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1. Introduction 

1.1. Gene therapy 

Gene therapy is a fast-growing field of medical research aiming at the introduction of 

therapeutic genes in the human body to repair malfunctions. In this concept, a 

disease-causing gene is silenced or restored making gene therapy an interesting 

alternative for the treatment of gene-associated defects like cancer or inflammatory 

diseases [1-3]. Genes are carriers of the genetic information, which provide the 

biological code that determines the specific functions of a cell. The origins of gene 

therapy can be traced back to the science of genetics. Researchers like Francis Crick 

established this branch of biology upon the realization that: "Almost all aspects of life 

are engineered at the molecular level, and without understanding molecules we can 

only have a very sketchy understanding of life itself." Consequently, major milestones 

in understanding the basis of life were the elucidation of the mechanisms of genetic 

transmission [4], the identification of the genetic material as DNA [5] and the 

clarification of the DNA structure [6]. Those findings enabled the first concept of gene 

therapy proposed by Friedman and Roblin in 1972 [7]. It was preceded by the 

development of new sequencing technologies and the deciphering of the human 

genome [8-10] that enabled the identification of different gene-associated diseases 

[11-13]. However, it took more than 16 years and several drawbacks for the approval 

of the first gene therapy trial in 1990 by the US Food and Drugs Administration (FDA) 

[14, 15]. This trial focused on the treatment of the severe combined immune 

deficiency (SCID), a monogenetic disorder characterized by adenosine deaminase 

deficiency [16]. Four years later cancer gene therapy was introduced into the clinical 

research. The first FDA-approved cancer trial was performed with a carrier 

expressing antisense IGF-I RNA aiming at the treatment of glioblastoma multiform. 

This strategy was efficient due to a strong immune and apoptotic reaction as a result 

of the anti-tumor mechanism of IGF-I antisense [17]. However, gene therapy 

research was halted in the USA and EU owing to an excessive immune reaction in 

one patient causing his death in 1999 [15] and the development of leukemia-like 

illness of two other patients in 2002 [18].  

Nevertheless, the first gene medicine was authorized by the European Commission 

in 2012. The launch of Glybera® (alipogene tiparvovec) marked the first 

breakthrough for a successful application of therapeutic genes as medical agent [19].  
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Irrespectively of the great potential, the main challenge for the implementation of 

gene therapeutics from bench to bedside is the achievement of highly efficient, safe 

and target-specific gene delivery carriers [20]. Regarding efficiency and specificity, 

nature offers a good example, i.e. viruses. Currently viral carriers are the most 

investigated gene delivery systems, resulting in more than 1800 clinical trials 

worldwide within 20 years since the first approved trial in 1990 [21-24]. As an 

alternative to virus-based carriers, non-viral gene carriers have been developed [25]. 

Non-viral approaches include physical methods such as microinjection [26], 

electroporation [27, 28], gene gun [29] or magnetofection [30] as well as chemical 

methods enabling "lipoplex" or "polyplex" formation [31]. In case of chemical 

methods, complex formation is facilitated by electrostatic interaction between the 

negatively charged nucleic acid and positively charged lipids or polymers. When 

designing non-viral gene carriers a high structure flexibility is ensured beyond the 

limitation of natural occurring building blocks offering the opportunity of tailor-made 

properties. Moreover, those carriers can be produced in large scale at low cost. 

Together with the lack of immunogenicity and the lower toxicity compared to the viral 

counterparts, non-viral vectors represent an attractive alternative for gene delivery. 

Nevertheless, non-viral carriers are generally considered as less efficient in gene 

transfer with gene expression levels beyond clinical relevance. In order to refine non-

viral carriers significant efforts should be made in the clarification of the delivery 

pathway as well as in the elucidation of individual obstacles faced by the carrier.   

 

1.2. Challenges in DNA delivery via non-viral carriers 

Non-viral gene delivery still finds itself hampered by the lack of high efficiency and 

specific targeting, in particular in therapeutic treatment regimen that do not cope with 

local administration. When considering chemical methods, such as polyplexes (Fig. 

1.1.A), numerous extracellular (Fig. 1.1.B) and intracellular (Fig. 1.1.C) barriers need 

to be overcome until the therapeutic nucleic acid reaches its target.  
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Figure 1.1. Illustration of major barriers faced by non-viral DNA-based gene delivery carriers. 

A) DNA is condensed by a polycation, to form stable polyplexes. Additionally, the surface of 

the polyplexes is modified by a targeting-shielding moiety. B) After i.v. administration the 

polyplex faces various extracellular barriers such as unspecific cell-uptake, aggregation by 

blood components, degradation, self-aggregation and complement activation. C) After 

cellular uptake via receptor-mediated endocytosis, polyplexes have to overcome various 

intracellular barriers such as degradation, endosomal entrapment, DNA entrapment within 

the polyplex, nuclear trafficking and nuclear entry to accumulate in the nucleus.  

 

Only in rare cases the direct delivery of naked nucleic acids without a carrier can be 

applied with reasonable efficiency such as genetic vaccines [32, 33]. Most likely the 

anionic charge together with the large size and vulnerability toward nucleases 

restricts successful naked nucleic acid transfer. In this regard, non-viral carriers were 
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developed in order to protect the nucleic acid in the extracellular environment and 

facilitate the transport within the intracellular space to its target. Figure 1.1.A 

illustrates the formation of polyplexes comprising of a positively charged polymer, 

also referred as polycation, a negatively charged DNA and a shielding-targeting 

moiety attached to the surface of the formed polyplexes.  

Up to date, nearly two thirds of gene therapy clinical trials worldwide have addressed 

several types of cancer inter alia gliomas [34], liver [35] and pancreatic [36] cancer. 

The success in cancer gene therapy strongly depends on polyplex properties such as 

size and charge, which have a significant influence on the pharmacokinetics, 

biodistribution and intratumoral penetration of polyplexes after intravenous (i.v.) 

administration. For instance polyplexes with a mean size of 10-100nm are of 

particular interest for tumor specific targeting. The small size enables particle 

passage through capillary gaps within tumor vasculatures. As a consequence of the 

fast tumor cell growth, the newly formed tumor cells differ in their anatomical and 

pathophysiological characteristics from normal tissue. Thus, vascular permeability is 

enhanced facilitating an increased transport rate and accumulation of polyplexes into 

tumor tissue. This phenomenon is referred to as "enhanced permeability and 

retention (EPR) effect" of polyplexes in solid tumors [37].  

The positive surface charge of the polyplexes facilitates cellular uptake but also 

mediates self-aggregation of the polyplexes, unspecific cell-uptake and binding to 

extracellular components such as the complement system [38-40]. As a part of the 

immune system the complement system enhances the clearance of pathogens from 

the organism. As a consequence of the activation of the complement system by 

polyplexes, the opsonization of latter by the C3 complement promotes the clearance 

by the reticuloendothelial system (RES) [38]. Additionally, the positive surface charge 

can lead to aggregation of polyplexes with blood components as well as degradation 

by enzymes (Fig. 1.1.B).  

Once the polyplex has reached its target cell, it faces several obstacles: crossing the 

plasma membrane, degradation within the endolysosomal vesicles, endosomal 

entrapment, nuclear trafficking and the mediation of nuclear entry of the payload (Fig. 

1.1.C). Successful gene delivery strongly depends on the ability of non-viral carriers 

to enable efficient cell-uptake. On the one hand, this can be achieved by the positive 

surface charge of the polyplexes mediating the association with the negatively 
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charged plasma membrane. On the other hand, cell entry can be enabled by specific 

interactions between ligands and receptors. In particular, receptor-mediated 

endocytosis is the major cell entry pathway [41, 42]. Thus, after the polyplex was 

taken up via endocytosis, it then has to circumvent endosomal entrapment before it is 

degraded within the endolysosomal vesicles. This degradation is caused by the 

progressively acidification of polyplexes during the endocytic pathway [43-45]. 

Therefore, carriers have been designed with a strong buffering capacity within the pH 

range from 5.0 to 7.4 enabling endosomal release also referred to as "proton sponge" 

effect [46]. Here, the protonation of the basic polymer leads to an influx of chloride 

counter-ions followed by water, which triggers the swelling of the endosome and 

causes the rupture of the endosomal membrane.  

After the polyplex has been successfully released into the cytoplasm, nuclear 

trafficking presents another barrier to successful gene delivery. On the one hand, 

nucleases present in the cytoplasm are a threat to the integrity of polyplexes. On the 

other hand, the decreased mobility of macromolecules and the arbitrary release from 

the endosome within the cytoplasm hinders polyplex diffusion toward the nucleus 

[47]. In addition, the nucleic acid has yet to be released from the non-viral carrier. In 

most cases it remains unclear whether this is achieved just after endosomal release 

or just before the nucleic acid enters the nucleus [48].  

Eventually, the nuclear envelope is the last barrier that has to be overcome by the 

DNA. The nuclear envelope consists of two chemically distinct lipid bilayers, the inner 

and outer nuclear membrane, separated by the perinuclear space. Nuclear pore 

complexes stretch the nuclear envelope and enable active transport of 

macromolecules from the cytoplasm to the nucleus. However, the upper size limit of 

nuclear pores (around 25nm) makes it unlikely that standard carriers such as 

polyethylenimine (PEI), which forms polyplexes in a size range between 50-100nm, 

are able to cross the nuclear envelope. Consequently, only 1-10% of DNA is found 

within the nucleus depending on applied DNA dose, cell type or detection method. It 

is assumed that passive nuclear uptake in proliferating cells is the main 

administration route of DNA into the nucleus enabled by the breakdown of the 

nuclear envelope [47].  

Considering the multistep delivery process and the described barriers hampering 

efficient gene transfer, specific strategies have to be developed to enhance gene 
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delivery efficiency. Ideally, the carrier is suitable for transporting different types of 

nucleic acids and able to self-assemble with the nucleic acid. Additionally, it exhibits 

sufficient polyplex stability and solubility. Moreover, the carrier should have few toxic 

properties and induces no immune response. Therefore, non-viral carriers capable of 

changing their properties e.g. charge and conformation, upon environmental changes 

in a dynamic bioresponsive behavior have been designed. Additionally, shielding 

agents are incorporated within the polyplex surface to reduce unspecific interactions 

and nucleic acid degradation during blood circulation. Furthermore, targeting ligands 

are attached to polyplexes mediating efficient cell targeting and intracellular uptake. 

Moreover, linker molecules sensitive to changes of environmental parameters such 

as pH [49, 50], enzymatic activity [51, 52] or redox potential [53] are introduced 

between the shielding moiety and the surface of the polyplex to enable membrane 

fusion and endosomal release, respectively. Those strategies have shown 

reasonable success in preventing particle aggregation, lowering carrier toxicity, 

increasing polyplex circulation time and improving systemic targeted gene transfer. 

However, future developments should focus on further optimization of non-viral gene 

delivery carriers to achieve gene expression levels comparable of those obtained by 

the use of their viral counterparts. The following sections present an overview of 

different strategies for the design of functional polymers for polyplex formation with a 

focus on three key functions: polyplex stability, polyplex surface shielding and 

targeting ligands.   

 

1.3. Design of bioresponsive non-viral carriers for gene delivery 

1.3.1.Bioresponsive stability of non-viral carriers 

Successful gene delivery requires stable binding of nucleic acid molecules to non-

viral carriers to avoid degradation and premature release within the extracellular 

environment. Moreover, cellular uptake is only possible if the polyplex remains stable 

and intact during the passage through the extracellular space. However, as the 

polyplex reaches its site of action stability should be weakened to an extent that 

nucleic acid is released. In literature this conflicting effect of polyplex stability is 

referred to as “package and release dilemma” [54]. Thus, it still remains an enormous 

challenge to design non-viral carriers, which provide sufficient protection and efficient 

nucleic acid release. While the optimization of carrier properties like charge density 
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and molecular weight has shown to increase polyplex stability, it did not solve the 

"release dilemma". Therefore, the controlled dissociation of polyplexes triggered by 

changes in the microenvironmental parameters such as pH, redox potential, light or 

temperature have shown to be promising approaches. Various barriers in the 

polyplex delivery pathway have been elucidated enabling structure-activity 

relationship studies. This in turn provides valuable information for the design of non-

viral carriers that achieve an optimal balance between nucleic acid protection and 

release.  

Based on those findings, we have developed and established a library of sequence-

defined nucleic acid carriers comprising natural and artificial amino acids. Standard 

solid-phase assisted peptide synthesis (SPPS) was applied for the assembly of the 

carriers. This precise synthesis strategy offers the opportunity to produce carriers of 

defined architectures and different incorporated modules and functionalities. Using 

this library, detailed structure-activity relationship studies were performed, identifying 

essential structural requirements for non-viral carriers for enhanced gene transfer 

efficiency. For instance, Salcher et al. synthesized sequence-defined carriers 

comprising different artificial amino acids within a four-arm structure. The carriers 

were evaluated regarding sufficient polyplex stability and efficient nucleic acid release 

after reaching its target. In particular, the diaminoethane units of the artificial amino 

acids showed to increase nucleic acid binding and trigger endosomal release. To find 

a compromise between nucleic acid protection and release, the effect of variations 

within the molecular weight and length of the building blocks has been evaluated. In 

this regard, three different building blocks containing either a triethylene tetramine 

(Gtt), a tetraethylene pentamine (Stp) or a pentaethylene hexamine (Sph) are 

introduced within the sequence. Each building block consists of two terminal amide 

linked nitrogens and two (Gtt), three (Stp) or four (Sph) protonable secondary amine 

nitrogens. In addition, the effect of 2-5 building blocks per oligomer chain is 

considered. Here, oligomers beyond three building blocks per oligomer chain differed 

only slight in their ability to bind DNA and mediate efficient transfection efficiency. 

However, DNA binding ability and transfection efficiency is enhanced in case of 

building blocks comprised of a higher number of protonable secondary amine 

nitrogens. Thus, building blocks can be ranked concerning their ability to bind DNA 

and form stable polyplexes in the distinct order Sph>Stp>Gtt [55]. Furthermore the 

impact of the different building blocks on mediating sufficient endosomal release was 
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evaluated. Consequently, carriers with a strong buffering capacity within the pH 

range from 5.0 to 7.4 have been shown to overcome the endosomal entrapment by 

the "proton sponge" effect. Oligomers containing building blocks of even-numbered 

protonable secondary amines like Gtt and Sph mediated significantly higher 

endosomal buffering compared to the odd-numbered building block Stp [56].  

In addition, polyplex stability has shown to increase after a hydrophobic dioleic motif, 

cysteine residue(s) and/or an oligotyrosine motif were incorporated within the 

sequence of the carrier. For instance, the introduction of fatty acids in a t-shaped 

oligomer exhibit higher polyplexes stability due to hydrophobic interactions [57, 58]. 

Another study showed, that the incorporation of a oligotyrosine motif and the 

combination with another stabilizing component increased DNA polyplex stability and 

transfection efficiency by 100-fold [59]. Moreover, the introduction of cysteines within 

the structure of a sequence-defined oligomer led to the formation of cross-linkages. 

As a consequence, the rather small size of the synthesized oligomer (Mw≤ 3100Da) 

is compensated and premature nucleic acid release into serum is avoided.   

However, at its target site, the polyplex has to disassemble to release nucleic acid. 

This can be triggered by the degradation of the oligomer [60], competitive 

displacement of nucleic acids by other polyanions such as intracellular RNA [61] or 

reduction of cleavable bonds between the nucleic acid and the oligomer [62]. 

Consequently, non-viral carriers have been developed containing disulfide bonds to 

enable a redox-responsive controlled release of nucleic acid. Those carriers are 

capable of distinguishing between extra- and intracellular cytosolic locations based 

on differences in the respective redox potentials. Hence, the increased polyplex 

stability provided by cross-links due to disulfide formation is beneficial during 

extracellular delivery phase and intracellular uptake. After entering the cytosolic 

environment disulfide bonds are reduced facilitating efficient cargo release [63, 64]. 

Additionally, the oligocationic carrier is disassembled into smaller, usually non-toxic 

fragments.  

In sum, non-viral carriers with an improved balance of polyplex stability and the ability 

to disassemble at the target site are favorable for efficient in vitro and in vivo gene 

delivery.  
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1.3.2.Bioresponsive shielding of the surface of non-viral carriers  

The formation of highly positively charged polyplexes prevents on one the hand 

particle aggregation, but on the other it causes non-specific interactions with 

negatively charged groups of plasma proteins, vessel endothelium and blood cells 

after intravenous administration. Adsorption of blood components to the polyplex 

surface leads to the formation of large aggregates which primarily accumulate in the 

lung [65] due to the physical retention of large aggregates in narrow pulmonary 

capillaries. Additionally, those complexes are recognized by the immune system and 

are rapidly eliminated through RES [66, 67]. These facts including significant toxicity 

limit the use and efficiency of simple polycationic polyplexes, and herein steric 

stabilization and protection of the complexes is mandatory for systemic application. In 

this regard, a technical breakthrough was the modification of the particle surface with 

hydrophilic polymers. Those polymers function as ‘shielding agents' to mask surface 

charge and provide steric protection of the delivery system resulting in a prolonged 

blood circulation [68]. Moreover, unspecific cell-uptake is reduced and polyplex 

accumulation within solid tumors is increased due to the EPR effect [69]. Additionally, 

the surface modification of polyplexes by shielding agents significantly decreases 

particle-particle interaction and promotes complex stability [70].  

