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1.1 Abstract 

 

The biomolecule deoxyribonucleic acid (DNA) plays an essential role in the 

development, function, and reproduction of living organisms. Furthermore, DNA is a 

natural polymer with unique properties used as raw material for several 

developments in the physical, medical, and biological sector. The structure of DNA 

makes it a programmable, functional, and biocompatible basic material for the 

production of precise structures in the nanometer range. DNA-based nanoconstructs 

offer great potential to be used as carrier systems for biomedical applications. 

However, their impact on biological systems and their distribution in cells and tissue 

is largely unknown.  

Therefore, DNA nanotubes with different ligands were produced, using the single-

stranded tile method, based on the self-organization of complementary 

oligonucleotides (ODNs) to tube-like structures in nanometer precision. The 

functionality and the microdistribution of these DNA structures were investigated 

under physiological and pathological conditions in the murine muscle tissue and in 

cultured macrophages. 

The use of DNA nanotubes as carrier systems, targeting macrophages in the murine 

skeletal muscle and their capacity to induce an immune response, was determined in 

the first part of this thesis. These DNA nanotubes were decorated with immunogenic, 

unmethylated cytosine-phosphate-guanine (CpG) DNA sequences which are specific 

for bacterial DNA and are recognized by the innate immune system of vertebrates. 

The detection of CpG sequences via the endosomal Toll-like receptor 9 (TLR 9) in 

macrophages after incubation with CpG DNA nanotubes led to the secretion of the 

proinflammatory cytokine tumor necrosis factor (TNF), while incubation with plain 
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nanotubes did not induce a significant immune response. To confirm the 

immunogenic effect of CpG DNA nanotubes in vivo, the constructs were 

microinjected into the murine cremaster muscle. All constructs were taken up by 

tissue-resident macrophages equally, but only microinjection of CpG DNA nanotubes 

caused nuclear translocation of the proinflammatory transcription factor NF-ĸB and 

the recruitment of leukocytes to the site of injection. 

Since DNA nanotubes were selectively ingested by tissue-resident macrophages and 

because the application of functional CpG motifs specifically affected the immune 

reaction of macrophages and mast cells, CpG DNA nanotubes were investigated 

under sterile inflammatory conditions in the next part of the thesis. CpG DNA 

nanotubes were able to induce phenotypically altered macrophages with high TLR 9 

expression in an ischemia-reperfusion (I/R) model. Furthermore, CpG nanoconstructs 

attenuated leukocyte recruitment. However, plain DNA nanotubes promoted the 

invasion of leukocytes into the postischemic tissue without causing increased 

expression of TLR 9 in macrophages. 

In the final part of the thesis, the ability of DNA nanotubes to deliver anti-inflammatory 

drugs was tested. Therefore, the effects and the localization of dexamethasone-

conjugated DNA nanotubes (Dex nanotubes) were examined in vitro as well as in the 

I/R model. The anti-inflammatory molecule dexamethasone could be delivered 

efficiently to target cells using the DNA carrier system in vitro and in vivo. The 

pretreatment with Dex nanotubes in a septic in vitro model significantly reduced the 

TNF response by macrophages without affecting the cell viability. Microinjection of 

Dex nanotubes into postischemic mouse cremaster tissue resulted in a significant 

reduction of leukocyte recruitment. Immunohistological stainings revealed that the 

expression of the endothelial adhesion molecules VCAM-1 and ICAM-1 was 
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diminished after injection of Dex nanotubes, contributing to the attenuated leukocyte 

transmigration.  

Taken together, these results demonstrate that DNA nanotubes can be used as a 

biocompatible platform for the delivery of bioactive molecules to target macrophages 

in vivo. 
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1.2 Zusammenfassung 

 

Das Biomolekül Desoxyribonukleinsäure (DNA) ist essentiell für die Entwicklung, 

Funktion und Reproduktion von lebenden Organismen. Darüber hinaus ist DNA 

jedoch auch ein natürliches Polymer, das durch seine einzigartigen Eigenschaften 

zum Ausgangsmaterial für verschiedenste Entwicklungen im physikalischen, 

medizinischen und biologischen Bereich wurde. DNA ist, durch ihre Struktur, ein 

programmierbares, funktionalisierbares und biokompatibles Basismaterial für die 

Herstellung präziser Strukturen im Nanometerbereich. DNA-basierte Nanokonstrukte 

besitzen großes Potential als Trägersysteme für biomedizinische Anwendungen. 

Allerdings ist bis jetzt nur wenig über ihren Einfluss auf biologische Systeme und die 

Verteilung in Zellen und im Gewebe bekannt.  

Mittels der single-stranded tile Methode, mit der sich komplementäre Oligonukleotide 

(ODNs) in Nanometergenauigkeit zu Konstrukten selbstorganisieren, wurden DNA-

Nanoröhren mit verschiedenen Liganden hergestellt. Diese DNA Strukturen wurden 

auf ihre Funktionalität und Verteilung unter physiologischen und pathologischen 

Bedingungen sowohl im murinen Muskelgewebe als auch in kultivierten 

Makrophagen-Zelllinien untersucht. 

Im ersten Teil dieser Arbeit wurden DNA-Nanoröhren als Trägersysteme für die 

gezielte Anwendung an Makrophagen im murinen Skelettmuskel und auf ihr 

Vermögen, eine Immunantwort zu induzieren, untersucht. An diese DNA-Nanoröhren 

waren immunogene, unmethylierte Cytosin-Phosphat-Guanin (CpG) DNA-

Sequenzen konjugiert, die spezifisch für bakterielle DNA sind und vom angeborenen 

Immunsystem der Vertebraten erkannt werden. Die Erkennung der CpG-Sequenzen 

durch den endosomalen Toll-like Rezeptor 9 (TLR 9) in Makrophagen führte nach 
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Inkubation mit CpG-DNA-Nanoröhren zur Freisetzung des proinflammatorischen 

Zytokins Tumornekrosefaktor (TNF), während Inkubation mit unkonjugierten DNA-

Nanoröhren keine signifikante Immunantwort induzierte. Um die immunogene 

Wirkung der CpG-DNA-Nanoröhren auch in vivo zu bestätigen, wurden die 

Konstrukte in den murinen Cremastermuskel mikroinjiziert. Alle Konstrukte wurden 

gleichmäßig von gewebsständigen Makrophagen aufgenommen, allerdings kam es 

nur nach Injektion von CpG-Nanoröhren zur nukleären Translokation des 

proinflammatorischen Transkriptionsfaktors NF-ĸB und zur Rekrutierung von 

Leukozyten an die Injektionsstelle.        

Da DNA-Nanoröhren spezifisch von Gewebsmakrophagen aufgenommen werden 

und durch den Einsatz eines funktionellen CpG-Motivs die Immunantwort von 

Makrophagen und Mastzellen beeinflusst werden konnte, wurden im nächsten Teil 

dieser Arbeit CpG-DNA-Nanoröhren unter sterilen inflammatorischen Bedingungen 

untersucht. Nach Ischämie-Reperfusion (I/R) führten CpG-tragende Konstrukte in 

vivo zu phänotypisch veränderten Makrophagen mit hoher Expression von TLR 9. 

Darüber hinaus konnten inhibierende Effekte von CpG-Nanokonstrukten auf die 

Leukozytenrekrutierung nachgewiesen werden. Unkonjugierte DNA Nanoröhren 

förderten hingegen die Einwanderung von Leukozyten ins Gewebe, jedoch ohne eine 

erhöhte Expression von TLR 9 in Makrophagen hervorzurufen.  

Im abschließenden Teil dieser Arbeit wurde die Möglichkeit des Transports von 

antiinflammatorischen Wirkstoffen durch DNA-Nanoröhren untersucht. Hierfür 

wurden Dexamethason-konjugierte DNA-Nanoröhren (Dex-Nanoröhren) in vitro als 

auch in vivo im I/R-Modell auf ihre Wirkung und Lokalisation untersucht. Durch das 

DNA-Trägersystem konnte das entzündungshemmende Molekül Dexamethason 

nicht nur in vitro, sondern auch in vivo, sehr effizient aufgenommen werden. Im 

septischen in vitro Modell führte die Vorbehandlung mit Dex-Nanoröhren zu einer 
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reduzierten TNF  Antwort durch Makrophagen ohne Einschränkung der Zellvitalität. 

Die Mikroinjektion von Dex-Nanoröhren in das postischämische, murine Cremaster-

Gewebe hatte eine signifikante Reduktion der Leukozytenrekrutierung zur Folge. 

Immunhistologische Färbungen zeigten, dass die Expression der endothelialen 

Adhäsionsmoleküle VCAM-1 und ICAM-1 durch Injektion von Dex-Nanoröhren 

reduziert wird, was zur geringeren Anzahl an transmigrierten Leukozyten beiträgt.  

Diese Ergebnisse zeigen, dass sich DNA-Nanoröhren als biokompatible 

Nanoplattformen für den Transport von bioaktiven Molekülen in Makrophagen in vivo 

eignen und damit ein besonderes therapeutisches Potential besitzen.    
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2.1 Nanotechnology 
 

The term nanotechnology is referring to the production, manipulation, and use of 

materials at dimensions ranging from 1 to 100 nanometers. The prefix “nano-“ 

derives from the Greek “nanos” (dwarf) and describes the billionth part (=10-9) of 

something. At this scale, materials gain new physical, chemical, and biological 

properties that are not shared with non-nanoscale materials with identical chemical 

composition. The total surface of nanoparticles (NPs) is, compared to the total 

volume, much larger; therefore, the “reactive” surface is also larger. Furthermore, 

NPs show a higher conductivity, higher stability, and a lower melting temperature 

than their larger counterparts. Due to these unique properties, NPs are used in a 

wide variety of applications such as cosmetics, sunscreen [1], water purification 

systems [2], and sensors [3]. NPs are entering areas of our daily lives and also the 

biomedical field. Several classes of engineered NPs are currently applied as 

nanovaccines [4], nanodrugs [5], or diagnostic imaging tools [6]. 

 

2.2 Biological and medical applications of NPs 
 

However, the knowledge about the fate and the biological effects of NPs in vivo has 

not kept up with the pace of these developments. Since NPs have a higher free 

surface energy than the bulk material, the reactivity of nanomaterials with 

biomolecules such as proteins or lipids in body fluids is enhanced [7]. As a result, the 

surface is coated with these molecules. This “biomolecular corona” is in many cases 

interacting with the NPs´ biological environment and therefore crucially determines 

the biological features of NPs [8]. For instance, lipoprotein-coated NPs can passively 

penetrate the cell membrane or attach to it [9], whereas surface ligands such as 
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proteins are recognized by different cellular receptors that trigger internalization and 

cellular activation [10].  

Also size and solubility affect the interaction of NPs with cells and, particularly, cell-

specific parameters such as cell cycle stadium or cell type [11]. The impact of the 

same NP on different cell populations differs significantly and cannot be assumed for 

other cell populations. For potential biomedical applications it is therefore important to 

gain as much knowledge about the impact of certain NP parameters as possible, to 

draw a general conclusion, and to consider the risks. 

The modification of physicochemical properties (such as charge, functional groups, 

size, and shape) of nanomaterials allows the control of distinct cellular uptake and 

immunogenicity, factors that influence the distribution and clearance of these 

particles [12]. To assure the correlation of a particular cellular response to a certain 

NP or property of a NP, it is of great importance to produce precisely defined 

structures and to control their properties. A material which allows the determination of 

many of these properties, because of its high programmability, is DNA. 

 

2.3 DNA nanotechnology 
 

DNA is a central information carrier in biological systems, such as prokaryotic cells, 

eukaryotic cells, bacteriophages, and viruses. The genetic information is encoded in 

nucleic acid sequences, which are complementary Watson-Crick base pairings (Fig. 

1D). Aside from the biological importance, DNA can be assembled into nanometer-

scaled, structurally precise architectures due to its molecular programmability and 

selective hybridization (Fig. 1F) [13]. In 1982, Nadrian Seeman was the first 

considering DNA as molecular building material in a non-biological context [14] and 

he paved the way for structural DNA nanotechnology. From immobile branched 
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junctions in 1983 [15] to complex three-dimensional structures (Fig. 1G) [16, 17] 

nowadays, DNA nanotechnology experienced a rapid development.  

One of the most important advances made during this development was the use of 

scaffold DNA strands for creating desired nanoscale shapes [18]. This new 

technique, called “DNA origami”, was implemented by the group of Paul Rothemund. 

Analog to the Japanese art of paper folding, Rothemund et al. folded a scaffold DNA 

strand, consisting of 7249 nucleotides (nt) derived from the bacteriophage M13, into 

shape with hundreds of shorter oligonucleotides (staple strands) [18]. This method 

now also allows the formation of larger assemblies by multimerizing single DNA 

origami constructs as well as building three-dimensional objects by stacking sheets of 

parallel helices. In this process, staple strands of the inner helix form crossovers with 

staple strands from three neighboring helices [19]. With a reaction yield of about 

90%, DNA origami is a simple and fast method to design and create DNA constructs 

with about 100 nm in diameter (Fig. 1G). Moreover, it serves as a platform for the 

arrangement of heteroelements such as proteins [20-22], NPs [23-25], or carbon 

nanotubes [26] due to the sequence specificity and spatial addressability of DNA 

nanoconstructs. The pattern of components on top of the nanoconstruct can be 

quickly and inexpensively reconfigured to perform a different task [27]. Another 

important feature in the context of biological applications is the stability of DNA 

origami architectures in cell lysates [28]. Two- and three-dimensional 

nanoarchitectures assembled by this technique have been deployed in various 

applications such as single molecule imaging [29], molecular robotics [30], single 

molecule chemistry [31], or immunostimulation [32]. However, due to the scaffold 

strand needed, the DNA origami technique is limited in size, complexity, and large 

scale production.  
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2.4 DNA nanostructures as drug delivery vehicles 
 

DNA nanoconstructs have caught the interest of the drug delivery community, since 

the drug cargo can either be attached to the precisely programmed DNA scaffold or 

enclosed in a three-dimensional structure with targeting ligands attached. Another 

important benefit for the use of DNA structures as drug delivery tools is: they have 

been shown to be non-cytotoxic [32, 35]. Furthermore, the stoichiometry can be fully 

controlled [18, 19] and they survive in cell media, blood serum, and cultured cells for 

extended periods of time [28, 36, 37]. The stability of DNA constructs towards 

nucleases can be significantly enhanced by functionalization, e.g., hexanediol [38] or 

structural compaction.  

Douglas et al. created a DNA nanorobot capable of transporting a molecular payload 

to certain cell subsets under the control of a logic gate [35]. Another powerful 

implementation is the DNA “nano-claw” which autonomously analyzes multiple 

molecular cancer cell signatures and, in response, releases target-specific agents 

[39]. Although there are many sophisticated DNA architectures designed and 

realized, only a few have been applied to complex biological systems like tissue. 

Therefore, a rather simple tube design could be more controllable in vivo and may 

allow a general prediction of the bioactivity of DNA structures in contrast to complex 

multifunctional DNA architectures. To transport drugs efficiently, not only towards the 

target cells but additionally into target cells, is one of the challenges DNA 

nanotechnology needs to face. A promising concept is the functionalization of 

constructs with receptor ligands as guiding or targeting agents. For instance, the 

conjugation of folate to DNA tubes induced their efficient internalization by folate 

receptor-bearing cancer cells [40]. But also size is a vital criterion for cellular uptake. 

Uptake studies with polycation-DNA gene delivery systems (DNA complexed with 
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polycations) revealed that a size below 100 nm promotes maximal endocytosis by 

non-specialized cells [41]. Most uptake mechanisms, e.g., clathrin-mediated 

endocytosis, are receptor-mediated cellular processes. As the size increases, it 

becomes less likely that receptor binding will occur. However, professional 

phagocytes such as macrophages, polymorphonuclear granulocytes, or dendritic 

cells (DCs) are able to internalize objects larger than 500 nm. This requires the 

recognition of the target by specialized surface receptors (e.g., scavenger receptors) 

and subsequent actin rearrangement [42, 43]. For the phagocytosis of particles, an 

actin-dependent extension of the plasma membrane is necessary [44]. The cargo 

size affects not only uptake pathways but also cytotoxicity and biodistribution.  

Negatively charged DNA nanoconstructs are considered to be less toxic than 

positively charged ones, which have a high affinity to the negatively charged cell 

membrane and therefore disrupt the membrane integrity [45].  

As explained above, successful cellular delivery is substantially driven either by 

multiple factors regarding the nanoconstruct such as surface charge, size, and shape 

or by the microenvironment the construct is operating in. The cellular availability of 

the carrier system is strongly dependent on the biological borders (e.g., blood tissue 

border, blood brain barrier, or gut mucosa) that need to be crossed. Therefore, critical 

factors such as construct stability and the delivery across physiologic barriers should 

be regarded. Acid-catalyzed depurination of DNA at low pH and high concentrations 

of deoxyribonucleases (DNases) aggravate the crossing of constructs from the blood 

into the tissue. To mitigate this, direct application into the target tissue is a convenient 

way to circumvent fast degradation by DNase I, since the concentration of DNase I is 

in most murine organs significantly lower than in the blood [46]. Microinjection of DNA 

NPs into the eye [47] and the brain [48] were successful attempts to avoid 

degradation and to facilitate the transfection of target cells such as neurons and glial 
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cells. Another interesting target for the administration of functional DNA 

nanoconstructs are macrophages which are essential components of many types of 

tissue and contribute to a wide range of pathologies, such as cancer, arthritis, and 

atherosclerosis [49]. 

 

2.5 Monocytes and macrophages 
 

Macrophages have first been described as phagocytic active cells by Ilya Metchnikoff 

in the 19th century [50]. They are a heterogeneous group of immune cells that are 

essentially distributed in all tissues and capable of altering their phenotype in order to 

suit the microenvironment in which they reside. Macrophages are vital participants in 

the innate and adaptive immune system. Because of multifaceted activities, e.g., the 

removal of invading pathogens, apoptotic cells, and cellular debris, resolution of 

inflammation [51], release of cytokines and growth factors, presentation of antigens 

to T-cells [52], remodeling of matrix components [52, 53], and processing of iron [54], 

macrophages have been identified as key players in diseases with major influence for 

the public health. Cancer, autoimmune, chronic inflammatory, degenerative, and 

metabolic diseases are just a few examples [49]. 

2.5.1 Monocytes 
 

Blood monocytes are derived from hematopoietic stem cells in the bone marrow and 

are present in blood and spleen [55]. They consist of two subtypes – inflammatory 

CCR2hi CX3CR1low Ly6chi monocytes and resident CCR2low CX3CR1hi Ly6clow 

monocytes [56]. While Ly6clow monocytes stay in the blood and patrol along vessel 

walls, Ly6chi monocytes are not only found in the blood but also in tissues such as 

skin, lung, lymph nodes, and spleen [57, 58]. There they control the extravascular 
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environment or transport antigens to lymph nodes and support antigen presentation 

[57]. Monocytes do not proliferate in a steady state [55, 59], but mature under certain 

challenges, such as inflammation [60] or atherosclerosis [61] to DCs or macrophages 

in infiltrated tissues [62, 63]. Since macrophage-colony stimulating factor (M-CSF)-

deficient mice show diminished numbers of blood monocytes [64], it has been 

demonstrated that interleukin-34 (IL-34) and M-CSF strongly push the development 

of this lineage [60, 65]. 

