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Abbreviations 

 

AGPase  ADP-glucose pyrophosphorylase 

APL   AGPase large subunit 

APS   AGPase small subunit 

CBC   Calvin-Benson cycle 

F1,6BP  Fructose 1,6-bisphosphate 

FBPase  Fructose 1,6-bisphosphatase 

Fdx   Ferredoxin 

FNR   Ferredoxin NADP reductase 

F6P   Fructose 6-phosphate 

FTR   Ferredoxin thioredoxin reductase 

G6PDH  Glucose 6-phosphate dehydrogenase 

NADP-MDH  NADPH-dependent malate dehydrogenase 

NTR   NADPH-dependent thioredoxin reductase 

NTRC   NADPH-dependent thioredoxin reductase C 

OPPP   Oxidative pentose phosphate pathway 

3PGA   3-phosphoglycerate 

PS   Photosystem 

RBP   Ribulose 1,5-bisphosphate  

ROS   Reactive oxygen species 

Tic62   62-kDa subunit of translocon of inner chloroplast membrane 

TROL   Thylakoid rhodanese-like protein 

Trx   Thioredoxin 
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Summary 

 

The redox regulation of metabolic processes in plants is characterized by the involvement of 

oxidoreductases. Two distinct systems exist in chloroplasts of autotrophic tissues based on the 

thiol-disulfide exchange of redox-active cysteins to modify target enzyme conformations and 

activities: the ferredoxin-dependent thioredoxin (Trx) system and the NADPH-dependent 

thioredoxin reductase C (NTRC) system. Trxs become exclusively reduced by the ferredoxin 

thioredoxin reductase depending on the photosynthetic electron flux. The reducing power for 

NTRC, which contains a NADPH-dependent thioredoxin reductase and a thioredoxin domain 

in a single polypeptide, is provided by NADPH via the ferredoxin NADP reductase (FNR) or 

the oxidative pentose phosphate pathway, the latter operating also in darkness. Previous in vitro 

studies revealed specific functions of the different plastidial Trx isoforms, however, little is 

known on their in vivo relevance. In the present work, a reverse genetic approach was used to 

investigate the function of Trx f and NTRC in Arabidopsis thaliana plants. Compared to wild-

type, Arabidopsis T-DNA insertion lines with a deficiency in Trx f showed no significant 

changes in photosynthesis and growth despite the proposed exclusive role of Trx f in regulating 

the Calvin-Benson cycle enzyme fructose 1,6-bisphosphatase (FBPase). In contrast to this, T-

DNA insertion lines with a combined deficiency of Trx f and NTRC showed strongly impaired 

growth and light acclimation capacity, accompanied by diminished photosynthetic electron 

transport rates, and elevated ratios of the primary light reaction products ATP/ADP and 

NADPH/NADP+, compared to wild-type and the single mutants. Despite the increase in energy 

and reducing equivalents, the combined deficiency of Trx f and NTRC led to strongly impaired 

CO2 assimilation rates. In line with this, the light-dependent redox activation of the FBPase was 

almost completely abolished leading to an accumulation of its substrate fructose 1,6-

bisphosphate. Arabidopsis mutant lines lacking the redox-sensitive plastidial FBPase isoform 

showed a similar growth and metabolic phenotype to the trxf1 ntrc mutants, confirming that an 

inhibition of this enzyme has dramatic effects on carbon assimilation and growth. In addition 

to the strong impairment of the Calvin-Benson cycle, the synthesis of starch as an end product 

of carbon fixation was almost completely abolished in the trxf1 ntrc plants, while there was a 

less strong effect in the single mutants. In response to varying light conditions the changes in 

growth, carbon assimilation and starch accumulation were additively increased in the trxf1 ntrc 

plants compared to the single mutants suggesting a cooperative redox regulatory function of 

Trx f and NTRC in photosynthetic metabolism. A direct interaction between Trx f and NTRC 
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was observed in vivo by bimolecular fluorescence complementation assays. Finally, 

Arabidopsis mutants with a disturbed binding of FNR to chloroplast membranes were 

investigated. While the NADPH/NADP+ redox state was decreased, no significant effects on 

photosynthesis and growth were observed in these mutants, compared to wild-type plants. This 

underpins the flexibility of the redox regulatory system in photosynthetic metabolism of higher 

plants, compensating the perturbation of one of its components. 
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Zusammenfassung 

 

Die Redoxregulation metabolischer Prozesse in Pflanzen ist durch die Beteiligung von 

Oxidoreduktasen charakterisiert. In Chloroplasten autotropher Gewebe existieren zwei 

unterschiedliche Systeme, die auf dem Austausch von Thiol-Disulfiden redoxaktiver Cysteine 

basieren, um die Konformation und Aktivität von Zielenzymen zu modifizieren: das System 

Ferredoxin-abhängiger Thioredoxine (Trx) und das System der NADPH-abhängigen 

Thioredoxin-Reductase-C (NTRC). Trx werden abhängig vom photosynthetischen 

Elektronenfluss ausschließlich durch die Ferredoxin-Thioredoxin-Reductase reduziert. Die 

Reduktionskraft für NTRC, die eine NADPH-abhängige Thioredoxin-Reduktase-Domäne und 

eine Thioredoxin-Domäne in einem einzelnen Polypeptid enthält, wird durch NADPH über die 

Ferredoxin-NADP-Reduktase (FNR) oder den oxidativen Pentosephosphate-Weg, der auch im 

Dunkeln operiert, bereitgestellt. Vorangegangene in vitro-Studien ergaben spezifische 

Funktionen der verschiedenen plastidären Trx-Isoformen, allerdings ist nur wenig über die 

Relevanz in vivo bekannt. In der vorliegenden Arbeit wurde ein Ansatz der reversen Genetik 

genutzt, um die Funktion von Trx f und NTRC in Arabidopsis thaliana-Pflanzen zu 

untersuchen. Im Vergleich zum Wildtyp zeigten Arabidopsis-T-DNA-Insertionslinien mit 

einem Mangel an Trx f keine signifikanten Veränderungen in der Photosynthese und im 

Wachstum, obwohl für Trx f vermutet wird, eine exklusive Rolle in der Regulation des Calvin-

Benson-Zyklus-Enzyms Fruktose-1,6-bisphosphatase (FBPase) zu spielen. Im Gegensatz dazu 

zeigten T-DNA-Insertionslinien mit einem kombinierten Mangel an Trx f und NTRC im 

Vergleich zum Wildtyp und den Einzelmutanten ein stark gehemmtes Wachstum und 

Lichtanpassungsvermögen, das von verringerten photosynthetischen Elektronentransportraten 

und erhöhten Verhältnissen der primären Lichtreaktionsprodukten ATP/ADP und 

NADPH/NADP+ begleitet wurde. Trotz erhöhter Energie- und Reduktionsäquivalenten, führte 

der kombinierte Mangel an Trx f und NTRC zu stark beeinträchtigten CO2-Assimilationsraten. 

Dementsprechend war die lichtabhängige Redoxaktivierung der FBPase fast vollständig 

aufgehoben und führte zu einer Akkumulation des Substrates Fruktose-1,6-bisphosphat. 

Arabidopsis-Mutantenlinien, denen die redox-sensitive plastidäre FBPase-Isoform fehlte, 

zeigten einen ähnlichen Wachstums- und Stoffwechselphänotyp wie die trxf1 ntrc-Mutanten 

und verdeutlichten, dass eine Hemmung des Enzyms dramatische Effekte auf die 

Kohlenstoffassimilation und das Wachstum hat. Zusätzlich zu der starken Beeinträchtigung des 

Calvin-Benson-Zyklus, war die Synthese von Stärke als ein Endprodukt der 
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Kohlenstofffixierung in den trxf1 ntrc-Pflanzen fast vollständig aufgehoben, während der 

Effekt in den Einzelmutanten weniger ausgeprägt war. In Antwort auf variierende 

Lichtbedingungen nahmen die Veränderungen im Wachstum, der Kohlenstoffassimilation und 

der Stärkeakkumulation in den trxf1 ntrc-Pflanzen im Vergleich zu den Einzelmutanten additiv 

zu, das auf eine kooperative Funktion von Trx f und NTRC in der Redoxregulation des 

photosynthetischen Stoffwechsel schließen lässt. Eine direkte Interaktion zwischen Trx f und 

NTRC wurde in vivo durch Bimolekulare Fluoreszenzkomplementations-Ansätze beobachtet. 

Abschließend wurden Arabidopsis-Pflanzen untersucht, in denen die FNR-Bindung an die 

Chloroplastenmembranen gestört war. Während der NADPH/NADP+-Redoxstatus verringert 

war, wurden keine signifikanten Effekte auf die Photosynthese und das Wachstum in diesen 

Mutanten im Vergleich zum Wildtyp beobachtet. Das unterstreicht die Flexibilität des 

redoxregulatorischen Systems im photosynthetischen Stoffwechsel höherer Pflanzen, da die 

Störung eines seiner Komponente ausgeglichen werden kann. 
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Introduction 

 

Plants depend on the ability to adapt to changing environmental conditions, due to their sessile 

and autotrophic lifestyle. The essential and ubiquitous process in plant life is the oxygenic 

photosynthesis, which enables the conversion of the light energy to chemical energy for the 

production of sugars as carbon source for growth and development. Since environmental 

factors, such as light, are fluctuating in nature, the plant developed highly flexible and complex 

regulatory systems to balance and optimise metabolic processes for survival. 

 

The photosynthetic electron distribution in autotrophic tissues of plants 

The photosynthetic electron transport uses the light energy to produce chemical energy and 

reducing power for downstream metabolic processes in plants (Geigenberger and Fernie 2014). 

This process operates in chloroplasts of autotrophic tissues such as leaves. The linear electron 

flux involves the serial action of different proteins located at the thylakoid membranes, 

generating trans-thylakoid proton gradients for ATP synthesis via the CF0F1ATPase, and 

transferring reducing power to final electron acceptors such as NADP+ for the production of 

NADPH. The absorption of the light energy by the photosystem (PS) II enables the transfer of 

electrons, provided by the cleavage of water to protons and oxygen, via the electron carriers 

plastoquinone, the cytochrom b6f complex and plastocyanin to the PS I complex (see Figure 1). 

Finally, the mobile electron acceptor ferredoxin (Fdx) becomes reduced at the stromal side of 

PS I, and acts as key player, channeling the redox power to different pathways (Scheibe and 

Dietz 2011). Fdx directly donates electrons to assimilatory processes of the sulphur and nitrogen 

metabolism, or other stromal processes such as chlorophyll, phytochrome and fatty acid 

biosynthesis (Hanke and Mulo 2013). Additionally, Fdx distributes electrons to the ferredoxin 

NADP reductase system (FNR) system for the production of NADPH, and to the ferredoxin 

thioredoxin reductase (FTR) system for redox regulatory processes. The cyclic electron 

transport is able to redirect reduced Fdx from the stroma to the electron transport chain at the 

thylakoid membranes by the involvement of the proton-gradient-regulation-5/proton-gradient-

regulation-like protein 1 or the NADH-dehydrogenase-like complex (Johnson 2011). These 

processes support the formation of the trans-thylakoid proton gradient through the proton-

pumping plastoquinone pool, whereas the electron distribution by Fdx to other pathways such 
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as the FNR system is diminished (Foyer et al. 2012). Consequently, this leads to a higher 

ATP/NADPH ratio, which is important especially if the demand on NADPH in downstream 

metabolism is lower in relation to ATP. For situations of limited electron acceptors at the 

stromal side of PS I, the plant evolves reactive oxygen species (ROS) at the PS I complex by 

the transfer of electrons to oxygen, which subsequently leads to a decreased electron pressure 

to the electron acceptors (Noctor et al. 2014, Geigenberger and Fernie 2014). ROS, such as 

H2O2, are involved in signalling functions, however, if H2O2 accumulate, it acts as harmful 

molecule with a strong oxidising power.  

 

 

Figure 1 (taken from Geigenberger and Fernie 2014): The photosynthetic electron transport chain in chloroplasts 

is initiated by the cleavage of water to oxygen and protons in the thylakoid lumen for the provision of electrons. 

The electron transfer at the thylakoid membrane is mediated by the light absorption of the photosystems II (PSII) 

and I (PSI), which serially act with the help of the electron carriers plastoquinone (PQ), the cytochrome b6f 

complex (Cyt b6f) and plastocyanin (PC). The stromal electron acceptor ferredoxin (Fdx) distributes the redox 

power to the S- and N-assimilation, to biosynthetic processes, or to the ferredoxin thioredoxin reductase (FTR) 

system, involving the reduction of thioredoxins (Trx) for redox regulatory processes. Additionally, Fdx donates 

electrons to the ferredoxin NADP reductase (FNR) system, which produces NADPH for the C-assimilation, other 

biosynthesis processes, and for the NADPH-dependent thioredoxin reductase C (NTRC) as redox regulatory 

component. As indicated with black-dotted lines, the cyclic electron flow enables the reintroduction of electrons 

from Fdx to the PQ pool by the involvement of other protein complexes such as the proton-gradient-regulation-

5/proton-gradient-regulation-like protein 1 (PGRL1). Alternatively, PSI is able to photoreduce oxygen to reactive 

oxygen species (ROS). 
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Under optimal growth conditions, Fdx channels the main flux of reducing equivalents to the 

FNR system, which enables the formation of NADPH by the reduction of NADP+ (Meyer et al. 

2012, Michelet et al. 2013). In leaves of Arabidopsis, two FNR isoforms (LFNR1 and LFNR2) 

are known, which mainly exist soluble in the chloroplast stroma or attached to the thylakoid 

membranes (Hanke et al. 2005, Lintala et al. 2007). Several FNR-binding partners have been 

suggested, however, the 62-kDa subunit of translocon of inner chloroplast membrane (Tic62) 

and the thylakoid rhodanese-like protein (TROL) are the most promising ones, sharing a 

characteristic FNR-binding domain (Benz et al. 2010). Tic62 is able to shuttle between the 

membrane and the stroma dependent on the redox status of the plastid (Stengel et al. 2008). 

Low NADPH/NADP+ ratios induce a strong attachment to the membrane, while a high ratio 

increases the solubility of Tic62. Contrarily, TROL is an intrinsic thylakoid protein (Juric et al. 

2009). The interaction of FNR with the anchor-proteins Tic62 and TROL is favoured by an 

acidic pH, while the binding decreases at alkaline pH, occuring during the day in the stroma 

due to the proton-pumping action of the photosynthetic light reaction (Benz et al. 2009, Alte et 

al. 2010). It is suggested that Tic62 and TROL might have chaperone functions especially 

during the night since the FNR stability is diminished in low pH environments (Benz et al. 

2010). 

The main part of the NADPH, produced by the FNR system, is used in the Calvin-Benson cycle 

(CBC) for the CO2 fixation and subsequent formation of carbon assimilates (see Figure 2; 

Michelet et al. 2013, Geigenberger and Fernie 2014). The CBC is divided in three stages, which 

are called the carboxylation, the reduction and regeneration phase. The carboxylation of 

Ribulose 1,5-bisphosphate (RBP) is mediated by the ribulose 1,5-bisphosphate 

carboxylase/oxygenase, and produces 3-phosphoglycerate (3PGA). The reduction of 3PGA 

consumes ATP and NADPH due to the enzymatic reactions of the phosphoglycerate kinase and 

the NADPH-dependent glyceraldehyde 3-phosphate dehydrogenase, respectively. The third 

phase includes several enzymatic steps, such as the ATP-dependent reaction of the 

phosphoribulokinase, which finally leads to the regeneration of RBP. In addition to this, various 

other metabolic processes in chloroplasts are dependent on the reductant NADPH, such as fatty 

acid and chlorophyll biosynthesis. Additionally, the NADPH is used by the NADPH-dependent 

thioredoxin reductase C (NTRC) for redox regulatory processes (Cejudo et al. 2012). NTRC 

consists of a NADPH-dependent thioredoxin reductase (NTR) domain and a thioredoxin (Trx) 

domain in a single polypeptide, and shows oxidoreductase activity with its redox-active cysteins 

in the catalytic centre. NADPH is used as reducing power for the NTR domain, which transfers 
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the electrons to the Trx domain to modify the redox state of thiol-disulfides in target proteins. 

In situations of excess NADPH in the stroma, the plant is able to recycle NADP+ as electron 

acceptor for PS I by the malate valve (Scheibe and Dietz 2011). The plastidial NADPH-

dependent malate dehydrogenase (NADP-MDH) converts stromal NADPH and oxaloacetate to 

malate and NADP+. The activity is increased at elevated NADPH/NADP+ ratios and vice versa, 

and the posttranslational redox-activation strictly light-dependent, which both enables the plant 

to maintain the redox poise in chloroplasts during the day. In addition to the recycling of NADP+ 

by the NADP-MDH, the malate valve involves the followed export of malate outside of the 

chloroplast in a counterexchange with oxaloacetate. The cytosolic malate pool can fulfil 

different functions, such as the provision of NADH after the re-conversion to oxaloacetate for 

nitrate reduction, the generation of ATP after the transport to the mitochondria, the support of 

photorespiration, or the storage of malate in the vacuole (Scheibe et al. 2005).  

Beside the Fdx-dependent electron distributions mentioned above, the photosynthetic electron 

flux delivers also the FTR system with reducing power (Hanke and Mulo 2013). Fdx transfers 

its electrons to the FTR for the light-dependent reduction of Trx. Trxs are ubiquitious proteins, 

acting as oxidoreductases with redox-active cysteins in their catalytic centre to modify thiol-

disulfides of target enzymes, which finally lead to changes in enzyme conformation and 

activities (Schürmann and Buchanan 2008, Meyer et al. 2012). Originally, they were identified 

in plants, mediating the activation of CBC enzymes. Indeed, four CBC enzymes are subjected 

to a direct redox activation by Trxs (see Figure 2; Michelet et al. 2013). The NADPH-dependent 

glyceraldehyde 3-phosphate dehydrogenase from the reduction phase provides triose 

phosphates for the running CBC, but as well as for the sucrose synthesis in the cytosol, and 

three enzymes from the regeneration phase are redox-activated by Trxs, namely 

phosphoribulokinase, sedoheptulose 1,7-bisphosphatase, and the fructose 1,6-bisphosphatase 

(FBPase). The latter enzyme dephosphorylates fructose 1,6-bisphosphate (F1,6BP) to Fructose 

6-phosphate (F6P), which is used for the regeneration of RBP in the CBC, but serves 

additionally as important precursor for starch synthesis and the oxidative pentose phosphate 

pathway (OPPP) in the chloroplast (Geigenberger and Fernie 2014). In Arabidopsis two 

plastidial FBPase isoforms (cFBP1 and cFBP2) are known (Serrato et al. 2009). cFBP1 has an 

approximately 6-fold higher affinity to the substrate F1,6BP than cFBP2, and is strictly redox-

activated by the plastidial Trx f isoform, while cFBP2 is redox-insensitive (Serrato et al. 2009, 

Michelet et al. 2013). Finally, the FTR system and the subsequent reduction of Trxs complete 

the Fdx-dependent electron distribution in chloroplasts. This enables a light-dependent 
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coordination of produced energy and reducing equivalents with the redox-activated carbon 

assimilation process and related metabolic pathways.  

 

 

Figure 2 (taken and modified from Michelet et al. 2013): The Calvin Benson cycle in chloroplasts enables the 

fixation of carbon by the Rubisco reaction for the production of carbon assimilates as important precursors for 

downstream metabolism. The fixation of one CO2 molecule needs three ATP and two NADPH, mainly provided 

by the photosynthetic light reaction, and one molecule of RuBP. Eleven enzymes are involved in the complete 

cycle, and four of them are subjected to a direct redox activation by thioredoxins, which are indicated with blue 

letters. Enzymes: FBA, fructose 1,6-bisphosphate aldolase; FBPase, fructose 1,6-bisphosphatase; GAPDH, 

glyceraldehydes 3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PRK, phosphoribulokinase; 

SBPase, sedoheptulose 1,7-bisphosphatase; TK, transketolase; TPI, triose phosphate isomerase; RPE, ribulose 5-

phosphate 3-epimerase; RPI, ribose 5-phosphate isomerise; Rubisco, ribulose 1,5-bisphosphate carboxylase/ 

oxygenase. Metabolites: DHAP, dihydroxyacetone phosphate; E4P, erythrose 4-phosphate; F1,6P, fructose 1,6-

bisphosphate; F6P, fructose 6-phosphate; G3P, glyceraldehydes 3-phosphate; 1,3-PGA, 1,3-bisphosphoglycerate; 

3-PGA, 3-phosphoglycerate; R5P, ribulose 5-phosphate; RuBP, ribulose 1,5-bisphosphate; RuP, ribulose 5-

phosphate; S1,7P, sedoheptulose 1,7-bisphosphate; S7P, sedoheptulose 7-phosphate; X5P, xylulose 5-phosphate. 
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The Trx-based redox regulatory system in chloroplasts 

Since their discovery in plants, 39 putative Trxs were identified in Arabidopsis (Belin et al. 

2014). The typical Trxs with the catalytic motif WCXPC and a molecular weight of 

approximately 12 kDa are phylogenetically separated to seven different subtypes, named Trx f, 

m, x, y, z, h and o (Schürmann and Buchanan 2008, Meyer et al. 2012). The 10 isoforms Trx f1-

2, m1-4, x, y1-2 and z are localized to the plastids, while the isoforms of Trxs h and o are mainly 

localized to the cytosol and mitochondria, respectively. In contrast to the Fdx-dependent 

reduction of plastidial Trx by the FTR, the Trx isoforms present in other compartments of plant 

cells are dependent on the reducing power of NADPH (see Figure 3; Montrichard et al. 2009). 

The electron transfer from NADPH to the extraplastidial Trxs in Arabidopsis is catalysed by 

the two NTR isoforms NTRA and NTRB, which are mainly present in the cytosol and 

mitochondria, respectively (Reichheld et al. 2005). 

 

 

Figure 3 (taken from Montrichard et al. 2009): The thiol disulfide exchange in the ferredoxin-thioredoxin system 

of plastids is dependent on the sequential electron transfer between ferredoxin (Fdx), ferredoxin thioredoxin 

reductase (FTR), thioredoxins (Trx) and target proteins. The NADP-thioredoxin system operates in other 

compartments of plant cells, using NADPH as reducing power for the reduction of the NADPH-dependent 

thioredoxin reductase (NTR), Trxs, and finally the target proteins. 
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The redox regulatory functions of the plastidial Trxs are widespread and still under 

investigation, but several biochemical studies revealed specificities for the regulation of target 

enzymes (Meyer et al. 2012). Trxs f and m regulate predominantly primary metabolism in 

chloroplasts, like CBC enzyme activities (Collin et al. 2003, Michelet et al. 2013), starch 

synthesis (Ballicora 2000, Geigenberger et al. 2005) and degradation (Mikkelsen et al. 2005, 

Valerio et al. 2011, Seung et al. 2013, Silver et al. 2013), NADPH production by the glucose 

6-phosphate dehydrogenase (G6PDH) in the OPPP (Nee et al. 2009) and export by the malate 

valve via NADP-MDH (Collin et al. 2003), the synthesis of fatty acids (Sasaki et al. 1997), 

amino acids (Lichter and Häberlein et al. 1998, Choi et al. 1999, Motohashi et al. 2001) and 

chlorophyll (Ikegami et al. 2007, Luo et al. 2012), in most cases Trx f being more efficient than 

Trx m. Trxs x, y and z mainly serve as reducing substrates for enzymes such as thiol-peroxidases 

or methionine sulfoxide reductases under oxidative stress conditions (Collin et al. 2003, Collin 

et al. 2004, Chibani et al. 2011, Bohrer et al. 2012). Little is known about the in vivo relevance 

of plastidial Trxs, however, in the last five years the findings increased by reverse genetic 

approaches with Arabidopsis plants, lacking specific Trx isoforms. Studies revealed a 

redundant function of Trx m1, m2 and m4 in the biogenesis of the PS II complex (Wang et al. 

2013), an involvement of Trx m3 in meristem development (Benitez-Alfonso et al. 2009), of 

Trx m4 in the down regulation of cyclic electron transport at PS I (Courteille et al. 2013), of 

Trx y2 in the repair of oxidised proteins by methionine sulfoxide reductases (Laugier et al. 

2013), and evidences indicate an influence of Trx z to the chloroplast gene expression and 

development (Arsova et al. 2010).  

An alternative plastidial redox system exists beside the Fdx Trx system (see Figure 4; Cejudo 

et al. 2012). About 10 years ago, the NTRC was identified as an atypical NTR enzyme, 

consisting of a NTR and an additional Trx domain in a single polypeptide, contrarily to the 

other two known NTR isoforms of Arabidopsis (Serrato et al. 2004, Cejudo et al. 2012). For 

the reduction of the catalytic cysteins in the Trx domain of NTRC, NADPH is used, which is 

not only provided during the day by photosynthesis, but also during the night by the OPPP. This 

includes the possibility that NTRC regulates redox processes additionally in the dark 

independent of the photosynthetic electron transport chain (Perez-Ruiz et al. 2006). Arabidopsis 

mutants with a deficiency in NTRC protein show retarded growth and pale green leaves (Serrato 

et al. 2004). Investigations with the ntrc mutants revealed redox-regulatory functions of NTRC 

in the oxidative stress response influencing the redox state of 2-Cys peroxiredoxins (Perez-Ruiz 

et al. 2006, Kirchsteiger et al. 2009, Pulido et al. 2010), in the starch synthesis modifying the 
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activation state of ADP-glucose pyrophosphorylase (AGPase) (Michalska et al. 2009, Lepistö 

et al. 2013), and in the chlorophyll biosynthesis process (Richter et al. 2013, Perez-Ruiz et al. 

2014). Further preliminary evidences suggest additional functions of NTRC in the aromatic 

amino acid synthesis and chloroplast biogenesis (Nikkanen and Rintamäki 2014).  

 

 

Figure 4 (taken from Cejudo et al. 2012): The proposed catalytic conformation of the NADPH-dependent 

thioredoxin reductase C (NTRC) has a homodimeric structure. Each subunit consists of a NADPH-dependent 

thioredoxin reductase (NTR) and a thioredoxin (Trx) domain in a single polypeptide, while the electron transfer is 

directed in an intersubunit way. NADPH reduces the cofactor FAD and leads to the cleavage of a disulfide bridge 

in the catalytic site of the NTR domain. The NTR domain is then reducing the cystein residues of the Trx domain 

belonging to the other NTRC subunit to enable the redox-dependent modification of target enzymes. 

 

The photosynthetic end product synthesis of starch in plant leaves 

The two main end products of photosynthesis are starch and sucrose, which provide the plant 

with carbon as primary source for growth (Geigenberger and Fernie 2014). While sucrose is 

synthesized in the cytosol for further metabolism and export to sink tissues, the accumulation 

of starch is located to the chloroplasts of higher plants (see Figure 5; Zeeman et al. 2007). The 
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flux of carbon assimilates from the CBC into starch and sucrose has to be balanced to avoid 

feedback inhibition effects on photosynthesis by elevated sugar levels (Stitt et al. 2010). The 

CBC provides triose phosphates, which are used for sucrose synthesis in the cytosol. If sucrose 

accumulates, the synthesis is inhibited, and subsequently the transport of triose-phosphates 

from the chloroplast to the cytosol diminishes. Finally, the carbon assimilates rise in the stroma, 

and the starch synthesis is facilitated. Dependent on current carbon necessities for metabolism 

and growth, the plant is able to balance the photosynthetic end product synthesis between starch 

and sucrose during the day. 

 

 

Figure 5 (Reproduced with permission, from Zeeman SC, Smith SM, Smith AM, 2007, Biochemical Journal, 401, 

13-28. © the Biochemical Society.): The Calvin-Benson cycle in chloroplasts of dicotyledonous plants assimilates 

carbon, and subsequently provides intermediates for the biosynthesis of the two main end products of 

photosynthesis, namely sucrose and starch. Triose phosphates are transported to the cytosol via the TPT for sucrose 

synthesis. Fru6P is the precursor for the starch synthesis, and converted to Glc1P by two enzymatic steps, involving 

the sequential action of PGI and PGM. Afterwards, the AGPase uses Glc1P and ATP to produce ADPGlc, which 

acts as glycosyl donor for the subsequent enzymatic formation of the starch granule. The AGPase controls the flux 

of the starch synthesis pathway, while being subjected to several regulatory events such as the allosteric inhibition 
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by Pi or activation by 3-PGA, and the posttranslational modification by redox processes. Enzymes: AGPase, ADP-

glucose pyrophosphorylase; BE, branching enzyme; DBE, de-branching enzyme; PGI, phosphoglucoisomerase; 

PGM, phosphoglucomutase; SS, starch synthase; TPT, triose phosphate/phosphate translocator. Metabolites: 

ADPGlc, ADP-glucose; Fru6P, fructose 6-phosphate; Glc1P, glucose 1-phosphate; Glc6P, glucose 6-phosphate; 

3-PGA, 3-phospho glycerate; Pi, inorganic phosphate. 

 

Starch is the major carbohydrate store for many plants in a wide range of tissues (Zeeman et al. 

2007). The typical insoluble, semi-crystalline structure of starch granules is obtained by two 

different glucan polymers, named amylose and amylopectin. Amylose consists of α-1,4-linked 

glucose monomers, while amylopectin shows a branched structure with additional α-1,6-linked 

glucosyl chains. The transient synthesis of starch occurs in most cases during the day in 

chloroplasts of leaves (Geigenberger 2011). Genetic approaches with starchless mutants 

showed that transient starch is essential for plant survival, if the night exceeds 12 h (Stitt et al. 

2010). During the night when photosynthesis is inactive the transient starch is degraded for 

maintaining metabolism and growth (Stitt and Zeeman 2012). It is essential that the transient 

starch accumulation and degradation is regulated to react to environmental changes like 

fluctuating light conditions and to avoid exhausted reserves at night. The pathway of starch 

synthesis starts with F6P, produced in the CBC, which is converted to glucose 1-phosphate by 

two enzymatic steps, involving the sequential action of phosphoglucoisomerase and 

phosphoglucomutase (see Figure 5). The AGPase converts glucose 1-phosphate and ATP to 

ADP-glucose and pyrophosphate, while ADP-glucose acts as glucosyl donor for the elongation 

of glucan chains, and the subsequent formation of starch granules (Geigenberger and Fernie 

2014). Flux control analyses revealed that the AGPase catalyses a near rate-determining step of 

the starch synthesis pathway (Neuhaus and Stitt 1990, Stitt et al. 2010). The holoenzyme of 

AGPase has a heterotetrameric structure and consists of two large APL (51 kDa) and two small 

APS (50 kDa) subunits, both fulfilling regulatory and catalytic functions for adjusting the 

activity (Cross et al. 2004, Ventriglia et al. 2008, Geigenberger 2011).  

The AGPase is highly regulated at several levels of control (Hädrich et al. 2012). The 

expression of the genes coding for the AGPase subunits (APL1-4 and APS1-2) is influenced by 

the nutritional status of the plant. At elevated nitrogen or phosphate levels AGPase genes are 

less expressed (Scheible et al. 1997, Nielsen et al. 1998), however, an increased carbon supply 

induces a higher expression (Müller-Röber et al. 1990, Sokolov et al. 1998, Crevillen 2005). 

The allosteric regulation by 3PGA stimulates the activity of AGPase, while Pi inhibits the 

activity (Ghosh and Preiss 1966, Sowokinos and Preiss 1982). A further posttranslational 
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mechanism for the adjustment of AGPase activity is the redox modification of conserved 

cysteins in the catalytic small subunit APS1, representing the predominant catalytic isoform in 

leaves (Geigenberger et al. 2011). An intermolecular disulfide bridge between conserved 

cysteins of the two small subunits is cleaved under reducing conditions, leading to an increased 

activity of AGPase (see Figure 6). The mechanism was first observed with recombinant potato 

tuber protein (Fu et al. 1998), and in vitro assays showed that the stromal oxidoreductases Trx 

f and m influence the activity of AGPase, changing the thiol-disulfide state of the APS1 protein 

(Ballicora et al. 2000, Geigenberger et al. 2005). Reduction of the conserved cysteins in the 

APS1 proteins cause altered kinetic properties of the enzyme, leading to higher substrate 

affinities, higher sensitivities to the allosteric activator 3PGA, and this correlates with higher 

starch levels in leaves (Fu et al. 1998, Ballicora et al. 2000, Hendriks et al. 2003). The redox-

activating mechanism was confirmed in vivo with heterotrophic (Tiessen et al. 2002) and 

autotrophic (Hendriks et al. 2003) plant material from potato, pea and Arabidopsis. Studies with 

transgenic Arabidopsis plants, containing constantly redox-activated AGPase enzyme, 

confirmed that the redox regulation of AGPase contributes significantly to the accumulation of 

starch (Hädrich et al. 2012). Leaf material of Arabidopsis and other dicotyledonous species 

shows a strong dependency between APS1 monomerisation and light as external factor 

(Hendriks et al. 2003, Michalska et al. 2009). Additionally, sugar incubation in the dark 

changed the redox state of the small subunit, which has an additive effect on the light-dependent 

redox activation. As confirmed later the sugar-dependent activation of starch synthesis is 

mediated by the redox-regulatory NTRC protein (Michalska et al. 2009). The Arabidopsis T-

DNA insertion line ntrc with a deficiency in NTRC protein showed a decreased APS1 

monomerisation in illuminated and in darkened sugar-incubated leaves. It is suggested that 

NTRC acts during the day, using photosynthetically produced NADPH as reducing power to 

redox-activate starch synthesis, whereas elevated sugar level induce the NADPH production 

throughout the activity of OPPP enzymes. The latter mechanism might function during day and 

night. 
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Figure 6 (taken and modified from Geigenberger et al. 2005): The redox modulation of the ADP-glucose 

pyrophosphorylase (AGPase) is accompanied by changes in the conformation and the activity of the enzyme. The 

AGPase acts as heterotetramer and consists of two large (APL) and two small (APS) subunits. The major isoform 

of the small subunit is the APS1 protein, which contains a conserved cystein, and forms in the oxidised state an 

intermolecular disulfide bridge with the second APS1 protein of the holoenzyme. Under reducing conditions this 

APS1 dimer is cleaved to two APS1 monomers, and enables an increased activity of the AGPase.  

 

Objectives of the thesis 

In the 1970s, the redox regulatory function of Trxs was discovered as connection between light 

and photosynthesis-related enzymatic processes (Buchanan et al. 2012). In the last 40 years the 

knowledge about the influence of the redox network in chloroplasts increased, but still 

information is lacking about the specificities and interrelations of the redox regulatory proteins, 

especially in vivo. Recent investigations in planta observed redox regulatory functions of 

NTRC in the detoxification of ROS, the synthesis of starch, and in the chlorophyll biosynthesis. 

Biochemical studies revealed functions of Trx f in the primary metabolism of chloroplasts, e.g. 

the redox activation of the AGPase as key enzyme of starch synthesis, or the exclusive redox 

activation of Calvin-Benson cycle enzymes, such as the FBPase, while nothing was known 

about the in vivo relevance. To find out, whether Trx f also plays a role in promoting the starch 

synthesis in leaves, the present work analysed two independent Arabidopsis T-DNA-Insertion 

lines with a deficiency in Trx f (Chapter 1). To reveal the relevance of Trx f and NTRC for 

photosynthetic processes and carbon metabolism in Arabidopsis leaves, T-DNA insertion lines 

lacking both redox regulatory proteins were used to study the impact on photosynthetic electron 

transport, CBC activity, end product synthesis of starch and related metabolic pathways 

(Chapter 2). To compare the effects on photosynthetic carbon assimilation and growth, 

Arabidopsis plants lacking the main plastidial FBPase as exclusive Trx f target enzyme were 
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investigated (Chapter 3). To obtain insights in upstream processes as the photosynthetic 

electron transport machinery, Arabidopsis mutant lines with deficiencies in the FNR anchor 

proteins TIC62 and TROL were analyzed (Chapter 4).  
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Results 

 

Chapter 1 - Inactivation of thioredoxin f1 leads to decreased light activation of ADP-

glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis 

plants 
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ABSTRACT

Chloroplast thioredoxin f (Trx f) is an important regulator
of primary metabolic enzymes. However, genetic evidence
for its physiological importance is largely lacking. To test
the functional significance of Trx f in vivo, Arabidopsis
mutants with insertions in the trx f1 gene were studied,
showing a drastic decrease in Trx f leaf content. Knockout
of Trx f1 led to strong attenuation in reductive light activa-
tion of ADP-glucose pyrophosphorylase (AGPase), the key
enzyme of starch synthesis, in leaves during the day and in
isolated chloroplasts, while sucrose-dependent redox acti-
vation of AGPase in darkened leaves was not affected. The
decrease in light-activation of AGPase in leaves was accom-
panied by a decrease in starch accumulation, an increase in
sucrose levels and a decrease in starch-to-sucrose ratio.
Analysis of metabolite levels at the end of day shows that
inhibition of starch synthesis was unlikely due to shortage
of substrates or changes in allosteric effectors. Metabolite
profiling by gas chromatography–mass spectrometry pin-
points only a small number of metabolites affected, includ-
ing sugars, organic acids and ethanolamine. Interestingly,
metabolite data indicate carbon shortage in trx f1 mutant
leaves at the end of night. Overall, results provide in planta
evidence for the role played by Trx f in the light activation
of AGPase and photosynthetic carbon partitioning in
plants.

Key-words: carbon partitioning; light signalling; redox
regulation.

INTRODUCTION

Regulation of protein function by a change in thiol redox
state has gained prominence as a universal concept
throughout biology (Buchanan & Balmer 2005). It was dis-
covered in chloroplasts more than 40 years ago, providing a

mechanism for the regulation of photosynthesis in res-
ponse to environmental changes in light–dark conditions
(Buchanan 1980). Illumination promotes the reduction of
ferredoxin (Fdx), which, in turn, leads to the sequential
reduction of ferredoxin : thioredoxin reductase (FTR) and
a family of thioredoxins (Trxs). Trxs then reduce disulfide
bonds in selected target enzymes, some of them being
involved in the Calvin–Benson cycle, ATP synthesis or
NADPH export from the chloroplast. Most Trx target pro-
teins are reductively activated in the light and deactivated
in the dark, when the Trx system is re-oxidized (Schürmann
& Buchanan 2008).

Although well characterized in photosynthesis, rela-
tively little is known about the role of this concept in
regulating other metabolic processes in plants. Several
years ago, it was shown that thioredoxins regulate ADP-
glucose pyrophosphorylase (AGPase), a key enzyme of
starch biosynthesis in plastids (Fu et al. 1998; Ballicora
et al. 2000; Geigenberger, Kolbe & Tiessen 2005; Geigen-
berger 2011). AGPase is rapidly activated upon illumina-
tion by reduction of an intermolecular disulfide bond
between the Cys residues joining the two small subunits
(APS1) of this heterotetrameric enzyme (Hendriks et al.
2003; Kolbe et al. 2005). Using transgenic Arabidopsis
plants expressing a mutated AGPase where the regulatory
Cys-81 of APS1 has been replaced by Ser, genetic evi-
dence has been provided that redox regulation of AGPase
contributes significantly to photosynthetic starch turnover
during the light/dark cycle in leaves (Hädrich et al. 2012).
In addition to light, redox activation of AGPase is also
promoted by sugars, in illuminated as well as darkened
leaves and in non-photosynthetic tissues (Tiessen et al.
2002; Hendriks et al. 2003; Kolbe et al. 2005). In recent pro-
teomic studies, a large number of further potential Trx
targets have been identified, distributed in various meta-
bolic processes, different cellular organelles and diverse
tissues (Montrichard et al. 2009). Although these targets
still have to be confirmed at the biochemical level, this
suggests that Trxs have a more general role in metabolic
regulation than initially expected.
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The Arabidopsis genome contains a family of Trxs, includ-
ing 20 different isoforms grouped in seven types (Meyer,
Reichheld & Vignols 2005; Lemaire et al. 2007; Arsova et al.
2010). Trxs f, m, x, y and z are located in the chloroplast, Trx
o in mitochondria and Trx h in the cytosol and mitochon-
dria. The chloroplast Trxs can be further subdivided into
two f-type (Trxs f1, 2), four m-type (Trxs m1-4), one x-type
(Trx x), two y-type (Trx y1-2) and one z-type (Trx z) iso-
forms. In vitro studies using purified proteins show that
Trx f and m regulate various enzymes mainly involved in
primary metabolism, while x-, y- and z-types serve as reduc-
ing substrates for antioxidant enzymes such as peroxiredox-
ins, indicating their role in oxidative stress responses (Collin
et al. 2003, 2004; Chibani et al. 2011). However, little is
known about the in vivo importance and specificity of these
different Trxs isoforms in planta. Studies of Arabidopsis
knockout mutants revealed a role of Trx m3 in meristem
development (Benitez-Alfonso et al. 2009) and of Trx z in
chloroplast gene expression and development (Arsova et al.
2010). Intriguingly, reverse genetic studies on the roles
of f- and m-type Trxs in primary metabolism are largely
lacking.

In addition to these classical Trx forms which are freely
linked to photoreduced Fdx, plants contain an unusual
plastid-localized NADP-thioredoxin reductase c (NTRC)
containing both an NADP-thioredoxin reductase (NTR)
and a Trx domain on a single polypeptide (Serrato et al.
2004). This bimodular enzyme conjugates both NTR
and Trx activities to efficiently regulate chloroplast target
enzymes such as 2-Cys peroxiredoxins (Pérez-Ruiz et al.
2006) or AGPase (Michalska et al. 2009) using NADPH as
reducing power. Consistently, NTRC has been found to play
a role in both detoxification of hydrogen peroxide (Pérez-
Ruiz et al. 2006) and regulation of starch synthesis (Michal-
ska et al. 2009). However, the relative importance of free
Trxs, compared to NTRC in regulating these processes has
not been fully investigated yet.

In this report, the role of Trx f in regulating AGPase and
starch synthesis has been investigated by using both bio-
chemical and genetic approaches. Analyses of Arabidopsis
knockout mutants show that a decrease in Trx f leads to a
decrease in redox activation of AGPase and starch accu-
mulation in the light, while sucrose-dependent redox acti-
vation of AGPase in the dark remains unaffected.
Metabolite profiling by gas chromatography–mass spec-
trometry (GC–MS) was used to pinpoint more global
metabolic changes in response to a decrease in Trx f level.
Results provide direct biochemical and genetic evidence
for the role played by Trx f in regulating photosynthetic
carbon partitioning in plants.

MATERIALS AND METHODS

Plant material and growth conditions

Two Arabidopsis thaliana trx f1 T-DNA insertion lines
(trx f1.1, SALK_128365 and trx f1.2, SALK_063799;
Alonso et al. 2003) and their in parallel segregated

respective wild types (WT.1 and WT.2) were grown on
potting soil (Stender, Germany) in a growing chamber with
an 8 h day of 160 mmol photons m-2 s-1, 20 °C/ 16 °C, and
60%/75% humidity (day/night). Every experiment was
done with 5-week-old plants. Harvested leaves (fully
expanded, not shaded) were put directly into liquid nitro-
gen, and stored at -80 °C until use. For extractions, the
leaves were pulverized with liquid nitrogen to a fine powder
using a mixer mill (MM 400, Retsch GmbH, Haan,
Germany).

In vitro assays with purified
recombinant proteins

In vitro assays with purified recombinant APS1, Trxs and
NTRC proteins were performed as previously described
in Michalska et al. (2009). The proteins were assayed at
10 mM concentrations in buffer solution containing 50 mM
HEPES (pH 7.8), 3 mM MgCl2, 1 mM ATP, and 1 mM
3-phosphoglycerate (3-PGA) for the time intervals indi-
cated in the figures. Purified recombinant APS1 (Michalska
et al. 2009), NTRC (Pérez-Ruiz et al. 2006) and Trxs f1, m1,
x and y1 proteins (Collin et al. 2003, 2004) were produced as
previously described. In the assays with Trxs, 0.5 mM dithio-
threitol (DTT) was included. In the assays with NTRC,
DTT was replaced by 300 mM NADPH.

Molecular characterization of the
knockout lines

Transcripts levels were estimated by semi-quantitative
RT-PCR experiments using gene-specific primer pairs:
ACGACGACGTTGTGTTTCTAAAG and CTTCCTT
GACAACCTTGTTATCC for Trx f1 (At3g02730), AGC
TATCGGAGAAGTACCAGGAC and CTTCAATGGC
TGCAAGTAAGTCT for Trx f2 (At5g16400) and GAT
GCAATCTCTCATTCCGATAG and AGAGCTTGAT
TTGCGAAATACC for PP2A (At1g13320, a constitutively
expressed protein phosphatase) genes. PCR products were
fractionated on agarose gel, and visualized by ethidium
bromide staining. Detection of Trx f in wild-type and
mutant plants was done by Western blot analysis on 50 mg of
leaf soluble proteins using antibodies raised against pea Trx
f (Hodges et al. 1994) recognizing Arabidopsis Trx f1 and
Trx f2 recombinant proteins with comparable efficiencies.

