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Abstract

Cytosolic Ca2+ elevated by receptor-operated (ROCE) or store operated Ca2+ en-
try (SOCE) and buffered by mitochondrial Ca2+ uptake plays an essential role in
physiological processes of lung cells. Disturbed Ca2+ homeostasis in precapillary
pulmonary arterial smooth muscle cells (PPASMC) induces pulmonary arterial hy-
pertension (PAH) or disrupts barrier function of murine pulmonary microvascular
endothelial cells (MPMVEC) resulting in vascular leakage and lung edema.

While SOCE is mediated by stromal interaction molecule (STIM1 and 2) dimers sens-
ing Ca2+ in Ca2+ stores and plasma membrane Orai channels, ROCE is mediated by
classical transient receptor potential (TRPC) channels via diacylglycerol (DAG) and
receptor-activated phospholipase C (PLC). To investigate if TRPCs are also involved
in SOCE, Ca2+ entry was analyzed in PPASMCs isolated from
STIM1/2flox/flox/TRPC1/3/6-/- mice as well as control mice and infected with Cre-
recombinase expressing lentiviruses to delete STIM1/2 protein expression. Deficiency
of STIM1/2 did only impair the long-lasting receptor-operated Ca2+ entry (ROCE),
but TRPC1, TRPC3 and TRPC6 channels may be activated indirectly by store-
operated Ca2+ entry (SOCE).

Lack of STIM1/2 or Orai1 in MPMVECs did not impair acetylcholine-induced va-
sodilatation of isolated aortic rings but pulmonary microvascular endothelial cells
(MPMVECS) isolated from endothelial cell-specific STIM1/2 or Orai1 knockout mice
(STIM1/2ΔEC and Orai1ΔEC) were protected from Ca2+-dependent nuclear factor of
activated T-cells c3 (NFATc3) nuclear translocation which is involved in expression
of proinflammatory mediators highlighting their important role in inflammation pro-
cesses. Migration and proliferation of MPMVECs was reduced in STIM1/2ΔEC and
Orai1ΔEC.

Disturbed mitochondrial Ca2+ uptake results in endothelial dysfunction and may af-
fect energy production. The influence of mitochondrial Ca2+ uniporter (MCU) and
mitochondrial Ca2+ uniporter regulator 1 (MCUR1) on mitochondrial bioenerget-
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ics was investigated in MPMVECs from respective endothelial cell-specific knockout
mice. Mitochondrial membrane potential and oxygen consumption rate was not im-
paired in MCUR1ΔEC or MCUΔEC. ATP production was reduced in MCUR1ΔEC

and MCUΔEC. Probably resulting from reduced ATP levels, uncoupling protein2
(UCP2) was upregulated in MCUR1ΔEC. The upregulated UCP2 might flux pro-
tons to prevent mitochondrial membrane potential (ΔΨ𝑚) hyperpolarization, induce
a metabolic shift from oxidative phosphorylation to glycolysis or stimulate compen-
satory mechanisms to rescue [Ca2+]m-uptake. In accordance with lower superoxide
production in MCUR1ΔEC and MCUΔEC, we observed a reduced proliferation and
migration in these cells. Low mitochondrial Ca2+ uptake and low cellular ATP levels
in MCUR1ΔEC and MCUΔEC activated AMPK and turned on autophagy. There-
fore, cytosolic and mitochondrial Ca2+ handling is of foremost importance for lung
cell function and proteins involved in these processes may serve as pharmacological
targets for therapeutic approaches in patients with pulmonary hypertension or lung
edema.
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Zusammenfassung

Ca2+ gelangt durch einen Rezeptor-operierten (receptor-operated Ca2+ entry (ROCE))
oder Speicher-operierten Einstrom (store-operated Ca2+ entry (SOCE)) ins Zytosol
und wird dort durch die mitochondriale Ca2+ Aufnahme abgepuffert. Gestörte Ca2+

Homöostase in prekapillären, pulmonalen, arteriellen glatten Muskelzellen (PPASMC)
kann pulmonale arterielle Hypertonie (PAH) induzieren oder die Barrierefunktion
muriner, pulmonaler, mikrovaskulärer Endothelzellen (MPMVEC) vermindern und
die Bildung eines Lungenödems induzieren.

Während der Speicher-operierte Ca2+ Einstrom durch stromal interaction molecules
(STIM1 und 2) als Sensoren in den Ca2+ Speichern und plasmamembranären Orai-
Kanälen bewältigt wird, kann der Rezeptor-operierte Ca2+ Einstrom (receptor-operated
Ca2+ entry (ROCE)) durch classical transient receptor potential (TRPC) Kanäle über
Diacylglycerol (DAG) durch Rezeptor-aktivierte Phospholipasen C (PLC) erfolgen.
Um zu analysieren ob TRPCs am SOCE beteiligt sind, haben wir den Ca2+ Ein-
strom in TRPC1/3/6-/- und STIM1/2-defizienten Zellen, die durch Infektion von
STIM1/2flox/flox Zellen mit Cre Rekombinase exprimierenden Lentiviren erzeugt wird,
untersucht. Die Abwesenheit von STIM1/2 Protein hatte nur einen Einfluss auf den
lang-anhaltenden Rezeptor-operierten Ca2+ Einstrom, aber TRPC1-, TRPC3- und
TRPC6-Kanäle könnten durch den Speicher-operierten Ca2+ Einstrom indirekt ak-
tiviert werden.

Eine Acetylcholin-induzierte Vasodilatation in isolierten Aortenringen aus endothelzell-
spezifischen STIM1/2 und Orai1 defizienten Mäusen (STIM1/2ΔEC and Orai1ΔEC)
war im Vergleich zu Kontroll-Aortenringen unverändert. Jedoch zeigten MPMVECs
aus diesen Mäusen eine verringerte Translokation von nuclear factor of activated T-
cells c3 (NFATc3) in den Zellkern, die für eine Expression von proinflammatorischen
Mediatoren wichtig ist. Die Migration und Proliferation von MPMVECs war in
STIM1/2ΔEC and Orai1ΔEC verringert.

Eine gestörte mitochondriale Ca2+ Aufnahme resultiert in einer endothelialen Dys-
funktion und könnte die Energieproduktion beeinträchtigen. Deshalb wurde der Ein-
fluss des mitochondrialen Ca2+ Uniporters (MCU) und des mitochondrialen Ca2+

Uniporter Regulators1 (MCUR1) auf die mitochondriale Energieproduktion in MP-
MVECs aus endothelzell-spezifischen MCU- und MCUR1-defizienten Mäusen
(MCUR1ΔEC und MCUΔEC) untersucht. Das mitochondriale Membranpotential und
die Sauerstoff Verbrauchsrate war in MCUR1ΔEC or MCUΔEC nicht beeinträchtigt,
aber die ATP Produktion war vermindert. Wahrscheinlich resultierte aus der vermin-
derten ATP Produktion die vermehrte Produktion des Entkopplungproteins UCP2 in
MCUR1ΔEC. Die Hochregulation von UCP2 könnte einen Protonentransport in die
mitochondriale Matrix ermöglichen und damit eine Hyperpolarisation des mitochon-
drialen Membranpotentials der der inneren mitochondrialen Membran verhindern.
Alternativ könnte die vermehrte UCP2-Expression zu metabolischen Veränderungen
führen oder kompensatorische Mechanismen zur mitochondrialen Ca2+-Aufnahme
stimulieren. Niedrige Superoxid Level in MCUR1ΔEC or MCUΔEC bedingten eine
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verringerte Proliferation und Migration. Außerdem aktivierte die niedrige mitochon-
driale Ca2+ und die niedrigen ATP Spiegel in MCUR1ΔEC or MCUΔEC die AMPK
und Autophagie. Aus diesem Grund kommt der zytosolischen und mitochondrialen
Aufnahme von Ca2+ Ionen eine elementare Rolle für die Funktion von pulmonalen
glatten Muskelzellen und Endothelzellen zu. In Zukunft könnten an diesen Prozessen
beteiligte Proteine als pharmakologische Zielsubstanzen zur Entwicklung von Medika-
menten gegen pulmonale Hypertonie und Lungenödemen dienen.
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Chapter 1

Introduction

1.1 Ca2+ as a cellular effector molecule

Intracellular Ca2+ regulates various cell functions. It is involved in exocytosis, cell

growth, proliferation, apoptosis, contraction of muscle cells and energy homoeostasis.

Ca2+ either originates from the extracellular space or from the intracellular pools,

most importantly from the endoplasmatic reticulum (ER) and the mitochondria. The

extracellular space contains approximately 1mM calcium, the cytosol 100-200 nM

and the internal stores up to 100µM calcium. The Ca2+ concentration of the internal

stores can vary tremendously during cell function. In particular, mitochondria are

able to buffer high cytosolic Ca2+ levels [106].

Ca2+ influx into the cell is regulated by various Ca2+ channels. The type of Ca2+

channel mainly expressed depends on the cell type. In excitable cells, such as muscle

and nerve cells, voltage-dependent Ca2+ channels and receptor operated Ca2+ (ROC)

channels dominate but also store-operated Ca2+ (SOC) channels are expressed. In

none-excitable cells, such as endothelial cells, the most important Ca2+ entry pathway

is via SOC channels (see figure 1.1) [102] [94].
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1.2 Ca2+ influx pathways

1.2.1 The store-operated Ca2+ influx pathway

Store-operated Ca2+ entry (SOCE) was first proposed by Putney et al. in 1986 who

investigated the Ca2+ entry of parotid acinar cells depending on the Ca2+ release

from internal stores [103]. His concept was further evidenced by Hoth and Penner in

1992 providing a store activated Ca2+ current in mast cells which they called Ca2+

release-activated Ca2+ current (CRAC) current [56]. ICRAC is non-voltage activated,

inwardly rectifying, selective for Ca2+ and has a low conductance[95].

The stromal interaction molecule (STIM) is an ER transmembrane protein that was

finally identified in an RNAi screen in S2 cells in Drosophila melanogaster [107] and

in HeLa cells in 2005 [74]- long after Putney had suggested the ER-plasma mem-

brane coupling model. Both STIM isoforms, STIM1 and STIM2 are ubiquitously

expressed. STIM1 expression is higher in most cell types and is assumed to be the

main operator in SOCE. STIM2 is more sensitive to sense luminal ER Ca2+ and is

therefore discussed to prevent uncontrolled activation of SOCE. STIM proteins have

an N-terminal EF-hand domain which binds Ca2+. Upon depletion of the ER Ca2+

store, Ca2+ dissociates from the EF-hand which triggers the translocation of STIM

into close ER– plasma membrane junctions [78]. Eight STIM molecules form a cluster

and interact electrostatically by their polybasic C-terminal STIM-Orai activating re-

gion (SOAR) region with the acidic C-terminal cytoplasmic domain of one tetrameric

Orai channel [122].

Similar to the STIM proteins, the Orai1 protein was identified in an RNAi screen

in Drosophila S2 cells in 2006 [37]. Ca2+ entry via CRAC channels is the main

calcium entry pathway in T cells. T cells isolated from patients with severe combined

immunodeficiency (SCID) have shown a functional deficiency in thapsigargin induced

SOCE [36], an impaired T cell activation, resulting into reduced T cell proliferation,

cytokine production and global gene expression, but normal T cell development [35].

As a result, patients are susceptible to fungal and viral infections and have a reduced

life expectancy [37]. In 2006, sequencing of genomic DNA of SCID patients revealed
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Figure 1.1: Store-operated Ca2+ entry (SOCE). A)The stromal interaction
molecule (STIM) dimers senses Ca2+ with its N-terminal EF-hand domain. Upon
Ca2+ depletion of the endoplasmic reticulum (ER), STIM oligomerizes and translo-
cates to ER– plasma membrane junctions where it interacts electrostatically with
Orai. B) Carbachol binds to its G𝑞 protein coupled receptor (G𝑞PCR) in the plasma
membrane which activates phospholipase C. Phospholipase C splits phosphatidyli-
nositol 4,5-bisphosphate (PIP2) into inositoltriphosphate (IP3) and diacylglycerol
(DAG). IP3 depletes the ER from Ca2+ which induces STIM/Orai interaction and
subsequently SOCE. Thapsigargin induces SOCE experimentally by inhibiting the
sarcoplasmic/endoplasmic reticulum ATPase (SERCA) pump [122] (modified from
[78]).

a C→T missense mutation in exon 1 of human Orai1. Thus, arginine is replaced by

tryptophan at position 91 of the protein (R91W). Restoration of wildtype Orai1 in

mutated T cells from SCID patients rescued SOCE and ICRAC [37].

The name ’Orai’ originates from the Greek mythology, where the Orai are the keepers

of the heaven’s gate. The Orai proteins are plasma membrane proteins, with four

predicted transmembrane domains and intracellular C- and N-termini. Orai1 exists

mainly as a dimer under resting conditions and forms tetramers containing the Ca2+-

selective pore after store depletion [97]. The three Orai isoforms, Orai1, 2 and 3 differ

in their activation and inactivation kinetics, monovalent permeation, and response

to 2-APB (2-aminoethoxydiphenyl borate). Orai3, but not Orai2 was reported to be

able to restore SOCE in cells lacking Orai1 [35].

SOCE is initiated by binding of an agonist to a tyrosine kinase receptor or a G𝑞PCR

in the plasma membrane, e.g. carbachol binds to its muscarinic acetylcholine receptor

and activates phospholipase C, which cleaves PIP2 into IP3 and DAG. The second
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messenger IP3 releases Ca2+ from the internal stores of the ER via its receptor in

the ER plasma membrane. As a result of the depletion of the ER store, the stromal

interaction molecule (STIM) molecules oligomerize and activate Ca2+ channels in the

plasma membrane [122][35][25]. Ca2+ enters from the extracellular space and increases

the intracellular Ca2+ level. The Ca2+ pump of the ER, sarcoplasmic/endoplasmic

reticulum ATPase (SERCA), pumps intracellular Ca2+ into the ER, to refill its in-

ternal stores (see figure 1.1). To induce SOCE experimentally, the SERCA inhibitor

thapsigargin is used. Thapsigargin blocks the SERCA pump thereby blocking refilling

of the ER with cytosolic Ca2+. Because Ca2+ leaks through the ER membrane, the

ER is gradually depleted by Ca2+ after application of thapsigargin. Depletion of the

ER from Ca2+ triggers activation of SOC channels.

It is widely accepted that Orai channels are strictly store-activated. However there

are various reports about SOC channels which are less selective for Ca2+ than Orai-

induced CRAC channels [94]. It is suggested that TRPC channels could be involved

although they are nonselective for Na+ as well as Ca2+ and are activated downstream

of phospholipase C.

1.2.2 The receptor-operated Ca2+ influx pathway

Receptor-operated Ca2+ entry (ROCE) occurs when the second messenger diacyl-

glycerol directly activates plasma membrane Ca2+ channels. An example for ROCE

is the TRPC3/6/7 subfamily which can be activated by GqPCR agonists, such as

carbachol. As a consequence phospholipase C is activated which cleaves PIP2 into

DAG and IP3. DAG directly activates classical transient receptor potential 3, 6 and

7 (TRPC 3, 6 and 7) channels in the plasma membrane [25]. The influx of cations

through classical transient receptor potential (TRPC) channels depolarizes the mem-

brane, activates voltage-dependent calcium channels and increases the intracellular

calcium concentration (see figure 1.2).

The TRPC channels are the first TRP channels which were cloned and characterized

in mammals, share the closest homology to the Drosophila TRP channels and are

therefore termed as ’classical’ or ’canonical’ TRP channels. However, it is still a mat-

18



Figure 1.2: Receptor-operated Ca2+ entry (ROCE). A GqPCR agonist acti-
vates phospholipase C (PLC) which cleaves PIP2 into DAG and IP3. DAG activates
TRPC3/6/7 channels. PIP2: phosphatidylinositol 4,5-bisphosphate, DAG: diacyl-
glycerol, IP3: phosphatidylinositoltriphosphate (from [32]).

ter of debate, if TRPC channels are also store-operated. The transient receptor poten-

tial (TRP) genes were discovered in the fruit fly Drosophila melanogaster by Cosens

and Manning over 40 years ago. They recorded a transient response to steady light in

a visually impaired TRP mutant fly instead of a sustained response in a wild type fly.

According to this observation they named the mutant ’transient receptor potential’

[18]. 20 years later, Montell and Rubin identified the trp gene [87]. The superfamily

of TRP channels can be divided into seven families depending on the protein homol-

ogy: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin),

TRPML (mucolipin), TRPP (polycystin) and TRPN (NO-mechano-potential C). All

TRP channels are characterized by intracellular amino and carboxyl tails which vary

from subfamily to subfamily, six transmembrane domains (S1 to S6) and a pore-

forming loop between S5 and S6 (see figure 1.3) [91].

The TRPC family is also characterized by four amino-terminal ankyrin repeats and

can be further divided into four subfamilies: TRPC1, TRPC2, TRPC3/6/7 and

TRPC4/5. TRPC1 is structurally and functionally unique but TRPC 4/5 share

65% amino acid sequence homology and the TRPC 3/6/7 subfamily shares 70%-80%

amino sequence homology [26].
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Figure 1.3: Structure of transient receptor potential (TRP) channels. a)
TRP channels consist of six transmembrane domains (1–6), a pore forming-loop (P)
between S5 and S6 and intracellular carboxyl (C) and amino (N) termini. b) Four
TRP channels form a functional cation channel [91] (from [148])

The first subfamily consists only of the TRPC1 channel. It was the the first human

TRP channel which was cloned in 1995 [145] and characterized in 1996 [155]. The

human TRPC1 gene is localized on chromosome 3, while the murine TRPC1 is lo-

calized on chromosome 9 [16]. The molecular structure of the TRPC1 channels is

similar to the other TRP channels. The physiological role TRPC1 is still a matter

of debate. TRPC1 is expressed in most human and murine tissue [145]. TRPC1

can build heterotetramers with TRPC4 and TRPC5 or with TRPC3, TRPC6 and

TRPC7 but may not function as homotetramer [52] [125].

The second subfamily consists only of TRPC2, a human pseudogene which does not

code for a functional protein in humans. The third subfamily consist of TRPC 4

and 5. Different from other TRPC channels, they own a postsynaptic density protein

95-binding motif. TRPC4 is expressed in most tissue, TRPC5 mainly in the central

nervous system [91].

The fourth subfamily consists of TRPC3, TRPC6 and TRPC7. They are activated

by diacylglycerol [53]. TRPC7 is mainly expressed in the pituitary glands, kidney,

central nervous system, heart and lung [91].

The first murine TRPC6 cDNA was isolated from brain [8] and the respective murine

TRPC6 gene is localized on chromosome 9. Human TRPC6 was cloned from placenta

[53] and its gene is localized on chromosome 11q21-q22 and has 13 exons [24]. TRPC6

20



is ubiquitously expressed and shows higher expression levels in lung, placenta, ovary

and spleen [51]. The molecular structure of the TRPC6 channel is similar to that

of other TRP channels (see figure 1.3). Four TRPC6 monomers build a tetramer

with a functional pore domain in the center. The two glycosylation sites at the

first and second extracellular loops (Asn473, Asn561) determine that TRPC6 acts as

a receptor-operated calcium channel [28]. A mutation of Asn651 to Gln prevented

glycosylation and increased the basal activity of TRPC6 [28].

The dual glycosylation is responsible for the lower basal activity of the TRPC6 com-

pared to the single glycosylated TRPC3 channel [28]. The TRPC3 channel further

distinguishes from the TRPC6 channel by its lower Ca2+ selectivity and higher single

channel conductance [53] [28]. TRPC3 is mainly expressed in the central nervous

system, smooth and cardiac muscle cells. It has been described to be involved in

brain-derived neurotrophic factor mediated growth and glutamate receptor signaling

and as postsynaptic cation channel essential for metabotropic glutamate receptor1

(mGluR1)-dependent synaptic transmission in cerebellar Purkinje neurons [91].

1.2.3 The role of Ca2+ signaling during pulmonary arterial

hypertension (PAH)

Several research groups have studied the function of TRPCs, STIM and Orai in cells

of the lung and lung associated diseases, such as pulmonary arterial hypertension

(PAH). PAH is a progressive disease which is characterized by vascular remodeling,

vascular arterial wall stiffness, vasoconstriction and thrombosis [58]. Risk factors to

develop a PAH are hypoxia in parts of the lung, induced by COPD [144], idiopathic

pulmonary fibrosis [114], appetite suppressant drugs (such as aminorex, fenfluramine

derivatives and benfluorex) [117], a genetic predisposition (most of them mutations of

the bone morphogenetic protein receptor 2) [58], or changes in endothelin expression

[34].

Endothelin is the strongest vasoconstrictor known. It is synthesized from big endothe-

lin1 by the endothelin converting enzyme. Two different G-protein coupled endothelin

21



receptors mediate the effect of endothelin1: the endothelin A and endothelin B recep-

tors [86]. Endothelin A receptors are mainly expressed in pulmonary vascular smooth

muscle cells where they mediate vasoconstriction and proliferation, while endothelin B

receptors are mainly expressed in endothelial cells where they promote vasodilatation.

There are regional differences in endothelin receptor localization and distribution in

the pulmonary vasculature. Due to these differences in distribution, endothelin in-

duces dilatation of the pulmonary circulation and at the same time vasoconstriction

of the systemic circulation [128] [33].

Takahashi et al. demonstrated that the mRNA levels of endothelin1 and the endothe-

lin A receptor were upregulated in lung of rats which had been exposed to hypoxia.

Immunostaining with anti-big endothelin1 antibody revealed that endothelin1, the

endothelin converting enzyme and endothelin A receptors were significantly increased

in distal segments. The shift of endothelin A receptor expression from proximal

arteries during normoxia to distal arteries after hypoxia might play a role during vas-

cular remodeling [128] [33]. Polymorphisms of the endothelin receptor might affect

endothelin signaling and the therapy with endothelin receptor antagonists [54].

Up to date PAH is treated with phosphodiesterase 5 inhibitors (e.g. sildenafil), cGMP

(cyclic guanosine monophosphate) activator (e.g. riociguat, cinaciguat), NO-releasing

substances, prostanoids (e.g. epoprostenol) or endothelin-receptor antagonists (e.g.

bosentan) (see figure 1.4) [58]. The reduced production and bioavailability of NO

in endothelial cells is targeted by the phosphodiesterase 5 inhibitor, the cGMP acti-

vator and NO-releasing substances. The NO-synthase releases NO when catalyzing

the reaction of L-arginine to L-citrulline. NO activates the soluble guanylate cyclase

(sGC) which in turn induces the formation of cyclic guanine monophosphate (cGMP)

and cGMP relaxes smooth muscle cells. Phosphodiesterase 5 degrades cGMP and its

inhibition enhances the bioavailability of cGMP as well as increases vasodilatation.

Prostanoids are prostacyclin analogues. Prostacyclin is produced endogenously from

arachidonic acid by the cyclooxygenase and prostacyclin synthase. It has vasodilata-

tory, anti-inflammatory and antiproliferative effects on the blood vessel. Endothelin

receptor antagonists prevent the binding of endogenous endothelin on its receptor and
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therefore prevent vasoconstriction [58].

Even though this symptomatic treatment can slow down the progression and the

subsequent right heart failure, it does not interfere with the development of PAH.

Ca2+ signaling in precapillary pulmonary arterial smooth muscle cells (PPASMC)

and mouse pulmonary microvascular endothelial cells (MPMVEC) plays an essential

role in the development and progression of PAH but is not affected by currently

available therapeutic drugs. A combination of the previously used therapeutic drugs

with new Ca2+ channel blockers may have the potential to improve the therapy for

PAH patients.

PPASMC are located in the small, arterial vessels (<500 µm in diameter [142]) which

regulate the vascular tone [29]. This fact and because remodeling of these smooth

muscle cells is an essential step during PAH formation [58], prompted us to isolate

smooth muscle cells from precapillary arteries for our experiments. PPASMC appear

in two different phenotypes: the quiescent contractile vascular phenotype and the

proliferative and migratory phenotype. While the beneficial contractile phenotype

regulates the vascular tone, the pathophysiological proliferative phenotype is involved

in remodeling. A switch to this phenotype can be induced by inflammatory mediators

or mechanical stress [115]. Many Ca2+ channels have an altered gene expression and

are dysregulated during PAH inducing high cytosolic Ca2+ concentrations. This rise in

intracellular Ca2+ concentration triggers proliferation, migration and vasoconstriction

in PPASMCs. Proliferation is regulated by Ca2+-dependent kinases, such as CaMK,

and Ca2+-dependent transcription factors, such as nuclear factor of activated T-cells

(NFAT). Moreover, Ca2+ affects gene expression by protein kinase C and calmodulin

activation [65] [26].

Quantitative RT-PCR-analysis revealed that TRPC1 and TRPC6 are the main iso-

forms expressed in non-passaged PPASMC cultivated for 5 days. The other TRPC

channels play only a minor role in PPASMC [143]. Quantitative RT-PCR-analysis

of thoraic aortas and cerebral aortas from TRPC6-/- mice demonstrated a compen-

satory upregulation of TRPC3 [29]. Resulting from the compensatory upregulation of

TRPC3, TRPC6-/- mice show a higher smooth muscle contractility in isolated aortic
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rings [29]. To circumvent this upregulation, we used TRPC 1/3/6 deficient mice for

investigating functional SOCE in PPASMC.

Figure 1.4: Treatment of pulmonary arterial hypertension (PAH). PDE:
phosphodiesterase, sGC: soluble guanylate cyclase, GTP: guanosine-5’-triphosphate,
cGMP: cyclic guanine monophosphate, GMP: guanine monophosphate, NO: nitric ox-
ide, PGI2: prostacyclin, cAMP: cyclic adenosine monophosphate, IP receptor: prosta-
cyclin receptor. For more details see text (from [58])

TRPC6 and TRPC3 have been shown to be upregulated in smooth muscle cells of

idiopathic pulmonary arterial hypertension (IPAH) patients and in a rat model of

pulmonary hypertension. TRPC6 siRNA downregulated the TRPC6 expression in

smooth muscle cells of IPAH patients and decreased proliferation. Genomic DNA

analysis of IPAH patients identified a single nucleotide polymorphism in the promotor

of the TRPC6 gene in patients inducing enhanced nuclear factor kappa B-mediated

promoter activity and increased TRPC6 expression [150].
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TRPC6 and TRPC1 have been demonstrated to be involved in hypoxic pulmonary

vasoconstriction. Isolated, buffer-perfused, and ventilated mouse lungs of TRPC6-/-

mice did not show an acute response to hypoxia which was observed in Wt lungs. But

similar to Wt lungs, an increase in pulmonary arterial pressure during sustained re-

sponse was observed in TRPC6-/- lungs [143]. When TRPC6-/- mice were exposed to

chronic hypoxia, they developed similarly a pulmonary hypertension compared to Wt

mice [143]. In contrast to TRPC6-/- mice, TRPC1-/- mice showed an unchanged acute

and sustained response to hypoxia. When mice were kept under hypoxic conditions

for 21 days, wildtype mice developed a pulmonary hypertension but TRPC1-/- mice

were protected [79]. PPASMC from mice chronically treated with hypoxia, displayed

upregulated TRPC1, but unchanged TRPC3 and TRPC6 mRNA levels. Proliferation

of PPASMC exposed to hypoxia for 24h was reduced significantly in PPASMC iso-

lated from TRPC1-/- or TRPC1/6-/- mice but unchanged in PPASMC isolated from

TRPC6-/- mice [79].

STIM2 and Orai2, but not STIM1, have been shown to be upregulated in PPASMC

from IPAH patients and enhanced SOCE in PPASMC from IPAH patients was re-

duced after transfection with STIM2 specific siRNAs [123]. PPASMC from IPAH

patients treated with STIM2 siRNA showed similar proliferation levels after 72hrs

as cells from non-pulmonary hypertension donors [123]. Overexpression of STIM2 in

control PPASMC did neither enhance SOCE nor proliferation and PPASMCs treated

with hypoxia for 48hrs showed enhanced STIM2 and Orai2 protein expression levels

[123].

1.2.4 Do TRPCs interact with STIM and induce SOCE?

It is widely accepted that SOCE resulting from STIM-Orai interaction is the molecular

correlate of the ICRAC in immune cells [56] [11]. However, in recent years the question

arose if STIM may also interact with other plasma membrane Ca2+ channels besides

Orai in other cells forming a SOCE current clearly different from ICRAC. There are

two main hypotheses describing the involvement of TRPCs in SOCE reported by the

research groups from Shmuel Muallem and Lutz Birnbaumer.
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The Muallem group claims that STIM can activate both Orai and TRPCs directly (see

figure 1.5A).The STIM protein contains a positive charged lysine domain. Zeng et al.

analyzed the TRPC protein for negatively charged complement domain which could

interact electrostatically with the STIM protein. Mutation analysis revealed that neg-

atively charged aspartates in TRPC1(639DD640) interact electrostatically with the pos-

itively charged STIM1(684KK685). Similar gating was observed with TRPC3(697DD698)

[152]. However, Lee et al. have shown that the STIM1 lysine domain is not required

for binding, but close contacts between the SOAR region of STIM and the coiled coil

domains of TRPC [68]. While the SOAR region of STIM seems to activate both Orai

and TRPC, the electrostatic interaction only occurs between STIM and TRPC [68].