2.5.2 Tissue-resident macrophages 
 

Although it has long been the prevailing view that tissue macrophages originate from 

adult blood monocytes, recent publications revealed that most lineages of tissue 

macrophages are established during embryonic development from the yolk sac, the 

fetal liver, or the bone marrow [66-70]. The various sources of development 

distinguish monocytes from tissue macrophages, which have a limited ability to 

migrate. Tissue macrophages are extremely heterogeneous in phenotype, 

homeostatic turnover, and function, thus they are well adapted to the anatomical 

locations they reside (Fig. 2) [71, 72]. This adaptation also manifests in tissue-

specific transcription and epigenetic programs [73, 74]. Bone macrophages, so-called 

osteoclasts, are specialized in the resorption of bone. This process is associated with 

a high expression of carbonic anhydrase II [75] in osteoclasts which is known to be 

important for the acidic degradation of bone material. Another example are microglia, 

macrophages in the brain. They produce brain-derived neurotrophic factor (BDNF) 

which is a key modulator of neuronal synaptic plasticity and the formation of memory 

[76]. Dysfunctions or abnormalities of tissue-resident macrophages in turn lead to a 

variety of diseases. For instance, osteopetrosis results in insufficient bone resorption 

due to a defectiv osteoclast development [77]. 
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Furthermore, tissue-resident macrophages are able to dynamically change their 

activation status and phenotype in response to their environment [78]. The 

reprogramming of the epigenetic program changes the phenotype of macrophages. 

Lavin et al. transferred macrophages originating from the peritoneum into the lung 

and, as a result, the majority of macrophages acquired the gene expression profile of 

lung macrophages [78]. This study demonstrated that tissue-resident macrophages 

exhibit a phenotypic plasticity and polarization, occurring during inflammation, which 

is reversible. These characteristics together with their prominent role in mammalian 

tissues nominate them as attractive therapeutic targets. 

 

 

Fig. 2 Tissue-resident macrophages in the cremaster muscle. Confocal imaging of tissue-
resident macrophages 60 min after intrascrotal injection of carboxyl quantum dot (cQD) NPs. 
F4/80-positive tissue-resident macrophages (red) phagocytose cQDs (blue) after application 
into the murine cremaster muscle. These F4/80-positive tissue-resident macrophages line 
the interstitial tissue between muscle fibers (phalloidin, green). Scale bar: 20 µm.  
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2.5.3 Activation and polarization of macrophages 

  
Macrophages bridge the two categories of immunity: the innate and the adaptive 

immune system. The innate immune system detects and responds to various 

pathogens via a broad range of pattern-recognition receptors, e.g., TLRs and NOD-

like receptors (NLRs). These enable them to sense common structural and functional 

features associated with different classes of microorganisms, foreign substances, or 

cellular components [79]. Thus, the expression pattern of these receptors is highly 

dependent on the microenvironment. Subsequent to the encounter of pathogens, 

receptor activation is translated into different classes of effector responses such as 

phagocytosis, inflammasome formation [80], and cytokine production.   

On the one hand, cytokines can amplify the immune response and on the other hand 

they directly impact the transmigratory activity of inflammatory leukocytes, largely 

neutrophils and monocytes, from the blood stream into the affected tissue [81]. Once 

activated, inflammatory macrophages present the processed antigens via the major 

histocompatibility complex II (MHC II) to lymphocytes such as T-cells [82]. 

Subsequently, these T-cells can stimulate B-cells to generate antibodies, specific to 

the presented antigen, which leads to immediate and long-lasting defense against a 

specific pathogen.  

Monocyte-derived macrophages populate the inflammatory foci, proliferate, and 

make up the majority of present macrophages. Fundamental for proliferation of all 

subpopulations, under physiologic and pathologic conditions, is the growth factor M-

CSF [72, 83]. In contrast to monocyte-derived macrophages, resident macrophages 

though having the ability to proliferate, the proliferation is tightly regulated and 

dampened once normal tissue numbers are obtained [83, 84]. However their 

importance is stated by the observation that the depletion of resident macrophages 



2 Introduction 
 

19 

 

with chlodronate liposomes leads to an altered immune response due to the absence 

of inflammatory mediators, such as chemokines, cytokines, lipid mediators, and a 

disrupted host defense [85-87].  

In general, macrophages actively scan their microenvironment and certain stimuli 

polarize the cells into another phenotypic and functional subpopulation. The “M1-M2 

paradigm” describes two well-studied macrophage subsets established according to 

their gene expression profiles and their functional activities [88]. M1 macrophages 

promote host defense and antitumor immunity via the production of reactive oxygen 

and nitrogen species and pro-inflammatory cytokines (TNF, IL-12, and IL-1β) [89]. 

Alternatively activated macrophages (M2 macrophages) facilitate wound repair, 

regulate glucose metabolism, suppress inflammation and antitumor immunity [90]. 

“Regulatory macrophages” are a third population, which are generated in the 

presence of TLR agonists and Immunoglobulin G (IgG) complexes [91]. Other factors 

turning the macrophage development into a regulatory direction are IL-10 [92], 

apoptotic cells [93], or prostaglandins [94]. Due to the production of the 

immunosuppressive cytokines IL-10 and TGF-β, these cells have the propensity to 

induce an anti-inflammatory TH2 and regulatory T-cell response to dampen chronic 

inflammatory and antitumor responses.   

 

2.6 Leukocyte recruitment from the microcirculation  
 

Leukocytes, also called white blood cells, are a group of immune cells that fulfill 

specific effector functions within the immune defense in lymphoid and peripheral 

tissue. Leukocytes can be classified in two major lineages: the myeloid lineage 

including neutrophils, eosinophils, basophils, and monocytes, and the lymphoid 
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lineage including B-cells, T-cells, and natural killer cells [95]. They are generated 

from hematopoietic stem cells in the bone marrow and circulate through the blood 

and the lymphatic system. In order to eliminate invading microorganisms or in the 

incidence of a sterile tissue injury, leukocytes extravasate the bloodstream from 

postcapillary venules into the interstitial space. The recruitment of leukocytes into 

inflamed tissue is considered to be a fundamental part of inflammatory processes, 

however leukocytes are also required to support repair mechanisms of the tissue.  

The current model of leukocyte recruitment is described by a well-defined series of 

steps termed the leukocyte-adhesion cascade. The interactions, occurring between 

blood-borne leukocytes and endothelial cells (ECs), are characterized by capture and 

rolling of leukocytes at the endothelium and firm adhesion to ECs. Next, leukocytes 

start to crawl on the luminal site and transmigrate through the vessel wall. Upon their 

arrival at the abluminal site of the vessel, leukocytes exhibit movements along 

pericyte processes, then breach the pericyte layer, and finally detach from the vessel 

wall to migrate towards an inflammatory focus [96].  

These serial steps are initiated by the release of pathogen-associated molecular 

patterns (PAMPs) from invading microorganisms or damage-associated molecular 

patterns (DAMPs) released from damaged or dead cells. The perception of PAMPs or 

DAMPs is mediated by a heterogeneous group of pattern recognition receptors, such 

as TLRs, NLRs, or C-type lectin receptors (CLRs). These receptors can be 

expressed intracellularly or on the surface of tissue-resident sentinel cells, such as 

macrophages, mast cells, or DCs. These cells respond to the danger signals by 

releasing chemokines (e.g., CXCL-1, CXCL-8), cytokines (e.g., IL-1, IL-6, TNF), or 

chemoattractants (e.g., LTB4, PAF). Proinflammatory mediators, such as IL-1 and 

TNF, activate ECs to express adhesion molecules (selectins, integrins, VCAM-1, and 

ICAM-1) which facilitate the different steps of leukocyte transmigration. Subsequently, 



 

 

the gradients of soluble or surface

leukocytes to the injury, where they remove dead cells and promote tissue repair

(Fig. 3). Hence, leukocytes strongly contribute to tissue homeostasis. Since leukocyte 

migration is fundamental for adequate immune response, deficiencies in this process 

can have drastic consequences. 

bacterial and fungal infections

contribute to a multitude of prominent diseases such as rheumatoid arthritis, Crohn

disease, multiple sclerosis,

the challenge that novel therapeutic approaches for inflammatory diseases need to 

face.  

 

Fig. 3 Leukocyte recruitment
inflammatory response in tissue
leads to the generation and release of chemoattractants 
blood stream. Leukocytes follow a multistep adhesion cascade, starting with rolling on the 
endothelium, adherence, and finally transmigration into the interstitial space. During this 
series of steps they follow the chemotactic gradient
phagocytose pathogens and cellular debris. Figure adapted and modified 
al. 2014. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews 
Immunology [81] copyright 2014.
 

21 

gradients of soluble or surface-bound chemotactic factors (e.g.

leukocytes to the injury, where they remove dead cells and promote tissue repair

. Hence, leukocytes strongly contribute to tissue homeostasis. Since leukocyte 

migration is fundamental for adequate immune response, deficiencies in this process 

can have drastic consequences. An insufficient leukocyte response leads to recurrent 

l and fungal infections, whereas exaggerated numbers of leukocytes 

multitude of prominent diseases such as rheumatoid arthritis, Crohn

, or cancer [97]. Gaining control of leukocyte

the challenge that novel therapeutic approaches for inflammatory diseases need to 

Leukocyte recruitment into inflamed tissue. Invading pathogens induce an 
inflammatory response in tissue-resident immune cells. The activation of these immune cells 
leads to the generation and release of chemoattractants that attract leukocytes from the 
blood stream. Leukocytes follow a multistep adhesion cascade, starting with rolling on the 

and finally transmigration into the interstitial space. During this 
series of steps they follow the chemotactic gradient to the site of infection, where they 

e pathogens and cellular debris. Figure adapted and modified 
Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews 

copyright 2014.  
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Invading pathogens induce an 
resident immune cells. The activation of these immune cells 

leukocytes from the 
blood stream. Leukocytes follow a multistep adhesion cascade, starting with rolling on the 

and finally transmigration into the interstitial space. During this 
to the site of infection, where they 

e pathogens and cellular debris. Figure adapted and modified from Weninger et 
Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews 
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2.7 Ischemia-reperfusion injury 
 

Ischemic heart disease is the leading cause of death in developed countries [98]. 

After an initial restriction of blood supply, classically induced by an embolus, the 

imbalanced metabolic tissue supply causes tissue hypoxia. The subsequent 

restoration of reperfusion and reoxygenation is responsible for exacerbated tissue 

injury and inflammation [99]. The mortality of ischemic heart diseases is often related 

to microvascular dysfunction, enhanced vascular permeability, and the recruitment of 

leukocytes from postcapillary venules [100]. The detrimental effects of I/R injury 

result from the induction of cell death programs such as apoptosis and necrosis. 

Although I/R injury induces a sterile environment, innate immunological mechanisms, 

such as complement activation and adaptive mechanisms, are contributing to severe 

tissue damage [101].  

Leukocytes are key modulators of I/R injury since they are the source of 

proinflammatory cytokines, reactive oxygen species, and proteases, which are able 

to enhance the postischemic tissue damage [102]. On the other hand, leukocytes 

support the regeneration and the healing of postischemic tissue, e.g., by maintaining 

tissue homeostasis by phagocytosis of apoptotic cells [103, 104]. Tissue 

macrophages are contributing to a proinflammatory milieu through the release of 

soluble proinflammatory mediators, e.g., TNF. These mediators stimulate ECs to 

upregulate adhesion molecules that facilitate rolling, capture, and transmigration of 

leukocytes. Leukocyte-endothelial cell adhesion and platelet-leukocyte aggregation 

aggravate microvascular dysfunction [105]. 

The activation of macrophages and other immune cells in an inflamed environment is 

partly mediated through pattern-recognition receptors such as TLRs. Although the I/R 

injury occurs in a sterile environment, the consequence of I/R is phenotypically 
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similar to the immune response towards invading pathogens. Recent studies have 

implicated TLR signaling in various ischemic diseases, e.g., inhibition of TLR 4 

signaling protected the myocardium from I/R injury [106] and preconditioning with 

TLR 2, TLR 3, TLR 4, TLR 7 and TLR 9 ligands induced ischemic tolerance and 

reduced cerebral ischemic damage [107-111].   

 

2.8 Toll-like receptor 9 
 

So far, 10 functional TLRs have been identified in the mouse and are largely divided 

into two subgroups depending on their cellular localization and respective PAMP 

ligands. One group is expressed on the cell surface and the other group, composed 

of TLR 3, TLR 7, TLR 8, and TLR 9, are expressed in intracellular vesicles such as 

the endoplasmic reticulum (ER), endosomes, lysosomes, and endolysosomes, where 

they recognize microbial nucleic acids [112].  

The ligands of the endosomal TLR 9, unmethylated CpG-DNA from bacteria and 

DNA-containing immune complexes from necrotic cells [113, 114], activate the 

myeloid differentiation primary response gene 88 (MyD88)-dependent NF-κB 

signaling (Fig. 4) as well as PI3K/Akt signaling which improves cell survival [115]. 

Unmethylated CpG ODNs have immunogenic properties and therefore hold great 

promise for therapeutic applications in a wide range of TLR 9-dependent pathologies, 

such as tumor-mediated immunosuppression, allergies, or asthma [111, 112]. 

 



 

 

Fig. 4 TLR 9 signaling in tissue
resident macrophages phagocytose CpG DNA from the extracellular space
acidic endolysosomal compartments. The lysosome contains TLR
DNA and as a result, induce
activates MYD88 followed by the activation of the IRAK
made of IKKα, IKKβ, and IKK
complex by TRAF6 results in the degradation of I
cytoplasm into the nucleus, where it facilitates the expression of inflammatory cytokines such 
as TNF. 
 

Asthma or allergic reactions are dominated by a T

promotes IgE production and eosinophilic response. The redirection of this T

response in favor of a TH1 response is achieved by the application of CpG DNA. 

Otherwise, CpG DNA can even act beneficial in a sterile inflammation, for example 

during cerebral ischemia [116

DNA increased TNF levels

stroke [110]. 
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in tissue-resident macrophages after CpG DNA internalization
resident macrophages phagocytose CpG DNA from the extracellular space
acidic endolysosomal compartments. The lysosome contains TLR 9, which reco

duces an intracytoplasmatic signaling cascade. The TLR
MYD88 followed by the activation of the IRAK-TRAF6 complex. The IKK complex, 

and IKKχ, is a central regulator of NF-κB. Phosphorylation of the IKK 
TRAF6 results in the degradation of IκB and the translocation of NF

cytoplasm into the nucleus, where it facilitates the expression of inflammatory cytokines such 

Asthma or allergic reactions are dominated by a TH2-weighted imbalance, 

promotes IgE production and eosinophilic response. The redirection of this T

1 response is achieved by the application of CpG DNA. 

Otherwise, CpG DNA can even act beneficial in a sterile inflammation, for example 

116]. It has been shown, that preconditioning 

TNF levels in the serum, which reduced the ischemic damage after 
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2.9 Aim of the study 
 

As explained above, DNA-based nanostructures are gaining importance in biological 

and biomedical research since they can be modified with a plethora of (bio)chemical 

moieties with nanoscale precision and full control over stoichiometry. Particularly, the 

nanoscale programmability and ease of fabrication of DNA-based nanostructures 

have sparked interest. However, the in vivo behavior of such constructs at the 

microscopic tissue/cell level as well as their inflammatory potential are largely 

unknown. 

The aim of this work was to investigate the potential of DNA nanoconstructs as 

innovative platform for the efficient and biocompatible delivery of drugs in vivo to 

macrophages, which are key players in homeostasis, immune defense, and disease. 

For this purpose, immunostimulatory CpG ODNs or immunosuppressive 

dexamethasone were conjugated to DNA nanotubes. In in vitro experiments, the 

uptake efficiency and the impact on cellular cytokine production in macrophage cell 

lines were studied. In further in vivo experiments, the local distribution, the bioactivity, 

and the effects of these DNA constructs on leukocyte recruitment were investigated 

under physiological and pathological conditions (I/R) in the murine cremaster muscle. 
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3.1 Material 
All used consumables are listed in the Appendix.  

 

3.2 Methods  

3.2.1 Design and assembly of DNA nanotubes 
 

DNA nanotube design, assembly, and characterization were mainly done by Samet 

Kocabey and Tim Liedl (Department of Physics, LMU) in close cooperation and with 

conceptual input from the author of this thesis. For the sake of completeness and to 

deepen the understanding of DNA nanotubes the design, assembly and 

characterization of DNA nanotubes are included in this thesis. 

 

3.2.1.1 Design of 8-helix DNA nanotubes 

 

DNA nanotubes were designed using the single-stranded tile (SST) method, where 

each tile oligonucleotide is 42 bases long and consists of four domains with 10 or 11 

bases. Each domain is complementary to one domain on the neighboring tile [34, 

117]. We designed 8-helix tubes consisting of 48 individual tile ODNs folding into 8 

parallel double helices. Tile strands located at the ends of the tube contain non-

pairing poly-A sequences in order to prevent sticky end formation and polymerization. 

For CpG labeling, the 3´ ends of 24 tiles (every second tile in each helix) were 

extended by 20 bases containing the immune stimulatory CpG motif, GACGTT, twice 

(CpG 1826: TCCATGACGTTCCTGACGTT). For control tubes, that do not carry the 

CpG motif, tiles without CpG extension were used. All ODNs were purchased from 

Eurofins Operon MWG (Ebersberg, Germany) with HPSF purification. 
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3.2.1.2 Design of 6-helix DNA nanotubes 

 

DNA nanotubes were designed using SST, where each SST ODN has 21 base long 

domains complementary to the adjacent domains on the neighboring tiles. 15 

individual SST were used to fold 6-helix nanotubes. The domains at the end of the 

nanotube contain non-pairing poly-A sequences to prevent polymerization. To 

generate a pH-responsive DNA nanoconstruct, 3 of the tiles were extended with an i-

motif sequence (CCCTAACCCTAACCCTAACCC) facilitating the release of 

dexamethasone handles at acidic pH. For dexamethasone conjugation, 3 of the tile 

ODNs extended with the i-motif sequence or a random sequence were hybridized 

with dexamethasone-conjugated single-stranded ODNs. All unmodified ODNs (HPSF 

purified) and amine-modified ODNs (HPLC purified) were purchased from Eurofins 

Operon MWG (Ebersberg, Germany) (see the Supporting Information, Table S1 for 

the sequences).  

