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1. Introduction
1.1 Adoptive T cell transfer for cancer immunotherapy

Cancer is one of the most deadly diseases in spite of significant advances in the fields of
surgery, radiation therapy and chemotherapy [Siegel et al., 2014]. Based on an increasing
understanding of tumor immunology, immunotherapy, which aims at stimulating or enhancing
the function of the immune system to eradicate malignant cells, has emerged as an effective
strategy for a number of cancer types [DeVita et al., 2012].

Among the rapidly emerging strategies for cancer immunotherapy, adoptive T cell transfer
(ACT) is one of the most promising avenues. ACT transfers lymphocytes with enhanced
functionality into patients to target tumor cells. It takes advantages of the natural ability of T
cells to specifically recognize and eliminate targeted malignant cells, and has shown potent
anti-tumor effects in defined patients [Rosenberg et al., 2015]. Currently, ACT may be
classified in three different approaches: the use of autologous tumor-infiltrating lymphocytes
(TILs) and the infusion of autologous T cells genetically engineered with high-affinity T cell
receptors (TCRs) or with chimeric antigen receptors (CARs) [Gattinoni et al., 2006] (Figure
1).

1.1.1 Autologous tumor-infiltrating lymphocytes in the treatment of metastatic
melanoma

For TIL therapy, lymphocytes are harvested from resected tumor specimens. These cells are
expanded in the presence of stimulation factors, such as interleukin-2 (IL-2) or anti-CD3
antibodies, before transfer back into patients [Rosenberg et al., 2015]. A number of clinical
trials have demonstrated complete and durable tumor regression in some patients with
metastatic melanoma (Table 1).

However, successful application of TIL therapy has been so far restricted to the treatment of
melanoma. Reasons include: a) the difficulty of generating TIL cultures due to low immune
infiltrates [Clemente et al., 1996, Galon et al., 2006, Ino et al., 2013], b) the lack of readily
accessible tissue in advanced tumor stages, c) the low specificity of TIL culture for the cancer
cells [Dudley et al., 2003] and d) the risk that TIL may recognize only antigen lost to the
cancer cell during the process of immunoediting [Dunn et al., 2002, Gyorki et al., 2013].
Accordingly, only a few clinical trials have used TILs for the treatment of epithelial cancers
[Tran et al., 2014, Stevanovic et al., 2015].
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1.1.2 Redirecting T cell specificity by genetic engineering with TCR or CAR

The high response rates to TIL therapy observed in patients with melanoma have provided
clinical evidence that infusion of tumor-specific T cells can eradicate cancer cells. However,
the limitations of TIL mentioned above prevent broad application of this approach. In contrast,
a strategy which would in theory be applicable to every patient through ex vivo generation of
the cellular products would have significant advantages over TIL while exploiting their
efficacy. To enhance T cell specificity, autologous T cells isolated from peripheral blood can
be genetically engineered with tumor-specific antigen receptors. The manipulated T cells can
be expanded ex vivo for several weeks before reinfusion to patients [Kershaw et al., 2013].
Several approaches to engineer T cells for transgene expression have been investigated, but
the most frequently used is currently virus-based transduction [June et al., 2009]. This viral
transduction utilizes viral vectors derived from retroviruses or lentiviruses, which are able to
integrate into the host genome and provide stable transgene expression over prolonged
periods of time.

To redirect T cell specificity, two classes of receptors have been developed. High-affinity
antigen-specific TCRs have the conventional structures of α- and β-chains, and can recognize
epitopes of antigens presented by major histocompatibility complex (MHC) molecules [Kalos
et al., 2013]. One strategy to generate such TCRs with high affinity is to select these from
tumor-specific TIL populations. Such tumor antigen-specific TCRs can be sequenced using
high-throughput sequencing [Li et al., 2005, Chervin et al., 2008] and cloned into vectors for
gene transfer. TCR-based therapy was firstly used in the treatment of melanoma patients
targeting melanocyte differentiation antigens (MDAs), such as melanoma-associated antigen
recognized by T cells 1 (MART-1) and glycoprotein 100 (gp100) [Morgan et al., 2006,
Johnson et al., 2009]. Cancer-testis antigens are other potential targets for TCR therapy
[Robbins et al., 2011, Rapoport et al., 2015] with potentially less autoimmune toxicities than
those observed in MDA-targeting TCR therapy. TCR-based T cell therapy also comes with a
number of limitations. For example, tumor cells can escape T cells through MHC
down-regulation, and mutagenesis might generate neo-epitopes that can result in unwanted
immune responses in patients [Kalos et al., 2013]. In addition, the exogenous TCR might
compete with endogenous TCR, which results in mispairing and suboptimal expression of
exogenous TCR [Heemskerk et al., 2007, Govers et al., 2010].

In contrast, CARs [Gross et al., 1989] are hybrid antibody single-chain variable fragments
coupled with T cell co-stimulatory signaling domains. These domains include CD28, CD134
(also known as OX40), or CD137 (also called 4-1BB) and T cell intracellular CD3 ζ signaling
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chain [Barrett et al., 2014]. CARs can recognize antigens on the cell surface in a
non-MHC-restricted manner. In addition, CAR T cells overcome the limitation generated by a
lack of a second co-stimulatory signal in TCR T cells [Sadelain et al., 2013]. The most
promising results obtained with CAR-based therapy have been seen when targeting CD19 in
B cell malignancies, and tumor regression have been observed in clinical trials in both adult
and pediatric patients (Table 1). There are also limitations to CAR therapy [Lipowska-Bhalla
et al., 2012] which include the restriction to surface proteins.

Figure 1: Comparison of schematic work flow for different types of T cell therapy (modified from
Rosenberg, S. A., 2011). T cells are isolated from resected tumors or from peripheral blood.
Tumor-infiltrating lymphocytes (TILs) are amplified in the presence of growth-stimulating cytokines
(such as IL-2) and are infused back to patients. Autologous T cells are genetically engineered with
antigen-specific TCRs or CARs, and are amplified to reach large numbers before infusion.
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Table 1: Summary of successful clinical trials investigating T cell therapy in cancer.

Type
of cell
therapy

Cancer entity Target Number
of
patients

Overall
response

References

TILs Melanoma 20 60% Rosenberg et al.,
1988

Melanoma 86 34% Rosenberg et al.,
1994

Melanoma 13 46% Dudley et al.,
2002

Melanoma 50 50% -
70%

Dudley et al.,
2008

Melanoma 93 22% Rosenberg et al.,
2011

Melanoma 55 48% Itzhaki et al.,
2011

Melanoma 6 60% Ellebaek et al.,
2012

Melanoma 13 38% Pilon-Thomas et
al., 2012

Melanoma 31 48% Radvanyi et al.,
2012

Melanoma 57 40% Besser et al.,
2013

Cervical cancer Human
papillomavirus
(HPV)

9 33% Stevanovic et al.,
2015

TCRs Melanoma MART-1 15 13% Morgan et al.,
2006

Melanoma MART-1,
gp100

36 30% for
human
TCR and
19% for
mouse
TCR

Johnson et al.,
2009

Melanoma and
synovial cell

NY-ESO-1 11 for
melanoma

45% for
melanom

Robbins et al.,
2011
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sarcoma and 6 for
synovial cell
sarcoma

a and
67% for
synovial
cell
sarcoma

Myeloma NY-ESO-1 20 80% Rapoport et al.,
2015

CARs B cell
lymphoma

CD19 1 100% Kochenderfer et
al., 2010

Chronic
lymphocytic
leukemia (CLL)

CD19 3 100% Kalos et al.,
2011

Neuroblastoma GD2 11 27% Louis et al.,
2011

CLL and B cell
lymphoma

CD19 8 75% Kochenderfer et
al., 2012

Acute
lymphoblastic
leukemia (ALL)

CD19 5 100% Brentjens et al.,
2013

ALL CD19 2 100% Grupp et al.,
2013

ALL CD19 16 88% Davila et al.,
2014

ALL CD19 30 90% Maude et al.,
2014

B cell
lymphoma

CD19 15 80% Kochenderfer et
al., 2015

ALL CD19 21 67% Lee et al.,
2015

1.2 Limitations to T cell therapy and strategies to overcome these

In spite of promising results, there is no cancer type where ACT is an approved treatment.
This is due to limited efficacy, as cancer regression could only be seen in a minority of
patients with defined cancer entities [Rosenberg et al., 2015]. Current evidences suggest that
both T cell intrinsic factors and extrinsic mechanisms arising from the tumor
microenvironment significantly contribute to ACT failure and will need to be overcome to
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enable ACT as therapeutics. [Rosenberg, S. A., 2011].

1.2.1 Identification of suitable tumor-specific target antigens

Ideal candidate antigens for ACT should be exclusively expressed on tumor cells and not
found on normal tissues. A lack of specificity may result in severe autoimmune toxicities in
patients.

Recently, neoepitopes arising from cancer-specific gene mutations have been identified as
promising targets for ACT [Lu et al., 2013, Robbins et al., 2013]. Such mutations are rarely
shared between patients, thus targeting cancer specific mutated epitopes would be an
individualized therapy. In contrast, viral proteins may also fulfill the requirement of
specificity as these would not be expressed or presented by healthy tissues. One example of
oncogenic virus providing specific targets is HPV which drives cervical cancer [Piersma et al.,
2008, van Steenwijk et al., 2010]. Epstein-Barr virus (EBV) antigens for lymphoma [Bollard
et al., 2004], nasopharyngeal carcinoma [Comoli et al., 2005] and lymphoproliferative
disorders [Heslop et al., 2010, Bollard et al., 2012] would be other examples for suitable viral
motives.

1.2.2 Prolongation of T cell persistence

Poor persistence of T cells after ACT limits its efficacy. Based on data from both clinical trials
and animal experiments, several crucial factors influencing the persistence of transferred T
cells in vivo have been identified. These include, the phenotype and differentiation state of T
cells ex vivo before transfer, T cell exhaustion state in vivo after transfer and potential host
immune responses against infused cells [Kalos et al., 2013].

The differentiation state of T cells before transfer is inversely correlated with proliferation and
persistence of T cells after transfer [Gattinoni et al., 2012]. T cells used in an early
differentiation state, such as naive [Hinrichs et al., 2009], central memory [Klebanoff et al.,
2005, Berger et al., 2008] or memory stem T cells [Gattinoni et al., 2011] might have longer
persistance, enhanced proliferative potential and effective anti-tumor function. On the other
hand, T cells with full effector function in vitro have impaired capacity to mediate tumor
regression after transfer [Gattinoni et al., 2005]. In this respect, CD27 has been utilized as a
predictive biomarker to select less differentiated T cells for ACT [Gattinoni et al., 2011,
Hinrichs et al., 2011]. CD27 is mainly expressed by naive and memory T cells, but
downregulated in late stage effector T cells. The cell culture conditions in vitro are also
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important for the generation of less differentiated T cells. The addition of IL-7 and IL-15 to
cell culture can induce and maintain T cells in a memory-like state [Cieri et al., 2013]. An
additional feature of a successful cell product may be the collaboration of different cell
populations. CD4+ T cells, for example, are required for the formation of CD8+ memory T
cells [Sun et al., 2003, Sun et al., 2004]. For this reason, the transfer of mixed CD4+ and CD8+

T cells for ACT might be superior to the transfer of either population alone [Huang et al.,
2002].

