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Zusammenfassung

Ein kurzer, eindimensionaler Kanal in einem zweidimensionalen Elektronensystem (two-
dimensional electron system, 2DES) wird als Quantenpunktkontakt (quantum point con-
tact, QPC) bezeichnet. Der elektrische Leitwert eines QPC ist bei tiefenen Tempera-
turen von einigen Kelvin in Vielfachen des Leitwertsquantums GQ = 2e2/h quantisiert.
Zusätzliche kann eine Stufe bei ' 0.7GQ auftreten, bekannt als die 0.7-Anomalie.

In dieser Dissertation wurden QPCs mithilfe von Elektronentransport und optischen
Methoden untersucht. Die QPCs wurden dabei durch Verarmung eines 2DES realisiert.
Unter Ausnutzung einer neuartigen Gattergeometrie wurde in Transportexperimenten der
Tieftemperatur-Leitwert von QPCs mit einer kontrollierten Abstimmung des QPC-Ein-
schlusspotentials untersucht. Zudem wurde ein theoretisches Model eingeführt, welches
erstmals eine konsistente Erklärung für den mikroskopischen Ursprung der 0.7-Anomalie
liefert. Es wurde gezeigt, dass die gemessenen und die berechneten Änderungen des
Leitwerts eines QPC im Regime der 0.7-Anomalie mit niederenergetischen Anregun-
gen des externen Magnetfeldes, der Temperatur und der an das 2DES angelegten elek-
trischen Spannung qualitativ übereinstimmen. Die Übereinstimmung bestätigt das theo-
retische Model, welches die 0.7-Anomalie als Folge von im Bereich des QPC lokal auftre-
tenden Elektron-Spinfluktuationen erklärt. Desweiteren sagt die Theorie voraus, dass
die Elektron-Spinfluktuationen mit einer im Bereich des QPC stark erhöhten Elektron-
Spinsuszeptibilität bei verschwindendem Magnetfeld einhergehen, welche inhärent mit der
Leitwertsantwort des QPC auf das externe Magnetfeld in Verbindung steht.

Vorbereitend für eine mögliche Überprüfung des theoretisch vorhergesagten Zusam-
menhangs zwischen der 0.7-Anomalie und der lokalen Spinsuszeptibilität mit optischen
Methoden wurden Charakteristiken eines QPC unter optischer Anregung untersucht. Mit-
tels eines speziell für optische Anregung angepassten 2DES wurde die Transportantwort
eines QPC auf lokale, resonante optische Anregung des 2DES nahe am QPC analysiert.
Dabei wurde gezeigt, dass der dominante Anteil der Transportantwort eines QPC auf
intensitätsmodulierte optische Anregung mittels eines elementaren Relaxator-Modells be-
schrieben werden kann. Aus dem Modell folgt, dass die dominante dynamische Trans-
portantwort eines QPC durch optisch induzierte Modulation des statischen Stromes im
2DES hervorgerufen wird. Als Ursache der Modulation des QPC-Leitwertes werden
optisch induzierte Ladungsträger im Valenzband des 2DES vermutet. Durch detail-
lierte Analyse wurde zusätzlich ein statischer Beitrag zum Transport des QPC bestimmt,
welcher zwei Größenordnungen kleiner als die dominante Transportantwort war und als



Zusammenfassung

Photostrom im 2DES identifiziert wurde. Es konnte demnach gezeigt werden, dass die
Anwendung des elementaren Relaxator-Modells die Unterscheidung von dynamischen
und statischen Beiträgen der Transportantwort eines QPC auf lokale optische Anregung
ermöglicht.
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Abstract

A quantum point contact (QPC) is a short, one-dimensional channel in a two-dimensional
electron system (2DES). At low temperatures of a few kelvin the electrical conductance of
a QPC is quantized in multiples of the conductance quantum GQ = 2e2/h. Additionally
a shoulder can arise at ' 0.7GQ, known as the 0.7-anomaly.

In this dissertation, QPCs defined by 2DES-depleting metal gates were investigated by
means of electron transport spectroscopy. In transport experiments the low-temperature
conductance of a novel gate design using additional metal gates for a controlled tuning
of the QPC confinement potential was investigated. Moreover, a theoretical model was
presented which provides a consistent explanation for the microscopic origin of the 0.7-
anomaly for the first time. It was shown that the measured and the calculated responses
of the conductance of a QPC in the 0.7-anomaly regime to low-energy excitations of the
external magnetic field, the temperature, and the voltage applied to the 2DES are in
good qualitative agreement. The agreement strongly substantiates the theoretical model
that explains the 0.7-anomaly as a consequence of electron-spin fluctuations emerging
locally at the QPC. Furthermore, the theory predicts that the electron-spin fluctuations
are accompanied by a strongly enhanced local electron-spin susceptibility at zero magnetic
field which is inherently linked to the magnetoconductance response of the QPC.

In preparation for an experimental test of the theoretically predicted interplay between
the 0.7-anomaly and the local spin susceptibility by optical means, the characteristics of
a QPC under optical excitation were investigated. Using a 2DES specifically adapted
for optical studies, transport of a QPC under local resonant optical excitation of the
2DES in the QPC proximity was analyzed. It was shown that the dominant part of the
transport response of a QPC to intensity-modulated optical excitation can be described by
a relaxation model. The model suggests that the dominant transport response stems from
an optically induced modulation of the static QPC current. The related QPC conductance
modulation was attributed to optically induced charge carriers in the valence band of
the 2DES. Moreover, the contribution of a small photocurrent, two orders of magnitude
weaker than the dominant transport photoresponse, was identified in a detailed analysis.
Overall, the relaxation model was shown to be instructive to quantify both the dynamic
and the static transport responses of a QPC to proximal optical excitation.
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Introduction

The first realization of an electrically controlled amplifying current switch - the transis-
tor - in 1947 launched an evolution of unprecedented extent. Subsequent fundamental
understanding of semiconductor bulk and surface effects paired with progress in material
quality and fabrication have resulted in tailor-built information storing and logic-gate
structures of increasing size and complexity. The constantly decreasing dimensions of
the processing elements anticipated by the Moore’s law project that the number of com-
ponents per integrated circuit doubles every two years. The implications of this devel-
opments for the society are evident in todays extensive computational technologies and
global communication networks. Present fabrication technologies enable the realization
of semiconductor-based integrated circuitry with spatial dimensions down to 14 nm, or
some 50 atoms, and a lateral pitch of 70 nm. The related structures are thus on the
verge of becoming susceptible to critical variations in device dimensions and losses caused
by leakage currents or passive power dissipation due to electron tunneling through short
channels or thin insulator layers.

In parallel to this development, molecular beam epitaxy (MBE) has enabled controlled
stacking of layers of different semiconductor materials with atomic-layer precision. To-
gether with the capability of controlled doping, advanced semiconductor heterostructures
enable the realization of low-dimensional electron systems with densities and mobilities
comparable to the characteristics of metals. Electron beam lithography with a resolution
down to ∼ 10 nm in combination with etching techniques or the deposition of electrostatic
gates enables to further configure mesoscopic and nanoscopic systems virtually at will.
This paved the way toward the investigation of basic quantum mechanical phenomena
in highly stable and controlled solid state environments, such as real-time detection of
single-electron tunneling events [1], experimental confirmation of the spin-Hall effect [2],
imaging of spin accumulation, precession and decay dynamics with both temporal and
spatial resolution [3], or the observation of a tunable Kondo effect in an artificial quantum
dot [4].

The most elementary building block contained in a variety of semiconductor-based
nanostructures is the quantum point contact (QPC), a single constriction within a two-
dimensional electron system (2DES) which constitutes a narrow channel separating two
2D reservoirs. A QPC is conceptionally similar to a wave guide where electrons near the
Fermi edge can propagate in a number of transverse modes. QPCs have been used for
all-electrical spin current generation and detection [5–7], the demonstration of coherent
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electron-wave quantum interference by the realization of the electronic analogue to an opti-
cal Mach-Zehnder interferometer [8], or the control and detection of quantum interference
between different nuclear spin levels in a nanostructure [9] for quantum information pro-
cessing. A straightforward QPC implementation is achieved by a pair of metal split gates
on top of a heterostructure hosting a 2DES. An electrostatic potential at surface metal
gates depletes the 2DES underneath and thereby introduces a one-dimensional constric-
tion in the 2D system. Based on the resulting capacitive coupling to the local environment
[10], depletion-gate defined QPCs are widely used as remote electric charge detectors with
sensitivity to single electron charging events in the local QPC vicinity [11–14]. At low
temperatures of a few kelvin, the high mobilities in e. g. GaAs/AlxGa1−xAs 2DESs enable
the QPC to operate in the ballistic regime where the mean free path exceeds the effective
QPC channel length. A one-dimensional confinement comparable to or smaller than the
electron Fermi wavelength then induces the formation of discrete transverse modes in
the QPC constriction such that the current IQPC through the QPC becomes quantized.
Equivalently, the conductance IQPC/V in the voltage-biased QPC is quantized in multi-
ples of the spin-degenerate conductance quantum GQ = 2e2/h [15–17] with the electron
charge e and the Planck constant h. The unique conductance quantization is also observed
in various one-dimensional systems such as nanowires [18], atomic-scale break junctions
[19], carbon nanotubes [20] or graphene constrictions [21]. It can be observed up to room
temperature in metal contacts [22] facilitated by the required atom-sized contact dimen-
sions due to the high Fermi energy that yield very large transverse mode energy spacings.
Interestingly, neutral atoms that pass a QPC-like constriction generated by laser light
potentials also exhibit quantized conductance, in units of 1/h [23].

In addition to the regular QPC conductance pattern, a shoulder at ' 0.7GQ is often
observed, known as the 0.7-anomaly [24–33]. Though its actual value can vary between
0.5GQ and 0.9GQ [30, 34], the 0.7-anomaly shows uniform features such as becoming
more pronounced at intermediate temperatures of a few kelvin [24, 25], an accompanying
conductance peak as a function of the 2DES bias voltage, termed the zero-bias peak (ZBP)
[27, 32, 35], or a gradual evolution into the spin-resolved quantum 0.5GQ with increasing
external magnetic field [24, 25]. Various theoretical explanations have been proposed
including Wigner crystallization [36, 37], ferromagnetic spin coupling [38], or the formation
of a quasi-bound state in the QPC channel leading to the Kondo effect [39–42]. A close
relationship between the occurrence of the 0.7-anomaly and the spontaneous lifting of the
spin degeneracy was hypothesized [24, 25], and experimental signatures both in favor of
[43, 44] and against [6] this assumption are known. However, a microscopic model for the
various experimental observations in the regime of the 0.7-anomaly remained elusive.

In this dissertation, QPCs defined by 2DES-depleting metal gates were investigated. A
combined experimental and theoretical analysis of a QPC in the 0.7-anomaly regime was
performed. The electron transport experiments at low temperatures down to 30 mK used
a novel gate design including additional metal gates that enabled the tuning of the con-
finement potential in situ. For the QPC calculations a theoretical model was introduced
which, for the first time, provided a consistent explanation for the microscopic origin of
the 0.7-anomaly. The analysis was carried out in collaboration with the theoretical group
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of Prof. Jan von Delft at the LMU. It was shown that the measured and the calculated
QPC conductance in the 0.7-anomaly regime agreed in that for low-energy excitations
the conductance responses to external magnetic field, temperature, and the voltage ap-
plied to the 2DES were similarly determined by a single low-energy scale. This agreement
strongly substantiates the theoretical model which ascribes the microscopic origin of the
0.7-anomaly to electron-spin fluctuations emerging locally at the QPC. The spin fluctua-
tions are increased by local interactions which, according to the theory, are strongest in
the 0.7-anomaly regime. The calculations predict that the interaction-enhanced spin fluc-
tuations imply a correspondingly increased local spin susceptibility at zero magnetic field
which inherently determines the correspondingly enhanced conductance response of the
QPC to external magnetic field. Together with the governing low-energy scales, this close
connection between local spin fluctuations, the local spin susceptibility, and the magne-
toconductance of a QPC in the 0.7-anomaly regime constitute fundamental features of
a quantum dot in the Kondo effect regime [4, 45–47]. Although it closely relates both
phenomena, a theoretical analysis in the limit of high magnetic fields indicated that the
0.7-anomaly and the Kondo effect are fundamentally different owing to the absence of
a quasi-bound state in the QPC. This conclusion was supported by a combined experi-
mental and theoretical analysis of the transition of the confinement potential between a
QPC and a quantum dot that did not indicate any connection between the neighboring
0.7-anomaly and the Kondo effect regime.

In preparation for a possible experimental test of the predicted local enhancement
of the spin susceptibility in the 0.7-anomaly regime by optical means, additional exper-
iments were carried out at liquid-helium temperatures of 4.2 K. An optical microscope
setup sensitive to local magnetization by means of Faraday rotation was presented. The
sensitivity of the microscope was tested on a single spin-polarized electron state confined
in a self-assembled QD. Furthermore, the behavior of a QPC under optical excitation in
the QPC proximity was investigated. To this end, a 2DES was specifically adapted for
optical excitation based on simulations and subsequent experimental characterizations of
2DES transport and optical properties. In the accordingly adapted heterostructure, the
transport response of a QPC to local, resonant optical excitation of the 2DES in QPC
proximity was investigated. It was shown that the governing part of the QPC trans-
port response to intensity-modulated optical excitation is captured by a basic relaxation
model. The model suggests that the governing transport response stems from an optically
induced modulation of the static QPC current by photoexcited charge carriers in the va-
lence band. Additionally a static contribution to the optically induced transport response
of the QPC two orders of magnitude smaller than the dominant dynamic response was
identified and attributed to the photocurrent in the 2DES.

The combined experimental and theoretical analysis of the 0.7-anomaly is presented in
Chapter 2 and Chapter 3. Chapter 2 describes the QPC characteristics in the 0.7-anomaly
regime, while Chapter 3 emphasizes the comparison between the 0.7-anomaly in a QPC
and the Kondo effect in a quantum dot. In Chapter 4 the optical microscope setup is
presented and the determination of the microscope sensitivity and spatial resolution based
on the test experiment with the single polarized spin state are discussed. In Chapter 5 the
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design of the heterostructure that hosts a 2DES adapted for optical studies is explained.
The results of the simulations of basic transport and optical 2DES properties are discussed
and compared with the corresponding experimental results. The characteristics of a QPC
under optical excitation is presented in Chapter 6. First the setup used for combined
readout of the QPC response to transport and optical excitation is explained. Then initial
QPC transport measurements before optical illumination of the sample are evaluated.
And finally the relaxation model is introduced and used to infer the dynamic and static
components of the QPC response from the measurements. Finally, a summary is provided
and an outlook for potential follow-up experiments is given in the concluding section.

4



Chapter 1

Fundamentals

1.1 Quantum point contact in a two-dimensional

electron system

A two-dimensional electron system (2DES), also termed two-dimensional electron gas
(2DEG) if electron-electron interactions are neglected a priori, is a degenerate electron
system. It is strongly confined in one spatial direction such that the allowed wavenumbers
for the electrons in the confinement direction become discrete resulting in an effectively
two-dimensional system. A semiconductor-based 2DES is typically created by the use of
a tailor-made heterostructure, a stack of layers of various semiconductor materials with
similar lattice constants but different band gap energies, that results in a single quantum
well (QW) layer for conduction band electrons due to the inherent band alignment of the
contributing layers. The QW can be supplied with a steady-state electron density by e. g.
modulation-doping for which a remote semiconductor layer within the heterostructure
is intentionally doped with impurities. For common III-V gallium-arsenide (GaAs) -
based heterostructures which typically additionally incorporate GaAs alloys that contain
aluminium (Al) or indium (In), silicon impurities can be used which provide the required
excess electron charges up to a certain impurity density. Placing the impurities distantly
to the eventual 2DES location greatly reduces Coulomb scattering of the 2DES electrons
which ultimately forms the basis for high 2DES mobilities accompanied by large, elastic
and inelastic, electron mean free paths lmfp paving the way to the ballistic transport
regime. The resulting 2DES electron states in a single QW subband in the effective-mass
approximation behave like free particles with the dispersion relation E(~k) = ~2k2/2m∗
with the wavevector k and the effective mass m∗ in the QW plane and the reduced Planck
constant ~.

A quantum point contact (QPC) is a short, narrow constriction usually realized in the
2D-potential landscape of a 2DES. If the imposed narrowing becomes comparable to or
exceeds the 2DES Fermi wavelength the constriction becomes effectively one-dimensional
(1D). A common technique to generate a QPC is based on a pair of local metal split
gates, referred to as QPC gates, which are fabricated on top of the heterostructure in
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Figure 1.1: Characteristic saddle point potential energy E of a QPC channel (red arrow) imposed
on the conduction band bottom in a 2DES which is confined in the z direction.

close proximity to the 2DES (typically located of the order of 100 nm underneath). An
appropriate negative electric voltage VQPC applied to the QPC gates electrostatically de-
pletes the 2DES areas beneath to form the QPC, a 1D transport channel, which separates
the resulting two adjacent 2DES leads. The shapes and dimensions of the depleted 2DES
areas directly depend on the geometry of the QPC gates. This provides high flexibility
in and control over the resulting 1D channel design by virtue of standard electron-beam
lithography techniques for the QPC gate fabrication with attainable resolutions of the
order of 10 nm.

The 2DES potential in the QPC constriction forms a characteristic saddle point as
sketched in Fig. 1.1 with the resulting 1D channel indicated by the red arrow. The allowed
transverse (y direction in Fig. 1.1) electron modes in the 1D QPC channel are quantized
as is the corresponding energy spectrum. The separation of the spatial wave function
components yields the electron dispersion relation in the QPC constriction

En(k) = E0
n +

~2k2
x

2m∗
, (1.1)

with the wave number kx of the longitudinal plane wave component, the effective electron
mass m∗, and the energy E0

n of the bound transverse mode with the quantum number n.
Thus within the constriction the longitudinal component maintains the free particle char-
acteristics. The energy spectrum E0

n related to the transverse modes generally depends
on the particular QPC potential shape and can also depend on the mass of the traversing
particles (the latter does not hold for e.g. the harmonic oscillator potential). In Eq. 1.1,
En(k = 0) − E0

n equals the bottom of the the QW conduction band plus the zero-point
energy stemming from the 2DES confinement in the QW perpendicular to the 2DES x-y
plane.

It turns out that in the case of a 1D QPC channel the discrete energy spectrum, nat-
urally occurring in absence of the external magnetic field Bext, evolves gradually into the
(QPC-constriction-independent) quantized 2DES electron energy spectrum at Bext � 0
which is referred to as the Quantum Hall Effect (QHE) regime. The fundamental physical
reason for this similarity is that both regimes are caused by the reduction of the 2DES
dimensionality by one due to either the spatial constriction or the cyclotron orbital mo-
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tion. In the case of a harmonic 1D confinement (or for any confining potential which is
approximated harmonically at small k), in Fig. 1.1 the total energy spectrum of the n’th
transverse mode simplifies to [48]

En(k) = ~ω(n+
1

2
) + EZeeman(Bz) +

~2k2
x

2m̃∗
,

with ω =
√
ωy2 + ωcyc

2 ,

and m̃∗ = m∗
ω2

ω2
y

. (1.2)

Increasing Bext = Bz gradually influences the energy spectrum via the electron cyclotron
frequency ωcyc = eBz/m∗, in addition to the Zeeman energy EZeeman and the consistently
acting harmonic confinement potential V = m∗ω2

yy
2/2 (m∗ is the effective electron mass

at Bz = 0 and e is the elementary charge). Raising Bz selectively depopulates the 1D
QPC subbands due to the increasing subband spacing ~ω while the gradual transition
to the emerging QHE edge channels preserves the quantization. The onset of Bz affects
the dispersion relation, however, the free particle character of the remaining longitudinal
component is retained. It should be noted, though, that Eq. 1.2 at high Bext differs from
the real QHE regime, because the number of contributing edge channels in the QHE regime
is determined by the 2DES Fermi energy EF, whereas it is set by the QPC constriction
potential for Eq. 1.2. At Bext � 0, the conductance of the 2DES is determined by the
number of Landau levels in the QPC, independently of the total occupied number of
Landau levels in the 2DES, due to selective coupling of the QPC to certain edge channels,
a phenomenon also referred to as anomalous integer-QHE [48]. Also in Eq. 1.2 the subband
spacing maintains a dependency on the actual QPC constriction potential via ωy.

Now the case of Bext = 0 is considered again. At low temperatures T with thermal
energies smaller than the subband spacings all QPC modes n with E0

n ≤ EF are occupied
and the remaining modes are empty. A decrease of VQPC raises the conduction band
bottom (with respect to EF) and it increases the energy spacing between the levels E0

n

due to increased transverse confinement [48]. Both effects diminish the number of occupied
QPC levels. Thus, by tuning VQPC, the QPC channel width can be tuned continuously
between an open and fully closed, or pinched-off, channel. This is shown in Fig. 1.2 which
illustrates the electron energy dispersion in the QPC channel for two different QPC gate
voltages VQ. Shown is the case of a harmonic 1D confinement in the y direction which is
given by the frequency ωy that determines the transverse potential. The relevant states for
the QPC transmission exhibit kx > 0 on the QPC source side where the chemical potential
is µS, and k < 0 on the QPC drain side where the chemical potential is µD. In Fig. 1.2(a)
overall three modes contribute to the electron transport through the QPC. By decreasing
VQ, two modes become fully depopulated in Fig. 1.2(b). The linear transport regime is
characterized by small differences µS − µD with respect to the QPC subband spacing, as
illustrated in Fig. 1.2. The linear transport properties are determined by electrons around
the Fermi energy µS ' µD ' EF with the group velocity vn ' vF = ~kF/m∗. Thus vn is

7
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Figure 1.2: Dispersion relation of the QPC modes in case of harmonic transverse confinement
determined by the frequency ωy. The electron occupation in the channel is illustrated for a DC
source-drain voltage V dc

sd = (µS−µD)/e applied across the QPC with respect to the equilibrium
Fermi energy EF. In (b) the applied QPC gate voltage VQ is more negative than in (a) (data
from [48]).

determined by the Fermi wave vector kF =
√

2πn2DES which is given by the 2DES density
n2DES owing to the fermionic nature of the electrons.

If reflections of the traversing electron states at the constriction entry and exit can be
neglected the QPC conductance GQPC resulting from N occupied modes is determined by
the electron group velocities vn and the 1D densities of states ρn of the modes n ≤ N [48]

GQPC ∝ ΣN
n=1

∫ µS

µD

ρn(E)vn(E)dE . (1.3)

Due to vn = ~−1∂En/∂k and ρn = 2(π∂En/∂k)−1, one directly obtains the significant
result: Gn = const, the conductance contributed by each QPC mode n is an invariant
and energy independent because the dependence on the actual dispersion relation cancels
out. The latter implies that Gn = const is valid also in the case of externally applied
magnetic field, Bext > 0.

Now incorporating electron wave reflections, the total conductance G of a QPC of N
fully occupied modes can be calculated at T = 0 in terms of the ratio of transmission tn
and reflection probabilities rn, yielding

GQPC =
2e2

h
ΣN
n=1tn . (1.4)

Thus each contributing channel accounts for one spin-degenerate conductance quantum
GQ = 2e2/h ' 1/12.9kΩ, weighted by its transmission probability tn. The factor of 2 in
GQ stems from the residual spin degeneracy at zero magnetic field. Eq. 1.4 corresponds to
the well-known Landauer formula, however, after having taken into account the finite con-
tact resistance of each 1D channel mode to the adjacent 2DES source and drain reservoirs
[49] that adds electron energy dissipation. The latter imposes a crucial constraint because
if omitted Landauer’s original result Gn/GQ = (rn/(1− rn))−1 = tn/(1− tn) is obtained
[49, 50] where the conductance diverges in case of vanishing scattering rn → 0 (tn → 1), a
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1.1. Quantum point contact in a two-dimensional electron system

regime actually feasible experimentally, as explained below. In principle, Eq. 1.4 is valid
for arbitrary N . However, the larger N the more insignificant is the difference between
the quantum and classical GQPC.

At low temperatures of a few kelvin the phonon occupation number is negligible lead-
ing to negligible phonon-induced 2DES electron scattering. Then electron scattering at
charged impurities is the dominant electron energy dissipation process. If the latter is
additionally reduced sufficiently by the fabrication of clean 2DES samples and by the use
of modulation-doping in the heterostructure, the elastic and inelastic electron mean free
paths can exceed feasible QPC channel lengths which is referred to as the ballistic regime.
In the ideal case or asymptotic limit, the transmission coefficient tn of each occupied
(empty) mode is one (zero). Therefore in this case Eq. 1.4 yields the remarkable result
that GQPC changes in integer steps of the universal conductance quantum GQ = 2e2/h
which is determined by fundamental constants only. GQPC becomes independent of any
specific experimental parameter such as the particular sample material, the shape or di-
mensions of the 1D confining potential (in the ballistic limit), the length of the resulting
1D channel, and so forth. This further implies that the electron current In contributed
by each QPC mode n is similarly invariant, since, for an unchanged bias µS − µD across
the QPC, tuning VQPC then yields In = GQ(µS − µD)/e.

The experimentally obtained conductance of a ballistic QPC as a function of the QPC
gate voltage is shown in Fig. 1.3 for different bath temperatures between T = 0.3 K and
4.2 K (offset for clarity). At the lowest T = 0.3 K, the regular plateau pattern of integer
multiples of GQ is distinctly pronounced as marked by the dotted lines. The excellent
agreement with the ballistic form of Eq. 1.4 confirms the non-locality of the electron
interactions as a prerequisite for the ballistic transport regime. The dispersion of the
out-of-equilibrium electrons in the 1D QPC channel is determined by remote scattering
processes in the 2DES which is in local equilibrium. This explicitly renders the classical
local electric field-driven description non-applicable. The phenomenon is rather under-
stood by the difference between the chemical potentials µS and µD across the QPC which
induces a current I through the 1D constriction that becomes equally distributed among
N occupied channel modes.

Experimentally the ballistic regime is commonly obtained in a 2DES based on a
GaAs/AlxGa1−xAs heterostructure where extremely high mobilities exceeding
µ2DES = 106 cm2V−1s−1 have been achieved [51–53] leading to electron mean free paths of
hundreds of µm. This length scale can by far exceed feasible QPC constriction dimen-
sions. The deviations from exact quantization in QPCs are typically about 1 %.

Being able to reach the ballistic regime in the experiment additionally requires that
each QPC channel mode couples adiabatically to the leads. This implies that (partial)
reflection of electron waves off the 1D channel onset and ending for each occupied mode is
insignificant. A basic QPC feature is that in the case of adiabatic mode coupling potential
residual electron scattering processes conserve the quantum number. The transmission
probabilities are non-zero only on reflections into equal incident and leaving QPC modes
with no channel mixing being present. In terms of the constriction geometry, adiabatic
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Chapter 1. Fundamentals

Figure 1.3: QPC conductance in units of the spin-degenerate conductance quantum GQ = 2e2/h
as a function of the QPC gate voltage, measured at different bath temperatures between 0.3 K
and 4.2 K. Each conductance curve is offset by GQ for clarity (data from [48]).

coupling is usually achieved using a gradually varying QPC constriction width along the
1D channel entry and exit, for instance by deploying rounded QPC gates.

In short QPC channels with comparatively sharp constriction edges, evanescent elec-
tron waves can give rise to non-zero transmission probability contributions to the QPC
conductance (this was assumed to be negligible and hence was omitted in the derivation
of Eq. 1.4). On the other hand, longer channels of the order of several electron Fermi
wavelengths tend to exhibit transmission resonances which map on the resulting GQPC

as the quantum mechanical wave character of the particles then comes into play [48].
Such deviations from the ideal step-like shape of GQPC become apparent typically on the
plateaus in terms of curved oscillating features as can already be seen rudimentary in
Fig. 1.3 for T = 0.3 K.

The shape of the transitions between the conductance plateaus can depend on the
particular geometry of the QPC constriction [54], which also follows from the results
presented in Chapter 2. Additionally, energy broadening due to finite thermal energies
or finite V dc

sd can contribute to an increased width of the transition between the GQPC

plateaus. If the temperature T , or V dc
sd , is raised, the contributing electrons around µS,D

begin to occupy more than one QPC mode. The conductance steps blur and finally
the conductance plateaus disappear when the thermal energy or the chemical potential
difference µS − µD become comparable to, or exceed, the QPC mode energy separation
Ej(0) − Ej−1(0). This is clearly visible in Fig. 1.3 where for T = 4.2 K the classically
expected behavior GQPC ∝ VQPC [48] is nearly reached. It can be used to smooth out or
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1.2. The 0.7-anomaly

even completely purge residual resonances at the GQPC plateaus by a controlled increase
of the bath temperature, as in Fig. 1.3 for the first three plateaus on the increase to 0.6 K.

As evident from Fig. 1.3, the regular conductance pattern can consistently feature an
additional distinct kink around 0.7GQ. This deviation can also appear at transitions to
higher QPC conductance plateaus, as can be seen at around 1.7GQ in Fig. 1.3. This
feature is called the 0.7-anomaly and is introduced in the following section.

1.2 The 0.7-anomaly

The regular steplike pattern nGQ of the QPC conductance at low temperatures frequently
shows an additional shoulder around 0.7GQ even without externally applied magnetic field.
It is termed the 0.7-anomaly, although experiments also showed that the precise occurrence
can vary between 0.5GQ and 0.9GQ [30, 34]. Interestingly, the very first experimental
observations of the quantized QPC channel conductance already contained a distinct
shoulder around 0.7GQ [15, 48]. However, the nature of the 0.7-anomaly remained elusive
in spite of the well-understood underlying physics of the QPC as well as the intrinsic
simplicity of the essential sample design and the required experimental configuration.
This section provides a brief overview over the main characteristic experimental features
of the 0.7-anomaly.

An example of the 0.7-anomaly is shown in Fig. 1.4. The QPC conductance is mea-
sured as a function of the QPC potential-tuning gate voltage Vg for several constant low
temperatures between T = 70 mK and 1.5 K. The distinct kink below the first conduc-
tance plateau with the onset at ∼ 0.65GQ is visible in all conductance curves. While the
actual conductance plateaus blur on increasing T (compare Sec. 1.1) the shoulder around
0.7GQ becomes even more pronounced and dominates the QPC conductance pattern at
intermediate temperatures around a few kelvins. This peculiar feature of the 0.7-anomaly
is universal. It can be used to distinguish a 0.7-anomaly from other influences that can
induce deviations from the regular QPC conductance pattern (compare Sec. 3.1). At in-
termediate temperatures of a few kelvins, a pronounced 0.7-anomaly can even remain
the only feature in an otherwise about linear QPC conductance at varying QPC channel
width (compare Sec. 6.1.3).

Another symptomatic feature of the 0.7-anomaly is apparent in the non-linear con-
ductance response which is the regime of a finite DC source-drain bias voltage (|Vsd| > 0)
applied across the QPC constriction. Three examples of the QPC non-linear conduc-
tance at different T and magnetic fields B‖ in the 2DES plane are shown Fig. 1.5. The
QPC differential conductance g = dIQPC/dVsd is repeatedly measured as a function of
Vsd, each time with a different applied constant QPC gate voltage Vg that is altered in
equidistant steps. The QPC plateaus in g emerge as clusters of multiple curves. The
(average) conductance g/GQ at each plateau is labeled in Fig. 1.5. The regular QPC
conductance pattern g/GQ = 1, 2 at T = 80 mK and B‖ = 0 in Fig. 1.5(a) is visible in
the linear regime Vsd ∼ 0. It emerges again in the form of half-integer plateaus 1/2, 3/2,
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Figure 1.4: Differential conductance G of a QPC in units of the spin-degenerate conductance
quantum GQ = 2e2/h, measured for different temperatures between 70 mK and 1.5 K around
the first conductance plateau G = GQ with no external magnetic field B applied. The transition
to the plateau shows a distinct shoulder around 0.7GQ at each temperature (data from [24])

etc. around Vsd = |(µS − µD)/e| ∼ 1 mV where the differences between the source and
the drain chemical potentials |µS − µD| match the spacing between adjacent QPC modes
and hence are in resonance. Additionally, a 0.7-anomaly occurs which continues to be
visible in the non-linear regime symmetrically toward about 0.8GQ. The 0.7-anomaly
is accompanied by a narrow local maximum in g around Vsd = 0, termed the zero-bias
peak (ZBP) [27, 32, 35]. The appearance of the ZBP in Fig. 1.5(a) is most obvious when
compared to the transitions toward 2GQ where the ZBP is only visible above 1.5GQ and
toward 3GQ where no ZBP is visible anymore. The ZBP responds to the raise of the
temperature T as shown in Fig. 1.5(b). Is is not visible anymore above the pronounced
shoulder (0.7 < g/GQ < 1), though, it still appears below 0.7GQ. This can also be viewed
the other way around: the ZBP forms simultaneously to the 0.7-anomaly as a result of
lowering T leading to a weakening of the 0.7-shoulder at lower T .

For large magnetic fields B‖ both the ZBP and the 0.7-shoulder vanish and the
spin-split conductance plateau at 0.5GQ determines the QPC conductance, as shown in
Fig. 1.5(c). Unlike Figs. 1.5(a) and 1.5(b), at high B‖ the non-linear conductance pattern
becomes homogeneous as a function of Vg around Vsd = 0 (|Vsd| . 0.5 mV in Fig. 1.5(c))
with a periodicity ∆g = 1GQ. The transition toward 1GQ is no longer distinguished.
A wing-shaped pattern is visible between each plateaus nGQ and (n − 1/2)GQ around
|Vsd| = 0.5 mV in Fig. 1.5(c) representing the Zeeman-split conductance plateaus which
are in resonance with the chemical potentials µS,D (compare the similar pattern between
nGQ and (n− 1)GQ in Fig. 1.5(a)).