Figure 1.5: Schematic presentation of two hypotheses for TRPC-Orai inter-
action. A)The research group of Shmuel Muallem claims that STIM can activate
both Orai and TRPCs directly. SOCE mediated by Orai and SOCE by TRPCs could
interact but fulfill different cellular functions e.g. in precapillary pulmonary arterial
smooth muscle cells (PPASMC) (from [80]). B)The research group of Luz Birn-
baumer is presenting data in favor for a TRPC-Orai octamer (from [70]). TRPCs in
these heteromeric channels could contribute to SOCE. Are less then four Orai dimers
part of the channel, the channel acts as receptor-operated channel (ROC). BMP:
bone morphogenetic protein, NOX: NADPH oxidase, SR: sarcoplasmic reticulum,
PIP2: phosphatidylinositol 4,5-bisphosphate, PLC: phospholipase C, IP3: inositol
1,4,5-trisphosphate, IP3R: inositol 1,4,5-trisphosphate receptor,

The research group of Lutz Birnbaumer claims that TRPCs and Orai form heteromers.

Orai could act as regulatory subunits of TRPC channels in these heteromeric SOC

channels. Are less then four Orai dimers part of the octameric channel, the TRPC

channels act as ROC. The Birnbaumer group bases their hypothesis on the data pre-
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sented in two manuscripts [71] [73]. Liao et al. observed a functional interaction

between TRPCs and Orai e.g. Orai1 interacted with the N- and C-termini of TRPC3

and TRPC6 in co-immunoprecipitation experiments. HEK293 cells stably overex-

pressing TRPC3 and TRPC6 and transfected with Orai1, 2 or 3 showed increased

SOCE as compared with control cells not expressing TRPC3 and TRPC6. HEK293

cells stably overexpressing TRPC3 or TRPC6 showed reduced single-channel cation

currents after Orai1 overexpression [71]. Moreover, 1 µM Gd3+ blocks SOCE but not

ROCE mediated by TRPC channels. The dominant negative Orai1 mutant G91W

prevented Gd3+ induced ROCE in HEK 293 cells. The same mutant reduced OAG-

mediated Ca2+ entry in stably or transiently expressing TRPC3 HEK 293 cells. These

results suggest that TRPC and Orai form a complex which could be involved in both

SOCE and ROCE [73] (see figure 1.5B).

It is suggested that TRPC1 is only functional with other TRPC channels [52]. TR-

PCs haven been shown to form homo- or heterotetramers within the TRPC1/4/5

and TRPC3/6/7 subfamilies by Foerster resonance energy transfer (FRET) and

co-immunoprecipitation [52]. TRPC1 channels were detected in heterodimers with

TRPC3 and TRPC4 with TRPC6 [151]. Recently it was demonstrated that TRPC1

reduces Ca2+ permeability in heteromeric channels with TRPC3, TRPC4, TRPC5,

TRPC6 and TRPC7. Interestingly, these heteromeric channels displayed a signifi-

cantly reduced Ca2+ influx compared to homomeric channels [125].

It was also reported that TRPC1 is colocalized with STIM1 in lipid rafts and its

expression is controlled by Orai [14]. The same research group described that block-

ing of SOCE by gadolinium, extracellular Ca2+ free medium, Orai1 knockdown or

expression of dominant- negative mutant Orai1 lacking a functional pore (E106Q)

prevented TRPC1 expression in the plasma membrane. STIM1 was able to interact

by its polybasic tail with PIP2 in the plasma membrane lipid domains and deletion of

the polybasic tail resulted in abrogation of SOCE and inhibition of STIM1 punctae

formation in the ER membrane [14].

TRPC6, Orai1 and STIM1 were also analyzed in human platelets. Double deficient

Orai1-/-/Trpc6-/- platelets showed a stronger reduction in thapsigargin-induced SOCE
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than Orai1-/- platelets. TRPC6 channels are activated by DAG and DAG can be

produced by two different ways in platelets: hydrolysis of PIP2 by phospholipase C

(PLC) as well as hydrolysis of phosphatidic acid (PA) by phospholipase D (PLD)

and phosphatidic acid phosphohydrolase (PAP) (see figure 1.6). A radioactive PLD

assay revealed a strong reduction in PLD activity in Orai1-/- platelets. An IP-ELISA

identified a reduced PLC activity in Orai1-/- compared to wild-type platelets in the

presence of thapsigargin and extracellular calcium. Stimulation of different GPCRs by

platelet agonists demonstrated that Orai is not necessary for PLC and PLD activation

by platelet GPCRs under physiologic conditions. However, Orai1-mediated activation

of phospholipase C and D might play a role during pathophysiological platelet hy-

perreactivity [13] (see figure 1.6). The STIM1/Orai1/TRPC6 interaction was further

analyzed in human platelets by Jardin et al. [59]. They reported an interaction of

hTRPC6 and STIM1 and Orai1 in co-immunoprecipitation experiments after inducing

SOCE by thapsigargin. Stimulation by the diacylglycerol analogue OAG (1-oleoyl-

2-acetyl-glycerol) or dimethyl-BAPTA (1,2-bis-(o-aminophenoxy)ethane-N,N,N’,N’-

tetra-acetic acid) loading abolished the interaction and enhanced the association of

hTRPC6 with hTRPC3 [59].

The physiological role of the proposed STIM/TRPC/Orai interaction is not yet

known. Isolated platelets from TRPC1 knockout mice showed an intact SOCE [137].

This contradicted previous results of other authors who had claimed a TRPC1 involve-

ment in SOCE after using TRPC1 antibodies of questionable quality [108]. However,

in salivary gland acinar cells isolated from TRPC1-/- mice no SOCE was detectable

after thapsigargin stimulation, while the expression of STIM1 and other TRPC chan-

nel was unchanged in these cells [75]. Along these line, pancreatic acinar cells from

TRPC1-/- mice showed decreased SOCE and Ca2+-activated Cl- channel activity [55].

However in thoracic smooth muscle cells from TRPC1-deficient mice, no changes in

thapsigargin-induced Ba2+ influx was detected, and there was no significant difference

in the membrane capacitance and current densities of wildtype and TRPC1-/- cells

[27].
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Figure 1.6: Orai-induced Ca2+ entry activates PLC and PLD which pro-
duces DAG and activates TRPC3 and TRPC6. DAG: diacylglycerol, IP3:
inositol 1,4,5-trisphosphate, IP3R: inositol 1,4,5-trisphosphate receptor, PC: phos-
phatidylcholine, PLD: phospholipase D, PA: phosphatidic acid, PAP: phosphatidic
acid phosphohydrolase, PIP2: phosphatidylinositol 4,5-bisphosphate, PLC: phospho-
lipase C, TP: thromboxane A2 receptor, TxA2: thromboxane A2. For more details
see text (from [13])

1.3 The role of SOCE in vascular endothelial and

smooth muscle cells during physiology and patho-

physiology

1.3.1 SOCE in vaso- and bronchoconstriction

Ca2+ signaling in PPASMC and MPMVEC plays an essential role in the development

and progression of PAH. Under hypoxic conditions vasoconstriction in PPASMC at

the low ventilated areas redirect the blood flow to the still oxygen rich regions to sup-

ply the body with sufficient O2 even if parts of the lung are destroyed. The contraction

of PPASMCs has therefore some characteristic features which distinguishes it from

the contraction of skeletal or cardiac muscle cells. PPASMC undergo slow, sustained

and tonic contractions. The contraction can be either initiated by changes in mem-

brane potential or by pharmacomechanical coupling. Regardless of the mechanism

of initiation, a rise in cytosolic Ca2+ induces PPASMC contraction and pulmonary

vasoconstriction. Intracellular Ca2+ binds to calmodulin which activates the myosin
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light chain kinase to phosphorylate the myosin light chain. This phosphorylation

induces hydrolyzation of ATP (adenosine triphosphate) by ATPases and the myosin

head crossbridges to the actin filament which causes contraction. Dephosphorylation

of the myosin light chain, which does not require Ca2+, induce smooth muscle cell

relaxation[78].

A model widely used to investigate the capacity of smooth muscle constriction or

relaxation is the myograph. Intact rings from different vessels can be isolated from a

mouse model and mounted in a physiological organ bath. Upon receptor stimulation,

the mechanical force is transduced into an electrical signal which is recorded. Tra-

cheal ring and thoraic aorta segments have been used in numerous studies. Tracheal

smooth muscle cells mainly express the muscarinic acetylcholine receptor subtypes

M2 (G𝛼i) and M3 (G𝛼q) which can be stimulated with carbachol. At the M3 recep-

tor, Carbachol induces a Gq-coupled signaling cascade by activating phospholipase

C leading to increased intracellular Ca2+ levels [118]. Different from smooth muscle

cells of the trachea, stimulation of the muscarinic acetylcholine receptor in vascular

endothelial cells induces relaxation. High intracellular Ca2+ in PPASMCs can be

passed to MPMVECs via gap junctions and induce Ca2+-dependent NO production

[78]. This apparently opposing mechanism is highly beneficial because it limits the

smooth muscle contraction and therefore fine tunes vasoconstriction. Similar to the

pathway in PPASMCs, carbachol binds to its M3 receptor in endothelial cells and

induces a Gq-mediated signaling pathway which elevates the cytosolic Ca2+. Ca2+

enables the endothelial NO-synthase to produce NO. NO diffuses into smooth mus-

cle cells of the tunica media and activates guanylate cyclases which convert GTP

into cGMP activating protein kinase G. Stimulation of protein kinase G induces de-

phosphorylation of myosin light chains by its phosphatases which results into smooth

muscle relaxation and vasodilatation [45].

The role of SOCE in vasoconstriction and vasodilatation has already been investi-

gated by several research groups. Aortic rings from mice with a STIM1-deficiency in

smooth muscle cells (STIM1ΔSMC) displayed a reduced phenylephrine-induced aortic

vasoconstriction [83]. This result was reproduced by Kassan et al. in aortic rings [61].
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After depleting internal Ca2+ stores by phenylephrine and thapsigargin, aortic rings

from STIM1ΔSMC mice showed a reduced SOCE-mediated contraction. The research

group of Donald Gill further performed Ca2+ refilling experiments after store deple-

tion to elucidate the molecular background of the myograph contraction experiments.

They demonstrated that the Ca2+ refilling rates after store depletion are reduced

in STIM1ΔSMC after repetitive treatment with cyclopiazonic acid in the presence of

extracellular Ca2+ in comparison to wild-type (WT) SMCs. [83]. Moreover, Kassan

et al. demonstrated that STIM1ΔEC aortic rings treated with acetylcholine dilatated

significantly less than heterozygous STIM1ΔEC and wildtype aortic rings [61].

1.3.2 SOCE during inflammation and edema formation

STIM1 and Orai1 are involved in inflammatory processes. Loss of function mutations

in STIM1 and Orai1 in human patients causes a severe combined immunodeficiency

which is characterized by an impaired T-cell function [35]. The role of STIM1 and

Orai1 in T-cells has already been extensively studied by other authors. However,

not only circulating immune cells are involved in inflammation but also endothelial

cells play an important role. Endothelial cells are specialized epithelial cells which

line the interior of all blood vessels. Intact endothelial cells form a tight barrier

between blood and interstitium. If endothelial cells are dysfunctional, barrier perme-

ability is decreased and fluid can pass and induce edema [99]. Bacterial products like

lipopolysaccharide (LPS) and endogenous cytokines stimulate the endothelium and

increase the endothelial barrier permeability. This response enables neutrophils and

monocytes to penetrate infected tissue and kill the pathogens during infection. But

at the same time it allows protein-rich edema fluid to leak into the alveoli causing

impaired gas exchange and hypoxemia [116].

LPS (lipopolysaccharide) is the main component of the outer gram negative bacterial

membrane, for example in Klebsiella pneumoniae, a bacterium which can induce

pneumoniae, an inflammation of the alveoli, in human and mice. In experimental

pneumoniae models, bacteria are applied intratracheally or intranasally. When LPS

binds to the toll-like receptor 4, this initiates a signaling cascade via the two adaptor
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proteins TRIF and myD88 and results in nuclear translocation of AP-1, NF-𝜅B,

and IRF3. As a consequence, several inflammatory cytokines, such as TNF-𝛼, IL-6

and IFN-𝛽 are expressed. TNF-𝛼 binds to its respective receptor at the endothelial

plasma membrane and induce a signaling cascade which results in gene expression of

inflammatory genes, such as E-selectin, intercellular adhesion molecule 1 (ICAM1),

vascular cell-adhesion molecule 1 (VCAM1) and COX2 [99]. Finally, the inflamed

endothelial cells become dysfunctional, allow fluid to leak through tight junctions

and form a lung edema.

Figure 1.7: STIM1 is essential for LPS-mediated NFAT activation. A) In-
tact pulmonary endothelial cells form a barrier between blood vessels, interstitium and
alveoli, B) Lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) accumu-
lation, Ca2+ oscillations and nuclear factor of activated T-cells (NFAT) accumulation
makes the endothelial barrier leaky. TLR4: Toll-like receptor4 (from [116]).

LPS can not only be used experimentally to induce pneumoniae, but also to in-

duce acute lung injury by intraperitoneal application. In this model, LPS binds to

its Toll-like receptor4 (TLR4) in endothelial cells and thereby elevates intracellular

ROS levels. According to Gandhirajan et al., STIM senses the increase of ROS by

S-glutathionylation of its cysteine residues. This induces high-frequency Ca2+ oscilla-

tions through Ca2+ originating from the ER and the extracellular space via membrane

Ca2+ channels and results into nuclear NFAT translocation (see figure 1.7) [39]. The

NFATs are Ca2+-sensitive transcription factors which are involved in transcription of
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proinflammatory mediators. Inactive, phosphorylated NFAT is located in the cyto-

plasm. Upon intracellular Ca2+ elevation, the calmodulin-dependent serin/theronine

phosphatase calcineurin dephosphorylates NFAT and triggers translocation into the

nucleus. The NFAT isoforms c1 and c3 control vascular development, angiogenesis

and are involved in inflammation of the vasculature [105].

Gandhirajan et al. investigated how a STIM1-deficiency in endothelial cells (STIM1ΔEC)

affects NFAT translocation and endothelial barrier function. They demonstrated

that STIM1ΔEC cells heterologously expressing GFP-tagged NFATc3 (NFATc3-GFP)

translocated a significant lower amount of NFATc3 to the nucleus compared to wild-

type MPMVECs. The constitutively active STIM1 mutant C56A showed SOCE and

NFATc3-GFP nuclear translocation in MPMVECs which were lacking a subunit of

the ROS producing NADPH oxidase. To investigate endothelial barrier function,

Gandhirajan et al. induced a vascular inflammation in STIM1ΔEC mice by inject-

ing LPS (1mg/kg body weight) intraperitoneally. 24hs after LPS treatment, the mice

were injected with 5% FITC-dextran via the facial vein and vascular permeability was

assessed based on the fluorescence intensity in the extravascular space. STIM1ΔEC

mice showed significantly less extravascular FITC-dextran leakage than STIM1 floxed

control mice. The reduced vascular leakage in the LPS-treated STIM1ΔEC mice re-

sulted in less lung edema formation indicated by a reduced lung wet-to-dry weight

ratio. Delivery of the unspecific SOCE blocker 3,5-bis(trifluoromethyl)pyrazole re-

duced vascular leakage and lung wet-to-dry weight ratios in LPS-treated wildtype

mice [39].

Vascular permeability of endothelial cells can be investigated on cellular levels using

the coagulation protease thrombin. Thrombin induces formation of stress fibers and

an opening of the cellular tight junctions. When MPMVECs are stimulated with

the PAR1 receptor agonist thrombin, Gq, G12/13 and Gi coupled signaling cascades

are induced resulting in elevated intracellular Ca2+ levels and RhoA activation. Gq-

mediated phospholipase C signaling induces ROCE and SOCE through TRPC, STIM

and Orai and the resulting elevated intracellular Ca2+ establishes a Ca2+-calmodulin

complex. Ca2+-calmodulin activates the myosin light chain kinase (MLCK) which
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Figure 1.8: Thrombin-induced disruption of the endothelial barrier. Throm-
bin induces induces elevated intracellular Ca2+ levels and RhoA activation which
results into stress fiber formation and opening of tight junctions. PAR1: protease-
activated receptor1, CaM: Ca2+-calmodulin, MLCK: myosin light chain kinase,
MLCP: myosin light chain phosphatase (from [42]).

phosphorylates the myosin light chain (MLC). Simultaneously, thrombin induces the

G12/13-mediates RhoA signaling cascade. Specifically, the free G-protein 𝛽𝛾 sub-

units activate guanine nucleotide exchange factor (Rho–GEF) which converts inac-

tive RhoA-GDP to active RhoA-GTP. RhoA-GTP induces Rho-dependent kinase

(ROCK) phosphorylation which results in inactivation of MLC phosphatase. Phos-

phorylated MLC contracts actin filaments which are bound to tight junctions and

adherens junction complexes thereby opening junctions between endothelial cells and

inducing leakage of plasma proteins. Under resting conditions, MLC phosphatase

dephosphorylates MLC and consequently prevents opening of tight junctions. Af-

ter Gq-protein-coupled-receptor stimulation, MLC is phosphorylated and induces an

opening of the tight junctions (see figure 1.8) [121]. F-actin filaments can be stained
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with phalloidin to quantify their intensities. The opened tight junctions allow either

FITC-dextran or an electrical current to pass. Therefore, the fluorescence of FITC-

dextran which has passed the barrier can be quantified in a transwell permeability

assay or the resistance of a small alternating current which is applied to the endothelial

layer can be analyzed using the Electrical Cell-Substrate Impedance Sensing (ECIS).

The influence of STIM and Orai in the endothelial barrier function has been in-

vestigated by Shinde et al. in siRNA transfected human umbilical vein endothelial

cells (HUVECs) and human dermal microvascular endothelial cells (HDMECs). They

demonstrated that thrombin-induced reduction of endothelial resistance is attenuated

in HUVECs transfected with STIM1 specific siRNAs. Transfection of HUVECs with

Orai1 specific siRNAs did not show any differences in thrombin-induced transendothe-

lial resistance in comparison to untreated control cells. Thrombin-induced SOCE was

also absent in HDMECs transfected with STIM1 and Orai1 specific siRNA. These re-

sults indicate that SOCE via Orai1 is not essential for endothelial barrier disruption.

Thrombin-induced stress fiber and VE-cadherin cell junction formation was reduced

in HUVECs after application of STIM1 specific siRNAs while RhoA activity was

enhanced. The thrombin-induced enhanced RhoA activity of HUVECs transfected

with STIM1 specific siRNA was attenuated, but not in HUVECs transfected Orai1

specific siRNA. Thus, it is assumed that STIM1 could also be an upstream effector

of of RhoA [121].

1.3.3 SOCE induced endothelial migration and proliferation

Endothelial cell migration and proliferation is an essential process during formation of

new blood vessels (angiogenesis)and vascular repair. Moreover, both play an impor-

tant role in pathophysiological processes such as atherosclerosis. The characteristics

of endothelial cells vary according to the tissue they originate from. The process of

endothelial migration can be divided into several steps. Before an endothelial cell

moves, it senses the chemotaxical gradient, mostly driven by vascular endothelial

growth factor (VEGF), via its filopodia. Afterwards, protruding lamellipodia at-

tach to the focal adhesion sites. The following stress fiber-mediated contraction of
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the cell induces a forward movement. Finally, the rear is released by focal adhesion

disassembly and adhesive and signaling components are recycled [67].

Endothelial migration is induced by several stimuli, such as shear stress, chemotaxis

and binding of integrins [67]. Even though one major stimulus for migration is the

expression of VEGF, other stimuli also contribute, such as intracellular Ca2+, ROS

or NO. Endothelial migration is often investigated experimentally by the scratch as-

say. Scratching of an endothelial monolayer disrupts contact inhibition and induces

Ca2+ entry from the extracellular space [15]. High intracellular Ca2+ activate protein

kinase C and calmodulin-dependent protein kinases. As a result, the immediate early

genes c-fos and c-jun are transcribed and induce expression of secondary genes, such

as VEGF [133]. The basal Ca2+ concentration of the leading edge of the endothelial

cell is reduced compared to the trailing edge. This Ca2+ gradient within the cell al-

lows a fine-tuned regulation of endothelial migration [15]. Both the Ca2+ originating

from the internal stores and from the extracellular space is assumed to contribute to

migration. The intracellular Ca2+ affects the cytoskeletal remodeling, the focal ad-

hesion turnover, the matrix degradation and formation of lamellipodia - all functions

which affect the endothelial migration [90].

The endothelial migration has shown to be affected by SOCE. Kimura et al. demon-

strated that inhibition of SOCE reduced wound healing after scratch formation. They

treated bovine aortic endothelial cells with thapsigargin or cyclopiazonic acid for 6h

or 24h and quantified the number of cells which migrated. When cyclopiazonic acid

was removed after 6h the destructed migration was rescued. Comparing intracellular

Ca2+ levels of non-migrating and migrating cells demonstrated that basal [Ca2+]i was

lower but the total amount of stored Ca2+ was higher in migrating cells. These results

indicate that a functional SERCA pump is essential endothelial migration. In which

way cytosolic Ca2+-binding proteins or the mitochondrial Ca2+ uptake/release af-

fects endothelial migration after thapsigargin or cyclopiazonic acid stimulation needs

further investigation [15]. The importance of STIM and Orai during migration has

been confirmed in smooth muscle cells. Aortic smooth muscle cells transfected with

STIM1 or Orai1 specific siRNAs showed a reduced PDGF-induced migration in a
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Boyden chamber [124]. SiRNA-mediated knockdown of STIM1 and Orai1 in vascular

smooth muscle cells reduced wound healing 12h or 24h after scratch formation [6]

[101] while knockdown of STIM2, Orai2 and Orai3 was not effective [6].

ROS is produced in vascular endothelial cells by NADPH oxidase (NOX). NOX are

proteins which mediate a redox reaction during which oxygen is reduced to superox-

ide and electrons are transferred across a biological membrane. The NOX isoforms

(NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1, and DUOX2) fulfill different func-

tions according to the cells they are expressed. NOX1, NOX2, NOX4 and NOX5 are

expressed in endothelial cells [5] and regulate cell differentiation, proliferation, mi-

gration, angiogenesis and vascular tone [111]. NOX2 is the prototypical NOX which

was first described in neutrophils and macrophages. NOX2 in endothelial cells plays

an important role during ROS production and bioavailability of endothelium derived

NO [5] and it suggested to play an important role during angiogenesis [136] NOX1

and NOX4 have been reported to be involved in cell growth and growth suppression.

The function of NOX5 in endothelial cells is still poorly understood [111].

NOX constantly releases low levels of superoxide but upon stimulation can increase

superoxide production [136]. MPMVECs derived from STIM1ΔEC mice showed sim-

ilar NOX2 protein levels and cytosolic superoxide production by DHE fluorescent

staining as MPMVECs from wiltype mice. NOX2 can be stimulated experimentally

to produce ROS by application of LPS which binds to the cellular TLR4 receptor,

interacts with NOX2 and elevates intracellular ROS levels.

Gandhirajan et al. showed that LPS/TLR4 and NOX2 mediated increased ROS levels

induced Ca2+ oscillations in MPMVECs. Inhibition of NOX2 abrogated these Ca2+

oscillations. Moreover, they demonstrated that ROS can induce STIM1-mediated

SOCE by ROS sensing of STIM1 through S-glutathionylation of its cysteine residues

[39][116]. The NOX-mediated superoxide production stimulates migration in vascular

endothelial cells [136]. In accordance with the unaltered NOX2 and and cytosolic

superoxide production, STIM1ΔEC migrated similarly to wildtype MPMVECs 24h

after scratch formation [39].

NO is produced by the nitrite oxide synthase (NOS) and is a major player in the
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induction of vasodilatation. In the inactive, unphosphorylated, state, NOS exists as

a monomer which transfers electrons from reduced nicotinamide adenine dinucleotide

phosphate (NADPH) to flavin adenine dinucleotide (FAD) and flavin mononucleotide

(FMN) but with a low capacity. It can bind calmodulin but neither the cofactor

tetrahydrobiopterin (BH4), nor the substrate L-arginine and subsequently does not

catalyze NO production. In the active, phosphorylated, state, NOS exists as a dimer.

It has several phosphorylation sites which enhance the sensitivity of NOS for Ca2+

which is required for calmodulin binding. The phosphorylation site, serine (Ser)1177,

is activated by AMP-activated protein kinase (AMPK), Ca2+/calmodulin dependent

protein kinase II or protein kinase A which is mainly induced by fluid shear stress.

Active NOS transfers electrons from NADPH to hem where L-arginine is oxidized to L-

citruline and NO. NO stimulates the soluble guanylyl cyclase, generates cyclic guano-

sine monophosphate (cGMP) and induces vasodilatation. Under oxidative stress,

NOS produces superoxide and peroxynitrite instead of NO which is described by the

term uncoupling. In detail, radicals of NO and oxygen react to peroxynitrite instead

of NO which can oxidize BH4 to the inactive trihydrobiopterin (tBH3). The lack of the

cofactor BH4 and the substrate L-arginine are discussed as causes for the uncoupling

from oxygen reduction of NO [127]. As a consequence of uncoupling NO availability

is reduced and the existing oxidative stress enhanced, depolarisation of Ψ𝑚 increased

and respiratory control ratio is decreased [38]. Similar to the superoxide produced by

NOX, the superoxide produced by endothelial NOS (eNOS) can stimulate endothelial

migration.

Endothelial proliferation after vascular injury occurs much slower than migration.

Scientists are discordant if the proliferating cells originate either from resident vascu-

lar endothelial cells or endothelial progenitor cells. Hagensen et al. demonstrated that

endothelial cells of the neoendothelium originated from the transplanted artery seg-

ment formed after wire-injury [46]. Other authors suggested that endothelial derived

microparticles promote proliferation of resident endothelial cells [154] [62]. Similar to

endothelial migration, Ca2+ affects endothelial proliferation.

Abdullaev et al. has shown that downregulation of STIM1 and Orai1 reduced prolif-
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eration in HUVECs. HUVECs transfected with siRNAs specific for STIM1, Orai1 or

STIM1 plus Orai1 were counted 96h later by trypan blue exclusion. Downregulation

of Orai1 and both STIM1 plus Orai1 induced significant reduced cell numbers as com-

pared to STIM1 knockdown. Combined transfection of STIM1 and STIM2 specific

siRNAs reduced cell numbers significantly but to a minor extent than Orai1 knock-

down. These results could indicate that Orai1 proliferation is partly independent

of STIM. Propidium iodide staining revealed that transfection with Orai1 specific

siRNAs and a mixture of STIM1 and Orai1 specific siRNAs increased the propor-

tion of cells in the S and G2/M phases of the cell cycle compared to control cells.

Transfection by siRNA specific for STIM1 alone had a much smaller effect[1]. Fur-

thermore, the role of STIM1 was demonstrated in a rat carotid artery balloon injury

model by Guo et al. Knockdown of STIM1 by adenovirus delivery of specific siRNAs

suppressed neointima hyperplasia 14 days after injury. The re-expression of human

STIM1 reversed this effect. In vitro, proliferation and migration of STIM1 deficient

vascular SMCs was reduced [44]. In summary, other groups have demonstrated that a

SOCE defect in smooth muscle cells or endothelial cells reduces endothelial migration

and proliferation. Because in most experiments immortalized cells transfected with

siRNA were used, theses results need further investigation in primary cells isolated

from knockout mice.

1.4 Mitochondrial Ca2+ homeostasis

1.4.1 The role of MCUR1 in mitochondrial Ca2+ influx

pathways

Mitochondrial calcium uptake is mediated by an inner mitochondrial membrane pro-

tein, the mitochondrial Ca2+ uniporter (MCU). Integrative bioinformatics and RNAi

screening approaches, discovered three components of the MCU complex (mitochon-

drial calcium uptake 1 (MICU1) [98], MCU [4] [21] and mitochondrial Ca2+ uniporter

regulator 1 (MCUR1) [81] [82] [49]). The MCU complex is further regulated by:
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MICU2, MCUb, EMRE and SLC25A23. Even though some of the MCU complex

components have been investigated, the precise structure and regulation of the MCU

complex is still unknown [21].

MCU is a 40 kDa protein with low affinity but high capacity and high selectivity

to Ca2+(dissociation constant ≤ 2 nM). Due to these properties, MCU can induce

mitochondrial Ca2+ rises above 100µM despite of relative low cytoplasmic Ca2+ con-

centrations [21]. The MCU-mediated Ca2+ uptake is dependent upon the negative

(-160 mV) mitochondrial membrane potential ΔΨ𝑚 and pH [43] [82] [19] [112] and

can be blocked by ruthenium red. The IMCU is produced by an inward rectifying

channel with a high half-saturation of 20 mM [Ca2+]c [64]. Physiologically, the rapid

mitochondrial Ca2+ uptake by MCU is essential for mitochondrial functions such as

ATP production and cell signaling processes [31] [41] [106] and for buffering patho-

physiological high cytosolic Ca2+ concentrations [106].

