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“If the brain were simple enough for us to understand it, we would be too simple to

understand it.” — Ken Hill*

* as cited in Buzsaki (2006, p.8)
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1. Abstract & Deutsche Zusammenfassung

1.1 Abstract

Being born preterm (< 37 weeks of gestation) increases the risk for several psychiatric
disorders, cognitive impairments, and academic underachievement. It is hypothesized that
this is due to perinatal brain injury and subsequent alterations in brain development.
Structural and functional magnetic resonance imaging allows the identification of such brain
abnormalities in-vivo. Accordingly, previous MRI studies have shown that preterm born
infants, children and adolescents demonstrate both structural and functional alterations when
compared to their term born peers. However, it is unclear whether such changes persist into
adulthood. Therefore, the present doctoral thesis aimed to investigate the long-term effects
of preterm birth on large-scale brain organization. Study I: in 95 preterm and 83 full-term born
adults, structural and functional magnetic resonance imaging at-rest was used to analyze
both voxel-based morphometry and spatial patterns of intrinsic functional connectivity (iFC) in
ongoing blood oxygenation level-dependent activity. We found widespread iFC differences
that overlapped and correlated with aberrant regional gray matter volume in subcortical and
temporal areas. Overlapping changes were predicted by the degree of prematurity and
neonatal medical complications. The second study investigated functional brain organization
in 73 adults born very preterm and/or with very low birth weight (VP/VLBW), and 73 term-
born controls, while participants were involved in a verbal N-Back paradigm with varying
workload. Although behavioral performance was comparable between groups, VP/VLBW
adults showed significantly stronger deactivations of posterior default mode network regions
during the most demanding 2-back condition. Our results suggest long-term effects of
preterm birth on both structural and functional brain organization and imply compensatory

brain activity as a mechanism to help overcome functional deficits.



1.2 Deutsche Zusammenfassung

Eine Frihgeburt (d.h. Geburt vor der 37. Schwangerschaftswoche) erhtht das Risiko fur
psychiatrische Erkrankungen, kognitive Defizite und schwéachere akademische Leistungen.
Es wird vermutet, dass dies auf perinatale Hirnschadigungen und nachfolgende
Veranderungen in der Gehirnentwicklung zurtickzufiihren ist. Die strukturelle und funktionelle
Magnetresonanztomographie ermdglicht es solche Gehirnverdnderungen in-vivo
darzustellen. Frihere MRT-Studien haben gezeigt, dass friuhgeborene Sauglinge, Kinder und
Jugendliche sowohl strukturelle als auch funktionelle Unterschiede im Vergleich zu
reifgeborenen Gleichaltrigen aufweisen. Jedoch ist unklar, ob solche Veranderungen bis ins
Erwachsenenalter bestehen. Das Ziel der vorliegenden Doktorarbeit war es daher, die
langfristigen  Auswirkungen einer  Frihgeburt auf die Gehirnorganisation im
Erwachsenenalter zu untersuchen. Zu diesem Zweck wurden in der ersten Studie strukturelle
und Ruhe-fMRT Daten von 95 friihgeborenen und 83 reifgeborenen Erwachsen erhoben und
mittels Voxel-basierter Morphometrie und ,Independent Component Analysis“ analysiert. Bei
frihgeborenen Erwachsenen zeigten sich ausgedehnte Verdnderungen in der funktionellen
Konnektivitdt intrinsischer Hirnnetzwerke, die mit subkortikalen und temporalen
Veranderungen im Volumen der grauen Substanz udberlappten und Kkorrelierten.
Uberlappende Veranderungen wurden durch den Grad der Friihgeburtlichkeit und das
Ausmall an perinatalen medizinischen Komplikationen vorhergesagt. Die zweite Studie
untersuchte die funktionelle Gehirnorganisation von 73 Erwachsenen, die sehr friihgeboren
und/oder ein sehr geringes Geburtsgewicht (SF/SGG) hatten, und 73 reifgeborenen
Kontrollen, wahrend diese ein verbales N-Back Paradigma mit variierendem
Schwierigkeitsgrad absolvierten. Beide Gruppen meisterten die Aufgabe gleich gut. Jedoch
zeigten die SF/SGG Erwachsenen wahrend der schwierigsten 2-back Bedingung eine
signifikant starkere Deaktivierung von Regionen, die zum posterioren ,default mode®
Netzwerk gezahlt werden. Unsere Ergebnisse lassen langfristige Effekte einer Frihgeburt