The exhaustion state of T cells after transfer is another important factor that hampers T cell
persistence and function. Several mechanisms contribute to T cell exhaustion [Jiang et al.,
2015], such as checkpoint pathway, immunosuppressive cells and transforming growth factor
β (TGF-β). Checkpoint blockade strategy has been applied in combination with CAR therapy,
using monoclonal antibodies targeting programmed cell death protein 1 (PD-1) [John et al.,
2013] and cytotoxic T lymphocyte antigen 4 (CTLA-4) [Mahvi et al., 2015]. More recently, in
our group, a PD-1-fusion receptor has been developed to genetically engineer T cells before
transfer and render them insensitive to check point inhibitory pathways [Kobold et al., 2015].

Another strategy to enhance T cell persistence after transfer is to manipulate
immunosuppressive immune cells in the tumor microenvironment. Regulatory T cells (Treg)
predict a worse outcome of patients treated with TIL therapy [Yao et al., 2012]. Depleting
these immunosuppressive cells may improve ACT. Lymphodepletion by total body irradiation
(TBI) in addition to a cyclophosphamide chemotherapy regimen [Dudley et al., 2008] has
been utilized for this purpose. This method can lead to decreased numbers of regulatory T
cells (Tregs) [Yao et al., 2012], as well as increased levels of beneficial cytokines (such as
IL-7 and IL-15) for effector T cells [Gattinoni et al., 2005, Dudley et al., 2008, Wrzesinski et
al., 2010]. TBI can also enhance the function of innate immune cells by inducing microbial
translocations from the gut, which activates dendritic cells and strengthens dendritic
cell-mediated stimulation of adaptive immunity [Paulos et al., 2007]. Other strategies to
reprogram the tumor microenvironment include engineering of T cells to express IL-12,
which leads to activation of antigen presenting cells (APCs) in the tumor environment and
enhanced anti-tumoral CD8+ T cell response [Wagner et al., 2004, Zhang et al., 2012].

1.2.3 Improvement of T cell migration and trafficking into tumors

The successful migration and trafficking of T cells to the targeted tumor site is another
important consideration for ACT success [Fisher et al., 2006]. The amount of transferred T
cells migrating into tumor milieu correlates positively with clinical outcome [Fridman et al.,
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2012], but the trafficking efficacy of transferred T cells to tumor tissues is very low [Fisher et
al., 1989, Griffith et al., 1989]. It is thus necessary to develop strategies to improve T cell
migration into the tumor site. Homing of effector T cells to tumor sites mainly depends on
two factors: adhesion molecules [Bevilacqua, M. P., 1993] and specific chemokines secreted
from tumor tissues [Balkwill, F., 2004].

Some adhesion molecules essential for T cell migration into tumors are down-regulated on
tumor-infiltrating vascular endothelial cells [Piali et al., 1995, Griffioen et al., 1996]. The
down-regulation of such molecules might be due to the increasing amounts of vascular
endothelial growth factors and fibroblast growth factors secreted by tumor tissues. Those
factors prevent T cells from leukocyte-vessel interaction and migration through blood vessels
to tumor tissues. Strategies have been developed to overcome the endothelial barrier by
administration of tumor necrosis factor-α (TNF-α) [Ten Hagen et al., 2008] and normalization
of vasculature in the tumor milieu using anti-angiogenic antibodies to facilitate T cell
infiltration into tumors [Jain, R. K., 2005, Chung et al., 2010, Huang et al., 2012].

A subset of chemokines are found to be abundant in tumor tissues and play critical roles in T
cell infiltration. Based on chemokine profile studies, CCL2, CCL3, CCL4, CCL5, CXCL9,
and CXCL10 in metastatic melanoma [Harlin et al., 2009], CCL2 in several cancer cell lines
[Brown et al., 2007], CXCL16 in breast cancer [Matsumura et al., 2008], colorectal cancer
[Hojo et al., 2007], glioma [Ludwig et al., 2005], renal cell cancer [Gutwein et al., 2009] and
pancreatic carcinoma [Meijer et al., 2008, Wente et al., 2008] may elicit T cell migration. On
the other hand, some chemokine receptors expressed by TILs may have important functions in
T cell recruitment, such as CXCR1 in melanoma [Sapoznik et al., 2012], CCR5, CCR6,
CXCR3, and CXCR6 in renal cell carcinoma [Oldham et al., 2012] and CXCR3 in gastric
carcinoma [Musha et al., 2005, Ohtani et al., 2009]. Strategies have been applied to redirect T
cell trafficking into target sites by transducing appropriate chemokine receptors on T cells,
such as CCR2 [Craddock et al., 2010, Moon et al., 2011, Asai et al., 2013], CXCR2 [Kershaw
et al., 2002] and CCR4 [Di Stasi et al., 2009, Rapp et al., 2015] which all enhanced T cell
infiltration and anti-tumor function of ACT.

1.2.4 Safety considerations of ACT

The major side effect of observed after ACT is a cytokine release syndrome, which is driven
by massive T cell activation. CAR T cell trials were halted after some patients’ deaths due to
high levels of inflammatory molecules such as IL-6 [Morgan et al., 2010, Maude et al., 2014].
Autoimmune side effects against skin and eyes were observed in patients who received
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high-avidity TCRs recognizing non-mutated self-tissue antigens, such as MART-1 and gp100
in patients suffering from melanoma [Morgan et al., 2006, Johnson et al., 2009] or carbonic
anhydrase 9 for CAR therapy of patients with metastatic renal cell carcinoma [Lamers et al.,
2013]. Autoimmune side effects observed stress the need to find better antigens for targets
with tumor cell restriction, as discussed above. Furthermore, investigators have also explored
novel strategies to control T cell activation, such as introducing inducible caspase 9 into the
transferred T cells [Di Stasi et al., 2011, Budde et al., 2013, Gargett et al., 2014].

The genetic manipulation processes using viral elements to transduce T cells, may result in
insertional oncogenesis or cellular transformation. This is another potential risk of ACT.
However, integration-related insertional mutagenesis caused by retroviral transduction was so
far only observed in hematopoietic precursor cells [Hacein-Bey-Abina et al., 2008], while no
adverse effects have been demonstrated in mature T cells using retroviruses [Muul et al., 2003,
Bushman, F. D., 2007, Scholler et al., 2012]. Consistent with what is seen with retroviral
transduction, no safety issues have been reported regarding insertional mutation caused by
lentiviral integration [Wang et al., 2009]. Alternatives to virus-based T cell transduction, are
to introduce the messenger RNA (mRNA) for the given construct directly into the T cell by
electroporation [Zhao et al., 2006], transposon [Perez et al., 2008, Hackett et al., 2010] or
transcription activator-like effector nucleases [Reyon et al., 2012].

1.3 Objectives
1.3.1 Background

Few studies have addressed gene expression alterations of transferred T cells after transfer in
the tumor microenvironment. The answer to this question might provide useful biomarkers to
optimize ACT.

Most previous studies have focused on naturally arising T cells in tumor models [Klebanoff et
al., 2006, Thompson et al., 2010]. However, the transferred T cells are different from naturally
generated effector T cells, since they have undergone ex vivo manipulation, including ex vivo
polyclonal stimulation, culture in the presence of growth factors, introduction of gene
information by viral transduction and expression of exogenous immune receptor which would
interact with endogenous TCRs [Burns et al., 2009]. On the other hand, the immune condition
of the hosts is changed by lymphodepletion. Therefore, the biological features and behaviors
of transferred T cells might be quite different from those of naturally occurring T cells.

One study compared gene expression profiles of TCR-engineered T cells before and after
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infusion into patients with melanoma [Abate-Daga et al., 2013]. They found out that the
transferred T cells detected in the peripheral blood have higher expression of inhibitory
receptors than those before transfer. In this study, gene expression profiles of T cells have
been only measured in peripheral blood cells. In contrast, T cell activity measured in the
blood does not predict whether these T cells which are able to infiltrate the tumor or have
anti-tumor efficacy. Further studues to characterize the intrinsic molecular signatures of
transferred T cells by comparing the gene profiles at the tumor site and in lymphoid tissues
are needed.

1.3.2 Aims of the thesis project

The aims of this thesis are:
1. to compare gene expression profiles of antigen specific T cells before ACT and after ACT
in spleen and tumor, by utilizing reverse transcription polymerase chain reaction (RT-PCR)
arrays involving genes important for T cell migration, activation and exhaustion;
2. to validate candidate genes that are significantly differentially regulated in the arrays;
3. to validate one candidate gene on protein level.
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2. Materials and Methods
2.1 Materials
2.1.1 Technical equipment

Aeroject ultra tips (10 μl, 20 μl, 200 μl) Ratiolab, Dreieich, Germany
Balance (LP 6209) Sartorius, Göttingen, Germany
Bioanalyzer 2100 Agilent, Santa Clara, USA
Cell culture incubator (BD 6220) Thermo Scientific Heraeus, Hanau, Germany
Cell culture laminar flow hoods Thermo Scientific Hareaus, Hanau, Germany
Centrifuge 3L- R Mulifuge Thermo Scientific Heraeus, Hanau, Germany
Centrifuge 460R Andreas Hettich, Tuttlingen, Germany
Centrifuge 5415R Eppendorf, Hamburg, Germany
Electrophoresis chamber Bio Rad, Munich, Germany
96 - well - ELISA plate Corning, New York, USA
FACS Canto II Becton Dickinson, San Jose, USA
FACSAriaIII Cell Sorter Becton Dickinson, San Jose, USA
Heating block Thermomixer 5436 Eppendorf, Hamburg, Germany
Transwell®-96 Permeable 5.0 µm Pore

Polycarbonate Membrane
Corning, New York, USA

Light Cycler 480 Roche, Mannheim, Germany
LightCycler®480 Multiwell

Plate 96
Roche, Mannheim, Germany

Microscopes Axiovert 40 C and HAL 100 Zeiss, Jena, Germany
Millex sterile filter unit (0.45 µm) Millipore, Darmstadt, Germany
MilliQ water preparation equipment Milliopore, Darmstadt, Germany
Minisart-plus sterile filter (0.2 μm) Sartoorius AG, Goettingen, Germany
Mithras LB940 Multimode plate Reader Berthold Tech, Bad Wildbad, Germany
NanoDrop Spectrophotometer Thermo Scientific, Waltham, USA
pH meter WTW,Weilheim, Germany
Refrigerators (4 °C, -20 °C, -80 °C) Thermo Scientific, Waltham, USA
Rotina 420R centrifuge Hettich, Massachusetts, USA
Shaker IKA-Vibrax VXR IKA, Staufen, Germany
Shaking incubator Innova, Hamburg, Germany
Thermocycler T3 Biometra, Göttingen, Germany
Thermomixer Eppendorf, Hamburg, Germany
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2.1.2 Chemicals, reagents and buffers