MICU1 prevents Ca2+ uptake via MCU at low cytosolic Ca2+ concentrations and

enables uptake at high concentrations. When extramitochondrial Ca2+ increases,

the gatekeeper MICU2 is inhibited and the stimulator MICU1 is activated. MICU1

interacts via its polybasic region and a Ca2+ sensing EF-hand with the coiled-coil

domain of MCU [49]. This enables MCU-dependent Ca2+ uptake. EMRE (essential

MCU regulator) is a single pass transmembrane inner mitochondrial membrane pro-

tein which is essential for MCU complex formation but its exact role is not known

yet [21] [50] [81] [110].

MCUR1 was identified as a positive regulator of the MCU complex through its in-

teraction with MCU and enhances the MCU-mediated Ca2+ uptake. It has been

demonstrated that the N-terminal domain of MCU interacts with MCUR1 and regu-

lates ruthenium-red-sensitive MCU-dependent Ca2+ uptake. Stable shRNA mediated

knockdown of MCUR1 in HeLa cells disrupted oxidative phosphorylation, lowered

cellular ATP levels and activated AMPK-dependent autophagy. Thus MCUR1 is an

essential component for MCU complex formation, and maintenance of normal cel-

lular bioenergetics [81]. Knockdown of MCUR1 in immortalized human fibroblasts

resulted in a cytochrome c oxidase assembly defect, decreased ΔΨ𝑚 and reduced
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mitochondrial Ca2+ uptake [96].

Figure 1.9: The MCU-mediated Ca2+ uptake. Mitochondrial Ca2+ uniporter
(MCU)-mediated Ca2+ uptake is regulated by several proteins which form a complex
with MCU: MICU1, MICU2, MCUb, MCUR1, EMRE and SLC25A23 (omitted for
simplicity). When extramitochondrial Ca2+ increases, the gatekeeper MICU2 is in-
hibited and the stimulator MICU1 activated. This enables MCU-dependent Ca2+ up-
take. EMRE: essential MCU regulator, MICU: mitochondrial Ca2+ uptake, MCUR1:
mitochondrial Ca2+ uniporter regulator1 (from [21]).

1.4.2 Coupled oxidative phosphorylation, uncoupling and ATP

production in mitochondria

Mitochondria are the major energy production units of the cell. ATP as the car-

rier of cellular energy is mainly produced in mammalian cells by either glycolysis

or oxidative phosphorylation in the respiratory electron chain [154]. The respira-

tory electron chain consists of five complexes which generate a proton gradient over

the inner mitochondrial membrane that drives ATP synthesis. The process of ATP

synthesis in the mitochondrial respiratory chain is called oxidative phosphorylation.

NADH and FADH2 provided by glycolysis, fatty acid oxidation or the citric cycle feed

the respiratory chain with electrons. These electrons are transported to O2 which is

reduced to H2O in complex IV. NADH and FADH2 are oxidized at complex I and II

which releases electrons and produces H+. H+ is pumped out of the mitochondrial
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matrix by complex I, III and IV. The uneven distribution of H+ generates a proton

gradient. Because the intermembrane space is charged positive relative to the matrix

side, a transmembrane electrical potential -the mitochondrial membrane potential,

Ψ𝑚 -is created. The membrane potential has a large negative potential of -180mV.

The process of electron donation by NADH in complex I is depending on substrate

oxidation of pyruvate/malate in the citric cycle. Complex II oxidizes succinate and

reduces FAD+ to FADH2. In the same way as NADH, FADH2 feeds its electrons to

the respiratory chain. H+ produced during these reactions which generates the proton

gradient is therefore tightly coupled to electron donation. Because the electrons are

finally used to reduce O2 to H2O, the oxygen reduction rate is an accurate measure

for the proton gradient. The rate by which O2 is reduced is defined as oxygen con-

sumption rate (OCR). Addition of complex I and II substrate consequently results

into an enhanced electron flow, proton gradient and OCR. The energy of substrate

oxidation that is conserved in this proton gradient is used to synthesize ATP from

ADP and inorganic phosphate when H+ flows back to the matrix through complex

V. The term ’coupled’ in this context describes the dependance of ATP synthesis on

the proton gradient. Accordingly, addition of substrates enhances the proton gradi-

ent and thereby drives H+ reentry through complex V which results into higher ATP

synthesis. However, how much oxygen is required to produce one molecule of ATP

is dependent on factors such as the complex substrate. For example, consumption

of succinate and pyruvate/maleate requires both one unit of oxygen but succinate

pumps in turn 6 H+ while pyruvate/maleate pumps 10 H+. [109] [9] [129] [17] [10].

H+ does not only flow back to the mitochondrial matrix through the ATP synthase

but also through the uncoupling proteins (UCP) and adenine nucleotide transporters

(ANT). This process separates the electron transport and proton gradient from the

ATP synthesis and is therefore described with the term ’uncoupling’. The energy

conserved in the proton gradient which is used for ATP production during ’coupling’

is released as heat during ’uncoupling’ if H+ flows back via UCP [119]. Among the five

UCP isoforms UCP1 is involved in uncoupling during thermogenesis in brown adipose

tissue [127]. Based on the sequence homology of UCP2 and UCP1 a similar function

42



Figure 1.10: Oxidative phosphorylation. The respiratory electron chain con-
sists of five complexes which generate a proton gradient over the inner mitochon-
drial membrane that drives adenosine triphosphate (ATP) synthesis. The process
of ATP synthesis in the mitochondrial respiratory chain is called oxidative phospho-
rylation. OMM: outer mitochondrial membrane, IMS: intermembrane space, IMM:
inner mitochondrial membrane, CoQ: co-enzyme ubiquinol, PON2: paraoxonase2,
cyto c: cytochrome c, NOX4: nicotinamide adenine dinucleotide phosphate oxidase4,
UCP2: uncoupling protein2, mitoKATP, mitochondrial ATP-sensitive potassium chan-
nel, eNOS: endothelial NO synthase, NO: nitric oxide GPX: glutathione peroxidase,
MnSOD: manganese superoxide dismutase, CuZnSOD: Copper-zinc superoxide dis-
mutase, VDAC: voltage-dependent anion channel (from [10]).

was assumed for UCP2 [139]. UCP2 and UCP3 are the main isoforms expressed in

endothelial cells. But the involvement of UCP2 in uncoupling is questioned by many

scientists. One argument against the role of UCP2 and UCP3 in uncoupling is the

low amount of UCP2 and UCP3 in the mitochondrial membrane. Therefore UCP2

and UCP3 probably do not have the capacity to induce a proton leak by uncoupling

which is high enough to lower the ΔΨ𝑚. Moreover, unlike UCP1-deficient mice,

UCP2-/- mice are not susceptible to obesity even when they are fed with a high fat

diet and depletion of UCP2 in spleen or lung which express endogenously high levels of

UCP2, did not change the uncoupling state [66]. It has also been postulated that the
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’mild uncoupling’ of UCPs would protect from oxidative damage of reactive oxygen

species (ROS) produced during high ΔΨ𝑚. However, only succinate-mediated ROS

production seems to be sensitive to high ΔΨ𝑚. During conditions of reversed electron

flow, it is questionable if the succinate level of 0.5mM is reached physiologically

because succinate is only an intermediate product in the citric acid cycle. The citric

acid substrates which fuel complex I 2-oxoglutarate, pyruvate, glutamate and malate

produce only minor amounts of ROS. This ROS production is not influenced by

changes of the proton gradient and therefore addition of the uncoupler FCCP does

not have an effect on ROS production [119].

More and more evidence has accumulated suggesting that the main role of UCP2 is

in the reprogramming of metabolic pathways [139]. Endothelial cells cover their main

energy demand by glucose, fatty acids and glutamine. They preferentially use glucose

for glycolysis and not for oxidative phosphorylation even when oxygen is present. As

long as glucose and NAD+ are available, glycolysis produces as much ATP as oxidative

phosphorylation. Glutamine can fuel oxidative phosphorylation instead. This feature

allows endothelial cells to ensure energy supply even during conditions of low oxygen

which is required in particular during the formation of new blood vessels. Glucose

is oxidized to pyruvate and glutamine is metabolized to 𝛼-ketoglutarate. Pyruvate

and 𝛼-ketoglutarate fuel the tricarboxylic acid cycle (TCA) cycle. The TCA cycle

intermediates feed oxidative phosphorylation [100].

One study evidencing that UCP2 plays a role in metabolic pathways was conducted by

Vozza et al. They showed that UCP2 operates as a metabolite transporter which de-

termines substrate oxidation in mitochondria. More specifically, they demonstrated

that UCP2 exchanges intramitochondrial C4 intermediates against H+ and Pi un-

der high glucose supply. UCP2KD HepG2 cells (liver hepatocellular cells with stable

knockdown of UCP2) grown in high glucose DMEM showed an increased ΔΨ𝑚 and

ATP/ADP ratio. Moreover, UCP2KD HepG2 revealed elevated TCA intermediates

(citrate, 2-oxoglutarate, succinate, fumarate, L-malate)and reduced lactate levels by

mass spectrometry [139]. The elevated TCA intermediates level suggested that the

higher ATP/ADP ratio is due to an impaired TCA function. The low amount of
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lactate indicates that most of the ATP produced does not originate from glycoly-

sis. Based on these findings Vozza et al. hypothesized that UCP2 could transport

C4 metabolites, such as pyruvate which regulates the oxidation of pyruvate- derived

acetyl-CoA in mitochondria. Accordingly, UCP2 but not UCP1 catalyzed the sub-

strate uptake of radioactive phosphate, L-malate and L-aspartate into liposomes con-

taining the same substrate. Cell swelling experiments with isosmotic ammonium phos-

phate solution applied to isolated yeast mitochondria further demonstrated that the

inward H+-coupled Pi transport depends on the endogenous Mir1P or UCP2 protein.

Addition of FCCP increased the exchange between external Pi and internal malate.

It can be concluded from these experiments that the substrates malate, oxaloacetate

and aspartate are exchanged for Pi and H+ across the mitochondrial inner membrane

suggesting that UCP2 negatively regulates the oxidation of acetyl-CoA-producing

substrates such as glucose by removing substrates of the Krebs cycle from the mito-

chondrial matrix. As a consequence the redox pressure of the mitochondrial chain,

the ATP/ADP ratio and the ROS production is reduced. In contrast to the effect of

UCP2 on glucose oxidation, UCP2 promotes the use of glutamine, feeding the Krebs

cycle, enhancing the redox pressure and therefore ATP/ADP ratio. Thus increased

UCP2 expression limits the contribution of glucose on mitochondrial oxidative phos-

phorylation and promotes oxidation of substitute substrates such as glutamine and

fatty acids [139]. Kukat et al. further confirmed that high UCP2 levels inhibit glucose

oxidation and promote fatty acid oxidization in an in-vivo model. They demonstrated

that UCP2-/- mice had reduced lactate levels and normal circulating free fatty acid

levels under normal chow diet at 25 weeks. The maximal OCR in mitochondria

isolated from the heart of UCP2-deficient mice was significantly reduced after ad-

dition of CCCP. The maximal OCR upon addition of octanoyl-carnitine+glutamate

was unchanged in UCP2 KO mitochondria but significantly reduced after addition of

palmitoyl-carnitine+glutamate. This result indicates that UCP2 upregulation might

allow better fatty acid oxidation in the heart [66].

Dysfunction of the mitochondrial respiratory chain can be investigated experimentally

by measuring the OCR. This is achieved by monitoring the OCR in response to
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addition of substrates, uncouplers or inhibitors. The physiological background will

be discussed here, for technical information refer to the methods section. During basal

respiration, the OCR is mainly dominated by the ATP turnover and partly by proton

leakage. To determine to which extend ATP synthesis influences the basal state, the

ATP synthase can be blocked with oligomycin. The remaining OCR is due to the

proton leakage and therefore caused by uncoupling. Because oligomycin blocks the

ATP synthesis during oxidative phosphorylation, the cell shifts its ATP production

to glycolysis. To maintain the ATP production, glycolysis accelerates approximately

10-fold. This increase of glycolysis can be measured by the extracellular acidification

rate (ECAR). Pyruvate is converted to lactic acid during anaerobic glycolysis. When

lactic acid is released it acidifies the extracellular space and can be measured as an

increase in ECAR.

The maximum respiration rate can be induced by addition of the uncoupler FCCP

(Carbonyl cyanide-p- trifluoromethoxyphenylhydrazone). An uncoupler is a lipid sol-

uble compound that allows H+ to diffuse back to the matrix while bypassing the

ATP synthase. As a results the ΔΨ𝑚 collapses. In an attempt to rescue the ΔΨ𝑚

the OCR accelerates and the cell switches its metabolism from oxidative phosphory-

lation to glycolysis which increases ECAR. As a result, any substrate available in the

medium is oxidized and contributes to the maximal respiration rate [113] [10].

If mitochondrial electron transport chain is inhibited only the OCR caused by non-

mitochondrial respiration remains. The non-mitochondrial respiration is caused by

desaturation and detoxification enzymes and is only responsible for approximately

10% of total cellular oxygen consumption. Inhibitors such as rotenone in combina-

tion with antimycin A completely block the mitochondrial electron transport chain.

Rotenone inhibits the electron transfer from complex I to ubiquinone and thereby pre-

vents usage of the potential energy of NADPH. Antimycin A blocks the cytochrome

c reductase and therefore disrupts the proton gradient across the inner mitochondrial

membrane resulting in a decreased OCR and an increased ECAR to maintain energy

homeostasis. Cyanide inhibits complex IV and also some haem-containing enzymes

responsible for non-mitochondrial oxygen consumption[113] [10].
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1.4.3 How does Ca2+ influence bioenergetics?

Rapid mitochondrial Ca2+ uptake is import for various mitochondrial functions, such

as maintenance of the ΔΨ𝑚, ATP production and various cellular signaling processes

[31] [106] [41]. Consequently, the disruption of mitochondrial Ca2+ uptake results into

reduced oxygen consumption, reduced ATP levels and activation of the AMPK which

activates cell death pathways. The outer mitochondrial membrane is permeable to

Ca2+ but through the inner mitochondrial membrane (IMM) which is impermeable

to ion flux, Ca2+ passes via MCU. Ca2+ acts as an energy production messenger for

various transport mechanisms while minimizing electron leak and subsequent damage.

Important Ca2+ regulated mitochondrial functions are ATP production and enzyme

activity depending on MCU-mediated Ca2+ uptake which is regulated by the ΔΨ𝑚

and the mitochondrial respiratory electron chain [12] [146].

Mitochondrial Ca2+ stimulates ATP production directly and indirectly. It stimulates

indirectly ATP production by enhancing the activity of the mitochondrial complexes

I, III and IV during conditions of elevated Ca2+. Increased activity of these complexes

stimulates mitochondrial respiration and leads to an increase in Ψ𝑚. Ψ𝑚, NADH but

also Ca2+ itself regulates the activity of the ATP synthase (complex V). NADH is re-

duced Ca2+-dependently from NAD+ during the tricarboxylic acid cycle (TCA) cycle.

The pyruvate dehydrogenase which fuels the TCA cycle is also Ca2+ dependent. Pyru-

vate dehydrogenase phosphatase activates the dehydrogenase by dephosphorylation.

The dephosphorylated pyruvate dehydrogenase feeds acetyl coenzyme A (acetyl-CoA)

to the cycle and isocitrate dehydrogenase and 𝛼-ketoglutarate dehydrogenase break

down metabolites of the cycle. During these reactions NAD+ is reduced to NADH.

NADH feeds complex I and thus enhances electron flow and ATP production. The

increased autofluorescence of NADPH after Ca2+ stimulation of the Ca2+-dependent

enzymes can be measured experimentally [106] [130] [146] [93].

Mitochondrial Ca2+ influx is driven by the electrochemical potential gradient for Ca2+.

If ΔΨ𝑚 is in the physiological range, mitochondrial influx and efflux mechanisms op-

erate uni-directionally to allow the recycling of Ca2+ across the inner mitochondrial
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membrane. This mechanism is controlled kinetically by the maximal Ca2+ uptake

rate through MCU (e.g. 5.5 nmol Ca2+ per min-1 and mg-1 in liver mitochondria).

The kinetic control allows Ca2+ distribution without disrupting ΔΨ𝑚 and 𝛿pH and

therefore without disturbing ATP synthesis. In detail, the ΔΨ𝑚 is maintained by the

following mechanism: If Ca2+ enters the mitochondrium via MCU the positive ion

charge depolarizes the ΔΨ𝑚. To equilibrate the ion charge of extra- and intramito-

chondrial space, Ca2+ effluxes by Na+-Ca2+ and Na+-H+ exchanger and H+ enters the

mitochondrium instead. The exchanger thereby transports Ca2+ out of the mitochon-

drium against its electrochemical potential gradient. Because the netto ion charge

inside the mitochondrium remains unaltered the ΔΨ𝑚 and 𝛿pH are not affected. If

the ΔΨ𝑚 collapses, the electrochemical potential does not drive Ca2+ influx anymore

which results into a lack of mitochondrial Ca2+ uptake [31] [89].

UCP2 has been shown to be involved in the mitochondrial uptake of intracellular

Ca2+ [140]. Deak et al. further investigated the role of UCP2 in mitochondrial Ca2+

uptake. Knockdown of UCP2 (UCP2KD) in HeLa cells stimulated with histamine

in Ca2+-free medium showed an impaired mitochondrial Ca2+ uptake. In contrast,

thapsigargin stimulated UCP2KD cells did not show an impaired mitochondrial Ca2+

uptake after restoration of Ca2+. These results indicate that a UCP2 knockdown im-

pairs mitochondrial uptake only if the Ca2+ originates from the cytosol or ER but not

after SOCE stimulation [22]. Large currents in mitochondrial mitoplast (mitochon-

dria without their outer membranes) have been investigated by Bondarenko et al. in

HeLa cells overexpressing UCP2 or UCP2 knockdown HeLa cells. SiRNA mediated

UCP2 knockdown reduced the open probability of the large mitoplast currents by

approximately 38%. Overexpression of UCP2 enhanced the current approximately

3-fold. However, it has to be taken into account that these results were obtained

in mitoplast and can therefore not directly extrapolated on intact cells [7]. It is

assumed that UCP2 indirectly mediates MCU activity because Sancak et al. demon-

strated the absence of a direct interaction between UCP2 and MCU in a proteomic

assay. They analyzed MCU-Flag expressing HEK293T cells containing heavy or light

amino acid isotopes during quantitative mass spectrometry. Mass spectrometry iden-
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tified five proteins to form a complex with MCU which were detected by protein

immunoblotting as EMRE, MICU1, MICU2 and MCU. The mitochondrial Ca2+ han-

dling proteins LETM1, NCLX,UCP2 and 3, MCUR1, and TRPC3 did not form a

complex with MCU [110].

1.4.4 Formation of reactive oxygen species (ROS) during res-

piration and autophagy

ROS is mainly generated in the cell by cytosolic enzymes such as NADPH oxidases or

cyclooxygenases and during oxidative phosphorylation. However, it is also assumed

that approximately 90% of the cellular ROS is related to mitochondrial activity. Be-

tween 0.15% and 2% of the cellular oxygen may be used to produce superoxide instead

of being reduced to H2O by complex IV. The premature utilization of oxygen can oc-

cur at complex I, II and III. ROS formed at complex I and II is released into the

matrix, ROS produced at complex III can be released to both the matrix and mi-

tochondrial inner membrane and could therefore act as a signaling molecule in the

cytosol [47]. The reactive superoxide can be formed because the oxygen molecule is

capable of accepting an additional electron. Superoxide can be converted by super-

oxide dismutase to hydrogen peroxide which reacts with NO and forms peroxynitrite.

Peroxynitrite can irreversibly damage proteins of the electron transport chain [20].

The antioxidant scavenging enzymes catalase, glutathione peroxidase and peroxire-

doxin catalyze the reaction of the toxic H2O2 to H2O [3]. Superoxide production can

occur for example if the supply of oxygen, ADP or FADH is not sufficient. As a

result the electron flow through the respiratory chain is disturbed and can reverse.

For example in complex I, nicotinamide adenine dinucleotide (NADH) is not oxidized

to NAD+ anymore but NAD+ is reduced to NADH. Consequently, NADH reduces

molecular oxygen to superoxide [127].

UCPs and ANTs limit the ROS production by lowering theΔΨ𝑚. The ANT exchanges

ATP against ADP across the inner mitochondrial membrane and therefore supplies

the ATP synthase constantly with ADP. H+ which enters the matrix does not couple
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directly to ATP synthesis and therefore reduces ΔΨ𝑚. Thus, activation of UCP

or ANT reduces ROS production by lowering the ΔΨ𝑚. If ROS accumulates, it

activates UCP or ANT which dissipate the proton gradient, decreases ΔΨ𝑚 and as a

consequence lowers ROS production. If the function of ANT is impaired, ANT can

contribute to apoptosis [63].

While moderate levels of ROS are essential for cell signaling, cell growth, prolifera-

tion and inflammatory responses, excessive ROS levels are associated with cell death

and autophagy [3] [47] [127]. Autophagy is a protective mechanism in response to

stress but excessive or insufficient autophagy can contribute to cell death. During

autophagy, moderate levels of ROS degrade misfolded proteins or defective organelles

clearing the cell from dysfunctional proteins and providing an alternative energy

source by self-digestion during starvation. By inducing autophagy the cell might pro-

long its own survival. If a cytosolic dysfunctional organelle is detected, it is engulfed

in the autophagosome, a double- or multimembrane vesicle. The autophagosome is

fused with lysosomes which degrade its content and recycle the amino and fatty acids

to generate ATP. Decreased cellular ATP levels can not only be enhanced by au-

tophagy but also by activation of the AMPK. The AMPK phosphorylates substrates

to limit anabolic pathways, that consume ATP and activates catabolic pathways to

generate substrates to support oxidative phosphorylation. AMPK is regulated by the

calmodulin-dependent protein kinase kinases (CaMKK) which is depending on cy-

tosolic Ca2+. High ATP levels inactivate the AMPK or accelerate ATP consumption

[12] [48].

The role of mitochondrial Ca2+ ([Ca2+]m)in the formation of ROS and induction of

autophagy and cell death has been investigated by several research groups. Excessive

Ca2+m is associated with increased ROS production. If ROS levels exceed the antiox-

idant capacity of the scavenging enzymes, ROS in turn might disrupt Ca2+ handling

pathways [20]. An overload of mitochondrial Ca2+ reduces the ΔΨ𝑚 and can result

into loss of the inner membrane impermeability. This allows molecules which can not

pass without a transporter under physiological conditions to enter the matrix and

induce apoptotic cell death. This phenomenon is called the ’opening of the mem-
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brane permeability transition pore (PTP)’ [57]. The effect of several MCU complex-

associated components on ROS production and induction of autophagy and cell death

has been explored. Rasmussen et al. investigated the effect of MCU overexpression

on ROS in an ischemia-reperfusion model. They perfused hearts isolated from cardiac

specific MCU overexpressing mice, loaded with the ΔΨ𝑚 indicator TMRE and the

cytosolic ROS indicator DCF ( 2’,7’-dichlorofluorescein) during an injury-reperfusion

model. 10, 20 and 30min after reperfusion, they did not observe a significant change in

TMRE but reduced DCF levels in the MCU overexpressing hearts. Furthermore, they

showed that reduced ROS levels resulted from reduced manganese sodium dismutase

levels [104]. Their result suggests that manganese sodium dismutase is upregulated

compensatory in MCU overexpressing hearts and reduced the superoxide levels that

only moderate levels were measurable.

The expression of the negative MCU regulator MICU1 has been reported to limit

superoxide production, to ensure the expression of antioxidant enzymes, to promote

proliferation and migration and to limit cell death. MICU1, MCU and MCUR1 are

tightly linked to each other in the MCU complex [49] [82] but proteomic analysis

demonstrated that MCUR1 can bind to MCU and EMRE independent of MICU1

[132]. Human cardiovascular derived endothelial cells have higher Ca2+mlevels and

increased basal superoxide levels after knockdown of the negative MCU regulator

MICU1. MICU1KD EA.hy926 cells (human endothelial cell line ATCCRCRL-2922Tm)

showed significantly elevated superoxide levels which were downregulated by the res-

cue of MICU1. Furthermore, the MCUI1 knockdown reduced the glutathione content

in MICU1KD EA.hy926 cells and reconstitution of MICU1 rescued the glutathione

levels. The proliferation rate was reduced in MICU1KD endothelial cells but rescued

after reconstitution with shRNA (short hairpin RNA)-insensitive MICU1 cDNA. The

human cardiovascular derived endothelial cells migrated less than control cells and

migration was rescued by stable expression of MICU1 [49]. Basal superoxide levels

were elevated in a MICU1KD endothelial cell line. Double knockdown of MCU and

MICU1 or rescue of MICU1 abrogated the elevation in superoxide levels. Thus it can

be concluded that the lack of MICU1 inhibiting MCU-mediated Ca2+ influx gives
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rise to superoxide production. Heterologous expression of mitochondrial manganese

superoxide dismutase and the cytosolic glutathione peroxidase in MICU1KD endothe-

lial cells decreased AMP/ATP ratio and elevated basal OCR. From this result it can

be concluded that chronically enhanced mitochondrial Ca2+ promotes the generation

of excessive ROS which inhibits the Ca2+-activated oxidative phosphorylation. LPS

and cyclohexamide induced cell death was enhanced in MICU1 KD endothelial cells,

and revoked by MICU1 rescue while overexpression of the mitochondrial manganese

superoxide dismutase and the cytosolic glutathione peroxidase protected MICU1KD

endothelial cells from cell death [82].

The soluble carrier SLC25A23 transports ATP-dependently Ca2+ into the matrix.

Hoffman et al. demonstrated that the direct interaction between SLC25A23 and

MCU is essential for MCU-mediated Ca2+ uptake. Knockdown of SLC25A23 in Hela

cells did not alter theΔΨ𝑚 and resulted into preserved ATP production. Interestingly,

SLC25A23 knockdown cells decreased basal superoxide levels indicated by MitoSox

red fluorescence. They were further protected from oxidative stress (applied via t-

butyl hydroperoxide) induced cell death which was demonstrated by annexinV and

propidium iodide staining. Rescue of SLC25A23 elevated MitoSox red levels and

cell death markers. T-butyl hydroperoxide mediated cell death requires Ca2+ [50]

and MCU expression protected from oxidative stress induced cell death. Liao et al.

demonstrated that short hairpin RNA-mediated down-regulation of MCU expression

in HeLa cells(shMCU HeLa cells) showed reduced H2O2 induced apoptosis after 24h

detected by FITC-labeled annexin-V staining during flow cytometry. Overexpression

of Flag-MCU (flag is a polypeptide protein tag used to label poorly immunogenic

proteins when protein specific antibodies are not available) in HeLa cells significantly

enhanced the H2O2 induced apoptosis rate [72].

Knockdown of the mitochondrial Ca2+-H+ exchanger LETM1 reduced ATP produc-

tion, basal OCR, complex IV activity and proliferation in HeLa cells, but NADPH lev-

els were not changed. These results indicate that reduced complex IV activity lowers

respiration and therefore basal OCR. As a result of the decreased OCR, ATP produc-

tion was decreased which was rescued by shRNA insensitive LETM1. The decreased
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proliferation in siRNA-mediated down-regulation of LETM1 expression (LETM1KD)

in HeLa cells was rescued by shRNA insensitive LETM1 as well. LETM1KD signifi-

cantly elevated superoxide production which was abrogated by the expression of the

mitochondrial-targeted manganese superoxide dismutase and glutathione peroxidase.

Overexpression of antioxidant superoxide dismutase and glutathione peroxidase fur-

ther restored complex IV activity and ATP levels. Disabled complex IV activity can

not retain partially reduced oxygen anymore. Consequently this oxygen contributes

to basal ROS production. Based on the low ATP levels Doonan et al. hypothesized

that the AMP/ATP ratio could be high which induces the phosphorylation of AMPK.

According to their expectation, they detected high phosphorylated AMPK levels in

LETM1KD HeLa cells which were rescued by reconstitution of LETM1.

Activation of AMPK results into autophagosome formation which can be monitored

by expression of the microtubule-associated protein light chain (LC)3 protein. LC3-I

and LC3-II were elevated in LETM1KD HeLa cells which showed a disrupted cell cycle

progression [30]. In summary, these results demonstrate that several components of

the MCU complex are involved in mitochondrial superoxide production and apopto-

sis. While knockdown of MCU and SLC25A23 has protective effects, knockdown of

LETM1 or MICU1 elevates oxidative stress.

1.5 Aims of my thesis

As outlined in the introduction, cytosolic Ca2+ elevated by receptor-operated (ROCE)

or store operated Ca2+ entry (SOCE) and buffered by mitochondrial Ca2+ uptake,

plays an essential role in physiological processes of lung cells. An abnormal high intra-

cellular Ca2+ concentration induces excessive contraction in precapillary pulmonary

arterial smooth muscle cells (PPASMC) inducing pulmonary arterial hypertension

(PAH), while Ca2+ overload in endothelial cells (MPMVEC) decreases vasculopro-

tective NO-production and increases vascular leakage and formation of lung edema.

