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Zusammenfassung

Die klassische kohomologische Brauergruppe Br(X) = H%(X,G,,) eines glatten Sche-
mas X steht in Verbindung mit vielen tiefergehenden Fragen in der algebraischen
Geometrie. So stellt sie beispielsweise eine Obstruktion zur Tate-Vermutung fiir X
in Kodimension 1 dar und hiangt mit dem Verhalten der Zeta-Funktion von X bei 1
zusammen. Des Weiteren kann der Fehler des Hasse-Prinzips in manchen Fallen mit
Hilfe der Brauergruppe erkldrt werden. Es ist daher von Interesse, Br(X) tatsdchlich
berechnen zu konnen. Colliot-Théléne and Skorobogatov zeigten, dass fiir eine glatte
projektive und geometrisch integrale Varietdt X {iber einem Korper k der Charakteris-
tik 0 der Kokern der natiirlichen Abbildung Br(X) — Br(X)% endlich ist.

Die von Bloch konstruierten Zykelkomplexe definieren Komplexe Zx (1) étaler Gar-
ben auf X und erlauben es, “hohere” Brauergruppen Br'(X) := HZ (X, Zx(r)) zu
definieren. Da Br(X) und Br!(X) isomorph sind, kénnen diese Gruppen Br’(X) als
natiirliche Verallgemeinerung der klassischen Brauergruppe betrachtet werden.

In dieser Dissertation verallgemeinern wir unter einigen weiteren Annahmen das
Resultat von Colliot-Théléne und Skorobogatov auf Br?(X) und zeigen: Sei X eine
glatte, projektive und geometrisch irreduzible Varietit von Dimension hochstens vier
tiber einem Korper k von Charakteristik 0 und kohomologischer Dimension hochstens
2. Ist dann die dritte Betti-Zahl von X gleich 0 und H% (X, Z,(2)) torsionsfrei fiir
jede Primzahl ¢ (dquivalent H%(XC,Z(Z))torS = 0), so ist der Kokern der natiirlichen
Abbildung Br?(X) — Br?(X)C endlich.



Abstract

The classical cohomological Brauer group Br(X) = HZ(X,G,,) of a smooth scheme
X is related to many deep questions in algebraic geometry. For example, it yields
an obstruction to the Tate conjecture for X in codimension 1 and it is related to the
behaviour of the zeta function of X at 1. Furthermore, in some cases, the failure of the
local-global Hasse principle can be explained in terms of the Brauer group. Therefore
it becomes an interesting question to attempt to actually compute Br(X). Colliot-
Thélene and Skorobogatov showed that for a smooth, projective and geometrically
integral variety X over a field k of characteristic 0 the cokernel of the natural map
Br(X) — Br(X)C* is finite.

The cycle complexes constructed by Bloch define complexes Zx (r) of étale sheaves
on X which allow one to define ‘higher’ Brauer groups Br'(X) := HZ (X, Zx(r)).
Since Br!(X) and Br(X) are isomorphic, these groups Br’(X) can be seen as a natural
generalisation of the classical Brauer groups.

In this dissertation we generalise the result of Colliot-Thélene and Skorobogatov
to Br?(X) under some additional assumptions, i.e. we show: Let X be a smooth,
projective and geometrically irreducible variety of dimension at most 4 over a field k of
characteristic 0 and cohomological dimension at most 2. If the third Betti number of X
is 0 and H}, (X, Z,(2)) is torsion free for every prime ¢ (equivalently Hy (X¢, Z(2) )iors =
0), then the cokernel of the natural map Br?(X) — Br?(X)Ck is finite.



1. Introduction

The classical cohomological Brauer group Br(X) = HZ(X,G,,) of a regular scheme X
plays an important role in several areas of algebraic geometry. For example, it is related
to the behaviour of the zeta function of X at 1 and it yields an obstruction to the Tate
conjecture for X in codimension 1, if X is a surface over a finite field. Furthermore, the
Brauer group Br(X) gives an obstruction to the Hasse principle for X over a number
tield and in many cases this obstruction completely explains the failure of the Hasse
principle. These roles of the Brauer group as an obstruction motivate the attempt to
actually calculate the group Br(X), or at least to understand its structure.

For regular integral schemes Br(X) is known to be a torsion group and to be a bira-
tional invariant in characteristic zero; however, explicit computations are only known
in a few very special cases. One approach to study the Brauer group of a scheme X
over a field k is to consider the map which is induced by base change to an algebraic
closure k of k. This yields a natural map & : Br(X) — Br(X) whose image is con-
tained in the subgroup of Galois invariants. About this map a Colliot-Thélene and
Skorobogatov showed the following;:

1.0.1 Theorem (Colliot-Thélene and Skorobogatov, [CTS11, Theorem 2.1])
Let X be a smooth, projective and geometrically integral variety over a field k of characteristic
zero with absolute Galois group Gy. Then the cokernel of a : Br(X) — Br(X)C is finite.

To prove this result, Colliot-Thélene and Skorobogatov use that the above map «
arises as an edge map in the complex Br(X) — Br(X)% — H?(Gy, Pic(X)) induced
by the Hochschild-Serre spectral sequence H? (G, HY, (X, Gy)) = Hgt+q(X,Gm). Un-
der the given assumptions, this complex is exact and one can study the cokernel of
the first map via the image of the second map. They show further that for every
smooth, projective, geometrically integral curve C over k and each morphism C — X
the image of the second map Br(X)% — H?(Gy, Pic(X)) is contained in the kernel of
H?(Gy, Pic(X)) — H?(Gy, Pic(C)), and furthermore, that the kernel of the composition
H?(Gy, Pic®(X)) — H?(Gg, Pic(X)) — H?(Gy, Pic(C)) has finite exponent. This makes
use of the fact that Pic’(X) is an abelian variety and therefore one can use geometric
arguments like the Poincaré reducibility theorem. Colliot-Thélene and Skorobogatov
show in fact that the cokernel of Br(X) — Br(X)® has finite exponent, which implies
by a formal argument that it is finite.
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Lichtenbaum conjectured that there should be a bounded complex I'(n) of étale
sheaves satisfying certain properties whose hypercohomology groups generalise the
relation between the Brauer group and the behaviour of the zeta function at 1 to
arbitrary positive integers n > 1; in fact, these groups should define motivic co-
homology. Bloch’s cycle complex Zx(n), considered as an (unbounded) complex
of étale sheaves on X, is conjectured to be quasi-isomorphic to the complex I'(n)
described by Lichtenbaum. Therefore we refer to the hypercohomology groups of
Zyx(n) as Lichtenbaum cohomology; in particular Br"(X) := H%'"(X,Zx(n)) and
CHJ (X) := H%'(X,Zx(n)) define the higher Brauer and Lichtenbaum-Chow groups
respectively. These higher Brauer groups have many properties which are analogous to
the properties of the classical Brauer group. For instance, Br" (X) yields an obstruction
to the Tate conjecture for X in codimension .

In this dissertation we prove, under some additional assumptions, a generalisation
of Theorem 1.0.1 to the higher Brauer group Br?(X). Our main result is:

1.0.2 Theorem

Let X be a smooth, projective, geometrically irreducible variety of dimension at most 4 over a
field k of characteristic zero with absolute Galois group Gy. Assume further that k has cohomo-
logical dimension < 2, the third Betti-number bz of X is zero and that the group Ha (X, Z(2))
is torsion free for every prime £. Then the cokernel of the map Br?(X) — Br?(X)Ck is finite.

To prove this result we first show that there is a Hochschild-Serre type of spec-
tral sequence for Lichtenbaum cohomology groups, generalising the Hochschild-Serre
spectral sequence for G,;. Such a spectral sequence has been used without proof,
for example, in [KN14]; however to our knowledge there is no proof of its existence
in the literature. This spectral sequence yields a complex analogous to the complex
considered by Colliot-Thélene and Skorobogatov. However, in our setting we cannot
follow their arguments since in weight 2 the Picard variety Pic’(X) is replaced by the
group CH? (X)pom, which is not the group of k-points of an abelian variety. Instead we
use structure theorems for Lichtenbaum cohomology. Our assumptions on the third
Betti number and the torsion in H% (X, Z,(2)) imply that the groups CH (X)pom are
uniquely divisible; we remark that these assumptions are satisfied by many varieties,
including examples, where the structure of algebraic cycles is known to be highly non-
trivial, such as a product of two K3 surfaces. We use the assumption dim(X) < 4 to en-
sure that homological and numerical equivalence on X agree. Finally, the assumption
on the field is of a rather technical nature, it simplifies the underlying Hochschild-Serre
spectral sequence.



Notations

Let G be an abelian group. For each integer a € Z let G[a] be the a-torsion subgroup
of G, i.e. the kernel of the multiplication map m, : G — G by a. The torsion subgroup
Giors C G is defined to be the union Giors := |, Gla]. Moreover we set Ggee := G/ Giors.
For a prime ¢ we write G{/} := ,cn G[¢"] for the /-primary torsion subgroup of G.

A subgroup H C G is said to be divisible, if for each & € H and each positive integer
a there is an element 1’ € H such that ah’ = §; if this I’ is unique, the subgroup H is
called uniquely divisible. We denote by Gg;, the maximal divisible subgroup of G.

If k is a field, we write k for an algebraic closure and ksep for a separable closure of
k; the absolute Galois group Gal(ksep /k) of k is denoted by Gy. If X is a scheme over k,

we set X := X xik.
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2. Brauer groups

We define the classical cohomological Brauer group Br(X) of a scheme X and describe
some of its basic properties. In particular, we present Grothendieck’s computation of
the Brauer group for a smooth projective variety X over an algebraically closed field
of characteristic zero, and explain how the Brauer group yields an obstruction to the
Hasse local-global principle, as well as to the Tate conjecture for divisors.

2.1. Brauer groups

Let X be a scheme. Recall that the étale sheaf G, on X is given by G,,(U) = T'(U, Oy)*;
its cohomology in degree 2 yields the classical cohomological Brauer group of X:

2.1.1 Definition
Let X be a scheme. The (cohomological) Brauer group of X is defined as the étale
cohomology group Br(X) := H%(X,G).

We remark that there is also the notion of the algebraic Brauer group Bra,(X) defined
as the set of equivalence classes of Azumaya algebras over X, which is a direct gener-
alisation of the Brauer group of a field, see, for example, [Bou58, §10 no. 4]. We will
sketch how Bry,(X) is related to the cohomological Brauer group Br(X); for a detailed
exposition of this and the construction of Bra,(X), we refer to [Mil80, chapter IV].

Let X be a scheme. The algebraic Brauer group Bra,(X) can be considered as a sub-
group of the cohomological Brauer group Br(X). More precisely, there is a canonical
monomorphism [Mil80, Theorem IV.2.5]

Bra,(X) < Br(X), 1)

which is an isomorphism in many cases. For example, Grothendieck [Gro68a, Corol-
laire 2.2] showed that if X is noetherian of dimension < 1, or regular and noetherian
of dimension < 2, then the two groups Bra,(X) and Br(X) are isomorphic.

More recently, it was shown by Gabber and de Jong that if X has an ample invertible
sheaf, thus is quasi-compact and separated, then the algebraic Brauer group Bra,(X)
is isomorphic to the torsion subgroup of the cohomological Brauer group Br(X) [d]J03].
In particular the monomorphism (1) cannot be surjective, if Br(X) is not a torsion



6 2. Brauer groups

group; for an example of such a singular scheme, see [Gro68a, Remarques 1.11 b)]. On
the other hand, if X is a regular integral scheme, then Br(X) is torsion (this follows
from [Mil80, Corollary IV.2.6]) and the result of Gabber and de Jong shows that for a
quasi-projective regular integral scheme over a field, we always have Bry,(X) = Br(X).

As a second important result we remark that if X is a regular noetherian scheme,
then Br(X) is an birational invariant in characteristic zero, and for dim(X) < 2 in any
characteristic [Gro68b, Corollaires 7.2, 7.3].

In general computing Brauer groups is a difficult problem. One of the most impor-
tant methods in this context is Kummer theory, which we will briefly discuss now: Let
a be an integer, which is invertible in Oy, and let y, be the sheaf of a-th roots of unity
on Xy, i.e. pua(U) is the group of a-th roots of unity in I'(U, Ox); obviously yu, is a
subsheaf of G;;. We have the exact Kummer sequence of étale sheaves

1= =G5 Gyp—1,

where the map e, : G;, — Gy is given by e,(U) : u — u®. Since the cohomology of G,
in degree 1 is isomorphic to the Picard group Pic(X) of X, we get from the Kummer
sequence the following long exact sequence of cohomology groups

oo = Hy (X, Gp) 5 Pic(X) = HE(X, pa) = Hi(X, G) = HA(X, G) — ...
Since, by definition Br(X) = H% (X, G,), this yields the short exact Kummer sequence
0 — Pic(X)/a — H% (X, ua) — Br(X)[a] — 0. 2)

If X is a non-singular quasi-projective variety over a field, we can identify the Picard

group Pic(X) in the above sequence with the Chow group CH'(X) of codimension 1
cycles (cf. [Har77, A.2]).

Using these Kummer sequences, Grothendieck has computed the Brauer group of a
smooth projective variety over an algebraically closed field of characteristic zero:

2.1.2 Example (Grothendieck, [Gro68b, section 8.])

Let X be a smooth projective variety over an algebraically field of characteristic zero;
let p be the rank of the Neron-Severi group NS(X), let b, be the second Betti number of
X, and let £ be a prime. Since over an algebraically closed field the group of points on
an abelian variety is divisible, we have Pic(X)/¢" = NS(X)/¢". Thus the short exact
Kummer sequence (2) for a = ¢" has the form

0 — NS(X) /0" — HZ(X, pin) — Br(X)[£"] — 0.

Passing to the projective limit over all  yields the short exact sequence

0 — NS(X)®Z, — H%(X,Z,(1)) — T;Br(X) — 0, (3)
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where Ty Br(X) = lim Br(X)[¢"] is the Tate module of Br(X). Since the Tate mod-
ule T, Br(X) is torsion free, we obtain from (3) an isomorphism (NS(X) ® Zy)tors =
H2(X, Z¢(1))tors, and the exact sequence of finitely generated free Z,-modules

0— (NS(X) ® Zﬁ)free — Hgt(X, Zﬁ(l))free — Ty BI‘(X) — 0. (4)

Grothendieck [Gro68b, 8.1] shows that the maximal divisible subgroup Br(X){/¢} 4y of
Br(X){/¢} is isomorphic to (T;Br(X)) ® Q;/Z; thus tensoring the exact sequence (4)
with Q;/Z, and taking the direct sum over all primes ¢ yield the exact sequence

0— NS(X)free ®Q/Z — Dy (Hgt(xr Zﬁ(l))free ®Zl QE/Z€> — Br(X)div —0

and an isomorphism Br(X )4y = (Q/Z)" . Moreover, the non-divisible part of Br(X)
can be described using the fact that Pic(X) ® Q,/Z;, is divisible; it follows from (2) that

Br(X)/ Br(X)giw = @y (H?t(X, Zg(l))tors> , in other words, we have an exact sequence

0= (Q/2)™* — Br(X) = & (HA(X,Z¢(1))ors) — 0.

In particular, the Brauer group Br(X) of such a variety X is of finite cotype, and Br(X)
is finite if and only if p = b;.

2.2. Brauer-Manin obstructions and Tate’s conjecture

The task of finding solutions in Q or Z of a finite system of polynomial equations

f1(X1,...,Xu) =0

fn(Xq,...,Xn) =0 (5)

with coefficients in Z is known as a Diophantine problem. In 1900 Hilbert asked as
one of his famous 23 problems if there exists an algorithm deciding whether or not a
given Diophantine equation has a solution in the ring of integers. Although in 1970
a negative answer to this question was given by Matiyasevich [Mat70], one may still
ask if the problem is more accessible with respect to rational solutions, i.e. finding
Q-rational points of the variety given by the system (5).