Agarose LE Biozym, Hess. Oldendorf, Germany
Ampicillin Sigma Aldrich, Steinheim, Germany
Bovine serum albumine (BSA) Sigma Aldrich, Steinheim, Germany
Calcium chloride (CaCl2) Merck, Darmstadt, Germany
Collagenase, from Clostridium histolyticum Sigma Aldrich, Steinheim, Germany
Deoxyribonuclease I, from bovine pancreas Sigma Aldrich, Steinheim, Germany
Dimethyl sulfoxide (DMSO) Sigma Aldrich, Steinheim, Germany
6 × DNA gel loading dye Fermentas, St. Leon-Rot, Germany
Easycoll separating solution Biochrom, Berlin, Germany
Ethidium bromide (EB) Sigma Aldrich, Steinheim, Germany
Ethylenediaminetetraacetic acid (EDTA) Sigma Aldrich, Steinheim, Germany
FACS Flow, FACS Safe Becton Dickinson, San Jose, USA
Glycerol Sigma Aldrich, Steinheim, Germany
Isoflurane (Forene®) Abbott, Zug, Switzerland
Isopropanol (70 Vol %) Apotheke Innenstadt, LMU Munich
LB medium (Lennox) Carl Roth, Karlsruhe, Germany
LB-Agar (Lennox) Carl Roth, Karlsruhe, Germany
Methanol Sigma Aldrich, Steinheim, Germany
Protamine sulfate salt Sigma Aldrich, Steinheim, Germany
RNase A Qiagen, Hilden, Germany
RNase-Free Water Qiagen, Hilden, Germany
Sodium azide (NaN3) Sigma, Aldrich, Steinheim, Germany
Sodium chloride (NaCl 0.9 %) Apotheke Innenstadt, LMU Munich
Tween-20 Sigma, Aldrich, Steinheim, Germany
10 × Tris/Borate/EDTA (TBE) buffer Apotheke Innenstadt, LMU Munich

ELISAwash buffer ELISA dilution buffer
0.05 % Tween 20 1 % BSA
in PBS in PBS
pH 7.2 - 7.4 pH 7.2 - 7.4

Easycoll separating solution Agarose gel
9 ml 44 % Easy-coll in PBS 1 % agarose
6 ml 67 % Easy-coll in PBS 0.5 µg/ml EB

in 1 × TBE buffer
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FACS buffer
1 % BSA

2 mM EDTA

0.1 % sodium azide

in PBS

2.1.3 T cell transduction reagents, buffers

Chloroquine diphosphate salt Sigma Aldrich, Steinheim, Germany
Retronectin, Recombinant human fibronectin Takara Biomedicals, Japan

2 × HEPES-buffered saline (HeBS) solution 2.5 M calcium chloride
275 mM natrium chlorid 3.67 g CaCl2
10 mM potassium chloride in 10 ml H2O
3.52 mM disodium hydrogen phosphate 0.2 µm pore filter sterilized
40 mM HEPES acid in distilled water
pH 7.05 - 7.12
0.2 µm pore filter-sterilized

2.1.4 Kits

Bio-Rad DC Protein Assay Bio-Rad, Munich, Germany
DNA gel loading ladder Fermentas, St. Leon-Rot, Germany
DuoSet Mouse CCL1/TCA-3 ELISA R and D systems, Wiesbaden, Germany

Gel and PCR clean-up system Promega, Mannheim, Germany
Plasmid miniprep system Fermentas, St. Leon-Rot, Germany
Plasmid maxiprep system Promega, Mannheim, Germany
Restriction enzyme kit ( EcoR I, Not I) Fermentas, St. Leon-Rot, Germany
RNeasy Micro Kit Qiagen, Hilden, Germany
RNeasy Mini Kit Qiagen, Hilden, Germany

Real-time PCR
LightCycler® 480 Probes Master Roche, Mannheim, Germany
RealTime ready cDNA Pre-Amp Master Roche, Mannheim, Germany
RevertAid First Strand cDNA Synthesis Kit Fermentas, St. Leon-Rot, Germany
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PreAMP cDNA Synthesis Primer Mix
( Mouse Chemokines and Receptors)

SABiosciences, Hilden, Germany

PreAMP cDNA Synthesis Primer Mix
(Mouse T cell anergy and immune tolerance)

SABiosciences, Germany

RT2 Profiler PCRArray
(Mouse chemokines and receptors)

SABiosciences, Germany

RT2 Profiler PCRArray
(Mouse T cell anergy and immune tolerance)

SABiosciences, Germany

RT2 qPCR Primer Assay
( mouse Pdcd1)

SABiosciences, Germany

RT2 SYBR Green qPCR Master Mix SABiosciences, Germany

2.1.5 Cell culture medium, reagents and materials

β-Mercaptoethanol Sigma Aldrich, Steinheim, Germany
Blasticidine S hydrochloride Sigma Aldrich, Steinheim, Germany
Dulbecco’s modified Eagle’s medium

(DMEM), high glucose
PAA, Pasching, Austria

Fetal calf serum (FCS) GibcoBRL, Karlsruhe, Germany
HEPES (1 M) Sigma Aldrich, Steinheim, Germany
L-glutamine 200 mM PAA, Pasching, Austria
Phosphate-buffered saline (PBS) PAA, Pasching, Austria
Penicillin/Streptomycin (100 fold) PAA, Pasching, Austria
Puromycin dihydrochloride Sigma Aldrich, Steinheim, Germany
Roswell Park Memorial Institute ( RPMI )

1640 medium
PAA, Pasching, Austria

Sodium pyruvate PAA, Pasching, Austria
Trypan blue Sigma Aldrich, Steinheim, Germany
Trypsin (10 x ) PAA, Pasching, Austria

T cell medium Platinum-E cell line medium
10 % FCS 10 % FCS
2 mM L-glutamine 2 mM L-glutamine
100 μg/ml streptomycin 100 μg/ml streptomycin
100 IU/ml penicillin 100 IU/ml penicillin
1 mM sodium pyruvate 1 μg/mL puromycin
1 mM HEPES 10 μg/mL blasticidin
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50 μM β-Mercaptoethanol in DMEM medium (high glucose)
in RPMI 1640

Panc02-OVAcell line medium
10 % FCS
2 mM L-glutamine
100 μg/ml streptomycin
100 IU/ml penicillin
in DMEM medium (High Glucose)

Cytokines, functional grade antibodies and growth factors
Anti-Mouse CD3e
(clone 145-2C11, Armenian Hamster, IgG)

eBioscience, Frankfurt, Germany

Anti-Mouse CD28
(clone 37.51, Golden Syrian Hamster, IgG)

eBioscience, Frankfurt, Germany

Dynabeads anti-mouse CD3/CD28 Life Technologies, Carlsbad, Canada
Interleukin-2, human recombinant PeproTech, Hamburg, Germany
Interleukin-15, human recombinant PeproTech, Hamburg, Germany
CCL1/I-309/TCA-3, mouse recombinant R & D systems, Wiesbaden, Germany

Expendable plastic materials for cell culture experiments were purchased from Becton
Dickinson (Heidelberg, Germany), Bibby Sterrilin (Stone, Staffordshire, Great Britain),
Corning (New York, USA), Eppendorf (Hamburg, Germany), Falcon (Heidelberg, Germany),
Greiner (Frickenhausen, Germany), Henke-Sass Wolf (Tuttlingen, Germany) or Sarstedt
(Nümbrecht, Germany).

Special plastic materials for T cell transduction were purchased from the following
distributors: Millex-HV sterile filter (0.45 µm pore) from Millipore (Darmstadt, Germany),
Polystyrene falcon tube from Becton Dickinson (Heidelberg, Germany) and Syringe sterile
filter (0.2 µm pore) from Corning (New York, USA).

2.1.6 FACS antibodies

Antibody Distributor Clone Isotype

PE-Cy7 CD3 Biolegend 145-2C11 Armenian Hamster IgG
APC CD8 Biolegend 53-6.7 Rat IgG2a, κ
PerCP/Cy5.5 LAG-3 Biolegend C9B7W Rat IgG1, κ
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APC PD-1 Biolegend 29F.1A12 Rat IgG2a, κ
PE-Cy7 PD-1 Biolegend 29F.1A12 Rat IgG2a, κ
Pacific Blue CD62L Biolegend MEL-14 Rat IgG2a, κ
Anti CCR8 GeneTex Polyclone Goat IgG
Goat IgG isotype GeneTex Polyclone
Anti-Mouse CD16/CD32
(Fc Block)

BD Biosciences 2.4G2 Rat

Alexa Fluor 647 Anti-Goat Jackson Donkey

2.1.7 Primers for real-time PCR

Primers for the array were designed and provided by Qiagen on 96-well plates. Primers for
real-time PCR to validate candidate genes using the probe method were designed by Probe
Finder (version 2.48) from Roche Universal Probe Library as shown in Table 2.

Table 2: Primers for real-time PCR using specific probes.
BTLA: B- and T-lymphocyte attenuator, Cma1: Chymase 1, DGK α: Diacylglycerol kinase α, Eomes:
Eomesodermin, GM-CSF: Granulocyte-macrophage colony-stimulating factor, HDAC9: Histone
deacetylase 9, HPRT: Hypoxanthine-guanine phosphoribosyltransferase, PKC γ: Protein kinase C γ.