Moreover mitochondrial Ca2+ uptake may affect energy production and life time of

these cells. Therefore, we believe that identification of signaling components in intra-
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cellular Ca2+ handling at the plasma membrane, in the cytosol, and in mitochondria

which can be targeted by drugs might be beneficial in future therapeutic approaches

of PAH and lung edema.

Three hypotheses need to be investigated:

1. STIM and Orai proteins are not the only molecular correlates of SOCE in

PPASMC and MPMVEC, because TRPC proteins which regulate ROCE are

also involved.

2. Deficiency of SOCE or ROCE in PPASMCs and MPMVECs protects from

vasoconstriction and lung edema formation.

3. Mitochondrial Ca2+ uptake by mitochondrial Ca2+ uniporter (MCU) complexes

affects cellular bioenergetics and dysfunction of lung cells.

Investigation of the first hypothesis requires creation of quintuple

TRPC1/3/6/STIM1/2- deficient mice by mating STIM1/2 floxed mice with

TRPC1/3/6-/- mice. A STIM1/2 deficiency is induced by infecting cells with Cre-

recombinase expressing lentiviruses or by mating the mice with tissue specific Cre

lines for smooth muscle (Myh11-Cre) or endothelial cells (Cdh5-Cre).

To verify the second hypothesis, we aim to establish store-operated and receptor-

operated Ca2+ channel deficient mouse strains and validate SOCE protocols for live

cell-imaging as well as for quantification of vasoconstriction and endothelial barrier

function. Assessment of cell migration and proliferation, morphological examination

by histology, immunofluorescence as well as gene and protein expression also need to

be analyzed..

The third hypothesis aimed to elucidate the effects of reduced mitochondrial Ca2+-

uptake on mitochondrial membrane potential, energy homeostasis, mitochondrial

stress, proliferation and autophagy. Characterization of mouse samples should involve

simultaneous live-cell measurement of mitochondrial Ca2+-uptake and mitochondrial

membrane potential in permeabilized cells, mitochondrial respiration rate, confocal

live-cell imaging and protein expression analysis.
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Chapter 2

Material

Product Manufacturer Product number
Acetylcholine chloride Sigma Aldrich, Deisenhofen, Germany A6625
Agarose Carl Roth, Karlsruhe, Germany 2267.4
Antibiotic-antimycotic solution Thermo Fisher Scientific, Pittsburgh, PA, US 15240-062
Antimycin A Sigma Aldrich, Milwaukee, US A8674
BCA (bicinchoninic acid)
Protein assay kit Pierce, Thermo Fi. Sci., Schwerte, Germany 23225
Bradford assay Thermo Fisher Scientific, Pittsburgh, PA, US 23200
BSA (bovine serum albumin) Sigma-Aldrich, Deisenhofen, Germany 9418
Ca2+-free HBSS PAA, Cölbe, Germany 15-009
(Hank’s Buffered Salt Solution)
Camco Quick StainR II Thermo Fisher Scientific, Pittsburgh, PA, US 04-330-1
Carbamoylcholine chloride Sigma Aldrich, Deisenhofen, Germany C4382
Carbonyl cyanide Sigma Aldrich, Milwaukee, US C2759
m-chorophenylhydrazone (CCCP)
Cell Trace CFSE Thermo Fisher Scientific, Pittsburgh, PA, US C34554
(carboxyfluorescein succinimidyl ester)
cell proliferation kit
CellTiter-Glo luminescent Promega Corporation, Madison, US G7570
assay kit
CGP-37157 (7-Chloro-5-(2-chlorophenyl) Sigma Aldrich, Milwaukee, US C8874 Sigma
-1,5-dihydro-4,1-benzothiazepin-2(3H)-one
Collagenase/dispase Sigma Aldrich, Deisenhofen, Germany 11097113001
Collagenase Sigma Aldrich, Deisenhofen, Germany C5138
Cyclopiazonic acid Sigma Aldrich, Deisenhofen, Germany C1530
Digitonin Sigma Aldrich, Milwaukee, US D141
Dil-Ac-LDL Harbor Bio products, Norwood, MA, US J65597
DMEM Thermo Fisher Scientific, Pittsburgh, PA, US HyClone
(Dulbecco’s Modified Eagle’s Medium) SH30022.01
Dynabeads protein G Thermo Fisher Scientific, Pittsburgh, PA, US 1004D
ECGS (endothelial cell Merck Millipore, Billerica, MA, US 02-102
growth supplement-heparin)
EconoTaq polymerase Lucigen, Middleton, US F93481-1
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EGTA (ethylene glycol-bis(𝛽-aminoethyl Sigma Aldrich, Milwaukee, US 34596
ether)-N,N,N’,N’-tetraacetic acid)
Eosin Thermo Fisher Scientific, Pittsburgh, PA, US s176
FCCP (carbonyl cyanide-4- Sigma Aldrich, Milwaukee, US C2920
(trifluoromethoxy)phenylhydrazone
Formaldehyde Sigma Aldrich, Deisenhofen, Germany 252549
Fe3O4 Sigma-Aldrich,Deisenhofen, Germany 310050
FITC (fluorescein isothiocyanate) Molecular Probes, Invitrogen 46945
dextran 70 kDa
Fluo-4Tm Thermo Fisher Scientific, Pittsburgh, PA, US F14201
Fura-2-AM Fluka, Sigma-Aldrich, Deisenhofen, Germany 47989
(acetoxymethyl-ester)
GenEluteTm Sigma Aldrich, Deisenhofen, Germany G1N70-1KT
Goat serum Bio-West, Nuaille, France S2000-100
Hematoxylin Thermo Fisher Scientific, Pittsburgh, PA, US s212A
Heparin Sigma Aldrich, Milwaukee, US H3393
Hoechst Sigma Aldrich, Deisenhofen, Germany 33342
InviTrapTm STRATEC Molecular GmbH, Berlin, Germany 1060100300
JC-1Tm Thermo Fisher Scientific, Pittsburgh, PA, US T3168
Krebs-Henseleit-Buffer Sigma Aldrich, Deisenhofen, Germany K3753
Low-melting-point agarose Sigma Aldrich, Deisenhofen, Germany A9045
MacConkey Agar BD Biosciences, Franklin Lakes, NJ, US BD 212123
Mammalian Genomic Sigma Aldrich, Deisenhofen, Germany G1N70-1KT
DNA Miniprepkit
MitoSOX RedTm Invitrogen, Eugene, OR, US M36008
Mounting media Dako, Hamburg, Germany 53023
Mygliol Caelo, Hilden, Germany 3274
Oligomycin Sigma Aldrich, Milwaukee, US 75351
Phosphate-buffered saline (PBS) Thermo Fisher Scientific, Pittsburgh, PA, US 10010056
PermountTm Thermo Fi.Sci, Schwerte, Germany SP15-100
Phalloidin-TRITC Sigma Aldrich, Deisenhofen, Germany P1951
(tetramethylrhodamine)
Phenylephrine Sigma Aldrich, Deisenhofen, Germany P1250000
PluronicR F-127 Thermo Fisher Scientific, Pittsburgh, PA, US P6867
Polyethylene glycol BioCat, Heidelberg, Germany LV825A
precipitation solution
Protease inhibitor Roche, Sigma Aldrich, Milwaukee, US 04693116001
RestoreTM Western Blot Thermo Fisher Scientific, Pittsburgh, PA, US 21059
Stripping Buffer
Reverse transcriptase Thermo Fi.Sci, Schwerte, Germany K1632
Rhod-2 AMTm Thermo Fisher Scientific, Pittsburgh, PA, US R1245MP
Rhodamin 123Tm Thermo Fisher Scientific, Pittsburgh, PA, US R302
RIPA buffer Merck Millipore, Billerica, MA, US 20-188
Rotenone Sigma Aldrich, Milwaukee, US R8875
Ru360 Santa Cruz Biotechnology Inc., Dallas, TX, US sc-222265
Smooth Muscle Cell PromoCell, Heidelberg, Germany C-22062
Growth Medium 2
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Sodium nitroprusside dihydrate Sigma Aldrich, Milwaukee, US 71778
Sodium pyruvate Sigma Aldrich, Milwaukee, US P2256
Spin Universal RNA MiniKit Stratec Molecular, Berlin, Germany 1060100300
Succinate Sigma Aldrich, Milwaukee, US 14160
Sulphinpyrazone Sigma Aldrich, Milwaukee, US S9509
SuperSignalTM West Femto Pierce,Thermo Fi.Sci, Schwerte, Germany 34096
Maximum Sensitivity Substrate
SuperSignalTM West Pico Pierce,Thermo Fi.Sci, Schwerte, Germany 34080
Chemiluminescent Substrate
SYBR Green I Pierce,Thermo Fi.Sci, Schwerte, Germany AB 1159B
Tamoxifen Sigma Aldrich, Deisenhofen, Germany T5648
Thapsigargin Calbiochem, Darmstadt, Germany 586005
TMRM (tetramethylrhodamine Thermo Fisher Scientific, Pittsburgh, PA, US T668
methyl ester)
Triton X-100 Carl Roth, Karlsruhe, Germany 3051.2 Carl Roth
Thrombin Calbiochem, Merck, Darmstadt, Germany 605157
XF Cell Mito Stress Test KitTm Seahorse Bioscience, North Billerica, MA, US 103015-100

Table 2.1: List of chemicals and reagents

Antibody specific for Product number Manufacturer Dilution
𝛼-Drp1 sc-32898 Santa Cruz Biotechnology Inc., Dallas, TX, US 1:500
𝛼-Mfn2 sc-100560 Santa Cruz Biotechnology Inc., Dallas, TX, US 1:500
𝛼-SMA A5228 Sigma Aldrich, Milwaukee, US 1:1000
𝛼-TOM20 sc11415 Santa Cruz Biotechnology Inc., Dallas, TX, US 1:1000
𝛽-actin sc-4778 Santa Cruz Biotechnology Inc., Dallas, TX, US 1:10000
AMPK 2532 Cell Signaling Technology, Beverly, MA,US 1:1000
anti-cycF ab110324 Abcam,Cambridge, MA, US 1:1000
anti-goat IgG-HRP sc-2056 Santa Cruz Biotechnology Inc., Dallas, TX, US 1:5000
anti-mouse IgG-HRP 7076S Cell Signaling Technology, Beverly, MA,US 1:5000
anti-mouse IgG-FITC F9006 Sigma Aldrich, Milwaukee, US 1:50
anti-rabbit FITC- A11008 Thermo Scientific 1:200
labelled antibody
anti-rabbit IgG-HRP 7074S Cell Signaling Technology, Beverly, MA,US 1:5000
CD-144 BD 55528 clone 11D4.1 BD biosciences, Heidelberg, Germany
(VE-Cadherin5)
eNOS 9572S Cell Signaling Technology, Beverly, MA,US 1:500
LC3 L8918 Sigma Aldrich, Milwaukee, US 1:5000
MCU custom-made antibody 1:500
MCUR1 ARP44777_P050 Aviva Systems Biology, San Diego, CA, US 1:1000
Mitocomplex ab110411 Abcam,Cambridge, MA, US 1:500
mTFA ab138351 Abcam,Cambridge, MA, US 1:5000
Orai1 sc-68895 Santa Cruz Biotechnology Inc., Dallas, TX, US 1:500
OXPHOS ab110413 Abcam,Cambridge, MA, US 1:250
p62 5114S Cell Signaling Technology, Beverly, MA,US 1:1000
PGCI-𝛼 ab54481 Abcam,Cambridge, MA, US 1:500
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phospho-AMPK 40H9 Cell Signaling Technology, Beverly, MA,US 1:1000
phospho-eNOS 9571 Cell Signaling Technology, Beverly, MA,US 1:500
(Ser1177)
STIM1 4917S Cell Signaling Technology, Beverly, MA,US 1:500
STIM1 sc-66173 Santa Cruz Biotechnology Inc., Dallas, TX, US 1:500
UCP2 sc-6525 Santa Cruz Biotechnology Inc., Dallas, TX, US 1:500
ZO-1 40220 Life Technologies, Darmstadt, Germany 1:100

Table 2.2: List of antibodies

Buffer Composition
PBS 1.06mM KH2PO4, 1.55NaCl

2.97mM Na2HPO4-7H2O)
ECM 121 mM NaCl, 5 mM NaHCO3, 10 mM Na-HEPES, 4.7 mM KCl
(extracellular 1.2 mM KH2PO4, 1.2 mM MgSO4
medium) 2 mM CaCl2, 10 mM glucose, and 2.0% BSA
Running buffer 250mM tris base, 1,920M glycin, 35mM SDS
Transfer buffer 250mM tris base, 1,920M glycin, 7mM SDS

Table 2.3: List of buffers
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Chapter 3

Methods

3.1 Breeding and genotyping of gene deficient mice

The heterozygous STIM1+/- Orai1+/- were provided by Dr. Attila Braun, Rudolf-

Virchow- Center Würzburg, Germany. Mutated embryonic stem (ES) cell lines origi-

nally established by BayGenomics using the gene-trap technology [126] were used to

generate heterozygous mice for STIM1 [137] (MGI Symbol: STIM1Gt(RRS558)Byg) and

Orai1 [138] (MGI Symbol: Orai1Gt(XL922)Byg). A double STIM1+/- Orai1+/- mouse

line was established by breeding both strains in our animal facility. We needed to

design new specific primers to genotype the offspring. The forward primers bind to

the sequence of intron 7 (STIM1) or intron 1 (Orai1) and the reverse primers to the

beta-geo cassette (see figure 3.1 and table 3.1). Details of the used PCR program and

expected PCR products are summarized in (see table 3.2).
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Primer
STIM1 Wt 5’-GTC ATA GCC TGT AAA CTA GA-3’

5’-GTA GCT GCA GGT AGC ACT AG-3’

STIM1+/- 5’-TGT ATG CTT GGG CTA CAG GTG-3’
5’-TGT GCT GCA AGG CGA TTA AG-3’

Orai1 Wt 5’-CTC TTG AGA GGT AAG AAC TT-3’
5’-GAT CCC TAG GAC CCA TGT GG-3

Orai1+/- 5’-TTG AGC GAG CCG TTC ACT TT-3
5’-AGG GGT CTT GGG TTA GAG GG-3

Table 3.1: Primer for genotyping of STIM1+/- Orai1+/- mice

STIM1 Wt STIM1+/- Orai1 Wt Orai1+/-

5 min 96∘C 5 min 96∘C 3 min 96∘C 5 min 96∘C
45 cycles of: 45 cycles of: 45 cycles of: 45 cycles of:
(1 min 94∘C (1 min 94∘C (1 min 94∘C (1 min 94∘C
1 min 51.5∘C 1 min 60.0∘C 1 min 51.5∘C 1 min 53.0∘C
1 min 72∘C ) 1 min 72∘C) 1 min 72∘C) 1 min 72∘C)
5 min 72∘C 10 min 72∘C 5 min 72∘C 10 min 72∘C
store at 14∘C store at 14∘C store at 14∘C store at 14∘C

Expected fragments 750 bp 500 bp 900 bp 250 bp

Table 3.2: Wt and STIM1+/-Orai1+/- PCR program

The LoxP/Cre technology was used for a tissue-specific deletion of STIM1 and STIM2

genes in smooth muscle cells. STIM1 and STIM2 floxed mice were provided by Dr.

Stefan Feske , New York University, US (see figure 3.2) [92] and the Myh11-Cre/ERT2

line was purchased by Jackson Laboratory (B6.FVB-Tg(Myh11-Cre/ERT2)1Soff/J;

#019079) [147].

In the Myh11-Cre/ERT2 mice, the Cre-recombinase is expressed under the control

of the smooth muscle cell specific promotor of the myosin heavy chain 11 (Myh11)

gene. Therefore, the Cre-recombinase only deletes the STIM1/2 exons in smooth

muscle cells. In the used Cre line however the Cre recombinase is fused to the estro-

gen receptor 2 (ERT2) which is only activated by tamoxifen injected in the mouse

model. The mutated ligand binding domain of ERT2 prevents binding of its natu-

ral ligand estradiol. Cre-ERT2 is bound to the heatshock protein 90 which inhibits
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Figure 3.1: Gene trapping method to generate heterozygote STIM1+/-

Orai1+/- C57BL/6 mice. A trap vector is randomly integrated in transcriptional
active genes of ES cells [126]. The ES cell line carrying the gene trap cassette in the
gene of interest can be selected from the database of the International Gene Trap
Consortium.The trap vector consists of the splice acceptor site (SA), a selection con-
struct (e.g. 𝛽-geo) and a polyadenylation tail (pA). The endogenous transcription
continues at the splice acceptor site but is interrupted by the polyadenylation signal
and results in a truncated mRNA. Primers binding to the trap cassette were used for
sequencing the mRNA product in 3’ to 5’ direction to identify the trapped gene. To
generate gene deficient mice which only produce truncated mRNAs and proteins from
the gene of interest, a fusion protein containing LacZ is produced instead to detect
transcriptional active tissues of the gene of interest in the corresponding gene trap
mouse model [40].

Figure 3.2: Generation of STIM1/2 floxed mice [92]. Exon2 of the STIM1 gene
and exon3 of the STIM2 gene were replaced by the neomycin resistance gene flanked
by loxP and Frt recombination sites. Exon2 codes for the EF hand motif of the
STIM1 gene and exon3 codes for sequences c-terminal to the EF-hand of the STIM2
gene. The modified embryonic stem cells were injected into blastocyts to generate
chimeric mice. Mating of the STIM1neo/+ or STIM2neo/+ mice with the ‘Flp deleter’
transgenic mice removed the neomycin cassette but not the loxP site [92]. The exon2
or exon3 flanked by the loxP sites are deleted after mating the mouse model with
a line expressing Cre recombinase under the control of a promoter from a protein
(myosin heavy chain 11) specifically expressed in smooth muscle cells.
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the Cre-recombinase activity. Upon tamoxifen application, the heatshock protein is

dissociated and the Cre-recombinase is activated. The Cre-recombinase removes the

floxed DNA segments resulting in STIM1/2 gene deficient ‘knock-out’ only in smooth

muscle cells (see figure 3.3). A STIM1/2 mediated interaction with store-operated

Ca2+ channels (e.g. Orai) is not possible anymore.

Figure 3.3: Inducible smooth muscle cell specific knockout using tamoxifen.
The Cre-recombinase is expressed under the control of the Mhy11 promotor only in
smooth muscle cells. Upon tamoxifen application, the Cre-recombinase is activated
and deletes the floxed STIM1/2 exon. See text for a more detailed description

The transgene coding for Cre/ERT2 sequence under the control of the Myh11 pro-

moter is inserted in the Y chromosome (B6.FVB-Tg(Myh11-Cre/ERT2)1Soff/J; #019079)

[147]. Therefore only males express Cre/ERT2 fusion protein in their smooth muscle

cells and can be used for tamoxifen induced recombination. Male Myh11-Cre/ERT2

STIM1/2 flox mice were injected intraperitoneal with corn oil only (controls) or with

tamoxifen dissolved in corn oil (100µl, 20 mg/ml tamoxifen) every second day three

times. As additional controls, wildtype mice were injected with tamoxifen. After a

period of 14 days, PPASMC were isolated from all mice. PCRs from the genomic

DNA and reverse transcribed cDNA from the isolated mRNA (see figure 3.2) of dif-

ferent smooth muscle tissues and PPASMCs was performed to identify a successful

deletion of STIM1/2 exons (see table 3.3 and 3.4). Animal experiments with these

mice were approved by the federal government of Oberbayern and implemented at

the Walther-Straub-Institute for Pharmacology and Toxicology, Munich, Germany.
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Primer
STIM1 Wt 5’-CGA TGG TCT CAC GGT CTC TAG TTT-3’
STIM1 AS 5’-GGC TCT GCT GAC CTG GAA CTA TAG TG-3’
STIM1 KO 5’-AAC GTC TTG CAG TTG CTG TAG GC-3’
STIM2 Wt 5’-CAT CAG AAG GTA AAA CTG TGC AGT GCT C-3’
STIM2 AS 5’-GGA TGT CCT GGA CTC ACT CTG TAG ACC A-3’
STIM2 KO 5’-GCT GAA CTG TGT GCT TGA CTG TAG C-3’

Table 3.3: Primer for genotyping of STIM1 flox and STIM2 flox mice

STIM1 flox STIM1 KO STIM2 flox STIM2 KO
2 min 96∘C 2 min 96∘C 2 min 96∘C 2 min 96∘C
30 cycles of: 30 cycles of: 30 cycles of: 30 cycles of:
( 20sec 96∘C ( 20sec 96∘C (20 sec 97∘C (20 sec 97∘C
30 sec 60∘C 30 sec 60∘C 30 sec 61∘C 30 sec 68∘C
25 sec 72∘C) 25 sec 72∘C) 25 sec 72∘C) 40 sec 72∘C)
5 min 72∘C 5 min 72∘C 5 min 72∘C 5 min 72∘C
store at 14∘C store at 14∘C store at 14∘C store at 14∘C

Expected 399 bp STIM1 flox 580 bp 335 bp STIM2 flox 683 bp
fragments 348 bp Wt STIM1 KO 262 bp Wt STIM2 KO

Table 3.4: Wt and STIM1 flox and KO and STIM2 flox and KO PCR
program

STIM1/2ΔEC, Orai1ΔEC, MCUΔEC [76] and MCUR1ΔEC [132] mice were gener-

ated by breeding the respective flox/flox mice with B6.Cg-Tg(Cdh5- Cre)7Mlia/J;(VE-

Cre) mice (stock 006137, The Jackson Laboratory) which express a constitutively

active Cre-recombinase under the control of the cadherin 5 (Cdh5) promoter only in

endothelial cells. STIM1/2ΔEC, Orai1ΔEC, MCUΔEC and MCUR1ΔEC knockout

mice did neither show any developmental defects nor any changed behavior to wild-

type mice was observed. The presence of the floxed gene sequence was confirmed by

genotyping from ear clips. The endothelial specific knockout was confirmed by mRNA

and protein detection in freshly isolated MPMVEC from lungs. Animal experiments

with these mice were approved by Temple University’s IACUC, followed AAALAC

guidelines and implemented at Temple University, Philadelphia, US.
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3.2 RNA isolation and analysis by quantitative

reverse transcription (RT)-PCR

RNA was isolated using the InviTrapTmSpin Universal RNA MiniKit (1060100300,

Stratec) according to the manufacturer’s instruction. In brief, tissue or cells were

lysed. The lysate was first passed through a column to remove genomic DNA and

through a second column which binds RNA. After washing, the purified total RNA

was eluted and stored at -80 ∘C for further analysis.

Single-stranded RNA was transcribed into complementary DNA (cDNA) by the re-

verse transcriptase (K1632, ThermoScientific) in a Thermocycler (Peqstar 96 Univer-

sal Gradient, Peqlab). The resulting cDNA was used for quantitative (reverse tran-

scription) polymerase chain reaction (PCR). During quantitative PCR, the cDNA is

amplified using specific primers (see table 3.5). SYBR Green I (AB 1159B, Thermo-

Scientific) binds double stranded DNA during amplification resulting in an emission

of light of 521 nm after excitation at 494 nm. The signal is proportional to the cDNA

content and therefore potentiates after each cycle. The relative expression of the ’gene

of interest’ is expressed in ratio to a ’housekeeping gene’, such as 𝛽-actin.

Primer
STIM1 forward 5’-AAG CTT ATC AGC GTG GAG GA-3’
STIM1 reverse 5’-CCT CAT CCA CAG TCC AGT TGT-3’
STIM2 forward 5’-GAG GGC GCA GAG TGT GAG-3’
STIM2 reverse 5’-TTT AGA GCC ATG CGG ACCT-3

Table 3.5: Quantitative, reverse, transcription (RT)-PCR primer

3.3 DNA extraction and purification

Genomic DNA was isolated from tail clips, intestine, aorta or PPASMCs using the

GenEluteTm Mammalian Genomic DNA Miniprepkit (G1N70-1KT, Sigma Aldrich)

according to the manufacturer’s instruction. In brief, tissue or cells were lysed with

proteinase K and purified on a anion exchange column. PCR products were ampli-
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Primer
STIM1 Cre forward 5’-ACG ATG CCA ATG GTG ATG TG-3’
STIM1 Cre reverse 5’-TCT GAT GAC TTC CAC GCC TT-3’
STIM2 Cre forward 5’-AGT CAC CTG CAC AGA GAA GA-3’
STIM2 Cre reverse 5’-GGA GTG TTG TTC CCT TCA CA-3

Table 3.6: Quantitative, reverse, transcription (RT)-PCR primer in tissue
specific gene deficient mice To detect deleted mRNA transcripts in tissue specific
gene deficient mice primer were used which anneal to the deleted exon sequences
(exon 2 for STIM1 and exon 3 for STIM2).

fied from purified genomic DNA by EconoTaq polymerase (Lucigen, F93481-1) using

specific primers (see table 3.3 and 3.4. The resulting DNA fragments were separated

by gel electrophoresis and visualized under UV-light using ethidiumbromide.

3.4 Production of lentiviruses

The production of recombinant lentiviruses which are derived from the human im-

munodeficiency virus (HIV-1) requires additional lab biosafety procedures and was

done in the S2 tissue culture lab of the Walther-Straub-Institute. Lentiviral vectors

can deliver, integrate and control the expression of transgenes in dividing cells.

Three vectors were transfected by calcium phosphate transfection into HEK293T

cells to produce lentiviruses: the lentiviral coding plasmid (pLM-CMV-R-Cre, plas-

mid #27546 from addgene), the packaging plasmid (psPAX2, plasmid #27546 from

addgene) and a plasmid coding for the envelope protein (PMD2.G, plasmid #12259

from addgene) (see figure 3.5). After transfection, they recombine, integrate and the

cellular machinery produces recombinant virus particles which are released into the

cell supernatant. When the virus from this supernatant infects STIM1/2 floxed cells,

the viral RNA is reverse-transcribed into DNA, enters the nucleus and is stably inte-

grated into the chromosomal DNA of the target cell (see figure 3.4). We used a second

generation lentivirus system, which is designed in a way that it is less probable that

replication competent viruses are formed from the lentiviral infected cells. This is

achieved by separate expression of the transfer, envelope and packaging components
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Figure 3.4: Production of recombinant lentiviruses and cell infection. Re-
combinant lentiviruses are produced in HEK 293T cells transfected with three plas-
mids expressing essential lentiviral genes. The produced recombinant lentiviruses can
be used to infect target cells, where they are stably integrated in the host genome
(modified from [2]).

Figure 3.5: Map of plasmids used for lentivirus production. For more details
see text [2]
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on different vectors. The lentiviral transfer vector contains the Cre-recombinase gene

sequence that is incorporated into the host genome. Therefore, it stably induces the

expression of the Cre-recombinase but it does not express envelope proteins and genes

required for packaging which are essential to produce replication competent virus par-

ticles. To obtain a 1 to 2 log higher viral titer we concentrated the lentivirus with

a polyethylene glycol precipitation solution (product number #LV825A from Bio-

Cat). PPASMCs were infected at 70-80% confluence with naked or mCherry-tagged

lentivirus which produced a red fluorescence in infected cells (plasmid #27546 from

addgene) or control lentivirus (G5A, eGFP-5-Aequorin). After 7days, the recombina-

tion efficiency was checked by PCR or detection of fluorescent cells [2]. Our protocol

was adapted from the lentivirus production protocol of the Tronolab [135] [2].

3.5 Isolation of cells and cell culture

3.5.1 Precapillary pulmonary arterial smooth muscle cells

(PPASMC)

Mouse precapillary PPASMC were isolated from small pulmonary arterial vessels

(30µm to 150µm in diameter). In detail, the lung of a heparinized (500U) and euth-

anized (125mg/ml xylazine and 100mg/ml ketamine) mouse was flushed with PBS

and instilled with 0.5% low-melting-point agarose (A9045, Sigma-Aldrich) containing

0.5% Fe3O4 particles (310050, Sigma-Aldrich) via a catheter in the right ventricle.

The lungs were removed, chopped and digested with 0.1mg/ml collagenase (C5138,

Sigma Aldrich) at 37 ∘C for 1 hour. Afterwards, the digestion was stopped, the so-

lution was sheared with a 18G (4665120, Sterican, Braun) needle and placed into a

magnetic holder. As a result, only the iron particles which are stuck in the precapil-

lary arterial vessels are drawn to the magnet and are separated from other cell types

released during digestion. The vessels were plated on coverslips in Smooth Muscle

Cell Growth Medium 2 (C-22062, PromoCell) and cells were grown for 5 or 6 days

before passaging and staining with 𝛼-smooth muscle actin antibody (A5228 Sigma
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Aldrich) to identify them as smooth muscle cells according to the method described

in [143].