The most prominent example of a shielding polymer is polyethylene glycol (PEG) 

which has been attached to several FDA-approved pharmaceuticals to improve the 

delivery profile [71]. The broad scope of application is based on its low toxicity as well 

as its non-immunogenicity. PEG is a highly hydrophilic, uncharged, widely soluble 

polymer and has been used in different structures (branched, star, comb, linear) and 

sizes. Regarding non-viral gene delivery, PEG has been successfully attached to 

multiple carriers demonstrating enhanced gene delivery efficiency in vitro and in vivo 

[72, 73]. Similar findings were made for poly(N-(2-hydroxypropyl)methacryl-amide) 

(pHPMA) after the attachment to the surface of non-viral gene carriers to mask 

surface charge [74, 75]. Likewise, pHPMA is a highly hydrophilic, non-toxic, non-

immunogenic polymer available in different sizes and structures (monovalent and 

multivalent). Despite the fact, that several formulations have entered clinical trials, up 

to date no FDA-approved pHPMA based pharmaceutical has launched the market 

[76].  
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A common concept for the attachment of the shielding polymer to the polyplex 

surface is the "pre-PEGylation" concept (Fig. 1.2.A) [77]. It relies on the modification 

of a cationic carrier with the shielding polymer before nucleic acid complex formation. 

"Post-PEGylation" is another concept applied for the formation of shielded 

polyplexes. Thereby, DNA polyplexes are formed prior to the addition of the shielding 

polymer (Fig. 1.2.B) [78].  

 

Figure 1.2. Illustration of A) pre-PEGylation and B) post-PEGylation approach applied for 

polyplex surface shielding. In the "pre-PEGylation" concept the shielding polymer is attached 

to the polycation prior to nucleic acid complexation, whereas in the "post-PEGylation" 

approach polyplexes are formed prior to the attachment of the shielding polymer. 

 

Despite several significant advantages, the introduction of a shielding moiety affects 

cellular uptake and endosomal release as a consequence of the reduced interactions 

between the delivery system and the cell and endosomal membranes, respectively. 

Various attempts have been made to overcome this paradoxical effect of shielding 

referred as "PEG dilemma" by the development of bioresponsive deshielding 

strategies after reaching the target tissue [79-81]. This deshielding process is 

mediated by changes of environmental parameters such as pH [49, 50], enzymatic 

activity [51] or redox potential [53]. Hence, the cleavage of the PEG shield only 
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occurs in presence of the stimuli. However in absence, the PEG shield remains intact 

in order to prolong blood circulation and avoid particle-particle aggregation or 

unspecific cell-uptake. Exploiting pH changes within the tumor tissue or endosomes 

acid-labile linkers, such as acetals [82-84], dialkylmaleic acids [50] or 

pyridylhydrazones [78, 85], have been introduced between the shielding moiety and 

the surface of the polyplex. These surface-modified delivery systems are intended to 

remain shielded during circulation, i.e. at physiological pH. However, the pH-labile 

bond is cleaved after the polyplex has entered a slightly acidic environment such as 

in tumor tissue or in an intracellular endosomal vesicle. Thus, the delivery system 

with its original endosomolytic capability is restored enabling membrane fusion or 

disruption to accomplish endosomal release. Previous studies have shown an up to 

100-fold enhanced gene transfer by introducing a pH-sensitive hydrazone linker into 

PEG/PEI/DNA polyplexes in vitro and in vivo [78, 85].  

In addition, enzymatic cleavable linkers attached between the polyplex surface and 

the shielding polymer presents an attractive tool to mediate location-specific cleavage 

of the PEG shield. In this respect, attention has recently turned to matrix 

metalloproteinases (MMPs) due to their over-expression within tumor tissues 

facilitating tumor site-specific cleavage of the PEG shield [86]. In healthy tissues the 

level of MMPs is rather low and therefore the PEG shield remains attached to the 

surface of the polyplex. To demonstrate the feasibility of this strategy PEG-cleavable 

polyplex micelles based on MMP-cleavable peptide-linked block copolymers have 

been synthesized [87]. Here, PAsp(DET) (poly(aspartamide)) with a flanking N-(2-

aminoethyl)-2-aminoethyl group is bound via a MMPs cleavable peptide linker 

(GPLGVRG) to PEG. In the presence of matrix metalloproteinase-2 the PEG layer is 

efficiently cleaved and the initial positive surface charge of the carrier re-exposed. 

Consequently, polyplexes show a higher cellular uptake, an improved endosomal 

escape and a high-efficiency in gene transfection. The original purpose of PEG, to 

prolong blood circulation, still remains. 

Alternatively, different location-specific changes such as disulfide reducing potential 

have been applied to cleave the PEG shield. In this regard, a pH-sensitive polymer 

(poly(methacryloyl sulfadimethoxine) (PSD)-block-PEG) with sharp transitions around 

physiological pH was evaluated. Hereby, the pH-sensitive PSD-b-PEG moiety is 

attached to PEI/DNA polyplexes enabling efficient surface shielding against 
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unspecific cell interactions at pH 7.4. However, after polyplexes have entered the 

extracellular tumor environment or endosomes, the pH changes to approximately pH 

6.6 resulting in sulfonamide protonation and release from the nanoparticles. 

Therefore, the initial positive surface charge of PEI is restored, which enables 

sufficient interactions with cell membranes and cellular uptake [49].  

Together, these studies indicate that polyplexes designed to response to different 

location-specific changes such as disulfide reducing potential, pH or enzyme 

concentrations represents a feasible strategy to overcome the PEG dilemma.  

 

1.3.3.Targeting of non-viral carriers 

Specific in vivo targeting to malignant cells by therapeutic genes presents an 

attractive concept to accomplish delivery tasks. In most cases, cell-specific targeting 

is enabled by specific interactions between a ligand, attached to the polyplex surface, 

and a receptor, exposed on the cell surface. However, cell-specific targeting is a key 

property that promotes nucleic acid transfer from the site of administration to the 

surface of the target cells and promotes cell-internalization. Additionally, side effects 

arising from toxicities toward mammalian cells are shown to be decreased by 

targeting malignant cells specifically. Furthermore, the receptor-ligand interaction 

stimulates the receptor-mediated endocytosis of target-specific polyplexes, which is 

known to be more efficient compared to adsorptive endocytosis [41, 42]. Various 

ligands are suitable for targeted gene delivery. Those can be categorized into several 

classes e.g. small molecules like folic acid (FolA), proteins such as transferrin (Tf) or 

epidermal growth factor (EGF) or asialoglycoproteins as well as peptides like CMBP1 

or sugar derivatives such as N-acetylgalactosamine. When designing a target-

specific carrier several aspects must be taken into account including the level of 

receptor expression, tissue specificity of ligands, ligand internalization, binding 

affinity, surface charge or degree of interaction with e.g. proteins. Thus, it is essential 

to select an appropriate ligand for successful application of a targeted non-viral 

carrier. Almost 30 years ago Wu et al. pioneered liver-cell specific targeting by an 

asialoglycoprotein targeted non-viral gene delivery system in vitro and in vivo [88, 

89]. Meanwhile, various ligands have been incorporated within non-viral gene 

delivery systems and many studies have demonstrated successful cell-type specific 

in vivo gene delivery [90-95].  
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A commonly used ligand for targeted gene delivery to a wide variety of cell types is 

the iron-transporting serum glycoprotein transferrin (Tf). The interaction of Tf with the 

transferrin receptor (TfR) triggers the cellular iron uptake. TfR as a biological target is 

of special interest since it is over-expressed on the surface of many human cancers. 

Therefore, Tf has been conjugated to various non-viral carriers such as PEI [77, 96], 

polypropylenimine (PPI) dendrimers [97], polyamidoamine (PAMAM) dendrimers [98] 

or poly-L-lysine (PLL) [99, 100] in order to achieve TfR-targeted gene delivery in 

cancer cells in vitro and in vivo.  

The epidermal growth factor (EGF) is another promising ligand for tumor cell-specific 

targeting because it binds with high affinity and specificity to the epidermal growth 

factor receptor (EGFR). In several tumors including glioblastoma, epithelial tumors 

and lung cancers as well as hepatocellular carcinoma EGFR is upregulated or 

overactivated due to mutations resulting in uncontrolled proliferation. Thus, various 

EGFR-targeting molecules including recombinant EGF proteins, EGFR-binding 

peptides and antibodies are conjugated to gene delivery systems, to analyze the 

targeting efficiency and subsequently the gene expression levels. In this regard, 

using EGF-targeted PEI-based polyplexes, high-level transgene expression was 

found in vitro [42, 101]. For example, after systemic administration of EGF-targeted 

polyplexes a 50-fold increased transgene expression in hepatocellular carcinomas 

compared to normal liver tissue was reported [102].  

Recently, a c-Met binding ligand cMBP2 was pioneered in terms of non-viral gene 

delivery. The over-expressed receptor tyrosine kinase HGFR/c-Met found in epithelial 

derived tumors serves as binding site for the natural ligand hepatocyte growth factor 

(HGF) as well as the c-Met binding peptide cMBP2, activating different cell-signaling 

pathways including those involved in tumor progression. In this regard, the activation 

of c-Met signaling presents an interesting target for cancer treatment. This has been 

successfully demonstrated by Kos et al. showing an enhanced selective gene 

transfer to hepatocarcinoma cells by targeting the c-Met receptor by cMBP2 in vitro 

and in vivo [103].  
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1.4. Aims of the thesis 

The successful implementation of nucleic acids as medical agents depends on the 

delivery efficiency of the non-viral carrier. While polymer-based gene carriers are 

promising due to the high-level of flexibility in structural design, overall efficiency is 

still several magnitudes lower in comparison to viral gene carriers. Whereas viruses 

have developed distinct mechanisms to transport DNA successfully into mammalian 

cells, most non-viral carriers are still unable to deliver DNA over extra- and 

intracellular barriers. To compensate for this disadvantage many research groups 

focus on the identification of structure-function relationships of DNA delivery carriers. 

We have generated a library of well-defined oligomer-based carriers with different 

architectures and functionalities, to identify individual structural requirements to the 

carrier. Based on this, this thesis focused on the optimization of polyplex stability and 

biological properties of a four-arm structured benchmark oligomer (compound ID: 

606) to improve DNA delivery.  

First, a small library of eight oligomers was to be synthesized via the solid-phase 

approach. In the sequence of these oligomers lysine residues had to be introduced at 

different sites to assess the influence of the incorporated lysine residues on polyplex 

stability in comparison to the benchmark oligomer 606. Additionally, the biophysical 

and biological properties of these stabilized particles had to be evaluated to identify 

the best oligomer.  

Second, the polyplex surface ought to be modified with hydrophilic shielding 

polymers, monovalent PEG or monovalent and multivalent pHPMA (kindly provided 

by our collaboration partner Dr. Libor Kostka from the Centre for Biomacromolecular 

and Bioanalogous Systems, Department of Biomedicinal Polymers, Institute of 

Macromolecular Chemistry Academy of Sciences CR, v.v.i., Heyrovskeho sq. 2, 

Prague, Czech Republic), to investigate the effect on surface charge masking, 

providence of steric protection and prolongation of blood circulation of the delivery 

system. In order to overcome the "PEG dilemma" the aim was to develop a pH-

sensitive deshielding strategy based on the introduction of the acid-labile linker 

azidomethyl-methylmaleic anhydride (AzMMMan) between the shielding moiety and 

the surface of the polyplex. The well-established "post-coating" approach was to be 

applied to attach the shielding material subsequently after polyplex formation to the 

particle surface via reactive groups [101, 104]. In this concept, the primary amines of 
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the lysine residues within the oligomeric structure serve as attachment points for the 

shielding material. Two of the most commonly used shielding polymers, monovalent 

PEG (5kDa) or monovalent and multivalent pHPMA (10kDa, 20kDa, 30kDa), should 

be studied in parallel. The effect of shielding polymer chain length and architecture 

on polyplex shielding was to be evaluated. Furthermore, the shielding ability of 

pHPMA and PEG ought to be compared. To test the utility of such acid-labile carriers, 

the delivery efficiency was to be compared to that of acid-stably shielded polyplexes 

containing N-hydroxysuccinimide (NHS) groups in case of PEG and 

carbonylthiazolidine-2-thione (TT) groups in case of pHPMA. A detailed 

physicochemical, in vitro and in vivo analysis was to be performed to evaluate the 

effect of the pH-sensitive shielding compared to the analogous stable shielding on 

transfection efficiency.  

Finally, the aim was to modify pH-sensitive and stable PEG-shielded particles with 

the targeting ligand folate (FolA) to assess the effect on specific receptor-mediated 

uptake. After the establishment of a suitable synthesis route for the targeting ligand 

FolA, DNA polyplexes were to be surface-modified. Specific receptor-mediated cell-

uptake, cellular internalization and gene expression of FolA-targeted pH-sensitive or 

stable-modified PEG-shielded polyplexes was to be evaluated. 
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2. Materials and Methods 

2.1. Materials 

2.1.1.Reagents and Solvents 

All reagents and solvents used for experiments described in this thesis are 

summarized in Table 2.1. and Table 2.2.  

 

Table 2.1. Reagents with CAS numbers, sources of supply and abbreviation (abbr.) used for 

experimental procedures. 

 
Reagents CAS-No. Supplier Abbr. 

Resins 

Fmoc-L-Lys(Boc)-Wang 
resin 

 Sigma-Aldrich 
(München, 
Germany) 

 

1-amino-ethane-2-
thiol(cysteamine)-2-
chlorotrityl resin 

 Iris Biotech 
(Marktredewitz, 
Germany) 

 

Fmoc-Ala-Wang  Sigma-Aldrich 
(München, 
Germany) 

 

Amino 
acids 

Boc-L-Cys(Trt)-OH 21947-98-8 

Iris Biotech 

 

Fmoc-L-Glu-OtBu 84793-07-7  

Fmoc-L-His(Trt)-OH 109425-51-6  

Fmoc-L-Lys(Boc)-OH 71989-26-9  

Fmoc-L-Lys(Fmoc)-OH 78081-87-5  

SPPS 

Acetic anhydride 108-24-7 Sigma-Aldrich   

Benzotriazol-1-yl-
oxytripyrrolidinophospho
nium-
hexafluorophosphate 

128625-52-5 Multisyntech GmbH 
(Witten, Germany) 

PyBOP 

1,8-diazabicyclo[5.4.0] 
undec-7-en 

6674-22-2 Sigma-Aldrich  

Diisopropylethylamin 7087-68-5 Iris Biotech DIPEA 

Di-tert-butyldicarbonate 24424-99-5 Sigma-Aldrich  

Ethyl trifluoroacetate 383-63-1 Sigma-Aldrich   

Fmoc-OSu 82911-69-1 Iris Biotech  

2-(1H-benzotriazol-1-yl)-
1,1,3,3-
tetramethyluronium-
hexafluorophosphate 

94790-37-1 Multisyntech GmbH HBTU 

1-hydroxybenzotriazole 
hydrate 

123333-53-9 Sigma-Aldrich HOBt 

Hydrochloric acid  7647-01-0 Sigma-Aldrich HCl 

Ninhydrin 485-47-2 Sigma-Aldrich   
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Pentaethylene hexamine 4067-16-7 Sigma-Aldrich  PEHA 

Phenol 108-95-2 Sigma-Aldrich   

Piperidine 110-89-4 Iris Biotech   

Potassium cyanide 151-50-8 Sigma-Aldrich  

Pyridine 110-86-1 Sigma-Aldrich  

Sephadex® G-10 9050-68-4 GE Healthcare 
(Freiburg, 
Germany) 

 

Sodium bicarbonate 144-55-8 Sigma-Aldrich   

Sodium chloride 7647-14-5 Sigma-Aldrich NaCl 

Sodium hydroxide 
(anhydrous) 

1310-73-2 Sigma-Aldrich NaOH 

Succinic anhydride 108-30-5 Sigma-Aldrich   

Triethylamine 121-44-8 Sigma-Aldrich   

Trifluoroacetic acid 76-05-1 Iris Biotech  TFA 

Triisopropylsilane 6485-79-6 Sigma-Aldrich TIS 

Trisodium citrate 
dihydrate 

6132-04-3 Sigma-Aldrich  

TritonTM X-100 9002-93-1 Sigma-Aldrich  

AzMMMan 

Benzoyl peroxide 94-36-0 Sigma-Aldrich  

2,3-dimethylmaleic 
anhydride 

766-39-2 Sigma-Aldrich DMMan 

N-Bromosuccinimide 128-08-5 Sigma-Aldrich NBS 

Sephadex LH 20 9041-37-6 Sigma-Aldrich  

Sodium azide 26628-22-8 Acros Organics 
(Geel, Belgien) 

 

Sodium sulfate 7757-82-6 Sigma-Aldrich Na2SO4 

NHS-C3-Azide  baseclick 
(Tutzingen, 
Germany) 

 

PEG 
reagents 

DBCO-PEG(5000)-MeO  Jena Bioscience 
(Jena, Germany) 

 

MeO-PEG(5000)-NHS  RAPP Polymere 
(Tübingen, 
Germany) 

 