More generally, the question whether a variety X defined over a number field k has
a k-rational point is one of the fundamental question of arithmetic geometry. Let S be
the set of places of k, including the archimedean ones. An obvious necessary condition
for X(k) to be non-empty is that X has for every v € S a point over the completion k.
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Conversely let C be a class of varieties of k. Then the class C is said to satisfy the Hasse
principle, if for every X in C the following converse holds:

X has a ky-rational point for every v € S = X has a k-rational point.

This local-global principle is of importance, since it can be decided in a finite number
of steps, if for a given variety X the set of k,-rational points is empty. Hasse [Has24]
showed that the class of quadratic forms over a number field satisfies this principle;
however he was aware that there are classes of varieties which fail to satisfy the Hasse
principle. A very simple counterexample is due the Selmer, who proved that the equa-
tion 3X§f + 4X§ + 5X§ = 0 has solutions over R and over each completion Q, of Q, but
it has no solution in the rational numbers.

Studying the known counterexamples to the Hasse-principle, Manin [Man71] found
that these counterexamples can be explained by an obstruction which is given by the
Brauer group of the variety. These obstructions, which will discuss next, are now
known as Brauer-Manin obstructions; we mainly follow [Poo08]:

Let k be a number field, S the set of all places of k and Ay be its adéle ring, i.e.

A = {(xv)v € H ky | xy € Oy for almost all ZJ} X H k.

vES,vfoo v€ES, V|00

Given a k-variety X, the adelic space X(Ay) of X is defined by the subset of [T, X(k;)
consisting of those (x;), such that x, € X(O,) for almost all v. Every k-rational point
x € X(k) corresponds to a morphism x : Spec(k) — X, which induces a morphism on
Brauer groups Br(X) = Br(k); we call the image of A € Br(X) under this morphism
A(x). In particular, for a fixed A € Br(X) we get a morphism ev, : X(k) — Br(k) by
sending x € X(k) to Br(X) = Br(k), followed by evaluation of this morphism at A;
analogously we have a morphism ev4 : X(Ay) — Br(Ay). These morphisms fit into the
commutative diagram

X(k) ——— X(Ag)

E’UAB

Br(k) —— Br(Ag).

evp

(6)

Let X(Ay)” be the set of elements in X(Aj) whose images under ev4 in Br(Ay) lie in
the image of the map Br(k) — Br(Ay). The Brauer set of X is defined as the intersection

X(A)EX = N X(A)”
A€Br(X)
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Note that because of the commutative diagram (6), every X(A;)* contains the set of
Br(X)

k-points X (k); in particular, we have an inclusion X(k) C X(Ay) .

2.2.1 Definition

Let k be a number field, let Ay be its adéle ring and let X be a k-variety. Then there is
a Brauer-Manin obstruction to the Hasse principle, if X(A;) # @ but X(A)BX) = @,

Because of the inclusion X(k) € X(Aj)PX), the existence of a Brauer-Manin ob-
struction implies that X(k) = @. Of course this obstruction is only useful, if one can
describe the image of the map Br(k) — Br(Ay), and the obstruction is non-trivial, only
if Br(k) — Br(Ag) is not surjective. We will briefly discuss these issues:

We first recall some facts about the Brauer groups Br(k) and Br(k,) for v € S. The
local Brauer groups Br(k,) can be described using class field theory [CF67, chapter VI];
more precisely we have the following isomorphisms

Q/7, ifvtoo
inv, : Br(ky) = (%Z) /Z if k, = R
0 if k, =C,

which are called local invariants. Setting inv = ), inv, we obtain an exact sequence

inv

0 — Br(k) — @, Br(k,) — Q/Z — 0.

Now we fix a number field k and an element A € Br(X).

2.2.2 Proposition
Let (xy) be in X(Ag). Then A(xy) = 0 for all but finitely many v € S.

Proof. [Poo08, Proposition 8.2.1] There is a finite set of places S’ such that X can be
spread out to a finite-type Oy g-scheme X’ and A can be spread out to an element
A’ € Br(X'). Moreover we can assume that x, € X'(O,) for each v € S’. Then
A(xy) comes from an element A’(x;,) € Br(O,); but this group vanishes since there is
an isomorphism Br(O,) = Br(O,/mp,), and the latter group vanishes as the Brauer
group of a finite field [Ser79, p. 162 Example a)]. O

It follows that A induces a map X(Ax) — Q/Z, (x,) — inv(A(xy)), which fits into
the following commutative diagram whose bottom row is the short exact sequence
coming from class field theory
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0 —— Br(k) SoBr(ky) —~— Q/Z —— 0

In particular, for x € X(k) C X(Ay), we have inv(A(x)) = 0, which implies that

X(Ap)" = {(x0) € X(Ay) | inv(A(x)) = 0}

In some cases these obstructions can be computed explicitly. To this end, we have to
specify the algebraic and the transcendental part of the Brauer group. Let X = X x k
and let Br(X) — Br(X)% be the natural map induced by base change.

2.2.3 Definition

Let X be a smooth quasi-projective variety over a field k. Then the kernel (resp. im-
age) of the map Br(X) — Br(X)C is the algebraic Brauer group Br(X)ag (resp. the
transcendental Brauer group Br(X)).

Accordingly, we can define the algebraic and transcendental part of the Brauer set

X (AP = {(x,) € X(Ay) | inv(A(X)) = 0 for all A € Br(X)ag},
X(A)F X = {(x,) € X(Ag) | inv(A(X)) =0 for all A € Br(X)g}

and we refer to Brauer-Manin obstructions from one of these sets as algebraic and
transcendental Brauer-Manin obstructions respectively.

Since elements in Br(X) are in general more difficult to exhibit than elements in
Br(X),15, most examples of explicit Brauer-Manin obstructions are given by algebraic
elements. Kresch and Tschinkel [KT08] have shown that there is a general procedure
for computing the Brauer-Manin obstruction for a smooth projective geometrically ir-

reducible variety X, assuming that Br(X) is trivial, i.e. that there are only algebraic
Brauer-Manin obstructions, and under the assumption that Pic(X) is finitely gener-
ated, torsion free and known explicitly by means of cycle representatives with an ex-
plicit Galois action; these assumptions hold, for example, for del Pezzo surfaces. For
explicit examples of transcendental Brauer-Manin obstructions, using conic bundles

over Pé, see Harari [Har96].

When Manin defined the Brauer-Manin obstructions, all counterexamples to the
Hasse principle could be explained using these obstructions. So one could ask if the
Brauer-Manin obstruction is the only obstruction, i.e. if the following implication

X(A)P # @ = X(k) # @
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holds. Unfortunately, the answer to this question is no. Skorobogatov [Sko99] gave
examples of smooth proper surfaces S over Q, which do not satisty the Hasse princi-
ple but for which the Manin obstruction can not explain this failure; in particular he
shows that S(Q) = @, but S(A;)P"(5) £ @. Such surfaces are constructed as a quo-
tient of two curves of genus 1 by a certain involution. In his paper he could construct
a refinement of the Brauer-Manin obstruction using descent theory, which is the only
obstruction to the Hasse principle for this family of surfaces. However, there is another
counterexample to the Hasse principle due to Sarnak and Wang [SW95], who showed
that the Brauer-Manin obstruction is not the only obstruction to the Hasse principle for
smooth hypersurfaces of degree 1130 in I[’f’é, assuming that X(Q) is finite if X¢ is hy-
perbolic. This example can not be explained by the refined Brauer-Manin obstruction
of Skorobogatov.

On the other hand, it is known that for certain classes of varieties the Brauer-Manin
obstruction is in fact the only obstruction. The following examples involve the Tate-
Shafarevich group of an abelian variety A over a number field k, i.e. the abelian group

II(A) = TII(A,k) := () ker (Hl(k,A) — Hl(kv,A)> .

2.2.4 Proposition ([Sko01, Corollary 6.2.5])

Let C be a smooth proper curve defined over k with Jacobian | and suppose that the Tate-
Shafarevich group 1I1(]) is finite. If C has no k-rational divisor class of degree 1, then the
Brauer-Manin obstruction is the only obstruction to the Hasse principle.

Specifying the genus of C we have:

2.2.5 Proposition ([Sko01, p. 114])
Let C be a smooth proper curve of genus 1 over k with Jacobian | and suppose that TII(]) is
finite. Then the Brauer-Manin obstruction is the only obstruction to the Hasse principle.

The Brauer group of a variety Brauer also plays an important role in another part
of algebraic and arithmetic geometry, because it provides an obstruction for the Tate
conjecture to hold. We will sketch how Tate was led to state his conjecture and we will
explain the relation between the Tate conjecture and Brauer groups. We will follow the
expositions in [Tat65], [Tat66b], [Tat94] and [Gor79].

Let A be an abelian variety over a number field k, and let S be a finite set of primes
of k containing those primes at which A has bad reduction as well as the archimedean
primes. Let d = dim(A). Then the reduction A, of A at v ¢ S is an abelian variety
of the same dimension d over the residue field k(v). For every v ¢ S there exists a

polynomial P, (A, T) = H?il (1 —w;,T) with integral coefficients such that the «; , have
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absolute value |k(v)| 2; we denote the value |k(v)| by Np. Consider the Euler product

1
Ls(As) =T~
) Sy

It is known that Ls(A4,s) is convergent for Re(s) > 3. It is not known if this Euler
product can be continued to an analytic function outside the half-plane Re(s) > % but
it is conjectured that it has an analytic continuation to the whole complex plane; this
has been proven, for example, for elliptic curves over Q, as a consequence of the Mod-
ularity Theorem [BCDTO01]. Based on a large set of empirical data for elliptic curves
(cf. [BSD63] and [BSD65]) Birch and Swinnerton-Dyer stated a conjecture relating the
multiplicity of the zero of Lg(A,s) ats = 1 to the rank of the finitely generated abelian
group of k-points of the elliptic curve. We state this conjecture in its more general form

for abelian varieties as in [Tat66b, p. 416]:

2.2.6 Conjecture
Let A be an abelian variety over a number field k. Then the function Lg(A,s) has a zero of
order r = rk(A(k)) at s = 1.

Conjecture 2.2.6 implies in particular the existence of a constant ¢ € C such that
Ls(s) ~ c(s—1)" as s — 1; however, this ¢ depends on the choice of S, whereas
the rank of A(k) does obviously not. So the next natural step is a more profound
investigation of the constant c.

For each prime v let y, be a Haar measure on k;, such that for almost all v the ring of
integers O, has measure 1 and let | - |, be the normed absolute valuation on k, given
by v. The product [, yv gives a measure |u| on the compact quotient of the adéle ring
Ay of k by the subfield k. Further, let w be a non-zero invariant exterior differential
form of degree d on A over k; then y, and w define a Haar measure |w|,u% on A(ky).
Finally, we call a non-archimedean prime v good, if y,(Oy) = 1 and w is regular with
respect to v and has non-zero reduction at v.

For a finite set S containing all not good primes and all primes where A has degen-
erate reduction, Birch and Swinnerton-Dyer defined the L-series by the formula

d
Li(A,s) = 'P‘J —
Moes (Sag) ©lond) Togs (Po(N:)

Using a method due to Tamagawa, Birch and Swinnerton-Dyer showed that the
asymptotic behaviour for s — 1 is independent of the choice of the set S. This yields a
refinement of Conjecture 2.2.6 as follows. Let AV be the dual of the abelian variety A;
since A and A" are isogenous over k, the groups A(k) and A" (k) have the same rank.
In particular there are bases ay, ..., 4, resp. ay,...,aY of A(k)gee resp. AV (k)gee Of the
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same length. We write (,) for the canonical height pairing on abelian varieties, and
II(A) for the Tate-Shafarevich group of A. Then the refined conjecture of Birch and
Swinnerton-Dyer ([Tat66b, p. 419]) takes the following form:

2.2.7 Conjecture
Let A and S be as above. Then

[II(A)|| det({a, aj))]|
|[1(k)tors||/ix/(k)tors|

LS(A,s) ~ (s—1)" ass—1.

In particular, Conjecture 2.2.7 also assumes that the Tate-Shafarevich group III(A) is
finite. Whereas it is known that III(A) is a torsion group whose p-primary part is of
finite corank for each prime p, the finiteness of III(A) has been shown only in a few
cases such as for some elliptic curves over number fields by Rubin [Rub87] or for a
certain class of modular abelian varieties over Q with real multiplication by Kolyvagin
and Logachev [KL89].

Artin realised that there is a relation between the Tate-Shafarevich and the Brauer
group in the sense that the finiteness of I1I is in some cases equivalent to the finiteness
of the Brauer group. In the following we will sketch this relation and describe how
Artin and Tate were led to conjecture a geometric analogue of Conjecture 2.2.7.

Let C be a irreducible smooth curve over a perfect field k. We denote by k(C) the
tield of rational functions on C and by C° the set of closed points on C; for y € C°
let k(C), be the completion of k(C) with respect to the valuation given by y. As a
generalisation of the Tate-Shafarevich group defined above, we define for an abelian
variety A over k(C)

1(C,A) := ) (Hl(k(C),A) —>H1(k(C)y,A)>.
yecCe

The link between this type of Tate-Shafarevich group and Brauer groups is provided
by the following proposition due to Artin:

2.2.8 Proposition ([Gro68b, no. 4])

Let C be as above, let X be a regular surface and let f : X — C be a proper morphism with fiber
dimension 1. Suppose the generic fiber X, is smooth and that the geometric fibres are connected.
If Jac(Xy) is the Jacobian of the generic fibre, and if f admits a section, then there is an exact
sequence

0 — Br(C) — Br(X) — HI(C,Jac(X;)) — 0.
Moreover if C is a complete curve, then Br(C) = 0, and therefore Br(X) = II(C, Jac(Xj)).

Moreover if C is an irreducible algebraic curve over a finite field IF; and A is an
abelian variety over IF;(C), the group III(A) of Conjecture 2.2.7 is equal to III(C, A)
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and following the well-known analogy between number fields and function fields in
one variable, it makes sense to state a variant of Conjecture 2.2.7 for A over IF,(C).

The next step involves zeta functions, we briefly recall the notations: Let X be a
scheme of finite type over Z. For x € X let N, be the number of elements in the
residue field k(x), thus for a closed point x € X°, the number Ny is finite. Then the
zeta function of X is defined to be

(X,s) = ] —

_s'
xexo 1 - Nx

The zeta function converges absolutely if the real part of s is greater than the dimension

of X and it has an analytic continuation in the complex half-plane where the real part

of s is greater than dim(X) — 1.

Let now X be a smooth projective variety over a finite field IF; with g elements. The
Weil- or Hasse-Weil-zeta function is defined as

Z(X,T) :=exp <i1 |X(]Fq)|%m> ,

and satisfies Z(X,q7°) = {(X,s). In [Wei49] Weil stated his famous conjectures about
properties of this function, which led to groundbreaking ideas in algebraic geometry.

2.2.9 Theorem
Let X be a smooth, projective variety of dimension d over a finite field IF;. Then
a) Z(X,T) is a rational function.
b) Let x be the Euler characteristic of X. Then Z(X, T) satisfies the functional equation
_dx 1
Z(X,T) =+q 2T *Z(X, qd—T)
c) There are polynomials P;(X,T) € Z[T] for 0 < i < 2d, such that

P (X, T)P3(X,T)- - Pyy1(X,T)

2T = K DX, T) - PulX, T)

and P;(X,T) = H;?i(l — oci,]'T) € C[T] with |oci,]'| = q%.

d) If X is the reduction of a smooth, projective variety X over a number field, then the degree
of P;(X, T) is equal to the i-th Betti number of X(C).