3.5.2 Tracheal smooth muscle cells (TSMC)

The trachea of a heparinized (500U) and euthanized (125mg/ml xylazine and 100mg/ml

ketamine) mouse was dissected and cleaned mechanically from surrounding tissue and

endothelium. It was cut into small pieces, grown in Smooth Muscle Cell Growth

Medium 2 (C-22062, PromoCell) and grown for 5 or 6 days before passaging.

3.5.3 Murine pulmonary microvascular endothelial cells

(MPMVEC)

Primary murine MPMVECs were isolated from lungs of four mice. Briefly, freshly

harvested mouse lungs were digested with 1mg/ml collagenase/dispase (11097113001

Roche) and incubated with CD-144 (VE-Cadherin5 BD 55528 clone 11D4.1 BD bio-

sciences) antibody labeled magnetic dynabeads (1004D protein G Thermo Scientific).

Endothelial cells which adhered to the beads were washed and plated in MPMVEC

media. MPMVECs were cultured in DMEM (HyClone SH30022.01 Thermo Fisher

Scientific), containing 4.5 g/ml glucose, 4mM glutamine, 10% FBS, 1% antibiotic-

antimycotic solution (15240-062 Thermo Fisher Scientific), 11 µg/ml ECGS (02-102

Merck Millipore ) and 17U/ml heparin (H3393 Sigma-Aldrich). MPMVECs were

always plated at a minimum of 60% confluency on 0.2% gelatine coated flasks, split

once or twice a week and used between passage 2 and 8.

To identify MPMVECs, Dil-Ac-LDL (10 µg/ml) was added to the growth media for

4h at 37 ∘C. After washing cells with PBS several times, fluorescence was visualized

using a rhodamine excitation/emission filter.

3.5.4 Murine lung fibroblasts (MLF)

Cells which were not bound to the dynabeads during isolation of MPMVEC were

plated separately and grown as murine lung fibroblasts (MLF). MLF contain the
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loxP sites but not the Cre-recombinase which is under the promotor of VE-Cadherin

and is only expressed in endothelial cells. Therefore, excision of the floxed exons was

achieved by infection with house-made adenoviruses constitutively expressing the Cre

recombinase (50-100MOI, different batches: 1x108 IFU/ml or 3.1x1010 IFU/ml or

1.27x109 IFU/ml) for 10days. Downregulation of STIM1/2 and Orai1 was confirmed

by quantitative RT-PCR and Western Blot.

3.6 Protein analysis by Western Blotting

Western blots have been run in our lab in Munich according to the following method:

In brief, proteins were lysed with 1x RIPA buffer (10x RIPA buffer: 1% Igepal CA

630, 0,5% Na-deoxycholat, 0,1% SDS in 1 X PBS) and the concentration of the lysate

was measured with a BCA Protein assay kit (23225, Pierce). 4x Laemmli buffer was

added to the lysate and boiled at 95 ∘C to break the disulfide bonds and tertiary

structure of the protein. Equal amounts of proteins were loaded on an acrylamide

gel and run at constant 20mA. After protein separation, proteins were transferred

to a polyvinylidene difluoride membrane. The transfer was confirmed by Ponceau S

which binds proteins unspecifically. Membranes were blocked with 5% milk powder in

PBST, incubated with primary, HRP-conjugated secondary antibodies and developed

with the SuperSignalTM West Femto Maximum Sensitivity Substrate (34096, Thermo

Scientific) or SuperSignalTM West Pico Chemiluminescent Substrate (34080, Thermo

Scientific) using the Chemismart analyzer.

Western blots have been run in the lab of Madesh Muniswamy in Philadelphia ac-

cording to the following method:

Cells were lysed in 1x RIPA buffer (20-188 Millipore) and 1x protease inhibitor

(04693116001 Complete, Roche). Equal amounts of protein were loaded per lane

and separated on a 4 to 12% bis-tris polyacrylamide gel, transferred to a polyvinyli-

dene difluoride membrane, blocked and probed with primary antibodies (see table

2.2). Secondary antibodies used were: anti-rabbit (7074S Cell signaling 1:5000), anti-

goat (sc-2056 Santa Cruz Biotechnology Inc., 1:5000) and anti-mouse (7076S, Cell
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signaling, 1:5000) conjugated to horse radish peroxidase. Western blots were devel-

oped using either SuperSignalTM West Femto Maximum Sensitivity Substrate (34096,

Thermo Scientific) or SuperSignalTM West Pico Chemiluminescent Substrate (34080,

Thermo Scientific). If membranes were reprobed with antibody, they were stripped

with RestoreTM Western Blot Stripping Buffer (21059, Thermo Scientific).

3.7 Analysis of bronchial reactivity

3.7.1 Myograph

The primary bronchus, trachea and thoracic aorta were dissected from STIM1+/-

Orai1+/-, STIM1/2ΔEC or Orai1ΔEC mice, cleaned from connective tissue, cut in rings

and mounted in a myograph (610M, DMT) containing physiological (37 ∘C warm

Krebs-Henseleit-Buffer (K3753, Sigma Aldrich) perfused with carbogen gas (95% O2

/5% CO2) (see figure 3.6.) Tissue was pre-streched to 4.5mN for aortic rings and to

2.5mN for tracheal rings from primary bronchi and equilibrated 1h while the buffer

was changed every 20min. 120mM KCl was added which induces a membrane de-

polarisation and activates voltage-dependent calcium channels. Tissue which did not

respond to KCl treatment was classified as non-functional and not used for further

analysis.

Aortas of STIM1/2ΔEC or Orai1ΔEC mice mice were treated with 1 µM phenylephrine

(PE). Phenylephrine, an 𝛼1-adrenoceptor agonist, activates Gq-coupled receptors and

phospholipase C producing DAG which activates TRPC3/6/7 channels. Membrane

depolarisation, activation of voltage-gated calcium channels and influx of extracellu-

lar calcium, subsequently contracted aortic rings. At the steady maximal contraction,

cumulative concentrations of acetylcholine (ACh, 0.01 µM-30 µM) and finally sodium

nitroprusside (SNP, 3 µM) were added. Cumulative concentrations of ACh induced

endothelium-dependent relaxation, SNP induces an endothelium-independent relax-

ation. The relaxation was normalized to the PE contraction of the same aorta.

The primary bronchus of STIM1+/- Orai1+/- mice was dissected and mounted. After
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confirming the vitality of the tracheal rings from primary bronchi, they were incu-

bated with Ca2+-free Krebs-Henseleit-Buffer. To deplete intracellular stores, tracheal

rings were stimulated with cumulative concentrations of the muscarinic acetylcholine

receptor agonist, carbachol (CCH, 500nM, 1 µM, 10 µM) before 2mM Ca2+ was re-

stored. Restoration of Ca2+ resulted into a contraction of the tracheal rings. After

washing and reaching baseline contraction levels, this protocol was repeated at least

five times with the same tracheal rings. The contraction response was normalized to

the first contraction of the same ring.

Figure 3.6: Measurement of contraction and dilatation with a myograph.
Rings from blood vessels, trachea or bronchi are mounted in an organ bath of a
myograph (610M, DMT) and stimulated by different pharmacological agonists. The
resulting contraction or dilatation was recorded.

3.7.2 Precision cut lung slices (PCLS)

The lung of an euthanized mouse was filled with low-melting point agarose. After the

agarose had solidified the lung was cut into 200µM thick slices using a vibratome.

Slices were cultivated in a cell culture incubator for several days. Their vitality was

confirmed by their ciliary movement and intact bronchial smooth muscle layer under

a microscope. Intact PCLS were mounted in an imaging chamber and hold in position

with a metal ring. Additive concentrations of carbachol (500nM-2,3mM, over a period

of 40min) were applied to the PCLS. Images were taken as a time lapse series using

the bright field mode of a Zeiss LSM710 META microscope.
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3.8 Scratch assay

MPMVECs were seeded at equal density in 6-well plates to form a confluent mono-

layer. A 1.8mm scratch was cut per well using a sterile 200µl tip. The wells were

washed with PBS and filled with DMEM, containing 2% FBS. Immediately after the

scratch, after 24h and after 48h, cells were fixed with CAMCO Quick StainR II and

bright field images were taken with a 4x objective at multiple locations. Migration

was quantified using the Image J software (NIH) and results are expressed as percent

gap closure.

3.9 Proliferation assay

MPMVECs were stained with 5-(and-6)-carboxyfluorescein diacetate succinimidyl es-

ter (CFSE) using a Cell Trace CFSE cell proliferation kit (C34554; Invitrogen). Cells

were labeled with 5 µM CFSE for 15min at 37 ∘C and 5% CO2 and plated on T75

flasks for 72h. These cells were used as ’proliferated cells’ after 72hs. ’Nonprolifer-

ated cells’ were stained in the same way but used directly for the experiment without

plating and growing for 72hs. 15’000 events/sample were assessed using standard

gating procedures with a BD FACSCaliburTm. Relative fluorescence intensities were

analyzed using FlowJo software.

3.10 Analysis of vascular permeability and edema

formation

3.10.1 Immunohistochemistry and phalloidin staining

Cells were fixed with 3.7% formaldehyde (252549 Sigma-Aldrich), permeabilized and

blocked with 0,3% Triton X-100 (3051.2 Carl Roth) and 5% goat serum (S2000-100

Bio-West). Primary antibody was diluted (in 1% BSA in PBS and 0,3% Triton X-100)

and incubated overnight at 4 ∘C. After washing (PBS 0.1% BSA, 9418 Sigma-Aldrich),
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the secondary antibody was incubated at room temperature, in the dark, for 2 hours.

Hoechst (33342 Sigma-Aldrich 1:5000 in PBS) was used to stain the nuclei. The

coverslips were mounted on microscope slides using Dako Mounting media (53023,

Dako Hamburg) and transparent nail polish.

To induce stress fiber formation, MPMVECs were stimulated with 5nM thrombin

(605157, Calbiochem, Merck, Darmstadt) for 5min. After permeabilization and fix-

ation, cells were stained with phalloidin-TRITC (tetramethylrhodamine) (50 µg/ml,

P1951 Sigma-Aldrich) in the dark, for 40min. Phalloidin stabilizes the F-actin fila-

ments of the cytoskeleton which can be visualized under a fluorescence microscope.

3.10.2 Adenoviral Nuclear Factor of Activated T cells

(NFATc3) translocation assay

On glass cover slip grownMPMVECs were infected with adenovirus expressing NFATc3-

GFP (100 MOI) for 36 hours, treated with LPS (1 µg/ml) and imaged after additional

16h with 488-nm excitation using a 40x oil objective (Zeiss LSM510 META). Im-

ages were analyzed and quantified using ZEN2 2010 software. Cells with nuclear

NFATc3-GFP were manually counted and quantified as percentage of cells with nu-

clear translocation.

3.10.3 Infection of mice with Klebsiella pneumoniae

Klebsiella pneumoniae was isolated from the lung of a mouse which had been in-

fected with the bacteria. The lung homogenate was plated on MacConkey Agar (BD

212123 BD Biosciences) and a single colony picked to grow bacteria which were used

to infect other mice. When the bacterial culture reached an OD600 of 0.8, 100µl

of the bacterial culture was pelleted, diluted with PBS 1:10 and solubilized in 50 µl

PBS. Mice were anesthetized with AvertinTm (tribromoethanol/2-methyl-2-butanol)

and instilled intranasally with 8x106 colony forming units (CFU) Klebsiella pneumo-

niae (OD600=0.8). After 20h, broncho-alveolar lavage was collected and mice were

either injected with FITC (fluorescein isothiocyanate) dextran (70 kDa, 5% in saline;
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Molecular Probes, Invitrogen) or lungs were fixed in formalin (see figure 2.10.5).

3.10.4 FITC-dextran vascular leakage

Mice were anesthetized with AvertinTm (tribromoethanol/2-methyl-2-butanol), in-

jected intraocularly with FITC-dextran (70 kDa, 5% w/v in saline; Molecular Probes,

Invitrogen) and allowed to rest for 10min. After euthanasia, 0.5ml PBS (+ 0.5%EDTA)

was instilled into the lung via a tracheal catheter, retrieved and frozen at −80 ∘C for

further analysis. The lung was filled completely with PBS via the trachea, the trachea

was tied with a cotton threat and the lung mounted in an imaging chamber. Images

were collected at different regions of the lung using a 20x water immersion objec-

tive with Zeiss 710 META NLO 2-photon microscope equipped with a Chameleon

CoherentTm IR laser. The alveolar area and the background fluorescence of the alve-

olar space which was defined as vascular leakage was quantified using the ZENTm

(Zeiss) program. Broncho alveolar lavage (BAL) fluid was used to quantify FITC-

dextran leakage by excitation at 488nm with a Tecan plate reader (InfiniteR 200Pro.

Protein content was measured using a commercially available Bradford assay (23200,

Thermo Scientific).

3.11 Measurement of cytosolic and mitochondrial Ca2+

and the mitochondrial membrane potential (ΔΨ𝑚)

To investigate the store-operated Ca2+ entry (SOCE) in living cells, PPASMCs were

analyzed in Alexander Dietrich’s lab and MLFs in Madesh Muniswamy’s lab.

PPASMC were grown on glass coverslips and loaded with 2 µM fura-2-acetoxymethyl

ester (47989, Sigma Aldrich) in Hepes Ringer solution (140 mM NaCl, 5mM KCl,

1mM MgCl2, 10mM hepes, 5mM glucose, 2mM CaCl2) at room temperature for

30min. Coverslips were mounted in Ca2+-free HBSS (15-009, PAA, 5.33mM KCl,

0.44mM KH2PO4, 4.17mM NaHCO3, 137.93mM NaCl, 0.34mM Na2HPO4, 5.56mM

D-Glucose) supplemented with 0.005% EGTA in an imaging chamber. After base-
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line recording, PPASMCs were stimulated with the SERCA inhibitor thapsigargin

(586005, Calbiochem) or cyclopiazonic acid (CPA) (C1530, Sigma Aldrich). Either

2 µM thapsigargin or 10 µM CPA was used to empty the ER from Ca2+. After the

ER Ca2+ was released, CaCl2 solution was added to reach a final extracellular Ca2+

concentration of 2mM to induce SOCE. The emitted fluorescence after excitation

at 340 and 380 nm was recorded with a 14-bit EMCCD camera (iXON3 885, Andor,

Belfast, UK) of a monochromator-equipped (Polychrome V, TILL-Photonics, Martin-

sried, Germany) inverted microscope (Olympus IX 71 with an UPlanSApo 20x/0.85

oil immersion objective). Intracellular Fura-2 AM bound to Ca2+ emits maximal

fluorescence at an excitation wavelength of 340 nm, while Fura-2 AM without Ca2+

has its emission maximum at an excitation wavelength of 380nm. Accordingly, the

ratio 340nm/380nm determines the intracellular Ca2+ concentration independent of

variabilities in dye loading.

To investigate the mitochondrial function of MLFs and MPMVECs, cells were grown

on glass cover slips and loaded with the mitochondrial calcium indicator 2 µM Rhod-

2 AM for 50min and the cytosolic calcium indicator 5 µM Fluo-4 AM for 30min in

extracellular medium (ECM), pH 7.4, in the presence of 100µM sulphinpyrazone

(Sigma Aldrich) and 0.003% pluronic acid (Thermo Fisher Scientific) which improved

the dye loading. Coverslips were mounted on a stage of a Zeiss LSM510 META

microscope. After 1 min of baseline recording, 1 µM ionomycin was added and Ca2+

influx in the cytosol and the mitochondria was quantified.

Alternatively, cells were loaded with 100nM tetramethyl rhodamine methyl ester

(TMRM), a ΔΨ𝑚 indicator, and 2.5 µM Dihydrorhodamine 123, an mitochondrial

dye labeling active mitochondria, in ECM at 37 ∘C for 30 min. Mitochondrial super-

oxide production was quantified using MitoSOX Red (Invitrogen; 10 µM) for 40 min

in ECM at 37 ∘C and 5% CO2.

After dye loading cells were washed with mounting ECM containing 0.25% BSA and

sulfinpyrazole, mounted in an open perfusion microincubator (PDMI-2; Harvard Ap-

paratus) at 37 ∘C and imaged. Rhod-2 AM, TMRM and MitoSox Red were visualized

at an excitation wavelength of 561nm, Fluo-4 AM at 488-nm every 3 seconds. TMRM
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and Rhodamin1/2/3 were visualized using a a 63x oil objective, Rhod-2 AM, TMRM,

MitoSox Red and Fluo-4 AM using a 40x oil objective of a confocal microscope (Zeiss

LSM510 META, Inc.). Images were analyzed using ZEN2 2010 software (Zeiss).

3.12 Ca2+ uptake and membrane potential (ΔΨ𝑚)

measurement in the permeabilized cell system

Equal numbers of MPMVECs were resuspended and permeabilized with 20 µg/ml

digitonin in 1.5 ml of intracellular medium composed of 120 mM KCl, 10mM NaCl,

1mM KH2PO4, 20mM Hepes-tris (pH 7.2) and 2 µM thapsigargin to block the SERCA

(sarcoplasmic/endoplasmic reticulum Ca2+ ATPase) pump. The mitochondrial sub-

strate succinate (5mM) and the intracellular Ca2+ indicator Fura-2FF (0.5 µM, Fura-

FF pentapotassium salt), which is relatively insensitive to Mg2+, were added and the

cuvette was immediately mounted in a multiwavelength excitation, dual-wavelength

emission fluorimeter (DeltaRAM, Photon Technology International). The sample was

stirred constantly and temperature controlled at 37 ∘C. Extramitochondrial Ca2+ was

monitored at an excitation ratio of 340 nm/380 nm of Fura-2FF fluorescence. After

baseline recording, the ΔΨ𝑚 indicator JC-1 (800 nM, Thermo Fisher Scientific) was

added. The dye JC-1 accumulates potential dependent in mitochondria, which is

indicated by the ratio fluorescence at an excitation wavelength of 490nm and 570nm.

A mitochondrial membrane depolarization is consequently visualized by a reducing

fluorescence ratio at 490/570nm. The intracellular, extramitochondrial Ca2+ con-

centration was analyzed simultaneously at an excitation wave length of 340nm and

380nm by Fura-2FF. Several 10 µM Ca2+ pulses were added in 50 seconds intervals

and intracellular Ca2+ fluorescence of Fura2-FF and ΔΨ𝑚 of JC-1were recorded si-

multaneously. Mitochondrial Ca2+ uptake was visualized by a decline in intracellular

Ca2+ fluorescence. When the mitochondrial Ca2+ uptake was exhausted and ΔΨ𝑚

collapsed, the total mitochondrial Ca2+ content was verified by the mitochondrial

uncoupler FCCP (2 µM) which generates a nonspecific proton leak.
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3.13 Cellular ATP measurement

Cellular ATP levels were measured using the commercially available CellTiter-Glo

luminescent assay kit (Promega, Madison, WI, USA) according to the manufacturer’s

instruction. Metabolically active cells produce ATP which reacts with the CellTiter-

Glo substrate to induce a luciferase reaction and generates a luminescent signal.

Because this signal is dependent on the number of cells, the luminescent signal was

normalized to the protein content of the samples.

3.14 XF-96 Extracellular Flux AnalyzerTm

The XF-96 Extracellular Flux AnalyzerTm (Seahorse Bioscience) can be used to mea-

sure the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR)

in adherent, permeabilized cells. The preloading of reagents and the automatic anal-

ysis of the 96-well plate allows a higher throughput than with conventional methods.

Figure 3.7: An oxygen sensor measures the OCR.. The OCR rate changes after
addition of oligomycin - which inhibits the coupling efficiency, FCCP - an uncoupler,
and antimycin A - an electron chain inhibitor [113].

The XF Cell Mito Stress Test KitTm was used according to the manufacturer’s in-
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struction. In brief, 1x104 MPMVECs per well were seeded in the XF Mitoplate and

grown overnight. On the following day, the medium was changed to the Seahorse

Assay medium and the plate was incubated at 37 ∘C in a CO2 free incubator for

1h. Different reagents were preloaded into the reagent delivery chamber and injected

pneumatically into the media. An oxygen sensor which is coupled to a fiber-optic

waveguide (Seahorse Bioscience XF96 Flux AnalyzerTm) recorded the OCR emission

at an excitation wavelength of 532nm [149]. Data was analyzed by the Wave Software.

Basal mitochondrial respiration is dominated by proton flow through the ATP syn-

thase and proton leakage before addition of any reagents. The first injection, oligomycin

(1µM), inhibits the ATP synthase (Complex V). The remaining non-mitochondrial

oxygen consumption is due to the proton leak across the inner mitochondrial mem-

brane. The second injection, FCCP (1 µM), uncouples respiration from oxidative

phosphorylation and therefore allows H+ to diffuse back to the matrix without pass-

ing the ATP synthase. As a result, any substrate available in the medium is oxidized

and contributes to the maximal respiration rate. At last, the electron transport chain

inhibitors rotenone, a complex I inhibitor and antimycin A, a complex III inhibitor

(both 1 µM) are added. The residual respiration after blocking the electron chain is

non-mitochondrial (see figure 3.7) [113].

Similar to analyzing the OCR with an oxygen sensor, ECAR can be analyzed using a

pH sensor at an excitation wavelength of 470nm. Pyruvate is converted to lactic acid

during anaerobic glycolysis. When lactic acid is released, it acidifies the extracellular

space and can be measured as an increase in ECAR [113] [10]. Basal glycolytic

flux is measured in glucose-free media. The first injection, glucose at saturating

concentration (10mM), is generates glycolysis and thereby produces ATP and protons.

The protons are released into the media and can be measured as an increase in ECAR.

The second injection, oligomycin (1 µM), inhibits mitochondrial ATP production and

therefore shifts metabolically the energy production to glycolysis (maximal glycolytic

capacity). The final injection, 2-DG (2-deoxy-D-glucose), a glucose analog, inhibits

the first enzyme during glycolysis glucose hexakinase. The residual ECAR after

blocking glycolysis is non-glycolytic [113].
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3.15 Clark electrode

The Clark electrode can be used to measure mitochondrial respiration in intact or

permeabilized cells or isolated mitochondria. It is composed of a platinum cathode

and a silver anode which are linked by an electrolyte solution. When a small voltage is

applied, the platinum electrode adopts the externally applied potential. This negative

potential induces that oxygen is reduced at the platinum surface to hydrogen peroxide.

Consequently, a current flows towards the silver electrode and silver is oxidized to

silver chloride which is deposited at the anode. The current is correlated to the

oxygen consumed at the platinum cathode [141].

3x105 MPMVECs were resuspended in intracellular medium composed of 120 mM

KCl, 10mM NaCl, 1mM KH2PO4, 20mM Hepes-tris (pH 7.2). 40 µg/ml digitonin,

to permeabilize membranes, and 10 µM thapsigargin, to block the SERCA pump,

were added. The cell suspension was transferred immediately to the MT200A Mito-

Cell chamber of a MT200A MitoCell Clark-type electrode (Strathkelvin Instruments,

Motherwell, United Kingdom) and stirred constantly at 37 ∘C. After baseline record-

ing, mitochondrial substrates were added in 30 seconds intervals via a Hamilton sy-

ringe. 1mM pyruvate and 1mM malate were added first. Pyruvate oxidation in the

tricarboxylic acid cycle (TCA) cycle generates electrons from NADH which feed com-

plex I. Malate supports the TCA cycle. Electrons from complex I are passed down the

respiratory electron chain and enhance complex III and IV activity. Then, succinate

(1mM) was added which provides electrons for complex II and bypasses complex I.

Next, 0.5 mM TMPD (tetramethylphenylendiamin), an artificial electron donor, and

1mM ascorbate as antioxidants keeping TMPD in its reduced state was added. At

last, excessive natriumazide was added to block complex IV and the OCR decreases

to the calibrated instrument baseline [153]. The rate of oxygen consumption was

measured and displayed as nmol O2/min.
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3.16 Statistical analysis

Data from multiple experiments were quantified and illustrated as means ± SD if

not indicated otherwise. Differences between groups were analyzed by an unpaired

t-test, one-way ANOVA or rank sum test. P < 0.05 was considered significant. Data

were analyzed with ZEN2 2010 software, ImageJ or FlowJo and plotted with either

GraphPad Prism version 5.0 or SigmaPlot 11.0 software.
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Chapter 4

Results

4.1 Roles of STIM1/2/Orai proteins and TRPC

channels in receptor and store-operated Ca2+

entry (ROCE/SOCE)

4.1.1 Analysis of heterozygous STIM1+/-/Orai1+/- mice

Homozygous STIM and Orai knockout mice die perinatally of unknown reason. Thus,

we have established a heterozygous STIM1+/-/Orai1+/- C57BL/6 mouse strain by

mating two independent STIM1+/- and Orai1+/- mouse strains generated by the gene-

trapping method (see figure 3.1 of methods section). We designed specific primers

and established the genotyping of the double heterozygous mice. One of the primers

binds to the 𝛽-geo cassette (encoding 𝛽-galactosidase-neomycin fusion protein)

Figure 4.1: Location of primer for genotyping of double heterozygous
STIM1+/-/Orai1+/- C57BL/6 mice. Primers bind to the 𝛽-geo cassette (en-
coding 𝛽-galactosidase-neomycin fusion protein) and in the adjacent genomic intron
DNA. SA: splicing acceptor site, pA: polyA tail
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the other in the adjacent genomic intron DNA (see figure 4.1). Figure 4.2 shows

resulting DNA fragments from a typical PCR-genotyping of DNAs from mouse tails

of heterozygous STIM1+/- and Orai1+/- mice.

Figure 4.2: Agarose gel electrophoresis of genomic DNA fragments from
a typical PCR-genotyping of DNAs from mouse tails of heterozygous
Stim1+/- and Orai1+/- mice. A) Wt-PCR PCR-fragments amplified from the Wt
(lane 1) and the mutated STIM1 gene locus (lane 2) B) PCR- fragments amplified
from the mutated Orai1 gene locus (lane 2). M: 100bp DNA marker

Figure 4.3: STIM1 and Orai1 mRNA expression in TSMCs and PPASMCs
isolated from STIM1+/-/Orai1+/- mice. A) Wt-mRNA expression from the
STIM1 and Orai1 genes in TSMCs of STIM1+/-/Orai1+/- mice, passage 2 B) Wt-
mRNA expression from the STIM1 gene in PPASMCs of STIM1+/- mice, passage 0,
3-4 mice per group, P values were determined by unpaired t-test; * P<0.05

M-RNA-transcription from the Wt STIM1 and Orai1 allele was quantified in

STIM1+/-/Orai1+/- and Wt mice. Figure 4.3 shows that STIM1 and Orai Wt mRNA
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was significantly reduced in STIM1+/-/Orai1+/- tracheal smooth muscle cells (TSMC).

In contrast to these results, STIM1Wt mRNA expression in PPASMC from STIM1+/-

mice was not significantly different compared to PPASMC from wildtype mice.

STIM1 protein is downregulated significantly in MPMVECs from STIM1+/-/Orai1+/-

mice compared to MPMVECs from Wt mice by 11% (see figure 4.4). This reduction

however is less than expected and makes it difficult to interpret the results obtained

with this mouse line.

Figure 4.4: STIM1 protein expression in STIM1+/-/Orai1+/- and Wt MP-
MVECs. A) Representative blot B) Quantification of STIM1 protein on n=3 blots,
P values were determined by unpaired t-test; * P<0.05

Figure 4.5: CPA-induced SOCE in STIM1+/-/Orai1+/- PPASMCs. A) CPA-
induced ER depletion and restoration of external Ca2+ to 2mM results in SOCE B)
Quantification of maximum Ca2+ influx during CPA-induced SOCE at the indicated
time point. Graphs show the result of 33-43 cells, isolated from three mice per group
± SEM, unpaired t-test; * P<0.05, CPA: cyclopiazonic acid

Next, we analyzed if reduced STIM1+/-/Orai1+/- levels resulted into a functional
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SOCE defect. PPASMCs were grown on glass cover slips and loaded with the Ca2+

indicator Fura2-AM. After depletion of internal Ca2+ stores by 10 µM CPA in Ca2+-

free HEPES solution containing 2mM EGTA, extracellular Ca2+ solution was added

to quantify the store-operated calcium influx. The maximum Ca2+ influx after store

depletion was quantified (see figure 4.5).

After emptying internal stores by 10 µM CPA, external Ca2+ was restored to 2mM

which resulted into SOCE. We observed a significantly reduced SOCE in PPASMCs

isolated from STIM1+/-/Orai1+/- mice (see figure 4.5). Nevertheless, this reduction

was much smaller than expected and makes it difficult to draw conclusions from the

planned experiments.