OPSS-PEG(5000)-NHS  RAPP Polymere  

NHS-PEG(5000)-SH  RAPP Polymere   

NH2-PEG4-DBCO 1255942-06-3 Sigma-Aldrich   

Mal-PEG4-DBCO  Sigma-Aldrich   

FolA 
reagents 

Fmoc-N-amido-dPEG6-
acid 

882847-34-9 Iris Biotech  

Folic acid 59-30-3 Sigma-Aldrich  FolA 

N,N′-Dicyclohexyl-
carbodiimide 

538-75-0 Sigma-Aldrich   

N-Hydroxysuccinimide 6066-82-6 Sigma-Aldrich  NHS 

N10-(Trifluoroacetyl) 
pteroic acid 

37793-53-6 Iris Biotech   
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Other 

Adenosine-5`-
triphosphate 

56-65-5 Roche Diagnostics 
(Basel, Schweiz) 

 

Agarose NEEO Ultra-
Qualität 

9012-36-6 Carl Roth GmbH 
(Karlsruhe, 
Germany) 

 

Ammonium persulfate 7727-54-0 Sigma-Aldrich  APS 

Barium chloride 
dihydrate 

10326-27-9 Sigma-Aldrich   

Boric acid 10043-35-3 Sigma-Aldrich   

Bromophenol blue 115-39-9 Sigma-Aldrich   

Coenzym A  Sigma-Aldrich   

Coomassie® Blue 
Staining 

 Fisher Scientific 
(Schwerte, 
Germany) 

 

DL-Dithiothreitol 578517 Sigma-Aldrich   

Ethylenediaminetetra-
acetic acid disodium salt 
dihydrate 

6381-92-6 Sigma-Aldrich  EDTA 

GelRed  Biotium Inc. 
(Hayward, USA) 

 

Glycylglycine 556-50-3  Roche Diagnostics   

Ethidium bromide 
solution 

1239-45-8 Sigma-Aldrich EtBr 

Linear polyethylenimine 9002-98-6 In house synthesis  LPEI 

Magnesium chloride 7786-30-3 Sigma-Aldrich  

N,N,N',N'-Tetramethyl-
ethylendiamine 

110-18-9 Sigma-Aldrich TEMED 

Potassium chloride 7447-40-7 Sigma-Aldrich  

Potassium dihydrogen 
phosphate 

7778-77-0 Sigma-Aldrich  

Potassium iodide 7681-11-0 Sigma-Aldrich   

Propane-1,2,3-triol 56-81-5 Sigma-Aldrich   

Rotiphorese® Gel 30  Carl Roth GmbH  

Sodium dodecyl sulfate 151-21-3 Sigma-Aldrich SDS 

Sodium hydrogen 
phosphate 

7558-79-4 Sigma-Aldrich   

Tris(hydroxymethyl) 
amimomethane 

77-86-1 Sigma-Aldrich  Tris 

Trizma® base 77-86-1 Sigma-Aldrich   
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Table 2.2. Solvents with CAS-numbers, sources of supply and abbreviation used for 

experimental procedures.  

Solvent CAS-No. Supplier Abbreviation 

Acetone 4) 67-64-1 Sigma-Aldrich   

Acetonitrile 1) 75-05-8 VWR Int. (Darmstadt, 
Germany) 

ACN 

Carbon tetrachloride 4) 56-23-5 Acros Organics  

Chloroform 2) 67-66-3 VWR Int.  

Chloroform-d 3) 865-49-6 Euriso-Top (Saint-Aubin Cedex, 
France) 

 

Deuterium oxide 3) 7789-20-0 Euriso-Top   

Dichloromethane 2) 4) 75-09-2 VWR Int. 2) 
Bernd Kraft (Duisburg, 
Germany) 4) 

DCM 

Dichloromethane-d 3) 1665-00-5 Euriso-Top   

Diethyl ether 4) 60-29-7 Bernd Kraft  

N,N-Dimethylformamide 5) 68-12-2 Iris Biotech  DMF 

Dimethyl sulfoxide 10) 67-68-5 Sigma-Aldrich DMSO 

Ethanol absolute 4) 64-17-5 VWR Int.  EtOH 

Ethyl acetate 7) 141-78-6 Staub & Co. (Nürnberg, 
Germany) 

 

n-Heptane 8) 142-82-5 Grüssing (Filsum, Germany)  

n-Hexane 8) 110-54-3 Brenntag (Mülheim/Ruhr, 
Germany) 

 

Methanol 1) 67-56-1 Fisher Scientific MeOH 

2-Methylpentane 7) 107-83-5 Sigma-Aldrich   

N-Methyl-2-pyrrolidone 5) 872-50-4 Iris Biotech  NMP 

Methyl-tert-butyl ether 2) 1634-04-4 Brenntag MTBE 

2-Propanol 9) 67-63-0 Sigma-Aldrich   

Tetrahydrofuran 5) 109-99-9 Fisher Scientific  

Water 6)  In house purification H2O 

1) HPLC grade; 2) DAB grade, distilled before use; 3) NMR grade (>99.9%); 4) analytical 

grade; 5) peptide grade; 6) purified, deionized; 7) purum, distilled before use; 8) purissimum; 

9) DAB grade; 10) anhydrous 
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2.1.2.Equipment for solid-phase assisted peptide synthesis (SPPS) 

Disposable polypropylene syringe microreactors were purchased from Multisyntech. 

Those reactors were equipped with polytetrafluoroethylene filters in case of the use in 

the automated single peptide synthesis. For manual peptide synthesis microreactors 

were equipped with polyethylene filters.  

 

2.1.3.Cell culture 

All cell culture consumables (well plates, flasks, dishes) were purchased from NUNC 

(Langenselbold, Germany) or TPP (Trasadingen, Switzerland).  

 

Table 2.3. Reagents and media with CAS numbers, sources of supply and abbreviation 

(Abbr.) used for in vitro experiments. 

 

Reagents CAS-No. Supplier Abbr. 

Reagents 

Chloroquine diphosphate 50-63-5 Sigma-Aldrich  

Collagen A 9007-34-5 Merck Millipore 
(Darmstadt, Germany) 

 

D(+) glucose 
monohydrate 

14431-43-7 Merck Millipore  

4′,6-Diamidino-2-
phenylindole 

28718-90-3 Sigma-Aldrich  DAPI 

3-(4,5-Dimethyl-2-
thiazolyl)-2,5-diphenyl-
2H-tetrazolium bromide 

298-93-1 Sigma-Aldrich  MTT 

D-luciferin 2591-17-5 Promega (Mannheim, 
Germany) 

 

HEPES 7365-45-9 Biomol GmbH 
(Hamburg, Germany) 

 

Fetal calf serum  Invitrogen (Karlsruhe, 
Germany) 

FCS 

Heparin-Na 25000  Ratiopharm (Ulm, 
Germany) 

 

Luciferase cell culture 5x 
lysis buffer 

 Promega  

Penicillin/ Streptomycin  Biochrom GmbH 
(Berlin, Germany) 

 

Paraformaldehyde 30525-89-4  Sigma-Aldrich  

Rhodamine phalloidin  Fisher Scientific  

Sodium chloride 7647-14-5 Prolabo (Haasrode, 
Belgien) 

NaCl 

Trypsin/EDTA solution 
(10x) 

 Biochrom GmbH  

http://www.sigmaaldrich.com/catalog/search?term=9007-34-5&interface=CAS%20No.&lang=en&region=US&focus=product
http://www.sigmaaldrich.com/catalog/search?term=30525-89-4&interface=CAS%20No.&N=0&mode=partialmax&lang=de&region=DE&focus=product
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Medium 

Dulbecco's Modified 
Eagle's Medium- low 
glucose 

 Sigma-Aldrich  DMEM 

RPMI 1640 (1x)  Life Technologies 
GmbH (Darmstadt, 
Germany) 

 

Dulbecco’s Modified 
Eagle’s medium 50:50 
mixture with Ham's F12 

 Sigma-Aldrich   

 

Table 2.4. Summary of used cell lines. 

Cell line Cell type Medium 

Neuro-2a Mouse neuroblastoma DMEM (low glucose) 

KB Human cervix carcinoma Folate-free RPMI 1640 

HUH7 Human hepatocellular 

carcinoma 

DMEM (low glucose)/Ham's 

F12 1:1 

 

2.1.4.Nucleic acids 

pCMVL, encoding for firefly luciferase under control of the CMV promoter, was 

purchased from PlasmidFactory (Bielefeld, Germany). Cy5-labeling kit for pCMVL 

labeling was obtained by Mirus Bio (Madison, USA). 

 

2.2. Methods 

2.2.1.Synthesis of 3-(azidomethyl)-4-methyl-2,5-furandione (AzMMMan) 

AzMMMan was synthesized according to the literature [105, 106] with modifications.  

Firstly, dimethylmaleic anhydride [DMMan (5.04g, 39.97mmol)], N-bromosuccinimide 

[NBS (4.56g, 25.62mmol)], and benzoyl peroxide (64mg, 0.36mmol) were dissolved 

in 250mL carbon tetrachloride (dried over molecular sieve UOP Type 3A). The 

reaction mixture was gently heated under reflux in an inert atmosphere at 110-120°C 

for 5h in a 500mL round-bottom flask. Once the mixture was cooled to room 

temperature an additional amount of benzoyl peroxide (64mg, 0.36mmol) was added 

and boiling under reflux was continued for 5h. After the mixture was cooled to room 

temperature again, the residue was filtered and washed two times with 25mL carbon 
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tetrachloride. Subsequently, the organic phase was washed twice with water (100mL) 

and once with brine (100mL). Thereafter, the organic layer was dried over Na2SO4 

and concentrated in vacuum to form a yellow oil. Benzoyl peroxide was removed by 

silica gel flash chromatography using a mixture of 2-methylpentane/ethyl acetate 

(8:2) as eluent. The residue was subsequently distilled with the help of a kugelrohr 

apparatus under vacuum. DMMan fraction was removed at 110-120°C, 7mbar. 3-

(Bromomethyl)-4-methyl-2,5-furandione (BrMMan) was isolated at 140°C, 7mbar 

(1.8g, yield 22%). 3,4-bis(bromomethyl)furan-2,5-dione remained in the still pot.  

Secondly, BrMMan (310.5mg, 1.5mmol) was dissolved in 10mL acetone (dried over 

molecular sieve UOP Type 3A) and sodium azide (97.5mg, 1.5mmol) was added. 

The mixture was stirred for 24h at 37°C. After filtering the solvent was evaporated. 

The remaining oil was resolved in ethyl acetate (20mL) and washed two times with 

water (20mL) and one time with brine (20mL). The organic layer was dried over 

Na2SO4. The liquid was concentrated in vacuum to result in a brown oil (222mg, yield 

88%). 

 

2.2.2.Synthesis of Fmoc/Boc-protected succinyl-pentaethylene hexamine 

(Fmoc/Boc-Sph) 

Sph was prepared following an adapted procedure of Salcher et al. [55, 107]. Prior to 

synthesis, pentaethylene hexamine (PEHA) was purified according to Jonassen and 

Westerman [108]. Fractions of 25mL PEHA were distilled with a kugelrohr apparatus. 

The second fraction (210-225°C, 0.01bar) was collected and used for Sph synthesis. 

The first (200°C, 0.01bar) and the third fraction (> 230°C, 0.01bar) were discarded.  

 

2.2.3.Solid-phase assisted peptide synthesis 

Oligomer synthesis was performed together with Dr. Libor Kostka, visiting 

postdoctoral scientist at LMU.  

 

 



Material and Methods 

33 
 

2.2.3.1. Loading of resins 

All polycationic carriers and the targeting ligand were synthesized using preloaded 

resins. For the synthesis of oligomer 784, 785 and 797 a Fmoc-L-Lys(Boc)-Wang 

resin with a load of 0,76mmol/g was used. Oligomer 606 was synthesized using 

Fmoc-Ala-Wang resin with a load of 0.32mmol/g according to Lächelt et al. [56]. The 

same resin was used for the synthesis of oligomer 748 and 749. The loading of the 

resins was decreased to 0.15-0.2mmol/g enabling successful coupling of amino acids 

(AA) to the four arm branching core (A/KK(HK)2). The appropriate amount of resin 

was pre-swollen in DCM (10mL/g resin) for 30min before loading was decreased. 

Afterwards, the Fmoc protecting group was removed by treating the resin two times 

5min and two times 10min with deprotection solution [20% piperidine in DMF (v/v)]. 

Subsequently, the resin was washed three times with DMF and DCM and afterwards 

Kaiser test was performed. An equimolar amount of Fmoc-L-Lys(Fmoc)-OH, 1-

hydroxybenzotriazole hydrate (HOBt) and benzotriazol-1-yl-oxytripyrrolidinophos-

phoniumhexafluorophosphate (PyBOP) as well as a twofold molar amount of diiso-

propylethylamine (DIPEA) were dissolved in DCM/DMF [1/1 (v/v); 10mL/g resin] and 

added to the resin for 1h. After coupling, the reaction solvent was drained and the 

resin was washed three times with DMF and DCM. Unreacted groups were capped 

with a mixture of 20eq acetic anhydride and 40eq DIPEA dissolved in DCM/DMF [1/1 

v/v); 10mL/g resin]. Afterwards, solvents were drained, the resin was washed three 

times with DMF and DCM and Kaiser test was performed. According to the individual 

oligomer sequence coupling of further amino acids was performed as stated above.  

The targeting ligand FolA-PEG6-cysteamine was synthesized using an 1-amino-

ethane-2-thiol(cysteamine)-2-chlorotrityl resin with a load of 0,95mmol/g. The resin 

was pre-swollen in anhydrous DCM for 30min and loading was decreased to 0.4-

0.5mmol/g. 1eq Fmoc-N-amido-dPEG6-acid, 1eq HOBt, 1eq PyBOP and 2eq DIPEA 

were dissolved in anhydrous DCM/DMF [1/1 (v/v); 10mL/g resin] and added to the 

resin. The reactor was agitated until Kaiser test indicated complete conversion. After 

Fmoc cleavage, Fmoc-Glu(OH)-tBu and N10-(Trifluoroacetyl)pteroic acid were 

attached in additional separate steps. Afterwards, solvents were drained, the resin 

was washed three times with DMF followed by three times washing with DCM before 

the TFA group was removed by incubating the resin four times 30min with 1M 

ammonium hydroxide/DMF [1/1 (v/v)]. In between the cleavage steps the resin was 

washed three times with DMF followed by three times with DCM. Finally, the 
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targeting ligand was cleaved off the resin according 2.2.3.3. "cleavage of oligomers 

and targeting ligand". 

The loading of the resins was determined as following: around two times 5mg of the 

resin were separated, washed twice with DCM and n-hexane and dried under 

vacuum. An exact amount of resin was treated with 1mL deprotection solution for 1h, 

diluted in DMF and UV absorption was measured at 301nm. The loading was 

calculated according to the equation: 

 resin load [mmol/g] = (A*1000) / (m [mg]*7800*df) with df as dilution factor 

The residual resin was treated two times 5min and two times 10min with deprotection 

solution, washed three times with DMF and three times with DCM and dried under 

vacuum. Reaction progress was monitored by Kaiser test (chapter 2.2.3.4.). 

 

2.2.3.2. General procedure of SPPS 

SPPS was carried out according to standard Fmoc/tBu protecting group strategy first 

published by Merrifield et al. [109]. Synthesis was performed either by an automated 

microwave-based system (Biotage AB, Uppsala, Sweden) or manually. For 

automated synthesis the pre-loaded resin was pre-swollen in a syringe reactor for 

20min in NMP and for manual synthesis in DCM. The general synthesis procedure 

was performed as described in Table 2.5. (automated synthesis) and Table 2.6. 

(manual synthesis). After reaction and washing steps, solvents and non-reacted 

reagents were removed. 

 

Table 2.5. General protocol for automated synthesis. 

Synthesis step Reagents Reaction time Volume [mL/g resin] 

Coupling AA/PyBOP/HBTU/DIPEA 

[4eq/4eq/4eq/8eq] 

in DMF/NMP [1/1 (v/v)] 

3x/5x alternating 

10min, 60°C and 

5min, RT 

10 

Washing 3xDMF 1min 10 

Deprotection 20% piperidine in DMF3) (v/v) 5x5min, RT 10 

Washing 3xDMF 1min 10 

Kaiser Test Kaiser test solution1); 2) positive  
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Table 2.6. General protocol for manual synthesis. 

Synthesis step Reagents Reaction time Volume [mL/g resin] 

Coupling AA/PyBOP/HOBT/DIPEA 

[4eq/4eq/4eq/8eq] 

in DMF/DCM [1/1 (v/v)] 

60-90min shaking 10 

Washing 3xDMF/ 3xDCM 1min 10 

Kaiser test Kaiser test solution1) negative  

Deprotection 20% piperidine in DMF3) 

(v/v) 

2x5min and 

2x10min, RT 

10 

Washing 3xDMF/ 3xDCM 1min 10 

Kaiser Test Kaiser test solution1); 2) positive  

1) according 2.2.3.4.  