A smooth transition of the 0.7-anomaly is observed in the linear QPC response on
increasing B‖, moving toward and merging with the spin-split conductance plateau at
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Figure 1.5: Non-linear differential conductance g = dIQPC/dVsd of a QPC for various equidistant
constant QPC gate voltages Vg, each time measured as a function of the DC source-drain bias
voltage Vsd across the QPC. Emerging conductance plateaus become visible due to clustering of
multiple curves and are labeled with their respective (mean) conductance g/GQ. (a) g measured
at the temperature T = 80 mK and in absence of a magnetic field B‖ = 0 in parallel to the plane
of the 2DES. The regular QPC conductance plateaus g/GQ = 1, 2 are visible in the linear regime
Vsd ∼ 0. The occurring shoulder at 0.7GQ is accompanied by a local conductance maximum
around Vsd ∼ 0, the zero-bias peak (ZBP), and continues to be visible in the non-linear regime
symmetrically toward about 0.8GQ. (b) g measured at T = 600 mK and B‖ = 0. The ZBP
has decreased, above the still pronounced 0.7GQ-shoulder it has disappeared. (c) g measured at
T = 80 mK and B‖ = 8 T. ZBP and 0.7-shoulder are not visible anymore (data from [27]).

0.5GQ. This is already rudimentary apparent in Fig. 1.5 but is shown again in terms
of the linear QPC conductance in Fig. 1.6(a). The distinct 0.7-anomaly at B‖ = 0 (red
curve) develops gradually (yellow to blue) into spin-resolved first conductance plateau
0.5GQ (violet curve). In combination with the occurrence of the anomaly between the
first spin-degenerate and the first spin-split QPC channel it was early hypothesized that
the 0.7-anomaly is closely related to emerging finite spin polarization at B = 0 [24]. It is
further indicated in the non-linear regime of the 0.7-anomaly where sub-plateaus around
0.8GQ appear which are also observed for each spin-split conductance plateau at high B‖
(compare Figs. 1.5(a) and 1.5(c)). The assumed connection with finite spin polarization
did also not contradict subsequent experimental findings regarding deviations of the shot
noise power spectrum from the expectations for full spin-degeneracy. Shot noise arises
from random fluctuations which the DC transport current is subject to as a result of
the discrete nature of the participating electrons. It is characterized by e. g. the shot
noise power spectrum, also referred to as spectral noise density, which quantifies the
contributing noise power at a given frequency. The fact that shot noise is white allows
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Figure 1.6: (a) Low-temperature differential QPC conductance measured versus the QPC gate
voltage Vg multiple times, each at a different applied in-plane magnetic field B‖ between 0 T
(red) and 7.5 T (violet curve). The distinct 0.7-anomaly (red curve) develops smoothly into the
spin-split plateau. (b) B‖ evolution (same color-coding like in (a)) of the shot noise factor N
which is extracted from the source-drain voltage dependence of the shot noise power spectrum
at each constant QPC transmission gavg. The expected result for B‖ = 0 if electron-electron
interactions are omitted is also plotted (dashed curve) (data from [28]).

to investigate it at any frequency (range) of choice. Due to the basic connection to the
quantum mechanical particle nature, shot noise can contain information about particle
scattering processes or many-body effects [55].

In case of the current through the QPC constriction, the shot noise spectral density
can be extracted from the QPC transmission in the non-linear response regime and is
characterized by the the shot noise factor N [28]

N =
1

2

∑
n,σ

τn,σ(1− τn,σ) , (1.5)

with τn,σ being the transmission of the n’th QPC channel with spin σ. N links the shot
noise power spectral density to Vsd, being a gauge how strongly it responds to a given
bias voltage [28] which causes the actual DC electron current.

Fig. 1.6(b) shows the shot noise factor N extracted from the measured QPC conduc-
tance at the different B‖ in Fig. 1.6(a) (same color-coding) in the range 0 ≤ g ≤ 1.0GQ.
N is plotted as a function of the (about) constant gavg, being g averaged over the finite
Vsd range out of which the shot noise power spectrum was extracted at each constant Vg.
The noise power spectrum was recorded at high frequencies ∼ MHz in order to suppress
1/f electronic noise contributions. Additionally the white thermal noise contribution was
subtracted before the power spectrum analysis [28]. A suppression of the shot noise fac-
tor relative to the prediction by the theory for spin-degenerate transport [56, 57] (dashed
curve) is observed in Fig. 1.6(b) around the actual occurrence of the 0.7-anomaly at B‖ = 0
(red dots). Moreover, this signature around 0.7GQ also evolves smoothly into the sym-
metric pattern of N for spin-resolved electron transmission at B‖ = 7.5 T. This added
signature in N is another feature of the 0.7-anomaly which is compatible with the hy-
pothesis that partial spin polarization is present and it also indicates a many-body effect.
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1.2. The 0.7-anomaly

Figure 1.7: Differential conductance G of a QPC at low temperatures in (upper panels) the
linear response and (middle panels) the non-linear response regime. Also shown are (lower
panels) the corresponding Fano factors (red dots + errorbars) plotted on top of the theoretical
prediction for full spin-degeneracy (black lines). The black arrows indicate each point where the
Fano factor deviates most from the prediction. The shown cases are that (a) no 0.7-anomaly
occurs, and that it does occur at (b) 0.9GQ, (c) 0.8GQ, and (d) 0.5GQ, as labeled by the arrows
in the upper panels. The insets show (b) the local result zoomed in on the present Fano factor
reduction and (d) the shot noise power spectrum SI (black dots) in the non-linear QPC response
regime. It is extracted from the QPC response in case (d) right at the strongest Fano factor
reduction G ∼ 0.5GQ and compared to the calculated variation at full spin-degeneracy (dashed
lines) (data from [30]).

Remarkably, the experimental result of N in Fig. 1.6(b) already exhibits the asymmetry
at B‖ = 0 which could be interpreted as a signature of spontaneous spin polarization.
However, during the experiments of Fig. 1.6 a small (∼ 0.1 T) perpendicular magnetic
field was applied in order to reduce bias-voltage-induced heating effects [28]. Considering
a potentially significant enhancement of the spin susceptibility (compare Sec. 3.3.2), this
deprives the measured results in Fig. 1.6(b) from being related to strictly spontaneous spin
splitting.

A similar measure of the electron-related shot noise is the Fano factor F which, as
compared to N , relates the shot noise power spectral density directly to the source-drain
current Isd [55] that represents the source of the noise. If only transport through the first
QPC channel 0 ≤ g ≤ 1.0GQ is considered in the linear transport regime, F is determined
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by [55]

F =
∑
σ

τσ(1− τσ)/
∑
σ

τσ , (1.6)

with τσ being the transmission of the first QPC channel with spin σ. This leads to
an expected linear dependence F = 1 − g/GQ for fully spin-degenerate QPC transport.
In Fig. 1.7 the bottom panels show the Fano factors (red dots including errorbars) as a
function of the QPC conductances G at which they were extracted. G is accordingly
shown in each respective top (linear QPC response) and middle panel (non-linear QPC
response) of Fig. 1.7. The Fano factors were again extracted at ∼ MHz frequencies in
order to reduce the 1/f noise significance [30]. The sample used for Fig. 1.7 allowed to
vary the QPC constriction potential by means of Vg [30] such that the specific position of
the 0.7-anomaly could be tuned from 0.9GQ (Fig. 1.7(b)) over 0.8GQ (Fig. 1.7(c)) toward
0.5GQ (Fig. 1.7(d)), as shown in the respective upper panels. The 0.7-anomaly occurrence
could even be eliminated (Fig. 1.7(a), upper panel). The accompanying ZBP in the non-
linear regime (respective middle panels) further affirms the actual appearances of the
0.7-anomalies. In each bottom panel of Fig. 1.7, the expected evolution Eq. 1.6 for full
spin-degeneracy is added (black curves).

In absence of a 0.7-anomaly (Fig. 1.7(a)) the measured Fano factors coincide with the
linear trend at g < 1.0GQ within the errorbars in the majority of cases. For present
0.7-anomalies the measured Fano factors, within the errorbars, show a singular reduction
with respect to the linear expectation, as shown in the bottom panels of Figs. 1.7(b-d).
The Fano factor reduction shifts in accordance with the actual 0.7-anomaly position,
as indicated by the arrows in the bottom panels (the inset in (b) is zoomed in to the
kink). The reduction further becomes the more pronounced the farther the 0.7-anomaly
is located from 1GQ. In addition, the inset of bottom panel (d) shows the shot noise power
spectrum SI (black dots) in the non-linear regime right at the emerging Fano factor dip
at g ∼ 0.5GQ. The measured power spectra are reduced compared to the theoretically
calculated values for full spin-degeneracy (dashed curve).

The result that the 0.7-anomaly is accompanied by a lowered Fano factor therefore
indicates asymmetric transmission of both contributing spin channels [30]. It is thus con-
sistent with the result Fig. 1.6(b) above. Moreover, due to the tuning ability in Fig. 1.7,
it expands the scope of the experimental indication. However, similarly to the measure-
ments of N explained above, in Fig. 1.7 also a small magnetic field was applied during
all performed experiments in order to reduce Vsd-induced noise contributions [30]. This
again leaves the question unrelated whether or not strictly spontaneous spin polarization
is present in the regime of the 0.7-anomaly.

1.3 Kondo effect in quantum dots

The fundamental properties of the 0.7-anomaly in QPCs which will be discussed in more
detail in Sec. 2.3 and Sec. 3.3 show striking similaries to the Kondo effect which arises
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in quantum dot (QD) systems. Therefore in this section a brief overview of the basic
features of the latter is given.

If the temperature T is decreased the electrical resistivity of a metal drops due to
phonon freeze out. It further saturates at low temperatures T because of a present finite
number of impurities in the solid. Yet it was observed experimentally in various metals
that for decreasing T the resistivity started to rise again, producing a local minimum
at non-zero temperatures. The source of this puzzling finding could be addressed for
the first time by Jun Kondo [58] who used third-order perturbation theory to describe
the many-body process of an impurity’s residual magnetic moment caused by an unpaired
electron coupled to the large reservoir of noninteracting conduction band electron spins via
exchange coupling J . Kondo showed that the resulting DC resistivity ρ has a contribution
[58]

ρ ∼ J log(T ) (1.7)

which at low temperatures T → 0 diverges ρ→∞ if the exchange interaction J is nega-
tive, favoring antiferromagnetic coupling. The impurity spin can flip due to the exchange
interaction, causing a synchronous flip in the spin-excited locally surrounding Fermi sea.
The added resistivity contribution for electrons at the Fermi level EF is thus caused by an
additional scattering probability induced by the spin degree of freedom. Kondo already
suggested that, under certain conditions, a constant non-diverging contribution J log(T0)
should be reached at T � T0 [58].

The basic theoretical model which then proved to be successful in describing the
physics of the formation of the local moment in metals is the single-impurity Anderson
model [59]. It uses a form of scaling where the system is described by a coarse-grained
model, and the degree of coarseness is raised while the temperature in the calculations is
lowered. This simultaneously diminishes the degrees of freedom in the model and allows
predictions of the system properties down to extremely low temperatures. In particular,
the unphysical divergence of the metal resistivity Eq. 1.7 was revised later by using a
numerical renormalization approach [60] showing that a finite resistance is reached in the
limit T → 0 because the magnetic moment of the impurity becomes fully screened by the
spins of the surrounding electrons.

As there is no favored spin orientation, its mean is an uncorrelated spin singlet state.
The resulting correlation effect causing the hybridization of impurity and surrounding
electron states is known as the Kondo effect. A specific property is that it is non-negligible
only for thermal energies below a characteristic energy scale which is defined by the Kondo
temperature TK. Another remarkable characteristic feature of the Kondo effect is the
universal scaling behavior: For T < TK the resistivity, as a macroscopic quantity, is fully
determined by a universal function of the normalized temperature, ρ/ρT→0 = fct(T/TK),
which is identical for all spin-1/2 impurities [61].

In a QD an analogue phenomenon can emerge [4, 45, 47]. A QD can be fabricated using
the same depletion gates technique alike in the case of the QPC fabrication [1, 11, 12, 45].
The 2DES is confined in two dimensions which generates a zero-dimensional QD potential.
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Figure 1.8: Scanning electron micrograph of a quantum dot (QD) gate design on top of a 2DES
containing heterostructure (gate-defined QD width ∼ 100 nm) (micrograph from [45]).

Local tuning of the 2DES potential by separate gates then enables a continuous tuning
of the QD energy spectrum with respect to the 2DES Fermi energy EF. The tuning
of the QD energy also determines the potential number of electrons trapped within the
QD. Depending on the particular QD design, it can furthermore be possible to adjust
the tunnel coupling Γ of the QD to its adjacent 2DES reservoirs independently of the
QD spectrum. Figure 1.8 shows an example of a QD gate design comprising four gates
of which the left center gate tunes the QD potential. Its two adjacent gates are used to
selectively adjust the tunnel barriers to the 2DES leads (upper and lower area) of the QD.

In the most basic approach the charging energy needed in order to occupy the QD with
a further electron is ∆EQD = U = e2/CQD (e is the elementary charge). The energy U
required to overcome the electron-electron Coulomb repulsion is thus reflected in the self-
capacitance CQD of the QD. A QD at low temperatures in the linear transport response
regime is sketched in Fig. 1.9(a). The QD’s highest occupied energy level (ε0) hosts an
electron (blue arrow) which is (partly) decoupled from the leads (red) via tunnel barriers
(intermediate rectangles). Neither the energy ε̃ needed for the electron to leave the QD
nor U for a further electron to occupy the QD is available. Thus the QD transmission
is negligible and the QD is in the so-called Coulomb blockade. Since the QD exhibits
one unpaired electron, exchange interactions can couple the localized spin to the locally
surrounding 2DES reservoirs. This exchange interactions can mediate mutual spin flip
processes as shown in Figs. 1.9(a-c). Within a time window restricted by the uncertainty
principle, a virtual intermediate state is allowed at which the spin-up electron has left
the QD toward the drain-side reservoir (Fig. 1.9(b)), followed by the tunneling of an
exchange-coupled spin-down electron from the source reservoir in the QD (Fig. 1.9(c)).
Hence the exchange interactions enable the otherwise Coulomb-blockaded QD to become
more transparent for 2DES electrons around EF. This gives rise to a net charge transport
through the QD accompanied by mutual spin flip processes. The charge transport is
expressed in an emerging additional state in the density of states (DOS) of the QD, known
as the Kondo resonance, as depicted in Fig. 1.9(d). A QD with an unpaired electron is
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Figure 1.9: Each panel (a-c): Linear transport through a QD (center) in the Kondo regime from
the left (red, source) to the right (red, drain) 2DES reservoir. The QD energy levels (green)
are at least separated by the QD charging energy U . (a) Initial state, Coulomb blockade: an
unpaired spin-up electron (blue arrow) with QD energy ε0 lies ε̃ < U below EF of the source
reservoir. (b) Virtual intermediate state: exchange interactions with the leads allow the QD
spin-up electron to tunnel to the drain reservoir. (c) Final state: within the time scale h/ε̃ a
source reservoir spin-down electron has tunneled into the QD resulting in a net charge transport
through the QD accompanied by a mutual spin flip. (d) In the resulting density of states (DOS)
of the QD, additionally to the ε0-related peak of width determined by the tunnel coupling Γ,
the Kondo peak arises due to the exchange-mediated QD transport. It is pinned at the Fermi
level and its (minimum) width is set by the Kondo temperature TK (illustration from [61]).

hence called a Kondo QD (KQD). The Kondo resonance is pinned at EF which renders
the QD in the Kondo regime to be in resonance with the lead reservoirs in the linear
transport regime. Though similar to the magnetic-exchange coupling in bulk metals, in
contrast, the Kondo effect in QDs induces a decrease of the QD resistivity, or alternatively
an increase of the QD conductivity.

The spacing ∆ε = εj−εj−1 of the QD levels must exceed the width Γ of a confined QD
state so that the discrete QD energy spectrum, and therefore Coulomb blockade, governs
the QD transmission. On the other hand, the tunneling rate Γ/h must be large enough
in order to allow a finite current through the QD by sufficient coupling to the leads.
The fabrication of small QD islands with tunable coupling strengths allows both criteria
to be feasible at the same time. The intermediate regime of strong tunnel coupling but
maintained discrete QD charge states is a prerequisite for higher order tunneling processes
through virtual intermediate states. The need of a strong coupling is also evident from
the Kondo temperature TK in the QD case [62],

TQD
K ∼

√
UΓtotexp[−π(EF − εn)/(2Γtot)] , (1.8)

with Γtot = ΓQD−S + ΓQD−D of the n’th QD level. Hence TQD
K can become experimentally

accessible if Γtot is large. Furthermore, according to Eq. 1.8, TQD
K can also be increased

by shifting the single occupied QD level εn closer to EF [4].
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Figure 1.10: Linear conductance G/(0.5GQ) as a function of the tuning gate voltage Vg of a
QD in the Kondo regime for temperatures T = 45 mK (bold, upper curve) to 130 mK (bottom
curve). The left minimum between the three visible conductance peaks corresponds to an evenly
filled QD, there G is low and virtually independent of ∆T . The right minimum corresponds to
an oddly filled QD showing a higher conductance G already at T = 130 mK and G is clearly
raised further at the continued cooling down (data from [4]).

Figure 1.10 shows the linear QD conductance G measured as a function of the tuning
voltage Vg of a QD in the Kondo regime for various temperatures between T = 45 mK
(bold) to 130 mK (bottom curve). Three peaks are visible which border two Coulomb
blockade valleys in G. The right valley at the higher temperatures lies clearly above the
left one. Decreasing T raises it further whereas the left valley is basically unaffected. The
responding local minimum in G corresponds to an odd number of electrons in the QD. Its
increase with decreasing T represents the tail of the Kondo-related QD conductance. The
condition T ∼ TQD

K would be finally reached if G(T ) eventually would start to saturate
[61]. In addition, Fig. 1.10 illustrates an important advantage of the QD-related Kondo
regime: the QD tunability allows to switch back and forth between non-Kondo (Coulomb
blockade) and Kondo transport across the QD.

The QD differential conductance g = dI/dVsd, if measured as a function of Vsd, shows
three characteristic features right in an odd KQD valley which are to be outlined now.
In Fig. 1.11(a), g(Vsd) of the odd KQD valley in Fig. 1.10 is shown. It is measured at
multiple temperatures between T = 45 mK (bold) and 270 mK (dashed curve). Consid-
ering T = 45 mK first, the Kondo resonance is mapped on the QD conductance around
Vsd ∼ 0. For increasing Vsd the peak conductance in Fig. 1.11(a) drops. The reason is
that the confined QD electron couples to both the source and the drain reservoir which
induces two Kondo resonances accordingly [63, 64]. Their mutual overlap decreases for
increasing Vsd, which surpresses and eventually prevents the tunneling processes through
the QD. This suppression creates a ZBP in the conductance, a fundamental characteristic
of the Kondo effect in QDs. If T is increased the observed decrease of G in Fig. 1.10
diminishes the height of the ZBP which eventually vanishes for T � TK [45]. And finally,
if a magnetic field B‖ is applied parallel to the 2DES plane, the ZBP splits [4, 45, 47],
as shown in Fig. 1.11(b). The splitting of the ZBP results from the Zeeman splitting of
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1.3. Kondo effect in quantum dots

Figure 1.11: (a) Differential QD conductance at a constant tuning gate voltage which is cho-
sen right in the center of the KQD valley of Fig. 1.10. The conductance is measured as
a function of the source-drain voltage V = Vsd across the QD, once for each temperature
T = 45, 50, 75, 100, 130, 200, 270 mK (bold to dashed curves). (b) The same valley conductance
peak as in (a), measured as a function of the source-drain voltage at different constant magnetic
fields B‖ = 0.10, 0.43, 0.56, 0.80, 0.98, 1.28, 1.48, 2.49, 3.49 T parallel to the 2DES (upper to lower
curve). The curves are offset by 0.02 e2/h for clarity (data from [4]).

both the confined electron state and the DOS-Kondo resonance [64]. It leads to the third
characteristic of the Kondo conductance, namely that the ZBP, at Vsd = 0, effectively
drops and eventually disappears with increasing B‖.
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Chapter 2

Origin of the 0.7-anomaly

In this chapter, the 0.7-anomaly is investigated in detail experimentally and theoretically
in terms of the sensitive response of the QPC conductance to varying temperature, mag-
netic field and source-drain voltage. Based on the analysis, a detailed theoretical model is
presented which achieves a consistent, microscopic explanation for both the 0.7-anomaly
and the accompanying ZBP including their interlinked appearance. It is shown that the
0.7-anomaly shows numerous analogies to the QD-related Kondo effect. Therefore both
the experimental setting and the model are designed to incorporate both the QPC and
QD regime and additionally to facilitate stepless transitions between both conditions. In
particular, this tuning capability will be made use of in Chapter 3 for a detailed evaluation
of the transition between a QPC and a QD in general, and between the 0.7-anomaly and
the Kondo effect in particular.

The theoretical work of the modeling and the calculations presented in this Chapter 2
as well as in Chapter 3 were performed by Jan Heyder and Florian Bauer from the theo-
retical group of Prof. Jan von Delft at the LMU.

2.1 Experimental setup

The experimental results that are presented in this Chapter 2 and in Chapter 3 were per-
formed on one setup using the same sample which incorporates an interface 2DES defined
within a GaAs/AlGaAs heterostructure 85 nm beneath the surface. The investigated
nanostructure was laterally defined in the 2DES by the use of a multi-gate layout on the
surface of the heterostructure which is shown in Fig. 2.1. Six thin elongated Au gates
were deposited on top of the etched and electrically contacted mesa by means of common
electron-beam lithography. All six gates were independently tunable by individual applied
electric voltages. For the measurements the gates were used pairwise symmetrically to
form one center QPC (c) with a pair of adjacent QPCs, one on each side (s), as labeled
in Fig. 2.1. Furthermore, a global Au top gate (t) was deposited on the sample, spatially
separated and electrically insulated from the six bottom gates by an intermediate layer
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Figure 2.1: Scanning electron micrograph of the QPC layout which features a top gate (t),
two central gates (c), and four side gates (s) to which the voltages Vt, Vc, and Vs are applied,
respectively. Negative voltages Vc and Vs locally deplete the 2DES located 85 nm beneath the
sample surface. Together with Vt it generates a highly tunable electrostatic potential landscape
in the 2DES (gate defined constriction width ∼ 250 nm). In contrast to the sample used for the
measurements, on the sample shown in the micrograph the top gate is a few nanometer thin
semitransparent layer of titanium in order to display the constriction region below.

of cross-linked PMMA (poly methyl-methacrylate) which appears as a dark gray border
around the top gate in Fig. 2.1.

The sample was mounted in a dilution refrigerator at a stable bath temperature of
Tbath ' 20 mK. The corresponding 2DES electron temperature of T2DES ' 30 mK was
slightly above Tbath according to temperature dependent conductance measurements. The
experimentally determined 2DES carrier density and mobility at Tbath were 1.9×1011 cm−2

and 1.2 × 106 cm2/Vs. Using standard lock-in techniques, the two-terminal differential
conductance g = dIsd/dV

ac
sd was measured between the source and drain ohmic connections

(compare Fig. 2.1) via the linear current response Isd to a source-drain voltage modulation
V ac

sd of small amplitude. Parallel to the 2DES plane as well as to the 1D channel of the
QPCs an external magnetic field could be applied. Optimized parallel alignment of the
magnetic field was assured by the use of a two-axis magnet and controlled by separate
magnetotransport measurements. Further details regarding the setup and the magnetic
field alignment procedure can be found elsewhere [65].

By using applied negative voltages the 2DES underneath the tip gates was locally
depleted. The remaining 2DES area between the tip ends of the center and side gates
formed the central constriction region (CCR), located at the center of Fig. 2.1. The seven
gates provide a particularly high tunability of the CCR of the device. A negative voltage
Vc at both center gates tuned the energy spectrum of the CCR. Another negative voltage
Vs is applied to all four side gates in order to symmetrically arrange the local potential
landscape of the CCR separately. The voltage Vt at the top gate was adjusted in order
to control the carrier density in the local 2DES leads of the CCR which determines the
effective interaction strength of the electrons (see Sec. 2.3.1). By suitably tuning both
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voltages Vc and Vs at a fixed top gate voltage Vt, the CCR of the device was tuned to
either define a short 1D channel containing a smooth symmetric barrier in the 2DES, the
characteristic QPC potential, or to define a QD potential (compare Figs. 3.2(b) and 3.2(c)
of Sec. 3.2). This Chapter 2 focuses on the QPC regime properties. Alternatively, adequate
tuning of Vc and Vs allowed for a gradual tuning from the QPC to the QD potential or
vice versa which was used for the experimental results presented in Chapter 3.

2.2 Theoretical model

In order to calculate the properties of the CCR for both the QPC and the QD regime two
theoretical approaches were used, based on the perturbative treatment of the interaction
U : second-order perturbation theory (SOPT) [66] and the functional renormalization
group (fRG) procedure [67–69]. The fRG flow equations are used for the calculations at

zero temperature T̃ = 0 and are based on a crucial assumption: The local magnetization
at B̃ = 0 is assumed to be mj = 0. This implies that spontaneous symmetry breaking
is ruled out a priori. This supposition is justified a posteriori by the agreement of the
fRG results with the experimental findings in this Chapter 2 as well as in Chapter 3.
Moreover, for the fRG flow of the interaction vertex two further approximations were
made which are both exact to the second order in U : three-particle vertices contributions
are neglected, and two-particle vertex contributions which are not already generated to
second order in the bare on-site interaction are neglected. The latter is called the coupled
ladder approximation. As a computational simplification, a “static” version of it was
used for most of the calculations of the zero-temperature properties of the 0.7-anomaly
(referred to as “static fRG”) which neglects all frequency dependencies in self-energies
and vertices. Additionally, SOPT is used to access the effects of inelastic scattering for
finite temperatures T̃ > 0 or source-drain voltages Ṽsd > 0 at a fixed U .

The lowest 1D subband of the nanostructure is modeled by

Ĥ =
∑
jσ

[
Ejσn̂jσ − τj(d†j+1σdjσ + h.c.)

]
+
∑
j

Ujn̂j↑n̂j↓ (2.1)

where n̂jσ = d†jσdjσ counts the number of electrons with spin σ (= ± for ↑,↓) at site
j. Equation 2.1 represents an infinite tight-binding chain as illustrated in Fig. 2.2, with
hopping amplitude τj, local interaction Uj, and on-site potential energy Ejσ = Ej−σB̃/2.

The Zeeman energy B̃ = |gel|µBBext accounts for a uniform external parallel magnetic
field Bext where µB is the Bohr magneton and the electron g-factor is gel < 0 for GaAs.
Spin-orbit interactions and other orbital effects are neglected.

The bulk dispersion relation of the tight-binding chain (for Ej = U = B̃ = 0) is shown
in Fig. 2.3(a), with the respective bulk local density of states (LDOS) A0

bulk(ω) plotted
graphically and color-coded in Fig. 2.3(b) and related parameters being indicated. Ej, Uj
and τj vary smoothly with j and differ from their bulk values, Ebulk = Ubulk = 0 and
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left lead central constriction region (CCR) right lead

j = –N’ j = N’j = 0

τj
Uj

Ej

Bj
~

Figure 2.2: Schematic depiction of the used one-dimensional model for the case of a QPC barrier
shape. It represents an infinite tight-binding chain with hopping matrix element τj (gray). The
local potential Ej (blue) and the on-site interaction Uj (red) are nonzero only within a central
constriction region (CCR) of N = 2N ′ + 1 sites. The CCR is connected to two semi-infinite
non-interacting leads on the left and right. A homogeneous Zeeman magnetic field B̃ (orange)
can be added.

τbulk = τ (in units of energy), only within a CCR of 2N + 1 sites symmetrically around
j = 0 which comprises the modeled nanostructure (compare Fig. 2.2).

There are two models used, “model I” for the numerical calculations of the QPC and
QD regimes and the transitions between both, presented in Chapter 3, and “model II”
which is used for the numerical results of the detailed QPC properties, mainly discussed
in this Chapter 2. Both models differ in the approaches for the on-site potential Ej and
the hopping amplitude τj in Eq. 2.1. “Model I” uses a j-independent τj = τ and the
on-site potential Ej is defined with respect to the Fermi energy EF of the left and right
lead as

E I
j =



0 , ∀ |j| ≥ N ′,

(Ṽs + EF)

[
2
(
|j|−N ′
js−N ′

)2

−
(
|j|−N ′
js−N ′

)4
]
,

∀ j0 ≤ |j| ≤ N ′,

Ṽc + EF + Ω
2
xj

2

4τ
sgn(Ṽs − Ṽc), ∀ 0 ≤ |j| < j0 .

(2.2)

It represents a smooth, symmetric potential barrier within the CCR that can be adopted
to describe both the QPC and the QD regime of the nanostructure. Eq. 2.2 is illustrated
in Figs. 2.3(c) and 2.3(d) (black dashed lines) which show two choices for Ej, one for the
QD and one for the QPC regime, respectively (Fig. 2.2 shows the QPC regime only). It
consists of a quadratic (blue) and quartic (red) component (in Figs. 2.3(c) and 2.3(d) only
shown for j > 0) which are continuously joint at j0 dynamically. The inner region is
given by |j| < j0 where the barrier curvature is governed by the parameter Ωx (≥ 0)

(in units of energy). The parameters Ṽs and Ṽc set the height of the potential with
respect to EF at the sites j = ±js and 0, respectively. They in principle concur with
the experimental locations of the side gates (j = js) and center gates (j = 0), compare
Figs. 2.3(c) and 2.3(d). (“in principle” is conceded because in the model js can be changed
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Figure 2.3: (a) Dispersion relation εk vs. k for a bulk non-interacting tight-binding chain without
magnetic field (infinite, homogeneous, Ejσ = Uj = 0). The filling of the leads is controlled by
the global chemical potential µ (blue dashed line). It is depicted at µ 6= 0 for generality, for the
calculations µ = 0 was actually used. (b) The corresponding j-independent bulk LDOS, shown
both as A0

bulk(ω) (on the x-axis) versus energy ω (on the y-axis) and using a color scale. The
chemical potential lies EF = εF = 2τ + µ above the band bottom of the bulk. (c,d): The one-
dimensional potential Ej (thick dashed black line) of “model I” for (c) a QD potential (Ṽs > Ṽc)

and (d) a QPC potential (Ṽc > Ṽs). In the outer region of the central constriction region (CCR)
(j0 ≤ |j| ≤ N ′), Ej is described by a quartic polynomial, and in the inner region (|j| < j0) by
a quadratic one with a curvature governed by Ωx (thin red and blue lines, respectively, shown
only for j > 0). For a given N ′, js, Ṽs, and Ṽc, the parameters j0 and Ωx are adjusted such that
the resulting potential Ej depends smoothly on j throughout the CCR. (e) The spatial variation
of the on-site interaction Uj used in the model.

freely, say during the modeling of the QPC-QD crossover, whereas in the experiment the
locations of the side gates are fixed due to the rigid sample gates layout.)

On the other hand, “model II” uses an on-site potential Ej being defined within the

27



Chapter 2. Origin of the 0.7-anomaly

CCR j ≤ jmax as

E II
j ∝ (Ṽc + EF)exp[−(

j

jmax

)2/(1− (
j

jmax

)2)] . (2.3)

τj is chosen to be site-dependent within the CCR including a smooth (adiabatic) reduction
proportional to the local barrier height. The reason for the introduction of “model II” is,
briefly explained, that it allows to use a shorter CCR while retaining a small curvature
Ωx at the barrier top. And it furthermore avoids the occurrence of artificial bound states
in the bare density of states of the QPC which are observed close to the upper band edge
when using “model I”. However, both models have in common that the resulting QPC
barriers are all parabolic near the top (unless stated otherwise).

Outside of the CCR, the sites j < −N/2 and j > N/2 represent two noninteracting
leads, each with a bandwidth 4τ , the effective mass m = ~2/(2τa2) as defined by the
curvature of the bulk dispersion at the band bottom, the chemical potential µ and the
bulk Fermi energy EF = 2τ + µ. µ = 0 is consistently chosen in the calculations which
implies half-filled leads (compare Fig. 2.4(b) in Sec. 2.2.1). The interaction Uj is fixed at
Uj = U for all but the outermost sites of the CCR where it drops smoothly to zero, as
plotted in Fig. 2.3(e) for U = 0.5τ .

For the comparison with the experimental results, the conductance g of the CCR is
calculated as well as the local quantities

nj = 〈n̂j↑ + n̂j↓〉 , (2.4a)

mj = 〈n̂j↑ − n̂j↓〉/2 , (2.4b)

χj = ∂B̃mj|B̃=0 , (2.4c)

being the occupation nj, the magnetization mj, and the spin susceptibility χj of the 2DES
electrons evaluated at site j, respectively.

In order to delimit experimental and theoretical parameters from each other, symbols
with and without tildes are used, e. g. B̃ or B. This proceeding is useful because asso-
ciated parameters are not equivalent in either case, e. g. a gate voltage V as opposed to
Ṽ = −|e|V that represents the resulting potential energy of a particle with the elementary
charge e.

2.2.1 Local quantum point contact properties

First the QPC properties are calculated using ”model II“ (compare Sec. 2.2) for the

considered theoretical case of zero temperature T̃ = kBT = 0, source-drain voltage
Ṽsd = −|e|Vsd = 0 and magnetic field B̃ = |gel|µBB = 0. The spatial shape of the
bare LDOS defining the barrier in the CCR is shown in Fig. 2.4(b) (color scaled; similarly

depicted in Figs. 2.4(f-h) too for three different values of Ṽc). The corresponding “band
bottom” is given by ωmin

j = Ej−(τj−1+τj)−µ (black solid line in Fig. 2.4(b)). ωmin
j defines

the smooth, symmetric barrier within the CCR that is parabolic near the top [17] where

it is approximated by ωmin
j ' Ṽc − Ω2

xj
2/(4τj=0). The center potential Ṽc sets the barrier
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height with respect to µ (black dashed line in Fig. 2.4(b)), and Ωx (� τ) characterizes

its curvature. As Ṽc is lowered below zero, the conductance g = G/GQ rises from 0 to 1
showing a step of width ' Ωx (about 1.5 meV in the experiment) whose shape depends
on U , as shown in Fig. 2.4(k). In the upper part of the step, around 0.5 . g/GQ . 0.9,
the QPC will be called “sub-open”. The sub-open regime is of special interest as for the
measured g(Vc) curves it contains the 0.7-anomaly.