 

3.2.1.3 Dexamethasone conjugation 

 

Amine-modified single-stranded ODNs were conjugated with dexamethasone using 

the method developed by Acedo et al. [118]. In brief, dexamethasone (0.4 g, 1 mmol, 

Sigma) was reacted with succinic anhydride (0.15 g, 1.5 mmol) and DMAP (0.13 g, 1 

mmol) in pyridine at room temperature for 20 h. The reaction mixture was 

concentrated by drying in vacuum evaporator, then re-dissolved in 150 ml of 

DCM/MeOH (4:1), and washed twice with 75 ml of 1 M sulfuric acid and water. The 

organic white solid formed after the reaction, dexamethasone succinic acid (0.25 g, 

0.5 mmol), was reacted with N-hydroxysuccinimide (70 mg, 0.6 mmol) and DCC (125 

mg, 0.6 mmol) in 5 ml of THF at room temperature for 20 h. After several filtration 
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and washing steps, the final residue was dissolved in 5 ml DMF (10 mM) and stored 

at 4 °C for months. For DNA coupling, 10 µl of 5´amine-labeled ODN (100 µM) and 

10 µl of dexamethasone-NHS (10 mM) were mixed in Tris buffer (50 mM, pH 7.4) 

and incubated at room temperature overnight. On the next day, the solution was 

centrifuged at 13000 g for 5 min and supernatant was collected. The solution was 

evaporated to remove DMF in a vacuum centrifuge and redissolved in water. The 

centrifugation and evaporation steps were repeated several times. Finally, 

dexamethasone-conjugated ODNs (Dex ODNs) were purified using 3 K Amicon Ultra 

0.5 ml centrifuge filters for further use in dye labeling and assembly.   

 

3.2.1.4 Enzymatic dye labeling of tiles  

 

To visualize the DNA nanotubes in vivo, the 3´ ends of some of the tile strands were 

enzymatically labeled with Atto488-dUTP or Atto546-dUTP [119]. For Dex nanotubes 

6 of the tiles at the middle part of the structure and Dex ODNs were enzymatically 

labeled with Atto488-dUTP and Atto647N-dUTP respectively. Further, Atto-dUTPs 

(80 µM, purchased from Jena Bioscience, Jena, Germany), CoCl2 (5 mM), terminal 

transferase enzyme (16 U/µl, Roche, Penzberg, Germany), and all DNA tiles (400 

pmol) were mixed in 20 µl 1x TdT reaction buffer. The solution was incubated at 37 

°C for 60 min. Then, 2.5 µl of NaOAc (3 M) was added and the solution was filled up 

to 80 µl with ice-cooled ethanol (99 %). After 1 h of incubation at -20 °C, samples 

were centrifuged at 13000 g for 30 min. Then, samples were washed with 70 % 

ethanol for 10 min again and the supernatant was discarded. The remaining pellet 

was re-dissolved in distilled water. For CpG-labeled tubes, 24 of the unmodified tiles 

and for the control tubes, 40 of the core tiles were used for dye labeling. For CpG 

ODNs, 24 of the tiles with CpG sequence were labeled with dye. 
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3.2.1.5 DNA nanotube assembly and purification 

 

For the annealing of DNA nanotubes, 800 nM (8-helix tubes) or 1µM (6-helix tubes) 

of each tile (dye-modified and unmodified) were mixed with folding buffer (10 mM 

Tris-HCl, 1 mM EDTA, pH 8.0, 20 mM MgCl2). The DNA nanotubes were folded over 

the course of 16 h (5 min at 80 °C, cooling down to 65 °C at 1 °C/min, cooling down 

to 25 °C at 2.5 °C/h). The assembled 8-helix nanotubes (CpG nanoconstructs) were 

then purified using 30 K Amicon Ultra 0.5 ml centrifuge filters (30000 MWCO, 

Millipore, Schwalbach, Germany) in order to remove excess strands that were not 

folded into the structures. For 8-helix nanotube (Dex nanotubes) purification, 100 K 

Amicon Ultra 0.5 ml centrifuge filters (100000 MWCO, Millipore, Schwalbach, 

Germany) were used. 100 µl of assembled DNA tube solution was completed up to 

500 µl with folding buffer, filled into the centrifuge filter, and centrifuged 3 times at 

13000 g for 6 min. After every centrifugation step, the flow-through was removed and 

the filter was refilled up to 500 µl with buffer. After final centrifugation, the remaining 

solution at the bottom of the filter (~ 50 µl) was pipetted out and the concentration of 

tubes was determined by measuring the optical density at 260 nm. Overall, 50 – 60 

% of the initial amount of DNA nanotubes was obtained after purification. 

 

3.2.1.6 Gel electrophoresis and transmission electr on microscopy  

 

To analyze DNA nanotubes, the samples were run in an agarose gel. 2 % agarose 

was dissolved in 0.5 x TBE buffer by heating to boiling. After cooling, MgCl2 was 

added to 11 mM final concentration and the solution was poured into a gel cask for 

solidification. 10 µl of each filter-purified DNA tube sample were mixed with 2 µl of 6x 

loading dye before loading into the gel pockets. 6 µl of 1 kb ladder was also loaded 
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adjacent to the samples. The gel was run for 2 h at 70 V in an ice-cooled water bath 

to prevent heat-induced denaturation of DNA nanotubes. After running, the gel was 

stained with ethidium bromide (0.5 µg/ml) for 30 min. 

DNA nanotubes were visualized by electron microscopy using a JEM-1011 (JEOL, 

Freising, Germany) transmission electron microscope (TEM). The DNA nanotubes 

were incubated on plasma-exposed (240 kV for 1 min) carbon-coated grids and then 

negatively stained with 1 % uranyl acetate for 15s. 

 

3.2.1.7 Stability of DNA nanotubes 

 

Stability of DNA nanotubes and pUC 18 double stranded-plasmid were tested in 

DNAse I-containing buffer, mice serum and fetal calf serum (FCS) separately. For 

DNAse I experiments 50 ng/µl of each sample was incubated in buffer at 37 °C for 

different time periods. To emulate in vivo conditions, the DNAse I concentration was 

adjusted to 1.97 U x 10-4 U/g wet weight [46]. For further experiments, mice serum 

was diluted 37 times to mimic conditions prevalent in the skeletal muscle [46]. The 

DNA nanotubes were also incubated in pure FCS (not heat-inactivated) for up to 2 h. 

Zeta potential and size measurements were performed with a Zetasizer Nano 

(Malvern Instruments, Malvern, UK) at 100 nM nanotube concentration. 

 

3.2.1.8 Gel electrophoresis to test the functionali ty of pH-responsive 

Dex tubes 

 

To test the i-motif-dependent release of single-stranded Dex ODNs, 100 µl of DNA 

nanotubes were filled up with 50 mM MES buffer (pH 5.5) to 500 µl and incubated at 

37 °C for 30 min. Then, the samples were centrifuged 3 times at 13000 g for 6 min 
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using 100 K Amicon filters. The samples were analyzed by running a 2 % agarose 

gel (0.5 x TBE, 11 mM MgCl2) as described in 3.2.1.6. 

 

3.2.2 Cell culture 

3.2.2.1 RAW 264.7 cells 

 

Murine RAW 264.7 macrophage-like cells were purchased from American Type 

Culture Collection (Rockville, USA) and grown in Dulbecco´s modified eagle medium 

(DMEM) supplemented with 10 % FCS, 4 mM L-Glutamin and 1 g/L D-Glucose at 37 

°C and 5 % CO2. For passaging, medium was removed, cells were washed twice with 

phosphate-buffered saline (PBS) and 3 mL of pre-warmed Trypsin-EDTA (0.5 %) was 

added and incubated for 15 min at 37 °C. Digestion was stopped by adding 7 mL pre-

warmed DMEM. After resuspension in culture medium, RAW 264.7 cells were 

collected in falcon tubes and centrifuged (1100 rpm, 5 min, room temperature). Cells 

were resuspended and transferred to a new flask or seeded for experiments. RAW 

264.7 cells were split every 2 to 3 days.   

 

3.2.2.2 Stimulation of RAW 264.7 cells 

 

Cells were seeded on 24-well culture plates at a density of 4 x 105 cells and 

cultivated for 24 h. For stimulation, RAW 264.7 cells were incubated with DNA 

nanotube constructs or CpG ODNs for up to 12 h. Culture supernatants were 

collected and stored at -80 °C for further analysis. Cells were washed and 

resuspended in DMEM, and uptake of DNA constructs and ODNs was visualized 

using a confocal laser-scanning microscope (Leica SP5, Leica Microsystems, 

Wetzlar, Germany) equipped with a GaAsP hybrid detection system (Leica HyD).  
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3.2.2.3 MH-S cells 

 

MH-S, a murine alveolar macrophage cell line was purchased from American Type 

Culture Collection (Rockville, USA). Cells were grown in complete RPMI-1640 

medium supplemented with 10 % FCS and 0.05 mM 2-mercaptoethanol at 37 °C and 

5 % CO2. For passaging, medium was removed, cells were washed twice with PBS, 

and 3 mL of pre-warmed Trypsin-EDTA (0.5 %) was added and incubated for 5 min 

at 37 °C. Digestion was stopped by adding 7 mL pre-warmed RPMI-1640. After 

resuspension in culture medium, MH-S cells were collected in falcon tubes and 

centrifuged (1100 rpm, 5 min, room temperature). Cells were resuspended and 

transferred to a new flask or seeded for experiments. MH-S cells were split every 3 to 

4 days. 

 

3.2.2.4 Flow cytometry 

 

Upon incubation with DNA nanoconstructs, cells were washed with culture medium 

and transferred with 250 µl PBS into BD Falcon round bottom tubes. The 

fluorescence intensity of incorporated Cy3-coupled DNA constructs was determined 

by a Gallios flow cytometer (Beckman Coulter Inc, Brea, USA) in order to quantify the 

uptake of DNA nanoconstructs. Post-acquisition analysis was performed using 

FlowJo software (Tree Star, Ashland, US). 

 

3.2.2.5 Enzyme-linked immunosorbent assay (ELISA) 

 

Cell culture supernatants were collected after treatment with different DNA 

nanoconstructs and stored at -80 °C until analysis. The concentration of TNF in 
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culture supernatants was determined by enzyme-linked immunosorbent assay 

(ELISA) according to the manufacturer´s instructions (R&D Systems, Wiesbaden, 

Germany). Concentrations were calculated with a standard curve. 

 

3.2.2.6 Water-soluble tetrazolium salt (WST) cell v iability assay 

 

MH-S cells were seeded into 96-well plates at a density of 1 x 105 cells per well. After 

adding 50 nM of Dex DNA constructs, LPS (10 ng/ml), Ethanol (70 % for 2 min) and 

dexamethasone (40 ng/ml and 1µg/ml) the supernatant was discarded at different 

timepoints (1 h, 3 h, 6 h, and 12 h) and 10 % Roche WST reagent was added to the 

plate. After 15 min of incubation at 37 °C and 5 % CO2 the absorbance at 490 nm 

was determined using an InfiniteF200 microplate reader (Tecan, Männedorf, 

Switzerland). 

 

3.2.3 In vivo imaging  

3.2.3.1 Animals 

 

Male C57BL/6 mice at the age of 10-12 weeks were purchased from Charles River 

(Sulzfeld, Germany) and MacGreen mice (JAX, Stock Number: 018549) were 

obtained from The Jackson Laboratory (Bar Harbor, USA). Male, heterozygous 

CX3CR1-EGFP mice were generated as previously described and backcrossed to the 

C57BL/6 background for six to ten generations [120]. All experiments were performed 

using mice at the age of 10-12 weeks. Animals were housed under conventional 

conditions with free access to food and water. All experiments were performed 
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according to German legislation for the protection of animals and approved by the 

Regierung von Oberbayern, München, Germany. 

 

3.2.3.2 Surgical procedure 

 

The surgical preparation was performed as described by Baez with minor 

modifications [121]. Briefly, mice were anesthetized by i.p. injection of a 

ketamine/xylazine mixture (100 mg/kg ketamine and 10 mg/kg xylazine). The left 

femoral artery was cannulated in a retrograde manner for administration of 2 µm 

FluoSpheres (Invitrogen, Carlsbad, CA, USA) for measurement of blood flow 

velocities. The right cremaster muscle was exposed through a ventral incision of the 

scrotum. The muscle was opened ventrally in a relatively avascular zone, using 

careful electrocautery to stop any bleeding, and spread over the pedestal of a 

custom-made microscopy stage. Epididymis and testicle were detached from the 

cremaster muscle and placed into the abdominal cavity. Throughout the procedure, 

as well as after surgical preparation during in vivo microscopy, the muscle was 

superfused with warm buffered saline. The body temperature was maintained at 37 

°C using a heating pad placed under the mouse. After in vivo microscopy, tissue 

samples of the cremaster muscle were prepared for immunohistochemistry. Blood 

samples were collected by cardiac puncture for the determination of systemic 

leukocyte counts using a Coulter ACT Counter (Coulter Corp., Miami, USA). 

Anaesthetized animals were then euthanized by an intra-arterial pentobarbital 

overdose (Narcoren, Merial, Hallbergmoos, Germany). 
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3.2.3.3 Mouse model of I/R 

 

For the analysis of postischemic cellular responses to DNA constructs, a 

postcapillary venule segment of the cremaster muscle was randomly chosen. After 

having obtained baseline recordings of leukocyte firm adhesion and transmigration in 

the segment, ischemia was induced by clamping all supplying vessels at the base of 

the cremaster muscle using a vascular clamp (Martin, Tuttlingen, Germany). After 30 

min of ischemia, the vascular clamp was removed, reperfusion was restored, and firm 

adhesion and transmigration of leukocytes were recorded again. Immediately after 

removing the vascular clamp, DNA nanoconstructs were microinjected next to the 

vessel and measurements were repeated at 30 min, 60 min, and 90 min after 

injection. Blood flow velocity was determined as described above previously [122]. 

After in vivo microscopy, tissue samples of the cremaster muscle were prepared for 

immunohistochemistry. 

 

 

 

 

 

 

 

Fig. 5  Experimental protocol for the analysis of leukocyte recruitment after ischemia and 

reperfusion  
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3.2.3.4 In vivo microscopy 

 

The setup for in vivo microscopy was centered around a VisiScope.A1 imaging 

system, equipped with an LED light source for fluorescence epi-illumination. For DNA 

nanotubes or ODN excitation the 470 nm or 550 nm LED modules (exposure time 

700 ms), and for transillumination the 655 nm LED module (exposure time 10 ms) 

were used in a fast simultaneous mode. Light was directed onto the specimen via a 

triple dichroic filter NC316973 (z 405/488/561 rpc; Chroma Technology Corp., 

Bellows Falls, USA). Microscopic images were obtained with a water dipping 

objective (20 x, NA 1.0). Light from the specimen was separated with a beam splitter 

(T 580 lpxxr Chroma Technology Corp., Bellows Falls, USA) and acquired with two 

Rolera EM2 cameras and VisiView Imaging software (Visitron Systems GmbH, 

Puchheim, Germany). Oblique transillumination was obtained by positioning a 

mirroring surface (reflector) directly below the specimen and tilting its angle relative to 

the horizontal plane as described previously [123].  

 

3.2.3.5 Microinjection of DNA nanotubes and LysoTra cker dye 

 

Local administration of 250 +/- 100 pl of fluorescently labeled DNA nanotubes (500 

nM), CpG DNA nanotubes (500 nM), CpG ODNs (12 µM), or saline into the 

cremaster muscle was performed via perivenular microinjection in regions at a 

distance of 25 to 75 µm from a postcapillary venule. Dex nanotubes (1.5 µM), Dex 

nanotubes w/o imotif (1.5 µM), DNA tubes (1.5 µM), and Dex ODNs (4.5 µM) were 

immediately microinjected after removing the vascular clamp during I/R as previously 

described. Venules with diameters ranging between 25 and 35 µm were selected for 

the experiments. Microinjection was performed under visual control of the intravital 
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microscope, with a long distance air objective (20 x, NA 0.4 Olympus), using 

borosilicate glass micropipettes - pulled with a micropipette puller - which were 

connected to the injection system consisting of a micromanipulator and a 

microinjector. The tip pressure during injection was 3000 hPa and the tip diameter < 

1 µm. The vessel and the surrounding tissue were visualized during a time period of 

1 min at baseline conditions before injection and up to 90 min after injection. For 

LysoTracker Red DND-99 co-microinjection, the stock solution was diluted to a 

concentration of 750 nM in saline and further diluted to an end concentration of 75 

nM in the respective CpG DNA nanotube sample. For LysoTracker Red DND-99 and 

LysoTracker Green DND 26 co-microinjection, the stock solution was diluted to a 

concentration of 750 nM in saline and further diluted to an end concentration of 75 

nM in the respective Dex nanotubes sample. Different fluorescent labels (as 

described above) did not affect the distribution and localization of DNA 

nanoconstructs.  

 

3.2.3.6 Quantification of leukocyte kinetics and mi crohemodynamic 

parameters 

 

To quantify the sequential steps of leukocyte extravasation, in vivo microscopy 

records were analyzed offline using ImageJ software (National Institutes of Health, 

Bethesda, USA). Firmly adherent cells were determined as those resting in the 

associated blood flow for more than 30 sec and related to the luminal surface per 100 

µm vessel length. Transmigrated cells were counted in regions of interest, covering 

75 µm on both sides of a vessel over 100 µm vessel length, and are presented per 

104 µm2. Green fluorescent beads (FluoSpheres 2 µm, Invitrogen, Carlsbad, USA) 

were injected via the femoral artery catheter and their passage through the vessels of 
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interest was recorded (filter T580lpxxr, LED 470 nm, exposure 50 ms, cycle time 1 

min). Centerline blood flow velocity was determined by measuring the progression of 

free flowing fluorescent beads in subsequent images in the blood stream.  

 

3.2.3.7 Immunostaining 

 

After dissection of the cremaster muscle, the tissue was fixed with 2 % 

paraformaldehyde for 15 min at room temperature, then blocked and permeabilized 

in PBS, supplemented with 2 % bovine serum albumin (BSA) and 0.5 % Triton X-100 

for 1 h at room temperature. This blocking solution was used to dilute primary 

antibodies at 1:100 and the tissue was incubated at 4°C over night with the antibody 

solution. Before incubation with secondary antibodies (1:400 in blocking solution) and 

TO-PRO3®-Iodide (1:1000 in blocking solution) for 2 h at room temperature, the 

tissue was washed twice with PBS for 5 min. After washing, immunostained 

cremaster muscles were mounted in PermaFlourTM Aqueous Mounting Medium on 

glass slides. For localization of microinjected DNA constructs in Csfr1-EGFP mice as 

well as colocalization with LysoTracker dye, the dissected cremaster muscle was 

mounted in a custom-made imaging chamber and was immediately viewed. Images 

were obtained using a Leica SP5 confocal laser-scanning microscope - equipped 

with a Leica HyD GaAsP hybrid detection system - with an oil-immersion lens, as 

previously described [124]. Images were processed with ImageJ software and figures 

were assembled in Photoshop 9 (Adobe Systems, Mountain View, USA). 
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3.2.3.8 CpG DNA nanotubes in vivo 

Experimental groups  

In a first set of experiments, mice (n=6 each group) received saline, DNA nanotubes, 

CpG DNA nanotubes, or CpG ODNs 20 min after the preparation of the cremaster 

muscle via microinjection. Additional experiments were performed in mice (n=6) 

receiving cromolyn (0.2 mg/kg), an inhibitor of mast cell degranulation, as a bolus via 

intra-arterial injection 30 minutes before cremaster preparation and subsequent 

application of CpG DNA nanotubes. The animals were randomly assigned to the 

experimental groups. 