Proof. Part a) was proven by Dwork [Dwo60] using p-adic methods and independently
by Grothendieck [Gro65], who also showed that the P;(X, T) are the characteristic poly-
nomials of the Frobenius morphism on H.,(X,Q,) and that part b) holds. Finally, c)
and d) have been proven by Deligne [Del74]. O
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Artin and Tate studied the case where C is an irreducible algebraic curve over a finite
field IF; and f : X — C is a smooth proper morphism from a surface satisfying the
conditions of Proposition 2.2.8. In this case III(C,Jac(X;)) = Br(X), and using this
isomorphism, the function field analogon of Conjecture 2.2.7, and some sophisticated
calculations regarding the zeta functions

5y = Py(X,q°)P3(X,q"°) Pi(C,q7%)
Po(X,q7°)Pa(X, %) Py (X, 4%) Py(C,q7%)P2(C,q7%)

of X and C respectively, Artin and Tate came to the following conjecture about the
asymptotic behaviour of the term P»(X,q7°) ats = 1.

Z(X,q and Z(C,q7°) =

2.2.10 Conjecture ([Tat66b, p. 426])
Let X be a smooth projective surface over a finite field IF;. Then Br(X) is finite and we have

| Br(X)|| det(D; - Dj)|

Py(X,q7%) ~
2(X,q7°) g*X) - | NS(X)tors |2

(1—g")PX gss -1,

where the quantities on the right are defined as follows: p(X) is the Picard number of X,
ie. the rank of NS(X)tree, {D1,...,Dy(x)} is a base for NS(X)ree and D; - D; is the in-
tersection multiplicity of D; and D;. Finally, if Pic®(X) is the Picard variety of X, then
a(X) = x(X,0x) — 1+ dim(Pic®(X)).

In addition Artin and Tate supposed that the link between the behaviour of P,(X,g79)
at s = 1 and Conjecture 2.2.7 via its function field analogon should hold in greater gen-
erality. More precisely, they conjectured the following ([Tat66b, p. 427]): Let f : X — C
be a smooth proper morphism from the surface X onto the curve C such that the geo-
metric fibres are connected and the generic fibre X, is smooth. Then Conjecture 2.2.7
holds for Jac(Xj) if and only if Conjecture 2.2.10 holds for X. This has been proven by
Liu, Lorenzini and Raynaud [LLRO5].

Let now k be a field which is finitely generated over its prime field. If V is an irre-
ducible, smooth and projective k-scheme, then there is a smooth, projective morphism
f : X — Y from an irreducible k-scheme X to a regular k-scheme Y such that its general
fiber is the morphism V — Spec(k). For each closed point y € Y we denote by X, the
fibre f~!(y), which is a scheme over the finite residue field k(y) of y. As above let N,
be the number of elements of k(y). The zeta function of X can be expressed as the
product of the zeta functions of the closed fibres, i.e. we have {(X,s) = [T ey {(Xy,s).
Furthermore the zeta functions of the fibres can be expressed as rational functions

according to Theorem 2.2.9. Thus if we write ®;(s) := [],eyo W) for 0 <i<2d,

Py (s)Da(5) -+ Dya(s)
CXS) = G (57 (5) - Dy r ()
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If k is any field and V is a k-scheme as above, let Z!(V) be the free abelian group
generated by the irreducible subschemes of codimension i on V. If ¢ # char(k) is
a prime, there are cycle maps Z(V) — HZ(V,Z,(i)), which are defined using the
fundamental class and cohomology with support. We write NS'(V) for the image of
this cycle map in codimension i. Motivated by a modification of Conjecture 2.2.6 of
Birch and Swinnerton-Dyer, Tate was led to conjecture the following statement relating
the rank of NS'(V) and the order of the pole of ®;(s) at s = dim(Y) + 1.

2.2.11 Conjecture ([Tat65, p. 104])

Let V and f : X — Y be as above. Then the rank of NS' (V) is equal to the order of the pole of
Dy, (s) at the point s = dim(Y) + 1.

The image of the cycle map Z/(V) — H%(V,Z(i)) lies in the subgroup of G-
invariants, where Gj denotes the absolute Galois group of k. If Z/ (V) ot C Z'(V) is the
subgroup of cycles which are rationally equivalent to 0, the restriction of the cycle map
to Z!(V)rat is trivial. Thus there is an induced map on CH (V) = Z{(V)/Z!(V )ya, i.e.
on the Chow group of codimension i cycles. In particular, there are cycle maps

ch, : CH'(V) ® Qp — HZ(V, Qi) .

Let now k be a finite field. From Theorem 2.2.9 we know that the zeta function
¢(V,s) has a pole at s = i if and only if Py(V,T) = II; (1 —a,;T) has a zero at
T = g/, and that the order of this pole is equal to the multiplicity of the zero at g~
On the other hand, we know that P,; is the characteristic polynomial of the Frobenius
homomorphism acting on H2 (V, Q;), so the multiplicity of the zero of Py; at g~ " equals
the dimension of the eigenspace corresponding to g' of the Frobenius homomorphism
on H2(V,Q,) (at least if we assume that Gy acts semisimply on H% (V,Q,)). Finally, the
latter one is — after an appropriate twist — equal to the dimension of H2 (V,Q,(i))C*.
In particular, if we assume that Conjecture 2.2.11 holds for V in codimension i and G
acts semisimply on H2 (V,Q(i)), then the cycle map cfQ/ is surjective. Motivated by
such arguments, Tate stated the following conjectures:

2.2.12 Conjecture (Semisimplicity of the Galois action)
Let k be a field finitely generated over its prime field, let ¢ # char(k) be a prime, and let X be
a smooth projective variety over k. Then for each i > 0 the Galois group Gy, acts semisimply on

HE; (X/ Qé(l))

2.2.13 Conjecture (Tate conjecture)
Let k, £ and X be as in 2.2.12. Then for all i > 0 the cycle map with Q-coefficients

¢, : CH'(X) ® Q; — HE(X, Qi)

is surjective.
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In what follows, we will write TCi(X)Q , for the above assertion and refer to it as the
Tate conjecture for X in codimension i at the prime /.

2.2.14 Conjecture (Strong Tate conjecture)
Let k, £ and X be as in 2.2.12. Then the order of the pole of {(X,s) at s = i is equal to the
dimension of the subspace of H (X, Qy(i)) spanned by the image of the cycle map cfQé’.

There are various relations between the above conjectures. For example:
2.2.15 Theorem
Let k be a finite field, let X be smooth projective k-variety and let i be a non-negative integer.

a) The Conjectures 2.2.13 and 2.2.12 are independent of £, i.e. if they hold for some prime
¢ # char(k), then they hold for any prime different from the characteristic of k.

b) The strong Tate conjecture for X and i holds if and only if the Tate conjecture for X holds
in codimension i and dim(X) — i and the Semisimplicity conjecture holds for i.

c) The Tate conjecture in codimension 1 implies the strong Tate conjecture at i = 1.
Proof. See [Tat65, Theorem 2.9]. O
In general, the Tate conjecture is an open problem, in particular in codimension i > 2.
For i =1, i.e. for divisors, it is known, for example, in the following cases:
- All K3-surfaces in characteristic zero [Tat65, Theorem 5.6].
- All K3-surfaces over a finitely generated field of odd characteristic [Per15].
- All abelian varieties, see below.

Tate [Tat66a, Theorem 4] showed that the Tate conjecture for abelian varieties in codi-
mension 1 would follow from the following theorem about homomorphisms between
abelian varieties and their Tate vector spaces.

2.2.16 Theorem
Let k be a field finitely generated over its prime field. Let A and B be two abelian varieties over
k and let V) (A) = Ty(A) ®z, Q (and analogously for B). Then the natural map

Hom(A,B) ®z Qy — HomGk (Vg(A), Vg(B))
is bijective.
Proof. For finite fields this was shown by Tate [Tat66a]; the case of function fields of
positive characteristic is due to Zarhin [Zar75]. Faltings [Fal83] proved the assertion

for abelian varieties over number fields as part of his proof of the Mordell conjecture.
His method can be generalized to arbitrary finitely generated fields. O
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One of the very few results establishing Tate’s conjecture in higher codimension
is due to Soulé [Sou84, Théoreme 4]; he shows that for a certain class of varieties
(whose motive is closely related to the motive of a product of curves), including abelian
varieties and products of smooth projective curves over a finite field, the Tate conjecture
for X holds in codimensions 0, 1, d — 1 and d. Moreover, in these cases the strong Tate
conjecture also holds.

Finally, that Brauer groups provide an obstruction to Tate’s conjecture, at least in
codimension 1 and for surfaces over finite fields, has been shown by Tate, using Kum-
mer theory. More precisely, he proved:

2.2.17 Theorem (Tate, [Tat66b, Theorem 5.2])
Let X be a smooth projective surface over a finite field k and let £ # char(k) be a prime. Then

TC!(X)q, ¢ Br(X){(} < co.

In fact one can show that TC'(X)g, holds if and only if there is a prime ¢’ (including
0" = char(k)) such that Br(X){¢'} is finite; moreover Br(X){¢'} is finite if and only if
Br(X) is finite, see [Mil75] (for char(k) # 2) and [Ulm14] (including char(k) = 2).

We will see in Theorem 3.3.6 that this obstruction can be generalised to higher codi-
mensions for arbitrary smooth, projective and geometrically integral varieties using
higher Brauer groups.

We remark that because of the cycle map CH'(X) ® Z, — H% (X, Z,(i))% it makes
sense to state an ‘integral Tate conjecture’, claiming that these integral cycle maps
are surjective. This is known to be false, counterexamples were given, for example, by
Schoen [Sch98] in the number field case, and by Colliot-Thélene and Szamuely [CTS09]
in the case of a finite field.

Similar to the Tate conjecture, asserting the surjectivity of a cycle map to étale co-
homology, there is the, in fact older, Hodge conjecture, which describes for a smooth
projective complex variety the image of the cycle map to singular or Betti cohomology:

2.2.18 Conjecture (Hodge, [Hod52])
Let X be a smooth projective variety over C. Then for all i > 0 the image of the cycle map

co : CH'(X) ® Q = HE (X, Q(i))
is the group of Hodge cycles Hdg* (X, Q) = H¥(X,Q(i)) NFHZ (X, C).

In the following we will write HC'(X)q for the above assertion. Note that HC!(X)q
follows easily using the exponential sequence and the Lefschetz-(1,1)-theorem; by the

hard Lefschetz theorem this also implies HC?!(X)q, where d = dim X.
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Both the Tate and the Hodge conjecture predict the existence of sufficiently many
subvarieties to obtain the desired image of the cycle map in question. Although Tate
could not describe a direct logical connection between the two conjectures, he noted
that they ‘have an air of compatibility’. In the mean time various implications be-
tween these conjectures have been proven, for example, that the Tate conjecture for
abelian varieties in characteristic zero implies the Hodge conjecture for abelian va-
rieties (Pyatetskii-Shapiro, [PS71]), or that the Hodge conjecture for abelian varieties
of CM-type implies the Tate conjecture for abelian varieties over finite fields (Milne,
[Mil99]).

Similar to the Tate conjecture, the Hodge conjecture is known only in very few cases.
Again an integral version of the Hodge conjecture can be formulated, but this is also
known to be false. The first counterexamples were given by Atiyah and Hirzebruch
[AH62]; they constructed a torsion Hodge class, which is not in the image of the cycle
map. Moreover, Kollar [Kol92] showed that there are non-torsion cohomology classes
which are not in the image of the cycle map but some multiple of them is.






3. Higher Brauer groups

As we have explained in the previous chapter, there is a connection between the con-
jecture of Birch and Swinnerton-Dyer and the Tate conjecture. When considering this
connection, Milne proved further that there is a link between the asymptotic behaviour
of the zeta function of a scheme X at the poles s = 1 and s = 2 and the étale co-
homology of the sheaves Z and G, on X respectively. To extend this to poles at
s > 3, Lichtenbaum suggested that there should be not just sheaves but (bounded)
complexes I'(r) of étale sheaves for each integer r > 0 satisfying certain properties;
for details see section 3.1. Although Lichtenbaum has constructed, using algebraic K-
theory, a complex of étale sheaves I'(2), which satisfies in special cases many of the
desired properties, there is no general construction of I'(r). However, the (unbounded)
cycle complex defined by Bloch can be viewed as a complex of étale sheaves Zx(r)g
and is conjectured to be quasi-isomorphic to I'(r). We use the complexes Zx(r)s to
define higher Brauer groups in section 3.2 and recall some of the known properties of
these groups in section 3.3; this generalises, for example, the relation between the Tate
conjecture in codimension 1 and the Brauer group to the Tate conjecture in arbitrary
codimension and the higher Brauer groups.

3.1. Lichtenbaum’s complex

Let X be a smooth, projective variety of dimension d over a finite field IF;. By Theorem
2.2.9 the zeta function of X has the form

_ Pi(X,q7°) - Pog1(X,97°)
) = B B ) (K,

where the P;(X, T) are polynomials with integral coefficients having reciprocal roots of

absolute value q%. In particular {(X,s) has poles ats = 0,1,2,...,d and the order of
the pole at s = i is equal to the multiplicity of 4" as a reciprocal root of P»;(X, T). Thus
for each such i, there is an integer p; and a constant c; with the property that

0(X,s) ~ci-(1—q~5)P as s—i.
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The conjecture of Birch and Swinnerton-Dyer and Conjecture 2.2.10 of Artin and Tate
concern the asymptotic behaviour of the zeta function {(X,s) = Z(X,q7%) as s — 1;
we first consider the question whether there is a similar description of the behaviour
of the zeta function for arbitrary positive integers s = 0,1,2, . ... In this context, Milne
[Mil86] made the observation that the behaviour of {(X,s) at s = 0 can be described
in terms of cohomology of the sheaf Z, while the behaviour at s = 1 can — under some
additional assumptions — be explained in terms of cohomology of G;,. To be precise,
he showed the following:

3.1.1 Theorem ([Mil86, Theorem 0.4])
Let X be as above. Then the following assertions hold.

a)

L HY(X, Z)orl - [HE (X, Z)] -
HY(X,2)| - [Hy(X, Z)] -

¢(X,s) (1-g%tas s—=0

b) Assume the Tate conjecture in codimension 1 for X and that Br(X) is finite. Then

Dl } |H§t(Xer)tor| ’ |Hgt(Xsz)cotor| ce
|Hgy (X, G| - [HZ(X, G)| - -

{(X,s) ~ =+ qX(X/Gm)(l — gl

ass — 1,

where D' is a requlator term (see [Mil86, section 71), and py is the Picard number of X.

We note that the terms on the right hand side of Theorem 3.1.1 a),b) are well-defined:
The groups Hi, (X, Z) and H, (X, G,,) vanish for large i. Moreover, Hi, (X, Z) is torsion
for i # 0 and finite for i # 0,2; for i = 2 there is an isomorphism H?t(X,Z) &~
H2.(X, Z)cotor © Q/Z, where H3,(X, Z) cotor is finite. Also, the groups Hét(X,Gm) are
torsion for i # 1 and finite for i # 1,2,3. Furthermore H%t(X,Gm) ~ CH! (X), which
is a finitely generated abelian group, and H3(X,G,,) is the direct sum of its finite
cotorsion subgroup Hgt(X, G )cotor and Hgt(X, G ) div-

This raises the question whether there are sheaves generalising the above relation
between the zeta function at s = 0 and s = 1 and the cohomology of the sheaves Z
and G, to arbitrary integers s > 1. Lichtenbaum [Lic84] conjectured that one could
not expect the existence of single sheaves which play an analogous role at positive
integers s > 1. Instead he suggested that for each integer r > 0 there should be a
bounded complex I'(r) of étale sheaves of abelian groups with certain properties; in
fact, the cohomology of these complexes should define motivic cohomology. He stated
the following axioms for the I'(r), which are formulated in the derived category of the
category of sheaves of abelian groups on the étale site of X, see A.1 for more details.
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(LO) T(0) = Z and I(1) = Gu[1].
(L1) For r > 1, the complex I'(r) is acyclic outside [1, r].

(L2) If T : X4 — Xzg is the canonical morphism of sites, then the Zariski sheaf
R™*17,T'(r) = 0 (Hilbert’s 90th Theorem).

(L3) Let n be a positive integer prime to all residue field characteristics of X. Then
there exists an exact triangle

T(r) 2 T(r) = u® 25 T(r)[1].