auf die strukturelle und funktionelle Gehirnorganisation im Erwachsenenalter vermuten und



deuten an, dass kompensatorische Gehirnaktivitdt ein moglicher Mechanismus ist, um

funktionelle Defizite auszugleichen.



2. Introduction

A major goal of clinical neuroscience is to identify predisposing factors associated with an
increased prevalence of psychiatric disorders, cognitive impairments and academic
underachievement. One such risk factor appears to be preterm birth (Hack et al. 2002; Taylor
et al. 2004; Johnson et al. 2009; Litt et al. 2012; Nosarti et al. 2012). Every year, an
estimated 15 million infants are born preterm, i.e. before the completion of 37 weeks of
gestation (Blencowe et al. 2013). Despite advancing knowledge of risk factors and
mechanisms related to preterm labor, this number is rising in many industrialized countries
(Goldenberg and Rouse 1998; Goldenberg et al. 2008). With the establishment of neonatal
intensive care units (NICUs) in the 1960s and the emergence of sophisticated medical
interventions, such as mechanical ventilation, surfactant therapy and administration of
glucocorticoids, survival rates of ever lower gestation infants have dramatically increased
(Wyatt 2010). However, cognitive problems, which are a major sequela of preterm birth, have
remained substantially stable (Moore et al. 2012), particularly those involved with language
and executive functions (Salmaso et al. 2014). When more preterm born children survive
while rates of cognitive problems remain the same, the percentage of children in the
community with cognitive problems increases (Jaekel et al. 2013). Moreover, studies that
have followed preterm born children longitudinally report these neurodevelopmental deficits
to be persistent throughout childhood, adolescence and adulthood (Allin et al. 2008; Pyhala
2012; Breeman et al. 2015). It is hypothesized that the increased risk of neurocognitive
impairments in this population is due to perinatal brain injury and subsequent alterations in
brain development (Volpe 2009a; Back and Miller 2014; Salmaso et al. 2014). A better
understanding of the primary destructive mechanisms at micro-scale and the secondary
maturational differences at macro-scale is necessary to develop potential treatments on the

long-run.



3. The encephalopathy of prematurity: Microscopic perspective

3.1 Etiology of perinatal brain injury

Preterm born infants are at increased risk of perinatal brain injury due to hypoxia-ischemia,
infections, inflammatory processes and/or drug exposure (Deng 2010; Penn et al. 2015).
This has been attributed to the fact, that premature infants are born at a time when many
body systems (e.g. the respiratory system, the cardiovascular system, the immune system,
and the central nervous system), are not fully developed.

For instance, fetal lungs lack pulmonary surfactant, a conglomeration of surface-active lipids
and proteins that reduce the surface tension of the fluid that lines the alveolar cells (Jobe and
Ikegami 1987; Willson et al. 2005; Roberts and Dalziel 2006). In a surfactant deficient lung
air-spaces are collapsed, often resulting in infant respiratory distress syndrome (Jobe and
Bancalari 2001). Despite ongoing progress in neonatal medicine, hypoxia-ischemia
continues to be a major problem of preterm born infants in modern neonatal intensive care
units (Sweet et al. 2013; Penn et al. 2015). A second type of injury involves intraventricular
hemorrhage (IVH) induced by disturbances in cerebral blood flow and poorly vascularized
germinal matrix vessels (Ballabh 2010). IVH is particularly prominent in extremely premature
infants with an incidence of 45% (Ballabh 2010). Furthermore, at least 40% of preterm births
involve intrauterine infections (Agrawal and Hirsch 2012). Associated immune responses
induce a proinflammatory cascade involving cytokines and other effector molecules (Agrawal
and Hirsch 2012). Finally, fundamental neurodevelopmental processes (e.g. neural
migration, axon and dendritic sprouting, glial cell proliferation, synapse formation) that start to
evolve in the second and third trimester of pregnancy coincide with the high-risk period for
perinatal brain injury (de Graaf-Peters and Hadders-Algra 2006). Consequently, the
developing brain is extremely vulnerable to adverse perinatal events as observed in the
context of preterm birth (Volpe 2009a; Salmaso et al. 2014).