2) not during synthesis, only last step  

3) if needed addition of 2% 1,8-diazabicyclo[5.4.0] undec-7-en and 1% Triton 

 

2.2.3.3. Cleavage of oligomers and targeting ligand 

The oligomer was cleaved off the resin by treatment with a cleavage solution 

containing TFA/TIS/H2O [95/2.5/2.5 (v/v)] for 1.5h. After washing the resin two times 

with trifluoroacetic acid (TFA) and DCM all solutions were combined, concentrated 

and precipitated by dropwise addition to a mixture of ice-cold MTBE/n-hexane [1/1 

(v/v)] and cooled to -20°C. The resulting precipitate was centrifuged (10min; 

4000rpm) and dried under vacuum. The resulting precipitate of the targeting ligand 

was dissolved in 50% (v/v) acetonitrile in water and lyophilized. In case of an 

oligomer precipitate, the pellet was re-suspended in size exclusion buffer [10mM HCl, 

30% ACN, 70% H2O (v/v)]. The oligomer was purified by size exclusion 

chromatography using a self-packed Sephadex® G-10 column connected to an Äkta 

basic system (GE Healthcare, München, Germany) detecting at 214nm, 250nm and 

280nm. Isocratic elution at a flow rate of 2mL/min was applied. The product fractions 

were pooled, frozen in liquid nitrogen and lyophilized.  
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2.2.3.4. Kaiser Test 

Kaiser test was used as a control to monitor the coupling and deprotection efficiency 

by detection of free amino groups. Due to the linkage of the chain to the resin via its 

C-terminus, the N-terminus is extending off. Ninhydrin is used to detect free amines 

(in case of deprotected resin) by color change. In case of a protected N-terminus the 

test gives a yellow result. The test was carried out after each coupling and 

deprotection step during manual synthesis. In case of automated synthesis, Kaiser 

test was just performed before manual coupling of Boc-Cys(Trt)-OH or after coupling 

of N10-(Trifluoroacetyl)pteroic acid.  

A small amount of beats were transferred to an Eppendorf tube. One drop of each 

solution [80% (w/v) phenol in EtOH, 5% (w/v) ninhydrin in EtOH, 0.02mM potassium 

cyanide in pyridine] was added to the resin, vortexed and heated to 99°C for 4min. 

 

2.2.4.Synthesis of shielding polymers 

2.2.4.1. Synthesis of monovalent AzMMMan-PEG(5000)-MeO 

Monovalent AzMMMan-PEG(5000)-MeO was synthesized by a one-step modification 

of DBCO-PEG(5000)-MeO (10mg, 2µmol) with AzMMMan (1.34mg, 8µmol). 

Therefore, all reagents were dissolved in MeOH (500µL) and the reaction was 

performed for 3h. The excess of AzMMMan was removed by precipitation of 

AzMMMan-PEG(5000)-MeO in 50mL diethyl ether (yield 90-95%). 

 

2.2.4.2. Synthesis of bifunctional FolA-PEG(5000)-AzMMMan and 

bifunctional FolA-PEG(5000)-NHS via FolA-PEG6-cysteamine 

AzMMMan-modified bifunctional FolA-PEG(5000) was synthesized by a three-step 

reaction. Firstly, OPSS-PEG(5000)-NHS (10mg, 2µmol) was modified with DBCO-

PEG4-NH2 (4.2mg, 8µmol). Therefore, OPSS-PEG(5000)-NHS was dissolved in 

450µL MeOH and DBCO-PEG4-NH2 in 50µL DMSO. Afterwards, reagents were 

mixed and reaction was performed for 3h at 25°C. The excess of DBCO-PEG4-NH2 

was removed by size exclusion chromatography (SEC) using a PD Midi Trap self-

packed with Sephadex LH 20 and MeOH as an eluent. The first fraction 

corresponding to the high-molecular weight OPSS-PEG(5000)-DBCO was collected 

and solvent was evaporated. Secondly, the targeting ligand FolA was introduced by 
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dissolving 1eq OPSS-PEG(5000)-DBCO (10mg, 2µmol) in 450µL MeOH and 4eq 

FolA-PEG6-cysteamine (6.6mg, 8µmol) in 50µL DMF. The reaction was performed for 

2h and purified by SEC using a PD Midi Trap self-packed with Sephadex LH 20 and 

MeOH as an eluent. The first fractions were collected and solvent was evaporated. 

Lastly, 1eq FolA-PEG(5000)-DBCO (10mg, 2µmol) was modified with 4q AzMMMan 

(1.34mg, 8µmol) accordingly the monovalent AzMMMan-PEG-MeO as stated above.  

N-Hydroxysuccinimide (NHS)-modified bifunctional FolA-PEG(5000) was synthesized 

by dissolving 1eq OPSS-PEG(5000)-NHS (10mg, 2µmol) in 450µL MeOH and 4eq 

FolA-PEG6-cysteamine (6.6mg, 8µmol) in 50µL DMF. The reaction was performed for 

2h and purified by SEC using a PD Midi Trap self-packed with Sephadex LH 20 and 

MeOH as an eluent. The first fraction was collected and solvent was evaporated. 

 

2.2.4.3. Synthesis of bifunctional FolA-PEG(5000)-AzMMMan and 

bifunctional FolA-PEG(5000)-NHS via NHS-FolA 

In a different approach FolA-PEG(5000)-AzMMMan and FolA-PEG(5000)-NHS was 

synthesized via NHS-FolA. In the first step NHS-FolA was synthesized according Liu 

et al. [110]. After removing the insoluble byproduct dicyclohexylurea by filtration, the 

FolA-NHS solution was precipitated in ACN and solvent was removed by 

evaporation. In the next step, 4eq DBCO-PEG4-Mal (5.4mg, 8µmol) was coupled to 

1eq NH2-PEG(5000)-SH (10mg, 2µmol). In this regard, NH2-PEG(5000)-SH was 

dissolved in 450µL MeOH and DBCO-PEG4-Mal in 50µL DMSO. Coupling was 

performed for 3h and the excess of DBCO-PEG4-Mal was removed by SEC using a 

PD MidiTrap column self-packed with Sephadex LH20 and MeOH as an eluent. The 

first fraction was collected and the solvent was evaporated. Afterwards, the targeting 

ligand FolA was introduced by dissolving NH2-PEG(5000)-DBCO (10mg, 2µmol) in 

450µL MeOH/DMF [1/1 (v/v)] and NHS-FolA (4.2mg, 8µmol) in 50µL DMF. Reaction 

was performed for 4h under the atmosphere of an inert gas at RT. The product was 

purified by SEC using a PD MidiTrap column self-packed with Sephadex LH20 and 

DMF as an eluent. Again, the first fractions were collected and the solvent was 

evaporated. In the last step, 1eq FolA-PEG(5000)-DBCO (10mg, 2µmol) was 

modified either with 4eq AzMMMan (1.34mg, 8µmol) or NHS-C3-Azide (1.8mg, 

8µmol). Therefore, FolA-PEG(5000)-DBCO and AzMMMan or NHS-C3-Azide were 



Material and Methods 

38 
 

dissolved in 500µL MeOH and reaction was performed for 4h at RT. The product was 

purified by precipitation in 50mL diethyl ether.  

Note: These syntheses were unsuccessful according biological characterization 

section 3.3.1.  

 

2.2.4.4. Synthesis of monovalent pHPMA-AzMMMan and monovalent 

pHPMA-TT 

Monovalent polyN-(2-Hydroxypropyl)methacrylamide (pHPMA) polymers were 

synthesized, characterized and kindly provided by Dr. Libor Kostka.  

 

2.2.4.5. Synthesis of multivalent pHPMA-AzMMMan and multivalent 

pHPMA-TT 

Multivalent pHPMA polymers were synthesized, characterized and kindly provided by 

Dr. Libor Kostka.  

 

2.2.4.6. Polyplex formation 

Unless stated otherwise, polyplexes were prepared in HEPES-buffered glucose 

(HBG) by adding pCMVL to the oligomer solution at indicated N/P ratios (protonable 

nitrogen/phosphate ratio), followed by rapid mixing and a 3h incubation at 25°C, 

900rpm. In case of shielded polyplexes, indicated molar equivalents of shielding 

polymer (calculated as molar ratio over the oligomer applied in the polyplex 

formation) was dissolved in HBG and added 3h post polyplex formation, followed by 

further incubation for 24h or 48h at RT. For cell uptake studies, assessed by flow 

cytometry and laser scanning microscopy (LSM), 20% of pCMVL was labeled with 

Cy5 (Mirus Bio, Madson, USA). For in vivo experiments polyplexes were prepared in 

a total volume of 250µL HBG. In case of unshielded polyplexes, polyplexes were 

formed 45min prior i.v. injection.  
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2.2.4.7. Measurement of particle size and zeta potential 

Polyplex formation as well as shielding and deshielding of polyplexes was monitored 

via particle size and zeta potential measurements by dynamic and electrophoretic 

light scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, U.K.) with following parameters: equilibration time 0min, viscosity 

0,8872cP, dielectric constant 78.5, temp 25°C, F(Ka) 1.5 (Smoluchowski), 

measurement point 2.00mm, attenuator 11.  

 

2.2.4.8. Agarose gel shift assay 

To study pCMVL condensation as a function of N/P ratio, an agarose gel shift assay 

was performed. To visualize pCMVL, 120µL GelRed was added to the 1% agarose 

gel. Polyplexes were formed as stated above and 4µL of DNA loading buffer was 

added prior to loading to the gel. Electrophoresis was performed at a constant current 

of 120V for 80min. Thereafter, fluorescence of incorporated GelRed was detected 

using a transilluminator (Biostep, Jahnsdorf, Germany).  

 

2.2.4.9. Ethidium bromide exclusion assay (EtBr assay) 

Ethidium bromide exclusion assay was performed to study pCMVL condensation 

ability using a Cary Eclipse spectrophotometer (Varian, Bergisch Gladbach, 

Germany), Exc: 510nm Em: 590nm. The effect of polyplex stability was assessed by 

stepwise addition of oligomer solution to 10µg pCMVL in 1mL HBG containing 0.4µg 

EtBr. Free pCMVL and EtBr solution were set as 100% and an EtBr solution was set 

as a background value. Fluorescence intensity was measured 30s after each addition 

of oligomer aliquot. 

 

2.2.4.10. Oligomer buffering capacity 

The buffering capacity of oligomers was determined via back titration with an 

automatic titration system Titrando 905 (Metrohm, Filderstadt, Germany). An 

oligomer sample, containing 15µmol protonatable amines, was diluted in a total 

volume of 3.5mL 50mM NaCl solution and pH was adjusted to 2.1 by addition of 0.1M 

HCl. Back titration was performed with 0.05M NaOH solution until a pH of 11 was 
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reached. A control titration was performed with 3.5mL 50mM NaCl solution and 

0.05M NaOH. The percentage of buffer capacity   in a certain pH range (x-y) was 

calculated according to equation (1). The volume consumption of NaOH in the 

considered pH range is represented by ΔV.  

            
                

         
      

 

2.2.4.11. Cell culture 

Mouse neuroblastoma cells (Neuro-2a) were grown in Dulbecco’s Modified Eagle’s 

Medium- low glucose (DMEM) and hepatocarcinoma cells (HUH7) in a 50:50 mixture 

of Dulbecco’s Modified Eagle’s medium and Ham's F12 medium. All cell lines were 

cultured at 37°C in a humidified atmosphere of 5% CO2 and 95% air. All media were 

supplemented with 10% fetal calf serum (FCS), 100U/mL penicillin and 100μg/mL 

streptomycin. Cells were harvested by treatment with trypsin/EDTA solution at 37°C 

for 5 min. Cells were mycoplasma free as tested by MycoAlertTM mycoplasma 

detection kit (Lonza, Köln, Germany). 

 

2.2.4.12. Luciferase gene expression 

In vitro experiments were performed in 96-well plates with 104 seeded Neuro-2a cells 

per well or in collagen-coated 96-well plates with 8x103 or 4x103 seeded HUH7 cells 

per well, 24h prior to pCMVL delivery. Before transfection, cell medium was replaced 

with 80µL fresh medium. Polyplex solution (20µL) was added to each well and 

incubated at 37°C for an indicated period of time (24-48h). After transfection cells 

were treated with 100µL luciferase cell culture 5x lysis buffer. Luciferase gene 

expression was measured in a Centro LB 960 plate reader luminometer (Berthold 

Technologies, Bad Wildbad, Germany) by monitoring luciferase activity in cell lysates 

using LAR buffer supplemented with 10% 10mM luciferin solution (240mg luciferin, 

2.35mL 1M glycylglycine, 80mL H2O, pH 8). Linear polyethylenimine [LPEI; N/P 6] or 

unmodified 784 (N/P 12) was used as a positive control. HBG was used as a 

negative control.  
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2.2.4.13. Cell viability assay (MTT) 

Viability of HUH7 and Neuro-2a cells was evaluated subsequently to the transfection 

experiments. Transfections were performed similar to luciferase gene expression 

studies. At indicated post-transfection time, 10µL 3-(4,5-dimethyl-2-thiazolyl)-2,5-

diphenyl-2H-tetrazolium bromide (MTT) was added to each well reaching a final 

concentration of 0.5mg MTT/mL. After 2h of incubation, unreacted dye and medium 

were removed and the 96-well plates were stored at -80°C for one hour. The purple 

formazan product was dissolved in 100μL/well DMSO and quantified by a microplate 

reader (Tecan, Männedorf, Switzerland) at 530nm with background correction at 

630nm. The relative cell viability (%) related to control wells containing cell culture 

medium with 20μL HBG was calculated by [A]test/[A]control×100.  

 

2.2.4.14. Cellular uptake: flow cytometry studies 

Cellular internalization of the polyplexes was assessed by flow cytometry of Cy5-

labeled polyplexes (Exc:636nm, Em:665nm) in a Cyan™ ADP flow Cytometer (Dako, 

Hamburg, Germany) equipped with Summit™ acquisition software (Summit, 

Jamesville, USA). Data were analyzed by FlowJo® 7.6.5 flow cytometric analysis 

software. Cells were appropriately gated by forward/sideward scatter and pulse width 

for exclusion of doublets. All experiments were performed in triplicates. 

HUH7 cells were seeded 24h prior to transfection into collagen-coated 24-well plates 

at a density of 4x104 cells per well. Before transfection medium was replaced with 

400µL fresh medium. Polyplex solution (100µL) was added and incubated for 2h at 

37°C. Thereafter, cells were washed twice with 500µL phosphate-buffered saline 

(PBS), incubated on ice for 15min with 100I.U. heparin and again washed twice with 

500µL PBS. Thereafter, cells were collected and after centrifugation (5min, 1000g) 

re-suspended in FACS solution (10% FCS in PBS). DAPI staining was applied to 

discriminate between viable and non-viable cells. 
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2.2.4.15. Intracellular localization: laser scanning microscopy (LSM) 

Neuro-2a cells (3x104 per well) were seeded 24h prior to transfection in 

NuncTMLabtekTM chamber slides (Sigma-Aldrich). Before transfection cell medium 

was replaced with 80µL fresh medium. Polyplexes solution (20µL per well) was 

added and incubated for 24h at 37°C. Cells were washed three times with PBS and 

fixed with 4% paraformaldehyde for 30min. Staining was performed using DAPI and 

rhodamine phalloidin. Results were analyzed in a Zeiss Laser Scanning Microscope 

LSM 510 Meta and Axiovert 200 software (Zeiss).  

 

2.2.4.16. In vivo delivery and expression 

All animal experiments were performed according to the guidelines of the German 

law for the protection of animal life and were approved by the local animal ethics 

committee. Six weeks old female Rj:NMRI nu (nu/nu) (Janvier, Le-Genest-St-Isle, 

France) mice were housed in isolated ventilated cages with a 12h day/night interval 

and food and water ad libitum.  

Neuro-2a cells (5x106) suspended in 150µL PBS were injected subcutaneously into 

the left flank. On day 12 and 13 after tumor cell inoculation, 250µL polyplex solution 

containing 60µg pCMVL was administered via tail vein injection. Mice were 

euthanized on day 15 and tumor/organs were collected to assess luciferase activity 

via ex vivo luciferase assay. Tumor and organs were homogenized in 500µL cell lysis 

buffer using a tissue and cell homogenizer (FastPrep®-24). To separate insoluble 

cell components, the samples were centrifuged at 3000g at 4°C for 10min. Luciferase 

activity was measured in the supernatant using a Centro LB 960 luminometer.  

 

2.2.4.17. Statistical analysis 

Results are presented as mean ± SEM. Statistical significance was determined in 

two-tailed t-tests. Significance levels are indicated as follows: *: P ≤ 0.05; **: P ≤ 

0.01; ***: P ≤ 0.001. 
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3. Results 

3.1. Designing new sequence-defined oligomers: evaluation of stabilizing 

effects of lysine residues on DNA polyplexes 

Minimal polymer cytotoxicity is one key aim for developing polyplexes toward 

therapeutic use. Polyethylenimine (PEI) has been developed as pDNA carrier with 

encouraging transfection properties [46, 111, 112]. It combines the ability to form 

stable pDNA polyplexes with a superior pH-reversible protonation and buffer capacity 

within the pH range of pH 6.0 to 7.4. Nevertheless, cytotoxicity limits its application as 

gene therapy carrier. Different approaches have been reported for reducing the 

toxicity by dissecting PEI into smaller segments of repeating diaminoethane units 

connected in a more biocompatible, biodegradable manner [113-119]. To combine 

low cytotoxicity with high precision polymer synthesis [120], we developed artificial 

oligo(ethanamino) amino acids such as succinoyl pentaethylene hexamine (Sph) in 

properly protected form for use in standard solid-phase supported peptide synthesis 

(SPPS) [55, 58]. This chemical peptide synthesis uses linkers attached to small 

porous beads, resins, for building up peptide chains. Repeated deprotection-

washing-coupling-washing cycles are characterizing this method. The advantage of 

SPPS lies in the opportunity to remove excess of reagents by filtration as well as to 

perform washing steps after each reaction due to the immobilization of the peptide on 

the resin. This enables effective and fast coupling of amino acids to the growing 

peptide chain. Figure 3.1. illustrates the principles of SPPS. Figure 3.2. is showing 

the structures of used protected artificial amino acid Sph as well as natural amino 

acids for SPPS.  
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Figure 3.1. Illustration of repeating cycles of deprotection-washing-coupling-washing steps 

characterizing SPPS. Firstly, the C-terminal amino acid is coupled to the linker, which is 

attached to the resin. By repeating a cycle of deprotection, washing, coupling and washing 

steps the peptide chain is elongated. At the end of the synthesis, the final peptide is obtained 

after the cleavage from the resin and removal of permanent protecting groups.  