The bare LDOS A0
j(ω) has a strong maximum just above the band bottom around

j = 0 [70], visible as a yellow to red elongated formation in Fig. 2.4(b). Semiclassically
there is A0

j(ω) ∝ 1/vj(ω) where vj(ω) is the velocity at site j of an electron with energy ω.
Thus the ridge-like maximum of A0

j(ω) above the barrier reflects the fact that electrons
move slowest there. In the outer flanks of the CCR this ridge evolves smoothly into a
van Hove singularity A0

bulk ∝ [(ω − ωmin
bulk)τ ]−1/2 (see Fig. 2.4(b)) being exhibited by the

bulk LDOS at the bulk band bottom in the leads, ωmin
bulk = −2τ . Therefore the LDOS

structure around j = 0 is referred to as “Hove ridge”. It directly determines the effective
strength of interaction effects which scale as U/Uc where Uc =

√
~2Ωx/(2ma2) is inversely

proportional to max[A0
j(ω)], the height of the Hove ridge at the barrier center (a is the

lattice spacing of the tight binding chain).
Near the barrier center, the barrier curvature causes the singularity to be smeared

out on a scale set by Ωx. This shifts the Hove ridge max[A0
j(ω)] upwards relative to the

band bottom by an energy of the order of Ωx, ω
min
j +O(Ωx) (compare Figs. 2.4(f-h)), and

sets an upper limit for the maximum amplitude of the Hove ridge as its height scales as
1/
√
τΩx. This implies that all local quantities which exhibit a dependence on the LDOS,

such as the local magnetic susceptibility χj, depend as well on Ωx and therefore on the
particular shape of the QPC barrier.

The van Hove ridge has a strong impact on numerous QPC properties that also depend
on Ṽc due to the ridge geometry around j = 0. Near those spatial locations where it
intersects the chemical potential µ the LDOS is enhanced, thus amplifying the effects
of interactions by O(Ωxτ0)−1/2 (which grows with the QPC length). The semiclassical
reasoning for it is that slower electrons feel interactions particularly stronger. When the
QPC is opened by lowering the barrier top Ṽc, the Hove ridge is swept downwards too (see

Figs. 2.4(f-h)). Its interaction-amplifying effects are strongest in that Ṽc-regime where its

apex having the most weight crosses µ. This happens for 0 & Ṽc & −O(Ωx) (Fig. 2.4(g)),
which, very importantly, encompasses the sub-open regime hosting the 0.7-anomaly. It is
shown below that the 0.7-anomaly and the ZBP can be explained from the amplification
of interaction effects at the locations where the Hove ridge intersects µ. The relevant
implications are increase of the effective Hartree barrier governing elastic transmission,
the spin susceptibility as well as the inelastic scattering rate, all of which lead to an
anomalous reduction of g in the sub-open regime, especially for B̃, T̃ , Ṽsd > 0.

Figures 2.4(c-e) illustrate several local properties, calculated at T̃ = 0, for the sub-
open QPC barrier shown in Fig. 2.4(b). Shown are the local density nj for two different

magnetic fields B̃ (Fig. 2.4(c)), the local magnetization mj for various B̃ (Fig. 2.4(d)), and
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Figure 2.4: (a) Fig. 2.1 shown again for comparison. (b) The bare (Uj = 0, B̃ = 0) 1D local
density of states (LDOS) A0

j (ω) (color scale) vs. energy ω and site j. The LDOS shows a Hove

ridge (yellow/red) just above the “band bottom” ωmin
j (solid black line), and Friedel oscillations

(white fringes) at ω . Ṽc. (c-e) fRG results for the sub-open barrier shown in (b): (c) Local
density nj and (d) magnetization mj for several B̃. Inset of (d): mΣ =

∑
|j|≤10mj vs. B̃.

(e) Local spin susceptibility χj for several U . (f-l) Changing barrier height: (f-h) Bare LDOS

A0
j (ω) for three barrier heights Ṽc/Ωx = 1, −0.28 and −2. The LDOS is fixed relative to Ṽc

(dashed gray) but shifts relative to µ (dashed black lines). (i-l) fRG results: Ṽc-dependence of
(i) χj (color scale) at fixed U = 0.5τ , (j) total spin susceptibility χtot =

∑CCR
j χj for several

U (solid lines) and the inverse low-energy scale 1/B̃∗ for U = 0.5τ (dashed line, same y-axis),
(k) g = G/GQ (linear response) for several U (B̃, T̃ , Ṽsd = 0), (l) g for several B̃ (U = 0.5τ).

Identical Ṽc (vertical lines in (f-l)) are marked by dots of matching colors for comparison.

the local spin susceptibility χj of the 2DES electrons for several interaction strengths U
(Fig. 2.4(e)), all plotted as a function of the site j. Four outstanding features are noted
which are all intuitively expected:
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(i) nj is minimal at the barrier center.

(ii) mj vanishes at B̃ = 0, as depicted in Fig. 2.4(d) (blue line). This reflects a physical
assumption implicated by the calculations (compare Sec. 2.2), namely that no spontaneous
spin polarization occurs.
(iii) mj(B̃) increases without saturation which indicates a smooth redistribution of spins,
as expected for the open QPC structure. This is evident from the inset of Fig. 2.4(d)
which shows the local mean magnetization mΣ =

∑
|j|≤10mj plotted as a function of the

magnetic field B̃.
(iv) χj is strongly increased with increasing interaction U since the latter amplifies any
field-induced spin imbalance. The j-dependence of χj is governed by that ofA0

j(0) (in fact,
χU=0
j = A0

j(0)/2) so that χj has maxima near those locations where the A0
j(0) intersects

µ (compare Figs. 2.4(b) and 2.4(e)).

The characteristics of the CCR for changing Ṽc and thus a changing barrier height are
summarized in Figs. 2.4(i-l). Plotted as a function of Ṽc and j, Fig. 2.4(i) shows the local
spin susceptibility χj color-coded at a fixed U = 0.5τ . Figures 2.4(j) and 2.4(k) depict the

total spin susceptibility χtot =
∑CCR

j χj (solid lines) and the QPC conductance g = G/GQ

(B̃, T̃ , Ṽsd = 0), respectively, for various U as indicated. The inverse low-energy scale 1/B̃∗
(compare Sec. 2.3.3) for U = 0.5τ is also overlaid in Fig. 2.4(j) (dashed line). Eventually

Fig. 2.4(l) shows the calculated g(Ṽc) for multiple magnetic fields B̃ as indicated. The
vertical dashed gray lines in Figs. 2.4(i-l), in connection with the color-coded dots, mark

identical Ṽc for comparison within Fig. 2.4.
When Ṽc is lowered from above to below zero (see Figs. 2.4(f-h)), the intersection

points of the Hove ridge and µ sweep out a parabolic arch in the Ṽc-j plane along which
χj(Ṽc) is peaked (see Fig. 2.4(i)), with most weight near the arch’s apex. This induces a

corresponding peak in the total spin susceptibility, χtot as function of Ṽc, as evident from
Fig. 2.4(j). The peak of χtot is strongly increased by increasing U which is in accordance

with the statement (iv) above. The peak location further corresponds to the Ṽc-value
where g ' 0.7 (compare Fig. 2.4(k)). As will be shown below, the shape of χtot strongly

affects the B̃-dependence of the conductance, plotted in Fig. 2.4(l).
Next the effect of the LDOS ridge on the conductance g is discussed, first by con-

sidering the calculated g(Ṽc) as a function of U at B̃, T̃ , Ṽsd = 0 shown in Fig. 2.4(k).

Increasing U skews the shape of the step in g(Ṽc), eventually causing it to develop a

shoulder near g ' 0.7. This shoulder develops because the (Ṽc-dependent) increase in
the local density is slightly nonlinear when the apex of the van Hove ridge drops past µ
causing a corresponding upward shift in the effective (Hartree) barrier which induces a
decrease of the elastic transmission that is nonlinear too. According to the calculations,
this happens to occur around g ' 0.7 for a parabolic barrier top. If the shape of the
barrier top is changed to be flatter (sharper) than parabolic, the Hove ridge at a given

Ṽc shifts down closer toward ωmin
j (shifts up further away from ωmin

j ). Thus, when Ṽc is
lowered, the Hove ridge apex crosses µ earlier (later), causing the shoulder in g to shift
down toward 0.5GQ (up toward 1GQ). This explains the experimentally observed spread
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Chapter 2. Origin of the 0.7-anomaly

of shoulders within 0.5 . g/GQ . 0.9 [30, 34] for the various constriction geometries
and 2DES burying depths within the heterostructure used which are uniformly associated
with the anomaly around 0.7GQ due to their identical characteristic behavior.

Finally, an essential feature which constitutes one main result of this work can be
concluded directly from Fig. 2.4(k): at a large enough interaction strength, the calculated

conductance g(Ṽc) already exhibits a distinct kink at g ' 0.7GQ, the 0.7-anomaly, even

for T̃ = 0, and most importantly, even for B̃ = 0 despite the imposed constraint of absent
spontaneous spin polarization. This kink furthermore gradually evolves into the spin-split
plateau g = 0.5GQ on increasing B̃ as shown in Fig. 2.4(l) (the blue curve is identical to
the one being blue in Fig. 2.4(k)), which is in conformity with the magnetic field behavior
of the 0.7-anomaly [24, 27–29].

2.3 Comparison between theory and experiment

In this section the experimentally measured conductance of a QPC as a function of the
QPC channel width, the 2DES density in the leads, the magnetic field B externally applied
in parallel to the 2DES plane, the 2DES temperature T , and the source-drain bias voltage
Vsd across the QPC constriction are presented. The introduced model (Sec. 2.2) is used
to calculate the respective variations of the QPC conductance which are qualitatively
compared with the experiments. Furthermore, within both measurements and calculations
the conductance as a function of B, T , and Vsd are quantitatively compared with respect
to each other, with the main focus being on the response at low excitation energies.

2.3.1 Variation of the local interaction strength

In this section the relation between the 2DES density and the interaction strength U in
the CCR is investigated in the light of the introduced model (Sec. 2.2). Increasing the top
gate voltage Vt increases the carrier density in the 2DES leads of the CCR and hence both
the source and drain chemical potential. It deepens the trenches between the regions of
higher potential energy caused by the central and side gates [71]. This changes not only
the shape of the QPC potential along the 1D channel. It also causes the transverse wave
functions in the QPC constriction to be more localized which increases the effective 1D
on-site interaction strength U within the CCR. This can be summarized as: Increasing the
top gate voltage Vt increases the effective interaction strength U in the CCR. Furthermore,
increasing Vt has an additional effect on the QPC potential. Due to the deepened trenches
in the CCR, the energy spacing of the QPC transverse modes increases which increases
the subband spacing [17]. This trend is revealed in Fig. 2.5(b), which is extracted from
the measured pinch-off curves at different applied top gate voltages −0.7 V ≤ Vt ≤ 0.8 V
shown in Fig. 2.5(a), measured in the QPC regime of the nanostructure. As Vt is decreased
in Fig. 2.5(a) the carrier density in the 2DES leads drops which results in increased pinch-
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Figure 2.5: Top gate voltage Vt dependence of the subband spacing: (a) Measured QPC pinch-
off curves g(Vc) for various −0.7 V ≤ Vt ≤ 0.8 V. (b) Energy spacing between the lowest two
1D subbands as a function of Vt. The spacings and error margins were evaluated from finite-Vsd

measurements [65]. The dashed straight line is a guide to the eye.

off voltages Vc accompanied by narrowing conductance plateaus. The Vt-independent
steep gain in g(Vc) at Vc ' −0.25 V marks the transition from the 1D QPC to the
2D transport regime as the QPC channel disappears due to insufficient 2DES depletion.
Combining both Fig. 2.5(b) and the relation between Vt and U allows to identify the (Vt-
induced) increase (or decrease) in U with the aid of the (Vt-induced) increase (or decrease)
in the QPC subband spacing [72].

Now the the magnetic field-induced QPC subband splitting caused by the lift of spin
degeneracy is evaluated. The splitting is deduced from the derivative dg/dVc extracted
numerically from the measured conductance g [24, 25, 29]. The respective experimental
result, with g(Vc) measured at Vt = 0.8 V for various B, is plotted in Fig. 2.6(a) as a
function of Vc in the range 0 < g < 1 (red dots). Two local peaks are visible (blue
dots) which were extracted using fits of two Gaussians (black curves). Their splitting
∆E ' gssB + ∆hfo (arrow in (a)), which is converted into energy for multiple Vt in
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Figure 2.6: Determination of the g-factor gss from the QPC subband-splitting: (a-c) Results from
experimental measurements on a sample of similar design as that discussed in Sec. 2.1 and (d-f)
respective fRG calculation results. (a,d) Derivative of the measured (calculated) conductance
with respect to the gate voltage Vc (Ṽc), shown by red dots (black lines) and plotted versus Vc

(Ṽc) for several magnetic fields B (B̃) at a constant interaction strength characterized by Vt (U)
as indicated. The occurring local maxima are marked in both panels (blue dots). In (d) B̃min

∗,0.5
is drawn in (red square) being B̃min

∗ for the interaction strength U/τ = 0.5. (b,e) Local maxima
separation as indicated by the arrows in (a,d) in units of energy ∆E, plotted as a function of
magnetic field for several interaction strengths Vt and U , respectively, as indicated. The ∆E
were determined in the experiment by fitting a pair of Gaussians (gray lines in (a)) to the data,
and were read out directly from the calculated results. (To convert ∆Vc in (a) to ∆E in (b),
Vt-dependent conversion factors a = ∆E/∆Vc are used, as listed in the legend of (b), obtained
approximately from nonlinear transport measurements [24, 29].) (c,f) |gss| (main panels) and
∆hfo (insets), plotted versus Vt and U , which were extracted by linear fits to the data in the
large B (B̃) range such as in (b,e) using ∆E ' gssB + ∆hfo. The red line in (c) ((f)) is a
error-weighted linear fit (guide to the eye).

Fig. 2.6(b), increases about linearly for large fields (B � B∗). The inferred g-factors gss

and the offsets at high magnetic fields ∆hfo (linear extrapolations of the high-field trend
to B = 0) are summarized in the main panel and the inset of Fig. 2.6(c), respectively.
Both are observed to increase with raised Vt and therefore with stronger interactions U .
This increase of gss and ∆hfo with U is verified by the calculated results Figs. 2.6(d-f)
(equivalent representation such as in Figs. 2.6(a-c)) which confirms that both serve as
measures of the effective interaction strength. Moreover, the qualitative accordance of
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the measured and calculated gss in Figs. 2.6(c) and 2.6(f) confirms the relation between Vt

and U (being tested at B > 0).
Eventually it is concluded that: (1) Local interactions are the reason for the anomalous

enhancement of the effective electron g-factor |gss| in the CCR of the QPC [24, 25, 29, 34].
This enhancement could further be reproduced in Fig. 2.6(f) by assuming no spontaneous
spin polarization (at B = 0) (compare Sec. 2.2). Hence it is consistent with the results
of this Chapter 2 and of Chapter 3. And (2) the experimental observation of ∆hfo 6= 0
[24, 29, 73] can be understood as well by assuming spontaneous spin polarization to be
absent. This further confirmation of the experiment by the model Sec. 2.2 additionally
reinforces the inferred results (Chapter 2 and Chapter 3).

2.3.2 Linear quantum point contact conductance

Next the calculated QPC conductance is compared with the experimental results around
the first spin-degenerate plateau for varying temperature as well as magnetic field. This is
shown in Fig. 2.7 for the measured (Figs. 2.7(e-h)) and calculated (Figs. 2.7(a-d)) conduc-

tance g(Vc) and g(Ṽc), respectively. The invariant relative interaction strengths are indi-
cated via Vt and U . The measured pinch-off curves g(Vc) are plotted versus ∆Vc = Vc−V0.5

with V0.5 being determined by g(V0.5) = 0.5 (at B = 0, T = T0). The magnetic field de-
pendence is shown (left y-axis) in Fig. 2.7(e) as well as in Fig. 2.7(a) (fRG results) and
Fig. 2.7(c) (SOPT results for comparison) for several magnetic fields and constant temper-

atures T , T̃ as indicated. In addition, the fRG result of Fig. 2.7(a) is shown spin-resolved,
g↑ and g↓, in Fig. 2.7(b) with the noise factor N plotted versus g in the inset. Similarly
to the magnetic field dependence, the temperature dependence is compared in Fig. 2.7(f)
and Fig. 2.7(d) for zero magnetic field. The matching colors both for the magnetic field
and the temperature dependence are chosen to provide comparability. The measured con-
ductance g(Vc = const) for varying magnetic field (at T = T0) and varying temperature
(B = 0) is depicted in Fig. 2.7(g) and Fig. 2.7(h), respectively, in log-linear scaling (main
panels) and log-log scaling (insets). The black lines in (g) and (h) are the fitted depen-
dencies 1− (B/B∗)2 and 1− (T/T∗)2. They are dictated by the corresponding low-energy
scales E∗ = µBB∗(Vc) and E∗ = kBT∗(Vc) which are plotted in log-linear scaling (right
y-axis) in (e) (for B∗) and (f) (for B∗ and T∗). The symbol colors in Figs. 2.7(e) and 2.7(g)
(Figs. 2.7(f) and 2.7(h)) match in order to highlight the constant Vc values of the dif-
ferent datasets in Fig. 2.7(g) (Fig. 2.7(h)). Both low-energy scales were extracted from

the calculated g curves too and are similarly plotted in the associated panels, B̃∗ in
Figs. 2.7(a) and 2.7(c) (of which the latter is again shown in Fig. 2.7(d)) (solid gray lines)

as well as T̃∗ in Fig. 2.7(d) (black line). Additionally the corresponding energy scale Ṽsd∗
calculated from the non-linear QPC conductance is superimposed in Fig. 2.7(d) (brown
line) for comparison.

The well-known feature Fig. 2.7(e) of the the 0.7-anomaly shoulder of becoming more
pronounced on increasing B eventually passing into the spin-split plateau [24, 27–29] is
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Figure 2.7: (a-d) Calculated QPC conductance g(Ṽc/Ωx) using (a,b) fRG and (c,d) SOPT: (a)
Linear response g(Ṽc, B̃) and (b) spin-resolved components g↑ and g↓ for several B̃ as indicated

(T̃ = 0, U = 0.5τ). Additionally (a) shows the low-energy scale B̃∗(Ṽc) at U = 0 (dashed)
and U = 0.5 (solid gray line) on a log-linear scale on the right y-axis, having a minimum B̃min

∗
marked by the vertical dashed line. Inset of (b): Noise factor N = 0.5

∑
σ gσ(1 − gσ) plotted

versus g. (c) g for several B̃ (T̃ = 0) and (d) g for various T̃ (B̃ = 0). B̃∗(Ṽc) (gray line) is
shown in (c) and repeated in (d), T̃∗(Ṽc) (black) and Ṽsd∗(Ṽc) (brown line) are added to (d) and
B̃min
∗ is again indicated (vertical dashed line). (e,f) Measured pinch-off curves g(Vc), plotted as

functions of ∆Vc = Vc−V0.5. The gate voltage V0.5 is determined by g(V0.5) = 0.5 at B = 0 and
T = T0. (e) g for various magnetic fields B parallel to the 2DES (T = T0) and (f) g for various
temperatures T (B = 0), as indicated. Colors in (e) and (f) are chosen to provide comparability
with the theory curves in (a,c,d) with the correspondence |e|∆Vc ∝ −Ṽc. (g,h) Experiments:
(g) g(B)/g(B = 0) as function of B (T = T0) and (h) g(T )/g(T = T0) as function of T (B = 0),
shown on log-linear scales (insets show their differences to unity on log-log scales) to emphasize
small values of B and T . Colored symbols distinguish data taken at different fixed Vc-values,
indicated by equal symbols and dashed lines of corresponding colors in (e,f). Black lines in (g)
and (h) show 1 − (B/B∗)2 and 1 − (T/T∗)2 which determine the corresponding scales B∗(Vc)
and T∗(Vc), respectively. The resulting energies E∗ = µBB∗(Vc) and E∗ = kBT∗(Vc) are plotted
versus Vc on a log-linear scale in (e) (for B∗) and (f) (for B∗ and T∗).

well reproduced in Fig. 2.7(a) where the agreement was optimized by using U as a fit
parameter. The confirming calculated results further allow to investigate the magnetic
field evolutions of the corresponding spin-resolved conductances g↑ and g↓ in Fig. 2.7(b)
which show a strong asymmetry. Although the bare barrier heights for spin ↑ and ↓ are
shifted symmetrically by ∓B̃/2, g↓ is decreased to a greater extent than g↑ is increased.
This is caused by exchange interactions. Increasing the spin-up density near the CCR
center strongly raises the (Hartree) barrier, and more so for spin-down than for spin-
up electrons, due to the Pauli principle. It is most pronounced in the sub-open regime
where the Hove-ridge-induced peak in χtot emerges (compare Fig. 2.4(j)). Thus this spin
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asymmetry directly induces the calculated resulting magnetoresponse in Fig. 2.7(a). The
imbalance of g↑ and g↓ further accounts for the asymmetric evolution of the noise factor
N , shown in the inset of Fig. 2.7(b), which agrees qualitatively with the experiment [28].

However, at B̃ = 0 there is g↑ = g↓ indeed, reflecting the assumption imposed on the
theory that no spontaneous spin splitting occurs (see Sec. 2.2).

Since the fRG approach is limited to the case of zero temperature and zero source-
drain voltage, for which no inelastic scattering occurs, SOPT is used instead in order
to qualitatively access the inelastic regime (at fixed U). Figs. 2.7(c) and 2.7(d) show the

SOPT results for the linear conductance g(Ṽc) calculated for several magnetic fields and

temperatures T̃ = kBT , respectively. As reproduced by the fRG calculations, at raised
B̃ the calculated shoulder in Fig. 2.7(c) gets more pronounced and eventually turns into
the spin-split conductance plateau. Moreover, the further distinct feature of the 0.7-
anomaly of becoming increasingly more pronounced with raised temperatures, shown in
Fig. 2.7(f), is reflected in the SOPT result in Fig. 2.7(d) albeit to a lesser extent. For the
SOPT, though, the conformity is fulfilled except for one constraint: For the low magnetic
field dependence and the low temperature dependence, the experimental pinch-off curves
in Figs. 2.7(e) and 2.7(f) show observable 0.7-shoulders whereas in the respective SOPT
curves in Figs. 2.7(c) and 2.7(d) the shoulders are hardly visible. In contrast to this failure
of SOPT, the more powerful fRG approach does reproduce the weak shoulder even for
B̃ = T̃ = 0, as discussed above and apparent from the black g(Ṽc) curves of the fRG and
SOPT results in Figs. 2.7(a) and 2.7(c).

As it is already plotted in Fig. 2.7 for comparison with the familiar QPC conductance,
in the following section the low-energy scales B∗, T∗, and Vsd∗ of the response of the QPC
conductance are inferred and examined in more detail.

2.3.3 Limit of low-energy excitations

In this section the characteristics of B, T , and Vsd in the limit of low energies are discussed.
In this limit the model calculations yield three predictions which are all shown to be
consistent with the results of the performed measurements:
(I) For a given Ṽc, the leading dependence of the nonlinear conductance gnl on B̃, T̃ and

Ṽsd is predicted to be quadratic. This implies a valid expansion of the form

gnl(B̃, T̃ , Ṽsd)

gnl(0, 0, 0)
' 1− B̃2

B̃2
∗
− T̃ 2

T̃ 2
∗
− Ṽ 2

sd

Ṽ 2
sd∗

(2.5)

for B̃/B̃∗, T̃ /T̃∗, Ṽsd/Ṽsd∗ � 1. B̃∗, T̃∗ and Ṽsd∗ are Ṽc-dependent energy scales which
determine the strength of the anomalous deviation of g around 0.7GQ for finite interac-
tions U 6= 0. Though inferred for a QPC, Eq. 2.5 constitutes a key characteristic of the
Fermi-liquid theory description of the Kondo effect in QDs and thus establishes a funda-
mental link between both regimes. The smaller these scales, the stronger the B̃-, T̃ -, or
Ṽsd-dependencies of g at a given Ṽc. The relevant measurement results are shown in the
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Figure 2.8: Comparison of low-energy scales from theory and experiment. (a) SOPT results
(“model II”): Ṽc dependence of the conductance g (thick black line) and the low-energy scales
B̃∗ (gray), T̃∗ (black), and Ṽsd∗ (brown line) (identical to the corresponding data in Fig. 2.7(d)).
(b) Equivalent experimental results for g, µBB∗, and kBT∗ (compare Figs. 2.7(e) and 2.7(f)) and
eVsd∗ as a function of ∆Vc = Vc − V0.5. V0.5 is defined by g(V0.5) = 0.5 (at B = 0, T = T0).

above Figs. 2.7(g) and 2.7(h) (Sec. 2.3.2) for the quadratic B- and T -dependencies, respec-
tively, and were extracted from Fig. 2.10(a) for the Vsd-dependence (see Sec. 2.3.5). They
all confirm the behavior Eq. 2.5. For smaller conductances where the presuppositions
B � B∗, T � T∗, or Vsd � Vsd∗ are invalid the measured B-, T -, and Vsd-dependencies of
g deviate from the quadratic behavior by bending upward and tending toward saturation
(compare Figs. 2.7(g) and 2.7(h)).

Furthermore, in the sub-open regime 0.5 . gnl(0, 0, 0)/GQ . 0.9

(II) all crossover scales depend exponentially on Ṽc,

B̃∗, T̃∗, Ṽsd∗ ∝ exp[−πṼc/Ωx] . (2.6)

This prediction extracted from the SOPT calculations is summarized in Fig. 2.8(a) (same
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Figure 2.9: Calculated ratios of the low-energy scales Ṽsd∗/T̃∗ (solid lines) and B̃∗/T̃∗ (dashed
lines) as a function of Ṽc in units of the longitudinal QPC constriction curvature Ωx for various
interaction strengths U (using SOPT, “model II”, Ωx = 0.04τ).

graphs as in Fig. 2.7(d)) which shows B̃∗ (gray line), T̃∗ (black line), and Ṽsd∗ (brown line)
log-linearly scaled exhibiting adequately linear behavior in the sub-open regime. And
finally,
(III) the ratios of the low-energy scales, such as B̃∗/T̃∗ and Ṽsd∗/T̃∗, are essentially inde-

pendent of Ṽc. The latter is already foreshadowed by Fig. 2.8(a), however, it is revealed

quantitatively in Fig. 2.9 where B̃∗/T̃∗ (dashed) and Ṽsd∗/T̃∗ (solid lines) are plotted versus

Ṽc in the sub-open regime for several interaction strengths U , as indicated by the color
coding. Accordingly, for lower values of U the ratios are expected to be independent of
the exact operation point in the sub-open range, whereas for increased U theory predicts
not only a shifting value of the ratios but also an accreting slight dependence on Ṽc,
though the influence remains insignificant for U ≤ 0.35τ . The fundamental reason for
the latter is that despite both, B and T , shift the effective barrier height for electrons
(spin-asymmetrically in case of B, spin-symmetrically for T ), T additionally introduces
inelastic scattering in contrast to B. Changes in barrier height are described by the
Hartree contribution whereas inelastic scattering is ruled by the Fock contribution, with
both depending differently on U and on Ṽc. This leads to the observed induced offsets of
the ratios as well as the finite Ṽc-dependence which sets in.

Both conclusions (II) and (III) are remarkably well confirmed. This is evident from
the comparison with Fig. 2.8(b) which summarizes the experimentally determined energy
scales E∗ = µBB∗(Vc) (gray) and E∗ = kBT∗(Vc) (black dots) as well as E∗ = eVsd∗ (brown
dots). The experimental Vsd∗ were extracted from the leading quadratic dependence of the
curvature of the measured ZBP (see Sec. 2.3.5) in g(Vsd) around Vsd = 0. Compared to B∗
and T∗, Vsd∗ exhibits larger error margins owing to a comparatively larger signal-to-noise
ratio. Log-linearly scaled, all three experimental scales in the sub-open regime are nearly
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straight and have roughly the same slope confirming nearly exponential Vc-dependences
at nearly invariant ratios.

In addition, the experimental results Fig. 2.8(b) are also consistent with the predicted
behavior in Fig. 2.8(a) that all three scales feature a local minimum, located around 0.7GQ

within the sub-open region. The minimum in Vsd∗, yet appearing broader (at the similar
y range) in comparison to the prediction, is directly revealed in Fig. 2.8(b). The decrease
of T∗ clearly shows a saturating behavior. And, though not covered sufficiently far toward
the correspondingly expected minimum, the measured B∗ range turns out to be consistent
with each low-energy scale exhibiting a minimum, equivalent with the strongest response
in g, close to g = 0.7GQ. At these low-energy excitations, the QPC conductance thus

behaves similar to that of the Kondo effect in QDs. The deduced behavior Eq. 2.6 for T̃∗
is also in accord with previous experiments [27] as well as with calculated results derived
from a perturbative treatment of interactions using WKB wavefunctions [72].

As it was shown in Fig. 2.4(j) (Sec. 2.2.1), 1/B̃∗(Ṽc) is predicted to have a local max-
imum in the sub-open regime just before the onset of the exponential dependence of
Eqs. 2.6. The shape and the position in Ṽc of this peak are roughly equal to that of χtot

(dashed and solid blue lines in Fig. 2.4(j)), except for the fact that the latter has a finite
offset due to the nonzero QPC spin susceptibility in the open regime. Thus, in addition
to the conclusions (I-III) which were experimentally supported, the model predicts that

(IV) 1/B̃∗, which sets the strength of the low-B magnetoconductance response, is about
proportional to the spin susceptibility χtot in the CCR. These above four characteristics
(I-IV) of the very similar behavior of the 0.7-anomaly and the QD in the Kondo regime
are referred to as “0.7-Kondo similarity” in the text and are explored further in Chapter 3.
Moreover, based on the finding Fig. 2.4(j) the particular correlation between B̃∗ and the
spin susceptibility will be elaborated on in more detail in Sec. 3.3.2 below.

2.3.4 The similarities between the 0.7-anomaly and the
Kondo effect

This section further explores the 0.7-Kondo similarity, the outstanding finding that many
low-energy properties of the 0.7-anomaly (including (I-III) of Sec. 2.3.3) show similarities
to those seen in transport through a KQD [27], a quantum dot which hosts an odd
number of electrons hence leaving a single electron spin magnetic moment unscreened.
Early indications led to the proposal that a QPC harbors a quasi-bound state whose
local moment induces the Kondo effect [39–42]. In contrast, the Hove-ridge scenario fully
explains the 0.7-anomaly including its various experimentally demonstrated attributes and
it neither includes any correlation to nor imposes any necessity for an actually emerging
Kondo effect. In particular, no indication is found that the 0.7-anomaly is related to a
single localized spin (e. g. compare statement (iii) in Sec. 2.2.1). No similarities between

the Kondo effect and the 0.7-anomaly are expected at high excitation energies (& B̃∗)
where the Kondo effect is governed by the very unscreened local magnetic moment. This
is also elaborated on comprehensively in Chapter 3.
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2.3. Comparison between theory and experiment

However, the low-energy behavior of the 0.7-anomaly in QPCs and the Kondo effect
in QDs indeed does show remarkable similarities. According to the model calculations,
the fundamental cause is that both exhibit a spin singlet ground state which goes hand
in hand with spatially confined spin fluctuations. The difference between both regimes,
that for a KQD these fluctuations arise from the screening of the localized spin whereas
for a QPC they are generated by the extended structure of the Hove ridge, is decisive only
at high-energy scales. On the other hand, the similarity of both regimes, that the spin
fluctuations are spatially well localized due to the KQD’s localized spin and the QPC’s
van Hove ridge influence which is restricted to the CCR, governs at low-energy scales only.
The spin fluctuations are characterized by the exponentially small energy scales in both
regimes which accounts for the similar low-energy transport properties of a QPC and a
KQD.

2.3.5 Nonlinear excitations: the zero-bias peak

Finite excitation energies are now investigated in more detail for the case T̃ , Ṽsd > 0
where inelastic scattering sets in. First the non-linear differential conductance gnl is
analyzed as function of source-drain voltage Vsd which is shown in Fig. 2.10(a). gnl(Vsd)
is measured at B = 0 around Vsd = 0 for several constant Vc values between pinch-off
(gnl → 0) and the first conductance plateau (gnl → 1). The corresponding calculated non-
linear conductance is equally plotted in Fig. 2.10(b) (for T = 0) and the corresponding

dependence on B̃ is exemplarily shown in Figs. 2.10(d-f) for several magnetic fields as
indicated. The respective locations of Figs. 2.10(d-f) on the pinch-off curve are indicated
by the color-coded dots, matching those in Figs. 2.10(b) and 2.10(c).

Experimentally, gnl shows a ZBP at Vsd = 0 [27, 32, 35], as observed in Fig. 2.10(a),
where the ZBP appears strongest in the sub-open regime (0.5 . g/GQ . 0.9) but contin-
ues to be visible even very close to the pinch-off [32]. This characteristic ZBP occurrence
is reproduced by the calculated result Fig. 2.10(b), in particular including its appearance
at g < 0.5GQ. Furthermore, the ZBP splits with increasing magnetic field on a Vc-
dependent B-scale which is smallest if g is close to 0.7GQ [27]. It is further qualitatively
reproduced by the calculated conductance in Figs. 2.10(d-f) showing the ZBP that splits

into two subpeaks if B̃ & B̃∗(Ṽc) depending on the center potential Ṽc. According to the
calculations, in the sub-open regime a ZBP arises even without interactions. However,
interactions modify it twofold: a finite Ṽsd (i) causes a net charge increase at the barrier
resulting in a reduced transmission due to Coulomb repulsion, and (ii) opens up a finite
phase space for inelastic backscattering. Both effects strongly depend on the interacting
LDOS Aj(ω) near µ, which is shown in Figs. 2.10(g) and 2.10(h) versus site j and energy

ω, color-coded for two constant gate voltage values Ṽc/Ωx = 0 and −0.75 (red dashed lines
which correspond to those in Figs. 2.10(i-n)). Hence (i) and (ii) are strongest when the
Hove ridge apex lies around µ (as depicted in Fig. 2.10(g), or in Fig. 2.4(g) of Sec. 2.2.1).
However, the Hove ridge intersects µ for g < 0.5 too (compare Fig. 2.4(f) in Sec. 2.2.1).
This explains the experimental observation that the ZBP is present even close to the
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Figure 2.10: (a-f) Zero-bias peak (ZBP): (a) Non-linear conductance gnl = g(Vsd) as function

of source-drain voltage Vsd, measured at several Vc (T = T0, B = 0). (b) Calculated gnl(Ṽsd)

results for several Ṽc (T̃ = B̃ = 0) and (c) linear conductance g(Ṽc) (B̃ = T̃ = 0). (d-f) gnl

for three different Ṽc-values (identical dot colors in (b-f)) and different B̃ as indicated. The
increase of B̃ causes the ZBP to split into two subpeaks if B̃ & B̃∗. (g,h) Interacting LDOS
Aj(ω) (color-coded) shown for two constant gate voltage values, Ṽc/Ωx = 0 and −0.75 (red
dashed lines). (i-n) Equilibrium transmission probabilities: (i,j) Elastic T el

σ , (k,l) inelastic T in
σ ,

and (m,n) total transmission probability Tσ corresponding to (g,h), plotted versus energy ω for
different temperatures T̃ as indicated. The shown calculations were performed using SOPT with
the remaining parameter values as indicated.

pinch-off of the QPC [32]. The above-mentioned mechanisms (i) and (ii) apply to the
case of raised temperatures too.