Description Sequences Probe

Mouse HPRT Forward 5’-GGAGCGGTAGCACCTCCT-3’
Reverse 5’-AACCTGGTTCATCATCGCTAA-3’

#69

Mouse T cell anergy and immune tolerance
Mouse PD-1 Forward 5’-TGCAGTTGAGCTGGCAAT-3’

Reverse 5’-GGCTGGGTAGAAGGTGAGG-3’
#81

Mouse 4-1BB Forward 5’-GGCCTTCCAGTCCACCAT-3’
Reverse 5’-GTCCAGGAGTCATGCAGAGG-3’

#46

Mouse BTLA Forward 5’-GGGAATTCTTCATCCTCCATC-3’
Reverse 5’-GTTGCACTGGACACTCTTCATC-3’

#50

Mouse CD40 Forward 5’-GAGTCAGACTAATGTCATCTGTGGTT-3’
Reverse 5’-ACCCCGAAAATGGTGATG-3’

#105

Mouse CD70 Forward 5’-GTCCTTCACACACGGACCA-3’
Reverse 5’-AGGCCATCTTGATGGATACG-3’

#25

Mouse Cma1 Forward 5’-TCTTCTTACTCTTCATCTGCTGCT-3’
Reverse 5’-GTGCCTCCAATGATCTCTCC-3’

#2

Mouse CTLA-4 Forward 5’-CAAGGCTTCTGGATCCTGTT-3’
Reverse 5’-GGGCAAATGTGCTGAGGT-3’

#32
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Mouse DGK α Forward 5’-TCCTCAGTTCCGGATATTGGT-3’
Reverse 5’-TGGTCTCTAGAACCCAGCCTAC-3’

#22

Mouse Eomes Forward 5’-TCCAAGCGGTCAAGTATGC-3’
Reverse 5’-TAGCAACCAGCCATTTCCTC-3’

#21

Mouse GM-CSF Forward 5’-GCATGTAGAGGCCATCAAAGA-3’
Reverse 5’-CGGGTCTGCACACATGTTA-3’

#79

Mouse HDAC9 Forward 5’-AATGCACAGTATGATCAGCTCAG-3’
Reverse 5’-GAGATCTGTCCTCAGGTCTAAAGG-3’

#1

Mouse IL-7R Forward 5’-TCTAGCTCAGAAGCATTTGCAC-3’
Reverse 5’-CTAATCCAACAACAGGGAAAACA-3’

#4

Mouse L-selectin
(CD62L)

Forward 5’-TGCTCTATTCAAGTTGGGAAAGT-3’
Reverse 5’-GGCTGTCACTCACAGATAGTGG-3’

#6

Mouse OX40 Forward 5’-GCCTGTCCGCCTACTCTTCT-3’
Reverse 5’-GTTTTTCCTTGCAGGGTGTG-3’

#10

Mouse PKC γ Forward 5’-GTCGACTGGTGGTCTTTTGG-3’
Reverse 5’-CTCATCTTCCCCATCAAAGG-3’

#18

Mouse chemokines and receptors
Mouse CCR8 Forward 5’-AGAAGAAAGGCTCGCTCAGA-3’

Reverse 5’-GGCTCCATCGTGTAATCCAT-3’
#4

Mouse CCR6 Forward 5’-TGGTTCGCCACTCTAATCAGT-3’
Reverse 5’-GCAGTTCAACCACACTCTCACT-3’

#108

2.1.8 Software

Blast http://blast.ncbi.nlm.nih.gov/Blast.cgi
EndNote X 4 Thomson Reuters, Carlsbad, USA
FlowJo Tree Star, Ashland, USA
GraphPad Prism 5.0 b GraphPad, San Diego, USA
Lasergene 10 DNAStar, Madison, USA
ProbeFinder version 2.48 http://lifescience.roche.com/shop/Category

Display?catalogId=10001&tab=&identifier
=Universal+Probe+Library&langId=-1&sto
reId=15006

Real-time PCR analysis software http://www.qiagen.com/de/products/genes
%20and%20pathways/data-analysis-center-
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2.2 Methods for cell culture
2.2.1 General culture conditions

All cell lines were cultured in tissue culture flasks at 37 °C in 95 % humidity and 5 % carbon
dioxide (CO2) atmosphere. Cell manipulations were performed with sterile reagents and
materials under a laminar flow hood. Cell concentration and viability was determined by
Trypan blue staining. Cell suspensions were mixed with 0.25 % Trypan blue in PBS at
appropriate dilutions and counted in a cell counting chamber under the microscope. Cell
number was calculated as follows: Cells / ml = (number of cells counted) × (dilution factor) ×
104. Cells were split and supplemented with fresh medium to reach appropriate dilutions.

2.2.2 Tumor cell culture

The murine pancreatic carcinoma cell line Panc02-OVA stably expresses Ovalbumin (OVA).
Panc02-OVA cells were cultured in DMEM complete medium and selected with 2 mg/ml
G418. Cells were detached with 0.05 % trypsin / 0.02 % EDTA and split 1:5 every three days
according to cell growth.

2.2.3 Platinum-E cell culture

The retrovirus packaging cell line Platinum-E (Plat-E) was generated based on the 293T cell
line. Plat-E cells have potent packaging constructs with an EF1α promoter to ensure high-titer
production of ecotropic retrovirus after transfection [Morita et al 2000]. The cells were
cultured in cultured in DMEM medium containing 1 µg/mL puromycin and 10 µg/mL
blasticidin for selection. Cells were split at the ratio of 1:5 every two to three days when the
culture reached 70 - 90 % confluency.

2.2.4 Generation and cell culture of primary T cells

Primary T cells were generated from murine splenocytes. Spleen was filtered through a 40 µm
cell strainer. Single cells were collected by centrifugation and were resuspended in
erythrocyte lysis buffer and lysed for 2 minutes. Cells were washed once with RPMI complete
medium and cultured in T cell medium containing 50 µM β-Mercaptoethanol, 1 µg/ml
anti-CD3, 0.1 µg/ml anti-CD28 antibodies and 10 IU/ml IL-2 overnight. T cells could then be
used for T cell transduction the next day.
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2.3 Transduction of primary murine T cells

The murine T cell transduction protocol has been modified based on a protocol previously
described [Leisegang et al., 2008, Lee et al., 2009].

2.3.1 Transfection using calcium phosphate-DNA precipitate method

Plat-E cells were seeded 1 - 2 × 106 cells per well in a 6-well plate. Cells were then cultured
for 15 hours to reach 70 % - 80 % cell confluence on the day of transfection. The calcium
phosphate and DNA precipitate is formed by slowly adding a solution containing calcium
chloride and purified enhanced green fluorescent protein (GFP) plasmid DNA (18 µg per
transfection) with a HEPES-buffered saline solution. 100 mM chloroquine was diluted 1:1000
directly into the calcium phosphate solution to inhibit DNA degradation by lysosomes. The
precipitate was evenly distributed on the cells. The medium was replaced with 3 ml complete
medium 6 hours after incubation at 37 ºC. 48 hours after transfection, viral supernatants were
harvested and filtrated (0.45 μm pore size). Plat-E cells were cultured in T cell medium for
another 24 hours for the second virus harvest.

2.3.2 Retroviral transduction of primary murine T lymphocytes

Each 24-well plate was prepared by incubation with 5 µg/mL retronectin diluted in sterile
PBS overnight at 4 °C. Wells were blocked with 2 % BSA in sterile H2O for 30 minutes and
washed with 2 ml of 25 mM HEPES in PBS. In each pre-treated well, 1 ml of retrovirus
supernatant was spun down (3000 g, 2 h, 4 °C). Then the supernatant was discarded and 106 T
lymphocytes in 1 ml T cell medium (containing 8 μg/mL protamine sulfate, anti-CD3 -
anti-CD28 beads and 10 IU/ml IL-2) were added to every well. T cells were spun down at 800
g for 30 min at 32 °C). Cells were co-cultured with viruses at 37 °C overnight. The second
transduction was conducted by addition of another 1 ml virus supernatant to the cells and
centrifugation (800 g, 90 min, 32 °C). After co-culture with virus for 6 hours at 37 °C, cells
were washed and cultured in T cell medium supplemented with 50 ng/mL IL-15. T cells were
split every two days to maintain a concentration of 106 cells/ml. Transduction efficiency could
be analyzed after 4 - 5 days.

2.4 Animal experiment
2.4.1 Mice
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OT-1 transgenic mice were obtained from the Jackson Laboratory. All CD8+ T cells from OT-I
mice have histocompatibility 2, Kb (H-2 Kb)-restricted T cell receptor (Vα2, Vβ5) that can
specifically recognize the model antigen ovalbumin-derived SINFEKL peptide. Wild type
C57BL/6 female mice were bought from Janvier (Le Genest-Saint-Isle, France).

All mice were maintained in a specific pathogen-free facility at the University hospital of
Munich. Experimental procedures were performed when mice were at the age of 6 to 7 weeks.
Mice were anesthetized with isoflurane for all interventions and all procedures were approved
by the local regulatory agency (Regierung von Oberbayern, Munich, Germany).

2.4.2 Tumor induction

106 Panc02-OVA cells were subcutaneously injected in the flank of wild type C57BL/6
female mice. Mice were monitored every day after tumor inoculation. 7 to 10 days after T cell
injection, mice were sacrificed for further analysis, as indicated.

2.4.3 Adoptive T cell transfer

10 days after tumor inoculation, 107 retrovirally transduced OT-I T cells were injected into
each Panc02-OVA tumor bearing wild type C57BL/6 mice in 0.2 ml of PBS by tail vein
injection.

2.4.4 Organ and single cell preparation

Lymph nodes from cervical, brachial, axillary, inguinal and popliteal location were resected
and pooled as peripheral lymph nodes. Lymph node were filtered through a 40 µm cell
strainer. Tumor tissues were digested with 1 mg/ml collagenase and 0.05 mg/ml DNase I at
37 °C for 30 minutes. The digested tissues were sequentially pressed through a 100 µm and
through a 40 µm cell strainer. Single cell suspensions were washed with PBS twice and then
kept in PBS containing 0.5 % EDTA and 1 % FCS for further analysis.

To separate mononuclear cells (lymphocytes and monocytes) from tumor tissue density
gradient centrifugation was used. In a 25 ml tube, 2 ml of tumor cell suspension was added to
15 ml solution containing two layers of Easycoll with different densities. The density of
Easycoll is 1.124 g/ml. The upper layer of the separating solution contains 9 ml of 44 %
Easycoll in PBS, and the lower layer contains 6 ml of 67 % Easycoll in PBS. Centrifugation
was performed at 800 g, 30 min, room temperature without brake. Due to different density of
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cells, mononuclear cells were enriched, which can be seen as a white layer between two
layers of Easycoll. Mononuclear cells were harvested into a new tube and washed twice with
PBS (400 g, 7 min, room temperature).

2.5 Quantitative real-time polymerase chain reaction
2.5.1 Isolation of cytoplasmic RNA

Cells were washed with PBS twice before RNA extraction. RNA isolation was performed
according to the manufacturer´s protocol (Qiagen RNeasy Micro Kit) under DNA free
conditions. RNA extraction for other cells was done following the protocol of Qiagen RNeasy
Mini Kit. RNase free materials were used to avoid digestion of RNA. Precipitated RNAwas
resuspended in RNAse free water and exposed to DNase I at 22 °C for 20 minutes to avoid
DNA contamination before extraction. Isolated RNAwas kept on ice at all times.
Concentrations of nucleic acids were determined by Spectrophotometer.

2.5.2 Reverse transcription and cDNA pre-amplification

Because of low RNA yields, isolated RNAwas reverse-transcribed into cDNA
(complementary deoxyribonucleic acid) and was pre-amplified before real-time PCR.