(L4) There exist products T'(r) ®* T(s) — I'(r +s) which induce maps on cohomology

H (X, T(r)) ® Hj (X, T(s)) — Hy (X, T(r +5)).

(L5) The cohomology sheaves H!(X,T(r)) are isomorphic to the étale sheaves gro Kor—i.
Here K; is the étale sheaf associated to the presheaf U — K;T'(U, Ox), K; is the
Quillen algebraic K-group, and gr/ is the graded quotient of the y-filtration (see
[Mil88, section 1] and [Sou85]).

(L6) If k is a field, the cohomology groups HJ,(k,I'(r)) are isomorphic to the Milnor
K-groups KM (k) (see [Mil70]).

We remark why axiom (L2) is called Hilbert’s 90th Theorem: If we specialize to the
case when X is the spectrum of a field k and r = 1, then (L2) says that HZ,(X,T(1)) = 0.
But by (L0) HZ,(X,T(1)) is isomorphic to H},(k,Gy,) and the vanishing of the latter
group is Hilbert’s 90th Theorem.

In [Lic84, §6] Lichtenbaum showed that the existence of such complexes I'(r) would
yield a cohomology theory which has many of the properties expected for motivic
cohomology, including, for example, duality theorems.

Milne [Mil88] proved under additional conditions that the expected relation between
the behaviour of the zeta function of X at s > 1 and the cohomology theory defined by
the complex I'(r) on X holds. More precisely, Milne proved the following: Let X be a
smooth projective variety over a finite field k with g elements and let p = char(k). One
of Milne’s assumptions is the existence of natural cycle maps

CH'(X) — H (X, I(r)) 7)

which are compatible with the étale cycle maps through the maps of the long exact
cohomology sequence arising from the Kummer type of exact triangle (L3). More-
over, these cycle maps should be compatible with the product structure given by
(L4). Let Hi, (X, (T/mI)(r)):=H4 (X, u5) x H, (X, (T/p"T)(r)), where m = mop" and
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ged(mo, p) = 1, and set Hi (X, T(r)) := limHL, (X, (T/mT)(r)). These groups fit into
the following short exact sequences (see [Mil88, p. 69 (3.4.3)])

0 — Hi(X,T(r)" = Hg(X,T(r)) = imHE (X, T(r))[n] — 0. ®)

The homomorphism G; — Z, which sends the Frobenius element to 1, defines a
canonical element in H'(k, Z) C HJ(X,Z). Taking cup products, we obtain for each
r € Z a map € : ]I—I?[(X,f(r)) — ]H?[H(X,f(r)). This map €%, together with the
exact sequence (8), yields the following commutative diagram (defining the map ¢")

H (X, T(r))" lim H2 (X, T(r))[1]

| |

H” (X,T(r)) H (X, T(r))

For a group G we denote by G4 the quotient G/Gg;,. We say that the expression

. |]H2r (X r tors|
Y00 1= gy TT Ml
is defined, if all involved groups are finite and det(¢") is defined and non-zero.

Moreover, we set x(X, Ox,r) := Yi_(r — i) x(X, Q).

3.1.2 Theorem (Milne, [Mil88, Theorem 4.3])
Let X be as above and let pr be the rank of the subgroup generated by the image of the cycle
map cq, . Assume that T'(r) is a complex satisfying (L3) and that there are cycle maps as in (7).

Moreover assume that T2 ™1 (X, T(r))nq is torsion and that the strong Tate conjecture holds
for rand all £. Then x'(X,T(r)) is defined and

{(X,s) ~ j:)(’(X,F(r))qX(X'OX”)(l —q"7) TP ass —r.

Milne also noted that the existence of the complexes I'(r) yields a general obstruction
to the Tate conjecture in codimension r, analogous to Theorem 2.2.17 in case r = 1.

3.1.3 Theorem ([Mil88, Remark 4.5(g)])
Let X be a smooth projective variety over a finite field IF; and ¢ # char(IF;) be a prime. Then

TC'(X)q, < HZ (X, T(r))div = 0.

Milne also showed that for an even dimensional variety X, assuming the existence
of the complexes I'(r), finite generation results and the strong Tate conjecture, one
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can prove a generalisation of the Artin-Tate conjecture 2.2.10 about the behaviour of
Py(X,q7%) as s — d/2. Let A’(X) be the image of CH'(X) in H% (X,I(r)), and let
{D;} be a basis of A"(X)¢ee-

3.1.4 Theorem (Milne, [Mil88, Theorem 6.6])
Let X be as above of even dimension d = 2r. Assume that there is a complex T'(r) satisfying
the following conditions:

i) The axioms (L3) and (L4).
ii) The existence of cycle maps as in (7).

iii) There is a degree map H2(X,T(d)) — Z such that the following diagram commutes

HE (X,T(d)) 4
H2(X, (T/mT)(r)) ———— Z/mZ

iv) The groups H2! (X, T'(r)) and H?f‘zr(X, I'(d —r)) are finitely generated.
v) The group HZ (X, T(r)) is torsion.

If the strong Tate conjecture holds for r and all £ and the cycle map CH"(X) — H2 (X, T(r))
is surjective, then

[HZ "' (X, T(r))| - det(D; - D;)
q“r(x)’Ar(X)torsyz

Py(X,g7°) ~+ (1—=g"%F as s—r,

where the value a,(X) depends on the reciprocal roots of P, (X, T) and a perfect affine group
scheme H' (X, Z,(r)) (see [Mil88, p. 93-94] for an explicit definition of u,(X)).

3.2. Motivic and Lichtenbaum cohomology

Let X be a smooth quasi-projective variety over a field k. In this section we present the
construction of the complexes Zx(r)s of étale sheaves on X (for r > 0) given by Bloch
[Blo86]; the complexes Zx (r)s are conjectured to satisfy the axioms (LO0) to (L6).

Bloch’s complex can be seen as an algebro-geometric analogue to the complex used
to define simplicial cohomology in algebraic topology. We recall the explicit definitions.
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Let k be a field. The (algebraic) n-simplex over k is defined as the affine k-scheme

A" = Spec (k[to,...,tn]/ (iti—1>> = A}

i=0

Each non-decreasing map p : [0,...,m] — [0,...,n] induces a map of simplices

p:A" = A", F(t) = )t
p(j)=i

where the sum vanishes if ¢~1(i) = @. If p is injective, we have §(A™) C A"; we call
p(A™) a face of A™ and  a face map. If p is surjective, we call g a degeneracy map.

Let now n > 0 be an integer and let z"(X x; A™) be the group of algebraic cycles
on X x A" of codimension 1, i.e. the free abelian group generated by the irreducible
closed subvarieties of X x; A" of codimension n. In the next step we restrict to those
elements of z" (X x; A™) which behave well with respect to the face maps. Recall that
two subvarieties Y, Z of a variety X intersect properly, if every irreducible component of
Y N Z has codimension codim(Y) + codim(Z) in X. For m,n > 0 we denote by z" (X, m)
the subgroup of z" (X x; A™) generated by the irreducible subvarieties intersecting all
faces of X x A™ properly. Let 0; : A™=1 5 A™ be a face map, i.e. 0; is of the form

(to, - tm1) = (o, tii1, 0, b, oo b 1).
Since T € z""(X,m) meets all faces of X x; A™ properly, 9; induces a homomorphism
o :z"(X,m) = z"(X,m—1),

which maps T € z(X,m) to T N (X x; A" 1) with the appropriate multiplicity.

Let d™ = Y ;(—1)'97 : z"(X,m) — z"(X,m — 1) be the alternating sum of the 9;.
By a standard argument, it is easy to see that the composition d”~! o d™ is the zero
mapping, hence the groups z" (X, m) form a complex of abelian groups.

3.2.1 Definition
Let X be a smooth, quasi-projective variety over a field k. For n > 0 Bloch’s cycle
complex z" (X, ) is defined as the unbounded homological complex of abelian groups

m m—1
o (Xm) D M Xom—1) L - 27(X,0) — 0.

We note that, by construction, the classical Chow groups CH"(X) of X can be com-
puted using the complex z"(X, o), ie. CH"(X) = Hy(z"(x,®)). The higher Chow
groups CH"(X, i) are defined to be H;(z"(X,e)). The complex z"(X,e) is covariant
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functorial for proper maps and contravariant functorial for flat maps [Blo86, Proposi-
tion 1.3], hence defines a complex of sheaves for the flat topology on X. In particular,
the presheaves z"(—,m) : U — z"(U,m) are sheaves for the (small) étale and the
Zariski topology on X and z"(—, e) is a complex of sheaves on the (small) étale and
the Zariski site of X [Blo86, section 11].

3.2.2 Definition

Let X be a smooth, quasi-projective variety over a field, and let X; (T = Zar or T = ét)
be either the small étale or the Zariski site. Define Zx(r): to be the cohomological
complex with the sheaf z"(—,2r — i) in degree i. If A is an abelian group, set

Ax(r)T = Zx(I’)T ® A.

We will often write A(r); for the complex Ax(r); if there is no risk of confusion,
we will also write A(r) = Ax(7)zar for the complex of Zariski sheaves. The complexes
Ax(r)r are by construction only bounded on the right. Note that the differentials of
Ax(r)r have degree +1, hence unlike the complexes z"(—, ®) they are indeed cohomo-
logical complexes. Let 77 : Xst — Xz, be the canonical map. Then

e Ax(1r)ar = Ax(7) zar-

Bloch conjectures [Blo86, section 11] that the complexes Zx ()¢ satisfy the axioms
(LO) to (L6) from 3.1, i.e. they provide potential candidates for the complexes I'(r);
however, even in weight 2, there is no obvious morphism between the two com-
plexes Zx(2)s and I'(2). Bloch showed in [Blo86] that the complexes Zx(r)s satisfy
the axioms (L0) and (L4); moreover Geisser-Levine proved that the Zx(r)s also sat-
isfy (L3), cf. Proposition 3.3.1. Axiom (L6) follows from the Bloch-Kato conjecture,
proven by Rost-Voevodsky [Voell]: we have HY,._ (k, Z(r)zar) = KM(k), and the Bloch-
Kato conjecture implies the Beilinson-Lichtenbaum conjecture, thus H’,_ (k, Z () zar) =
H, (k, Z(r)e:) (see, for example, [Gei04, Theorem 1.2]), which establishes (L6).

3.2.3 Definition
Let X be a smooth, quasi-projective variety over a field k and let » > 1 be an inte-
ger. Define the motivic respectively étale motivic or Lichtenbaum cohomology of X in
degree i and weight r with coefficients in A as the hypercohomology groups

Hyy (X, A(r)) == Hy, (X, A(r) zar),

Hy (X, A(r)) = Hg(X, A(r)er),

where A(r); is the complex from Definition 3.2.2.

We remark that one can recover the Chow group CH' (X) either as the 0-th homology
of Bloch’s cycle complex of abelian groups, or as the Zariski hypercohomology group
H2 (X, Z(r)), see [Blo86, p. 269 (iv)].



28 3. Higher Brauer groups

The complexes Z(r)s are conjectured to satisfy the axioms (LO) to (L6) and since
we have seen in Theorem 3.1.3 that there is a relation between the Tate conjecture
for X at the prime ¢ in codimension r and the vanishing of HZ (X, T(r))g;,, we are
particularly interested in Lichtenbaum cohomology in the bidegrees (2r +1,r) and
(2r,2). We define the r-th higher Brauer-group of X and the r-th Lichtenbaum-Chow

group of X as the corresponding Lichtenbaum cohomology groups in these bidegrees
Br'(X) := HY "} (X, Z(r)) and CH] (X) := HY' (X, Z(r)).

We note that because of the quasi-isomorphism Zx(1)s ~ Gu[—1] [Blo86, Corollary
6.4], there are isomorphisms

Brl(X) = H} (X, Z(1)) = H(X,G,u[-1]) = Br(X),
CHy (X) = Hi (X, Z(1)) = Hz(X, Gu[-1]) = CH'(X).

3.3. Lichtenbaum cohomology and the conjectures of
Hodge and Tate

To motivate the study of Lichtenbaum cohomology we state several results, relating the
higher Brauer groups to the Hodge and Tate conjectures, which are due to Rosenschon-
Srinivas [RS16b]. To formulate étale motivic analogues of the Hodge and Tate conjec-
ture, we need cycle maps from the Lichtenbaum-Chow groups to the corresponding
cohomology theories, as for the classical Chow groups.

We note first that Lichtenbaum and motivic cohomology coincide with rational coef-
ficients, since the adjunction associated with 77 : X5 — Xz, induces an isomorphism

Q(n) = Rm.Q(n)e

in the derived category of sheaves, see, for example, [Kah12, 2.6]. Thus with rational
coefficients motivic and Lichtenbaum cohomology coincide and one has the corre-
sponding cycle maps in this setting. However, with integral coefficients motivic and
Lichtenbaum cohomology groups differ; thus Lichtenbaum cohomology can be viewed
as a different integral structure on rational motivic cohomology. With finite coefficients
Geisser-Levine proved that there are the following quasi-isomorphisms, identifying the
étale motivic complex with finite coefficients with more familiar étale sheaves.

3.3.1 Proposition
Let X be a smooth quasi-projective variety over a field k, p = char(k) and n € IN.
a) If m is an integer and p does not divide m, there is a canonical quasi-isomorphism
(Z/mZ)x ()t = po",
where py, is the sheaf of m-th roots of unity.
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b) For every r > 1 there is a canonical quasi-isomorphism
(Z/p"2)x (Met = ve(n)[—n],
where vy (n) is the r-th logarithmic Hodge-Witt sheaf [Blo77], [11179].

Proof. [GL01, Theorem 1.5] and [GL0O, Theorem 8.5]. ]

These quasi-isomorphisms, together with the fact that Zx(n)s is a complex of free
abelian groups, allow us to construct Kummer type short exact sequences as follows:
For each prime power " € Z there are exact sequences of complexes of étale sheaves

0= Zn)at S Z(n)a — Z/0Z(n)e — O, )

which induce a long exact sequence in cohomology
...~ H(X,Z(n)) =i H(X,Z(n)) - H(X,Z/¢'Z(n)) - H'""Y(X, Z(n)) — ....

If char(k) # ¢, we may identify H{"(X,Z/¢"Z(n)) = H}j(X, ;") using Proposition
3.3.1 a), to obtain in every bidegree (m,n) short exact sequences of the following form

0— H"(X,Z(n)) ®Z/0'Z — Hj(X, u;") — H' (X, Z(n))['] — 0. (10)

Given these Kummer type short exact sequences (10), one can use a standard special-
ization argument to determine the torsion and cotorsion in Lichtenbaum cohomology
over a separably closed field as in the following proposition.

3.3.2 Proposition (Rosenschon-Srinivas, [RS16b, Proposition 3.1])
Let k be a separably closed field, and let X be a smooth projective k-variety. Assume that { is a
prime number different from char(k). Then

a) H'(X, Z(n)){¢} 2 HI Y (X,Q/Z¢(n)) for m # 2n + 1.
b) H{'(X,Z(n)) ® Qp/Zy = 0 for m # 2n.

In particular, if £ # char(k) and m # 2n, there is a short exact sequence of abelian groups

0 — Hy~'(X,Q¢/Z(n)) — H{'(X, Z(n)) — H{'(X, Z(n)) ® Q¢ — 0.