The equilibrium total transmission probability Tσ(ω) = T el
σ (ω) + T in

σ (ω) (for

B̃ = Ṽsd = 0) consisting of the elastic and the inelastic contribution can be used to

demonstrate the influence of inelastic scattering due to finite Ṽsd or T̃ . In Figs. 2.10(i-n)

the three constituents are shown at two different gate voltages Ṽc (correspondent to

Figs. 2.10(g) and 2.10(h)) and for three different temperatures T̃ . At T̃ = 0 (black curves)
T in
σ (ω) in Figs. 2.10(k) and 2.10(l) vanishes at ω = µ due to absent phase space for

inelastic scattering. But it is increasing on changing ω away from µ (corresponding

to Ṽsd 6= 0) which causes a corresponding decline of the elastic transmission T el
σ in

Figs. 2.10(i) and 2.10(j) and thus induces a narrow “low-energy peak” in T el
σ around ω = µ.

Raising the temperature T̃ increases the probability for inelastic scattering. The corre-
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spondingly increased minimum in T in
σ (ω) (Figs. 2.10(k) and 2.10(l)) smears out, accompa-

nied by a respective decrease and broadening of the T el
σ (ω) peak (Figs. 2.10(i) and 2.10(j)).

The result is a temperature-induced reduction in the total transmission Tσ(ω), shown in
Figs. 2.10(m) and 2.10(n), which entails a corresponding decline in the QPC conductance
g, as observed in Figs. 2.7(d) and 2.7(f) in Sec. 2.3.2. This reduction of Tσ(ω) is stronger

for Ṽc/Ωx = 0 (Figs. 2.10(g) and 2.10(m)) than for −0.75 (Figs. 2.10(h) and 2.10(n)) be-
cause the probability for electron-hole pair creation during inelastic scattering is largest
when the Hove ridge apex lies closest to µ. The fact that the total transmission proba-
bility adopts a significant dependence on temperature due to interactions in the sub-open
regime is consistent with the experimental fact that the Mott relation, which is based on
the assumption of noninteracting electrons, is violated in case of the thermopower near
g ' 0.7 [26].

Hence, the characteristic decline in the QPC conductance around 0.7GQ at raised
T , causing the dominating 0.7-anomaly at intermediate temperatures, is qualitatively
explained by the model. Furthermore, both the emergence of the ZBP in the nonlinear
transport response regime Vsd 6= 0 and its decrease, observed in the linear response regime,
on raised magnetic fields due to the occurring splitting of the ZBP are covered by the
model calculations. These constitute further crucial features of the QD-related Kondo
effect that are very similarly observed in the QPC around 0.7GQ. They cause the low-
energy conductance response to T , Vsd, and B, of which the extracted low-energy scales
T∗, Vsd∗, and B∗ were already presented and discussed in Sec. 2.3.3.

2.4 Conclusions

The theoretical evaluation showed that the QPC transmission in the sub-open regime
is explained by a governing Hove ridge, a strong local maximum in the LDOS around
the QPC constriction center. The combined analysis of the qualitatively well agreeing
experimental and calculated results revealed that the 0.7-anomaly and the ZBP can be
consistently explained by the amplification of interaction effects of “slow” electrons due
to the enhanced LDOS at the locations where the Hove ridge crosses EF. Interactions
cause a reduction of the conductance at finite source-drain voltage Ṽsd due to the raise of
the effective local charge in the CCR that induces stronger Coulomb repulsion and due
to inelastic backscattering, leading to the actual emergence of a ZBP. Furthermore, the
onset of interactions induced by finite temperatures causes the ZBP to become reduced due
to additional inelastic backscattering. This not only explains the experimentally verified
interlinked appearance of the 0.7-anomaly and the ZBP. It also clarifies how the actual 0.7-
shoulder is amplified due to a diminished ZBP at increased temperatures. This illuminates
the peculiar dominance of the 0.7-shoulder over the regular QPC conductance pattern
at intermediate temperatures of a few kelvins due to remaining considerable inelastic
backscattering of “slow” electrons around EF at the Hove ridge.

The theory showed that the QPC saddle point potential curvature Ωx determines the
peak value, the width as well as the energy of the Hove ridge with respect to the band
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Chapter 2. Origin of the 0.7-anomaly

bottom of the potential at the QPC constriction center. The latter explains the various
experimentally observed locations 0.5 < g/GQ < 0.9 of the 0.7-anomaly, depending on the
various constriction-defining gate and heterostructure geometries used which can generate
different curvatures at the barrier top. The occurrence of the anomaly at 0.7GQ was
attributed to a parabolic barrier top. The fact that the Hove ridge is governed by Ωx

further implied that all local LDOS-dependent quantities such as the spin susceptibility,
the elastic transmission and the inelastic scattering rate gain a dependence on the specific
shape of the QPC channel barrier.

The theoretical model predicts that (1) the local spin susceptibility strength peaks
in the sub-open regime around 0.7GQ where the interactions around EF are strongest.
(2) This local maximum in the spin susceptibility is accompanied by the strongest magne-
toconductance response of the QPC, which (3) correspondingly induces an asymmetrically
decreasing QPC transmission of the spin-resolved QPC channels at increasing magnetic
field B̃. The importance of the local interactions was reflected in the obtained remark-
able result that at a large enough interaction strength the calculated conductance g(Ṽc)
already exhibits a distinct 0.7-anomaly even in the case of vanishing magnetic field and
temperature, B̃ = T̃ = 0. Hence, in combination with the calculated induced asymmetry
in the spin-resolved conductances g↑ and g↓ on raising B̃, the model fully explains the
magnetoresponse of the 0.7-anomaly.

Eventually it could be demonstrated experimentally and theoretically that the low-
energy excitations on ∆B > 0, ∆T > 0, and ∆Vsd > 0 of the QPC conductance around
the 0.7-anomaly exhibit exceptional similarity to the respective low-energy conductance
responses of a QD in the Kondo-effect regime. This termed 0.7-Kondo similarity was
expressed in the identical quadratic dependence of the conductance on B/B∗, T/T∗, and
Vsd/Vsd∗ as well as the similar dependence of the low-energy scales B∗, T∗, and Vsd∗ on
the CCR center potential Vc and their nearly constant mutual ratios. The inferred the-
oretical prediction that all three energy scales exhibit a local minimum at g ∼ 0.7GQ,
equivalent with the maximum conductance response strengths, could be partly confirmed
experimentally.

The located fundamental cause of this common behavior is that the 0.7-anomaly and
the Kondo QD have a spin singlet ground state that shows spatially confined spin fluc-
tuations. However, the fundamental origin in both cases proved to be different. It arises
from the screened localized spin in the Kondo QD whereas it is induced by the interaction
of “slow” electrons at the spatially confined Hove-ridge-dominated area. Indications were
presented showing that this very difference becomes important at higher energy excita-
tions, a point which is elaborated on in the following Chapter 3. As a crucial consequence,
it was shown that the 0.7-anomaly and thus the 0.7-Kondo similarity can be explained
consistently by the established Hove-ridge scenario which included the explicit constraint
of zero spontaneous spin polarization at B = 0 and therefore excluded an actually present
quasi-bound state that induces the actual Kondo effect.

In the model calculations of the temperature dependent QPC conductance, though, it
turned out to be more difficult to reproduce a distinct 0.7-anomaly. A cause could be the
restriction of on-site interactions U imposed here.
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Chapter 3

Comparison between a quantum
point contact and a quantum dot

In Chapter 2 systematic experimental and theoretical investigations of the sensitivity of
the QPC conductance on the temperature T , the magnetic field B, as well as the source-
drain DC bias voltage Vsd were presented. The conductance in the regime of the 0.7-
anomaly in the limit of low-energy scales was shown to be similar to that of a QD showing
the Kondo effect. The similarity was referred to as “0.7-Kondo similarity”.

In this chapter the concept of the 0.7-Kondo similarity is further pursued by studying
both experimentally and theoretically the continuous crossover between a QPC and a QD
in general, and between the 0.7-anomaly and the Kondo effect in particular, in terms
of the geometry of the constituting 2DES potential. The measurements presented in
this Chapter 3 were performed with the experimental setup used to obtain the results in
Chapter 2 as explained in Sec. 2.1. First characteristics of the sample conductance and
properties of the model in the transition regime are discussed in Sec. 3.1 and Sec. 3.2. The
crossover is investigated by means of the magnetic field dependence of the conductance
in Sec. 3.3.1. Section 3.3.2 and Sec. 3.4 present a theoretical analysis of the low-energy
scale B̃∗ and the the spin susceptibility in the CCR which in particular reflects local
spin fluctuations. Beyond that, a more comprehensive analysis of the similarities and
differences between the Kondo effect and the 0.7-anomaly is provided in Sec. 3.5.

3.1 Sample layout and characteristics

The smooth reshaping of the potential landscape in the 2DES is achieved experimen-
tally by suitably tuning Vc and Vs at a fixed Vt = 0.8 V such that it crosses over from a
saddle point potential defining a QPC (compare Fig. 3.2(b)) to a symmetric local min-
imum defining a QD (compare Fig. 3.2(c)). The corresponding calculated effective 1D
potential barrier shape that mimics this crossover changes from a single barrier (compare
Figs. 3.2(d-f)) to a symmetric double barrier (compare Fig. 3.2(g)). The top of the single
barrier is parabolic only in a relatively narrow range of gate voltages.
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Figure 3.1: Measured geometric crossover between a QD and a QPC: Raw data of the linear-
response two-terminal differential conductance g (main panel) which has already been corrected
for the finite leads resistance and the corresponding transconductance dg/dVc (inset, color-
coded) as a function of center gate voltage Vc and side gate voltage Vs. The measurements for
the detailed analysis of the 0.7-anomaly (see Chapter 2) were performed at the constant side
gate voltage Vs = −0.4 V because the first plateau of g is observed to be flat there implying a
parabolic shape of the barrier top according to the calculations. The features which are marked
by the arrows are explained in the text.

Apart from being essential for studying this crossover experimentally, the high tun-
ability of the used layout also turned out to be very useful in dealing with disorder effects.
As known from experiments dealing with the statistical evaluation of the conductance of
a multitude of QPCs [74], both the local disorder potential and small irregularities in the
lithographically defined nanostructure can considerably affect the transport properties
of a QPC. The multi-gate device allows to compensate for such effects to some extent
because the individually tunable gate voltages dynamically reshape the constriction in
real space and real time with high flexibility. It can be monitored in situ experimentally
since disorder effects appear as additional features in transport such as small additional
resonances on top of the conductance plateaus which respond to the variation of external
parameters differently compared to the 0.7-anomaly. Therefore the layout allows tuning
the gate voltages such that disorder effects are negligible or absent within the conductance
range of interest.

Figure 3.1 shows the raw data, merely corrected for the lead resistance, of the dif-
ferential conductance g measured as a function of Vc for several Vs at B = 0. g(Vc)
exhibits pronounced Coulomb blockade oscillations as function of Vc (labeled exemplar-
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ily) for lower Vs and near pinch-off. The observed Coulomb blockade confirms that the
CCR constitutes a single, well-defined QD with a significant Coulomb charging energy
(referred to as QD regime in Fig. 3.1). By increasing Vs the Coulomb blockade oscillations
entirely disappear within a broader range around Vs = −0.9 V (also depending on the
conductance plateau number) due to the declining local electrostatic potentials around
the side gates which eventually become smaller than the electrostatic potential around
the center gates. In this transition process the localized QD states disappear and a QPC
(QPC regime in Fig. 3.1) remains.

The adjacent center and side gates in the experimental configuration exhibit finite
electrostatic coupling due to the close proximity. A negative voltage Vs applied to the
side gates induces depletion of 2DES electrons also in their surroundings, e. g. below the
center gates. The gates coupling is thus reflected in an emerging tilt in the Vc-Vs plane
which is observed to be roughly linear. It is traceable in Fig. 3.1 using e. g. the pinch-
off voltage Vc where the conductance vanishes, Vc(g → 0). The stronger residual 2DES
depletion below the center gates on reducing Vs produces a similar effect as if Vc would have
been lowered simultaneously. In order to retain a given working point on the conductance
curve, e. g. the pinch-off, the coupling has to be compensated by a correspondingly more
positive Vc.

The broad QD regime displays a combination of both 1D conductance steps and
Coulomb blockade oscillations. The latter are most pronounced at the transitions between
conductance plateaus (0 < g < 1, 1 < g < 2, . . . ) and occur in clusters with a rather
similar structure. This is best visible in the inset of Fig. 3.1 which shows dg/dVc of the
data in the main panel using a color scale. The repeating pattern of Coulomb blockade
oscillations suggests the coexistence of a QD and a not yet (fully) occupied 1D subband of
the CCR. This feature occurs simultaneously to already fully occupied lower 1D subbands
that add QPC behavior at g > 1. It causes the charge configurations of the QD to be
very similarly repeated at adjacent QPC conductance plateaus when the number of fully
occupied 1D subbands changes by one.

As also evident from the inset of Fig. 3.1, when Vs becomes more negative, the width
of the Coulomb blockade gaps within each cluster tends to increase which causes each
cluster to fan out. The broader Coulomb blockade gaps agree with the expected response
to the correspondingly increased barriers of the QD confinement potential which effectively
deepens the potential well of the QD further that increases its charging energy. Whenever
a Coulomb-oscillation peak enters a conductance plateau at g = 1, 2, . . . the respective
peak maxima of the QD pass into narrow conductance dips, some of which are marked
by solid arrows in Fig. 3.1. This emergence is compatible with Fano resonances between
the 1D channel of the QPC and localized states of the QD.

In addition, in the QPC regime several shallow oscillations with larger oscillation
periods emerge on the conductance plateaus which vary as a function of Vs. They are
visible in the inset of Fig. 3.1 and, as an example, some are marked by dashed arrows in the
main panel of Fig. 3.1. The oscillations vanish only in a narrow region around Vs ' −0.4 V
(regarding the first QPC plateau) and its oscillation periods tend to be shorter at lower
Vs. They can be interpreted as Fabry-Perot-like resonances. According to the performed
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calculations, they are expected to emerge if the barrier shape deviates from parabolic.
The origin and the behavior of these Fabry-Perot-like resonances is discussed in Sec. 3.2.1
and Sec. 3.2.2 below. Also stronger dips on the conductance plateaus are observed more
locally, one of which is indicated by an ellipse in Fig. 3.1. They can be interpreted as either
caused by electron reflection arising from spatially confined disorder close to the CCR,
maybe in the form of individual defects, or remnants of the Fabry-Perot-like resonances
(compare inset of Fig. 3.1).

The tunability of the multi-gate sample has the important advantage that it allows
to avoid impacts such as Fabry-Perot-like resonances or disorder-related deviations in g.
Indeed, at side gate voltages near Vs ' −0.4 V almost no deviations are visible, in partic-
ular yielding a completely flat first conductance plateau. As a consequence, Vs = −0.4 V
was used for the detailed measurements of the 0.7-anomaly discussed in Chapter 2 and
in Sec. 3.3.2 below. An additional option would have been to apply multiple individual
voltages to each of the four side gates or the two central gates to overcome possible disor-
der effects. However, based on the result Fig. 3.1 such corrections were not needed. This
furthermore allowed to maintain a high degree of symmetry of the electrostatic potential
comprising the CCR. As a consequence, the multi-gate layout facilitated the detailed ex-
perimental analysis of the geometry dependence of the conductance of the CCR covering
both the QPC and the QD regime.

Fig. 3.1, in particular the inset, reveals another trend worth noticing. By increasing
Vs the plateaus in g(Vc) become broader. This broadening indicates that the lateral
confinement in the QPC constriction becomes stronger with more positive Vs leading to
a larger characteristic energy spacing between the 1D subbands, as expected in the clean
QPC case. The stronger lateral confinement also induces a stronger on-site exchange
energy U between the electrons. The spacing is also a function of the top gate voltage Vt

(see Sec. 2.3.1).

3.2 Modeling the crossover regime

As has been explained in detail in Sec. 2.2, “model I” was used to describe the QPC-QD
crossover and to evaluate the degree to which the conductance behavior characteristic
of the Kondo effect reaches into the QPC regime. The shape of Ej (compare Eq. 2.1
and Eq. 2.2, Sec. 2.2) in the modeled crossover is foremost governed by two parameters,

Ṽc and Ṽs, which mimic the effects of the central and side gate voltages in the experi-
ment, respectively. An illustration of the resulting 2DES potential landscape is shown in
Figs. 3.2(b) and 3.2(c) (color-coded and vertical axis) for a QPC and a QD, respectively.
The gates (gray) in both panels are only shown once in Fig. 3.2(b). Fig. 3.2(a) depicts the

sample layout again for comparison. The condition Ṽc < Ṽs defines a QD potential with
side barrier height Ṽs (Fig. 3.2(g)) whereas Ṽc ≥ Ṽs yields a QPC potential with a single
central barrier (Figs. 3.2(d-f)). The barrier top in the QPC regime is consistently chosen
to be parabolic in order to eliminate potential resonances on the conductance plateaus
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Figure 3.2: (a) Scanning electron micrograph of the gates layout with center gates (c), side gates
(s) and top gate (t), shown again (compare Fig. 2.1) for the illustration of panel (b) and (c). (b,c)
Artist’s depiction of the 2DES potential landscape (vertical axis and color-coded) for a QPC
(b) and QD (c) with the gates (gray structures) labeled again. High electrostatic potential is
shown red/yellow, regions of lower potential are blue, and the Fermi sea is darkened. (d-g) The
modeled effective potential Ej is shown with respect to the chemical potential µ of the reservoirs
(dashed line) and plotted versus the site j along the source-drain direction in the CCR. Four
different barrier shapes (black lines) are depicted which are generated in the calculations by
means of Ṽc, Ṽs, Ṽt, and the spatial distance between the side barrier maxima js chosen about
half as large in (d) compared to (e-g). The former three mimic the effect of the corresponding
gate voltages in the experiment according to the labeling in (a). Shown are (d) a short QPC
with a flat potential top (Ṽc = Ṽs), (e) a QPC with a parabolic potential top (Ṽc > Ṽs), (f) a
long QPC with a flat potential top (Ṽc = Ṽs), and (g) a QD (Ṽc < Ṽs).

(see Sec. 3.2.2). These parabolic barrier tops are parametrized by

Ẽ(x) ' Ṽc + EF −
mΩ2

xx
2

2~2
, (3.1)

defined with respect to the 2DES Fermi energy EF (linear response regime). Ṽc is the
barrier height and the barrier curvature is characterized by the energy scale Ωx. In this
regard, “parabolic” means that the quadratic x-dependence of Eq. 3.1 holds over an energy
range of at least Ωx gauged from the barrier top. Or equivalently, it at least holds up to
x-values for which E(0) − E(x) . Ωx. In each case where details regarding Ej are not
explicitly specified Eq. 2.2 with js = 60 and N ′ = 150 is used in this chapter.

In the calculations of the transitions between the QPC and the QD, trajectories includ-
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ing a wide flat barrier top which remains close to EF during the crossover were purposely
omitted. The reason is that this condition can promote a very low electron density ac-
companied by strongly increased interactions in the whole elongated region (e. g. if the
barrier top lies close below EF). Such strongly increased interactions are expected to
lead to Wigner crystal states and they can induce a splitting of the ZBP into multiple
subpeaks [42, 75], conditions very dissimilar from the aimed 0.7-anomaly regime.

3.2.1 Local density of states and transmission

In this section the geometrical properties of “model I” (see Sec. 2.2) are discussed without
taking into account interactions. In Fig. 3.3 the noninteracting LDOS A0

j(ω) (color-coded)
and the noninteracting transmission probability T 0(ω) are evaluated. Both are plotted
as a function of energy ω for five different choices of the barrier shape and A0

j(ω) is also
spatially resolved. The individual characters of the barriers are labeled for clarity. The
selection represents various stages of the geometric crossover between a QPC and a QD.
For the parabolic QPC in Fig. 3.3(b) the LDOS has a broad single ridge (yellow, red)
which follows the shape of the band bottom ωmin

j (solid black line). The ridge represents
the van Hove ridge which is smeared out within the CCR on an energy scale that is
determined by the barrier curvature Ωx. The corresponding increase of the energy ω from
below to above the barrier top yields a change in the transmission T 0(ω) from 0 to 1 in

the form of a smooth single step of width ∼ Ωx and centered at ω ∼ Ṽc. By raising the
side gate potential using Ṽs at a fixed Ṽc, the overall barrier top can eventually become
flat, as shown in Fig. 3.3(c), accompanied by a narrowing ridge in the LDOS (the height
of the LDOS maximum right above the barrier increases accordingly). This barrier which
is now flatter than the parabolic shape causes added oscillations in the noninteracting
transmission T 0(ω) in Fig. 3.3(c) around the onset of the plateau at T 0(ω) = 1. These
oscillations are interpreted as Fabry-Perot-like resonances and discussed systematically in
Sec. 3.2.2.

The case of smaller Ṽs (larger Vs in the experiments) creates a short flat barrier as
shown in Fig. 3.3(a). The short flat barrier is calculated using a short barrier with a
quartic top (see Eq. 3.2 below, with n = 4). The transmission in Fig. 3.3(a) also shows os-
cillations around T 0(ω) = 1 though they exhibit a distinctly larger period as compared to
Fig. 3.3(c). This finding fits in with the experimental results (see Sec. 3.1): the resonances
in the measured conductance g(Vc) were observed in the whole QPC regime covering a flat
barrier close to the QD regime as well as a shorter barrier for larger Vs with an oscillation
period that tended to be longer for the shorter barriers.

When the central gate parameter Ṽc is lowered below Ṽs the QD regime is entered in
Figs. 3.3(d) and 3.3(e). The LDOS now exhibits a single-particle spectrum, bound states
which are narrow in energy and spatially localized inside the QD potential. Each bound
state generates an additional sharp resonance in the noninteracting transmission. How-
ever, the onset of the plateau at T 0(ω) = 1 and therefore full transmission is still deter-
mined by the broad LDOS ridges right above the left and right barrier top. Both ridges
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Figure 3.3: Left: Calculated noninteracting local density of states A0
j (ω) (color-coded) as a

function of the site j and the energy ω. Right: Calculated noninteracting transmission T 0(ω)
versus energy ω (B̃ = 0). The five panels show five potential barrier shapes which can develop
during the QPC-QD crossover: (a) a QPC with a short flat barrier, (b) a QPC with a parabolic
barrier, (c) a QPC with a long flat barrier, (d) a shallow QD with just one discrete orbital state,
and (e) a deeper QD containing two discrete states.

are remnants of the van Hove ridge of the QPC regime in Figs. 3.3(a-c), as evident from
the transmission curves in panels (c) and (e), which exhibit very similar Fabry-Perot-like
resonances near T 0(ω) = 1. The situation in Figs. 3.3(d) and 3.3(e) of sharp resonances
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Chapter 3. Comparison between a quantum point contact and a quantum dot

occurring simultaneously with a single conductance step definitely indicates the coexis-
tence of a QD and a QPC. These coexisting features which occur toward and within the
QD regime are in fact observed in the experiments (see Sec. 3.1 and Sec. 3.3.1).

The LDOS shows interference fringes in the outer flanks of the CCR which depend
on the semiclassical velocity vj(ω) of an electron with kinetic energy ω − ωmin

j at site
j. At a constant energy ω, both the oscillation period of the fringes and the LDOS
at a given interference fringe maximum as a function of j scale as 1/vj. The spatial
dependence causes the different behavior of the LDOS at the flanks of the potential
of the CCR in e. g. Figs. 3.3(a) and 3.3(b): For the short, flat barrier with steep flanks in
Fig. 3.3(a), the velocity vj of electrons with ω ' µ increases rapidly for increasing distance
|j| from the barrier center. As a consequence, for increasing |j| the local maxima and
the oscillation period of the LDOS at ω ' µ decrease rapidly too. In contrast, for the
parabolic barrier in Fig. 3.3(b) the potential decreases much more slowly with increasing
|j|. The corresponding slower increase of vj at ω ' µ for increasing |j| generates a weaker
decline of the local maxima and the oscillation period of the LDOS at ω ' µ.

As a result, various details of the calculated conductance in the mixed QPC-QD regime
are in accordance with the experimental observations. It substantiates that the theory is
able to model of the transition between the QPC and the QD regime.

3.2.2 Fabry-Perot resonances

In this section, the Fabry-Perot-type conductance resonances are discussed which occur
in the form of wiggles, or decaying oscillations. Such oscillations were observed in the
measured conducance (Sec. 3.1) as well as in the calculated results in terms of the nonin-
teracting transmission T 0(ω) in the QPC-QD-crossover regime (Sec. 3.2.1).
T 0(ω) shows Fabry-Perot-like resonances if the very top of the QPC barrier has a

flatter-than-parabolic shape. The behavior of the resonances is summarized in Fig. 3.4
showing T 0(ω) (main panels) and the respective longitudinal barriers as a function of the
site x around the barrier center (insets). T 0(ω) is plotted for a sequence of barrier shapes
with barrier tops given by

Ẽ(x) = Ṽc + EF − Ωx

( |x|
lx

)n
, lx =

√
2~2

mΩx

, (3.2)

where lx is a x-independent characteristic length scale depending on the electron mass
m. For a truly parabolic barrier top (n = 2, black lines in Fig. 3.4), T 0(ω) is a smooth
function of energy given by [17]

T 0(ω) = [e2π(Ṽc−ω)/Ωx + 1]−1 . (3.3)

The transmission for QPC-barrier tops with n ≥ 2 are shown in Fig. 3.4(a). In the regime
of the open QPC channel T 0(ω) ' 1 resonances emerge that become more pronounced
for flatter barrier tops. Such resonances in the form of deviations from the completely
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Figure 3.4: Calculated noninteracting transmission T 0(ω) for several barrier shapes in longi-
tudinal direction, as indicated with matching colors in the insets. The different barriers are
governed by |x|n at the barrier top according to Eq. 3.2, as shown by the color tables.
(a) Flatter-than-parabolic barriers with n ≥ 2 which arise during the QPC-KQD crossover.
(b) Sharper-than-parabolic barriers with n ≤ 2 which are shown for comparison.

flat conductance plateau regularly emerge in the measured conductance of longer QPCs
[42, 75]. Fig. 3.4(a) thus indicates that their combined origin can be attributed to the
particular flatness of the generated QPC barrier. Hence the measured QPC-QD transition
(compare Sec. 3.1) most likely covers the regime of a long QPC with a barrier top flatter
than parabolic. Furthermore, in combination with the results of Sec. 3.2.1, it suggest that
a short QPC with steep flanks can also be viewed as a flatter-than-parabolic barrier which
shows Fabry-Perot-like resonances.

Examples of barrier tops with n ≤ 2 in Eq. 3.2 are shown for comparison in Fig. 3.4(b).
In those cases the transmission increases monotonically without showing any resonant
behavior. As depicted in the inset, decreasing n tends to flatten the potential flanks
spatially which generates a narrower transition toward the first conductance plateau at
T 0(ω) ' 1.
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Chapter 3. Comparison between a quantum point contact and a quantum dot

3.2.3 Adaption of the theoretical model

For the fRG method (Sec. 2.2) used for the evaluation of the effect of interactions on the
properties of the CCR in the transition regime between a QPC and a QD adaptions were
required. First the calculations were restricted to T̃ = 0. Despite the restriction, the
calculated conductance reproduces the measurements at low temperatures of T ∼ 30 mK
in each case very well. Also, as already explained in Sec. 2.2, the fRG approach in the case
of the QPC-QD crossover is based on a priori absent spontaneous symmetry breaking,
mj(B̃ = 0) = 0, as well as on the coupled ladder approximation used in the form of the
static fRG in some cases. The results for the zero-temperature conductance obtained via
this static simplification are qualitatively the same as those obtained by a “dynamic”
calculation that retains the frequency dependence [76].

Because the effective expansion parameter for static fRG is Uj · A0
j(0), the fRG equa-

tions which describe vertex flow do not converge for geometries that cause A0
j(ω) to be

sharply peaked near the chemical potential µ = 0. This difficulty arises in the regime of
a shallow few-electron QD with wide barriers near µ. As a consequence, the vertex flow
was neglected for calculations that include this regime (referred to as “without vertex
flow”). Vertex flow was included, however, for all remaining fRG results shown in this
chapter. It is further essential for obtaining the 0.7-shoulder in the QPC conductance
even at B̃ = T̃ = 0.

3.3 Comparison between theory and experiment:

magnetoconductance

In this section, the low-temperature conductance for the geometric crossover between a
QPC and a QD is compared with the corresponding calculated zero-temperature results at
various magnetic fields. Further a discussion of the similar magnetoconductance features
in the KQD and QPC regimes is given and the characteristic low-energy scale B̃∗ is
examined.

3.3.1 Transition between a quantum point contact and a
quantum dot

In Fig. 3.5 the experimental data is compared with the fRG results for the crossover be-
tween a QPC and a QD at three different magnetic fields including the data at B = 0
which was already shown in Fig. 3.1. Figures 3.5(d-f) present the experimental data for
the low-temperature (T0 ' 30 mK) linear conductance g(Vc, Vs) for three different mag-
netic fields. Each dataset is shown around the first conductance plateau and plotted as a
function of Vs and ∆Vc = Vc−V pinch

c being Vc defined with respect to a Vs-dependent refer-
ence value V pinch

c (Vs) compensating for the coupling of the side- and center-gates actions.
V pinch

c (Vs) is chosen so that it satisfies g(V pinch
c ) = 0.5 in the QPC regime (Vs & −1 V)
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3.3. Comparison between theory and experiment: magnetoconductance

Figure 3.5: QPC-QD transition: (a-c) Conductance g(Ṽc, Ṽs) (fRG “without vertex flow”, T = 0)
in the range 0 ≤ g ≤ 1, calculated at three different magnetic fields B̃ as indicated, and plotted
as function of the center potential Ṽc for a large number of different Ṽs. (d-f) Analogous to (a-c),
but showing experimental data for the conductance g(Vc, Vs) repeatedly measured as a function
of Vc, each time for a different constant Vs, for three magnetic fields B as indicated (T = 30 mK).

g(Vc, Vs) is plotted as function of the relative center gate voltage ∆Vc = Vc−V pinch
c with respect

to a Vs-dependent reference value V pinch
c (Vs). The choice of V pinch

c is indicated by the red line in
panels (h) and (i), respectively. Orange lines in (a-f) mark the 0.7-anomaly, red lines mark the
locations of Kondo valleys, black arrows in (d-f) mark Fano resonances. (g) Combined plot of the
three colored pinch-off curves from (d-f), demonstrating the suppression of the Kondo-enhanced
conductance in the Kondo valleys (solid arrows) on raised B. The dashed arrow indicates the
anticipated adjacent Kondo valley. (h) Raw data set g(Vc, Vs) at B = 0 (corresponding to (d)),
and (i) its derivative dg/dVc (color-coded). (h) and (i) are shown again (compare Fig. 3.1) for

referencing V pinch
c (Vs).

and that it shifts linearly with Vs in the QD regime, with a slope such that the line does
not cross any QD resonance. V pinch

c is marked by the red line in Figs. 3.5(h) and 3.5(i),
respectively (showing the raw data of Fig. 3.5(d)). Figs. 3.5(a-c) show the equivalent re-
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Chapter 3. Comparison between a quantum point contact and a quantum dot

sults from the model calculations at T = 0, plotted as a function of Ṽc and Ṽs which act
independently of each other.

The covered Vs range in Figs. 3.5(d-f) clearly contains both the QPC regime showing
a single conductance step toward g = 1 and a forming QD as evident from gradually
emerging well separated Coulomb blockage oscillations toward more negative Vs. The
regimes are labeled in Fig. 3.5(d) (as well as in Fig. 3.5(a)). Furthermore, the measured
QPC-QD transitions are observed to be smooth for all B. Both the single contained
regimes and the smooth transitions between them are well reproduced by the calculations
Figs. 3.5(a-c) which also consistently exhibit the main features of the measured results. In
the QPC regime which is determined by the single potential barrier, both measurements
and calculations display the typical magnetic field dependence of the 0.7-anomaly which
is marked by orange lines in Figs. 3.5(a-f): The transition from a weak shoulder around
g ' 0.7GQ for B = 0 to an emerging plateau g → 0.5GQ for increasing magnetic field.

In the QD regime both the measurements and the calculations also exhibit features
indicative of the Kondo effect. In a limited Vc (Ṽc) range every second Coulomb-blockaded
conductance gap is increased. That displays the Kondo-typic raise for charge states with
an odd number of electrons in the QD. In such Kondo valleys, highlighted in Figs. 3.5(a-f)
by red lines, the Kondo-enhanced conductance shows the expected strong suppression
with increasing magnetic field. Figure 3.5(g) illustrates this for the experimental data by
summarizing the three colored pinch-off curves from Figs. 3.5(d-f) for three comparable
values of Vs. These three values of Vs are specified in Fig. 3.5(g) and are not all the same.
The cause is attributed to a change in the local electrostatic environment of the CCR
between the respective measurement runs, most likely due to a random charge fluctu-
ation, which temporarily shifted the potential landscape by a small but non-negligible
amount (disregarding the slight shift, the full dataset Fig. 3.5(e) fits in consistently). Two
Kondo valleys are marked by the solid red arrows in Fig. 3.5(g). The dashed red arrow
in Fig. 3.5(g) marks an expected third Kondo valley toward more negative Vc where the
Kondo effect is insignificant since the coupling to the leads has declined considerably,
inducing TK � T . The strongly decoupled QD center is also expressed by the decreased
conductance peak values in that regime due to the CCR being almost pinched-off.