For Qiagen RT-PCR array using the SYBR green dye method (as described in Chapter 2.5.3),
cDNAwas prepared according to the protocol of the PreAMP cDNA Synthesis Primer Mix kit
from Qiagen.

A second protocol was conducted to pre-amplify the cDNA template for real-time PCR using
the fluorescent probe method (as described in Chapter 2.5.4) to validate candidate genes.
Total RNAwas reverse-transcribed into cDNA following instructions of the First Strand
cDNA Synthesis Kit from Fermentas, then cDNAwas pre-amplified using RealTime ready
cDNA Pre-Amp Master from Rothe. The pre-amplification product was diluted 1:40 for RT
PCR.

2.5.3 Real-time PCR array using the SYBR green method

To compare gene expression profiles of transferred T cells in lymphoid tissues and tumors,
gene expression profiles were analyzed at mRNA level by real-time PCR array in sorted
GFP+-OT-1 T cells. The real-time PCR array is a set of commercially optimized real-time
PCR primer assays on 96-well plate for a focused panel of genes and proper controls. Arrays
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from Qiagen use a method involving non-specific fluorescent dye (SYBR green) as reporter
which intercalate with double-stranded DNA. The specific binding of primers with cDNA
template transcribed from mRNA and polymerization resulted in double-stranded DNA
amplification. Then, fluorescence of SYBR green fluorophore could be detected using a
thermal cycler and measurement was conducted after each amplification cycle.

Pre-amplified cDNA of spleen and tumor from one mouse was added into separate array
plates containing the same primers for hybridization. Each of the two arrays (Mouse
Chemokines and Receptors, Mouse T cell anergy and immune tolerance) was done three
times with samples from three mice in the same experimental setting. RT PCR array was
conducted according to the manufacturer’s instructions. Measurement of fluorescence was
plotted against the number of cycles on a logarithmic scale. A threshold for fluorescence
levels was set, and the number of cycles at which the fluorescence reached the threshold is
called threshold cycle (Ct). The Ct values were recorded as result for data analysis.

2.5.4 Real-time PCR using fluorescent probe method

To confirm results obtained from commercial RT PCR array, two additional experiments were
conducted for candidate genes using fluorescent probes from Roche (as shown in Table 2),
according to the manufacturer’s instructions. The results were also recorded as Ct value.

2.5.5 Calculation

Relative gene expression was calculated online using the Qiagen web site, and analysis was
based on the ΔΔCt method [Livak et al., 2001]. The ΔΔCt method is the normalization of raw
threshold cycle data in the test sample with the gene of interest (GOI) to housekeeping genes
(HKG), divided by normalized gene expression in the control sample. The formula to
calculate fold change is shown below. The formula is based on the fact that both the GOI and
the HKG are approximately 100% amplified, and the deviation of the amplification efficiency
between GOI and HKG is less than 5%. In the experiment, the sample from tumor was set as
“expect” and sample from spleen as “control”. The Fold-change data is further used for
statistical analysis.
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Figure 2: Schematic experimental design for gene expression profiles of transduced T cells. OT-1
T cells were retrovirally transduced with GFP, and GFP-transduced T cells were intravenously injected
into mice bearing Panc02-OVA tumors. 7 days after injection, mice were sacrificed, and GFP+-OT-1 T
cells were sorted from tumor and spleen tissue. RNAwas prepared from the sorted GFP+-OT-1 T cells,
and gene expression profiles of the sorted T cells were analyzed using RT-PCR array.

2.6 Flow cytometry analysis
2.6.1 Antibody staining for flow cytometry

2 × 106 splenocytes or mononuclear cells were distributed in 5 ml FACS tube and washed
twice with 3 ml PBS/BSA buffer (400 g, 5 min, 4 °C). Supernatant and cell debris were
discarded, and remaining cells were re-suspended in 50 µl staining buffer. Cells were
pre-incubated with 1 µg anti-Mouse CD16/CD32 (Fc Block) on ice for 10 minutes prior to
primary staining. Proper concentration of fluorescent dyes directly-conjugated antibodies for
surface markers were added to each tube, mixed and incubated with cells at 4 °C for 30
minutes in the dark. Cells were washed twice with 3 ml FACS buffer (4 °C, 400 g, 5 minutes)
and re-suspended in 100 µl buffer for analysis. Isotype control staining was performed in
parallel to confirm the specificity of primary antibody binding when needed.

2.6.2 Analysis of cell surface markers

FACS Canto II configured with three lasers, which are blue (488 nm), red (633 nm) and violet
(405 nm), was used to analyze cell viability and scatter properties. Data were analyzed with
Flowjo software. Lymphocytes population was gated by forward scatter (FSC) and side
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scatter (SSC), doublets were excluded further by FSC-A and FSC-H. T cells were gated in
singlets as CD3+CD8+ cells.

2.6.3 High speed cell sorting of GFP+-OT-1 T cells

The main goal of cell sorting is to retrieve GFP+-OT-1 T cells from a heterogeneous
population of tumor tissue cells for real-time PCR array analysis. BD Aria cell sorter was
kindly provided and conducted by PD Dr. med. Michael Hristov (Institution of prevention and
epidemiology of cardiovascular disease, LMU, Munich) following FACSAria user guidelines.
GFP+-OT-1 T cells were sorted for high-purity. The sorted cells were kept in PBS on ice for
further RNA extraction.

2.7 Enzyme-linked immunosorbent assay

In the experiments, the sandwich ELISA kit of mouse CCL1 from R and D company was used
to detect the chemokine in tumor and lymphoid tissues.

2.8 Statistical analysis

Variance of mean values is presented as standard error of the mean (SEM). Data in figures are
shown as mean value ± SEM of minimum three replicates or independent experiments.
Statistical analyses and graphical design were performed using GraphPad Prism software
(version 5.0b). Differences of means are compared using the two-tailed Student’s t-test.
Comparison of three or more columns are analyzed by two-way analysis of variance
(ANOVA) with the Bonferroni multiple comparison test. Significance was set at p < 0.05.
The statistical analysis for RT-PCR array is based on the real-time PCR analysis software
from Qiagen using raw Ct value. The differences of three replicates of normalized Ct values
(2(- ΔCt)) from independent RT-PCR array experiments were analyzed for each gene change in
the control and treatment groups. Student’s t-test is utilized for statistical analysis. Differences
were considered significant with p < 0.05.
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3. Results
3.1 Distribution of transferred T cells in vivo

To investigate whether T cells isolated from different donor lymphoid tissues have
preferential homing to their organ of origin after transfer, T cells isolated from spleen and
lymph nodes separately transduced with GFP following the same protocol were intravenously
transferred into wild type C57BL/6 mice. 7 days after transfer, lymphocytes were isolated
from lymphoid tissues and distribution of GFP+-OT-1 T cells was compared in spleen and
lymph nodes. No significant difference was found between groups (Figure 3), suggesting that
the donor organ of T cell origin does not affect the homing of retrovirally transduced T cells.

Figure 3: Distribution of transduced T cells in vivo. 5 × 106 GFP-transduced T cells were
intravenously transferred into wild type C57BL/6 mice. On day 7, lymphocytes from lymph nodes and
spleen were isolated and analyzed for the amount of CD3+-GFP+ cells within the live gate. Statistical
analysis of four mice in each group are shown as mean ± SEM. N.S stands for not significant. The
result is representative of two independent experiments.

3.2 Characteristics of transduced T cells
3.2.1 Phenotype of transduced T cells

Figure 4 shows representative transduction efficiency of 60 % to 70 % in cytotoxic CD8+ T
cells after transduction. To better understand the behavior of retrovirally transduced T cells,
we next analyzed the expression of memory phenotypic markers (CD62L) and exhaustion
markers (PD-1 and LAG-3) after transduction. About 15 % (14 % to 16%) of GFP+-OT-1 T
cells were PD-1 positive (Figure 5A), and about half (43 % to 50 %) of the GFP+-OT-1 T cells
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were CD62L positive (Figure 5B).

Figure 4: Representative FACS analysis of transduction efficiency for GFP in OT-1 T cells. The
solid black line presents the background fluorescent signals of the untransduced T cells, and the solid
green line presents the fluorescence from GFP-transduced T cells. The percentage of high fluorescent
signals in the whole signals shows the amount of GFP+ T cells in the GFP-transduced T cells. The
results shown are representative of two independent experiments.

Figure 5: Phenotype GFP+-OT-1 T cells before transfer. Figure 5A shows exhaustion markers for T
cells, and Figure 5B shows the memory marker for T cells. T cells were stained with antibody targeting
phenotype markers and detected by flow cytometry. Columns show percentage of positive cells
pregated on GFP+-OT-1 T cells. Data are presented as mean ± SEM with three mice in each group. The
results shown are representative of two independent experiments.

3.2.2 Phenotype of transduced T cells in vivo
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To further understand the biological behavior of the transferred T cells in vivo, surface
markers were quantified by flow cytometry. As shown in Figure 6A, GFP+-OT-1 T cells
expressed high levels of the quiescence markers PD-1 (100 % positive, compared to 15 %
before adoptive transfer in Figure 5A) and LAG3 (40 % positive, compared to less than 5 %
before transfer) in the tumor tissues. T cells isolated from spleen were less exhausted (less
than 20 % positive for PD-1, and less than 30 % positive for LAG-3). About 15 % (10 % to
18 %) of GFP+-OT-1 T cells in the tumor were CD62L positive, whereas 30 % (25 % to 40 %)
of GFP+-OT-1 T cells in the spleen were CD62L positive (Figure 6B).

Figure 6: Phenotype of GFP+-OT-1 T cells in vivo. GFP-transduced T cells were injected
intravenously into mice bearing Panc02-OVA tumors. 7 days after adoptive transfer, the expression of
surface markers from different compartments were analyzed on GFP+-OT-1 T cells. Figure 6A shows
the exhaustion markers expressed on GFP+-OT-1 T cells. Figure 6B shows memory marker CD62L
expressed on GFP+-OT-1 T cells. Experiments were conducted twice with three mice in each group.
The results are shown as mean ± SEM.

3.3 FACS sorting of GFP+-OT-1 T cells from spleens and tumors

To investigate the gene expression profiles of transferred T cells within different compartment,
107 GFP-transduced T cells were transferred as indicated in 3.2.2. GFP+-OT-1 T cells were
sorted by flow cytometry for high purity (the purity of GFP+-OT-1 T cells was 80 % to 90 %
after sorting). The number of GFP+ cells sorted was in average 100,000 from spleens and
30,000 from tumors (Figure 7).
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Figure 7: Quantification of FACS sorted GFP+-OT-1 T cells from spleens and tumors.
Panc02-OVA cells were engrafted subcutaneously into wild type C57BL/6 mice followed, by
intravenous transfer of 107 GFP-transduced T cells. Seven days after transfer, GFP+-OT-1 T cells were
sorted for high purity. Cell numbers of sorted GFP+-OT-1 T cell are shown as mean ± SEM of n = 3 in
one out of three experiments.

