator in this way.
Thus, in principle, we should renormalize the corpuscular Hamiltonian,

〈sol|H|sol〉 → 〈sol|H|sol〉 − 〈0|H|0〉 . (3.90)

Keeping this in mind, let us return to the computation of the 1/N corrections. Using the
commutation relations and subtracting the vacuum contributions, we can bring the BPS
condition to the form

Gkink = 〈sol|O2
BPS|sol〉 − 〈0|O2

BPS|0〉 =
1

π
(g∂xφsol(x) + 3g2φ2

sol)log
(ΛUV

µIR

)
(3.91)

which is depicted in figure 3.1. Here ΛUV and µIR are UV and IR cut-offs, respectively.
Obviously, equation (3.91) reveals that the BPS equation is not satisfied on the coherent
state if log(ΛUV /µIR) does not vanish. However, the value of this logarithm heavily depends
on the concrete form of the full corpuscular dispersion which is unknown. We further
elaborate on this topic below. Equation (3.91) is explicitly derived in the appendix A.

The new effects emerge from mixing terms of quantum effects and classical field values.
The surviving contributions in (3.91) have no analog on a trivial vacuum. In particular,
the 1/N type corrections explicitly depend on x and cannot be associated with a constant
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shift of the vacuum energy. Thus, these corrections, indeed, encode non-trivial information
about the resolved background.

The logarithms which appear can be understood in the context of renormalization. The
bare classical field values φsol(x) are not measurable, but only the corpuscularly renormal-
ized objects which appear in physical correlation functions. In particular, the renormalized
field no longer satisfies the BPS condition leading to a complete breaking of supersymmetry
on the soliton state. At this point, let us stress again that the corpuscular renormalization
is far from completely understood. In particular, the logarithmic term only arises when
we approximate the corpuscular dispersion by |k| which itself is only true up to order
1/N . Therefore, to obtain more quantitative statements we have to better understand the
microscopic dynamics of the corpuscles. This is left for future work.

Note that the corrections are not only suppressed by ~ as usual loop effects. With
respect to the classical field φsol the corrections are further suppressed by 1/N . This
becomes manifest in the lower power of classical fields.

In the classical treatment, one observes only one Goldstino arising due to the sponta-
neous breaking of half of the supersymmetries. Correspondingly, the breaking of all the
supersymmetries on the corpuscular kink induces the appearance of a second Goldstino.
Its profile is given as

||ψ2〉|2 = |OBPS|sol〉|2 . (3.92)

Clearly, the second Goldstino only occurs when O2
BPS does not vanish on the state |sol〉

as it is the case in the corpuscular picture. The resulting Goldstino profile is depicted in
figure 3.1.

The BPS condition is not violated everywhere, but only on a certain length scale. As
we would expect, this length scale is determined by the typical width of the kink 1/m. Far
away from the center of the kink the quantum corrections are exponentially suppressed.
This, again, shows that these effects are closely related to the resolution of the soliton, but
not to the vacuum.

As extensively mentioned throughout the thesis, the corpuscular resolution leads to 1/N
type quantum corrections. The supersymmetric kink possesses infinitely many constituents
which are responsible for the conservation of the topological charge. Thus, we would
naively expect that no corrections would occur. However, from the topology energy split
point of view we have to rephrase the statement about 1/N type quantum corrections.
More explicitly, the corpuscular corrections are of the 1/NE type, where the number of
energetic quanta NE is finite and given in (3.84). In other words, only the energetical
quanta participate in local quantum processes leading to non-vanishing corrections to the
BPS condition4. Of course, the infinite wavelength corpuscles responsible for topology are
not involved in local measurements, since it takes an infinite amount of time for them to
participate in local processes. Therefore, the violation of the BPS condition implies that
〈sol|Ĥ − Z|sol〉 does not vanish anymore because the central charge, in contrast to H, is

4In the following, 1/N always means 1/NE .
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Figure 3.1: The function Gkink/m2 is depicted versus the normalized spatial coordinate xm.
Note that in this figure the logarithm is normalized to log(ΛUV /µIR) = 1. Gkink/m2 directly
measures the violation of the BPS condition and, furthermore, it exactly corresponds to
the profile of the second Goldstino.

not affected by quantum processes. The reason for this is the infinite amount of topological
quanta from which the topological charge emerges as shown in (3.54).

In general, one could ask if the fermion quantum fluctuations around the soliton back-
ground could account for the bosonic corpuscular fluctuations as it is the case in the
semi-classical treatment due to Fermi-Bose degeneracy to all order in perturbation theory
in the usual description. Therefore, let us explicitly restore the fermionic and bosonic fields
in the Hamiltonian and determine the quantity 〈sol|Ĥ − Z|sol〉. As explained above, we
subtract, again, the Minkowski vacuum contribution 〈0|Ĥ − Z|0〉 in order to account for
the vacuum effects.

Expanding Ĥ in the three different types of field, i. e. the corpuscular field operator φ̂,
the usual bosonic fluctuations φ̂b and fermionic fluctations ψ, we obtain the full quantum
corpuscular Hamiltonian

Ĥ =
1

2

[
∂µ(φ̂+ φ̂b)∂

µ(φ̂+ φ̂b) + ψ̄iγµ∂µψ +
( ∂W
∂(φ̂+ φ̂b)

)2

+
( ∂2W
∂(φ̂+ φ̂b)2

)
ψ̄ψ

]
(3.93)

with

W =
m2

g
(φ̂+ φ̂b)−

g

3
(φ̂+ φ̂b)

3. (3.94)

Obviously, we can express the corpuscular, bosonic operator in terms of its creation and
annihilation algebra âk and â†k. Since the quatum fluctuations correspond to asymptotic
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particles, they can be expanded in terms of free waves as usual:

ψ =
∑
s

∫
dp√

(2π)2ωf

(
ĝspu

s
pe
−ipx + ĥs†p v̄

s
pe
ipx
)
,

φb =

∫
dp√

(2π)2ωb

(
b̂pe
−ipx + b̂†pe

ipx
)
,

where b̂p, ĝ
s
p and ĥsp are the annihilation operators for bosons, fermions of spin s and

anti-fermions of spin s, respectively. As usual, the vsp and usp are the spinor polarization
vectors [92]. In generic situations, the dispersion relation for fermions ωf and bosons ωb are
different. For supersymmetric theories they obviously have to coincide, since the fermion
mass has to be equivalent to the boson mass even when one takes loop corrections into
account. Using the commutation relations of the different sets of Fock operators, we can
determine

〈sol|Ĥ − Z|sol〉 =
1

2

∫
dx
(
I(2gφ′sol + 6g2φ2

sol − 2m2 + g2I)

+2g∂xφsolJ + 6g2φ2
solJ − 2m2J

−4g2φ2
solK

)
, (3.95)

where we used the classical solution for the spinor usp for the Dirac equation on the soliton
background, ūspu

s
p = 2gφsol . The functions I and J correspond to divergent integrals

arising from commutators of corpuscles and bosonic fluctuations, respectively. Similarly,
the K function denotes the integral arising from anticommutators of fermionic fluctuations.
The derivation for (3.95) is analogous to the computation of Gkink in the appendix A.

Additionally, φsol is simply the classical expectation value. Note that we already ne-
glected the normal ordered contributions of φb and ψ in equation (3.95). Obviously, these
terms have to vanish, since the corresponding Fock operator b̂k, ĝ

s
k and ĥsk annihilate the

soliton state |sol〉. The integrals are given as

I =

∫
dk

4πω
,

J =

∫
dk

4πωb
,

K =

∫
dk

4πωf
,

where ω is the dispersion relation of the corpuscles. Assuming that the corpuscular dis-
persion is free everywhere (ω = |k|), we would obtain the logarithmic term log(ΛUV /µIR)
for I as in equation (3.91). However, since the dispersion is only known up to order 1/N ,
the exact behavior of I is still an open question. Thus, we can only show that there are
breaking terms, but it is so far not possible to compute how strong these effects are. Obvi-
ously, this is related to the question of how to corpuscularly renormalize. In the following
we assume that I does not vanish and we can make sense of it.
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On the one hand, when we do not resolve the soliton, all the terms proportional to I
vanish, while the usual bosonic and fermionic parts remain the same such that we recover
the usual result. Correspondingly, it follows 〈sol|Ĥ − Z|sol〉 = 0. On the other hand,
taking the corpuscular structure into account the terms proportional to I in (3.95) do not
vanish. Even if the usual bosonic and fermionic contributions corresponding to J and K
cancel each other exactly, there are simply no fermionic superpartners which could cancel
the contributions of I. In other words, by introducing the bosonic corpuscles to resolve
the kink we immediately break supersymmetry.

Supersymmetry directly corresponds to having the same mass for bosons and fermions
in the theory. Thus, the breaking of supersymmetry should become manifest in a mass
splitting between these particles. This leads to corpuscular corrections to the bosonic and
fermionic dispersion relation, respectively. In general, it follows J 6= K. Nevertheless, let
us for the moment assume that J = K which is, of course, only true up to order 1/N . In
this approximation we can use the classical BPS condition 2gφ′cJ + 2g2φ2

cJ − 2m2J = 0 to
bring equation (3.95) to the form

〈φc|Ĥ − Z|φc〉 =
1

2

∫
dx
(

4g2φ2
c(I + J −K)

+g2I2 + 2g2IJ
)
. (3.96)

The corpuscular breaking terms are, again, proportional to I. Therefore, they vanish only
in the limit I → 0, where we neglect the corpuscular resolution of the kink. At this point,
it is important to note that all the terms proportional to the integral J originated from
operators of the form φ̂2

b . These are exactly the mass terms for the bosonic fluctuations.
Taking a closer look at (3.95), we observe that an additional mass term is generated for
the bosons which is of the form

∆mb = 2g2I . (3.97)

In other words, corpuscular loop corrections induce an additional mass terms for the bosons,
but not for the fermions in this approximation. Accordingly, assuming that I does not
vanish this indicates that supersymmetry is broken completely.

Dispersion Relation

At this point, let us comment on the dispersion relation. As we already discussed in section
3.1.3, it is highly non-trivial to determine the corpuscular dispersion relation ω(k). Usually,
the dispersion relation should emerge from the microscopic Lagrangian when we integrate
out the high-energy degrees of freedom. However, the corpuscular method presented here
only introduces these quanta in the low energy effective theory. We simply do not know
the underlying corpuscular physics such that we can determine the corpuscular dispersion
only to leading order in 1/N . Correspondingly, the BPS condition is satisfied as well as
the Hamiltonian is diagonal up to this order. Thus, the dispersion is approximately given
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as

ω(k) = |k|+O(1/N) . (3.98)

To answer the question how the dispersion relation emerges from a more fundamental level
is still an open task in this framework. So far it is not possible to exactly determine the
corpuscular loop contribution corresponding to the integral

I =

∫
dk

4πω
.

Nevertheless, this contribution will not vanish such that supersymmetry remains broken
in any case. In the approximation ωk ≈ |k| this integral exhibits divergencies. This
simply means that we have to properly renormalize the bare couplings and masses in the
Lagrangian with respect to the corpuscular loop effects. As was mentioned above, the
bosonic corpuscles have no fermionic superpartners which could cancel these loop effect.
Accordingly, the superpotential cannot satisfy the non-renormalization theorem anymore
on the corpuscular soliton state.

Similarly, it is hard to determine the free dispersion of the bosonic and fermionic fluctu-
ations simply because their mass is renormalized by corpuscular effects. Again, to leading
order the bosonic and fermionic dispersions are given as

ωb =
√
|k|2 +m2 +O(1/N) and (3.99)

ωf =
√
|k|2 +m2 +O(1/N) , (3.100)

respectively. However, the corpuscular corrections are, in principle, not equivalent such
that their effective masses are different.

Of course, we can use these dispersions to determine the integrals J and K to leading
order. This leads to diverging logarithms which we have to regularize as given in (3.95),

log

(
ΛUV

m

)
, (3.101)

where ΛUV is a UV cutoff and 1/m the extension associated to the profile. As long as we are
in the region ΛUV ∼ m corresponding to length scales of the order of the kink, we effectively
do not resolve the soliton and any quantum effects vanish. However, when we start to turn
to higher energies ΛUV > m we effectively look inside the soliton and quantum effects
become important. Let us stress again that we have to know the corpuscular dispersion
relation in order to give more quantitative statements.

3.2.3 Corpuscular Corrections: Bogoliubov Method

In this section we will present a slightly different approach to keep track of the corpuscular
corrections. We use the mean field split to represent the corpuscular operator in terms of
the mean field and fluctuations.
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More explicitly, the corpuscular annihilation and creation operators can represented by
by

âk = αk + δ̂k , (3.102)

â†k = αk + δ̂†k . (3.103)

Here αk =
√
Nk is, again, the classical Fourier coefficients defined in (3.30). The annihi-

lation and creation operators δ̂k and δ̂†k correspond to quantum fluctuations of the mean
field

√
Nk. It is crucial to understand that these creation and annihilation operators are

different from the full corpuscular operators âk, â
†
k we defined earlier in section 3.1.1. In

particular, δ̂k, δ̂
†
k correspond to fluctuations of the background itself. Furthermore, they

annihilate a different vacuum. In contrast to the corpuscular annihilation operator âk an-
nihilating the Minkowski vacuum, the δ̂k have the soliton state |sol〉 as a vacuum state.
Most easily δ̂k, δ̂

†
k can be understood as phonons propagating in a solid state. Using the

Bogoliubov approximation that δ̂k is small, the Hamiltonian can be written up to bilinear
order in δ̂k

Ĥ = Esol +O(δ̂2
k) . (3.104)

Usually, we employ a Bogoliubov transformation on the fluctuations δ̂k, δ̂
†
k such that the

Hamiltonian is diagonalized. The resulting Bogoliubov modes are given as

δâk =
∑
i

(
fikδ̂k + h.c.

)
, (3.105)

where fik are the Bogoliubov coefficients. As a consequence, the corpuscular Hamiltonian
reduces to

Ĥ = Esol +
∑
k

εkδâ
†
kδâk . (3.106)

Here εk corresponds to the dispersion of Bogoliubov modes and is determined by the
diagonalization procedure. To leading order the dispersion of the Bogoliubov modes is the
same as for the corpuscles, since classically the Hamiltonian is diagonalized by the kink,
εk ≈ ω(k) ≈ |k|. At this point, we observe the same problem as in the commutator method,
since the dispersion relation for the Bogoliubov modes is not known.

Note that we have to distinguish the Bogoliubov modes from the usual quantum fluc-
tuations around the background we denoted by b̂k and b̂†k. Although the b̂k and b̂†k have the
same vacuum state as the Bogoliubov modes, they do not behave like asymptotic particles.
In particular, the Bogoliubov modes are confined to the background bound state and have
a different dispersion than the asymptotically free quanta b̂k and b̂†k.

As a remark, let us mention that the diagonalization of the Hamiltonian becomes
particularly easy in the soliton case because to leading order the Hamiltonian is already
diagonal in the corpuscular Fock operators âk and â†k. In other words, since to leading order
in 1/N the BPS condition is satisfied, the diagonalization of the Hamiltonian is trivial.
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Reexpressing the corpuscular field φ̂ in terms of the mean field and the background
fluctuations, we arrive at

φ̂(x) = φsol(x) +
√
l

∫
dk√

(2π)2εk
(eikxδâk + e−ikxδâ†k) , (3.107)

where φsol is already defined in (1.73). As explained in the previous subsection, supersym-
metry is completely broken on the soliton state when the BPS equation is not satisfied on
the corpuscular level. Thus, let us evaluate the BPS equation in the Bogoliubov approach
to second order in Bogoliubov modes

〈sol|O2
BPS|sol〉 = 〈sol|

(
∂xφ̂±

(
m2/g − gφ̂2

))2

|sol〉

=
(
∂xφsol ±

(
m2/g − gφ2

sol

))2

+g
(
6gφ2

sol(x) + 2∂xφsol(x)
)

×〈sol|

(
√
l

∫
dk√

(2π)2εk
(eikxδâk + e−ikxδâ†k)

)2

|sol〉 . (3.108)

Note that we already neglected here all the terms which are vacuum contributions as
explained in subsection 3.2.2. The second line corresponds to the classical BPS condition
which vanishes. Using the property of the Bogoliubov modes δâk|sol〉 = 0, we arrive at

〈sol|O2
BPS|sol〉 =

(
2gφ′sol + 6g2φ2

sol

) ∫ dk

(2π)2εk︸ ︷︷ ︸
≈I

. (3.109)

Consistently, we obtain the same result as with the previous method. As in equation (3.91),
it follows that the BPS condition is not satisfied on the corpuscular level. In particular,
the result is the same as the corpuscular contributions in (3.91), but using this method we
observe the same problems as before.

Finally, the results show that both approaches to keep track of corpuscular corrections
lead to the same results. Unfortunately, in both approaches the corpuscular dispersion
can only be determined approximately such that it is formidable task to obtain more
quantitative results.

3.3 Conclusions

Let us now review briefly the most interesting results of this section and draw a conclusion.
Furthermore, we will comment on future work in this framework.