Hypoxia-ischemia, infections, inflammatory processes and intraventricular bleedings can
occur in isolation or coexist and their effects may be amplified by subject-inherent features
(e.g. gender, genetics, hypoglycemia, socio-economic status, maternal smoking) and
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exogenous factors (e.g. drug exposure) (Penn et al. 2015). The main downstream
mechanisms that eventually cause injury to the developing brain are thus excitotoxicity,
oxidative stress and inflammation and entail activated microglia, astrogliosis and neuronal

and/or axonal damage (Deng 2010; Back and Rosenberg 2014).

3.2 Consequences of perinatal brain injury on the developing brain

Most of what we know about the deleterious effects of premature birth on the brain at micro-
scale comes from post-mortem human studies and from animal models of preterm birth (Rice
et al. 1981; Marin-Padilla 1997, 1999; Elovitz and Mrinalini 2004; Back et al. 2012). Those
studies have shown that the encephalopathy of prematurity comprises both primary
destructive and secondary developmental disturbances (Volpe 2009a). For instance, primary
injurious events (e.g. hypoxia-ischemia) may subsequently interrupt endogenous
developmental events in the brain thereby compromising postnatal developmental programs
and their normal timing (Penn et al. 2015). Although, the factors triggering neonatal brain
injury may be quite heterogeneous (see above), the observed injury pattern is characterized

well.

3.2.1 Oligodendrocytes

Injury to developing oligodendrocytes is the most common cause of preterm brain injury and
a major source of chronic neurological impairments including cerebral palsy (Volpe 2009a;
Back and Rosenberg 2014). Oligodendrocytes develop from oligodendrocyte progenitor cells
during the last trimester of pregnancy (Cameron-Curry and Le Douarin 1995). Thus, the
timing of oligodendrocyte progenitor cell proliferation and migration coincides with the high-
risk period for periventricular white matter injury (Back et al. 2001). This makes developing
oligodendrocytes highly vulnerable to injurious events associated with preterm birth, such as
systemic inflammations (Rousset et al. 2006; Favrais et al. 2011; Verney et al. 2012),
hypoxia-ischemia (Back and Rosenberg 2014), as well as neonatal pain and stress
(Brummelte et al. 2012). The consequences include hypomyelination due to disruptions in
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the developmental program of oligodendrocyte lineage cells, acute death of premyelinating
late oligodendrocyte progenitors (Back and Miller 2014), arrest of late oligodendrocyte
progenitor differentiation and astrogliosis (Buser et al. 2012; Back and Rosenberg 2014).
Due to considerable improvements in neonatal management, cystic, necrotic white matter
lesions, characteristic of periventricular leucomalacia and common epiphenomena in former
preterm cohorts, are now rarely observed (Woodward et al. 2006; Volpe 2009b). Instead,
diffuse, non-necrotic alterations in white matter are now predominant (Counsell et al. 2003;
Hamrick et al. 2004). Yet, both necrotic and non-necrotic forms of white matter injury lead to
changes in white matter volume and myelination disturbances (Penn et al. 2015).
Premyelinating oligodendrocyte injury may also cause deficient axonal development and
degeneration as oligodendrocytes have a trophic function for axonal development and
function (Volpe 2009a). However, axonal injury has only been observed in association with
periventricular white matter necrosis (Buser et al. 2012), but not in non-necrotic forms of WMI

(Riddle et al. 2012).