As a result, the measured and calculated conductances prove to cover both the 0.7-
anomaly in the QPC and the Kondo effect in the QD regime. However, the QPC and
the QD regime persist next to each other and adjoin around an unchanged Vs ∼ −0.9 V
(Ṽs ∼ −0.03τ) at all B (B̃). In particular, no indications are found for a common behavior
or a mixing of the 0.7-anomaly of the QPC and the raised Kondo conductance in the KQD
regime.

3.3.2 Connection to the spin susceptibility

First the measured and the calculated magnetoconductance are compared at two fixed
side gate potentials of which one forms a KQD and the other forms a QPC in the CCR. For
the QPC, the experimental data at Vs = −0.4 V is used in order to have a smooth plateau
at g = 1 without any Fabry-Perot resonances (compare Sec. 3.1) while for the calculations
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Figure 3.6: Comparison of the measured and calculated magnetoconductance g/GQ of the KQD
and the 0.7-anomaly. (a,b) Experimental conductance curves for a KQD and a QPC, given
by two different Vs-values as indicated, at various magnetic fields B, plotted versus the offset
center gate voltage Vc with respect to the Kondo valley center VQD and the middle of the
first conductance step V0.5 (T = T0 = 30 mK). (a) is taken from Fig. 3.5, (b) corresponds
to Fig. 2.7(e). (c,d) fRG calculation results plotted analogously to (a,b) for the conductance
g(Ṽc, B̃) at fixed Ṽs of a (deep) KQD containing nKQD = 49 electrons and for the lowest QPC
subband. (e,f) Respective calculated low-energy scales B̃∗(Ṽc) (red lines, using Eq. 2.5) and
inverse excess spin susceptibilities 1/(πχexc(Ṽc)) (blue lines, using Eq. 3.6) for the KQD and the
QPC, each plotted on a joint log-linear scale. In both cases, the gate voltage Ṽc0 where B̃∗ is
minimal is drawn in (dashed line).

the case of the truly parabolic barrier top is considered. Figures 3.6(a) and 3.6(b) show
the corresponding measured conductance of a KQD and a QPC, respectively, at several
magnetic fields 0 ≤ B ≤ 5.8 T. This characteristic tuning-gate voltage and magnetic field
dependencies in both regimes are qualitatively reproduced by the associated fRG results
Figs. 3.6(c) and 3.6(d). The conductance of the KQD shows a well-pronounced Kondo
plateau for zero magnetic field that is suppressed to form a dip if B is raised, as expected
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Chapter 3. Comparison between a quantum point contact and a quantum dot

theoretically [68, 77] and experimentally [4]. The conductance step of the QPC exhibits
a 0.7-shoulder at B = 0, which shows the well-known suppression into a double step on
increasing B [24, 27, 29] whose width is proportional to B. Note that even for B = 0 the
0.7-shoulder in Fig. 3.6(d) is much more pronounced than in Fig. 3.5(a) above. The reason
is that the fRG approach without vertex flow used for the latter underestimates the effects
of interactions compared to fRG including vertex flow, used for Figs. 3.6(c) and 3.6(d).

Hence the established model (Sec. 2.2) very well reproduces the characteristic Vc-
dependence of the magnetoconductance of a KQD too, in addition to the confirmed QPC
characteristics including the 0.7-anomaly regime. Based on this compliance, the mag-
netic low-energy scale B̃∗ and the spin susceptibility strength χ of the 0.7-anomaly and
the KQD regime are inferred from the model calculations and compared with each other
below.

As shown in Sec. 2.3.3 (see Eq. 2.5), the low-B̃ expansion of the magnetoconductance

of a QPC in the 0.7-regime is characterized by a Ṽc-dependent energy scale, B̃∗: The
smaller B̃∗ the stronger is the magnetoconductance response. The same holds for the
KQD for which this scale corresponds to the Kondo temperature, B̃KQD

∗ = kBTK [78, 79].

The B̃2-dependence of Eq. 2.5 was observed experimentally for a QD [47, 80] whereas for

a QPC it was confirmed by our experiments (Sec. 2.3.3). B̃∗(Ṽc) was extracted from the
calculated results Figs. 3.6(c) and 3.6(d) and is shown in Figs. 3.6(e) and 3.6(f) (red lines).

It features a pronounced minimum, B̃min
∗ , for both KQD and QPC at Ṽc = Ṽc0 (dashed

lines in Figs. 3.6(e) and 3.6(f)) in the vicinity of which it is given as

B̃KQD
∗ ∝ exp [c1(Ṽc0 − Ṽc)

2] , (3.4a)

B̃QPC
∗ ∝ exp [c2(Ṽc0 − Ṽc)/Ωx] , (Ṽc < Ṽc0) , (3.4b)

for the KQD and the QPC, respectively, where c1 and c2 are Ṽc-independent constants.
The B̃∗(Ṽc) dependence in Eq. 3.4a conforms with the theoretical prediction [81] as well as
with the experimental observations [46, 47] for the Kondo temperature of a KQD. Thus
the model correctly replicates the full magnetoconductance of the KQD including this
characteristic exponential dependence of B∗. On the other hand, Eq. 3.4b for a QPC is
confirmed theoretically and experimentally in Sec. 2.3.3.

For the KQD, the scale B̃∗ is inversely proportional to its excess contribution to the
static spin susceptibility χexc at T = 0 [78],

1/B̃KQD
∗ = πχexc , (3.5)

which relates the strength of the magnetoconductance response to that of the local spin
fluctuations. The excess spin susceptibility χexc is defined as the relative susceptibility
averaged over the CCR

χexc(Ṽc) =
∑
j∈CCR

[
χj(Ṽc)− χj(Ṽ ref

c )
]
, (3.6)

where χj is the local spin susceptibility for B̃ = 0 at the site j. Ṽ ref
c is a reference

potential where the magnetoconductance is very small. For a QPC it was chosen at the
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first conductance plateau (g > 0.999) and for the KQD it was chosen in the adjacent

Coulomb-blockade valley of the evenly charged QD (EQD). For the KQD, B̃KQD
∗ and

1/(πχexc) were extracted from the calculated magnetoconductance Fig. 3.6(c) and are

logarithmically plotted in Fig. 3.6(e) in red and blue, respectively (the actual Ṽ ref
c is

indicated). Both very well satisfy the relation Eq. 3.5 for small |Ṽc − Ṽc0| and thus are

consistent with the expectation. For the QPC around the 0.7-anomaly, χexc and B̃∗
extracted from Fig. 3.6(d) reveal that the related result

1/B̃QPC
∗ ∝ χexc , (3.7)

is remarkably closely fulfilled, as shown in Fig. 3.6(f) which is plotted analogously to (e).
Although the inverse character of Eq. 3.7 was generally observed to be present in the
calculations for the QPC around Ṽc0, for Fig. 3.6(f) Ṽ ref

c was actually used as a fit param-
eter producing the shown validity of Eq. 3.7 over an even larger range of gate voltages
Ṽc < Ṽc0. The fact that Eq. 3.7 expresses the behavior of a QPC so well is actually re-
markable. It constitutes a so far experimentally unevaluated prediction in the framework
of the 0.7-Kondo similarity: The fundamental, nontrivial connection between the mag-
netoconductance and the local spin fluctuations of the KQD is expected to be similarly
fulfilled in the 0.7-anomaly regime of a QPC.

The 0.7-Kondo similarity only applies to physical quantities related to low-energy
excitations relative to the ground state such as the magnetoconductance or the spin sus-
ceptibility. The 0.7-Kondo similarity is not a feature of pure ground state properties such
as the actual conductance as evident from the comparison of Figs. 3.6(c) and 3.6(d) at

Ṽc ' Ṽc0 (dashed lines in Figs. 3.6(c-f)) where B̃∗ ' B̃min
∗ implying the strongest mag-

netoconductance response to low-energy excitations. At zero magnetic field the KQD
conductance at B̃min

∗ reaches the peak value of gKQD ' 1GQ in contrast to the corre-
sponding peak conductance gQPC ' 0.7GQ of a QPC. The reason for this difference is
the Kondo resonance of the KQD which can induce full QD transmission mediated by
the Kondo effect. The Kondo resonance reaches the unitary limit gKQD/GQ = 1 in the
center of the Kondo valley for sufficiently low temperatures and well balanced coupling
(see Sec. 1.3). In contrast, the model calculations of the 0.7-anomaly reveal indications
which explicitly exclude an actually emerging localized state (see Sec. 3.4 and Sec. 3.5)
and the absolute QPC conductance is determined by the induced modified elastic trans-
mission and inelastic backscattering due to the Hove-ridge-induced interactions. gQPC

0,0 is
governed solely by the resulting effective height of the QPC barrier which shows a slight
non-linearity when the van Hove ridge passes through the chemical potential, causing
g0,0(Ṽc) to show a slight shoulder around g0,0/GQ ' 0.7 depending on the actual QPC

barrier shape. The maximum value gQPC
0,0 = 1 is reached merely if the QPC barrier height

has become so low that the lowest 1D channel is actually opened.
In addition, the fact that our model well reproduces also the actual Kondo-regime

further substantiates the findings derived from the comparison with the calculated results
in Chapter 2.

59



Chapter 3. Comparison between a quantum point contact and a quantum dot

3.4 Theory prediction for the local spin susceptibility

Based on the results of Sec. 3.3 in this section the 0.7-Kondo similarity is further investi-
gated theoretically. The local density nj, the local magnetization mj, and the local spin
susceptibility χj of the 2DES electrons are calculated as a function of site j at T = 0 and
analyzed in detail focusing on the relation between the magnetoconductance and the local
spin susceptibility in the QPC-QD-crossover regime.

The spatial dependencies of three different potential configurations, with respect to
the uniform chemical potential of the leads µ = 0, are shown in Figs. 3.7(a) and 3.7(b)
for a KQD and a parabolic QPC, respectively. The marking colored symbols label both
the regimes (symbol shapes) and the actual potential in each case (symbol colors). They
indicate the corresponding occurring barrier shapes in all remaining panels Figs. 3.7(c-m).
Figs. 3.7(c-f) compare the spatial dependence of nj and mj of the KQD and the QPC near

pinch-off for equidistant B̃ = 0 (blue) to B̃ = 10B̃∗ (red curve). The densities nj in
Figs. 3.7(c) and 3.7(d) rise toward the filling of the non-interacting leads at the edges of
the CCR (at large |j|). The KQD is shown for nKQD = 9. nKQD refers to nKQD

j summed
up between the two distinct minima in Fig. 3.7(c). The charge near the center of the
KQD is discrete and localized. On the other hand, the QPC shows the local density nQPC

j

in Fig. 3.7(d) which is minimal at the CCR center and which shows no sign of discrete

steps or localization. For B̃ > 0, mKQD
j and mQPC

j in Figs. 3.7(e) and 3.7(f) likewise show
a standing-wave pattern of strongly enhanced oscillations in the CCR with a spatially
varying oscillation period λ ∼ 1/nj of each pattern. However, significant differences

become evident if B̃ increases far beyond B̃∗. mKQD
j of the KQD saturates and the

positions of the corresponding maxima remain unchanged which reveals that the single
spin magnetic moment becomes polarized. Also nKQD

j is maintained independently of

B̃. In contrast, mQPC
j increases without significant saturation for B̃ � B̃∗ and its local

maxima positions shift away from the CCR center. nQPC
j furthermore increases near the

barrier center on raising B̃ as well as reacts in close vicinity. The QPC features indicate
that a smooth redistribution of charge and spin takes place during the polarization of the
CCR.

Moreover, the results Figs. 3.7(g) and 3.7(h) do yield further clues for the multi-spin
distribution of the QPC as opposed to the single spin state of the KQD. Although
χKQD
j,max > 10χQPC

j,max at their respective peak values, the resulting magnetization at the low-

est B̃ in Figs. 3.7(e) and 3.7(f) already shows mKQD
j,max < mQPC

j,max. This contrast in absolute

magnetization strength then becomes even more pronounced for further rising B̃. Hence
it can be concluded from the calculations that in contrast to the KQD which contains a
discrete, localized spin-1/2 local moment, the QPC does not and its CCR contains various
contributing spins which show clear signs of not being localized.

Aside from the above differences at large magnetic fields, both the KQD and the QPC
show two remarkable similarities in the regime of small fields B̃ � B̃∗ which are sub-
stantial for the 0.7-Kondo similarity. First of all, mj vanishes at B̃ = 0 in both cases
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Figure 3.7: QD vs. QPC: comparison of calculated local properties (using fRG including vertex
flow). (a-h) Site-dependent fixed KQD (left) and QPC (right column) geometry. (a,b) Barrier
tops for a KQD and a QPC near pinch-off. The barriers ωmin

j = Ej −EF are labeled by colored
symbols marking the barriers in (c-m). (c,d) Local density nj and (e,f) local magnetization mj

for equidistant fields from B̃ = 0 (blue) to B̃ = 10B̃∗ (red). (g,h) Local spin susceptibility χj .

(i-l) Geometric crossovers: χj (z-axis and color-coded) plotted vs. site j and Ṽc = Ṽj=0 for

four trajectories in the (Ṽc, Ṽs) plane, indicated by the color-coding in (m) which matches the
Ṽc-axes colors. Each panel (i-l) also shows g(Ṽc) for three fields (B̃/B̃min

∗ = 0, ∼ 1, and � 1)
to illustrate each Ṽc-dependence of the magnetoconductance. Red dashed lines mark the gate
voltage Ṽc0 where B̃∗ = B̃min

∗ for both KQD and QPC (red and black dashed lines in (i)). The
trajectories match (i) a QD being charged with 9 to 13 electrons as indicated, (j) a QPC tuned
from pinch-off to an open channel, (k) a transition from a QPC to a KQD with 11 electrons,
and (l) a crossover from a QPC to an even QD (EQD) charged by 10 electrons.

as shown by Figs. 3.7(e) and 3.7(f) (blue lines) which reflects the initial assumption of
absent spontaneous magnetization (see Sec. 2.2). Secondly, the spatial static spin suscep-
tibility χj in Figs. 3.7(g) and 3.7(h) exhibits a strong enhancement in the CCR for both
KQD and QPC that is modulated by standing-wave oscillations which are mapped on
mj (Figs. 3.7(e) and 3.7(f)) at low magnetic fields. The model explains that this enhance-
ment results from an interplay between geometry and interactions. Without interactions,
U = 0, the bare local spin susceptibility in a QPC is directly proportional to the LDOS
at EF, χ0

j = A0
j(0)/2. It hence adopts the spatial dependence of it which reflects the

geometry of the CCR potential. Interactions increase the spin susceptibility because they
increase the spin imbalance if a small magnetic field is applied which favors spin up over
spin down by further depleting the spin-down population. The same reasoning applies to
the KQD in the low-energy regime which exhibits quasi-particles that experience a local
interaction strength proportional to 1/TK [78].
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Chapter 3. Comparison between a quantum point contact and a quantum dot

In contrast to the KQD, the EQD shows no increase in χj whatsoever. This is illus-
trated in Figs. 3.7(i-l) which display χj (vertical axis and color-coded) as a function of site

j and center potential Ṽc. Also the corresponding conductance curves g(Ṽc) are added
for three different magnetic fields projected on each rear vertical plane. Each of the four
panels represents a different trajectory in the (Ṽc, Ṽs) plane corresponding to four types of
geometric crossovers. They are marked by the lines in panel (m) using colors that match

the associated Ṽc-axes in (i-l). Fig. 3.7(i) shows a QD at a fixed Ṽs whose electron number

(blue integers) is increased by lowering Ṽc. It exhibits adjacent odd-even effects for both

χj(Ṽc) and g(Ṽc). The Kondo-plateaus in g(Ṽc) for odd electron numbers (KQDs) are

accompanied by distinct peaks in χj(j, Ṽc) (white lines) whereas the Coulomb valleys for
even electron numbers (EQDs) do not show any comparable feature. Fig. 3.7(j), on the

other hand, shows a QPC at a fixed Ṽs which is tuned in Ṽc from pinch-off to an open
channel with g = 1. The 0.7-anomaly in g(Ṽc) occurs at Ṽc ∼ Ṽc0 (red dashed line) where

B̃∗ is minimal (compare Sec. 2.3.3 and Sec. 3.3.2). The two maxima of χj at Ṽc > Ṽc0 are

merged into a single peak at Ṽc ∼ Ṽc0 where the barrier top is located below EF (green dot
in Fig. 3.7(b)) corresponding to EF crossing the apex of the Hove ridge. The whole char-

acteristics of the shape of χQPC
j (j, Ṽc) in Fig. 3.7(j) (analogously in Figs. 3.7(k) and 3.7(l))

represent a direct “image” of the LDOS including the Hove ridge around EF (compare
Fig. 3.3(b), Sec. 3.2.1).

The remaining two examples represent mixed transitions between a QPC and a QD
that correspond to tilted trajectories in Fig. 3.7(m). Fig. 3.7(k) shows a QPC-KQD
crossover that terminates in an KQD containing 11 electrons (compare Fig. 3.7(i)). χj
exhibits the pronounced pattern of local maxima of the QPC regime (Fig. 3.7(j)) which
start to weaken toward the open-channel regime, transform at a small yet finite mean
magnitude during the crossover (around Ṽc = −0.03τ), and start to increase again close
to the KQD forming its characteristic spatial pattern (Fig. 3.7(i)). During this transition,
no clear indication of a connection between both regimes can be inferred. The positions
of the strongly weakened local χj maxima of both the QPC and the KQD regime seem

to be offset with respect to each other in the Ṽc-j plane, separated by a blurred region.
It should be noted, however, that the trajectories in Figs. 3.7(k) and 3.7(l) were delib-

erately chosen such that the point where the barrier top changes from a local maximum
(QPC) to a local minimum (QD) (around Ṽs = Ṽc) occurs far in the open channel implying
the barrier center including the Hove ridge lying well below EF. These transitions imply
g ' 1 at Ṽs = Ṽc yielding very small spin susceptibilities χj demonstrating that a truly
open channel implies very little spin fluctuations. However, the particular characteris-
tics during the crossover depend on the precise shape of the crossover trajectory (which

can follow any path in the Ṽc-Ṽs plane). For instance, it would be possible to construct
trajectories that entirely avoid the open-channel regime so that g � 1 throughout the
crossover which therefore would sustain a large spin susceptibility. In the light of the cho-
sen trajectories, the above conclusion regarding absent evidence of a link between χQPC

j

and χKQD
j in Fig. 3.7(k) is still correct. The reason is that the interpreted intermediate
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regime fully lies in the open channel with a constant g ∼ 1. Though the local maxima of
χj are decreased they remain visible and transform at the homogeneous conditions within
the channel allowing the comparison.

Eventually Fig. 3.7(l) shows a QPC-EQD crossover ending in a EQD which comprises
10 electrons. The susceptibility χj in the regime of the EQD remains very small and
spatially homogeneous, contrary to the case of the 11-electron KQD in Fig. 3.7(k).

The main conclusion which is drawn from Figs. 3.7(i-l) can be summarized by the
observation that the strong negative magnetoconductance which emerges likewise for both
KQDs and QPCs is consistently accompanied by a strongly enhanced spin susceptibility.
In contrast, in the EQD regime no magneto-response is present and correspondingly for
the EQD, as well as for the open 1D channel, the calculated spin susceptibility is spatially
constant showing a comparatively insignificant magnitude. This yields direct evidence
that the strong negative magnetoconductance, being one of the key features of the 0.7-
Kondo similarity, originates from the fact that QPC contains strong local spin fluctuations
similar to those emerging in the KQD. However, the restriction is crucial that the 0.7-
Kondo similarity applies only for low excitation energies B̃ � B̃∗ owing to the different
predicted spin configurations. For the case of large magnetic fields B � B∗, a continuing
analysis is provided in the subsequent Section 3.5.

This section is concluded by pointing out that Fig. 3.7(j) provides a clue to why the

approximate relation Eq. 3.7 was found to be bound to Ṽc ≤ Ṽc0 only. In the range Ṽc ≤ Ṽc0

the apex of the Hove ridge lies below EF so that for each Ṽc the local spin susceptibility
χi(Ṽc) has just one maximum. Leaving this regime toward Ṽc > Ṽc0 in Fig. 3.7(j) induces a

splitting into two separate maxima of χi(Ṽc), and consequently, the zone of strongest spin
fluctuations around EF is divided accordingly. Eq. 3.7 was deduced from the Fermi-liquid
theory which supposes the strong spin fluctuations to be restricted to a single, spatially
confined region which is not the case for Ṽc > Ṽc0. Consequently, Eq. 3.7 actually becomes
invalid.

3.5 Limit of high-energy excitations

In the previous section it was concluded that the local magnetization mKQD
j of the KQD

clearly saturates at B̃ � B̃∗, in contrast to the continuously rising mQPC
j which shows no

signs of saturation. The difference was attributed to the magnetic moment of a localized
single spin present in the KQD as compared to the continuous smooth rearrangement
of the spin configuration of various contributing electrons in the QPC. In this section a
theoretical analysis of the high-energy excitation limit B̃ & B̃∗ of the magnetoconduc-
tance G, magnetization m, and charge n is performed for each QPC and KQD regime
individually. It is demonstrated that this yields further evidence for the above finding
that the behavior of the strongly interacting electrons in the QPC differs substantially
from the characteristics of the localized magnetic moment in a KQD beyond low-energy
scales.

For the comparison, the total charge and magnetization in the “inner” region of the
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Chapter 3. Comparison between a quantum point contact and a quantum dot

CCR is defined by

ninner =
∑

|j|≤jinner

nj , minner =
∑

|j|≤jinner

mj . (3.8)

For the KQD geometry, the inner region is set between the two confining maxima of the
KQD potential at ±jKQD

inner . The remaining sites j in the CCR with jKQD
inner < |j| ≤ N ′

lie outside the dot. Their total charge (or magnetization) contribution is proportional
to the length of the outer flanks thus representing an extensive quantity. Therefore the
remaining sites were excluded for the discussion of the intensive properties of the KQD.
For the QPC geometry there is no natural separation between an inner region and the
barrier’s outer flanks. Therefore results are shown for inner regions of three different
chosen sizes, jQPC

inner = 150, 60, and 30, each at a fixed N ′ = 150 (they all yield qualitatively
similar results, as shown below).

The KQD and QPC findings are additionally compared to fRG results for the single-
impurity Anderson model (SIAM) describing a local energy level εd = Ṽc with Coulomb
repulsion U for double occupancy (compare Sec. 1.3). The SIAM level has a width Γ due
to hybridization with the electrons of a conduction band of width D (with D � U � Γ).
In case of the SIAM, the CCR consists of just one single central site which comprise the
local d-level, hence nSIAM

inner = nSIAM
d and mSIAM

inner = mSIAM
d .

Figure 3.8 compares G, n and m of a KQD (middle column) with that of a QPC

(right column) toward large B̃. The left column summarizes the respective SIAM results
G, nSIAM

d , and mSIAM
d for comparison. Panels (a-c) of Fig. 3.8 show G/GQ as function of

the tuning potential Ṽc for SIAM, KQD and QPC at five magnetic fields B̃ in units of the
Ṽc-independent reference field strength B̃min

∗ = min[B̃∗(Ṽc)] corresponding to the strongest

magnetoresponse. The color-coded arrows indicate five chosen Ṽc-values each where the
corresponding results of the remaining panels were calculated. The conductance G/GQ

(panels d-f), the charge n (g-i), and the magnetization m (j-l) are shown as functions

of the magnetic field normalized to B̃min
∗ . Additionally, the conductance G(B̃) scaled to

G(B̃ = 0) (m-o) and the magnetization m (p-r) are plotted as a function of the magnetic

field scaled to the individual Ṽc-dependent energy scale of the magnetoconductance, B̃/B̃∗.
In case of the SIAM and the KQD, the blue, green, and orange curves correspond to the
local-moment regime defined by G/GQ(B̃ = 0) ' 1 in (a,b). In the local-moment regime
the local charge in (g,h) lies close to an integer whereas the respective red and purple
curves correspond to the mixed-valence regime.

The comparison of the three regimes in Fig. 3.8 yields the following main features:
(I) The extracted local charge variations nSIAM

d , nKQD
inner , and nQPC

inner at all five center poten-

tials Ṽc depend rather weakly on the magnetic field B̃ (g-i).

(II) For small magnetic fields B̃/B̃min
∗ , the characteristic regime of the 0.7-Kondo sim-

ilarity, the magnetization increases linearly with the field (j-l). In the regime of large
magnetic field
(III) the plateau in mSIAM

d of the SIAM asymptotically approaches 0.5 (j), characteristic
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Figure 3.8: Calculations (fRG including vertex flow) of the large-B̃ behavior for the single-
impurity Anderson model (SIAM, left), a KQD (middle, same parameters as in Fig. 3.6(c)), and
a QPC (right column, same parameters as in Fig. 3.6(d)). (a-c) Conductance for five values of
B̃ each. Vertical dashed lines indicate the Ṽc0 where B̃∗(Ṽc0) = B̃min

∗ . (d-r) Dependence on
(d-l) B̃/B̃min

∗ and (m-r) B̃/B̃∗ at constant Ṽc-values as indicated by the correspondingly colored
arrows in (a-c). (d-f) Normalized conductance, (g-i) the total charge ninner, and (j-l) the total
magnetization minner in the inner CCR, comprising sites |j| ≤ jinner as indicated (Eqs. 3.8).

(m-o) and (p-r): Same data as in (d-f) and (j-l), respectively, though plotted vs. B̃/B̃∗. Each
graph in (m-o) is normalized to G(B̃ = 0). The black dotted lines in (p-r) have the slope 1/π
and indicate the small-B̃ limiting behavior minner = B̃/(πB̃∗) which is expected in the Kondo

limit (Eq. 3.5). Inset of (r): Zoomed in to B̃/B̃∗ → 0.

of a gradually polarizing spin-1/2 local moment, and
(IV) the plateau in mKQD

inner is fairly flat too (k), however, it does not exactly saturate.
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Chapter 3. Comparison between a quantum point contact and a quantum dot

Instead it slowly increases past 0.5 for sufficiently large fields B̃/B̃min
∗ . The reason is that

the KQD in Fig. 3.8 not only contains one single spin-1/2 local moment. Yet many (48)

additional levels are occupied of which several start to contribute to mKQD
inner if B̃ becomes

comparable to the level spacing of the QD.
(V) The QPC magnetization continues to increase beyond 0.5 toward B̃/B̃min

∗ � 1 with-
out emerging saturation (l). This reflects the fact that the QPC barrier lacks the isolated
“inner region” of a KQD. Instead, it is entirely composed of outer flanks along which
electrons of both spin species can move freely. As the magnetic field is increased, the
magnetization of the QPC can therefore increase without imposed limitation. Thus the
slope of mQPC

inner(B̃/B̃
min
∗ ) in (l) depends on the width of the inner region: the larger jinner

the stronger the initial linear increase in magnetization (dotted, solid, dashed curves).
A larger spatial QPC region on average contains more electrons whose higher number of
possibly contributing spin-magnetic moments can induce the larger overall magnetization
at a given B̃.

The conductance G and the magnetization m of the SIAM and the KQD on the one
hand and the QPC on the other hand show different characteristics when plotted as a
function of the magnetic field scaled to the center-potential-dependent low-energy scale
B̃∗(Ṽc):
(VI) For the SIAM within the local-moment regime (blue, green, and orange curves) the

scaled conductances G(B̃)/G(0) (m) and the magnetizations (p) each collapse onto a sin-
gle curve.
(VII) The same approximately happens for the conductance (n) and magnetization (q) of
the KQD. The deviations again arise from the additional occupied QD levels that can con-
tribute to the total magnetization. Thus for both the SIAM and KQD, the Ṽc-dependent
low-energy scale B̃∗ governs both the small- and large-field behavior of the magnetization
and the conductance.
(VIII) The QPC conductance (o) and magnetization (r) also about collapse for B̃ � B̃∗
in the sub-open regime Ṽc < Ṽc0 (green, orange, and red curves, compare the inset in (r)).

Though both do not show a tendency to collapse onto a single behavior at large B̃/B̃∗.
(IX) The large-field behavior of the QPC magnetization is instead approximately deter-

mined by the Ṽc-independent scale B̃min
∗ (l): the magnetizations as a function of B̃/B̃min

∗
very closely overlap in the limit of not too large B̃/B̃min

∗ (the range where the mQPC
inner curves

clearly deviate from each other is not resolved in (l)).

(X) The tail of m(B̃/B̃∗) is linear in the small-field limit (B̃ � B̃∗) where the magnetiza-

tion m is governed by B̃∗ for the SIAM (p) and the KQD (q) in the local moment regime

and for the QPC in the sub-open regime Ṽc < Ṽc0 (resolved in the inset of panel (r)).

Thus at low B̃ the spin susceptibility ∂m/∂B̃ is proportional to 1/B̃∗ . Due to (VI,VII)
it implies that for the SIAM and the KQD in the local-moment regime the magnetiza-
tion curves m(B̃/B̃∗) have the same slope for B̃/B̃∗ → 0. It is illustrated by the blue,
green, orange lines in (p,q) which all have slope 1/π (dashed black lines), in accordance
with Eq. 3.5 (Sec. 3.3.2). The magnetizations of the QPC in the sub-open regime (green,
orange, and red curves in the inset of (r)) have mutually similar slopes, though not equal
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to 1/π (dashed black lines in (r)), confirming Eq. 3.7 (Sec. 3.3.2).
In summary, the conductances and magnetizations of the SIAM and the KQD are

governed by the single energy scale B̃∗(Ṽc) in the entire B̃ range which represents a
characteristic trait of the Kondo effect (VI,VII). In contrast, for the conductance and the

magnetization of a QPC this universal scaling is only approximately fulfilled for B̃ � B̃∗
at Ṽc < Ṽc0 and the smaller B̃ gets the more the approximate scaling resembles a true
scaling (VIII). Hence this further confirms that although the characteristics of the 0.7-
anomaly and a QD which acts in the Kondo-effect regime are very similar, making both
similarly appearing physical effects, in the range of high magnetic fields both clearly differ
the more from each other the larger B̃ gets. There actually exist experimental evidence
already that the total magnetic moment of a QPC around 0.7GQ clearly exceeds 0.5 [44].
This can furthermore be attributed to the quantitative amount of spin-polarization which
is achievable at most, owing to the non-localization of contributing (partly) polarized spins
in the QPC as opposed to the local single spin-moment which dominates the overall KQD
magnetization. The fact that the small-field limit of the QPC magnetization is governed
by B̃∗ (X) underlies the low-energy Kondo-typical behavior of the QPC conductance
discussed in Sec. 3.3.2.

3.6 Conclusions

The tuning ability of the experimental as well as the theoretical setup proved to be highly
productive. Both measurements and calculations covered the QPC and the KQD regime
as evident from the observed 0.7-anomaly and the raised magnetoconductance in the
Kondo valleys, being Coulomb-blockaded gaps of the unevenly charged QD. The QPC-
QD crossover was investigated in terms of the magnetoconductance at various magnetic
fields B ≥ 0 where the measurements and the calculations uniformly showed a smooth
transition. The good qualitative agreement of the calculated results with the measure-
ments, including all of the main features of the measured conductance, further strengthens
the capability of the model and the results of Chapter 2. It provides evidence that the
restrictions which were conceded from the theoretical point of view are insignificant for
the correct description of the determinative physics of the CCR in the QPC as well as in
the QD regime.

Moreover, the link between the conductance response to the magnetic field and the
spin susceptibility was investigated theoretically. The main conclusion is summarized by
the deduced central prediction: As it holds for the KQD, the observed strong negative
magnetoconductance inseparably implies an strong gain of the local spin susceptibility in
the CCR also in the 0.7-anomaly regime of the QPC, 1/B̃∗ ∼ χexc. This relation can be
considered the fundamental connection that constitutes the microscopic origin of the 0.7-
Kondo similarity and therefore of the 0.7-anomaly since it establishes a link between the
spin fluctuations (cause) and the generated QPC conductance anomaly (effect). Further-
more, the well-established model was shown to predict, for both KQD and QPC, that the
spin susceptibility exhibits a characteristic spatially oscillating pattern around the CCR.
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Its source could be addressed to the interplay between geometry and interactions: the
spin susceptibility inherits the spatial dependence of the LDOS which becomes amplified
by interactions that increase the spin imbalance at finite B̃. The calculations furthermore
revealed that this spatial pattern transforms smoothly during the QPC-QD crossover.

Eventually the regime of excitations at higher energies B̃/B̃∗ � 1 was investigated
theoretically. In this regime the 0.7-Kondo similarity was shown to become invalid due to
the fundamental difference between the underlying physical systems in the 0.7-anomaly
and the KQD case. This became evident by the magnitude of the magnetization at
increasing B̃ which does not saturate in the 0.7-anomaly regime as opposed to the KQD,
caused by a finite number of contributing electron spins in the QPC case which can
built up much stronger magnetizations as opposed to the KQD’s single magnetic moment
which eventually becomes fully polarized. It was bolstered by the calculated conductances
G(B̃/B̃∗) as well as magnetizations m(B̃/B̃∗) each collapsing into a single curve around
the KQD plateau center whereas for the 0.7-anomaly regime they distinctly spread at
B̃/B̃∗ � 1. This showed that B̃∗ governs the full B̃ range of the KQD in contrast to

the validity only at low B̃/B̃∗ in case of the 0.7-anomaly. Additionally, by increasing

B̃ toward the high-energy limit the calculations showed that the spatial distribution of
the local maxima in the magnetization were completely unaffected in the KQD whereas
for the QPC 0.7-regime the maxima clearly shifted spatially away from the CCR center.
This furthermore indicated the ongoing dynamic redistribution of electron spins in the
0.7-regime, as opposed to the fixed governing single electron magnetic moment of the
KQD.
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Optical readout of a single spin state

The theory that was presented and shown to conform to the experiments in Chapter 2 and
Chapter 3 explains the 0.7-anomaly as a result of electron-spin fluctuations emerging lo-
cally at the QPC accompanied by a locally increased electron-spin susceptibility. In prepa-
ration for a possible examination of the predicted increase in the local spin-susceptibility
that is reflected in the local electron-spin polarization in response to a small external
magnetic field additional experiments based on optical techniques were performed.