 

3.2.3.9 CpG DNA nanotubes in vivo during I/R injury 

Experimental groups  

Mice (n=6 each group) received saline, DNA nanotubes, CpG DNA nanotubes, or 

CpG ODNs via microinjection into the postischemic cremaster muscle tissue. The 

animals were randomly assigned to the experimental groups. 

 

3.2.3.10 Dex nanotubes in vivo during I/R injury 

Experimental groups  

Mice (n=6 each group) received saline, DNA nanotubes, Dex nanotubes, Dex 

nanotubes w/o i-motif, Dex ODNs, or dexamethasone (1 µg/ml) via microinjection into 

the postischemic cremaster muscle tissue. The animals were randomly assigned to 

the experimental groups. 
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3.2.4 Statistical analysis 
 

GraphPad Prism 6 (GraphPad Software Inc., La Jolla, USA) was used for statistical 

analysis. Groups were compared with one-way ANOVA followed by a multiple 

comparison test (Tukey´s test). In all cases, p values of p<0.05 were considered to 

be significant. 
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4.1 DNA nanotubes as intracellular delivery vehicle s in vivo 

4.1.1 Design, assembly, and characterization of DNA  nanotubes 

 

DNA nanotube design, assembly, and characterization were mainly done by Samet 

Kocabey and Tim Liedl (Department of Physics, LMU Munich) in close cooperation 

and with considerable conceptual input from the author of this thesis. The 

fundamental structure of DNA nanotubes consists of 48 different ODNs, each of 

which is 42 base pairs long. These ODNs self-assemble into a tube-like architecture 

comprised of eight parallel double helices and a designed length of ~40 nm and a 

diameter of ~8 nm (Fig. 6) [34, 117]. The assembly takes place during a temperature-

controlled annealing process. For assembly of CpG nanotubes, 20-nt long CpG 

sequences (CpG 1826) with two highly immunostimulative GACGTT motifs were 

conjugated to DNA nanotubes. 

 

Fig. 6  Schematic illustration of CpG-decorated DNA nanotubes. Left: Mixture of 48 different 
DNA tiles, containing CpG domains (red arrows) or Atto488 dye (green star). Middle: Tiles 
assembled to a secondary tube structure. Blue and green tile domains contain random 
sequences and vertical lines indicate the base pairing. Right: 3D side and front views of 8-
helix DNA nanotubes. Red extensions on the tube surface represent CpG domains and 
transparent cylinders indicate double helices. Taken from Sellner et al. [125]. 
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For the presentation of the CpG 1826 sequences on the surface of the DNA 

nanotubes, 24 of the 48 tile strands were extended on their 3' ends with the CpG 

1826 sequence (Fig. 6).  CpG 1826 belong to B-type CpG sequences and induce an 

immune response via the recognition of the murine TLR 9 located in endosomal 

cellular compartments [32, 126]. 

Unfolded CpG 1826 (CpG ODNs) and DNA nanotubes without CpG motifs (plain 

tubes) served as control samples in all performed experiments. The correct assembly 

of CpG tubes and plain tubes was analyzed by gel electrophoresis and TEM. The 

prominent bands for CpG tubes and plain tubes (Lane 2+3 in Fig. 7A) and the 

decreased mobility of CpG DNA tubes (Lane 2) compared to plain tubes (Lane 3) 

indicate the correct assembly of the structures. TEM micrographs revealed the 

monodisperse composition of the DNA tube architectures, which are with the 

measured length of 41 +/- 1 nm and the measured diameter of 8 +/- 1 nm in 

agreement with the designed dimensions (Fig. 2B and 2C). 

 

 

Fig. 7 Structural characterization of DNA nanotubes. (A) Structural analysis of assembled 
nanotubes by gel electrophoresis after purification. 1) 1 kb ladder, 2) CpG tube 3) plain tube 
and 4) CpG ODNs. Transmission electron micrographs of (B) CpG tubes and (C) plain tubes. 
Scale bars: 100 nm (left) and 40 nm (inset). Taken from Sellner et al. [125]. 
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A prerequisite for the application in vivo is the stability of DNA nanoconstructs in a 

biological environment. Therefore, DNA tubes were treated with different 

concentrations of DNAse I and in different serum conditions for various incubation 

times to analyze the structure stability. Next to CpG ODNs and plain tubes, a double-

stranded plasmid (pUC 18) was used as a control sample. 

For 2 h DNA tubes withstand the degradation caused by DNAse I at a concentration 

which is equivalent to concentrations in murine organs such as pancreas, liver, or 

testis (0.5 U/ml) and is about 40 times higher than the one in skeletal muscle [46]. At 

the same concentration of DNAse I (0.5 U/ml) plasmid pUC18 degraded completely 

within 30 min (Fig. 8A). DNA tubes resisted the treatment with a high dose of DNAse 

I (10 U/ml) up to 15 min whereas plasmid pUC18 was cleaved by DNAse I 

instantaneously (Fig. 8B). Furthermore, DNA nanotubes revealed stable over an 

incubation period of 24 h in serum at a concentration prevalent in the muscle tissue 

(Fig. 8C). CpG DNA nanotubes showed only little degradation under the same 

conditions and time periods (Fig. 8C). However, treatment with pure serum leads to a 

complete degradation of all samples over the course of 2 h (Fig. 8D).     

 

 

 

 

 

 

 

 



 

 

 

 

Fig. 8 Stability of DNA nanotubes.
to right) incubated in the reaction buffer containing 5 x 10
Gel analysis of CpG tube, plain tube, and pUC 18 (left to 
containing high concentration of DNAse I (10 U/ml) at 37
CpG tube, plain tube and pUC 18 (left to right) incubated in 37x diluted mice serum. (D) Gel 
analysis of CpG tube, plain tube an
inactivated) for 2 h. E) DLS analysis of CpG tube
[125]. 
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Stability of DNA nanotubes. (A) Gel analysis of CpG tube, plain tube, and pUC 18 (left 
to right) incubated in the reaction buffer containing 5 x 10-1 U/ml DNAse I at 37
Gel analysis of CpG tube, plain tube, and pUC 18 (left to right) incubated in reaction buffer 
containing high concentration of DNAse I (10 U/ml) at 37 °C for 15 min. (C) Gel analysis of 
CpG tube, plain tube and pUC 18 (left to right) incubated in 37x diluted mice serum. (D) Gel 
analysis of CpG tube, plain tube and pUC 18 (left to right) incubated in pure FCS (not heat
inactivated) for 2 h. E) DLS analysis of CpG tubes and plain tubes. Taken from Sellner et al. 
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(A) Gel analysis of CpG tube, plain tube, and pUC 18 (left 
ml DNAse I at 37 °C for 2 h. (B) 

right) incubated in reaction buffer 
°C for 15 min. (C) Gel analysis of 

CpG tube, plain tube and pUC 18 (left to right) incubated in 37x diluted mice serum. (D) Gel 
d pUC 18 (left to right) incubated in pure FCS (not heat-

Taken from Sellner et al. 



 

 

4.1.2 Release of inflammatory c

DNA nanotubes and 

 

The purpose of designing CpG DNA tubes was to create

constructs. A simple approach to test the 

nanoconstructs is to measure the cytokine release. Therefore, 

264.7 cells were incubated either with CpG DNA nanotubes

nanotubes (5 nM), CpG ODNs

(5 nM) or LPS (10 ng/ml), w

of TNF into culture supernatants was measured by ELISA

all constructs could be observed in intracellular vesicles 

Fig. 9. Uptake of DNA nanoconstructs and TNF response by RAW 264.7 cells.
cells were incubated with 5 nM of (
ODNs for 3 h at 37 °C. The different DNA nanotubes (red) were internalized by RAW 264.7 
cells. (D, E) ELISA analysis of TNF levels in supernatants of 4x10
incubated for (D) 1 h and (E) 3 h with 5
CpG ODNs, 120 nM of CpG ODNs +
as positive control or without additive (control) (
control). Scale bar: 20 µm. Taken from Sellner et al. 
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Release of inflammatory c ytokines after stimulation with

DNA nanotubes and ODNs in vitro 

CpG DNA tubes was to create efficient immunostimulatory 

. A simple approach to test the response of immune cells to DNA 

nanoconstructs is to measure the cytokine release. Therefore, macrophage

264.7 cells were incubated either with CpG DNA nanotubes (5 nM)

ODNs (120 nM), CpG ODNs (120 nM) mixed with plain tubes

), which served as positive control. Subsequently, 

culture supernatants was measured by ELISA. Within 1 h of incubation

all constructs could be observed in intracellular vesicles of RAW 264.7 cells

Uptake of DNA nanoconstructs and TNF response by RAW 264.7 cells.
cells were incubated with 5 nM of (A) plain tubes, (B) CpG tubes, and 120 nM of 

°C. The different DNA nanotubes (red) were internalized by RAW 264.7 
) ELISA analysis of TNF levels in supernatants of 4x105

) 3 h with 5 nM of CpG tubes, 5 nM of plain tube
CpG ODNs + 5 nM of DNA tubes, and LPS (10 ng/ml

as positive control or without additive (control) (n=3, mean+/-SEM; *p<0.05, ***p<0.001 vs. 
Taken from Sellner et al. [125]. 
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efficient immunostimulatory 

response of immune cells to DNA 

macrophage-like RAW 

(5 nM), plain DNA 

mixed with plain tubes 

. Subsequently, the release 

. Within 1 h of incubation, 

of RAW 264.7 cells (Fig. 9).  

 

Uptake of DNA nanoconstructs and TNF response by RAW 264.7 cells. RAW 264.7 
120 nM of (C) CpG 

°C. The different DNA nanotubes (red) were internalized by RAW 264.7 
 RAW 264.7 cells 

plain tubes, 120 nM of 
g/ml), which served 

0.05, ***p<0.001 vs. 
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Flow cytometric measurements confirmed the uniform cellular uptake of fluorescently 

labeled CpG tubes, plain tubes, plain tubes + CpG ODNs, and CpG ODNs by RAW 

264.7 cells (Fig. 10). Furthermore, the viability of RAW 264.7 cells, up to 18 hours of 

incubation with DNA nanoconstructs, was not affected (Fig. 11). Although there are 

no differences in cellular uptake and viability, the cellular production of TNF varied 

between the different groups. Incubation with CpG DNA tubes led within 1 h to a 3-

fold and within 3 h to a 5-fold higher induction of TNF release compared to untreated 

cells (Fig. 9D, E). Treatment with plain tubes, CpG ODNs, and CpG ODNs + plain 

tubes induced only a slight increase of TNF after 3 h (Fig. 9E).  

These results allow the conclusion that CpG DNA nanotube structures are 

immunogenic within 3 h of treatment. The complexation of CpG ODNs on the DNA 

tubes seems to be essential for the recognition of CpG sequences and the 

subsequent cellular TNF production.   
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Fig. 10 Uptake of DNA nanoconstructs by RAW 264.7 macrophages after 1 h of incubation. 
Representative histograms show a fluorescence shift indicating the uptake of Cy3-coupled 
DNA nanoconstructs by RAW 264.7 macrophages. Cells were incubated with different DNA 
nanoconstructs (5 nM CpG DNA tubes, 5 nM DNA tubes, 120 nM CpG ODNs, 120 nM CpG 
ODNs + 5 nM DNA tubes), LPS (10 ng/ml) or without additive (control) for 1 h at 37°C. Taken 
from Sellner et al. [125].  
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Fig.11 Cell viability after incubation with DNA nanoconstructs. FACS analysis of RAW 264.7 
macrophage viability after incubation with different DNA nanoconstructs (5 nM CpG DNA 
tubes, 5 nM DNA tubes, 120 nM CpG ODNs, 120 nM CpG ODNs + 5 nM DNA tubes), LPS 
(10 ng/ml) or without additive for 1 h (A) and 18 h (B) at 37 °C. The numbers indicate the 
percentage of viable cells within the sample. Taken from Sellner et al. [125]. 
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4.1.3 Localization of DNA nanotubes in skeletal muscle ti ssue 

after microinjection

 

Next, the behavior of DNA nanotubes in the skeletal musc

For this purpose, fluorescently 

the murine cremaster muscle

fluorescence microscopy was performed to 

Perivascular and tissue-resident cells in the vicini

CpG DNA nanotubes within 5 

pattern was the same for all DNA nanoconstructs

Fig. 12 Distribution of CpG DNA nanotubes in the cremaster tissue.
microscopy images of CpG tube (red) distribution after microinjection into the cremaster 
muscle revealed a rapid uptake of CpG tubes by tissue
vicinity of the application site (arrow). At 30 min and 60 min, 
visible in the tissue adjacent to the postcapillary venule (
fluorescence channel images (
from the cremaster tissue (
microinjection of 250 nl of CpG 
from Sellner et al. [125]. 
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Localization of DNA nanotubes in skeletal muscle ti ssue 

after microinjection  

of DNA nanotubes in the skeletal muscle tissue 

For this purpose, fluorescently labeled DNA nanoconstructs were microinjected i

the murine cremaster muscle in 25 µm to 50 µm distance to a venule

was performed to visualize the DNA constructs for 60 min.

resident cells in the vicinity of the injection site

CpG DNA nanotubes within 5 min after microinjection (Fig. 12A and

all DNA nanoconstructs (Data not shown). 

Distribution of CpG DNA nanotubes in the cremaster tissue. In vivo
microscopy images of CpG tube (red) distribution after microinjection into the cremaster 
muscle revealed a rapid uptake of CpG tubes by tissue-resident cells (arrowheads) in the 
vicinity of the application site (arrow). At 30 min and 60 min, transmigrated leukocytes are 
visible in the tissue adjacent to the postcapillary venule (A, B ) to the injection site. The 
fluorescence channel images (B) are merged with the corresponding transmitted light images 
from the cremaster tissue (A). Images were taken at the indicated time points after 
microinjection of 250 nl of CpG tubes and selected from a movie. Scale bar: 50 µm
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Localization of DNA nanotubes in skeletal muscle ti ssue   

 was investigated. 

labeled DNA nanoconstructs were microinjected into 

to a venule. In vivo 

DNA constructs for 60 min. 

ty of the injection site, internalized 

A and B). This uptake 

 

 

In vivo fluorescence 
microscopy images of CpG tube (red) distribution after microinjection into the cremaster 

resident cells (arrowheads) in the 
transmigrated leukocytes are 

) to the injection site. The 
) are merged with the corresponding transmitted light images 

taken at the indicated time points after 
Scale bar: 50 µm. Taken 



 

 

The identification of these perivascular 

repeated microinjection of DNA nanoconstructs into the cremaster muscle of 

EGFP transgenic (MacGreen)

extend polymorphonuclear leukocytes express green fluorescent protein under the 

control of the CSF-1R (c-fms) promoter. 

Fig. 13 DNA nanotubes are localized in the endolysosomes of tissue macrophages.
imaging of CpG tubes (A-C) and plain tubes (
MacGreen mice. Images show that DNA nanotubes (
positive macrophages (B, E, green). The fluorescence channel images (
merged with the corresponding transmitted light images depicting the muscle tissue (
Scale bar: 30 µm. Confocal imaging of co
LysoTracker (green) showing the presence of CpG tubes (
late endolysosomes (H, K). Merged image (
[125]. 
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The identification of these perivascular and tissue-resident cells was achieved by 

repeated microinjection of DNA nanoconstructs into the cremaster muscle of 

Green) mice [127]. In these mice, macrophages and to some 

polymorphonuclear leukocytes express green fluorescent protein under the 

fms) promoter.  

DNA nanotubes are localized in the endolysosomes of tissue macrophages.
) and plain tubes (D-F) microinjected in the cremaster muscle of 

mice. Images show that DNA nanotubes (A, D, red) were internalized by EGFP
, green). The fluorescence channel images (

merged with the corresponding transmitted light images depicting the muscle tissue (
Scale bar: 30 µm. Confocal imaging of co-microinjected DNA nanotubes (red) and 
LysoTracker (green) showing the presence of CpG tubes (J) as well as plain

). Merged image (I, L). Scale bar: 15 µm. Taken from Sellner et al. 
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resident cells was achieved by 

repeated microinjection of DNA nanoconstructs into the cremaster muscle of Csf1r-

In these mice, macrophages and to some 

polymorphonuclear leukocytes express green fluorescent protein under the 

 

DNA nanotubes are localized in the endolysosomes of tissue macrophages. Confocal 
cremaster muscle of 

red) were internalized by EGFP-
, green). The fluorescence channel images (A, B, D, E) are 

merged with the corresponding transmitted light images depicting the muscle tissue (C, F). 
microinjected DNA nanotubes (red) and 

) as well as plain tubes (G) in the 
). Scale bar: 15 µm. Taken from Sellner et al. 
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After microinjection of CpG tubes, plain tubes, and CpG ODNs, the constructs could 

be localized in vesicular structures of EGFP+ tissue-resident macrophages (Fig. 13A-

F). Simultaneous microinjection of DNA nanostructures and LysoTracker dye 

demonstrated that DNA nanostructures are localized in the endolysosomes of tissue-

resident macrophages (Fig. 13G-L). 

Consistent with the in vitro results, the cellular uptake pattern of CpG tubes, plain 

tubes, and CpG ODNs in vivo are identical. However, plain tubes and CpG tubes 

accumulate along muscle fibers, which have been pierced by glass capillaries during 

microinjection (Fig. not shown). Furthermore, CpG as well as DNA tubes were 

attached to extracellular matrix components, presumably collagen fibers (Fig 12 and 

Fig. 13). 

 

4.1.4 Microinjection of CpG tubes induces leukocyte  adhesion 

and transmigration 

 

In additional experiments, the impact of DNA nanotubes on leukocyte recruitment 

was investigated. Using near-infrared transillumination in vivo microscopy, firm 

adherence and transmigration of leukocytes were analyzed in the mouse cremaster 

muscle up to 90 min after microinjection of DNA nanoconstructs.  

30 min after application of CpG tubes the numbers of firmly adherent leukocytes (3.5 

+/- 0.31/104 µm2) at the vessel walls of postcapillary venules were significantly 

increased compared to the injection of plain tubes (0.75 +/- 0.35/104 µm2) or CpG 

ODNs (0.64 +/- 0.48/104 µm2)(Fig. 14A). As shown in Figure 14B, these significant 

higher numbers of adherent leukocytes after CpG nanotube administration 

maintained over 60 min of observation since the numbers of adherent leukocytes 
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after CpG nanotube microinjection (2.89 +/- 0.23/104 µm2) was five times higher than 

in the control group receiving saline (0.67 +/- 0.31/104 µm2). The numbers of 

adherent leukocytes after CpG ODN microinjection remained low (0.87 +/- 0.26/104 

µm2), whereas administration of plain tubes elevated the numbers of adherent cells 

after 60 min (2.31 +/- 0.56/104 µm2) 4-fold compared to the saline group. In 

accordance with the typical length of time for the different steps of leukocyte 

recruitment upon administration of inflammatory mediators [128] the number of 

adherent leukocytes declined 90 min after injection of CpG DNA nanotubes (Data not 

shown).  