In the beginning of this chapter we presented an explicit framework to describe solitons
in 1+1 dimensions in terms of bound states of constituents. We refer to these constituents
as corpuscles to distinguish them for usual asymptotic particles. In particular, the cor-
puscles can only exist inside the bound state and always interact with each other. To
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represent the soliton as a bound state, we constructed a coherent state of these corpuscles.
The coherent state is a reasonable choice because it is the most classical quantum state we
know of.

This framework allows for a new understanding of several aspects of soliton physics.
Namely, it turns out that the occupation number of infinite wavelength modes diverges
which we can connect with the conservation of the topological charge. From the corpuscular
point of view the overlap between the Minkowski vacuum and the soliton state is given as

e−N → 0 for N →∞ .

Thus, the divergence of the occupation number can be directly related to the non-trivial
topology of the soliton.

Furthermore, this framework allows to distinguish two different types of quanta. The
first type are the infinite wavelength topological quanta. The second type of quanta has
non-zero energy. Accordingly, it can account for the energy of the profile. The corre-
sponding occupation number of energetical quanta does not diverge. Mathematically, the
profiles for the energetical and topological quanta are connected with the soliton profile
via convolution.

These energetical quanta automatically lead to 1/N -type quantum effects, since they
interact on the corpuscular level. This could potentially lead to enormous consequences
for supersymmetric kinks. In particular, even the classically BPS saturated kink could
break all the supersymmetries due to corpuscular quantum effects. This can be easily
understood as we are introducing new bosonic degrees of freedom without a fermionic
counterpart. Thus, a mass splitting for the fermions is generated and a second Goldstino
occurs.

However, in order to determine the occupation number and the quantum corrections, it
is necessary to identify the corpuscular dispersion relation as it encodes all the microscopic
interactions. So far it is only possible to determine it up to 1/N corrections when classically
the BPS condition is satisfied. Thus, we cannot prove that supersymmetry is broken, but
we only find strong hints that this is the case in the corpuscular picture. Correspondingly,
as a future task it will be necessary to develop methods to determine the corpuscular dis-
persion relation in generic situations. This could help to further understand how quantum
mechanically resolved solitons affect supersymmetry.
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Chapter 4

Coherent State Picture for Instantons

Since the coherent state method was quite successful to describe classical solutions like
the topological and non-topological soliton, naturally the question arises if we can extend
this framework to instantons. Note that the work presented in this whole chapter is in
accordance with the original work [93]. An instanton is a classical solution arising as a
saddle point in the Euclidean path integral. In contrast to the soliton, it is characterized
by a finite action instead of a finite energy. As instantons correspond, in general, to finite
action processes in Euclidean time, we naturally associate them with quantum mechanical
tunneling processes. For instance, in Yang-Mills theories instantons correspond to processes
describing the switching between the different prevacua of the theory. Correspondingly, in
this case the instanton is connected with the non-trivial vacuum structure of the theory.
Thus, we can attribute a topological charge to the instanton like to the topological soliton
before. However, as it turns out it is much harder to develop a quantum understanding
for the instanton than it was for the soliton. Since the instanton is a process, it is is not
similar to a particle like the soliton. This is related to the fact that instantons are saddle
points of the path integral in Euclidean time. As a consequence, the instanton solution
directly depends on Euclidean time which is very different from the soliton case. Notice
that it was crucial in the soliton case that the soliton is static.

To circumvent these obstacles when introducing a corpuscular picture for the instanton,
we proceed in a slightly different way than in the soliton case presented in the previous
chapter. Instead of directly defining a quantum coherent state |inst〉 for the instanton, we
relate the instanton effect to a usual soliton tunneling through a region which is energeti-
cally forbidden in a dimensionally uplifted theory. This mapping on a higher dimensional
object is well known in condensed matter physics, where the tunneling of a Cooper pair
through a barrier is viewed as an instanton effect by a low energy observer. This tunneling
is known as Josephson effect [94].

Let us be more explicit at this point and present the idea of this chapter. We want
to understand an instanton in d dimensions as a soliton in d + 1 dimensions evolving in
Euclidean time. In this chapter we will examine two different aspects of this picture. On
the one hand, we show how we can map instantons in various dimensions on a higher
dimensional soliton without specifying the embedding. When we consider an instanton
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solution in d dimensions φinst(x) describing a tunneling process, we can always find a
static soliton φsol(x) in a d + 1 dimensional theory with an equivalent field configuration
as the instanton. Of course, this is a trivial statement because the equations of motions
which we have to solve in order to obtain the classical solutions are simply the same for
the static soliton and the instanton in Euclidean time in one less dimension as was already
mentioned in [95].

In order to to map the instanton on a soliton evolving in Euclidean time, we have to
uplift the instanton theory to d + 1 dimensions. Usually a fundamental length scale L
is involved in such a procedure simply because the mass dimensions of the couplings and
fields depend on the number of dimensions. Therefore, we can relate the corresponding
couplings of both theories by

L

g̃2
=

1

g2
. (4.1)

The classical field values are given as

φinst =
√
L φ̃sol . (4.2)

Obviously, this scale is also involved when we determine the instanton action. It can simply
be identified as the action of a soliton propagating a Euclidean distance L

S
(d)
inst = LM

(d+1)
sol . (4.3)

Accordingly, there is a direct mapping of an intanton in d dimensions on a d+1 dimensional
soliton propagating a Euclidean time L.

When we resolve the uplifted soliton, corpuscular 1/N -type quantum effects arise which
are inherited by the instanton in the lower dimensional theory. Note that it is still an
interesting question how to directly define a coherent instanton state |inst〉, but we will
leave this for future work. If we include the corpuscular picture for the soliton, accordingly
the instanton knows about the constituent structure. In this sense, the instanton can
be viewed as made out of N corpuscular tunnel processes corresponding to the soliton
corpuscles evolving a Euclidean time interval τ = L. This amounts to the Euclidean time
evolution

〈sol|eiHτ |sol〉|τ=iL ∝ e−Sinst . (4.4)

At this point, we have to clarify the action of the time evolution operator on the corpus-
cular solitonic state. As it turns out, this can most easily be achieved when we turn to
a description in terms of Bogoliubov modes we already introduced in section 3.2.3. In
particular, performing a Bogoliubov transformation as in (3.105), the Hamiltonian reduces
to

Ĥ = Esol +
∑
k

εkδâ
†
kδâk , (4.5)

where the Bogoliubov modes δâk correspond to small fluctuations usually known as phonons
in condensed matter physics. In other words, the time-evolution is mainly governed by the
classical energy of the soliton profile Esol such that we can use (4.5) to obtain (4.4).
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On the other hand, we can take a slightly different perspective. For instance, we
could ask the question if it is possible to dynamically embed the instanton theory in a
higher dimensional soliton theory. In other words, is it possible to manufacture a concrete
situation where the instanton emerges from the point of view of a low energy observer? We
will identify several explicit dynamical mechanisms allowing for a mapping of the instanton
on a higher dimensional soliton. The general strategy to achieve this is simply to localize
a low energy observer Alice on a barrier or transition region through which the higher
dimensional soliton is tunneling. Clearly, a propagation of a soliton with virtual energy is
viewed as an instanton for Alice who is not able to resolve the barrier. Note that the barrier
width or in other words the Euclidean distance the soliton is propagating is equivalent to
the length scale L we introduced earlier in order to connect the couplings of both theories.
Thus, in a dynamical embedding L is not a free parameter, but we can derive how L arises
from first principles. In general, it depends on the parameters of the higher dimensional
theory.

For instance, if we localize a d+1 dimensional soliton on a d dimensional brane of width
L as is described in [96] the instanton directly occurs on this d dimensional submanifold.
Of course, when the soliton is microscopically resolved, the corpuscles are dynamically
localized on this layer as well which naturally leads to quantum effects affecting the lower
dimensional instanton.

The outline of this chapter is as follows. First, in section 4.1 we explicitly implement the
constituent picture for the instanton in 0 + 1 dimensional quantum mechanics by mapping
it on the 1 + 1 dimensional soliton as explained above. In particular, we consider the cases
of the topological and the non-topological instanton. As a consequence of the mapping,
the instanton inherits the same features as the corpuscular soliton. We can understand
the stability of the topological instanton against decay in terms of an infinite occupation
number as already presented in sections 3.1.1, 3.1.2 and 3.1.4 for the soliton. Additionally,
we can employ the topology-energy split for the instanton. Note that in contrast to the
soliton, the instanton is not characterized by a finite energy, but by a finite action. In turn,
we can distinguish quanta responsible for the action and those creating the topological
charge.

With this framework in mind, it is straightforward to introduce a corpuscular picture
for the instanton. However, it is still challenging to construct concrete models of embedding
the instanton theory in a higher dimensional theory. In sections 4.1.3 and 4.1.4 we present
models where a 1 + 1 dimensional soliton is dynamically localized on a region of width L
and show how the instanton occurs when restricted to this layer. In addition, we consider
the more complicated model of a localized monopole in 3 + 1 dimensions between two
domain walls in section 4.2. This leads to a localized 2 + 1 dimensional U(1) gauge theory.
In this lower dimensional theory the tunneling monopole is viewed as an instanton effect
by a low energy observer.

Finally in section 4.3.2 we discuss how to implement the quantum picture for the
complicated case of Yang-Mills instantons in 3 + 1 dimensions by mapping it on an 4 + 1
dimensional monopole.
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4.1 Instantons in 0 + 1 dimensions as Solitons in 1 + 1

dimensions

4.1.1 Non-topological Instanton

Before establishing a mapping between the non-topological soliton in 1 + 1 dimensions and
the non-topological instanton in 0 + 1 dimensions, let us for completeness present, again,
the corresponding model. For that purpose, consider the Lagrangian

L0+1 = (∂tφ)2 − m2φ2 + g2φ4 . (4.6)

Here m2, g2 > 0 are the mass and the coupling, respectively. Note already at this level that
it is not surprising that the classical instanton solution in Euclidean time can be mapped
on a static non-topological soliton. The structure of the instanton Lagrangian (4.6) simply
coincides with the one of the non-topolgical soliton in (3.4). As a consequence, we observe
the same vacuum structure, since

φ = 0 for t = ±∞ (4.7)

is the classical stable vaccum. The classical saddle point solution φinst(t) we call instanton
describes the motion of the field starting in the vacuum at t = −∞ evolving to the unstable
field value φ = m/

√
2g at t = 0, bouncing back and finally condensing to the vacuum at

t = +∞ again. In other words, the non-topological instanton describes a tunneling from
the vacuum across a barrier and back to the vacuum. Let us point out that the described
motion is in total accordance with the non-topological soliton. However, the instanton
solution depends on the Euclidean time instead of x. The classical solution interpolating
between both vacua is given as

φinst(t) =
1√
2

m

g
sech(mt) , (4.8)

where only x and t are exchanged with respect to the soliton solution in equation (3.5). We
can associate an action to this instanton process in Euclidean time, since it is the crucial
feature of instantons that they correspond to processes of finite action. Clearly, this is in
contrast to solitons which were characterized as finite energy solutions. In the instanton
case, we can determine the action simply by inserting the classical solution (4.8) in the
Lagrangian (4.6):

S
(1)
inst =

2m3

3g2
. (4.9)

The purpose of this chapter is to give a quantum understanding of the classical instanton
solution. However, instead of directly defining a quantum coherent instanton state we want
to implement the quantum picture by mapping the instanton on a corpuscularly resolved
soliton we already presented in the previous chapter. Mainly, the reason why we follow this
strategy is connected to the fact that it is not clear how to define a corpuscular algebra for
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Figure 4.1: Non-topological Soliton evolving an euclidean distance L through a barrier.
The dashed box represents the barrier, while the profile corresponds to the soliton. The
soliton is created on the left side of the barrier and discharges again on the right side.
Correspondingly, this virtual process describes the tunneling through the barrier in terms
of the Euclidean motion of a soliton.

operators depending on Euclidean time. To circumvent this obstacle, we thus use a trick
and connect the microscopically resolved soliton with the lower dimensional instanton.

At this point, let us discuss how to relate the 1 + 1 dimensional non-topological soliton
to the non-topological instanton in 0 + 1 dimensions. Usually, when we downlift a theory
to a lower dimensional theory, a certain length scale L is involved. It is basically given as
the length scale on which the new theory is localized from the point of view of the higher
dimensional theory. In particular, we need such a dimensional parameter because the fields
and couplings have different canonical dimensions. In this sense, L allows to connect higher
and lower dimensional entities.

In general, the concrete value of L is determined by the embedding procedure we use to
localize the higher dimensional theory. This, however, requires to include new interactions
in the higher dimensional theory. In this section we are simply interested in the mapping
of the instanton on a soliton. Let us simply assume that there is some mechanism which
achieves this for us and leads to a new scale L in the theory. In sections 4.1.3 and 4.1.4
we will discuss explicit embeddings and observe that L depends on the parameters of the
localization.

Of course, the coupling constants in both theories have to satisfy a certain condition
if we want to identify the instanton as a soliton tunneling through a barrier of width L
(figure 4.1). Comparing the Lagrangians for the soliton (3.4) and the instanton (4.6), it
follows

L

g̃2
=

1

g2
, (4.10)

in order to get the same profile for solitons and instantons. Note that the coupling of the
higher dimensional theory is denoted as g̃. Consequently, we can relate the instanton and
the higher dimensional soliton profile φ̃sol via

φ̃sol(x) =
1√
2

m

g̃
sech(mx) =

φinst(t = x)√
L

. (4.11)
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Similarly, we can relate the energy to the soliton profile with the action of the instanton

LEsol =
2m3

3g̃2
= Sinst . (4.12)

For reasons of completeness we will repeat the important steps to resolve the non-topological
soliton using coherent states. We simply Fourier transform the classical solution

φ̃sol(x) =
√
l

∫
dk√

(2π)2|k|
(eikxαk + e−ikxα∗k) , (4.13)

and view the Fourier coefficients as expectation values of annihilation and creation opera-
tors âk, â

†
k for the soliton corpuscles evaluated in the soliton state represented by a coherent

state spanned by these operators. Of course, the Fock operators satisfy the standard alge-
bra

[âk, â
†
k′ ] =

1

l
δ(k − k′) , (4.14)

while the coherent state is simply given as

|sol〉 =
∏
⊗k

e−
1
2
|αk|2eαkâ

†
k |0〉 . (4.15)

Defining the occupation number of these quanta in terms of the expectation values of the
operators, we obtain

Nk = 〈sol|â†kâk|sol〉 = α∗kαk =
π

2

|k|
l

1

g2
sech2

(
πk

2m

)
. (4.16)

Of course, the âk, â
†
k are again Fock state operators for corpuscles and do not create and

annihilate asymptotic quanta. This is reflected in the non-trivial dispersion and the zero
frequency of the constituents. Correspondingly, these objects only exist inside such a bound
state.

As in section 3.1.1, the total number of corpuscles is simply given as

N ≡
∫
k

Nk =

∫
k

α∗kαk =
m2

g2

(
log(2)4

2π

)
(4.17)

which reveals that most of the constituents have a momentum given by the inverse size of
the soliton k . m. The finiteness of N is connected to the fact that the topological charge
of this soliton is 0.

As it was advertized in the introduction of this chapter, we can understand the time-
evolution of the coherent soliton state when we perform a Bogoliubov transformation of
the Hamiltonian. Using the transformation (3.105), we arrive at the diagonal Hamiltonian
of the Bogoliubiv modes δâ†k and δâk

Ĥ = Esol +
∑
k

εkδâ
†
kδâk . (4.18)
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Note that in the instanton case the δ̂k in equation (3.105) do not mix effectively for large
momenta |k| � m because in this regime the coefficients αk are exponentially suppressed
as

αk ∼
√
N
|k|
m
e−π

k
2m � 1 . (4.19)

Let us now evaluate how these results affect the classical instanton solution. For that
purpose, we identify the soliton state |sol〉 evolving a Euclidean time interval L with the
instanton, where the time evolution is given by the Hamiltonian (4.18). If we choose the
time interval τ = iL to be small enough, we can neglect the second term in (4.18) such
that the coherent state approximately evolves like an energy eigenstate. In fact, we can
always choose mL to be small, while still keeping N ∼ m2/g̃2 large. Thus, according to
(4.18) to leading order the time evolution of the soliton can simply be computed by

〈sol|eiHτ |sol〉 ' ei
∫
k Nk|k|τ = eiEsolτ = e−EsolL . (4.20)

Comparing with equation (4.9), this soliton amplitude exactly matches with the one of the
instanton

〈sol|eiHτ |sol〉|t=iL = e−Sinst . (4.21)

Using the matching condition, we can easily reexpress the instanton action in terms of the
occupation number of soliton constituents

Sinst =

∫
k

Nk L|k| = EsolL. (4.22)

As advertised in the introduction of this chapter, this shows how the instanton inherits the
corpuscular substructure of the soliton when we establish a mapping between both objects.
Similarly, we get 1/N -type quantum corrections to the instanton action when we consider
the quantum corpuscular Hamiltonian. Nevertheless, the results are consistent with the
classical ones to leading order.