Chlorophyll fluorescence analysis

For the in vivo chlorophyll a fluorescence measure-
ment and the calculation of standard photosynthesis param-
eters of PSII a Dual-PAM fluorometer (Dual-PAM 100,
Walz GmbH, Effeltrich, Germany) was used according to
Pesaresi et al. (2009). Whole plants were dark adapted
for 10 min to determine the dark fluorescence yield (F0).
Then one fully expanded leaf was exposed to a single
red pulse (5000 mmol photons m-2 s-1, 800 ms) to determine
the maximal fluorescence yield (Fm) and the ratio (Fm-F0)/
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Fm = Fv/Fm. The exposure time of the actinic red light
(166 mmol photons m-2 s-1) was 10 min for driving electron
transport. Afterwards, a second pulse was applied to
measure the maximum fluorescence yield under illumina-
tion and the steady-state fluorescence. Values for the effec-
tive PSII (FPSII) and non-photochemical (FNO and FNPQ)
quantum yields were calculated according to Genty, Brian-
tais & Baker (1989) and Kramer et al. (2004). For each
genotype, 5–6 individual plants were measured in indepen-
dent experiments.

Immunoblotting of APS1

The trichloroacetic acid (TCA) extraction of frozen pulver-
ized leaf material and the immunoblotting procedure
for visualization of APS1 monomerization was done as
described by Hendriks et al. (2003). Signal intensities
were analysed by the free software ImageJ version 1.45d
(http://rsbweb.nih.gov/ij/).

Starch and sucrose measurements

The determination of starch and sucrose was done accord-
ing to Hendriks et al. (2003). Twenty milligrams of pulver-
ized leaf material was extracted three times with 250 mL
ethanol (twice with 80% EtOH, once with 50% EtOH).
After the addition of the first 250 mL ethanol, the samples
were heated for 30 min at 90 °C. The supernatants were
collected in separate tubes, and the next extraction volume
was added to the pellets for repeating the procedure. The
combined supernatants of the ethanol extracts were used
for the enzymatical sucrose determination described by
Jones, Outlaw & Lowry (1977). 30–50 mL sample was mixed
with 200 mL 50 mM HEPES/KOH (pH 7), 5 mM MgCl2,
0.8 mM NADP, 1.7 mM ATP and G6PDH (0.7 U mL-1).
While the stepwise addition of 2 mL hexokinase (HK)
(250 U mL-1), 2 mL PGI (580 U mL-1) and 4 mL Invertase
(33 280 U mL-1) the NADPH production was determined
photometrically at 340 nm. For starch determination, the
pellets of the ethanol extraction were dried at 30 °C for
40 min with a vacuum concentrator (Concentrator Plus,
Eppendorf AG, Hamburg, Germany), resuspended in
400 mL 0.1 M NaOH, incubated at 95 °C with 1400 rpm
shaking for 1 h (Thermomixer comfort, Eppendorf AG)
and neutralized with a HCL/sodium-acetate mixture (0.5 M
HCl + 0.1 M acetate/NaOH, pH 4.9). 40 mL of the superna-
tant was digested overnight at 37 °C with 110 mL amyloglu-
cosidase (3 U mL-1), a-amylase (4 U mL-1) and 50 mM
acetate/NaOH (pH 4.9). 30–50 mL of the digested superna-
tant was mixed with 160 mL 0.1 M HEPES/3 mM MgCl2

(pH 7), 3 mM ATP, 1.4 mM NADP and G6PDH
(3.4 U mL-1).To assess the glucose content photometrically,
1 mL HK (450 U mL-1) was added. The determination of
NADPH at 340 nm was done with the Anthos reader HT-3
(Anthos Mikrosysteme GmbH, Krefeld, Germany). Every
individual plant sample was measured with at least two
analytical replicates.

Measurement of hexose-phosphates,
triose-phosphates and 3-PGA

The extraction of harvested leaves and the measurement of
hexose-phosphates, triose-phosphates and 3-PGA were
done as described by Häusler, Fischer & Flügge (2000) with
following modifications. Fifty milligrams of frozen pulver-
ized leaf material was extracted with 0.7 mL 1 M ice-cooled
perchloric acid and incubated on ice for 15 min. The pH of
the supernatant was modified to 6–7 with 5 M K2CO3, and
after removal of the precipitated KClO4, 8–10 mg activated
charcoal was added. The levels of hexose-phosphates and
triose-phosphates were measured enzymatically (reactions
of NAD(P)H formation) via NAD(P)H fluorescence using
the Safire2 microplate reader (Tecan GmbH, Crailsheim,
Germany) and the Magellan software version 6.2 (Tecan
GmbH). The 3-PGA levels were also measured enzymati-
cally, but in the absorption measuring mode at 340 nm using
the Anthos reader HT-3 (Anthos Mikrosysteme GmbH).
Every individual plant sample was measured with at least
two analytical replicates.

GC–MS analysis of polar primary compounds

For each genotype, 50 mg of frozen pulverized plant mate-
rial, harvested at the end of day (8 h light), was extracted
with 360 mL of pre-cooled (-20 °C) methanol (containing
50 mg mL-1 ribitol, Sigma, St Louis, MO, USA), 200 mL
CHCl3 and 400 mL H2O.All solvents used for extraction and
the GC–MS system were of MS quality (Carl Roth GmbH,
Karlsruhe, Germany). Essentially, the preparation of the
polar fraction was performed as described previously by
Erban et al. (2007). For methoxyamination 10 mL of meth-
oxyamine hydrochloride (dissolved at 20 mg mL-1 in pyri-
dine, Sigma) was added to a dried 20 mL aliquot of the
hydrophilic fraction and agitated for 90 min at 40 °C.
Subsequently, the persilylation mixture containing 15 mL
BSTFA (Supelco) and 5 mL retention index standard
[n-alkanes (Sigma): 0.5 mg mL-1 C10; 0.5 mg mL-1 C12;
1.0 mg mL-1 C15; 1.5 mg mL-1 C19; 1.5 mg mL-1 C22;
1.2 g mL-1 C28; 4.0 mg mL-1 C32] was included in the deriva-
tization process followed by an additional 45 min agitation
interval at the previous temperature. The instrumental gas
chromatography time-of-flight mass spectrometry (GC-
TOF-MS) profiling analysis was basically performed as
reported in the literature (Erban et al. 2007) using a VF-5
ms column (30 ¥ 0.25 (0.25) + 10 m guard column, Agilent
Technologies, Palo Alto, CA, USA) and a lower final oven
temperature (320 °C) due to column specifications. The
analysing GC–MS system (Pegasus HT, Leco Instrumente,
Mönchengladbach, Germany; 7890A, Agilent Techno-
logies) was equipped with a multipurpose sampler (MPS,
Gerstel, Linthicum, MD, USA) and a cooled GC inlet
(starting temperature 68 °C, ramp rate 12 °C s-1, end tem-
perature 275 °C; Cis4, Gerstel). A sample volume of 1 mL
was injected in split less mode. Automated data pre-
processing and annotation of peak identity was carried out
by using the TagFinder, including the spectra and retention
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time index collection of the Golm Metabolome Database
(Luedemann et al. 2008; Hummel et al. 2010) as well as
the vendor software (ChromaTOF, Leco Instrumente). The
process was manually supervised. The baseline correction
was 0.5 and spectra conversion and threshold signal to noise
was set to 50. Quantitative analysis of cluster intensities was
automatically performed using the ProfileBuilder algorithm
implemented in the TagFinder.Tag intensities were normal-
ized to the maximum sample value and averaged over the
whole cluster. For the internal standardization of variations,
peak heights of mass (m/z) fragments were normalized
using the amount of ribitol as internal standard. Values of
genotypes were averaged (three biological replicates with
three analytical replicates for each individual plant mate-
rial) to calculate fold changes (mutant to WT).

Light incubation of isolated chloroplasts

Chloroplasts from Arabidopsis leaves were purified and
incubated as described by Seigneurin-Berny et al. (2008)
with following modifications. Ten-gram leaves of pooled
rosettes, harvested after an extended night of 20 h, were
homogenized by three bursts of 2–3 s each at high speed
(Waring blendor, Snijders Scientific, Tilburg, the Nether-
lands) in 100 mL of cold homogenization buffer [0.4 M
sorbitol, 20 mM tricine/KOH pH 8.4, 10 mM ethylen-
ediaminetetraacetic acid (EDTA) pH 8.0, 10 mM NaHCO3,
0.15% bovine serum albumin].The homogenate was rapidly
filtered through two layers of miracloth and centrifuged for
6 min at 500 g (Eppendorf Centrifuge 5810R). To the pellet
0.4 mL 1x resuspension buffer (0.4 M sorbitol, 20 mM
HEPES/KOH pH 7.6, 2.5 mM EDTA, 5 mM MgCl2, 10 mM
NaHCO3, 0.15% bovine serum albumin) was added. Percoll
gradients with resuspended crude chloroplasts were centri-
fuged at 3200 g for 20 min with diminished acceleration and
the brake off. Percoll gradients were performed by mixing
different volumes of cold Percoll (Sigma-Aldrich) and cold
5x resuspension buffer followed by depositing one layer
(80% Percoll) below the other (40% Percoll). Diluted intact
chloroplasts were centrifuged for 2 min at 3200 g including
deceleration and afterwards solubilized in 1 mL reaction
medium (0.4 M sorbitol, 20 mM HEPES/KOH pH 7.6,
2.5 mM EDTA, 0.5 mM MgCl2, 10 mM NaHCO3, 0.15%
bovine serum albumin, 300 U mL-1 catalase, 100 mM
KH2PO4, 500 mM PGA). Chloroplasts of both genotypes
were illuminated in parallel at 18 °C for 0, 1, 3 and 5 min
using the beam of a slide projector. Intactness of chloro-
plasts, chlorophyll content and APS1 monomerization was
determined as previously described by Hendriks et al.
(2003). Signal intensities of the APS1 immunodetection
were analysed by the free software ImageJ version 1.45d.
Every replicate of both genotypes represents one indepen-
dent illumination experiment from different plant set ups.

Sucrose feeding of leaves in the dark

Leaves sampled at the end of the night were put directly
into liquid nitrogen (t0) or infiltrated with 100 mM sucrose

or sorbitol in 2 mM 2-(N-morpholino) ethane sulfonic acid
(MES) buffer (pH 6.5) by applying a vacuum of -200 mbar
for 1 min and subsequent incubation in the same solution
for further 5 h in the dark at room temperature and with
moderate shaking. After the incubation, the leaves were
shortly dried with a tissue and then quickly frozen with
liquid nitrogen. Every replicate for the t0, sorbitol or sucrose
samples included three fully expanded leaves of three inde-
pendent plant individuals. The APS1 immunodetection and
quantification was done as described above.

Statistical analysis

The statistical data analyses were done with Microsoft
Office Excel 2007 (t-test) and SYSTAT SigmaPlot 11 [two-
way analysis of variance (anova), Tukey test].

RESULTS

Trx f1 has a higher efficiency to monomerize
the small subunit of AGPase compared to Trxs
m1, x and y1 in vitro

Thioredoxins comprise a small gene family in plants
(Lemaire et al. 2007). To investigate the efficiency of differ-
ent plastidial Trxs to redox-activate AGPase, 10 mM of puri-
fied recombinant Trxs f1, m1, x and y1 from Arabidopsis
were incubated for different time intervals with purified
recombinant AGPase small subunit (APS1) in the presence
of 0.5 mM DTT. Redox activation of APS1 was monitored
in non-reducing sodium dodecyl sulphate (SDS) gels, where
the oxidized less-active form of APS1 migrates as a 100 kDa
dimer that, upon reduction, gets activated and converted to
a 50 kDa monomer. Figure 1a shows that the purified Trxs
converted APS1 from dimer to monomer with different
efficiencies. Trx f1 showed the highest efficiency, with 50%
monomerization of APS1 being achieved after (t0.5) 7 min of
incubation, followed by Trx m1 with a t0.5 value of 9 min. In
comparison, Trxs x and y1 were rather inefficient, yielding
only 22 and 30% monomerization of APS1 after 30 min,
respectively. In control incubations containing 0.5 mM DTT
without Trxs, APS1 remained a dimer. In the same experi-
ment, purified recombinant NTRC (10 mM) was incubated
with APS1 in the presence of 300 mM NADPH, for com-
parison. The t0.5 value obtained for NTRC (8 min) was
similar to Trx f1 (Fig. 1b).

Arabidopsis knockout mutants defective in Trx
f1 show a strong decrease in Trx f protein
levels in leaves, with no effect on
photosynthetic parameters and growth

The in vitro results described above suggest Trx f1 to be the
most efficient Trx isoform in activating AGPase. To test its
functional significance in vivo, we characterized the meta-
bolic phenotype of two Arabidopsis trx f1 T-DNA Insertion
lines (trx f1.1, SALK_128365 and trx f1.2, SALK_063799;
see Fig. 2a) in comparison with their isogenic respective
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wild types (WT.1 and WT.2) segregated from their parent
heterozygous plants. In both lines, mRNA expression levels
of Trx f1 were strongly decreased to detection limit
(Fig. 2b), while the levels of the other plastidial Trxs, includ-
ing Trx f2, were not significantly altered (data not shown).
Trx f protein levels were analysed by Western blots
and were found to be drastically decreased down to

approximately 4% of wild-type level in both mutant lines
(after scanning and correction for background), indicating
that in Arabidopsis leaves Trx f1 protein corresponds to the
major form (approximately 96%) of f-type Trx (Fig. 2c).

Despite the strong decrease in Trx f protein level, in
optimal growth conditions, there was no visible effect on the
phenotype of the trx f1.1 and trx f1.2 mutant lines (data not
shown). To investigate a possible effect on photosynthetic
parameters, chlorophyll fluorescence was measured by
pulse-amplitude modulation (PAM) fluorimetry in leaves of
the two knockout lines, compared to wild type (Fig. 3a,b).
As revealed by light dependencies of photosynthesis, there
were no changes in maximal (Fv/Fm) and effective quantum
yield of PS II (FPSII), indicating that the lack of Trx f1
affected neither PS II functionality nor photosynthetic
electron transport rates. In addition, quantum yields of
regulated (FNPQ) and non-regulated (FNO) energy dissipa-
tion remained unaltered by the mutation. This shows that

Figure 1. Efficiencies of different thioredoxin (Trx) isoforms (a)
and NADP-thioredoxin reductase c (NTRC) (b) to reduce APS1
in vitro. 10 mM recombinant purified Trxs f1, m1, x or y1 or
NTRC proteins were incubated together with 10 mM APS1
protein for different time intervals, before reduction of APS1 was
determined as percent monomerization in non-reducing sodium
dodecyl sulphate (SDS) gels. Incubation with Trxs was performed
in assays including 0.5 mM DTT, while in incubations with
NTRC, DTT was replaced by 300 mM NADPH. In control
incubations, 0.5 mM DTT was included without Trx. Results are
means � SE, n = 3. Trxd, Trx domain of NTRC.

Figure 2. Molecular characterization of the Trx f1 knockout
lines. (a) Schematic representation of the trx f1 locus. The
intron-exon structure of the trx f1 gene and sizes (in base pairs)
are shown. T-DNA insertion site in trx f1.1 and trx f1.2 mutants is
positioned by a flag. (b) Comparison of Trx f transcripts in trx
f1.1 and trx f1.2 mutants and isogenic wild-type WT.2 plants.
Transcript levels of Trx f1, Trx f2 and PP2A (constitutively
expressed gene) were analysed by semi-quantitative PCR. (c)
Detection of Trx f proteins in isogenic wild-type and in mutant
plants. Western blot analysis of leaf proteins along with varying
amounts of Arabidopsis Trx f1 and Trx f2 purified proteins was
made using antibodies raised against pea Trx f (Hodges et al.
1994). High-molecular weight non-specific signals (thin arrows on
the right side) always observed when using these antibodies on
Arabidopsis leaf extracts allowed verification of a constant
protein loading between lanes. The signal corresponding to
Arabidopsis Trx f protein(s) is indicated on the left by a thick
arrow.
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knocking out Trx f1 did not affect photosynthetic
parameters.

Knockout of Trx f1 leads to decreased redox
activation of AGPase in leaves during the day

To investigate the physiological relevance of the redox acti-
vation of AGPase by Trx f1 demonstrated in vitro, leaves of

trx f1.1 (Fig. 4a) and trx f1.2 (Fig. 4b) mutant lines and their
segregating wild types were sampled at different time
points during the diurnal cycle to analyse the reduction
state of the regulatory small subunit dimer of the enzyme by
non-reducing sodium dodecyl sulphate–polyacrylamide gel
electrophoresis (SDS–PAGE). As shown in Fig. 4, leaves of
wild-type plants reveal a strong increase in the monomer-
ization of APS1 during the day, while APS1 was almost
completely dimerized in the dark, confirming results from
earlier studies (see Hendriks et al. 2003). Compared to the
segregating wild types, both Trx f1 knockout lines showed a
similar dimerization degree of APS1 in the dark, while the
conversion of APS1 dimer to monomer in response to light
was clearly delayed and reached only about 50% of wild-
type APS1 monomerization at the end of the day (Fig. 4;
Supporting Information Table S1).

Knockout of Trx f1 leads to a decrease in the
starch-to-sucrose ratio in leaves during the day

The above results demonstrate that knockout of Trx f1
dampens diurnal changes in redox activation of AGPase in
leaves.To investigate whether this leads to changes in starch
metabolism, we analysed diurnal changes in leaf starch and
sucrose content. In the wild type, starch levels increased
towards the middle and the end of the day by a factor of
3–10 (Fig. 5a,d), while sucrose increased already after 1 h in
the light (1.5–2-fold) and stayed at a high and constant level
until the end of the day (Fig. 5b,e). Compared to wild type,
both Trx f1 knockout lines (trx f1.1 and trx f1.2) showed a
significant decrease in starch accumulation by up to 22%

Figure 3. PAM measurements in Arabidopsis leaves of the Trx
f1 knockout lines trx f1.1 (a) and trx f1.2 (b) compared to the
respective wild types. The plants were dark adapted for 10 min,
before exposure to a red-light saturation pulse (5000 mmol m-2 s-1

for 0.8 s) of single leaves. Afterwards the maximal chlorophyll a
fluorescence was quenched by electron transport with an actinic
red light of 166 mmol photons m-2 s-1. Within 10 min, the steady
state was reached and another saturation pulse was given. In the
end, the maximal PSII (Fv/Fm), the effective PSII (FPSII), the
non-regulated energy dissipation (FNO) and the regulated energy
dissipation (FNPQ) quantum yields were calculated. Results are
means � SE, n = 15 for line trx f1.1 and n = 6 for line trx f1.2.

Figure 4. Diurnal changes in APS1 monomerization in
Arabidopsis leaves of the Trx f1 knockout lines trx f1.1 (a) and
trx f1.2 (b) compared to the respective wild types. Leaf samples
were taken at different time points during the diurnal cycle,
extracted with 16% TCA in diethylether, separated on a
non-reducing 10% sodium dodecyl sulphate–polyacrylamide gel
electrophoresis (SDS-PAGE) gel and then immuno-decorated by
specific APS1 antibodies. The horizontal bars represent the dark
(black) and light (white) periods at given time points.
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towards the end of the day, while there were significant
decreases in only one of the two mutant lines at the end of
the night and 1 h into the light period (Fig. 5a,d). In contrast
to this, sucrose levels increased up to 22% throughout the
day, which was significant for all time points in the light in
trx f1.1 (using the two-way anova test) and only for the 4 h
light time point in the trx f1.2 mutant (using, both, t-test and
two-way anova test; Fig. 5b,e). During the diurnal time
course, the starch/sucrose ratio decreased in both Trx
knockout lines by a factor of up to 1.7, compared to their
respective isogenic wild type (Fig. 5c,f, significant for all
time points, except 4 h light in trxf1.1 and end of night in
trxf1.2). This shows that knockout of Trx f1 alters the ratio
between sucrose and starch in favour of sucrose.

Effect of Trx f1 knockout on leaf
metabolite levels

To investigate whether knockout of Trx f1 leads to changes
in metabolite levels involved in the pathways of sucrose and
starch metabolism, levels of hexose-phosphates and triose-
phosphates were analysed in both mutant lines compared to
isogenic wild types (Table 1). In leaves sampled at the end

of the day, Trx f1 knockout did not affect the levels of
hexose-phosphates, while triose-phosphates such as
glyceraldehyde phosphate and dihydroxyacetone phos-
phate (DHAP) were slightly increased, indicating that the
inhibition of starch synthesis is unlikely due to a shortage of
substrates. This contrasts with the situation at the end of
the night, where Trx f1 knockout led to a decrease in
hexose-phosphate and triose-phosphate levels, indicative of
a shortage of nocturnal carbon supply by starch degrada-
tion (significant for fructose-6-phosphate and DHAP in
trxf1.1). We also analysed the level of 3-PGA, which is an
exquisite allosteric effector of AGPase (Preiss 1988). There
were no changes in 3-PGA levels between wild type and
mutants, indicating that inhibition of AGPase is unlikely
due to changes in the levels of its allosteric effectors (see
also below).

Metabolite profiling by GC-TOF MS was employed to
investigate whether there are more global effects of a lack
of Trx f1 on metabolism. Table 2 shows changes in leaf
metabolite levels at the end of the day in both mutant lines
relative to the wild type. Only eight metabolites were pin-
pointed to be significantly different from the wild type in
both mutant lines: fructose, ribose, trehalose and shikimate

Figure 5. Diurnal changes of starch (a and e), sucrose (b and e) and starch/sucrose ratio (c and f) in Arabidopsis leaves of Trx f1
knockout lines trx f1.1 (a-c) and trx f1.2 (e-f) compared to the respective wild types. Leaf samples were taken at different time points
during the diurnal cycle and extracted to measure the levels of sucrose and starch. Results are means � SE, n = 4. *P � 0.05, **P � 0.01,
***P � 0.001 (student t-test); a: P � 0.05, b: P � 0.01, c: P � 0.001 [two-way analysis of variance (anova), Tukey test]. The horizontal bars
represent the dark (black) and light (white) periods at given time points.
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were found to be increased, while citrate, 2-methyl-malate,
glycerate and ethanolamine were decreased. The follow-
ing metabolites also showed changes relative to the wild
type, but were significantly different only in one of the
two mutant lines. Glucose, galactose, rhamnose, xylose,
phosphoenolpyruvate, threonate, trans-3-caffeoyl-quinate,
2-oxo-gulonate, 4-aminobutanoate, asparagine, isoleucine
and proline were increased, while 2-oxo-glutarate, fuma-
rate, malate, succinate and maltitol were decreased.

Knockout of Trx f1 inhibits light activation of
AGPase in isolated chloroplasts, while having
no effect on sucrose-induced redox activation
of AGPase in leaves in the dark

Earlier studies showed that AGPase can be redox activated
by both light and sucrose-dependent signals (Hendriks et al.
2003; Kolbe et al. 2005). To investigate whether Trx f1 is
involved in light-dependent reduction of AGPase, we analy-
sed the responses in isolated chloroplasts that were tran-
siently illuminated for 1, 3 and 5 min. In the wild type,
monomerization of APS1 was low in the dark and increased
significantly by up to sixfold after 3 and 5 min of illumina-
tion (Fig. 6a), confirming earlier studies (Hendriks et al.
2003). This effect was strongly attenuated in the Trx f1
knockout line, reaching only a slight and non-significant
increase in APS1 monomerization after 5 min of illumina-
tion (Fig. 6a), indicating a major role played by Trx f1 in the
light activation of AGPase.

To investigate whether Trx f1 is involved in sucrose-
dependent redox activation of AGPase, mutant and wild-
type leaves were harvested at the end of the night and
infiltrated either with 100 mM sucrose or sorbitol as
control in the dark. In confirmation to earlier studies,
sucrose supply led to a significant sevenfold increase in
the monomerization of APS1 in the wild type (Fig. 6b;
Supporting Information Fig. S1). A similar increase was
observed in the mutant, indicating that Trx f1 plays no
substantial role in the nocturnal reduction of AGPase in
response to sugars.

DISCUSSION

Starch is the major storage carbohydrate in higher plants. It
has been identified as an important integrator in the regu-
lation of plant growth to cope with continual changes in
carbon availability in response to environmental alterations
in light, day length, temperature, water supply and CO2

concentrations affecting photosynthesis (Sulpice et al.
2009). In photosynthesizing leaves, starch accumulates
during the day and is remobilized at night to support con-
tinued sucrose export and growth in the dark (Caspar,
Huber & Somerville 1986; Geiger & Servaites 1994; Weise,
van Wijk & Sharkey 2011). This requires a tight regulation
of the pathways of starch synthesis and degradation in
response to light as environmental and sucrose as internal
stimuli (Kötting et al. 2010; Geigenberger 2011). In thisTa
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Table 2. Changes in Arabidopsis leaf metabolite levels at the end of the day (8 h light) in both Trx f1 knockout lines (trx f1.1 and trx
f1.2) relative to the respective wild types. Metabolite profiling was performed using GC-TOF-MS analysis. Results are means � SD
(n = 9). Values that are significantly different from the wild type according to the student t-test are indicated in bold (P value � 0.05)

Metabolites WT.1 trx f1.1 P value WT.2 trx f1.2 P value

Sugars
Fructose 1.00 � 0.16 2.11 � 0.93 0.007 1.00 � 0.24 2.10 � 0.74 0.001
Fucose 1.00 � 0.14 1.03 � 0.16 0.709 1.00 � 0.31 1.07 � 0.34 0.654
Galactose 1.00 � 0.08 1.16 � 0.20 0.047 1.00 � 0.09 1.02 � 0.14 0.712
Glucose 1.00 � 0.09 1.58 � 0.68 0.033 1.00 � 0.18 0.91 � 0.16 0.285
Isomaltose 1.00 � 0.58 0.83 � 0.58 0.549 1.00 � 0.92 0.90 � 0.82 0.801
Maltose 1.00 � 0.16 1.05 � 0.11 0.484 1.00 � 0.16 0.95 � 0.27 0.613
Mannose 1.00 � 0.18 1.17 � 0.30 0.149 1.00 � 0.16 1.14 � 0.15 0.077
Psicose 1.00 � 0.05 1.06 � 0.08 0.077 1.00 � 0.10 1.03 � 0.11 0.519
Raffinose 1.00 � 0.43 1.16 � 0.30 0.365 1.00 � 0.57 0.76 � 0.43 0.342
Rhamnose 1.00 � 0.16 1.35 � 0.27 0.004 1.00 � 0.37 1.04 � 0.32 0.807
Ribose 1.00 � 0.11 1.12 � 0.07 0.016 1.00 � 0.06 1.13 � 0.08 0.002
Trehalose 1.00 � 0.12 1.14 � 0.14 0.043 1.00 � 0.13 1.41 � 0.36 0.010
Xylose 1.00 � 0.17 1.29 � 0.11 <0.001 1.00 � 0.06 0.94 � 0.10 0.128

Phosphate ester
Fructose-6-phosphate 1.00 � 0.28 1.21 � 0.44 0.246 1.00 � 0.91 0.99 � 0.96 0.978
Glucose-6-phosphate 1.00 � 0.30 1.08 � 0.42 0.659 1.00 � 0.72 0.96 � 0.86 0.913
Glycerol-3-phosphate 1.00 � 0.20 1.10 � 0.31 0.438 1.00 � 0.26 0.94 � 0.37 0.689
Phosphoenolpyruvate 1.00 � 0.14 1.28 � 0.27 0.015 1.00 � 0.36 1.00 � 0.40 0.988

Organic acids
Aconitate 1.00 � 0.09 1.15 � 0.20 0.058 1.00 � 0.40 0.93 � 0.27 0.648
Benzoate 1.00 � 0.20 0.95 � 0.22 0.618 1.00 � 0.18 0.94 � 0.17 0.468
Caffeate (cis) 1.00 � 0.30 1.18 � 0.27 0.198 1.00 � 0.24 1.22 � 0.47 0.237
3-caffeoyl-quinate (cis) 1.00 � 0.18 1.17 � 0.22 0.102 1.00 � 0.19 1.15 � 0.33 0.242
3-caffeoyl-quinate (trans) 1.00 � 0.17 1.30 � 0.32 0.023 1.00 � 0.42 1.21 � 0.45 0.314
Citrate 1.00 � 0.11 0.77 � 0.14 0.002 1.00 � 0.18 0.53 � 0.19 <0.001
Fumarate 1.00 � 0.08 1.11 � 0.15 0.072 1.00 � 0.12 0.79 � 0.13 0.002
Galactonate 1.00 � 0.21 1.14 � 0.12 0.096 1.00 � 0.14 1.01 � 0.15 0.920
Glycerate 1.00 � 0.02 0.55 � 0.06 <0.001 1.00 � 0.13 0.73 � 0.12 <0.001
Gulonate 1.00 � 0.15 1.18 � 0.35 0.207 1.00 � 0.43 0.83 � 0.07 0.384
Malate 1.00 � 0.08 1.01 � 0.12 0.818 1.00 � 0.04 0.80 � 0.13 0.002
Maleate 1.00 � 0.30 1.01 � 0.34 0.946 1.00 � 0.56 0.84 � 0.51 0.537
2-methyl-malate 1.00 � 0.09 0.89 � 0.10 0.026 1.00 � 0.06 0.87 � 0.13 0.016
2-oxo-glutarate 1.00 � 0.24 1.09 � 0.30 0.516 1.00 � 0.14 0.73 � 0.15 0.001
2-oxo-gulonate 1.00 � 0.19 1.23 � 0.25 0.045 1.00 � 0.18 0.90 � 0.12 0.183
Pyruvate 1.00 � 0.18 0.89 � 0.13 0.155 1.00 � 0.12 0.99 � 0.09 0.913
Quinate 1.00 � 0.45 1.01 � 0.46 0.969 1.00 � 0.69 0.73 � 0.20 0.294
Shikimate 1.00 � 0.18 1.39 � 0.06 <0.001 1.00 � 0.10 1.13 � 0.13 0.029
Succinate 1.00 � 0.08 0.99 � 0.12 0.821 1.00 � 0.18 0.73 � 0.10 0.001
Sinapate (cis) 1.00 � 0.14 0.91 � 0.21 0.322 1.00 � 0.52 0.77 � 0.42 0.334
Sinapate (trans) 1.00 � 0.16 0.79 � 0.26 0.074 1.00 � 0.57 0.73 � 0.48 0.327
Threonate 1.00 � 0.05 1.13 � 0.13 0.021 1.00 � 0.30 0.91 � 0.17 0.436

Amino acids
Alanine 1.00 � 0.32 1.05 � 0.20 0.706 1.00 � 0.41 1.12 � 0.33 0.522
b-alanine 1.00 � 0.39 1.30 � 0.34 0.097 1.00 � 0.38 1.09 � 0.29 0.563
Aspartate 1.00 � 0.87 1.22 � 0.57 0.535 1.00 � 0.57 0.63 � 0.28 0.101
Asparagine 1.00 � 0.15 1.25 � 0.25 0.021 1.00 � 0.29 0.92 � 0.33 0.597
Glycine 1.00 � 0.22 2.38 � 0.28 <0.001 1.00 � 0.13 0.81 � 0.16 0.014
4-hydroxy-proline (cis) 1.00 � 0.19 1.01 � 0.18 0.936 1.00 � 0.15 1.14 � 0.42 0.378
4-hydroxy-proline (trans) 1.00 � 0.13 1.13 � 0.27 0.224 1.00 � 0.17 0.98 � 0.24 0.873
Methionine 1.00 � 0.72 0.93 � 0.45 0.805 1.00 � 1.01 0.50 � 0.26 0.212
Isoleucine 1.00 � 0.48 1.46 � 0.37 0.035 1.00 � 0.61 1.34 � 0.75 0.311
Proline 1.00 � 0.70 2.04 � 0.86 0.012 1.00 � 0.70 0.68 � 0.36 0.263
Pyroglutamate 1.00 � 0.45 1.98 � 1.28 0.071 1.00 � 0.70 1.22 � 0.83 0.554
Serine 1.00 � 0.52 0.84 � 0.43 0.505 1.00 � 0.45 0.81 � 0.45 0.398
Threonine 1.00 � 0.45 1.48 � 0.85 0.157 1.00 � 0.53 0.80 � 0.44 0.418
Valine 1.00 � 0.32 1.28 � 0.26 0.055 1.00 � 0.49 1.19 � 0.41 0.404

Sugar alcohols
Erythritol 1.00 � 0.25 0.90 � 0.24 0.397 1.00 � 0.28 0.89 � 0.24 0.391
Glycerol 1.00 � 0.06 0.88 � 0.19 0.118 1.00 � 0.11 0.92 � 0.13 0.207
Mannitol 1.00 � 0.23 1.05 � 0.38 0.757 1.00 � 0.20 0.91 � 0.28 0.516
Maltitol 1.00 � 0.50 0.98 � 0.62 0.945 1.00 � 0.50 0.50 � 0.23 0.021
Sorbitol 1.00 � 0.18 1.12 � 0.29 0.341 1.00 � 0.22 1.26 � 0.35 0.128

Others
4-amino-butanoate 1.00 � 0.10 1.30 � 0.19 0.001 1.00 � 0.15 0.88 � 0.22 0.215
Ascorbate 1.00 � 0.62 2.54 � 1.98 0.051 1.00 � 1.08 0.42 � 0.12 0.146
Dehydroascorbate 1.00 � 0.47 1.01 � 0.49 0.962 1.00 � 0.76 0.69 � 0.20 0.271
Ethanolamine 1.00 � 0.65 0.38 � 0.09 0.020 1.00 � 0.52 0.38 � 0.09 0.007
Phosphate 1.00 � 0.20 1.01 � 0.20 0.943 1.00 � 0.27 0.91 � 0.23 0.459
Putrescine 1.00 � 0.82 1.06 � 1.05 0.889 1.00 � 0.78 1.01 � 0.72 0.977
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work, the role of Trx f in redox activation of the key enzyme
of starch synthesis,AGPase, was analysed using biochemical
and genetic approaches. Results provide in vivo evidence
for the role played by Trx f to redox activate AGPase and
diurnal starch synthesis in leaves in response to light, but
not to sucrose signals.

Genetic evidence for a role of Trx f as light
signal but not as a sucrose signal leading to
redox activation of AGPase

Chloroplasts contain different Trx isoforms as well as
NTRC as an alternate redox system conjugating Trx and
NTR on the same polypeptide (Dietz & Pfannschmidt
2011). Using recombinant purified proteins, we could show
that Trx f1 is redox activating AGPase more efficiently than
other plastidial Trxs, such as Trx m1, x and y1 (Fig. 1a). The
time to achieve 50% reduction of APS1 (t0.5) was 7 min for
Trx f1 and 9 min for Trx m1, indicating that Trx m1 is less
efficient than Trx f1.This confirms previous studies, showing
that Trx m has a twofold lower affinity for AGPase than Trx
f (Ballicora et al. 2000). Trxs x and y1 were much less effi-
cient than Trx f1 and m1, leading only to a 22–30% reduc-
tion of APS1 after 30 min. It is therefore highly unlikely that
Trxs x and y will play a substantial physiological role in the
reduction of AGPase. This confirms previous studies indi-
cating that these types of Trxs serve as reducing substrates
for antioxidant enzymes, rather than enzymes involved in
primary metabolism (Collin et al. 2003, 2004). The t0.5 values
also show that Trx f1 is of similar efficiency as NTRC as a
redox regulator for AGPase (compare Fig. 1a,b). This con-
firms previous studies showing that Trx f (4.6 mM) and
NTRC (2.8 mM) have similar S0.5 values to achieve half-
maximal reduction of AGPase as a substrate (Ballicora
et al. 2000; Michalska et al. 2009).

To test the functional significance of Trx f1 as a redox
regulator of AGPase in vivo, Trx f1 knockout Arabidopsis
plants were analysed showing a strong decrease in Trx f
protein levels (Fig. 2). AGPase has previously been
reported to be activated in response to light and sucrose in
Arabidopsis leaves (Hendriks et al. 2003). In the present
study, Trx f1 knockout led to a strong attenuation of the
light activation of AGPase, both, in isolated chloroplasts
(Fig. 6a) and intact leaves (Fig. 4). In the latter case, light
activation of AGPase was inhibited even in the presence of
elevated internal sugar levels (Fig. 5; Table 2). This shows
that Trx f1 plays an important role as a light signal, provid-
ing reducing equivalents for light-dependent activation of
AGPase in leaves independently of sucrose. In confirmation
to this, Trx f1 knockout did not affect sucrose-dependent
redox activation of AGPase in leaves in the dark, showing
that this type of Trx is unlikely to be involved in the noc-
turnal activation of AGPase by sugars (Fig. 6b; Supporting
Information Fig. S1). Under these conditions, redox is trans-
ferred to AGPase independently of the Fdx/Trx system via
NTRC by using metabolically derived NADPH most likely
from the oxidative pentose phosphate pathway (Michalska

Figure 6. Effect of Trx f1 knockout (line trx f1.1) on
(a) light-dependent redox activation of ADP-glucose
pyrophosphorylase (AGPase) in isolated chloroplasts, and
(b) sucrose-dependent redox activation of AGPase in leaves in
the dark. The conversion of the 100 kDa to the 50 kDa form of
APS1 was analysed using Western blots, which were scanned and
the intensity of the protein bands corrected for background.
(a) Isolated chloroplasts of Arabidopsis leaves were light
incubated for 0, 1, 3 and 5 min. Results are means � SE, n = 4–6
separate experiments with different batches of plants, *:P � 0.05
(paired t-test). Chloroplasts were prepared from leaves harvested
at the end of the night and were kept in the dark during the
preparation procedure. The chloroplast preparations from wild
type and mutant plants were illuminated simultaneously in
parallel incubations. (b) For the sucrose-dependent effect on
APS1 monomerization, Arabidopsis leaves were harvested at the
end of night (t0), and incubated with sucrose or sorbitol
(100 mM) for 5 h in the dark. Results are means � SE, n = 4
separate experiments. The horizontal bars represent dark (black)
and light (white) periods at given time points.
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et al. 2009) or from respiratory processes in mitochondria
(Centeno et al. 2011).

Knockout of Trx f1 led to a 35–70% attenuation of redox
activation of AGPase in leaves during the day, but not
to a complete inhibition (Fig. 4; Supporting Information
Table S1). This indicates compensation by other Trx iso-
forms or NTRC as alternate redox system. NTRC may
complement Trx f1 in light-activation of AGPase by using
photoreduced NADPH, although this has not been clearly
demonstrated yet. Moreover, sugar levels, including sucrose
and trehalose, were increased in the trxf1.1 and trxf1.2
mutants (Fig. 5 and Table 2), which may have led to a
compensatory increase in redox activation of AGPase by
stimulating NTRC (Michalska et al. 2009) or trehalose-6-
phosphate (Tre6P) related pathways (Kolbe et al. 2005).
Both, NTRC and Tre6P have been found to significantly
affect redox regulation of AGPase and starch synthesis in
Arabidopsis leaves (Kolbe et al. 2005; Michalska et al. 2009).
A working model of the different reduction pathways
of AGPase is presented in Fig. 7. More work is required
to investigate how the different reduction pathways of
AGPase are regulated and coordinated.

Trx f1 contributes significantly to regulate
diurnal starch turnover in plants

Knockout of Trx f1 led to a 22% decrease in starch accu-
mulation, to a 22% increase in sucrose levels and to a 1.7-
fold decrease in the starch/sucrose ratio in leaves during the
day (Fig. 5). This shows that Trx f1 contributes significantly
to regulate diurnal starch turnover in plants. The changes in
starch metabolism are most likely due to Trx f1 affecting

redox activation of AGPase, which was observed in vitro
(Fig. 1) as well as in vivo (Figs 4 & 6).This is consistent with
recent studies, demonstrating the importance of the redox
regulatory cysteine (Hädrich et al. 2012) and the kinetic
properties (Obana et al. 2006) of AGPase in regulating
diurnal starch turnover in Arabidopsis leaves.

As shown in Figs 4 and 5, the decrease in APS1
monomerization state preceded the decrease in starch
accumulation and correlated with the decrease in the
starch/sucrose ratio in leaves during the day.The time delay
between the change in APS1 monomerization and the
change in starch accumulation is most probably due to the
different time frames by which these parameters respond
during the diurnal cycle. While changes in monomerization
of APS1 occur within a time frame of minutes after illumi-
nation (Figs 4 & 6), changes in starch accumulation require
several hours to develop (Fig. 5). Moreover, starch accumu-
lation in leaves is also affected by other factors than redox
regulation of AGPase. Firstly, net starch accumulation could
be determined by synthesis as well as degradation pathways
operating at the same time, although this is not very likely
(see Kötting et al. 2010). Secondly, besides AGPase, several
other enzymes involved in the pathway of starch synthesis
and degradation have been pinpointed to be redox regu-
lated, including starch branching enzyme, glucan water
dikinase, beta-amylase and phosphoglucan phosphatase
(Kötting et al. 2010). It remains to be determined, whether
these enzymes are also affected during the light–dark cycle
or in Trx f1 knockout mutants. Thirdly, starch synthesis is
also regulated by changes in metabolite levels, including
the substrates (hexose-phosphates) and allosteric effectors
(3-PGA, inorganic phosphate) of AGPase (Preiss 1988). It
is however unlikely that the decrease in starch synthesis in
response to a lack of Trx f1 is due to changes in metabolite
levels.There were no changes in photosynthetic parameters
(Fig. 3), while the levels of hexose-phosphates (Tables 1 and
2) and triose-phosphates (Table 1) as photosynthetic prod-
ucts and substrates for starch synthesis remained constant
or increased during the day. Moreover, there were no
substantial changes in the levels of 3-PGA (Table 1) and
inorganic phosphate (Table 2) representing the allosteric
activator and inhibitor of AGPase, respectively. This makes
it very unlikely that the changes in starch synthesis are due
to allosteric regulation of AGPase by changes in metabolite
levels.

In the Trx f1 mutant lines, the decrease in AGPase redox
activation was much larger (up to 70%) compared to the
adjacent decrease in starch accumulation (up to 22%), indi-
cating a flux-control coefficient of approximately 0.3.This is
in confirmation to previous reports on flux-control coeffi-
cients of AGPase for starch synthesis in Arabidopsis leaves
yielding values around 0.3 under similar light conditions as
used in the present study (Neuhaus & Stitt 1990). It shows
that AGPase is co-regulating starch synthesis while control
is being shared between several enzymes constituting the
pathway.

Compared to wild type, the diurnal increase in sucrose
level in the mutant is most probably a consequence of the

Starch 

AGPase redox activation 

Trx f1 

FTR 

Sucrose (dark) Light 

NADPH 

NTRC 

NADPH 

NTRC 

Fdx Respiration OPP 

Figure 7. Working model of the different reduction pathways of
AGPase. Trx f1 is involved in light activation, but not in
sucrose-dependent activation of AGPase (see Fig. 6). NTRC may
partially complement Trx f1 in light activation of AGPase by
using photoreduced NADPH, while it is crucial for
sucrose-dependent reduction of AGPase in the dark by using
metabolically generated NADPH most likely from the oxidative
pentose phosphate pathway (Michalska et al. 2009) or from
respiratory processes in mitochondria (Centeno et al. 2011).
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inhibition of starch synthesis. A similar scenario has been
observed in previous studies with aps1 Arabidopsis mutants
(Sun, Okita & Edwards 1999) and transgenic potato tubers
with decreased expression of aps1 (Müller-Röber, Son-
newald & Willmitzer 1992) where inhibition of starch syn-
thesis led to a compensatory increase in sucrose levels.
Alternatively, lack of Trx f1 could have led to an inhibition
of sucrose export, which may explain the relatively rapid
increase in sucrose accumulation already 1 h after illumina-
tion. Only little is known concerning the effect of Trxs on
carbon transport rates. Previous studies in potato tuber
tissue (Tiessen et al. 2002) and Arabidopsis leaves (Kolbe
et al. 2006) indicate that DTT-dependent activation of Trxs
leads to an inhibition rather than a stimulation of sucrose
transport functions.

Trx f1 does not affect photosynthetic
parameters and growth but might provide an
interesting strategy to manipulate metabolic
pathways in plants

At the end of the night, lack of Trx f1 led to a decrease in
residual starch levels (Fig. 5) and in the levels of metabo-
lites deriving from starch degradation, such as hexose-
phosphates and triose-phosphates (Table 1), sucrose
(Fig. 5) and maltose (data not shown), indicating decreased
nocturnal carbon availability in the mutants. However,
these changes were clearly not large enough to affect
overall plant growth, as it is otherwise known from mutants
completely lacking starch (Caspar et al. 1986).

Lack of Trx f1 also did not affect photosynthetic param-
eters (Fig. 3), although Trx f protein level decreased by
more than 90% in the two knockout lines (Fig. 2). This is
unexpected due to the crucial role of Trx f in the light
regulation of photosynthesis proposed in many studies.
Clearly, the remaining Trx f protein level based on Trx f2
expression or the remaining other types of Trxs were still
sufficient for an effective regulation of photosynthesis,
while starch synthesis was already impaired under these
conditions. The reason for this is not clear, but it may be
due to the different affinities of Trxs to their individual
target proteins. This interpretation is supported by previ-
ous studies showing that the concentration of Trx f leading
to half-maximal activation of AGPase (4.6 mM; Ballicora
et al. 2000) is much higher than the concentration leading
to half-maximal activation of the Calvin–Benson cycle
enzyme fructose-1,6-bisphosphatase (FBPase; 0.9 mM, see
Mora-Garcia, Rodriguez-Suarez & Wolosiuk 1998). Any
decrease in Trx f will therefore affect AGPase much more
strongly than FBPase, especially since the concentrations
of Trxs in chloroplasts have been found to be several mag-
nitudes lower than the concentrations of the correspond-
ing target proteins (König, Muthuramalingam & Dietz
2012). Trx f may be already limiting for light activation of
AGPase under the prevailing conditions in the wild type.
In leaves, the concentration of Trx f has been reported to
be increased in response to a variety of signals, including
light (Carrasco et al. 1992), circadian rhythms (Barajas

et al. 2011), thiol status and sugars (Barajas et al. 2012),
most of them are also positively linked to starch synthesis
(Geigenberger 2011). Transgenic approaches to overex-
press Trx f1 could therefore provide an interesting strategy
to improve starch synthesis in plants, especially since other
enzymes in the pathway of starch synthesis have been
found to be regulated by Trxs in addition to AGPase
(Kötting et al. 2010).