3.2.2 Neurons

3.2.2.1 Cortical and subcortical neurons

While injury to developing oligodendrocytes has long been acknowledged as a major sequela
of preterm birth, the recognition of neuronal abnormalities is relatively recent (Penn et al.
2015). Developing neurons and glia cells tend to show disparate responses to early
deleterious events. Although immature neurons appear to be more resilient to hypoxic-
ischemic cell death than immature oligodendrocytes, they display significant reductions in the
complexity of their dendritic arbors and in synaptic density (Dean et al. 2013). Significant
neuronal loss has been shown to occur particularly in association with necrotic forms of white
matter injury (Pierson et al. 2007; Ligam et al. 2009). Neuropathological studies in preterm
infants with periventricular leucomalacia showed that neuronal loss was most common in the
thalamus (Pierson et al. 2007; Ligam et al. 2009), the caudate and putamen (Pierson et al.
2007). Yet overall, preterm birth appears to be rather characterized by gray matter
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abnormalities than injuries (Back and Miller 2014). For instance, mice reared under hypoxia
demonstrated a 25-30% decrease in cortical parvalbumin and somatostatin expressing
GABAergic interneurons in adulthood (Komitova et al. 2013). However, there was no
evidence of hypoxia-induced GABA interneuron cell death which implies that the decrease
rather results from a delay in maturation of these cells.

Changes in cortical gray matter microstructure may thus be due to maturational delay (Dean
et al. 2013), abnormal subcortical growth causing subsequent anomalies in cortical
development (McQuillen and Ferriero 2005), or altered gene expression causing loss of

coordination of developmentally regulated processes (Curristin et al. 2002).

3.2.2.2 Subplate neurons

A subtype of neurons, known as subplate neurons, has further been shown to be vulnerable
to the consequences of preterm birth. During ontogeny subplate neurons are among the first
neurons to be generated and to form transient functional circuits with thalamic and cortical
neurons (Angevine andi Sidman 1961; Rakic 1974). They are located at the junction of white
and gray matter and play a crucial role in the establishment of intra-cortical and thalamo-
cortical connections (Goldman-Rakic 1982; Allendoerfer and Shatz 1994). This process
occurs relatively late in human fetal development (15-35 post-conception weeks (Hoerder-
Suabedissen and Molnar 2015)) and might thus be particularly vulnerable to adverse
perinatal events. For instance, subplate neurons appear to be selectively vulnerable to
perinatal hypoxia-ischemia (McQuillen et al. 2003). Depending on the timing of the insult,
subplate neuron damage results in deficient cortical morphogenesis (Kanold et al. 2003), in a
failure of thalamo-cortical innervation or interferes with the refinement of thalamo-cortical
connections into mature circuits (McQuillen and Ferriero 2005). Some authors even
proposed subplate neuron damage to be the missing link in understanding preterm brain

injury (Volpe 1996).
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3.2.3 Conclusion and caveats

The distinct and complex responses of neurons, subplate neurons and premyelinating
oligodendrocytes to prematurity-related adverse perinatal events result in large numbers of
cells that fail to fully mature during a critical window in development of neural circuitry (Back
and Miller 2014). Animal models of preterm birth as well as post-mortem human studies
greatly contributed to our understanding of the neuropathological mechanisms and
consequences of preterm birth. Their findings imply an impaired brain development and
aberrant brain connectivity in preterm born subjects. However, such studies also have major
downsides. For instance, access to human autopsy brains is very limited allowing only for
small sample sizes. Moreover, human histological studies often report findings of cerebral
alterations restricted to the short-term while information about the long-term effects of
preterm birth remains sparse.