As a remark, let us ask the question what happens if we completely downlift the theory
meaning that we take the limit L→ 0. In this case, a lower dimensional observer can never
detect the extra dimension because this would require an infinite amount of energy ∼ 1/L.
According to equation (4.22), in this limit the energy of the soliton diverges, Esol → ∞,
while the instanton action Sinst is kept finite. Subsequently, any finite corpuscular quantum
effects vanish because Nk diverges in this limit, even for finite momentum modes.

To summarize, we can only measure quantum corpuscular fluctuations of the instanton
background localized in a higher dimensional theory where we could, in principle, detect
the extra dimension by going to energies ∼ 1/L.

4.1.2 Topological Instanton

In the same manner we established a quantum picture for the non-topological instanton,
we can resolve the topological instanton by mapping it on a tunneling through topological
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soliton. Due to this procedure, all the corpuscular features of the 1 + 1 dimensional soliton
are inherited by the lower dimensional instanton. As a consequence, the topology-energy
split of corpuscles in the soliton case translates into two sets of corpuscular processes. One
family is responsible for the topology of the instanton, while the other one accounts for the
action of the classical instanton profile. In accordance with the soliton, the k = 0 pole of
the occupation number leads to an infinite occupation number of zero momentum quanta
which are responsible for a non-zero topological charge of the profile.

Let us make these statements computationally manifest. For that purpose, consider
the 0 + 1 dimensional theory containing a classical instanton solution

L0+1 = (∂tφ)2 − g2(φ2 − m2/g2)2 , (4.23)

where m > 0 is the mass and g > 0 the coupling. Again, it is clear why we can relate
this theory with the topological soliton in 1 + 1 dimensions in section 3.1.2. The instanton
Lagrangian (4.23) has the same structure as the one of the topological soliton in equation
(3.28). In particular, it has the same interaction terms with equivalent signs leading to
the same classical profile. In fact, both theories have the same vacuum structure, since the
vacuum expectation values of φ are given as

φ = ±m/g for t = ±∞ . (4.24)

In turn, the instanton in 0 + 1 dimensions describes the tunneling from the vacuum −m/g
to the vacuum m/g. Depending on the starting vacuum, one either obtains the kink or the
anti-kink solution

φinst(t) = ± m
g

tanh(tm) , (4.25)

which obviously interpolates between both vacua. Note, again, that this profile is basically
the same as the one of the kink soliton (3.29). However, the instanton depends on Euclidean
time instead of the spatial component x. As instantons are defined to be classical solutions
of finite action in Euclidean time, we can associate an action with them:

Sinst = 8m3/3g2 . (4.26)

Now the reasoning is the same as for the non-topological instanton. It is a priori not
clear how to define the corpuscular creation and annihilation algebra in Euclidean time.
Therefore, we map the 0 + 1 dimensional topological instanton on a 1 + 1 dimensional
soliton with a corpuscular resolution tunneling through a barrier of width L. The tunneling
automatically implies that this is not a usual propagation, but a virtual process in Euclidean
time.

For reasons of completeness, let us briefly present again the corpuscular description of
the soliton. The dimensionally uplifted Lagrangian of the topological soliton is the same
as in equation (3.28)

L1+1 = (∂µφ̃)2 − g̃2(φ̃2 − m2/g̃2)2 , (4.27)

where as explained above the localization scale L determines the relation between the
higher dimensional coupling g̃ and the lower dimensional one g. Obviously, the relation
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is the same as in (4.10). Therefore, we can reexpress the classical soliton in terms of the
lower dimensional solution when we identify x = t,

φ̃sol(x) = ± m
g̃

tanh(xm) =
√
Lφinst(t = x) . (4.28)

Now we can implement the corpuscular philosophy by introducing a Fock algebra âk, â
†
k

whose expectation values in the standard coherent state |sol〉 given in (4.15) are identified
with the Fourier coefficients αk given in (3.30). Furthermore, we can decompose the algebra
into two sets of annihilation and creation operators responsible for energy and topology of
the soliton, respectively. Hence, we define

αk = tk ck ,

ck ≡
√
πm

k

g̃
csch

( πk
2m

)
,

tk ≡
i√
k
, (4.29)

where ck and tk are the expectation values of the operators for the energetical and topo-
logical quanta, respectively. On the one hand, using these definitions we can determine
the total energy of the soliton

Esol =

∫
k

k〈sol|â†kâk|sol〉 =

∫
k

|ck|2 =
8m3

3g̃2
, (4.30)

which is solely determined by the number of energetical quanta. On the other hand,
the total occupation number diverges due to the presence of an infinite amount of zero
momentum quanta

N =

∫
k

dkNk ∼
∫
dk|tk|2 ∼ −log(k0)|ko→0 →∞ , (4.31)

which is the reason why the topological charge is conserved. This can be seen when one
calculates the overlap of the soliton state with the topological trivial vacuum

〈0|sol〉 = e−
N
2 = 0 . (4.32)

Let us investigate the implications for the topological instanton viewed as such a soliton
tunneling through. Obviously, the action of the instanton is simply given by the energy of
the soliton times the distance which the soliton moves in Euclidean time. Subsequently,
from equation (4.30) we observe that the action of the instanton can completely be at-
tributed to the energetical quanta of the soliton.

Sinst = L

∫
dk

m
c∗kck =

L8m3

3g̃2
=

8m3

3g2
. (4.33)
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The energetical corpuscles of the higher dimensional soliton correspond to the corpuscles
which are responsible for the action from the point of view of the instanton.

However, the topological charge of the instanton is created by an infinite occupation
number of zero momentum quanta which do not contribute to the action of the instanton.
In turn, from the quantum mechanical point of view the instanton is stable, since the
overlap (4.32) vanishes.

As a remark, let us comment on the dispersion of the corpuscles. Since we introduced
the resolution of the instanton by mapping it on a corpuscularly resolved soliton, it inherits
all the features of the soliton, such as the corpuscular dispersion

ωk = |k|+O(1/N) . (4.34)

We can determine the corpuscular dispersion relation only to leading order in 1/N due to
the fact that in the classical limit the BPS condition is satisfied. Nevertheless, we must
keep in mind that the corpuscles are not asymptotic particles to whom we can associate a
free dispersion. Instead, they only appear as interaction eigenstates inside a bound state.

4.1.3 Explicit Embedding of an Instanton I

Having established a mapping between the 0 + 1 dimensional instanton and the 1 + 1
dimensional soliton by introducing a new scale, let us now discuss the second important
aspect of this chapter. Namely, how we can dynamically embed the instanton theory in
the higher dimensional soliton theory. We will call the observer of the 0 + 1 dimensional
theory Alice. Bob’s theory is the 1 + 1 dimensional one. Note that in this framework we
will be able to explicitly determine the length scale L we had to introduce in order to relate
the couplings of the instanton and the soliton theory.

As a first example of an explicit embedding, let us consider the action

L1+1 = ∂µχ∂
µχ+ ∂µφ̃∂

µφ̃− f 2 χ2
(
χ− 2

µ

f

)2

− g̃
2

2
φ̃4 +M2φ̃2 − β2χ2φ̃2 − M4

2g2
. (4.35)

Here the different couplings g̃, f , β and the masses µ and M are positive. For the moment,
let us neglect the field φ̃ which eventually will describe the soliton tunneling through and
analyze the background field χ. Clearly, χ has two degenerate minima χ = 0 and χ = 2µ

f

in this case. We can distinguish two different types of kink solutions interpolating between
the vacua given as

χ(x) =
µ

f
(1± tanh(µx)) , (4.36)

where the + sign corresponds to the solution interpolating between 0 on the left and 2µ/f
on the right, while the − sign denotes the solution where the 0 vacuum is on the right
hand side. Obviously, the first situation is a kink, while the other one is an anti-kink.
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We are interested in creating a barrier of χ = 0 vacuum between the χ = 2µ/f vacua as
it is depicted in figure 4.2. This set-up generates an energetically forbidden wall for the
φ̃ soliton. Correspondingly, we design a configuration where a kink and an anti-kink are
separated by a distance L such that

χ(x < 0) = χ(x > L) = 2
µ

f
and (4.37)

χ(0 < x < L) = 0 . (4.38)

As a next step, we investigate the field φ̃ field in this χ-background. In particular, we
study the decoupling limit

β → 0 , µ
f
→∞ with β µ

f
fixed, (4.39)

where we can neglect the back-reaction of the φ̃ on the χ-configuration. As explained
above, we want the φ̃ soliton solution only to exist inside the barrier in order to describe
tunneling, while outside of the barrier the classical vacuum should be φ̃ = 0. Thus, on the
one hand we choose 2β2µ2/f 2 −M2 > 0 such that asymptotically the φ̃-quanta have an
effective mass M2

φ̃
= 2β2m2/f 2 −M2 > 0.

On the other hand, the φ̃ quanta should condense in the barrier region 0 < x < L such
that the effective mass Mφ̃ becomes negative in this region. In other words, φ̃ exhibits the
vacuum expectation values

φ̃ = ±M
g̃
. (4.40)

This means that the Z2 symmetry φ̃ → −φ̃ is broken spontaneously. We can trust these
approximations only for L�M−1,M−1

φ̃
or in other words when we can neglect the effects

of the walls of the layer.
There is a classical kink solution for φ̃ connecting the two vacua inside the layer.

However, we can only determine it analytically in the limit L → ∞, where it takes the
usual form

φ̃(x) = ±M
g̃

tanh(Mx/
√

2)) . (4.41)

The configuration is topologically stable in this limit. To summarize, only in the region
0 < x < L we obtain a classical soliton solution for φ̃ approximated by (4.41). Outside
of the layer for x < 0 and x > L, φ̃ vanishes. The topology for φ̃ is trivial in this region.
As a consequence, we can create a kink on the left side of the layer at x = 0 and let it
evolve to the right side at x = L where it gets discharged. Thus, the global charge which
Bob observes is zero. Note that this is a process in Euclidean time, since we need virtual
energy to create the soliton. A low energy observer Alice on this layer would observe a
vacuum transition −M

g̃
→ M

g̃
when the soliton passes by. Now the crucial point is simply
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Figure 4.2: The dashed line represents the background kink-anti-kink layer created by the
background field χ. The straight line corresponds to the solitonic excitation of φ̃ on the
background. For a large layer thickness L, this configuration is well approximated by a
standard kink.

that Alice interprets this effect as an instanton because she cannot resolve the additional
spatial dimension.

To make the emergence of the lower dimensional theory manifest, we perform a mode
analysis of the φ̃-field on the χ(x) background. Consider the linearized equation of motion
for φ̃, (

∂µ∂
µ + (β2χ(x)2 −M2)

)
φ̃ = 0 . (4.42)

If we decompose φ̃(x, t) = ψ(x)φ(t) with ∂2
t φ(t) = −m2φ(t), the equation for ψ(x) which

describes the soliton profile in spatial direction becomes(
∂2
x −

(
β2χ(x)2 −M2 −m2

))
ψ(x) = 0 . (4.43)

Here χ(x) represents the kink-anti-kink configuration separated by a distance L. If we
consider an appropriate range of parameters, we clearly obtain a localized finite norm
solution with negative m2. Note that ψ(x) is approximately constant inside the region
0 < x < L and drops to zero exponentially fast for x < 0 and x > L. Normalizing it to
one,

∫
dx ψ(x)2 = 1, it follows for large L

ψ(x)2 ' 1/L for 0 < x < L. (4.44)

To obtain Alice’s effective lower dimensional theory, we have to simply integrate over x,

L0+1 = (∂tφ)2 −m2φ2 − g2

2
φ4 . (4.45)
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Here we used g2 = g̃2
∫
dx ψ(x)4. Comparing with equation (4.44) for large L, we now

observe how L emerges in this framework. It is given as 1/L =
∫
dx ψ(x)4.

Let us now discuss the physics which are implied by this model. Obviously, the Z2

symmetry φ̃ → −φ̃ is spontaneously broken in Alice’s effective theory (4.45) (valid at
energies� 1/L), while from Bob’s 1+1 dimensional point this symmetry is restored outside
of the barrier. The lower dimensional field φ develops two different vacuum expectation
values φ = ±m

g
in the layer as the soliton passes by. This spontaneous transition between

the vacua in Euclidean time is described by an instanton from Alice’s point of view.

However, for Bob the situation looks different. For him a soliton spontaneously emerges
on the left side of the layer, travels through it and discharges on the right side. Thus, this
set-up, indeed, allows us to identify the 1+1 dimensional solitonic origin of 0+1 dimensional
intantons.

To summarize, the physical situation is the following. On the one hand, outside of
the barrier φ̃-quanta are not condensed, while from from the solitonic point of view there
exists a vacuum condensate of φ̃-solitons. On the other hand, in the world-volume theory of
χ = 0, φ̃-quanta are condensed, but solitons are on-shell. Note that the solitons inside the
layer are not exactly stable for finite L, since the boundary conditions have to stay trivial.
Nevertheless, the solitons can exist as long-lived states. As a consequence, they virtually
cross the layer, emerging from the condensate on one side of the layer and discharging in
the opposite condensate. This phenomenon is interpreted as an instanton effect switching
the vacuum from Alice’s lower dimensional point of view. The soliton has to survive at
least the Euclidean time interval corresponding to the width of the layer L. In fact, this
is the reason why we have to use L to match the couplings on both sides of the mapping.
The amplitude of the tunneling is given in equation (4.21).

4.1.4 Explicit Embedding of an Instanton II

To further clarify the subject, let us investigate a slightly different model of dynamical
embedding. In contrast to the previous model in section 4.1.3, in this case we will be able
to explicitly determine the profile of the soliton tunneling through. In turn, this means
that we can express the localization scale L explicitly in terms of the parameter of the
uplifted theory.

The strategy we follow is the same as in the previous section. First, we will start from
the 1+1 dimensional theory of Bob. Then we will investigate how Alice’s 0+1 dimensional
theory emerges from this theory in a low energy limit. Consider the model

L1+1 = ∂µχ∂
µχ+ ∂µφ̃∂

µφ̃− f 2
(
χ2 − µ2

f 2

)2

− g̃
2

2
φ̃4 +M2φ̃2 − β2χ2φ̃2 . (4.46)

Here the different masses µ2 and M2 are positive as well as the couplings f , β and g̃. This
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Figure 4.3: The dashed profile corresponds to the background χ. In the transition region
of χ the ψ profile representing the φ̃ soliton is different from 0. In particular, the maxima
of ψ are given by ±m

g
. As a consequence, Alice observes the transition −m

g
→ m

g
when the

profile passes her.

theory has a classical background kink solution given by

χ(x) = ±µ
f

tanh(µx) , (4.47)

which is not the solitonic kink we want to resolve, but the classical background field we
introduce in order to create a barrier where Alice is localized on. Note that the main
difference between this model and the previous model in section 4.1.3 is given by the
different structure of the background (compare (4.36) with (4.47). Like in the previous
subsection, we introduce the background field to restrict the soliton we are interested in to
a certain region of space. Thus, already at this point we would expect that the Euclidean
distance should scale as L ∼ 1/µ. The situation is depicted in figure 4.3 which makes the
difference to the previous model manifest (compare with figure 4.2).

The soliton which is eventually interpreted as an instanton by the low energy observer
Alice is the φ̃ field. Therefore, we chose the notation in accordance with the previous
section. As a side remark, let us mention that in principle we could resolve the background
kink χ as well, but this would not directly affect the instanton.

Assuming that φ̃ is only a small correction with respect to χ, we can determine the
equation of motion for the soliton to linearized order as(

∂µ∂
µ + (β2χ(x)2 −M2)

)
φ̃ = 0 . (4.48)

To determine the solution for φ̃, we work in the limit where the back-reaction of φ̃ on the
background kink χ can be neglected. This is achieved by considering, again, the decoupling
limit

β → 0 , µ
f
→∞ with β µ

f
fixed. (4.49)

Since we want φ̃ to be localized on the center of the background kink, we have to make
sure that it falls off to 0 for x→ ±∞. Comparing with the equation of motion (4.48), this
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is achieved when the condition

β2

f 2
µ2 −M2 > 0 (4.50)

is satisfied. It follows that the φ̃-quanta have positive effective mass M2
φ̃

= β2/f 2µ2−M2

far from the kink. As a consequence, φ̃ has its classical vacuum at φ̃ = 0. Obviously, this
means that the soliton is only non-vanishing in the center of the background kink.

Having localized φ̃ soliton on the kink, we have to choose the remaining parameters
in such a way that there is a soliton solution for the field φ̃ we want to relate to the
instanton. In the center of the background kink where the profile interpolates between the
two different χ vacua, we cannot approximate β2χ(x)2 −M2 anymore by a constant. To
solve the differential equation for φ̃, we separate the variables and decompose

φ̃(x, t) = ψ(x)φ(t) , (4.51)

with ∂2
t φ(t) = −m2φ(t). Note that φ(t) is the scalar field of the lower dimensional theory.

The differential equation for the spatial profile of the soliton is given as

0 =

(
∂2
x −

(
β2µ

2

f 2
tanh2(µx)−M2 −m2

))
ψ(x) . (4.52)

In the allowed parameter range there is only one possible solution for ψ in (4.52). It is
given as

ψ(x) =

√
3µ

2
sinh(µx)cosh−2(µx) . (4.53)

Inserting (4.53) in (4.52), it follows that this is only a valid solution for ψ when β2/f 2 = 6
is satisfied. The normalization of ψ is given by

∫
dxψ(x)2 = 1.