The metabolite profiling data in Table 2 indicate that
genetic manipulation of Trx f1 might also affect other path-
ways in plants. In this respect, the strong effect of Trx f1
knockout on ethanolamine levels is very interesting. Etha-
nolamine plays a major role in phospholipid biosynthesis
and has been identified as an important part of the meta-
bolic signature predicting plant biomass (Meyer et al. 2007).
Investigating the role of Trx f in regulating lipid biosynthe-
sis will be an interesting avenue of future research.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the
online version of this article:

Figure S1. Effect of Trx f1 knockout (line trx f1.2) on
sucrose-dependent redox activation of AGPase in leaves
in the dark. For the sucrose-dependent effect on APS1
monomerization, Arabidopsis leaves were harvested at the
end of night (t0), and incubated with sucrose or sorbitol
(100 mM) for 5 h in the dark. Results are means � SE
(n = 4).
Table S1. Effect of light on the conversion of the 100 kDa
to the 50 kDa form of APS1 in leaves of the Trx f1 Arabi-
dopsis knockout lines (trx f1.1 and trx f1.2), compared to the
respective segregating wild-types. The Western blots from
Fig. 4 were scanned, and the intensity of the protein bands
corrected for background.
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Supplemental Figure S1: 
Effect of Trx f1 knockout (line trx f1.2) on sucrose-
dependent redox activation of AGPase in leaves in 
the dark. For the sucrose-dependent effect on 
APS1 monomerization, Arabidopsis leaves were 
harvested at the end of night (t0), and incubated 
with sucrose or sorbitol (100 mM) for 5 h in the 
dark. Results are means ± SE (n = 4). 



Supplemental Table S1: Effect of light on the conversion of the 100 kDa to the 50 kDa form of APS1 

in leaves of the Trx f1 Arabidopsis knockout lines (trx f1.1 and trx f1.2), compared to the respective 

segregating wild‐types. The western blots from Fig. 4 were scanned, and the intensity of the protein 

bands corrected for background. Data are given as monomerization of APS1 in %.  

Time [h]  WT.1  trx f1.1  WT.2  trx f1.2 

0  1.2  0.6  7.3  6.9 
1  25.5  8.0  37.0  10.7 
4  30.9  19.8  31.9  17.2 
8  21.0  11.3  28.3  15.5 
9  2.5  1.5  10.5  4.3 
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ABSTRACT 

 
Two different thiol-redox-systems exist in plant chloroplasts, the ferredoxin-

thioredoxin system, which depends of ferredoxin reduced by the photosynthetic 

electron-transport chain and, thus, of light, and the NADPH-dependent thioredoxin 

reductase C (NTRC) system, which relies on NADPH and thus may be operative also 

during the night. Previous in-vitro studies led to the view that both systems act 

independently in the chloroplast stroma. We now report that there is a previously 

unrecognized cooperative interaction of thioredoxin-f1 and NTRC in regulating 

photosynthetic metabolism and growth. In Arabidopsis mutants, combined but not 

single deficiencies of thioredoxin-f1 and NTRC led to severe growth inhibition and 

perturbed light acclimation, accompanied by strong impairments of Calvin-Benson-

cycle activity and starch accumulation. Light-activation of key-enzymes of these 

pathways, fructose-1,6-bisphosphatase and ADP-glucose pyrophosphorylase, was 

almost completely abolished. The subsequent increase in NADPH/NADP+ and 

ATP/ADP ratios led to increased light-vulnerability of photosystem I core-proteins. In 

a biochemical approach, bimolecular-fluorescence-complementation assays were 

performed showing physical interaction between thioredoxin-f1 and NTRC at the 

protein level in-vivo. Results provide genetic and biochemical evidence that the 

different stromal thiol-redox-systems interact at the level of thioredoxin-f1 and NTRC 

to coordinately participate in the regulation of Calvin-Benson-cycle, starch 

metabolism and growth in response to varying light conditions. 



 3

INTRODUCTION 

 

Reversible disulfide-bond formation between two cysteine residues regulates 

structure and function of many proteins in diverse organisms (Cook and Hogg, 2013). 

Thiol-disulfide exchange is controlled by thioredoxins (Trx), which are small proteins 

containing a redox-active disulfide group in their active site (Holmgren, 1985; 

Baumann and Juttner, 2002). The latter can be reduced to a dithiol by Trx reductases 

using NADPH or ferredoxin (Fdx) as electron donors. Due to their low redox potential, 

reduced Trxs are able to reductively cleave disulfide-bonds in many target proteins 

and, thus, modulate their functions. 

 

Plants contain the most versatile Trx system found in all organisms with respect to 

the multiplicity of different isoforms and reduction systems (Buchanan and Balmer, 

2005; Nikkanen and Rintamäki, 2014). The Arabidopsis genome contains a complex 

family of Trxs, including up to 20 different isoforms grouped into seven subfamilies 

(Schuermann and Buchanan, 2008; Dietz and Pfannschmidt, 2011). Trxs f1-2, m1-4, 

x, y1-2 and z are located exclusively in the chloroplast, Trx o exclusively in the 

mitochondria, while the six Trx h representatives are distributed between the cytosol, 

nucleus, endoplasmic reticulum (ER), and mitochondria (Meyer et al., 2012). The 

different Trxs can be reduced by two different redox systems, dependent on Fdx and 

Fdx-Trx reductase (FTR) in the chloroplast or NADPH and NADPH-Trx reductase 

(NTRA and NTRB) in other cell compartments  (Buchanan and Balmer, 2005). More 

recently, a third type of NADPH-Trx reductase (NTRC) has been identified which 

forms a separate Trx system in the chloroplast (Serrato et al., 2004; Perez-Ruiz et 

al., 2006). NTRC is a bimodular enzyme containing both an NTR and Trx domain on 

a single polypeptide (Serrato et al., 2004). Its catalytic unit is a homodimer, 

transferring electrons from NTR to Trx domains via inter-subunit pathways (Pérez-

Ruiz and Cejudo, 2009). In vitro studies suggest that NTRC is a Trx with its own Trx 

reductase, since it has not been shown to interact with other free Trxs (Perez-Ruiz et 

al., 2006; Bohrer et al., 2012). This is in contrast to experiments on transgenic 

Arabidopsis lines overexpressing NTRC with an inactive Trx domain, indicating a 

possible interaction of NTRC with other chloroplast Trx systems (Toivola et al., 2013). 

Therefore, the possible interaction of NTRC and other plastidial Trxs remains an 

open question. 
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In chloroplasts, Trxs are reduced via FTR in a light-dependent manner, using 

photosynthetic electrons provided by Fdx. The Fdx-Trx system with Trxs f and m was 

originally discovered as a mechanism for the regulation of the Calvin-Benson cycle, 

ATP synthesis and NADPH export in response to light-dark changes (Buchanan et 

al., 1979; Buchanan, 1980). In numerous biochemical studies performed in-vitro, the 

roles of Trxs f and m were extended to the regulation of many other chloroplast 

enzymes involved in various pathways of primary metabolism (Buchanan and 

Balmer, 2005; Meyer et al., 2012). Experiments with purified proteins revealed 

differences in biochemical specificities to different types of Trxs. Enzymes of the 

Calvin-Benson cycle were found to be exclusively regulated by f-type Trxs (Collin et 

al., 2003a; Michelet et al., 2013), while key-enzymes involved in related pathways 

such as starch synthesis (Fu et al., 1998; Ballicora et al., 2000; Geigenberger et al., 

2005; Thormahlen et al., 2013), starch degradation (Mikkelsen et al., 2005; Valerio et 

al., 2011; Seung et al., 2013; Silver et al., 2013), fatty acid synthesis (Sasaki et al., 

1997), amino acid synthesis (Lichter and Häberlein, 1998; Choi et al., 1999; Balmer 

et al., 2003), chlorophyll synthesis (Ikegamie et al. 2007; Luo et al. 2012), NADPH 

export (Collin et al., 2003; Scheibe, 2004) and oxidative pentose-phosphate pathway 

(OPPP, Nee et al. 2009) were found to be regulated by both Trxs f and m, with f- 

being in most cases more effective than m-type. Other plastidial isoforms belonging 

to the x- and y-types were found to mainly serve as reducing substrates for 

antioxidant enzymes such as peroxiredoxins, thiol-peroxidases and methionine 

sulfoxide reductases, indicating their role in oxidative stress responses (Collin et al., 

2003a; Collin et al., 2004; Meyer et al., 2012). The biochemical properties of Trx z 

are largely unresolved. While this new type of Trx has been identified to be part of the 

plastid-encoded RNA polymerase indicating a role in transcriptional regulation 

(Arsova et al., 2010), it has also been found to support the activity of several 

plastidial antioxidant enzymes, indicating a role in stress responses (Chibani et al., 

2011).  

 

While most of the results mentioned above are based on biochemical studies, little is 

known about the in-vivo relevance and specificity of the different chloroplast Trxs 

isoforms in planta. Recent progress in this area was made by using reverse genetic 
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studies, including Arabidopsis mutants and transgenic plants. Intriguingly, these 

genetic studies revealed specific roles of m-type Trxs in regulating photosynthetic 

electron transport and developmental processes, rather than its expected roles in 

primary metabolism. Arabidopsis lines under-expressing Trxs m1, m2 and m4 were 

defective in the biogenesis of photosystem II (Wang et al., 2013), single mutants with 

deletions in Trx m4 were affected in alternative photosynthetic electron transport 

pathways (Courteille et al., 2013), while deletions in Trx m3 affected meristem 

development (Benitez-Alfonso et al., 2009). In addition to this, Arabidopsis mutants 

with deletions in Trx f1 leading to a more than 97% decrease in Trx f protein level 

showed alterations in diurnal starch accumulation, rather than any changes in 

photosynthetic parameters and growth (Thormahlen et al., 2013). This is surprising, 

given the exclusive regulation of individual steps of the carbon fixation cycle by Trx f1 

in-vitro (Collin et al., 2003a; Michelet et al., 2013).  

 

Compared to the Fdx-Trx system, relatively little is known on the more recently 

identified chloroplast NADPH-NTRC system, which uses NADPH as a source of 

electrons, provided by FNR in the light or the OPPP in the dark. So far only a few 

targets have been identified to be regulated by NTRC, with 2-Cys peroxiredoxins (2-

Cys Prxs) involved in H2O2-detoxification (Perez-Ruiz et al., 2006), ADPGlc 

pyrophosphorylase (AGPase) the key enzyme of starch biosynthesis (Michalska et 

al., 2009; Lepisto et al., 2013) and  enzymes of chlorophyll biosynthesis (Richter et 

al., 2013; Perez-Ruiz et al., 2014) being the most elaborated ones. Regulation of 

these processes by NTRC was confirmed in planta by analyzing an insertional 

knockout mutant of NTRC, revealing (i) an attenuation of redox-activation of AGPase 

and starch accumulation (Michalska et al., 2009; Lepisto et al., 2013), (ii) decreased 

chlorophyll levels and impaired redox status of GluTR1 and CHLM activities (Richter 

et al., 2013) and CHLI subunit of the Mg-chelatase complex (Perez-Ruiz et al., 2014), 

and (iii) increased levels of hydrogen peroxide and lipid peroxidation (Perez-Ruiz et 

al., 2006). While the first two effects were observed in plants growing in a normal 

diurnal cycle, the third one was only observed under conditions of prolonged 

darkness followed by illumination. In addition to the NADPH-NTRC system, 2-Cys 

Prx and AGPase have also been found to be regulated by the Fdx-Trx system with 

Trx x (Konig et al., 2002) and Trx f1 (Thormahlen et al., 2013), respectively. 
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However, little is known on the interrelation of both chloroplast redox systems in 

regulating these targets.   

 

In this report, the interrelation between Trx f1 and NTRC in regulating plant 

metabolism and growth was investigated by using genetic and biochemical 

approaches. Analysis of an Arabidopsis trxf1 ntrc double mutant shows that 

combined inactivation of Trx f1 and NTRC leads to a strong inhibition of 

photosynthesis and related metabolic activities resulting in a severe limitation of 

growth, while these responses were not or only weakly expressed in the single 

mutants. Synergistic effects of Trx f1 and NTRC were specifically found in relation to 

enzymes of the Calvin-Benson cycle and starch metabolism. Moreover, bimolecular 

fluorescence complementation (BiFC) assays were performed showing that Trx f1 

and NTRC are physically interacting at the protein level in vivo. Results provide direct 

evidence for a previously unknown cooperative interaction of Trx f1 and NTRC in 

regulating photosynthetic metabolism and growth.   

 

 

RESULTS 

 

Combined inactivation of Trx f1 and NTRC leads to a severe growth phenotype   

 

To analyze the interrelation between Trx f1 and NTRC in regulating growth and 

metabolism of Arabidopsis plants, the well-characterized trxf1 (SALK_128365; 

(Thormahlen et al., 2013) and ntrc (SALK_012208; (Serrato et al., 2004; Pérez-Ruiz 

et al., 2006) T-DNA insertion lines were crossed to generate a trxf1 ntrc double 

mutant. A homozygous trxf1 ntrc line was identified, where T-DNA insertions were 

present in both genomic alleles (Fig. 1A), while protein content (Fig. 1B) of both Trx 

f1 and NTRC were strongly decreased to detection limit. In comparison to this, 

expression of NTRC and Trx f1 was still detectable in the trx f1 and ntrc single 

mutants, respectively, although Trx f1 protein levels (Fig. 1B) were found to be 

slightly lower in the ntrc background than in the wild-type. In the Western blots of Fig. 

1B, a Trx f antibody was used that gives similar signals with Trx f1 and Trx f2 

(Thormahlen et al., 2013), indicating that Trx f1 is the major Trx f isoform in 

Arabidopsis. 
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As previously reported, trxf1 (Thormahlen et al., 2013) and ntrc single mutants 

(Perez-Ruiz et al., 2006; Lepisto et al., 2013) showed no or moderate growth 

phenotypes, respectively, when grown in a 8 h photoperiod at 160 µmol m-2 s-1 light 

intensity (Fig. 2B). In contrast to this, growth of the trxf1 ntrc double mutant was very 

severely perturbed, when compared to the wild-type or the single mutants (Fig. 2B). 

The rosette fresh-weights of the trxf1 ntrc double mutant decreased to below 2% of 

wild-type level, while those of the ntrc mutant decreased to 25% and those of the 

trxf1 mutant remained unaltered (Fig. 2H). Despite this very strong growth defect, 

trxf1 ntrc mutant plants were viable and produced seeds under these conditions (Fig. 

2G). Interestingly, the extent of the growth phenotypes differed depending on the 

length of the photoperiod and the light intensity (Figs. 2 A-F). When the length of the 

photoperiod was decreased from 8 to 4 h light, rosette fresh-weights decreased 

significantly to 80% and 15% of wild-type level in the trxf and ntrc single mutants, 

respectively, and to levels below the detection limit in the trxf1 ntrc double mutant 

(Fig. 2H). Conversely, an increase in the length of the photoperiod from 8 to 24 h led 

to a partial relieve in the growth retardation of both the ntrc and the trxf1 ntrc mutant. 

In the ntrc mutant, rosette fresh-weights increased from 25 to 50% of wild-type level 

in 16 h and 24 h, compared to 8 h photoperiods (Fig. 2H), in agreement with previous 

studies (Lepisto et al., 2009). The trxf1 ntrc double mutant showed no significant 

change in fresh-weight when the photoperiod was increased from 8 h to 16 h light, 

but there was an increase from 1 to 3% of wild-type level when the photoperiod was 

increased from 16 h to 24 h light (Fig. 2H). Also a change in the light intensity at 8 h-

photoperiod affected the growth phenotype of the mutants. When the light intensity 

was decreased from 160 µmol m-2 s-1 to 30 µmol m-2 s-1, the rosette fresh weights 

dropped significantly to 75 and 35% of wild-type level in the trxf1 and ntrc mutants, 

respectively, and to levels below the detection limit in the trxf1 ntrc double mutant 

(Fig. 2H). When the light intensity was increased from 160 to 950 µmol m-2 s-1, 

rosette fresh-weights dropped severely in the trxf1 ntrc mutant, moderately in the ntrc 

mutant, while no effect was observed in the trxf1 mutant, compared to wild-type (Fig. 

2H). Overall, the results show that knockout of Trx f1 leads to a severe growth 

inhibition in the ntrc, but not in the wild-type background, suggesting a synergistic 

interaction of both redox systems. 
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Combined deficiency of Trx f1 and NTRC leads to a strong impairment of 

photosynthesis 

 

To investigate whether the severe growth phenotype of the trxf1 ntrc mutant is due to 

an effect on photosynthesis, CO2 assimilation rates were measured in leaves of the 

different genotypes grown in an 8 h photoperiod at 160 µmol m-2 s-1 light intensity 

using an open gas-exchange system. The light response-curves at ambient CO2 are 

shown in Fig. 3A. At light intensities between 150 and 1000 µE, CO2 fixation rates 

were strongly decreased in the trxf1 ntrc mutant relative to the wild-type, the 

decrease being light intensity-dependent: 6-fold at 150, 2.5-fold at 200-300, 2-fold at 

400-600, and 1.5-fold at 800-1000 µmol m-2 s-1.  At light intensities between 50-100 

µmol m-2 s-1, CO2 assimilation rates were below the respiration rate in the double 

mutant, but not in the wild-type, the light compensation point switching from 20 µE in 

the wild-type to 120 µE in the double mutant. In the dark, CO2 release rates were 4-

fold higher in the double mutant compared to wild-type. In contrast to the double 

mutant, the single mutants showed no or only slight changes in CO2 assimilation 

rates compared to wild-type. Deletion of Trx f1 led to a slight tendency of CO2-

assimilation rates to increase at higher light intensities, although this was not 

statistically significant. Deletion of NTRC led to a slight decrease in CO2-assimilation 

rates at all light intensities, which was statistically significant at 50 and 200 µE using 

the student t-test (Suppl. Table S1) and for all light intensities using the two-way 

Anova test (Fig. 3A), confirming previous studies (Lepisto et al., 2009). Overall, the 

results show that inactivation of Trx f1 led to a strong decrease in CO2 fixation rates 

in the ntrc, but not in the wild-type background, lending further support to the 

proposal of a synergistic cooperation of both systems  to regulate the CO2 fixation 

rate.  

 

In Fig. 3B, leaf transpiration rates are shown across different light intensities and 

genotypes. Compared to wild-type, there was a strong (up to 8-fold) increase in 

transpiration rates in the trxf1 ntrc mutant, while the single mutants behaved like the 

wild-type at all light conditions tested. Similar results were observed for stomal 

conductance (data not shown) and intercellular CO2 concentration (Fig. 3C), both 

parameters being strongly increased in the double mutant relative to the wild-type. 

These results show that the lower rate of CO2 fixation caused by the combined 
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deficiency of Trx f1 and NTRC is not due to a restriction in CO2 uptake rates or a 

decrease in internal CO2 concentrations, but  most likely to a direct inhibition of the 

CO2-fixation cycle.   

 

To investigate whether the inhibition of CO2-assimilation is accompanied by changes 

in photosynthetic light reactions, chlorophyll fluorescence parameters were measured 

by pulse-amplitude modulation (PAM) fluorimetry. A significant decrease of maximal 

(Fv/Fm) and effective quantum yield of PS II (ФPSII) was observed in the double 

mutant relative to the single mutants or the wild-type (Figs. 4A and 4B), indicating 

that the combined deficiency of Trx f1 and NTRC led to a strong impairment of PSII 

functionality and photosynthetic electron transport rates. Correspondingly, quantum 

yields of regulated (ФNPQ) and non-regulated (ФNO) energy dissipation (Fig. 4B) 

were strongly increased in the double mutant. Similar to previous studies (Lepisto et 

al., 2009; Thormahlen et al., 2013), no changes in chlorophyll fluorescence 

parameters were found in the trxf1 mutant, while the ntrc mutant revealed moderate 

but significant changes in ФPSII and ФNPQ, relative to the wild-type (Fig. 4B).  

 

We further investigated whether impaired photosynthetic light reactions were 

accompanied by decreased abundance of proteins involved in photosynthetic 

electron transport (Fig. 5). Western blot analyses showed that combined deficiency of 

Trx f1 and NTRC led to a strong decrease in proteins of the PSI complex (PsaA and 

PsaB) down to approx. 25% of wild-type level and to more moderate decreases in 

proteins of PSII (PsbD), cytochrome b6-f (PetC), light-harvesting (Lhca1 and Lhcb1) 

and ATPase complexes (Atpß). In comparison to this, the trxf1 and ntrc single 

mutants were only weakly affected. Chlorophyll content remained unaltered in the 

trxf1 mutant, but was significantly decreased down to 56 and 45% of wild-type level in 

the ntrc single and trxf1 ntrc double mutant, respectively (Suppl. Fig. S1). This 

confirms previous studies showing chlorophyll levels to be decreased by 50% in the 

ntrc mutant relative to the wild-type (Perez-Ruiz et al., 2006; Lepisto et al., 2009), 

while a combined deficiency of Trx f1 and NTRC only led to minor additional effects 

(Suppl. Fig. S1).  
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Combined deficiency of Trx f1 and NTRC affects NADP reduction and adenylate 

energy states 

 

The Calvin–Benson cycle uses most of the ATP and NADPH delivered by the 

photosynthetic light reactions (Michelet et al., 2013). To investigate the relationship 

between photosynthetic activity and the function of the Calvin-Benson cycle, the 

levels of NAD(P)H, NAD(P)+, ATP and ADP were analyzed in leaves of wild-type and 

the different redox mutants (Fig. 6). In wild-type plants, the sum of NADPH and 

NADP+ increased at the end of the day relative to the end of the night (Fig. 6A), while 

the NADPH/NADP+ ratio decreased (Fig 6B). Similar results have been observed in 

previous studies (Liu et al., 2008; Beeler et al., 2014; Lintala et al., 2014), indicating 

that light regulates NAD(P)H biosynthesis as well as NADPH/NADP+ ratios. The light-

induced decrease in the NADPH/NADP+ ratio is probably attributable to the Calvin-

Benson cycle being activated under these conditions. In the trxf1 ntrc mutant, the 

diurnal changes in the sum of NADPH and NADP+ levels were strongly attenuated 

(Fig. 6A), while there was a clear increase in the NADPH/NADP+ ratio at the end of 

the day (3-fold) and at the end of the night (2-fold), compared to wild-type (Fig. 6B). 

No changes were observed in the trxf1 mutant while in the ntrc mutant the 

NADPH/NADP+ ratio was slightly but significantly increased (Figs. 6A and 6B). The 

wild-type also showed diurnal changes in the sum of NADH and NAD+ (Fig. 6C) and 

in the NADH/NAD+ ratio (Fig. 6D), with the former decreasing and the latter 

increasing towards the end of the day. In the trxf1 ntrc mutant, the sum of NADH and 

NAD+ was further decreased, while the NADH/NAD+ ratio further increased, 

compared to wild-type. 

 

In the wild-type, the diurnal changes in NADP redox state were accompanied by 

corresponding changes in adenylate energy state, with ATP/ADP ratios being 

decreased at the end of the day as compared to the end of the night (Fig. 6F). This is 

most probably attributable to light-activation of the Calvin-Benson cycle and other 

ATP-consuming biosynthetic processes. In the trxf1 ntrc mutant, diurnal changes in 

both adenylate levels (Fig. 6E) and ATP/ADP ratios (Fig. 6F) were opposite to the 

wild-type, being increased during the day relative to the night, while the trxf1 and ntrc 

single mutants were largely similar to wild-type (Figs. 6E and 6F).  
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Overall these results show that a combined deficiency of Trx f1 and NTRC causes 

major alterations in both NADPH/NADP+ and ATP/ADP ratios during the day, 

indicating that the primary cause for the strong impairment of photosynthesis is an 

inhibition of the Calvin-Benson cycle rather than the light reactions.  

 

Combined deficiency of Trx f1 and NTRC impairs redox-activation of fructose-

1,6-bisphosphatase 

 

The above described results show that the combined deficiency of Trx f1 and NTRC 

causes impairment of photosynthetic parameters, the diurnal oscillation of energy 

availability and carbon fixation rate. We then analyzed whether this could be due to 

direct effects on enzymes of the Calvin-Benson cycle or NADPH export from the 

chloroplast. To this end we focused on FBPase and NADP-MDH, representing key-

regulatory steps of these processes and classical targets of Trx f and Trx m, 

respectively (Zimmermann et al., 1976). FBPase is known to be subject to exquisite 

light-activation via the Fdx-Trx f system, leading to reduction of an intra-molecular 

disulfide that promotes activation of the enzyme. To analyze the effect of a combined 

deletion of NTRC and Trx f1 on redox regulation of FBPase, the redox status of the 

chloroplast enzyme was analyzed in vivo by labeling of thiol groups with the 

alkylating agent MM-PEG24, which adds 1.5 kDa per thiol, thus causing a switch of 

the electrophoretic mobility of the reduced form of the enzyme as compared to the 

oxidized form. In the wild-type, FBPase protein was completely oxidized at the end of 

the night, while more than 50% of the protein was in the reduced state at the end of 

the day (Fig. 7A), confirming light-induced reduction of its intra-molecular disulfide in 

vivo. This response was strongly modified in the redox mutants. At the end of the 

day, the ratio of reduced to oxidized FBPase protein was substantially decreased in 

trxf1 and ntrc single mutants relative to the wild-type, while there was an even 

stronger decrease in the double mutant (Fig. 7A). No changes were observed 

between the genotypes at the end of the night. Results from four independent 

experiments were quantified and are summarized in Fig. 7B, showing that the ratio of 

reduced to oxidized FBPase protein decreased significantly by 40% in trxf1, 20% in 

ntrc and 70% in trxf1 ntrc mutants relative to the wild-type, indicating an additive 

effect in the double mutant. Finally, it was noticed that the content of chloroplast 

FBPase protein in the double mutant was slightly decreased as compared with the 
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wild type or single mutants (Fig. 7A) suggesting minor effects on FBPase protein 

turnover in addition to post-translational thiol-disulfide modulation.   

 

We then investigated whether a deficiency in Trx f1 and NTRC also affects FBPase 

enzyme activity. In leaves of the wild-type, FBPase activity was very low at the end of 

the night and increased 20-fold towards the end of the day (Fig. 7C), confirming 

previous studies (Chiadmi et al., 1999). This response was strongly attenuated in the 

redox mutants. At the end of the day, FBPase activity was progressively decreased 

down to 40, 80 and 7% of wild-type level in trxf1, ntrc and trxf1 ntrc mutants, 

respectively, while there were no significant changes between these genotypes at the 

end of the night. In the double mutant, no significant changes between nocturnal and 

day-time FBPase activity were observed, indicating that diurnal activation of FBPase 

has been abolished. The data also show a correlation between FBPase activity and 

FBPase redox-state across different genotypes and day-night conditions (compare 

Figs. 7B and 7C), confirming the major role of thiol-disulfide modulation in regulating 

FBPase enzyme activity in-vivo. To investigate transient light-activation of FBPase in 

a detailed time course, FBPase activity was analyzed in leaves 0, 2, 5, 10, 20 and 30 

min after illumination. As shown in Fig. 7D, light led to a rapid increase in FBPase 

activity, reaching half-maximal activity within 1 min after the start of illumination in the 

wild-type. Compared to wild-type, the increase in FBPase activity was significantly 

delayed by approx. 50% in trx f1 and ntrc single mutants, reaching half-maximal 

activities 5 and 10 min after the start of illumination, respectively. Between 10 and 30 

min, FBPase activity showed no further increase or increased only slightly, with trxf1 

and ntrc mutants both saturating at approx. 50% of wild-type level. Intriguingly, 

combined deficiency of Trx f1 and NTRC led to a complete loss in light-activation of 

FBPase, with the double mutant showing no significant increase in FBPase activity 

upon illumination. When FBPase activity was measured in the presence of 10 mM 

DTT in the assay medium to fully reduce the regulatory disulfide of the enzyme, no 

significant changes were detected in the different genotypes and light conditions, 

except a slight decrease of the maximal FBPase activity in the trxf1 ntrc mutant 

compared to wild-type and single mutants (Fig. 7E). The ratio between the activities 

in the two assay conditions (minus DTT versus plus DTT) is shown as a calculated 

redox-activation state in Fig. 7F. The changes in the redox-activation state followed 

similar curves as the initial activities measured without DTT (compare Figs. 7D and 
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7F). The results show that knockout of Trx f1 led to a decreased efficiency in light 

activation of FBPase which is in-line with earlier studies showing that chloroplast 

FBPase is redox-activated by f-type Trx in vitro (Collin et al., 2003). However, 

deletion of Trx f1 only led to a 50% inhibition in FBPase activation, which is similar to 

the degree of inhibition in the ntrc mutant, indicating that neither of these redox 

systems has an exclusive role in the redox-regulation of FBPase in-vivo. Moreover, 

the almost complete loss of light-dependent activation of FBPase in the trxf1 ntrc 

mutant strongly suggests the synergistic effect of Trx f and NTRC in FBPase redox 

regulation.  

 

For comparative purposes, we also measured the activity of NADP-dependent malate 

dehydrogenase (MDH), a  chloroplast enzyme involved in the export of NADPH to the 

cytosol, which is known to be primarily regulated by m-type Trxs (Scheibe, 2004). In 

the wild-type, NADP-MDH activity was higher at the end of the day compared to the 

end of the night (Fig. 8A), confirming previous studies on the light-activation of this 

enzyme in the chloroplast stroma (Scheibe, 2004). Interestingly, this response was 

promoted rather than inhibited in the redox mutants. Compared to wild-type, trxf1, 

ntrc and trxf1 ntrc mutants showed increased activation of NADP-MDH during the 

day, while there were no substantial changes observed in the night. When NADP-

MDH activity was measured in the presence of 10 mM DTT in the assay medium to 

fully reduce the regulatory disulfide of the enzyme, no substantial changes were 

detected across the different genotypes and light conditions (Fig. 8B). The ratio 

between the activities in the two assay conditions (minus DTT versus plus DTT) is 

shown as a calculated redox-activation state (Fig. 8D). It followed a similar curve as 

the initial activities measured without DTT (compare Figs. 7D and 7F). Increased 

activation of NADP-MDH is probably due to increased chloroplast NADPH/NADP+ 

ratios (Fig. 6), which promote NADP-MDH redox-activation by acting on the redox-

potential of its regulatory disulfide (Faske et al., 1995).  

 

Combined deficiency of Trx f1 and NTRC leads to decreased starch 

accumulation and redox-activation of ADPGlc pyrophosphorylase  

 

Following with our purpose of determining the function of Trx f1 and NTRC in redox 

regulation of different carbon metabolic pathways, we investigated the effect of the 
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combined deficiency of Trx f1 and NTRC on the synthesis of photosynthetic end 

products, starch and sucrose. Wild-type leaves showed characteristic diurnal 

changes of starch (Fig. 9A) and sucrose levels (Fig. 9B), which increased by 3- and 

2-fold, respectively, towards the end of the day. These diurnal changes were 

attenuated in the redox-mutants. At the end of the day, trxf1, ntrc and trxf1 ntrc 

mutants showed a progressive decrease in starch accumulation down to 80, 65 and 

25% of wild-type levels, respectively (Fig. 9A), confirming previous studies showing 

attenuation of starch accumulation in trxf1 (Thormahlen et al., 2013) and ntrc single 

mutants (Michalska et al., 2009; Lepisto et al., 2013). The decrease in day-time 

starch content was additive in the double mutant (Fig. 9A), dropping to levels below 

those of the wild-type at the end of the night. At any time, the starch content in the 

double mutant did not exceed nocturnal wild-type levels. At the end of the night, trxf1, 

ntrc and trxf1 ntrc mutants showed a further progressive decrease in the remaining 

starch content, reaching 35, 25 and less than 10% of the nocturnal wild-type level, 

respectively (Fig. 9A), showing that starch reserves were exhausted in the double 

mutant. The trxf1 ntrc mutant showed decreased accumulation of sucrose, which at a 

lower level was also affected in the ntrc mutant but not in the trxf1 mutant (Fig. 9B). 

All mutants under analysis showed a decrease of the starch/sucrose ratio relative to 

the wild-type, the decrease being more pronounced in the trxf1 ntrc double mutant 

with 55% at the end of the day and 80% at the end of the night (Fig. 9C).  

 

AGPase is a key-enzyme of starch synthesis, which is rapidly activated upon 

illumination by reduction of an intermolecular disulfide bond between the Cys-81 

residues joining the two small subunits (APS1) of this heterotetrameric enzyme 

(Hendriks et al., 2003; Kolbe et al., 2005). To investigate whether the inhibition of 

starch synthesis in the different genotypes is due to decreased redox-activation of 

AGPase, monomerisation of APS1 was analyzed in leaves harvested at the end of 

the night and at the end of the day. As seen in previous studies (Hendriks et al., 

2003), wild-type leaves revealed a strong increase in the monomerization of APS1 

during the day, while APS1 was almost completely dimerized in the night (Fig. 9D). 

Compared to wild-type, light-dependent monomerisation of APS1 was attenuated in 

the trxf1 and ntrc single mutants (Fig. 9D), confirming results from earlier studies 

(Michalska et al., 2009; Thormahlen et al., 2013). Compared to the single mutants, 

there was an additional attenuation of APS1 monomerisation in the trxf1 ntrc double 
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mutant (Fig. 9D), indicating Trx f1 and NTRC to act additively on the reduction of 

APS1 in vivo.   

 

Combined deficiency of Trx f1 and NTRC causes deep effects on metabolite 

levels   

 

The above data clearly indicate the combined action of Trx f and NTRC on redox 

regulation of different aspects of carbon metabolism. The impairment of the 

regulation of the Calvin-Benson cycle and attendant starch synthesis in the mutants 

under investigation is expected to provoke changes of in-vivo metabolite levels 

indicative of regulatory steps in these pathways. In wild-type plants, the levels of 3-

phosphoglycerate (3PGA) (Fig. 10A), fructose-1,6-bisphosphate (FBP) (Fig. 10B) and 

fructose-6-phosphate (F6P) (Fig. 10C) showed strong diurnal alterations, higher 

levels being observed at the end of the day, which is in-line with the changes in 

Calvin-Benson cycle activity. These diurnal changes in metabolite levels were 

differentially modified in the trxf1 ntrc mutant. Compared to wild-type, the day-time 

increase in the level of 3PGA, the first fixation product of Rubisco, was attenuated by 

75% in the trxf1 ntrc mutant, while there were no changes in the trxf1, and only a 

smaller decrease (by 35%) in the ntrc mutant (Fig. 10A). In contrast to this, the day-

time levels of FBP, the substrate of FBPase, were significantly increased by 50, 125 

and 75% in trxf1, ntrc and trxf1 ntrc mutants, respectively (Fig. 10B), while those of 

F6P, the product of FBPase, were only slightly increased in trxf1 and ntrc single 

mutants, or even decreased in the trxf1 ntrc double mutant, compared to wild-type 

(Fig. 10C). Concerning the ratio between product and substrate of FBPase 

(F6P/FBP), there was a significant and progressive decrease down to 80, 55 and 

45% of wild-type level in trxf1, ntrc and trxf1 ntrc mutants, respectively (Fig. 10D), 

indicating a progressive inhibition of plastidial FBPase in vivo and confirming the 

decrease in FBPase activity and reduction state (Fig. 7). Compared to wild-type, 

glucose-1-phosphate (G1P), the substrate of AGPase, remained unchanged or 

increased slightly in the different genotypes, indicating that the inhibition of starch 

synthesis was unlikely to be due to a shortage of this substrate (Fig. 10F). At the end 

of the night, the levels of 3PGA (Fig. 10A) and hexose-phosphates (Figs. 10C, E, F) 

all showed a progressive decrease in trxf1, ntrc and trxf1 ntrc mutants relative to the 

wild-type, with the decrease being specifically pronounced in the trxf1 ntrc double 
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mutant. This is consistent with a progressive shortage of carbon in these mutants. 

Nocturnal levels of FBP were below the detection limit in all genotypes (Fig. 10B). 

 

To gain a more in-depth insight into the global effects of Trx f1 and NTRC on redox 

regulation of metabolism, GC-MS based metabolite profiling was performed. Suppl. 

Table S4 and Fig. 11A show significant changes in leaf metabolite levels at the end 

of the day in trxf1, ntrc and trxf1 ntrc mutants, relative to the wild-type. In the trxf1 

ntrc mutant, sugars like glucose and raffinose decreased by a factor of 2, while the 

levels of maltose and ribose were 3-times and the level of trehalose 2-times 

increased. Similar or less strongly expressed changes in sugar levels were observed 

in the ntrc mutant, while sugar levels remained rather unchanged or increased 

slightly in the trxf1 mutant. Several organic acids showed a significant decrease in 

both ntrc and trxf1 ntrc mutants, such as citrate, fumarate, glycerate, 2-oxoglutarate, 

shikimate, succinate and threonate, while malate decreased only in the double 

mutant. The decrease in glycerate (3-fold), suggests possible effects on 

photorespiration. In contrast to this, organic acid levels were largely unchanged or 

showed only slight alterations in the trxf1 mutant. Also amino acids showed large and 

significant alterations in the trxf1 ntrc mutant. With the exception of glycine and serine 

which were both 2-fold decreased, most other amino acids were  increased in the 

double mutant, this is the case of alanine (1.4-fold), aspartate (1.8-fold), asparagine 

(2-fold), isoleucine (2.3-fold), leucine (2-fold), methionine (1.4-fold), phenylalanine 

(6.7-fold), proline (7.2-fold), valine (2.2-fold). Amino acids remained unchanged or 

showed only slight changes in the trxf1 and ntrc single mutants, with the exception of 

glycine and serine, which both decreased by a similar degree in the ntrc single and 

ntrc trxf1 double mutants. The decrease in glycine and serine is consistent with 

NTRC having effects on photorespiration. This confirms previous studies, indicating 

increased photorespiration in the ntrc mutant (Lepisto et al., 2009). Other metabolites 

showed a more pronounced or differential behavior in the double mutant compared to 

the single mutants. In the trxf1 ntrc mutant, there were significant increases in 

erythritol (7.4-fold), glycerol (1.4-fold), mannitol (8-fold), 4-amino-butanoate (5-fold), 

putrescine (2-fold) and uracil (3.4-fold), while myo-inositol was decreased (2.4-fold), 

compared to wild-type. The strong increase in ascorbate which was observed in the 

trxf1 and ntrc single mutants was strongly attenuated in the double mutant.  
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Metabolite levels were also determined at the end of the night where sugars derive 

from the degradation of starch reserves (Suppl. Table S5 and Fig. 11B). Compared to 

wild-type, trxf1, ntrc and trxf1 ntrc mutants showed a further progressive decrease in 

the levels of various sugars, with the double mutant revealing a specifically strong 

decrease in maltose (down to 19% of wild-type level) and sucrose (46% of wild-type 

level) consistent with an increased shortage of carbon under these conditions. There 

were significant decreases in the levels of various organic acids, which in most cases 

were more severe in the double mutant, compared to the single mutants, specifically 

fumarate, glycerate, pyruvate, shikimate and succinate. Large and significant 

alterations were observed in the levels of various amino acids, which increased in the 

double mutant, compared to wild-type or the single mutants. While glycine 

decreased, there were increases in the levels of alanine (3-fold), arginine (7.5-fold), 

asparagine (43.7-fold), glutamate (1.9-fold), isoleucine (4-fold), leucine (3.3-fold), 

lysine (10.2-fold), phenylalanine (10.3-fold), proline (2.4-fold), serine (2.3-fold), 

threonine (2-fold) and valine (2.6-fold). The 1.5-fold decrease in shikimate, while 

phenylalanine levels were more than 10-fold increased, indicates aromatic amino 

acid synthesis and related pathways to be strongly perturbed by the combined 

deficiency of Trx f1 and NTRC. An accumulation of aromatic amino acid levels was 

also found in the ntrc mutant in previous studies, where it was suggested to be due to 

a decrease in phenol or auxin synthesis (Lepisto et al., 2009). In the double mutant, 

there were also changes in other selected metabolites: erythritol, glycerol, mannitol, 

sorbitol, Pi, putrescine, spermidine and uracil increased, while myo-inositol 

decreased relative to the wild-type (Suppl. Table S5).   

 

In vivo BiFC assays provide direct evidence of Trx f1 and NTRC interaction in 

vivo 

 

To further investigate the interrelation between Trx f1 and NTRC, we analyzed a 

possible physical interaction between both proteins using the in vivo BiFC assay (Fig. 

12). To do this, Nicotiana benthamiana leaves were coinfiltrated with Agrobacterium 

tumefaciens cells carrying gene fusion constructs that encode Trx f1 or NTRC 

combined at their C-termini with either the N- or C-terminal part of the Venus protein, 

which is a yellow fluorescent protein (YFP) derivate. When Trx f1 was fused with the 

Venus N-teminal part and NTRC with the Venus C-terminal part, a strong fluorescent 
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signal was observed in chloroplasts, which was identified as a YFP signal by Lambda 

scanning of its fluorescence spectrum (data not shown). A similar signal was 

observed when Trx f1 was combined with the Venus C-terminal part and NTRC with 

the Venus N-terminal part. This indicates that Trx f1 and NTRC interact with each 

other in planta. Cotransformation of NTRC fused to the N-terminal part of the Venus 

protein with NTRC fused to the C-terminal part of the Venus protein served as a 

positive control (Fig. 12), which is in-line with previous studies (Richter et al., 2013). 

As observed previously, there is an association of NTRC to dimeric and oligomeric 

structures in higher plants (Perez-Ruiz et al., 2009; Wulff et al., 2011). Interestingly, 

YFP signals were also observed when Trx f1 combined with the Venus C-terminal 

part was cotransformed with Trx f1 combined with the Venus N-terminal part, 

indicating dimerization of Trx f1 in planta. This confirms previous studies showing that 

Trx f exists in an oligomeric state in Arabidopsis plants (Sanz-Barrio et al., 2012). No 

YFP signal was observed when Trx f1 and NTRC - combined with either the Venus 

N- or C-terminal part - were expressed separately as negative controls.  

 

GUS analysis of Trx f1 expression (Suppl. Figure S2) reveals a pattern similar to 

NTRC expression in Arabidopsis plants (Kirchsteiger et al., 2012). This indicates that 

Trx f1 and NTRC are both active in the same tissues, highlighting the biological 

relevance of their interaction.  

 

DISCUSSION 

 

Two different thiol redox-systems exist in plant chloroplasts, the Fdx-Trx, which is 

dependent of Fdx reduced by the photosynthetic electron transport chain and, thus, 

of light, and the NADPH-NTRC system, which relies on NADPH and thus may be 

operative also during the night. Previous in-vitro studies led to the view that both 

systems may act independently in the chloroplast stroma, however, the possibility 

remains that both systems might act cooperatively. In the present work we have 

tested this possibility by a combination of genetic and biochemical approaches. 

Results provide evidence that both redox systems interact at the level of Trx f1 and 

NTRC and coordinately participate in the regulation of photosynthetic carbon 

metabolism and growth in response to changes in light conditions.   
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Trx f1 and NTRC coordinately participate in redox regulation of the Calvin-

Benson cycle in response to light 

 

Our results show that single knockouts of Trx f1 or NTRC cause no or only slight 

impairment of photosynthesis (Fig. 3 and 4), respectively, confirming previous studies 

(Lepisto et al., 2009; Thormahlen et al., 2013). Interestingly, the combined deficiency 

of both thiol redox-regulators led to a more severe inhibition of photosynthetic CO2-

assimilation (Fig. 3) and electron transport rates (Fig. 4) than in both single 

knockouts. This was accompanied by an increase in both the NADPH/NADP+ and 

ATP/ADP ratios (Fig. 6), indicating that the primary cause for the strong impairment 

of photosynthesis is an inhibition of the Calvin-Benson cycle rather than the light 

reactions. Direct measurements of FBPase, a key enzyme of the Calvin-Benson 

cycle, confirm this interpretation (Fig. 7). Light activation of FBPase was attenuated 

by up to 50% in the Trx f1 and NTRC single mutants, while it was almost completely 

abolished in the double mutant (Fig. 7). A similar picture emerged when the redox-

state of the regulatory disulfide of chloroplast FBPase was directly analyzed using 

gel-shift assays in vivo (Fig. 7). The sensitivity of the FBPase protein per se towards 

redox-regulation was however not altered, since addition of DTT led to a strong 

activation of the enzyme in extracts from the double mutant in-vitro (compare Figs. 

7D and 7E). This shows that a combined knockout of Trx f1 and NTRC leads to 

deregulation of FBPase by disturbing the light signal leading to its redox-activation. 