In contrast, animal models of preterm birth help to explain the exact pathological
mechanisms that lead to perinatal brain injury. However, experimental animal approaches
are invariably reductionistic and typically focus on a single insult (e.g. hypoxia-ischemia,
infection, etc), although there may be several factors involved (Penn et al. 2015).
Furthermore, most animal studies rely upon rodent brains although there are significant
differences from human brains with respect to anatomy, physiology, postnatal development
and composition of major neural cell types (Back et al. 2012). Thus, the one-to-one
transferability of findings from animal models to human brains remains questionable.
Structural (sMRI) and functional magnetic resonance imaging (fMRI) studies in humans offer
an alternative approach to study the effects of preterm birth on the brain and will be

described in the next paragraphs.

4. The encephalopathy of prematurity: Macroscopic perspective

In contrast to histological studies, magnetic resonance imaging (MRI) is non-invasive and
can be performed in living human subjects. It allows to in-vivo map the human brain and to
identify structural and functional abnormalities that cannot be detected otherwise. MRI makes
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use of the fact that hydrogen atoms, which are abundant in biological tissues, emit a
detectable radio-frequency signal when placed in an external magnetic field and stimulated
with pulses of radio waves (Lauterbur 1973). The relaxation properties of hydrogen atoms
(and hence the emitted signal) vary in different biological tissue (e.g. bone, water, fat),
thereby offering a natural contrast mechanism. Some pulse sequences (e.g. BOLD-fMRI) are
further sensitive for transient signal dropouts associated with regional changes in tissue
composition (e.g. the blood oxygen level) (Ogawa et al. 1990; Kwong et al. 1992). Such
signal changes can be used to investigate human brain function. With the advent of
sophisticated structural and functional MRI techniques in recent years we have started to

understand the complex pattern of brain alterations associated with preterm birth.

4.1 Large-scale structural brain organization

One way to investigate brain organization at the large-scale level involves structural
magnetic resonance imaging. SMRI uses T1-weighted MR images to examine the anatomy
and pathology of the brain. For instance, voxel-based morphometry (VBM) applied to
preprocessed gray matter images encompasses a voxel-wise comparison of gray matter
volume (GMV) between two groups of subjects (Ashburner and Friston 2000). Gray matter is
a major component of the central nervous system and comprises both neuronal cell bodies,
dendrites, synapses and astroglia among others. Thus, GMV, as measured with VBM, may
represent an indirect measure of neuron density in a certain region (Mechelli et al. 2005) and
provide valuable information about the structural integrity of the brain.

Although a measure of structural integrity, GMV has a dynamic component. It varies as a
function of development and is amenable to learning induced plasticity (Draganski et al.
2004; Holzel et al. 2011). Across life, it has been shown to follow an inverted U-shaped curve
with a preadolescent increase followed by a postadolescent decrease (Giedd et al. 1999).
Moreover, previous studies have demonstrated that interindividual variance in regional GMV
predicts cognitive performance differences (Mummery et al. 2000; Vasic et al. 2008).

Notably, VBM has been shown to be sensitive for regional alterations in GMV associated
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with different neurological and psychiatric diseases such as multiple sclerosis (Sepulcre et al.
2006), schizophrenia (Honea et al. 2005), autism (Boddaert et al. 2004), as well as major
depressive disorder (Bora et al. 2012). Thus, VBM may also have the potential to identify
cerebral alterations associated with preterm birth which is a risk factor for several psychiatric
disorders (Nosarti et al. 2012). Of particular interest is the question whether VBM studies in
preterm born individuals can mimic the structural alterations in gray matter that have been
described in histological studies at micro-scale.

Accordingly, numerous studies investigated the effect of preterm birth on regional GMV in
infancy (Boardman et al. 2006; Padilla et al. 2014), childhood (Zubiaurre-Elorza et al. 2011)
and adolescence (Nosarti et al. 2008; Spencer et al. 2008; Nagy et al. 2009). Although there
is some variation with respect to the reported findings, there is some consistency across all
age groups: preterm born subjects show regional GMV reductions in bilateral superior and
middle temporal gyri, as well as in the thalamus and striatum. These findings are consistent
with neuropathological post-mortem studies (Pierson et al. 2007; Ligam et al. 2009).
Additionally, some studies also report preterm born subjects to show GMV increases in the
visual and frontal cortices (Padilla et al. 2014) as well as in cingulate areas (Nosarti et al.
2008). However, it is unclear whether these changes persist into adulthood. Thus, in the first

study we investigated regional GMV in preterm born individuals that have reached adulthood.