Let us clarify the meaning of the classical solution ψ(x) for the spatial part of φ̃. It
corresponds to the soliton profile which is passing by from Bobs’s point of view. Its mass
is given as

m2 = 5µ2 −M2 . (4.54)

To evaluate the situation from Alice’s point of view, we need to restrict to one less dimen-
sion, since Alice cannot resolve the spatial direction. Integrating the soliton profile ψ along
the spatial direction, we arrive at Alice’s Lagrangian

L0+1 = (∂tφ)2 −m2φ2 − g2

2
φ4 . (4.55)

At this point, the length scale L which connects both theories comes into play. L auto-
matically arises when integrating over the soliton profile,

1

L
=

∫
dx ψ(x)4 =

9

35
µ . (4.56)
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Alice

(a) The soliton emerges on the left side of the barrier.

Alice

(b) The soliton propagates through the barrier in Eu-
clidean time.

Figure 4.4: In both figures the ψ profile is depicted, but at different times. The profile
moves across the transistion region of the χ background kink and passes Alice. Alice
measures a vacuum expectation value φ = −m/g when the minimum of the soliton profile
passes her, while she observes φ = m/g when the maximum is passing by. This means
that Alice measures a sign flipping of the vacuum expectation values. Since Alice cannot
resolve the spatial extension, she interprets this effect as an instanton.

Accordingly, the lower dimensional coupling is related to the higher dimensional one via
the same relation as in (4.1), g2 = g̃2/L . In order to obtain a kink instanton solution for
φ, m2 < 0 has to hold in equation (4.54). Combining this condition with the bound given
in equation (4.50) we can determine the allowed parameter range for M2

5µ2 < M2 < 6µ2 . (4.57)

In other words, in this parameter regime we obtain the wanted soliton solution localized
on the kink without destabilizing the φ̃ = 0-vacuum outside of the center of the χ-kink.

Let us now comment on the physical interpretation of this model. We start presenting
the process from Bob’s higher dimensional point of view. For him on the left side of the
transition area of the background kink the φ̃ soliton with the profile in spatial direction
given by ψ can spontaneously emerge from the φ̃ = 0 vacuum at x→ −∞. Obviously, this
is a process with virtual energy. In fact, this is a necessary condition in order to interpret
the propagation of the soliton as an instanton effect. The Euclidean distance the soliton
has to travel through is given by the characteristic length scale of the kink 1/µ ∼ L. After
passing this region, the soliton relaxes and condenses to its φ̃ = 0 vacuum expectation
value again.

For Alice the situation looks different. She effectively lives in a 0 + 1 dimensional
theory without spatial extension, since she is localized in x-direction on a scale L. Thus,
she only has 0 + 1 dimensional quantum mechanics given by the Lagrangian (4.55) to
describe the situation from her point of view. From figure 4.4, we observe that the passing
by of a soliton in her theory corresponds to a flip of the field values. When the soliton
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is passing the background kink, Alice observes that φ → −φ spontaneously. Since she
does not know about the higher dimensional theory, she naturally interprets this effect as
an instanton allowing for a tunneling between the both vacua φ = ±m/g of her theory.
Correspondingly, she observes that the Z2 symmetry of her theory is spontaneously broken
due to the non-trivial vacuum structure.

Notice that when we resolve the φ̃ field into corpuscles, it directly follows that the
instanton φ(t) knows about the quantum structure as well. Of course, this is exactly what
we wanted in order to establish a quantum understanding for instantons.

As a remark, we have to mention that the virtual soliton passing by is not long lived.
It condenses to the vacuum after the Euclidean time ∼ iL.

To summarize this section, we were able to present a concrete 1 + 1 dimensional model
where a soliton configuration passing by is interpreted as an instanton process by a low
energy observer Alice. This soliton propagation occurs in Euclidean time, since the process
is energetically forbidden from the classical point of view. The amplitude for this transition
was determined in equation (4.21).

4.2 Gauge Instanton as Tunneling Monopole

So far we only discussed the rather trivial instanton in 0 + 1 dimensional quantum me-
chanics, but of course we can apply the method presented above to more sophisticated
objects. Therefore, let us consider in this section a 2 + 1 dimensional U(1) gauge theory.
The purpose of this section is to investigate a concrete model to represent the instanton
arising in this theory as a 3 + 1 dimensional monopole tunneling through a energetically
forbidden barrier. The semi-classical magnetic monopole was already discussed in section
1.4.3.

The higher dimensional theory is given as a SU(2) gauge theory coupled to a Higgs
triplet Φa, a = 1, 2, 3 in the adjoint representation. This is the usual setting contain-
ing monopoles as described in section 1.4.3. When the scalar field acquires a non-zero
expectation value and correspondingly SU(2) breaks spontaneously down to U(1), a non-
trivial vacuum structure arises allowing for monopole solutions. As mentioned above, these
monopoles should propagate through a barrier as a virtual process in order to be inter-
preted as an instanton by a low energy observer in the barrier. Thus, in contrast to the
usual monopole set-up, we want the monopoles to be localized only in this region of width
L. The monopole solution should only exist there, while it should be 0 elsewhere. As a
consequence, we need a non-trivial vacuum structure which only breaks SU(2) inside the
barrier,

〈Φa〉 6= 0 for z ∈ [0, L] ,

〈Φa〉 = 0 everywhere else.

We have to extend the usual monopole model in section 1.4.3 in order to arrive at this
vacuum structure. This can be done easily by including wall and anti-wall solutions in
the theory. According to sections 4.1.3 and 4.1.4, with such a model we can construct a
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barrier of width L where the boundaries of the barrier are given by a wall and an anti-wall,
respectively.

At this point, let us be more explicit and consider the model studied in [96, 97]1 with
the Higgs potential

LSU(2) = |DµΦa|2 − Ga
µνG

aµν − λ2 ΦaΦa

v2

(
ΦbΦb − v2

)2
, (4.58)

where λ is the scalar self-coupling and v the vacuum expectation value of Φa. The field
strength Ga

µν and the covariant derivative Dµ are defined as in (1.80) and (1.81), respec-
tively. This model exhibits the wanted vacuum structure 〈Φa〉 = δa3v and 〈Φa〉 = 0. We
consider solutions where the vacuum region 〈Φa〉 = δa3v is restricted to a layer of width
L. As a consequence, there should be two domain walls which interpolate between the
two different vacua. Note that the layer is infinitely extended in the x − y plane. The
corresponding profile for the scalar field is given by

Φa = f±(z)δa3v , (4.59)

f±(z) =
e±2mz

1 + e±2mz
, (4.60)

where the mass parameter is given as m ≡ λv. The (+) solution corresponds to a wall,
while (−) denotes the anti-wall. We are interested in manufacturing a set-up where a
wall lies at z = 0 and an anti-wall at z = L is parallel to the wall. Correspondingly, for
L� 1/m the solution is of the form

Φa =
1

2
(f+(z) + f−(z − L)) δa3v . (4.61)

This profile is depicted in figure 4.5. So far we presented a special wall-anti-wall setting
such that Φa acquires a non-zero expectation value in a layer of width L. As mentioned
above, this leads to a spontaneous breaking of the SU(2) gauge symmetry inside the layer.
In other words, the theory is in the confining phase outside this barrier, while it is in the
Coulomb phase for 0 < z < L leading to monopole solutions inside the layer.

To understand this model more properly, let us discuss its physical implications. Namely,
let us consider the U(1)-photon inside the layer. Classically, it can leave the layer and enter
the regime 〈Φa〉 = 0. Obviously, this is no longer possible on the quantum level (at the
moment by quantum we refer to loop corrections, but not to any microscopic resolution of
the background) because in the confining phase outside the barrier a mass gap is dynam-
ically generated for the vector field. Naturally, the gap is given by the QCD scale ΛQCD.
As a consequence, the photons can only leave the layer when they form glueballs of this
particular mass. Like the magnetic monopoles, the photons are trapped inside the layer
formed by the wall and the anti-wall.

Let us turn to the monopole. In the confining phase, the magnetic charge of a monopole
would get screened due to the non-abelian self-interaction of the vector fields. In other

1Similar models are also discussed in [98, 99, 100].
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Figure 4.5: Wall-anti-wall profile with L = 10/m. Φa = 0 outside the layer, while inside
the barrier it acquires the expectation value Φa = δa3v.

words, the monopoles condense in the SU(2) phase such that they are not observable.
However, inside the layer the situation is completely different. As can be seen in figure 4.6,
’t Hooft-Polyakov type monopoles similar to the ones presented in section 1.4.3 can exist
inside the wall-anti-wall configuration.

Correspondingly, we observe a similar situation as in the previous section only for two
additional transverse dimensions. A soliton given by a magnetic monopole passes through
a region of size L and condenses when leaving the layer. Obviously, for a lower dimensional
observer Alice which is localized on the layer this situation exactly looks like a Polyakov
instanton. Note that this is only true as long as Alice does not resolve the extra dimension
by going to energies E > 1/L. In particular, we assume the following hierarchy of scales

mW � ΛQCD � L−1 (4.62)

for which the mass of the W-boson mW is larger than the glueball mass ΛQCD. With this
hierarchy in mind, let us investigate the different energy regimes for Alice. In the case
ΛQCD > E > L−1, Alice can in principle resolve the layer, but the photon still cannot
leave because it is simply not energetic enough to form a glueball of sufficient mass. This
means that Alice still observes a 3 + 1-dimensional theory. However, in the energy interval
E � L−1 she effectively only observes a 2 + 1-dimensional theory on the layer. As long as
we stay in the regime ΛQCD � L−1, where the U(1) photons cannot leave the layer, the
gauge couplings for the higher and lower dimensional theory g̃, g are related by 1/g2 = L/g̃2

as before.
To understand in which limit we can trust the monopole approximation, we localize

for instance a monopole in the middle of the layer at z = L/2. It is creating magnetic
image charges outside the layer leading to an exponentially decreasing magnetic field for
|x|2 + |y|2 � L. Note that this is even the case for the direction parallel to the layer.
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Figure 4.6: The white region depicts the Higgs phase, while the grey regions correspond
to the surrounding confining phases. Inside the Higgs phase, magnetic point charges can
exist. The magnetic field of these charges is screened at large distances. Since there exist
magnetic mirror charges on both sides of the layer, this is even the case in the direction
longitudinal to the Higgs phase layer.

The situation is depicted in figure 4.6. Clearly, we can safely trust the ’t Hooft-Polyakov
monopole solution near the center of the monopole for large L.

Having discussed the different regimes of the model, let us now consider the tunneling
process of a virtual monopole through the layer. In the confining phase, where SU(2) is
unbroken, monopoles cannot exist. However, they can form at the boundary of the Higgs
phase layer. Naively, one could argue that such a process should violate the conservation of
the topological charge, but one has to keep in mind that the magnetic charge gets totally
screened in the confining phase. The boundaries behave similar to an electric capacitor.
They can be discharged and charged with an infinite amount of magnetic charge. Therefore,
monopoles can only emerge and condense at the boundaries. Only in the limit L→∞ the
monopoles have a topological charge and are consequently stable.

Of course, the emergence of a monopole in the layer is a virtual process because the
monopole mass can be interpreted as a potential barrier from the confining phase point
of view. Correspondingly, we are really describing a monopole tunneling through this
potential barrier of width L.

Similar to the 1 + 1 dimensional example discussed before, a low energetic observer
Alice (E < 1/L) located inside the layer will not be able to observe the virtual monopole
emerging on one side of the layer and discharging on the other. Instead, from Alice’s
point of view an instanton process in an effective 2 + 1-dimensional theory occurs. This
instanton describes the tunneling between two different prevacua of the total θ-vacuum.
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The Euclidean action Alice associates with this process is to leading order approximated
simply as the monopole mass times the Euclidean time interval τ = L the monopole needs
to evolve through the layer. Thus, the action amounts to

S = MsolL . (4.63)

Of course, this is exactly the instanton action in 2 + 1 dimensions with the usual matching
of the coupling constants as in (4.10).

Notice that it is rather surprising that the time evolution of a 3 + 1-dimensional virtual
monopole exactly corresponds to a lower dimensional instanton in this special case because
both situations are described most accurately in completely opposite limits. On the one
hand, in the L → 0 limit Alice’s theory becomes truely 2 + 1 dimensional. On the other
hand, the ’t Hooft-Polyakov monopole approximation is only valid for |x|2 + |y|2 � L.
Therefore, the L → ∞ limit is working best for the higher dimensional theory. However,
we have to be careful, since the 2+1 dimensional theory is, in some sense, always ’aware’ of
its higher dimensional UV completion. In particular, the higher dimensional vector boson
mass MW determines the size of the lower dimensional instanton, while the localization
scale is set by L−1 < MW . Correspondingly, we cannot simply consider the L→ 0 limit.

4.3 Instantons in 3 + 1 dimensions

4.3.1 3 + 1 dimensional Instanton in a Scalar Field Theory

Before considering the mapping of a BPST instanton in 3+1 dimensional Yang-Mills theory
on a higher dimensional monopole, let us turn to a similar, but much simpler scalar model
in 3 + 1 dimensions [101]. For that purpose, consider the Lagrangian

L = ∂µφ∂
µφ− g2φ4 . (4.64)

Obviously, the theory has a similar classical saddle point solution in Euclidean time like the
instanton in Yang-Mills theory. However, since this is still a scalar theory, we circumvent
problems which are related to the gauge field in non-abelian gauge theories. In this toy
model, we obtain a clearer understanding how the dependence on the size modulus arises
for the 3 + 1 dimensional instanton in the quantum corpuscular treatment.

Following our logic, we map the scalar instanton process on a 4 + 1 dimensional soliton
tunneling through a localized region of space-time viewed by a low energy observer. The
classical instanton solution to (4.64) is given as

φinst(x) =
2ρ

g (ρ2 + x2)
, (4.65)

where we have set the instanton center to x0 = 0. Although the profile depends on the
instanton size ρ, the theory nevertheless still exhibits a scale invariance. On the classical
level, ρ is simply a modulus of the theory. In other words, the instanton size is arbitrary.
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Clearly, this is quite different to the previous models, where the instanton size was set
by the mass parameter of the theory. Naturally, one could ask if the scale invariance is
preserved when we implement a quantum resolution of the instanton. To investigate this
question, we consider a soliton in the 4 + 1 dimensional uplifted theory

L = ∂µφ̃∂
µφ̃− g̃2φ̃4 , (4.66)

where the couplings in equations (4.64) and (4.66) are related via 1
g2

= L
g̃2

to establish the
mapping. Fourier expanding the corresponding soliton solution, we obtain

φ̃sol(x) =

∫
d4k

l2√
(2π)42ω(k)

(
αke

−ikx + α†ke
ikx
)
. (4.67)

Here the Fourier coefficients are given as

αk =
ρ2
√

2ω(k)

l2g̃

(
1

k
K1(ρk)

)
(4.68)

with K1 the modified Bessel function of the first kind. Promoting these coefficients to
expectation values of Fock operators â†k, âk spanning a Hilbert space of soliton corpuscles,
we can define the occupation number density in each mode as

Nk = 〈sol|â†kâk|sol〉 =
ρ42ω(k)

l4k2g̃2
[K1(ρk)]2 . (4.69)

Of course, the soliton state |sol〉 is defined as in equation (4.15), however, with αk given
in equation (4.68). Defining the dimensionless quantity u = kρ, we can express the total
occupation number of this soliton as

N = l4
∫
d4k〈sol|â†kâk|sol〉 = l42π2

∫
d|k||k|3|αk|2

=
4π2ρ

g̃2

∫
du uω̃(u) [K1(u)]2 . (4.70)

For this special case we cannot determine the dispersion relation ωk as easily as before
even to leading order. This is related to the fact that the classical Hamiltonian is not
diagonalized by this solution on the classical level. However, from our previous examples
it should be clear that the total occupation number should be finite, since this soliton is
topologically trivial.

Although we cannot calculate N in this example, we can still determine how it scales
with the classical modulus ρ. According to equation (4.70), N ∝ ρ which is not surprising.
Clearly, the total number of constituents should increase with the size of the corresponding
bound state. Consequently, ρ is not a modulus from the quantum point of view. In
particular, corpuscular loop corrections to the classical results depend on ρ such that the
size invariance is broken on the quantum level. In other words, the symmetry is anomalous
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when we introduce a corpuscular resolution. Note that most of the soliton mass is, of
course, contributed by corpuscles of wavelength given by the soliton size ρ, while the mass
behaves as Msol ∼ N/ρ.

As in the previous examples, we can map the corresponding 3+1 dimensional instanton
on a virtual propagation of this soliton. As a consequence, the instanton inherits the same
properties as the soliton.