After adhesion, leukocytes subsequently transmigrate from the vessel lumen into the 

inflamed tissue. To test whether local microinjection of the different constructs 

resulted in a directed transmigration of leukocytes into the adjacent tissue, a 

comparison of the numbers of transmigrated cells on the vessel side ipsilateral to the 

application site with those on the contralateral side was conducted. In line with the 

leukocyte adherence data, the numbers of transmigrated leukocytes were 

significantly increased within the ipsilateral vessel side after CpG DNA microinjection 

(Fig. 14D, 60 min: 7.3 +/- 0.32/104 µm2) as compared to saline (Fig. 14D, 60 min: 1.3 

+/- 0.51/104 µm2) at all investigated time points (Fig. 14C and D). However, 

microinjection of CpG ODNs or plain DNA tubes had no effect on leukocyte 

transmigration. 

Taken together, these data demonstrate the immunogenic properties of CpG-

decorated DNA tubes. CpG DNA nanotubes recruit leukocytes to the site of injection, 

whereas plain DNA tubes and CpG ODNs lack this capacity. 
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Fig. 14 Quantitative analysis of intravascular adherence and transmigration of leukocytes 
after microinjection of DNA nanoconstructs. Leukocyte adherence was quantified in 
postcapillary venules in the cremaster muscle using in vivo transillumination microscopy at 
30 min (A) and 60 min (B) upon microinjection of CpG tubes, DNA tubes, CpG ODNs, or 
saline. The numbers of adherent leukocytes were significantly increased at 30 min and 60 
min after CpG tube injection. Pretreatment with cromolyn prior to CpG tube injection 
diminished leukocyte adherence. Leukocyte transmigration was quantified on the vessel side 
ipsilateral to the microinjection site (white bars) and on the contralateral side (black bars) at 
30 min (C) and 60 min (D) after microinjection. CpG tube injection elicited leukocyte 
transmigration into the tissue. Cromolyn pretreatment attenuated the leukocyte 
transmigration induced by microinjection of CpG tubes (n=6, mean+/-SEM; *p<0.05, 
**p<0.01, ***p<0.001 vs. all groups). (E, F) depicts representative in vivo microscopy images 
of postcapillary venules in the cremaster muscle 30 min after microinjection of either saline 
(E) or CpG tubes (F) with adherent as well as transmigrated leukocytes. Scale bar, 25 µm. 
Taken from Sellner et al. [125]. 
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4.1.5 Mast cell inhibition abolishes CpG tube-evoke d leukocyte   

adhesion and transmigration 

 

Mast cells are well known for their role in allergy, since they are important immune 

cells involved in the recognition of pathogens and the initiation of immune responses 

[129]. After activation, mast cells are able to release proinflammatory mediators from 

their characteristic granules, which subsequently facilitate the exit of leukocytes from 

postcapillary venules [130]. As previously reported, surgical preparation of the 

cremaster muscle does not activate mast cells and does not contribute to the low 

baseline levels of preparation-induced leukocyte recruitment [124, 131]. To determine 

whether mast cells are involved in leukocyte recruitment elicited by microinjection of 

CpG DNA nanotubes, mice received the mast cell degranulation inhibitor cromolyn 

prior to microinjection.     

Cromolyn pretreatment diminished the numbers of adherent (Fig. 14B, 60 min, 1.3 +/- 

0.33/104 µm2) and the numbers of transmigrated leukocytes (Fig. 14D, 60 min, 1.7 +/- 

0.71/104 µm2) after microinjection of CpG tubes compared to non-treated mice (Fig. 

14B, adherence 60 min, 2.8 +/- 0.24/104 µm2, Fig. 14D, transmigration 60 min, 7.3 +/- 

0.48/104 µm2). These values were in the range of the control group (Fig. 14B, 

adherence 60 min, 0.7 +/- 0.32/104 µm2, Fig. 14D, transmigration 60 min, 1.3 +/- 

0.62/104 µm2). 
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4.1.6 Systemic leukocyte counts and microhemodynami c 

parameters 

 

To guarantee the comparability of all experimental groups, inner vessel diameter, 

blood flow, and wall shear stress of all examined vessels were determined. To 

exclude anomalies, systemic leukocyte counts in the peripheral blood of animals 

were measured at the end of the experiment. There were no significant differences in 

inner vessel diameter, blood flow, wall shear stress, or systemic leukocyte counts 

between all groups (Table 1). 

 
 Experimental 

group 
Inner  

vessel 
diameter  

[µm] 

Blood flow 
velocity 

  
[mm/s] 

Wall shear rate  
 
 

[1/s] 

Systemic 
leukocyte 

counts 
[ *106 /ml] 

 
      
 
 

Sham 29.2 ± 2.0 3.1 ± 1.2 4157.6 ± 1650.2 3.6 ± 1.4 

 Saline  

 

27.8 ± 1.2 2.8 ± 0.7 3978.1 ± 1075.8 2.4 ± 0.7 

 CpG 
nanotubes 
 

31.8 ± 3.1 3.1 ± 1.1 3800.0 ± 1175.2 2.7 ± 1.5 

 
 

DNA 
nanotubes 

25.8 ± 0.8 3.5 ± 0.3 5312.6 ± 291.2 1.8 ± 0.1 

      
 CpG ODNs 

 
27.3 ± 1.5 2.6 ± 0.6 3726.7 ± 907.1 4.5 ± 1.0 

 
Table 1  Systemic leukocyte counts and microhemodynamic parameters. Systemic leukocyte 
counts as well as microhemodynamic parameters, including inner vessel diameter, blood 
flow velocity, and wall shear rate, were obtained as detailed in Materials and Methods (mean 
± SEM for n=4-5 per group). Taken from Sellner et al. [125]. 
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4.1.7 CpG tube microinjection results in NF- ĸB pathway 

activation 

 

The transcription factor NF-ĸB is a key regulator of genes involved in inflammatory 

processes. Binding of TLR ligands leads to a downstream activation of NF-ĸB and 

the subsequent translocation from the cytoplasm into the nucleus [132, 133], where 

the expression of inflammatory mediators such as TNF and IL-1 is mediated [134]. 

Immunostaining of phosphorylated p65, a subunit of the NF-ĸB complex, which 

indicates nuclear NF-ĸB [135], was performed with DNA nanoconstructs-

microinjected cremasteric tissue to investigate the ability of CpG nanotubes to induce 

NF-ĸB activation. 

A clear nuclear localization of phospho-p65 could be detected in cells close to the 

CpG nanotube injection site 90 min upon microinjection (Fig. 15B and E), which was 

not present in plain tube- (Fig. 15A and D) and CpG ODN- (Fig. 15C and F) injected 

tissues. The majority of the phospho-p65-positive cells accumulated around the site 

of CpG DNA tube administration exhibited roundish nuclei, similar to multi-lobed 

granulocyte nuclei (Fig. 15B and E), whereas p65-positive cells with elongated nuclei 

are presumably tissue-resident cells, such as macrophages or mast cells.  



 

 

Fig. 15 NF-ĸB p65 translocation occurs in the vicinity of microinjected CpG DNA nanotubes.
Confocal immunofluorescence of DNA nanotubes (red), NF
(blue) counterstaining showed marked NF
injection site of CpG tubes (B, 
the cremasteric tissue (C, F) caused only weak nuclear p65 staining. Scale 
Taken from Sellner et al. [125

 

4.2 The impact of CpG nanotubes o

4.2.1 Microdistribution 

postischemic muscle tissue

 

To determine the local distribution of CpG DNA nanoconstructs within 

muscle tissue, real-time fluorescence intravital microscopy

the cremaster muscle supplying blood vessels
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B p65 translocation occurs in the vicinity of microinjected CpG DNA nanotubes.
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tissue environment, such as the activation status of the 

vascular permeability [137], and the density of collagen fibers

4 Results 

 

B p65 translocation occurs in the vicinity of microinjected CpG DNA nanotubes. 
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the local microdistribution of DNA nanotubes needs to be investigated to test the 

therapeutic potential of the constructs in the postischemic tissue.  

 

Fig. 16 Uptake of DNA nanoconstructs by tissue macrophages in inflamed cremasteric 
tissue. Confocal imaging of CpG tubes, plain tubes, and CpG ODNs microinjected in the 
postischemic cremaster muscle. Images show that DNA nanoconstructs (red) were 
internalized by tissue-resident macrophages in the inflamed cremaster tissue. The 
fluorescence channel images are merged with the corresponding transmitted light images 
depicting the muscle tissue. Scale bar: 50 µm.  
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By means of in vivo fluorescence microscopy, 30 min after microinjection of CpG 

DNA nanotubes (500 nM), plain nanotubes (500 nM), and CpG ODNs (12 µM), the 

constructs were found within cells, associated with postcapillary venules as depicted 

in Figure 16. The cell morphology as well as our previous experiments suggests that 

the DNA nanoconstructs were incorporated by tissue macrophages. Additionally, 

DNA tubes were prominently localized along distinct tissue structures, presumably 

collagen fibers (Fig. 16). However, DNA nanoconstructs could not be detected in ECs 

or transmigrated leukocytes. During the observation period of 90 min, the 

nanoconstructs remained inside macrophages and along tissue fibers (Data not 

shown). 

  

4.2.2 Microinjection of CpG tubes into ischemic mus cle tissue 

attenuates leukocyte adhesion and transmigration 

 

Real-time fluorescence intravital microscopy was used to investigate the effects of 

CpG DNA nanoconstructs on leukocyte infiltration into the postischemic mouse 

cremaster muscle.  

At baseline conditions and after release of the vascular clamp, the number of 

leukocytes attached to the inner vessel wall of postcapillary venules was low and did 

not differ among experimental groups (Data not shown). After 60 min of reperfusion, 

microinjection of CpG DNA nanotube or saline lead to similar numbers of firmly 

adherent leukocytes (Fig. 17A, CpG DNA: 3.3 +/- 0.99/104 µm2; saline: 3.5 +/- 

0.99/104 µm2) while DNA nanotube microinjection caused highly elevated numbers of 

leukocytes (Fig. 17A, 10 +/- 4.59/104 µm2). Within 90 min this elevated numbers after 

DNA nanotube administration diminished. However, the numbers of adherent 
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leukocytes after CpG nanotube microinjection (Fig. 17B, 1.4 +/- 0.72/104 µm2) 

dropped under these of saline injection (Fig. 17B, 3.8 +/- 0.9/104 µm2). Microinjection 

of CpG ODNs into the postischemic muscle tissue resulted in a similar number of 

adherent cells compared to microinjection of saline over the observation period of 90 

min (Fig. 17B, 60 min: 2.9 +/- 0.7/104 µm2; 90 min: 2.9 +/- 0.7/104 µm2). Before onset 

of ischemia, only few transmigrated leukocytes were found within the perivenular 

tissue (Data not shown). Consistent with the results obtained for leukocyte firm 

adherence, the numbers of transmigrated leukocytes detected within the perivascular 

tissue were elevated after DNA nanotube application at all investigated time points 

(Fig. 17C, 60 min: 15 +/- 4.5/104 µm2; Fig. 17D, 90 min: 22 +/- 5.8/104 µm2) as 

compared to sham-treated mice. The numbers of transmigrated leukocytes after 

microinjection of CpG tubes were less than after saline at 60 min (Fig. 17C, CpG 

DNA nanotubes: 8.5 +/- 1.9/104 µm2; saline: 12.8 +/- 2.8/104 µm2) but rose after 90 

min to the saline (I/R control) level (Fig. 17D, CpG DNA nanotubes: 13 +/- 2.1/104 

µm2; saline: 12.2 +/- 2.2/104 µm2). Microinjection of CpG ODNs had an inhibitory 

effect on the transmigration of leukocytes at 60 min (Fig. 17C, 5 +/- 1.5/104 µm2) and 

90 min (Fig. 17D, 7.4 +/- 2.1/104 µm2) of reperfusion.   

Taken together, these data indicate that CpG ODNs attenuate the recruitment of 

leukocytes into ischemic tissue, whereas plain DNA tubes enhance the leukocyte 

response under sterile inflammatory conditions.  
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Fig. 17 Quantitative analysis of intravascular adherence and transmigration of leukocytes 
after microinjection of DNA nanoconstructs into postischemic tissue at the onset of 
reperfusion. Leukocyte adherence was quantified in postcapillary venules in the cremaster 
muscle using in vivo transillumination microscopy at 60 min (A) and 90 min (B) upon 
microinjection of CpG tubes, DNA tubes, CpG ODNs, saline, or in sham-operated animals. 
The numbers of adherent leukocytes were increased at 60 min and 90 min after DNA 
nanotube injection, whereas CpG constructs attenuated the numbers. Leukocyte 
transmigration was quantified at 60 min (C) and 90 min (D) after microinjection. CpG ODN 
injection attenuated leukocyte transmigration into the tissue, whereas DNA tube application 
elevated the numbers of transmigrated leukocytes (n=6, mean+/-SEM, *p<0.05, **p<0.01 vs. 
all groups). 

 

4.2.3 Systemic leukocyte counts and microhemodynami c 

parameters 

 

To assure intergroup comparability, systemic leukocyte counts, inner vessel 

diameter, blood flow, and wall shear stress were measured at the end of the 

experiments. No significant differences in these parameters were detected among all 

experimental groups (Table 2). 
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 Experimental 
group 

Inner  
vessel 

diameter  
[µm] 

Blood flow 
velocity 

  
[mm/s] 

Wall shear rate  
 
 

[1/s] 

Systemic 
leukocyte 

counts 
[*106 /ml] 

 
      

 Saline  28.0 ± 0.5 2.8 ± 0.3 3978.0 ± 537.9 2.6 ± 0.3 

 

 Sham 27.8 ± 1.6 3.1 ± 0.6 4158.0 ± 825.1 3.8 ± 0.5 

 

 DNA 
nanotubes 

27.3 ± 1.2 3.5 ± 0.2 5313.0 ± 168.1 2.1 ± 0.3 

 CpG 
nanotubes 

30.1 ± 1.3 3.1 ± 0.6 3800.0 ± 587.6 3.2 ± 0.9 

 

 

CpG ODNs 

 

26.5 ± 0.7 2.6 ± 0.3 3726.0 ± 523.7 2.0 ± 0.2 

Table 2 Systemic leukocyte counts and microhemodynamic parameters. Systemic leukocyte 
counts as well as microhemodynamic parameters, including inner vessel diameter, blood 
flow velocity, and wall shear rate, were obtained as described in Materials and Methods 
(mean ± SEM for n=4 per group). 

 

4.2.4 Microinjection of CpG tubes into postischemic  muscle   

tissue increases cellular TLR 9 expression 

 

To determine the TLR 9 expression upon DNA nanoconstruct microinjection, confocal 

microscopy of TLR 9 immunostained-postischemic muscle tissue was performed. 

Notably, 90 min upon microinjection of CpG DNA tubes, a multitude of cells with 

elongated, ramified shapes and intense TLR 9 signal were present around the 

injection site (Fig. 18A and E). Surprisingly, the cellular TLR 9 signal was not 

localized in vesicular structures but ubiquitously present over the whole cell bodies. 

Microinjection of CpG DNA tubes into the postischemic cremaster of a CX3CR1GFP 
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mouse revealed that these TLR 9high cells are CX3CR1GFP-positive macrophages (Fig. 

19A-D). I/R injury together with CpG DNA tube microinjection induced a substantial 

change in the morphology of these macrophages (Fig. 19B), since CX3CR1GFP-

positive macrophages did not display prominent TLR 9 expression after saline 

injection (Fig. 19E-H). The administration of CpG ODNs in the ischemic cremaster 

tissue had only little impact on macrophage morphology. The cellular TLR 9 signal 

was markedly less pronounced and macrophages with long protrusions were not 

present (Fig. 18C and G). Also microinjection of plain tubes induced just weak TLR 9 

expression (Fig 18B and F).  

In all three groups, TLR 9 was present at blood vessel walls. Vascular TLR 9 staining 

was either spotted (Fig. 18B and F), or was present section-wise (Fig. 18C and G) 

after microinjection of plain tubes and CpG ODNs. 

Fig. 18 Marked TLR 9 expression in ramified macrophages upon microinjection of CpG tubes 
into the postischemic cremaster muscle. Confocal immunofluorescence of CpG DNA 
nanoconstructs (red), TLR 9 (green), and TO-PRO (blue) counterstaining showed marked 
cellular TLR 9 staining after the injection of CpG tubes (A, E) into postischemic tissue. 
Injection of plain tubes (B, F), CpG ODNs (C, G), and saline (D, H) into postischemic 
cremasteric tissue caused only weak TLR 9 expression in interstitial cells. Scale bar: 50 µm. 
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Fig. 19 TLR 9 expression in CX3CR1GFP macrophages after injection of CpG nanoconstructs 
and saline into the postischemic cremaster muscle. Confocal immunofluorescence images of 
CpG nanotubes (A-D) and saline (E-H) microinjected into the cremaster muscle of 
CX3CR1GFP mice, which were immunostained for TLR 9 (red) and cell nuclei (TO-PRO, blue).  
Injection of CpG nanotubes induced TLR 9 (red) expression (C) in CX3CR1GFP-positive 
macrophages (green) compared to saline (G). Scale bar: 50 µm. 
 

4.3 Dexamethasone-conjugated DNA nanotubes as anti-
inflammatory agents in vivo 

4.3.1 Characterization and functionality of Dex nan otubes  
 

Dex nanotube design, assembly, and characterization were mainly done by Samet 

Kocabey and Tim Liedl (Department of Physics, LMU) in close cooperation and with 

considerable conceptual input by the author of this thesis.  

A DNA nanotube construct, consisting of 15 unique single-stranded tiles, with a ph-

responsive i-motif was designed as controllable device for the intracellular release of 

the anti-inflammatory drug dexamethasone (Fig. 20A). In order to conjugate 

dexamethasone on the structure, 3 of the tiles were extended from their 3´ ends with 

an i-motif sequence or a random sequence, which then hybridize with Dex ODNs. 

The temperature-controlled assembly of the tiles into 6 parallel double helices led to 



 

 

a tube structure with a designed length of ~30 nm and a diameter of ~8 nm. TEM 

micrographs revealed the c

DNA tubes, Dex nanotubes

dexamethasone (Dex ODNs)

structure is a four-stranded DNA structure

of cytosine residues [139-141

Fig. 20 Characterization of Dex DNA nanoconstructs
nanotubes with i-motif-dependent dexamethasone release
micrograph of a single DNA nanotube. Scale bar 
dependent release of the hybridized 
from Dex nanotubes labeled with SYBR green
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with a designed length of ~30 nm and a diameter of ~8 nm. TEM 

correct assembly into nanotube structures

tubes w/o i-motif, and unfolded ODNs 

(Dex ODNs) served as control groups in all experiments. 

stranded DNA structure that forms sequences contain

141].  