4.2 Large-scale functional brain organization

A complementary method to investigate brain organization at the large-scale level is
functional magnetic resonance imaging. FMRI takes into account that the brain is a highly
dynamic system that exhibits high degrees of intrinsic activity and responds adaptively to
external stimulation. As mentioned above, BOLD-fMRI is sensitive for transient signal
dropouts associated with regional changes in the blood oxygenation level. Such changes in
the amount of oxyhemoglobin are the result of a phenomenon called hemodynamic response
where the amount of oxygenated blood flowing through an area is increased in response to
augmented neuronal activity (Ogawa et al. 1992). Regional changes in neuronal activity are
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thus accompanied by uniform alterations in the BOLD signal (Boynton et al. 1996). Hence,
BOLD-fMRI provides an indirect measure of macro-level brain activity.

With the advent of BOLD-fMRI in the early 1990s (Ogawa et al. 1990; Kwong et al. 1992),
the in-vivo investigation of brain function both under rest (‘resting-state fMRI’) and while the
participant is involved in a specific cognitive task (‘task-fMRI’) became possible. While GMV
provides a measure of structural brain organization, resting-state or intrinsic functional
connectivity (iFC) and task-related functional coactivation are measures of large-scale
functional brain organization. Previous studies have shown that spontaneous brain activity is
organized in so called intrinsic brain networks (IBNs) and that these networks significantly
overlap with the so called task-state network architecture (Di et al. 2013; Cole et al. 2014).
Results suggest that there is a “standard” architecture of functional brain organization that is
primarily driven by intrinsic brain activity, and secondarily by task-general and task-specific
network changes. IFC and task-related coactivation in the context of preterm birth will be

introduced in the following paragraphs.

4.2.1 Resting-state fMRI

In 1995, Barat Biswal made a simple but striking observation: spontaneous brain activity (i.e.
activity that is not induced by an external task) as measured with resting-state fMRI
fluctuates in a spatiotemporally organized manner (Biswal et al. 1995). Until then,
spontaneous BOLD oscillations were considered as undesired noise and removed from the
data by filtering or averaging techniques. In contrast, Biswal’s study suggested spontaneous
BOLD fluctuations — particularly in the low-frequency range (< 0.1 Hz) — to reflect
physiologically meaningful signals. Ever since, numerous studies have been published that
evaluated the spatial and temporal organization of such spontaneous brain activity across
development (Fransson et al. 2007), different states of consciousness (Horovitz et al. 2008),
and even species (Vincent et al. 2007). The huge scientific interest in intrinsic BOLD
fluctuations is attributed to the early 20™ century discovery that oscillatory neuronal activity is

an essential component of the mammalian brain (Berger 1929). Particularly, synchronous
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oscillations across distinct temporal and spatial scales are thought to be the basis for
neuronal communication and information processing (Singer 1993; Fries 2005; Schnitzler
and Gross 2005). Although the neuronal mechanism of synchronous infra-slow BOLD
oscillations is not completely understood (Hughes et al. 2011; Palva and Palva 2012),
previous studies suggest slow oscillations to modulate faster local events by regulating large-
scale neuronal network excitability (Vanhatalo et al. 2004). As such, perturbations occurring
at slow frequencies may cause a cascade of energy dissipation at higher frequencies
(Buzsaki 2006).