Figure 4.6: Repetitive contraction of tracheal rings from primary bronchi
of STIM1+/-/Orai1+/- and Wt mice. A) Contraction of tracheal rings follow-
ing carbachol-induced (10 µM) ER depletion in (Ca2+-free buffer) and restoration of
external Ca2+ to 2mM B) Four repetitive contractions of of the same bronchus were
quantified and normalized to the first contraction of the same bronchus, n=3-5 mice,
unpaired t-test; * P<0.05,

To test if the small but significant STIM1 and Orai1 downregulation is sufficient to

detect differences in repetitive contraction of tracheal rings from primary bronchi

we used a myograph system. Isolated primary bronchial rings were mounted in a

myograph and incubated with Ca2+-free Krebs-Henseleit-Buffer. Intracellular stores

were depleted by carbachol (CCH, 500nM, 1 µM, 10 µM) which induced only a weak

bronchoconstriction. When extracellular Ca2+ was restored to 2mM, tracheal rings

contracted again (see figure 4.6). The contraction protocol was repeated at least four

times on the same tracheal ring to investigate if primary bronchi of STIM1+/-/Orai1+/-

mice exhaust faster than primary bronchi of Wt mice. The contraction response was
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normalized to the first contraction of the same bronchus. As shown in figure 4.6 we

were not able to detect any differences between STIM1+/-/Orai1+/- and Wt bronchi.

Quality control of mounted tracheal or aortic rings is only possible by the response to

other stimuli, such as the response of potassium chloride (KCl) on membrane depolar-

isation and the following activation of voltage-dependent Ca2+ channels which results

in contraction. Some bronchi or aortae display a good KCl response but are not able

to hold the contraction over a longer period or start oscillating. This results into

variations in contraction or dilatation between the samples which makes it difficult to

analyze the results. Therefore, we tried to establish a contraction model using preci-

sion cut lung slices (PCLS) as an alternative to the myograph. 200µM thick PCLS

which have been cultivated for several days were examined for intact smooth muscle

layers and ciliary activity. Only intact PCLS were treated with cumulative concen-

trations of carbachol (500nM-2,3mM) which resulted into a bronchoconstriction after

40min (see figure 4.7).

Figure 4.7: Carbachol-induced bronchoconstriction in precision cut lung
slices. Contraction of a bronchus before and after application of carbachol in precision
cut lung slices (PCLS). Slices were treated repeatingly with additive concentrations
of carbachol (500nM-2,3mM) over a period of 40min, representative bronchus

Even though we were able to record a strong bronchoconstriction of some bronchi,

many bronchi responded weak or not all all. Fig 4.7 shows a representative bronchus

which constricted almost completely after 40min. Moreover, the analyzed bronchus

was not focused any more after changing buffers which is essential to establish a

SOCE protocol. Therefore, we decided not to proceed with this method.
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4.1.2 Analysis of a tamoxifen-induced smooth muscle cell-specific

STIM1/2 knockout in STIM1/2(Myh11-Cre/ERT2) mice

Mice with an overall STIM1 knockout die 1-4 weeks after birth of unknown reason, but

smooth muscle cell specific STIM1 knockout mice have been shown to be viable [83].

We therefore generated STIM1/2flox(Myh11-Cre/ERT2) mice to induce a smooth

muscle cell specific knockout of STIM1 and STIM2 proteins after tamoxifen injection

by mating a STIM1/2 floxed mouse line with Mhy11-Cre/ERT2 mice.

Myh11-Cre/ERT2 mice express the Cre-recombinase under the control of the smooth

muscle cell specific promotor Mhy11. Therefore, the Cre-recombinase only deletes

the STIM1/2 exons in smooth muscle cells. ERT2-Cre-recombinase is only expressed

after tamoxifen injection of the mouse because the Cre-recombinase is fused to the

ligand binding domain of the human estrogen receptor.

Figure 4.8: Inducible smooth muscle cell specific knockout of STIM1 and
STIM2 alleles using tamoxifen. The Cre-recombinase is expressed under the
control of the promotor Mhy11 only in smooth muscle cells. Upon tamoxifen applica-
tion, the Cre-recombinase is activated and deletes the floxed STIM1/2 exons. HSP90:
heatshock protein90, Cre: Cre-recombinase, ERT2: estrogen receptor2, see text for
more details

Moreover, three point mutations in the ligand binding domain prevent the binding

with its natural ligand estradiol. In the absence of tamoxifen, Cre-ERT2 is bound to

the heatshock protein 90 which inhibits the Cre-recombinase activity. Upon tamoxifen

application, the heatshock protein is dissociated and the Cre-recombinase is now
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activated and deletes the floxed exons from the STIM1 and STIM2 genes resulting in

a STIM1/2 knockout only in smooth muscle cells (see figure 4.8).

Figure 4.9: Agarose gel electrophoresis of DNA fragments from PCR-
genotyping of genomic DNAs from intestine cells and PPASMCs isolated
from STIM1/2 flox (Myh11 Cre/ERT2) mice after injection of tamoxifen.
Genomic DNA from the intestine or PPASMC were isolated for PCR A)Separation
of PCR products from the floxed (STIM1 flox) and the deleted (STIM1 KO) STIM1
allele. B) Separation of PCR products from the floxed (STIM2 flox) and the deleted
(STIM2 KO) STIM2 allele. M: 100bp DNA marker

However, intraperitoneal injections of tamoxifen induced only a partial knockout of

PPASMC (see figure 4.9). First we assumed, that the tamoxifen injection protocol

was not optimal. But neither an increase of the tamoxifen dosage nor of the injection

frequency improved the efficiency. Therefore, we decided to induce the deletion of

STIM1 and STIM2 exons in PPASMCs directly.

4.1.3 Analysis of SOCE and ROCE in STIM1/2, TRPC1/3/6

and quintuple knockout PPASMC.

Therefore, we treated the isolated cells with a lentivirus encoding for the Cre-recombinase

to obtain a STIM1/2 knockout in the STIM1/2 floxed but Mhy11-Cre negative cells

from STIM1/2 floxed mice. The lentivirus was produced as described in the methods

sections. The mCherry-tagged Cre-recombinase plasmid was obtained from addgene
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and used to produce recombinant lentiviruses expressing Cre-recombinase and the

mCherry fluorescent protein in the infected cell. During Ca2+ imaging we were there-

fore able to select cells with red fluorescence as STIM1/2 knockout and cells without

fluorescence as control cells (see figure 4.10B).

Figure 4.10: Characterization of lentiviral transfected cells by PCR and flu-
orescence imaging. A) Agarose gel electrophoresis of DNA fragments from PCR-
genotyping of genomic DNAs from PPASMCs infected (STIM1/2ΔSMC) or not infected
(STIM1/2floxSMC) with lentiviruses expressing Cre recombinase. Left panel: prod-
ucts from a STIM1 genotyping PCR (lane 2 nontransfected, lane 3 and 4 transfected
cells). Right panel: products from a STIM2 genotyping PCR (lane 1 nontransfected,
lane 2 and 3 transfected cells). B) Transfection efficiency of mCherry tagged Cre-
recombinase lentivirus 4 days after transfection of PPASMC. Transfected cells can be
identified by their red fluorescence.

Unfortunately, we faced a very low transfection efficiency of approximately 5% with

the mCherry-tagged Cre-recombinase virus. Accordingly, we were only able to mea-

sure a few cells per coverslip (see figure 4.10). When we had used Cre-recombinase

adenoviruses for other experiments, we observed a similar low transfection efficiency

in the GFP-tagged ad-Cre virus and a nearly complete transfection of cells with

lentiviruses coding for the untagged Cre-recombinase.

Therefore, we assumed that loxP-mediated deletion with untagged Cre-recombinase

lentivirus would be similarly complete as with an untagged Cre-recombinase ade-

novirus. As expected, the transfection with untagged Cre-recombinase lentiviruses

resulted into an almost complete deletion of STIM1/2 exons (see figure 4.11) in

PPASMC isolated from STIM1/2flox/flox mice.
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Figure 4.11: Wt-STIM1- and STIM2-mRNA quantification after lentivi-
ral expression of Cre-recombinase 4 days after infection (STIM1/2
KO) compared to uninfected PPASMC (STIM1/2 Wt) isolated from
STIM1/2flox/flox mice. n=3-5 mice, P values were determined by t test; * P<0.05

4.1.4 Contribution of TRPC1/3/6 in receptor- and store-operated

Ca2+ entry (ROCE and SOCE)

We isolated PPASMC from STIM1/2flox/flox and STIM1/2flox/flox/TRPC1/3/6 -/- mice,

cultivated them until passage two and transfected the cells with untagged or mCherry-

tagged Cre-recombinase lentivirus. Four days after transfection, loxP-induced dele-

tion by Cre recombinase was complete as determined by quantitative, reverse, tran-

scription (RT)-PCR. These cells were used as STIM1/2ΔSMC (PPASMCs with deleted

STIM1 and 2 genes) and STIM1/2ΔSMC/TRPC1/3/6 -/- PPASMC (PPASMC with

deleted STIM1/2 and TRPC1/3/6 genes) for calcium imaging experiments. A G5A

control virus was used to transfect wildtype PPASMCs. One day before the analysis,

cells were split and seeded on glass cover slips. PPASMCs were loaded with the Ca2+

indicator Fura2-AM.

To quantify ROCE, infected cells with different genotypes were loaded with the Ca2+

indicator Fura2-AM and stimulated with 1 µM endothelin in HEPES solution con-

taining 2mM Ca2+. As expected, ROCE was unchanged in STIM1/2ΔSMC com-

pared to Wt cells when comparing the maximal ROCE at the indicated time point

or quantifying enothelin1-induced ROCE areas under the curves (AUC). However,

when STIM1/2ΔSMC ROCE was compared to Wt cells at time points 4 or 4.5 min,

a significant difference was observed in comparison to STIM1/2 flox cells. Therefore,

STIM1/2 proteins by mediating Ca2+ influx through Orai channels may be important
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for the long lasting ROCE.

Figure 4.12: Endothelin-1 induced ROCE in STIM1/2ΔSMC, TRPC1/3/6 -/-

and STIM1/2ΔSMC/TRPC1/3/6 -/- PPASMC. A) Endothelin-1 induced
ROCE in STIM1/2ΔSMC transfected with lentiviral Cre-recombinase compared
to STIM1/2flox/flox PPASMC B) Endothelin-1 induced ROCE in TRPC1/3/6 -/-

PPASMC compared to STIM1/2flox/flox PPASMC C) Endothelin-1 induced ROCE
in STIM1/2ΔSMC/TRPC1/3/6 -/- transfected with lentiviral Cre-recombinase com-
pared to STIM1/2flox/flox PPASMC D) Quantification of endothelin-1 induced ROCE
of PPASMCs, 28-32cells from n=3-5mice, all cells were in passage 3 (G5A GFP-tagged
control lentiviruses n=1, 8 cells) Kruks-Wallis test, Dunn’s multiple comparison test
* P<0.05

TRPC1/3/6 -/- PPASMCs reduced significantly ROCE compared to Wt cells.

STIM1/2ΔSMC/TRPC1/3/6 -/- did not further reduce ROCE compared to

TRPC1/3/6 -/- PPASMCs. This result was obtained when quantifying both the max-

imum ROCE at the indicated time point (2.37 min) and the AUC of ROCE. The

clearly reduced ROCE in TRPC1/3/6 -/- KO PPASMCs matches our hypothesis that

TRPCs are mainly receptor-operated (see figure 4.12).

After depletion of internal Ca2+ stores by 1 µM thapsigargin in Ca2+-free HEPES

solution containing 2mM EGTA, extracellular Ca2+ solution was added to quantify

the store-operated calcium influx. First of all, SOCE induced by adding thapsigargin

(Tg) and recalcification was similar in wildtype cells transfected with G5A lentiviruses
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Figure 4.13: Thapsigargin-induced store-operated Ca2+ entry (SOCE)
in STIM1/2ΔSMC, TRPC1/3/6 -/- and STIM1/2ΔSMC/TRPC1/3/6 -/-

PPASMC. A) Thapsigargin-induced SOCE in STIM1/2ΔSMC transfected with
lentiviruses coding for Cre-recombinase compared to Wt non-transfected PPASMCs
B) Thapsigargin-induced SOCE in TRPC1/3/6 -/- PPASMC compared to Wt
PPASMC C) Thapsigargin-induced SOCE in STIM1/2ΔSMC/TRPC1/3/6 -/- trans-
fected with lentiviruses coding for Cre-recombinase compared to Wt PPASMC D)
Quantification of thapsigargin induced SOCE, mean of 29-48 cells from n=4-7 mice,
all cells were in passage 3 (except for G5A GFP-tagged control lentiviruses transfected
PPASMCs: 8 cells from 1 Wt mouse), Kruks-Wallis test, Dunn’s multiple comparison
test * P<0.05

and non-transfected wildtype cells indicating that lentiviral transfection itself does

not have an impact on SOCE. As expected, SOCE was almost completely inhibited

in STIM1/2ΔSMC when the maximal SOCE was compared to wildtype SOCE at the

time point indicated by a line (see figure 4.13). Quantification of the areas under the

curves (AUC) of SOCE confirmed these results (see figure 4.14).

Moreover, we observed a small but significantly different reduction of SOCE in

TRPC1/3/6 -/- cells compared to wildtype PPASMC indicating a contribution of

TRPC1/3/6 channels to SOCE. There was no significant different reduction in quintu-

ple (STIM1/2ΔSMC/TRPC1/3/6 -/-) PPASMC identified as compared to STIM1/2ΔSMC

cells.
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Figure 4.14: Quantification of maxima and area under the curves for store-
operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE).
A) Quantification of SOCE maxima displayed as scatter blot B) Quantification of
ROCE maxima displayed as scatter blot C) Quantification of areas under the curves
(AUC) for SOCE D) Quantification of areas under the curves (AUC) for ROCE, mean
± SEM of 28-48cells from 3-7mice, Kruks-Wallis test, Dunn’s multiple comparison
test P<0.05
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4.2 Analysis of SOCE in endothelial cells and its

contribution to vasodilatation, edema formation,

proliferation and migration

4.2.1 Isolation and identification of Wt and STIM1/2/Orai1-

deficient murine pulmonary microvascular endothelial

cells (MPMVECs)

MPMVECs were isolated using CD-144 (VE-Cadherin5) antibody labeled magnetic

dynabeads. The identity of endothelial cells was confirmed by Dil-Ac-LDL staining in

passage 3 (see figure 4.15). Dil-Ac-LDL only stains endothelial cells and macrophages,

but macrophages do not adhere to the culture dishes. There were still dynabeads at-

tached to some MPMVECs at this passage which usually get lost during the following

passages.

Figure 4.15: Dil-Ac-LDL staining of MPMVECs. Representative image of MP-
MVECs isolated from Wt mice (passage 3) and stained with Dil-Ac-LDL

MPMVECs deficient of STIM1/2 and Orai proteins were isolated from STIM1/2ΔEC

and Orai1ΔEC mice. For generation of the endothelial cell-specific knockout mice

(ΔEC mice), floxed STIM1/2 and floxed Orai1 mice were bred with a mouse line

carrying the Cre-recombinase gene under the control of the endothelium-specific cad-

herin 5 promoter. The knockout was confirmed by immunoblotting of protein lysates

from MPMVECs. STIM1, STIM2 and Orai1 was markedly reduced in STIM1/2ΔEC

and Orai1ΔEC MPMVEC (see figure 4.16).
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Figure 4.16: Expression of STIM1, STIM2 and Orai1 in STIM1/2ΔEC and
Orai1ΔEC. A) Representative Western Blots of protein lysates from STIM1/2ΔEC,
Orai1ΔEC and VE-Cre MPMVEC.

Figure 4.17: Lungs of STIM1/2ΔEC and Orai1ΔEC mice injected with FITC-
dextran. Representative images of mice injected intraocularly with FITC-dextran.
The fluorescent dye distributes in the vasculature and visualizes the pulmonary vessels
in the ex-vivo lung.

Furthermore, the STIM1/2ΔEC and Orai1ΔEC knockout did not affect the pulmonary

vascular distribution (see figure 4.17). STIM1/2ΔEC and Orai1ΔEC knockout mice
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were injected intraocularly with 5% FITC-dextran. The fluorescent dye distributes

in the vasculature and visualizes the pulmonary vessels in the ex-vivo lung when

imaged at 488nm excitation with a Zeiss 710 META NLO 2-photon microscope. Lungs

from STIM1/2ΔEC and Orai1ΔEC mice did not show any morphological differences

compared to lungs from VE-Cre mice (see figure 4.17).

4.2.2 Contribution of SOCE to endothelium-induced

vasodilatation

We used thoraic aortic rings as a model for vasoconstriction and -dilatation. Previous

authors have already shown that aortic rings isolated from STIM1ΔEC mice treated

with acetylcholine dilatated significantly less than heterozygous STIM1ΔEC and wild-

type aortic rings [61]. Consequently, we hypothesized that an endothelial STIM1/2

double knockout would result even in a stronger impaired vasodilatation than a single

endothelial STIM1 knockout.

Figure 4.18: Relaxation of STIM1/2ΔEC and Orai1ΔEC aortic rings. A) Aortic
rings were treated with 1 µM phenylephrine. At steady maximal contraction increas-
ing concentrations of ACh (0.01 µM-30 µM) were added B) Quantification of ACh-
induced (1µM) relaxation C) Quantification SNP-induced (3 µM) relaxation, ACh:
acetylcholine, SNP: sodium nitroprusside, n=5 mice, P values were determined by
unpaired t-test

Accordingly, we mounted aortic rings of STIM1/2ΔEC and Orai1ΔEC mice in a wire

myograph and treated them with cumulative concentrations of acetylcholine (ACh)

95



and sodium nitroprusside (SNP). The resulting vasodilatation however, was not dif-

ferent from Wt mice after ACh or SNP addition (see figure 4.18).

4.2.3 SOCE in endothelial migration and proliferation

Migrating endothelial cells have been shown to have lower intracellular Ca2+ levels.

Bovine aortic endothelial cells treated with SERCA-inhibitors have been reported to

migrate less and removal of cyclopiazonic acid 6hs after scratch formation rescued

migration measured after 24hs [15].

Consequently, we hypothesized that the migration of STIM1/2ΔEC and Orai1ΔEC

would be reduced compared to VE-Cre MPMVECs. According to our expectations,

the wound healing was significantly reduced in STIM1/2ΔEC and Orai1ΔEC 24hs and

48hs after gap formation (see figure 4.19).

Superoxide is produced during oxygen reduction by NOX proteins [5] and NOX-

mediated superoxide production stimulates migration in vascular endothelial cells

[136]. Gandhirajan et al. has demonstrated that cytosolic superoxide production

and NOX levels were unaltered in STIM1ΔEC but Szewczyk et al. showed that a

dysfunctional eNOS, which is affected by Ca2+, produces superoxide instead of NO

[127] [38].

Therefore, we speculated that a reduced SOCE would negatively affect NO produc-

tion and ROS levels. As a result superoxide and eNOS levels would be altered in

STIM1/2ΔEC and Orai1ΔEC. Even though we measured reduced phosphorylated

eNOS protein levels in STIM1/2ΔEC and Orai1ΔEC lysates in some Western blots,

high background did not allow a reliable quantification.

To analyze if superoxide levels were altered in STIM1/2ΔEC and Orai1ΔEC, we stained

MPMVECs with MitoSox red and quantified the intensity of mitochondria. Sur-

prisingly, STIM1/2ΔEC and Orai1ΔEC demonstrated significantly elevated superoxide

levels compared to mitochondria from VE-Cre mice (see figure 4.20).

We assumed that similar to migration, proliferation of endothelial cells requires

SOCE. Therefore, we investigated if the proliferation of endothelial cells was reduced

in STIM1/2 and Orai1 deficient MPMVECs isolated from endothelial cell-specific
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Figure 4.19: Migration of STIM1/2ΔEC and Orai1ΔEC after gap formation.
A) Representative images of VE-Cre (control), STIM1/2ΔEC and Orai1ΔEC endothe-
lial cells 24hs and 48hs after gap formation B) Quantification of migrated cells, n=3-5
independent experiments, P values were determined by t test; * P<0.05

knockout mice. The proliferation rate was assessed using carboxyfluorescein succin-

imidyl ester (CFSE), a dye which is incorporated into proteins, passed to the daughter

generations and can be quantified by flow cytometry. We identified a reduced prolif-

eration rate in STIM1/2ΔEC and unchanged proliferation rate in Orai1ΔEC (see figure

4.21).

97



Figure 4.20: Mitochondrial superoxide levels in STIM1/2ΔEC and Orai1ΔEC.
A) Representative images of MitoSOX red (mitochondrial superoxide indicator)
stained VE-Cre (control), STIM1/2ΔEC and Orai1ΔEC MPMVECs B) Quantifica-
tion of MitoSOX red fluorescence intensity, n=3 independent experiments, n= 62-102
cells, f.a.u.: fluorescence arbitrary units, P values were determined by rank sum test;
* P<0.05.

4.2.4 Contribution of SOCE to edema formation and vascular

inflammation

Endothelial cells play an important role during inflammation. Bacterial products like

lipopolysaccharide (LPS) stimulate the endothelium and increase endothelial barrier

permeability. On one hand this cellular reaction helps to combat infection, on the

other hand it can induce a dysfunction of endothelial cells. Dysfunctional endothelial

cells allow fluid to leak into the surrounding tissues which results into lung edema

formation [99] [116]. Vascular permeability of endothelial cells can be investigated

on cellular levels using the coagulation protease thrombin. Under non-stimulated

conditions, the myosin light chain (MLC) phosphatase dephosphorylates the MLC

and consequently prevents opening of the tight junctions. After thrombin stimulation

this preventive mechanism is inhibited [99].

Thrombin stimulation induces stress fiber formation which can be quantified by stain-

ing of F-actin with fluorescence labeled phalloidin. We show that the relative phal-

loidin staining intensity of thrombin-stimulated STIM1+/-/Orai1+/- MPMVECs was
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Figure 4.21: Proliferation in STIM1/2ΔEC and Orai1ΔEC. A) Representative
FACS panels of non-proliferated (red) and proliferated (blue) CFSE-stained VE-Cre,
STIM1/2ΔEC and Orai1ΔEC B) Relative proliferation rates of proliferating endothelial
cells to non-proliferating cells of the same genotype, CFSE = carboxyfluorescein suc-
cinimidyl ester, n=3 independent experiments, P values were determined by one-way
ANOVA; * P<0.05.

reduced compared to thrombin-stimulated wildtype MPMVECs (see figure 4.22).

Gandhirajan et al. have shown that STIM1 is essential for the NFATc3-mediated

transcription of proinflammatory mediators. STIM1ΔEC transfected with adenovirus

encoding NFATc3-GFP displayed a significantly reduced number of NFATc3-GFP

translocated cells compared to wildtype MPMVECs. This was further confirmed

by the significantly reduced luciferase activity in STIM1KD MPMVECs compared to

wildtype MPMVECs [39]. Based on these findings the question arose if only STIM1

or both STIM isoforms, STIM1 and STIM2, or Orai attenuate the NFAT nuclear

translocation. Thus, MPMVECs were transfected with adenovirus encoding NFATc3-

GFP for 36 hours, followed by LPS treatment for additional 16hs as described in [39].

According to our expectations, the number of NFATc3-GFP translocated cells in LPS-
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Figure 4.22: Thrombin-induced formation of stress fibers. A) Representative
images of phalloidin staining for Wt (left) and STIM1+/-/Orai1+/- (right) MPMVECs
B) Quantification of phalloidin staining intensity of actin stress fibers after thrombin
(5nM) stimulation of STIM1+/-/Orai1+/- and Wt MPMVECs in comparison to un-
stimulated cells of the same genotype, 80-87 cells isolated from 4 different mice, P
values were determined by t test; * P<0.05

stimulated VE-Cre MPMVECs compared to unstimulated MPMVECs was increased

and this increase was abrogated in LPS-stimulated STIM1/2ΔEC compared to un-

stimulated STIM1/2ΔEC and in LPS-stimulated Orai1ΔEC compared to unstimulated

Orai1ΔEC. The number of NFATc3-GFP translocated cells was moreover significantly

reduced in LPS-stimulated STIM1/2ΔEC compared to LPS-stimulated VE-Cre MP-

MVECs (see figure 4.23). Comparing our result to Gandhirajan et al. we did not

observe a different number of NFATc3-GFP translocated cells in double STIM1/2ΔEC

or Orai1ΔEC compared to the single STIM1ΔEC analyzed in [39].
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Figure 4.23: LPS-induced nuclear NFATc3-GFP translocation in
STIM1/2ΔEC and Orai1ΔEC. A) Representative images of nuclear NFATc3-GFP
translocation of VE-Cre, STIM1/2ΔEC and Orai1ΔEC MPMVECs with and without
pretreatment of LPS B) Quantification of cells with translocated NFATc3 to the nu-
clei. n=3 independent experiments, P values were determined by t test; * P<0.05
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4.3 Contribution of mitochondrial uniporter

regulator 1 (MCUR1) to Ca2+ uptake in

mitochondria

4.3.1 Analysis of mitochondrial Ca2+ uptake and ΔΨ𝑚 in

MCUR1ΔEC and MCUΔEC

MCUR1 was identified as a positive regulator of the MCU complex through its inter-

action with MCU [81]. Our group was recently able to characterize MCUR1 as a MCU

complex scaffold factor. MCUR1 and MCU interact via their highly conserved coiled-

coil domains. A lack of MCUR1 resulted into the failure of MCU heterooligomeric

complex assembly and suppressed the IMCU current in isolated cardiac mitoplasts

[132]. The functional role of MCUR1 during mitochondrial Ca2+ entry, its impact on

the ΔΨ𝑚 and on the mitochondrial bioenergetics however has not been investigated

yet in primary cells.

Figure 4.24: Deletion of MCUR1 and MCU in MPMVEC. A) MCU and B)
MCUR1 Wt-mRNA (left panels) and protein levels (Western Blots and right panels)
in MPMVECs isolated from VE-Cre, MCUR1ΔEC and MCUΔEC mice, n=3, P values
were determined by t test; * P<0.05

To investigate the functional role of MCUR1, our group recently created MCUR1ΔEC

mice. Even though these mice did not have any morphological phenotype, they had a

higher heat production at rest than MCUR1 floxed mice. The knockout of MCU and

MCUR1 in MPMVECs isolated from MCUΔEC and MCUR1ΔEC mice was confirmed

by mRNA and protein analysis (see figure 4.24).
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Figure 4.25: Mitochondrial membrane potential (ΔΨ𝑚) in MCUR1ΔEC, VE-
Cre MPMVECs, MCUR1ΔMLF or MCUΔMLF. Murine lung fibroblasts (MLF) were
isolated from MCUR1ΔEC or MCUΔEC mice and transfected with adenoviruses en-
coding Cre-recombinase-GFP (MCUR1ΔMLF and MCUΔMLF). Cells were loaded with
tetramethylrhodamine methyl ester (TMRM) (50 nM) to assess the ΔΨ𝑚. Represen-
tative confocal images (A) and quantification of ΔΨ𝑚 (B)

Mitochondrial Ca2+ influx is driven by the electrochemical potential gradient. The

potential is maintained by the process of mitochondrial respiration and the Na+-Ca2+

exchanger [31]. Because the mitochondrial Ca2+ uptake is dependent on the ΔΨ𝑚,

we investigated if the ΔΨ𝑚 was physiological in MCUΔEC and MCUR1ΔEC.

Figure 4.26: MCU-dependent mitochondrial Ca2+ ([Ca2+]m) entry in
MCUR1ΔEC. A) Ionomycin-induced (1 µM) [Ca2+]m-entry in VE-Cre MPMVECs
(left) and MCUR1ΔEC (right) loaded with the mitochondrial Ca2+ indicator
Rho2/AM B) Quantification of [Ca2+]m-entry C) Cytosolic Ca2+ ([Ca2+]c) entry in
VE-Cre MPMVECs (red) and MCUR1ΔEC (blue) loaded with the cytosolic Ca2+

indicator Fluo-4/AM, n=3 independent experiments, P values were determined by
one-way ANOVA, *P < 0.05.

Neither in MLFs nor in MPMVECs isolated from MCUΔEC and MCUR1ΔEC mice the

ΔΨ𝑚 was altered compared to cells from floxed or VE-Cre mice. MPMVECs or adeno-

Cre-GFP viruses transfected MLFs were stained with tetramethylrhodamine methyl

103



ester (TMRM) and fluorescence intensities of the mitochondrial ΔΨ𝑚 indicator was

quantified (see figure 4.25).

Figure 4.27: MCU-dependent mitochondrial Ca2+ ([Ca2+]m) entry in
MCUR1ΔMLF and MCUΔMLF. A/D) Ionomycin-induced (1 µM) [Ca2+]m-entry
in murine lung fibroblasts (MLF) isolated from MCUR1ΔEC or MCUΔEC mice
and transfected with adenoviruses encoding Cre-recombinase (A:MCUR1ΔMLF and
D:MCUΔMLF right panel, non-transfected MLFs left panel) were loaded with
Rho2/AM. B/E) Quantification of [Ca2+]m-entry. Cytosolic Ca2+ ([Ca2+]c) entry
in MCUR1ΔMLF (C) and MCUΔMLF (F) loaded with Fluo-4/AM, n=3 independent
experiments, The P values were determined by one-way ANOVA, *P < 0.05.