4.3.2 BPST-Instanton

As advertized in section 4.3.1, we now consider the more complicated situation of a BPST
instanton in 3 + 1 dimensional Yang-Mills theories. In contrast to the previous models we
considered, the instanton in this theory does not correspond to a scalar profile. Instead,
the BPST instanton is a saddle point solution to the Euclidean path integral for a gauge
field Aaµ. Nevertheless, as we will show here we can follow the same strategy as for the
scalar instatons. Notice that the BPST instanton describes a tunneling process between
the different prevacua of Yang-Mills.

To be more explicit, let us consider the 3 + 1 dimensional SU(2) Yang-Mills theory
presented in section 1.5.2. For completeness let us briefly review the main features of this
model. The corresponding Euclidean action is similar to equation (1.94),

S =

∫
d4x

1

4
Ga
µνG

a
µν =

1

8

∫
d4x
(
Ga
µν − G̃a

µν

)2
+Q

8π2

g2
, (4.71)

where Ga
µν = ∂µA

a
ν−∂νAaµ+gfabcAbµA

c
ν is the non-abelian field strength as given in section

1.5.2, while G̃a
µν = 1/2εµναβG

a
αβ is its dual. g is the Yang-Mills coupling and we introduced

the topological charge Q.
In contrast to the scalar instanton in 3 + 1 dimensions, the BPST instanton satisfies a

BPS condition such that the action (4.71) is minimized. As one can easily see, this is the
case if

G = G̃ (4.72)

is satisfied. As a consequence, on the classical level the euclidean action is completely given
by a total derivative, i. e. the topological charge Q of the instanton solution. Note that
the topological charge associated with the instanton corresponds to the difference of the
charges of the prevacua involved.

The self-dual instanton solution satisfying (4.72) with topological charge Q = 1 is given
as

Aaµ =
2

g
ηaµν

xν
x2 + ρ2

, (4.73)

where ρ is again the size modulus of the instanton. Thus, on the classical level the theory
remains scale invariant. Additionally, we introduced the ’t Hooft symbols ηaµν connecting
the Lorentz structure with the group indices. Notice that we centered the instanton at
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x0 = 0 which is an additional modulus of the theory corresponding to the translation
invariance of the instanton.

Let us now turn to the corpusuclar resolution of the BPST instanton. To introduce a
microscopic quantum structure for the instanton, let us consider a magnetic monopole in
an uplifted 4 + 1 dimensional theory. If such a monopole propagates an Euclidean distance
L, i. e. it tunnels through a barrier of width L, a low energy observer which cannot resolve
this barrier would observe an instanton effect. Of course, the mapping only works if the
higher dimensional gauge coupling g̃ satisfies equation (4.1).

The action of such a 4 + 1 dimensional Yang-Mills theory containing monopoles is
basically equivalent to (4.71), only that we have to consider the higher dimensional gauge
fields Ãaµ and coupling constant g̃ instead. Clearly, this is the reason why the solution of
the 4 + 1 dimensional theory can have the equivalent structure as the lower dimensional
saddle point solution in Euclidean time. The monopole solution is similarly to (4.73) given
as

Ãaµ =
2

g̃
ηaµν

xν
x2 + ρ2

. (4.74)

Using the corresponding Yang-Mills Hamiltonian, we can as usual compute the monopole
mass

Mmon =
8π2

g̃2
. (4.75)

Obviously, the action for a tunneling process of the monopole is simply the mass repre-
senting the potential barrier times the imaginary time interval τ = iL. Since this action
should be equivalent with the instanton action measured by the low dimensional observer,
it follows

Sinst = Mmon L =
8π2

g2
. (4.76)

To implement a quantum understanding for the monopole, we Fourier transform the clas-
sical solution (4.74):

Ãaν =

∫
d4k

l2√
(2π)42ω(k)

(
ηaνα

kα
k
αke

−ikx + ηaνα
kα
k
α†ke

ikx
)
. (4.77)

The corresponding Fourier coefficients are given as

αk =
ρ2
√

2ω(k)

l2g̃k

[1

2

(
K0(ρk) +K2(ρk)

)
+

1

kρ
K1(ρk)

]
(4.78)

with the modified Bessel functions Km, m = 0, 1, 2 and the corpuscular dispersion relation
ω(k). Accordingly, we introduce Fock operators âk, â

†
k on a corpuscular Hilbert space

creating the quantum constituents of the monopole. Building up a coherent monopole
state |sol〉 (defined as before in equation (4.15)) using these creation and annihilation
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operators, the expectation values of âk and â†k in the coherent state have to be equivalent
to the Fourier coefficients. Obviously, the total occupation number amounts to

N = l4
∫
d4k〈sol|â†kâk|sol〉 = l42π2

∫
d|k||k|3|αk|2

=
4π2ρ

g̃2

∫
du uω̃(u)

[1

2

(
K0(u) +K2(u)

)
+

1

u
K1(u)

]2

, (4.79)

where we introduced the dimensionless function u = kρ like before. In order to investigate
the ρ dependence of N we furthermore introduced the dimensionless dispersion ω̃(u) =
ω(k)ρ.

As for the scalar soliton, the occupation number of the monopole depends linearly on
ρ. Correspondingly, on the quantum level ρ stops to be a modulus of the theory meaning
that the higher dimensional theory is not scale invariant. This is not surprising, since we
introduced a new scale L to the theory to relate the couplings in 3+1 and 4+1 dimensions.
By dimensional analysis, it follows N ∼ ρ

g̃2
simply because N is dimensionless and g̃2 is not.

This is, of course, reasonable as we expect that the monopole bound state size given by
ρ should affect the occupation number. Since the quantum breakdown of scale invariance
is triggered by 1/N -effects, it is restored in the semi-classical limit N → ∞. Thus, the
monopole mass does not depend on ρ to leading order in 1/N .

So far we circumvented to clarify the corpuscular dispersion ω̃(u). Naively, one should
guess that it should be given by |k| because the monopole satisfies the BPS condition on
the classical level and thus diagonalizes the Hamiltonian. In general, this is not the case for
gauge fields. Regarding this particular example, the Hamiltonian density on the instanton
solution is given as

H = DνA
a
µD

νAaµ . (4.80)

Of course, the covariant derivative still contains the self-interaction terms. Subsequently,
the Hamiltonian is not diagonal in the corpuscular Fock operators, even in the semi-
classical limit. Nevertheless, we can extract some information about the dispersion when
we topologically analyze the monopole. Consider the gauge field at the boundary |x| → ∞
behaving as

Ãaν(x) =
2

g̃
ηaµν

xν
x2

. (4.81)

Although it drops to zero, it does not vanish fast enough. In particular, the 1/|x|-type
decay of the angular derivatives correspond to a non vanishing winding we identify as the
topological charge. In fact, it is not surprising that the topology is encoded in the angular
derivatives, since a non-trivial homotopy class π3(SU(2)) is associated with the monopole.
From the quantum point of view, we can separate two different types of quanta. Following
the analysis in section 3.1.4, we know that topology should in particular be attributed to
an infinite amount of zero momentum quanta. For the monopole, these are exactly the
quanta creating a pure gauge term Ãaν(x) = 2

g̃
ηaµν

xν
x2

at the asymptotics. Computing the



102 4. Coherent State Picture for Instantons

Fourier transform of the pure gauge term which as we argued previously is connected to
the angular derivatives, we can interpret these coefficients as expectation values of the
topological Fock t̂k and t̂†k creating the topological charge. Correspondingly, we find the
condition

〈sol|t̂k|sol〉 = tk =
1

k2
. (4.82)

The operators t̂k are simply the zero momentum part of âk such that âk = t̂kĉk. In
contrast to the t̂k operators, the annihilation and creation operators ĉk and ĉ†k account for
the mass of the monopole. In other words, these operators create corpuscles contributing
to the energy, instead of the topology. Splitting up the monopole state in a similar way
|sol〉 = |t〉 ⊗ |E〉, we find ĉk|E〉 = ck|E〉 and t̂k|t〉 = tk|t〉. Using αk = tkck, it follows

ck =
k2ρ2

√
2ω(k)

l2g̃k

[1

2

(
K0(ρk) +K2(ρk)

)
+

1

kρ
K1(ρk)

]
. (4.83)

Note that we are still not able to determine ω(k) because the Hamiltonian is not diagonal in
the ĉk, and ĉ†k. Therefore, we do not know the total number of energetic quanta. However,
since the monopole is a finite energy solution, the number should be finite. Nevertheless,
due to this procedure we are able to show that, indeed, the number of topological quanta
diverges:

N top =

∫
k0

d4kN top
k =

∫
k0

d4kt∗ktk ∼ −log(k0)|ko→0 →∞ . (4.84)

This guarantees that the topological charge of the 4+1 dimensional monopole is conserved,
since the monopole overlap with the vacuum is suppressed as 〈0|sol〉 ∼ exp(−N top) → 0.
Furthermore, let us again remark that it is not surprising that the zero momentum modes
contain the topological information because only these modes can extract information
about spatial infinity where the topology is encoded.

Finally, let us comment on the BPST instanton. In particular, consider again the Eu-
clidean propagation of such a monopole. Obviously, we could create a similar setting like in
the different embedding examples in this chapter such that the monopole is only allowed in
some barrier of width L. Subsequently, a low energy observer Alice who cannot resolve the
perpendicular direction and is located on the barrier would interpret the tunneling of this
monopole as an instanton effect. This BPST instanton inherits all the corpuscular features
of the monopole. Most notably, scale invariance is broken on the instanton solution on the
corpuscular level. In particular, the size of the instanton becomes a physical parameter in
the microscopic description and stops to be a modulus. Notice that for L→ 0 we recover
conformal invariance. However, in this limit Alice does not observe any corpuscular effects,
since the number of corpusucles contributing to the action of the instanton diverges.

4.4 Conclusions

Finally, let us draw a conclusion. We pursuit two different goals in this part of the thesis.
First of all, we want to understand in concrete examples of embeddings how an instan-
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ton effect emerges from the point of view of a lower dimensional observer as a higher
dimensional soliton passes by. Secondly, we want to corpuscularly resolve the instanton by
mapping it on a soliton with a microscopic substructure.

Regarding the first task, we were able to present two different 1+1 dimensional models
of a soliton passing by a low energy observer Alice interpreting this effect as an instanton
in 0 + 1 dimensions, since she cannot resolve the extra dimension. In both examples, we
use a background kink to create two distinguishable regions. In the first case, we use
a kink-anti-kink set-up to create a barrier where solitons are the classical solution. In
the second example, we manufacture a similar situation where solitons are everywhere
forbidden, but on the transition region of a background kink. Nevertheless, the outcome in
both toy models is the same. The virtual motion of a soliton can interpolate between the
forbidden regions. However, an observer confined to the transition region or the barrier
clearly observes an instanton as the soliton passes by.

As a second example of explicit embeddings, we considered monopoles in 3 + 1 dimen-
sions. In particular, we presented a set-up, where monopoles are only allowed in a certain
region between two domain walls. If we consider a process, where a monopole is created
on one side and travels in Euclidean time to the other wall, a low energy observer Alice
confined to this region would experience a different effect. She observes a tunneling to a
different vacuum due to a 2 + 1 dimensional instanton.

In these examples, it becomes very clear how we can understand instantons in terms
of higher dimensional solitons. With this in mind, it is straightforward to implement a
corpuscular description. As we showed, the instanton which is mapped on a soliton simply
inherits the soliton’s corpuscular substructure. Correspondingly, we can view the instanton
as an effect emerging from many corpuscular processes.

This picture has many consequences. For instance, the low energy observer Alice will
measure 1/N quantum corrections to the classical instanton solution. It is important to
note that these effect are only observable when the Euclidean time the soliton is propagating
is finite. For L → 0, Alice cannot observe any effects because she would need an infinite
amount of energy to do so.

There are even more dramatic consequences. Namely, the corpuscularly resolved BPST
instanton is not scale invariant anymore. It was shown that the number of corpuscles
contributing to the action is proportional to the size of the instanton ρ. As a consequence,
we can obtain the size of the instanton by measuring 1/N type quantum effects. This is
not surprising, since we had to introduce a new scale L in order to relate the instanton to a
higher dimensional soliton. Again, in the L→ 0 limit scale invariance is restored because
N diverges in this limit.
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Chapter 5

Coherent State Picture for Classical
Gravitational Backgrounds

In section 1.3 it was argued that black holes should be described in terms of its proper
microscopic degrees of freedom which turned out be gravitons. When we assume that
quantum field theory is fundamental, not only black holes should be seen as bound states.
In fact, every background metric which is introduced on purely classical grounds must have
a description in terms of quantum constituents. Following this logic, we want to give such
a representation for AdS and Randall-Sundrum (RS) space-times in this chapter as it was
originally proposed in [4, 6]. The work presented in this chapter is based on the original
articles [102, 103]. Note, however, that this is still work in progress.

In particular, we will adapt the coherent state mechanism to promote classical solutions
to bound states of quantum degrees of freedom. As we would expect, we can apply the same
procedure to the components of the classical AdS metric as to the soliton and instanton
profile presented in chapters 3 and 4. Accordingly, the bound state quanta referred to as
corpuscles have similar features in the soliton as well as in the AdS case. Namely, the
corpuscles can only exist inside the bound state, but not as asymptotic S-matrix quanta.
Accordingly, they are interaction eigenstates. However, there are some differences between
the corpuscular AdS and the corpuscular soliton. First of all, the corpuscular dispersion
can, in general, be very different in both cases because AdS is not diagonalized on the semi-
classical level. Secondly, we observe a divergence of the occupation number of corpuscles
of small wavelengths. On the one hand, this can be understood in terms of the infinite
blue-shift occurring at the boundary of AdS. On the other hand, from the corpuscular point
view this effect directly leads to the stability of AdS with respect to decay into Minkowski
space-time. Furthermore, let us remark that in the linear limit of AdS we can develop an
interpretation of the AdS constituents in terms of on-shell massive gravitons.

As another application, the corpuscular treatment could shed a new light on the holo-
graphic principle in AdS. In particular, we can relate the total number of corpuscles N in
the bulk directly with the entropy of the conformal field theory on the boundary. However,
we can determine this scaling only in the low energy regime, since the behavior of the
corpuscular dispersion is unknown for energy scales above 1/RAds. The question how to,
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in general, derive the dispersion for the constituents is left for future work. As we will
show, we can only approximate the dispersion up to energy scales given by the inverse AdS
curvature radius. For higher energies we expect that new unknown physics emerge.

Note that similar techniques are used in [104, 105] to describe de Sitter (dS) in terms
of constituents. This framework allows for a completely new understanding of the cosmo-
logical constant (CC) problem. Namely, the corpuscular interaction leads to a quantum
depletion which questions the stability of dS with a CC.

As a second concrete example for the application of the coherent state formalism in GR,
we represent Randall-Sundrum 1 (RS1) space-times in terms of corpuscles. RS1 is closely
related to AdS with the difference of a UV and a IR brane on the boundary. The existence
of the UV brane acting as a natural cut-off leads to a smooth behavior at the boundary.
As a consequence, in contrast to the AdS case the corpuscular occupation number Nk in
mode k of RS1 does not diverge at any k and has a maximum at the inverse AdS curvature
radius RAdS. In this sense, the RS1 set-up shares more similarities with the soliton as AdS.
Additionally, we can define the eigenvolume along the conformal coordinate and relate it
with occupation number of corpuscles N .

In this chapter we are not only interested in establishing the quantum framework for
AdS, but will additionally discuss how quantum effects emerge due to the compositeness of
AdS. Note that these effects are, similar to the black hole case, directly related to the fact
that the resolution allows for a back-reaction on the background. More explicitly, when
we consider the propagation of a scalar field in a resolved background, we expect that
the interaction of the scalar with the individual constituents leads to corrections. As was
argued, for instance in section 3.2, these quantum effects are of the form 1/N . Subsequently,
they vanish in the semi-classical limit N → ∞. These results give strong hints that the
spectrum of the Unruh radiation a Rindler observer experiences gets corrected. These
deviations lead to a violation of thermality. Accordingly, this means that the radiation
should contain information. This result is very interesting regarding Hawking radiation
emitted from black holes because the thermality of the Hawking radiation is related with
the information paradox.

The outline of this chapter is as follows. In section 5.1 we apply the coherent state
formalism to generic gravitational metrics by following and reviewing the steps presented
in chapters 3 and 4. Then we apply these findings to the linear version of AdS in a similar
way as in [105], where it was done for de Sitter. In particular, linearized AdS allows
for an easy visualization of the corpuscles in terms of a sea of gravitons. This allows
to understand, for instance, the blue shift of a scalar propagating on AdS as a sequence
of many scattering processes on the individual constituents of AdS each increasing the
momentum of the scalar. Section 5.3 contains the full non-linear treatment of AdS. Here
we determine the full corpuscular occupation number and define the AdS Fock operators.
Furthermore, we discuss the issues of the dispersion relation and the holographic principle.
Similarly, we present the corpuscular framework for RSI space-time in section 5.4. Finally,
in section 5.5 we discuss the 1/N type quantum effects arising in this framework. We show
how corrections to the propagation of a scalar field through AdS arise when we consider
back-reactions. However, in this context it is important to determine the full corpuscular
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dispersion to obtain more quantitative statements. These results can then be used to show
that the spectrum of the Unruh radiation measured by a Rindler observer is not thermal
from the corpuscular point of view. Afterwards we draw a conclusion.