3.4 Exhaustion and anergy array analysis

The commercially available RT-PCR arrays were utilized to investigate differences in gene
expression profiles (Figure 8). Results showed that transferred T cells in tumor tissue had a
signature of stronger activation (Interferon-γ (IFN-γ), IL-2, IL-2 receptor α unit, OX40,
4-1BB) and a more prominent exhaustion phenotype (CTLA-4, PD-1) compared to T cells
retrieved in the spleen (Table 3). Transferred T cells in the spleen showed a memory
phenotype with relatively higher expression of IL7 receptor and CD62L (Table 4). Candidate
genes were confirmed in additional independent experiments (Table 7 and Table 8).
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Figure 8: Volcano plots of anergy and tolerance RT-PCR gene expression changes. The x-axis
plots the log-transformed fold changes, and the y-axis plots the p-values. The group of GFP+-OT-1 T
cells infiltrating into tumor site is defined as “treatment group”, and that of spleen-residing GFP+-OT-1
T cells as “control group”. P-values were analyzed using Student’s t-test of the replicate 2(- Delta Ct)

values for each gene in the control group and treatment groups, and p-values less than 0.05 are
considered statistically significant. Fold change were calculated using ΔΔCt method as described in
chapter 2.5.1, and values greater than two indicate up-regulation, and less than minus two indicate
down-regulation. The data were analyzed based on three plates of the anergy and tolerance PCR array,
and each array utilized the RNA extracted from one mouse.

Table 3: Genes of anergy and tolerance up-regulated in tumors vs. spleens.

Gene symbol Fold regulation p-value

CCL3 5.8 0.046
CD70 25.3 0.010
GM-CSF 53.8 0.046
CTLA-4 17.7 0.001
IFN-γ 5.9 0.006
IL-2 179.3 0.004
IL-2 receptor α unit 10.1 0.012
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PD-1 176.0 0.000
OX40 12.0 0.005
4-1BB 46.8 0.004

Table 4: Genes of anergy and tolerance down-regulated in tumors vs. spleens.

Gene symbol Fold regulation p-value

BTLA -6.7 0.000
CD40 -68.2 0.006
Chymase 1 -15.2 0.016
DGK α -5.8 0.017
Eomes -5.9 0.015
HDAC9 -133.2 0.026
IL15 -16.3 0.006
IL7 receptor -6.0 0.003
PKC γ -9.0 0.013
CD62L -42.1 0.008

3.5 Chemokine and chemokine receptor array analysis

To understand the role of chemokine receptors that might help T cells to migrate into tumors,
a chemokine and chemokine receptor RT-PCR array was utilized (Figure 9). Results showed
that transferred tumor-infiltrating T cells had higher expression of CCR8 and CX3CR1 (Table
5), while T cells found in spleen had higher expression of other chemokine receptors (CCR6,
CCR9, CCR like 1, CXCR3, CXCR5 and XCR1) (Table 6). Candidate genes were confirmed
in additional independent experiments (Table 7 and Table 8).
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Figure 9: Volcano plots of chemokine and chemokine receptor RT-PCR array. Samples were
prepared and data was analyzed as indicated above. Fold-difference values greater than two indicate an
up-regulation, and less than minus two indicate a down-regulation. The p-values are calculated based
on a Student’s t-test of three replicates 2(- ΔCt) values for each gene in the control and treatment groups.
p-values less than 0.05 are considered statistically significant. Data was analyzed based on three plates
of RT-PCR array for chemokine and chemokine receptor, whose RNAwere extracted respectively from
three mice.

Table 5: Genes of chemokines and chemokine receptors up-regulated in tumors vs. spleens.

Gene symbol Fold regulation p-value

CCL1 5644.6 0.018
CCR8 221.2 0.000
CCR like 2 12.0 0.001
CX3CR1 5.4 0.034
IFN-γ 6.2 0.005
TGFβ1 197.5 0.041
XCL1 81.3 0.002
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Table 6: Genes of chemokines and chemokine receptors down-regulated in tumors vs. spleens.

Gene symbol Fold regulation p-value

Chemokine binding protein 2 -182.8 0.000
CCL19 -21.4 0.001
CCL22 -23.8 0.049
CCR6 -21.8 0.011
CCR9 -9.9 0.036
CCR like 1 -24.2 0.001
CXCR3 -4.6 0.000
CXCR5 -19.0 0.000
Duffy blood group chemokine
receptor

-29.9 0.000

IL-16 -5.2 0.002
Pro-platelet basic protein

(CXCL7)
-30.4 0.010

TLR4 -4.4 0.018
Thymidine phosphorylase -21.3 0.028
XCR1 -4.6 0.039

3.6 Confirmation of candidate genes of T cells in tumor versus spleen

To confirm candidate genes up-regulated in the RT-PCR array, two additional mouse
experiments were conducted following the same protocol as shown in Figure 2. RT-PCR was
done using the fluorescent probe method (as described in chapter 2.5.4). Table 7 represents
the summary of up-regulated genes in tumors compared with these found in spleen. Table 8
shows the genes which are down-regulated.

Table 7: Genes up-regulated in tumor vs. spleen. RNAwas extracted from three different mice for
each experiment. Data was analyzed as described before. Genes with more than 2-fold higher
expression levels in the tumor-infiltrating T cells versus in those found in the spleen are shown.

Gene symbol Fold regulation p-value

PD-1 68.6 0.001
CD70 10.7 0.000
GM-CSF 222.1 0.026
4-1BB 44.9 0.011
CCR8 129.9 0.001
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Table 8: Genes down-regulated in tumors vs. spleens. Two additional RT-PCRs were conducted as
described before for candidate genes with down-regulation in the RT-PCR array. The genes which were
more than -2-fold down-regulated in tumor-infiltrating T cells versus in those found in the spleen are
shown.

Gene symbol Fold regulation p-value

HDAC9 -56.2 0.000
BTLA -19.8 0.000
CD40 -98.4 0.000
Chymase 1 -59.6 0.012
CD62L -25.2 0.000
Eomes -5.2 0.043
CCBP2 -8.5 0.004
CCR6 -117.9 0.005
CCR9 -9.0 0.030
CXCR5 -24.5 0.001
CCR like 1 -693.0 0.023

3.7 Comparison of gene expressions in T cells before and after transfer

To understand how in vitro stimulation and expansion would affect gene expression, RNA of
GFP-transduced T cells before transfer was also extracted. T cells infiltrating the tumor were
found to have higher expression of activation (4-1BB) and exhaustion (PD-1) marker than
those before transfer. Post-transfer T cells in tumors had also higher expression of CCR8 and
CX3CR1 (Table 9). T cells found in spleen have higher expression of memory phenotype
markers (IL-7 receptor and CD62L), as well as of epigenetic and metabolic related genes
(HDAC9 and DGK α) (Table 10). PD-1 and CCR8 expression were also higher in T cells
residing in spleen than those before transfer (Table 10).

Table 9: Genes up-regulated in tumors vs. prior to transfer. Total RNA was extracted from
GFP-transduced T cells before transfer and from tumor-infiltrating GFP+-OT-1 T cells after transfer.
The genes which are up-regulated and have p-values less than 0.05 are shown in the table. Experiments
were performed twice, and RNA of GFP+-OT-1 T cells after transfer was extracted from three mice in
each experiment.

Gene symbol Fold regulation p-value

PD-1 191.1 0.003
GM-CSF 51.9 0.044
CTLA-4 10.6 0.041
4-1BB 5.7 0.009
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CCR8 546.9 0.040
CX3CR1 521.0 0.028

Table 10: Genes up-regulated in spleens vs. prior to transfer. Total RNAwas extracted from
GFP-transduced T cells before transfer and from GFP+-OT-1 T cells in the spleen after transfer. Data
was analyzed using the group of T cells before transfer as “control group”. Genes which are
down-regulated and have p-values less than 0.05 are shown in the table. The experiment was done
twice, and the RNA for GFP+-OT-1 T cells after transfer was extracted from three mice in each
experiment.

Gene symbol Fold regulation p-value

HDAC9 29.8 0.004
PD-1 5.4 0.015
BTLA 27.3 0.001
CD40 229.7 0.004
Cma1 5.6 0.013
DGK α 14.7 0.000
PKC γ 18.3 0.003
CD62L 14.2 0.000
CCR8 16.4 0.003
CX3CR1 478.3 0.023
CCR9 6.2 0.049
TLR4 31.3 0.041

3.8 CCR8 is expressed on tumor-infiltrating GFP+-OT-1 T cells

To confirm the expression at protein level, T cells were stained for CCR8 and analyzed by
flow cytometry. In subcutaneous Panc02-OVA tumors, 25 to 80 % of transferred T cells
infiltrating the tumor expressed CCR8, while less than 10 % of T cells in lymphoid tissues

expressed CCR8 (Figure 10A). Similar results were found for GFP-- T cell fraction which
represents the endogeneous T cells (Figure 10B). To determine whether CCR8 expressing T
cells have a different distribution in tumor draining and non-draining lymph nodes, ipsilateral
and contralateral lymph nodes were isolated separately. No difference was found in CCR8
expression on T cells between these lymph nodes (Figure 11).

To investigate whether endogenous T cells also have higher CCR8 expression if found in the
tumor, CCR8 expression was analyzed in tumor-bearing mice which had not received T cell
transfer. T cells infiltrating the tumors had higher CCR8 expression (25 to 42 %) than those
found in spleen (20 %) (Figure 12).
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Figure 10: Adoptively transferred T cells infiltrating into tumors have higher CCR8 expression.
GFP-transduced T cells were transferred intravenously into mice bearing Panc02-OVA tumors seven
days after tumor inoculation. 14 days after tumor inoculation, spleen and tumor were isolated and
lymph nodes were pooled to detect CCR8 expression on T cells. GFP+-OT-1 T cells (Figure 10A) or
GFP--OT-1 T cells (Figure 10B) cells were gated, and percentage of T cells expressing CCR8 was
analyzed. Each dot represents one mouse, and three independent experiments were done with three
mice in each group.

Figure 11: CCR8 expression on T cells in ipsilateral and contralateral lymph nodes. OT-1 T cells
were transduced with GFP and GFP-transduced T cells were transferred into Panc02-OVAmice as
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described before. Each dot represents one mouse, and two experiments were done with three mice in
each group. Figure 11A and Figure 11B show CCR8 expressions on GFP+-OT-1 T cells and GFP--OT-1
T cells, respectively.