Characterization of Dex DNA nanoconstructs. Scheme depicting the design of
dependent dexamethasone release (A). Transmission electron

ograph of a single DNA nanotube. Scale bar 40 nm (B). Gel analysis of i
dependent release of the hybridized ODNs labeled with Alexa 647 (red) at pH 5.5 a
from Dex nanotubes labeled with SYBR green (C).  
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structures (Fig. 20B). Plain 

 conjugated with 

served as control groups in all experiments. The i-motif 

sequences containing stretches 

 
the design of 6-helix 

Transmission electron 
Gel analysis of i-motif-

at pH 5.5 and 37 °C 
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Cytosines in the i-motif sequence get protonated at low pH and form a quadruple 

helix. This mechanism was used to release Dex ODNs upon acidic pH as illustrated 

in Figure 20A. To test the functionality of the i-motif-dependent release mechanism, 

the nanotubes were incubated in MES buffer (pH 5.5) at 37 °C and centrifuged to get 

rid of released single-stranded tiles. Gel analysis revealed that Alexa 647-labeled 

complementary tiles are still visible at structures without i-motif sequence and on 

structures incubated in buffer at pH 8. However, the i-motif-dependent release of 

hybridized ODNs at pH 5.5 could be observed since the Alexa 647 signal is very low 

in comparison to the control groups (Fig. 20C). The released Dex ODNs were 

washed out during the centrifugation process. This experiment demonstrated the i-

motif-dependent release of Dex ODNs from DNA 6-helix tubes at 37 °C and under 

acidic pH.   

 

4.3.2 Dexamethasone-conjugated DNA nanoconstructs d o not 

affect macrophage viability 

 

The synthetic glucocorticoid dexamethasone is reported to have cytotoxic effects on 

several cell types [142-144]. Although the dexamethasone concentrations applied in 

vitro with DEX tubes are low (40 ng/ml), the cell vitality during treatment with the 

different nanoconstructs were tested. For in vitro testing, a murine alveolar 

macrophage cell line (MH-S) was used in this study, since dexamethasone is a 

potent agent targeting the cytokine release from alveolar macrophages in asthma 

therapy [145, 146].   

Cytotoxic effects of Dex tubes, DNA tubes, Dex ODNs, Dex tubes w/o i-motif (all at 

50 nM), unconjugated dexamethasone (40 ng/ml and 1 µg/ml), and LPS (10 ng/ml) 
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on MH-S macrophages were examined using the WST-1 assay. Dexamethasone 

was used in a concentration equivalent to the concentration on Dex tubes (40 ng/ml) 

and in a higher dose, described to be immunosuppressive (1 µg/ml) [147]. DNA 

nanoconstructs, as well as free dexamethasone were not cytotoxic for MH-S cells 

over a time period of 12h (Fig. 21). MH-S cells were also exposed for 2 min to 70% 

ethanol (EtOH) and afterwards medium was added. This treatment led to cell death 

and served as negative control. After 6 h of incubation, the cell viability increased 

almost to 150% of the untreated control cells (100%), which corresponds with higher 

metabolic rates of NADH (mediating the complex formation of the tetrazolium salt 

WST-1) before macromolecular synthesis and cell division [148]. 

 

Fig. 21 Effects of Dex nanoconstructs on MH-S macrophage cell viability. MH-S 
macrophages were incubated with medium containing Dex tubes (50 nM), DNA tubes (50 
nM), Dex ODNs (50 nM), Dex DNA tubes w/o i-motif (50 nM), dexamethasone (40 ng/ml and 
1 µg/ml), and LPS (10 ng/ml) for 12 h. 70% ethanol was added for 2 min and served as 
negative control. Cell viability was evaluated using the colorimetric WST1-assay. 

 

4.3.3 Dex tubes are effectively incorporated by mac rophages 
  

Dex tubes could be rapidly detected within MH-S macrophages. Already within 15 

min of incubation with Dex nanoconstructs, Dex tubes could be detected within 
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intracellular vesicles (Fig. 22A), but to a lesser extent than Dex tubes w/o i-motif (Fig. 

22D). Apparently, the overall uptake rate differed between the various Dex 

nanoconstructs, although the administered concentrations were equal. Plain DNA 

tubes were preferably incorporated by MH-S cells (Fig. 22B), whereas Dex ODNs 

could hardly be detected in phagosomal structures (Fig. 22C).  

Within 6 h of incubation Dex DNA tubes and plain DNA tubes were equally present in 

cellular compartments of MH-S cells (Fig. 23A and B). Interestingly, at 6 h the 

colocalization of Alexa 546 Dex ODNs with the Alexa 488-conjugated DNA tube 

structure could no longer be observed, whereas Dex ODNs were still present in the 

endolysosomal compartments (Fig. 23C). Since the functionality of the i-motif could 

be shown at pH 5.5 and 37 °C (Fig. 20C), this loss of endolysosomal Alexa 546 

fluorescence might indicate the escape of dexamethasone from this compartment. 

On the contrary, Dex tubes w/o i-motif still showed a colocalization of Alexa 546 Dex 

handles and the Alexa 488-linked DNA tube structure, after 6 h. Noticeable, the 

construct distribution changed from purely vesicular to vesicular/cytoplasmatic in the 

majority of MH-S cells with incorporated constructs (Fig. 23D). This phenotype was 

correlated with the accumulation of cells and the formation of giant cells (Data not 

shown), suggesting an activated status. Furthermore, within 6 h of incubation, 

vesicles containing Dex nanoconstructs clustered around the cellular nuclei (Fig. 

23A-D). This indicates a maturation of these vesicles from early to late endosomes, 

which are in close proximity to the Golgi apparatus and the nucleus.    
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Fig. 22 Uptake of DNA nanoconstructs by MH-S macrophages within 15 min of incubation. 
MH-S cells were incubated with 50 nM Dex tubes (A), 50 nM plain tubes (B), 150 nM Dex 
ODNs (C), 50 nM Dex tubes w/o i-motif (D), or without additive (control) (E) for 15 min at 37 
°C. Confocal fluorescence microscopy of Alexa 488-labeled DNA nanotubes (green), 
separately Alexa 546-labeled Dex handles (red) and TO-PRO (cell nuclei, blue) 
counterstaining showed a vesicular localization of DNA nanoconstructs within 15 min of 
incubation. Scale bar: 20 µm. 
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Fig. 23 Uptake of DNA nanoconstructs by MH-S macrophages within 6 h of incubation. MH-
S cells were incubated with 50 nM Dex tubes (A), 50 nM plain tubes (B), 150 nM Dex ODNs 
(C), 50 nM Dex tubes w/o i-motif (D), or without additive (control) (E) for 6 h at 37 °C. 
Confocal fluorescence microscopy of Alexa 488-labeled DNA nanotubes (green), separately 
Alexa 546-labeled Dex handles (red) and TO-PRO (cell nuclei, blue) counterstaining 
revealed a vesicular localization of DNA nanoconstructs after 6 h of incubation. Scale bar: 20 
µm. 

Taken together, it can be concluded that the uptake of Dex nanoconstructs by MH-S 

cells occurs within the first minutes of incubation. DNA tubes, Dex tubes, Dex tubes 

w/o i-motif, and Dex ODNs are stored up to 6 h in endolysosomal compartments of 

MH-S macrophages, but only Dex tubes with functional i-motif lost the Dex handle 

signal after 6 h.    
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4.3.4 Dex tubes attenuate LPS-induced TNF     secretion by MH-S 

macrophages 

 

Next, the pH-responsive Dex nanoconstructs were tested on their ability to suppress 

pro-inflammatory cytokine release in response to LPS. Accordingly, MH-S alveolar 

macrophages were incubated for 15 min with the respective Dex nanoconstruct, 

which was removed prior to LPS stimulation.  

Dex tubes showed a significant inhibitory effect on TNF release (12 h: 306 +/- 9.6 

pg/ml) up to 12 h of LPS stimulation compared to LPS without DNA construct 

pretreatment (12 h: 547 +/- 35.4 pg/ml) (Fig. 24). Pretreatment with 40 ng/ml 

dexamethasone, a concentration equivalent to Dex tubes reduced the TNF release of 

MH-S cells only for 6 h (6 h: 164.1 +/- 7.3 pg/ml; 12 h: 476 +/- 13.1 pg/ml) (Fig. 24). 

In contrast, pretreatment with Dex tubes w/o i-motif intensified the LPS induced TNF 

response of MH-S cells from 6 h to 12 h of LPS stimulation (6 h: 851 +/- 40.1 pg/ml; 

12 h: 1304.4 +/- 28.6 pg/ml). Plain DNA tubes did not affect the release of TNF by 

MH-S cells (12 h: 508.1 +/- 15.8 pg/ml) since the secreted levels were comparable to 

the LPS control group over 12 h. Incubation with Dex ODNs did not result in a 

significant inhibition of TNF release upon LPS stimulation. 

 



4 Results 
 

74 

 

 

Fig. 24 TNF release by MH-S cells induced by LPS stimulation is attenuated after 
pretreatment with Dex tubes. ELISA analysis of TNF levels in supernatants of 1x105 MH-S 
cells incubated for 1 h, 3 h, 6 h, and 12 h with LPS (10 ng/ml) and pretreated for 15 min with 
50 nM Dex tubes, 50 nM Dex tubes w/o i-motif, 50 nM DNA tubes, 150 nM Dex ODNs, and 
dexamethasone (1 µg/ml and 40 ng/ml) or without additive (control). (n=3, mean+/-SEM; 
*p<0.05, **p<0.01, ***p<0.001 vs. control)  
 
 
 

4.3.5 Microinjection of Dex tubes into postischemic  muscle 

tissue lowers the number of adherent and transmigra ted 

leukocytes 

 

It has been shown that dexamethasone mediates its immunosuppressive effect by 

affecting the recruitment of leukocytes [149].  

In vivo transillumination microscopy was performed to analyze the impact of Dex 

nanotubes on leukocyte infiltration. Therefore, Dex nanoconstructs as well as 

unconjugated dexamethasone (1 µg/ml) were microinjected into the mouse 

cremaster muscle at the onset of reperfusion after an ischemic period of 30 min. At 

baseline conditions and after release of the vascular clamp, the number of leukocytes 

attached to the inner vessel wall of postcapillary venules was low and did not differ 

among experimental groups (Data not shown). Within 60 and 90 min of reperfusion, 

the numbers of firmly adherent leukocytes after microinjection of Dex tubes (60 min: 
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4.3 +/- 1.4 /104 µm2; 90 min: 2.6 +/- 1.1 /104 µm2) kept at the level of saline-injected 

animals (60 min: 3.5 +/- 1.0 /104 µm2; 90 min: 3.8 +/- 0.9 /104 µm2), whereas 

significantly elevated numbers of adherent leukocytes could be observed after Dex 

ODN injection (60 min: 18.8 +/- 7.3 /104 µm2; 90 min: 17.6 +/- 6.7 /104 µm2) (Fig. 25A 

and B). Injection of unconjugated dexamethasone led to higher numbers of adherent 

leukocytes at both time points compared to Dex tubes (1 µg/ml; 60 min: 7.3 +/- 2.8 

/104 µm2; 90 min: 7.0 +/- 2.6 /104 µm2). The same applies for microinjection of Dex 

tubes w/o i-motif (60 min: 12.6 +/- 2.6 /104 µm2; 90 min: 8.8 +/- 2.4 /104 µm2) and 

plain DNA tubes (60 min: 9.7 +/- 3.0 /104 µm2; 90 min: 9.9 +/- 2.7 /104 µm2) (Fig. 25A 

and B). 

Before ischemia, only few transmigrated leukocytes were found within the perivenular 

tissue (Data not shown). The numbers of transmigrated leukocytes detected within 

the perivascular tissue after Dex DNA nanotube application (60 min: 2.8 +/- 0.9 /104 

µm2; 90 min: 4.2 +/- 1.6 /104 µm2) were as low as in sham-operated animals (60 min: 

2.2 +/- 0.7 /104 µm2; 90 min: 4.2 +/- 1.6 /104 µm2) at all investigated time points (Fig. 

25C and D). The numbers of transmigrated leukocytes after microinjection of DNA 

nanotubes (60 min: 13.0 +/- 7.1 /104 µm2; 90 min: 16.3 +/- 6.5 /104 µm2), Dex ODNs 

(60 min: 10.7 +/- 2.8 /104 µm2; 90 min: 16.8 +/- 3.7 /104 µm2), and unconjugated 

dexamethasone (1 µg/ml; 60 min: 12.5 +/- 6.0 /104 µm2; 90 min: 12.0 +/- 6.1 /104 

µm2) were comparable to the saline-injected control animals (60 min: 12.8 +/- 2.8 

/104 µm2; 90 min: 12.2 +/- 2.2 /104 µm2). Interestingly, Dex tubes w/o i-motif had a 

contrary effect on leukocyte extravasation than their i-motif carrying counterparts (60 

min: 21.3 +/- 4.8 /104 µm2; 90 min: 24.2 +/- 5.5 /104 µm2). The number of 

transmigrated leukocytes into the postischemic tissue was higher than in any other 

group (Fig. 25C and D).   
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Taken together, these data indicate that Dex tubes attenuate the recruitment of 

leukocytes into postischemic tissue, whereas Dex tubes w/o i-motif increase 

leukocyte recruitment under these sterile inflammatory conditions. 

 

 

Fig. 25 Quantitative analysis of intravascular adherence and transmigration of leukocytes 
after microinjection of Dex nanoconstructs. Leukocyte adherence was quantified in 
postcapillary venules of the cremaster muscle using in vivo transillumination microscopy at 
60 min (A) and 90 min (B) upon microinjection of Dex tubes, DNA tubes, Dex ODNs, Dex 
tubes w/o i-motif, dexamethasone, or saline into postischemic cremaster tissue at onset of 
reperfusion. The numbers of adherent leukocytes after injection of Dex tubes were as low as 
after injection of saline at 60 min and 90 min after reperfusion. Leukocyte transmigration was 
quantified at 60 min (C) and 90 min (D) after microinjection. Dex tube injection attenuated the 
transmigration of leukocytes into the tissue, whereas Dex tubes w/o i-motif induced 
transmigration of leukocytes into the postischemic tissue. (n=6, mean+/-SEM; *p<0.05 vs. all 
groups) 
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4.3.6 Systemic leukocyte counts and microhemodynami c 

parameters 

 

Inner vessel diameter, wall shear stress, and blood flow velocities of analyzed 

postcapillary venules as well as leukocyte counts were determined to ensure 

intergroup comparability. No significant differences were present in the experimental 

groups (Table 3). 

 Experimental 
group 

Inner  
vessel 

diameter 
[µm] 

Blood flow 
velocity 

  
[mm/s] 

Wall shear rate  
 
 

[1/s] 

Systemic 
leukocyte 

counts 
[*106/ml] 

 
      

 
 
 

Sham 27.8 ± 1.6 3.7 ± 0.3 4907 ± 446.8 3.8 ± 0.5 

 Saline  28.0 ± 0.5 3.1 ± 0.3 4349 ± 508.2 2.7 ± 0.3 

 Dex tubes  
 
Dex tubes w/o 
i-motif 
 

28.9 ± 2.0 
 

30.5 ± 2.2                     

3.7 ± 0.6 
 

       3.6 ± 0.4 

5294 ± 983.4 
 

   4830 ± 834.6 

3.2 ± 0.7 
 

      5.2 ± 1.6 

 
 

DNA tubes  27.6 ± 1.0 4.1 ± 0.4 5762 ± 728.3 4.4 ± 0.3 

      
 Dex ODNs 

 
Dexamethasone 
1 µg/ml 

26.8 ± 1.8 
 

     29.0 ± 2.0 
          

4.0 ± 0.4 
 

      3.3 ± 0.3 

6328 ± 1177 
 

   4372 ± 570 

2.4 ± 0.4 
 

      4.9 ± 0.9 
 
 
 

Table 3 Systemic leukocyte counts and microhemodynamic parameters. Systemic leukocyte 
counts as well as microhemodynamic parameters, including inner vessel diameter, blood 
flow velocity, and wall shear rate, were obtained as detailed in Materials and Methods (mean 
± SEM for n= 6 per group). 
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4.3.7 Dexamethasone-conjugated nanoconstructs are 

phagocytosed and stored in endolysosomal 

compartments of tissue-resident cells 

  

Next, the cellular uptake and localization of Dex nanoconstructs in the postischemic 

mouse cremaster muscle was explored by means of in vivo fluorescence microscopy. 

Accordingly, fluorescently labeled Dex tubes, plain tubes, and Dex ODNs were 

concomitantly microinjected with LysoTracker dye in 25 µm to 50 µm distance to a 

postcapillary venule immediately after the release of the vascular clamp. After 60 min 

of reperfusion the muscle has been dissected for further analysis.  

All Dex nanoconstructs were found in the endolysosomal compartment of cells 

present in the postischemic tissue (Fig. 26). As stated above, in the previous 

experiments, tissue-resident macrophages were identified as the population of 

phagocytes, which incorporate CpG nanoconstructs in the cremaster muscle under 

physiologic (Chapter 4.1) as well as under postischemic (Chapter 4.2) conditions. 

The morphology and the localization of cells, which incorporated Dex tubes in the 

postischemic cremaster, strongly suggest that these cells are tissue-resident 

macrophages. 

However, the cellular uptake in the postischemic tissue occurs not within 5 min but 

within 30 min. Since the tissue is considerably damaged within 60 min of reperfusion, 

this might explain the delayed uptake by tissue macrophages, either by a restrained 

diffusion of the nanoconstructs or altered phagocytic preferences of these cells. 
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Fig. 26  Localization of DNA nanoconstructs in the endolysosomes of tissue macrophages. 
Confocal imaging of Dex tubes, DNA tubes, Dex ODNs, and Dex tubes w/o i-motif  
microinjected together with red or green emitting LysoTracker dye into the postischemic 
cremaster muscle. The fluorescence channel images were merged to determine co-
localization (yellow). Images show that Dex tubes (green), DNA nanotubes (green), and Dex 
tubes w/o i-motif (green) were located in the cellular lysosomes (red). Dex ODNs (red) were 
microinjected with green LysoTracker (green) and were also detected in lysosomes. Scale 
bar: 50 µm.  

 

4.3.8 Modulation of VCAM-1 and ICAM-1 expression by  

dexamethasone-conjugated nanoconstructs 

 

One of the described effects of dexamethasone is the downregulation of endothelial 

adhesion molecules including VCAM-1 and ICAM-1 [150, 151]. To determine, 
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whether the downregulation of VCAM-1 and ICAM-1 contributes to the reduction of 

leukocyte transmigration after Dex tube application, immunostainings of postischemic 

cremasteric tissue for VCAM-1 and ICAM-1 and quantifications of the vascular 

expression using confocal microscopy were conducted.  