5.1 Corpuscular Resolution of arbitrary gravitational

Backgrounds

As a first step towards a corpuscular description of AdS and the Randal-Sundrum set-up,
let us discuss the general framework to represent arbitrary background metrics in terms
of coherent states. The philosophy presented here is, obviously, similar to the classical
soliton and instanton cases we discussed in chapters 3 and 4, respectively. Instead of the
classical soliton or instanton profile, we want to understand the background metric gµν in
general relativity as an emergent effect from an underlying quantum theory. As was already
mentioned in the introduction of this chapter, this idea is also related to the resolution of
the black hole and was first mentioned in [6]. If nature is fundamentally quantum, it follows
that the only fundamental space-time is given by Minkowski. Accordingly, every classical
metric gµν is interpreted as a bound state of constituent degrees of freedom. At this point,
it should not be surprising that we can employ the coherent state strategy presented in
chapter 3 also to the classical field gµν . Fourier expanding the components of the metric
gµν in d+ 1 dimensions, we arrive at

gµν =
ld

M
(d−1)/2
P

∫
ddk√

(2π)d2ω(k)ld

(
αkµνe

ikx + h.c
)
. (5.1)

Let us briefly comment on this equation. As in the previous chapters, we introduced here
the regulating spatial length scale l. Secondly, we use the dispersion relation ω(k) to ensure
that α(k)µν is properly normalized. Only when the coefficients α(k)µν are dimensionless,
we can relate them to occupation numbers in the mode k as soon as we go to the quantum
theory. In contrast to the soliton case, we have to additionally introduce the Planck mass
MP . This is reminiscent of the fact that the background metric has mass dimension zero.

The general strategy is now analogous to the soliton case. Obviously, we can promote
the Fourier coefficients α(k)µν to corpuscular annihilation operators â(k)µν . These, of

course, satisfy the standard commutation algebra [âk, â
†
k′ ] = δ(d)(k − k′)/ld. Consistency

requires that these operators evaluated in the quantum background state |metric〉 should
correspond to the classical Fourier coefficients,

âkµν |metric〉 = εµν âk|metric〉 = εµναk|metric〉 = αkµν |metric〉 , (5.2)

where εµν is the corresponding polarization tensor. Accordingly, the metric operator is
given by

ĝµν =
ld

M
(d−1)/2
P

∫
ddk√

(2π)d2ω(k)ld

(
εµν âke

ikx + h.c
)
. (5.3)
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A careful reader already knows how we have to construct the quantum state |metric〉 such
that it satisfies 〈metric|ĝµν |metric〉 = gµν . Since the coherent state is an eigenstate of the
annihilation operator, we simply use the corpuscular creation operators to build it. The
corresponding coherent state is then given as in equation (3.18)

|metric〉 =
∏
⊗k

e−
1
2
|αk|2eαkâ

†
k |0〉 =

∏
⊗k

e−
1
2
|αk|2

∞∑
nk=0

αnkk√
nk!
|nk〉 , (5.4)

where |nk〉 are the number eigenstates spanned by the corpuscular algebra. In accordance
with the soliton picture, the occupation number of the background metric is defined as

Nk = 〈metric|â†kâk|metric〉 . (5.5)

So far we presented the generic procedure to resolve the classical gravitational background
in terms of coherent states of corpuscles. For the rest of this chapter we will consider the
special cases of AdS and Randall-Sundrum geometry from the corpuscular point of view.

5.2 Corpuscular Picture for Linearized Anti-de Sitter

As already advertized, we will now consider the AdS space-time from the microscopic point
of view. Since the full non-linear treatment of AdS as a bound state of corpuscles is much
more complicated, we will first consider the linearized version of AdS as a preliminary
step. This will serve as a motivation to consider the full treatment, since many interesting
features are already revealed on this level. In fact, the corpuscular effects are even more
easily visualized in the linear treatment because we can think of the constituents in terms of
on-shell gravitons in this case. For that purpose, let us consider a scalar field propagating
through an AdS background metric in the linearized version. Assuming that AdS has a
microscopic substructure and using the coherent state formalism to take this into account,
we can determine the back-reaction on AdS by computing the scattering of the scalar
field on the individual constituents of AdS. These scattering processes are, of course, only
possible in the full quantum treatment of the background. In turn, they make the origin of
the corpuscular corrections manifest. As a first step, let us expand the global AdS patch
around Minkowski

gµν = ηµν + hµν . (5.6)

According to [106], we can approximate hµν in d+ 1 dimensional AdS as

h00 =
Λ

6
r2,

h0i = 0,

hij =
Λ

6
xixj,



5.2 Corpuscular Picture for Linearized Anti-de Sitter 109

where Λ = −d(d − 1)/2R2
AdS is the cosmological constant associated with the AdS and

r2 = xixi. As a next step, we Fourier expand the classical, gravitational background
metric

hµν(z) =
ld

M
(d−1)/2
P

∫
ddk√

(2π)d2ω(k)ld
(eikxαkεµν(k) + h.c.), (5.7)

where the notations stay the same as for equation (5.1). Following our usual strategy, we
promote the Fourier coefficients to annihilation and creation operators âk, â

†
k in order to

quantize the background. In particular, this is the reason why we introduced the dispersion
relation in (5.7), since we want the Fock operators to be dimensionless. Clearly, the
operators âk and â†k evaluated in the coherent state have to satisfy a matching condition
because to leading order this method should give the classical results. Building up a
coherent state from the Fock operators as defined in (5.4), we obtain

〈AdS|âk|AdS〉 = αk . (5.8)

In the linear picture, we can still give a physical interpretation for the corpuscles in terms
of usual gravitons. To make this manifest, we represent the dimensionless field hµν in
(5.7) as a graviton field which we canonically normalize hµν → hµν/MP . On the one

Figure 5.1: The figure depicts a scalar particle of momentum k propagating through a cor-
puscular resolved AdS. In particular, the scalar scatters on the individual AdS constituents
by exchanging off-shell gravitons.

hand, we could interpret the interacting corpuscles represented by â†k, âk as longitudinal,
massless gravitons arising in Einstein’s theory expanded around Minkowski. These degrees
of freedom are, of course, off-shell and governed by the linear wave equation sourced by
the cosmological constant.

On the other hand, the constituents can be viewed as the longitudinal degrees of freedom
of on-shell massive gravitons. Deforming the theory at hand by a Fierz-Pauli mass term
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for the graviton, we obtain the same solution in the regime m2r2 � 1. This was explicitly
shown for de Sitter space in [106], but can be generalized to AdS space-time as well. A
massive graviton propagates five degrees of freedom instead of two. Consequently, we can
build up a coherent state of the longitudinal, on-shell gravitons to represent the AdS space-
time to leading order. However, their corresponding dispersion relation implies that the
constituent gravitons are tachyons.

As was already mentioned, the corpuscular description of AdS inevitably leads to the
appearance of 1/N type quantum corrections. For instance, these compositeness effects
give rise to corrections to the propagation of a scalar evolving through an AdS background.
For that purpose, consider a linearized interaction between the scalar field and gravity given
by the Lagrangian

Lint =
1

Mp

hµνT
µν(φ). (5.9)

Here we introduced the scalar energy-momentum tensor

Tµν(φ) =
1

2
Sµναβ∂

αφ∂βφ− 1

2
ηµνm

2φ2 (5.10)

with the tensor structure Sµναβ = ηµαηνβ + ηµβηνα − ηµνηαβ. Now let us consider the
evolution of this scalar field coupled to the background in accordance with (5.9). Of
course, we have to take back-reactions on the AdS space into account to include quantum
effects resulting from the resolution of the background. In turn, the quantum AdS state
|AdS〉 changes in such a process. To make this effect manifest, consider the scattering of the
scalar field represented by its annihilation and creation operators b̂q and b̂†p (corresponding
to usual asymptotic particles) on the background as in figure 5.1. The scattering amplitude
is given by

A(q, p) = i〈AdS′| ⊗ 〈0|Tb̂qSintb̂†p|0〉 ⊗ |AdS〉

=
i

MP

∫
d(d+1)x〈AdS′|hµν |AdS〉〈0|Tb̂qT µν(φ)b̂†p|0〉 . (5.11)

Obviously, the correlator 〈AdS′|hµν |AdS〉 contains the quantum corrections to the clas-
sical result. There exists a smooth classical limit when we neglect back-reactions by setting
|AdS′〉 = |AdS〉. By construction, this leads to the classical result. On the contrary, taking
corpuscular effects into account the AdS state is affected by such a scattering process such
that |AdS′〉 6= |AdS〉. In principle, it is not clear if AdS can still be represented in terms
of coherent states after such a process. However, coherent states are a legitimate approxi-
mation as long as the corpuscular quantum corrections are suppressed. Clearly, this is the
case when the curvature radius satisfies RAdS � LP . With this assumption, the overlap
element between both coherent states is given by

ld〈AdS′|AdS〉
M

(d−1)/2
P

∫
ddk√

(2π)d2ωkld

(
eikx
√
Nkεµν(k) + e−ikx

√
N ′kε

∗
µν(k)

)
. (5.12)
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In fact, the difference between |AdS′〉 and |AdS〉 is encoded in the different momentum
distributions N ′k and Nk. Consequently, we do not recover the classical field value in
equation (5.12), but additionally quantum corrections occur due to the back-reaction. Let
us parametrize these effects by introducing δk as a measure for the occupation number shift
due to the scattering process, N ′k = (N + δ)k. In the small back-reaction approximation,
|δk| � Nk, the overlap between both coherent states is given by

〈AdS′|AdS〉 = e−
1
2
ld

∫
ddk(Nk+N ′k−2

∫
ddk
√
N ′kNk) ' 1− 1

4
ld
∫
ddk

δ2
k

Nk

. (5.13)

Here we used the expansion
√
N ′k '

√
Nk(1+δk/(2Nk)). This result visualizes why we refer

to the composite quantum effects as 1/N . They are always suppressed by the corresponding
occupation number. In particular, it is important to note that the quantum effects are not
exponentially suppressed as usual corrections to the classical result. Nevertheless, in the
semi-classical limit N →∞ these effects vanish.

The linear approximation of AdS makes the corpuscular effect emerging from a mi-
croscopically resolved AdS background manifest, since we can think in terms of Feynman
diagrams. Consider for instance figure 5.1. It depicts the propagation of a scalar through
a sea of constituent AdS gravitons. The two-to-two scattering process between the probe
scalar and an individual constituent in mode k obviously changes the occupation num-
ber Nk, since in such a process the constituent loses energy to the scalar such that Nk is
changed. However, the probe scalar absorbs this energy and is blue shifted.

In the next section, we proceed by considering the corpuscular resolution of the the full
non-linear AdS.

5.3 Non-Linear Corpuscular AdS

As advertized, we consider full non-linear AdS from the corpuscular point of view in this
section. The discussion presented here is closely related to the original work [102, 103].
As will become clear below, we will work in Poincaré coordinates. Note that Poincaré
coordinates do not cover the full AdS. In particular, the line element for a D dimensional
AdS is given as

ds2 =
R2
AdS

z2

(
dz2 + ηµνdx

µdxν
)
, (5.14)

where z is the conformal coordinate. Correspondingly, the boundary of AdS is a d = D−1
dimensional Minkowski sub-manifold. We use the following conventions for the indices: µ,
ν denote the Minkowski coordinates of the boundary, i and j are spatial indices without
the conformal coordinate, while M , N correspond to the index structure of the bulk.

To develop a corpuscular understanding of non-linear AdS, we follow the strategy pre-
sented in section 5.1 for generic space-times. Taking a closer look at the components of the
Poincaré metric gMN , it becomes also clear why we consider the Poincaré patch. The AdS
metric is extremely simplified in this case, since it is diagonal and all the components are
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equivalent. Subsequently, when we Fourier expand the AdS metric as in equation (5.1),
the situation is effectively reduced to only one expansion coefficient αk,

αkMN = αk

(
ηµν 0
0 1

)
. (5.15)

For simplicity we will restrict the following discussion to αk given as

αk = −l−d/2M (d−1)/2
P

√
(2π)d2ω(k)|k|R2

AdS

2
δd−1(ki) . (5.16)

Note that the delta function δd−1(ki) arises, since the integration along the spatial coor-
dinates is trivial as gMN only depends on z. Furthermore, we observe that the classical
coefficients in (5.16) become large for high momenta such that the corpuscular occupation
number diverges as well. This reflects the fact that the blue shift at the boundary z → 0
is infinite.

To implement the quantum picture, we follow the procedure in section 5.1 and promote
the classical coefficient αk to corpuscular Fock operators âk, â

†
k satisfying

[âk, â
†
k′ ] =

δd(k − k′)
ld

. (5.17)

Subsequently, the components of the classical metric are promoted to operators ĝMN . To
obtain the right classical limit the operators have to satisfy

〈AdS|ĝMN |AdS〉 = gMN , (5.18)

when evaluated in the AdS state. Note that higher order operators of the form ĝnMN lead
to corpuscular quantum corrections of the order 1/N as it was the case for the corpuscular
soliton. Using the Fock operators, we can build a coherent state |AdS〉 of corpuscles as
given in equation (5.4) satisfying this requirement. The corpuscular occupation number
Nk in mode k is defined by

âk|AdS〉 = αk|AdS〉 =
√
Nk|AdS〉 . (5.19)

In principle, we can determine the total occupation number by integrating over all modes,

N = ld
∫
ddkNk . (5.20)

To explicitly evaluate the total occupation number, we have to know the corresponding
corpuscular dispersion relation. In the soliton case in chapter 3, we could determine the
dispersion approximately, since the classical solution diagonalized the Hamiltonian up to
1/N corrections. On the contrary, for AdS the situation is more subtle because we cannot
determine the corpuscular dispersion relation from first principles. We already encoun-
tered this problem when we discussed the BPST instanton in section 4.3.2. How to deter-
mine the corpuscular dispersion relation in generic situations is still an open question. In
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general, it arises from the underlying theory which is a priori unknown. The dispersion
could be achieved by performing a suitable Bogoliubov transformation which is, however,
a formidable task. Therefore, we will leave this for future work. Nevertheless, since the
total occupation N is proportional to the spatial Minkowski volume ld−1, N → ∞ in any
case. As a consequence, from the quantum point of view AdS is stable with respect to
decay into Minkowski space-time because the overlap is given as

〈AdS|Minkowski〉 ∼ e−N → 0 (5.21)

Obviously, this reasoning is similar to the topological soliton case, where we encountered
a diverging occupation number as well.

In the next two subsections, we will discuss a bound on the dispersion relation and
holographic implications of the corpuscular resolution, respectively.

Bound on the Dispersion Relation

Although we cannot compute the dispersion exactly, we can at least determine an upper
bound for the scaling of the dispersion. For that purpose, let us define the number of
corpuscles per conformal momentum by integrating over spatial Minkowski momenta

Nkz = ld−1

∫
d(d−1)kNk = πld−1Md−1

P l−1
z k2

zR
4
AdSω(kz), (5.22)

where lz is the regulating length scale in the conformal direction. Note that the regulating
volume ld we introduced before is given by lzl

d−1 where ld−1 denotes the spatial Minkowski
volume. As was already mentioned, the corpuscles are only sensible when they are indi-
vidually weakly coupled. Correspondingly, the number of corpuscles per volume should
always be smaller than the Planck density M

−(d−1)
P . This leads to a bound for the total

number of corpuscles in the element lzkz per Minkowski volume given as

Nkz lzkz
ld−1

< M
−(d−1)
P . (5.23)

Subsequently, the upper bound for the scaling of the dispersion relation is given by

πk3
zω(kz)R

4
AdS < 1 . (5.24)

To understand the implications of this bound, let us discuss certain extremal limits. In the
RAdS → ∞ limit, we are effectively considering a flat space-time composed of corpuscles.
Dvali et al. [107] showed that in this limit the corpuscles can be identified as freely
propagating gravitons with a dispersion ω(kz) = kz. Regarding (5.24), this means that
the propagation is close to free up to a cut-off given by ΛUV ∼ 1/RAdS. We expect new
physics to emerge at this scale modifying the dispersion relation such that unitarity is not
violated. In other words, we can safely approximate the corpuscular dispersion by a free
one for kz � 1/RAdS. However, kzRAdS corrections become important for kz ∼ 1/RAdS

such that we cannot predict the behavior of the dispersion in this energy regime.
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To proceed at this point, we determine the number of corpuscles which behave approx-
imately as free quanta,

N ≈ (lMP )d−1 . (5.25)

Interestingly, this number is equivalent to the famous Bekenstein entropy [62] in generic
dimensions. The holographic principle in the semi-classical AdS/CFT treatment is inves-
tigated in many papers [108, 109, 110, 111, 112]. Thus, we can identify the number of
particles in the bulk below the threshold with the entropy of the dual CFT on a volume
ld−1

SCFT = (lMP )d−1 = N . (5.26)

Correspondingly, the number of microstates on the CFT side coincides with the number of
constituents of the bulk background. This is a first hint how we can understand holography
from the corpuscular point of view. However, let us stress that this result is only an
approximation valid in the low energy regime. So far it is not clear how the dispersion
behaves for |k| > 1/RAdS.