Figure 12: Endogeneous CCR8 expression on T cells in Panc02-OVA tumors. Panc02-OVA tumor
cells were inoculated in wild type C57BL/6 mice as described before. Each dot represents one mouse,
and one experiment was done with three mice in each group.

3.9 Concentration of CCL1 in different compartments

Because CCL1 is the specific ligand for CCR8, we analyzed the concentration of CCL1 in
mice bearing Panc02-OVA tumors at different time points. The concentrations of CCL1
detected in ELISA in different organs ranged from 20 pg/ml to 1 ng/ml. As shown in Figure
13A, seven days after tumor inoculation, lymph nodes had the highest amount of CCL1 (10
pg/mg protein to 25 pg/mg protein), and tumor tissues contained the lowest amounts (6 pg/mg
to 10 pg/mg) (Figure 13A); on day 14, CCL1 concentrations increased in tumors (10 pg/mg to
20 pg/mg), while the amount decreased in lymph nodes (5 pg/mg to 15 pg/mg), and stayed
even until day 21. (Figure 13B and Figure 13C). There is no significantly different expression
of CCL1 in ipsilateral and contralateral lymph nodes on day 14 (Figure 14).
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Figure 13: Expression of CCL1 in different tissue compartments over time. Panc02-OVA tumor
cells were inocculated into wild type C57BL/6 mice. At different time points, spleen, tumor and lymph
nodes were harvested and frozen. Frozen organs were mashed and protein lysate was prepared. CCL1
concentration was measured by ELISA and normalized to total amount of protein loaded (results are
presented as pg/mg total protein of tissues). Each dot represents one mouse, and two experiments were
done with three mice in each group. Figure 15A, 15B and 15C represent day seven, day 14 and day 21
after tumor inoculation, respectively.

Figure 14: Expression of CCL1 in lymph nodes. 14 days after tumor injection, organs were harvested
and protein lysate was prepared. CCL1 was detected using ELISA and concentration was normalized to
the amount of protein used. Each dot represents one mouse, and two experiments were done with four
mice in each group.
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4. Discussion

In this thesis, RT-PCR-based arrays have revealed that tumor-infiltrating T cells after adoptive
transfer display altered gene-expression profiles compared with those found in spleen.
Pathways found to be differentially regulated in these T cells are associated with T cell
activation and exhaustion, epigenetic regulation and migration. In the following paragraphs,
the genes identified are discussed in detail.

4.1 Up-regulation of activation and exhaustion genes in tumor-infiltrating transferred T
cells

Several genes for T cell activation were over-expressed in adoptively transferred T cells
infiltrating the tumor, which are consistent with previous studies in naturally generating T
cells, including IFN-γ [Schroder et al., 2004], GM-CSF [Min et al., 2010], IL-2 receptor
[Schuh et al., 1998, Cheng et al., 2002], 4-1BB [Shuford et al., 1997], OX40 [Redmond et al.,
2009] and CD70 [Tesselaar et al., 2003, Huang et al., 2006, Croft, M., 2009]. Similarly, genes
for inhibitory receptors were also found to be upregulated in tumor-infiltrating GFP+-OT-1 T
cells, such as CTLA-4 and PD-1, which is in line with findings in tumor-specific T cells from
cancer patients [Baitsch et al., 2011] and T cells in the context of ACT [Abate-Daga et al.,
2013]. These indicate that gene-modified T cells that infiltrate tumors, interact with tumor
cells and become activated. Overcoming these negative signals within the tumor milieu might
be a potential strategy to enhance T cell therapy which is currently pursued by our group
[Kobold et al., 2015].

Not all co-inhibitory molecules were detected with increased expression in tumor-infiltrating
T cells after transfer. BTLA is structurally related to PD-1 and CTLA-4 and it interacts with
B7 homologue to negatively regulate T cell activation [Haymaker et al., 2012, Isabelle Le
Mercier et al., 2015]. In addition, BTLA can bind to herpes virus entry mediator and inhibit
the anti-tumoral effect of CD8+ T cells in melanoma patients [Derre et al., 2010, Fourcade et
al., 2012], suggesting its potential as a target in cancer immunotherapy [Paulos et al., 2010].
In those previous studies, BTLAwas found to be up-regulated on T cells in tumor tissues.
However, in our experiments it was detected at higher levels in transferred T cells isolated
from spleen, not on those found at the tumor site. This may be explained by the hypothesis
that BTLA signaling may not be inhibitory under all conditions [Cheung et al., 2009, Sakoda
et al., 2011]. Its expression might support the survival of transferred T cells based on the
observation that BTLA expressing TILs have a central memory phenotype and have an
enhanced proliferative response to IL-2 [Haymaker et al., 2015]. Furthermore, current
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evidence suggests that expression of inhibitory receptors might not always be a marker of
exhausted T cells, but may be more related to T cell differentiation or activation [Legat et al.,
2013]. The role of BTLA and other exhaustion markers in adoptively transferred T cell still
requires further investigation.

4.2 Expression of T memory maintenance genes in spleen-residing transferred T cells

Compared to those in tumor tissues, transferred T cells found in spleen had higher expression
of IL-7 receptor and CD62L, which are markers for memory T cells [Huster et al., 2004]. This
indicates a memory phenotype of transferred T cells residing in the spleen as opposed to those
found at the tumor site. Another interesting finding is the significantly increased expression of
CD40 on the transferred T cells in the spleen. CD40 is normally expressed on APCs and B
cells. Expression on those cells is important for the activation of CD4+ helper T cells and
priming of CD8+ T cell responses [Cella et al., 1996, Ridge et al., 1998, Schuurhuis et al.,
2000]. CD40 expression on CD8+ T cells is rare, but literature indicates that its expression on
CD8+ T cells plays a role for the generation of T cell memory [Bourgeois et al., 2002,
Meunier et al., 2012]. Thus, our finding might provide an additional evidence for the
hypothesis that transferred T cells have a memory phenotype in the spleen. Further
investigation on the role of CD40 signaling on transferred T cells might be of interest and
may give hints for the utilization of CD40 agonist in conjunction with T cell transfer.

4.3 Altered gene expression involving transcription factors and epigenetic modification

The T-box transcription factor Eomes was down-regulated in GFP+-OT-1 T cells isolated from
tumors. Eomes is important for the regulation of cytolytic functions of CD8+ T cells via
expression of perforine and granzyme B [Pearce et al., 2003] and interferon secretion
[Glimcher et al., 2004, Atreya et al., 2007]. It also plays a crucial role in the maintenance of
memory CD8+ T cells by inducing IL-2 receptor β (CD122) expression [Intlekofer et al.,
2005], which is important for T cells responding to cykokines such as IL-15 or IL-7. It also
helps to maintain long-term survival of T cells without antigen stimulation as well as memory
T cell function [Li et al., 2013].

On the other hand, Eomes is over-expressed in exhausted T cells during chronic infection
[Wherry et al., 2007, Kao et al., 2011]. However, its role in regulating T cells in cancer is not
yet fully understood. Some evidence suggests that Eomes plays a critical role in enhancing
CD8+T cell activity to eradicate human colorectal cancer [Atreya et al., 2007]. In addition,
T-bet and Eomes are important for tumor infiltration by CD8+ T cells through the regulation
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of CXCR3 expression and enhance T cell-mediated anti-tumoral immune responses [Zhu et
al., 2010]. In contrast, suppression of Eomes expression in T cells before transfer leads to
enhanced anti-tumoral function of adoptively transferred T cells [Hinrichs et al., 2008]. In the
present study, Eomes was found of low expression in T cells isolated from tumor tissues.
However, this finding does not allow for the identification of the signaling pathway involved
in the regulation of gene expression in transferred T cells. Thus, it is necessary to further
investigate the mechanism and dynamics of Eomes expression in transferred T cells in tumor
models for a better understanding of its role in ACT [Waugh et al., 2015].

HDAC9 is another candidate gene found downregulated in transferred T cells gaining access
to the tumor tissue. HDAC9 is a class IIA HDAC, which is a family of histone modification
enzymes that remove acetyl from histone, and further epigenetically regulates DNA
expression [Leipe et al., 1997]. It is mostly over-expressed in CD4+ T cells, and has shown
reverse correlation with stable Forkhead box protein 3 (Foxp3) expression and has
suppressive function on Tregs [Li et al., 2007, Tao et al., 2007]. However these functions
come from non-tumor mouse models which is in contrast to the one used in this study. Our
observation may indicate that HDAC9 is involved in epigenetic modification of CD8+ T cells
in the context of ACT. Further studies should be extended to other member of HDACs in the
regulation of gene expression in ACT, which are important for the application of histone
deacetylase inhibitors (HDACis) in combination with this therapy [Vo et al., 2009, Lisiero et
al., 2014].

4.4 Differences in gene expression in lipid signaling pathway and T cell activation

Genes involved in metabolism were found to be expressed at lower levels in the transferred T
cells infiltrating the tumor. PKC γ and DGK α were found to be downregulated in infiltrating
T cells. PKC γ is a member of the PKC family that can phosphorylate serine and threonine
amino acid residues on the other proteins and control the function of these proteins. Its
activation requires increasing concentration of second messengers like diacylglycerol (DAG)
and calcium ions (Ca2+) [Mellor et al., 1998]. In general, PKCs are involved in several cell
signal transduction cascades, and are upregulated in activated T cells [Isakov et al., 1987,
Berry et al., 1990]. Transduction of T cells with PKC γ can up-regulate IL-2 receptor
expression, and adoptive transfer of those T cells can lead to tumor regression in vivo [Chen
et al., 1994].

DGK α belongs to the DGK enzyme family that catalyze phosphorylation of DAG to
phosphatidic acid and regulate lipid signaling. DKG correlates with T cell anergy and inhibits
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TCR signaling [Olenchock et al., 2006, Zha et al., 2006], suggesting that pharmacologic
inhibition of DGKs might be a strategy to improve T cell therapy [Riese et al., 2013, Wang et
al., 2013]. However, its expression in different models is controversial: it is over-expressed in
exhausted T cells after transfer in melanoma [Abate-Daga et al., 2013], whereas it is
down-regulated in exhausted CD8+ T cells in chronic infection [Wherry et al., 2007].
Furthermore, one study indicates that the expression of DGK α might play opposing roles
during T cell primary expansion and memory phase [Shin et al., 2012]. The finding in this
thesis might be interpreted as additional evidence to the hypothesis that adoptively transferred
T cells found in spleen might have a memory T cell phenotype.

4.5 Different gene expression involving chemotaxis and migration in adoptively
transferred T cells

Several genes for T cell migration are over-expressed in adoptively transferred T cells
migrating into the tumor milieu, including CCR8, CX3CR1 and a chemokine receptor CC
motif receptor like 2 (CCRL2). Among these, expression of CCR8 and CX3CR1 were
confirmed by additional quantitative PCR.