In this chapter, an experimental setup based on Faraday rotation is presented that
enables the readout of local spin polarization. The Faraday effect as well as the related
Kerr effect are efficient all-optical spin-detection techniques as demonstrated in various
experiments studying spin polarization of electrons or holes in nanoscopic and mesoscopic
semiconductor systems [2, 82–84]. The experimental setup is based on a home-built optical
microscope of confocal resolution enabling spatially resolved detection. The efficiency and
the sensitivity of the microscope setup were assessed by using an initialized spin state of
a single electron state confined in a self-assembled QD as a test bed. The results are
presented and discussed in this chapter.

4.1 Spin detection via Faraday rotation

The detection of spin-magnetic moments of electrons is accomplished by exploiting the
Faraday effect as a form of spin-tagged light-matter interaction. In general, it can occur
if electromagnetic radiation propagates through a medium which is exposed to a static
magnetic field. For linearly polarized light the Faraday effect induces circular dichroism:
the constituting left- and right-handed circularly polarized components experience differ-
ent scattering probabilities which causes different propagation speeds. It imposes unequal
dispersion and thus different refractive indices for both circularly polarized propagating
modes. The difference in the propagation speeds of the circular components generates a
rotation of the polarization plane of the overall linearly polarized light. Hence the Fara-
day effect is also generally referred to as Faraday rotation (FR). The rotation angle is
proportional to the magnetic field component parallel to the propagation direction of the



Chapter 4. Optical readout of a single spin state

interacting light.
The case of light interacting with the magnetic moment of a single spin is slightly

different since the zero-dimensional quantum system is local. However, the underlying
mechanism for the occurring FR is of identical character: it induces a phase shift arising
from the dispersive part of the light-matter interaction which can be exploited in order
to determine single spin-polarization. The complex response function of matter to the
radiation field contains both the absorptive and dispersive terms which are interlinked
by the Kramers-Kronig relation. Even in the limit of single atoms, molecules, or semi-
conductor QDs both terms of the response are experimentally accessible in resonant laser
experiments with remarkable signal-to-noise contrasts [85, 86]. Spin information is ob-
tained whenever the used optical transition obeys spin-selective dipolar selection rules.
The dispersive optical response can be analyzed in a basis which decomposes the photon
polarization (see Sec. 4.2). The extent of spin polarization is given by the scattering cross
section, which in turn is linked to the wavelength λ of the respective optical transition.
As a rule of thumb one can consider the scattering volume of real or artificial atoms to
be of the order of λ3. This limitation for spatial spin sensing with optical techniques may
be overcome in experiments bypassing the diffraction limit [87].

4.2 Experimental setup

The performance of the home-built diffraction-limited microscope setup in terms of the
analysis of local magnetization was evaluated in a liquid-helium bath cryostat at the bath
temperature of 4.2 K. A single electron spin state was initialized by optical means in a
self-assembled QD with typical dimensions of about 10 nm in a controlled environment [88]
and read out with the microscope. Figure 4.1 schematically shows the experimental setup.
The simultaneous spin initialization and detection is performed by two individual tunable
narrow-band CW lasers serving as a pump and a probe laser. A single-mode fiber serves
as an optical path to a micro-objective located in a helium bath cryostat with the base
temperature of 4.2 K. The fiber contains a device (“paddles” in Fig. 4.1) which enables
the compensation for the change in laser-light polarization that is induced by the fiber.
The objective focuses on the sample which is mounted on a compact polarization analysis
unit consisting of a linearly polarizing beam splitter (LPS) and two photo detectors (PD1
and PD2). Thus the PDs provide the normalized transmitted power resolved in a linear
polarization basis. The heterostructure on top of the sample contains a layer of self-
assembled QDs (magenta) as well as a built-in highly doped back gate layer (light blue)
that is contacted electrically via ohmic connections (yellow, grounded). Additionally a
semitransparent global metal gate (light blue) is deposited on top of the heterostructure.

A DC voltage applied to the top gate adjusts the QD interband transition energies
by using the quantum confined Stark effect (QCSE) in the Schottky device [89, 90].
The added AC voltage modulation, supplied by a waveform generator, modulates the
QD transitions via QCSE modulation which serves the highly sensitive readout of the
PDs using differential transmission [91]. Each PD response is analyzed by a separate
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Figure 4.1: Experimental setup for spin polarization analysis: The QD spin initialization and
detection is done separately by a pump and a probe laser, respectively. A single-mode fiber
including paddles for polarization adjustment serves as an optical path to the micro-objective
in a helium bath cryostat at 4.2 K. A linearly polarizing beam splitter (LPS) and two photo
detectors (PD) analyze the light transmitted through the sample in a linear basis. The PD
lock-in readout is performed via modulation of the electric field between the sample gates (light
blue) which sandwich the QD layer (magenta).

transimpedance amplifier (I/V ) as well as lock-in amplifier. The sample positioning with
respect to the micro-objective is provided by a xyz-nanopositioner stack to which the
analysis unit is attached.

The microscope further complies with the analysis of the photoluminescence (PL)
of the QD (not shown in Fig. 4.1). PL readout was exploited in the microscope-test
experiment for the selection of a proper QD. The required optical interband transition
rules of the chosen QD were then mapped out experimentally under an externally applied
magnetic field by aid of the differential transmission technique using one of the PDs.

For the subsequent actual single-spin detection experiment, the paddles are adjusted
so that the optical path of the fiber becomes neutral in terms of polarization deformation,
e. g. incident light of vertically linear polarization is fully mapped on one of the PDs only.
The Faraday-isolator-mediated linear polarization of the pump and the probe laser can
then be adjusted by the respective quarter and half wave plate to (left or right) circular
and 45◦-linear polarization in the basis of the readout unit, respectively. The choice of
the initial 45◦ orientation of the probe beam polarization ensured a maximum signal-to-
noise contrast of either PD signal in the spin detection experiment. The section of the
single-mode fiber which crossed the lab freely toward the cryostat was pinned in order to
maintain the pre-adjusted correction of the polarization deformation.

The experiment can in principle be operated at various temperatures and magnetic
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fields. The implementation of the microscope into a He3-system with a target base tem-
perature of 300 mK is straightforward. Further details of the microscope design are can
be found elsewhere [92].

4.3 Readout sensitivity and spatial resolution

A proof-of-principle experiment for the home-built microscope (Sec. 4.2) was carried out
at a liquid-helium bath temperature of T = 4.2 K where the spectroscopy of an individual
self-assembled QD was used as a test bed of the diffraction-limited performance. A QD-
confined single electron spin was initialized in a known spin state which was detected by
means of Faraday rotation in order to quantify the sensitivity and the spatial resolution.
To this end, the Schottky device was tuned to a gate voltage interval where the chosen
QD is charged with one single electron [88]. The Zeeman splitting at a finite magnetic
field B = 300 mT induces correspondingly blue-sifted and red-shifted interband optical
transitions of negatively charged trion states. In the Coulomb-blockaded QD, selective
optical pumping of the blue (red) trion transition yields spin-state preparation if the trion
decays into the ground state of the red (blue) transition owing to strongly suppressed spin-
flip rates at finite magnetic fields [93, 94].

The optical selection rules of the trion transitions were experimentally identified in
resonant laser absorption experiments via polarization-resolved differential transmission
(Sec. 4.2). The result is shown in Fig. 4.2 which displays a false-color plot of the measured
absorption contrast as a function of the tuning gate voltage and the excitation laser
wavelength for the case of pumping the blue-sifted (a) and red-shifted (b) trion transition
via a σ+- and σ−- polarized laser, respectively. The stable trion states appear within the
gate voltage interval of about −750 mV to −600 mV, as marked by the tilted solid blue
and red lines in Fig. 4.2. In either case the transmission contrast is strongly suppressed
in the center of the plateau due to optical spin pumping with a fidelity of virtually 100 %
[95]. The spin pumping principle is visualized by the reversing arrows in the insets of (a)
and (b). Thus both the upper and the lower branch of the Zeeman split trion transitions
allow for controlled spin initialization.

Optical spin pumping was achieved by resonantly pumping the spin-down state via
the red trion transition at a working point which is marked by the open dot and the
dashed red arrows in Fig. 4.2(b). The spin detection was then carried out by means
of the dispersive QD response [86] to a second linearly polarized (Sec. 4.1) laser which
simultaneously scanned over the blue trion resonance, indicated by the blue upward arrow
in (b). The measured absorption (dispersion) is evaluated in terms of the sum (difference)
of the polarization-resolved transmitted relative intensities ∆TPD1/TPD1 and ∆TPD2/TPD2.
For the detection of the polarization of the transmitted photons in the linear basis the
measured dispersive signal is proportional to the Faraday rotation angle [92].

Figure 4.3(a) presents the measured (dots) absorptive response in differential transmis-
sion (black) and dispersive response giving rise to Faraday rotation (red), plotted versus
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Figure 4.2: All-optical initialization and readout principle of a single electron spin confined in a
self-assembled QD: Main panels: Color-coded differential absorptions (high absorption contrast
is red) as a function of tuning gate voltage and Laser excitation wavelength. In the external
magnetic field of B = 300 mT both the ground states and excited trion states are Zeeman-split,
as indicated in the level diagrams (insets). A σ+- (σ−-) polarized laser resonantly pumps the spin
selective upper (lower) trion transition, marked blue (red) in the inset of (a) (of (b)). After the
Trion recombination, the electron remains shelved in the non-resonant state (reversing arrows
in the insets), leading to an absorption quench on the trion stability plateaus. Each plateau in
(a) and (b) is marked for clarity by a tilted straight line, with colors matching the respective
transitions in the insets. (b) Spin readout: One laser resonantly pumps the red transition for
spin shelving (red circle) while a second laser scans the blue transition (blue dashed arrow).

relative laser energy detuning (solid lines are guides to the eye). A maximum Faraday
rotation angle of about ±0.01 deg was detected near the resonance. The deviations of the
spectra from ideal responses which are indicated by the gray dashed lines are attributed
to the non-linear Fano effect due to quantum interference [96].

Figure 4.3(a) provides the first main result as it allows to experimentally quantify the
sensitivity of the Faraday rotation measurement on a single electron spin confined in a
QD. The optical resonance linewidth of Γ = 10 µeV and a maximum absorption contrast
of 7× 10−4 yields the sensitivity of ∼ 500 µrad/

√
Hz for the microscope setup at a signal-

to-noise ratio (SNR) of 10. This sensitivity is sufficient to allow for a reduction of roughly
a factor of 10 in the scattering contrast or, alternatively, an increase of the same order of
magnitude in the transition linewidth in order to resolve the polarization of a single local
electron spin with SNR = 1 at an integration time of tint = 1 s.

The SNR can be increased further by extending tint. This is shown for different values
of tint in Fig. 4.3(b) (dots). It exhibits a square-root dependence FRSNR = A

√
tint as

expected from SNR = N/
√
N due to the shot noise of N detected probe laser photons as

well as from the corresponding PD-generated electrons and holes (compare Sec. 1.2), with
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Figure 4.3: (a) Results of the spin measurement: Absorptive (black) and dispersive (red) re-
sponses (dots) to the laser scan over the blue Zeeman transition resonance in the presence of
a resonant laser on the red Zeeman transition. It is plotted as a function of the scanning laser
energy detuning relative to the blue Zeeman transition (integration time tint = 50 s). Solid
lines are guide to the eye. The maximum Faraday rotation corresponds to phase shifts of about
±0.01 deg near the resonance. The deviation of the spectra from an ideal scenario (dashed lines)
can be attributed to quantum interference effects. (b) Experimentally obtained signal-to-noise
ratios of the measured rotation angle (dots) for Faraday rotation off a single electron spin-down
state at various integration times tint. It fits a square-root dependence (red) anticipated from
shot noise.

N ∝ tint. The proportionality factor A is determined by the fit (red curve in Fig. 4.3(b))
to the experimental SNR which results in SNR = 10 at tint ∼ s.

Eventually local spin detection was demonstrated by laterally displacing the QD rela-
tive to the focal spot of the micro-objective. For each given displacement, the maximum
Faraday rotation angle caused by a single spin-polarized electron was measured by scan-
ning over the minimum of the dispersive resonance in Fig. 4.3(a). The data are presented
in Fig. 4.4 in a false-color contour plot (main panel) and a 3D color map representation
(inset).

The focal spot dimensions of the microscope setup were determined in an independent
experiment. It revealed a slightly asymmetric spot shape with a full width at half maxi-
mum in X and Y direction of 1.1 µm and 0.9 µm, respectively. The slight asymmetry is
caused by an uni-axial misalignment of the optical fiber within the micro-objective. For
one chosen spot position, the corresponding spot shape is indicated in Fig. 4.4 (dashed
ellipse). It very well coincides with the observed resolution of the Faraday response.
Hence the local spin related Faraday rotation signal has a characteristic spatial distribu-
tion that is determined by the dimensions of the optical microscope spot. Aside from the
preceding experimental inspection of the spot dimensions, it would be straightforward to
readjust the setup in order to correct for a potential focal spot asymmetry and obtain an
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Figure 4.4: Spatially resolved single electron spin polarization. Main panel: False-color contour
plot of the Faraday rotation response (in deg) as a function of the spatial displacement of the focal
spot relative to the QD position (white dot) (the point of origin in the QD plane is arbitrary).
Dashed ellipse: Shape of the focal spot for one single spot position. It is slightly asymmetric,
having diameters of 1.1 µm (X) and 0.9 µm (Y direction) full width at half maximum. Maximum
Faraday rotation is achieved when the QD spin is centered in the focal spot. Inset: Three-
dimensional color map representation of the data in the main panel.

undistorted map of the local spin polarization.
Hence the introduced compact yet highly efficient microscope enables the experimental

access to the degree of local spin polarization down to the level of a single electron spin
via the detection of the Faraday rotation of the polarization of the probing photons.

4.4 Conclusions

The sensitivity and the spatial resolution of a home-built confocal microscope setup for
the detection of local polarization of spin-magnetic moments was quantified. The induced
Faraday rotation of the linear polarization of the probe laser photons was detected in a
linear polarization basis. The test experiment on a polarized single electron spin state
confined in a self-assembled QD was performed by means of a Zeeman-split trion transition
during simultaneous resonant optical spin pumping. A maximum Faraday rotation angle
of about ±0.01 deg was measured that corresponds to a microscope setup sensitivity of
∼ 500 µrad/

√
Hz at a signal-to-noise ratio of 10. The quantified shot-noise-limited signal-

to-noise-ratio of the measured Faraday rotation signal was 10 for an integration time of
the order of 1 s. The spatial resolution of the spin polarization detection was determined
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by the optical spot dimensions of the confocal microscope setup in accordance with the
expectation. Hence the microscope setup proved to be capable of the detection of local
spin polarization with single-spin resolution.
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Chapter 5

Sample layout for combined optical
and transport spectroscopy

A semiconductor heterostructure containing a 2DES was specifically adapted for facili-
tating optical access to the 2DES. The specific requirements for the heterostructure were
an adequate density and mobility of a 2DES that additionally provides well-defined selec-
tion rules for optical interband excitation and readout. In this chapter, the optimization
process of the heterostructure design based on semiconductor heterostructure simulations
and subsequent experimental characterizations of 2DES transport and optical properties
is presented and discussed.

5.1 Band structure simulations with Nextnano3

For the design of the semiconductor heterostructure, simulations were performed using
nextnano3 [97] which are presented and discussed in this section. The design of the
heterostructure for the combined transport and optical experiments was guided by two
main objectives. On the one hand, the realization of a high quality 2DES was intented to
support the observation of the 0.7-anomaly in a QPC. On the other hand, the 2DES should
allow for optical interband excitation of charge carriers in the 2DES. The heterostructure
design should furthermore avoid charge carrier excitations in any other heterostructure
layer aside from the 2DES in order to eliminate undesired remote charge accumulation or
parallel conductivity effects in the sample.

In order to meet the demands, a 2DES was aimed in an InxGa(1−x)As (GaAs that
contains x % In) QW embedded in higher bandgap materials such as GaAs or AlGaAs.
The higher-bandgap surroundings make all sample regions but the 2DES transparent to
light at optical frequencies which meet the resonance condition for interband excitation
of electrons into the reservoir of the 2DES. Provided that the In concentration x is low,
optical interband excitations within the InxGa(1−x)As QW exhibit the lowest energy for
interband transitions. At the same time, the quantum confinement in the QW removes
the degeneracy of heavy- and light-hole subbands at the Γ-point of bulk zinc blende
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Figure 5.1: Left: Schematic design of the heterostructure on top of a GaAs layer which is
MBE-grown on a GaAs substrate. It consists of an InxGa(1−x)As QW (blue), a AlGaAs spacer
layer including a Si δ-doping region (yellow), and a GaAs capping layer. The 2DES forms in
the InGaAs quantum well for which the Si impurities provide the excees electrons. A metal
gate (hatched, semitransparent in the experiment) induces a built-in Schottky potential and
further band structure deformation is provided by an applied voltage Vt. Green: the QW
thickness zQW , the QW indium portion x, and the distance zδ of Si layer from the QW serve
as optimization parameters in the nextnano3 simulations. Right: Band structure profile along
the heterostructure growth direction z obtained from the simulation for Vt = 0. Shown are the
conduction and valance band edges Ec and Ev, the lowest QW-confined electron and heavy-hole
levels Ee and Ehh, and the 2DES Fermi energy EF.

semiconductors such as InxGa(1−x)As. This in turn ensures pure dipolar selection rules
for optical excitations from the heavy hole subband at the energy Ehh into the states at
the Fermi energy EF of the 2DES.

Figure 5.1 illustrates the corresponding basic layout for the simulations of the het-
erostructure design. The semiconductor layer sequence along the sample growth direction
z is shown in the left panel. An Al0.235Ga0.765As layer was sandwiched between GaAs
and an InxGa(1−x)As QW of variable thickness zQW with indium fraction x in the range
of 0 < x < 0.1. The Al0.235Ga0.765As layer contains a few monolayers thin region doped
with Si (silicon “δ-doping”). It is located at a distance zδ above the QW to provide a
modulation-doped excess electron population for the 2DES inside the QW. The AlGaAs
acts as a tunneling barrier between the 2DES and the Schottky gate (hatched in Fig. 5.1)
on top of the heterostructure. By means of an iterative procedure, the overall thickness
of the AlGaAs barrier was chosen to be half the wavelength of the simulated QW inter-
band transition to minimize optical interference effects. The topmost GaAs capping layer
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prevents oxidization of the AlGaAs barrier. In terms of the heterostructure simulations,
the Schottky metal gate is a Schottky potential with tunable potential Vt. This feature
integrates the ability of a tunable band bending.

In the right panel of Fig. 5.1, the resulting band structure profile calculated with
nextnano3 is plotted for Vt = 0, x = 0.07, zQW = 10 nm and zδ = 50 nm. The bended
band profile is generated by the built-in Schottky potential at the heterostructure surface
as well as the distributions of the excess charges induced by the doping. The bending
accounts for the lowest QW electron level Ee to lie below the Fermi energy EF, in accord
with the intented finite 2DES density within the InGaAs QW. In the 1D simulations
the Schottky gate is equivalent to an experimental top gate which uniformly covers the
heterostructure. This further allows to simulate the pinch-off of the 2DES at sufficiently
low Vt.

After having introduced the design, the identified key properties of the intended het-
erostructure are examined. (1) The 2DES should exhibit well-defined dipolar selection
rules for spin-selective excitations or readout which is accomplished by the QW confine-
ment. (2) The semiconductor heterostructure above and below the QW layer should
be transparent at the intended optical frequencies. This criterion can intrinsically be
satisfied by the heterostructure layout, as evident from the illustrative band structure
simulation result in Fig. 5.1. (3) The density of the 2DES should be at least of the or-
der of 3× 1011 cm−2 in order to ensure adequate transport characteristics. To this end,
nextnano3 was used to monitor the 2DES density inside the QW as a function of the
optimization parameters x, zQW and zδ. The density was extracted directly from the sim-
ulation results for comparison with the aimed threshold value. (4) At the same time the
interband transition wavelength of the QW region, which follows from the energy differ-
ence between the lowest QW hole level Ehh and EF, was intended to lie above 830 nm. At
this wavelength, optical transitions of carbon impurities [98] are found which inevitably
contaminate the heterostructure during the heterostructure-generating MBE growth pro-
cess. The aimed range λ > 830 nm is furthermore energetically below the interband
transition of the surrounding GaAs (∼ 815 nm at 4.2 K) and AlGaAs.

The adjustable parameters in the simulations are highlighted in green in Fig. 5.1.
Raising the QW thickness zQW or the QW indium content x predominantly increases the
QW interband transition wavelength (equivalent to a redshift in energy). Furthermore,
by reducing the distance zδ between the QW and the δ-doping layer the 2DES density
tends to increase. However, conditions such as a smaller zδ, a smaller QW thickness zQW,
or an increased indium concentration x generally reduce the mobility of the QW electrons
and are thus to be avoided. This is particularly crucial since the scope of the performed
simulations does not include the possibility of mobility calculations.

Figure 5.2 shows the calculated results for three different heterostructures with an
indium concentration of x = 0.07 and zQW = 50 nm. They exhibit the QW thicknesses
of 8 nm (dots), 10 nm (rectangles), and 15 nm (squares). This yields a variation in the
QW electron density (blue) and the interband transition wavelength (black) as a function
of the voltage applied to the Schottky gate. Decreasing the gate voltage increases the

79



Chapter 5. Sample layout for combined optical and transport spectroscopy

- 0 . 4 0 . 0 0 . 4

8 4 0

8 5 0

8 6 0

 

int
erb

an
d w

av
ele

ng
th 

(nm
)

g a t e  v o l t a g e  ( V )

q u a n t u m  w e l l  t h i c k n e s s  8 n m
q u a n t u m  w e l l  t h i c k n e s s  1 0 n m
q u a n t u m  w e l l  t h i c k n e s s  1 5 n m

0

1

2

3

ele
ctr

on
 de

ns
ity 

(10
11

cm
-2 )

Figure 5.2: Simulated QW electron density (blue) and lowest QW interband transition wave-
length (black) as a function of the Schottky gate voltage Vt. Simulations were performed for
three different QW thicknesses of zQW = 8 nm (circles), 10 nm (triangles) and 15 nm (squares)
at a fixed QW indium content of x = 0.07 as well as a constant distance zδ = 50 nm between
the δ-doping layer and the QW.

energy of the QW electron levels with respect to EF which gradually depletes the 2DES
inside the QW. This depletion dominates in all three heterostructures at gate voltages
below ∼ 0.15 V until the 2DES is fully pinched-off around −0.4 V. On the other hand,
the interband transition wavelength remains constant for Vt > 0.25 V (the onset of the
wavelength variation at ∼ 0.25 V is not resolved in Fig. 5.2). For lower Vt, the result
Fig. 5.2 predicts an universal onset of a pronounced redshift of the optical resonance
condition that is associated with a decrease of EF.

As a result, the predicted maximum 2DES density n2DES > 2.5 × 1011 cm−2 as well
as the calculated optical transition wavelengths λ > 830 nm about match the required
properties of the 2DES in a 8 nm to 15 nm wide QW within the heterostructure. The
obtained result Fig. 5.2 was used as the starting point for the experimental evaluation of
the 2DES properties in the following section.

5.2 Basic transport and photoluminescence

characterization

The experimental setup used for the sample characterization is very similar to the setup
used for the results presented in Sec. 6 and explained in detail in Sec. 6.1.2. Therefore the
differences of the characterization setup are discussed here only.

For the purpose of experimental determination of the density and mobility of the 2DES
a Hall-bar structure was chosen. Additionally, the sample was intended to enable optical
access to the 2DES in order to allow to evaluate accessible optical 2DES transitions.
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Figure 5.3: Left: Optical microscope image of the bonded Hall bar in the corner of the sam-
ple (each connection is bonded twice as a precautionary measure). Right: Scanning electron
micrograph showing the mesa edges (dark lines) of the centered Hall-bar section with the used
connections being labeled. The top gate consists of a thicker gold part to bridge the mesa edge
(bright yellow, labeled) that is also visible in the optical image. The adjoining semitranspar-
ent top gate extension (transparent gray rectangle) is made of 5 nm thin titanium and covers
the actual Hall bar (covered area of the Hall bar ∼ 200 × 40 µm2), though it is not apparent
in the optical image. Both top gate sections were drawn on top of the actual micrograph for
illustration.

The suitably fabricated Hall bar is depicted in Fig. 5.3. The left image shows an optical
micrograph of the Hall-bar sample. The mesa was fabricated by conventional wet etching
techniques. The resulting mesa edges which form the Hall bar are partly visible in the
optical image (bright straight lines). The resulting 2DES areas are connected on the
outside via AuGe/Ni/AuGe (gold, germanium, nickel) ohmic contacts (reflective areas)
which were interdiffused into the heterostructure. They are covered by larger Au pads,
fabricated by optical lithography, which were bonded for the electrical contact to the
sample (each is bonded twofold).

On the right in Fig. 5.3 a scanning electron micrograph of the corresponding central
Hall-bar section is depicted. The 2DES-bordering mesa edges appear as dark lines. On
top of the Hall bar an additional metal gate was fabricated by optical lithography, it is
drawn in by hand in the micrograph (bright yellow and gray, labeled) for visualization.
This top gate enables the tuning of the 2DES density below the gate via the tuning of an
applied voltage (compare Sec. 2.1). The top gate consists of two parts. The actually active
section is a thin semitransparent Ti (titanium) layer (transparent gray in the micrograph)
that covers the Hall bar. It is contacted across the mesa edge via a second thicker Au layer
(bright yellow). The Ti top gate extension provides the required functionality of optical
access to the 2DES region of interest. Since the top gate covers the full width of the Hall
bar it also enables to pinch off the 2DES source-drain transport channel. As opposed to
the Au section, the Ti layer is not visible in the optical image in Fig. 5.3. The electrical
connections used for the Hall-bar measurements are apparent from the bond wires in the
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optical image and are labeled in the of Fig. 5.3.
In the experiments, the electron density and mobility were extracted from four-termi-

nal DC Hall-voltage measurements which were performed several times before the sample
was subjected to laser light for the first time as well as after broad-band and global sample
illumination. For this purpose, an external magnetic field B = Bz was applied perpen-
dicular to the 2DES plane. The sample was mounted horizontally planar in a confocal
microscope and electric filtering was not performed (as opposed to the geometry and the
wiring used in Chapter 6). The initial broad-area sample illumination was performed with
the sample deliberately positioned out of the focal plane of the microscope. Subsequently,
the confocal microscope with an optical spot size of about 1 µm was solely used to record
the local PL response. The PL was spectrally dispersed using a monochromator and de-
tected with a low-noise CCD cooled by liquid nitrogen. All measurements were carried
out at a cryogenic bath temperature of 4.2 K.

Based on the heterostructure Fig. 5.1 obtained from the simulation results of the pre-
vious section, three heterostructures were grown by MBE with an indium concentration
of x = 0.07 and a separation between the QW and the δ-doping layer of zQW = 50 nm.
The heterostructures only differed in the exhibited QW thicknesses of 8 nm, 10 nm, and
15 nm. First an initial experimental check on the resulting PL energy range at T = 4.2 K
was done using bare unprocessed samples. Based on this results, the heterostructure
with the n-modulation-doped 2DES inside the QW of thickness 10 nm was elected for a
detailed experimental analysis of the basic transport and optical properties.

The electron density n2DES and mobility µ2DES of the 2DES were extracted from the
measurements of the four-terminal DC Hall voltage U1,2 and the longitudinal voltage U2,3

(compare Fig. 5.3) at varying magnetic field 0 ≤ Bz ≤ 5.7 T. Figure 5.4 presents an
illustrative result for both U1,2(B) (blue) and U2,3(B) (black) measured at Vt = 0 V as
well as Vt = −1.7 V. A linear fit of the Hall voltage U1,2(B) at low B determines the
carrier density of the 2DES n2DES using

n2DES =
I

e · dU1,2/dB
. (5.1)

Here e is the elementary charge and I is the measured source-drain current through the
Hall bar. The mobility µ2DES of the 2DES was obtained from the longitudinal voltage at
zero magnetic field U2,3(B = 0) using both the relation

µ2DES =
0.75

e · n2DES · U2,3(B = 0)
(5.2)

and the electron density n2DES obtained from Eq. 5.1. The scaling factor 0.75 in the
numerator adjusts to the particular geometry of the used Hall bar (Fig. 5.3). Furthermore,
the basic optical properties of the sample at 4.2 K were studied in terms of the spectral
position of the peak of the PL collected from the central gate-covered Hall-bar section.

The transport and optical measurement results are compared with the simulations in
Fig. 5.5. Shown are the interband transition wavelength (black) and the 2DES density
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Figure 5.4: Measured longitudinal voltages U2,3 (black) and Hall voltages U1,2 (blue) as a func-
tion of the perpendicularly applied magnetic field at two top gate voltages Vt = 0 V and −1.7 V.
The distortions of the Hall voltage between plateaus are caused by an asymmetry of the geom-
etry of the used Hall bar (compare Fig. 5.3) which effects a finite Ohmic resistance contribution
to U1,2 . The data was measured at the temperature 4.2 K.

(blue) as a function of the top gate voltage. The circles (triangles) indicate the measure-
ment results obtained before (after) the first global Hall-bar illumination with continuous
wave (CW) lasers at 815 nm and 830 nm. The dashed lines are the corresponding simula-
tion results taken from Fig. 5.2 for comparison. In the simulations, all silicon atoms of the
δ-doping region were assumed to be ionized which is realized experimentally by sample
illumination.

The initial 2DES densities are in good agreement with the predictions of the calcu-
lations. Before sample illumination, both differ by ∼ 1 × 1011 cm−2 and exhibit a very
similar slope if Vt is decreased leading to a similar 2DES pinch-off at Vt ∼ −0.5 V. An
increase in n2DES on sample illumination is anticipated due to induced donor level deple-
tion which releases charges trapped during the sample cool down. This is consistent with
the observed illumination-induced change by ∼ +30 % to n2DES ∼ 4.2× 1011 cm−2 (blue
triangles in Fig. 5.5). The increase of the 2DES charge density, compared to the simu-
lated result, could partly stem from illumination-induced excess charge release of other
impurities (e. g. carbon) present in the heterostructure. The corresponding increase in
EF requires stronger depletion in order to fully pinch off the 2DES. This is expressed in
the considerably decreased pinch-off voltage of Vt = −2 V after sample illumination (blue
triangles). Moreover, both the calculated (at Vt & 0.2 V) and the measured n2DES (at
Vt & −0.9 V) are almost unaffected by the change of the top gate voltage in the higher
2DES density range. That indicates strong pinning of the residual positively charged
donor levels of the δ-doping layer at EF. Repeated illumination of the sample did not
yield significant changes in the 2DES density (half-filled triangles in Fig. 5.5) indicating
the long-term low-temperature stability of the electrostatic environment after the initial Si
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Figure 5.5: Basic transport and optical characterization of the heterostructure containing the
QW of thickness zQW = 10 nm, 7 % QW indium concentration, and a doping layer separation
of zδ = 50 nm. Shown are the 2DES electron density n2DES (blue) and the lowest QW tran-
sition wavelength λQW (black) versus top gate voltage, for both the measured data (symbols,
lines are guides to the eye) and the calculated results (dashed lines, equal to Fig. 5.2). For the
experimental data, n2DES was determined using Eq. 5.1 and λQW was extracted from the PL
maximum (compare Fig. 5.6 below). Circles and triangles furthermore distinguish the measure-
ments performed before and after the first illumination of the central Hall-bar area. Half-filled
triangles correspond to 2DES densities after repeated sample illuminations. The PL was ob-
tained from the confocal microscope spot being positioned in the center of the top-gate-covered
Hall-bar region (compare Fig. 5.3). Excitation power: 7 µW for −1 V ≤ Vt ≤ 0.6 V and 0.3 µW
for Vt < −1 V, uniform excitation wavelength: 830 nm, bath temperature: T = 4.2 K.

donor ionization has been initiated. The mobility of the 2DES µ2DES ∼ 70000 cm2V−1s−1

was experimentally determined within the entire gate voltage range above −1.5 V after
sample illumination (data not shown).

Despite the good agreement of the 2DES densities obtained from the simulations and
the experiments, considerable discrepancy is found between the calculated and the ob-
served optical interband transition wavelengths in Fig. 5.5. The PL peak as a function of
Vt (black triangles) was read out around the center of the gate-covered Hall-bar section
using the excitation wavelength of 830 nm set close to the transitions associated with the
intrinsic carbon impurity states in GaAs at 4.2 K [98] for an efficient optical generation of
charge carriers. In comparison to the calculated lowest QW optical transition wavelength
(dashed black line), the measured PL is shifted by about 50 nm (83 meV) toward lower
energies. Furthermore a reversed energy dispersion as a function of top gate voltage is
present in the form of an experimental blueshift as opposed to the calculated redshift for
decreasing 2DES densities. The disagreement could partly originate from excitonic effects
and the QCSE present in the heterostructure which were both omitted in the simulations.
However, the main requirement for the heterostructure design has been successfully ac-
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Figure 5.6: Hall-bar sample (zQW = 10 nm): Spectrally resolved PL collected from the confocal
microscope spot and equally scaled to the PL peak. Main panel: PL from the center of the
gate-covered Hall-bar section using sample-incident excitation powers of Pexc = 183 µW (red),
12 µW (black curve, main panel and inset), and 43 nW (gray). Added is a PL spectrum recorded
with the spot located next to the Hall bar where the QW was etched away (blue) (top gate
voltage Vt = 0.6 V (flatband in GaAs)). Inset: PL spectra at two different top gate voltages of
Vt = 0.6 V (black) and −2.0 V (green, Pexc = 300 nW). (CW excitation wavelength: 830 nm,
bath temperature: T = 4.2 K)

complished: Intrinsic optical transitions in the QW-based 2DES with adequate density
and mobility were found in the transparent sample.