 

 

Figure 3.2. Structures of used protected artificial amino acid Sph containing a diaminoethane 

building block and protected natural amino acids histidine, lysine and cysteine. 
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Based on this strategy, new sequence-defined DNA carriers were designed and 

synthesized. These carriers represent the third generation of previously reported 

oligomers with four-arm topology. In the first generation, the methods of four-arm 

oligomer syntheses [58], the discovery of Sph as particularly effective building block, 

and the polyplex-stabilizing properties of terminal cysteines [55] was established. In 

the previous second generation, incorporation of histidine residues for fine-tuning the 

proton sponge activity resulted in oligomers such as AK[HK[(H-Sph)3C]2]2 (compound 

ID: 606) which already showed high endosomal escape and DNA transfer efficacy 

both in vitro and in vivo [56]. The current third-generation oligomers contain additional 

lysine residues to provide primary amino groups facilitating conjugation of amine-

reactive shielding agents to the surface of polyplexes. Furthermore, an increased 

binding ability toward the negatively charged phosphates of DNA was hypothesized. 

Oligolysines have been extensively studied before, and are today well known for their 

ability to form stable particles [121-123]. Figure 3.3. and Table 3.1. give an overview 

over the synthesized oligomers.  

 

Figure 3.3. Illustration of the synthesized four-arm structured oligomers comprising of 

different natural and artificial amino acid residues.  
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Table 3.1. Compound ID, abbreviation, molecular weight and amount of protonatable amines 

of all investigated oligomers. Oligomer 497 was synthesized by Dr. Edith Salcher 

(Pharmaceutical Biotechnology, LMU).  

Compound ID Abbreviation Molecular weight [Da] 
Protonatable 

amines 

497 A(SpH)3 6557.31 52 

606 A/0K 9647.67 70 

748 A/1K 10304.43 74 

749 A/2K 10961.19 78 

784 K(H-Sph-K)3 11711 83 

785 K(H-Sph-K)4 14902 107 

797 K(H-Sph-K)3+ extra His 13908.67 95 

935 K(Sph-K)3 8619.58 65 

 

Initially, one (compound ID 748) or two (compound ID 749) lysine residue(s) were 

introduced in the four-arm pattern just before the terminal cysteines. However, 

oligomer 748 and 749 showed only a slight increased DNA binding efficiency 

respectively polyplex stability compared to the counterpart structure 606. Therefore, 

additional lysine residues were incorporated within the H-Sph repeating pattern of the 

four-arm sequence (oligomer ID 784). This repeating H-Sph-K pattern was further 

elongated from 3 to 4 moieties forming oligomer 785. To increase endosomal release 

a histidine-rich area was introduced within the sequence of oligomer 784 resulting in 

oligomer 797. Additionally, control oligomer 935 containing a four-arm Sph-K 

repeating pattern and oligomer 497 (synthesis by Dr. Edith Salcher, Pharmaceutical 

Biotechnology, LMU) comprising only Sph within the four-arm sequence were 

synthesized. Polyplexes were formed and evaluated in concern of nucleic acid 

binding efficiency, size and zeta potential, buffer capacity as well as in vitro and in 

vivo transfection efficiency.  
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3.1.1.Biophysical characterization of oligomers concerning DNA binding 

ability, particle size, zeta potential and buffering capacity 

The binding ability of the various synthesized oligomers is expected to increase by 

the introduction of lysine residues and was therefore evaluated by agarose gel shift 

assays (Fig. 3.4.). In this assay, free pCMVL is migration without hindrance in the gel, 

whereas sufficient polyplex formation is resulting in a complete loss of electrophoretic 

mobility indicated by a sharp band at the position of the samples' well. In case of 

lysine-rich oligomers complete pCMVL binding, even at low nitrogen/phosphate ratio 

(N/P ratio) of 3, was observed with the exception of oligomer 748 and 749. Those 

oligomers displayed similar to the control oligomer 497 and 606, which are comprised 

of no additional stabilizing lysine residues, no sufficient pCMVL binding at N/P 3, 

suggesting a lower pCMVL binding affinity.  

 

 

Figure 3.4. Agarose gel shift assays evaluating pCMVL binding ability of oligomers at 

different N/P ratios. To visualize pCMVL, 120µL GelRed was added to the 1% agarose gel. 

Polyplexes containing 200ng pCMVL and oligomer at indicated N/P ratio were prepared for 

3h, 900rpm at 25°C. DNA loading buffer was added prior placing the polyplexes into the 

sample pockets. Electrophoresis was performed at 120V for 80min.  
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To confirm these findings, ethidium bromide (EtBr) assays were performed. In this 

assay, the pDNA binding ability of the oligomer correlates with a decreasing in 

fluorescence activity of ethidium bromide, which was monitored after stepwise 

addition of an oligomer solution to a solution containing free pCMVL. In accordance 

to the gel shift assays, results revealed that in presence of lysine-rich oligomers 784, 

785, 797 and 935, less pCMVL is available to bind EtBr as compared to the lysine-

free counterpart structures 497 and 606. Figure 3.5. suggests that the pCMVL 

binding affinity of the lysine-rich oligomers at N/P 12 correlates to the amount of 

lysine residues present in the oligomeric structure. Oligomer 785 with the highest 

amount of lysine residues within the sequence showed least pCMVL availability to 

bind EtBr compared to all other oligomers. In comparison oligomer 748 and 749 

comprising of one or two terminal lysine residue(s) mediated only a slight increased 

pCMVL binding affinity compared to the lysine-free counterparts. These findings 

confirm the well-know ability of lysines to form stable particle and further support the 

inclusion within the oligomeric structure to improve polyplex stability.  

 

 

Figure 3.5. Ethidium bromide exclusion assay comparing pCMVL binding ability of the 

oligomers. EtBr fluorescence without pCMVL was used as a blank, and EtBr in the presence 

of pCMVL and absence of oligomer was set to 100%. Oligomer solution was added at 

increasing protonable nitrogen/phosphate ratio (N/P ratio) to the pCMVL solution and EtBr 

fluorescence intensity was determined. 
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For a better understanding of these pCMVL particles, size (Z-average) and zeta 

potential of the polyplexes formed at N/P 12 was assessed (Table 3.2.). No 

significant differences were observed between the zeta potential of pCMVL 

polyplexes formed by lysine-rich and lysine-free oligomers. The observed zeta 

potentials were in the range between 22.9-32.4mV. However, polyplex sizes received 

by DLS measurements were in the range between 86.73 nm and 370nm. Polyplexes 

formed by lysine-rich oligomers 784, 785, 797 and 935 were of significantly smaller 

size (below 100nm) compared to those formed by lysine-free oligomers 606 and 497 

(191-370nm) at the same N/P ratio. The incorporation of one (oligomer ID 748) or two 

terminal lysine residue(s) (oligomer ID 749) within the oligomer structure showed only 

a slight reduction of particle size compared to the 606 counterpart structure. Due to 

the fact that polyplex size is a critical parameter for successful gene delivery and 

bigger particle sizes are often connected to lower stability, those oligomers were not 

further evaluated.  

 

Table 3.2 Particle size (Z-average), polydispersity index (PDI) and zeta potential of four-arm 

structured polyplexes formed at N/P 12 (n=3).  

Oligomer ID Z-average [d.nm] PDI Zeta potential [mV] 

606 191 ± 8.64 0.176 23,5 ± 1.7 

748 168.6 ± 6.8 0.285 22.9 ± 1.4 

749 135.8 ± 3.9 0.234 25.0 ± 0.4 

784 86.73 ± 2.14 0.22 32.4 ± 0.49 

785 94.56 ± 3.2 0.114 32.3 ± 1.39 

797 94.4 ± 0.89 0.245 28.23 ± 0.95 

935 96.31 ± 0.86 0.056 27.97 ± 0.64 

497 370 ± 65 0.314 28.3 ± 1.0 
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In order to determine the most suitable excess of oligomer over pCMVL indicated by 

N/P ratio DLS was re-measured for polyplexes formed at N/P ratio 9, 12 and 18. 

Again, lysine-rich oligomers formed polyplexes of significant smaller sizes and slightly 

higher zeta potential compared to the lysine-free benchmark oligomer 606 (Fig. 3.6.). 

The formation of particles in case of lysine-rich oligomers seemed to be N/P-

independent. Small and stable polyplexes were observed even at low N/P ratio of 9 

and not further improved due to a higher N/P ratio. Within the lysine-rich oligomers, 

no differences in size or zeta potential were observed.  

 

 

Figure 3.6. Dynamic laser light scanning measurements comparing A) particle size (z-

Average, diameter in nm) and B) zeta potential of pCMVL polyplexes formed at different N/P 

ratios (n=3) at 25°C. 



Results 

51 
 

Since the endolysosomal pathway presents a threat to the nucleic acids' integrity, 

escaping from the endosome and buffering its pH has proven essential requirements 

for pCMVL polyplexes [124, 125]. For this reason the buffer capacity of the oligomers 

was assessed via acidimetric back titration in order to evaluate the effect of lysine 

residues present in the oligomeric structure on buffer capacity respectively 

endosomal escape. Figure 3.7. shows the titration curves between the endosomal pH 

of 5.0 and the physiological pH of 7.4, which has to be covered by the oligomer in 

order to mediate sufficient endosomal release. The results indicate a decreased 

buffer capacity for lysine-containing oligomers in comparison to the counterpart 

structure 606. However, due to the introduction of a histidine-rich moiety within the H-

Sph-K repeating pattern of oligomer 797 buffer capacity is increased by 24% 

compared to oligomer 606. Within the whole set, the flattest slope was found for 

oligomer 797 indentifying the highest endosomal buffer capacity of all evaluated 

oligomers. In contrast, oligomer 935 comprising of a Sph-K repeating sequence 

pattern, exhibit the lowest buffering within the endosomal pH range, supporting the 

incorporation of histidine residues within the oligomer structure.  

 

 

Figure 3.7. Buffer capacity of oligomers determined between pH 2.0 and 11.0 by acidimetric 

back titration. The highlighted range between pH 5.0 and 7.4 identifies the endosomal 

respectively physiological pH.  
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3.1.2.In vitro characterization of DNA polyplexes 

The effect of the incorporation of lysine residues within the oligomer structure on 

pCMVL transfection activity was evaluated using Neuro-2a cells. A bioluminescence 

assay was applied to quantify transgene expression after the transfection of pCMVL 

polyplexes. All oligomers showed up to 9-fold higher pCMVL transfection activity 

compared to standard carrier LPEI (Fig. 3.8.). Transgene expression mediated by the 

lysine-rich oligomers was up to 1800-fold improved compared to the expression level 

of oligomer 606 at N/P 9. Interestingly, despite the lower buffering capacity, the 

pCMVL polyplexes formed by oligomer 784, 785 and 935 still resulted in higher gene 

expression levels to those mediated by oligomer 606. Lysine-containing oligomers 

showed no N/P dependence in transfection efficiency, whereas for oligomers without 

lysine residues (497, 606) transgene expression was highly N/P-dependent. This 

suggests that polyplex size and zeta potential, which are closely connected to 

polyplex stability, are crucial parameters for successful transgene expression. For 

oligomer 935 containing a histidine-free Sph-K repeating pattern transgene 

expression was highly affected by the presence of chloroquine. In absence of 

chloroquine transfection efficiency was reduced by up to 200-fold, highlighting the 

importance of histidines within the sequence for mediating sufficient endosomal 

escape. Those results obtained from pCMVL transfection were in accordance to 

biophysical characterization and confirmed the favorable effects of lysine residue 

integration. 

Importantly, within the investigated concentrations, the high transfection levels were 

not accompanied by increased cell toxicity as shown by cell metabolic activity 

assays. However, the addition of chloroquine showed a slightly reduction of cell 

viability (Fig. 3.9.). 
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Figure 3.8. Luciferase pCMVL transfection of Neuro-2a cells with four-arm structured 

oligomers at indicated N/P ratio. HBG is serving as a negative control, LPEI was used as a 

positive control (n=5). Transfection was performed with (dark grey bars) or without (light grey 

bars) endosomolytic chloroquine. Data are presented as mean value (±SEM) of relative light 

units (RLU) per 104 cells.  

 

Figure 3.9. Cell viability assay on Neuro-2a cells after 24h transfection with pCMVL 

polyplexes determined via MTT assay at different N/P ratios. Cells were treated during 

transfection with (dark grey bars) or without (light grey bars) chloroquine supplemented 

medium. Data are presented as mean value (±SEM) of relative light units (RLU) per 104 cells.  



Results 

54 
 

In sum, the incorporation of multiple lysine residues within the oligomer structure led 

to stabilized polyplexes, a prerequisite for the successful implementation of a pH-

sensitive shielding concept. Based on the results obtained in the biophysical and 

transfection studies oligomer 784 was chosen as benchmark oligomer for the 

formation of shielded polyplexes.  

 

3.2. Design and biophysical characterization of shielded polyplexes  

This chapter has been adopted from: 

Linda Beckert, Libor Kostka, Eva Kessel, Ana Krhac Levacic, Hana Kostkova, Tomas 

Etrych, Ulrich Lächelt, Ernst Wagner: "Acid-labile pHPMA modification of four-arm 

oligoaminoamide pDNA polyplexes balances shielding and gene transfer activity in 

vitro and in vivo." Eur. J. Pharm. Biopharm., doi:10.1016/j.ejpb.2016.05.019 (2016). 

 

Polyplexes devoid of surface shielding tend to form large aggregates under 

physiological conditions. Therefore, shielding molecules are often attached to the 

surface of the polyplexes to increase their physiological stability and to avoid 

unwanted interactions, in particular with blood components (RES cells, opsonins), as 

a result of the reduction in the positive surface charge [85, 126]. Aiming at a system 

capable of in vivo delivery, we studied and compared side by side two of the most 

commonly used shielding polymers: PEG and pHPMA (mono- and multivalent) 

concerning their impact on physiological stability of pCMVL/784 polyplexes. We 

applied the "post-coating" approach, a well-established strategy [75, 78, 101], where 

the shielding polymer is subsequently attached to the particle surface via reactive 

groups after pCMVL complex formation [101, 104]. However, although the 

introduction of shielding material may increase circulation time and avoid unwanted 

interactions, it also reduces the interaction of polyplexes with the target cells and 

prevents endosomal escape, hereby decreasing transfection efficiency [126]. 

Therefore, we used the pH-sensitive linker AzMMMan to connect the shielding 

components to the polyplexes via the primary lysine amines present in the cationic 

oligomer structure. Under mild acidic conditions, such as those found in tumor tissue 

or in the endosome, the AzMMMan linker will be hydrolyzed and the shielding 

polymer be released from the polyplex surface (deshielding effect), re-exposing the 

http://dx.doi.org/10.1016/j.ejpb.2016.05.019
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charged pCMVL polyplex to the surrounding environment. To test the utility of such 

polyplex vectors with acid-labile bond-containing coating, we have compared the 

delivery efficiencies to those of stably shielded polyplexes, prepared by coating with 

polymers containing NHS groups in case of PEG or TT groups in case of pHPMA 

(10kDa, 20kDa, 30kDa). Figure 3.10. illustrates this concept of a pH-sensitive 

shielding/deshielding of polyplexes.  

 

 

Figure 3.10. Schematic illustration of pH-reversibly surface-shielded (light grey) and 

deshielded (dark grey) pCMVL/784 polyplexes. Light grey: Formation of pCMVL/784 polyplex 

through charge-charge interactions. Complexes were pH-sensitively shielded with 

AzMMMan-PEG/-pHPMA at physiological pH of 7.4. Dark grey: Deshielding of the polyplexes 

as a result of AzMMMan-PEG/-pHPMA cleavage at mild acidic conditions of pH 6.0. 

 

3.2.1.Biophysical characterization of shielded polyplexes 

Firstly, stability studies were carried out to evaluate the influence of molecular weight 

and amount of reactive groups in the different shielding polymers. 5eq or 20eq of 

shielding material (calculated as molar excess over the oligomer) was conjugated 

with the pCMVL/784 polyplex, and the shielding efficiency was determined by DLS. 