After having confirmed that the ΔΨ𝑚 was unaltered in MCUΔEC and MCUR1ΔEC, we

next analyzed if the knockout resulted into a functional Ca2+ entry defect. MPMVECs

or MLFs transfected with adenoviruses encoding Cre-recombinase (MCUR1ΔMLF and

MCUΔMLF) were grown on glass cover slips and loaded with the cytosolic Ca2+ indica-

tor Fluo-4AM and the mitochondrial Ca2+ indicator Rhod-2AM. The Ca2+ entry was

observed after ionomycin stimulation under a Zeiss LSM510 META microscope. As

expected, only a nominal mitochondrial Ca2+ uptake was observed in MCUR1ΔEC,

MCUR1ΔMLF and MCUΔMLF. The extracellular Ca2+ entry into the cytosol was

unchanged from VE-Cre MPMVECs or floxed MLFs (see figure 4.26 and 4.27).

Imaging techniques allow the analysis of only a small population of selected cells

per coverslip. Furthermore, a simultaneous recording of time-dependent Ca2+ up-

take and ΔΨ𝑚 is not possible. Consequently, we used a multiwavelength excitation,
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dual-wavelength emission fluorimeter for further analysis. This fluorimeter allows

the analysis of 106 cells per sample compared to 10 cells per coverslip with imaging

techniques. The cell membrane MPMVECs was permeabilized with digitonin. Thap-

sigargin, to block the SERCA pump, the mitochondrial substrate succinate and the

intracellular Ca2+ indicator Fura-2FF were added. After baseline recording, the ΔΨ𝑚

indicator JC-1 was applied. Simultaneously, the excitation ratio of Fura-2FF and JC-

1 were measured quantifying the intracellular Ca2+ concentration and the ΔΨ𝑚. The

mitochondrial Ca2+ uptake is indicated indirectly by a decrease of the intracellular

Ca2+ concentration. Because ΔΨ𝑚 affects the mitochondrial Ca2+ uptake, Ca2+ can

be added to the cells until the ΔΨ𝑚 is disrupted.

Figure 4.28: Simultaneous measurement of MCU-mediated [Ca2+]m uptake
and ΔΨ𝑚 in VE-Cre, MCUΔEC and MCUR1ΔEC MPMVECs. After reaching
steady state ΔΨ𝑚, permeabilized VE-Cre, MCUΔEC and MCUR1ΔEC MPMVECs
were treated in intracellular like media (containing 2 µM thapsigargin and 1 µM bath
Ca2+ indicator Fura2FF) with series of extramitochondrial Ca2+ (10µM) pulses before
the addition of mitochondrial uncoupler CCCP (2 µM), purple: [Ca2+]out indicated
by Fura2FF, green: ΔΨ𝑚(RJC-1) indicated by JC-1, CCCP: carbonyl cyanide m-
chorophenylhydrazone, representative traces

Mitochondrial Ca2+ uptake capacity was evaluated in MCUΔEC, MCUR1ΔEC and VE-

Cre MPMVECs by adding 10 µM Ca2+ pulses. The simultaneous recording of [Ca2+]m

uptake and ΔΨ𝑚 discovered that both MCUΔEC and MCUR1ΔEC failed to take up

Ca2+ (see figure 4.29 and 4.28). Upon exposure to excessive Ca2+, the VE-Cre cells

exhibited a rapid mitochondrial membrane potential collapse due to mitochondrial

Ca2+ entry, which was not observed in MCUΔEC and MCUR1ΔEC MPMVECs (see

figure 4.29).
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Figure 4.29: MCU-mediated mitochondrial Ca2+ ([Ca2+]m) uptake in
MCUΔEC and MCUR1ΔEC MPMVECs. A) Comparison of representative
traces of extramitochondrial Ca2+ ([Ca2+]out) of VE-Cre MPMVECs, MCUΔEC and
MCUR1ΔEC MPMVECs. B) Quantification of rate of mitochondrial Ca2+ uptake
([Ca2+]m) before addition of mitochondrial uncoupler CCCP (2 µM) C) Representa-
tive traces of [Ca2+]out of MPMVECs in the presence of SERCA inhibitor thapsigar-
gin (2 µM), Na+/Ca2+ exchanger inhibitor (CGP-37157, 1 µM) and MCU inhibitor
(Ru360, 1 µM). After addition of CCCP, free [Ca2+]m was released from the mitochon-
drial matrix and quantified (D). CCCP: carbonyl cyanide m-chorophenylhydrazone,
n=3 independent experiments, The P values were determined by one-way ANOVA,
*P < 0.05.

To examine baseline [Ca2+]m content, permeabilized MPMVECs were loaded with

Fura-2FF, SERCA inhibitor thapsigargin (2 µM), Na+/Ca2+ exchanger inhibitor (CGP-

37157, 1 µM) and MCU inhibitor (Ru360, 1 µM) to block all Ca2+ flux. CCCP was

injected to dissipate ΔΨ𝑚 and free [Ca2+]m was released from the mitochondrial ma-

trix and quantified. Quantification demonstrated a reduced [Ca2+]m release after

addition of CCCP in MCUΔEC and MCUR1ΔEC(see figure 4.28).

4.3.2 Contribution of MCU and MCUR1 to the mitochondrial

respiratory chain and ATP production

Mitochondrial Ca2+ regulates metabolic functions, such as ATP production by ox-

idative phosphorylation. ATP production is either stimulated directly by Ca2+ or

indirectly by NADH, activation of the pyruvate dehydrogenase, enhanced respiratory

chain complex activity or Ψ𝑚 [106] [130] [146]. A perturbed [Ca2+]m uptake may lead

to cellular bioenergetic crisis [85] [120].
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Figure 4.30: ATP levels in MCUR1ΔEC, MCUΔEC. Normalized ATP lumi-
nescence of MCUR1ΔEC, MCUΔEC and VE-Cre MPMVECs, n=3-6, P values were
determined by one-way ANOVA; *P<0.05.

To determine if the reduced mitochondrial Ca2+ uptake decreases ATP production, we

measured ATP levels of MPMVECs derived from MCUR1ΔEC and MCUΔEC mice. As

expected basal ATP levels were significantly reduced in MCUR1ΔEC and MCUΔEC

endothelial cells (see figure 4.30). ATP levels were reduced significantly more in

MCUR1ΔEC compared to MCUΔEC MPMVECs (see figure 4.30).

We next analyzed if reduced ATP levels are the result of decreased mitochondrial Ca2+

levels or of an impaired function of respiratory chain complexes. The activity of the

respiratory chain complexes was investigated by measuring the oxygen consumption

rate (OCR). The reduction of oxygen to water by complex IV consumes electrons

which are transferred by complex I, II and III. Addition of substrates of individual

complexes, enhances specific complex activity, electron flow increases and therefore

the oxygen consumption rate of the final electron acceptor complex IV increases. The

current measured by the Clark electrode is correlated to the oxygen consumed [141]

[153]. Ca2+ enhances the activity of the mitochondrial complexes I, III and IV and

the pyruvate dehydrogenase activity which provides NADH from the TCA cycle to

oxidative phosphorylation, is Ca2+ dependent [106] [130] [146] [93]. Therefore, we

proposed that the OCR might be reduced in MCUR1ΔEC and MCUΔEC MPMVECs.

In contrast to MCUΔEC, MCUR1ΔEC did not result in a significant increase of the

oxygen consumption rate levels after addition of complex 1 and 2 substrates. After
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Figure 4.31: Complex I, II and IV activity in MCUR1ΔEC and MCUΔEC

analyzed by Clark electrode. Oxygen consumption rate (OCR) in digitonin-
permeabilized MCUR1ΔEC, MCUΔEC and VE-Cre MPMVECs after addition of
pyruvate, maleate, succinate, TMPD (tetramethylphenylendiamine), ascorbate and
sodium azide. A/B) representative traces of MCUR1ΔEC (A) and MCUΔEC (B) C)
Quantification of OCR, n= 3, Mann-Whitney test; *P<0.05

application of complex IV substrates, TMPD and ascorbate, the OCR levels between

VE-Cre, MCUΔEC and MCUR1ΔEC remained the same (see figure 4.31). This result

indicates that the function of complex I, II and IV is not impaired in MCUΔEC and

MCUR1ΔEC. The observed enhanced complex I and II activity in MCUΔEC needs

further investigation. Protein levels of the mitochondrial oxidative phosphorylation

components indicates that all components were equally expressed in MCUR1ΔEC,

MCUΔEC and VE-Cre MPMVECs (see figure 4.32).

To further investigate the function of the respiratory chain in MCUΔEC and MCUR1ΔEC,

we analyzed MPMVECs with the XF-96 Extracellular Flux AnalyzerTm quantifying

oxygen consumption rates (OCR) and extracellular acidification rate (ECAR) in ad-

herent, permeabilized cells before and after adding drugs which inhibit or acceler-

ate oxidative phosphorylation or glycolysis. The basal OCR values were similar in

MCUΔEC, MCUR1ΔEC and VE-Cre MPMVECs. Similarly, we observed that oxygen

consumption of MCUR1ΔEC mice were not different from control mice under a normal

chow diet at 8 weeks [132].

After addition of oligomycin blocking ATP-synthase, the remaining OCR is due to

proton leakage and therefore caused by uncoupling. Because oligomycin blocks the

ATP synthesis during oxidative phosphorylation, the cell shifts its ATP production to

glycolysis [113] [10]. After addition of oligomycin we did not observe any difference in
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Figure 4.32: Expression of mitochondrial oxidative phosphorylation complex
components in MCUR1ΔEC and MCUΔEC. Western Blot analysis of cell lysates
from MCUR1ΔEC, MCUΔEC and VE-Cre MPMVECs probed for anti-mTFA (Mito-
chondrial Transcription Factor A), PGC1 (Peroxisome proliferator-activated receptor
gamma coactivator), Drp1 (Dynamin-related protein), Mfn2 (Mitofusin-2), OXPHOS
(antibody cocktail showing complex II-30kDa, complex IV subunit I and complex V
𝛼 subunit) and CypD (Cyclophilin D), lysates of cells isolated from 3 different mice

the OCR values in MCUΔEC, MCUR1ΔEC compared to VE-Cre MPMVECs (see figure

4.33) indicating that protons are pumped during electron transport which results in

oxygen consumption but not ATP production in MCUΔEC and MCUR1ΔEC. The

unaltered ATP-linked OCR values in MCUΔEC and MCUR1ΔEC further illustrates

that ATP demand and substrate availability is intact in MCUΔEC and MCUR1ΔEC.

FCCP (carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone) uncouples respiration

from oxidative phosphorylation and therefore allows H+ to diffuse back to the matrix

without passing the ATP synthase which induces a collapse of ΔΨ𝑚. In an attempt

to rescue the ΔΨ𝑚 OCR rises and the cell switches its metabolism from oxidative

phosphorylation to glycolysis. As a result, any substrate available in the medium is

oxidized and contributes to the maximal respiration rate [113] [10]. The values for

the ’maximal respiration rate’ were increased in MCUR1ΔEC and MCUΔEC compared

to VE-Cre MPMVEC (see figure 4.33) and were significantly higher in MCUR1ΔEC
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Figure 4.33: Oxygen consumption rate in MCUR1ΔEC and MCUΔEC using
the XF-96 Extracellular Flux AnalyzerTm. A) Representative traces for oxygen
consumption rate (OCR) after addition of oligomycin, FCCP, rotenone and antimycin
in MCUR1ΔEC, MCUΔEC and VE-Cre MPMVECs B) Basal OCR values before ad-
dition of oligomycin subtracted of non-mitochondrial respiration values C) ’Maximal
respiration values’ after addition of FCCP subtracted of non-mitochondrial respiration
values, FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone, representative
experiment from n=3, one-way ANOVA, *P<0.05

compared to MCUΔEC.

Addition of the complex inhibitors I and III, rotenone and antimycin A completely

blocked the electron transfer of the respiratory chain. This resulted into decreased

OCR values to maintain energy homeostasis [113] [10]. Rotenone and antimycin A

decreased the OCR values in all genotypes in a similar way (see figure 4.33) indicating

that the non-mitochondrial respiration is intact in MCUR1ΔEC and MCUΔEC.

Pyruvate is converted to lactic acid during anaerobic glycolysis. When lactic acid

is released, it acidifies the extracellular space and can be measured as an increase

in ECAR [113] [10]. Values for the basal extracellular acidification rate (ECAR) in

glucose-free media were similar in MCUΔEC, MCUR1ΔEC and VE-Cre MPMVECs

(see figure 4.34) and addition of glucose generates glycolysis and thereby produces

ATP and protons. The protons are released and acidify the media which results in

an increase in ECAR values [113]. We did not observe any differences in ECAR

glycolysis between MCUR1ΔEC, MCUΔEC and VE-Cre MPMVECs after addition of

glucose (see figure 4.34).
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Figure 4.34: Extracellular acidification rate (ECAR) in MCUR1ΔEC and
MCUΔEC. A) Representative traces of ECAR after addition of glucose, oligomycin
and 2-DG (2-deoxy-D-glucose)in MCUR1ΔEC, MCUΔEC and VE-Cre MPMVECs B)
Glycolysis rate after addition of glucose minus non-glycolytic ECAR C) Glycolytic
capacity after addition of oligomycin minus non-glycolytic ECAR, representative ex-
periment from n=3, one-way ANOVA, *P<0.05

The second injection of oligomycin (1 µM), inhibits mitochondrial ATP production

and therefore shifts metabolically the energy production to glycolysis (maximal gly-

colytic capacity) [113]. Values for the ’maximum glycolytic capacity’ were enhanced

in MCUR1ΔEC and MCUΔEC compared to VE-Cre MPMVEC (see figure 4.34). Inter-

estingly, the serum glucose levels of MCUR1ΔEC mice were not different from control

mice under a normal chow diet of 8 weeks [132].

The final injection of 2-DG (2-deoxy-D-glucose), a glucose analog, inhibits the first en-

zyme during glycolysis, glucose hexakinase. The residual ECAR values after blocking

glycolysis are non-glycolytic [113]. MCUR1ΔEC, MCUΔEC and VE-Cre MPMVECs

showed similar non-glycolytic ECAR values after 2-DG injection.

Enhanced maximal OCR and ECAR values in MCUR1ΔEC and MCUΔEC could be

due to the stimulation of compensatory substrate utilization pathways. If the stim-

ulating effect of Ca2+ on mitochondrial complex activity, pyruvate dehydrogenase,

proton gradient and ΔΨ𝑚 is abrogated, MCUR1ΔEC and MCUΔEC might express

compensatory proteins to rescue the energy supply of the cell. Along these lines,

we investigated if expression of UCP2, the main isoform in endothelial cells [127],

was changed in MCUR1ΔEC and MCUΔEC. UCP2 has been shown to be involved
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in the mitochondrial uptake of intracellular Ca2+ [140] [22] [7] but does not interact

directly with MCU [110]. In contrast to UCP1, it seems unlikely that UCP2 acts as

an uncoupler [119]. Instead, UCP2 is assumed to play a role in the reprogramming

of metabolic pathways [139].

Western Blot analysis of cell lysates from MCUR1ΔEC, MCUΔEC and VE-Cre MP-

MVECs revealed that UCP2 protein levels were significantly increased in MCUR1ΔEC

compared to VE-Cre MPMVECs (see figure 4.35). High UCP2 levels have been re-

ported to limit the contribution of glucose to OCR and to promote the oxidation of

substitute substrates such as glutamine and fatty acids. Moreover, high UCP2 levels

are assumed to promote the conversion of pyruvate to lactate [139]. We therefore

assume, that the upregulation of UCP2 protein levels allows a better energy supply

which might explain the enhanced OCR values after addition of substrates which

fuel complex I (pyruvate and maleate) or complex II substrate (succinate) (see figure

4.31) as well as the enhanced glycolytic capacity after uncoupling (see figure 4.33 and

4.34).

Figure 4.35: UCP2 expression in MCUR1ΔEC and MCUΔEC. Western
Blot analysis of cell lysates from MCUR1ΔEC, MCUΔEC and VE-Cre MPMVECs
probed for anti-UCP2 antibody A) Representative Western Blot, P:precursor (non-
glutathioylated), M:mature protein (glutathioylated) B) Quantification of the mature
normalized UCP2 protein levels, n=3 independent experiments, P values were deter-
mined by the Mann-Whitney test; *P<0.05.
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4.3.3 Contribution of MCUR1 and MCU to proliferation,

migration and autophagy

ROS is produced in mitochondria by premature utilization of oxygen which can occur

at complex I, II and III of the electron transport chain. Oxygen can accept an addi-

tional electron to form superoxide. If antioxidant scavenging enzymes are expressed

sufficiently they can detoxify superoxide. Otherwise superoxide can react with other

components and damage irreversibly proteins of the electron transport chain [47] [20].

UCPs and ANTs limit ROS production by lowering the ΔΨ𝑚 [63].

MCUR1ΔEC and MCUΔEC display an intact function of the respiratory chain (see

figure 4.31) but a decreased ATP production (see figure 4.30). Based on the influence

of mitochondrial calcium uptake 1 (MICU1), SLC25A23 and UCP2 on superoxide

formation, we hypothesized that superoxide levels would be reduced in MCUR1ΔEC

and MCUΔEC. MPMVECs were stained with the superoxide indicator MitoSOX

Red and the intensity of mitochondrial superoxide levels was quantified. MCUR1ΔEC

and MCUΔEC showed significantly reduced superoxide levels compared to VE-Cre

MPMVECs (see figure 4.36).

Moderate levels of ROS are proposed to be essential for cell proliferation and migra-

Figure 4.36: Superoxide levels in MCUR1ΔEC and MCUΔEC. MCUR1ΔEC,
MCUΔEC and VE-Cre MPMVECs were stained with MitoSOX Red A) Represen-
tative confocal images B) Quantification of fluorescence intensities, f.a.u.: fluores-
cence arbitrary units, n=3 independent experiments, P values were determined by
the Mann-Whitney test, *P<0.05.
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tion [47] and mitochondrial Ca2+ handling could affect endothelial proliferation and

migration which are important during wound healing [20]. Therefore, we investigated

whether the lack of MCU or MCUR1 affects proliferation and migration by assessing

MCUΔEC and MCUR1ΔEC by flow cytometry and scratch assay.

Figure 4.37: Migration behavior of MCUR1ΔEC and MCUΔEC MPMVECs.
A) Representative images of VE-Cre, MCUR1ΔEC and MCUΔEC MPMVECs which
have migrated 24hs and 48hs after gap formation B) Scatter Blots summarizing values
of migrated cells 24 and 48h after gap formation, n=3-4 independent experiments, P
values were determined by one-way ANOVA; * P<0.05

The scratch assay showed a significantly reduced migration rate for MCUΔEC and

MCUR1ΔEC compared to VE-Cre endothelial cells 24hs and 48hs after gap formation

(see figure 4.37). These results suggest that Ca2+ influx between cytosol and mito-

chondria was perturbed. Proliferation rates were assessed by using carboxyfluorescein

succinimidyl ester (CFSE), a dye which is incorporated in proteins, passed to the

daughter generations and quantified by flow cytometry. MCUΔEC and MCUR1ΔEC
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MPMVECs showed a significantly attenuated proliferation (see figure 4.38).

Figure 4.38: Proliferation in VE-Cre, MCUΔEC and MCUR1ΔEC. A) Repre-
sentative FACS panels of non-proliferated (red) and proliferated (blue) CFSE-stained
VE-Cre, MCUR1ΔEC, MCUΔEC MPMVECs B) Relative proliferation rates of pro-
liferating endothelial cells to non-proliferating cells of the same genotype, CFSE:
carboxyfluorescein succinimidyl ester, n=3 independent experiments, P values were
determined by one-way ANOVA; * P<0.05.

Having demonstrated that MCUR1-deficiency in MPMVECs results in low cellular

ATP levels, we propose that alternative modes of cell survival might be upregulated.

One mode of cell survival which might be induced is autophagy. Autophagy rescues

the cell from energy deprivation by activation of the AMP-activated protein kinase

(AMPK). The AMPK phosphorylates substrates to limit anabolic pathways, that

consume ATP and activates catabolic pathways to generate substrates supporting

oxidative phosphorylation [12] [48]. We hypothesized that the low ATP levels in

MCUR1ΔEC and MCUΔEC would result into enhanced autophagic activity.

To investigate the role of MCUR1 and MCU in autophagy MPMVEC protein lysates

of MCUR1ΔEC, MCUΔEC and VE-Cre mice were analyzed by Western Blotting. Ac-

cording to our expectation, the phosphorylated AMPK and LC3 protein expression

was significantly enhanced in MCUR1ΔEC and MCUΔEC. To answer the question if
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autophagy was terminated by rescue of MCU or MCUR1, MCUR1ΔEC and MCUΔEC

were transfected with adenoviral MCUR1 and MCU. As expected, the rescue ter-

minated the autophagy in MCUR1ΔEC and MCUΔEC indicated by the significantly

lower microtubule-associated protein light chain 3 (LC3) and phosphorylated AMPK

protein levels (see figure 4.39).

Figure 4.39: Microtubule-associated protein light chain3 (LC3) and
phosphorylated AMP-activated protein kinase (p-AMPK) expression in
MCUR1ΔEC and MCUΔEC. A) Western Blot analysis of cell lysates from
MCUR1ΔEC, MCUΔEC and VE-Cre MPMVECs probed with anti-LC3, anti p-AMPK
and anti-AMPK antibody B) Quantification of normalized LC3 and p-AMPK pro-
tein levels, n=3 independent blots, mean ± SEM, *P< 0.05, This result was kindly
provided by Zhiwei Dong with the MPMVECs isolated by me.
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Chapter 5

Discussion

5.1 STIM1/2 proteins are not involved in receptor-

operated Ca2+ entry (ROCE), but TRPC1, TRPC3

and TRPC6 channels may be activated by store-

operated Ca2+ entry (SOCE)

TRPCs, the first cloned mammalian transient receptor potential channels, were origi-

nally described as store-operated Ca2+ (SOC) channels . After cloning STIM proteins

and Orai channels and their identification as molecular correlates of SOCE (summa-

rized in [11]), regulation and activation of TRPCs were questioned and extensively

discussed. Some research groups reported interaction of TRPC channels with Orai

and STIM proteins in vitro in cell lines ([73], [69] summarized in [14]), while others

postulated a receptor-operated activation of TRPC channels independent of Orai and

STIM ([23]). The scientific community agrees that it is essential to dissect molecular

components of SOCE in native cells or whole organs from appropriate gene-deficient

’knock-out’ mice. However, STIM/Orai-deficient mice are embryonic lethal and dou-

ble heterozygous STIM1+/-/Orai1+/- mice show only insufficient down-regulation of

these proteins (see figure 4.4). Therefore, we decided to use lentiviral mediated Cre-

recombinase expression in STIM1/2 floxed cells to delete both proteins in precapillary
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pulmonary arterial smooth muscle cells (PPASMCs).

TRPC6 and TRPC3 have been shown to be upregulated in smooth muscle cells of

IPAH patients and in a rat model of pulmonary hypertension [25] and several reports

identified TRPC1 as the most important TRPC channel involved in SOCE ([25]).

Thus, we compared TRPC1/3/6-/- triple deficient with STIM1/2 double deficient

and Wt control PPASMC in ROCE and SOCE experiments.

When investigating the function of TRPC as SOCE, one has to deal with several

challenges: The main challenge is definitely to distinguish SOCE from other Ca2+

entry. TRPCs can be activated by DAG which might mask the STIM-dependent

activation. Mutation of TRPCs which electrolytically interact with STIM are an

important tool to distinguish between the Orai and and TRPC-mediated SOCE but

only in easily to transfect cell lines.

We have shown that TRPC1/3/6 channels are clearly receptor operated in PPASMC.

TRPC1/3/6 -/- PPASMCs showed an almost completely abolished endothelin-1-induced

ROCE in comparison to Wt and STIM1/2 double deficient cells (see figure 4.12). A

quintuple STIM1/2/TRPC1/3/6 knock-out did not further reduce ROCE in PPASMCs

(see figure 4.12). Next we analyzed different postulated SOCE pathways (1-4) by

STIM/Orai and TRPC channels in PPASMC (see figure 5.1).

The research group of Lutz Birnbaumer claims that TRPCs and Orai form heteromers

which could be involved in both ROCE and SOCE based on co-immunoprecipitation

and functional Ca2+ entry experiments of Orai1, TRPC3 and TRPC6 [71][73] next

to the identified STIM/Orai pathway (see 2 and 1 in figure 5.1). We can not exclude

such a pathway, because we did not down-regulate Orai1/2/3 channels in PPASMC.

But a vast almost complete reduction of SOCE in STIM1/2 deficient PPASMCs, does

not favor a prominent role of this pathway (2) in SOCE.

According to the research group of Shmuel Muallem, the SOAR region of STIM

interacts separately with the coiled coil domains of either TRPCs or Orai. This in-

teraction allows STIM to interact electrostatically with TRPC1 and therefore gates

TRPC-mediated SOCE [152] [68]. The use of Orai mutants which allow interaction

with STIM but do not mediate Orai-induced SOCE would be an approach to distin-
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Figure 5.1: Four postulated SOCE signaling pathways. 1)STIM/Orai interac-
tion 2) Proposed TRPC-Orai interaction by Lutz Birnbaumer’s research group [71][73]
3) Proposed TRPC-STIM interaction by Shmuel Muallem’s research group [152] [68]
4) Indirect activation of TRPC channels by SOCE proposed by Attila Braun’s re-
search group in platelets [13]

guish between TRPC and Orai-mediated SOCE. However, primary cells are difficult

to transfect and an overexpression of these proteins does not represent the in-vivo

situation. The generation of so called ’knock-in’ mice expressing the Orai-mutants is

highly desirable but a technical difficult and time consuming approach. Therefore, we

used our experimental set-up to challenge their hypothesis. SOCE experiments with

PPASMCs after siRNA mediated down-regulation of Orai1/2/3 or with Orai1/2/3 de-

ficient PPASMCs in comparison to STIM1/2-deficient PPASMCs would be essential

to further investigate their hypothesis.

Thapsigargin-induced SOCE was slightly but significantly reduced in TRPC1/3/6 -/-

PPASMCs compared to wildtype cells (see figure 4.13 and pathway 4 in figure 5.1).

The knockout of both TRPC1/3/6 and STIM1/2 reduced SOCE not significantly

further than STIM1/2ΔSMC (see figure 4.13). These results exclude any prominent

role of pathway 2,3 and 4 in SOCE.

However, we did not investigate in our experimental setup if the Orai expression was
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affected by the TRPC1/3/6 knockout. Cheng et al. has reported that the TRPC1

expression was affected by Orai1 knockdown [14]. Therefore, TRPC1/3/6 knockout

mice might express reduced levels of Orai1/2/3 and consequently show decreased

SOCE. Future experiments with siRNA directed against Orai1/2/3 or Orai1/2/3ΔSMC

PPASMC in comparison to TRPC1/3/6 -/- PPASMC and STIM1/2ΔSMC will clarify

functionally if reduced SOCE in TRPC1/3/6 -/- PPASMC is due to altered expression

of Orai channels.

Our collaboration partner in Würzburg, Attila Braun, collected data for a fourth

signaling pathway in platelets. They demonstrated that thapsigargin-induced Orai

mediated SOCE activates phospholipase C (PLC) and phospholipase D (PLD). PLC

and PLD can in turn activate Ca2+ entry via heteromeric channels of TRPC1 with

TRPC3 and TRPC6 by the production of diacylglycerol (DAG) [13]. According to

them, PLC and PLD activity would be enhanced during thapsigargin-induced SOCE

in Wt but not in Orai-deficient platelets but could not result into TRPC 3 and 6

mediated Ca2+ entry because of the TRPC1/3/6 knockout in PPASMCs. Experi-

ments with siRNA directed against PLC and PLD in wildtype cells will demonstrate

if knockdown of these phospholipases reduces SOCE compared to wildtype cells.

Different from these research groups, we didn’t focus on the molecular setup and

the functional interaction of the TRPC/STIM/Orai but on Ca2+ entry in primary

cells of TRPC1/3/6 -/-, STIM1/2ΔSMC and STIM1/2ΔSMC/TRPC1/3/6 -/- mice and

Wt control mice. We are the first who are able to study TRPC-dependent SOCE in

PPASMCs from different gene-deficient mice. Previous authors implemented exper-

iments using transfected cell lines or TRPC inhibitors of unknown specificity. The

use of these gene-deficient mice is an important tool to further analyze the role of

TRPC1/3/6 channels and STIM1/2 proteins for ROCE and SOCE in lung cells.
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5.2 Role of SOCE in vasoconstriction, migration,

proliferation and lung edema formation

5.2.1 SOCE and NO-induced vasorelaxation and

vasoconstriction

We bred STIM1/2ΔEC and Orai1ΔEC mice as outlined in the methods section. Ex-

vivo lungs showed no morphological significant differences in size and distribution of

arterial vessels (see figure 4.17) in comparison to control mice. To analyze SOCE in

endothelial function, we isolated and identified endothelial cells from these mice and

control mice.