This ultimately leads to a decrease in Calvin-Benson cycle activity (Fig. 3) and growth 

(Fig. 2), which is in-line with earlier studies on transgenic plants (Koßmann et al., 

1994) or mutants (Livingston et al., 2010) showing that a decrease in chloroplast 

FBPase activity below 36% of wild-type level affects photosynthetic CO2 assimilation 

and growth. Inhibition of FBPase is also indicated at the metabolite level, since it is 

accompanied by a decrease in F6P/FBP metabolite ratios in-vivo (Fig. 10D). In 

contrast to the strong effect on FBPase, combined knockout of Trx f1 and NTRC did 

not lead to any inhibition in the redox-activation of NADP-MDH (Fig. 8), 

demonstrating the specificity of the effects.  

 

In textbooks, Trx f is proposed to act as the exclusive thiol redox-regulator of FBPase 

and other enzymes of the Calvin-Benson cycle, a scenario which is mainly based on 

in-vitro studies performed during the last 40 years. Our in-vivo studies show that this 
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paradigm has to be revised. First, a decrease in Trx f protein level by more than 97%  

in the single mutant (Thormahlen et al., 2013) (Fig. 1B) only partly affects light-

activation of FBPase by 40-50% (Fig. 7), while it does not affect photosynthesis (Fig. 

4), Calvin-Benson cycle activity (Fig. 3) or growth (Fig. 2). This indicates that Trx f is 

either redundant or so far in excess that a strong decrease in its level still allows a 

sufficient regulation of the Calvin-Benson cycle. The latter however is unlikely given 

that in the wild-type high levels of Trx f are not sufficient to fully reduce chloroplast 

FBPase in the light (Fig. 7A and 7B). The small residual activity of Trx f2 - approx. 1-

3% of total wild-type Trx f protein level (Thormahlen et al., 2013) – remaining in the 

trxf1 mutant will therefore not be high enough to provide sufficient activation of the 

Calvin-Benson cycle in the light. Secondly, our results provide evidence for an 

unexpected role of NTRC in the regulation of the Calvin-Benson cycle. Knockout of 

NTRC in the wild-type background led to an up to 50% attenuation in thiol-based light 

activation of FBPase, while there was a nearly complete attenuation when NTRC 

knockout was performed in the trxf1 mutant background (Fig. 7). There is the 

possibility that NTRC may directly transfer electrons from NADPH to FBPase to 

directly activate the enzyme. This however would require sensitive regulation of 

NTRC activity to prevent activation of FBPase and the Calvin-Benson cycle also in 

the night. Alternatively, NTRC may act as an activator of Trx f, either by allosteric 

effects or by direct electron transfer. While physical interaction between Trx f1 and 

NTRC has been shown in vivo (Fig. 12), more detailed studies are needed to 

investigate this phenomenon in vitro.      

 

Trx f1 and NTRC are also involved in light acclimation of photosystem I 

 

Impaired photosynthetic light reactions in the trxf1 ntrc mutant were most likely a 

consequence of the inhibition of the Calvin-Benson cycle and the subsequent 

increase in NADPH/NADP+ ratios. Combined knockout of Trx f1 and NTRC led to a 

strong decrease in the abundance of PSI core proteins (Fig. 5), which was most likely 

due to an inhibition of electron transfer at the acceptor side of PSI, leading to its over-

reduction. As shown by previous studies, PSI is very sensitive to excess electrons 

delivered from PSII due to its limited capacity of regeneration by protein turnover 

(Suorsa et al., 2012; Tikkanen and Aro, 2014). The moderate decrease in the 

abundance of PSII core proteins (Fig. 5) and in chlorophyll levels (Suppl. Fig. S1) is 



 21

most likely part of an adaptive response to relieve the electron pressure on PSI and 

to protect PSI from photo-damage (Grieco et al., 2012; Suorsa et al., 2012; Tikkanen 

et al., 2014). The decreased ability of the trxf1 ntrc mutant to adapt to high-light 

conditions (Fig. 2F) provides further evidence for a role of Trx f1 and NTRC in light-

acclimation of PSI. Proteins involved in cyclic electron transport around PSI may also 

be part of an adaptive response to preserve PSI, although their specific functions 

remain to be clarified (Livingston et al., 2010; Suorsa et al., 2012; Hertle et al., 2013). 

Interestingly, an Arabidopsis mutant deficient in chloroplast FBPase showed impaired 

linear electron transport and increased cyclic electron flow (Livingston et al., 2010). 

More studies are needed to resolve the roles of the stromal redox-regulators Trx f1 

and NTRC in the regulatory network of plant thylakoid energy transduction. 

 

Alternatively, our data could indicate more specific effects of Trx f1 and NTRC on 

chloroplast protein synthesis. It has been shown in previous studies that light plays a 

crucial role in regulating chloroplast protein translation, which most likely involves the 

Fdx-Trx system as one of the underlying signaling pathways (Pfannschmidt and 

Liere, 2005). More recently, a role of NTRC was proposed to regulate translation of 

the D2 protein of PSII by thiol-disulfide modulation of chloroplast translation factors in 

Chlamydomonas reinhardtii (Schwarz et al., 2012). However, in-vivo evidence to 

support this conclusion is lacking at the moment.  

 

Trx f1 and NTRC act additively in redox-regulation of starch metabolism 

 

The results of the present study confirm previous studies in showing that single 

knockouts of Trx f1 or NTRC lead to partial inhibition of AGPase redox-activation 

(Michalska et al., 2009; Thormahlen et al., 2013) and starch synthesis (Michalska et 

al., 2009; Lepisto et al., 2013; Thormahlen et al., 2013) in Arabidopsis plants. 

However, they also extend previous studies in showing that Trx f1 and NTRC act 

additively in redox-regulation of AGPase and starch synthesis (Fig. 9). The additive 

effect on the APS1 reduction state is probably attributable to Trx f1 and NTRC being 

both able to reduce APS1 with similar efficiencies, as observed by in-vitro studies 

(Thormahlen et al., 2013). The additive effect on starch accumulation is partly due to 

redox-regulation of AGPase and the concomitant regulation of the Calvin-Benson 

cycle. Interestingly, combined deficiency of Trx f1 and NTRC led to a strong increase 



 22

in the level of the starch degradation product maltose in the light (Fig. 11A and Table 

1). This may indicate that in addition to their effect on starch synthesis, Trx f1 and 

NTRC coordinately participate in the diurnal regulation of starch degradation. This is 

in-line to previous studies reporting that several enzymes in the pathway of starch 

degradation are subject to thiol redox-regulation in vitro (Valerio et al., 2011; Glaring 

et al., 2012).  Specifically, a plastid-targeted beta-amylase has been shown to be 

regulated by both Trx f1 and NTRC in vitro (Valerio et al., 2011). It remains to be 

determined whether a similar mechanism is operational in-vivo.  

 

 Combined deletion of Trx f1 and NTRC resulted in a strong decrease in the levels of 

nearly all sugars, sugar phosphates and organic acids, while the levels of most amino 

acids increased (see Suppl. Tables S4 and S5, and Fig. 11). These changes were 

specifically pronounced at the end of the night, when the carbon reserves of the 

double mutant were almost completely exhausted. Under these conditions, the strong 

increase in the levels of nearly all amino acids could indicate that protein degradation 

has been stimulated to mobilize additional carbon reserves. Alternatively, low sugar 

levels may have led to an increase in amino acid levels to prevent osmotic 

imbalances in the tissue (Fernie et al., 2002; Faix et al., 2012).   

 

Trx f1 and NTRC coordinately participate in the acclimation of plant growth to 

varying light conditions 

 

In the trxf1 ntrc mutant, deregulation of the Calvin-Benson cycle and starch 

metabolism led to strong effects in plant growth (Fig. 2). The combined deficiency of 

Trx f1 and NTRC specifically affected growth acclimation to varying light conditions, 

leading to severely impaired acclimation of plant growth to a decrease in the length of 

the photoperiod or changes in light intensities (Fig. 2H). The ability to acclimate to a 4 

h photoperiod or to low light (30 µmol photons m-2 s-1) was almost completely lost, as 

well as the ability to acclimate to high-light conditions (950 µmol m-2 s-1). Impaired 

photoperiod acclimation recovered only partly in continuous light, indicating that 

deregulation of starch synthesis (Fig. 9A) only partly contributes to the vulnerability of 

the double mutant to deceased photoperiods. The strong decrease in CO2 

assimilation rates and the resultant carbon depletion will be additional factors 

contributing to impaired growth acclimation to short days in the double mutant (Figs. 
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3 and 11). Deregulation of photosynthesis is also the most likely reason for the 

decreased ability to acclimate to low light, while the decreased ability to acclimate to 

high light is most likely attributable to the increased sensitivity of PSI to photo-

damage in the double mutant (see Fig. 5 and discussion above). The strong 

depletion in soluble sugars prevailing in the double mutant (Fig. 11) may have 

contributed to the decrease in its ability for high-light acclimation, compared to wild-

type. As shown in previous studies, soluble sugars act as signals in the high-light 

response of Arabidopsis plants, while high-light acclimation is impaired when soluble 

sugar levels are decreased (Schmitz et al., 2014). 

 

Vulnerability in the acclimation of plant growth to a decrease in the length of the 

photoperiod or changes in light intensities (Fig. 2H) was less strongly expressed in 

the trxf1 and ntrc single mutants, compared to the double mutant. Single deficiency of 

Trx f1 led to partly impaired acclimation of plant growth to extreme light conditions, 

such as 4h-photoperiods or very low light intensities (30 µmol photons m-2 s-1). Single 

deficiency of NTRC led to a partly impaired acclimation of plant growth to a decrease 

in the length of the photoperiod below 16h. This is most likely attributable to knockout 

of NTRC leading to an inhibition of starch accumulation (Fig. 9A), confirming earlier 

studies (Lepisto et al., 2009). However, growth did not fully recover to wild-type levels 

in continuous light (Fig. 2H), implying that other factors besides the deregulation of 

starch synthesis contribute to the growth phenotype of the ntrc mutant. As shown in 

Figs. 3 and 11, NTRC knockout leads to a slight attenuation of CO2 assimilation and 

decreased carbon availability. Overall these results provide in-planta evidence that 

stromal redox regulation at the levels of Trx f1 and NTRC is essential for acclimation 

of plant growth to varying light conditions.   

 

Trx f1 and NTRC are interactive in vivo 

 

The analyses here reported of the Arabidopsis mutant with combined inactivation of 

Trx f1 and NTRC provide genetic evidence for a cooperative synergistic role of Trx f1 

and NTRC in regulating photosynthetic metabolism and growth, thus suggesting their 

functional interaction in vivo (Figs. 1-11). Results from BiFC assays provide direct 

evidence for physical interaction between Trx f1 and NTRC at the protein level in-vivo 

(Fig. 12). Our results are in-line with recent studies, showing that complementation of 
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the ntrc mutant with the full-length NTRC gene containing an active NTR but an 

inactive Trx domain, or vice versa, recovered wild-type chloroplast phenotype, 

indicating that NTRC is capable of interacting with other chloroplast Trx systems to 

compensate a loss in activity of one of its domains in vivo (Toivola et al., 2013). 

NTRC from different plant species is characterized by a homo-dimeric structure 

which is important for its catalytic activity (Perez-Ruiz et al., 2009; Bernal-Bayard et 

al., 2012; Lee et al., 2012; Toivola et al., 2013). According to the proposed reaction 

model, electrons are transferred from the NTR domain of one subunit to the Trx 

domain of the second subunit, which subsequently reacts with target proteins (Pérez-

Ruiz and Cejudo, 2009; Lee et al., 2012). Reduction of the Trx domain is proposed to 

be accompanied by conformational alterations in the NTRC dimer, leading to 

exposition of the NTR active site which may promote the interaction of this domain 

and free Trxs (Bernal-Bayard et al., 2012; Toivola et al., 2013). Supplementation of 

the Trx domain in the NTRC homo-dimer model by different types of free Trxs 

indicated that Trx f is the most likely partner to interact with NTRC (Toivola et al., 

2013). Our BiFC results provide direct evidence in favor of this model by showing 

physical interaction between NTRC and Trx f1 in vivo (Fig. 12), while our results with 

the trxf1 ntrc double mutant indicate interaction between Trx f1 and NTRC to be of 

functional importance. This is consistent with recent studies, showing that 

overexpression of Trx f (Sanz-Barrio et al., 2013) and NTRC (Toivola et al., 2013) 

cause an unexpected increase in plant growth and biomass yield, which supports the 

view of a synergistic interaction between both thiol redox-regulators (Toivola et al., 

2013). Interestingly, interactive effects between NTRC and free Trxs have not been 

observed in in-vitro studies (Pérez-Ruiz et al., 2006; Bohrer et al., 2012). This could 

be due to NTRC forming oligomeric structures under these conditions (Wulff et al., 

2011) which may prevent its interaction with free Trxs in vitro (Toivola et al., 2013). 

 

METHODS 

 

Plant material and growth conditions 

 

Arabidopsis thaliana T-DNA insertion lines trx f1 (SALK_128365) (Thormahlen et al., 

2013), ntrc (SALK_012208) (Perez-Ruiz et al., 2006), the double mutant trxf1 ntrc, 

generated by cross breeding, and the respective Col-0 wild-types were grown for five 
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weeks on potting soil (Stender, Germany) in a growth chamber with 8 h photoperiod, 

160 µmol photons m-2 s-1, 20°C/16°C, and 60%/75% humidity (day/night), if not 

indicated otherwise in the figure legends. For rosette fresh-weight determination, 

plants were grown for the first week under the conditions indicated above, before 

they were transferred to 16 h or 24 h photoperiods for additional 3 weeks or to 4 h 

photoperiod, 30 or 950 µmol photons m-2 s-1 for additional 4 weeks using a growth 

chamber at 21°C. For all metabolite, DNA or protein extractions, leaves were shock-

frozen directly into liquid nitrogen, and subsequently homogenized to a fine powder 

using a liquid nitrogen-cooled ball mill (MM 400, Retsch GmbH, Haan, Germany). 

 

Selection and molecular characterization of the knockout lines 

 

The trxf1 ntrc mutant was selected after crossing the well-characterized homozygous 

parental lines carrying T-DNA insertions in Trx f1 (Thormahlen et al., 2013) and 

NTRC genes (Perez-Ruiz et al., 2006). The selection of a homozygous line with 

insertion in both alleles was performed by PCR analyses of genomic DNA using 

gene-specific primers for the trx f1 (At3g02730; 5`-TGTCAGTGTTGGTCAGGTGAC-

3` and 5`-AGAACCCATCCAACACACTTG-3`) and ntrc (At2g41680; 5`-

TATTGAGCAACACCAAGGGAC-3` and 5`-CATAATTCCAGCTGCTTCAGC-3`) 

genes or oligonucleotides of the T-DNA (5´-ATTTTGCCGATTTCGGAAC-3`). PCR 

products were fractionated on 1 % agarose gels, and visualized by ethidium bromide 

staining. Detection of Trx f and NTRC proteins was done by Western blot analysis 

(Laemmli, 1970) using antibodies raised against pea Trx f (Hodges et al., 1994) and 

rice NTRC (Serrato et al., 2004). To do this, frozen leaf powder was extracted with 2-

fold Laemmli buffer (Laemmli, 1970) including 20 mM DTT instead of β-

mercaptoethanol. After shaking the extract for 3 min with 90°C, each lane of the 

polyacrylamide gels was loaded with sample corresponding to 1 mg fresh weight for 

each genotype. The pea Trx-f antibody used in these experiments has been found in 

previous studies to recognize Arabidopsis Trx f1 and Trx f2 recombinant proteins with 

comparable efficiencies (Thormahlen et al., 2013). 

 

Gas exchange measurements 
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Photosynthesis-related gas exchange parameters were determined on 4 to 5 week 

old plants with the portable GFS-3000 system (Heinz Walz GmbH, Effeltrich, 

Germany). The control unit 3000-C with the measuring head 3010-S was used by 

adapting the cuvette to Arabidopsis Chamber 3010-A. The conditions within the 

cuvette were 22°C, 60% relative humidity and ambient CO2 concentrations, while the 

impeller speed was set to 7, and the flow rate to 750 µmol s-1. The monitoring of the 

light curve was started with darkened rosettes. When the CO2 and H2O system 

parameters were stabilized, the light was switched on and changed in the following 

order: 50, 100, 150, 200, 300, 400, 600, 800, 1000 µmol m-2 s-1. The parameters of 

CO2 assimilation rate, transpiration rate and intercellular CO2 mole fraction were 

calculated by the software GFS-Win V3.50b (Heinz Walz GmbH, Effeltrich, 

Germany). 

 

Chlorophyll fluorescence analysis 

 

For the in vivo chlorophyll a fluorescence measurement and the calculation of 

standard photosynthesis parameters of PSII, a Dual PAM fluorometer (Dual-PAM 

100, Walz GmbH, Effeltrich, Germany) was used as described previously 

(Thormahlen et al., 2013). 

 

Analysis of Chlorophyll content 

 

The chlorophyll level was determined photometrically as described in (Scheibe and 

Stitt, 1988). Leaf extracts were diluted in methanol and the light absorption was 

measured at 665 nm (Chl a) and 652 nm (Chl b) with an UV/VIS spectrophotometer 

(Ultrospec 3100 pro, GE Healthcare Europe GmbH, Freiburg, Germany).  

 

Enzyme-coupled analysis of metabolite levels by spectrophotometry 

 

Extraction and analysis of the pyridine nucleotides NAD, NADP, NADH and NADPH 

were performed as described previously (Lintala et al., 2014). The final detection mix 

for NAD(H) contained 100 mM Tricine/KOH (pH 9), 4 mM EDTA, 500 mM EtOH, 0.1 

mM phenazine ethosulfate (PES), 0.6 mM methylthiazolyldiphenyl-tetrazolium 

bromide (MTT), 6 U ml-1 alcohol dehydrogenase (ADH). For NADP(H) the final mix 
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consisted of 100 mM Tricine/KOH (pH 9), 4 mM EDTA, 3 mM glucose 6-phosphate, 

0.1 mM PES, 0.6 mM MTT, 6 U ml-1 G6PDH. The extraction of ATP and ADP was 

performed according to previous studies (Jelitto et al., 1992). In brief, 50 mg frozen 

leaf powder was extracted with ice-cold 16% TCA (w/v), 5 mM EGTA by vortexing 1 h 

at 4°C. After centrifugation for 10 min at 4°C with 20,000 g, the supernatant was 

shortly mixed with 4 ml ice-cold, water-saturated diethyl ether (DEE) and centrifuged 

again with 3,200 g at 4°C for 5 min. The upper ether phase was discarded to repeat 

the washing step. The pH adjustment of the remaining water phase was done with 5 

M KOH, 1 M triethanolamine or 1 M HCl until a pH of 6-7 was reached. The 

remaining DEE in the extract evaporated under the hood for 1 h on ice. Directly after 

the extraction, ATP and ADP levels were measured enzymatically as described 

previously (Stitt et al., 1989), with the exception that the change in NAD(P)H levels 

was measured by fluorescence spectroscopy in 96-well micro plates at 360 nm with a 

FilterMax F5 Multi-Mode Microplate reader (Molecular Devices, Sunnyvale, USA). 

Starch and sucrose were measured photometrically by NADPH absorption, hexose 

phosphates, FBP, triose phosphates and 3PGA by NAD(P)H fluorescence as 

described previously (Thormahlen et al., 2013). Each individual plant sample was 

measured with at least 2 analytical replicates. 

 

GC-MS analysis of polar primary metabolites 

 

GC-TOFMS-based analysis of primary metabolites was performed exactly as 

described previously (Thormahlen et al., 2013). For each biological replicate three 

analytical replicates were measured. To visualize the metabolite changes within an 

overview, we used the open source software VANTED version 2.1.0 

(http://vanted.ipk-gatersleben.de/). 

 

Immunodetection of photosynthesis and starch related proteins 

 

Proteins involved in photosynthetic electron transport (PsaA, PsaB, PsbA, PsbD, 

Lhca1, Lhcb1, PetC, Atpβ), Rubisco (RbcL) and actin were detected by Western 

blotting using specific antibodies (Agrisera, Vännäs, Sweden) according to company 

instructions. Frozen leaf powder was extracted with 2-fold Laemmli buffer (Laemmli, 

1970) including 20 mM DTT instead of β-mercaptoethanol. After shaking the extract 
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for 3 min with 90°C, each lane of the polyacrylamide gels was loaded with sample 

corresponding to 1 mg fresh weight (100%) for each genotype. Immunoblotting of 

APS1, detection and quantification of ECL signals were performed as described 

previously (Thormahlen et al., 2013). 

 

FBPase gel-shift assays 

 

For FBPase gel-shift assays proteins from leaves of wild-type and mutant plants, 

harvested at the end of the night (EN) or the day (ED), were extracted in the 

presence of 10% (v/v) trichloroacetic acid (TCA) and protein thiols were alkylated 

with 10 mM  MM(PEG)24. For the Western blot analysis, samples were subjected to 

SDS-PAGE (9.5% polyacrylamide) under non-reducing conditions, transferred onto 

nitrocellulose membranes and probed with an anti-FBPase antibody kindly provided 

by Mariam Sahrawy (Estación Experimental del Zaidín, CSIC, Granada, Spain). 

Quantification of the protein band intensities was done by using the open source 

software ImageJ version 1.49g (http://imagej.nih.gov/ij/). 

 

Enzyme activity measurements 

 

The activity of plastidial FBPase was determined as described in a previous study 

(Holaday et al., 1992). In short, 20 mg frozen leaf powder was extracted with 1 ml 

extraction buffer (10 mM MgCl2, 1 mM EDTA, 0.05 % (v/v) Triton X-100, 100 mM Tris 

(pH 8, HCl), 1 mM fructose 1,6-bisphosphate) by mixing for about 4 min, followed by 

a centrifugation step for 5 min at 18.000g at 4°C. 10 µl of the supernatant was added 

to 190 µl assay mixture in the well of 96-well microplate. The final assay contained 10 

mM MgCl2, 1 mM EDTA, 0.05 % Triton X-100, 100 mM Tris (pH8, HCl), 0.5 mM 

NADP+, 2 units ml-1 G6PDH and 4 units ml-1 PGI. For the maximal activity 

measurement, 10 mM DTT was included. To start the reaction, FBP (0.1 mM for 

initial activity and 4 mM for the maximal activity) was added, while NADPH formation 

was measured spectro-photometrical at 340 nm using a micro-plate reader (HT-3, 

Anthos Mikrosysteme GmbH, Krefeld, Germany). The activity of NADP-malate 

dehydrogenase was measured as described previously (Lintala et al., 2014). Every 

individual plant sample was measured with at least 2 analytical replicates. 
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Bimolecular fluorescence complementation (BiFC) assays  

 

For BiFC-based protein-protein interaction studies of NTRC and Trx f1 the entire 

coding region of each gene was amplified from Arabidopsis (Col-0) cDNA by PCR 

using the following primer pairs (NTRC-fwd 5´-

CACCATGGCTGCGTCTCCCAAGATAGGCATCGGTAT-3´/NTRC-rev 5`-

TTTATTGGCCTCAATGAATTCTCGGTACTCTTT-3` and Trxf1-fwd 5´-

CACCATGCCTCTTTCTCTCCGTCTTTCTCCTTCGCC-3/TRXf1-rev 5´-

TCCGGAAGCAGCAGACTTCGCTGTTTCAATCGC-3´). The PCR products were 

inserted into the pENTR-D/TOPO (Invitrogen) entry vector and were checked by 

sequencing. The resulting entry clones were subsequently recombined by using L/R-

Clonase (Invitrogen) into a modified GATEWAY-BiFC-vector set (Gehl et al., 2009) 

based on the pBAR binary vector backbone (Zakharov et al., 2004). Both NTRC and 

Trx f1 cDNAs were inserted into the vector pBAR-VYNE and the complementary 

vector pBAR-VYCE in order to generate gene fusions with either the N-terminal or 

the C-terminal sub-fragment of the yellow fluorescent protein (Venus), respectively. 

Each binary vector construct was separately transformed into Agrobacterium 

tumefaciens strain EHA105 for subsequent transient transformation of leaves of 4 

week-old Nicotiana benthamiana grown in soil under greenhouse conditions (Gehl et 

al., 2009). The BiFC induced fluorescence of YFP was monitored by Zeiss LSM 780 

confocal laser scanning microscope 48 h after co-infiltration of different BiFC-partner 

into tobacco leaves. BiFC-signals, chlorophyll autofluorescence and bright field 

images were scanned sequentially in channel mode to prevent any crosstalk between 

fluorescence channels. The lambda mode was used to confirm the spectral signature 

of the fluorophores. 

 

Promoter-GUS analysis 

 

An 875 bp fragment of the Trx f1 gene promoter was amplified from Arabidopsis (Col-

0) DNA by standard PCR method using a Phusion DNA polymerase (Thermo 

Scientific) and the following primer pair (Tf1prom-fwd 5´-

TACTGCAGGCGGTGGAGTACGATTTAGGACAAAGAA-3´/Tf1prom-rev 5´-

TAGTCGACTGTTTGAGGAATTCAACAGAGAGACGAT-3´). The PCR product was 

restricted with PstI and SalI (Thermo Scientific) and cloned into the pBAR binary 
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vector (Zakharov et al., 2004) containing the GUS-reporter expression cassette. The 

construct was transformed into cells of the Escherichia coli DH5α strain for 

amplification and subsequent sequencing of the plasmids. Purified plasmids were 

used for Agrobacterium tumefaciens mediated transformation of Arabidopsis thaliana 

(Col-0) via the floral dip method (Clough and Bent, 1998). Transformed plants were 

selected for homozygosity and assayed for GUS activity as described previously 

(Jefferson et al., 1987). GUS stained specimens were bleached in 70% (v/v) ethanol 

and either directly analyzed by stereomicroscopy (Zeiss Stereo Lumar.V12) or 

samples were cleared by mounting in Hoyer´s solution (100 g chloral hydrate, 5 ml 

glycerol in 30 ml water). Cleared specimens were imaged by differential interference 

contrast microscopy (Zeiss Axio Imager.M2).  

 

Statistical Analysis 

 

The statistical data analyses were done with Microsoft office Excel 2007 (t-test) and 

SYSTAT Sigma Plot 11 (two way analysis of variance, Tukey´s multiple comparison 

test). The student t-test was done as a two-tailed test assuming unequal or equal 

variance depending on the data (checked by performing a F-test in the beginning). If 

the paired t-test was used, because of experimental procedures, it is indicated in the 

figure legends. 
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FIGURE LEGENDS 

 

Figure 1: Molecular characterization of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants 

compared to wild-type. (A) Genotyping by PCR analysis with different primer 

combinations (wild-type or insertion) for the identification of T-DNA insertions in Trx 

f1 and NTRC genes. (B) Detection of Trx f and NTRC proteins using Western blot 

analysis. Representative Western blots are shown of measurements, which were 

performed in leaves of 5-week old plants grown in an 8h-day with 160 µmol photons 

m-2 s-1 light regime harvested 4 h into the light period. Rubisco protein level is shown 

as control. 

 

Figure 2: Growth analysis of wild-type, trxf1, ntrc and trxf1 ntrc Arabidopsis mutants 

across different light conditions. (A), (B), (E) and (F) correspond to 5 week-old plants, 

while (C) and (D) correspond to 4 week-old plants, and (G) to 7 week-old plants. In 

the first week, plants - except (G) - were grown in an 8 h-day and 160 µE regime 

before they were transferred for additional 3-4 weeks to the conditions indicated 

below: (A) 4 h-day and 160 µE, (B) 8 h-day and 160 µE, (C) 16 h-day and 160 µE, 

(D) 24 h-day and 160 µE, (E) 8 h-day and 30 µE, (F) 8 h-day and 950 µE, and (G) 16 

h-day in greenhouse. In (H), rosette fresh-weights of plants corresponding to the 

conditions shown in (A) to (F) are given as percent of wild-type levels in the 

respective conditions. Results are the mean ± SE, n = 30-86 (wild-type), 15-44 

(trxf1), 5-44 (ntrc) or 70-111 (trxf1 ntrc) different plants. All values are significantly 

different from wild-type according to the student t-test (P<0.05), except the trxf1 

mutant in 8 h-, 16 h- and 24 h-day regimes at 160 µE and in 950 µE.  µE = µmol 

photons m-2 s-1; n.d. = not detectable (fresh-weight values were below the detection 

limit) 

 

Figure 3: Changes in gas-exchange parameters in leaves of trxf1, ntrc and trxf1 ntrc 

Arabidopsis mutants compared to wild-type. (A) CO2 assimilation rate, (B) 

transpiration rate, and (C) intercellular CO2 concentration were measured at different 

light intensities in leaves from plants growing in an 8 h photoperiod with 160 µmol 

photons m-2 s-1. Results are the mean ± SE, n = 10 (wild-type) or 5 (mutants) different 

plant replicates. *: P<0.05, **: P<0.01, ***: P<0.001 (according to two-way analysis of 

variance [Anova)], Tukey test); PAR = photosynthetic active radiation 
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Figure 4: Changes in chlorophyll fluorescence parameters in leaves of trxf1, ntrc and 

trxf1 ntrc Arabidopsis mutants compared to wild-type. Plants growing in an 8 h 

photoperiod with 160 µmol photons m-2 s-1 were dark adapted for 10 min, before 

exposure of a far red light saturation pulse (5,000 µmol m-2 s-1 for 0.8 s) to single 

leaves. Afterwards the maximal chlorophyll a fluorescence was quenched by electron 

transport with an actinic red light of 166 µmol photons m-2 s-1. Within 10 min the 

steady state was reached and another saturation pulse was given. In the end, (A) the 

maximal PSII (Fv/Fm), and (B) the effective PSII (ФPSII), the non-regulated energy 

dissipation (ФNO) and the regulated energy dissipation (ФNPQ) quantum yields were 

calculated. Results are means ± SE, n = 11 different plants.  

*: P<0.05, **: P<0.01, ***: P<0.001 (according to student t-test); a. u. = arbitrary unit 

 

Figure 5: Changes in the levels of proteins involved in photosynthetic electron 

transport and ATP synthesis in leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants 

compared to wild-type. PsaA, PsaB, PsbA, PsbD, PetC, Lhca1, Lhcb1 and Atpß 

proteins were detected using specific antibodies. Representative Western blots are 

shown from 5-week old plants growing in an 8h-day with 160 µmol photons m-2 s-1 

light regime harvested 4 h into the light period. Actin protein level is shown as control. 

 

Figure 6: Changes in nucleotide levels in leaves of trxf1, ntrc and trxf1 ntrc 

Arabidopsis mutants compared to wild-type. (A) Sum of NADPH and NADP, (B) 

NADPH/NADP ratio, (C) sum of NADH and NAD, (D) NADH/NAD ratio, (E) sum of 

ATP and ADP, and (F) ATP/ADP ratio were measured in leaves harvested at the end 

of day and end of night. Results are means ± SE, n = 20-30 (wild-type) or 10-15 

(mutants) different plant replicates. Plants were grown in an 8 h photoperiod with 160 

µmol photons m-2 s-1. *: P<0.05, **: P<0.01, ***: P<0.001, according to student (A) to 

(D) or paired (E) to (F) t-test 

 

Figure 7: Light-dependent redox activation of fructose-1,6-bisphosphatase (FBPase) 

in leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants compared to wild-type. (A) 

and (B) show the thiol-disulfide reduction state of chloroplast FBPase in leaves 

harvested at the end of night (EN) and end of day (ED) analyzed by using gel-shift 
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assays: (A) Representative gel-shift blot using an antibody specific for chloroplast 

FBPase, and (B) calculated ratio of reduced to oxidized FBPase. (C) Corresponding 

initial enzyme activity of FBPase (assay without DTT) in leaves harvested at the end 

of night (EN) and end of day (ED). (D) to (F) Transient light activation of FBPase 

during a detailed time course. At the end of the night (0 min), plants were illuminated 

for different time-periods (2, 5, 10, 20 and 30 min) to measure FBPase activity using 

different assay conditions: (D) Initial activity without DTT additions in the assay, (E) 

maximal activity with 10 mM DTT included in the assay, and (F) redox-activation 

state (initial/maximal activity*100). Results are means ± SE, n = 8 (wild-type) or 4 

(mutants) different plant replicates (B), n = 20 (wild-type) or 10 (mutants) different 

plant replicates (C), and n = 8 (wild-type) or 4 (mutants) different plant replicates (D) 

to (F). All plants were grown in an 8 h photoperiod with 160 µmol photons m-2 s-1.      

*: P<0.05, **: P<0.01, ***: P<0.001, according to paired t-test (B) and (C) or two-way 

analysis of variance [Anova] Tukey test (D) to (F) 

 

Figure 8: Light-dependent redox activation of NADP-dependent malate 

dehydrogenase (MDH) in leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants 

compared to wild-type. (A) Initial activity without DTT additions in the assay, (B) 

maximal activity with 10 mM DTT included in the assay, (C) redox-activation state 

(initial/maximal activity*100). Leaves were sampled at the end of night and end of 

day. Results are means ± SE, n = 24 (wild-type) or 12 (mutants) different plant 

replicates. Plants were grown in an 8 h photoperiod with 160 µmol photons m-2 s-1.   

*: P<0.05, **: P<0.01, ***: P<0.001 (according to student t-test) 

 

Figure 9: Changes in the accumulation of starch and sucrose and in the thiol-

disulfide reduction state of ADP-glucose pyrophosphorylase (AGPase) in leaves of 

trxf1, ntrc and trxf1 ntrc Arabidopsis mutants compared to wild-type. (A) Starch level, 

(B) sucrose level, (C) starch/sucrose ratio, and (D) APS1 monomerisation 

(representative Western-blot) were measured in leaves sampled at the end of night 

(EN) and end of day (ED). Results for (A) to (C) are means ± SE, n = 8 (wild-type) or 

4 (mutants) different plant replicates growing in an 8 h photoperiod with 160 µmol 

photons m-2 s-1. *: P<0.05, **: P<0.01, ***: P<0.001 (according to student t-test); 

APS1 = small subunit of AGPase 
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Figure 10: Changes in the in-vivo levels of phosphorylated intermediates in leaves of 

trxf1, ntrc and trxf1 ntrc Arabidopsis mutants compared to wild-type. (A) 3-

phosphoglycerate (3PGA) level, (B) fructose-1,6-bisphosphate (FBP) level, (C) 

fructose-6-phosphate (F6P) level, (D) F6P/FBP ratio, (E) glucose-6-phosphate (G6P) 

level, and (F) glucose-1-phosphate (G1P) level were measured in leaves sampled at 

the end of the night and end of the day. Results are means ± SE, n = 30 (wild-type) or 

15 (mutants) different plant replicates growing in an 8 h photoperiod with 160 µmol 

photons m-2 s-1. *: P<0.05, **: P<0.01, ***: P<0.001 (according to student t-test);     

n.d. = not detectable (values were below the detection limit) 

 

Figure 11: Overview of changes in metabolite profiles from leaves of trxf1, ntrc and 

trxf1 ntrc Arabidopsis mutants compared to wild-type. Results from leaves sampled at 

the end of day (A) and end of night (B) are visualized using Vanted diagrams. 

Metabolite levels which are significantly different from wild-type according to the 

student t-test (P<0.05) are indicated in blue (increase) or red (decrease) color, while 

black color indicates no significant difference from wild-type. The order of the squares 

from left to right is trxf1, ntrc and trxf1 ntrc mutants being in first, second and third 

position, respectively. Data are taken from Supplemental Tables S4 – S7.  

 

Figure 12: Visualization of protein-protein interactions of NTRC and Trx f1 in 

Nicotiana benthamiana chloroplasts by the BiFC assay. Confocal microscopy picture 

series present transiently transformed leaf mesophyll cells expressing combinations 

of the fusion proteins as indicated. Single pictures represent from left to right images 

of the yellow YFP fluorescence representing the BiFC-signal, the red 

autofluorescence of chlorophyll, the merge of both fluorescence signals illustrating 

the overlay of chlorophyll fluorescence and the BiFC-signal, and the bright field 

channel. No YFP-specific fluorescence signal was detectable in cells expressing 

fusion proteins separately (negative controls). Pictures were monitored in the channel 

mode with identical microscope settings. Bars = 10 µm 

 

SUPPLEMENTAL FIGURES 

 

Suppl. Figure S1: Changes in chlorophyll content in leaves of trxf1, ntrc and trxf1 

ntrc Arabidopsis mutants compared to wild-type. Results are the mean ± SE, n = 24 
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(wild-type) or 12 (mutants) different plant replicates growing in an 8 h photoperiod 

with 160 µmol photons m-2 s-1. *: P<0.05, **: P<0.01, ***: P<0.001 (according to 

student t-test) 

 

Suppl. Figure S2: Histochemical localization of GUS expression in Arabidopsis 

plants transformed with a Trxf1pro-GUS reporter gene. GUS staining of 10-day-old 

seedlings grown in a 16 h photoperiod (A) to (D), and of 6-week-old plants having 

flowered and begun to set seed (E) to (I).  GUS staining is shown in emerging leaves 

(A) and (B), roots (C), hypocotyl (D), silique petiol (E), silique (F), flower (G), sepal 

(H) and stigma (I). No GUS staining was observed in trichomes (B). The following 

microscopic techniques were used: (A), (E) and (F) Stereomicroscopy, (B), (C), (D), 

(G), (H) and (I) differential interference contrast microscopy, and (G) and (H) single 

image merge. Bars = 1000 µm in (A), (E), (F), (G) and (H), and 100 µm in (B), (C), 

(D) and (I). 

 

SUPPLEMENTAL TABLES 

 

Suppl. Table S1: Statistical analysis for rosette fresh weights of trxf1, ntrc and trxf1 

ntrc Arabidopsis mutants growing in different light conditions, compared to wild-type. 

Values are based on the data presented in Figure 2H. Significantly different values 

from wild-type according to the student t-test are indicated in bold (P<0.05). n.d. = not 

detectable. 

 

Suppl. Table S2: Statistical analysis for gas exchange parameters of trxf1, ntrc and 

trxf1 ntrc Arabidopsis mutants dependent on different light intensities, compared to 

wild-type. Values are based on the data presented in Figure 3. Significantly different 

values from wild-type according to the student t-test (P<0.05) are indicated in bold. 

PAR = photosynthetic active radiation. 

 

Suppl. Table S3: Statistical analysis for the time course of fructose-1-6-

bisphosphatase light activation in leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis 

mutants, compared to wild-type. Values are based on the data presented in Figure 

7D-F. Significantly different values from wild-type according to the student t-test 

(P<0.05) are indicated in bold. 
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Suppl. Table S4: Changes in GC-MS based metabolite profiles in leaves of trxf1, 

ntrc and trxf1 ntrc Arabidopsis mutants compared to wild-type. Leaves were sampled 

at the end of the day. Results are means ± SD, n = 12. Values which are significantly 

different from wild-type according to the student t-test (P<0.05) are indicated in bold 

(see also Figure 11A). 

 

Suppl. Table S5: Changes in GC-MS based metabolite profiles in leaves of trxf1, 

ntrc and trxf1 ntrc Arabidopsis mutants compared to wild-type. Leaves were sampled 

at the end of the night. Results are means ± SD, n = 12. Values which are 

significantly different from wild-type according to the student t-test (P<0.05) are 

indicated in bold (see also Figure 11B). 

 

Suppl. Table S6: Changes in the levels of phosphorylated intermediates and starch 

in leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants compared to wild-type, 

based on spectrophotometric measurements. Leaves were sampled at the end of the 

day. Results are normalized to wild-type level and represent means ± SE, n = 8-30 

(wild-type) or 4-15 (mutants). Values which are significantly different from wild-type 

according to the student t-test (P<0.05) are indicated in bold (see Figure 11A).  

 

Suppl. Table S7: Changes in the levels of phosphorylated intermediates and starch 

in leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants compared to wild-type, 

based on spectrophotometric measurements. Leaves were sampled at the end of the 

night. Results are normalized to wild-type level and represent means ± SE, n = 8-30 

(wild-type) or 4-15 (mutants). Values which are significantly different from wild-type 

according to the student t-test (P<0.05) are indicated in bold (see also Figure 11B). 

n.d. = not detectable. 
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Figure 1: Molecular characterization of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants compared to wild-type. (A) Genotyping

by PCR analysis with different primer combinations (wild-type or insertion) for the identification of T-DNA insertions in Trx f1

and NTRC genes. (B) Detection of Trx f and NTRC proteins using Western blot analysis. Representative Western blots are

shown of measurements, which were performed in leaves of 5-week old plants grown in an 8h-day with 160 µmol photons

m-2 s-1 light regime harvested 4 h into the light period. Rubisco protein level is shown as control.
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Figure 2: Growth analysis of wild-type, trxf1, ntrc and trxf1 ntrc Arabidopsis mutants across different light conditions. (A), (B),
(E) and (F) correspond to 5 week-old plants, while (C) and (D) correspond to 4 week-old plants, and (G) to 7 week-old plants.
In the first week, plants - except (G) - were grown in an 8 h-day and 160 µE regime before they were transferred for additional
3-4 weeks to the conditions indicated below: (A) 4 h-day and 160 µE, (B) 8 h-day and 160 µE, (C) 16 h-day and 160 µE, (D)
24 h-day and 160 µE, (E) 8 h-day and 30 µE, (F) 8 h-day and 950 µE, and (G) 16 h-day in greenhouse. In (H), rosette fresh-
weights of plants corresponding to the conditions shown in (A) to (F) are given as percent of wild-type levels in the respective
conditions. Results are the mean ± SE, n = 30-86 (wild-type), 15-44 (trxf1), 5-44 (ntrc) or 70-111 (trxf1 ntrc) different plants. All
values are significantly different from wild-type according to the student t-test (P<0.05), except the trxf1 mutant in 8 h-, 16 h-
and 24 h-day regimes at 160 µE and in 950 µE. µE = µmol photons m-2 s-1; n.d. = not detectable (fresh-weight values were
below the detection limit)









Figure 6: Changes in nucleotide levels in leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants compared to wild-type. (A)

Sum of NADPH and NADP, (B) NADPH/NADP ratio, (C) sum of NADH and NAD, (D) NADH/NAD ratio, (E) sum of ATP and

ADP, and (F) ATP/ADP ratio were measured in leaves harvested at the end of day and end of night. Results are means ± SE,

n = 20-30 (wild-type) or 10-15 (mutants) different plant replicates. Plants were grown in an 8 h photoperiod with 160 µmol

photons m-2 s-1. *: P<0.05, **: P<0.01, ***: P<0.001, according to student (A) to (D) or paired (E) to (F) t-test





Figure 7: Light-dependent redox activation of fructose-1,6-bisphosphatase (FBPase) in leaves of trxf1, ntrc and

trxf1 ntrc Arabidopsis mutants compared to wild-type. (A) and (B) show the thiol-disulfide reduction state of

chloroplast FBPase in leaves harvested at the end of night (EN) and end of day (ED) analyzed by using gel-shift

assays: (A) Representative gel-shift blot using an antibody specific for chloroplast FBPase, and (B) calculated ratio

of reduced to oxidized FBPase. (C) Corresponding initial enzyme activity of FBPase (assay without DTT) in leaves

harvested at the end of night (EN) and end of day (ED). (D) to (F) Transient light activation of FBPase during a

detailed time course. At the end of the night (0 min), plants were illuminated for different time-periods (2, 5, 10, 20

and 30 min) to measure FBPase activity using different assay conditions: (D) Initial activity without DTT additions in

the assay, (E) maximal activity with 10 mM DTT included in the assay, and (F) redox-activation state (initial/maximal

activity*100). Results are means ± SE, n = 8 (wild-type) or 4 (mutants) different plant replicates (B), n = 20 (wild-

type) or 10 (mutants) different plant replicates (C), and n = 8 (wild-type) or 4 (mutants) different plant replicates (D)

to (F). All plants were grown in an 8 h photoperiod with 160 µmol photons m-2 s-1. *: P<0.05, **: P<0.01, ***:

P<0.001, according to paired t-test (B) and (C) or two-way analysis of variance [Anova] Tukey test (D) to (F)



Figure 8: Light-dependent redox activation of NADP-dependent

malate dehydrogenase (MDH) in leaves of trxf1, ntrc and trxf1

ntrc Arabidopsis mutants compared to wild-type. (A) Initial

activity without DTT additions in the assay, (B) maximal activity

with 10 mM DTT included in the assay, (C) redox-activation state

(initial/maximal activity*100). Leaves were sampled at the end of

night and end of day. Results are means ± SE, n = 24 (wild-type)

or 12 (mutants) different plant replicates. Plants were grown in

an 8 h photoperiod with 160 µmol photons m-2 s-1. *: P<0.05, **:

P<0.01, ***: P<0.001 (according to student t-test)



Figure 9: Changes in the accumulation of starch and sucrose and in the thiol-disulfide reduction state of ADP-

glucose pyrophosphorylase (AGPase) in leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants compared to wild-

type. (A) Starch level, (B) sucrose level, (C) starch/sucrose ratio, and (D) APS1 monomerisation (representative

Western-blot) were measured in leaves sampled at the end of night (EN) and end of day (ED). Results for (A) to (C)

are means ± SE, n = 8 (wild-type) or 4 (mutants) different plant replicates growing in an 8 h photoperiod with 160 µmol

photons m-2 s-1. *: P<0.05, **: P<0.01, ***: P<0.001 (according to student t-test); APS1 = small subunit of AGPase



Figure 10: Changes in the in-vivo levels of phosphorylated intermediates in leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis

mutants compared to wild-type. (A) 3-phosphoglycerate (3PGA) level, (B) fructose-1,6-bisphosphate (FBP) level, (C)

fructose-6-phosphate (F6P) level, (D) F6P/FBP ratio, (E) glucose-6-phosphate (G6P) level, and (F) glucose-1-phosphate

(G1P) level were measured in leaves sampled at the end of the night and end of the day. Results are means ± SE, n = 30

(wild-type) or 15 (mutants) different plant replicates growing in an 8 h photoperiod with 160 µmol photons m-2 s-1. *: P<0.05,

**: P<0.01, ***: P<0.001 (according to student t-test); n.d. = not detectable (values were below the detection limit)
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Figure 11: Overview of changes in metabolite profiles from leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis

mutants compared to wild-type. Results from leaves sampled at the end of day (A) and end of night (B)

are visualized using Vanted diagrams. Metabolite levels which are significantly different from wild-type

according to the student t-test (P<0.05) are indicated in blue (increase) or red (decrease) color, while

black color indicates no significant difference from wild-type. The order of the squares from left to right is

trxf1, ntrc and trxf1 ntrc mutants being in first, second and third position, respectively. Data are taken

from Supplemental Tables S4 – S7.
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Figure 12: Visualization of protein-protein interactions of NTRC and Trx f1 in Nicotiana benthamiana chloroplasts by the BiFC assay.