Evaluation of particles size and zeta potential suggested that a molar excess of 20 

equivalents of monovalent pHPMA and PEG resulted in an efficient decrease in zeta 

potential (Fig. 3.11.). The obtained zeta potential was within the range of 1mV in the 

case of the monovalent form of TT-pHPMA (30kDa) to 8mV in the case of 

AzMMMan-PEG. AzMMMan-modified polyplexes had a slightly higher zeta potential 
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between 0.4mV for PEG and 5.3mV for monovalent pHPMA (10kDa) compared to 

NHS- or TT-modified polyplexes. Shielding was more efficient for pHPMA with higher 

molecular weight compared to pHPMA with lower molecular weight.  

 

 

Figure 3.11. Size (diameter in nm; dark grey bars) and zeta potential [mV] (light grey bars) 

analysis of pCMVL polyplexes (784; N/P 12). Polyplexes were shielded with 20eq 

monovalent AzMMMan-pHPMA or 20eq AzMMMan-PEG. As a stable control polyplexes 

were shielded with 20eq TT-HPMA or 20eq NHS-PEG. All samples were measured 24h after 

coating at 25°C via DLS. Variations refer to the mean (±SEM) of three measurements of the 

same sample. 

 

However, results obtained from multivalent pHPMA-shielded polyplexes shown in 

Fig. 3.12. identify that already 5eq is sufficient for efficient polyplex shielding. 

Especially, 20kDa and 30kDa multivalent pHPMA display a superior shielding 

efficiency. A comparison of Fig. 3.11. and Fig. 3.12. reveals that modification with 

5eq excess of AzMMMan-modified pHPMA (20 and 30kDa) results in a zeta potential 

below -10mV, whereas 20eq of the same molecular weight monovalent pHPMA was 

needed to decrease zeta potential below +6mV. Particles shielded with monovalent 
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pHPMA or PEG were stable without an increase in size or zeta potential for at least 

24h, whereas shielding with multivalent pHPMA prolonged polyplex stability up to 

48h. Particle size analysis showed that all coated polyplexes had an average 

diameter between 72nm and 100nm, suggesting no significant effect of the shielding 

material and used linker on particle size.  

 

 

Figure 3.12. Size (diameter in nm; dark grey bars) and zeta potential [mV] (light grey bars) 

analysis of pCMVL polyplexes (784; N/P 12). Polyplexes were shielded with 5eq multivalent 

AzMMMan-pHPMA or as a stable control with 20eq TT-pHPMA. All samples were measured 

24h after coating at 25°C via DLS. Variations refer to the mean (±SEM) of three 

measurements of the same sample. 
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Previous studies have demonstrated a stabilizing effect of various shielding materials 

by measuring size of polyplexes after the addition of salt, plasma or isolated blood 

proteins such as albumin into incubation solution [74, 127]. In an analogous fashion 

we studied the stability of unshielded and shielded pCMVL/784 polyplexes in highly 

concentrated phosphate-buffered saline, plasma and albumin solution. For this 

purpose, pCMVL and 784 were mixed to form the polyplex under salt-free conditions 

and kept for 3h before the addition of 20eq shielding material. After 24h PBS, plasma 

or albumin was added. In case of surface unmodified polyplexes, those solutions 

were added directly 3h after polyplex formation and size of the particles was 

measured. As expected, unmodified polyplexes rapidly aggregated after the addition 

of PBS, whereas shielded polyplexes remained stable, with no increase in average 

size within the measured time (Fig. 3.13.A). Because upon i.v. injection of polyplexes, 

interaction with blood components will likely occur, which may lead to a reduction in 

transgene expression activity and alteration of tissue distribution [128], and we have 

also studied the particle stability in plasma. Shielded polyplexes showed moderate 

size increase after 5min of incubation, in contrast to a rapid aggregation of 

unmodified pCMVL/784 complexes (Fig. 3.13.B). However, the heterogenic nature of 

plasma complicates the interpretation of data obtained from DLS measurements. For 

this purpose, the stability of particles was also evaluated in the presence of only 

albumin, the main protein of human blood plasma. Consistent with the stability results 

obtained in PBS and plasma, the incubation of pCMVL/784 polyplexes with albumin 

resulted in the aggregation of unshielded pCMVL/784 particles already after 5min 

(Fig. 3.13.C), while the incorporation of a shielding polymer had a stabilizing effect. 

Only after 180min of incubation the surface-modified polyplexes showed minor signs 

of interaction with albumin (Fig. 3.13.D).  
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Figure 3.13. Stability testing of pCMVL/784 polyplexes (N/P 12) against A) PBS, B) plasma 

and C-D) albumin. Polyplexes were prepared in A) water or B-D) HEPES. Size was 

measured after the addition of A) 500µL PBS, B) 500µL plasma solution (8.6µL human 

plasma in 500µL HEPES) or C-D) 500µL albumin solution (50mg/mL) in HEPES and 

incubation at 37°C. Size (diameter in nm) was measured after different time intervals of A) 

0min, 5min, 30min, 60min and 180min, B) 0min, 5min and 30min, C) 5min and D) 180min via 

DLS. A) Variations refer to the mean (±SEM) of three measurements of the same sample. 
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The acid-triggered cleavage of the AzMMMan-polymer shielding was investigated by 

comparing PEG and multivalent pHPMA at endosomal pH 6.0 via size and zeta 

potential measurements (Fig. 3.14.). At physiological pH 7.4, NHS-PEGylated and 

AzMMMan-PEGylated polyplexes as well as multivalent TT- and AzMMMan-modified 

pHPMA polyplexes are stable in size and zeta potential for many hours up to days 

(compare Fig. 3.14. and 3.15.). However, 30min after acidification to pH 6.0 

AzMMMan-polymer modified polyplexes started to increase in zeta potential due to 

the cleavage of the acid-labile linker AzMMMan. At 180min after adjustment to pH 

6.0, AzMMMan-PEG or AzMMMan-pHPMA was cleaved what was detectable also by 

particle aggregation. These characteristics are similar to those of the unshielded 

pCMVL/784 polyplexes, which were also found to aggregate after acidification. As 

opposed to the acid-labile linker, and as expected, the polyplexes shielded with 

polymers, containing TT-or NHS-groups, remained stably shielded over the 

measurement interval.  

 

 

Figure 3.14.A Zeta potential analysis of pCMVL/784 polyplexes (N/P 12) shielded with 20eq 

AzMMMan-PEG (dark grey bars), NHS-PEG (light grey bars), multivalent AzMMMan-pHPMA 

(striped dark grey bars) and multivalent TT-pHPMA (striped light grey bars). Deshielding 

efficiency of polyplexes was evaluated at various time points at 25°C. At time point 0min, 

polyplexes were measured at pH 7.4. Afterwards, the pH was adjusted to 6.0 by addition of 

small amounts of 1N HCl. Polyplexes were measured 5-180min after incubations at pH 6.0. 

Variations refer to the mean (±SEM) of three measurements of the same sample.  
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Figure 3.14.B Size analysis of pCMVL/784 polyplexes (N/P 12) shielded with 20eq 

AzMMMan-PEG (dark grey bars), NHS-PEG (light grey bars), multivalent AzMMMan-pHPMA 

(striped dark grey bars) and multivalent TT-pHPMA (striped light grey bars). Deshielding 

efficiency of polyplexes was evaluated at various time points at 25°C. At time point 0min, 

polyplexes were measured at pH 7.4. Afterwards, the pH was adjusted to 6.0 by addition of 

small amounts of 1N HCl. Polyplexes were measured 5-180min after incubations at pH 6.0. 

Variations refer to the mean (±SEM) of three measurements of the same sample.  

 

Figure 3.15. Size analysis of pCMVL/784 polyplexes (N/P 12) shielded with 5eq multivalent 

or 20eq monovalent pHPMA. Sizes of TT-modified (light grey bars) or AzMMMan-modified 

(dark grey bars) polyplexes were measured at 25°C after 48h. Variations refer to the mean 

(±SEM) of three measurements of the same sample.  
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3.2.2.In vitro characterization of shielded polyplexes 

The influence of polyplex shielding on luciferase gene transfer efficacy was evaluated 

using HUH7 hepatocellular carcinoma cells. Generally, modification of the polyplex 

surface with acid-labile shielding materials led to a higher luciferase transgene 

expression as compared to the analogous stably shielded polyplexes (Fig. 3.16.). 

Shielding of polyplexes with 20eq multivalent pHPMA (20kDa and 30kDa) 

significantly decreased transgene expression in comparison with polyplexes shielded 

either with 20eq monovalent pHPMA or with 20eq PEG. Fig. 3.16.A reveals a 

reduction in transgene expression by 13-fold for TT-pHPMA (20kDa) modified 

polyplex, 40-fold for AzMMMan-pHPMA (20kDa) coated, 24-fold for TT-pHPMA 

(30kDa) coated and 7-fold in case of AzMMMan-pHPMA (30kDa) modified polyplex 

compared to the monovalent shielded counterpart. By the prolongation of the 

transfection time from 24h to 48h (Fig. 3.16.B) the transgene expression was 

increased both for TT- and AzMMMan-modified multivalent pHPMA-shielded 

polyplexes with the highest effect of about 50-fold found for AzMMMan-pHPMA 

(20kDa). Nevertheless, at both transfection times pH-sensitively shielded polyplexes 

showed significantly higher transgene expression. Based on these data 20kDa 

multivalent pHPMA was considered as an optimal compromise between efficient 

shielding and dynamic deshielding and selected for further evaluation in vivo.  

 



Results 

63 
 

 

Figure 3.16. Luciferase gene transfer in HUH7 cells presented as relative light units (RLU) 

per well by polyplexes (pCMVL/784 at N/P 12) coated with A) 20eq multi-/monovalent 

AzMMMan-pHPMA or AzMMMan-PEG (striped dark grey bars) or 20eq multi-/monovalent 

TT-pHPMA or NHS-PEG (dark grey bars). B) Polyplexes were coated with 20eq multivalent 

AzMMMan-pHPMA (striped bars) or multivalent TT-pHPMA (solid bars). A) 8000 or B) 4000 

HUH7 cells per well were seeded 24h prior transfection. Samples were measured A) 24h or 

B) 24h and 48h after transfection. Data are presented as mean value (±SEM) out of 

quintuplicates. (*P<0.05; **P<0.01) 
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Since often higher delivery efficiency is accompanied by undesired cell toxicity, we 

have assessed the effect of our polyplexes of interest on cell viability. In this regard, 

MTT assay revealed no significant cytotoxicity accompanying the cell transfection 

(Fig. 3.17.).  

 

 

Figure 3.17. Cell viability assay (MTT assay) in HUH7 cells 24h after transfection with 

surface-shielded pCMVL/784 polyplexes (N/P 12). Polyplexes were shielded with 20eq 

AzMMMan-modified multi-/monovalent pHPMA or AzMMMan-PEG (striped bars) or TT-

modified multi-/monovalent pHPMA or NHS-PEG (solid bars). Data are presented as mean 

value (±SEM) out of quintuplicates. 

 

Furthermore, we assessed the cellular uptake, to get an indication for the underlying 

mechanism causing the differences in transgene expression between pH-sensitively 

and stably shielded polyplexes. Therefore, we generated pCMVL-labeled polyplexes 

shielded with 20eq NHS- and AzMMMan-PEG. After 24h transfection laser scanning 

microscopy (LSM) was performed to examine the cellular distribution of fluorescently 

labeled pCMVL. A higher amount of pCMVL was found inside the cells in case of 

AzMMMan-PEG-shielded compared to NHS-PEG-shielded polyplexes (Fig. 3.18.).  
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Figure 3.18. Laser scanning microscopy of Neuro-2a cells transfected with pCMVL/784 

polyplexes (N/P 12) coated with A) 20eq NHS-PEG or B) 20eq AzMMMan-PEG. Pictures 

were obtained after 24h. DAPI was used for nuclear staining (blue), polyplexes were labeled 

using Cy5-labeled pCMVL (red) and rhodamine phalloidin was used to visualize cell 

membranes (yellow). LSM was performed by Miriam Höhn (Pharmaceutical Biotechnology, 

LMU).  

 

To support these findings also with pHPMA flow cytometry analysis was performed 

for 20kDa mono- and multivalent pHPMA-shielded polyplexes (Fig. 3.19.). Likewise, 

pH-sensitively shielded polyplexes showed higher uptake efficiency after short time 

incubation for 2h compared to stably shielded polyplexes. In addition, the valency of 

pHPMA had a great influence on uptake efficacy, which corresponds to results 

obtained in transfection experiments. AzMMMan modification led to a 4-fold higher 

uptake efficacy for polyplexes shielded with multivalent pHPMA compared to 2-fold 

uptake in case of polyplexes shielded with monovalent pHPMA. Furthermore, this 

experiment revealed a 9-fold higher uptake of polyplexes with stable monovalent 

polymer shield compared to polyplexes with stable multivalent polymer shield. In 

case of AzMMMan-polymer modified polyplexes this difference was decreased to 2-

fold. These results seem to be consistent with those obtained by LSM. Again, we 

found a superior shielding efficiency of multivalent pHPMA compared to monovalent 

pHPMA and an increased uptake efficiency of polyplexes due to AzMMMan 

modification in accordance with our DLS as well as transfection studies.  
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Figure 3.19. Cellular internalization of Cy5-labeled pCMVL/784 polyplexes (N/P 12) shielded 

with 20eq mono- or multivalent AzMMMan-/TT-modified pHPMA (20kDa) determined by flow 

cytometry. Assay was carried out after 2h transfection of HUH7 cells at 37°C. (n=3) 

 

3.2.3.In vivo evaluation of shielded polyplexes 

The in vitro studies encouraged us to evaluate our new DNA carrier 784 in 

comparison with oligomer 606 in vivo. Additionally, we included pCMVL/784 

polyplexes that are surface-modified with multivalent AzMMMan-pHPMA (20kDa) in 

the in vivo study. Administration of the polyplexes was well tolerated by the mice and 

no sign of acute toxicity was obtained. Importantly, Fig. 3.20.A shows predominant 

gene expression of both shielded and unshielded polyplexes in the Neuro-2a tumor 

to a comparable level. The pH-sensitively shielded polyplexes displayed the highest 

gene expression followed by unshielded 784 and 606 polyplexes. Additionally, the 

incorporation of lysine moieties in the oligomeric structure did not have a negative 

influence on transgene expression in the tumor tissue, which was at least 

comparable to the lysine-free structure of oligomer 606. Comparing the tumor/liver 

ratio of luciferase expression level, AzMMMan-pHPMA shielded polyplexes displayed 

a high tumor/liver expression ratio of 6, whereas a ratio below 2 was observed in 

case of unshielded 784 and 606 polyplexes. To draw comparisons to our pH-

sensitively shielded polyplexes we included multivalent TT-pHPMA-modified 

pCMVL/784 polyplexes in the in vivo study (Fig. 3.20.B). The substitution of 

AzMMMan for TT results in a decreased gene expression in tumor and liver. 
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Figure 3.20. A) Luciferase gene expression in vivo after systemic i.v. administration of 

pCMVL polyplexes in Neuro-2a tumor bearing NMRI mice. Comparison of non-shielding 

pCMVL polyplexes formulated with polymer 606 (N/P 12; dark bars), 784 (N/P 12; grey bars), 

and AzMMMan-pHPMA-shielded pCMVL/784 polyplexes (N/P 12), shielded with 5eq 

AzMMMan-modified multivalent 20kDa pHPMA (white bars). B) In vivo luciferase gene 

expression after systemic i.v. administration of multivalent TT-pHPMA (20kDa) shielded 

pCMVL/784 polyplexes in Neuro-2a tumor bearing NMRI mice.         