NO-mediated vasodilatation is initiated by the Ca2+-sensitive endothelial

NO-synthase [45]. Because SOCE is an important Ca2+ entry pathway in endothe-

lial cells [102] [94], we investigated how STIM1/2 and Orai1-deficiency contributes

to endothelium-induced vasodilatation. We have shown that endothelial-dependent

acetylcholine-induced vasodilatation did not differ in STIM1/2ΔEC and Orai1ΔEC mice

compared to Wt mice (see figure 4.18). Our results contrast Kassan et al. demon-

strating that STIM1ΔEC aortic rings after application of acetylcholine dilatated sig-

nificantly less than heterozygous STIM1ΔEC and wildtype aortic rings [61]. If an

endothelial STIM1 knockout results into less vasodilatation, we would have expected

an even stronger impaired dilatation in endothelial STIM1/2 double knockout. This

discrepancy may be due to much higher variation of our data compared to Kassan et

al. which detected significant differences between data points with very low variation.

The reason for high variations in vasorelaxation of up to 25% is not known, but might

be due to different sample preparation and handling. Existing differences in vasore-

laxation of gene-deficient aortic rings compared to control rings might be masked by

these variations. Using a SOCE protocol where internal stores where depleted by

phenylephrine and thapsigargin, the research group of Donald Gill concluded that

aortic rings from STIM1ΔSMC showed a reduced SOCE-mediated contraction [83].

Even though thapsigargin and cyclopiazonic acid, which empty internal Ca2+ stores,
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are cell permeable, it is not clear which concentration finally reaches the cytosol of

smooth muscle cells after passing the endothelial layer of the aorta and the contraction

after Ca2+ addition must not necessarily be due to SOCE. Due to these challenges,

we decided not to proceed and canceled experiments on the role of SOCE in vasocon-

striction by pulmonary arterial smooth muscle cells. The same was true for bronchial

rings analyzed in double heterozygous STIM/Orai and control mice (see figure 4.6).

To investigate boncho- or vasoconstriction with a myograph intact bronchial or vascu-

lar rings are a prerequisite. However, quality control from the tissue is difficult and can

only be carried out by KCl-mediated contraction and visual observation. Therefore,

we tried to quantify bronchoconstriction in an alternative precision cut lung slices

(PCLS) model (see figure 4.7). Even though first experiments were promising, we

faced several other difficulties. After seeking advice from PCLS experts, we realized

that the different response of bronchi resulted from the dichotomous branching of the

lung and only the main bronchus can be quantified. A further challenge was the time

of quantification because of constant oscillations of the bronchus. Because we were

originally interested in implementing a SOCE-induced constriction protocol, it was

necessary to exchange extracellular Ca2+ containing and Ca2+-free buffer. However

this was not possible without loosing the position of the bronchus of interest.

Furthermore, it is noteworthy that we used heterozygous mice for initial experiments

in which the STIM1 and Orai1 levels are downregulated only slightly similar to a

STIM1 protein reduction of 11,44%±2,652 in MPMVECs (see figure 4.16). Conse-

quently, we would have been able to detect only huge differences in constriction with

these heterozygous mice. Because only STIM1 but not STIM2 is downregulated in

these mice, STIM2 could also substitute the defect STIM1 protein. The exact role of

STIM2 is still debated [78].
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5.2.2 Reduced proliferation and migration in STIM1/2ΔEC and

Orai1ΔEC

Bovine aortic endothelial cells treated with SERCA-inhibitors have been reported

to migrate less. Removal of cyclopiazonic acid 6hs after scratch formation rescued

migration measured after 24hs [15]. These results suggest that SOCE plays an impor-

tant role during endothelial migration. In line with this hypothesis, we demonstrated

that STIM1/2ΔEC and Orai1ΔEC showed a significantly reduced migration compared

to VE-Cre endothelial cells 24hs and 48hs after gap formation (see figure 4.19).

Our result differs from that of Gandhirajan et al. showing that gap closure of

STIM1ΔEC was unaltered after 24h [39]. Futher investigation is needed to distinguish

if the reduced migration is a direct effect of reduced SOC-mediated Ca2+ entry or lower

internal Ca2+ store levels resulting from the SOCE defect. Ca2+ which triggers mi-

gration could also originate from the mitochondrium. Santhanam et al. have recently

shown that lack of STIM1 or Orai1 reduced MCU-mediated mitochondrial Ca2+-

uptake in DT40 lymphocytes [120]. Treatment of STIM1/2ΔEC and Orai1ΔEC with

the MCU inhibitor ruthenium red, a Na+/Ca2+ exchanger inhibitor and a SERCA

inhibitor in a scratch assay could show if Ca2+ originating from the internal stores or

from the extracellular space is responsible for the endothelial migration.

We assumed that similar to migration, proliferation of endothelial cells requires in-

tracellular Ca2+. Therefore, we investigated if proliferation of endothelial cells was

reduced in STIM1/2 and Orai1 deficient MPMVECs isolated from STIM1/2ΔEC and

Orai1ΔEC mice. The proliferation rate was assessed after 72h using carboxyfluores-

cein succinimidyl ester (CFSE), a dye which after incorporation in proteins, is passed

to the daughter generations and can be quantified by flow cytometry. STIM1/2ΔEC

displayed a reduced proliferation rate while proliferation rates of Orai1ΔEC were un-

changed (see figure 4.21). Our results for STIM1/2ΔEC are in line with Abdullaev et

al. but are in contrast to Orai1ΔEC. Abdullaev et al. transfected human umbilical

vein endothelial cells (HUVECs) with siRNA for 72 hrs and stained with trypan blue.

According to his results HUVECs transfected with siRNA specific for STIM 1/2 and
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Orai1 showed a reduced proliferation rate compared to control cells. Moreover, HU-

VECs transfected with siRNA specific for Orai proliferated even less than STIM 1/2

siRNA transfected cells. Different from our experiment for which we used murine

lung microvascular endothelial cells isolated from gene-deficient mice, Abdullaev et

al. used siRNA transfected primary human umbilical vein endothelial cells in which

the protein of interest is downregulated according to the efficiency of the siRNA but

not deleted completely.

Abdullaev et al. also employed a trypan blue exclusion assay. Trypan blue cannot

pass the cell membrane of intact, but of dead cells. An aliquot of the resuspended

cells has to be counted either manually or with a cell counter. In both cases only a

relatively small number of cells is counted and extrapolated to the entire population.

To be precise, trypan blue exclusion assay indicates the viability of cells and one of

the characteristics of viable cells are that they proliferate. In comparison to trypan

blue exclusion, the FACS measurement of CFSE is a more elegant method. During

cell division CFSE is passed from the mother to the daughter cell and thereby the

intensity of CFSE reduces. Subsequently, the intensity of CFSE is a direct marker of

proliferation and not an indirect marker such as trypan blue. Therefore we were able

to analyze 15 000 cells per sample. However as a result of the gene-deficiency during

early development other genes may compensate the lack of the proteins. Further

studies are need to exclude any compensation by up-regulation of related proteins.

Cytosolic Ca2+ is not only essential for migration but also for NO synthesis. In accor-

dance with the lower intracellular Ca2+ levels in STIM1/2 deficient endothelial cells,

the NO-synthase activity may be reduced. A dysfunctional eNOS produces superox-

ide instead of NO. ROS has been shown to trigger SOCE [39] which could stimulate

endothelial migration. Even though Gandhirajan et al. had demonstrated that the

cytosolic superoxide production and NOX levels were unaltered in STIM1ΔEC, we ob-

served enhanced mitochondrial superoxide levels in STIM1/2ΔEC and Orai1ΔEC (see

figure 4.20). Further studies are needed to evaluate if SOCE protects from mitochon-

drial superoxide production and if antioxidant scavenging enzymes are upregulated

in STIM1/2ΔEC and Orai1ΔEC.
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5.2.3 Reduced nuclear NFAT translocation in endothelial STIM1/2

or Orai1 KO mice and challenges to reproduce

endothelial permeability models

Dysfunctional endothelial cells, induced by bacterial LPS, allow fluid to leak into

the surrounding tissues which results into lung edema formation [99] [116]. Under

non-stimulated conditions, MLC phosphatase dephosphorylates the MLC and con-

sequently prevents opening of the tight junctions. After thrombin stimulation this

preventive mechanism is inhibited [99].

Thrombin stimulation induces stress fiber formation which can be quantified by stain-

ing of F-actin with fluorescence labeled phalloidin. We showed that phalloidin stain-

ing intensities of thrombin-stimulated STIM1+/-/Orai1+/- MPMVECs were reduced

compared to thrombin-stimulated wildtype MPMVECs (see figure 4.22).

The research group of Mohammed Trebak has previously shown that immortalized

HUVECs transfected transiently with siRNA specific for STIM1 were protected from

disruption of the endothelial barrier after stimulation with 100nM thrombin analyzed

by electrical cellular impedance sensing (ECIS). Transfection of HUVECs with Orai-

specfic siRNAs did not show any difference compared to control cells [121]. However,

we failed to establish an ECIS or permeability transwell assay which could have shown

if a SOCE defect in primary MPMVECs protects from endothelial barrier disruption.

The reason for this was the failure of primary MPMVECs to grow completely confluent

and to form tight junctions.

Gandhirajan et al. have shown that STIM1 is essential for NFAT-mediated transcrip-

tion of proinflammatory mediators. NFATc3-GFP transfected STIM1ΔEC translo-

cated significant lower amounts of NFATc3-GFP to the nucleus compared to control

MPMVECs expressing NFATc3-GFP. This was further confirmed by significantly re-

duced luciferase activity in STIM1KD MPMVECs compared to wildtype MPMVECs

[39]. Based on these findings the question arose if only STIM1 or both STIM iso-

forms, STIM1 and STIM2, or Orai attenuate the NFATc3 nuclear translocation. Thus,

MPMVECs were transfected with adenovirus encoding NFATc3-GFP for 36 hours,
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followed by LPS treatment for additional 16h [39]. According to our expectations, the

number of VE-Cre MPMVECs with nuclear translocation of NFATc3-GFP after LPS

stimulation was increased compared to unstimulated MPMVECs was increased and

this increase after LPS stimulation was abrogated in LPS-stimulated STIM1/2ΔEC

compared to unstimulated STIM1/2ΔEC and in LPS-stimulated Orai1ΔEC compared

to unstimulated Orai1ΔEC. The number of cells with NFATc3-GFP translocated to

nuclei was also significantly reduced in LPS-stimulated STIM1/2ΔEC compared to

LPS-stimulated Ve-Cre MPMVECs (see figure 4.23). Comparing our result to Gand-

hirajan et al., we did not observe a different number of NFATc3-GFP translocated

to nuclei in double STIM1/2ΔEC or Orai1ΔEC compared to the single STIM 1 ΔEC

analyzed [39].

5.3 The influence of mitochondrial Ca2+ uniporter

(MCU) and mitochondrial Ca2+ uniporter

regulator 1 (MCUR1) in endothelial cells on

mitochondrial bioenergetics

MCUR1 was identified as a positive regulator of the MCU complex through its in-

teraction with MCU [81]. We investigated the functional role of MCUR1 during

mitochondrial Ca2+ entry demonstrating that only a nominal mitochondrial Ca2+

uptake was observed in MCUR1ΔEC, MCUR1ΔMLF and MCUΔMLF (see figure 4.26

and 4.27) while the ΔΨ𝑚 was similar compared to cells from floxed or VE-Cre mice

(see figure 4.25). These results support our previous data demonstrating that both

MCU and MCUR1 are essential for the MCU-mediated Ca2+ uptake in a HeLa cell

line stably overexpressing MCUR1 [81]. Overexpressing MCUR1 HeLa cells showed

an enhanced histamine-stimulated mitochondrial Ca2+ uptake and this uptake was

abrogated after knockdown of MCU in the MCUR1 overexpressing cells. Vise versa,

overexpression of MCU elevated mitochondrial Ca2+ uptake in wildtype but not after
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down-regulation of MCUR1 [81].

Simultaneous recording of [Ca2+]m uptake and ΔΨ𝑚 discovered that both MCUΔEC

and MCUR1ΔEC failed to take up Ca2+ (see figure 4.29 and 4.28). Upon exposure to

excessive Ca2+, the VE-Cre cells exhibited a rapid ΔΨ𝑚 collapse due to mitochondrial

Ca2+ entry, which was not observed in MCUΔEC and MCUR1ΔEC MPMVECs (see

figure 4.29). Basal [Ca2+]m was reduced in in MCUΔEC and MCUR1ΔEC compared

to VE-Cre MPMVECs (see figure 4.28).

These results confirm our previous data showing that permeabilized MCUR1KD HeLa

or HEK293T cells display a reduced Ru360 (MCU blocker)- and CCCP (uncoupler)-

sensitive mitochondrial Ca2+ uptake after 10 µM Ca2+ pulses. Overexpression of

MCUR1 in HeLa cells rescued the mitochondrial Ca2+ uptake. Basal mitochon-

drial Ca2+ was reduced in HEK293T cells expressing downregulated levels of MCUR1

(MCUR1KD) indicated by the mitochondrial Ca2+ release after the addition of car-

bonyl cyanide 3-chlorophenylhydrazone (CCCP). Basal mitochondrial Ca2+ levels

were enhanced after rescue of MCUR1. Overexpression of MCUR1 in MCU knock-

down cells and vise versa demonstrated a requirement of both MCU and MCUR1 for

the mitochondrial Ca2+ uptake [81]. Luongo et al. reported that murine embryonic

fibroblasts isolated from floxed MCU mice, infected with adenoviral Cre-recombinase

(MCUΔMLF), showed nearly a complete loss of mitochondrial Ca2+ uptake after 5 µM

Ca2+ pulses [76].

Moreover, our group was able to characterize MCUR1 as MCU complex scaffold

factor. MCUR1 and MCU interact via their highly conserved coiled-coil domains. A

lack of MCUR1 resulted into defective MCU heterooligomeric complex assembly and

suppressed the IMCU current in isolated cardiac mitoplasts [132].

The impact of MCUR1 and MCU on the mitochondrial bioenergetics has not been

investigated yet in primary cells. Based on the finding that perturbed [Ca2+]m uptake

may lead to a cellular bioenergetic crisis [85] [120], we investigated ATP levels of

MCUΔEC and MCUR1ΔEC. ATP levels were reduced in both, but significant smaller

in MCUR1ΔEC than in MCUΔEC (see figure 4.30). These data confirm previous results

showing an enhanced AMP/ATP ratio, and therefore a reduced ATP production, in
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HeLa cells with downregulated expression levels of MCUR1 [81]. Our group further

examined whether agonist-induced [Ca2+]m uptake affects ATP levels in MCUR1ΔEC

and MCUΔEC. VE-Cre MPMVECs stimulated with the GPCR agonist thrombin

(500mU/ml) showed increased ATP levels compared to MCUR1ΔEC [132].

We next analyzed if reduced ATP levels resulted directly from decreased mitochon-

drial Ca2+ levels or from an impaired function of the respiratory chain complexes.

Oxygen consumption rate (OCR) measurements with the Clark electrode and the

XF-96 Extracellular Flux AnalyzerTm revealed an elevated complex I and II activity

in MCUΔEC (see figure 4.31) and an enhanced maximal respiration rate after addition

of the uncoupler FCCP in MCUΔEC and MCUR1ΔEC (see figure 4.33). But theses

results are in contrast to previous data showing that the basal OCR was reduced in

MCUR1KD HeLa but the maximal OCR after addition of FCCP was not significantly

different from control cells. The rescue of MCUR1 resulted into comparable maxi-

mal OCR levels compared to control cells [81]. However, the previous results were

obtained in a human cancer cell line while we used murine primary endothelial cells

now. Therefore, it has to be taken into account that different cellular properties may

influence the results.

The research group of T. Finkel showed that murine embryonic fibroblasts isolated

from MCU KOmice had a similar maximal OCR as wildtype fibroblasts after addition

of FCCP [93] and that hepatic mitochondria isolated from MCU KOmice treated with

complex I substrates glutamate and malate displayed similar levels of respiration as

wildtype mitochondria. The basal oxygen consumption of the MCU KO mice was not

altered. Serum lactate levels were elevated but not other TCA intermetabolites such

as succinate, malate, fumarate and citrate [93]. Proteins of mitochondrial oxidative

phosphorylation components were equally expressed in MCUR1ΔEC, MCUΔEC and

VE-Cre MPMVECs (see figure 4.32). Consequently, we conclude from our results,

that OCR is intact in MCUΔEC and MCUR1ΔEC.

The enhanced maximal respiration rate in MCUR1ΔEC and MCUΔEC could indicate

an utilization of the proton gradient that prevents ΔΨ𝑚 hyperpolarization. An un-

changed ΔΨ𝑚 in MCUR1ΔEC, MCUΔEC would support this hypothesis. Similar to
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us, Mallilankaraman et al. had shown that HeLa cells with down-regulated MCUR1

did not show an altered ΔΨ𝑚 compared to wildtype cells [81].

Dissipation of the proton gradient without involvement of the ATP-synthase is facili-

tated by uncoupling proteins (UCPs) or adenine nucleotide transporters (ANTs). H+

enters the matrix and consequently decreases ΔΨ𝑚 [63]. The proton gradient which

is not used for ATP production, would be used for heat generation by UCP proteins

instead. Therefore, UCP, especially its main isoform expressed in endothelial cells

UCP2 [127], could be responsible for the higher heat dissipation of MCUR1ΔEC mice.

According to our hypothesis, UCP2 protein levels were upregulated (see figure 4.35)

in MCUR1ΔEC. We therefore concluded that upregulation of UCP2 is a compen-

satory mechanism to MCUR1 deficiency and UCP2 fluxes protons to prevent ΔΨ𝑚

hyperpolarization.

However, other groups have presented data which argues against the role of UCP2

in uncoupling [66][119]. They suggest that UCP2 promotes a metabolic switch which

limits the contribution of glucose to OCR and promotes the oxidation of substitute

substrates such as glutamine and fatty acids [139]. We observed an elevated extra-

cellular acidification rate (ECAR) in in MCUΔEC and MCUR1ΔEC after addition of

oligomycin (see figure 4.34). Oligomycin inhibits mitochondrial ATP production and

therefore shifts metabolically the energy production to glycolysis [113]. From this re-

sult we could speculate that MCUR1ΔEC MPMVECs, in which UCP2 is upregulated,

depend more on glycolysis than MPMVECs with normal level of UCP2. Endothe-

lial cells mainly use glucose, fatty acids and glutamine as substrates and glucose for

glycolysis but not for oxidative phosphorylation even when oxygen is present [100].

Because of this substrate demand, MPMVECs were grown in our experiments in high

glucose medium containing 4.5 gml−1 glucose and 4mM glutamine. As an alternative

to this hypothesis MCUR1ΔEC MPMVECs, in which UCP2 is upregulated, might uti-

lize substrates which fuel complex I, pyruvate and maleate, or complex II substrate

succinate better as indicated by the enhanced OCR (see figure 4.31). We further ob-

served an AMP-kinase (AMPK) activation in MCUΔEC and MCUR1ΔEC which was

abrogated by a rescue of MCU and MCUR1(see figure 4.39). AMPK is activated dur-
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ing energy deprivation indicated by low ATP levels and induces catabolic pathways

[48].

A third approach, postulated by the Graier group, claims that UCP2 is involved in

[Ca2+]m uptake [140] [22] [7]. In a Nature cell biology paper, the Graier group has

demonstrated that UCP2 overexpression in the human endothelial cell line EA.hy926

significantly enhanced [Ca2+]m stimulation by histamine. SiRNA-mediated knock-

down of UCP2 reduced [Ca2+]m levels to levels in control cells [134]. However, their

results were controversially discussed by Matthijnssens et al. They criticized that

the observed higher [Ca2+]m levels were not due to mitochondrial Ca2+ uptake or

efflux mechanisms but rather due to a defective UCP2 protein expressed in abnormal

high levels. Alternatively, they suggest that UCP2 could mediate the Na+/Ca2+ or

H+/Ca2+ exchangers [84]. In 2013, Sancak et al. demonstrated the absence of a direct

interaction between UCP2 and MCU in a proteomic assay [110].

Recent studies on cardiac mitochondria isolated from UCP2-/- mice showed that the

Ru360 sensitive [Ca2+]m was significantly reduced. Measuring the Ru360 sensitive

current in cardiac mitoplast from UCP2-/- mice revealed a reduced channel activity

compared to control mitoplasts [88]. In 2015, the Graier group presented results

that overexpression of UCP2 enhanced the open probability of extralarge mitoplast

Ca2+ currents but did not result in an additional mitoplast Ca2+ current indicating

that UCP2 does not form a new Ca2+ channel itself. SiRNA-mediated knockdown of

UCP2 HeLa cells reduced the open probability of extralarge mitoplast Ca2+ currents

[7].

According to this hypothesis, UCP2 is upregulated in MCUR1ΔEC as a compensatory

mechanism to rescue [Ca2+]m-uptake. However, in our experiments, MCUR1ΔEC

showed only a nominal [Ca2+]m uptake after stimulation with ionomycin. Only ex-

periments with double knockout cells for MCUR1 and UCP2 will reveal if [Ca2+]m

uptake is abolished completely after stimulation by agonists.

Superoxide is mainly produced if oxygen is used prematurely during the electron

transport chain [47] [20]. It has been proposed that ROS promotes autophagy and

apoptosis [60]. Our group has previously demonstrated that loss of the negative MCU
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regulator MICU1 induces basal mitochondrial Ca2+ accumulation and increased mi-

tochondrial ROS production [82]. Intact OCR levels in MCUR1ΔEC and MCUΔEC

suggest that electron leakage does not occur more often than in control cells and

superoxide levels are expected to be unchanged. But also downregulation of several

proteins involved in the MCU-mediated mitochondrial Ca2+ uptake have demon-

strated to influence superoxide production [49] [82]. According to our expectation,

superoxide levels were not elevated in MCUR1ΔEC and MCUΔEC (see figure 4.36).

Presumably, due to reduced mitochondrial Ca2+ levels, basal superoxide formation

was even reduced in MCUR1ΔEC and MCUΔEC (see figure 4.36).

If UCP2 acts as an uncoupler, the UCP2 upregulation in MCUR1ΔEC may explain the

observed reduced ROS production. This hypothesis would be supported by Szewczyk

et al.[127] who has reported that high UCP2 levels protect from ROS overproduc-

tion. Teshima et al. reported that high UCP2 levels prevented from oxidative-

stress induced cell death. They added H2O2 to cardiomyocytes which increased the

fluorescence of the cellular oxidative stress marker DCF (2’,7’-dichlorofluorescein).

Cardiomyocytes stably overexpressing adenoviral UCP2 showed significantly reduced

DCF fluorescence levels after H2O2 stimulation [131].

Alternatively, MCUR1 and MCU deficiency might affect adenine nucleotide trans-

porters (ANT) expression. Besides UCP, ANT also dissipates the proton gradient

without involvement of the ATP-synthase [63]. Thus, it would be of interest if ANT

levels are upregulated in MCUR1ΔEC and MCUΔEC. Furthermore, silencing of UCP2

and ANT in MCUR1ΔEC and MCUΔEC may show if UCP2 and ANT or the lack

of Ca2+ is responsible for the low levels of superoxide production. Investigation of

antioxidant enzymes could highlight if ROS is produced but scavenged or if less ROS

is produced in MCUR1ΔEC and MCUΔEC. If Ca2+ is required for ANT activity is not

known.

Moderate levels of ROS have been proposed to be essential for cell proliferation and

migration [47]. In accordance with lower superoxide production and mitochondrial

Ca2+ uptake, we observed a reduced proliferation and migration in MCUR1ΔEC and

MCUΔEC (see figure 4.21 and 4.37). If upregulation of UCP2 has an effect on pro-
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liferation and migration in endothelial cells is not clear but UCP2 has been reported

to play a role in the Warburg effect describing the capability of fast-proliferating

cancer cells to switch their metabolism from oxidative phosphorylation to anaerobic

glycolysis [139]. Further investigation is needed on MCU1- and MCUR1-deficient en-

dothelial cells overexpressing UCP2 to reveal if they have an altered migration and

proliferation.

Low mitochondrial Ca2+ uptake and low cellular ATP levels in MCUR1ΔEC and

MCUΔEC activated AMPK and turned on autophagy, as indicated by enhanced

microtubule-associated protein light chain 3 (LC3) expression (see figure 4.39). The

elevated levels of phosphorylated AMPK and LC3 was abrogated after rescue of

MCUR1 and MCU (see figure 4.39). Our data obtained with murine primary en-

dothelial cells confirmed our previous results demonstrating enhanced phosphorylated

AMPK and LC3-II protein levels which were again normal after rescue of MCUR1

expression in the human MCUR1 KD HeLa cell line. This clearly demonstrates that

MCU and MCUR1 have an essential function during autophagy. However, we do not

know if autophagy is induced by the lack of Ca2+ uptake or the lack of MCUR1 and

MCU itself.

MacVicar et al. have already investigated the role of intracellular Ca2+ and MCU

in a Parkin-induced mitophagy model [77]. Parkin is an ubiquitin E3 ligase which is

recruited to depolarized mitochondria and induces mitochondrial autophagy, called

mitophagy. To deplete the cytosol from Ca2+, MacVicar et al. treated YFP-Parkin

expressing RPE1 cells with 10µM BAPTA-AM (a cell-permeant chelator, which is a

highly selective for Ca2+ over Mg2+) to buffer cytosolic Ca2+. BAPTA-AM blocked

CCCP-induced mitophagy dose dependently. Transient MCU or IP3R knockdown

of YFP-Parkin expressing RPE1 cells treated with 10 µM CCCP for 24hs showed

reduced mitophagy [77]. They conclude that an intact MCU-mediated Ca2+-uptake

would predispose cells to mitophagy and that reduced mitochondrial Ca2+ levels could

have an inhibitory effect on Parkin-mediated mitophagy.

These data clearly contrasts our result showing that a lack of MCU makes endothelial

cells more vulnerable to autophagy. However, one has to keep in mind that the
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CCCP they used for their experiments induces a collapse of the ΔΨ𝑚 and a reduced

mitochondrial Ca2+ uptake. Different from our autophagy model in murine primary

endothelial cells, they used a Parkin-induced mitophagy model in the human retinal

pigment epithelial cell line RPE1. Therefore, only a detailed further analysis will

reveal the role of Ca2+ and its downstream targets in autophagy pathways.
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Chapter 6

Appendix

6.1 Acronyms

ΔΨ𝑚 mitochondrial membrane potential.

acetyl-CoA acetyl coenzyme A.

AMPK AMP-activated protein kinase.

ANT adenine nucleotide transporters.

BH4 tetrahydrobiopterin.

CaMKK calmodulin-dependent protein kinase kinases.

CFSE 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester.

cGMP cyclic guanosine monophosphate.

CPA cyclopiazonic acid.

CRAC Ca2+ release-activated Ca2+ current.

DAG diacylglycerol.

ECAR extracellular acidification rate.

134



ECIS Electrical Cell-Substrate Impedance Sensing.

ECM extracellular medium.

eNOS endothelial NOS.

ER endoplasmatic reticulum.

ES embryonic stem.

FAD flavin adenine dinucleotide.

FMN flavin mononucleotide.

G𝑞PCR G𝑞 protein coupled receptor.

HDMECs human dermal microvascular endothelial cells.

HUVECs human umbilical vein endothelial cells.

ICAM1 intercellular adhesion molecule 1.

IMM inner mitochondrial membrane.

IP3 inositoltriphosphate.

IPAH idiopathic pulmonary arterial hypertension.

LC microtubule-associated protein light chain.

LPS lipopolysaccharide.

MCU mitochondrial Ca2+ uniporter.

MCUR1 mitochondrial Ca2+ uniporter regulator1.

MICU1 mitochondrial calcium uptake 1.

MLC myosin light chain.
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MLCK myosin light chain kinase.

MLF murine lung fibroblasts.

MPMVEC mouse pulmonary microvascular endothelial cells.

Myh11 myosin heavy chain 11.

NADH nicotinamide adenine dinucleotide.

NADPH nicotinamide adenine dinucleotide phosphate.

NFAT nuclear factor of activated T-cells.

NOS nitrite oxide synthase.

NOX NADPH oxidase.

OCR oxygen consumption rate.

PA phosphatidic acid.

PAH pulmonary arterial hypertension.

PAP phosphatidic acid phosphohydrolase.

PCLS precision cut lung slices.

PIP2 phosphatidylinositol 4,5-bisphosphate.

PLC phospholipase C.

PLD phospholipase D.

PPASMC precapillary pulmonary arterial smooth muscle cells.

PTP permeability transition pore.

Rho–GEF guanine nucleotide exchange factor.
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ROC receptor operated Ca2+.

ROS reactive oxygen species.

SCID severe combined immunodeficiency.

Ser serine.

SERCA sarcoplasmic/endoplasmic reticulum ATPase.

SOAR STIM-Orai activating region.

SOC store-operated Ca2+.

STIM stromal interaction molecule.

tBH3 trihydrobiopterin.

TCA tricarboxylic acid cycle.

TLR4 Toll-like receptor4.

TMRM tetramethyl rhodamine methyl ester.

TRP transient receptor potential.

TRPC classical transient receptor potential.

TSMC tracheal smooth muscle cells.

UCP uncoupling proteins.

VCAM1 vascular cell-adhesion molecule 1.

VEGF vascular endothelial growth factor.
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