CX3CR1 is predominantly expressed on CD8+ T cells, CD4+ T cells and natural killer cells
(NK cells), and its interaction with CX3CL1 (also known as fractalkine) can mediate
adhesion and migration of these immune cells [Imai et al., 1997]. IL-2 can up-regulate
CX3CR1 expression on T cells. CX3CR1 is selectively expressed on cytotoxic T cells with
enhanced expression of intracellular granzyme B and perforine [Nishimura et al., 2002].
CX3CL1 is mainly over-expressed in neurons, nerve fibers [Marchesi et al., 2008] and some
types of cancer cells, such as glioblastoma [Erreni et al., 2010], colorectal cancer [Ohta et al.,
2005] and breast cancer [Park et al., 2012]. High expression of CX3CL1 is positively
associated with increased amounts of TIL and better prognostic outcome in colorectal cancer
[Ohta et al., 2005] as well as breast cancer [Park et al., 2012]. CX3CL1 transduced lung
cancer cells [Guo et al., 2003] and neuroblastoma [Zeng et al., 2007] attracted T cells and
enhanced T cell mediated cytotoxicity. Thus, CX3CL1 - CX3CR1 may be considered as a
potential therapeutic target for T cell therapy.

CCR8 was found at higher levels in tumor-infiltrating GFP+-OT-1 T cells compared with
those found in spleen by RT-PCR array. This was confirmed both by another pair of RT-PCR
primers and by flow cytometry at the protein level. CCR8 is preferentially expressed in the
thymus, and is upregulated in activated T cells, especially Th2 cells [DAmbrosio et al., 1998].
By interacting with its ligand CCL1, CCR8 plays a role in the chemotaxis of activated T
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[Roos et al., 1997, Goya et al., 1998] and Treg cells [Iellem et al., 2001] to lymphoid tissues.
In tumor models, CCR8 expression on melanoma and breast cancer cells may help tumor
metastasis into the lymph nodes [Das et al., 2013], suggesting that CCR8 may be a potential
therapeutic target in cancer. The CCR8 gene is located in close proximity with the CX3CR1
gene on chromosome 3 [DeVries et al., 2003], which would match our array data that CCR8
and CX3CR1 mRNA are simultaneously up-regulated in tumor-infiltrating GFP+-OT-1 T cells.
As pointed out previously, CX3CR1 expression on T cells correlates with T cells infiltration
in tumors. However, the role of CCR8 expression on tumor infiltrating effector T cells has not
yet been investigated. On the other hand, chemokine profiles can be variable in different types
of tumors [Slaney et al., 2014]. Thus, it is worthwhile to further investigate the function of
CCR8 expression on TIL and its potential consequences for T cell therapy.

4.6 Limitations of the methods used

RT-PCR array combines the quantitative advantage of RT- PCR and microarray profiling to
compare gene expression, and it is the most reliable tool for analyzing gene expression. It is
normally utilized to confirm candidate genes identified by DNA array [Etienne et al., 2004].
However, commercial RT-PCR based arrays lack the comprehensive screening range of whole
genome profiling. This might lead to bias and miss important genes involved in ACT.

Secondly, the experimental design in this project was only focused on the comparison of gene
expressions in different organs at specific time point. Therefore, genes with altered regulation
in tumor-infiltrating T cells could not be simply interpreted whether the candidate genes are
favorable factors that assist T cell migration, or these genes are consequently changed after T
cells infiltrate into tumor site. Analyzing the dynamics of gene profiles [Wherry et al., 2007]
and further function experiment at protein level might be of help to distinguish the role of
candidate genes.

4.7 Outlook

Gene expression profiles of T cells after adoptive transfer within different compartments
might give hints for further T cell manipulation to improve ACT. Further comprehensive gene
profiling of T cells used in ACT might be needed. Candidate genes could be cloned to
investigate their biological function and be used for gene engineering to enhance T cell
function during ACT.
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5. Summary

Adoptive transfer of T cells has emerged as a promising novel strategy in the treatment of
cancer. The thesis project presented here investigated the molecular signatures of adoptively
transferred murine T cells in vivo, which might reveal factors that influence effective T cell
therapy.

A subcutaneous tumor model was established using the murine Panc02-OVA pancreatic
cancer cell line in wild type C57BL/6 female mice. Following retroviral transduction,
GFP-transduced OT-1 T cells were infused into tumor-bearing mice. One week later,
lymphocytes from tumor and spleen were harvested, and GFP+-OT-1 T cells were sorted by
flow cytometry. mRNAwas extracted from sorted GFP+ T cells, and gene expressions were
analyzed by RT-PCR arrays. Candidate genes were confirmed both at mRNA and protein
level.

RT-PCR array of the transferred T cells infiltrated into tumors demonstrated a distinct gene
expression profile including 1) over-expression of activation as well as exhaustion markers,
such as PD-1 and CTLA-4; 2) expression of distinct transcription factors and epigenetic
regulation genes; 3) changes in T cell receptor signaling pathway; 4) altered expression of
chemokines and chemokine receptors, including increased expression of CCR8. CCL1, the
ligand for CCR8, was also found upregulated in tumor tissue

In conclusion, RT-PCR arrays of tumor infiltrating T-cells revealed altered expression of
factors involving T cell differentiation. These might distinguish effective T cells from
ineffective T cells in this mouse model, and give hints for further T cell manipulation to
improve the efficacy adoptive T-cell therapy.
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6. Zusammenfassung

Der adoptive T-Zelltransfer ist ein vielversprechender Ansatz zur Tumorimmuntherapie. Ziel
meiner Dissertation war es, die T-Zell-mRNA-Expressionsprofile nach adoptivem
Zell-Transfer in Tumor tragende Mäuse zu analysieren.

OT-1 transgene T Zellen wurden mit GFP transduziert. Die transduzierten OT-1 T Zellen
wurden daraufhin adoptiv in Wildtyp-Mäusen mit subkutanen Panc02-OVA-Pankreas-
karzinomen, die das Modellantigen Ovalbumin (OVA) präsentieren, transferiert. Nach einer
Woche wurden GFP-positive T Zellen aus den Tumoren und den Milzen mittels
Durchflusszytometrie durch FACS sorting isoliert. Nachfolgend wurde die Gen-Expression
der FACS-sortierten T-Zellen mittels RT-PCRArray quantifiziert. Die Expression von
Kandidatengenen wurde auf Proteinebene mittels Durchflusszytometrie und ELISA bestätigt.

Die Tumor infiltrierenden T-Zellen zeigten: 1) Überexpression von aktivierenden als auch von
inhibitorischen Rezeptoren, wie z. B. CTLA-4 und PD-1; 2) Expression von
Transkriptionsfaktoren und Enzymen für epigenetische Regulationsvorgänge; 3)
Veränderungen der TCR-Signaltransduktion; 4) erhöhte Expression des Chemokinrezeptors
CCR8. Ergänzend dazu wurden erhöhte Spiegel von CCL1, dem Liganden für CCR8, im
Tumorgewebe gemessen.

Die Genexpressionsanalyse von T-Zellen nach adoptivem Transfer im Mausmodell könnte zur
Aufklärung von Veränderungen in T-Zellen nach Transfer beitragen. Dies kann die Grundlage
für neue therapeutische Strategien zur Verbesserung der adoptiven T-Zell-Therapie bilden.
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8. Abbreviation list

A

ACT Adoptive cell therapy

ALL Acute lymphoblastic leukemia

APC Allophycocyanin

APCs Antigen presenting cells

B

BSA Bovine serum albumine

BTLA B- and T-lymphocyte attenuator

C

CaCl2 Calcium chloride

CAR Chimeric antigen receptor

CCBP2 Chemokine-binding protein 2

CCL Chemokine (C-C motif) ligand

CCL2 Chemokine (C-C motif) ligand 2

CCR Chemokine (C-C motif) receptor

CCRL C-C chemokine receptor-like

CD Cluster of differentiation

cDNA Complementary DNA

CLL Chronic lymphocytic leukemia

Cma1 Chymase 1

CO2 Carbon dioxide

Ct Threshold cycle

CTLA-4 Cytotoxic T lymphocyte antigen 4

CX3CL1 Chemokine (C-X3-C motif) ligand 1

CX3CR1 CX3C chemokine receptor 1

CXCL Chemokine (C-X-C motif) ligand

CXCR Chemokine (C-X-C motif) receptor

D

DAG Diacylglycerol
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DGK α Diacylglycerol kinase α

DMEM Dulbecco’s modified Eagle’s medium

DMSO Dimethyl sulfoxide

E

E.coli Escherichia coli

EB Ethidium bromide

EBV Epstein-Barr virus

EDTA Ethylenediaminetetraacetic acid

EF1α Elongation factor-1 α

ELISA Enzyme-linked immunosorbent assay

Eomes Eomesodermin

F

FACS Fluorescence-activated cell sorting

FCS Fetal calf serum

FITC Fluorescein isothiocyanate

Foxp3 Forkhead box protein 3

FSC Forward scatter

FSC-A Forward scatter-area

FSC-H Forward scatter-height

G

GFP Green fluorescent protein

GM-CSF Granulocyte-macrophage colony-stimulating factor

GOI Gene of interest

gp100 Glycoprotein 100

H

HDAC Histone deacetylase

HDACi Histone deacetylase inhibitor

HEPES acid 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HKG Housekeeping genes

HPRT Hypoxanthine-guanine phosphoribosyltransferase
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HPV Human papillomavirus

I

IFN-γ Interferon-γ

IL Interleukin

L

LAG-3 Lymphocyte-activation gene 3

LB Lysogeny broth

M

MART-1 Melanoma antigen recognized by T cells 1

MDA Melanocyte differentiation antigen

MHC Major histocompatibility complex

mRNA Messenger RNA

N

NCBI National center for biotechnology information

NK cells Natural killer cells

O

OVA Ovalbumin

P

PBMCs Peripheral blood mononuclear cells

PBS Phosphate-buffered saline

PD-1 Programmed cell death protein 1

PD-L1 Programmed death-ligand 1

PI Propidium iodide

PKC Protein kinase C

Plat-E Platinum-E

PKC γ Protein kinase C γ

R

RNA Ribonucleic acid
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RNase Ribonuclease

RPMI 1640 medium Roswell park memorial institute 1640 medium

RT-PCR Reverse transcription polymerase chain reaction

S

SEM Standard error of the mean

SSC Side scatter

T

TBI Total body irradiation

TCR T cell receptor

TGF-β Transforming growth factor β

TILs Tumor-infiltrating lymphocytes

TLR Toll-like receptor

Tm Melting temperature

TNF-α Tumor necrosis factor-α

Tregs Regulatory T cells

W

w/v Weight per volume

X

XCL Chemokine (C-X-C motif) ligand

XCR1 Chemokine (C-motif) receptor 1
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