This proposition shows that the Lichtenbaum cohomology groups are usually divis-
ible with a torsion subgroup of finite cotype; this is known to be false for the motivic
cohomology groups in general. We sketch the proof.
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Proof. By Proposition 3.3.1, we may identify H{"(X,Z/¢'Z(n)) = H}(X,uy"). The
maps Z(n)g — Z/0"(n)s — ;" give a map from integral Lichtenbaum cohomology
to étale cohomology with finite coefficients. Taking the inverse limit over the maps
H{' (X, Z(n)) — Hj}(X, u3;"), we obtain a cycle map to {-adic étale cohomology

ar HP (X, Z(n)) — HE(X, Zo(n)). (11)

This map fits into the following commutative diagram with exact rows

0 — H"Y(X,Z(n))/ 0" — H'H(X, 2/ (n)) — H'(X,Z(n))[('] — 0

| |= J (12)

0 — Hy (X, Ze(n))/ 00 —— Hi H(X, p") —— HE(X, Zy(n))['] — 0
Taking the direct limit over all powers of ¢ in (12) yields an injective map
H'" 1(X,Z(n) ®Q/Zy — HI (X, Zi(n)) ® Qu/Zy, (13)

and the claimed assertions will follow, provided this map is trivial for m — 1 # 2n. For
this it suffices to show that the image of the cycle map E]’i Z’” from (11) is torsion for
m — 1 # 2n; then (13) is trivial, since over a separably closed field the torsion subgroup
H” (X, Z(n))tors is a finite group.

Let x be in H" (X, Z(n)). There is a regular integral ring R, finitely generated
over Z, and a smooth and proper scheme Xy over R of finite type such that X =
Xo x g k; moreover there is a xo € H" '(Xo,Z(q)) which is mapped to x under the
canonical map H]”:’_l(XO,Z(q)) — H]”:’_l(X,Z(q)). Let p C Spec(R) be a maximal
ideal such that the residue field k(p) is finite and has characteristic # ¢. By smooth
and proper base change for étale cohomology [Del77, V Théoréme (3.1)], there is an
isomorphism H2 (X, Z,(n)) 2 HI~}(Xo xrk(p), Z(n)). Since the cycle maps 5{’/2’"
are functorial, we have a commutative diagram

~m—1,n
LZ,

HI 1 (Xo, Z(n)) HI 1 (Xo, Z (1)) HY (X, 2, (n)

~

~m—1,n
Lz,

H'"™'(Xo < g k(p), Z(n)) Hy ™ (Xo xR k(p), Z(n))

In particular we may assume that k has non-zero characteristic; moreover by compati-
bility of the cycle maps with base-change, we may assume R = k(p) and k = k(p)sep-
Because of the commutative diagram
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Em —1,n

Lz, _
HY' ™ (Xo, Z(n)) —— Hy ™! (Xo, Z¢(n))

m—1
gn-ln

HY' (X, Z(n)) —— H (X, Zy(n))

it suffices to show that the image of HY~!(Xy, Z(n)) is contained in H% (X, Z (1) )tors-
For this, recall that X = Xp Xy k(p)sep, and consider the composition

Hyi ™ (Xo, Ze(n)) — HjTH(X, Z4(n)) — Hi (X, Qe(n)),

whose image is contained in the subgroup of Galois-invariants HZ (X, Qy(n)) %k,
By the Weil conjectures, cf. Theorem 2.2.9, the absolute values of the eigenvalues of

the Frobenius on H% (X, Q(n)) are equal to ]k(p)|mTf1
since we assume m — 1 # 2n. In particular the group HZ (X, Q(n))%® vanishes
and the image of HY'!(Xy, Z,(n)) in H2 (X, Z(n)) is torsion, which completes the
proof. O

~" which is different from 1

A crucial observation here is that for a complex variety X the right hand vertical
map in bidegree (2n,n) in (12), together with the usual comparison theorems, yields a
surjective map from Lichtenbaum-Chow groups to singular cohomology

CHIT(X)’(OIS — H2Bn (X/ Z(”))tors'

Because of the examples of Atiyah-Hirzebruch [AH62] of torsion cohomology classes
which are not in the image of the cycle map from Chow groups to singular cohomology,
this implies (1) that the Lichtenbaum-Chow groups are a prior ‘larger’, and (2) this type
of cycle map cannot come from the usual construction, using the fundamental class of
a cycle on X and cohomology with support. However, given the ¢-adic cycle maps from
(11) for every prime ¢, together with the cycle class maps with rational coefficients, it
follows from a formal argument, that there is a unique integral cycle map

I HY(X, Z(n)) — HE(X, Z(n))

from Lichtenbaum to singular cohomology; for the explicit construction see [RS16b,
section 5]. This cycle map extends the usual cycle map and its image I2*(X) :=
2n,n

im(c;"") is contained in the group of integral Hodge cycles Hdg®"(X,Z). Thus one
can state an L-version of the integral Hodge conjecture:

HC!(X)z = " (X) = Hdg” (X, Z)
The following theorem shows that the integral structure provided by the Lichtenbaum-

Chow groups on the usual Chow groups with rational coefficients is the correct one
for an integral Hodge conjecture.
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3.3.3 Theorem (Rosenschon-Srinivas, [RS16b, Theorem 1.1])
Let X be a smooth, projective complex variety. Then

a) HC"(X)q < HC{(X)z for n > 0.
b) The map CHJ (X)tors — Hdgz”(X,Z)tOrs is surjective for n > 0.

Moreover, using an interpretation of the Lichtenbaum cohomology groups as the co-
limit of the corresponding groups of étale hypercoverings of X, one can show [RS16b,
section 4] that for a smooth projective complex variety there is a cycle map from inte-
gral Lichtenbaum cohomology to integral Deligne-Beilinson cohomology [EV87]

i HY (X, Z(n) — HE(X, Z(n)). (14)

In the analytic setting, Deligne-Beilinson cohomology is considered to be the absolute
cohomology theory and for the ‘correct’ integral structure on rational motivic coho-
mology one would expect that the above cycle map is an isomorphism on torsion. This
is known to be false for the usual integral motivic cohomology groups. However:

3.3.4 Theorem (Rosenschon-Srinivas, [RS16b, Theorem 1.2])
Let X be a smooth projective complex variety, and let

CI@S ltors: H' (X, Z(n) )tors — HPB (X, Z(1))tors
be the restriction of the cycle map (14) to torsion subgroups.

a) If 2n —m > 0, then c{'{) |tors is an isomorphism.

b) If 2n — m = —1, then the following equivalences hold:
1 ltors 18 injective < HC{(X)z < HC"(X)q
Let now X be a smooth, projective and geometrically irreducible variety over a field
k which is finitely generated over its prime field. For ¢ # char(k) there is a cycle map
o'y, H' (X, Z(n)) @ Zy — HRE (X, Zy(n)) %,

which can be constructed as the composition of the cycle map from Lichtenbaum coho-
mology to continuous étale cohomology (see [Kah02] and [Kah12]), and a map arising
from the Hochschild-Serre spectral sequence (see [Jan88]).

Taking the limit over all finite extensions k'/k over the ¢’ yields a map

&z, CHL(X) ® Z; — Ta®"(X, Zy) := im H' (X, Z (1))
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The integral L-Tate conjecture TC{ (X)z, is then the assertion that the above map ¢f 7,
is surjective. Similarly, we have a rational version TC"(X)q, of this conjecture for the
usual Chow groups. As for the Hodge conjecture, the Lichtenbaum-Chow groups have

the correct integral structure for an integral Tate conjecture:

3.3.5 Theorem (Rosenschon-Srinivas, [RS16b, Theorem 1.3])
Let k C C be a field which is finitely generated over Q, and let X be a smooth projective
geometrically integral k-variety. Then for all integers n > 0 we have an equivalence

TC"(R)g, T} (R)z,.

Moreover, Ta%" (X, Zy)tors is contained in the image of CH} (X)tors @ Z.p.

For varieties over finite fields we have:

3.3.6 Theorem (Rosenschon-Srinivas, [RS16b, Theorem 1.4])
Let k be a finite field, and let X be a smooth, projective, geometrically integral k-variety. For
every prime number { # char(k) and every n > 0 there are equivalences

TC"(X)q, < TC!(X)z,  Br"(X){(} < .

Furthermore, the torsion subgroup H2' (X, Zo(n))CE, s L-algebraic.

tors






4. The transcendental part of higher
Brauer groups

In this section we give the proof of Theorem 1.0.2. We first recall in section 4.1 the con-
struction of the usual Hochschild-Serre spectral sequence and the resulting complex
Br(X) — Br(X)% — H?(Gi, Pic(X)). We construct in section 4.4 analogous com-
plexes for higher Brauer groups coming from a Hochschild-Serre spectral sequence for
Lichtenbaum cohomology; this spectral sequence is constructed in section 4.2 and its
convergence is shown in section 4.3. In section 4.5 we prove Theorem 1.0.2.

In what follows X will denote a smooth quasi-projective and geometrically integral
variety over a field k with absolute Galois group Gy. By Zx(r), or simply Z(r), we
mean the complex of Zariski sheaves defined in 3.2; we can view the corresponding
étale version of this complex Z(r)s = 7" Z(r)z4 as the pullback along the morphism
7 Xot — Xzar. We use will analogous notations for complexes Ax(r) = Zx(r) ® A,
where A is an abelian group.

4.1. The spectral sequence in weight 1

In weight 1 we have Z(1)s ~ Gy,[—1] [Blo86, Corollary 6.4] and may identify the
unbounded complex Z(1)s with the single étale sheaf G,,[—1]. Consider the Leray
spectral sequence with respect to the structure morphism f : X — Spec(k) (cf. A.3.7)

Eglq = Hgt (Spec(k), R7f.Gp) = H§t+q (X, Gm) - (15)

Since Spec(k)s+ can be thought of as the set of all finite, separable extensions of k in
a fixed separable closure ksp of k, R7f.Gy, is just the sheaf K — HZt (Xyr, Gm) on
Spec(k)s and using [Tam94, Corollary I1.2.20], we obtain for the Ep-terms

H}; (Spec(k), R7£.Gy) = HF (Gk'hﬂHZt (Xk’er)> =H” (G, HZt(Xer)) ’
K/k

where the right hand side is just Galois cohomology and the direct limit runs over all
finite extensions k' of k. Thus the spectral sequence (15) can be written in the form

ET = HP (G H (X, Gn)) = HET(X,Go). (16)
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Since Galois cohomology and étale cohomology of a single sheaf both vanish in neg-
ative degrees, this is a first quadrant spectral sequence and therefore convergent.

Since Br(X) = H%(X,Gy,) and Pic(X) = HL(X,Gy,), it is easy to see that the com-
position of the edge morphism H? — Eg,z with the d>-differential Eg,z — E%’l yields a
complex, which is functorial, since the Leray spectral sequence is. Hence we have:

4.1.1 Proposition
Let X be a smooth quasi-projective k-variety. There is a functorial complex of abelian groups

Br(X) — Br(X)% — H? (Gy, Pic(X)) . (17)

4.2. The spectral sequence in weight r

We construct a spectral sequence analogous to (16) for Lichtenbaum cohomology. This
spectral sequence will arise from a specific double complex, whose associated spec-
tral sequence has the correct E>-terms and the correct limit term. However, since the
complex Z(r)s is unbounded and we do not know the vanishing of Lichtenbaum co-
homology in negative degrees, this is a priori a right half plane spectral sequence and
convergence is an issue. We show first:

4.2.1 Theorem
Let X be a smooth, quasi-projective variety over a field k with absolute Galois group Gy. Then
there is a convergent and functorial Hochschild-Serre type spectral sequence of the form

E} = HP (G, HI (X, Z(r))) = H ™ (X, 2(r)) . (18)

The proof of Theorem 4.2.1 consists of three parts. First we construct a specific
double complex, using that the hypercohomology of unbounded complexes of étale
sheaves can be computed using K-injective resolutions. Then we show that the spectral
sequence associated with this double complex has the correct Ep-terms and the correct
limit terms. Finally we prove that the spectral sequence actually converges.

For the construction of the double complex we need some facts about derived cate-
gories and derived functors. Let A be an abelian category. Recall that the derived
category D(A) of A is constructed by considering chain homotopy classes of cochain
complexes of objects of A followed by localizing the set of quasi-isomorphisms. The
morphisms in D(A) are special roofs X < X' — Y; for details see A.1. The hyper-
cohomology H'(X,C*) of a complex C*® in A is usually defined via Cartan-Filenberg
resolutions I** of C*, see A.2. For bounded below complexes, it is also possible to use
the total right derived functor RF of a functor F : A — B between two abelian cate-
gories (cf. [Wei95, Corollary 10.5.7]). In particular, if C*® is a bounded below complex
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of sheaves on X, then the two definitions agree and we have for every i € Z
H'(X,C*) = H'(R[(X,C*)),

where I is the global section functor. In general the existence of the total right de-
rived functor RF of a functor F : A — B can only be ensured for the subcategory
DT (A) of bounded below complexes in D(.A), provided A has enough injectives and
the categories of (bounded below) complexes in A resp. B, Kom™ (A) and Kom () are
triangulated (cf. [Wei95, section 10.5]).

For the construction of the double complex we will use total right derived functors;
however, since the complex Z(r)g is not bounded below, we need a more sophisticated
construction due to Spaltenstein [Spa88] who showed that for a smooth k-scheme X
and A the category of sheaves on the étale site of X, the boundedness condition for
the existence of the total right derived functor can be removed using K-injective resolu-
tions. Here a complex I* € D(.A) is K-injective if for every acyclic complex S® € D(A)
the complex Hom*®(I®, S*) is acyclic, where the complex Hom*®(I®, S®) is given by

Hom"(I*,5%) = ] | Hom (I, 57+™).
i€eZ

By definition, a K-injective resolution of a complex A® € D(.A) is quasi-isomorphism
A* — I* with I* K-injective. The main property of K-injective resolutions is that
they can be used to define (and compute) the total right derived functor of the global
section functor, i.e. the hypercohomology of (possibly unbounded) complexes in A. In
particular, if C*® is a complex of sheaves of abelian groups on the étale site of X, then
C*® has a K-injective resolution [Spa88, 4.6] and the hypercohomology groups

H*(X,C*) = H*(RT(X, C*))

are well-defined [Spa88, 6.3]. For a more detailed discussion, we refer to [Spa88], see
also [Wei96].

To construct the double complex, let U € X, and consider the functor F (U, —) :
Sh(Xs) — Ab given by base change to k, followed by taking global sections

FUF) =T (Ux¢kF) =T (UF).

By the above discussion RF (U, —) : D(Sh(Xs)) — D(Ab) is well-defined; moreover,
given U € Xy and a complex C* € D(Sh(Xy)), the cohomology of RF(U,C*) com-
putes the hypercohomology

H*(T,C*) = H* (RF(U,C*)).

We apply this to X and Z(r) to obtain a complex A®* = RF (X, Z(r)s) such that
H! (X, Z(r)) = H1(A*) = HI(RF (X, Z(r) ).
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The complex A® is a complex of abelian groups with an action of the Galois group Gy,
i.e. it is a complex of Galois-modules. Let G : Ab — Ab be the functor taking G-
invariants. Since the category of discrete Gy-modules has enough injectives [NSW13,
Lemma 2.6.5], we can choose for each A’ an injective resolution I'"* of Gx-modules and
apply the functor RG to these complexes; this defines a double complex I** with

i-th column of I** = (RG)(I"*). (19)

The spectral sequence in Theorem 4.2.1 will be one of the spectral sequences associated
with this double complex I*°.

Taking first horizontal cohomology and then vertical cohomology of the double com-
plex I** defines a spectral sequence (for details, see also A.3.10) with E;-terms

HES/[] — H;I?I (H[I]/‘(Io,o)) )

By construction, taking the horizontal cohomology of I** is equivalent to taking hyper-
cohomology of Z(r)s on X and taking the vertical cohomology corresponds to taking
the Galois cohomology of Hf (X, Z(r)). Hence we can write the Ep-terms 'E} as

TEMT = HP (G, H] (X, Z(r))). (20)

The complex I** arises from the composition of RF (X, —) and RG, applied to the
complex Z(r)g; thus the limit terms of the associated spectral sequence are the hyper-
cohomology groups

HPH = HPM (X, (RG) o (RF (=, Z(r)g))) (21)
Now we use:
4.2.2 Lemma
Let RF (X, —) and RG be the functors from above. There is an isomorphism of functors
(RG) o (R(F(X,~))) ~R(GoF(X,~)) : D(Sh(Xs)) — D(Ab) (22)

Proof. This is an application of [Har66, 1.5.4]. For ease of notation we abbreviate
RF(X,—) by RF. To apply the above result, we need localizing subcategories K™
and K* of the homotopy categories K(Sh(Xy)) (resp. K(Ab)) of Sh(Xs) (resp. Ab)
such that RF(K") C K*. Furthermore, we need triangulated subcategories L C K+
and M C K* such that RF(L) C M, every object of KT (resp. of K*) admits a quasi-
isomorphism into an object of L (resp. of M), and such that RF and RG map acyclic
objects of L and M respectively to acyclic objects.