Figure 5.6 presents the spectral shape of the measured PL of the sample. Three spec-
tra are shown (gray, black, red) that were obtained from the central gate-covered Hall-bar
region at a CW laser excitation wavelength of 830 nm and Vt = 0.6 V (flatband in GaAs,
4.2 K). The PL main peak at ∼ 891 nm exhibits an asymmetric line shape even at the
lowest excitation powers down to ∼ 40 nW (gray spectrum). The PL line shape very
much resembles the characteristic shape of a Fermi edge singularity [99–101] which is
expected to be present in the environment of high 2DES densities. There is also evidence
of (at least) one higher-energy shoulder, spotted around ∼ 883 nm, with indications re-
maining at ∼ 40 nW. Increasing Pexc considerably (red PL curve) further induces a minor
blueshift of the PL maximum that is accompanied by a pronounced increasingly asym-
metric broadening. These PL features were uniformly found at all investigated excitation
spot locations along the Hall bar. The measured PL line shape is consistent with an
expected double peak due to the recombination of excitons X (residual higher-energy
peak) and negatively charged excitons X− (trions, dominating PL peak) consisting of
one photo-excited hole Coulomb-bound to two electrons in a QW-based 2DES [102, 103].
Similarly increased differences between the binding energies of X and X− of ∼ 10 meV
have been observed in high-density 2DESs [104]. Moreover, the relative heights of the cor-
respondingly two peaks with the strongly favored trion recombination is compatible with
recombination in the presence of the experimentally verified high 2DES “background” den-
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sity 4.2× 1011 cm−2 [105]. This argument is also in accord with the observed unchanged
PL line shape in the main panel of Fig. 5.6 at the constant 2DEG background density (Vt

is kept fix) and illumination powers that differ by nearly four orders of magnitude: the
high dopant-induced 2DES density ensures the favored trion transitions independently of
the optically generated electron or hole population.

One spectrum is added in Fig. 5.6 taken from a sample region where the QW was
etched away (blue). No PL response is visible in the relevant spectral range. Thus all
features inferred above justify the conclusion that the observed PL stems from optical
recombination within the QW of electrons with energies ∼ EF which is trion-dominated.

A dependence of the PL on the 2DES density is visible in the inset of Fig. 5.6 showing
the 12 µW spectrum (black, Vt = 0.6 V) of the main panel and the PL measured at
Vt = −2.0 V (green spectrum). Additionally to a gradual evolution of the PL main
peak toward a symmetric Gaussian peak (fit not shown) the peak exhibits a distinct
blueshift if the 2DES density decreases (compare Fig. 5.5). Similar PL shifts toward higher
energies for reduced 2DES densities have been observed in the case of QW-confined 2DESs
[104]. Moreover, the vanishing Fermi-edge singularity at decreased 2DES densities further
substantiates the origin of the PL sample response.

5.3 Conclusions

Guided by the results of the performed nextnano3 simulations a semiconductor het-
erostructure was obtained which complies with the required specifications. Due to the
QW-based design, the 2DES intrinsically provided the interband optical selection rules
which form the basis for controlled 2DES excitation and readout. The experimentally ver-
ified 2DES densities and mobility at the same time facilitate ballistic electron transport
through a QPC constriction in the 2DES. The QW interband transition energies were
located below the known carbon impurity optical transitions in the heterostructure yield-
ing a promising starting point for well-defined opto-transport experiments in the 2DES.
The measured PL characteristics furthermore provided the experimental verification of
the actual specific QW recombination energies around the Fermi energy. Additionally,
the dominating recombination of negatively charged excitons (trions) in the QW at the
high permanent 2DES “background” density was indicated.
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Chapter 6

Photoresponse of a quantum point
contact

The basic transport and optical properties of the heterostructure characterized in
Chapter 5 proved to be very promising for combined opto-transport studies of a QPC.
To this end, a sample with QPCs in different geometries was fabricated. This chapter
presents the investigation of the response of a QPC to local, resonant optical excitation of
charge carriers in QPC proximity. First the transport properties of a specific QPC were
evaluated, both before and after optical illumination of the sample. The QPC performance
during illumination was subsequently studied using an experimental setup which allowed
the simultaneous detection of both the transport current response and the current response
of the QPC due to the local optical excitation without mutual interference. For all results
presented in this chapter the current response caused by the optical excitation of the
2DES in QPC vicinity is referred to as the photoresponse (PR) of the QPC.

6.1 Combined optical and transport spectroscopy

6.1.1 Sample layout

A specific layout was designed to access the vicinity of a QPC by means of a confocal
laser spot for excitation. Based on the characterization results presented in Chapter 5,
the QPC was processed on a sample that contains a n-modulation-doped 2DES located
in an In0.07Ga0.93As QW with a thickness of 10 nm. Figure 6.1 shows optical microscope
images of the QPC layout. In panel (a) the selected and bonded writing field is shown
as a whole whereas (b) is a zoom to the central section of (a). Various QPC geome-
tries were fabricated to comprise constriction geometries which facilitate the regime of
the 0.7-anomaly. The chosen QPC arrangement is shown in the close-up of Fig. 6.1(b).
The centered square mesa with the starlike surrounding mesa connections contains two
neighboring sections each composed of 4 different QPC geometries and one large covering
semitransparent top gate. The Au gates (darker yellow) on top of the mesa were fabricated
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Figure 6.1: (a) Optical microscope image of the fabricated sample that shows the writing field
composed of gold gates (yellow) and mesa (tapered white lines). (b) Zoom to the central field
of (a): The mesa square (dark lines, edge length: 160 µm) contains two adjacent arrangements
of 4 different QPC geometries of which two are magnified in SEM pictures (scale bars: 1 µm).
Every QPC group is covered with a large top gate (dark gray rectangles) of 5 nm semitransparent
nickel-chromium (NiCr) that is electrically disconnected from the gates below by a layer of cross-
linked PMMA, visible as brighter gray rims framing the top gates. The outer gates bridge the
mesa edges (brighter yellow, thickness: 200 nm) and the inner gates (darker yellow, thickness:
30 nm) include the QPCs. The QPC dimensions are summarized in the table in (a). They are
listed according to their actual positions in (b).

via standard electron beam lithography. They define the QPCs of which two are shown in
the SEM images of Fig. 6.1(b) (scale bars: 1 µm). Thicker Au contacts (brighter yellow,
processed with optical lithography) connect the inner Au gates across the mesa edges to
the outer bond pads visible in Fig. 6.1(a). Each top gate (dark gray rectangle) is spatially
and electrically disconnected from the underneath gates by a layer of cross-linked PMMA
(poly-methyl-methacrylate) visible as a slightly brighter narrow frame around each top
gate in Fig. 6.1(b). As a precautionary measure, each top gate was designed to allow to
be contacted by one out of two separate outer bond pads (compare Fig. 6.1(b)). The Au
below the top gates appears green in the optical microscope close-up.

Eight different QPC geometries with rounded tip gates were chosen based on an earlier
work on the visibility of the 0.7-anomaly in GaAs-based QPCs [106]. Their dimensions
are summarized in the table in Fig. 6.1 according to the actual arrangement on the sample
using the notation of the inset in (a). Each of the two QPC sets comprises one shared gate
in the middle of the mesa and four individual gates facing laterally. This enables to control
each QPC individually with a minimum number of separate gate connections. The QPCs
were purposely placed with as large as possible mutual lateral distances which intends to
facilitate optical characterization of each QPC surroundings without the interference of
nearby structures. Moreover, the top gates were designed to cover an as large as possible
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area of the optically accessible QPC vicinity in order to enable simultaneous 2DES density
control in the optically investigated regions. Each QPC set in Fig. 6.1(b) has a separate
source (below) and drain (above) connection, also evident from the bonding scheme in
panel (a).

6.1.2 Experimental setup

The measurements discussed in this Chapter 6 were performed at the QPC no. 8 (QPC8,
compare Fig. 6.1) using a home-built combined optical and transport setup. The wiring of
the setup is shown schematically in Fig. 6.2. The source (bottom) and drain (top) 2DES
connections are indicated by black squares on top of the sample picture. Using QPC8 in
Fig. 6.2, its source contact is supplied by a DC voltage via a passive DC-AC adding unit
(“add”). A transimpedance amplifier (I/V ) on the drain side grounds the 2DES current
I enabling electrical readout. The transport DC current Idc

sd with a voltmeter (at the
I/V output in Fig. 6.2), the AC transport current (lock-in 1), and the AC photoresponse
current (lock-in 2) with 2-channel lock-ins were measured simultaneously. The lock-in 1 is
triggered by an internal frequency generator (“f” in Fig. 6.2) which delivers an AC current
at the frequency ftr to the source contact via the adding unit, with the applied amplitude
after the adder of δV = 52 µV. The lock-in 2 is triggered by the controller of the laser
chopper with modulates the sample excitation intensity at an independent modulation
frequency f = fchop (see the explanation of the optical part of the setup below). In the
experiments ftr = 77.1 Hz was maintained while the variable fchop was chosen so that
|ftr − fchop| > 10 Hz was retained. This constraint for the difference in modulation fre-
quencies well exceeds each lock-in band width. Thus it is sufficient for separate transport
and PR readout. While measuring the QPC8 responses all remaining QPCs of the right
QPC section were kept open via a separate voltage source (top right in Fig. 6.2) allowing
to collectively ground the respective remaining right QPC gates. The voltage applied to
the corresponding top gate is supplied by a fourth voltage source (depicted just left of the
source-supplying voltage source in Fig. 6.2). The remaining two unused 2DES connections
of the left sample gates section were kept floating. Additionally all other unused sample
gates (which may include the top gate of QPC8 itself) were grounded in the experiments.
This procedure ensured a well-defined electrostatic environment under optical excitation.
All electrical sample connections were filtered (LPF in Fig. 6.2) for AC noise reduction.
Furthermore, for each used gate as well as each idle gate connection the current flow-
ing onto (or off) the gate was recorded simultaneously during each measurement via the
voltage drop at a serial ohmic resistor, as indicated in Fig. 6.2.

One section of the optical part of the setup is shown schematically in Fig. 6.3. Two
single-mode emission lasers were used. Laser 1 (laser 2) is tunable in the wavelength range
of 860 - 930 nm (780 - 840 nm). As opposed to laser 2, laser 1 is equipped with an external
Faraday isolator to avoid back reflections for laser stability. While laser 2 was mainly used
for initial optical characterizations of the 2DES, laser 1 was used for the resonant 2DES
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Figure 6.2: Schematic of the wiring of the sample. See text for details.

excitation measurements (Sec. 6.2). A constant excitation power of laser 1 is crucial to
conduct sensitive QPC PR measurements. Thus laser 1 was equipped with an active power
stabilization unit [107] of which the main optical components are marked by the dashed
rectangle in Fig. 6.3. The power stabilization is controlled by an active PID controller
which stabilizes the emission power of laser 1 in its full emission wavelength range. In
order to maintain single-mode emission of laser 1 a scanning Fabry-Perot was used for
monitoring. The emission power of both lasers could be chopped with a chopper wheel
(shown in Fig. 6.3, and in Fig. 6.2 for clarity) for differential lock-in measurements. The
laser intensity was adjusted (intensity filters in Fig. 6.3) before coupling into a single-mode
optical fiber. Fiber paddles (polarization controller in Fig. 6.3) were used to compensate
for the change in laser-light polarization induced by the fiber.
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Figure 6.3: Overview of one section of the optical part of the setup. It mainly contains two
excitation lasers of which one is equipped with a power stabilization (dashed rectangle). Both
lasers can be chopped before being coupled into the single-mode optical fiber. See the text for
further details.

The single-mode fiber output was connected to the horizontal side arm (“excitation”
arm) of the optical microscope shown schematically in Fig. 6.4. Band pass filters (BP)
block secondary light generated within the optical fiber. Subsequent polarization op-
tics permit the adjustment of the polarization of the excitation (green optical path in
Fig. 6.4). In the experiments, the photodiode used for the power stabilization of laser 1
was positioned on the opposite side of the beam splitter that directs the excitation light
toward the sample. This additionally compensates for potential temporal changes of the
excitation power after the polarization optics in the microscope’s side arm. The sample
was mounted on a “L”-shaped adapter, referred to as Voigt adapter, which positioned
the sample vertically in the laboratory frame of reference. The Voigt geometry allows the
application of the magnetic field parallel to the sample surface and thus the 2DES plane
in the employed configuration using a magnet with a rigid coil position, as illustrated
in Fig. 6.4. The Voigt adapter was mounted on a xyz-nanopositioner unit for individual
sample positioning. The excitation spot of the microscope is diffraction-limited to about
1.5 µm full width at half maximum (FWHM) on the sample surface. The FWHM was
determined by a separate measurement [92] by means of one of the gold gates on top of the
mesa (see Sec. 6.1.1). The laser light reflected off the sample surface was monitored by a
CCD image sensor (“imaging CCD” in Fig. 6.4). It was used as a reference while aligning
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Figure 6.4: Schematic of the second section of the optical part of the setup. The blue highlighted
component is also shown in the photographs in the assembled (right and upper left photograph)
and disassembled state (lower left photograph). For comparison, the sample located in the center
of the sample holder has an edge length of around 5mm. See text for details.

the sample with respect to the position or the focal plane of the confocal excitation spot.
The setup additionally allows to read out the sample photoluminescence (contained in the
red optical path in Fig. 6.4), optionally in a polarization-resolved basis, via a second ver-
tical microscope arm. The photoluminescence is coupled into a second single-mode fiber
on top of the microscope and analyzed with a spectrometer and a liquid-nitrogen-cooled
CCD. Additional BP filters are used in front of the spectrometer in order to block the
laser.

The lower part of the microscope is located in a closed housing (see Fig. 6.4) which
was evacuated and subsequently filled with He4 exchange gas of low pressure. The housed
microscope part was placed in a liquid He4 bath cryostat. All measurements presented
in this Chapter 6 were performed at the bath temperature of 4.2 K. For the illustration,
Fig. 6.4 also presents photographic pictures taken from the blue framed section of the
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Figure 6.5: Simplified overview of the combined arrangement of the electrical and optical setup
parts.

microscope. Finally Fig. 6.5 provides a simplified overview over the overall setup arrange-
ment for clarity.

6.1.3 Initial characterization with transport spectroscopy

This section presents and discusses the measured conductance of the QPC8 of the sample
Fig. 6.1 (Sec. 6.1.1) before sample illumination has been induced for the first time after
the sample cool down. A series of conductance curves as a function of the QPC gate
voltage VQPC is presented in Fig. 6.6. Each of the pinch-off curves was measured at a
different top gate voltage Vt equidistantly chosen between −0.8 V (rightmost) and 0.6 V
(leftmost pinch-off curve). Raising the top gate voltage increases the 2DES carrier density
and thus EF in the vicinity of the QPC. This has to be compensated for by a lowered
QPC gate voltage in order to keep the QPC potential in the 1D channel center above
EF and therefore the QPC pinched-off. Although thermally smeared out, four QPC
conductance plateaus are visible toward the highest 2DES densities at Vt = 0.6 V marked
by the horizontal gray lines in Fig. 6.6. Each emerging plateau broadens and becomes
increasingly pronounced at higher 2DES densities because the induced steeper lateral
confining potential at a given subband state raises the QPC sub-level spacing within the
constriction region. Additionally a distinct kink occurs at about 0.6GQ throughout the
whole top gate voltage range of ∆Vt = 1.4 V (dashed line in Fig. 6.6). The position of
the kink as well as its shape and prominent appearance with respect to the increasingly
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Figure 6.6: Conductance of QPC8 measured before the first sample illumination (T = 4.2 K).
Eight pinch-off curves were recorded as function of the QPC gate voltage, each at a different
top gate voltage between Vt = −0.8 V and 0.6 V in steps of ∆Vt = 0.2 V (the constant setup
resistance has been subtracted). Integer values of the spin-degenerate conductance quantum
2e2/h are highlighted by the gray solid lines. The additional pronounced shoulder at around
0.6GQ (dashed line) is attributed to the 0.7-anomaly.

smeared out QPC conductance plateaus [24, 25] are clear indications of a 0.7-anomaly.

6.2 Dynamic and static photoresponses

For all the following results the responses caused by the source-drain current modulation,
termed the transport response, and the PR of the QPC were measured simultaneously at
Vt = 0.

6.2.1 Simultaneous transport response and photoresponse

For the PR, the excitation spot position in the 2DES plane (x, y)exc is defined as shown
by the QPC SEM image in the inset of Fig. 6.7(b). In particular, the laser exciting the
2DES on the source side of the QPC is referred to as xexc > 0. For all measurements
yexc = 0 was chosen.

Figure 6.7 presents in (a) the measured transport differential conductance gtot (light
blue dots, left y-axis) as well as in (b) the simultaneous PR magnitude |Iph| as a function
of the QPC gate voltage VQPC (dots). The excitation spot was positioned at xexc = 0.5 µm
and a constant DC voltage of V dc

sd = −100 µV was applied at the source contact of the
QPC. Figure 6.7 was measured after the central region of the used writing field (compare
Sec. 6.1.1) had been globally illuminated within the whole accessible wavelength range
beyond the GaAs bandgap, 815 nm ≤ λexc ≤ 930 nm. As a result, without any sample
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Figure 6.7: Simultaneously measured transport response (a) and PR (b) of a QPC after global
sample illumination. Circles are raw data and solid lines are a moving-average of the raw data
(bin: ∆VQPC = 25 mV). (a) Differential conductance gtot (light blue) and the corresponding
QPC conductance gQPC (dark blue). (b) The PR exhibits consecutive maxima numbered for
reference (Tbath = 4.2 K, Pexc = 42 nW, fchop = 112 Hz, V dc

sd = −100 µV, excitation spot
position (x, y)exc = (0.5, 0) µm). Inset: SEM image of the QPC, the coordinate system specifies
(x, y)exc .

illumination the QPC consistently pinched-off at about V pinch−off
QPC = −3.5 V (data not

shown) which corresponds to an illumination-induced shift of ∆V pinch−off
QPC ' −2 V (com-

pare Fig. 6.6). According to the 2DES characterization results in Sec. 5.2 (see Fig. 5.5)
∆V pinch−off

QPC ' −1.5 V is expected to arise from the illumination-induced increase in EF.

A further contribution can be anticipated from the fact that this ∆V pinch−off
QPC can induce

a change in the QPC constriction potential toward steeper barriers which raise the level
spacing of the 1D energy spectrum. This most likely accounts for the whole residual
∆V pinch−off

QPC ' −0.5 V. On top of that, another considerable shift V pinch−off
QPC ' −0.8 V is

evident from Fig. 6.7(a) which adds during local illumination of the QPC surroundings.
It can be attributed to both an effective voltage drop across the heterostructure and a
local screening effect, both caused by the illumination-induced finite conductivity in the
heterostructure.
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Before the evaluation of the recorded data a moving-average was applied which is
shown in Fig. 6.7 by the lines on top of the data. By correcting for the constant overall
lead resistance, gtot yields the QPC contribution to the conductance gQPC in Fig. 6.7(a)
(dark blue). Weak conductance plateaus at integer multiples of G0 (horizontal lines) are
visible. In contrast to Fig. 6.6, however, no indication of the 0.7-anomaly was observed
after the first sample illumination (both without and during local QPC illumination).

The measured PR |Iph| in Fig. 6.7(b) features distinct local maxima of decreasing
height which appear about between QPC conductance plateaus. They are labeled I - IV
for reference and are discussed in detail below.

6.2.2 Dynamic photoresponse

Fig. 6.8(a) shows the phase-resolved PR measured as a function of VQPC at various modu-
lation frequencies fchop between 113 Hz (light red) and 1713 Hz (black). The real (upper
panel) and imaginary part (lower panel) of Iph were recorded at constant xexc = 0.6 µm.
With increasing fchop, Re [Iph] monotonically decreases whereas Im [Iph] passes through
a maximum as indicated by the arrows. This dependence is semi-logarithmically plot-
ted versus fchop in Fig. 6.8(b) (dots for xexc = 0.6 µm) for the PR maximum I (compare
the dots in Fig. 6.8(a)) for the real (upper panel) and imaginary PR part (lower panel).
Fig. 6.8(b) additionally shows the corresponding PR maximum I in the covered frequency
range fchop ≤ 2 kHz for four similar measurements at various excitation spot positions
xexc = 0 µm (black dots) to 1.5 µm (lightest gray dots) (lock-in phase for all xexc: 9± 10 ◦).
The data were offset for clarity as indicated by the short horizontal lines on the right y-axis
in Fig. 6.8(b).

This representation is reminiscent of the relaxation dynamics conceptual similar to
the Drude model [108]:

Re [ID] =
I0

1 + ω2τ 2

Im [ID] =
ωτI0

1 + ω2τ 2
. (6.1)

For each xexc in Fig. 6.8(b), Eqs. 6.1 were used to simultaneously fit Re[I I
ph] and Im[I I

ph]
with ω = 2πfchop. The corresponding relaxation time τ and the static PR limit I0 (ID for
ω → 0) were used as free fitting parameters. The fit results shown in Fig. 6.8(b) (solid
lines) reproduce the data very well. Two main features are revealed upon moving the
confocal excitation spot away from the QPC which are best visible in the lower panel
of Fig. 6.8(b): the peak values of both Re[I I

ph] and Im[I I
ph] drop and the resonance shifts

to lower fchop values. Both properties are reflected in the behavior of the deduced fit
parameters in the context of the relaxation model Eqs. 6.1: if xexc is increased the static
PR limit I0 is decreased and the characteristic relaxation time τ is increased.

Eqs. 6.1 were correspondingly fitted to the maxima II, III and IV of the PR for all
0 ≤ xexc ≤ 1.5 µm. In all fit results the above properties of I0 and τ were present, corre-
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Figure 6.8: (a) Real (upper panel) and imaginary part (lower panel) of the phase-sensitive
photoresponse Iph for different intensity-modulating frequencies 113 Hz ≤ fchop ≤ 1713 Hz (red
to black) and V dc

sd , xexc, and the excitation power Pexc as specified (yexc = 0). (b) Measured
real (upper panel) and imaginary part (lower panel) of Iph at maximum I (dots, also indicated
by the dots in (a)) plotted as a function of fchop for various xexc as indicated (semi-logarithmic
representation). The solid lines are fits according to Eqs. 6.1 (see text for details). The real
(imaginary) PR in (b) is successively offset by 0.7 nA (0.8 nA) for clarity, as indicated by the
short horizontal lines on the right.

sponding to the investigated QPC transmission range in Fig. 6.8(a). The inferred relax-
ation times lie in the range of 0.3 ms ≤ τ ≤ 6 ms depending on the actual location xexc

of the local laser excitation. A detailed discussion of the two model parameters I0 and τ
is provided in Sec. 6.2.4 below.

Though Eqs. 6.1 generally reproduce the frequency-dependence of the measured PR
very well, a more detailed analysis of the PR reveals deviations which are going to be
discussed in the following section. This will also shed more light on the physics behind
Eqs. 6.1 which is discussed in a summarized form in Sec. 6.2.6 at the end of this chapter.
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Figure 6.9: (a) Scaled transconductance of the transport total conductance dgtot/dVQPC (blue)
and respective in situ measured PR |Iph| (dashed gray) plotted as a function of the QPC gate
voltage VQPC. (b) Total conductance gtot (blue) and the static current contribution Ipc (red)
which is determined by the critical QPC voltage Vcrit and the leakage current I leak

pc as indicated.
The shown results were used to calculate Fig. 6.10(b) (see text for details).

6.2.3 Static photoresponse contributions

The previous section showed that the general dependence of the QPC PR on the mod-
ulation frequency of the excitation power is well captured by Eqs. 6.1. However, they
do not adequately account for the full observed PR behavior. This is apparent from
the PR measured at fchop = const at finite source-drain DC voltage V dc

sd shown in
Fig. 6.10(a). |Iph| as a function of VQPC is plotted (color-coded, logarithmic scale) at vari-
ous −12 µV ≤ V dc

sd ≤ 56 µV (step size 1 µV) for constant fchop = 112 Hz and xexc = 2 µm.
For comparison, two line cuts (black) are also shown.

The characteristic PR maxima I, II, and III are visible in Fig. 6.10(a) at VQPC ' −4.1 V
(white), ' −3.95 V (yellow), and ' −3.8 V (orange), respectively, as also marked for
clarity by the arrowheads at the upper line cut. However, according to Eqs. 6.1 |Iph| is
expected to uniformly vanish at V dc

sd = 0 (see Fig. 6.11 and the corresponding discussion
in the subsequent section). But the corresponding region (violet and black “ribbon” in
Fig. 6.10(a)), referred to as minimum-PR line (MPL), clearly disagrees. In the range
VQPC > −4.0 V it first bends upward to larger V dc

sd and subsequently drops steeply. In or-
der to explain this unexpected feature three more findings have to be taken into account:
(1) As shown in Fig. 6.9(a), the transconductance of the measured transport total conduc-
tance dgtot/dVQPC (blue, obtained by numerical differentiation) reproduces all essential
features of the in situ measured PR |Iph| (dashed gray). In particular, the PR max-
ima including their varying shapes and relative heights are reflected. |Iph| of Fig. 6.9(a)
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Figure 6.10: (a) PR |Iph| measured as a function of VQPC for different constant source-drain
voltages V dc

sd (step size ∆V dc
sd = 1 µV) (fchop = 112 Hz, Pexc = 160 nW, xexc = 2 µm, yexc = 0).

(b) Calculated |ID| (see text for details). (a) and (b) have the same color scale (logarithmic,
scale bar in pA) and line cuts at V dc

sd = 10, 40 µV are superimposed (black, linear scale). Both
the measured and the calculated PR maxima are marked by the black arrowheads on each upper
line cut for clarity. The minimum-PR line (MPL) is indicated.

is taken from the topmost V dc
sd region (farthest from the distorted MPL) of Fig. 6.10(a)

and averaged over ∆V dc
sd = 5 µV, and dgtot/dVQPC of Fig. 6.9(a) has been scaled as ex-

plained below. Note that the deviations around the PR maximum III (VQPC ∼ −3.8 V)
in Fig. 6.9(a) are caused by the MPL whose tails still extend up to the V dc

sd range where
|Iph| was extracted (compare Fig. 6.10(a) at VQPC ' −3.85 V and ' −3.7 V).
(2) The static PR limit I0 of Eqs. 6.1 is proportional to Idc

sd (this is evident from the sub-
sequent section as well as from Sec. 6.2.5 below).
(3) The calculated |ID| exhibits a distorted MPL only if an additional static current
component Ipc is assumed to be present. In summary, (1)-(3) yield

I0(VQPC, V
dc

sd ) = α
dgtot

dVQPC

Idc
sd + Ipc , (6.2)

where the scaling constant α is determined by a fit in the total VQPC range of Eqs. 6.1 and
Eq. 6.2 to |Iph| for a given fchop and V dc

sd . The respective fit result was already presented
in Fig. 6.9(a). In Eq. 6.2 the form of Ipc

Ipc(VQPC) =

{
I leak

pc if VQPC < Vcrit

I leak
pc + gpc(VQPC − Vcrit) if VQPC ≥ Vcrit

(6.3)

was chosen. It is as simple as possible and yet provides all main features of the mea-
sured MPL in Fig. 6.10(a). The form of Eq. 6.3 is shown in Fig. 6.9(b) (red, right y-
axis). It depends on the leakage current I leak

pc = −16± 1 pA, the critical QPC voltage
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Vcrit = −3.755± 0.001 V, and the slope gpc = 0.21± 0.01 GΩ−1. The details on how these
parameter values were inferred is discussed in the following section.

The resulting calculated |ID| using Eqs. (6.1-6.3) is presented in Fig. 6.10(b), using
the same logarithmic color scale as in Fig. 6.10(a). It also features two superimposed
corresponding line cuts of |ID| (linear scale) for comparison. The positions, magnitudes
and trends of the calculated PR maxima agree well with the measurement. Moreover, the
shape of the calculated MPL caused by Eq. 6.3 is in good agreement with the shape of
the measured MPL.

Equation 6.2 now directly allows to explain the shape of the MPL in terms of gtot, I
dc
sd ,

and Ipc which contribute to |ID|. At a given DC bias voltage (e. g. V dc
sd = 10 µV), each

time the distorted MPL is crossed (at VQPC ' V pinch−off
QPC , ' −3.9 V, and ' −3.7 V, see

Fig. 6.10) the overall sign of I0 changes which is equivalent to a simultaneous phase shift
of π of both Re [Iph] and Im [Iph]. In other words, the shape of the MPL in Fig. 6.10 maps
the area where α dgtot/dVQPC I

dc
sd = −Ipc. As a consequence, the phase - independent PR

magnitude becomes a sensitive measure of Ipc in the regime of finite V dc
sd .

Finally it should be pointed out that the frequency dependence ID(fchop) of the PR
(see Fig. 6.8 in Sec. 6.2.2) was calculated by assuming Ipc = 0. This is in fact justified a
posteriori because |Ipc| < 30 pA� Iph in the considered VQPC range (compare Fig. 6.9(b)).

In the context of Eqs. 6.1, the findings of Eq. 6.2 and Eq. 6.3 will be evaluated in detail
in Sec. 6.2.6. First of all, however, several relevant features of the resulting parameters τ
and I0 obtained from the model fits in Sec. 6.2.2 are discussed in Sec. 6.2.4 and Sec. 6.2.5.
In addition, the details on how the parameter values of Ipc (Eq. 6.3) were inferred is
discussed in the following section.

Extraction of the static current component

In this section the details are presented on how the parameters I leak
pc , Vcrit, and gpc of

Ipc (Eq. 6.3) were obtained from the application of the relaxation model ID (Eqs. 6.1,
Sec. 6.2.2) and the static PR limit I0 (Eq. 6.2) to the measured PR. The measured PR
|Iph| is shown again in Fig. 6.11(d) (logarithmic color scale, scale bar in pA on the right,
the graph is identical with Fig. 6.10(a)). The VQPC-axis of each individual PR at a given
V dc

sd in Fig. 6.11(d) was adjusted so that the PR maxima I align. This compensated for
slight temporal fluctuations of the local electrostatic QPC environment and thus of the
QPC pinch-off voltage V pinch−off

QPC . This alignment of the PR accordingly aligned all in-situ
measured transport quantities such as the conductance gtot and the static QPC current
Idc

sd which are input parameters of the static PR limit I0 (Eq. 6.2) of the relaxation model
ID. The input parameter dgtot/dVQPC was already discussed above (see Fig. 6.9(a)), the
corresponding Idc

sd is shown in Fig. 6.11(a) (color-coded, left scale bar in nA, linear scale).
Idc

sd shows no deviation from the expected behavior. It vanishes if the QPC is pinched-
off (VQPC < V pinch−off

QPC ' −4.2 V) or if V dc
sd = 0 (violet areas in Fig. 6.11(a)), and it

increases (decreases) linearly for positive (negative) applied V dc
sd for VQPC > V pinch−off

QPC ,

as shown orange to white (blue to black) in Fig. 6.11(a). Note that the V dc
sd -axis of

Figs. 6.11(a) and 6.11(d) was corrected for a non-zero constant voltage offset caused by
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Figure 6.11: (a) and (d): The (a) QPC current Idc
sd and (d) PR |Iph|, simultaneously measured as

a function of the QPC gate voltage VQPC for different source-drain DC voltages V dc
sd (step size:

∆V dc
sd = 1 µV, fchop = 112 Hz, Pexc = 160 nW, xexc = 2 µm, yexc = 0) (b) and (c): Calculated

|ID| using (b) Ipc = 0 and (c) Ipc as defined by Eq. 6.3. The color scales are (a) linear as shown
by the left scale bar in nA and (b-d) logarithmic as shown by the right scale bar in pA. The
graphs (d) and (c) are the same as in Fig. 6.10. Along the straight lines in (d) |ID| was fitted to
|Iph| in order to obtain the parameter values that determine Ipc (see text for details).

the input of the transimpedance amplifier (compare Sec. 6.1.2). In addition, a shift in the
voltage offset of the transimpedance amplifier is very likely the cause for Idc

sd vanishing
again at a non-zero source-drain voltage (at about V dc

sd = −6 µV) in Fig. 6.11(a), as
confirmed by the simultaneously vanishing PR in Fig. 6.11(d).

Fig. 6.11(b) shows |ID| (logarithmic scale, right scale bar) calculated by means of
dgtot/dVQPC and Idc

sd for Ipc = 0. The positions and heights of the maxima I, II, and III
at VQPC ' −4.1 V (white), −3.95 V (yellow), and −3.8 V (orange), respectively, of |ID|
well reproduce the measured result Fig. 6.11(d). However, the calculated MPL is fixed
around V dc

sd = 0 (it appears broadened due to Idc
sd vanishing at about V dc

sd = −6 µV too)
and can not be deformed by any parameter of the model. Adding a static component
Ipc 6= 0 yields a deformation of the MPL. This is shown in Fig. 6.11(c) (logarithmic scale,
right scale bar, the graph is identical with Fig. 6.10(b)) showing |ID| calculated by means
of dgtot/dVQPC and Idc

sd including Ipc (Eq. 6.3). The form of Ipc was chosen to be as simple
as possible yet providing the characteristic features of the measured MPL in Fig. 6.11(d).
Ipc was determined by least mean square fits of |ID| to |Iph| along specific lines in the
VQPC -V dc

sd plane where the parameters I leak
pc , Vcrit, and gpc of Ipc were used as free fit

parameters. Owing to the form of Ipc(VQPC) (Eq. 6.3), the shape of the resulting MPL is
determined at VQPC < Vcrit by the independent parameter I leak

pc and at VQPC ≥ Vcrit by
the interdependent parameters Vcrit and gpc. I

leak
pc was determined by a fit along the blue

straight line in Fig. 6.11(d) (VQPC = −3.82 V). Then Vcrit and gpc were determined by a fit
along the red line in Fig. 6.11(d) which coincides with the MPL. The resulting parameters
of Ipc including fit error margins are I leak

pc = −16 ± 1 pA, Vcrit = −3.755 ± 0.001 V, and

gpc = 0.21± 0.01 GΩ−1 and are discussed in Sec. 6.2.6 below.
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6.2.4 Relaxation times and static photoresponse limits

In this section the static PR limits I0 and the relaxation times τ are discussed that were
obtained from the measured dynamic PR (compare Fig. 6.8 in Sec. 6.2.2) by means of
the application of the relaxation model (Eqs. 6.1). The model fits as a function of the
modulation frequency fchop at the various excitation spot positions xexc were carried out
individually for all maxima I - IV of the measured PR. Consequently, the parameters
I0 and τ are evaluated individually too. Moreover, in all measurements with optical
excitation close to the QPC constriction it turned out that the response described by the
relaxation model ID simultaneously occurred twice. As discussed below, one response was
attributed to the excitation on the QPC source side and the other response was attributed
to the excitation on the QPC drain side, referred to as ID and Idr, respectively. Idr is
discussed in this section too. It can be approximated as frequency-independent in the
considered excitation spot range xexc > 0, as discussed below.