At the large-scale brain level, techniques to investigate synchronized neuronal activity with a
sufficient spatial resolution were lacking for a long time. With the advent of resting-state fMRI
this problem was fixed and many micro-level measures were transferred to the macro-level.
For instance, this resulted in the concept of intrinsic functional connectivity, which is defined
as the temporal correlation between spatially remote neurophysiological events (Friston et al.
1993). IFC is widely used in resting-state fMRI studies and relies on the Hebbian principle,
which can be roughly summarized as: “neurons that fire together, wire together” (Lowel and
Singer 1992). As such, synchronous low-frequency oscillations in the BOLD signal may
reflect the history of coactivation between large populations of neurons (Fair et al. 2007).
Brain regions whose activity levels fluctuate synchronously over time (and thus display a high
iFC) are arranged in intrinsic brain networks. IBNs represent a basic form of large-scale
functional brain organization (Biswal et al. 1995; Vincent et al. 2007; Bressler and Menon
2010; Sepulcre et al. 2010). They correspond to known neuroanatomical systems and are
consistent across different study populations and even species (Damoiseaux et al. 2006;
Vincent et al. 2007; Allen et al. 2011). Aberrant iFC of such IBNs has been associated with a
variety of psychiatric (Sorg et al. 2007; Assaf et al. 2010; Meng et al. 2013; Sorg et al. 2013)
and neurological disorders (Rocca et al. 2010; Luo et al. 2011), as well as with cognitive
decline (Wang et al. 2011). This raises the question whether aberrant iFC is also present in
subjects at increased risk for psychiatric disorders, and cognitive impairments, such as
preterm born individuals.
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IBNs emerge during the last trimester of gestation and are thus particularly vulnerable to
adverse perinatal events (Fransson et al. 2007; Doria et al. 2010). Accordingly, several rs-
fMRI studies evaluated the short-term effect of preterm birth on the large-scale organization
of IBNs. These studies report preterm born infants to show reduced internetwork (Damaraju
et al. 2010), inter-hemispheric (Smyser et al. 2013), and subcortical-cortical iFC (Smyser et
al. 2010; Ball et al. 2015; Toulmin et al. 2015), as well as reduced network complexity and
magnitude (Smyser et al. 2014). Moreover, they imply such alterations to become even more
pronounced with increasing age (Damaraju et al. 2010). However, it is unknown, whether
aberrant iFC persists into adulthood. Therefore, in our first study we investigated the long-

term effects of preterm birth on IBN'’s intrinsic functional connectivity.

4.2.2 Task fMRI

In contrast to resting-state fMRI, task-fMRI aims to identify brain regions that commonly co-
activate in response to a specific external stimulation. In its simplest and original form,
episodes of stimulation (e.g. visual stimulation) were contrasted to episodes of non-
stimulation (‘baseline’) by simply subtracting the average activation during one task from
activation during another (Kwong et al. 1992; Poldrack et al. 2011). However, more recent
approaches model the functional time series (i.e. the BOLD signal) using a general linear
model (GLM) (Friston et al. 1994). Thus, complementary to rs-fMRI, task-fMRI measures
activity-induced changes in the BOLD signal associated with a very specific task. It enables
the investigation of task-specific functional brain organization at the large-scale level.

As resting-state fMRI, task-fMRI has been shown to be sensitive for abnormal brain
activation patterns associated with psychiatric disorders and cognitive impairments
(Manoach et al. 1999; Harvey et al. 2005; Hamalainen et al. 2007; Just et al. 2007; Karlsgodt
et al. 2007). This is of particular interest with respect to preterm born individuals who are at
increased risk for several psychiatric disorders and cognitive impairments. Apart from lower
general cognitive abilities (Eryigit Madzwamuse et al. 2014; Breeman et al. 2015), preterm
born individuals show specific deficits in executive functions (Nosarti et al. 2007; Mulder et al.
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2009; Burnett et al. 2013). One key aspect of executive functions is working memory
(Diamond 2013). Working memory refers to the capacity limited cognitive system that is
involved in the transient maintaining, processing and manipulation of information (Baddeley
and Hitch 1994; Diamond 2013). It is an essential requirement for the successful mastering
of everyday challenges, such as scholar attainments (Griffiths et al. 2013). Previous studies
reported impaired working memory functions in preterm born children (Mulder et al. 2010;
Baron et al. 2012), adolescents (Bjuland et al. 2013), and young adults (Hallin et al. 2010).
However, these findings are less consistent than for other executive functions, such as
attentional control and cognitive flexibility (Burnett et al. 2013). This may either indicate that
working memory processes are more robust to prematurity-related brain alterations or reflect
compensatory mechanisms that help preterm born individuals overcome existing brain
dysfunctions. Hence, the aim of our second study was to test whether preterm born adults
show working memory impairments or exhibit signs of compensatory brain activity that helps

overcome functional deficits.