For the categories K and K* we take the class of quasi-isomorphisms in K(Sh(X;))
and K(Ab) respectively; these classes are localizing by [Har66, 1.4.2]. Furthermore RF
maps quasi-isomorphisms to quasi-isomorphisms. For the triangulated subcategories
of K™ and K*, we can choose the whole categories. Since RF and RG map acyclic
objects to acyclic objects, (22) follows now from [Har66, 1.5.4]. O
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Consider R (G o F(—, Z(r)4)); since at the level of complexes we have Z () (X)Cr =
Z(r)st(X), the cohomology of R (G o F(—,Z(r)s)) coincide with the hypercohomol-
ogy groups of the complex Z(r)s. Hence, we have from (21) and (22) the isomorphisms

HPH = HPH(X, Z(r)e) = HP (X, 2(r)), (23)

which shows that the spectral sequence associated with I** has the correct limit terms.

4.3. Convergence

The remaining part of the proof of Theorem 4.2.1 is to show that the spectral sequence
EYT = 1Y (G, H (X, Z(r))) = H] (X, Z(r))

indeed converges and we will do this by showing that this spectral sequence is in fact
bounded. We note first that the Ep-terms E;7 = HP(Gy, H] (X, Z(r))) vanish for p < 0,

because Galois cohomology vanishes in negative degrees. In what follows we will
show that Eg’q =0 also forg < 0Oand p > 0.

Let k be a field, p = char(k), ¢ # p a prime, and n € IN. Consider the étale sheaves
Qi/Zi(n) :==limu," and Qp/Zp(n) = limv,(n)[—n],
r r
and set (Q/Z) (n) := @,Q¢/Zy(n). We consider Q/Z as an element of the derived

category of the category of étale sheaves of abelian groups on X. By Proposition 3.3.1.
we have for every smooth quasi-projective variety X over k the quasi-isomorphism

(Q/Z)x (mer = (Q/2) (). (24)
The following lemma is a key ingredient for the proof of the convergence of (18).

4.3.1 Lemma
Let X be a smooth, quasi-projective variety over a field k. Then for every i < 0 and n > 0

Hiy (X, Q(m)) = Hy (X, Z(n)) .
Proof. In the category D(Sh(Xy;)) we have the evident distinguished triangle

Zx(Pe — Qx (et — (Q/Z)x(r)er

where, using the quasi-isomorphism (24), we may compute the hypercohomology of
the complex (Q/Z)x(r)s as the cohomology of the étale sheaf (Q/Z)(n)s. Taking
cohomology, we obtain the exact sequence of abelian groups

H (X, Q/Z(n)) — Hi(X, Z(n)) — HE(X,Q(n) — Hy(X,Q/Z(n)).
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Since the cohomology of a single étale sheaf vanishes in negative degrees, this implies
that Hj (X, Z(n)) = H{(X,Q(n)) for i < 0. Our claim follows now, because with
rational coefficients the adjunction associated with 7 : X5 — Xz, induces a quasi-

isomorphism Q(r)z. — Rm.Q(r)s [Kah12, 2.6], thus for i < 0 we have

H (X, Z(r)) = HL(X,Q(r)) = Hy(X,Q(r)).

Now we can complete the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. We briefly recall what we have shown so far. We consider the
double complexI** from (19) and its associated spectral sequence with Ep-terms !'E}"! =
HY,(H}(I**)). We showed in (20) that the Ep-terms of this spectral sequence can be
written as 'E} = HP(Gy, H] (X, Z(r))), and in (23) that the limit term H?*7 can be
identified with Hf+q(X,Z(r)). We also have Ej7 = 0 for p < 0. For g < 0 we have
from Lemma 4.3.1 H], (X,Q(n)) 2 H{ (X, Z(n)s); hence in this case H! (X,Z(n)) isa
Q-vector space and therefore uniquely divisible. But the Galois cohomology H(Gy, A)
of a uniquely divisible Gy-module A in degrees i > 0 vanishes [NSW13, Proposition
(1.6.2)]. Thus E}7 = 0 for p > 0 and g < 0, i.e. the spectral sequence is indeed bounded
and therefore convergent. It is functorial since the underlying complexes are. O

4.4. Higher Brauer groups and Galois cohomology

In this section we construct a complex for higher Brauer groups which is analogous to
the complex (17) for the classical Brauer group, using the spectral sequence

: 87 +
EYT = HP (G, H] (X, Z(r))) = H] (X, Z(r)),
from Theorem 4.2.1.
Note that in the above spectral sequence we have the following terms
HY (X, Z(r)) = Br'(X), E®**! = Br'(X)“, and E>* = H? (G, CH{ (X)) .

4.4.1 Theorem
Let X be a smooth, quasi-projective variety over a field k. There is a functorial complex

Br'(X) % Br'(X)C £ 12 (G, CHL (X)), (25)

Eg,2r+1 — Egg,er

which is exact if and only if in the Hochschild-Serre spectral sequence (18).
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We discuss after the proof of Theorem 4.4.1 in Lemma 4.4.2 precise conditions for
exactness of the above complex.

Proof of Theorem 4.4.1. Since E}1 = 0 for p < 0 there is an edge morphism e : H¥ 1
EY2r 1 By the same vanishing every differential d,, n2A+1IHN o trivial, hence we have

EXF*1 C EY* 1. The map a is then the composition of the edge map with the inclusion
a:Br(X) = H 'YX, Z(r)) & EXF ! < E)* 1 = Br' (X)C*.
The map B is just the differential
0,2r+1

— dy
B:Br(X)% = Ep?*! 22— E3*" = H? (G, CH{ (X)) .

An easy direct calculation shows that im(x) C E9¥*! = ker(8) C EJ¥*!, ie. (25)
defines indeed a complex. That this complex is functorial follows from the functoriality
of the underlying spectral sequence.

The condition for (25) to be exact is obvious from the construction of « and B: Since

« is the composition of the surjective morphism e : H?1 — EX* ! followed by the
inclusion E2Z 1 C Eg’er, im(a) can be identified with EY* 1 Since (18) is a first
quadrant spectral sequence, we have on the other hand

Eg’er = ker(B)/ im(d, > 2) = ker(B).
Hence the complex (25) is exact if and only if Eg’er = Eo¥ L, O

4.4.2 Lemma
The complex (25) is exact in the following cases.

a) Ifr = 1, k is a number field and H (X, G,,) = K (for example, if X is projective).

b) If k is a field of cohomological dimension at most 2 .
Proof. In case a) the image of « is Egc’? and one has to show that Eg’3 = Eg’3 = Egg?. This
follows since Ey' = H3(Gy, H (X, Z(1))) vanishes, if k is a number field [Maz73, (1.5)],

and since the term E;° = H*(Gy, H) (X, Z(1))) vanishes, because Z (1) =~ Gu[—1].
For case b) we recall that we have seen in the proof of Theorem 4.4.1 that

_ r02r+1 __ 0,2r+1 ., 0,2r+1 s—1,2r—s+3
ker(B) = E; = ker (ds—l CEST — B ) )

Since the groups E*~ " ~°*? are subquotients of E5 %2 for s > 4, the differentials
dgf;“ vanish for s > 4, thus we have Eg’er = go2r+1, O
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4.5. The transcendental part of higher Brauer groups

Let X be a smooth, quasi-projective variety over a field k and let & : Br'(X) — Br"(X)*
be the natural map. As in the case of the classical Brauer group, we refer to the
kernel of a as the algebraic r-th Brauer group Br'(X),, and to the image of « as the
transcendental r-th Brauer group Br' (X)-.

In this section we prove our main Theorem 1.0.2; we recall the statement.

Theorem

Let X be a smooth, projective, geometrically irreducible variety of dimension at most 4 over a
field k of characteristic zero with absolute Galois group Gy. Assume further that k has cohomo-
logical dimension < 2, the third Betti-number bz of X is zero and that the group H (X, Z(2))
is torsion free for every prime £. Then the cokernel of a : Br*(X) — Br?(X)Cx is finite.

We begin with two lemmas, which show that in case dim(X) = 1,2 we actually
have Br?(X) = 0. Hence in these cases Theorem 1.0.2 holds trivially; in fact we have
coker(a) = 0.

4.5.1 Lemma B
Let C be a smooth, projective curve over a field of characteristic 0. Then Br*(C) = 0.

Proof. Since 0 — Zc(2)st — Qc(2)st — (Q/Z)c(2)st — 0 is an exact sequence of
complexes of étale sheaves, we have an exact sequence H5,(C,Q/Z(2)) — Br*(C) —
H;(C,Q(2)); here we have used the quasi-isomorphism (24), and the fact that Licht-
enbaum and motivic cohomology with rational coefficients agree. The term on the left
side vanishes, since étale cohomology groups vanish in degrees > 2dim(C) + 1, and
the term on the right side vanishes by [MVW06, Theorem 19.3]. Thus Br*(C) = 0. O

4.5.2 Lemma .
Let S be a smooth projective surface over a field k of characteristic zero. Then Br?(S) = 0.

Proof. The Kummer sequence from (9) induces for every ¢ short exact sequences
0 — CH{ (S) ® Q¢/Zy — Hg,(S,Q¢/Z4(2)) — Br*(S){¢} — 0. (26)

Since S is a surface, we have CH? (S) ® Q/Z = CH?*(S) ® Q/Z (cf. Lemma 4.5.6) as
well as CH?(S) ® Q/Z = Hy;(S,Q/Z(2)) (since Hy,(Y,Z(2)) = 0 for a smooth variety
Y). Taking the direct sum of the sequences (26) over all £ and comparing the resulting
short exact sequence with the corresponding short exact sequence in motivic cohomo-
logy along the change of topology map yields the following commutative diagram
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CH*(S) ® Q/Z —— Hy((S,Q/Z(2))

\

0 CH; (S) ® Q/Z —— H},(S,Q/Z(2)) —— Br*(S) —— 0

Hence coker(y) = Br?(S). On the other hand, for T either the Zariski or the étale
topology, we have the Zariski sheaves H7(Q/Z(n)) associated to the presheaves U >
H(U,Q/Z(n)), which are the coefficients sheaves of the Bloch-Ogus-spectral sequence

EyT =H), (SH1(Q/Z(2) = HE(S,Q/Z(2)),

see A.3.12. For T = ¢ét, this spectral sequence yields the exact sequence
H.: (S, H3(Q/Z(2))) — HZ,,(S, H5(Q/Z(2))) — Hu(5,Q/Z(2)).

The Zariski sheaves H1(Q/Z(n)) have Gersten resolutions of length g, thus in the
Bloch-Ogus spectral sequence E}"! = 0 for p > g. Furthermore, by construction of these

Gersten resolutions, we have for a surface Eg’q = 0 for p > 2. The filtration induced
by the Bloch-Ogus spectral sequence is the filtration by coniveau N'H'(S,Q/Z(2)).
The first arrow in the above exact sequence is the differential dg’e’ : Eg’3 — E%’Z whose
cokernel is E3* = E%* = N?H%(S,Q/Z(2)). Since S is surface over an algebraically
closed field, the sheaf #3,(Q/Z(n)) = 0, and we see from the short exact sequence
above that

N*H;(S,Q/Z(2)) = HZ,,.(S, Hx(Q/Z(2))) € Hi(S,Q/Z(2)).

Let now T = M. By [Kah12, Lemme 2.5] we have H},(Q/Z(n)) = 0 for i > n; thus
in the motivic Bloch-Ogus spectral sequence E%’B’ =0 = Eg’4, which shows that

N*Hy(S,Q/Z(2)) = HZ,.(S, H3(Q/Z(2))) = Hy(S,Q/Z(2)).

It follows from comparing the Gersten resolutions of the Zariski sheaves Hz,(Q/Z(2))
and H%(Q/Z(2)), using the Merkurjev-Suslin theorem [MS83, 11.5], that these sheaves
are isomorphic. In summary, we have a commutative diagram of the following form

H2,.(S, H2(Q/Z(2))) —— H(5,Q/2(2))
o [

H2,:(S, H3(Q/Z(2))) —— H(S,Q/Z(2))
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We denote H(S,Q/Z(2)) by H* and N'H,(S,Q/Z(2)) by N'H* Then we have
Br?(S) = coker(y) = H*/N?H?,
which fits into the evident short exact sequence
0 — gryH* — H*/N°H* — H*/N'H*. (27)
From the properties of the Bloch-Ogus spectral sequence mentioned above, we see that
grll\IH4 = E%’B’ and H*/N'H* = Eg’4. Thus we may rewrite the exact sequence (27) as
0 — Hzr (S, H5(Q/Z(2))) — Br*(S) — Hyor (S, Ha(Q/Z(2))).
Since on S the sheaves H/,(Q/Z(2)) vanish for g = 3,4, this shows that Br*(S) = 0. O

By Lemma 4.5.1 and Lemma 4.5.2 Theorem 1.0.2 holds in case dim(X) = 1,2. In
what follows we will assume 3 < dim(X) < 4. We show next that it is enough to show
that coker(«) has finite exponent.

4.5.3 Lemma
Let X be a smooth, projective, geometrically irreducible variety over a field of characteristic 0.
If the cokernel of the map w : Br*(X) — Br?(X)C* has finite exponent, it is finite.

Proof. Let £ be a prime number. Consider the following commutative diagram, which is
obtained by comparing the universal coefficient short exact sequences in Lichtenbaum
and /-adic étale cohomology along the cycle maps

0—— CH}(X)®Qu/Zy —— H{(X,Q¢/Z(2)) —— Br*(X){{} —— 0

l J ) J (28)

0 — HL(X, Z(2)) ®Qp/Zy — HE(X,Q,/Z4(2)) — HY(X, Z4(2)){¢} — 0

Applying the snake lemma to the above diagram (28), and using that H% (X, Z,(2))
is a finitely generated Z,-module, it follows that there is a short exact sequence

0= (Qe/Zy)" — Br*(X){¢} — Ha(X, Z,(2)){t} -0,

where 7 is a non-negative integer and the group H3,(X,Z,(2)){¢} is finite. Hence for
each subquotient Q of Br?(X) and every prime power ¢" the torsion subgroup Q[¢"] is
tinite. In particular, if Q has finite exponent, then it is finite. 0

Let X be as in Theorem 1.0.2. By our assumptions we know from Lemma 4.4.2 that

B2(X) % Br2(X)% £ 12 (G CHE(X)) .
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is exact. In particular we have coker(a) = im(p).
If S is a smooth projective k-surface and f : S — X is a morphism, we obtain from
the functoriality of the Hochschild-Serre spectral sequence the commutative diagram

_ B=Bx _

Br?(X)Cr . H2(Gy, CH2 (X))
Y

Br?(S)% ——— H2(Gy, CH} (5))

By Lemma 4.5.2 the group Br?(S)®k vanishes and the above diagram shows that
coker(a) = im(p) C ker(vy) (29)

for every such f : S — X. Thus it suffices to show that ker(7y) has finite exponent.

To understand the group H?(Gy, CH? (X)), we need to study the Lichtenbaum-Chow
group CH? (X) in more detail. First, define CHY (X)nom as the kernel of the cycle maps

CH} (X) — @,H3 (X, Z(n)).
Set NS} (X) = CH}(X)/ CH}' (X)hom-

4.5.4 Lemma o
Let X be a smooth, projective variety over a field of characteristic 0 such that H4(X,Q/Z(2)) =
0. Then NSt (X) is a finitely generated free abelian group.