Confocal microscopy picture series present transiently transformed leaf mesophyll cells expressing combinations of the fusion proteins

as indicated. Single pictures represent from left to right images of the yellow YFP fluorescence representing the BiFC-signal, the red

autofluorescence of chlorophyll, the merge of both fluorescence signals illustrating the overlay of chlorophyll fluorescence and the

BiFC-signal, and the bright field channel. No YFP-specific fluorescence signal was detectable in cells expressing fusion proteins

separately (negative controls). Pictures were monitored in the channel mode with identical microscope settings. Bars = 10 µm



Suppl. Figure S1: Changes in chlorophyll content in leaves of trxf1, ntrc and trxf1 ntrc

Arabidopsis mutants compared to wild-type. Results are the mean ± SE, n = 24 (wild-

type) or 12 (mutants) different plant replicates growing in an 8 h photoperiod with 160

µmol photons m-2 s-1. *: P<0.05, **: P<0.01, ***: P<0.001 (according to student t-test)
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Suppl. Figure S2: Histochemical localization of GUS expression in Arabidopsis plants 

transformed with a Trxf1pro-GUS reporter gene. GUS staining of 10-day-old seedlings 

grown in a 16 h photoperiod (A) to (D), and of 6-week-old plants having flowered and 

begun to set seed (E) to (I).  GUS staining is shown in emerging leaves (A) and (B), 

roots (C), hypocotyl (D), silique petiol (E), silique (F), flower (G), sepal (H) and stigma 

(I). No GUS staining was observed in trichomes (B). The following microscopic 

techniques were used: (A), (E) and (F) Stereomicroscopy, (B), (C), (D), (G), (H) and 

(I) differential interference contrast microscopy, and (G) and (H) single image merge.

Bars = 1000 µm in (A), (E), (F), (G) and (H), and 100 µm in (B), (C), (D) and (I). 



Suppl. Table S1: 

Statistical analysis for rosette fresh weights of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants growing in different light conditions, compared to 
wild‐type. Values are based on  the data presented  in Figure 2H. Significantly different values  from wild‐type according  to  the student  t‐test 
(P<0.05) are indicated in bold. n.d. = not detectable. 

 

 



Suppl. Table S2: 

Statistical analysis for gas exchange parameters of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants dependent on different  light  intensities, compared to wild‐
type. Values are based on the data presented in Figure 3. Significantly different values from wild‐type according to the student t‐test (P<0.05) are indicated in 
bold. PAR = photosynthetically active radiation. 

 

 

 



Suppl. Table S3:  

Statistical  analysis  for  the  time  course  of  fructose‐1,6‐bisphosphatase  light  activation  in  leaves  of  trxf1,  ntrc  and  trxf1  ntrc  Arabidopsis mutants, 
compared to wild‐type. Values are based on the data presented in Figure 7D‐F. Significantly different values from wild‐type according to the student t‐
test (P<0.05) are indicated in bold.  

 

 

 



Suppl. Table S4: 

Changes  in GC‐MS based metabolite profiles  in  leaves of trxf1, ntrc and  trxf1 ntrc Arabidopsis mutants compared to wild‐type. Leaves 
were sampled at the end of the day. Results are means ± SD, n = 12. Values which are significantly different from wild type according to 
the student t‐test (P<0.05) are indicated in bold (see also Figure 11A). 

Metabolites WT  trx f1 P‐value ntrc P‐value trxf1 ntrc P‐value

Sugars 

Fructose  1.00 ± 0.57  2.03 ± 0.69 0.001 1.15 ± 0.37 0.445 0.83 ± 0.22 0.360

Glucose  1.00 ± 0.63  1.43 ± 0.63 0.109 0.39 ± 0.08 0.006 0.45 ± 0.24 0.014

Maltose  1.00 ± 0.26  1.03 ± 0.20 0.725 1.65 ± 0.69 0.008 3.13 ± 1.34 <0.001

Raffinose  1.00 ± 0.35  1.93 ± 1.13 0.017 0.25 ± 0.07 <0.001 0.55 ± 0.64 0.045

Ribose  1.00 ± 0.08  1.15 ± 0.18 0.016 1.55 ± 0.51 0.003 2.64 ± 1.14 <0.001

Sucrose  1.00 ± 0.07  1.11 ± 0.10 0.004 0.86 ± 0.14 0.007 0.89 ± 0.07 0.001

Trehalose  1.00 ± 0.49  1.38 ± 0.23 0.028 1.20 ± 0.44 0.304 1.88 ± 0.75 0.003

Phosphate ester 

Glycerol‐3‐phosphate 1.00 ± 0.27  1.14 ± 0.17 0.143 1.22 ± 0.47 0.174 1.85 ± 1.02 0.016

Phosphoenolpyruvate 1.00 ± 0.18  1.02 ± 0.20 0.805 1.35 ± 0.68 0.112 1.85 ± 0.53 <0.001

Organic acids 

Aconitate (cis)  1.00 ± 0.29  0.99 ± 0.32 0.956 0.84 ± 0.12 0.086 1.05 ± 0.36 0.711

Benzoate  1.00 ± 0.24  1.14 ± 0.32 0.257 1.33 ± 0.58 0.096 1.61 ± 0.29 <0.001

caffeate (cis)  1.00 ± 0.10  0.98 ± 0.10 0.593 1.09 ± 0.40 0.486 1.33 ± 0.93 0.247

caffeate (trans) 1.00 ± 0.36  1.03 ± 0.26 0.871 0.92 ± 0.20 0.594 1.10 ± 0.26 0.530

3‐caffeoyl‐quinate (cis) 1.00 ± 0.10  1.06 ± 0.16 0.306 0.88 ± 0.15 0.033 0.91 ± 0.18 0.138

3‐caffeoyl‐quinate (trans) 1.00 ± 0.22  1.23 ± 0.41 0.112 0.59 ± 0.12 <0.001 0.74 ± 0.19 0.005

Citrate  1.00 ± 0.19  1.09 ± 0.14 0.202 0.69 ± 0.24 0.002 0.51 ± 0.38 0.001



Fumarate  1.00 ± 0.17  1.05 ± 0.10 0.404 0.80 ± 0.19 0.011 0.70 ± 0.22 0.001

Galactonate  1.00 ± 0.12  0.95 ± 0.06 0.268 0.88 ± 0.11 0.015 0.91 ± 0.06 0.029

Glycerate  1.00 ± 0.04  0.61 ± 0.07 <0.001 0.36 ± 0.18 <0.001 0.33 ± 0.44 <0.001

Gulonate  1.00 ± 0.19  1.28 ± 0.19 0.002 1.28 ± 0.38 0.033 1.42 ± 0.36 0.002

Malate  1.00 ± 0.12  1.22 ± 0.19 0.003 1.00 ± 0.24 0.955 0.69 ± 0.28 0.003

Maleate  1.00 ± 0.51  0.85 ± 0.35 0.395 0.94 ± 0.36 0.726 1.51 ± 0.74 0.065

2‐methyl‐malate 1.00 ± 0.09  0.93 ± 0.17 0.206 0.63 ± 0.18 <0.001 0.61 ± 0.21 <0.001

2‐oxo‐glutarate 1.00 ± 0.18  0.92 ± 0.21 0.311 0.66 ± 0.12 <0.001 0.83 ± 0.36 0.281

Pyruvate  1.00 ± 0.35  0.79 ± 0.18 0.079 0.85 ± 0.23 0.225 1.02 ± 0.23 0.853

Shikimate  1.00 ± 0.08  1.11 ± 0.23 0.160 0.52 ± 0.12 <0.001 0.51 ± 0.32 <0.001

sinapate (cis)  1.00 ± 0.16  0.95 ± 0.16 0.485 0.97 ± 0.13 0.573 1.07 ± 0.19 0.370

sinapate (trans) 1.00 ± 0.22  0.91 ± 0.17 0.290 1.00 ± 0.22 0.987 1.29 ± 0.40 0.040

Succinate  1.00 ± 0.16  0.80 ± 0.12 0.002 0.57 ± 0.15 <0.001 0.58 ± 0.35 0.002

Threonate  1.00 ± 0.12  0.95 ± 0.18 0.416 0.62 ± 0.05 <0.001 0.64 ± 0.14 <0.001

Amino acids 

Alanine  1.00 ± 0.22  1.12 ± 0.37 0.357 1.07 ± 0.36 0.567 1.36 ± 0.48 0.032

Aspartate  1.00 ± 0.21  1.08 ± 0.33 0.496 1.24 ± 0.62 0.226 1.75 ± 0.60 0.001

Asparagine  1.00 ± 0.23  1.10 ± 0.17 0.368 1.21 ± 0.67 0.359 1.95 ± 0.48 <0.001

Glutamate  1.00 ± 0.27  1.03 ± 0.27 0.797 0.85 ± 0.26 0.179 1.05 ± 0.33 0.676

Glycine  1.00 ± 0.13  1.24 ± 0.38 0.055 0.45 ± 0.17 <0.001 0.43 ± 0.31 <0.001

4‐hydroxy‐proline (cis) 1.00 ± 0.28  0.77 ± 0.37 0.100 0.38 ± 0.05 0.000 0.85 ± 0.26 0.300

Isoleucine  1.00 ± 0.20  1.16 ± 0.30 0.136 1.48 ± 0.90 0.093 2.30 ± 1.16 0.003

Leucine  1.00 ± 0.172 1.23 ± 0.19 0.007 1.40 ± 0.46 0.018 1.96 ± 1.00 0.007

Methionine  1.00 ± 0.20  1.08 ± 0.31 0.470 1.12 ± 0.25 0.219 1.37 ± 0.44 0.018



Phenylalanine  1.00 ± 0.28  1.21 ± 0.25 0.073 3.16 ± 4.21 0.104 6.74 ± 4.27 0.001

Proline  1.00 ± 0.42  1.58 ± 0.90 0.059 2.30 ± 2.91 0.153 7.16 ± 5.63 0.003

Pyroglutamate 1.00 ± 0.33  1.22 ± 0.20 0.066 1.14 ± 0.38 0.356 1.59 ± 0.51 0.003

Serine  1.00 ± 0.36  0.75 ± 0.32 0.086 0.50 ± 0.19 <0.001 0.57 ± 0.19 0.001

Threonine  1.00 ± 0.21  1.06 ± 0.40 0.672 1.03 ± 0.39 0.845 1.19 ± 0.25 0.059

Valine  1.00 ± 0.15  1.12 ± 0.36 0.313 1.21 ± 0.71 0.339 2.16 ± 1.16 0.005

Sugar alcohols 

Erythritol  1.00 ± 0.14  1.34 ± 0.20 0.003 2.63 ± 2.82 0.072 7.40 ± 3.30 <0.001

Glycerol  1.00 ± 0.14  0.99 ± 0.19 0.918 1.09 ± 0.29 0.328 1.41 ± 0.33 0.001

Mannitol  1.00 ± 0.20  1.04 ± 0.30 0.738 2.91 ± 3.02 0.051 8.07 ± 5.35 0.001

myo‐inositol  1.00 ± 0.16  1.19 ± 0.41 0.164 0.44 ± 0.16 <0.001 0.42 ± 0.36 <0.001

Sorbitol  1.00 ± 0.09  0.87 ± 0.11 0.007 1.04 ± 0.15 0.449 1.24 ± 0.34 0.034

Others 

4‐amino‐butanoate 1.00 ± 0.16  1.67 ± 1.31 0.105 1.17 ± 0.84 0.542 4.92 ± 2.95 0.001

Ascorbate  1.00 ± 0.52  3.40 ± 2.32 0.004 4.22 ± 2.19 <0.001 1.02 ± 0.60 0.947

Dehydroascorbate 1.00 ± 0.20  1.44 ± 0.45 0.011 1.70 ± 0.64 0.003 1.76 ± 0.28 <0.001

Ethanolamine  1.00 ± 0.26  0.59 ± 0.14 <0.001 0.53 ± 0.17 <0.001 1.00 ± 0.13 0.968

Phosphate  1.00 ± 0.13  1.02 ± 0.16 0.793 0.99 ± 0.18 0.847 1.07 ± 0.21 0.337

Putrescine  1.00 ± 0.29  1.06 ± 0.40 0.658 1.28 ± 0.52 0.124 2.02 ± 1.10 0.009

Spermidine  1.00 ± 0.67  1.13 ± 0.56 0.636 0.77 ± 0.47 0.355 0.74 ± 0.35 0.267

Uracil  1.00 ± 0.62  0.92 ± 0.48 0.763 1.24 ± 0.67 0.407 3.42 ± 3.29 0.028

 

 



Suppl. Table S5:  

Changes  in GC‐MS based metabolite profiles  in  leaves of trxf1, ntrc and  trxf1 ntrc Arabidopsis mutants compared to wild‐type. Leaves 
were sampled at the end of the night. Results are means ± SD, n = 12. Values which are significantly different from wild type according to 
the student t‐test (P<0.05) are indicated in bold (see also Figure 11B). 

Metabolites  WT  trx f1 P‐value ntrc P‐value trxf1 ntrc P‐value

Sugars 

Arabinose  1.00 ± 0.09  0.98 ± 0.08 0.549 0.95 ± 0.03 0.100 0.70 ± 0.04 <0.001

Fructose  1.00 ± 0.34  0.38 ± 0.04 <0.001 1.14 ± 0.46 0.397 1.14 ± 0.68 0.535

Galactose  1.00 ± 0.33  0.56 ± 0.15 <0.001 0.31 ± 0.10 <0.001 0.39 ± 0.13 <0.001

Glucose  1.00 ± 0.38  0.35 ± 0.04 <0.001 0.20 ± 0.04 <0.001 0.34 ± 0.12 <0.001

Glucose (beta‐1,6‐anhydro)  1.00 ± 0.19  0.83 ± 0.16 0.025 0.80 ± 0.16 0.011 1.15 ± 0.21 0.085

Maltose  1.00 ± 0.09  0.73 ± 0.07 <0.001 0.51 ± 0.04 <0.001 0.19 ± 0.03 <0.001

Mannose  1.00 ± 0.32  0.94 ± 0.19 0.615 0.81 ± 0.14 0.079 0.99 ± 0.17 0.905

Psicose  1.00 ± 0.05  1.09 ± 0.06 <0.001 0.99 ± 0.08 0.733 1.02 ± 0.04 0.230

Ribose  1.00 ± 0.17  1.04 ± 0.11 0.464 1.17 ± 0.11 0.011 2.71 ± 0.45 <0.001

Sucrose  1.00 ± 0.03  0.82 ± 0.09 <0.001 0.53 ± 0.04 <0.001 0.46 ± 0.04 <0.001

Trehalose  1.00 ± 0.28  1.11 ± 0.19 0.283 0.86 ± 0.21 0.168 1.08 ± 0.14 0.386

Xylose  1.00 ± 0.18  0.88 ± 0.10 0.055 0.84 ± 0.11 0.014 1.11 ± 0.17 0.124

Organic acids 

Citrate  1.00 ± 0.26  1.53 ± 0.23 <0.001 0.99 ± 0.25 0.924 1.23 ± 0.26 0.036

Fumarate  1.00 ± 0.20  0.92 ± 0.11 0.256 0.89 ± 0.09 0.107 0.59 ± 0.06 <0.001

Glycerate  1.00 ± 0.13  1.13 ± 0.09 0.011 0.90 ± 0.18 0.120 0.70 ± 0.09 <0.001

Hexadecanoate 1.00 ± 0.55  0.58 ± 0.22 0.026 0.54 ± 0.17 0.016 0.57 ± 0.18 0.022



Malate  1.00 ± 0.22  1.06 ± 0.12 0.437 1.12 ± 0.25 0.216 1.54 ± 0.15 <0.001

Maleate  1.00 ± 0.14  1.00 ± 0.16 0.985 1.10 ± 0.20 0.167 1.87 ± 0.22 <0.001

Octadecanoate 1.00 ± 0.62  0.69 ± 0.29 0.134 0.65 ± 0.23 0.088 0.70 ± 0.25 0.134

Pyroglutamate 1.00 ± 0.19  1.05 ± 0.13 0.435 1.66 ± 0.14 <0.001 2.04 ± 0.14 <0.001

Pyruvate  1.00 ± 0.29  0.75 ± 0.18 0.018 0.68 ± 0.18 0.003 0.71 ± 0.19 0.007

Shikimate  1.00 ± 0.07  1.17 ± 0.11 <0.001 0.87 ± 0.09 <0.001 0.69 ± 0.07 <0.001

Sinapate (cis)  1.00 ± 0.11  1.00 ± 0.16 0.991 1.00 ± 0.06 0.993 1.45 ± 0.10 <0.001

Sinapate (trans) 1.00 ± 0.14  1.11 ± 0.09 0.028 1.14 ± 0.11 0.015 1.68 ± 0.14 <0.001

Succinate  1.00 ± 0.14  0.82 ± 0.10 0.002 0.86 ± 0.12 0.018 0.59 ± 0.06 <0.001

Threonate  1.00 ± 0.11  1.24 ± 0.12 <0.001 1.42 ± 0.45 0.009 0.94 ± 0.15 0.310

Amino acids 

Alanine  1.00 ± 0.13  1.25 ± 0.11 <0.001 1.64 ± 0.15 <0.001 3.03 ± 0.19 <0.001

Arginine  1.00 ± 0.25  1.22 ± 0.29 0.057 1.27 ± 0.32 0.031 7.53 ± 3.62 <0.001

Asparagine  1.00 ± 0.43  1.02 ± 0.28 0.881 2.41 ± 1.65 0.014 43.70 ± 9.51 <0.001

Aspartate  1.00 ± 0.48  0.93 ± 0.36 0.686 0.77 ± 0.51 0.272 1.14 ± 0.62 0.543

Glutamate  1.00 ± 0.30  1.40 ± 0.18 <0.001 1.48 ± 0.24 <0.001 1.88 ± 0.12 <0.001

Glycine  1.00 ± 0.43  0.67 ± 0.13 0.027 0.42 ± 0.06 <0.001 0.77 ± 0.26 0.134

Isoleucine  1.00 ± 0.15  1.04 ± 0.29 0.665 1.15 ± 0.30 0.141 3.98 ± 0.54 <0.001

Leucine  1.00 ± 0.16  0.99 ± 0.40 0.952 1.05 ± 0.51 0.731 3.28 ± 0.52 <0.001

Lysine  1.00 ± 0.25  1.14 ± 0.28 0.215 1.52 ± 0.76 0.034 10.21 ± 3.01 <0.001

Phenylalanine  1.00 ± 0.33  1.36 ± 0.37 0.019 0.82 ± 0.22 0.135 10.28 ± 1.84 <0.001

Proline  1.00 ± 0.44  0.80 ± 0.33 0.225 0.49 ± 0.18 0.002 2.36 ± 0.38 <0.001

Serine  1.00 ± 0.27  1.05 ± 0.16 0.547 1.25 ± 0.14 0.010 2.33 ± 0.28 <0.001

Threonine  1.00 ± 0.20  1.07 ± 0.08 0.314 1.13 ± 0.14 0.087 1.99 ± 0.16 <0.001



Valine  1.00 ± 0.19  1.04 ± 0.17 0.578 1.13 ± 0.22 0.124 2.59 ± 0.24 <0.001

Sugar alcohols 

Erythritol  1.00 ± 0.19  1.12 ± 0.07 0.051 1.63 ± 0.23 <0.001 5.96 ± 0.77 <0.001

Glycerol  1.00 ± 0.13  1.12 ± 0.18 0.081 0.99 ± 0.14 0.870 1.33 ± 0.16 <0.001

Inositol (myo)  1.00 ± 0.11  1.00 ± 0.07 0.985 0.47 ± 0.06 <0.001 0.19 ± 0.03 <0.001

Mannitol  1.00 ± 0.64  0.74 ± 0.19 0.200 2.90 ± 0.90 <0.001 18.26 ± 6.04 <0.001

Sorbitol  1.00 ± 0.07  0.90 ± 0.06 0.001 0.96 ± 0.09 0.192 1.37 ± 0.07 <0.001

Others 

Ascorbate  1.00 ± 0.68  0.66 ± 0.25 0.126 0.87 ± 0.81 0.680 1.03 ± 0.32 0.895

Dehydroascorbate 1.00 ± 0.25  0.86 ± 0.11 0.087 0.82 ± 0.23 0.083 1.14 ± 0.29 0.228

Ethanolamine  1.00 ± 0.34  0.85 ± 0.12 0.163 1.02 ± 0.17 0.888 1.34 ± 0.48 0.058

Phosphate  1.00 ± 0.15  1.01 ± 0.14 0.865 0.67 ± 0.14 <0.001 1.88 ± 0.14 <0.001

Putrescine  1.00 ± 0.36  1.06 ± 0.27 0.664 1.36 ± 0.48 0.048 3.65 ± 0.42 <0.001

Spermidine  1.00 ± 0.54  1.34 ± 0.52 0.135 2.62 ± 0.99 <0.001 2.44 ± 1.81 0.021

Uracil  1.00 ± 0.19  0.74 ± 0.18 0.002 0.80 ± 0.16 0.011 4.40 ± 0.56 <0.001

 

 



Suppl. Table S6: 

Changes in the levels of phosphorylated intermediates and starch in leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants compared to wild‐type, based on 
spectrophotometric measurements. Leaves were sampled at the end of the day. Results are normalized to wild‐type level and represent means ± SE, n = 8‐30 
(wild‐type) or 4‐15  (mutants). Values which are significantly different  from wild‐type according to the student t‐test  (P<0.05) are  indicated  in bold  (see also 
Figure 11A). 

 

 



Suppl. Table S7: 

Changes in the levels of phosphorylated intermediates and starch in leaves of trxf1, ntrc and trxf1 ntrc Arabidopsis mutants compared to wild‐type, based on 
spectrophotometric measurements. Leaves were sampled at the end of the night. Results are normalized to wild‐type level and represent means ± SE, n = 8‐30 
(wild‐type) or 4‐15  (mutants). Values which are significantly different  from wild‐type according to the student t‐test  (P<0.05) are  indicated  in bold  (see also 
Figure 11B). n.d. = not detectable. 

 

 

 

 

 

 



RESULTS 

 

 
114 

 

Chapter 3 – Disruption of both chloroplastic and cytosolic FBPases genes results in dwarf 

phenotype and important starch and metabolite changes in Arabidopsis thaliana 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

José A. Rojas-González, Mauricio Soto-Súarez, Ángel García-Díaz, María C. Romero-Puertas, 

Luisa M. Sandalio, Ángel Mérida, Ina Thormählen, Peter Geigenberger, Antonio J. Serrato, 

Mariam Sahrawy (2014) Disruption of both chloroplastic and cytosolic FBPases genes results 

in dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. 

Manuscript submitted, first revision (revision–major) (J Exp Bot). 



 1

Disruption of both chloroplastic and cytosolic FBPases genes results in dwarf 1 

phenotype and important starch and metabolite changes in Arabidopsis 2 

thaliana 3 

 4 

José A. Rojas-González1, Mauricio Soto-Súarez1*, Ángel García-Díaz1**, María C. 5 

Romero-Puertas1, Luisa M. Sandalio1, Ángel Mérida2, Ina Thormählen3, Peter 6 

Geigenberger3, Antonio J. Serrato1 and Mariam Sahrawy1§ 7 

 8 

 9 

1Departamento de Bioquímica, Biología Molecular y Celular de Plantas. Estación 10 

Experimental del Zaidín. Consejo Superior de Investigaciones Científicas. 11 

C/Profesor Albareda 1, 18008, Granada, Spain. 12 

2Instituto de Bioquímica Vegetal y Fotosíntesis. CSIC-US. Avda Américo 13 

Vespucio, 49. 41092-Sevilla, Spain. 14 

3Ludwig Maximilians University of Munich. Biology Department I, Plant 15 

Metabolism, Grosshaderner Str. 2-4, 82152 Planegg, Germany. 16 

joseantonio.rojas@eez.csic.es; mauricio.soto@cragenomica.es; 17 

AGarciaDiaz@mednet.ucla.edu; maria.romero@eez.csic.es; 18 

luisamaria.sandalio@eez.csic.es; angel@ibvf.csic.es; thormaehlen@biologie.uni-19 

muenchen.de; geigenberger@biologie.uni-muenchen.de; aserrato@eez.csic.es; 20 

sahrawy@eez.csic.es 21 

 22 

 23 
§Author for correspondence: Mariam Sahrawy, Department of Plant Biochemistry 24 

and Molecular and Cell Biology, EEZ-CSIC, Profesor Albareda 1, 18008 25 

Granada, Spain.  26 

E-mail: mariam.sahrawy@eez.csic.es.  27 

Tel.: +34 958 181600, Fax +34 958 129600 28 

 29 

Running title: Plant FBPases control sugar synthesis and growth 30 



 2

Date of submission: 27 Octobre 2014               1 

Number of Tables: 2 2 

Number of Figures: 11 3 

Total world count: 9448 4 

Supplementary data: 2 Figures, 4 tables 5 

 6 

Footnotes: 7 

This work has been funded by research project BIO2009-07297 from the Spanish 8 

Ministry of Science and Innovation and the European Fund for Regional 9 

Development and project BIO2012-33292 from the Spanish Ministry of Economy 10 

and Competitiveness, project P07-CVI-2795 and BIO 154 from the Andalucian 11 

Regional Government, Spain. Mauricio Soto-Suárez has been supported by a 12 

postdoctoral contract from the Andalucian Regional Government and the CSIC. 13 

José A. Rojas Gonzálezhas been supported by a contract from the Andalucian 14 

Regional Government. Peter Geigenberger gratefully acknowledges support from 15 

the Deutsche Forschungsgemeinschaft. 16 

 17 
*Present address: Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, 18 
Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallès), 19 
08193, Barcelona, Spain. 20 

** Present address: Department of Medicine (Division of Hematology-Oncology), David 21 
Geffen School of Medicine, University of California Los Angeles (UCLA); Los Angeles, 22 
CA, USA. 23 
 24 
Key words: fructose-1,6-bisphosphatase, chloroplastic, cytosolic, knockout mutants, 25 
sucrose, starch, metabolites 26 
 27 
 28 
 29 
 30 
 31 
 32 



 3

Abstract  1 

In this study we provide evidence for the role of FBPases in plant development 2 

and carbohydrate synthesis and distribution by analyzing two Arabidopsis 3 

(Arabidopsis thaliana) T-DNA knockout mutant lines, cyfbp and cfbp1, and one 4 

double mutant cyfbp cfbp1 which affect each FBPase isoform, cytosolic and 5 

chloroplastic, respectively. cyFBP is involved in sucrose synthesis, whilst cFBP1 6 

is key enzyme in Calvin cycle. In addition to the smaller rosette size and lower 7 

photosynthesis rate the lack of cFBP1 in the mutants cfbp1 and cyfbp cfbp1 leads 8 

to a lower content in soluble sugars, less starch accumulation and a greater 9 

superoxide dismutase (SOD) activity. The mutants also had some developmental 10 

alterations, including stomata opening defects and higher root vascular layers. 11 

Complementation also confirmed that the mutant phenotypes were caused by 12 

disruption of the cFBP1 gene. Plants without the cyFBP, cyfbp mutant showed 13 

higher starch content in the chloroplasts, but this did not greatly affect the 14 

phenotype. Notably, the sucrose content in cyfbp was close to that found in the 15 

wild-type. The cyfbp cfbp1 double mutant displayed features of both parental lines 16 

but had the cfbp1 phenotype. All the mutants accumulated F1,6BP and triose-17 

phosphates during light period. These results prove that while the lack of cFBP1 18 

induces important changes in a wide range of metabolites such as amino acids, 19 

sugars, and organic acids, the lack of cyFBP activity in Arabidopsis essentially 20 

provokes a carbon metabolism imbalance which does not compromise the 21 

viability of the double mutant cyfbp cfbp1. 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 
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Introduction 1 

Sucrose and starch are the major end products in higher plants, and their functions 2 

are essential for plant development (Geigenberger, 2011a). The rate of net CO2 3 

fixation determines the rate of starch and sucrose synthesis. The photosynthetic 4 

carbon reduction cycle (the Calvin-Benson cycle) is responsible for the formation 5 

of these carbohydrates after the fixation and reduction of the atmospheric CO2, the 6 

first important intermediate metabolites being the triose-phosphates (TPs). By 7 

condensation TPs form fructose-1,6-bisphosphate (F1,6BP) which are used to 8 

synthesize starch in the chloroplast, and sucrose in the cytosol. Fructose-1,6-9 

bisphosphatase (FBPase) catalyze the breakdown of F1,6BP to fructose-6-10 

phosphate (F6P) and Pi (Zimmermann et al., 1976). Three FBPases have so far 11 

been described in the plant cell, the cytosolic enzyme (cyFBP) which is involved 12 

in sucrose synthesis and gluconeogenesis (Cséke and Buchanan, 1986), and two 13 

other chloroplastidial isoforms (cFBP1 and cFBP2) (Serrato et al., 2009b; Serrato 14 

et al., 2009a). The chloroplastic FBPase (cFBP1; EC 3.1.3.11) is a key enzyme of 15 

the Calvin-Benson pathway and is involved in the regeneration of the ribulose-16 

1,5-bisphosphate and the starch synthesis pathway.  17 

cyFBP and cFBP1 display a similar tertiary structure with the exception of an 18 

extra sequence of 20-30 amino acids in the regulatory domain of the cFBP1 19 

(called “loop 170”), which holds three cysteines, two of these can form disulphide 20 

bonds that can be reduced by plastidial thioredoxins f (TRX f) during light 21 

activation (Chiadmi et al., 1999). The novel isoform cFBP2 lacks the loop 170 in 22 

its sequence, it is not redox regulated by TRX f and the affinity for substrate FBP 23 

is 6.6-fold lower than that of cFBP1 (Serrato et al., 2009b; Serrato et al., 2009a). 24 

The cytosolic isoform activity is inhibited by an excess of substrate and shows 25 

allosteric inhibition by adenosine monophosphate (AMP) and fructose-2,6-26 

bisphosphate (F2,6BP). cyFBP and sucrose phosphate synthase (SPS) are 27 

considered major sites for controlling sucrose synthesis (MacRae and Lunn, 28 

2006). Additionally, pyrophosphate: fructose-6-phosphate 1-phosphotransferase 29 

(PFP), which catalyzes the reversible interconversion of F6P and F1,6BP is also 30 

considered as an important regulatory point of primary carbon metabolism toward 31 

glycolysis or gluconeogenesis in the cytosol (Nielsen and Stitt, 2001).  32 

     Considerable effort has been made to investigate which steps control the 33 

biosynthesis and distribution of carbohydrates in plant cells. By using various 34 
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transgenic approaches in different plant species, the roles of chloroplast and 1 

cytosolic FBPases have been analysed in this context (Koßman et al., 1994; 2 

Sahrawy et al., 2004). These results depended on the genetically manipulated 3 

plant species, the level of repression or overexpression of the gene selected 4 

(chloroplastic and cytosolic FBPase) (Sharkey et al., 1992; Strand et al., 2000; 5 

Zrenner et al., 1996) and the tissue (leaf) or organ analyzed (fruit or tuber) 6 

(Obiadalla-Ali et al., 2004).  Most of the data reported on photosynthesis rate, 7 

starch and sucrose content and general phenotypes. Nevertheless, these studies 8 

have not led to clear and consistent results on the specific role of FBPases. In 9 

general, the use of these transgenic strategies has given rise to some confusion on 10 

the function of FBPases in sucrose and starch levels in plants and its turnover, and 11 

the results to date remain imprecise making it impossible to draw unambiguous 12 

conclusions.  13 

To shed light on this confusing information we have performed for the first 14 

time a comprehensive analysis of Arabidopsis cyFBP and cFBP1 loss-of-function 15 

mutants, as well as the corresponding double mutant. The main objective was to 16 

determine the extent of contribution of each FBPase to photosynthesis, plant 17 

development, reactive oxygen metabolism, carbon partitioning and metabolic 18 

profiles in leaves over a day/night period. We provide physiological, biochemical, 19 

and metabolic evidence that cFBP1 activity is critical for normal plant 20 

development and important for wide metabolic processes, whilst cyFBP appears 21 

to affect essentially starch levels. 22 

 23 

Materials and Methods 24 

 25 

Plant material and growth conditions  26 

Arabidopsis thaliana wild-type (ecotype Columbia; wt) and mutant plants, cyfbp, 27 

line SALK_064456 (At1G43670) corresponding to the mutant line fins1 (Cho and 28 

Yoo, 2011), and cfbp1, line GK-472G06-019879 (At3g54050) (Serrato et al., 29 

2009a), were grown in soil during 20 days in culture chambers under long-day 30 

conditions (16 h light/8 h darkness) at 22ºC during the light and 20ºC during 31 

darkness. The light intensity was set at 120 μmol m-2 s-1. The double mutant, 32 

stated cyfbp cfbp1, was obtained by manual crossing of single mutant cyfbp and 33 

cfbp1. The oligonucleotides used for the genotyping (Table S1) and the 34 
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homozygous selection was: CYFBP F and R for cyfbp, CFBP1 F and R for cfbp1, 1 

in conjunction with the oligonucleotides (LBSALK and GABI) hybridizing with 2 

the T-DNA sequence. Five plants were harvested at intervals of 5 days for 30 3 

days, then the leaves per rosette were counted, and the fresh weight per plant and 4 

area were measured. For root length measurements seedlings were grown in 5 

vertical plates. Arabidopsis cfbp1 and cyfbp mutants were complemented with 6 

pGWB4-derived constructions expressing the GFP-translationally fused proteins 7 

cFBP1:GFP and cyFBP:GFP under the control of 1 kb of their respective 8 

promoters (Figure S1A). 9 

 10 

Gas exchange measurements and PSII photochemical efficiency 11 

Photosynthetic gas exchange was measured using a portable infrared gas analyzer 12 

LI-6400 (LI-COR Biosciences, Inc., Lincoln, NE, USA), which allows 13 

environmental conditions inside the chamber to be precisely controlled. The CO2-14 

assimilation rate was determined in the upper leaf of the wild-type and mutant 15 

plants grown for three weeks by changing light intensities (light curve), with the 16 

range from 0 to 2000 μmol quanta m-2 s-1. To measure the CO2 response (CO2 17 

curve), the CO2 concentration was changed with the range: 400 to 50 and 50 to 18 

1500 μmol/mol and the irradiance was set at 1000 μmol quanta m-2 s-1. The 19 

photosynthetic parameters were calculated by using LI-6400 6.1 software. 20 

Photosyn Assistant, software developed by Dundee Scientific (Parsons and 21 

Ogston, 1999) was used to estimate the following parameters, dark respiration 22 

(Rd), light compensation point (Г), and the maximum photosynthesis rate (Amax), 23 

from the A to light (A/Q) as well as the maximum rate of Rubisco carboxylation 24 

(Vcmax), maximum rate of electron transport (ETRs) (Jmax), and triose-P use 25 

(TPU) from A to intercellular CO2 concentration (A/Ci) curves, to help in the 26 

comparison between the mutants. 27 

Parameters of chlorophyll fluorescence emission were measured at 22ºC with the 28 

chlorophyll fluorometer PAM 2000 (Walz, Effeltrich, Germany). The maximum 29 

quantum yield of PSII (Fv/Fm) was calculated from the parameters using the 30 

following equation: Fv/Fm=(Fm-Fo)/Fm, where Fo is the initial minimal 31 

fluorescence emitted from leaves dark-adapted for 15 min and Fm the maximal 32 

fluorescence elicited by saturating actinic light. 33 

 34 
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Determination of photosynthetic pigments  1 

After pigment extraction in 80% acetone, the content of chlorophyll a (chla) and b 2 

(chlb), and carotenoids was spectrophotometrically quantified according to the 3 

method of Lichtenthaler and Wellburn (1983). 4 

 5 

Stomata characterization  6 

The shape and number of the stomata and epidermal cells were observed and 7 

measured from a similar leaf used for gas exchange determinations. Digital 8 

photographs of a 427-fold magnification were taken using a scanning electron 9 

microscope of variable pressure [VPSEM] Zeiss (LEO 1430VP) from six different 10 

fields per leaf of adaxial and abaxial epidermis of 3 individual genotype. Adobe 11 

Photoshop software was used for cell numbers counting and stomata density 12 

quantification.  13 

 14 

Oxidative metabolism assays  15 

H2O2 concentration in leaf extracts was measured by spectrofluorimetry using 16 

homovalinic acid (Ex= 325 and Em= 425 nm) and horseradish peroxide as 17 

described elsewhere (Pazmiño et al., 2011). The content of carbonyl groups was 18 

measured by derivatization with 2,4-dinitrophenylhydrazine, according to 19 

Romero-Puertas et al (2002). Glycolate oxidase (GOX; EC 1.1.3.1) activity was 20 

assayed spectrophotometrically according with Kerr and Groves (1975). Activity 21 

of catalase (CAT; EC 1.11.1.6) was determined as described by Aebi (1984). 22 

Superoxide dismutase (SOD) isoenzymes were individualized by native-PAGE on 23 

10% acrylamide gels and were localized by a photochemical method (Beauchamp 24 

and Fridovich, 1971). Lipid peroxidation was determined by the thiobarbituric 25 

acid-reacting substances method (Buege and Aust, 1972). 26 

 27 

Determination of sugars 28 

Carbohydrates were extracted from frozen 20-day-old Arabidopsis leaf rosettes 29 

with 80% ethanol (v/v) at 80ºC, followed by further washing with 50% ethanol at 30 

80ºC (Stitt et al., 1978). After centrifugation, sucrose, glucose, and fructose were 31 

measured enzymatically in the extraction solution by determining the reduction of 32 

NADP at 340 nm according to (Sekin, 1978). Starch was extracted with 50 mM 33 

Hepes pH 7.6, 1% Triton X-100 buffer, and filtered through two layers of 34 
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Miracloth (Millipore, MA, USA) and centrifuged. The pellet was resuspended in 1 

Percoll 90% (v/v), centrifuged and then the pellet was resuspended in ethanol and 2 

measured as glucose from the extract, following incubation with α-amylase and 3 

amyloglucosidase.  4 

 5 

RT-PCR analysis 6 

Total RNA was extracted and RT-PCR was carried out as described by Barajas-7 

López et al.(2007). Primers used are listed in Table S1. 8 

 9 

Light and electron microscopy  10 

After sample processing (as described in(de Dios Barajas-Lopez et al., 2007)), 11 

semi-thin sections (1mm) of Arabidopsis leaves and roots were stained with 12 

toluidine blue for structure visualization in an OLYMPUS BX51 light microscope 13 

and ultra-thin sections (70 to 90 nm) were examined by transmission electron 14 

microscopy (TEM) of high resolution [HRTEM] LIBRA 120-EDX-Carl Zeiss 15 

SMT.  16 

 17 

Protein Extraction, Western Blotting and FBPase and PFP enzymatic activities 18 

Protein concentration of extracts was determined with the Bradford assay (1976). 19 

Western-blotting and FBPase assays were performed according to Serrato et al. 20 

(2009a). The modified method of Kombrink (1984) was used to measure PFP 21 

activity. 22 

 23 

Measurement of hexose-phosphates, triose-phosphates and 3-PGA 24 

Leaf samples of wild-type Arabidopsis and mutants (6 biological replicates) were 25 

snap-frozen in liquid nitrogen, ground to a fine powder using a liquid nitrogen-26 

cooled Mixer Mill MM200 (Retsch, http://www.retsch.com), and extracted to 27 

measure hexose-phosphates (Glc6-P, Fru6-P, Glc1-P, Fru1,6-BP), triose-28 

phosphates (GAP, DHAP), and 3-PGA using enzymatic assays coupled to 29 

NAD(P)H-fluorescence analysis, as previously described in Thormählen et al. 30 

(2013).  31 

 32 

 33 

 34 
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GC–MS analysis of polar primary compounds 1 

50 mg of leaf samples prepared as above was extracted and the relative metabolite 2 

contents were determined by GC-MS, as previously described in Thormahlen et 3 

al. (2013). For the visualization and analysis of networks with related 4 

experimental data Vanted version 2.1.0 (IPK Gatersleben, Germany) was applied 5 

as a tool. 6 

 7 

Results 8 

 9 

T-DNA insertions knock out the expression of both FBPase isoforms 10 

The T-DNA insertions are located in intron 11 and exon 1 (positions +1111 and 11 

+111 with respect to the start codon) for cyfbp and cfbp1, respectively (Fig. 1A). 12 

In figure 1B it can be observed no cyFBP expression in the cyfbp mutant, 13 

corroborating previous results by Cho and Yoo (2011), and only a very faint 14 

cFBP1 signal in cfbp1. Interestingly, cyFBP transcript and protein increased in 15 

cfbp1 whereas the amount of cFBP1 mRNA augmented in the cyfbp mutant 16 

rosette (Fig. 1B-C). We generated the double mutant cyfbp cfbp1 by crossing the 17 

respective single knockout mutants. In each case, we confirmed the complete loss 18 

of the respective proteins (Fig. 1C) by western-blot analysis using specific 19 

antibodies (Serrato et al., 2009a). The negligible in vitro FBPase activity in the 20 

double mutant validated our FBPase assay conditions, corroborating that the 80% 21 

of FBPase activity measured in cyfbp and the 40% of FBPase activity obtained in 22 

cfbp1 were due to the cFBP1 and cyFBP activities, respectively (Fig. 1D). No 23 

compensation by PFP activity (using specific assay conditions in the sense of the 24 

F1,6BP hydrolysis) was observed in any FBPase mutant, being similar in cyfbp 25 

and wt and surprisingly lower when cFBP1 was lacking (Figure S1C).  26 

 27 

Changes in the phenotypes of cyfbp, cfbp1 and cyfbp cfbp1 mutants 28 

The appearance of the cyfbp is slightly lesser than in the wild-type plants (Fig. 29 

2A) and no major difference is observed for this mutant. However, the absence of 30 

cFBP1 has a dramatic effect on plant development (Livingston et al., 2010) and 31 

the rosettes of both cfbp1 and double mutant resulted in less leaves, smaller size 32 

and lower growth rates than in the wild-type (Fig. 2A-B). Fresh weight and leaf 33 

area decreased by 7-fold and 5-fold, in cfbp1 and cyfbp cfbp1 mutants respectively 34 
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when compared with the wild-type (Fig. 2B). Nevertheless, seed viability and 1 

germination were normal for all the mutants (Fig. 2C). Root growth analysis 2 

showed that cfbp1 and cyfbp cfbp1 roots were ~50% shorter and the root-growth 3 

speed was 2-fold slower than wild-type and cyfbp roots (Fig. 2D). 4 

SEM analysis of stomata morphology of the abaxial side of Arabidopsis leaves 5 

showed a higher stomatal closure in cfbp1 and double mutants in relation to the 6 

full open stomata of wild-type plants under environmental conditions. As shown 7 

in Figure 3 B, C, and D and Table S2, the stomatal density (SD) on the adaxial 8 

side of the cyfbp, cfbp1 and cyfbp cfbp1 mutants proved to be 41%, 23%, and 29% 9 

lower, respectively, than found on the adaxial surface of the wild-type leaves. 10 

However, the same mutants had 46%, 62% and twice as many stomata/mm2 on 11 

the abaxial side than in wild-type, respectively. Related to leaf size, the stomatal 12 

index (SI) values of the rosette cyfbp, cfbp1, and cyfbp cfbp1 mutant leaves were 13 

lower, respectively, than those of wild-type (Table S2).  14 

 15 

Cell structure alterations of cyfbp, cfbp1 and cyfbp cfbp1 mutants 16 

The structure of non-flowering rosette leaf and root cross-sections analyzed by 17 

light microscopy showed different cell types in leaves, epidermis, mesophyll 18 

(palisade and spongy), xylem, phloem, and stomata (Fig. 4 A-C). Cell structure of 19 

cyfbp mutant is similar to that of the control plant, but chloroplasts contained 20 

more starch granule when examined in a magnification micrograph (Fig.4 G-I). 21 

The cfbp1 mutant had a higher surface of intercellular spaces, and few 22 

chloroplasts with less starch granule (only one in some cases) (Fig. 4 I). Some of 23 

the chloroplasts displayed a centrifugal position only on the far side of the light 24 

source (Fig. 4 C). cyfbp cfbp1 showed similar cell structure as its cfbp1 parental 25 