Equivalence Principle

Naturally, one can ask the question how the principle of equivalence emerges from the
corpuscular point of view. In particular, AdS should locally be equivalent to Minkowski.
For that purpose, let us define a local occupation number at z = z′

Nloc = ldloc

∫ 1/z′+δ/2

1/z′−δ/2
dkz

∫
d(d−1)kα∗kαk = (llocMP )d−1z′δ , (5.27)

where ld−1
loc is a localized spatial Minkowski volume. Furthermore, δ denotes the small

extension in the conformal directions. Accordingly, the local number of corpuscles is small
for ld−1

loc → 0 and δ → 0. Of course, this means that AdS is locally interpreted as Minkowski.
To be more explicit, we can compute the overlap of local AdS with Minkowski,

〈AdSloc|Minkowski〉 ∝ exp(−Nloc)→ 1 for ld−1
loc → 0 and δ → 0 . (5.28)

To summarize, from the corpuscular point of view the equivalence principle is reflected in
a finite local occupation number.

5.4 Randall-Sundrum Geometry

The Randall-Sundrum (RS) set-up [18, 19] we consider in this section is closely related
to AdS space-time. For instance, the RS1 space-time corresponds to usual AdS with two
branes placed at the boundaries. The UV brane automatically regularizes the space-time
near the boundary. The RS2 space-time considered in [19] only has one brane localized in
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the UV. Both set-ups aim to solve the hierarchy problem by introducing extra dimensions.
However, in contrast to the well known large extra dimensional models [113], Randall and
Sundrum consider warped space-times. The warping factor is the essence of the model in
order to resolve the hierarchy problem. When the warping factor is� 1 on the brane where
we place the four dimensional standard model, the weak scale is accordingly decreased with
respect to the Planck mass.

As will become clear below, it is interesting to investigate RS1 from the corpuscular
point of view although it is similar to AdS. Therefore, we follow our reasoning and build
RS1 with a large number of corpuscles on top of Minkowski. Note that the space-time is
five dimensional. The corresponding metric is given by

ds2 = gMNdx
MdxN = e−2|y|/RAdSηµνdx

µdxν + dy2 . (5.29)

Here the extra warped direction is y and the indices µ, ν go from 0 to 3. We simply
adopt the quantization procedure for the AdS case considered above. Namely, we Fourier
transform the components of the metric with the corresponding coefficients given by

Nk = l−1
y M3

p2ωk
4

π

R2
AdS

(4 +R2
AdSk

2
y)

2
δ(3)(ki) , (5.30)

where ly is the regualting scale in the y direction. Equation (5.30) makes manifest why it
is interesting to consider RS1. Although this space-time shares many of the holographic
features of AdS, we do not encounter a divergence in the corpuscular occupation number
for small wavelength as long as the dispersion satisfies the bound

ω(ky)kyR
2
AdS ≤

(
4 +R2

AdSk
2
y

)2
. (5.31)

We can determine this bound from a similar analysis as in the previous section. In par-
ticular, it is always satisfied when we approximate ω(ky) ≈ |ky|. As a consequence, we do
expect new physics only at scales ky � 1/RAdS such that the RS1 constituents are almost
free.

Promoting the expansion coefficients to Fock operators, we can construct a coherent
state representing the RS1 space-time as in equation (5.4). Thus, the total number of
corpuscles can be written as

N = l3ly

∫
d4k〈RS1|â†kâk|RS1〉 ≈ (Mpl)

3 (5.32)

in accordance with the occupation number in the AdS case in equation (5.25). The RS1
model is characterized by its invariant volume of space-time which can be computed to be

Vinv =

∫
d5x
√
g = VM

∫
dye−4|y|/RAdS . (5.33)

Here VM = l4 is defined as the transverse volume of the 4 dimensional Minkowski space-
time. In the corpuscular description the volume can be represented as

Vinv = VM lz

∫
d4k

M3
p (2π)d2ω(ky)

〈RS1|â†kâk|RS1〉 . (5.34)
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with the coherent RS1 state |RS1〉 defined as in equation (5.4).
Note that N is still infinite, since it is proportional to Minkowski space-time. Corre-

spondingly, RS1 is stable with respect to decay into Minkowski. As a remark, let us mention
that in some sense RS1 is more similar to a soliton because the occupation number Nk has
a maximum at a certain scale 1/RAdS setting the size of the bound state.

5.5 Corpuscular Corrections to scalar Propagators in

AdS

In general, we expect that the classical propagation of scalar particles through the resolved
AdS background is quantum corrected, since the corpuscular picture allows for non-trivial
back-reactions on the AdS constituents. For instance, in the supersymmetric soliton case
in section 3.2 we observed how these 1/N type quantum effects lead to the violation of the
BPS equation. Therefore, in this section we are interested in making the quantum effects
resulting from the compositeness (~/N effects) computationally manifest. Note that we
neglect usual loop quantum effects (~ effects) renormalizing the background.

Since these corrections are extremely hard to measure, a second goal of this section will
be to determine how these corrections affect the spectrum of Unruh radiation measured
by a Rindler observer.

5.5.1 Scalar Propagator

The corpuscular structure of AdS was already introduced in section 5.3. Hence, we can
use these results to explicitly compute corpuscular corrections to scalar propagators in
the AdS bulk. As was explained, we will consider the Poincaré patch of AdS with the
conformally flat metric gMN given in equation (5.14). It suffices to simply consider the
metric component gzz, since gzz = gii = −gtt, while all the other metric components
vanish. In other words, the classical field we promote to an operator is gzz → ĝzz. The
corresponding expansion coefficient αk is given in equation (5.17).

With the corpuscular resolution defined in this way and the corpuscular coherent AdS
state given in (5.4), we can determine how the quantum back-reaction due to the com-
positeness of AdS affects the classical motion of a scalar. For that purpose, we have to
promote all the metric components in the classical equation of motion of the scalar to op-
erators which can be expressed in terms of creation and annihilation operators. Therefore,
we start by expressing the equation of motion{

1√
−g

∂A(
√
−ggAB∂B) +m2

}
Gc(X, Y ) =

1√
−g

δ(d+1)(X − Y ) (5.35)

solely in terms of gzz. Here g denotes the determinant of the metric, X = {xµ, z} and
A,B are d + 1 dimensional indices. For simplicity we restrict ourselves now to the d = 3
dimensional case in order to make the 1/N -type corrections computationally manifest. The
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classical scalar propagator Gc(X, Y ) is given in the appendix B in equation (B.1). In 3 + 1
dimensions, equation (5.35) simplifies to

Oc(X)Gc(X, Y ) = δ(4)(X, Y ), (5.36)

where we defined

Oc(X) ≡ −g3
zz�M − 2g2

zz(∂
zgzz)∂

z + g2
zzm

2 (5.37)

with �M = ∂µ∂µ + (∂z)2. As we intended, the only classical field appearing in (5.37) is
gzz. Thus, we can straightforwardly enter the quantum picture by replacing gzz → ĝzz. In
other words, we promote gzz in equation (5.37) to an operator represented in terms of the
corpuscular annihilation and creation operators introduced in equation (5.19).

As a next step, we evaluate the promoted equation of motion in the coherent AdS state
|AdS〉 to obtain an observable from the operator equation. To understand the origin of
quantum corrections, we have to notice that, in contrast to âk, â

†
k has not the coherent

state as an eigenvector. Thus, we have to use the commutation relations to bring the Fock
operators in a normal ordered form when we want to evaluate the promoted equation of
motion in the AdS state. This simply means that in the corpuscular picture the equation
of motion is given by

〈AdS|Of (X)|AdS〉Gf (X, Y ) = δ(4)(X − Y ) , (5.38)

where Gf (X, Y ) is the full quantum corrected Greens function Gf (X, Y ) we are interested
in. The 1/N type quantum corrections which arise due to the compositeness of the back-
ground are explicitly encoded in these non-vanishing commutator terms appearing in the
full quantum operator Of (X). Note that the normal ordered products eventually reduce
to the classical metric. Of (X) is obtained by promoting gzz in (5.37) to an operator:

Of (X) ≡ −ĝ3
zz�M − 2ĝ2

zz(∂
zĝzz)∂

z + ĝ2
zzm

2 , (5.39)

with ĝzz given in equation (5.3). Evaluating 〈AdS|Of (X)|AdS〉, we can distinguish the
classical contribution Oc emerging from the normal ordered contributions and the quantum
contribution Oq generated by commutator terms. In particular, it follows that

〈AdS|Of (X)|AdS〉 = Oc +Oq , (5.40)

where we defined

Oq =
1

4π

(
− 2(∂zgzz)∂

z − 3gzz�M
)∫ dkz

ωk
. (5.41)

To summarize, the 1/N type quantum corrections to the equation of motion arising due
to the compositeness of AdS are encoded in the function Oq. Subsequently, the Greens
function solving the equation of motion is corrected accordingly such that it solves the
quantum corrected equation of motion. Note that the computation to determine Oq simply
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amounts to using commutation relations and expressing normal order parts in terms of the
classical metric gzz.

A few remarks are in order. First of all, let us stress at this point that the quantum
corrections are not the usual vacuum contributions because they are only non-vanishing in
the quantum coherent background state. More explicitly, the terms in Oq arise from mixed
expressions of commutators and normal ordered terms vanishing in the trivial vacuum.
Secondly, we have to point out that we cannot further evaluate the integral

∫
dkz
ω(kz)

, since
we do not know the corpuscular dispersion arising from the unknown underlying theory. In
particular, the integral suggests that we are actually computing a corpuscular renormaliza-
tion to the classical propagator. The potentially diverging integral only appears because
we are working with the bare classical data Nk characterizing the corpuscular momentum
distribution. As commutator terms are equivalent to usual quantum loops, any divergen-
cies we encounter should be absorbed in a redefinition of the classical entities. Since the
underlying dynamics leading to the emergence of the bound states are not fully understood
up to this moment (i.e. we do not know ω(k) exactly), we will leave it as a future task to
evaluate this part of the quantum corrections. Although we cannot further quantify the
strength of the corrections, we at least come to the conclusion that they must exist in this
framework. Note that we observed a similar problem when we discussed 1/N corrections
in the supersymmetric soliton case.
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Figure 5.2: This diagram shows the quantum correction to the full propagator given by
OqGc as a function of the coordinate x1. The other parameters are chosen as x2 = y1 =
y2 = 0, z1 = 7, z2 = 1, t1 = 1, t2 = 0. We consider three different choices for the scalar
mass: m2 = −1 (largely dashed), m2 = 0 (straight) and m2 = 1 (dashed). The unit length
scale in this figure is given by RAdS.

Using equations (5.38) and (5.40), we can solve for the full quantum corrected prop-
agator Gf = Gc + Gq. Bearing in mind that Oq is ~/N suppressed with respect to Oc,
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we can solve equation (5.38) iteratively for the quantum correction Gq =
∑∞

j=1 Gq,j to the
propagator at each order. More explicitly, it follows

Gf = Gc−GcOqGc +GcOqGcOqGc − ...︸ ︷︷ ︸
Gq

(5.42)

using OcGc = 1. Clearly, (5.42) is simply a Dyson series which can be summed up leading
to the full propagator

Gf =
Gc

1 +OqGc

. (5.43)

Note that we suppressed here the standard integrals over space-time in equations (5.42)
and (5.43). In general, this derivation could have been done for any classical background
resolved as a coherent state. Of course, the difference between the backgrounds is always
encoded in Oq. We can return to the semi-classical limit simply by setting Oq = 0. This
is the analog of the limit N →∞ we employed in section 5.2.

As we expected, the classical scalar propagator gets corrected due to the corpuscular
back-reaction when the space-time integral over OqGc is not vanishing. To investigate
this, we consider the figures (5.2) - (5.5) where the first order corpuscular corrections to the
Green’s function are depicted. We normalized all these plots to the so far unknown integral∫
dkz/ωk. Furthermore, we introduced the following coordinate labels X = (t1, x1, y1, z1)

and Y = (t2, x2, y2, z2).
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Figure 5.3: This diagram shows the quantum correction to the full propagator given by
OqGc as a function of the coordinate x1. The other parameters are chosen as x2 = y1 =
y2 = 0, z1 = 7, z2 = 1, t1 = 1, t2 = 0, m2 = 1. We consider two different choices for the
curvature radius RAdS: RAdS = 0.8 (straight) and RAdS = 1 (dashed). The unit mass scale
in this figure is given by m.

Let us now comment on the diagrams. As a first remark, it is worth mentioning that
the quantum corrections drop to zero and are well behaved far away from the poles of
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Figure 5.4: This diagram shows the quantum correction to the full propagator given by
OqGc as a function of the coordinate z1. The other parameters are chosen as x1 = x2 =
y1 = y2 = 0, z2 = 1, t1 = 1, t2 = 0. We consider three different choices for the scalar mass:
m2 = −1 (largely dashed), m2 = 0 (straight) and m2 = 1 (dashed). The unit length scale
in this figure is given by RAdS.

the propagator. For instance, in figure (5.2) the quantum corrections for different scalar
masses have a maximum for x1 = 0, but are still well behaved everywhere. In particular,
they are suppressed for x1 � z1. We could expect this, since the corpuscular corrections
are encoded in the conformal direction of the bulk and not in the boundary. This means
that considering a larger portion of the boundary does not affect the quantum corrections
heavily.

In figure (5.3) we investigate the dependence of the corrections on the AdS curvature
radius RAdS for fixed scalar mass, again as a function of x1. In particular, the results show
that the corrections decrease for larger curvature radii. This, of course, could be expected
from the beginning because as we explained these corrections are of the 1/N type. Since
the local number of quanta in each mode,

Nk = |α(k)|2 =
M

(d−1)
p

lz
πω(k)|k|2R4

AdS(2π)d−1δd−1(ki) , (5.44)

increases with RAdS, the quantum corrections should be more suppressed for larger radii.
In figure (5.4) we investigate the pole structure of OqGc with respect to z1 for different

masses. We observe that the corrections are very small for large z1, but diverge when the
separation of the two points becomes lightlike.

The last diagram (figure 5.5) depicts OqGc for the radii RAdS = 1 (straight curve) and
RAdS = 1.5 (large dashed curve) versus z2. Again, it shows that the corpuscular effects
become extremely important when the separation of the points is lightlike.
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A few final remarks are in order. First of all, let us mention that the structure of
Oq heavily depends on the number of spatial dimensions. Since the number of powers
of the classical field gzz in the classical equation of motion depends on the dimension of
space-time, we accordingly obtain higher powers of the operator ĝzz on the quantum level.
This means that the outcome of the calculation heavily depends on the dimension of AdS
because higher dimensional operators of the form ĝnzz encode the 1/N corrections.

Secondly, let us stress that all the results presented here are only an approximation.
They only show that there are corrections, but we cannot determine the strength of these
effects as the dispersion relation is not known for every k.

0 0.2 0.4 0.6 0.8 1
0

6.´10-7

4.´10-7

2.´10-7

m z2

O
qG

c

m
4

Figure 5.5: This diagram shows the quantum correction to the full propagator given by
OqGc as a function of the coordinate z2. The other parameters are chosen as x1 = x2 =
y1 = y2 = 0, z1 = 5, t1 = 1, t2 = 0, m2 = 1. We consider two different choices for the
curvature radius RAdS: RAdS = 1 (straight) and RAdS = 1.5 (largely dashed). The unit
mass scale in this figure is given by m.

5.5.2 Unruh Effect in AdS

This section is dedicated to investigate the impact of these results for the Unruh effect.
We apply the very same analysis of section 5.5.1 to the Wightman function instead of
the propagator. Since the corrections to Wightman functions are directly translated into
corrections to the Unruh effect in AdS, we expect that the corresponding corpuscular
effects should be detectable in the spectrum of the radiation. In particular, we show that
the thermality of Unruh radiation is violated due to the corpuscular effects.