Proof. We show this by comparing with the associated complex variety and singular co-
homology. Let CH (Xc )f,m = ker (CHE (Xc) — HE(Xc, Z(2)) ) and set NSE(Xc)' =

hom

CH{ (Xc)/ CHE (X )t o € Hi(Xe, Z(2)). Given our assumption, NS (X¢)' is a finitely
generated free abelian group. Consider the following commutative diagram (where K

is defined as the kernel)

0— CH% (Y)hom - CH%(Y) - Hgt(yr ZE (2))

| | |-

CH{ (Xc) — Hy(Xc, Z(2)) ® Z,

and where the right vertical isomorphism comes from the usual comparison theorems
[Tam94, (11.1.1)]. Since the lower right horizontal map in this diagram is the composite

CHR (Xe) — H(Xe, Z(2)) = Hy(Xe, Z(2) 0 Z,,
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it follows that we have an isomorphism CH? (Xc )]
CHY (X)hom — CHj (XC)

hom = K. Hence there is a map
and an induced map NSL(X) N Ns%( Xc)' such that

hom’

NS? (X) ® Z; — NS? (X¢)' ® Z,

o

H3(X, Z,(2)) — H(Xe, Z(2)) ® Z

commutes. In particular NS¢ (X) ® Z, — NS¢ (X¢)' ® Z, is injective; since by our
assumption NS? (X) is torsion free, this proves our claim. O

4.5.5 Lemma
Let X be a smooth, projective varzety over a field of characteristic 0 such that H3,(X,Q/Z(2)) =
0. Then the abelian group CH? (X)pom is @ rational vector space.

Proof. Since there is an isomorphism CH? (X)iors = H%(X,Q/Z(2)) (see [RS16b, Re-
marks 3.2]), we know that CH? (X )pom is torsion free. We show that CH? (X)pom/¢" = 0
for each prime ¢ and each n; taking the limit over all such powers and the direct sum
over all £ we see that CH? (X)nom — CH? (X)hom ® Q is surjective, which implies our
claim. By Lemma 4.5.4 NS? (X) is a finitely generated free abelian group. Thus, com-
paring the exact sequences 0 — CH? (X)pom — CH? (X) — NSZ(X) — 0 along the map
multiplication by ¢", it follows from the snake lemma that there is an exact sequence
of the form

0 — CH? (X)pom /" — CHZ (X) /0" — NS?(X)/£" — 0.
Hence we need to show that CH? (X)/¢" — NS? (X)/£" is injective. But the composite
CHE(X) /" — NS{.(X) /0" — Hg(X, Z(2)) /0" — Hg(X, )

coincides with
CH}(X) /4" — HE(X,Z/0"(2)) 5 HEL(X, u52),

where the first map is the injective map from the universal coefficient theorem. This
proves our claim. O

Since the Galois cohomology of uniquely divisible Galois modules vanishes in posi-
tive degrees [NSW13, Proposition (1.6.2)], it follows from Lemma 4.5.5 that for X as in
Theorem 1.0.2 we have an isomorphism H?(G;, CH? (X)) = H?(Gy,NS? (X)). In par-
ticular, for a smooth projective surface f : S — X as before, we have a commutative
diagram
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H(Gy, CH.(X)) — H2(Gy, NS? (X))

| d

H?(Gy, CH{ (S)) — H?(Gi, NSi (5))

Hence ker(y) C ker(7) and it suffices to show that ker(7) has finite exponent.

To understand the kernel of 7, we need to understand the groups NS?(X) and
NS? (S). We first prove a general result about the comparison of Chow groups and
Lichtenbaum-Chow groups in codimension d = dim(X).

4.5.6 Lemma
Let X be a smooth, projective variety of dimension d over a field of characteristic 0. Then

CH?(X) = CHY (X).

Proof. Let 7 : Xg — Xzar be the canonical morphism. By [SV00], [Voe03, 6.6] and
[GLO1] there is an isomorphism Z(d) ~ 7 ;,1R7m.Z(d)s and a distinguished triangle

Z(d) = R Z(d)st — T>a12RTZ(d) gt ﬂ )

In particular there is an exact sequence
H2Y(X, T2 41 oR7T.Z(d) g) — CHY(X) — CHY(X) — H* (X, 754, 0RT.Z(d)e). (30)

To compute the terms on the left and the right side we use the hypercohomology
spectral sequence

HP (X, R1T54 oRZ(d)g) = HP (X, T 44 )RTZ(d) 1)

According to [RS16a, (4.4)] we can identify the coefficient sheaves as follows

0 ifg<d+1,

HINQ/Z(d)), ifq>d+2. (31)

RIT> 4 oRTZ(d) gt = {

In our case of interest, we need to consider the case g < 2d — 1 for the term on the left
side in (30) and the case g < 2d for the term on the right side. For g4 < d 4+ 1 we have
HP (X, R1t> 4, R Z(d)s) = 0 by (31); for g > d + 2 we have RIT> ;R Z(d)s =
HI ! (Q/Z(d)), but these terms vanish, because 4 —1 > d and because we are working
over an algebraically closed field k. In particular H? (X, R17>4oR7.Z(d)) = 0 in both
cases, and thus CH?(X) = CHY (X). O
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4.5.7 Lemma .
Let S be a smooth projective surface over a field k of characteristic zero. Then NS (S) = Z.

Proof. As for the Lichtenbaum-Chow group, we denote for the Chow group the quo-
tient CH?(S)/ CH?(S)pom by NS?(S). By Lemma 4.5.6 we have a commutative diagram

0 —— CH2(S)pom —— CH?(S) — NS%(S) — 0
L2 l= 1
0 —— CHE (S)hom — CH{ (5) — NS{(S5) — 0

which implies NS? (S) = NS?(S). From the degree map we get the exact sequence
0 — CH?(S)num — CH?(S) - Z — 0.

Since on the surface S homological and numerical equivalence agree [Lie68], we have
NS?(S) = Z, which completes the proof. O

Recall that for the Chow groups the composition of the intersection product with the
degree map defines a pairing

CH2(X) x CH*2(X) — CH(x) &% 7

whose left and right kernels define the subgroups of cycles numerically equivalent to
zero of the respective Chow groups. Since X is of dimension < 4, it follows by the
work of Lieberman [Lie68] that homological and numerical equivalence on X agree. In
particular we have

NS?(X) = CH?(X)/ CH?*(X)hom = CH2(X)/ CH?*(X) num,

where the quotient on the right side is a finitely generated free abelian group [Kle68,
Theorem 3.5]; a similar argument applies to NS?~2(X). In particular, the intersection
product composed with the degree map defines a non-degenerate bilinear pairing

NS?(X) x N§¥2(X) — CHY(X) — Z. (32)

We need a variant of this pairing for Lichtenbaum-Chow groups. From Lemma 4.5.6

we know that CH?(X) = CHY (X), in particular, we have a degree map in this setting.
This map, together with the cup product defines for 0 < n < d = dim(X) a pairing

HP" (X, Z(n)) x H22(X, Z(d — n)) — H¥ (X, Z(d)) 98, 7.
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whose left and right kernels we refer to as the subgroups of elements numerically
equivalent to zero H?'(X, Z(1))num and H2"2"(X,Z(d — 1))num respectively. Since
we are assuming d = 3,4, we have for n = 2 then d — 2 = 1, 2, which implies that

CH? (X) x CHY2(X) — CH{(X) — Z,
factors through
NS? (X)/ NSE(X)tors x NSI2(X) / NS 2(X)tors — Z- (33)

Furthermore we know that NS?(X) and NS? (X) have the same Z-rank (cf. [RS16b,
section 5]); this together with Lemma 4.5.4 implies NS?(X) = NS? (X). Since always
NS!(X) = NS} (X), this implies that the two pairings (32) and (33) in fact agree; in
particular both of these pairings are non-degenerate.

We are ready to prove Theorem 1.0.2:

Proof of Theorem 1.0.2. Let m be the rank of NS? (X). Choose m irreducible projective
surfaces S; — X, whose classes in NS7~2(X) are such that the intersection pairing with
theses classes defines an injective group homomorphism NS?*(X) <+ Z™. Resolving
singularities, we might assume that these surfaces S; are smooth. There is a finite field
extension k' of k over which these surfaces are defined. It follows from an assertion
at the level of cycle complexes [Blo86, Corollary 1.4] that there are restriction and
corestriction homomorphisms

resy /. : Br?(Xy) — Br?(Xp) and coresy /i : Br?(Xp) — Bré(Xy),

such that (coresy . o resy i) is multiplication by [k’ : k]. These homomorphisms fit
into the commutative diagram

resy /i coresys /i

Br*(Xj) Br*(Xy)

Br?(Xj)

o 497 o

Br?(X)Cx Br?(X)Cv Br?(X)Ck
where Gy is the absolute Galois group of k’. In particular, to show that coker(a) has

tinite exponent, we may replace k by a finite extension K /k.

Because of (29) and the discussion before Lemma 4.5.6, it is sufficient to show that
the kernel of the map H?(Gy, NS¢ (X)) — H?(Gy, @I, NS2 7(S;)) has finite exponent.

The pullbacks along the morphisms S; — X define a map NS*(X) — @, NS*(S;) =

Z"", which can be extended to a map NS?(X) — o NSZ(S ) = NS?(X) such that the
composition is multiplication by a positive integer r. In the commutative diagram
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NS2(X) " NS (S) —— NS (X)

| | |

NSt (X) O NSE(S) - *NSE(X)

all vertical maps are isomorphisms. Therefore the composition in the lower row
NS?(X) — @ NS(S;) — NSZ(X) is also multiplication by r. In particular, the
kernel of the map

H2(Gy, NS2 (X)) — H(Gy, @, NS2(S)

is contained in the r-torsion subgroup and therefore has finite exponent. O
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A.1. Derived categories

In this section we briefly sketch the construction of derived categories. Due to space
limitations we can only give an overview of the methods and must omit most of the
proofs; carefully and exhaustively written introductions to this topic can be found
in [GMO03, IIL.] and [Wei95, chapter 10], which we follow in our discussion. In the
following A will always be an abelian category.

We denote by Ch(.A) the category of cochain complexes of objects of A, i.e. the ob-

jects of Ch(.A) are complexes C* := ... — Ci~1 47 ci & citl L, | with differential
d = (d");cz such that d'd"~1 = 0 for each i € Z and the morphisms in Ch(A) are
cochain maps u : C* — D*® with uidic_l = dlglui_l for each i € Z; this is again an
abelian category [Wei95, Theorem 1.2.3]. A complex C*® in Ch(.A) is said to bounded
above or bounded on the right, if there is an integer a such that C" = 0 for n > 4, and
it is bounded below or bounded on the left, if there is an integer b such that C" = 0
if n < b; C*® is bounded, if it is bounded below and bounded above. The categories
Ch’(A), Ch™(A) and Ch™ (A) are the subcategories of Ch(.A) whose elements are the
bounded resp. bounded above resp. bounded below complexes.

There is an important operation on cochain complexes, called shifting or translating;:
Let C* be a complex in Ch(.A) with differential map d. For n € Z we define the shifted
complex C*[n] to be the complex given by C/[n] = C'*" in degree i with differential
map (—1)"d. If f : C* — D* is a cochain map, then the cone of f is the complex given
by cone(f)’ = C*[1]' @ D' with differential dione( pla.b) = (—dc(a), f(a) +dp(b)) in
each degree i. Completely analogous we define the cylinder of f to be the complex
cyl(f) = C* & C*[1] @ D* with differential diyl(f) (a,b,¢) = (dc(a) — b, —dc(b), f(b) +
dp(c)) in degree i.

A morphism u : C* — D*® in Ch(A) is called null homotopic, if there are maps
s; : Ct — D=1 such that u; = sidlgl + désiﬂ for each i € Z; furthermore cochain maps
f and g are called homotopic, if f — g is null homotopic, and f : C* — D* is a cochain
homotopy equivalence, if there is a cochain map g : D* — C*® such that ¢f and fg are
homotopic to the identity maps on C*® resp. D°®. This defines an equivalence relation
on the set of cochain maps C* — D*.
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Using these terms, the homotopy category K(.A) of A is constructed by defining the
objects of K(.A) to be the objects of Ch(.A) and the morphisms of K(.A) to be the sets of
equivalence classes of cochain maps C* — D* for objects C*, D® of K(.A). The category
K(A) is an additive category and the evident quotient map Ch(A) — K(A) is an
additive functor. Analogous to the category Ch(.A) we can define the subcategories
K’(A), K~ (A) and K*(A) of K(A) to be the categories with objects the bounded,
bounded above or bounded below complexes.

Let C*® be a complex in K(.A) with differential d. Of course we can take cohomology
of C* in degree i, i.e. we set H/(C*) = ker(d’)/im(d"~1), and this is a well defined
functor from K(.A) — A. We say that a morphism f : C* — D* is a quasi-isomorphism,
if f induces an isomorphism on cohomology groups, i.e. H'(f) : H'(C*) — H(D*) is
an isomorphism for each i € Z.

A.1.1 Definition ([Wei95, Definition 10.3.1])
Let C be a category and S be a class of morphisms in C. A localization of C with respect
to S is a category S~!C together with a functor g : C — S~1C such that

a) q(s) is an isomorphism in S~!C for every s in S.

b) any functor F : C — D such that F(s) is an isomorphism in D for every s in S
factors uniquely through g.

A.1.2 Example
Let S be the class of homotopy equivalence classes in Ch(.A). Then K(.A) is the local-
ization S™'Ch(A) (cf. [Wei95, Proposition 10.1.2]).

A.1.3 Definition
The derived category D(.A) of an abelian category A is the localization Q 'K(A) of

the homotopy category K(.A) of A with respect to the class Q of quasi-isomorphisms
in K(A).

A.1.4 Remark

The construction of D(.A) of the derived category of A given in Definition A.1.3 implies
that D(.A) is unique up to equivalence of categories, but it does not ensure that it exists
at all! Therefore we will give a description of the derived category, at least for the
categories used in this thesis.

A.1.5 Definition
A class S of morphisms in a category C is called localizing, if it satisfies the following
axioms:

1. S is closed under compositions and all identity morphisms of objects in C are in
S.
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2. For any morphism f in C and any s in S, there exist a morphism ¢ in C and a t in
S such that the diagram

is commutative. Furthermore the symmetric statement, where the directions of
the arrows are reversed, is valid.

3. Let f,g be two morphisms between objects X,Y in C. Then the existence of a
morphism s in S with sf = sg is equivalent to the existence of a morphism ¢ in S
with ft = gt.

A.1.6 Remark
Let S be a localizing class in a category C and consider a ‘roof’

X/
/ K
X Y

with s in S and f a morphism in C, which we also denote by X <> X’ Loy, we say

that the roofs X < X' & Yand X & x” L5 v are equivalent if and only if there is a

1 1/
roof X' &~ X" L% X" such that the following diagram commutes:

X///

/ Xﬁ
X/ X//
/ K/J
s f

X Y

This defines an equivalence relation on the class of such roofs.
Now let X < X' L Yand Y £ Y £5 Z be roofs as defined above. By the second

axiom of localizing classes there exist a t in S and a morphism g in C, fitting into the
following commutative diagram:
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X"
t.o” 8

X' ) b Y’
f s’
X Y Z

A.1.7 Lemma
Let C be a category and let S be a localizing class of morphisms in C. Then the localization
S~1C can be described as follows:

a) Ob(5~1C) = Ob(C).

b) A morphism X — Y in S™IC is the equivalence class of roofs X <~ X' Ly s defined in

Remark A.1.6. The identity morphism id : X — X is the class of the roof X A x4 x

¢) The composition of morphisms X <~ X' Loy andy &Y' L5 Z is the equivalence class
of the roof X & X T8, 7 as constructed in Remark A.1.6.
Proof. [GMO03, 111.2 8.] O

A.1.8 Proposition

Let R be a ring and let A be either the category of R-modules or the category of (pre-)sheaves
of R-modules on a topological space X. Then the class of quasi-isomorphisms in K(A) is a
localizing class.