60 min after application, VCAM-1 was continuously expressed in the 

microvasculature of saline-microinjected tissue, whereas Dex tube application almost 

completely abolished VCAM-1 fluorescence on the endothelium of vessels in close 

proximity to the injection site (Fig. 27A and B). PECAM-1, a marker for endothelial 

junctions [152], served as a vessel marker and there was no obvious effect of DNA 

nanoconstructs on PECAM-1 expression. Microinjection of DNA nanotubes, Dex 

ODNs, and Dex tubes w/o i-motif lowered the VCAM-1 expression on the endothelial 

surface compared to the control group, receiving saline. However, significantly more 

VCAM-1 was expressed on microvessels in these experimental groups than after 

Dex tube injection. Dex ODNs were hardly detectable after 1 h in the postischemic 

cremaster, probably due to degradation within the tissue (Fig. 27 and 28).  

The suppressive effects of Dex tubes on ICAM-1 expression were significantly higher 

compared to the control group, but less pronounced than on VCAM-1 expression. 

Differences of microvascular ICAM-1 expression levels between saline and DNA 

tubes, Dex ODNs, and Dex tubes w/o i-motif-injected tissues could not be observed. 

The two adhesion molecules VCAM-1 and ICAM-1 are important mediators of 

leukocyte firm adhesion and transmigration from the blood into the tissue. The 

downregulation of both molecules after Dex tube injection might contribute to 

decreased influx of leukocytes into the tissue after I/R injury.   



 

 

Fig. 27 Expression patterns of
postischemic cremaster tissue
(green), VCAM-1 (blue), and 
VCAM-1 expression in vessels 
saline 60 min after application
Dex ODNs into the cremasteric tissue led to equivalent VCAM
after application (A, B ). Scale bar: 50 µm

A 

B 
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Expression patterns of VCAM-1 after application of Dex nano
postischemic cremaster tissue. Confocal immunofluorescence of Dex

), and PECAM-1 (red) counterstaining showed 
1 expression in vessels adjacent to the injection site of Dex tubes (

saline 60 min after application. Injection of DNA tubes, Dex tubes w/o i-
o the cremasteric tissue led to equivalent VCAM-1 expression levels 60 min 

. Scale bar: 50 µm. 
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nanoconstructs into 
ex nanoconstructs 

) counterstaining showed significant lower 
tubes (A, B ) compared to 

-motif as well as of 
1 expression levels 60 min 



 

 

Fig. 28 Expression patterns of
postischemic cremaster tissue
(green), ICAM-1 (blue), and PECAM
ICAM-1 expression in vessels 
saline 60 min after application
Dex ODNs into the cremasteric tissue 
application (A, B ). Scale bar: 50 µm

A 

B 
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Expression patterns of ICAM-1 after application of Dex nano
postischemic cremaster tissue. Confocal immunofluorescence of Dex

PECAM-1 (red) counterstaining showed significant reduction of 
1 expression in vessels adjacent to the injection site of Dex tubes (

saline 60 min after application. Injection of DNA tubes, Dex tubes w/o i-
ODNs into the cremasteric tissue did not affect ICAM-1 expression 60 min after 

r: 50 µm. 
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nanoconstructs into 
ex nanoconstructs 

significant reduction of 
tubes (A, B ) compared to 

-motif as well as of 
1 expression 60 min after 
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5.1 DNA nanotubes as intracellular delivery vehicle s in vivo 
 

Previous studies have proven that self-assembled DNA nanostructures can 

selectively release their payload at the target site and therefore are used as smart 

delivery systems in-vitro [153, 154]. Liedl and coworkers showed that CpG-

conjugated DNA nanotubes, consisting of 30 helices and 62 CpG handles, led to a 

significantly enhanced expression of IL-6 and CD69 on isolated splenocytes 

compared to exposure of CpG ODNs [32]. This study was the basis for a cooperative 

project in the framework of the SFB1032 with the group of Tim Liedl and it was the 

starting point for the in vivo investigations of DNA nanotubes in this thesis.  

In accordance with the previous work of Tim Liedl´s group, it could be demonstrated 

that RAW 264.7 macrophages produced considerably enhanced levels of TNF after 

CpG DNA nanotube exposure, whereas the cellular TNF response to CpG ODNs 

was low, although the applied CpG sequence “concentration” was the same. From 

these results and the performed stability experiments, it can be concluded that DNA 

nanotubes are stable over the course of application until their uptake by 

macrophages. This study also highlights, that complexation of CpG sequences is 

necessary to intensify the cellular TNF release since DNA nanotubes mixed with CpG 

ODNs failed to enhance this immune response. 

These in vitro findings could be confirmed in vivo. Only application of CpG DNA 

tubes, but not the application of CpG ODNs into the murine skeletal muscle did entail 

immunostimulatory effects during the observation period. It has been previously 

described by Wu et al. that the aggregation of CpG ODNs is essential for the 

crosslink of TLR 9 receptors [155] and Kerkmann et al. showed that the formation of 

CpG ODNs to higher-ordered structures enhanced the cellular ability to produce IFN-
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α [156]. Furthermore, linear CpG ODNs are quickly decomposed by exonucleases, 

whereas compaction and linkage to higher structures increases the resistance to 

DNAse substantially [153, 157]. The mechanism of action could be similar in our 

study. The CpG sequences are conjugated in high local densities to the tube 

structure, which could induce effective cross linkage of the TLR 9 receptor, causing 

the release of immunostimulatory mediators in vitro and in vivo.  

Another requirement for the activation of TLR 9 is the cellular uptake of CpG DNA 

nanotubes. Phagocytosis of cellular debris and pathogens is prerequisite for the 

maintenance of tissue homeostasis and immune functions. Tissue-resident 

macrophages are professional phagocytes which fulfill these tasks [158]. It is well 

documented that alveolar macrophages phagocytose metal oxide NPs and as a 

result produce and release cytokines [159, 160]. Interestingly, surface chemistry 

plays a significant role in the uptake of nanomaterials and their pro-inflammatory 

properties. In previous works from our group, it could be demonstrated that solely 

negatively charged quantum dots (QDs) were taken up by perivascular macrophages 

from the bloodstream after intravenous administration and subsequently, leukocytes 

were recruited in mast cell-dependent manner [124, 136]. In a more recent study, we 

observed the rapid uptake of these negatively charged QDs by tissue-resident 

macrophages upon microinjection [161]. The uptake affinity of tissue-resident 

macrophages for negatively charged NPs was confirmed in the present study. 

Negatively charged DNA nanotubes (zeta potential; CpG tube: -13.2 +/- 0.4 mV and 

plain tube: -11.4 +/- 0.2 mV) could be found in the endolysosomes of tissue-resident 

macrophages within 5 min after microinjection.  

In general, there are different routes of internalization by macrophages, such as 

constitutive micropinocytosis and clathrin-mediated uptake [162, 163]. A class of 
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receptors that mediate the endocytosis of pathogens and macromolecules in a 

clathrin-dependent or independent way are scavenger receptors [164, 165]. They are 

known for a rapid clearance of cell debris [166]. Expressed on macrophages, ECs, 

and smooth muscle cells, scavenger receptors recognize and bind negatively 

charged macromolecules, e.g., low-density lipoprotein. King et al. described that the 

scavenger receptor MARCO (macrophage receptor with collagenous structure) 

mediated the uptake of negatively charged, immune-modifying microparticles by 

inflammatory monocytes [167]. Minchin et al. recently showed, that the clearance of 

albumin-covered nanomaterials by macrophages is depending on scavenger receptor 

A1 (SR-A1) and MARCO [168]. The rapid internalization of DNA nanoconstructs, 

irrespective of the presence of a CpG motif, argues for an active uptake process, 

possibly receptor-mediated. The RAGE (receptor for advanced glycation end 

products) receptor, a pattern recognition receptor, is able to bind extracellular DNA 

and delivers it in the endosomal compartment to activate TLR 9 [113, 169]. This 

study could clearly demonstrate the rapid internalization of DNA nanotubes via the 

endolysosomal cellular compartment. The exact pathway of internalization and the 

contribution of specific scavenger or pattern recognition receptors to that process 

require further investigations.  

Apart from macrophages, also mast cells contributed to the CpG DNA nanotube-

induced immune response in the murine muscle tissue. Upon stimulation, mast cells 

release inflammatory mediators such as histamine, platelet-activating factor, or 

TNF from intracellular granula by rapid exocytosis [170, 171].  

The numbers of transmigrated leukocytes upon microinjection of CpG nanotubes 

could be reduced to control levels in the presence of the mast cell stabilisator 

cromolyn [172, 173]. Mast cells, predominantly located in close vicinity to the 
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abluminal side of vessel walls [174], detect macrophage-derived cytokines [175, 176] 

via surface-localized cytokine receptors [129, 177] during the CpG nanotube-elicited 

inflammatory response. The uptake of DNA nanotubes by mast cells could not be 

detected by use of confocal microscopy, but direct mast cell activation can not be 

excluded. Nonetheless, the rapid increase in adherent leukocytes results from the 

amplification of the inflammatory signal cascade initiated by activated mast cells 

[178].  

 

5.2 The impact of CpG DNA nanotubes on I/R injury 
 

Inflammatory responses, initiated by innate immune cells, exert great influence on the 

extent of I/R injury [179]. The induction of this response is predominantly triggered via 

the activation of pattern recognition receptors, specifically TLRs, which are mainly 

expressed by DCs and macrophages. TLR deficiency, as well as preconditioning with 

their ligands has shown to be beneficial in the myocardial I/R model [180-183]. 

Recent studies indicate, that administration of CpG ODNs attenuates cerebral and 

myocardial I/R injuries [116, 184, 185]. Khandoga et al. have demonstrated the 

importance of TLR 2 for the transmigration of leukocytes in the I/R cremaster model 

[186]. Based on these results, the effects of the TLR 9 ligand CpG, conjugated to 

DNA nanoconstructs, on the recruitment of leukocytes in the murine cremaster I/R 

model were investigated. 

The numbers of adherent and transmigrated leukocytes could not be significantly 

lowered by microinjection of CpG DNA nanotubes as compared to CpG ODNs. The 

conjugation of CpG to the DNA tube, which serves as delivery vehicle, could not 

enhance the protective effect of CpG DNA in postischemic tissue. In this context, 
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Zhou and colleagues could show that CpG ODNs bind to the cell surface and the 

immunogenic activity is enhanced at acidic extracellular pH [187] compared to neutral 

pH. During inflammation, the tissue pH is lowered [188, 189] and therefore 

association of unbound CpG ODNs compared to CpG DNA nanotubes might be 

preferred. This might possibly explain the greatly differing effects of CpG ODNs on 

leukocyte recruitment under physiological and pathological conditions. It has recently 

been described by Li et al., that the protective effects of CpG ODNs can be ascribed 

to the activation of the PI3K/AKT pathway, which promotes cell survival [116]. By 

strengthening the survival program of the cell prior to I/R injury, cells seem to be less 

susceptible to intrinsic apoptosis pathways which are triggered by DNA 

fragmentation, a major consequence of ischemia.   

Interestingly, plain DNA tube administration implicated an enhanced transmigration of 

leukocytes. Although DNA has not been described yet as pro-inflammatory under 

ischemic conditions, it is described that the RAGE receptor, which is able to detect 

and bind DNA, mediates vascular injury and inflammation after global cerebral 

ischemia [190]. In our experiments, the externally administered DNA, in the form of 

DNA nanotubes, potentially induces this process. The possible mitigating effects of 

TLR 9 and PI3K/AKT activation due to the presence of CpG sequences in the CpG 

tube-treated experimental group are lacking after microinjection of DNA tubes. 

A major finding was the enormous upregulation of TLR 9 expression and the 

morphological changes of tissue-resident macrophages after microinjection of CpG 

DNA constructs into the postischemic cremaster tissue. Particularly, administration of 

CpG DNA nanotubes resulted in a macrophage phenotype which was characterized 

by long protrusions and a continuous expression of TLR 9 covering the cell bodies. A 

connection between protrusions of different macrophages could not be detected by 
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means of confocal microscopy. Although TLR 9 is considered to be endosomally 

localized, recent publications describe a surface expression of TLR 9 on 

polymorphonuclear leukocytes (PMNLs) [191], splenic DCs [192], and peripheral 

blood mononuclear cells (PBMCs) [193], which are able to differentiate into 

macrophages. The dense “network” of highly ramified macrophages situated close to 

the scrotal cavity, might act as a barrier, similar to macrophages of many internal 

organs such as bladder, gut, peritoneal wall, and diaphragm, where they are 

positioned to build the first line of defense against invading pathogens [194].  

The prevalent expression of TLR 9 in vessels, situated within the ischemic muscle 

tissue might exhibit another defense mechanism. The surface localization of TLR 9 

allows a rapid recognition of pathogens, which is of great importance in essential 

organs, such as the brain. The risk of self-DNA recognition and consequently an 

autoimmune reaction can be minimized through a temporal upregulation or 

presentation of TLR 9, as Wang et al. described [195]. A general upregulation of TLR 

9 in vessels could be observed in all experimental groups, but was pronounced in 

animals that received CpG DNA tubes and CpG ODNs, what might explain the 

susceptibility for the TLR 9 ligand in the I/R cremaster model.   

Macrophages are probing their microenvironment and in response adapt their 

functional phenotype. Their ability to shift the phenotype is reversibly depending on 

the cytokine environment, as previously described by Suttles et al [196]. This 

functional plasticity of macrophages also implicates a morphological plasticity. The 

polarization state of macrophages is reflected by their appearance, since 

proinflammatory (M1) macrophages turn into flat, pancake-like cells whereas 

prohealing (M2) macrophages elongate their cell bodies in an in vitro model [197]. It 

is therefore not surprising, that elongated (possible M2) macrophages appear in the 
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postischemic cremaster tissue, where tissue is highly damaged due to inflammation 

and oxidative stress, triggered by reperfusion. M2 macrophages are contributing to 

the remodeling of the collagen network within the tissue and produce extracellular 

matrix components to promote wound healing processes [198]. Furthermore, the 

activity of M2 macrophages is strongly increased in sterile injuries [199]. Interestingly, 

TLR 9 agonists in combination with adenosine A2A receptor ligands drive 

macrophages efficiently into a M2-like phenotype [200]. Adenosine, released by 

necrotic or apoptotic cells, is characteristic for the starting of the healing phase [201] 

and is recognized by the surface receptor A2A on M2d macrophages [200]. A 

synergistic activity of adenosine and CpG ODNs may also implicate a surface 

localization of TLR 9. Confocal images (Fig. 19) suggest a surface localization of TLR 

9 on CpG DNA nanotube-stimulated CX3CR1-positive macrophages. But further 

investigations are necessary to answer the question, why CpG DNA nanotubes 

induce such an intensive TLR 9 expression in macrophages compared to CpG 

ODNs. Although CpG DNA nanotubes were not able to inhibit the infiltration of 

leukocytes into the ischemic muscle tissue as effective as CpG ODNs, they clearly 

feature an interesting tool to study macrophage morphologies under inflammatory 

conditions.  

 

5.3 Dex tubes as anti-inflammatory agents in vivo 
 

In this set of experiments, DNA nanotubes with amended basic structure were used. 

These newly generated DNA nanotubes consist of 84 nt long ODNs, forming a 6-

helix structure with a length of ~30 nm and a diameter of ~6 nm. The use of 84 nt 

long ODNs enhanced the complementary region and compactness of the structure 
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itself. This implies a higher thermal stability, a higher resistance to Mg2+ depletion, 

and obstructed degradation through DNases present in the tissue [202]. DNA 

nanotubes could be detected up to 6 h after incubation within the cellular 

endolysosomes of MH-S macrophages, indicating a high “cellular” stability of the 

constructs, necessary for the successful intracellular delivery of the cargo. The 

environment in ischemic tissue in vivo is characterized by a low pH (pH 6.3-6.6) [203, 

204], low levels of extracellular Mg2+ [205, 206], and elevated levels of DNase I in the 

serum [207, 208]. Despite this detrimental milieu, 6-helix DNA nanotubes were taken 

up by tissue-resident cells and were processed in their endolysosomal compartments 

(Fig. 26). Even though, the uptake was different from that under physiologic 

conditions, the rapid distribution and transport of NPs within a macrophage nanotube 

network, as Rehberg et al. has recently described [161], could also be observed for 

DNA nanotubes which have been microinjected into physiologic muscle tissue (Data 

not shown). This distribution of DNA nanoconstructs in a macrophage “network” was 

reduced in the cremasteric I/R model. Lerchenberger et al. described the remodeling 

and compaction of the collagen network within inflamed tissue [138], maybe causing 

hindered interstitial diffusion and cellular distribution of DNA nanoconstructs. Another 

explanation for the decelerated uptake of Dex nanoconstructs could be a reduced Fc-

mediated phagocytosis and reduced TNF secretion by macrophages at acidic 

extracellular space [209]. Therefore, inflammatory conditions seem to have a great 

impact on the bioavailability of DNA nanoconstructs and the subsequent cellular 

reactions. 

The attachment of folate receptor to the vehicle construct or the use of transfection 

reagent is often necessary for a successful delivery of cargo into target cells [210]. It 

has also been used for the selective delivery of diagnostic agents to activated 
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macrophages [211]. One of the biggest advantages of the DNA nanotube delivery 

system is that such modifications are not necessary to target tissue-resident 

macrophages.  

Conventional therapeutic approaches operate with systemic applications of 

glucocorticoids, causing a bunch of side effects by affecting organs sensitive towards 

GCs, such as heart [212], brain [213], or bones [214]. Unwanted effects such as 

bone loss [215], insulin resistance [216], and sarcopenia [217] do not limit the 

therapeutic use of GCs in arthritis, inflammatory bowel disease, allergy, cancer, or 

transplant rejections. The dexamethasone concentrations used in cell culture and in 

vivo in this study were far lower than the ones therapeutically used and described as 

cytotoxic [142, 218]. But still, even at low concentrations, DNA nanotube-delivered 

dexamethasone revealed its anti-inflammatory impact without harming 

dexamethasone-sensitive cells such as macrophages [219]. Considering this finding 

in a broad context, the dosage of dexamethasone could be reduced by using DNA 

nanotubes as vectors without losing the pharmacological activity by selectively 

targeting inflammatory cells.  

A key reason for the successful delivery of dexamethasone is certainly the pH-

dependent conformational change of the DNA i-motif. Initially, the i-motif was 

discovered in human telomeric and centromeric sequences, as well as in intercalating 

RNA structures and proteins, interacting with cytosine repeats of DNA [220]. 

Nowadays, the i-motif has become an important feature in DNA nanotechnology, 

because it provides additional choices in design, assembly processes, and 

characteristics of DNA-based nanodevices. It has recently been used to fabricate 

nanostructures for the controlled release of small molecules [221] or the mapping of 

pH changes in living cells [222]. It could be demonstrated in vitro that the pH-
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sensitive i-motif allows the controlled release of dexamethasone under acidic pH and 

at 37 °C (Fig. 20C). Although endosomal escape of dexamethasone in vivo by means 

of confocal microscopy could not be clearly proven, the data clearly indicate that Dex 

tubes enhanced the inhibition of cytokine production in response to LPS compared to 

a 20 times higher dose of unconjugated dexamethasone, which had no effect on 

leukocyte recruitment in vivo.  