Semi-Classical Analysis

First, let us briefly review the Unruh effect in the semi-classical treatment. For a more
detailed discussion the reader is referred to the literature [20]. In general, an accelerated
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observer known as Rindler observer observes a thermal black body spectrum of Unruh tem-
perature T . To derive this effect, we determine the corresponding transition rate Ḟ(E) de-
fined as the Fourier transform of the classical Wightman function Wc(X, Y ). For a generic
quantum state |ψ〉, the Wightman function is given by Wc(X, Y ) = 〈ψ|Φ(X)Φ(Y )|ψ〉. Ob-
viously, this makes the similarity of the propagator and the Wightman function manifest.
The Wightman function is a solution to

OcWc(X, Y ) = 0 . (5.45)

Restricting to an AdS background in 3 + 1 dimensions in Poincaré coordinates, the Wight-
man function for a massless scalar reduces to

Wc(X, Y ) =
1

8π2R2
AdS

( 1

ν − 1
− 1

ν + 1

)
. (5.46)

Here we introduced

ν =
z2

1 + z2
2 + (x1 − x2)2 + (y1 − y2)2 − (t1 − t2 − iε)2

2z1z2

. (5.47)

Since we are only interested in accelerated trajectories along the z − t plane, we set x1 =
x2 = y1 = y2 = 0. Note that in AdS the Unruh radiation is only observable when
the acceleration of the observer satisfies the condition a2 > R2

AdS. This is usually called
the supercritical regime. Correspondingly, we construct the worldline of a an accelerated
Rindler observer in accordance with [114],

t(τ) =
a√

a2 − 1/R2
AdS

zoe
√
a2−1/R2

AdSτ ,

z(τ) = zoe
√
a2−1/R2

AdSτ . (5.48)

This leads to the transition rate

Ḟ(E) =

∫
dse−isWc(s)

=

[
E

2π
− 1

4πaR2
AdS

sin

(
2E√

a2 − 1/R2
AdS

arcsinh(RAdS

√
a2 − 1/R2

AdS)

)]
× 1

exp(2πE/
√
a2 − 1/R2

AdS)− 1
, (5.49)

with s = τ1−τ2 and E the energy. Using equation (5.49), we conclude that the temperature
of the flux of particles measured by a supercritical accelerated observer in AdS is given by

T =
1

2π

√
a2 − 1/R2

AdS. (5.50)
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In order to be in thermal equilibrium, the Wightman function in accelerated coordinates has
to satisfy the KMS (Kubo-Martin-Schwinger) condition. Thus, if the Wightman function
is evaluated in a thermal state |ψ〉, it is has to obey the condition

Wc(τ1, τ2) = Wc(τ2, τ1 + iβ) . (5.51)

Here we omitted the spatial arguments and defined β = 1/T as the inverse temperature.
Clearly, the classical Wightman function (5.46) satisfies this condition. Thus, we can derive
that the observer is in thermal equilibrium simply by testing this condition.

Corpuscular Effects

Turning to the corpuscular picture, the strategy is as follows: In order to show that ther-
mality of the Unruh radiation is violated, we will investigate if the KMS condition (5.51)
is violated on a microscopically resolved AdS background.

For that purpose, we first of all have to determine the fully quantum corrected Wight-
man function Wf = Wc +Wq evaluated for a Rindler observer as in equation (5.48). Note
that Wc corresponds to the classical Wightman function and Wq to its quantum correc-
tion. Most of the work was, in principle, already done in the previous section, where we
determined the quantum corrected equation of motion. Classically, the Wightman function
satisfies

OcWc = 0. (5.52)

Using (5.52) and taking the corpuscular structure of AdS into account, it follows

(Oc +Oq)Wf = (Oc +Oq)(Wc +Wq) = 0, (5.53)

where Oq is given as in equation (5.41). Solving for the full Wightman function using a
similar resummation technique as in equation (5.42), we obtain

Wf = Wc −GfOqWc. (5.54)

It is, in principle, straightforward to check if Wf satisfies the KMS condition (5.51). How-
ever, already at this point it is clear that it must be violated. As can be seen from (5.51),
the KMS condition basically states that we can exchange X and Y , but in equation (5.54)
only the classical Wightman function depends on both coordinates, while the quantum
correction Oq only depends on X. Subsequently, this term violates the KMS condition.

Nevertheless, let us try to make these considerations computationally manifest. For
simplicity, we will set τ2 = 0 in our analysis implying τ1 = s ≡ τ . Since we are more
interested in proving deviations from thermality than in the actual form of the Wightman
function, we will focus on showing that the first order quantum correction Wq1 is not
thermal. The first order correction is obtained in the approximation Gf ≈ Gc leading to
Wq1 ≡ GcOqWc. Instead of presenting the complicated analytical result, we depict the
deviations from thermality in figure (5.6).
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Figure 5.6: This figure shows the quantum derivation from the KMS condition ∆ ≡
Wq1(τ, 0) − Wq1(0, τ + iβ) as a functions of τ . For the additional parameter we choose
z0 = 1. We choose three different accelerations for the Rindler observer (all satisfying
a > 1/RAdS): a = 2 (straight), a = 3 (largely dashed) and a = 4 (dashed). The unit
length scale in this figure is given by RAdS.

The KMS condition is violated when ∆ ≡ Wq1(τ, 0)−Wq1(0, τ + iβ) is non-vanishing.
Obviously, figure (5.6) reveals that this is, indeed, the case due to the existence of cor-
puscular corrections to the Wightman function indicating that the Unruh radiation is not
exactly thermal.

Let us briefly discuss these reults. First of all, it is worth mentioning that the effect
becomes more suppressed for large accelerations a � R−1

AdS. Of course, this result is
consistent with our expectations, since in this limit the AdS background becomes effectively
flat such that the corpuscular effects should be negligible.

Secondly, the quantum corrected Wightman function satisfies the KMS condition for
large values of τ . This is in total accordance with the results of the previous subsection
where we observed that quantum corrections to the propagator become negligible for large
values of z1 − z2 which corresponds to large values of τ (see equation 5.48). Nevertheless,
thermality of AdS is violated due to the interaction with the finite number of corpuscles
in the local region of AdS. This local number of constituents is always finite. Therefore, it
naturally leads to 1/N -type quantum corrections.

To draw a conclusion, Unruh radiation does not exhibit a thermal spectrum in a cor-
puscular resolved AdS background due to scattering on the individual quanta of the AdS
bound state. Note, that these results could be extremely interesting regarding the infor-
mation paradox occurring for semi-classical black holes. As was explained in section 1.3,
we expect that the resolution of the black hole into its microscopic degrees of freedom
eventually leads to the deviations from thermality of the Hawking radiation which resolves
the information paradox.



5.6 Conclusion 125

5.6 Conclusion

Finally let us draw a conclusion for this chapter. We successfully managed to apply the
coherent state method to describe various classical fields as quantum bound states to
gravitational background metrics. In a first example, we showed how to explicitly represent
linear AdS as a bound state of gravitons. In this description, we can understand the blue
shift in AdS as a series of scattering processes on the individual bound state gravitons.

As a next step, we turned to non-linear AdS. In this context, we could obtain a first
hint to explain how the holographic principle arises. In particular, the entropy of the CFT
is equivalent to the number of corpuscles in the bulk SCFT = N when we consider only the
low energetic quanta whose dispersion is well approximated by a free one. Furthermore,
we showed that AdS is protected against decay into Minkowski due to the large occupation
number, while it locally can be deformed to Minkowski.

As an application of the corpuscular treatment, we computed the corpuscular correc-
tions which a scalar particle observes when it propagates through a resolved AdS. With
these results we were able to show that the Unruh radiation measured by a Rindler ob-
server is not thermal. This is an interesting result, since in the black hole portrait we
expect similar effects to arise leading to a unitarization of the Hawking radiation.

However, to make more quantitative statements, it is left for future work to determine
the corpuscular dispersion relation. Otherwise, we cannot determine the absolute strength
of the corrections.
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Chapter 6

Summary and Outlook

To conclude this thesis, let us summarize and discuss the results. The main goal we pursued
in this thesis was to represent various classical objects in terms of its proper microscopic
degrees of freedom. We investigated black holes, solitons, instantons and the AdS space-
time from this bound state perspective.

As a first step, we motivated the idea to resolve classical objects in terms of quantum
constituents by discussing aspects of black hole physics as this framework allows to easily
resolve the information paradox. In particular, based on the ideas of [4] we presented
in chapter 2 a set-up how we can probe the microscopic structure of black holes. In
this context, the only fundamental space-time is Minkowski, while all other gravitational
backgrounds are bound states built on Minkowski. The event horizon in this description is
similar to the charge radius of the proton setting the length scale on which the constituents
are confined. Since unitarity is preserved in this framework, there must be a globally
defined Killing vector everywhere such that we can extract information about the inside of
the black hole. Starting from the assumption that QFT and unitarity also preexist inside
the classical black hole event horizon, it inevitably follows that we can obtain information
about the black hole interior using scattering processes of high virtuality. As a consistency
check, we show that the corresponding cross-section for scatterings on the black hole is
directly proportional to the occupation number of the black hole constituents. Therefore,
we could, in principle, determine the occupation number from experimental data. Clearly,
this is interesting, since we expect new scattering data to appear in the near future. For
future work, it would be interesting to enhance the different black hole models [4, 7] to
predict the outcome of these potential experiments.

In addition to black holes, there are many other classical objects in physics which should
be described as bound states of quantum degrees of freedom when QFT is fundamental.
For instance, we investigate solitons from the microscopic point of view in chapter 3. We
showed how to represent solitons in several examples as coherent states constructed from
the soliton constituents. To distinguish these constituents from usual asymptotic S- matrix
particles, we refer to them as corpuscles. In contrast to usual particles, the corpuscles are
never free, but instead can only exist in the bound state where they feel a large collective
potential from the surrounding corpuscles. In order for this bound state construction of
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solitons in terms of coherent states to be justified, we clarified how all the classical results
can be observed to leading order in the corpuscular occupation number N .

Apart from simply constructing a consistent quantum description, interesting new
physics arise from these concepts. First of all, it allows to give a new understanding
of the topological charge of the topological soliton. As it turns out, we can relate it to an
infinite occupation number of infinite wavelength modes. Clearly, the overlap of a state
with an infinite occupation number and the Minkowski vacuum vanishes. Subsequently,
the topological soliton is protected against decay into the topological trivial sector. We
can even take a step further and distinguish the quanta which are solely responsible for
the topological charge and those for the energy. Since the number of energetical quanta is
finite, we can still have non-vanishing quantum corrections, although the total number of
quanta diverges.

Secondly, we find first indications that in supersymmetric theories where half of the
symmetries are preserved on a classical background kink, in fact, all the supersymmetries
are broken when we take the microscopic resolution of the kink into account. The compos-
iteness of the kink leads to non-vanishing back-reactions we refer to as 1/N effects. These
corrections are bosonic in nature spoiling all the supersymmetries. As a consequence, this
would lead to the emergence of a second Goldstino and to a mass splitting between the
usual fermions and bosons propagating on the background. Note that the 1/N corrections
are very similar to phonons in a solid state. However, this is still work in progress as many
questions like the corpuscular renormalization are not fully understood up to this point.

The most important question we have to answer in future work on solitons is how we
can, in general, determine the corpuscular dispersion relation. So far we can determine it
approximately in special cases where the Hamiltonian is diagonal on the classical solution
(BPS case). Therefore, we can only make quantitative statements for very few classical
objects. As a remark, let us mention that it is quite a formidable task to determine the
dispersion, since it should arise from the underlying physics of the theory. In general, the
strategy would be to perform a Bogoliubov transformation, but this is an extremely hard
task. Without such a complete understanding of the microscopic origin of the corpuscular
dispersion, it is not possible to make more quantitative statements in the the context of
supersymmetric solitons.

In chapter 4, we discussed how to implement the microscopic resolution for the instan-
ton. However, due to its dependence on Euclidean time we followed a slightly different
strategy to achieve this goal. Instead of directly defining a coherent instanton state, we
mapped the d dimensional instanton on a soliton in a d + 1 dimensional theory. Never-
theless, a lower dimensional observer will simply observe an instanton vacuum transition
as the soliton passes by in Euclidean time. The finite action of the instanton is identified
as the energy of the tunneling soliton times the tunneling distance L. Consequently, the
instanton inherits all of the features of the soliton such as the corpuscular structure. To
make this computationally manifest, we investigated several concrete models of embedding
the instanton in a higher dimensional soliton theory. For instance, we show how we can
represent a 2 + 1 dimensional instanton as a monopole tunneling through an energetically
forbidden barrier. Similarly, we discuss the famous BPST instanton. In this case, it turns
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out that the corpuscular substructure of the monopole we map on leads to the violation of
scale invariance. In particular, the size modulus becomes a physical parameter in the quan-
tum treatment, since the occupation number is proportional to the bound state size. For
instantons it is still an open question if it possible to directly define a coherent instanton
state without mapping it on a higher dimensional soliton.

Finally, in chapter 5 we discuss GR aspects from the quantum bound state perspective.
We show how we can use the coherent state technique to represent classical background
metrics in terms of corpuscles. First of all, we observe that in the linear limit of AdS we
can interpret the corpuscles as on-shell massive gravitons. This treatment easily visualizes
some of the main properties of AdS from the quantum perspective. For example, the
blue shift appearing in AdS can be viewed as a sequence of scatterings on the individual
gravitons. In each process, the corpuscles convey energy to the probe particle leading to
the blue shift.

Similar to the topological soliton, we can show that AdS is stable against decay into
Minkowski. As it turns out, the occupation number of corpuscles N diverges, since it is
proportional to the spatial volume of Minkowski space-time. Thus, the overlap between
Minkowski and AdS scaling as e−N vanishes. Nevertheless, the equivalence principle is still
satisfied because the local number of constituents is small. Locally, AdS is equivalent to
Minkowski even from the corpuscular point of view.

In addition, the coherent state description gives a hint towards a corpuscular interpre-
tation of the holographic principle. Namely, the number of degrees of freedom in the bulk
N scales like the entropy of the lower dimensional CFT on the boundary. Note that is
only true for the low energy regime where the corpuscular dispersion is known approxi-
mately. It is not clear how in general the corpuscular dispersion can be determined from
first principles. In the AdS case, we can determine the scale at which new physics come
into play and influence the dispersion, but it is so far left for future work to identify the
corresponding dynamics.

As an application of the the coherent state formalism of AdS, we try to determine
corpuscular corrections to scalar propagators on AdS. We find strong hints that, indeed,
the scalar propagation is corrected by back-reactions.

To draw a conclusion, we successfully established a bound state picture for several clas-
sical objects. However, the underlying dynamics of the corpuscles governing the dispersion
can in many cases only be determined approximately.
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Appendix A

Supersymmetry Breaking

Let us explicitly show how we arrive at equation (3.91). For that purpose, we expand
Gkink = 〈sol|O2

BPS|sol〉 in corpuscular annihilation and creation operators âk and â†k. Note
that we will neglect all the terms which are vacuum contributions. As a first step, we
compute OBPS,

OBPS = ∂xφ̂−
(
m2/g − gφ̂2

)
= i
√
l

∫
dk√
4π|k|

k
(
eikxâk − e−ikxâ†k

)
−m2/g

+gl

∫
dkdq

4π
√
|k||q|

(
eikxâk + e−ikxâ†k

)(
eiqxâq + e−iqxâ†q

)
. (A.1)

When we evaluate O2
BPS, obviously, fourth and third order terms in creation and annihi-

lation operators arise which are, in particular, not normal ordered. However, using the
standard commutation relation

[
âk, â

†
q

]
= δ(k − q)/l for the Fock operators we can bring

O2
BPS to a normal ordered form,

O2
BPS = :

[
i
√
l

∫
dk√
4π|k|

k
(
eikxâk − e−ikxâ†k

)
−m2/g

+gl

∫
dkdq

4π
√
|k||q|

(
eikxâk + e−ikxâ†k

)(
eiqxâq + e−iqxâ†q

)]2

:

+ : 6g2l

∫
dkdq

4π
√
|k||q|

(
eikxâk + e−ikxâ†k

)(
eiqxâq + e−iqxâ†q

)∫ dk

4π|k|
:

+2i
√
l

∫
dk√
4π|k|

k
(
eikxâk − e−ikxâ†k

)∫ dk

4π|k|
. (A.2)

This form allows to use the special feature of the coherent state, that it is an eigenvector
(âk|sol〉 =

√
Nk|sol〉) of the annihilation operator. As a consequence, the normal ordered

products give the classical field value when evaluated in the coherent state. In particular,
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the first two lines of (A.2) reduce to the classical BPS equation, while the third and fourth
line correspond to corpuscular quantum corrections. In contrast to the vacuum contribu-
tions, these effects vanish on the trivial Minkowski vacuum, since they are proportional
to normal ordered parts. Furthermore, they contain a divergent part because a δ-function
emerges due to the commutation. Thus, we arrive at

〈sol|O2
BPS|sol〉 =

[
∂xφsol −

(
m2/g − gφ2

sol

)]2

︸ ︷︷ ︸
=0 because this is the classical BPS condition

+
1

π

(
g∂xφsol(x) + 3g2φ2

sol

)
log
(ΛUV

µIR

)
, (A.3)

which is exactly the wanted result for Gkink as in (3.91).



Appendix B

Corpuscular corrections to the scalar
propagator in AdS

As was advertised in chapter 5, we briefly present the important formulas regarding scalar
propagators on AdS. In particular, the Green’s function solving the classical equation of
motion (5.36) is given as

Gc(X, Y ) =
2

C∆

(ξ
2

)∆

F
(∆

2
,
∆

2
+

1

2
, σ + 1, ξ2

)
. (B.1)

where F denotes the hypergeometric function, while ∆ corresponds to the scaling exponent
of the scalar field in (d+ 1) dimensional AdS. It can be written as

∆ =
d

2
+ σ with (B.2)

σ =

√
d2

4
+m2R2. (B.3)

Additionally, the constant C∆ is defined as

C∆ =
Γ(∆)

πd/2Γ(σ)
. (B.4)

Here Γ denotes the gamma-function. The function ξ depends on the coordinates of the
start and end point of the propagation,

ξ =
2z1z2

z2
1 + z2

2 + (x1 − x2)2
. (B.5)
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