In Fig. 6.12 the parameters τ (panel (a)) as well as I0 (from ID) and Idr (panel (b))
obtained from the fits are summarized (dots) for PR maximum I (yellow) to IV (dark
red). I0 and Idr in Fig. 6.12(b) were normalized by dgtot/dVQPC using the result Eq. 6.2
(Sec. 6.2.3) for the static PR limit. The data Figs. 6.12(a) and 6.12(b) additionally feature
the experimentally estimated uncertainty in xexc (horizontal lines) and the inaccuracies
determined from the best fit results (vertical lines). The fit errors in Fig. 6.12(b) further
include the numerically determined uncertainty in dgtot/dVQPC. The remaining lines in
Fig. 6.12 are guides to the eye.

First Idr is considered. The assumption that it is the PR stemming from excitation on
the QPC drain side xexc < 0 is justified first by the observed feature that Idr vanishes for
all PR maxima at xexc & 0.8 µm (Fig. 6.12(b)) that is very similar to the actual half width
at half maximum (HWHM) of 0.75 µm of the confocal excitation spot. Moreover, the raw
Idr at a given xexc on average vary by one order of magnitude (data not shown). However,
after normalization by the inferred characteristic strength of the QPC PR dgtot/dVQPC

all curves as a function of xexc collapse to a single trend in Fig. 6.12(b). This confirms
the conclusion that Idr actually is a PR of the QPC. Additionally, the resulting ratio
I0/Idr ' 10 was calculated from Fig. 6.12(b) by averaging in the range of xexc ≤ 0.8 µm
(this range corresponds to non-vanishing Idr). This ratio is in accord with the correspond-
ing ratio obtained from the independent measurements of the PR arising from excitation
on the QPC source side and on the QPC drain side (see Sec. 6.2.5 below). Thus all three
independent observations confirm that Idr can also be attributed to the QPC PR which
is caused by excitation on the QPC drain side. Idr was used to distinguish two regimes
in Fig. 6.12: region on where Idr > 0 and excitation also occurs on the QPC drain side
(light blue) and region off where excitation is off the QPC drain side only (remaining
xexc range). Both regimes are illustrated in the insets of Fig. 6.12 where the Idr-inducing
fraction (hatched) of the excitation spot (red) is marked.

For increased xexc the position of the corresponding effective excitation spot fraction
on the QPC drain side remains nearly unchanged close to the QPC, in contrast to the
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Figure 6.12: The results from the fits of Eqs. 6.1 (see Sec. 6.2.2) to the PR at the maximum I
(yellow) to maximum IV (dark red) for different excitation spot positions xexc (yexc = 0). In
both panels, the uncertainties from each fit and the experimentally estimated uncertainty in
xexc are indicated by the vertical and horizontal lines, respectively. (a) The obtained relaxation
times τ . (b) The static limit I0 of the PR and the drain-side-excitation-related PR Idr, both
plotted using Eq. 6.2 (Sec. 6.2.3) by the scaling with dgtot/dVQPC. The xexc range can be divided
into the regime on (light blue), where the excitation on the QPC drain side takes place too, and
off (remaining xexc range) as indicated. Remaining lines in (a) and (b) are guides to the eye.
Insets: Sketches of the excitation spot (red) at (a) xexc = 0 and (b) xexc > 0 along the source
(S) - drain (D) direction close to the QPC. They illustrate the regimes on and off.

QPC source-side excitation spot fraction. Therefore, as opposed to I0, the drop of Idr for
increasing xexc is expected to stem from the decrease in effective excitation power exclu-
sively. Furthermore, the persistent drain-side spot fraction close to the QPC gives rise to a
correspondingly large resonance frequency 1/(2πτ) (compare Fig. 6.12(a)). Consequently,
in combination with the less than 10 % contribution to the overall PR magnitude, it was
sufficient to include the drain-side-related PR in terms of the real-valued constant Idr

(that basically corresponds to the respective static limit I0,dr). All fits of the relaxation
model included both PR contributions simultaneously whereas the evaluated results, in-
cluding Fig. 6.8(b) (Sec. 6.2.2), only refer to the actual source-side-excitation-related PR
contribution ID, omitting the artefactual drain-side-excitation-related PR Idr.

Fig. 6.12(a) summarizes the relaxation times τ as a function of the excitation
spot position xexc. They spread in the range of 0.3 ms ≤ τ ≤ 1.0 ms at xexc = 0 and
3 ms ≤ τ ≤ 6 ms at xexc = 1.5 µm. The overall monotonic increase of τ(xexc) is accompa-
nied by an abrupt jump at xexc ' 0.8 µm of comparable relative height for each individual
PR maximum. This position coincides well with the on-off regions boundary derived from
the characteristics of Idr. Hence it indicates a mutual relation despite τ refers to the QPC
source-side excitation exclusively (see discussion in Sec. 6.2.6).

103



Chapter 6. Photoresponse of a quantum point contact

Figure 6.12(b) also shows the extracted static limits I0 using the basic feature
dgtot/dVQPC of the QPC PR. Despite the raw values vary by a factor of 30 (compare
Fig. 6.8(a) in Sec. 6.2.2), after the normalization they coincide within the error bars at
each xexc. The scaling result of I0 in Fig. 6.12(b) at a given xexc furthermore confirms
Eq. 6.2 as a key characteristic of the PR of a QPC. Slight deviations of I0 not matching
within the error bars are observed at the maximum IV for xexc ≥ 1.2 µm. In that regime
the decrease of τ(xexc) for increased xexc in Fig. 6.12(a) is also contrary to the otherwise
consistently observed monotonous increase. The source of the deviations in the regime of
a more opened QPC and at larger excitation spot distances is not known. I0 shows devi-
ations from the overall decrease indicated by a kink which induces a smoother variation
beyond xexc ' 1.2 µm. The kink in the static amplitude, however, can neither be linked
unambiguously to the observed jump in τ in Fig. 6.12(a) nor to the ceasing excitation of
the QPC drain side.

6.2.5 Photoresponse due to drain-side excitation

In this section the PR caused by excitation on the QPC drain side is investigated inde-
pendently. Figure 6.13 shows the result of two separate measurements of the PR of the
QPC, one with the excitation spot located at xexc = 2 µm (filled dots) and the other with
xexc = −2 µm (open dots) under otherwise identical conditions. For each xexc, Iph as a
function of VQPC was recorded several times, each time with a different constant voltage
−6 mV ≤ V dc

sd ≤ 6 mV applied to the 2DES. The extracted lock-in-phase independent
magnitudes |Iph| at PR maximum j = I (yellow) to j = IV (dark red) are plotted using
dgtot/dVQPC of Eq. 6.2 (Sec. 6.2.3) for normalization. The data are successively offset for
clarity.

The excitation spot distance exceeds the radius of the confocal excitation spot,
|xexc| > 0.75 µm ' HWHM. Figure 6.13 thus allows the comparison between the PR due
to QPC source-side excitation and the PR due to QPC drain-side excitation without mu-
tual influence. The first general conclusion is that sole QPC drain-side excitation induces
an identical PR (the VQPC-dependent data is not shown). Moreover, the characteristics
of the static limit (Eq. 6.2) prove to be a general feature of the QPC PR independent of
the sign of xexc: for each xexc at a given V dc

sd , |Iph| in Fig. 6.13 coincide after the normal-
ization by dgtot/dVQPC. Additionally, the relation |I0| ∝ |Idc

sd | is fulfilled too, as evident
from Fig. 6.13 due to |Idc

sd | ∝ |V dc
sd |. The latter relation is valid because the different

Iph/(dgtot/dVQPC) in each of both data sets xexc = ±2 µm were evaluated at a given PR
maximum j where the QPC conductance gQPC and thus gtot is constant. Slight deviations
from the proportionality are only observed toward highest |V dc

sd | where the transition to
the non-linear transport regime already sets in (the non-linear data is not shown).

The magnitudes of the PRs at a given V dc
sd for the different xexc clearly differ with

respect to each other. The mean ratio of |Iph| at 2 µm to |Iph| at −2 µm averaged over
the data in Fig. 6.13 was calculated as 15 ± 3. Though inferred only for the constant
excitation spot distances xexc = ±2 µm the result is consistent with the correspondingly
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Figure 6.13: PR measured with several DC voltages V dc
sd applied to the 2DES. For two different

measurements, one with a excitation spot position xexc = 2 µm (filled dots) and one with
xexc = −2 µm (open dots), the extracted values |Iph| at maximum j = I (yellow) to j = IV
(dark red) are shown, each normalized by the corresponding dgtot/dVQPC of Eq. 6.2 (Sec. 6.2.3).
The PR at III, II, and I are successively offset by 4 mV2 for clarity. The laser modulation
frequency is fchop = 112 Hz, the excitation power is Pexc = 42 nW, and yexc = 0. The lines are
guides to the eye.

obtained ratios in Sec. 6.2.4. Therefore it is concluded that the PR due to QPC drain-
side excitation is one order of magnitude smaller than the PR due to QPC source-side
excitation at otherwise identical conditions. Since fchop was constant in Fig. 6.13 the same
holds for the static limits, I0,source ∼ 10I0,drain. In addition, Fig. 6.13 further confirms
that the asymmetry in the PR strengths is independent of V dc

sd in the investigated linear
transport range. We attribute the PR asymmetry to the present asymmetric geometry of
the sample layout (compare Sec. 6.1.1).

6.2.6 Origin of the dynamic and the static photoresponse

Based on the detailed results of the previous sections, in this section the relaxation model
(Eqs. 6.1 and Eq. 6.2, Sec. 6.2.2 and Sec. 6.2.3) describing the dominant QPC PR and the
additional static PR contribution Ipc (Eq. 6.3, Sec. 6.2.3) are interpreted.

In the experiments electrons and holes were optically generated in the 2DES within
the QW in close QPC vicinity. This is illustrated in Fig. 6.14 showing the schematic band
diagram at the QPC channel along three lines in the 2DES plane using the coordinate
system in panel (i). The valence band edge (VB) and the conduction band edge (CB)
are sketched with respect to the 2DES Fermi energy EF (dashed line) in y direction at
x = 0 (panel (ii)) as well as in x direction at y = 0 ((iii)) and at y = 0.3 µm ((iv)).
The laser excites electron-hole (e−-h+) pairs resonantly at the lowest interband transition
((iii)). Decreasing VQPC raises the band energies at the constriction center ((ii) and (iii))
and below the QPC gates where the 2DES becomes fully depleted if the CB sufficiently
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Figure 6.14: (i) SEM picture of the QPC which illustrates the coordinate system used to specify
the excitation spot position xexc. (ii-iv) Conduction band edge (CB) and valence band edge
(VB) in QPC vicinity, sketched with respect to the 2DES Fermi energy EF along lines in the
2DES plane using the coordinate system in (i). The dotted lines in (ii) and (iii) connect the
concurring energies at the QPC constriction center.

exceeds EF ((iv)) confining the resulting QPC channel ((ii)). Further lowering VQPC

eventually pinches off the channel such that the lowest QPC subband gets fully depleted.
While the negatively charged QPC gates repel electrons they attract positive holes and

consequently generate a hole-trapping potential below the gates (Fig. 6.14(iv)) and in the
QPC channel ((iii)). The result Fig. 6.12(a) (Sec. 6.2.4) yields PR relaxation times in the
order of ms which by far exceed typical electron-hole recombination times of 10 - 100 ps
in a QW potential [109, 110] with electron and hole wavefunctions having sizable overlap.
However, such prolonged recombination times have been reported in samples with spatially
separated electrons and holes that had strongly reduced wave function overlap [111]. It is
in accord with Eq. 6.2 which shows that the dominant PR is determined by dgtot/dVQPC

indicating the modulation of gQPC in response to the photo excitation. The main PR of a
QPC can thus be explained in terms of holes trapped below the negatively charged QPC
gates. The holes modulate gQPC and, according to Eq. 6.2, the PR is generated by the
correspondingly modulated QPC current Idc

sd . Hence the dominant PR can be related to
photoconductance due to a hole-induced photogating Ipg of Idc

sd : Ipg = Iph(Ipc = 0). This
conclusions implies that Ipg must vanish in the case of V dc

sd = 0 even if the laser excitation
and thus the gating of the QPC conductance occurs. The vanishing photogating response
is observed in the experiments (compare Fig. 6.11).

The parameters τ and I0 that characterize the dominant Ipg are now discussed in terms
of the photogating. When xexc is varied a change in τ is expected which is given by the
dipolar matrix element µeh, τ−1 ∼ µ2

eh = |〈ψe|xe|ψh〉|2 ∼ V trap
h ∼ ntrap

h : the recombination
rate which is sensitive to the actual overlap of the wavefunctions of the electrons and the
holes changes with the mean trapped holes density ntrap

h underneath the QPC gates that
self-consistently modifies the trapping potential of the holes V trap

h and thus their overlap
with 2DES electrons. This is qualitatively in compliance with the observed general gain
of τ for larger xexc (Fig. 6.12(a), Sec. 6.2.4). It is furthermore closely related with the
fact that τ is increasing at a given xexc while the QPC is opened up, as well as with
the observed abrupt increase in τ at the xexc where the drain-side-related hole supply to
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the traps ceases rather abruptly (Fig. 6.12(a)). Eventually, the observed decline in I0 for
increasing xexc (see Fig. 6.12(b)) provides further indications of the trapped-holes scenario
because the strength of the QPC potential modulation is expected to scale with the mean
trapped hole density. The latter drops for larger xexc as a result of the on average higher
radiative recombination possibility for holes before reaching the traps. A more detailed
analysis would include the particular 2D hole distribution as well as detailed information
regarding the 2D trapping potential below the QPC gates and was not pursued in the
scope of this thesis.

Next the additional static contribution Ipc is evaluated. The conductivity of a high-
mobility 2DES at low temperatures is determined by scattering processes of the electrons
with impurities. Corresponding relaxation rates are typically around 100 GHz [112]. In
the considered kHz frequency range the 2DES electrons are consequently expected to
produce a static PR contribution which does apply to Ipc. Ipc in Eq. 6.3 is furthermore
independent of V dc

sd , in contrast to the directly V dc
sd -generated Ipg via Idc

sd in Eq. 6.2 at
a given PR maximum. This provides further indications that Ipc and Ipg have different
origins. The inferred Ipc also shows a dependence on the actual QPC transmission via
VQPC that is related to the 2DES Fermi energy, but at the same time Ipc shows no
dependence on the feature dgtot/dVQPC, characteristic of Ipg, which is strongest around

V pinch−off
QPC where Ipc is actually constant (compare Figs. 6.9(a) and 6.9(b), Sec. 6.2.3). This

excludes a significant link of Ipc to the dynamics of the trapped holes in the QPC vicinity.
It is important to note that the currents arising from (or flowing onto) all involved

metal gates, including the QPC gates, on top of the sample were monitored simultaneously
during the measurements of Iph. No evidence for a gate-induced origin of the change in Ipc

was found which in particular would have become apparent at the distinct onset at Vcrit.
Because Ipc is detected at the photomodulation frequency fchop we therefore attribute a
photo-induced electron-related origin.

However, the onset of the variation in Ipc at Vcrit = −3.755 V in Fig. 6.9(b) clearly

differs from V pinch−off
QPC ' −4.25 V where the QPC current Idc

sd sets in. With the aid of
independent non-linear transport conductance measurements, this energy difference was
calibrated to ∆E = 25 ± 3 meV. The error is caused by the uncertainty in the determi-
nation of the QPC subband energies. ∆E coincides well with the expected QW binding
energy of negatively charged excitonsX− (trions) Ebind,X− = 23±3 meV which is increased
due to the strong QW confinement and the high 2DES density [104]. Ebind,X− was deter-
mined from the neutral exciton X binding energy in the QW Ebind,X = 10± 1.5 meV [113]
and from QW 2DES photoluminescence measurements (compare Sec. 5.2) that yielded
Ebind,X− −Ebind,X = 13± 1.5 meV. Preferred X− formation under optical QW excitation
is expected due to the high 2DES density [102, 104] and was observed in the characteri-
zation measurements (see Sec. 5.2).

The experimental findings in combination with the established relaxation model there-
fore consistently suggest that Ipc is a photo-induced 2DES electron current closely related
to abundant X− formation [114] and may include VQPC-induced disintegration of the X−

in QPC vicinity. Accordingly, the cause of I leak
pc in Ipc (Eq. 6.3) can be attributed to
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the radiative recombination of gate-trapped holes with 2DES electrons originating from
the QPC drain side where the readout is performed. The radiative recombination is ex-
pected to generate a persistent net-electron current from the drain reservoir toward the
QPC independently of gQPC and thus independently of gtot. It is in compliance with the
observed opposite sign of I leak

pc compared to the gQPC-related Ipc that onsets at Vcrit (com-
pare Fig. 6.9(b)). In this respect, I leak

pc can also be considered a photocurrent contribution
since it is generated by electrons independently of the actual hole-induced dynamics of
the dominant photogating.

6.3 Conclusions

The QPC transport conductance at various 2DES densities showed an emerging 0.7-
anomaly in the investigated QPC. Consequently a main goal has been achieved: in the
specifically designed 2DES a QPC could be integrated which is accessible in terms of trans-
port spectroscopy and which can be tuned into the 0.7-anomaly regime. However, after
the illumination of the sample no indication of the distinct 0.7-shoulder could be found
anymore. On the other hand, the QPC transport conductance including the pinched-off
QPC channel were accessible even during confocal laser illumination of the QPC channel
center.

The PR of a QPC was investigated in detail for the case of resonant excitation of
the 2DES in QPC vicinity. It was shown that for any given constant QPC transmission,
the dominant PR contribution as a function of the varying excitation frequency is well
captured by a basic relaxation model. The corresponding relaxation times of the order
of ms were strongly increased. The large relaxation times were attributed to the recom-
bination of 2DES electrons with holes that were trapped below the QPC gates, resulting
in considerably decreased wave function overlap. Thus the cause of the dominant PR
was attributed to photogating of optically induced holes which become trapped in the
2DES-depleted regions below the QPC gates.

By additionally including the in-situ measured transport conductance and static QPC
current, the relaxation model reproduced the characteristics of the full experimentally
observed dominant photoresponse of a QPC. This capability yielded additional PR con-
tributions two orders of magnitude smaller than the dominating photogating at finite
voltages applied to the 2DES. The additional contributions were distinguished based on
their static character in the investigated kHz-frequency range. Two static PR compo-
nents were extracted, a QPC-transmission-independent current which was attributed to
electron transport caused by the continuous recombination of trapped holes with 2DES
electrons from the QPC drain side, and a QPC-transmission-dependent component which
was attributed to an photo-induced electron current crossing the QPC constriction. The
latter showed the feature of setting in not before the QPC channel had already opened.
The corresponding energy difference at the Fermi edge of the 2DES indicated a relation
to negatively-charged exciton states. The preferred generation of the latter in the 2DES
was confirmed by independent measurements of the photoluminescence of the 2DES.
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6.3. Conclusions

Hence it was demonstrated that the relaxation model enables to distinguish the domi-
nant photogating response from two orders of magnitude smaller static PR contributions.
However, the indicated complex origin of the static PR constitutes a major challenge
for the application of optical excitation schemes in QPC vicinity that aim at generating
spin-resolved electron populations for controlled spin transport through the QPC channel.
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Summary and outlook

The electron transport response and the response to local optical excitation of depletion-
gate defined QPCs in a 2DES were investigated. The transport spectroscopy emphasized
the detailed combined experimental and theoretical analysis of the 0.7-anomaly. On the
other hand, the optical studies served the fundamental understanding of the transport
response of a QPC to local optical excitation of charge carriers in QPC proximity.

The combined experimental and theoretical transport spectroscopy in Chapter 2 dem-
onstrated that both the emergence and the characteristic features of the 0.7-anomaly can
be inferred from a smeared Hove singularity occurring in the local density of states of the
lowest QPC subband. The “slowly moving” electrons in the QPC constriction exhibit
amplified interaction effects which are strongest when the 2DES Fermi energy crosses the
Hove singularity. This crossing occurs at about 0.7GQ for a parabolic top of the QPC
barrier potential but can vary between 0.5GQ and 1GQ for different barrier top curvatures,
accounting for the experimentally varying appearance of the 0.7-anomaly. At large enough
interactions, model calculations demonstrated the emergence of the 0.7-anomaly even at
zero magnetic field. In combination with the calculated spin-dependent asymmetry of
the spin-resolved QPC conductance in the 0.7-regime at finite magnetic fields it explains
the magnetoconductance of the 0.7-anomaly. Furthermore, increased interactions at finite
2DES bias voltage due to inelastic backscattering and stronger electron-Coulomb repulsion
produced a zero-bias peak in the calculated QPC conductance. Increased temperatures
additionally cause inelastic backscattering which decreased the zero-bias peak, accounting
for a more pronounced 0.7-shoulder in accordance with the experiments.

In Chapter 2 and Chapter 3, the calculated and measured QPC conductance agreed
in the regime of low-energy excitations of the magnetic field, the temperature, and the
2DES bias voltage in that each excitation was similarly governed by a single energy scale.
Likewise observed in a quantum dot in the Kondo effect regime (Kondo quantum dot,
KQD) [45], it provided striking evidence that the QPC in the 0.7-anomaly regime and a
KQD are closely related. It led to the key theoretical prediction which can be considered
as the microscopic origin of the 0.7-anomaly: the amplified interactions of a QPC in the
0.7-anomaly regime emerge due to local electrons-spin fluctuations, similarly to those ob-
served in the KQD. These fluctuations become apparent by a strong enhancement of the
spin susceptibility in the 0.7-regime of the QPC which are intimately linked to the strong
negative magnetoconductance, a relation also fulfilled for the KQD [78]. The calculated
interaction-enhanced spin susceptibility in Chapter 3 further showed a characteristic spa-
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tial pattern in QPC proximity arising from the geometry of the confining potential. The
constraint of absent spontaneous spin polarization in the QPC self-imposed on our model
calculations precluded built-in magnetization effects such as a “quasi-bound” spin state
[39–42] a priori. Thus, the governing low-energy scales emerge as a result of the interac-
tions of 2DES electrons with a single localized spin in the KQD, yet in the QPC they arise
from interactions along the elongated, yet confined, Hove singularity and include multiple
spin states. Accordingly, in the limit of high magnetic fields the theoretical analysis of
the local magnetization showed a constant spatial distribution and a saturating magni-
tude in the KQD, in contrast to a changing spatial distribution and a continuous rise
in magnitude in the QPC 0.7-anomaly regime. It showed that the 0.7-anomaly and the
Kondo effect are in general distinct phenomena and that in particular in the 0.7-anomaly
regime no actual Kondo effect is present. The strength of the presented theory lies in the
comprehensive integration of the elastic and inelastic regimes. An important consequence
of our model calculations is the requirement of non-zero many-particle interactions for
an emerging 0.7-anomaly, in contrast to recent proposals [115]. Furthermore, systematic
experimental studies of the crossover from parabolic to wide, flat QPC barrier tops would
be beneficial in order to test the obtained quantitative theoretical prediction of the actual
occurrence of the 0.7-anomaly as a function of the actual QPC barrier curvature.

As an initial step toward a possible experimental test of the predicted close connection
between the 0.7-anomaly and the local spin susceptibility by optical means, in Chapter 4
a confocal microscope based on Faraday rotation (FR) readout was presented which is
sensitive to local magnetization. The microscope was tested on a polarized single electron
spin state confined in a self-assembled quantum dot. The sensitivity of the microscope was
500 µrad/

√
Hz for the single spin state with an optical resonance linewidth of Γ = 10 µeV.

Hence the simple microscope setup proved to be a sensitive single-spin detector.
In Chapter 5, semiconductor heterostructure simulations and subsequent experimental

characterizations were presented in order to adapt a 2DES in a heterostructure for optical
excitation. Adequate densities and mobility were experimentally confirmed for a 2DES
which provides the required well-defined interband optical selection rules in optically
transparent surroundings. Additionally, the analysis of the photoluminescence of the
adapted heterostructure identified both the lowest 2DES optical interband transitions
and negatively-charged exciton (trion) formation dominating the optical 2DES response.

Based on the adapted 2DES, in Chapter 6 the QPC transport response to resonant
confocal optical excitation of the 2DES in the QPC proximity (termed photoresponse,
PR) was analyzed. The differential PR was read out using a modulation of the excitation
intensity in the kHz range. As an important finding, the sample design allowed full control
of the QPC potential under illumination of the actual QPC constriction. It was shown that
a basic relaxation model well describes the dominant PR of a QPC. The inferred relaxation
times of the order of 1 ms were identified as the lifetimes of charges in the valence band
(holes) which become trapped in the 2DES-depleted areas below the QPC gates and
recombine with the spatially separated 2DES electrons. It was further demonstrated that
the dominant PR of a QPC equals the static QPC current which is periodically gated by
photo-generated holes that are trapped below the QPC gates. Moreover, an additional

112



Summary and Outlook

PR contribution two orders of magnitude weaker than the dominant PR was identified
based on its static behavior in the modulation-frequency range of the optical excitation.
The QPC-transmission-dependent static PR was shown to be consistent with the laser-
induced photocurrent in the 2DES. However, the onset of the photocurrent did not occur
before the QPC already contained several transmitting channels. The corresponding
energy difference at 2DES Fermi energy was comparable to the trion binding energy in
the 2DES, in accordance with the photoluminescence results. This may indicate that
the photocurrent is closely related to the disintegration of the trion states in close QPC
vicinity.

As a result, it could be demonstrated that the relaxation model can be used to distin-
guish and extract the dynamic and static contributions to the PR of a QPC. Our result
that the PR of a QPC is dominated by the optically gated static QPC current is consis-
tent with similar previous experiments where the access of photocurrent was not possible
[116, 117]. The dominant photogating furthermore implies that photoexcitation-induced
shifts in electrostatically defined potential landscapes have to be taken into account in
prospective experimental schemes which aim at charge or spin control due to optical
excitation in a depletion-induced 2DES potential landscape [118].

In general, the presented FR-based microscope could establish a new technique for an
all-optical local spin detection with minimal interaction with the system whose potential
in the field of spintronics would go far beyond the evaluation of the striking predictions
regarding the fundamental origin of the 0.7-anomaly. For the latter, the transformation of
the optical-fiber-based microscope setup into a He3 cryostat with a bath temperature of
about 300 mK is straightforward. It would allow to test the predicted enhancement of the
local spin polarization of a QPC in the regime of the 0.7-anomaly as a function of relevant
parameters such as the magnetic field, the temperature, the 2DES bias voltage, and the
geometry of the confinement potential. Moreover, the detector unit of the microscope that
enables the FR readout can be exploited for differential transmission experiments on a
sample containing the specifically adapted 2DES in order to experimentally determine the
spin-resolved optical interband transition rules using a finite magnetic field. If operated in
a He3 cryostat, the correspondingly decreased optical resonance linewidths further facili-
tate spin-resolved optical access to the 2DES. The latter would allow to optically generate
a spin imbalance in QPC vicinity by using the FR-based microscope for optical charge ex-
citation aiming at spin-resolved current spectroscopy of a QPC in the 0.7anomaly regime.
However, the indicated trion-related origin of the photocurrent detected by means of the
relaxation model would constitute a major challenge for QPC spectroscopy experiments
based on nearby optical excitation of charge carriers. The experimental analysis of the
photocurrent by means of the relaxation model in dependence on basic parameters such
as the excitation power, the laser detuning, or the excitation site would further clarify the
nature of the photocurrent.
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[17] M. Büttiker. Quantized transmission of a saddle-point constriction. Phys. Rev. B,
41(11):7906(R), 1990.

[18] J. I. Pascual, J. Mendez, J. Gomez-Herrero, A. M. Baro, N. Garcia, Uzi Landman,
W. D. Luedtke, E. N. Bogachek, and H. P. Cheng. Properties of metallic nanowires:
From conductance quantization to localization. Science, 267(5205):1793–1795, 1995.

[19] C. J. Muller, J. M. Krans, T. N. Todorov, and M. A. Reed. Quantization effects in
the conductance of metallic contacts at room temperature. Phys. Rev. B, 1022(3):
53, 1996.

[20] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer. Carbon nanotube quantum
resistors. Science, 280(5370):1744–1746, 1998.

[21] N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimaraes, I. J. Vera-Marun, H. T.
Jonkman, and B. J. van Wees. Quantized conductance of a suspended graphene
nanoconstriction. Nature Physics, 7(9):697–700, 2011.

[22] L. Olesen, E. Laegsgaard, I. Stensgaard, F. Besenbacher, J. Schiotz, P. Stoltze,
K. W. Jacobsen, and J. K. Norskov. Quantized conductance in an atom-sized point
contact. Phys. Rev. Lett., 72(14):2251, 1994.

116



References

[23] S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, and T. Esslinger. Observation
of quantized conductance in neutral matter. Nature, 517(7532):64–67, 2015.

[24] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A.
Ritchie. Possible spin polarization in a one-dimensional electron gas. Phys. Rev.
Lett., 77(1):135–138, 1996.

[25] K. J. Thomas, J. T. Nicholls, N. J. Appleyard, M. Y. Simmons, M. Pepper, D. R.
Mace, W. R. Tribe, and D. A. Ritchie. Interaction effects in a one-dimensional
constriction. Phys. Rev. B, 58:4846–4852, 1998.

[26] N. J. Appleyard, J. T. Nicholls, M. Pepper, W. R. Tribe, M. Y. Simmons, and
D. A. Ritchie. Direction-resolved transport and possible many-body effects in one-
dimensional thermopower. Phys. Rev. B, 62(24):R16275–R16278, 2000.

[27] S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kouwenhoven, C. M.
Marcus, K. Hirose, N. S. Wingreen, and V. Umansky. Low-temperature fate of the
0.7 structure in a point contact: A Kondo-like correlated state in an open system.
Phys. Rev. Lett., 88:226805, 2002.

[28] L. DiCarlo, Y. Zhang, D. T. McClure, D. J. Reilly, C. M. Marcus, L. N. Pfeiffer,
and K. W. West. Shot-noise signatures of 0.7 structure and spin in a quantum point
contact. Phys. Rev. Lett., 97(3):036810, 2006.

[29] E. J. Koop, A. I. Lerescu, J. Liu, B. J. van Wees, D. Reuter, A. D. Wieck, and C. H.
van der Wal. The influence of device geometry on many-body effects in quantum
point contacts: signatures of the 0.7-anomaly, exchange and Kondo. J. Supercond.
Nov. Magn., 20:433–441, 2007.

[30] Shuji Nakamura, Masayuki Hashisaka, Yoshiaki Yamauchi, Shinya Kasai, Teruo
Ono, and Kensuke Kobayashi. Conductance anomaly and Fano factor reduction in
quantum point contacts. Phys. Rev. B, 79:201308, 2009.

[31] Y. Komijani, M. Csontos, I. Shorubalko, T. Ihn, K. Ensslin, Y. Meir, D. Reuter,
and A. D. Wieck. Evidence for localization and 0.7-anomaly in hole quantum point
contacts. Eur. Phys. Lett., 91:67010, 2010.

[32] Y. Ren, W. W. Yu, S. M. Frolov, J. A. Folk, and W. Wegscheider. Zero-bias anomaly
of quantum point contacts in the low-conductance limit. Phys. Rev. B, 82(4):045313,
2010.

[33] L. W. Smith, A. R. Hamilton, K. J. Thomas, M. Pepper, I. Farrer, J. P. Griffiths,
G. A. C. Jones, and D. A. Ritchie. Compressibility measurements of quasi-one-
dimensional quantum wires. Phys. Rev. Lett., 107:126801, 2011.

117



References

[34] A. M. Burke, O. Klochan, I. Farrer, D. A. Ritchie, A. R. Hamilton, and A. P.
Micolich. Extreme sensitivity of the spin-splitting and 0.7-anomaly to confining
potential in one-dimensional nanoelectronic devices. Nano Letters, 12(9):4495, 2012.

[35] S. Sarkozy, F. Sfigakis, K. Das Gupta, I. Farrer, D. A. Ritchie, G. A. C. Jones, and
M. Pepper. Zero-bias anomaly in quantum wires. Phys. Rev. B, 79(16):161307(R),
2009.

[36] K. A. Matveev. Conductance of a quantum wire at low electron density. Phys. Rev.
B, 70(24):245319, 2004.
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[80] D. M. Schröer, A. K. Hüttel, K. Eberl, S. Ludwig, M. N. Kiselev, and B. L. Altshuler.
Kondo effect in a one-electron double quantum dot: Oscillations of the Kondo
current in a weak magnetic field. Phys. Rev. B, 74:233301, 2006.

[81] F. D. M. Haldane. Scaling theory of the asymmetric Anderson model. Phys. Rev.
Lett., 40:416–419, 1978.

[82] V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom.
Spatial imaging of the spin Hall effect and current-induced polarization in two-
dimensional electron gases. Nature Physics, 1:31–35, 2005.

[83] J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, and D. D.
Awschalom. Nondestructive optical measurements of a single electron spin in a
quantum dot. Science, 314(5807):1916–1920, 2006.

[84] B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom. Spin-light co-
herence for single-spin measurement and control in diamond. Science, 330(6008):
1212–1215, 2010.

121



References

[85] I. Gerhardt, G. Wrigge, M. Agio, P. Bushev, G. Zumofen, and V. Sandoghdar.
Scanning near-field optical coherent spectroscopy of single molecules at 1.4 k. Opt.
Lett., 32(11):1420–1422, 2007.
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[90] A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and
P. M. Petroff. Voltage-controlled optics of a quantum dot. Phys. Rev. Lett., 93(21):
217401, 2004.

[91] B. Alen, F. Bickel, K. Karrai, R. J. Warburton, and P. M. Petroff. Stark-shift
modulation absorption spectroscopy of single quantum dots. Appl. Phys. Lett., 83
(11):2235, 2003.
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