5. Questions and Hypotheses: long-term effects of preterm birth on macroscopic brain
organization
Study I. Bauml et al. 2015:
As previous studies suggest observed brain alterations in preterm individuals to be persistent
throughout childhood and adolescence (Nosarti et al. 2008; Back and Miller 2014), we
hypothesized that:
1. preterm born adults showed widespread regional alterations in GMV,
2. preterm born adults showed widespread alterations in the intrinsic functional
connectivity of intrinsic brain networks,
3. that structural and functional changes were specifically associated,
4. that in regions of correspondent changes, alterations in both brain structure and
connectivity were predicted by the degree of prematurity or associated neonatal
medical complications
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Study Il. Daamen et al. 2015:
Previous studies have shown that preterm born infants performing N-back paradigms
activate working memory related brain networks less effectively than their term born peers
(Taylor et al. 2012; Griffiths et al. 2013). However, it is unclear whether this translates into
adulthood, or whether preterm born adults develop compensatory mechanisms during later
brain maturation. Thus, in our second study, we used a verbal N-Back paradigm with varying
workload (0-back, 1-back, 2-back) to address these questions. We hypothesized that:
1. if preterm born adults showed weaker working memory performance, it would be
restricted to the most demanding 2-back task,
2. compensatory activation preferentially emerged with higher task demands (i.e.
particularly in the 2-back task),
3. aberrant working memory related activations in preterm born adults were predicted

by the degree of prematurity or perinatal risk factors.

6. Contribution statement

Both studies were conducted as part of a BMBF funded multi-center project initiated by Prof.
Bartmann (University of Bonn) and Prof. Wolke (University of Warwick). The project (“The
Bavarian Longitudinal Study”) involved a behavioral follow-up examination of a
geographically defined whole-population sample of former very preterm and/or very low birth
weight born adults together with structural and functional magnetic resonance imaging. MRI
data acquisition was carried out in Munich by Josef Bauml (Principal investigators: Dr.
Christian Sorg, Dr. Afra Wohlschlager) and in Bonn by Marcel Daamen (Principal
investigator: Prof. Dr. Henning Boecker).

Study I: Josef Bauml and Christian Sorg conceptualized the study. Josef Bauml and Marcel
Daamen reviewed existing literature. Control of data quality and data analysis (i.e.
preprocessing of structural and functional MR images, independent component analysis of
resting-state fMRI data, voxel-based morphometry of structural MRI data, statistical
parametric mapping, analysis of brain-behavior relationship) were done by Josef Bauml with
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initial support from co-author Chun Meng. Josef Bauml wrote the manuscript with critical
revision by Christian Sorg. Other co-authors contributed to the manuscript by giving their
feedback.

Study II: Marcel Daamen, Lukas Scheef, and Henning Boecker conceptualized the study.
Marcel Daamen and Josef Bauml reviewed existing literature. M.D. performed data quality
checking and analyzed fMRI data of participants that had been scanned in Bonn, while Josef
Bauml did the very same thing for participants that had been scanned in Munich. Marcel
Daamen wrote the manuscript with critical revision by Josef Bauml and Henning Boecker.
Other co-authors contributed to the manuscript by giving their feedback.

As both Josef Bauml and Marcel Daamen were involved in the whole process of participant
recruitment, data quality checking and data acquisition, principal investigators in Bonn and
Munich a priori decided that J.B. and M.D shared first-authorships in the first two

publications.
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