(data not shown). 26 

The cfbp1 mutation resulted in a greater number of cell layers in the root vascular 27 

cylinder, and there were twice as many vascular tissue cells in the layer, in 28 

comparison with the wild-type root (Fig. 4 D and F). However, no disorganization 29 

was detected and the shape and size of cells were normal. The root structure of the 30 

cyfbp mutant showed slightly higher number of the cells of the vascular cylinder 31 

than in control (Fig. 4 D and E). 32 

The observations with a transmission electron microscope showed disturbances in 33 

the cell structure of the cfbp1 and double mutant, characterized by a diminished 34 
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number of thylakoids and grana lamellae but without disrupting the chloroplast 1 

ultrastructure (Fig. 5). A higher number of plastoglobuli were detected in cfbp1 2 

and cyfbp cfbp1 chloroplast than in wild-type (Fig. 5C-D). A lower starch content 3 

was observed in cfbp1 and double mutant than in cyfbp and wild-type (Fig. 5A-B). 4 

 5 

Pigment content decreases drastically in cfbp1 and cyfbp cfbp1 6 

The chlorophyll a (Chla) and b (Chlb), and carotenoid content were considerably 7 

reduced (∼40-50%) in the cfbp1 and cyfbp cfbp1 mutants in relation to that found 8 

in the wild-type, whilst the cyfbp mutant displayed values similar to those of the 9 

wild-type (Fig. 6).  10 

 11 

Effect of FBPases removal on CO2 assimilation and PSII photochemical efficiency  12 

With an open gas-exchange system, CO2 assimilation rates (A) were determined 13 

on attached leaves of plants grown under 120 μmol m-2 s-1 and ambient CO2. The 14 

light-response curves (A/Q) at ambient CO2 are shown in Figure 7A. Under these 15 

conditions, the photosynthesis rate of the wild-type had a maximum of 13.5 µmol 16 

m-2s-1 at 2000 μmol m-2 s-1. At light intensities <250 μmol m-2 s-1, the cyfbp 17 

mutant assimilation rate was similar to wild-type plants, while at higher intensities 18 

the assimilation rate was a ~33% lower. At light intensities between 100 and 500 19 

μmol m-2 s-1 (standard growth conditions), the A of the cfbp1 and cyfbp cfbp1 20 

mutants showed superimposed curves with values nearby 1, indicating an 21 

impaired CO2 assimilation capacity and a poor photosynthesis/respiration ratio. At 22 

higher intensities, both cfbp1-containing mutants presented lower CO2 fixation 23 

(~6-fold) than did the wild-type, reaching a maximum of 3.4 µmol m-2 s-1 (Fig. 24 

7A). Transpiration (E) and stomatal conductance (gs) values were higher at lower 25 

irradiance in cfbp1 and cyfbp cpfbp1 leaves in relation to wild-type plants (Fig. 26 

7B-C). However, when light intensity was increasing, E and gs converged to 27 

reach wild-type and cyfbp mutant values at 2000 μmol m-2 s-1 (Fig. 7B-C).  28 

The response of net photosynthesis to increasing internal leaf CO2 concentration 29 

(Ci) at 1000 μmol m-2 s-1 (A/Ci curve) exhibited a similar behaviour (Fig. 7D). 30 

The photosynthesis rate of wild-type plants increased to a maximum of 16.2 at 31 

1300 ppm of CO2. At the same concentration of CO2, the cyfbp mutant decreased 32 

by 25%, whereas, cfbp1 and cyfbp cfbp1 Arabidopsis plants lowered their 33 

photosynthetic rate 2-fold. This suggests that cFBP1 deficiency rather than cyFBP 34 
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exerts a stronger effect on CO2 fixation. Transpiration values of cfbp1 mutant 1 

were higher than the other mutant lines and control plants at all CO2 2 

concentrations assayed (Fig. 7E). Curiously, transpiration and conductance in 3 

cyfbp cfbp1 mutant (Fig. 7 E-F) displayed high values at lower CO2 4 

concentrations but declined slowly at higher concentrations, reaching levels 5 

similar to those of the wild-type plants. No significant differences were detected 6 

for the E and gs of the wild-type and cyfbp mutant in relation to the intercellular 7 

CO2 concentration.  8 

We used the Photosynthesis Assistant program, version 1.1.2 , which is based on 9 

the von Caemmerer and Farquhar equations (Caemmerer and Farquhar, 1981) 10 

(Table 1) to help in the interpretation, comparison and modeling of photosynthesis 11 

of plants grown under different environmental conditions. Based on A/Q curves, 12 

we found that respiration rates (Rd) increased by 1.6- and 1.3-fold in cfbp1 and 13 

double mutant, respectively, in relation to wild-type plants but the differences did 14 

not significantly differ (Table 1). The light compensation point exhibited higher 15 

values in cfbp1 and double mutant, but only cfbp1 data significantly differed. 16 

Amax of cfbp1 and cyfbp cfbp1 proved 2 and 3 times lower, respectively, than that 17 

of the wild-type and cyfbp, as indicated in the A/Q curves (Fig. 7). 18 

The response of net CO2 uptake to increasing intercellular CO2 (Ci), the A/Ci 19 

curve, showed clear differences between cfbp1 and double mutant in relation to 20 

wild-type plants. A lack of plastidial FBPase and of both FBPases caused the 21 

plants to decrease 37 and 34% in Vcmax, 42 and 40% in Jmax, and 25 and 25% in 22 

TPU, respectively, suggesting the damaged of the CO2 assimilation process (Table 23 

2). By contrast, the values of both Jmax and Vcmax of plants lacking only cyFBP 24 

were similar to control values.  25 

The chlorophyll fluorescence analysis of PSII (Fv/Fm) showed a significant 26 

decrease of the photochemical performance for the cfbp1 and cyfbp cfbp1 mutants 27 

(Table 1), indicating a lower quantum efficiency of linear electron transport 28 

through PSII in these two mutants, in agreement with the above Jmax data. 29 

 30 

 31 

 32 

 33 

 34 
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Oxidative metabolism in the mutants 1 

FBPases removal affects reactive oxygen metabolism in Arabidopsis mutants, and 2 

resulted in an increase of H2O2 accumulation by 42%, 60%, and 51%, in cyfbp, 3 

cfbp1 and double mutants, respectively (Fig. 8A), and of the content of carbonyl 4 

group by 4-, 9- and 2-fold in the cyfbp, cfbp1 and cyfbp cfbp1, respectively (Fig. 5 

8B). However, lipid peroxidation did not change significantly in any of the 6 

mutants in relation to wild-type (Fig. 8C). In order to establish possible sources of 7 

H2O2 two enzymes were studied, the GOX, an enzyme from the photorespiratory 8 

pathway in peroxisomes and the SOD, which removes O2
.− and at the same time 9 

produces H2O2. GOX activity increased in the three mutants, cfbp1 being the 10 

highest (1.3-fold; Fig. 8D). SOD isoforms activity showed a low increase of 11 

FeSOD, and MnSOD in cyfbp and a strong induction of the CuZnSOD in cfbp1 12 

and cyfbp cfbp1 (Fig.8E). The expression analysis revealed a significant induction 13 

of the plastid isoform CuZnSOD2 and of FeSOD3 in all mutants, the highest 14 

changes being in the cfbp1 lines (Fig. 8F). The CAT, involved in the 15 

detoxification of H2O2, showed a significant increase in all the lines mainly in 16 

cfbp1 (1.5-fold) and double mutant (1.8-fold; Fig. 8G). However, the rise of CAT 17 

was insufficient to avoid protein oxidative damages (Fig. 8B). No differences in 18 

the non-enzymatic antioxidants ascorbate and dehydroascorbate were found, 19 

although the ratio ASC/DHA increased in the cfbp1 and double mutant and 20 

decreased in the cyfbp (Table S3 and S4). 21 

 22 

Day/night cycle of carbohydrate accumulation in cyfbp, cfbp1, and cyfbp cfbp1 23 

The level of soluble sugars, such as glucose, fructose, and sucrose in wild-type 24 

and mutants plants were analyzed every 4 h over a 24-h period (Fig. 9). Glucose 25 

accumulated during the central light period in all the lines and declined as 26 

darkness approached, but the concentrations were slightly lower than the wild-27 

type line (Fig. 9A). Compared to wild-type plants, all FBPase mutants showed a 28 

4-h delayed glucose-accumulation peak at 8 h and a dramatic drop 4 h before the 29 

end of the day (the wild-type displaying a constant and negative slope from points 30 

4-h to 16-h). cyfbp showed fructose amounts similar to those of the wild-type, 31 

excepting the points corresponding to wild-type peak-like shape at 4 h and 20 h 32 

(Fig. 9B), whilst this amount decreased drastically in the cfbp1 background. The 33 

wild-type and cyfbp plants accumulated fructose at the beginning of the light 34 
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period, this diminishing after 8 h of illumination while cfbp1 fructose 1 

concentration was almost constant over the photoperiod (around 0.2 µg/mg.FW). 2 

Fructose level in the cyfbp cfbp1 leaves fell sharply (fructose depletion) at 16 h, 3 

followed by a sharp rise during the period coinciding with the starch degradation. 4 

In FBPase mutant lines, the inflexion point in sucrose accumulation occurs at 8 h 5 

of the light period (occurring a slightly before in wild-type), reaching maximum 6 

accumulations during the first half of the night period, and decreasing rapidly at 7 

the end of this period, with a similar profile in all plant lines (Fig. 9C). cfbp1 had 8 

a lesser sucrose content over the photoperiod, and although cyfbp cfbp1 showed 9 

similar profile to cfbp1 at the beginning of the light period, there was a gradual 10 

recovery ending with an accumulation peak close to that of wild-type sucrose 11 

concentration at night (20 h). 12 

It was noteworthy that after 8 h illumination, cyfbp mutant plants displayed a 13 

starch content that was approximately 4-fold higher than in the wild-type (Fig. 14 

9D). On the contrary, the starch content was ~3-fold lower in cfbp1 in relation to 15 

that found in control plants. The amount of starch detected for the double mutant 16 

plants was double than that of the cfbp1 content, but lower than in the wild-type 17 

and cyfbp, revealing that the low quantity of starch accumulated is not exclusively 18 

due to a limitation in the carbon fixation capacity of cfbp1. Staining with Lugol 19 

solution plantlets confirmed the higher starch accumulation in cyfbp mutant (Fig. 20 

9E). The foliar sucrose/starch ratio, an indicator of photo-assimilate allocation 21 

(Table 2), was positive toward the starch content (<1) for the cyfbp line 22 

throughout the photoperiod, indicating an increased starch content in the 23 

chloroplasts when cyFBP is lacking. Conversely, this ratio was balanced towards 24 

the sucrose synthesis in cfbp1 (>1) whilst in cyfbp cfbp1 the ratios were lower and 25 

even <1.  26 

 27 

Effect of the loss of cyFBP, cFBP1 and of both FBPases on leaf metabolite levels 28 

Tables S3 and S4 show the changes in leaf metabolite levels at the end of the 29 

night and after 8 h of illumination (middle of the day). The lack of cyFBP activity 30 

induced a slight decrease in sugars during the night period, with the exception of 31 

maltose and trehalose, whilst most sugars increased in the light period, the rise in 32 

isomaltose content being statistically significant. The cfbp1 and cyfbp cfbp1 33 

mutant plants in the light and at the end of the night showed between 50 and 90% 34 
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decreases in relation to the wild-type in the levels of most of the sugars analyzed, 1 

such as sucrose, glucose, fructose, isomaltose, trehalose, suggesting a strong 2 

impairment of the Calvin-Benson cycle. 3 

As expected, during the day the lack of cytosolic or chloropastic FBPases led to 4 

an accumulation of fructose-1,6-bisphosphate (F1,6BP) content, which was 5 

around 4-, 17- and 60-fold higher in cfbp1, cyfbp, and cyfbp cfbp1, respectively 6 

(Fig. 11). An important increase of TPs (dihydroxyacetone phosphate-DHAP and 7 

glyceraldehyde 3-phosphate-GAP) was observed, mainly in the double mutant, 8 

and of the 3-phosphoglycerate (3-PGA), the first carbon assimilates synthesized 9 

after CO2 fixation and reduction (Table S4). At the end of the night, the hexose-P 10 

and DHAP pools declined sharply in all the mutants. During the light period, the 11 

level of 3-PGA increased in all mutants, principally in the cyfbp mutant, and a 12 

marked decrease resulted in the cfbp1 and cyfbp cfbp1 in the night (Table S3).  13 

  Interestingly, the lack of cFBP1 led to marked changes in the levels of organic 14 

acids. As revealed by Table S3 and S4, organic acid level decreased after 8 h light 15 

and more intensely at night period, especially in the cfbp1 and cyfbp cfbp1 16 

mutants. It is worth mentioning the low content detected of glycerate, malate, 17 

fumarate, gluconate, succinate, and threonate found in the metabolite group, 18 

indicating possible effects on the TCA cycle in the mitochondria. During 19 

illumination, the cyfbp mutant displayed an increase in the gluconate and gulonate 20 

content. 21 

Lack of cFBP1 also led to changes in the levels of amino acids. Threonine 22 

increased by 16- and 8-fold in the night and 9- and 5-fold at midday in the cfbp1 23 

and cyfbp cfbp1 lines, respectively, compared to the wild-type leaf. After 8 h of 24 

light, cfbp1 registered an increase in glycine and proline. Meanwhile, the amounts 25 

of serine and leucine in cfbp1 and double mutant plants reached half the values 26 

found in the wild-type. The changes in the levels of glycine, serine and glycerate 27 

suggest that photorespiration is strongly affected. In contrast, only the aspartate 28 

increased (3-fold) in the night in the cyfbp line. 29 

During the light period, the group of sugar alcohols metabolites increased in the 30 

cyfbp line and generally decreased in cfbp1 and cyfbp cfbp1 (Table S4). However, 31 

the erythritol, glycerol, myo-inositol, and maltitol contents were significantly 32 

different in the cfbp1 and double mutant lines. The higher content of the ascorbate 33 

by 3- and 5-fold in cfbp1 and cyfbp cfbp1 mutant lines respectively is interesting 34 
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when compared to wild-type in the night. The cyfbp mutant also displayed an 1 

increase in dehydroascorbate, a product of the ascorbic acid pathway. This 2 

suggests changes in the redox status and the possible activation of detoxifying 3 

mechanism. 4 

The Vanted diagrams provide an overview map of the clear metabolic changes in 5 

cyfbp, cfbp1, and cyfbp cfbp1 at the end of the night (Fig. 10 A) and during the 6 

light period (Fig. 10B). These diagrams reveal that the lack of different FBPase 7 

isoforms disturbs various central metabolic processes, affecting the plant 8 

physiology and the development as shown above. 9 

 10 

Discussion 11 

The existence of different FBPases in plants makes it difficult to predict the 12 

precise role or the specific metabolic contribution of each of the isoforms. In 13 

previous studies using the antisense strategy in A. thaliana and other plant species 14 

(potato, tomato or rice); several authors have reported that FBPases play an 15 

important role during the regulation of primary photosynthetic metabolism and 16 

carbohydrate synthesis in plants (Koßman et al., 1994; Lee et al., 2008; 17 

Obiadalla-Ali et al., 2004). However, most of the results were dissimilar and 18 

confusing, possibly due to specific plant metabolic adaptations in response to 19 

particular life cycles or environmental conditions.  20 

The aim of this work is to understand the interrelation between the two main 21 

gluconeogenic pathways and the overall contribution of the FBPase isoforms 22 

cyFBP and cFBP1 through the study of three Arabidopsis mutants: cyfbp 23 

(affecting sucrose synthesis), cfbp1 (affecting Calvin cycle/starch synthesis) and 24 

cyfbp cfbp1. Whilst Cho and Yo (2011) reported the role of fins1 (cyfbp) in 25 

fructose signalling, in this study we have carried out a comprehensive 26 

physiological and metabolic characterization of this mutant under normal growth 27 

conditions, together with cfbp1 mutant analysis and the line obtained by 28 

combining both FBPase mutations. The null cyfbp mutant showed a normal 29 

phenotype whilst plant growth was only slightly affected, indicating that, in 30 

Arabidopsis, sucrose synthesis could be possible with hexoses or hexose-Ps 31 

exported from the chloroplasts (Fettke et al., 2011), probably due to an enhanced 32 

starch turnover. Several results obtained with this mutant support this hypothesis: 33 

there is (i) no compensation of FBPase activity by the cytosolic PFP (Figure S1C), 34 
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(ii) a starch over-accumulation (Fig. 9D and E) and a higher content of starch 1 

degradation products (Table S3 and S4), and (iii) an up-regulated expression of 2 

the maltose transporter (MEX1), the plastidic glucose translocator (pGlcT) and 3 

the glucose 6-phosphate/phosphate translocator 1 (GPT1) and 2 (GPT2) (Figure 4 

S2A) (Cho et al., 2011). In a similar way, the lack of the TP translocator in the 5 

Arabidopsis tpt-2 mutant (blocking TP export into cytosol) induces a higher starch 6 

accumulation compared with wild-type plants, but maintaining a similar sucrose 7 

content. Interestingly, despite showing a non-altered sucrose level, cyFBP is 8 

down-regulated in tpt-2 (Figure S2B) (Cho et al., 2011). All these results suggest 9 

that A. thaliana could circumvent the cytosolic gluconeogenic pathway by 10 

accumulating and mobilizing more starch to export hexose/hexose-phosphates 11 

from the chloroplast to the cytosol with only a little loss in the photosynthetic 12 

efficiency. On the contrary to cyFBP, the absence of cFBP1 leads to a dramatic 13 

phenotype suggesting the impairment of many physiological processes, mainly 14 

photosynthesis and CO2 fixation, as we have evidenced in this work; being cyFBP 15 

up-regulation not enough to compensate the cFBP1 loss (Fig. 1B and C). Our 16 

original hypothesis presumed that an additive/synergic negative effect of the two 17 

mutations over cell gluconeogenesis could have led to a lethal condition. 18 

However, to our surprise, cyfbp cfbp1 is viable, displaying a cfbp1 phenotype 19 

(Figure 2). Expression experiments only revealed a slight higher transcript 20 

accumulation of the plastidial isoform cFBP2 in cyfbp cfbp1 (Figure S1B). 21 

However, observing the negligible FBPase activity observed in this mutant, the 22 

contribution of cFBP2 and PFP seems to be very limited (Figure S1C). Moreover, 23 

the lack of cFBP2 induction in cfbp1 makes uncertain to substitute cFBP1 24 

function in the chloroplast (Figure S1B). 25 

The chlorotic aspect of cfbp1 and cyfbp cfbp1 leaves reflects that the mutation 26 

directly determine the photosynthetic potential and primary production in these 27 

mutants. Therefore, the chlorophyll fluorescence results indicating that the lack of 28 

cFBP1 affected the PSII and the photosynthetic electron transport rates are in line 29 

with a previous work in which the authors describe an Arabidopsis mutant with a 30 

loss-of-function allelic variant of cFBP1 (hfc1, from high fluorescence 31 

chlorophyll 1), which constitutively induces the cyclic electron flow (CEFI) to 32 

balance the chloroplast energy budget (Livingston et al., 2010). The decline of 33 

PSII efficiency and the rate of photosynthetic electron transport (Jmax, based on 34 
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NADPH requirement) for cfbp1 and cyfbp cfbp1, indicates that CO2 assimilation 1 

was limited as well by the rate of electron transport and RuBP regeneration. 2 

Furthermore, chloroplastic FBPase activity removal led to a decrease in Vcmax 3 

and TPU, and consequently, as the metabolite analysis corroborated, an increasing 4 

accumulation of TP in all mutant lines (specially in cfbp1 and cyfbp cfbp1).  It 5 

seems that the drastic changes in the organic acids malate, fumarate and succinate, 6 

could lead to the stomata failure of the cfbp1 mutant epidermis at midday (Fig. 3), 7 

resulting in a limited CO2 gas exchange (Araujo et al., 2011; Driscoll et al., 2006; 8 

Zheng et al., 2013). No relevant difference in the photosynthesis rate was detected 9 

in the case of the cyfbp line. After gathering all this information, we could 10 

conclude that cFBP1 is a real “photosynthesis-limiting” enzyme.  11 

Surprisingly, it was observed a greater number of cell layers in the root 12 

vascular cylinder of cfbp1 root tissues in comparison with the wild-type, 13 

suggesting that root ontogenic factors are involved in order to counteract the 14 

metabolism imbalance, highlighting the coordination existing between green and 15 

non-green organs. It would be interesting to know what the physiological 16 

significance of this root re-modelling is and the nature of the factors implicated in 17 

(i.e. hormones and/or transcription factors).  18 

Besides, photosynthetic light reactions providing NADPH and ATP necessary 19 

for CO2 fixation and carbohydrate synthesis inevitably go along with the 20 

production of harmful reactive oxygen species (ROS) (Mittler, 2002), whilst 21 

photorespiration is required to remove 2-phosphoglycolate produced by the 22 

oxygenase reaction of Rubisco (Bauwe et al., 2010). Thus, alterations observed in 23 

PSII of cfbp1 and cyfbp cfbp1 mutants could led to a likely increase in O2
.- 24 

production and the induction of GOX causing an accumulation of H2O2 in 25 

peroxisomes of all mutant lines. This situation was confirmed by the strong 26 

induction of CuZnSOD and FeSOD3 (Fig. 8E and F) (Kliebenstein et al., 1998). 27 

Despite the induction of CAT (Fig. 8G), there is an important oxidative protein 28 

damage in all mutants. In addition, lack of both FBPases, mainly cFBP1, provokes 29 

changes in the reactive oxygen metabolism and triggers an adjustment of the ratio 30 

ASC/DHA as a detoxifying mechanism. Low sugar level can result in the 31 

enhancement of ROS responses. However the complexity of sugar signalling and 32 

sugar-modulated gene expression could place soluble carbohydrates in a pivotal 33 

role in the pro-oxidant and antioxidant balance (Couee et al., 2006).  34 
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The comprehensive GC-TOF MS and fluorescence spectroscopy metabolite 1 

analysis provided an overview of visible metabolic alteration in the FBPase 2 

mutants, especially significant in cfbp1 and cyfbp cfbp1, underlying the dramatic 3 

change in their phenotypes. The inactivation of cyFBP leads to an overall 4 

accumulation of F1,6BP, hexose-P, and thus of TP during the light period 5 

resulting in the rise in the starch level. However, sub-cellular metabolite analysis 6 

will be required to confirm this interpretation (Geigenberger et al., 2011b). Most 7 

of the sugar amounts rose, mainly maltose and isomaltose, the main products of 8 

starch mobilization in the chloroplast, whilst sucrose level was similar to that of 9 

wild-type. In this way, Cho and co-workers (2011) also showed that Arabidopsis 10 

plants defective in the maltose transporter (MEX1) and the plastidic glucose 11 

translocator (pGlcT) resulted in severely reduced photosynthetic activities, 12 

decrease of sucrose content and starch turnover and growth retardation. A 13 

remarkable increase in trehalose content was detected in the cyfbp mutants. In 14 

fact, some authors have proposed that trehalose-6-phosphate (Tre6P), the 15 

intermediate of trehalose synthesis, is a component in a signalling pathway that 16 

mediates the regulation of the accumulation and/or turnover of transitory starch in 17 

Arabidopsis leaves, potentially linking the management of these reserves to the 18 

availability and demand for sucrose (Martins et al., 2013). Also, the positive 19 

effects of trehalose include a decrease of photo-oxidative damage, as a potential 20 

protective element (Bae et al., 2005). Reflecting the cyfbp phenotype, no effect 21 

was detected in the amino-acid biosynthesis or other metabolic pathways when 22 

cyFBP was lacking. 23 

 On the contrary, the inactivation of the cFBP1 had a profound effect on 24 

photosynthetic carbon metabolism and photorespiration, leading in general to 25 

alterations in the redox-status as revealed by changes in ascorbate levels. Besides, 26 

it also affected other pathways in the plants, such as amino acids and organic acid 27 

metabolism in mitochondria. As expected, the lack of cFBP1 in the light led to an 28 

accumulation of F1,6BP, TPs, and 3PGA, and to a decline in the levels of hexose-29 

P and many sugars, including sucrose, glucose, fructose, and trehalose (signalling) 30 

and maltose (starch degradation) leading to a small rosette size. On the other 31 

hand, amino-acid synthesis was also affected, serine content diminished in the 32 

cfbp1 and the double mutant, whilst the glycine level rose in cfbp1 during the light 33 

period. Both amino acids are involved in photorespiratory and non-34 
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photorespiratory pathways, and the opposite changes in serine and glycine content 1 

indicate that, during photorespiration, glycine decarboxylase activity is altered. 2 

Timm and colleagues suggest that serine, possibly together with glycine acts as a 3 

metabolic signal for the transcriptional regulation of photorespiration, particularly 4 

in the glycine-to-serine interconversion reactions (Timm et al., 2013). Moreover, 5 

during an imbalance between sucrose/starch synthesis and the production of 6 

phosphorylated intermediates in the Calvin-Benson cycle, the photorespiration 7 

might provide the cell with an alternative pathway for the synthesis of sink 8 

products, such as glycine and serine (Harley and Sharkey, 1991). The rise in the 9 

levels of aspartate, proline, and threonine, seems to indicate that carbon starvation 10 

may have led to degradation of proteins instead of starch for plants needs.  11 

In addition, the inactivation of chloroplast FBPase in cfbp1 and cyfbp cfbp1 12 

led to a fall in the levels of several organic acids involved in the tricarboxylic acid 13 

cycle (TCA) in mitochondria, which could be a secondary consequence of the 14 

decrease in carbon fixation. Among them, L-tryptophan, L-phenylalanine, L-15 

tyrosine and shikimate, a precursor in aromatic amino acid biosynthesis. These 16 

aromatic amino acids (AAAs) can be precursors of numerous natural products in 17 

plants, such as pigments, alkaloids, hormones, and cell wall components.  18 

Finally, an even sharper increase in the F1,6BP and TPs accumulation is 19 

observed in cyfbp cfbp1 as a consequence of both cFBP1 and cyFBP inactivation 20 

and thus a decline of sucrose content. Despite displaying a similar cfbp1 21 

phenotype and metabolite profile, it is interesting to observe some cyfbp 22 

behaviours such as the changes in starch level, suggesting a combined inheritance 23 

in this mutant and raising the interesting question of how can these plants increase 24 

the starch content in the absence of cFBP1. Moreover, the survival of the double 25 

mutant lacking enzymes that regulate essential metabolic steps is remarkable. The 26 

slightly higher cFBP2 gene expression in cyfbp cfbp1 mutant might suggest a 27 

possible compensation of the depleted carbohydrate metabolism. Thus, the 28 

redundant function of the plastidial FBPases could not be considered. 29 

To sum up, taken together our results of the analysis of individual and double 30 

knockout cFBP1 and cyFBP mutants lead us to suggest that both FBPases play 31 

important roles in sucrose and starch synthesis and contribute significantly to 32 

regulate carbohydrate turnover in plants. In addition, the lack of cFBP1 induces 33 

cell structural deficiencies, and reduced plant growth. The cFBP2 isoform could 34 
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not substitute the function of the other two isoforms. In addition, our study has 1 

uncovered a relationship between sugar turnover, biomass, protein content and 2 

other important metabolic pathways, the most important being photorespiration, 3 

amino-acid synthesis and the TCA cycle.  4 

 5 

 6 

Supplementary data 7 

Supplementary data can be found at JXB online.  8 

 9 

Supplementary Figure S1. A, Phenotype reversion in cyfbp and cfbp1 mutants 10 

complemented with translationally GFP-fused FBPases (under the control of a 1-11 

kb promoter region) cloned into pGWB4 vector. B, cFBP2 gene expression using 12 

semiquantitative RT-PCR in rosette leaves of 20-day-old Arabidopsis plants. C, 13 

PFP enzymatic activity.  14 

 15 

Supplementary Figure S2. A, maltose transporter (MEX1), plastidic glucose 16 

translocator (pGlcT) and glucose 6-phosphate/phosphate translocator 1 (GPT1) 17 

and 2 (GPT2) gene expression using semiquantitative RT-PCR in rosette leaves of 18 

20-day-old Arabidopsis plants. B-C, Western-blot analysis using anti-cyFBP y 19 

anti-cFBP1 antibody. 20 
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Supplementary Table S1. Gene-specific oligonucleotides used for semi-22 

quantitative PCR. 23 

 24 

Supplementary Table S2. Stomatal density and stomatal index in epidermis of 25 

leaves of the wild-type (WT) and cyfbp, cfbp1,and cyfbp cfbp1 mutants at the 26 

adaxial and abaxial surfaces. 27 
 28 
Supplementary Tables S3 and S4. Changes in Arabidopsis leaf metabolite levels 29 

at the end of the night (S3) and after 8 h illumination (S4) in cyfbp, cfbp1 and 30 

cyfbp cfbp1 knockout lines relative to the wild type. Metabolite profiling was 31 

made using GC-TOF-MS analysis and fluorescence spectroscopy. Results are 32 

means ± SD (n = 6).Values that are significantly different from the wild type 33 

according to Student’s t-test are indicated in bold (P value < 0.05). 34 
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Table 1.   Photosynthetic parameters of WT, cyfbp, cfbp1 and cyfbp cfbp1 mutant 
plants. Values were obtained from the A/Q and A/Ci curves using the Photosyn 
Assistant software as described in Materials and Methods.  
 

 
Values are the mean ± standard error of five to ten independent determinations. Fv/Fm was 
determined in 10 leaves from different plants. Values are mean ± SD. Asterisks indicate that mean 
values are significantly different between wild-type and FBPase mutant plants (*, P<0.05; **, 
P<0.01; ***, P<0.001).  
 
 
 

 
 

 Amax Γ Rd Vcmax Jmax TPU Fv/Fm 
wt 9.5 ±0.5 14.6±1.5 -1.1 ±0.3 30.6 ±4.9 154±33 11.1±1.4 0.83±0.01 

cyfbp 9.3 ± 0.5 16.7±5.4 -1.25 ±0.0 31.1 ±4.2 143 ±25 10.1±1.4 0.83±0.01* 
cfbp1 4.2±0.4** 67.3±23* -1.81 ±0.7 19.4±2.1* 88 ±12* 8.4 ±1.2* 0.77±0.01*** 

cyfbp cfbp1 3.2±0.7 ** 50.4±31 -1.41 ±0.5 20.1±4.0 92±23* 8.4±1.2* 0.77±0.03***



 29

Table 2.  Sucrose/starch ratio in leaves of Arabidopsis  
wild-type, cyfbp, cfbp1, and cyfbp cfbp1 mutants. 
 
Hours wt cyfbp   cfbp1 cyfbp cfbp1
0 0.87 0.66 5.15 1.91 
4 1.11 0.48 3.18 1.05 
8 1.39 0.29 1.89 0.20 
12 0.72 0.67 2.85 1.14 
16 1.02 0.73 1.42 0.96 
20 1.16 0.91 3.00 3.02 
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Figure legends 

 

Figure 1 

Analysis of mutant lines. (A) Genomic structure of cyFBP and cFBP1. Exons and 

introns are indicated as thick and thin black bars, respectively. Insertion sites of T-DNA 

in mutant lines cyfbp and cfbp1 at intron 11 and exon 1, respectively, are indicated by 

triangles. (B) Expression profile of each FBPase using specific oligonucleotides in the 

cyfbp and cfbp1 mutants and wildtype, 18s was used as housekeeping gene. (C) Western 

blot analysis of crude leaf extracts of cyfbp, cpfbp1, cyfbp cfbp1 mutants and wild-type. 

Proteins (25 μg) were separated by SDS-PAGE electrophoresis, transferred to 

nitrocellulose filters and immunolabeled with rabbit antiserum raised against Ab 

cyFBPase and Ab cFBPase1 proteins (see Material and methods). Bands are 

approximately 40 kDa, and RbcLS was used as loading control. (D) FBPase activity 

was determined in wt and mutants extract plants. 

 

Figure 2  

Growth of cyfbp, cfbp1, cyfbp cfbp1 mutants and the wild-type plants. Seeds of mutant 

and wild-type plants were sown in soil and cultured in a growth cabinet under 16-h 

light/8-h dark. Pictures were taken 21 days after sowing. A: cyfbp, cfbp1, cyfbp cfbp1 

mutants and WT. B: leaf number per rosette; fresh weight (FW) in mg per plant and leaf 

area in cm2 of mutants and wild-type during the experimental time course plotted 

against the number of days after germination of seeds. C: rate of seed germination. D: 

root growth rate in the first 24 h after germination. 

 

Figure 3 

Scanning electron micrographs illustrating morphological differences and stomata of 

“adaxial” leaves surfaces from Arabidopsis wild-type (wt) (A), cyfbp (B), cfbp1 (C) and 

cyfbp cfbp1 (D) mutants. Scale Bars: 10µm. 

 

Figure 4  

Light microscopy images of mesophyll cells and roots from the wild type, cyfbp, cfbp1, 

and cyfbp cfbp1 mutants of Arabidopsis plants grown for 21 days under a 16 h light/ 8 h 

dark regime. Semi-thin cross-section of leaves and roots from the wild type (A, E, and 
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H), cyfbp mutant (B, Fand I), cfbp1 mutant (C, G, and J), and cyfbp cfbp1 (D) were 

stained with toluidine blue (which stains proteins). Scale bars: 100 µm. 

 

Figure 5 

Transmission electron microscopy analysis of leaf sections from WT (A), cyfbp1 (B), 

cfbp1 (C), and cyfbp cfbp1 (D) plants. Leaves plants were collected at 4 h in a 16 h 

light/8 h dark photoperiod, fixed, embedded and sectioned as described in the Materials 

and Methods. Symbols: G, grana; S, starch; V, vacuole and P, plastoglobule. Chl: 

chloroplast, CW: cell wall, M: mitochondrion. 

 

Figure 6 

Pigment content in chlorophyll a and b and carotenoids in wild-type and cyfbp, cfbp1 

and cyfbp cfbp1 plants. Values are means +/- SE of measurements on at least 5-7 leaves 

of three different plants. Error bars show the standard error of the squared mean. 

Significant differences between means within a time point are indicated with * (P<0.05-

-*, P<0.01--**, P<0.001--***). 

 

Figure 7 

Photosynthetic capacity of wild type and cyfbp, cpfbp1,and cyfbp cpfbp1 mutants. Plants 

were grown in a controlled growth cabinet under 100 μmol m-2 s-1 light regimes for 20 

days. Photosynthetic carbon fixation rates were determined in the newest fully 

expanded leaf, as a function of increasing irradiance (A) at saturating CO2 (400 μmol 

mol-1; A/Q response curve) and a function of increasing CO2 concentration (D) at 

saturating-light levels (1000 μmol m-2 s-1; A/Ci response curve). Transpiration (E) and 

stomatal conductance (gs) were determined in the same leaves (B, E and C, F). Values 

represent the mean of 8 plants ±SE.   

 

Figure 8 

Reactive oxygen metabolism in Arabidopsis WT and cyfbp, cfbp1 and cyfbp cfbp1 

mutants. (A) Determination of H2O2 by fluorometry.  (B) Protein oxidation measured as 

carbonyl group content.  (C)  Lipid peroxidation measured as malondyaldehyde (MDA) 

content. (D) Glycolate oxidase (GOX) activity. (E) Relative intensity of Mn-SOD, Fe-

SOD and CuZn-SOD activities quantified by the Bio-Rad software Quantity one. (F) 

Analysis of mRNA SODs expression by qRT-PCR. (G) Catalase (CAT) activity. Each 



 32

bar represents mean± SE of three independent experiments. Differences between mutant 

plants and WT were significant at P<0.05 (*), P<0.01 (**) and P<0.001 (***). (R.I., 

relative intensity). 

 

Figure 9 

Changes in the intracellular content of glucose (A), fructose (B), sucrose (C) and starch 

(D) in wild-type (wt), cyfbp, cfbp1, and cyfbp cfbp1 mutant plants. The rosette leaves 

were collected at 0, 4, 8, 12, 16, and 20 h (4 h dark) of the photoperiod. The results are 

the mean ±SE from three individual Arabidopsis rosettes of three different experiments. 

(E) Plantlets of wild-type and mutants plants were harvested after 8 h illumination and 

at the end of the night and stained in Lugol solution. 

 

Figure 10 

Summary of metabolite profiling of leaves at the end of the night (A) and after 8 h of 

light (B) as analyzed by gas chromatography coupled with mass spectroscopy (GC-MS) 

and enzymatic assays coupled to fluorescence spectroscopy. Ratios are given between 

cyfbp, cfbp1, cyfbp cfbp1 and wildtype in colour coding: red, significantly lower than 

the wild-type; blue, significantly higher than the wild type (Student’s t-test, P<0.05, 

n=6). Data set of metabolite profiling see Supplementary Table S3 and S4. 

 

Figure 11 

Simplified scheme of the major changes (in metabolism, photosynthesis, and gene 

regulation) occurring in FBPase mutants and their impact on end-products accumulation 

(sucrose and starch). TP, trioses phoshpate; F1,6BP, fructose-1,6-phosphate; F6P, 

fructose-6-phosphate. 
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Supplementary Table S1 Gene-specific oligonucleotides used for semi-quantitative 
PCR                        
                           

Oligos Gene Analyzed Primer sequence 

CYFBP F 
AT1G43670 

GAGAGACAGAGACAGTAAG 
CYFBP R ACCCGGCTGACAAGAAAAGCCCCAA
LBSALK TGGTTCACGTAGTGGGCCATCG 
CFBP F 

AT3G54050 
GATATCTCAGCTCTTGGGTC 

CFBP1 R GATGTATCTCAGTCGGTTGG 
GABI CCCATTTGGACGTGAATGTAGACAC 
AtCII5 AT5G64380 TTGTCTCGAACGATATCGTC 
AtCII3 GATTTGTCCCCGAGTTGGG 

18s RNA F Arabidopsis AATATACGCTATTGGAGCTGG 
18s RNA R ATGGCTCATTAAATCAGTTAT 
FeSOD1 F AT4G25100 TGCTCTTTTCTGAGTGTGTGTGCG 
FeSOD1 R TGAATAATGGGCCATGCCAAAC 
FeSOD3 F AT5G23310 CATCAGTGAGCCCTGTATGGTGAC 
FeSOD3 R ATACTCTCAGTCACGTGCGGGTC 
MnSOD1 F AT3G10920 GAGATGAACCAGTTCCAGCTCAG 
MnSOD1 R CAACGTACCACACAGCTGAGTTG 

CuZnSOD1 F AT1G08830 AACTCAGCCTGGCTACTGGAAAC 
CuZnSOD1 R CACACAACTACCAAACCCAGGTC 
CuZnSOD2 F AT2G28190 GAACAATGGTGAAGGCTGTG 
CuZnSOD2 R GTGACCACCTTTCCCAAGAT 
CuZnSOD3 F AT5G18100 AGTATTCCATACTCGGGAGGGCG 
CuZnSOD3 R GCATCCGCAGATGATTGAAGTCC 

GPT1 5 AT4G24620 AAGTTCTCGCCCTGCAAAAGC 
GPT1 3 CGTACAGGTCATCCACATTGC 
GPT2 5 AT1G61800 AGTGGCACAAAGTGTGTTTTACC 
GPT2 3 TCCTCACTGCTTCGCCTGTGAGT 
pGlcT 5 AT5G16450 TTTCTCTCGGCATGCACTGG 
pGlcT 3 CTATTTCCTCCAGTGATCGACC 
MEX1 5 AT5G1752 TTGATGTGGCTCACTGGTTCG 
MEX1 3 GTTGTGACCATAAGCCACTGC 

 



Supplementary Table S2.  Stomatal density and stomatal index in epidermis of leaves of 

the wild-type and cyfbp, cfbp1, and cyfbp cfbp1 mutants at the adaxial and abaxial 

surfaces. 

 
                                     
                              Stomatal density                 Stomatal index (%)                
 Adaxial Abaxial Adaxial Abaxial 
Wild-type 384±26 215±13 23±2 12±1 
cyfbp 228±20 * 315±36 * 15±1 * 16±3 
cfbp1 296±30 * 349±67 * 10±1 * 18±2 * 
cyfbp cfbp1 274±44  * 442±41 * 11±1 * 14±3 

                                         
           Stomatal density, number stomata/mm2; ± S.D. (n=8)                   Stomatal index, SI = number of stomata/(number of    
                                                                                                     epidermal cells + number of stomata) × 100 
 
 
Data represents average ±SD for three different leaves per experiment. Asterisks (*) 
indicate a significant differences between means (Student’s t-test, P <0.005).  
(SD density of stomata=number of stomata per mm2) and stomata index determination 
(SI= number of stomata/ (number of epidermal cells + number of stomata) × 100)  
 

 



p‐value p‐value p‐value

Arabinose 1,00 ± 0,20 0,89 ± 0,50 0,623 0,56 ± 0,19 0,003 0,76 ± 0,20 0,066
Fructose 1,00 ± 0,80 0,65 ± 0,78 0,460 0,12 ± 0,04 0,023 0,15 ± 0,05 0,026
Fucose 1,00 ± 0,28 0,90 ± 0,50 0,690 0,47 ± 0,16 0,002 0,53 ± 0,12 0,007
Galactose 1,00 ± 0,60 0,83 ± 0,63 0,638 0,52 ± 0,15 0,088 0,61 ± 0,18 0,157
Glucose 1,00 ± 0,71 0,67 ± 0,57 0,391 0,11 ± 0,07 0,013 0,07 ± 0,02 0,010
Isomaltose 1,00 ± 0,07 0,67 ± 0,72 0,477
Maltose 1,00 ± 0,27 1,42 ± 0,83 0,271 0,20 ± 0,07 <0,001 0,35 ± 0,09 <0,001
Mannose 1,00 ± 0,58 0,80 ± 0,58 0,559 0,27 ± 0,08 0,012 0,33 ± 0,10 0,019
Psicose 1,00 ± 0,35 1,10 ± 0,67 0,744 0,40 ± 0,13 0,006 0,53 ± 0,16 0,013
Rhamnose 1,00 ± 0,26 0,95 ± 0,63 0,865 0,85 ± 0,26 0,347 0,86 ± 0,19 0,316
Ribose 1,00 ± 0,40 0,79 ± 0,49 0,429 1,08 ± 0,46 0,766 1,11 ± 0,30 0,583
Sedoheptulose (beta‐2,7‐anhydro‐) 1,00 ± 0,39 0,84 ± 0,53 0,556 0,61 ± 0,23 0,063 0,64 ± 0,17 0,065
Sucrose 1,00 ± 0,23 1,00 ± 0,63 0,997 0,17 ± 0,05 0,000 0,25 ± 0,07 <0,001
Trehalose 1,00 ± 0,39 1,37 ± 1,21 0,489 0,36 ± 0,15 0,004 0,40 ± 0,13 0,005
Xylose 1,00 ± 0,22 0,75 ± 0,44 0,243 0,34 ± 0,12 0,000 0,34 ± 0,10 <0,001

Dihydroxyacetone phosphate 1,00 ± 0,10 0,98 ± 0,12 0,782 0,42 ± 0,05 <0,001 0,42 ± 0,08 <0,001
Fructose 6‐phosphate 1,00 ± 0,11 1,22 ± 0,08 0,003 0,79 ± 0,15 0,017 0,74 ± 0,14 0,005
Fructose 1,6‐bisphosphate
Glucose 1‐phosphate 1,00 ± 0,24 0,68 ± 0,22 0,041 0,69 ± 0,10 0,016 0,80 ± 0,04 0,079
Glucose 6‐phosphate 1,00 ± 0,09 1,13 ± 0,04 0,007 0,64 ± 0,06 <0,001 0,65 ± 0,07 <0,001
Glyceraldehyde 3‐phosphate 1,00 ± 0,20 1,30 ± 0,20 0,034 0,89 ± 0,37 0,548 2,76 ± 1,09 0,004
Glycerol 3‐phosphate 1,00 ± 0,28 0,60 ± 0,29 0,035 0,85 ± 0,31 0,407 0,66 ± 0,23 0,046
3‐Phosphoglycerate 1,00 ± 0,16 1,27 ± 0,21 0,031 0,51 ± 0,07 <0,001 0,62 ± 0,07 <0,001

Benzoate 1,00 ± 0,29 0,98 ± 0,58 0,955 0,93 ± 0,19 0,640 0,84 ± 0,24 0,334
Butanoate (4‐amino‐) 1,00 ± 0,65 0,67 ± 0,64 0,394 1,34 ± 0,74 0,418 2,01 ± 0,48 0,012
Fumarate 1,00 ± 0,26 0,77 ± 0,44 0,303 0,28 ± 0,12 <0,001 0,13 ± 0,04 <0,001
Galactonate 1,00 ± 0,22 0,88 ± 0,50 0,616 0,86 ± 0,36 0,427 0,70 ± 0,20 0,034
Gluconate 1,00 ± 1,41 0,07 ± 0,04 0,137 0,10 ± 0,02 0,191 0,06 ± 0,01 0,306

Organic acids

Phosphate esters

Sugars

n.d.n.d.

n.d.