Luciferase gene expression is presented as relative light units per organ weight (RLU/g of 

organ; n=5). In vivo experiments were performed by Eva Kessel (Pharmaceutical 

Biotechnology, LMU). (*P<0.05) 
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3.3. FolA receptor-directed pCMVL/784 polyplexes for gene transfer in vitro 

Folic acid is involved in several biochemical reactions as one of the basic building 

blocks and catalyst. It is essential for DNA synthesis (and in cell division processes), 

thus affecting rapidly dividing cells such as hematopoietic cells or blood forming cells 

as well as cancer cells. Consequently, the folate receptor protein (FR) has emerged 

as a therapeutic target for the treatment of various cancers, such as ovarian, lung or 

breast cancer, as well as chronic inflammatory diseases. The over-expression of FR 

on the surface of malignant cells and the high natural affinity of folic acid for the FR 

enables selective delivery of folate-conjugated drugs with minimal collateral damage 

of mammalian cells. Additionally, folate acid as a targeting ligand has numerous 

advantages over macromolecular ligands (e.g. antibodies) such as: (1) the small size 

which reduces the probability of activating the immune system thus enabling 

repeating administration, (2) easy chemical conjugation, (3) low cost, (4) ease of 

synthesis or commercial availability and (5) internalization via endocytosis without 

alteration of covalently conjugation of small molecules [73, 129, 130]. To date, 

protein toxins, chemotherapeutic agents, immunotherapeutic agents, liposomes, 

oligonucleotides, radioimaging agents and radiotherapeutic agents have been linked 

to folic acid for tumor specific drug delivery demonstrating the considerable promises 

of FR as therapeutic target [131]. In addition, several groups have successfully 

applied FolA as a targeting ligand for nucleic acid delivery. For example, He et al. 

demonstrated targeted gene transfer in vitro using sequence-defined cationic 

polymer-DNA as well as siRNA complexes linked with folic acid [132]. Furthermore, 

Dohmen et al. showed that an endosomolytic influenza peptide-siRNA conjugate 

encapsulated within folate-targeted sequence-defined carrier mediated receptor-

specific cell-targeting in vitro and in vivo in absence of unspecific accumulation in 

non-targeted tissue such as lung, spleen and liver [133]. Within twenty-five years 

after the first identification of the upreagulation of FR in cancer the development of 

folate-linked drugs has moved from bench to bedside with current four ongoing 

clinical trials evaluating the potency in concern of cancer treatment [131, 134].  
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3.3.1.Synthesis of the post-PEGylation reagents FolA-PEG(5000)-

AzMMMan and FolA-PEG(5000)-NHS 

In order to achieve highly efficient gene transfer to FR over-expressing tumor cells 

the targeting ligand folic acid was integrated within the shielding moiety of the 

polyplexes. Therefore, two chemical synthesis approaches were evaluated suitable 

for the attachment of the targeting ligand folic acid to a bifunctional PEG reagent. The 

synthesis of FolA-PEG6-cysteamine via solid-phase assisted synthesis is one route 

for the ligand preparation (Fig. 3.21.A-1/A-2). As solid support a 1-amino-ethane-2-

thiol(cysteamine)-2-chlorotrityl resin was used. First, Fmoc-N-amido-dPEG6-acid was 

coupled to the resin. The reactor was agitated until Kaiser test indicated complete 

conversion. After Fmoc cleavage, Fmoc-Glu(OH)-tBu and N10-(Trifluoroacetyl)pteroic 

acid were attached in additional separate steps followed by the removal of the TFA 

group and the cleavage of the targeting ligand off the resin. A short PEG spacer 

consisting of 6 ethylene oxides monomers was inserted to increase solubility of the 

targeting ligand. A bifunctional PEG reagent was used subsequent functionalized 

with a pyridyldisulfide at the ω-end of the PEG chain and an activated ester (NHS-

group) for amide bond formation (OPSS-PEG(5000)-NHS). For the synthesis of a 

FolA-modified pH-sensitive shielding moiety the activated ester was firstly modified 

with DBCO-PEG4-NH2 and afterwards the pH-sensitive linker AzMMMan was 

attached.  

Additionally, an alternative synthesis route via the preparation of FolA-NHS according 

to Liu et al. [110] was evaluated. In this regard, folic acid, 1.1eq NHS and 1.1eq N,N′-

dicyclohexylcarbodiimid (DCC) were dissolved in DMSO and the reaction mixture 

was stirred for 2h in the dark. Filtration was applied to remove the insoluble 

byproduct dicyclohexylurea. The product was precipitated in ACN, washed with 

diethyl ether and dried to a powder. For this alternative synthesis route SH-

PEG(5000)-NH2 was used and modified with DBCO-PEG4-Mal. Thereafter, the 

targeting ligand FolA-NHS was attached. Furthermore, the pH-sensitive linker 

AzMMMan or, as a stable control, NHS-C3-Azide was introduced (Fig. 3.21.B).  
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Figure 3.21. Synthesis of AzMMMan- or NHS-modified FolA-targeted bifunctional post-

PEGylation reagent via A-1/A-2) FolA-PEG6-cysteamine, synthesized via solid-phase 

approach, or B) FolA-NHS, synthesized according Liu et al. [110]. 
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Initial attempts to characterize the newly synthesized targeting-shielding reagent and 

to evaluate the two synthesis approaches for ligand preparation concerning feasibility 

and compatibility via NMR failed due to several reasons. Firstly, NMR analysis was 

limited due to the lack of a clear reference peak of the PEG(5000) moiety. 

Additionally, the overlap of FolA peaks and the large PEG backbone peak 

complicated the interpretation of NMR data. Furthermore, the quantitative estimation 

of linked FolA to the PEG(5000) moiety via NMR analysis was difficult due to the 

much larger and undefined MW of the PEG(5000) moiety compared to the rather 

small MW of the targeting ligand FolA. For this purpose, laser scanning microscopy 

was performed using KB cells to evaluate indirectly the two synthesis approaches for 

ligand preparation. In this regard, receptor binding efficiency of labeled FolA-modified 

PEG toward the FR was examined (Fig. 3.22.A-C). Therefore, an azide-modified 

TAMRA dye was attached to the FolA-PEG(5000)-DBCO reagent prepared either by 

synthesis via FolA-NHS or FolA-PEG6-cysteamine. KB cells were incubated for 

45min with A) 50nmol unmodified TAMRA-azide dye, B) 50nmol FolA-PEG(5000)-

TAMRA synthesized via FolA-NHS or C) 50nmol FolA-PEG(5000)-TAMRA prepared 

from FolA-PEG6-cysteamine. Afterwards, cells were washed and stained with DAPI. 

In a control experiment cells were preincubated with folic acid saturated RPMI 

medium to compete receptor binding between an excess of FolA and the targeting-

shielding reagent to examine the receptor specific attachment (Fig. 3.22.D-F).  

Figure 3.22.A displays high fluorescence intensity of TAMRA-azide dye in the 

endosomes without intensity changes after the preincubation of KB cells in folic acid 

saturated RPMI medium (Fig. 3.22.D) suggesting an unspecific uptake of the dye by 

the cells. The same findings were made for FolA-PEG(5000)-TAMRA prepared from 

FolA-NHS (Fig. 3.22.B, 3.22.E). Those results show that the attempt to synthesize a 

FolA-modified shielding reagent via FolA-NHS was unsuccessful. However, in case 

of the targeting-shielding reagent synthesized via FolA-PEG6-cysteamine a bright 

fluorescent ring around the cell membrane was visible (Fig. 3.22.C). This fluorescent 

ring on the cell surface was only observed in absence of a folic acid excess 

suggesting receptor specificity of the targeting-shielding reagent prepared from FolA-

PEG6-cysteamine via SPPS (Fig. 3.22.E). Consequently, the synthesis approach of 

the targeting-shielding reagent via FolA-PEG6-cysteamine was used for the 

preparation of FolA-targeted PEG-shielded polyplexes, characterized in the following 

experiments.  
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Figure 3.22. Laser scanning microscopy evaluating receptor-specific binding of A) 50nmol 

TAMRA-azide dye, B) 50nmol FolA-PEG(5000)-TAMRA prepared from FolA-NHS and C) 

50nmol FolA-PEG(5000)-TAMRA synthesized via FolA-PEG6-cysteamine using solid-phase 

assisted peptide synthesis. FR-positive KB cells were incubated in FolA-free RPMI medium. 

In a control experiment receptor-specific binding was evaluated for D) 50nmol TAMRA-azide 

dye, E) 50nmol FolA-PEG(5000)-TAMRA synthesized via FolA-NHS and F) 50nmol FolA-

PEG(5000)-TAMRA prepared from FolA-PEG6-cysteamine. For this experiment FR-positive 

KB cells were preincubated in FolA-saturated RPMI medium to compete receptor binding. 

DAPI was used for nuclear staining. Microscopy was carried out by Kenneth Börner 

(Molecular Biology, LMU).  
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3.3.2.Biophysical characterization of FolA-targeted, stably or pH-

sensitively shielded pCMVL/784 polyplexes 

Targeting strategies aim at the improvement of the specificity of pharmaceutical 

formulations e.g. gene delivery systems to certain cell types or tumors. Previous 

experiments in this thesis have shown a beneficial effect of introducing the pH-

sensitive linker AzMMMan between the shielding material and the polyplexes by 

evading the "PEG dilemma". Additionally, "passive targeting" was shown for 

polyplexes surface-modified with 20eq multivalent AzMMMan-modified pHPMA 

(20kDa) in a xenograft mouse model in vivo due to the enhanced permeability and 

retention effect. However, to enable cell type specific uptake beyond the tissue 

accumulation the introduction of a targeting ligand is indispensable. In this regard, 

the effect of introducing a FolA-targeted NHS- or AzMMMan-modified PEG moiety 

within pCMVL/784 polyplexes on size and zeta potential was firstly evaluated via DLS 

measurements.  

According to previous in vitro studies the post-PEGylation approach was once again 

chosen for the surface modification of pCMVL polyplexes. However, due to the 

structural complexity of the stable- or pH-sensitive-modified FolA-targeted PEG 

moiety, various approaches to attach this moiety to the polyplex surface were 

evaluated concerning the effect on polyplex size and zeta potential as well as on in 

vitro transfection efficiency. Additionally, the effect of varying amounts of the targeting 

ligand FolA was determined. In this respect, pCMVL/784 polyplexes were formed for 

45min and post-PEGylation reagent was added and incubated for 3h prior DLS 

measurements (Fig. 3.24.A-B). In case of polyplexes numbered No.2 and No.3 20eq 

AzMMMan (No.2) respectively 20eq NHS-C3-Azide (No.3) were added 2h prior the 

addition of 20eq FolA-PEG(5000)-DBCO. Shielding reaction was performed for 1h. 

Similar to polyplexes No.2 and No.3, 20eq of AzMMMan (No.4) or 20eq NHS-C3-

Azide (No.5) were added in case of polyplexes numbered 4 and 5. Thereafter, 5eq 

FolA-PEG(5000)-DBCO was added 15min prior the addition of 15eq DBCO-

PEG(5000). DLS was measured 45min after the addition of DBCO-PEG(5000). 

Polyplexes No.6 and No.7 were shielded in one step with 20eq FolA-PEG(5000)-

AzMMMan (No.6) or FolA-PEG(5000)-NHS (No.7) for 3h followed by DLS 

measurements. Figure 3.23. outlines the different post-coating strategies applied for 

the formation of FolA-targeted PEG-shielded pCMVL/784 polyplexes.  
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Figure 3.23. Brief outline of the different strategies applied for the formation of targeted post-

PEGylated polyplexes (pCMVL/784; N/P 12). The effect of the applied strategy on size and 

zeta potential was evaluated using DLS analysis (Fig. 3.24.). Polyplex No.1 was prepared as 

a control polyplex without surface modification. Polyplex No.2 was shielded with 20eq 

AzMMMan incubated for 120min followed by the addition of 20eq FolA-PEG(5000)-DBCO for 

60min. Polyplex No.3 was prepared as a stable control to polyplex No. 2. Therefore, the acid-

stable linker NHS-C3-Azide was used instead of AzMMMan. Polyplex No.4 was surface 

modified with 20eq AzMMMan, which was, incubated for 120min prior the addition of 5eq 

FolA-PEG(5000)-DBCO for 15min followed by the addition of 15eq DBCO-PEG(5000). 

Polyplex No. 5 was prepared as a stable control to polyplex No.4. Again, the acid-stable 

linker NHS-C3-Azide was used instead of AzMMMan. In case of polyplex No.6, 20eq of the 

targeting-shielding reagent FolA-PEG-AzMMMan was added in one step and incubated for 

180min. Polyplex No. 7 was prepared as control polyplex using 20eq FolA-PEG(5000)-NHS. 

FolA-PEG(5000)-DBCO, FolA-PEG(5000)-AzMMMan or FolA-PEG(5000)-NHS was 

prepared from FolA-PEG6-cysteamine which was synthesized via SPPS according Fig. 

3.21.A-1/A-2.  
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Figure 3.24. Size (A) and zeta potential (B) analysis of pCMVL/784 polyplexes (N/P 12) 

evaluating different "post-coating" strategies. Polyplexes were formed for 45min prior 3h 

post-PEGylation with a FolA-targeted stably or pH-reversibly modified PEG reagent. 

Unmodified pCMVL/784 polyplexes were used as control. Data are presented as mean value 

(±SEM) out of triplicates.  

 

Figure 3.24.A reveals that polyplexes shielded with 20eq FolA-PEG(5000)-NHS were 

of smaller sizes, below 110nm, when compared to AzMMMan-modified polyplexes 

that showed sizes between 130nm-159nm. However, unshielded pCMVL/784 

polyplexes were of smallest size of 89nm. Zeta potential measurements displayed a 

significant decrease in zeta potential, of values below 5mV, for all shielded 

complexes compared to 23.4mV measured in case of unmodified pCMVL/784 

polyplexes (Fig. 3.24.B). The shielding method, whether polyplexes were shielded 

directly with 20eq AzMMMan- or NHS-modified FolA-PEG(5000) or if the linker was 

coupled prior the coupling of the FolA-modified PEGylation reagent, as well as the 

excess of FolA within the polyplexes, had no significant effect on size or zeta 

potential. However, polyplex stability was significant decrease in case of polyplexes 

shielded with FolA-PEG(5000)-AzMMMan. AzMMMan-modified polyplexes did not 

remain stable over a period of 24h, therefore no DLS data were obtained, compared 

to FolA-PEG(5000)-NHS-shielded polyplexes (Fig. 3.25.A-B).  
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Figure 3.25. Size (A) and zeta potential (B) analysis of pCMVL/784 polyplexes (N/P 12) at 

25°C. Polyplexes were prepared 45min prior 3h (light grey bars) or 24h (dark grey bars) post-

PEGylation. Data are presented as mean value (±SEM) out of triplicates.  

 

3.3.3.In vitro characterization of FolA-targeted, stably or pH-sensitively 

shielded pCMVL/784 polyplexes 

The ability of FolA-targeted pH-sensitively or stably shielded pCMVL/784 polyplexes 

to mediate efficient cell-uptake via the FR was evaluated by pCMVL transfection of 

KB cells and subsequent bioluminescence quantification (Fig. 3.26.A-B). Polyplexes 

were formed according the DLS protocol for 45min. Post-PEGylation was performed 

either in one step in case of polyplexes numbered 6 and 7 by direct addition of 20eq 

FolA-PEG(5000)-AzMMMan or FolA-PEG(5000)-NHS and subsequent shielding for 

3h. In case of polyplexes numbered 8 and 9 shielding was performed in two steps by 

adding 5eq FolA-PEG(5000)-AzMMMan or FolA-PEG(5000)-NHS 15min prior the 

addition of 15eq AzMMMan-PEG(5000) or NHS-PEG(5000). Untargeted NHS- or 

AzMMMan-shielded pCMVL/784 polyplexes and untargeted unshielded pCMVL/784 

polyplexes were used as positive control. HBG was used as a negative control. In an 

control experiment examining the receptor specific uptake of FolA-targeted 

pCMVL/784 polyplexes KB cells were preincubated with folic acid saturated RPMI 

medium to compete receptor binding between an excess of folic acid and the FolA-

targeted PEG-shielded polyplexes (Fig. 3.26.B).  

Figure 3.26.A shows a significant increase in luciferase activity of FolA-targeted 

PEG-shielded polyplexes compared to untargeted PEG-shielded polyplexes or even 
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unmodified pCMVL/784 polyplexes. Consistent with in vitro results obtained from 

untargeted PEG- or pHPMA-shielded pCMVL/784 polyplexes, transgene expression 

was in all cases higher for pH-sensitively shielded FolA-targeted polyplexes 

compared to stably modified polyplexes. Interestingly, transfection efficiency of 

targeted polyplexes was dependent on the shielding process in case of NHS-

modified polyplexes. The direct addition of 20eq FolA-PEG(5000)-NHS and 

incubation for 3h led to polyplexes, which mediated higher luciferase activity 

compared to polyplexes shielded by adding the targeting-shielding reagent in two 

steps. However, in case of AzMMMan-modified polyplexes the shielding-targeting 

method as well as the different concentration of folic acid within the polyplex had no 

effect on gene transfer efficiency. Nevertheless, transgene expression due to 

receptor specific uptake of FolA-targeted PEG-shielded polyplexes was significantly 

decreased near background signal by competitive incubation of cells in folic acid 

saturated RPMI medium (Fig. 3.26.B).  

 

 

Figure 3.26. Luciferase activity presented as relative light units (RLU) per well after 

transfection of KB cells (8000 cells/well) with pCMVL/784 polyplexes (N/P 12). Cells were 

preincubated in A) FolA-free RPMI medium or B) in FolA-saturated RPMI medium (n=5). 

 



Results 

79 
 

Taken together, these encouraging preliminary results suggest that the incorporation 

of the targeting ligand FolA within the delivery system is a convenient approach to 

enhance cellular internalization via FR-specific cell-uptake. FolA was synthesized 

using standard SPPS. Efficient surface shielding was accomplished by the 

attachment of the FolA-PEG moiety in a post-coating manner. In vitro transfection 

studies using FR-positive KB cells revealed higher gene expression by FolA-targeted 

pH-sensitively shielded polyplexes as compared to their irreversibly shielded 

counterparts. Overall, the incorporation of FolA within the shielding moiety increased 

transfection efficiency over untargeted PEG-shielded polyplexes. However, surface 

modification of polyplexes with FolA-PEG-AzMMMan or FolA-PEG-NHS was shown 

to increase particle size and reduce particle stability compared to untargeted 

polyplexes surface-modified with AzMMMan- or NHS-PEG. Additionally, the delivery 

efficiency was found to be below of that observed by using polyplexes, which were 

surface-modified with a FolA-PEG moiety in a pre-coating manner. 
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4. Discussion 

4.1. Evaluation of new sequence-defined oligomers concerning stabilizing 

effects of lysine residues on DNA polyplexes 

Gene therapy based on non-viral carriers is one powerful method for the therapy of 

various diseases. Unfortunately, several barriers faced by the carrier during the 

delivery process significantly affect gene delivery efficiency. Additionally, therapeutic 

effective application is still hindered by problems of the carriers such as stability or 

off-target effects. In this regard, our research is directed toward sequence-defined 

carriers with tailored properties. Moreover, the concept of SPPS offers the possibility 

to incorporation versatile building blocks within the carrier sequence as well as a high 

flexibility in carrier design.  