However, Dex tubes w/o i-motif enhanced the inflammatory response in vitro and in 

vivo. This was unexpected and could possibly be explained by the variations in the 

DNA sequence of the i-motif and the non-i-motif DNA tubes. The Dex tubes w/o i-

motif carry a sequence solely consisting of thymine. Golenbock et al. reported that 

adenosine-thymine-rich DNA motifs are highly immunogenic and trigger the 

production of TNF and IL-6 in human and murine cells [223]. How exactly Dex tubes 

w/o i-motif are able to switch to this inflammatory program, needs to be further 

investigated. 

The mechanism of action of dexamethasone is well described and starts with the 

binding to the cytoplasmatic glucocorticoid receptor (GR). The GR undergoes a 

conformational change, allowing the receptor-ligand complex to shuttle into the 

nucleus and actively influence gene transcription [224]. The dexamethasone/GR 

complex is a double-edged sword that is able to facilitate transcription, by binding to 

signal transducer and activator of transcription 5 (STAT5) as well as transrepression 

by preventing the activation of NF-ĸB [225-227]. Since the inflammatory mediator 

TNF is regulated by the activation of NF-ĸB [228] and the TNF response was 

substantially reduced by pretreatment with Dex tubes, the trafficking of delivered 

dexamethasone from the endosome into the nucleus can be assumed.  
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Along with the secretion of TNF, the expression of the cellular adhesion molecules 

VCAM-1 and ICAM-1 on the endothelium was diminished through the 

dexamethasone-induced repression of NF-ĸB [229, 230]. Dex tubes could not be 

detected within endothelial cells by means of in vivo microscopy and confocal 

microscopy, therefore the downregulation of VCAM-1 and ICAM-1 on the endothelial 

surface in postischemic tissue might probably be a “secondary effect”, caused by 

macrophages. Shi and colleagues demonstrated that the expression of endothelial 

cell adhesion molecules is regulated by the inflammatory mediators TNF, IL-6, and 

IFN-γ, derived from macrophages, mast cells, and neutrophils [231]. In this study, 

TNF appeared to be the most potent of these cytokines to change expression levels 

of VCAM-1, ICAM-1, P-selectin, and E-selectin. These results support the view that 

the reduction of VCAM-1 and ICAM-1 after administration of Dex tubes is the result of 

a reduced TNF response. However, a direct Dex tube effect on ECs cannot be ruled 

out. 

TNF overexpression, partly by monocytes or macrophages, is associated with a 

variety of diseases including HIV, cancer, rheumatoid arthritis, and Crohn´s disease 

[232]. TNF−directed therapies are the method of choice in the treatment of 

inflammatory diseases. Therefore, Dex tubes represent a promising nanomedical 

therapeutic alternative to the conventional anti-TNF agents, which cause a multitude 

of side effects due to their ubiquitous biodistribution. Considering the potential clinical 

use of Dex tubes, dose-response-, pharmacokinetics-, and safety-studies need to be 

carried out to outline therapeutic efficacy and applicability. 

In summary, our findings demonstrate that DNA nanotubes allow a cell type-specific 

transport of dexamethasone, which lowers the effective concentration needed to gain 

anti-inflammatory effects.  
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5.4 Conclusion and future perspectives 
 

In conclusion, this study describes a new DNA nanotube approach for the delivery of 

drugs or bioactive molecules into tissue-resident macrophages under physiological 

and pathological conditions.  

Interestingly, DNA nanoconstructs were internalized by macrophages without the use 

of a transfection reagent or the conjugation of target-specific signals or antibodies 

[233]. Compared to other anionic nanomaterials, which need to be modified with 

receptors or signal peptides for cellular uptake [234, 235], DNA nanoconstructs can 

readily be designed for the molecular transportation of drugs or small molecules.  

Although DNA nanoconstruct fluorescence could be detected within the cellular 

endolysosomes, it could not be determined whether the DNA architecture was still 

intact in the cells. Still, the functionality of cargo-carrying nanostructures in the mouse 

model was demonstrated, but for a next generation of DNA nanodevices, for example 

delivering RNA cargo, encoding transcription programs, construct stability, and 

further improvements are of great interest. But not solely stability determines the 

nanomedical development of DNA nanotechnology. These data convey a first 

impression of the distribution of DNA nanotubes and their target cells in vivo, but 

there is a general paucity of information on their long-term effects, immunogenicity 

and clearance. In addition to the understanding of pharmacokinetics and 

biodistribution, the production costs of DNA nanodevices are a major issue. 

Currently, large nanostructures cannot compete with polymer materials in terms of 

production expenses [236]. If DNA nanotechnology is able to overcome these 

challenges, it has the potential to serve as a programmable and multifunctional 

therapeutic system [237].   
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The results of this thesis provide new insights into the localization and the impact of 

DNA-based nanomaterials in vivo and allow for improved development of targeted 

therapies during inflammatory conditions.  
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7.1 Lab equipment and consumables 
 

Table 4 Lab consumables 

Consumables Manufacturer 

1.5 ml and 2 ml tubes  Eppendorf, Hamburg, Germany 

15 ml and 50 ml tubes BD Falcon, Heidelberg, Germany 

Aqua ad injectabilia Braun, Melsungen, Germany 

Baysilone-Paste, hochviskos Bayer, Leverkusen, Germany 

BD Discardit II BD, Heidelberg, Germany 

BD Microlance 3 BD, Heidelberg, Germany 

BD Plastipak BD, Heidelberg, Germany 

Borosilicate micropipettes GB150-TF-8P Science Product, Hofheim, Germany 

Natriumchlorid 0,9 % Lsg. Braun, Melsungen, Germany 

Sterican 100, 0,30 x 12 mm, 30G Braun, Melsungen, Germany 

BD Falcon round bottom tubes  BD, Heidelberg, Germany 

 

Table 5 Lab equipment 

Equipment Manufacturer 

Elektrotom 500-BF KLSMartin, Tuttlingen, Germany  

Eppendorf Research Plus 10, 100, 1000 µl Eppendorf, Hamburg, Germany 

Femtojet microinjector Eppendorf, Hamburg, Germany 

Incubator BD 115 Binder, Tuttlingen, Germany 

Infinite F200 Multiplate reader Tecan, Männedorf, Switzerland 

Gallios flow cytometer Beckman Coulter, Krefeld, Germany 

Leitz Labovert Leica, Wetzlar, Germany 

Patchstar Micromanipulator Scientifica, Uckfield, UK 

PC-10 Puller Narishige, London, UK 
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Pipetboy comfort Integra Biosciences, Ziezers, 

 Switzerland 

Universal 30RF Hettich, Tuttlingen, Germany 

Vortex Genie 2 Bender&Hobein, Zurich, Switzerland 

Coulter ACT Counter Beckman Coulter, Krefeld, Germany 

 

Table 6 Chemicals 

Chemicals Manufacturer 

Cromolyn sodium salt SigmaAldrich, Taufkirchen, Germany 

Dexamethasone SigmaAldrich, Taufkirchen, Germany 

Ketamin Zoetis, Berlin, Germany 

Pentobarbital Merial, Hallbergmoos, Germany 

Xylazin Bayer, Leverkusen, Germany 

 

7.2 Cell culture consumables 
 

Table 7  Cell culture consumables 

Consumable Manufacturer 

Dulbecco´s modified eagle medium Thermo Scientific, Bonn, Germany 

RPMI-1640 medium Merck Millipore, Berlin, Germany 

Phosphate-buffered saline Braun, Melsungen, Germany 

Trypsin-EDTA (0.5 %) Thermo Scientific, Bonn, Germany 

2-Mercaptoethanol (50 mM) Thermo Scientific, Bonn, Germany 

Fetal calf serum Merck Millipore, Berlin, Germany 

Lipopolysaccharides from E. coli SigmaAldrich, Taufkirchen, Germany 

WST-1 Reagent SigmaAldrich, Taufkirchen, Germany 

Mouse TNF-alpha DuoSet ELISA R&D Systems, Wiesbaden, Germany 
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7.3 Immunohistochemistry consumables 
 

Table 8  Primary and secondary antibodies 

Primary or secondary antibody Manufacturer 

Alexa Fluor 488, goat anti rat, IgG (H+L) Life Technologies, Carlsbad, USA 

Alexa Fluor 546, donkey anti goat, IgG (H+L) Life Technologies, Carlsbad, USA 

Alexa Fluor 546, goat anti rabbit, IgG (H+L) Life Technologies, Carlsbad, USA 

Alexa Fluor 633, goat anti rabbit, IgG (H+L) Life Technologies, Carlsbad, USA 

Alexa Fluor 633, goat anti rat, IgG (H+L) Life Technologies, Carlsbad, USA 

CD31, rat, mAb BD, Heidelberg, Germany  

CD45, rat, mAb BioLegend, Fell, Germany 

CD106, rat, mAb BioLegend, Fell, Germany 

F4/80, rat, mAb Abcam, Cambridge, UK 

Glucocorticoid receptor, rabbit, mAb Santa Cruz, Heidelberg, Germany 

Histone H3 (citrulline R2+R8+R17), rabbit, pAb Abcam, Cambridge, UK 

CD45, rat, mAb BioLegend, Fell, Germany 

NF-κB p65 (acetyl K310), rabbit, pAb Abcam, Cambridge, UK 

PECAM-1(M20), goat, mAb Santa Cruz, Heidelberg, Germany 

TLR 9, mouse, mAb Abcam, Cambridge, UK 

TLR 9, rabbit, mAb Abcam, Cambridge, UK 

 

Table 9 Fluorescent dyes  

Fluorescent dye Manufacturer 

FluoSpheres, 2 µm Life Technologies, Carlsbad, USA 

LysoTracker Red DND-99 Life Technologies, Carlsbad, USA 

LysoTracker Green DND-26 Life Technologies, Carlsbad, USA 

TO-PRO-3 Iodid Thermo Scientific, Bonn, Germany 
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Table 10  Microscope equipment and consumables 

Equipment and consumables Manufacturer 

LMPlanFI 20x/0.4 NA Olympus, Münster, Germany 

Plan Apochromat 40x/1.4 NA oil Leica, Wetzlar, Germany 

Plan Apochromat 63x/1.4 NA oil Leica, Wetzlar, Germany 

Plan Apochromat 63x/1.0 NA water Leica, Wetzlar, Germany 

TCS SP5 SMD Leica, Wetzlar, Germany 

Glass coverslips 25 x 25 mm VWR, Radnor, USA 

Rolera EM-C2 cameras Qimaging, Surrey, Canada 

VisiScope A1 imaging system Visitron Systems, Puchheim, 
Germany 

VWR Superfrost Micro Slide VWR, Radnor, USA 

 

Table 11  Consumables  

Consumables Manufacturer 

Paraformaldehyde SigmaAldrich, Taufkirchen, Germany 

PermaFlourTM Aqueous Mounting Medium Beckman Coulter, Krefeld, Germany 

Triton X-100 SigmaAldrich, Taufkirchen, Germany 

Bovine Serum Albumin SigmaAldrich, Taufkirchen, Germany 
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7.4 Abbreviations 
 

3D Three-dimensional 

BSA Bovine serum albumin 

CD Cluster of differentiation 

Csfr1 Colony stimulating factor 1 receptor 

CO2 Carbondioxide 

CoCl2 Cobalt(II)chloride 

CpG -C-phosphate-G- 

cQD carboxyl Quantum Dot 

CX3CR1 CX3 chemokine receptor 1 

Cy3 Cyanine-3 

DAMP  Damage associated pattern 

DC  Dendritic cell 

DCC Dicyclohexylcarbodiimid 

DCM Dichloromethane 

Dex Dexamethasone 

DLS Dynamic light scattering 

DMAP N,N-Dimethylaminopyridine 

DMEM Dulbecco´s modified eagle medium 

DMF Dimethylformamide 

DNA Deoxyribonucleic acid 

dUTP Deoxyuridine-triphosphatase 

ECs  Endothelial cells 

EDTA Ethylenediaminetetraacetic acid 

EGFP Enhanced green fluorescent protein 

Fc Fragment crystallizable region 

FCS Fetal calf serum 

GaAsP Gallium arsenide phosphide 

GC Glucocorticoids 

GR Glucocorticoid receptor 

HPLC High performance liquid chromatography 
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HPSF High purity salt free 

ICAM-1 Intercellular adhesion molecule 1 

IgG Immunoglobulin G 

IL Interleukin 

IFN-α Interferon alpha 

IFN-γ Interferon gamma 

IκB Inhibitor of kappa B 

IKK IκB Kinase 

IR Ischemia/reperfusion 

IRAK Interleukin-1 receptor associated kinase 

kb Kilo-base 

kDa Kilo Dalton 

LPS Lipopolysaccharide 

mAb Monoclonal antibody 

M-CSF Macrophage colony-stimulating factor 

MeOH Methanol 

MES 2-(N-morpholino)ethanesulfonic acid   

MgCl2 Magnesium chloride 

MIP Macrophage inflammatory protein 

MMP Matrixmetalloproteinase 

MWCO Molecular weight cut-off 

MYD88 Myeloid differentiation primary response gene 88 

NaOAc Sodium acetate 

NF-κκκκB Nuclear factor 'kappa-light-chain-enhancer' of activated B- cells 

NOD  Nucleotide-binding oligomerization domain receptor 

NP Nanoparticle 

nt Nucleotides 

ODN Oligodeoxynucleotide 

PAA Polyacrylamid 

pAb Polyclonal antibody 

PAMP  Pathogen associated pattern 

PBMC Peripheral blood mononuclear cell 

PBS Phosphate buffered saline 
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PECAM-1  Platelet endothelial cell adhesion molecule 1 

PFA Para-formaldhehyde 

PMNL Polymorphonuclear leukocyte 

Poly-A Polyadenylation 

STAT5 Signal transducer and activator of transcription 5 

TBE Tris/Borate/EDTA 

TdT Terminal deoxynucleotidyl transferase 

TEM Transmission electron microscopy 

THF Tetrahydrofurane 

TLR  Toll-like receptor 

TNF Tumor necrosis factor 

Tris-HCl Tris hydrochloride 

VCAM-1 Vascular cell adhesion molecule 1 

WST-1 Water soluble tetrazolium salt 1 
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7.5 Publications and presentations 

7.5.1 Publications 
 

Dexamethasone-conjugated DNA nanotubes as anti-infl ammatory agents in 
vivo 

Sabine Sellner*, Samet Kocabey*, Tao Zhang, Fritz Krombach, Tim Liedl, Markus 
Rehberg 

Submitted at Biomaterials 

 

Microglial CX3CR1 promotes adult neurogenesis by in hibiting Sirt 1/p65 
signaling independent of CX3CL1  

Sabine Sellner, Paricio-Montesinos Ricardo, Spieß Alena, Masuch Anette, Erny 
Daniel, Harsan Laura A., von Elverfeldt Dominik, Schwabenland Marius, Biber Knut, 
Staszewski Ori, Lira Sergio, Jung Steffen, Prinz Marco, Blank Thomas 

Acta Neuropathologica Communications, 2016 Sep17;4(1):102 

 

Influence of surface modifications on the spatio-te mporal microdistribution of 
quantum dots in vivo 

Katharina Nekolla, Kerstin Kick, Sabine Sellner, Karina Mildner, Stefan Zahler, 
Dagmar Zeuschner, Fritz Krombach, Markus Rehberg 

Small, 2016 May;12(19):261-51 

 

Intercellular transport of nanomaterials is mediate d by membrane nanotubes in 
vivo 

Markus Rehberg, Anna K. Nekolla, Sabine Sellner, Karina Mildner, Dagmar 
Zeuschner, Fritz Krombach 

Small, 2016 Apr;12(14):1882-90 

 

Multi-photon microscopy of non-fluorescent nanopart icles in vitro and in vivo  

Steffen Dietzel, Stefanie Hermann, Yan Kugel, Sabine Sellner, Bernd Uhl, Stephanie 
Hirn, Fritz Krombach, Markus Rehberg 

Small, 2016 Apr;12(14):3245-57 
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A microfluidics approach to study the accumulation of molecules at basal 
lamina interfaces  

Fabienna Arends, Sabine Sellner, Philipp Seifert, Ulrich Gerland, Markus Rehberg, 
Oliver Lieleg 

Lab on a chip, 2015 Aug 21, 15(16) 

 

DNA nanoconstructs as intracellular delivery vehicl es in vivo 

Sabine Sellner*, Samet Kocabey*, Anna K. Nekolla, Fritz Krombach, Tim Liedl, 
Markus Rehberg 

Biomaterials. 2015, 53:453-63 

*These authors contribute equally. 

 

7.5.2 Oral presentations 
 

DNA Nanotubes - Intracellular Delivery Vehicles  in vivo 

Sabine Sellner, Samet Kocabey, Fritz Krombach, Tim Liedl, Markus Rehberg 

Emerging Methods and Technologies for Medical Research Conference,  

September 1-2 2015, Stockholm, Sweden 

 

DNA Nanotubes - Intracellular Delivery Vehicles  in vivo 

Sabine Sellner, Samet Kocabey, Fritz Krombach, Tim Liedl, Markus Rehberg 

Kolloquium über experimentelle Pathophysiologie  

June 30 2014, Munich, Germany  

 

DNA Nanotubes - Intracellular Delivery Vehicles  in vivo 

Sabine Sellner, Samet Kocabey, Fritz Krombach, Tim Liedl, Markus Rehberg 

SFB 1032 Retreat 2014, February 24-25, Frauenchiemsee, Germany  
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7.5.3 Poster presentations 
 

The impact of DNA nanotubes in physiologic and infl amed tissue 

Sabine Sellner, Samet Kocabey, Fritz Krombach, Tim Liedl, Markus Rehberg 

SFB 1032 evaluation 2016, January 28-29, Munich, Germany 

 

Localization and immunogenic properties of DNA nano tubes under 
physiological and pathophysiological conditions 

Sabine Sellner, Samet Kocabey, Fritz Krombach, Tim Liedl, Markus Rehberg 

SFB 1032 Retreat 2015, February 3-5, Altötting, Germany  

 

Localization and immunogenic properties of DNA nano tubes in vivo 

Sabine Sellner, Samet Kocabey, Fritz Krombach, Tim Liedl, Markus Rehberg 

2nd IBN International Symposium Nanomedicine and Nanoassay 2014, December 8-
9, Singapur  

 

Localization and immunogenic properties of DNA nano tubes in vivo 

Sabine Sellner, Samet Kocabey, Fritz Krombach, Tim Liedl, Markus Rehberg 

CeNS Venice Workshop 2014, September 22-26, Venice, Italy 

 

DNA nanotubes as intracellular delivery vehicles in vivo 

Sabine Sellner, Samet Kocabey, Fritz Krombach, Tim Liedl, Markus Rehberg 

International Physics of Living Systems Network Conference 2014, July 21-24, 
Munich, Germany 

 

DNA nanotubes as intracellular delivery vehicles in vivo 

Sabine Sellner, Samet Kocabey, Fritz Krombach, Tim Liedl, Markus Rehberg 

7. International Nanotoxicology Congress 2014, April 23-26, Antalya, Turkey 

 

 

   