Dark
Metabolites WT cyfbp cfbp1 cyfbp x cfbp1

Usuario
Cuadro de texto
Supplementary Table S3. Changes in Arabidopsis leaf metabolite levels at the end of the night in cyfbp, cfbp1 and cyfbp cfbp1 knockout lines relative to the wild type. Metabolite profiling was performed using GC-TOF-MS analysis and fluorescence spectroscopy. Results are means ± SD (n = 6).Values that are significantly different from the wild type according to Student's t-test are indicated in bold (P value _ 0.05).



Glutarate (2‐oxo‐) 1,00 ± 0,32 1,16 ± 0,68 0,609 0,96 ± 0,21 0,817 0,94 ± 0,23 0,732
Glycerate 1,00 ± 0,30 0,82 ± 0,46 0,447 0,50 ± 0,10 0,003 0,37 ± 0,11 <0,001
Gulonate 1,00 ± 0,92 0,91 ± 1,03 0,881 0,12 ± 0,02 0,042 0,09 ± 0,03 0,037
Hexadecanoate 1,00 ± 0,40 1,31 ± 1,17 0,548 1,07 ± 0,45 0,797 0,90 ± 0,25 0,631
Malate 1,00 ± 0,32 0,87 ± 0,55 0,640 0,25 ± 0,12 <0,001 0,15 ± 0,04 <0,001
Maleate 1,00 ± 0,37 0,95 ± 0,55 0,853 0,83 ± 0,39 0,465 0,54 ± 0,21 0,025
Nicotinate 1,00 ± 0,31 0,87 ± 0,48 0,586 0,76 ± 0,23 0,150 0,94 ± 0,27 0,726
Octadecanoate 1,00 ± 0,45 1,14 ± 1,09 0,773 1,05 ± 0,46 0,856 0,86 ± 0,25 0,522
Pyruvate 1,00 ± 0,35 1,04 ± 0,69 0,910 1,08 ± 0,29 0,658 0,84 ± 0,24 0,376
Quinate 1,00 ± 0,35 0,88 ± 0,55 0,750 1,18 ± 0,36 0,505 1,26 ± 0,37 0,350
Shikimate 1,00 ± 0,27 1,02 ± 0,55 0,942 0,77 ± 0,25 0,155 0,84 ± 0,21 0,266
Sinapate (cis‐) 1,00 ± 0,40 0,78 ± 0,43 0,374 0,83 ± 0,34 0,449 0,71 ± 0,27 0,161
Sinapate (trans‐) 1,00 ± 0,40 0,73 ± 0,38 0,256 0,86 ± 0,33 0,528 0,69 ± 0,27 0,157
Succinate 1,00 ± 0,36 1,39 ± 0,93 0,361 0,35 ± 0,13 0,002 0,30 ± 0,07 <0,001
Threonate 1,00 ± 0,20 0,77 ± 0,42 0,264 0,51 ± 0,18 0,001 0,35 ± 0,11 <0,001

Alanine 1,00 ± 0,38 0,78 ± 0,50 0,409 1,09 ± 0,40 0,703 2,01 ± 0,35 <0,001
Arginine
Aspartate 1,00 ± 0,50 0,92 ± 0,60 0,803 3,61 ± 2,30 0,022 3,64 ± 0,99 <0,001
Glutamate 1,00 ± 0,96 0,77 ± 0,67 0,647 2,92 ± 2,03 0,063 2,03 ± 0,76 0,066
Glycine 1,00 ± 1,22 0,46 ± 0,37 0,320 0,56 ± 0,22 0,404 0,70 ± 0,23 0,564
Isoleucine 1,00 ± 1,17 0,54 ± 0,43 0,391 1,20 ± 0,37 0,692 0,83 ± 0,09 0,726
Leucine 1,00 ± 1,08 0,60 ± 0,49 0,433 0,65 ± 0,26 0,464 0,70 ± 0,10 0,509
Proline 1,00 ± 1,86 0,26 ± 0,32 0,356 0,28 ± 0,07 0,367 0,30 ± 0,05 0,379
Pyroglutamate 1,00 ± 0,21 0,88 ± 0,40 0,538 1,05 ± 0,44 0,803 1,27 ± 0,30 0,093
Serine 1,00 ± 0,46 1,01 ± 0,82 0,986 0,55 ± 0,18 0,050 1,16 ± 0,33 0,500
Threonine 1,00 ± 0,41 0,78 ± 0,44 0,396 16,00 ± 6,45 <0,001 8,56 ± 1,51 <0,001
Tryptophan 1,00 ± 0,21 0,88 ± 0,64 0,763 0,91 ± 0,25 0,622 1,04 ± 0,23 0,840
Valine 1,00 ± 0,61 0,90 ± 0,53 0,768 0,93 ± 0,24 0,802 1,14 ± 0,25 0,604

Erythritol 1,00 ± 0,39 0,97 ± 0,54 0,922 0,88 ± 0,19 0,504 0,82 ± 0,24 0,355
Glycerol 1,00 ± 0,26 0,88 ± 0,50 0,603 0,65 ± 0,17 0,021 0,65 ± 0,16 0,018
Inositol (myo‐) 1,00 ± 0,34 1,09 ± 0,62 0,772 0,20 ± 0,05 <0,001 0,20 ± 0,05 <0,001
Maltitol 1,00 ± 0,87 0,85 ± 0,73 0,757 0,08 ± 0,03 0,027 0,06 ± 0,03 0,040
Mannitol 1,00 ± 0,73 0,67 ± 0,36 0,346 0,77 ± 0,44 0,524 1,21 ± 0,39 0,669

Amino acids

Sugar alcohols

Others

n.d.



Ascorbate 1,00 ± 0,89 1,76 ± 1,12 0,220 3,14 ± 1,60 0,017 5,48 ± 1,66 <0,001
Dehydroascorbate dimer 1,00 ± 0,58 1,28 ± 0,72 0,475 0,80 ± 0,25 0,451 0,89 ± 0,32 0,698
Ethanolamine 1,00 ± 0,68 0,96 ± 1,13 0,941 1,11 ± 0,63 0,774 2,99 ± 1,54 0,016
Phosphate 1,00 ± 0,21 0,75 ± 0,40 0,198 0,90 ± 0,32 0,524 1,14 ± 0,29 0,349
Spermidine 1,00 ± 0,36 0,74 ± 0,44 0,317 0,86 ± 0,30 0,496 0,69 ± 0,31 0,174
Uracil 1,00 ± 0,32 1,12 ± 0,84 0,745 1,16 ± 0,32 0,410 0,93 ± 0,25 0,681

Usuario
Cuadro de texto
n.d.: not detectable




p‐value p‐value p‐value

Arabinose 1,00 ± 0,43 1,48 ± 1,17 0,369 0,58 ± 0,10 0,042 0,56 ± 0,20 0,047
Fructose 1,00 ± 0,83 1,54 ± 1,50 0,458 0,13 ± 0,03 0,028 0,10 ± 0,06 0,024
Fucose 1,00 ± 0,40 1,45 ± 1,15 0,381 0,50 ± 0,11 0,015 0,40 ± 0,15 0,006
Galactose 1,00 ± 0,57 2,71 ± 2,15 0,090 0,48 ± 0,19 0,059 0,52 ± 0,21 0,080
Glucose 1,00 ± 0,68 1,74 ± 1,72 0,348 0,11 ± 0,04 0,010 0,07 ± 0,04 0,008
Isomaltose 1,00 ± 0,53 4,51 ± 3,54 0,037 0,47 ± 0,10 0,090 0,29 ± 0,09 0,033
Maltose 1,00 ± 0,42 3,93 ± 4,27 0,126 0,22 ± 0,08 0,018 0,21 ± 0,07 0,001
Mannose 1,00 ± 0,59 1,63 ± 1,30 0,307 0,27 ± 0,08 0,013 0,25 ± 0,10 0,011
Psicose 1,00 ± 0,36 2,33 ± 1,82 0,110 0,28 ± 0,10 <0,001 0,34 ± 0,11 0,002
Rhamnose 1,00 ± 0,43 1,66 ± 1,35 0,277 0,79 ± 0,16 0,277 0,67 ± 0,21 0,118
Ribose 1,00 ± 0,36 1,77 ± 1,51 0,256 1,18 ± 0,34 0,390 1,22 ± 0,44 0,370
Sedoheptulose (beta‐2,7‐anhydro‐) 1,00 ± 0,43 1,31 ± 1,04 0,512 0,47 ± 0,10 0,014 0,36 ± 0,13 0,005
Sucrose 1,00 ± 0,43 2,21 ± 2,01 0,179 0,55 ± 0,13 0,034 0,27 ± 0,07 0,002
Trehalose 1,00 ± 0,44 2,37 ± 2,31 0,182 0,31 ± 0,11 0,004 0,31 ± 0,17 0,005
Xylose 1,00 ± 0,48 1,40 ± 1,05 0,421 0,35 ± 0,08 0,009 0,30 ± 0,10 0,006

Dihydroxyacetone phosphate 1,00 ± 0,05 1,26 ± 0,14 0,002 1,65 ± 0,55 0,017 3,08 ± 0,29 <0,001
Fructose 6‐phosphate 1,00 ± 0,08 1,23 ± 0,13 0,004 0,97 ± 0,11 0,631 0,99 ± 0,10 0,887
Fructose 1,6‐bisphosphate 1,00 ± 0,38 4,61 ± 2,00 0,002 16,54 ± 11,60 0,009 59,76 ± 7,22 <0,001
Glucose 1‐phosphate 1,00 ± 0,27 1,06 ± 0,43 0,776 1,05 ± 0,21 0,741 0,74 ± 0,16 0,065
Glucose 6‐phosphate 1,00 ± 0,06 1,25 ± 0,06 <0,001 0,95 ± 0,05 0,108 0,91 ± 0,06 0,033
Glyceraldehyde 3‐phosphate 1,00 ± 0,33 4,83 ± 1,13 <0,001 12,54 ± 5,20 <0,001 29,77 ± 3,92 <0,001
Glycerol 3‐phosphate 1,00 ± 0,42 0,74 ± 0,50 0,359 0,63 ± 0,30 0,111 0,45 ± 0,20 0,017
3‐Phosphoglycerate 1,00 ± 0,09 2,88 ± 0,24 <0,001 1,85 ± 0,54 0,004 2,27 ± 0,15 <0,001

Benzoate 1,00 ± 0,37 1,47 ± 1,26 0,399 0,60 ± 0,18 0,039 0,57 ± 0,22 0,036
Butanoate (4‐amino‐) 1,00 ± 0,57 1,17 ± 1,20 0,760 2,86 ± 1,65 0,026 2,27 ± 1,63 0,102
Fumarate 1,00 ± 0,40 1,18 ± 0,95 0,678 0,29 ± 0,09 0,002 0,14 ± 0,05 <0,001
Galactonate 1,00 ± 0,44 1,23 ± 0,91 0,599 0,49 ± 0,18 0,026 0,37 ± 0,12 0,007
Gluconate 1,00 ± 0,29 2,01 ± 1,04 0,044 0,29 ± 0,10 0,002 0,28 ± 0,14 <0,001

cyfbp cfbp1 cyfbp x cfbp1
Light

WTMetabolites
Sugars

Phosphate ester

Organic acids

Usuario
Cuadro de texto
Supplementary Table S4. Changes in Arabidopsis leaf metabolite levels after 8 h illumination (16 h light/8 h dark) in cyfbp, cfbp1, and cyfbp cfbp1 knockout lines compared relative to the wild type. Metabolite profiling was performed using GC-TOF-MS analysis and fluorescence spectroscopy. Results are means ± SD (n = 6).Values that are significantly different from the wild type according to Student's t-test are indicated in bold (P value _ 0.05). 




Glutarate (2‐oxo‐) 1,00 ± 0,48 1,71 ± 1,64 0,334 0,65 ± 0,31 0,158 0,51 ± 0,24 0,049
Glycerate 1,00 ± 0,40 1,80 ± 1,17 0,146 0,24 ± 0,04 <0,001 0,26 ± 0,10 0,001
Gulonate 1,00 ± 0,37 2,87 ± 1,17 0,004 0,06 ± 0,02 <0,001 0,04 ± 0,02 <0,001
Hexadecanoate 1,00 ± 0,46 3,24 ± 4,00 0,204 0,76 ± 0,42 0,361 0,58 ± 0,39 0,117
Malate 1,00 ± 0,47 0,71 ± 0,46 0,302 0,29 ± 0,15 0,005 0,14 ± 0,10 0,001
Maleate 1,00 ± 0,31 0,91 ± 0,53 0,729 0,49 ± 0,25 0,010 0,29 ± 0,11 <0,001
Nicotinate 1,00 ± 0,34 1,04 ± 0,68 0,906 0,49 ± 0,15 0,007 0,58 ± 0,20 0,026
Octadecanoate 1,00 ± 0,48 3,24 ± 4,19 0,222 0,80 ± 0,50 0,487 0,56 ± 0,39 0,111
Pyruvate 1,00 ± 0,37 1,36 ± 1,06 0,453 0,69 ± 0,26 0,124 0,60 ± 0,27 0,061
Quinate 1,00 ± 0,59 1,47 ± 1,25 0,421 0,91 ± 0,44 0,759 1,08 ± 1,10 0,884
Shikimate 1,00 ± 0,39 1,40 ± 1,00 0,378 0,62 ± 0,12 0,044 0,49 ± 0,16 0,014
Sinapate (cis‐) 1,00 ± 0,31 1,09 ± 0,65 0,760 0,52 ± 0,10 0,005 0,37 ± 0,13 <0,001
Sinapate (trans‐) 1,00 ± 0,40 1,02 ± 0,74 0,953 0,53 ± 0,20 0,028 0,39 ± 0,13 0,006
Succinate 1,00 ± 0,35 1,56 ± 0,75 0,127 0,18 ± 0,05 <0,001 0,11 ± 0,04 <0,001
Threonate 1,00 ± 0,44 1,11 ± 0,80 0,776 0,30 ± 0,09 0,003 0,22 ± 0,08 0,002

Alanine 1,00 ± 0,43 1,43 ± 1,27 0,453 1,16 ± 0,43 0,525 1,22 ± 0,53 0,445
Arginine 1,00 ± 0,48 0,76 ± 0,08 0,243 0,83 ± 0,59 0,651
Aspartate 1,00 ± 1,10 0,61 ± 0,58 0,466 0,78 ± 0,35 0,645 0,63 ± 0,41 0,462
Glutamate 1,00 ± 0,84 4,16 ± 4,49 0,122 2,38 ± 2,55 0,236 1,20 ± 0,94 0,699
Glycine 1,00 ± 0,23 1,10 ± 0,97 0,829 3,25 ± 2,01 0,036 1,81 ± 1,23 0,184
Isoleucine 1,00 ± 0,26 1,67 ± 1,67 0,357 1,21 ± 0,14 0,110 1,03 ± 0,29 0,874
Leucine 1,00 ± 0,31 1,80 ± 1,75 0,295 0,59 ± 0,12 0,012 0,57 ± 0,22 0,019
Proline 1,00 ± 0,36 2,27 ± 3,03 0,332 1,50 ± 0,29 0,026 1,79 ± 1,17 0,148
Pyroglutamate 1,00 ± 0,37 1,00 ± 0,64 0,993 0,81 ± 0,28 0,332 0,61 ± 0,22 0,052
Serine 1,00 ± 0,43 0,88 ± 0,37 0,631 0,50 ± 0,18 0,024 0,40 ± 0,09 0,008
Threonine 1,00 ± 0,42 0,75 ± 0,34 0,271 8,50 ± 2,06 <0,001 4,74 ± 1,43 <0,001
Tryptophan 1,00 ± 0,55 1,98 ± 1,86 0,247 0,72 ± 0,28 0,292 0,57 ± 0,36 0,166
Valine 1,00 ± 0,38 1,59 ± 1,48 0,363 0,50 ± 0,12 0,012 0,68 ± 0,20 0,104

Erythritol 1,00 ± 0,42 1,16 ± 0,97 0,713 0,54 ± 0,21 0,037 0,49 ± 0,24 0,041
Glycerol 1,00 ± 0,39 1,72 ± 1,41 0,256 0,48 ± 0,11 0,010 0,50 ± 0,25 0,022
Inositol (myo‐) 1,00 ± 0,47 1,57 ± 1,34 0,348 0,13 ± 0,05 0,001 0,14 ± 0,05 0,001
Maltitol 1,00 ± 0,47 5,00 ± 4,43 0,052 0,06 ± 0,03 <0,001 0,03 ± 0,02 <0,001
Mannitol 1,00 ± 0,92 1,19 ± 1,12 0,772 0,64 ± 0,28 0,423 0,51 ± 0,25 0,281

n.d.

Others

Amino acids

Sugar alcohols



Ascorbate 1,00 ± 0,70 0,70 ± 0,52 0,422 1,15 ± 0,60 0,693 1,29 ± 0,80 0,525
Dehydroascorbate dimer 1,00 ± 0,56 3,71 ± 3,43 0,086 0,60 ± 0,24 0,136 0,48 ± 0,18 0,054
Ethanolamine 1,00 ± 0,68 0,96 ± 1,19 0,950 1,90 ± 1,47 0,205 4,38 ± 2,63 0,012
Phosphate 1,00 ± 0,45 1,41 ± 1,12 0,424 0,67 ± 0,29 0,162 0,61 ± 0,35 0,125
Spermidine 1,00 ± 0,42 1,10 ± 0,80 0,784 0,55 ± 0,22 0,044 0,42 ± 0,19 0,012
Uracil 1,00 ± 0,46 1,16 ± 0,85 0,702 0,66 ± 0,26 0,150 0,64 ± 0,31 0,139

Usuario
Cuadro de texto
n.d.: not detectable
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Arabidopsis tic62 trol Mutant Lacking Thylakoid-
Bound Ferredoxin–NADP+ Oxidoreductase Shows 
Distinct Metabolic Phenotype
Minna Lintalaa,2, Natalie Schuckb,c,2, Ina Thormählend, Andreas Jungferb,c, Katrin L. Webere, Andreas 
P.M. Webere, Peter Geigenbergerd, Jürgen Sollb,c, Bettina Bölterb,c,1, and Paula Muloa,1

a Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
b Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
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Germany
e Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Universitätsstrasse 1, D-40225 Düsseldorf, Germany

ABSTRACT  Ferredoxin–NADP+ oxidoreductase (FNR), functioning in the last step of the photosynthetic electron transfer 
chain, exists both as a soluble protein in the chloroplast stroma and tightly attached to chloroplast membranes. Surface 
plasmon resonance assays showed that the two FNR isoforms, LFNR1 and LFNR2, are bound to the thylakoid membrane 
via the C-terminal domains of Tic62 and TROL proteins in a pH-dependent manner. The tic62 trol double mutants con-
tained a reduced level of FNR, exclusively found in the soluble stroma. Although the mutant plants showed no visual 
phenotype or defects in the function of photosystems under any conditions studied, a low ratio of NADPH/NADP+ was 
detected. Since the CO2 fixation capacity did not differ between the tic62 trol plants and wild-type, it seems that the 
plants are able to funnel reducing power to most crucial reactions to ensure survival and fitness of the plants. However, 
the activity of malate dehydrogenase was down-regulated in the mutant plants. Apparently, the plastid metabolism is 
able to cope with substantial changes in directing the electrons from the light reactions to stromal metabolism and thus 
only few differences are visible in steady-state metabolite pool sizes of the tic62 trol plants.

Key words:  carbon assimilation; ferredoxin–NADP+ oxidoreductase; photosynthesis; chloroplast; stromal metabolism; 
Tic62; TROL.

Introduction
The light reactions of photosynthesis are linked to carbon 
metabolism via the ferredoxin–NADP+ oxidoreductase (FNR) 
enzyme, a 35-kDa flavoprotein found in chloroplasts as well 
as in non-photosynthetic plastids (Morigasaki et  al., 1993). 
In Arabidopsis thaliana, the leaf-type chloroplast-targeted 
FNR isoforms LFNR1 and LFNR2 are encoded by two distinct 
nuclear genes, At5g66190 and At1g20020, respectively, which 
share 82% identity on amino acid level (Hanke et al., 2005; 
Lintala et al., 2007). In chloroplasts, both isoforms are evenly 
distributed between the thylakoid membranes and soluble 
stroma (Hanke et al., 2005), and a small quantity is addition-
ally found attached to the inner chloroplast envelope mem-
brane via the Tic62 protein (62-kDa subunit of translocon of 
inner chloroplast membrane) (Kuchler et al., 2002).

As FNR is involved in producing reducing equivalents for 
stromal primary metabolism, it may have a regulatory impact 
on distribution of electrons to various targets. In addition to 

FNR, electrons are distributed directly from ferredoxin (Fd) to 
various reactions, such as nitrogen and sulphur metabolism, 
biosynthesis of chlorophyll, phytochrome and fatty acids, as 
well as regulation and maintenance of stromal redox bal-
ance (Hanke and Mulo, 2013). Members of the thioredoxin 
(Trx) protein family also accept electrons from Fd via Fd-Trx 
reductase (FTR), and are required for activation of numer-
ous chloroplast enzymes, including fructose-1,6-bisphosphate 
phosphatase, sedoheptulose-1,7-bisphosphate phosphatase, 

1 To whom correspondence should be addressed. P.M. E-mail pmulo@utu.fi, 
tel. +358-2-3337915, fax +358-2-3338075. B.B. E-mail boelter@bio.lmu.de, 
tel. +49-89-218074759, fax +49-89-218074752.
2 These authors contributed equally to this work.

© The Author 2013. Published by the Molecular Plant Shanghai Editorial 
Office in association with Oxford University Press on behalf of CSPB and 
IPPE, SIBS, CAS.

doi:10.1093/mp/sst129, Advance Access publication 16 September 2013

Received 19 June 2013; accepted 28 August 2013

 at U
niversitaetsbibliothek M

uenchen on January 4, 2014
http://m

plant.oxfordjournals.org/
D

ow
nloaded from

 

mailto:pmulo@utu.fi
mailto:boelter@bio.lmu.de
http://mplant.oxfordjournals.org/
http://mplant.oxfordjournals.org/


46    Lintala et al.  •  Metabolic Role of FNR in tic62 trol Mutants

ribulose-5-phosphate kinase, NADP-glyceraldehyde-3-
phosphate dehydrogenase, and rubisco activase involved in 
the Calvin–Benson cycle, as well as ADP-glucose pyrophos-
phorylase (AGPase) involved in starch synthesis, ATP synthase 
involved in ATP production and NADP–malate dehydro-
genase (NADP–MDH) involved in export of redox-equiv-
alents from the chloroplast to the cytosol (Schürmann and 
Buchanan, 2008; Thormählen et al., 2013). In addition to this, 
chloroplasts contain an NADPH-Trx reductase C (NTRC) com-
bining both NTR and Trx activities on a single polypeptide to 
efficiently regulate chloroplast target enzymes such as 2-Cys 
peroxiredoxins (Pérez-Ruiz et al., 2006) or AGPase (Michalska 
et al., 2009) using NADPH as reducing power. Obviously, the 
fraction of electrons fed to these pathways must be balanced 
with the rates of enzyme activity to avoid over-reduction 
of the stromal acceptors, which might lead to formation of 
potentially damaging reactive oxygen species (ROS).

As the membrane binding and attachment site may 
affect the enzyme activity and ultimately determine which 
metabolic pathways are supplied with electrons, a number 
of studies have attempted to localize FNR at the thylakoid 
membranes over the past 30  years. A  number of loci have 
been suggested: specific FNR-binding proteins (Vallejos et al., 
1984; Shin et al., 1985; Chan et al., 1987; Soncini and Vallejos, 
1989; Shin et al., 1990), PSI (Andersen et al., 1992), the NDH-
complex (Guedeney et al., 1996; Quiles and Cuello, 1998), and 
the Cyt b6f complex (Clark et al., 1984; Zhang et al., 2001). 
Previously, two novel FNR-binding proteins, Tic62 (Benz et al., 
2009) and TROL (thylakoid rhodanese-like protein; Juric et al., 
2009), have been characterized. Indeed, these proteins share 
an FNR-binding domain, which is characteristic only for the 
Tic62 and TROL proteins of vascular plants indicating a young 
evolutionary origin (Balsera et al., 2007).

Tic62 is encoded by a single nuclear gene (At3g18890). It is 
composed of two distinct structural domains: the N-terminal 
NADP(H)-binding module and the C-terminal domain con-
taining conserved polyproline type II (PPII) helices capable 
of binding FNR (Kuchler et al., 2002; Juric et al., 2009; Alte 
et  al., 2010). In the C-terminus of Arabidopsis Tic62, four 
FNR-binding domains have been identified, although this 
number varies in other plants (Balsera et al., 2007). Tic62 is 
a functional NADPH-dependent dehydrogenase shuttling 
between the chloroplast membranes and soluble stroma in 
a redox-dependent way: a low plastidial NADPH/NADP+ ratio 
leads to strong attachment of Tic62 to the membrane, while, 
under reducing conditions, Tic62 is localized predominantly 
in the stroma (Stengel et al., 2008). Tic62 builds large (>250-
kDa) protein complexes together with FNR at the thylakoid 
membranes (Benz et al., 2009). The association between FNR 
and Tic62 is increased under acidic conditions and in dark-
ness (Benz et al., 2009; Alte et al., 2010). These complexes are 
not directly involved in photosynthesis, but rather the recruit-
ment of FNR by Tic62 to the thylakoid membranes appears to 
protect FNR from inactivation during the non-photosynthetic 
periods of the night (Benz et al., 2009, 2010).

The TROL protein, in turn, is an intrinsic thylakoid protein 
of 66 kDa encoded by a single nuclear gene in Arabidopsis 
(At4g01050; Juric et al., 2009). A small amount of the unpro-
cessed form of the protein is also found in association with 
the inner envelope membrane. TROL contains a single serine/
proline rich FNR-binding region at its C-terminus, similar to 
that of Tic62, and indeed the TROL–FNR protein complexes 
at the thylakoid membranes are smaller (190 kDa) than those 
composed of Tic62 and FNR (Benz et  al., 2009; Juric et  al., 
2009). In contrast to tic62 mutant plants, trol mutants pos-
sessed slightly retarded development and thicker leaves than 
the wild-type (WT). Notably, although no differences in lin-
ear electron transfer between trol mutants and WT plants 
could be detected upon lower light intensities, photosystem 
(PS)II-driven electron transfer (ETR) and non-photochemical 
quenching (NPQ) in trol mutants were affected upon increas-
ing illumination, indicating the impact of the TROL protein in 
photosynthetic reactions (Juric et al., 2009).

Because membrane recruitment of FNR may be an impor-
tant mechanism to control the activity of the enzyme and 
distribution of the electrons to stromal reactions, we have 
analyzed the tic62 trol double mutant plants, which do not 
possess any FNR at the thylakoid membranes, neither in pro-
tein complexes nor as free membrane-associated proteins. 
Here, we show that, despite the low NADPH/NADP+ ratio 
detected in the tic62 trol mutants, the visual phenotype and 
the function of photosystems in the mutants did not differ 
from those of the WT. This implies that the soluble pool of 
FNR is sufficient to support autotrophic growth of the plants, 
and that the plants are able to funnel NADPH to the most 
crucial reactions (i.e. carbon assimilation) to ensure survival 
and proper fitness of the plants. The tic62 trol double mutant 
revealed distinct differences in metabolic parameters relative 
to WT, such as changes in the activities of enzymes that are 
involved in NADPH metabolism (NADP–MDH) or starch bio-
genesis (AGPase), and specific alterations in metabolite levels.

RESULTS
Affinity of LFNR1 and LFNR2 to the FNR-Binding 
Domains in Tic62 and TROL

We have shown previously that the affinity of PsFNR to 
one repetitive motif from Tic62 (MRM; FNR-Membrane-
Recruiting-Motif; Alte et al., 2010) is pH-dependent. To deter-
mine the relative affinity of different leaf FNR (LFNR) isoforms 
to the three repetitive motifs in pea Tic62 and TROL proteins 
(Figure 1A), interaction between synthetic peptides and the 
heterologously expressed LFNR isoforms was analyzed using 
surface plasmon resonance (Biacore T200). We applied bind-
ing buffers with different pH values, similar to the experiments 
described in Benz et al. (2009), but, in contrast to the former 
approach, the different LFNR isoforms were coupled to a CM5 
chip and the relative binding of the respective peptides was 
analyzed (Figure 1B). PsFNR showed distinct interactions with 
the different peptides in a concentration-dependent manner: 
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with Tic62-3 as well as TROL, it interacted about three times 
stronger calculated by the value of obtained response units 
than with Tic62-1 and Tic62-2, respectively. This holds true for 
both pH 6 and pH 8, though the lower pH in general leads 
to stronger interactions. Interestingly, at pH 8, the Tic62-3 

peptide showed the strongest binding to FNR (except for 
200 and 250-µM concentration), whereas, at pH 6, the TROL 
peptide was bound more strongly (Figure 1B). This appears 
to contradict the results published by Juric et al. (2009), who 
reported TROL having a higher affinity for FNR than Tic62 as 

Figure 1.  Interaction of FNR with Tic62 and TROL Peptides.

(A) Sequence comparison of the synthetic Tic62 and TROL peptides used for surface plasmon resonance analysis. Black boxes indicate identical, 
gray boxes similar amino acids.
(B) Surface plasmon resonance analyses of binding affinities of PsFNR, AtLFNR1, and AtLFNR2 (analytes) with synthetic peptides of Tic62 and TROL as 
ligands. Analyses were performed at two different pH values (6 and 8) with different molarities of analytes. Results are presented as mean ± SD, n = 3.
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judged by a yeast two-hybrid assay. AtLFNR1 and AtLFNR2 
basically exhibited the same interaction behavior as the pea 
isoform, with the LFNR1 having slightly lower affinity com-
pared to pea and Arabidopsis LFNR2.

Visual and Molecular Phenotype of tic62 trol 
Mutant Plants

To study the effect of a complete loss of MRMs at the thy-
lakoids, the tic62 (SAIL_124_G04; Benz et al., 2009) and trol 
(SAIL_27_B04; Juric et al., 2009) mutant plants were crossed. 
Two homozygote lines (tic62 trol 2–6–8 and tic62 trol 2–1–18) 
devoid of Tic62 and TROL proteins were identified and fur-
ther characterized. Results are shown from the line 2–1–18.

The tic62 trol double mutant plants showed no visual phe-
notype under any of the studied conditions (short day (SD) 
8 h/16 h light/dark; long day 16 h/8 h light/dark; SD at 10°C; 
SD under constantly changing 5 min 50 µmol photons m–2 s–1, 
1 min 500  µmol  photons  m–2  s–1; SD under 500  µmol  pho-
tons m–2 s–1), and the double mutant plants proved to be as 
healthy and vigorous as the WT (Supplemental Figure 1). It is 
worth mentioning that, in contrast to the earlier report show-
ing decreased rosette size of the trol plants (Juric et al., 2009), 
no such changes in the visual phenotype of trol plants could be 
detected under any of our growth conditions (Supplemental 
Figure  1). In line with the earlier study (Benz et  al., 2009), 
the phenotype of tic62 plants did not differ from WT plants 
(Supplemental Figure 1). Accordingly, no marked differences 
could be detected in the pigment (chlorophyll a and b, neox-
anthin, lutein, β-carotene), pheophytin, and α-tocopherol 
content between WT and mutant plants (Table 1).

The quantities of the Tic62 and TROL proteins in the mutant 
plants were verified by Western blotting using an antibody 
raised against the FNR-bindings motif of pea Tic62, which rec-
ognized both Tic62 and TROL proteins (Figure 2A). Despite the 
predicted molecular weight of 62 kDa, Tic62 co-migrated with 
the 116-kDa marker, while TROL migrated with the 66-kDa 
marker. The tic62 mutant plants lacked the Tic62 protein, but 
no clearup- or down-regulation of TROL protein could be 
observed. Equally, trol mutant plants lacked the TROL pro-
tein without changes in the content of the Tic62 protein. As 
expected, the double mutant plants showed complete loss of 
both Tic62 and TROL protein (Figure 2A). The total amount of 
FNR protein in the trol plants did not show marked difference 
compared to WT, whereas the total FNR content in the tic62 
and tic62 trol mutant was lower than in the WT. Nevertheless, 
the soluble pool of FNR protein was increased especially in 
tic62 and tic62 trol mutant plants, while the thylakoid pool 
of FNR was clearly smaller in tic62 mutant plants and com-
pletely missing from the tic62 trol mutant plant thylakoids 
(Figure 2B). Thylakoids were isolated under very mild condi-
tions with no detergent present; thus, it is highly unlikely that 
the FNR was lost during the isolation procedure, but rather 
was not attached to the thylakoid membrane due to the lack 
of its binding partners Tic62 and TROL. Moreover, in line with 
the previous studies (Benz et al., 2009; Juric et al., 2009), the 

analysis of thylakoid protein complexes by blue native (BN) 
PAGE showed that several large protein complexes composed 
of FNR together with Tic62 were missing from tic62 plants, 
while TROL and FNR were found together only in one pro-
tein complex of around 140 kDa (Figure  2B). Additionally, 
the TROL protein was present independently of FNR in at 
least one small complex. In trol plants, the TROL-containing 
complexes were not detected. The thylakoid membranes of 
tic62 trol double mutant plants did not respond to Tic62 or 
FNR antibodies when separated by BN gel, indicating that 
FNR is attached to thylakoid membrane protein complexes 
which are stable under BN–PAGE conditions only via Tic62 
and TROL. Intriguingly, the monomeric FNR protein detected 
at the thylakoid membranes of tic62 and trol plants was 
also completely missing from the thylakoids of the tic62 trol 
plants (Figure 2B), indicating that ‘free’ FNR is detached from 
complexes during sample preparation or gel electrophoresis 
and no FNR is bound to thylakoid membranes independently 
of Tic62 or TROL.

As the simultaneous depletion of Tic62 and TROL com-
pletely hindered FNR complex formation at the thylakoid 
membrane (Figure  2B), we wanted to test whether psae, 
ndho, or pgr5 mutant plants show a similar kind of defect 
in FNR complex formation as tic62, trol, and tic62 trol. These 
mutants lack the complexes/subunits previously suggested 
to be involved in the membrane binding of FNR (Andersen 
et al., 1992; Guedeney et al., 1996; Quiles and Cuello, 1998; 
DalCorso et al., 2008). To this end, mutant thylakoids were 
subjected to BN–PAGE and the gels were immunoblotted with 
FNR antibody. Figure 3 clearly shows that all FNR-containing 
complexes were present at the thylakoid membranes of WT, 
ndho, psae, and pgr5. In line with our previous results, the 
loss of LFNR1 resulted in complete loss of FNR from the thy-
lakoid membranes, whereas, in the fnr2 mutant plants, FNR 
was present as a free protein and in small amounts in com-
plex with TROL (Figure 3; Lintala et al., 2007, 2009).

Photosynthetic Properties of the tic62 trol Plants

To study the effect of complete loss of FNR from the thyla-
koid membranes on the photosynthetic performance of pho-
tosystem II (PSII), chlorophyll fluorescence measurements 
were performed. In our hands, neither ETR nor NPQ differed 
between the WT and the tic62, trol, or tic62 trol mutant 
plants under different actinic light intensities (Figure 4A and 
4B). Deeper insight into the ability of plants to induce NPQ 
was gained by analyzing the de-epoxidation state of the xan-
thophyll cycle pigments. In accordance with the fluorescence 
measurements, no drastic differences could be detected in 
the accumulation of violaxanthin, antheraxanthin, and zeax-
anthin between the WT and the tic62 trol plants under stand-
ard growth conditions or after 1 h of high light illumination 
(500 µmol photons m–2 s–1) (Table 1). Also, the photosynthetic 
protein complexes showed similar composition and quantity 
in all plant lines (WT, tic62, trol, and tic62 trol) when stud-
ied either by BN–PAGE (Figure 2B) or SDS–PAGE (Figure 4C). 
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Moreover, no differences in the capacity of PSII could be 
detected between the tic62 trol plants and WT when chal-
lenged by intense illumination (1000  µmol  photons  m–2  s–1; 
Figure 4D), indicating that the mutant plants were as tolerant 
against photoinhibition as WT.

Consistently with the fluorescence measurements, no 
changes in the apparent rate of CO2 assimilation could 
be detected when the tic62 trol plants were grown under 
standard conditions. Furthermore, the light and CO2 
responses of photosynthetic CO2 assimilation (Figure  4E 
and 4F) were similar in WT and mutant plants. Also, the 
content of Calvin–Benson cycle peptides RbcS and RbcL 
did not differ between the tic62 trol mutant and WT 
(Figure 4E).

Analysis of the NADPH/NADP+ Redox State in the tic62 
trol Plants

As FNR is catalyzing the conversion of NADP+ to NADPH, we 
next aimed to analyze the steady-state NADPH and NADP+ 
pool sizes as well as the NADPH/NADP+ redox state in the 
tic62 trol plants. The NADPH and NADP+ contents were 
measured at the end of the dark period, in the middle of the 
light period, and at the end of the light period. Interestingly, 
the quantity of NADP(H) was much lower in the plants har-
vested at the end of the dark period than those harvested 
during illumination, but these diurnal alterations were not 
significantly different between the tic62 trol plants and WT 
(Figure  5A). The changes in the total amount of NADP(H) 
upon day/night alterations were found to be much stronger 
than previously appreciated. However, a smaller pool size of 
NADP(H) in the dark versus light has already been reported 
in previous studies, such as for spinach leaves (Heineke et al., 
1991). Intriguingly, a significant decrease in the NADPH/

Table 1.  Pigment, Pheophytin, and α-Tocopherol Composition of 
WT and tic62 trol Leaves.

WT tic62 trol

Chl a 15 815 ± 1925 13 886 ± 1442

Chl b 5057 ± 502 4481 ± 476**

Chl a/b 3.13 ± 0.22 3.10 ± 0.10

Pheophytin 141 ± 22 121 ± 19

Lutein 1621 ± 215 1421 ± 147

β-carotene 958 ± 137 850 ± 66

Neoxanthin 293 ± 29 260 ± 26

Antheraxanthin 35 ± 7 37 ± 5

Violaxanthin 341 ± 52 308 ± 42

α-tocopherol 111 ± 23 91 ± 11

Zeaxanthin (HL) 6.5 ± 1.0 5.6 ± 0.9

Pigments were measured from leaf discs punched from plants grown 
under standard short-day conditions, except zeaxanthin after 1 h high 
light treatment (HL, 500 µmol photons m–2 s–1).

Pigments are expressed in ng cm–2. Data are presented as mean ± SD, 
n = 11–12. ** statistically significant difference from WT (P < 0.01).

Figure 2.  Tic62, TROL, and FNR Protein Content in the WT, tic62, trol, 
and tic62 trol Plants.

(A) SDS–PAGE of the WT, tic62, trol, and tic62 trol plant total leaf 
extract, soluble leaf extract, and thylakoid membranes. 10 µg of pro-
tein was loaded on gel and proteins were immunodetected with Tic62 
and FNR antibodies.
(B) BN-PAGE of the WT, tic62, trol, and tic62 trol plants. The first panel 
shows the thylakoid protein complexes, and the second and third pan-
els show the respective Western blots labeled with Tic62 or FNR anti-
body, respectively. 5 µg of chlorophyll was loaded on the gel.

Figure 3.  Interaction of FNR with Various Thylakoid Membrane Protein 
Complexes.

Molecular analysis of FNR-containing thylakoid protein complexes in 
WT, ndho, psae, pgr5, tic62, trol, fnr1, and fnr2 plants. Protein com-
plexes were separated using BN–PAGE, the gel was Western blotted, 
and proteins were detected with FNR-specific antibody. 5 µg of chloro-
phyll was loaded on the gel.
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NADP+ ratio was detected in the tic62 trol plants when 
plants were analyzed during the light period (Figure 5B). In 
contrast to the large decrease in NADPH/NADP+ redox state, 

the NADH/NAD+ redox status was not substantially affected, 
indicating that the tic62 trol mutation affected specifically 
the NADP system (Figure 5C). The decrease in the NADPH/

Figure 4.  Photosynthetic Electron Transfer Properties of the WT, tic62, trol, and tic62 trol Plants.

(A) Electron transfer of PSII (ETR) and (B) NPQ capacity of the WT, tic62, trol, and tic62 trol plants.
(C) The content of photosynthetic proteins in the WT and tic62 trol plants. The gels were loaded according to linear range of the antibody and the 
membranes were immunolabeled with antibodies against ATP-β, Cyt f, D1, Lhcb1, Lhca1, PsaB, PGRL1, PsbS, RbcL, and RbcS.
(D) Photoinhibition of the WT, tic62, trol, and tic62 trol plants. The leaves were illuminated under 1000 µmol photons m–2 s–1 (+10°C) for the indi-
cated time and the PSII efficiency recorded as FV/FM.
(E) CO2 assimilation efficiency of the WT, tic62, trol, and tic62 trol plants under various reference CO2 concentrations.
(F) CO2 assimilation efficiency of the WT, tic62, trol, and tic62 trol plants under various light intensities.
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NADP+ ratio could be due to an inhibition of FNR activity 
that may be attributable to the overall decrease in FNR pro-
tein level (see above) or the loss of FNR membrane associa-
tion. Alternatively, metabolic reactions using or generating 
NADPH could have been activated or inhibited in response 
to altered FNR membrane binding. We therefore measured 
the activity of selected enzymes involved in NADPH metabo-
lism, such as isocitrate dehydrogenase (NADP–ICDH) and 
glucose-6 phosphate dehydrogenase (G6PDH), which are 
proposed to be involved in generation of NADPH in the 
cytosol and in the plastid. Our results show that the tic62 
trol mutation led to a significant decrease in NADP–ICDH 
and G6PDH activities (Figure 5D and 5E), which could partly 
be responsible for the decrease in the NADPH/NADP+ ratios 
(Figure 5B).

Analysis of Stromal Metabolism in the tic62 trol Plants

The AGPase enzyme catalyzes the first committed step in 
starch biosynthesis by generating ADP-glucose from glucose-
1-phosphate and ATP in the chloroplast stroma, simultane-
ously liberating inorganic pyrophosphate (PPi) (reviewed 
in Stitt and Zeeman, 2012). AGPase is subject to posttrans-
lational redox-regulation by reversible disulfide-bond 

formation between the two small subunits (APS1) of the het-
erotetrameric enzyme (Geigenberger, 2011). To investigate 
the AGPase redox-activation state in the tic62 trol mutant, 
leaf samples were taken at the end of the dark period, in 
the middle of the light period, and at the end of the light 
period to analyze the monomer/dimer ratio of the APS1 subu-
nits. Results show that, at the end of the dark period, AGPase 
redox activation was significantly higher in the leaves of the 
tic62 trol plants than those of WT, whereas, in the subsequent 
light period, this effect disappeared or was slightly reverted 
(Figure 6A). When starch levels were analyzed, no statistically 
significant difference could be detected in the accumulation 
of starch between the tic62 trol mutant plants and the WT, 
except a slight increase in the starch content in the tic62 trol 
plants at the end of the dark period that corresponds to the 
redox activation of AGPase under these conditions (Figure 6A 
and 6B). This difference was emphasized when the plants were 
challenged by dim light (50 µmol photons m–2 s–1), leading to a 
significant increase in starch content in the tic62 trol mutant 
relative to WT (Figure 6C). We also measured the redox-acti-
vation state of stromal NADP–MDH, which is involved in the 
export of excess NADPH from the stroma to the cytosol via 
the malate valve (Scheibe et al., 1990). Results show that, in 

Figure 5.  NADP(H) Metabolism in the WT (Black Bars) and tic62 trol Plants (White Bars).

(A) The total content of NADPH and NADP+ of the WT and tic62 trol plants.
(B) NADPH/NADP+ ratio of the WT and tic62 trol plants.
(C) NADH/NAD+ ratio of the WT and tic62 trol plants.
(D) Spectrophotometric determination of the activity of NADP–ICDH.
(E) Spectrophotometric determination of the activity of G6PDH. All measurements were performed in the end of the night/dark period (EN), in the 
middle of the day/light period (MD), and in the end of the day/light period (ED). Results are presented as mean ± SE, n = 4. Statistically significant 
difference from WT (* P < 0.05; ** P < 0.01; *** P < 0.005).
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the tic62 trol mutant, redox activation of NADP–MDH was 
significantly decreased relative to the WT (Figure 6D).

To further analyze effects on metabolite levels, a metabolic 
fingerprint of the tic62 trol plants was obtained (Supplemental 
Figure 2). Most amino acids were found at a similar level in 
the tic62 trol and WT plants, but the content of β-alanine, 
aspartic acid, and proline was slightly increased in the tic62 
trol plants as compared to WT, although the difference could 
only be detected at the end of the light period. The content 
of asparagine, in contrast, was higher in the WT plants than 
in tic62 trol, but only in the middle of the light period. The 
levels of malonic acid and succinic acid were increased in 
the double mutant at the end of the light period and the 
end of the dark period, respectively, whereas the content of 
maleic acid was decreased. No apparent changes could be 
detected in the accumulation of any other organic acid, not 
even malate. The sugar content (fructose, glucose, mannose, 
sucrose, xylose) of the tic62 trol plants tended to be higher as 
compared to WT (Supplemental Figure 2). However, signifi-
cant differences were only observed for maltose and lactose 
after the dark period (Figure 6E and 6D, and Supplemental 
Figure  2). Overall, the steady-state metabolite levels in the 
mutant lines were very close to those observed in WT.