Moreover the same assertion holds for the classes of quasi-isomorphisms in the categories

KP(A), K~ (A) and K (A).

In particular the derived categories of these categories exist.

Proof. Proofs can be found in [GMO03, I11.4 4.] or with a thorough discussion of the set
theoretical problems in [Wei95, Proposition 10.4.4]. O

In what follows we restrict our attention to the abelian categories A mentioned in
Proposition A.1.8.

Although we always start with an abelian category A, the derived category D(.A)
will never be abelian. Hence we cannot define exact sequences as usual and therefore
we have a priori no tools to deal with the homological properties of the initial category
A. This problem is solved by introducing so called distinguished triangles, which can
be seen as an analogue of (short) exact sequences in abelian categories, since such
distinguished triangles yield exact sequences in cohomology.
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A.1.9 Lemma
Let f : C* — D*® be a morphism of complexes in A. There exists a commutative diagram in
Ch(.A) of the following form, which has exact rows and is functorial in f:

0 D* cone(f) L, C*[1] 0
0 c* d cle(f) —" — cone(f) ——— 0

k

c* d D*

Moreover the maps « and p induce a canonical isomorphism between D® and cyl(f) in the
derived category D(\A).

Proof. The maps 7 resp. 7T and J are the canonical embeddings resp. projections. The
map f is given degree-wise by a + (a,0,0), « is the embedding c + (0,0, c) in each de-
gree and f is given by (a,b,c) — f(a) + ¢, also in each degree. Then the commutativity
of the diagram is clear and all maps commute with the corresponding differentials of
the complexes. Moreover we have foa = idp and the map K : cyl(f)’ — cyl(f)i~!,
(a,b,¢) — (0,b,0) yields a homotopy between a o B and id.(f)- In particular D® and
cyl(f) are isomorphic in D(A). O

A.1.10 Definition
Let C be a category of complexes, e.g. Ch(A) or D(A).

a) A triangle in C is a diagram of the form C* Lope 8 pe C*[1].

b) A morphism of triangles in C is a commutative diagram

i
ce D* —— p* " o1
Ju Jz; Jw lu[”
ce p* —— F* — o

It is called an isomorphism if u, v and w are isomorphisms in C.

c) A triangle is distinguished if it is isomorphic to a triangle of the form

c L cyl(f) = cone(f) 4 C*[1]

arising from a diagram as in Lemma A.1.9.
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With respect to cohomological properties, distinguished triangles in D(.A) have basi-
cally the same function as short exact sequences in 4; to be precise each distinguished
triangle gives rise to a long exact sequence in cohomology:

A.1.11 Theorem
Letc* L D 8 po Iy C*[1] be a distinguished triangle in D(A). Then the following
sequerce is exact:

o (e Y gipey B8, gy B ey -
—_——
:HH—l(CQ)
Proof. [GMO03, 111.4 6.] ]

A.2. Hypercohomology

The definition of Lichtenbaum cohomology uses hypercohomology of a complex of
sheaves. In this section we briefly recall the definition of hypercohomology via Cartan-
Eilenberg resolutions.

In the following A denotes an abelian category with enough injectives.

Let C* be a cohomological complex in A, i.e. C*® has a differential d of degree
+1. We denote by B®*(C®) the complex with B'(C*) = im(d'~!); analogous we de-
fine the complexes Z*(C*®) and H*(C®) to be the complexes with Z/(C*) = ker(d')
and H(C®*) = Z!(C*)/B!(C®) respectively. In classical homological algebra hyperco-
homology is defined using Cartan-Eilenberg resolutions, which we will describe in the
following. These resolutions are double complexes in A and they can be seen as a
generalisation of injective resolutions of a single object.

A double complex M** in A is a lattice of objects (M"/ ); icz with differentials

diI’j - M — MitL and d% : M — MUt e, d% = 0 and d%l = (0; moreover the
differentials satisfy the equation djj o d; + d; o d;; = 0. We denote by M®*i the complex

R L o
s MY L M L MY

and by M"* the analogous complex for the differential d;;. Similar to the case of a
complex we define B**(M**) to be the double complex with B*/(M**) = B*(M*/)
and B"*(M**) = B®*(M"*); completely analogous we define the complexes Z**(M**)
and H**(M**).
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A.2.1 Definition

Let C* be a complex in A. A Cartan-Eilenberg resolution of C* is an upper half-plane
double complex I** of injective objects in A, i.e. I/ = 0 forallj < 0andalli € Z,
together with a map € : C* — I*? such that:

a) If C' = 0, the column I** is trivial, i.e. '/ = 0 for each j>0.
b) The complexes B"*(I**), Z"*(I**) and H"*(I**) are injective resolutions of B(C*),
Z'(C®) and H'(C®) respectively.

A.2.2 Proposition
Each complex C® in A has a Cartan-Eilenberg resolution 1°°.

Proof. The double complex I** is constructed inductively. First we set I'/ = 0 for j < 0.
Next we consider the sequences

0— Z'(C*) =C' — B1(C*) = 0
0— B*Y(C*) =z (C*) — HTH(C*) = 0
0 — ZH(C*) —=C*Y(C*) — B*2(C*) — 0
0 — B'*3(C*) =z (C*) — H™(C*) = 0
and choose an injective resolution ]Zl (c*) of Zi(C*). By the Horseshoe Lemma (cf.

[Wei95, Lemma 2.2.8] for a dual version) there are injective resolutions Cl — [
and Bt1(C*) — Jitle  such that there exists a short exact sequence of complexes

Bi+1 C’)
0 — Jiue c e — ];,tll'c,) — 0 which is compatible with the first sequence
0— ZZ(C') — C' — Bifl(C*) — 0. Now we choose in the same way resolutions
ZFH ) — ]lztll.c-) and HIT1(C*) — ];:1’1.((:-) such that there is a short exact se-
quence of complexes 0 — ];lll'c, — ]’Zﬂl'c, — ]Zﬂl' (coy — 0 compatible with the

second sequence 0 — B'*1(C®) — ZZH(C') — H'T1(C*) — 0. This procedure can be
iterated with the sequences above. The Cartan-Eilenberg resolution is then given by
the double complex I** whose columns are the resolutions I"®; the vertical differen-
tials are differentials of the resolutions I""* and the horizontal differentials are given by

the composition I'"* — ];lll.c' — ]lztll.c') — Jitle, O

Now let C* be a complex in A and let I** be a Cartan-Eilenberg resolution of C*.
If F: A — B is a left exact functor, we can apply F to every object of [** and obtain
a double complex which we denote by F(I**). By the total complex Tot!Ll(F(I**)) we
mean the complex with Tot![(F(I**))" = [T; +j=r F (I'1). If this total complex exists, we
define the i-th hyper right derived functor R'F(C®) to be H'(Tot!I(F(I**)). This yields
a functor from Ch™ (A) to B and from Ch(A) to B, if B is complete.
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A.2.3 Definition

Let X be a smooth projective variety and let 7* be a complex of sheaves on X for any
Grothendieck topology 7. The t-hypercohomology of X in degree i with coefficients
in F* is defined by

H (X, F*) := RT(F*),

where I is the global section functor.

A.3. Spectral sequences

In this thesis we use various kinds of spectral sequences in order to compute the coho-
mology of complexes of sheaves. Here we briefly recall the terminology and describe
those spectral sequences, which are used in the previous chapters.

In the following A will denote an abelian category.

A.3.1 Definition
A (cohomology) spectral sequence in A starting on page a € IN consists of the follow-
ing data:

i) A family {E/""} of objects of A for all p,q € Z and all r > a.

ii) Maps art . P Ef+r’q_r+1 such that df+r’q_r+1 odl" =0 for all p,q € Z and
r > a, ie. the d}’! are differentials. We often suppress the superscript (p,q) and
simply write d,.

p4

,+1 and the cohomology of E;”* at (p,q) with respect to

iii) Isomorphisms between E
the differentials d?":

EVA, = ker (df7) /im (df "1

Probably the most common way to think about spectral sequences is as a book whose
sheets are square numbered by a pair of integers (p, q), such that the object E? sits on
the r-th sheet in position (p, q) and passing to the next page means taking cohomology
with respect to the differentials d,. The differentials on page r go r steps to the right
and r — 1 steps downwards.

A.3.2 Remark
Let (E}'?, d,) be a spectral sequence starting on page a. Since each Ef fl is a subquotient
of E/", we obtain a nested family of subobjects of E}"7:

0=B"C...CBMfCB C...czllcz...czZT=ET  (34)

pa _ P4 ;nPAa
such that E}}, = Z;""/B;"".
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A.3.3 Definition
Let (Ef"",d,) be a spectral sequence starting on page a. If the objects BL? = |, B/
and Z5T = N2, ZI'" exist, we define the limit object at (p,q) to be

E&T = 781/ BET.

A.3.4 Remark

Let (E},d,) be a spectral sequence starting at page a. We say that the object E}"7 is of
total degree n = p + g; so the objects of total degree n lie on a line with slope —1 and
the differential d, increases the total degree by 1.

The spectral sequence (Ef ’q,dr) is said to be bounded, if for each n € IN there are
only finitely many non-zero objects of total degree n in E;?. Of course, if the spectral
sequence is bounded, the chain (34) of subobjects of E;'7 is finite and thus the limit
objects EPT exist.

A special case of a bounded spectral sequence is a so-called first quadrant spectral
sequence, i.e. a spectral sequence with E}"7 = 0 whenever p < 0 or ¢ < 0. The same
holds for third quadrant spectral sequences.

The limit terms also exist if for any pair (p,q) there exists a ry such that /"7 = 0 and

i A1 _ 0 for each r > 19. In this case the isomorphism from A.3.1 iii) identifies

EP with Effl for each r > ry and we have EF = Eféq-

A.3.5 Definition

Let (E7,d,) be a spectral sequence starting on page a such that all limit terms EL;’
exist. Further assume that for each n € Z there is an object H" with a decreasing
regular! filtration

... DFPH" D FPHIH" D ...,
We say that (E}"7,d,) converges to H* if there are isomorphisms
EPA o>~ ppp+a ypplgptq
for any (p,q). In this case we write
EyT = HPTI.

A.3.6 Remark
Let (Ef,d,) be a first quadrant spectral sequence starting at page a which converges
to H*. Then each H" has a finite filtration

O:Fﬂ+1HH anHn g glen QFOH” :Hn.

A decreasing filtration is regular if ", F"H" = {0} and U, FPH" = H" for all n.
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In particular there are isomorphisms F"H" = EZ{,O and H"/F1H" =~ Egg,". Moreover
since each differential d"" is zero, there is a morphism Ef° — EX° C H". Analogous
each differential landing in EQ’” for any r > a is zero and thus there is a morphism
H" — E%" C EY". These morphisms are called edge homomorphisms.

Spectral sequences arise in many different situations. In the following we will sketch
the construction of those spectral sequences, which are used in this thesis.

A.3.7 Theorem (Leray spectral sequence)
Let X and Y be topological spaces and let F be a sheaf of abelian groups on X. For any
continuous map f : X — Y there is a spectral sequence starting on page 2

EY' = HP(Y,RIf,.F)) = H (X, F)

called Leray spectral sequence. So this spectral sequence computes cohomology on X via coho-
mology on Y.

Proof. [Tam94, (3.7.6)] O

A.3.8 Theorem (Hypercohomology spectral sequence)
Let X be a topological space and C* be a complex of sheaves of abelian groups on X. Then there
is a converging spectral sequence, called hypercohomology spectral sequence, starting on page 2

ENT = HP (X, H1(C*)) = HPM(X,C*),

ker (T (U,CT) =T (U,CTH))

where H(C*) is the sheaf associated to the presheaf U +— m(T(U,CT ST (UCN)

Proof. [Wei95, Application 5.7.10] O

Let K*® be a complex in A with differential d. We say that K* has a (decreasing)
tiltration, if each K" is filtered by subobjeg:ts ce 2 FIK" D FiHlK" O ... and the
differential d respects this filtration, i.e. d(F'K") C FiKn+,

A.3.9 Lemma
Let K*® be a filtered complex with differential d. Define for r > 0

Zf'q — d—l(Fp+er+q+1) N (FpK;H—q)
and

P =20/ (201 e d (20T

Then the following assertions hold:
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i) The differential d induces a well-defined map dl'? : Ef"1 — EJ -l for each v > 0.
ii) dyod, =0 forr > 0.
iii) The cohomology at EF"? with respect to d, is isomorphic to Ef fl.

In particular, (E},d,) as given above defines a spectral sequence. Moreover if the filtration of
K* is finite and reqular, this spectral sequence converges.

Proof. This is the content of [GMO03, IIL.7 5.]. O

Let now M**® be a double complex in A with horizontal resp. vertical differen-
tials dlI’] . MiJ — ML and d% . M — ML in particular these differentials
satisfy df = 0, df; = 0 and d; ody; +djod; = 0. We set HY(M®/) = Hy(M*/) =
ker(d/")/ im(dll_l’] ); then d}] induces a differential on the complex

.= HY(M®*) — H{(M*TTY) — ..

Denote by H]I I (H’I' (M"')) the cohomology of this complex. Completely analogous
we define H} (H;I] (M”')).

Moreover let Tot(M**®) be the total complex of M** with differential d = dj + dyj,
i.e Tot(M**)" =T1;yj—, MP. There exist two decreasing filtrations on Tot(M**):

F/Tot(M**)"= J] MY and  FTot(M**)"= T[] MY7. (35
i+j=n,i>p i+j=n,j=>q

A.3.10 Theorem (Spectral sequence of a double complex)

Let M** be a double complex as above. The filtered complexes given by the filtrations (35) give
rise to two spectral sequences ('E},d, 1) and (""E},d, 11).

Moreover if M**® is a first quadrant double complex, both these spectral sequences converge to
H"(Tot(M**)) and we have

TENT = HY (H}/(M**)) = HPM (Tot(M**))
HEM = HY, (HV*(M**)) = HP™ (Tot(M**)),

Proof. The existence of the spectral sequences is given by Lemma A.3.9. If M**® is a
tirst quadrant spectral sequence, the filtrations (35) are finite and regular and thus the
spectral sequences converge also by Lemma A.3.9. The computation of the E,-terms
can be found in [GMO03, III.7 10.]. O

A.3.11 Remark
The spectral sequence 'E}'7 in Theorem A.3.10 arises by first computing ‘vertical coho-
mology” of the columns of the double complex M**® and then computing ‘horizontal



62 A. Appendix

cohomology’ of the rows given by vertical cohomology; the spectral sequence ''E}"

arises the other way round, i.e. by first taking horizontal cohomology and then verti-
cal cohomology. But both spectral sequences converge to the cohomology of the total
complex.

Let now X be a equidimensional noetherian scheme of finite type over a field k
and let F be a sheaf of abelian groups on the small étale site Xs. For x € X define
Hy (X, F) = lim _ Hg 1y (U, F), where the limit runs through the ordered set
of open neighbourhoods of x and Hy, (U, F) is étale cohomology with support
in ¥ N U. Further denote by X() the points of codimension i in X. Then there is a
converging spectral sequence, called coniveau or Bloch-Ogus spectral sequence

EPT = ]_[ HY (X, F) = HE(X, F). (36)

ét, x
xeXx(p

For an explicit construction of this spectral sequence see [BO74, section 3] or [CTHK97,
Part 1]. Let Z! = {Z C X | Z closed, codimx(Z) > i}. Then the filtration of the terms
H (X, F) is given by

N'HL (X, F) = ker <Hgt(x, F) = lim HA(X\ Z, ]—"))
VAVA

and it is called coniveau filtration.

A.3.12 Theorem (Bloch-Ogus, [BO74, 6.2, 6.3])
Let F be an effaceable sheaf of abelian groups on the small étale site of X. Then the Ep-terms of
the coniveau spectral sequence (36) are given by

ENT =HY (X, HI(F)),

where H1(F) is the Zariski sheaf associated to the presheaf U — HJ, (X, F).
Moreover E5' = 0 for p > q.
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