Discussion
LFNR1 and LFNR2 Interact with Tic62 and TROL

The detailed analysis of affinity properties of the different 
FNR isoforms from Arabidopsis and pea to distinct repetitive 
motifs of Tic62 and TROL revealed that the pH-dependent 
binding behavior is consistent among all FNRs—acidic pH 
leads to more pronounced binding of all FNRs to all peptides 
(Figure 1). This is perfectly in line with our previously pub-
lished observations (Benz et al., 2009). Thus, we can extend 
the model from pea FNR and a single Tic62 repeat to AtLFNR1 
and AtLFNR2 as well as the other two repetitive motifs in 
Tic62 and the single one in TROL. Under conditions when 
FNR is needed for electron transfer from Fd to NADP+ in the 
stroma, namely in the light during active photosynthesis, the 
pH at the thylakoids is more alkaline due to protons being 
pumped into the thylakoid lumen, which leads to detach-
ment of FNR from Tic62 and TROL. When photosynthetic 
activity decreases and finally completely ceases in the night, 
the stroma is acidified. This, in turn, increases the affinity 
of FNR to its binding partners at the membrane, where it 
is then stored overnight until needed again at dawn (Benz 
et al., 2010).

Figure 6.  Starch Accumulation and Stromal Metabolism in the WT (Black Bars) and tic62 trol Plants (White Bars).

(A) Redox-activation state of AGPase measured as monomer/dimer ratio of the two APS1 small subunits.
(B) Starch content in the WT and tic62 trol plants grown under 100 µmol photons m–2 s–1 or (C) grown under 50 µmol photons m–2 s–1.
(D) Redox activation of NADP–MDH, measured as the ratio of apparent/maximal enzyme activity, in the WT and tic62 trol plants.
(E) Content of maltose and (F) lactose in the WT and tic62 trol plants. Concentrations of maltose and lactose are given in arbitrary units (AU) mg–1 
fresh weight. All measurements were performed in the end of the night/dark period (EN), in the middle of the day/light period (MD), and in the 
end of the day/light period (ED). Results are presented as mean ± SE, n = 4. Statistically significant difference from WT (* P < 0.05; ** P < 0.01).
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The third repeat of Tic62 and the MRM in TROL has gen-
erally a higher affinity to all FNR isoforms than Tic62-1 and 
Tic62-2 MRMs under all conditions tested. A marked differ-
ence between the otherwise very similar MRMs from Tic62 
and TROL (Figure 1B) is the pI of the peptides: 62-1 = 4.78; 
62-2 = 8.11; 62-3 = 9.4; TROL = 9.53. Thus, both Tic62-3 and 
TROL MRMs have a basic pI above 9 and are positively charged 
under the two different pH conditions applied in our experi-
ments. Since the MRMs form PPII helices, which interact with 
FNR via van der Waals interactions as well as via salt bridges, 
the different charge might influence the binding capacity. It 
is tempting to speculate that the third, most exposed repeat 
is responsible for ‘catching’ FNR molecules and only if all ter-
minal motifs are loaded with FNR will it start binding to the 
second and first MRM. It might also be the case, as deduced 
from our analytical ultracentrifugation analysis (Benz at al., 
2009), that, for sterical reasons, not all repeats bind two FNR 
molecules, as theoretically possible, but that the terminal 
repeat is predominantly responsible for FNR binding. This 
would be in line with the data reported by Juric et al. (2009) 
showing that TROL has in general a higher binding affinity. 
The single repeat at the C-terminus of TROL binds equally or 
even more strongly to FNR as the third Tic62 repeat. Since 
TROL is an integral membrane protein and cannot relocate 
depending on the stromal redox state as Tic62 does, attach-
ment of FNR to either Tic62 or TROL might influence the flex-
ibility of the system.

NADPH Is Funneled towards Carbon Assimilation in the 
tic62 trol Plants

Our results show that the tic62 trol double mutant plants 
are completely lacking FNR from the thylakoid membranes 
(Figure 2). Interestingly, this led to changes in plastid metab-
olism rather than in photosynthetic carbon assimilation. 
Although the exclusively soluble pool of FNR is sufficient to 
support expeditious function of photosystems followed by 
efficient carbon assimilation (Figure 4), the ratio of NADPH/
NADP+ was found to be compromised in the tic62 trol plants 
(Figure 5). It should be noted that, in addition to relocation 
of FNR, the total content of chloroplast FNR was markedly 
decreased in the tic62 trol plants (Benz et  al., 2009; Juric 
et al., 2009; Figure 2). This leads us to two possible interpre-
tations: (1) the decreased amount of total FNR may result in 
lower production of NADPH or (2) the soluble form of FNR is 
less efficient in the reduction of NADP+ to NADPH than the 
membrane-bound FNR.

Intriguingly, the tic62 trol plants were tolerant against 
both long- and short-term high light illumination. The capac-
ity of PSII in the high-light-treated tic62 trol plants, measured 
as FV/FM, did not differ from that of WT and the ETR and NPQ 
capacities of the tic62 trol plants were similar to WT under all 
studied actinic light intensities (Figure 4). Additionally, no sig-
nificant changes in the function of the xanthophyll cycle and 
accumulation of antioxidative compounds (i.e. α-tocopherol 
and zeaxanthin) could be detected (Table  1). The identical 

ETR and NPQ capacity between the WT and tic62 trol plants 
are in contrast to the previous study reporting changes in the 
photosynthetic performance of the trol mutant, especially 
under high light intensities (Juric et al., 2009). This discrep-
ancy may result from differences in growth conditions of 
the plants and/or experimental set-up, though we cannot 
completely exclude the possibility of adaptive processes in 
the trol background which could have led to masking of the 
previously observed phenotype. As the tic62 trol plants show 
no symptoms of oxidative stress under any conditions stud-
ied, it is conceivable that the electrons originating from the 
light reactions are funneled towards other reactions acting 
as safety valves in the chloroplasts. Previous studies describ-
ing Arabidopsis mutants with considerable changes in the 
chloroplast redox metabolism, such as tapx sapx (Kangasjärvi 
et al., 2008) and NADP–mdh (Hebbelmann et al., 2012) sug-
gest extensive metabolic adaptation, which enables main-
tenance of a chloroplast redox homeostasis resulting in WT 
appearance of the mutant plants. This remarkable resilience 
is also reflected in the metabolic fingerprints obtained from 
the tic62 trol plants, which indicated a very similar metabolite 
state as observed in WT.

Indeed, the posttranslational redox activation of AGPase 
was up-regulated in the tic62 trol plants (Figure  6). More 
starch accumulated in the low-light-grown tic62 trol plants 
during the dark period, whereas no significant differences 
in the starch content could be detected between the tic62 
trol mutant and WT in the light (Figure 6). The slightly higher 
maltose level detected in tic62 trol (Figure 6) is in line with 
the altered starch metabolism, since starch may be degraded 
in the light, the resulting sugars undergoing oxidation in the 
cytoplasm. AGPase has been found to be rapidly activated by 
reduction of an intermolecular disulfide bond between the 
Cys residues joining the two small APS1 subunits of this het-
erotetrameric enzyme (Geigenberger et al., 2011). While light 
activation of AGPase involves the Fd/Trx f system (Hendriks 
et al., 2003; Kolbe et al., 2005; Thormählen et al., 2013), the 
NADPH/NTRC system can also activate AGPase in the dark in 
response to sugars (Tiessen et al., 2002; Michalska et al., 2009). 
Thus, it is possible that the higher AGPase activity detected in 
the tic62 trol plants after the dark period results from the 
activating effect of increased sugar content.

It is remarkable that, even if the ratio of NADPH/NADP+ 
is decreased in the tic62 trol mutants, the plants are able to 
secure the function of most crucial pathways, namely carbon 
assimilation (Figure 4). It can be speculated that the soluble 
FNR is in close physical proximity to the Calvin cycle enzymes 
to ensure electron flow to carbon assimilation. Indeed, FNR 
has been shown to be co-localized in the stroma of pea chlo-
roplasts with glyceraldehyde-6-phosphate dehydrogenase 
(Negi et al., 2008), which, in turn, is co-localized with phos-
phoglycerate kinase (Anderson et al., 2003), triose phosphate 
isomerase, aldolase (Anderson et  al., 2005), and transketo-
lase (Anderson et al., 2006). If the decreased NADPH amount 
was threatening to the plants, we would expect alternative 
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pathways of generating NADPH to be up-regulated. Therefore, 
we checked the activation status of the G6PDH, which is the 
key enzyme of the oxidative pentose phosphate cycle in the 
cytosol and plastids (Kruger and von Schaewen, 2003) and 
that of NADP–ICDH, which produces NADPH in the plastids, 
cytosol, mitochondria, and peroxisomes (Hodges et al., 2003). 
Under normal conditions, plastidial G6PDH is activated by 
oxidation in the dark to ensure production of NADPH when 
photosynthetic activity ceases and no Trx is reduced, whereas 
several Calvin cycle enzymes are activated upon reduction in 
the light (Schürmann and Buchanan, 2008; Née et al., 2009). 
In contrast to our expectations, the activities of both G6PDH 
and NADP–ICDH were lower in the tic62 trol plants than in 
WT (Figure 5). This indicates that the oxidative pentose phos-
phate pathway as well as NADP–ICDH is not activated to com-
pensate for the shortage of NADPH. Rather, it seems that the 
lower activity of G6PDH in the mutants results from the expe-
ditious flow of electrons from Fd to Trx, which agrees with 
the increased activation state of AGPase (Figure 6). Moreover, 
as the plants direct NADPH towards carbon fixation, the 
allocation of reducing power in the form of malate (Scheibe 
et al., 1990) is likely to be decreased in the tic62 trol plants 
(Figure 6). Malate is also needed as a counter-ion for the chlo-
roplast import of 2-oxoglutarate (Weber and Flügge, 2002), 
produced by cytosolic NADP–ICDH, and thus it is tempting to 
speculate that the activities of NADP–MDH and NADP–ICDH 
may be co-regulated. Additionally, the decreased NADPH/
NADP+ ratio might have led to the decreased NADP–MDH 
activation state, as it is known that decreased NADPH/NADP+ 
level inhibits the ability of Trxs to redox activate the enzyme 
(Scheibe and Jacquot, 1983).

METHODS
Plant Material and Growth Conditions

Arabidopsis thaliana (L.) ecotype Columbia (Col-0) T-DNA 
insertion mutant lines (Alonso et al., 2003) tic62 (SAIL_124G04; 
Benz et  al., 2009) and trol (SAIL_27_B04; Juric et  al., 2009) 
were cross-fertilized and the homozygote double mutants 
were identified from F2 generation by PCR and confirmed by 
immunoblotting. Insertion mutant information was obtained 
from the SIGnAL website at http://signal.salk.edu. The plants 
were grown under 100  µmol  photons  m–2  s–1 in light/dark 
cycle of 8/16 h or 16/8 h at 23°C on soil:vermiculate mixture. 
Plants for metabolite analysis were grown on ½ MS plates 
without sugar under 100 µmol photons m–2 s–1 (16/8 h). After 
12 d, the seedlings were snap frozen in liquid nitrogen after 
16 h light, 8 h dark, and 8 h light (noon), respectively. This was 
performed with four replicas per plant line and time point.

SDS–PAGE, BN–PAGE, and Western Blotting

Thylakoid membranes and crude soluble protein extract 
were isolated as described (Rintamäki et  al., 1996; Lintala 
et al., 2007). Protein content was determined using Bio-Rad 

protein Assay kit (www.bio-rad.com/) and chlorophyll con-
tent as described (Porra et al., 1989). Proteins were separated 
using SDS–PAGE (14% acrylamide and 6 M urea), or non-urea 
Next gels (Amresco-inc., www.amresco-inc.com/). Gels were 
blotted on PVDF membrane, blocked with 5% milk, and 
proteins immunodetected using standard detection systems. 
For separation of thylakoid protein complexes, BN–PAGE 
was performed as in Sirpiö et  al. (2007). BN gels were fur-
ther electro-blotted. Gels were loaded according to protein 
or chlorophyll concentration, as indicated, within a linear 
immuno response with respective antibody. Equal loading 
of the gels was verified with the staining of the membranes 
by Coomassie Brilliant Blue. Antibodies were purchased from 
Agrisera (ATP-β, Lhcb1, Lhca1, PsaB, PGRL1, PsbS, RbcL, and 
RbcS; www.agrisera.com) or were kind gifts from H.V. Scheller 
(FNR; Cyt f). The immunodetection of the small subunits of 
AGPase (APS1) monomerization was performed as described 
in Thormählen et al. (2013).

Enzyme Activity Measurements

NADP–MDH activities were determined according to Scheibe 
and Stitt (1988). Briefly, 20 mg frozen tissue were re-suspended 
in 100  µl extraction buffer. The rate of NADPH decrease 
was measured at 340 nm in an Anthos reader HT-3 (Anthos 
Mikrosysteme GmbH, www.anthos.de/). Enzyme activities 
of G6PDH and NADP–ICDH were measured as described in 
Leterrier et al. (2012). 20 mg frozen tissue was re-suspended 
in 100 µl extraction buffer. NADPH was monitored at 340 nm 
in an Anthos reader HT-3.

Pigment Analysis

Pigments (Chl a and b, neoxanthin, violaxanthin, antherax-
anthin, zeaxanthin, lutein, and β-carotene) and α-tocopherol 
were extracted and analyzed as described in Lehtimäki et al. 
(2011).

Photosynthetic Parameters

Minimal fluorescence (F0) was measured under a measuring 
beam after 20 min dark adaptation and maximal fluores-
cence (FM) by applying 0.7  s saturating flash by using Dual-
PAM-100 (Walz, www.walz.com/). Leaves were illuminated 
for 20 min by distinct actinic light intensities (129, 276, 534, 
and 828 µmol photons m–2 s–1) and steady-state fluorescence 
(Fs) was recorded. Thereafter, maximal fluorescence of light 
adapted leaves (FM′) was measured after applying a second 
saturating flash. NPQ and ETR were recorded and calculated 
by the Dual-PAM-100 software.

For photoinhibition experiments, detached leaves were 
floated overnight on water in the dark for 16 h, and then illu-
minated with 1000 µmol photons m–2 s–1 for indicated time at 
+10°C. PSII efficiency as variable to maximal fluorescence (FV/
FM, where FV = FM – F0) was recorded using the Plant Efficiency 
Analyzer (Hansatech Instruments, www.hansatech-instru-
ments.com) after 30-min dark adaptation.

 at U
niversitaetsbibliothek M

uenchen on January 4, 2014
http://m

plant.oxfordjournals.org/
D

ow
nloaded from

 

http://signal.salk.edu
http://www.bio-rad.com/
http://www.amresco-inc.com/
http://www.agrisera.com
http://www.anthos.de/
http://www.walz.com/
http://www.hansatech-instruments.com
http://www.hansatech-instruments.com
http://mplant.oxfordjournals.org/
http://mplant.oxfordjournals.org/


Lintala et al.  •  Metabolic Role of FNR in tic62 trol Mutants    55

Metabolite Analysis

For determination of NAD(P) (H) contents, extraction of mate-
rial was performed as described in Hajirezaei et  al. (2002). 
25 mg frozen tissue were re-suspended in 250 µl 0.1 M HClO4 
(NAD+ and NADP+) or 250 µl 0.1 M KOH (for NADH and NADPH, 
respectively) and incubated for 10 min on ice. Samples were 
centrifuged at 20 000 g for 10 min at 4°C and the superna-
tant was heated to 95°C for 2 min. The pH was adjusted to 
8.0–8.5 by addition of an equal volume 0.2 M Tris (pH 8.4), 
0.1 M KOH or 0.2 M Tris (pH 8.4), 0.1 M HClO4, respectively. 
The photometric measurement was performed according to 
Gibon et al. (2004). The detection mix for NAD(H) contained 
0.3 M Tricine/KOH (pH 9), 12 mM EDTA, 1.5 M EtOH, 0.3 mM 
phenazine ethosulfate (PES), 1.8 mM methylthiazolyldiphe-
nyl-tetrazolium bromide (MTT), 18 U ml–1 alcohol dehydroge-
nase (ADH). For NADP(H), the mix consisted of 0.3 M Tricine/
KOH (pH 9), 12 mM EDTA, 9 mM glucose 6-phosphate, 0.3 mM 
PES, 1.8 mM MTT, 18  U  ml–1 G6PDH. Absorption was moni-
tored at 570 nm at 30°C in an Anthos reader HT-3 (Anthos 
Mikrosysteme GmbH, www.anthos.de/). Starch contents were 
determined as in Thormählen et al. (2013).

Preparation of samples for metabolic analysis was per-
formed as described in Fiehn (2007). Samples were harvested 
by shock freezing the plate in liquid nitrogen. Leaves were 
then ground in liquid nitrogen and 50 mg of leaf powder was 
used for extraction with 1.5 ml of a pre-chilled (–20°C) mix-
ture of H2O/methanol/chloroform (1:2.5:1). 50 µM ribitol was 
added as an internal standard. Following incubation under 
gentle agitation for 6 min at 4°C on a rotating device, sam-
ples were centrifuged for 2 min at 20 000 g at RT. 25–50 µl 
of the supernatant were dried and used for further analysis 
by gas chromatography/electron-impact time-of-flight mass 
spectrometry, as previously described (Lee and Fiehn, 2008). 
Metabolite content is expressed relative to the internal stand-
ard ribitol. All samples were analyzed with three independ-
ent biological replicates.

Surface Plasmon Resonance

Peptides for Tic62 and TROL were synthesized at Panatecs 
(www.panatecs.com) at 99% purity and dissolved in the appro-
priate buffer. PsFNR, AtLFNR1, and AtLFNR2 in pET21d (result-
ing in a C-terminal hexa-histidine tag) were transformed into 
BL21 (DE3) cells. Inoculated cultures were incubated under 
continuous shaking at 37°C until they reached an OD of 
0.4, when they were transferred to 12°C. At an OD of ~0.6, 
expression was induced by adding 0.2 mM IPTG and cells were 
grown overnight. The cells were harvested by centrifugation 
and the pellet re-suspended in 50 mM Tris, 150 mM NaCl, 1 mM 
phenylmethylsulfonyl fluoride, pH 8.  Rupture was achieved 
by two passages through a tissue lyser (Microfluidics; www.
microfluidicscorp.com) and soluble proteins were obtained 
by centrifugation at 20 000 g for 30 min. The cell lysate was 
brought to 1 mM imidazole and incubated with equilibrated 
Ni-sepharose for 2 h at 4°C. The column was washed with 35 

column volumes of binding buffer containing 1 mM imidazole 
and eluted with 3 column volumes of buffer with 150 mM imi-
dazole. Buffer exchange to 10 mM HEPES pH 8 was achieved 
by passage over a PD10 column (GE Healthcare; http://gelifes-
ciences.com/) and this was then subjected to anion exchange 
chromatography. Relevant peak fractions were pooled and 
the buffer exchanged to 10 mM HEPES, 150 mM NaCl, pH 7, 
for the final binding studies. Buffer exchange to pH 6 was 
performed by dialysis over night at 4°C.

Surface plasmon resonance analyses were performed on a 
Biacore T200 (GE Healthcare; www.gelifesciences.com/) on a 
CM5 chip at 25°C. The ligands were coupled from a solution 
of 1 mg ml–1 in 10 mM acetate buffer pH 4.5 (Tic62) or pH 5 
(TROL), respectively. The chip was activated by 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide, 
blocked with ethanolamine and coupled with the respec-
tive peptides. The flow rate was 10 µl min–1 and contact time 
160  s. Dissociation was allowed for 300  s and the chip was 
regenerated in 10 mM NaOH for 10 s after each step. LFNR1 
and LFNR2 were applied at 0, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 
5  µM concentration. Data were evaluated with a program, 
T100 Evaluation Software, provided by GE Healthcare.
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Supplementary information

Supplementary figures

Figure S1. The phenotype of Arabidopsis WT, tic62, trol and tic62 trol plants. The plants were

grown for five weeks under standard short day conditions (100 mmol photons m-2 s-1).

Figure S2. Metabolic analyses of the tic62 trol and WT plants. The plants were grown under 100

mmol photons m-2 s-1 (16/8h) on MS plates without sugar. After 12 days the seedlings were snap

frozen in liquid nitrogen after 16 h light, 8 h dark and 8 h light (noon), respectively. Blue bars

denote for WT and red bars for tic62 trol. Concentrations of metabolites are given in arbitrary units

mg−1 fresh weight.  Values are presented as mean ± SE, n=4. Statistically significant difference

from WT (*P < 0.05; **P < 0.01).

Supplementary methods

For amino acid analysis, approximately 100 mg of frozen tissue were ground in liquid nitrogen with

a mortar and pestle. The fine powder was transferred to a microtube, weighed, and mixed with

1.2 ml of 50 % ethanol. After heating at 70°C for 5 min, the extract was cooled and clarified by

centrifugation at 18 800 g for 5 min at 4°C. The supernatant was dried under vacuum and re-

dissolved in water. Then, the suspension was reacted with AccQFluor reagent (Waters,

http://www.waters.com/). The derivatives were separated using an AccQTag amino acid analysis

column (Waters) on a Waters HPLC system. (Kinoshita et al., 2011).

For monitoring nitrate, rosette leaves were ground in 0.1 % (W/V) SDS, and the resultant extracts

were centrifuged at 18 800 g for 20 min at 4°C. After repeating the centrifugation step, the

supernatants were subjected to nitrate determination using a flow injection analyzer (NOX-1000W;

Tokyo Chemical Industry, http://www.tciamerica.com/). Ammonium and glyoxylate were

quantified spectrophotometrically as described previously (Bräutigam et al., 2007).

For organic acid analysis, soluble metabolite fractions were extracted with methanol (Sato et al.,

2004). The samples were ultrafiltered through a 10 kDa cut-off filter (Ultrafree-MC; Millipore,

http://www.millipore.com/), and the filtrate was analyzed by CE/MS (G1310A/G1600A/G6130A;

Agilent Technologies, http://www.agilent.com/) using with a FunCap-CE/Type S capillary (GL

Sciences, http://www.glsciences.com/).
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Figure S2. Metabolic analyses of the tic62 trol and WT plants. The plants were grown under

100 mmol photons m-2 s-1 (16/8h) on MS plates without sugar. After 12 days the seedlings

were snap frozen in liquid nitrogen after 16 h light, 8 h dark and 8 h light (noon),

respectively. Blue bars denote for WT and red bars for tic62 trol. Concentrations of

metabolites are given in arbitrary units mg−1 fresh weight.  Values are presented as mean ±

SE, n=4. Statistically significant difference from WT (*P < 0.05; **P < 0.01).
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Discussion 

 

Trx f1 and NTRC participate cooperatively in regulating carbon assimilation 

The present study revealed a disturbed electron flux of the photosynthetic light reaction due to 

the lack of the redox regulatory components Trx f1 and NTRC in Arabidopsis leaves, whereas 

the changes were even absent or only slightly in the single knockout plants trx f1 or ntrc, 

respectively (Chapter 1, Chapter 2). This is in line with a previous study concerning NTRC-

deficient plants (Lepistö et al. 2009). A direct disturbance on the functionality of the PSs due 

to disturbed redox processes could have led to the less efficient electron transport. More 

reasonable is a secondary effect by the elevated NADPH/NADP+ and ATP/ADP ratios observed 

in the ntrc and even stronger in the trxf1 ntrc mutants (Chapter 2), since the photosynthetic light 

reaction needs sufficient acceptors for its optimal performance (Baker 2008, Foyer et al. 2012). 

No shortage in levels of the primary light reaction products NADPH and ATP provides reducing 

power and energy to the plant, and suggests a restriction of downstream processes in the 

photosynthetic electron flux. The CBC is a significant anabolic process, consuming the major 

part of photosynthetically produced NADPH and ATP for carbon fixation (Scheibe and Dietz 

2011). Indeed, gas exchange measurements revealed an inhibited CO2 assimilation rate, more 

severe in leaves, lacking both redox regulators Trx f1 and NTRC, while intercellular CO2 

concentrations and transpiration rates were increased (Chapter 2). These facts suggest a 

disturbed CO2 fixation activity by the CBC without limitations in carbon availability. 

A similar pattern of decreased CO2 assimilation and increased transpiration rates dependent on 

different light intensities was observed in plants with a deficiency of the redox-sensitive 

plastidial FBPase isoform cFPB1 (Chapter 3). Interestingly, the growth phenotypes occur very 

similar as well, showing pale green leaves and a strongly retarded growth, while the plants were 

still viable and produced seeds. The strong growth impairment of the cfbp1 mutants leads to the 

suggestion that cFBP1 is the predominant FBPase isoform in chloroplasts of Arabidopsis, and 

the second isoform cFBP2 plays a minor role (Serrato et al. 2009). The FBPase is part of the 

regeneration phase in the CBC and known as exclusively redox-activated by Trx f (Michelet et 

al. 2013). Despite the latter fact, the single knockout plants of Trx f1 show no retardation in 

growth under normal conditions and no change in photosynthetic electron transfer or carbon 

assimilation rates (Chapter 1, Chapter 2). Alternative metabolic processes in the plant could 
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have been able to cope the loss of Trx f in redox-activating CBC enzymes, but this is in 

contradiction to the strongly impaired growth phenotype of cfbp1 mutants, revealing the 

importance of the plastidial FBPase activity (Chapter 3). More reasonable would be a redundant 

function of Trx f1. Western blot analyses confirmed that the second isoform Trx f2 represents 

only about 3 % of the overall Trx f content in leaves of Arabidopsis (Chapter 1), which might 

not be sufficient to replace Trx f1, since the FBPase activity was 40-50% decreased in the single 

mutant trx f1 (Chapter 2).  

Intriguingly, the direct measurement of plastidial FBPase revealed decreased activities and 

redox activation states not only in leaves of the trxf1 mutant, but also in the ntrc single mutant 

(Chapter 2). An almost completely abolished activation was observed in the combined knockout 

plants of Trx f1 and NTRC, so that NTRC might have compensated the loss of Trx f1 in the 

single mutant by the activation of the FBPase. In confirmation with the decreased FBPase 

activities during the day, elevated levels of F1,6BP as substrate of the FBPase and decreased 

ratios of F6P/F1,6BP in leaves of the single and double mutants of the two redox regulatory 

components were detected (Chapter 2). Strongly elevated F1,6BP leaf levels, as well as the 

impairments in photosynthetic activity and retardations in growth were revealed in plants with 

deficiencies in plastidial FBPase by several studies (Chapter 3, Koßmann et al. 1994, Livingston 

et al. 2010). These facts provide strong evidences that Trx f is not the exclusive redox regulator 

of FBPase, and leads to the suggestion that NTRC has unexpected functions in regulating 

photosynthetic carbon assimilation in cooperation with Trx f1 in Arabidopsis leaves. 

 

Trx f1 and NTRC participate cooperatively in regulating starch metabolism 

Previous studies with Arabidopsis plants deficient in NTRC protein revealed negative effects 

on the transient starch accumulation, accompanied by a decreased thiol-based activation of 

AGPase as key enzyme of starch synthesis (Michalska et al. 2009, Lepistö et al. 2013). 

Additionally, it was shown that recombinant proteins of Trx f and m were able to redox-activate 

the AGPase in vitro (Ballicora et al. 2000, Geigenberger et al. 2005), however, the knowledge 

about the in vivo relevance of Trxs in regulating starch synthesis was still lacking. In this study 

the biochemical property of Trx f1 as most efficient redox activator for AGPase compared to 

other Trxs was confirmed, and showed similar efficiencies compared to NTRC (Chapter 1). 

While NTRC influences the AGPase activation during the day, but also in darkness with 

elevated sugar levels (Chapter 2, Michalska et al. 2009), the redox activation by Trx f1 is strictly 
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light-dependent (Chapter 1). A decreased reduction of the redox-sensitive and catalytic AGPase 

subunit APS1 was observed in leaves and illuminated chloroplasts of the trx f1 single mutant, 

whereas sugar-infiltrated leaves did not change the redox state of AGPase (Chapter 1, Chapter 

2). In leaves with a deficiency in both Trx f1 and NTRC the starch content and AGPase redox 

activation decreased even stronger, in the end of the day with similar levels as in wild-type 

leaves in the end of the night (Chapter 2). This suggests an additive effect on starch synthesis 

by Trx f1 and NTRC, being most probably the main redox regulators for this pathway. 

The strong growth retardation of plants lacking Trx f1 and NTRC might be a consequence of 

both an affected starch metabolism and a less efficient CO2 fixation during the day (see 

discussion above), since the double knockout mutants only partly recovered their growth 

phenotype under constant light conditions (Chapter 2). Plants growing with constant light are 

independent of a functional starch synthesis, because the essential carbon availability in form 

of soluble sugars provided by photosynthesis is not interrupted through the night (Caspar et al. 

1985, Gibon et al. 2004, Geigenberger 2011). The affected starch synthesis and carbon fixation 

in the trxf1 ntrc mutants during the day was accompanied by a strong sugar starvation, 

especially in the end of the night (Chapter 2). In contrast to this, several levels of amino acids 

were strongly increased, which was similarly observed in a previous study about the ntrc single 

mutant (Lepistö et al. 2009). The elevated amino acids are most likely due to a facilitated protein 

degradation as a strategy of the plant to provide alternative carbon sources (Osuna et al. 2007, 

Usadel et al. 2008), or to an adaptive response for equilibrating the osmotic situation in the 

tissue, since the soluble sugars decreased (Fernie et al. 2002, Faix et al. 2012). Interestingly, an 

increase of remobilization products of starch, such as maltose, was measured during the day, 

which was more pronounced in the double mutant trxf1 ntrc (Chapter 2). This indicates a 

possible involvement of the redox regulatory proteins Trx f1 and NTRC in the degradation of 

starch and supports previous in vitro studies, revealing a thiol-based regulation of starch 

degrading enzymes (Valerio et al. 2011, Glaring et al. 2012). The in vivo relevance of the redox 

regulatory influence on starch degradation processes has to be solved in future. 

Surprisingly, Arabidopsis leaves lacking the primary anchor proteins of the FNR protein, named 

Tic62 and TROL, showed an increased redox activation of the AGPase exclusively in the end 

of the night, accompanied by partly significant elevated starch levels (Chapter 4). During the 

darkness elevated sugar levels are able to induce the APS1 monomerisation through the NTRC 

system (Michalska et al. 2009), but not through the transfer of electrons by Trx f (Chapter 1). 

The sugars in the tic62 trol mutant tended to be higher (Chapter 4), so that the NTRC could 
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have redox-activated the AGPase during the night. Another possible explanation suggests a 

redirection of electrons from NADPH to the FNR for the reduction of Fdx (Vojta et al. 2012), 

which then provides the redox power to the Trx f system, and subsequently redox-activates the 

AGPase. This could also explain the lower G6PDH activity (Chapter 4), since the main 

plastidial isoform is known to be redox-deactivated through Trx f-dependent reduction of 

disulfides (Wakao and Benning 2005, Nee et al. 2009), and the increased starch degradation 

products (see discussion above). Under acidic conditions, which are indicated during the night 

in the chloroplast stroma, the FNR increases its interaction with Tic62 and TROL in wild-type 

leaves (Chapter 4, Benz et al. 2009, Alte et al. 2010). Possibly, the completely soluble FNR in 

the tic62 trol mutant leaves during the night changes its activity to the direction of NADP+ 

production, attributable to the lack of electron pressure from light-reduced Fdx, and causes an 

unusual reduction of Trxs during the night. In plastids of the root system the reverse way of 

FNR activity is known for a NADPH-dependent reduction of Trxs (Meyer et al. 2012), so that 

in chloroplast the reversibility of FNR activity might be possible dependent on the binding to 

TIC62 and TROL.  

 

Trx f1 and NTRC are critical for the NADP redox poise in Arabidopsis leaves 

Similar results of previous studies confirm observations of the present study on diurnal NADP 

metabolism in wild-type leaves (Chapter 2, Chapter 4, Liu et al. 2008, Beeler et al. 2014). 

During the day an increased pool of NADPH and NADP+ was accompanied by a decrease in 

the NADPH/NADP+ ratio compared to the night. This is most likely attributable to a daytime 

provision of sufficient electron acceptors for the FNR system to maintain photosynthetic 

electron flux, and to the active CBC as the main NADPH consumer during the day, respectively 

(Baker 2008, Scheibe and Dietz 2011). In the end of the day and night elevated ratios of 

NADPH/NADP+ ratios were observed in Arabidopsis leaves lacking NTRC (Chapter 2). 

NADPH is the reducing equivalent for the conversion of NTRC disulfides to dithiols as the 

prerequisite for the oxidoreductase activity, and it is assumed that NTRC is able to operate also 

in the night (Perez-Ruiz et al. 2006, Michalska et al. 2009, Cejudo et al. 2012). Possibly, a 

deficiency of NTRC protein resulted in an increased ratio of NADPH/NADP+ due to the 

diminished utilization of its substrate. Additionally, NADPH is used by several anabolic 

processes, especially the CBC, but also e.g. the lipid and protein synthesis (Scheibe and Dietz 

2011). A decreased redox activation of these processes attributable to the lack of NTRC might 



DISCUSSION 

 

 
196 

 

have led to the increased NADPH/NADP+ ratios (see discussion above). The trx f1 single 

mutant showed no alterations in the NADPH/NADP+ ratio. This is surprising, since the double 

knockout trxf1 ntrc revealed even stronger effects than the ntrc single mutant, and the 

chloroplastic NADP-MDH activation state was increased in all mutants. The NADP-MDH is 

able to balance the NADP homeostasis by channelling excess NADPH to the cytosol via the 

malate valve, and thereby recycling sufficient NADP+ to keep the photosynthetic electron 

transport running (Scheibe et al. 2005). The strictly light-dependent activation of the NADP-

MDH by Trxs is inhibited at low NADPH/NADP+ ratios and vice versa. The lack of Trx f1 

alone might have increased the NADPH/NADP+ ratio in the chloroplast, which was not 

detectable in whole leaf extracts, but induced a stronger NADP-MDH activity to keep the 

plastidial redox homeostasis (Chapter 2). Since Trx f and m are known to regulate the NADP-

MDH in vitro (Collin et al. 2003), the redox activation was still possible in plants lacking Trx 

f1. This is in confirmation with observations on transgenic tobacco plants separately 

overexpressing Trx f and m, which show decreased NADP-MDH activation states (Rey et al. 

2013). The photosynthetic electron transport was not affected in the trx f1 single mutant 

(Chapter 1, Chapter 2), possibly attributable to an efficient NADP redox poise by the higher 

NADP-MDH activity. 

The increase of NADPH/NADP+ reached its highest value in plants with a combined deficiency 

of Trx f1 and NTRC (Chapter 2). This was accompanied by a strong decrease of PSI core protein 

abundance. Due to a limited electron transfer on the acceptor side of PSI by the elevated 

NADPH/NADP+ ratios, the PSI complex is threatened to cope with a high electron pressure 

delivered by the electron transport chain. PSI reacts very sensitive to excess electrons, since its 

repair capacity is limited, while PSII exhibits a dynamic regulation of protein turnover (Suorsa 

et al. 2012, Tikkanen et al. 2014). It is worth to mention that also the NADH/NAD+ ratio rose 

significantly in the txf1 ntrc mutant leaves (Chapter 2), most likely due to the strongly reducing 

conditions in the chloroplasts, which subsequently led to an overall imbalance in redox 

homeostasis reflected by the reduction states of the pyridine nucleotide pool. The malate valve 

indirectly transports NADPH outside of the chloroplast by the formation of malate or 

subsequent NADH in the cytosol (Scheibe et al. 2005). Additionally, the mitochondrial electron 

transport chain provides the possibility to oxidize excess reducing equivalents by the 

involvement of alternative plant-specific enzymes, such as external NAD(P)H dehydrogenases 

and alternative oxidases, which uncouple the electron transfer from the ATP synthesis 

(Rasmusson and Walls 2010, Geigenberger and Fernie 2014). The decreased ATP/ADP ratios 
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during the night, elevated CO2 release in darkened leaves and diminished levels of TCA cycle 

intermediates suggest an affected mitochondrial respiration in the trxf1 ntrc mutants, possibly 

due to the elevated NAD(P)H/NAD(P)+ ratios (Chapter 2). Finally, these results provide strong 

evidence for important roles of the combined action by the two redox regulatory components 

Trx f1 and NTRC in balancing the redox homeostasis of Arabidopsis leaves. 

Contrarily, plants lacking the FNR anchor proteins Tic62 and TROL revealed a strong decrease 

in the diurnal NADPH/NADP+ ratios without affecting growth or photosynthesis (Chapter 4). 

The NADP-MDH activation state was decreased during day and night, most likely to avoid 

additional regeneration of NADP+ (see discussion above). Previous studies reported of several 

potential adaptation processes in plants with disturbed redox metabolism in chloroplasts, which 

includes e.g. the malate valve, feedback-regulation of the photosynthetic light reaction, the 

antioxidant system, alternative respiratory mechanisms or the photorespiratory metabolism 

(Scheibe et al. 2005, Hald et al. 2008, Kangasjärvi et al. 2008, Liu et al. 2008, Hebbelmann et 

al. 2012). This suggests, a high flexibility to maintain the redox homeostasis for an efficient 

photosynthetic electron flow and plastidial metabolism, and could explain the ability of the 

tic62 trol mutant to cope the strongly altered NADP metabolism without affecting growth. An 

overall decrease in FNR content was detected in whole leaf extracts and in isolated thylakoid 

membranes, lacking both TIC 62 and TROL or only TIC62, while the trol single mutant was 

not affected (Chapter 4). This is in confirmation with previous studies (Benz et al. 2009, Juric 

et al. 2009). Intriguingly, the soluble pool of FNR in the stroma was strongly increased in the 

tic62 trol mutants compared to the wild-type (Chapter 4). A decrease of overall FNR content 

or activity below about 80% of wild-type level would induce a decrease of photosynthetic 

electron flow (Scheibe and Dietz 2011), which was not the case in the tic62 trol mutants 

(Chapter 4). Possibly, the loss of FNR-membrane association and the increased soluble FNR 

content changed the activity to the direction of NADPH oxidation (see discussion above), or 

metabolic processes consuming NADPH as reducing power were induced. The measurement 

of G6PDH and Isocitrate dehydrogenase as known NADPH-producing enzymes revealed 

diminished activities (Chapter 4), indicating one possible explanation. Finally, the underlying 

mechanisms, which have led to the strongly altered NADPH/NADP+ ratio in the tic62 trol 

mutant leaves, are not yet fully understood. 
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Trx f1 and NTRC are involved in the plant growth acclimation to varying light conditions 

The lack of a visible growth phenotype for Arabidopsis plants defective in Trxs f1, suggested a 

high redundancy of the different Trx isoforms under normal growth conditions (Laugier et al. 

2013), despite the unique property of Trx f1 as most efficient redox regulator for the 

photosynthesis-related carbon metabolism in chloroplasts (Meyer et al. 2012, Michelet et al. 

2013). Interestingly, the mutant plant lacking Trx f1 demonstrated no alterations in growth 

compared to the wild-type when grown under an 8h or even longer light period, but low light 

conditions as well as very short light periods decreased the rosette fresh weight (Chapter 1, 

Chapter 2). The disability to acclimate to the reduced light energy was most likely due to its 

important role in redox-activating CBC and starch synthesis enzymes (see discussion above). 

Under normal light conditions a sugar and starch limitation was observed in the end of the night 

(Chapter 1, Chapter 2), which might have been increased under very short day or low light 

conditions, consequently leading to a growth limitation. 

The ntrc single mutant was subjected to even stronger growth limitations, and not able to 

recover wild-type rosette fresh weights in any light condition (Chapter 2). The strongest growth 

impairment was observed in plants treated with high light. The disturbed NADP redox 

homeostasis might have increased the electron pressure to the PSs (see discussion above), 

especially under high light conditions, which could have led to the induction of an elevated 

ROS production as harmful consequence for plant growth (Noctor et al. 2014). NTRC is 

involved in the redox activation of 2-Cys peroxiredoxins as H2O2-scavenging enzymes (Perez-

Ruiz et al. 2006, Kirchsteiger et al. 2009, Pulido et al. 2010), but the reports about H2O2 levels 

in ntrc leaves are inconsistent. One study revealed increased H2O2 levels exclusively after re-

illumination of 3-days-darkened plants (Perez-Ruiz et al. 2006), while another study showed 

already increased levels under a normal light/dark cycle of 16h/8h (Pulido et al. 2010). Lepistö 

et al. (2013) tested the evolution of different ROS in Arabidopsis leaves under short as well as 

long day conditions, and observed exclusively an elevated formation of the hydroxyl radical in 

16h-day grown ntrc plants compared to wild-type. But still, increased ROS production could 

be an explanation for the strongest growth impairment under high light in plants lacking NTRC. 

Alternatively, the ntrc mutant was subjected to sugar depletion (Chapter 2), and it was reported 

that the high light acclimation is dependent on sufficiently available soluble sugars (Schmitz et 

al. 2014). In contrast to the trx f1 mutant, in plants lacking the NTRC protein the acclimation 

to low light conditions was improved by developing rosette fresh weights similar to normal 

growth conditions, while a growth inhibition was also detectable under very short days (Chapter 
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2). With increasing light periods the growth acclimation was more successful, which is in line 

with a previous report (Lepistö et al. 2009), indicating that long day conditions increases the 

rosette fresh weight compared to short days in the ntrc mutant plants. However, long day 

conditions and continuous light only partly recovered the growth impairment compared to the 

wild-type, suggesting additional disturbances beside the affected starch synthesis due to the 

lack of NTRC in Arabidopsis plants (see discussion above). 

Intriguingly, studies with transgenic lines overexpressing Trx f1 (Sanz Barrio et al. 2013) or 

NTRC (Toivola et al. 2013), observed elevated leaf dry weights and carbon resources as starch 

and soluble sugars in tobacco or an increased rosette biomass in Arabidopsis, respectively. This 

is in confirmation with the results of the present study, which show that the single mutants trx 

f1 and ntrc are subjected to growth retardations under specific conditions (Chapter 2). A 

transgenic approach with a combined overexpression of both redox components could be 

interesting for industrial applications, expecting higher biomass yields and carbon resources 

than already observed, since the growth of the trxf1 ntrc mutants was even stronger affected 

compared to the single mutants (Chapter 2). The rosette fresh weights were drastically reduced 

and the acclimation to different light conditions was almost abolished in plants lacking both 

Trx f1 and NTRC. Compared to normal growth conditions with 160 µE and an 8h- or 16h-day 

regime, the relative rosette fresh weights were even more decreased in plants, growing under a 

4h-day, low or high light. Only with constant light the plants developed an increased relative 

rosette biomass compared to the normal light conditions, most likely due to the independency 

of impaired starch metabolism (see discussion above). Overall, the combined lack of Trx f1 and 

NTRC in Arabidopsis revealed an additively affected growth acclimation to varying light 

conditions, which provides further evidence for cooperative redox regulatory functions in the 

photosynthetic-related carbon metabolism. 

 

Physical interaction of Trx f1 and NTRC in vivo underpin their cooperative regulation of 

photosynthetic carbon metabolism 

The combined deficiency of Trx f1 and NTRC in Arabidopsis plants demonstrate a cooperative 

role of both redox regulators, since the effects on carbon assimilation, photosynthetic end 

product synthesis, NAD(P) metabolism and growth were additively increased compared to the 

single mutants (see discussion above). In vivo experiments, using the bimolecular fluorescence 

complementation method, revealed a direct interaction of Trx f1 and NTRC (Chapter 2), so that 
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a redundant function might not be the only explanation for the synergistic effects. This confirms 

recent observations on transgenic Arabidopsis plants, expressing a full-length NTRC protein 

with either a defective NTR or Trx domain in the background of the ntrc knockout (Toivola et 

al. 2013). Especially, the complemented ntrc plants, expressing an inactive Trx domain in the 

NTRC protein, were able to recover almost completely the phenotypic behaviour of wild-type 

plants, which suggests an involvement of other electron-transferring proteins such as Trxs in 

the functionality of NTRC domains. 

In the same study computational three-dimension modelling revealed Trx f as most potential 

interaction partner for NTRC attributable to the similarities to the electrostatic surface 

properties of the Trx domain (Toivola et al. 2013). The proposed prerequisite for the disulfide 

reductase activity of NTRC is the formation of homo-dimers to enable electron transfer between 

the NTR domain of one subunit to the Trx domain of the second subunit (Perez-Ruiz and Cejudo 

2009, Lee et al. 2012). The thiol-disulfide exchange between the NTR and the Trx domain 

includes the possibility of a conformational change, which exposes the catalytic site of the NTR 

domain, and might facilitate an interaction with free Trxs (Bernal-Bayard 2012, Toivola et al. 

2013). An earlier study suggested that Trxs and NTRC act independently due to their low 

efficiency to distribute electrons to each other in vitro (Bohrer et al. 2012). However, the 

described assay conditions might have decreased an electron transfer to or from free Trxs due 

to a possible formation of oligomeric structures or caused by the relative protein concentrations, 

which were not presenting the in vivo situation (Toivola et al. 2013). The direct interaction of 

Trx f1 and NTRC could explain their synergistic functions in photosynthetic carbon metabolism 

and redox homeostasis as revealed in this study (Chapter 2, see discussion above). New 

questions arise addressed to the mechanisms behind the interaction, and to the specificity and 

flexibility of this cooperative system to control plants redox regulatory network in chloroplasts, 

especially in reaction to fluctuating light conditions. 
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