Hence, four-arm structured sequence-defined oligocations were designed, containing 

artificial oligo(ethanamino) amino acids as effective building blocks, terminal 

cysteines for polyplex stabilization and histidine residues to mediate endosomal 

release. Additional lysine residues were incorporated to ensure increased polyplex 

stability, thus making the polyplexes more serum resistant and enhancing gene 

delivery efficiency. Subsequently, an increased polyplex stability is required for the 

successful implementation of a pH-sensitive shielding approach. First, the effect of 

lysine residues integrated at different positions within the oligomer structure on 

polyplex stability was evaluated by agarose gel shift assays. Oligomers based on a 

H-Sph-K or Sph-K repeating sequence pattern showed a favorable DNA binding 

compared to lysine-free oligomers. Additionally performed EtBr assays confirmed 

these findings. Comparing agarose gel shift and EtBr assay data generated a 

sequence of DNA binding ability of the differently modified oligomers as follows: 

606≤497<748=749<797<935<784=785. Therefore, the amount of lysine residues 

correlated with an increased DNA binding affinity of the oligomers. Consistent with 

former studies these findings confirm the today well-known ability of lysine-containing 

carriers to bind DNA very efficiently and to form compact and stable particles, 

respectively [121, 123], supporting the introduction of lysine residues with the 

repeating sequence pattern of well-defined oligocations.  

On account of the beneficial stability of polyplex formed by lysine-rich oligomers, DLS 

measurements were performed to evaluate the effect of lysine residues within the 

oligomeric structure on polyplex size. Lysine-rich oligomers with a repeating 
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sequence pattern of H-Sph-K or Sph-K formed polyplexes with sizes below 100nm 

compared to polyplexes with sizes above 190nm formed by lysine-free oligomers. 

Particle size is one critical parameter affecting the pharmacokinetic and 

biodistribution profile of the polyplexes. It has been shown that very small particles 

(below 5.5nm) are rapidly cleared by the kidney [135], whereas particles up to 400nm 

are capable of accumulation within highly vascularized solid tumors. As a result of the 

EPR effect particles can pass through the leaky vessels of those solid tumors 

enabling passive tumor-targeted drug delivery [136]. However, various studies have 

identified different size limits and extents of accumulation depending on the certain 

type of tumor [137, 138]. Additionally, the cellular uptake pathway is influenced by 

particle size. Particles with a size below 200nm are preferable taken up by clathrin-

mediated pathway, whereas caveolin-mediated uptake is suggested to be the 

predominant route for particles of larger size [139]. Due to its degree and rate of 

acidification, the clathrin-mediated pathway may be the preferred uptake route for the 

polyplexes described in this thesis.  

After the polyplex was taken up by the cell, the endosomal entrapment has to be 

overcome to ensure sufficient release of the carrier and its cargo into the cytosol. 

Currently, two mechanism have been suggested to explain the escape of polyplexes 

from the endosome, one of the most critical step in the delivery process. One 

involves the direct interaction of the positively charged polyplex with the negatively 

charged endosomal membrane causing membrane disruption. The positive zeta 

potential of all prepared polyplexes in the range between 23-32mV favors this 

interaction and membrane burst, respectively. The other mechanism, referred to as 

"proton sponge" effect, suggests that carrier protonation triggers an influx of chloride 

counter-ions followed by water. This increases the osmotic pressure within the 

endosomal vesicle resulting in a rupture of the endosomal membrane and carrier 

release. However, lysine-based carriers e.g. PLL are known to cover only a narrow 

buffering range as a consequence of their distinct pKa. Thus, efficient gene transfer 

fails in case of PLL due to its lack of endosomolytic potency despite the positive 

surface charge [140, 141]. It has been shown that histidine residues as well as 

artificial amino acids, containing the diaminoethane motif, are important within the 

oligomer structure for tuned protonation of the cationic oligomer in different relevant 

pH ranges especially the endosomal pH [56, 112]. To this regard, the buffer capacity 

of the newly synthesized oligomers was assessed identifying a decreased buffering 
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in case of lysine-rich oligomers 784, 785 and 935 compared to lysine-free oligomers 

606. Interestingly, the introduction of a histidine-rich area within a lysine-rich structure 

(oligomer ID 797) restored, moreover increased buffer capacity by 24% compared to 

the counterpart oligomer 606. The outstanding importance of integrating histidine 

residues within the oligomer structure is shown in case of oligomer 935. This 

oligomer comprising of a histidine-free K-Sph repeating sequence exhibit the lowest 

buffering in the relevant pH range.  

Despite that some oligomers showed a decreased buffer capacity, in vitro 

transfection efficiency of DNA polyplexes was evaluated. In all cases DNA polyplexes 

formed by lysine-rich oligomers showed an enhanced gene transfer efficiency in 

Neuro-2a cells compared to lysine-free structures 606 and 497. This suggests that 

the lower buffering capacity of oligomer 784 and 785 and therefore expected lower 

transfection efficiency can be compensated by a higher polyplex compaction and 

beneficial bio-characteristics. However, in case of oligomer 935 chloroquine was 

needed to enforce the endosomal escape to receive transfection levels similar to 

oligomer 784, 785 and 797 indicating the need of histidine residues within the 

oligomer structure. Based on these data, we hypothesis that the improved 

transfection efficiency is a result of the endosomal membrane disruption mediated by 

direct charge interaction and "proton sponge" effect. Interestingly, the increase in 

transfection efficiency was not connected to an increased cytotoxicity. This is very 

promising since some of the non-viral carriers mediated only good transfection 

efficiency after the toxicological profile increased [142].  

Overall, these results indicate that the incorporation of lysine residues within the 

oligomeric sequence led to smaller and better compacted polyplexes. In combination 

with histidine residues the polyplexes showed favorable biocharacteristics with 

superior in vitro distribution. 
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4.2. Evaluation of pH-sensitively or stably modified PEG or pHPMA-shielded 

DNA polyplexes 

Mimicking the dynamic pH-dependent cell-entry process of viruses may proof a 

successful approach to improve non-viral gene delivery. Therefore, we designed a  

carrier with incorporated pH-sensitive structures that undergo programmed structural 

changes triggered by environmental changes. In particular, a four-arm-structured 

sequence-defined cationic oligomer KK[HK[(H-Sph-K)3C]2]2 (compound ID: 784) was 

synthesized and functionalized with amine-reactive shielding polymers, monovalent 

PEG or monovalent and multivalent pHPMA. Despite the several advantages of 

shielded polyplexes over the unmodified form, the incorporation of a shielding 

polymer within the carrier appears to reduce the interaction of polyplexes with the 

target cells and prevents endosomal escape, hereby decreasing transfection 

efficiency. Therefore, we used the pH-sensitive linker AzMMMan to attach the 

hydrophilic shielding polymers to the polyplex via the primary lysine amines present 

in the cationic oligomer structure.  

Overall, surface modification with PEG or pHPMA resulted in a decrease in the zeta 

potential of polyplexes, consistent with degree of surface shielding. Shielding was 

more efficient for multivalent pHPMA (20kDa, 30kDa) as compared to monovalent 

pHPMA (10kDa, 20kDa, 30kDa) or PEG (5kDa). Additionally, a lower molar excess of 

only 5eq was necessary for efficient surface shielding of pCMVL/784 polyplexes with 

multivalent pHPMA compared to 20eq needed by applying monovalent pHPMA or 

PEG as shielding agents. These findings can be explained by the differences in 

valency of pHPMA polymers and the "zip" mechanism of multivalent reactive 

polymers. In this respect partial hydrolysis of unreacted groups (TT and AzMMMan) 

of the multivalent pHPMA yields to negatively charged carboxyl groups, which may 

further improve particle stability and circulation due to a decrease in zeta potential. 

Additionally, it has been shown that a higher shielding polymer density on a particle 

surface results in increased particle stability due to cross-linking of the polycation 

chains with the multivalent pHPMA [74, 143]. Particles shielded with multivalent 

pHPMA prolonged polyplex stability up to 48h compared to polyplexes shielded with 

monovalent pHPMA or PEG, which were stable for 24h. These findings are 

consistent with former studies focusing on DNA/poly-L-lysine (PLL) complexes stably 

shielded either with multivalent pHPMA [143] or with multiblock PEG copolymer 

[144]. Comparing shielded and unshielded polyplexes, the attachment of a shielding 
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moiety had no effect on particle sizes. Still, size measurements revealed polyplexes 

with an average size below 100nm. Additionally, the size was not affected by the 

used pH-sensitive or pH-stable linker molecule. These are very promising findings, 

since particle size affects the cell uptake and endosomal escape mechanism. This 

suggests that shielded as well as unshielded polyplexes are taken up by clathrin-

mediated pathway (the preferred uptake route for particles smaller than 200nm [139] 

where they are exposed to mildly acidic pH. 

Additionally, the interaction of polyplexes with blood components was studied which 

may lead to a reduction of transgene expression activity and alteration of tissue 

distribution [145]. Therefore, the polyplex stability of surface-modified polyplexes 

compared to unmodified polyplexes was monitored by DLS measurements after the 

addition of salt, plasma and isolated blood proteins such as albumin into incubation 

solution. The size of pCMVL/784 polyplexes modified with monovalent and 

multivalent pHPMA or PEG remained stable over 180min after the addition of PBS, 

slightly increased after 180min in albumin and increased significantly after 30min in 

plasma. However, unshielded polyplexes increased in size immediately after the 

addition of the various solutions probably due to their association. This is in good 

correlation with previous studies focusing on polyplex stability of pHPMA- or PEG-

modified DNA/PLL or DNA/PEI polyplexes within artificial biological fluids such as salt 

or plasma [128, 143]. Considering that, in ideal scenario, after such circulation time 

most of the DNA particles should have already accumulated in the tissue of interest, 

these particles revealed high stability. 

The acid-triggered deshielding of AzMMMan-modified pCMVL/784 polyplexes was 

monitored at endosomal pH of 6.0 by size and zeta potential measurements. As 

predicted, at pH 6.0, only polyplexes modified via the acid-labile linkage showed an 

increase in zeta potential after 45min, consistent with "deshielding". This release of 

the shielding polymer coat permits the interaction of polyplex with the endosomal 

membrane and its consequent endosomal escape. At the same time, the high 

stability of polyplexes at pH 7.4 suggests to be sufficient for tumor targeting and 

reducing unspecific interactions.  

In vitro transfection studies revealed higher gene expression by the AzMMMan-

pHPMA- or PEG-modified polyplexes as compared to their irreversibly shielded 

counterparts. However, luciferase gene expression levels were reduced in case of 
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AzMMMan-modified multivalent pHPMA-shielded polyplexes in comparison to 

polyplexes shielded with monovalent pHPMA or PEG. One likely cause for the 

decreased transgene expression, which is closely connected to the excellent 

shielding ability of the multivalent pHPMA shielding polymer, is the reduction in 

unspecific cellular uptake [145]. The expression level was increased for both TT- and 

AzMMMan-modified multivalent pHPMA shielded polyplexes after the prolongation of 

transfection time from 24h to 48h. This finding suggests a time-dependent 

transfection efficiency also for stably shielded polyplexes. However, at both 

transfection time points AzMMMan modification led to a higher transgene expression.  

Additionally, LSM and flow cytometry analysis were performed to assess the cellular 

uptake, in order to determine the underlying mechanism which causes the 

differences in gene expression levels between pH-sensitively shielded and stably 

shielded polyplexes. Various studies on pH-sensitive shielding have identified 

variations in cell trafficking efficiency such as endosomal release as determining 

factor for the enhanced transfection efficiency [85]. However, the gradually hydrolysis 

of the linker might be another factor explaining higher transfection efficacy of pH-

sensitively shielded polyplexes. In case of pCMVL, sufficient transgene expression 

after extra- [146] as well as intracellular [53, 78, 82] cleavage of the shielding material 

has been reported. A higher intracellular distribution of pCMVL was found in LSM as 

well as flow cytometry analysis in case of AzMMMan-modified polyplexes compared 

to their stably shielded counterparts. Again, we found a superior shielding efficiency 

of multivalent pHPMA compared to monovalent pHPMA and an increased uptake 

efficiency of polyplexes due to AzMMMan modification in accordance to our DLS as 

well as transfection studies.  

Most importantly, AzMMMan-pHPMA-modified polyplexes mediated, after 

intravenous administration in an in vivo tumor mouse model, enhanced gene 

expression levels in the subcutaneous tumor and reduced undesirable gene 

expression levels in the liver compared to their stably shielded counterparts. This 

data clearly demonstrate that pH-sensitive and stable pHPMA shielding upon 

systemic delivery provides protection within the blood stream sufficient to target 

transgene expression toward the tumor and to reduce expression in other organs 

such as the liver. A similar benefit of pH-shielding was observed previously in related 

settings [78, 85], demonstrating a favorable predominant tumor gene transfer of pH-



Discussion 

86 
 

labile PEG-hydrazone-shielded pCMVL/PEI polyplexes, as compared to stably 

shielded particles. Remarkably, pH-sensitively shielded polyplexes showed 

transgene expression levels similar to those of unshielded polyplexes. In conclusion, 

we hypothesize that the efficiency of our best performing polyplex formulation with 

highest gene transfer in the tumor is a result of the combination of all three novel 

components of the system; the new oligocation 784 provides improved polyplex 

stability and gene transfer efficiency, the multivalent pHPMA (20kDa) provides 

improved shielding against biological fluids, and the AzMMMan linkage allows 

dynamic deshielding to restore the initial polyplex activity within the target tissue. 

These results emphasize that polyplexes with deshielding ability may circumvent the 

"PEG dilemma" and restore their in vivo transfection efficiency at least to the extent 

of surface-unmodified polyplexes.  

 

4.3. Evaluation of FolA-targeted pH-sensitively or stably PEGylated DNA 

polyplexes 

The novel designed four-arm structured sequence-defined cationic oligomer 784 has 

shown to efficiently bind DNA, form stable nanoparticles and transfect cells. The 

functionalization of polyplexes with hydrophilic shielding polymers resulted in reduced 

surface charge and provided steric protection of the carrier. In combination with the 

pH-sensitive linker AzMMMan, incorporated between the polyplex surface and the 

shielding polymer, the release of the shielding polymer was promoted and thereby 

membrane interactions as well as endosomal release enhanced. However, to 

overcome the major limitation of the current carrier of poor systemic cell-specific 

targeting efficiency, a FolA-targeted bifunctional shielding polymer was synthesized 

and attached to the polyplex surface. FolA was chosen as targeting ligand due to the 

fact it has been frequently exploited to target gene carriers to cells, especially cancer 

cells, which over-express the FR [73, 132, 147-149]. Additionally, the structure of 

FolA is not comprised of primary amino groups, which would prevent surface 

shielding of polyplexes due to the competition with primary amino groups of the 

polymer for binding to AzMMMan- or NHS-groups of the bifunctional shielding 

polymer. 

The synthesis of bifunctional FolA-PEG(5000)-AzMMMan or FolA-PEG(5000)-NHS 

was accomplished first by the synthesis of FolA-PEG6-cysteamine via SPPS, second 
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by the reaction of FolA-PEG6-cysteamine with OPSS-PEG(5000)-NHS or OPSS-

PEG(5000)-DBCO and last by the attachment of the pH-sensitive linker AzMMMan to 

the DBCO-groups to form a pH-sensitive PEG derivative. The incorporation of a short 

PEG spacer within the FolA-PEG6-cysteamine structure was beneficial in terms of an 

increased solubility of the targeting ligand. Additionally, it was shown that the addition 

of a spacer reduces the tendency of the folate moiety to self-aggregate which results 

in a reduced coupling as well as targeting efficiency [110]. The missing PEG spacer 

might be one explanation why the synthesis of FolA-PEG(5000)-AzMMMan or FolA-

PEG(5000)-NHS via FolA-NHS was not successful.  

The FolA-targeted PEG reagent was further modified with a TAMRA-azide dye 

(attached instead of the AzMMMan) to qualify this reagent via LSM. Specific FR 

targeting of the TAMRA-labeled FolA-targeted PEG reagent was observed after short 

time incubation using KB cells. Most interestingly, cellular binding was not observed 

after preincubation of cells with FolA saturated medium, suggesting specific FR 

targeting and functionality of the FolA-targeted PEG derivative synthesized via SPPS.  

Polyplex size and zeta potential of PEG-shielded FolA-targeted pCMVL/784 

polyplexes was determined by DLS. Similar to untargeted stably or pH-sensitively 

shielded polyplexes, surface modification with FolA-PEG(5000)-NHS or FolA-

PEG(5000)-AzMMMan resulted in a decrease in zeta potential below 5mV. However, 

in comparison to untargeted PEG-shielded polyplexes, particle size increased from 

79nm (untargeted) to 130nm-159nm (FolA-targeted). Nevertheless, particles of such 

size (below 200nm) are still taken up by the preferred clathrin-mediated endocytosis 

pathway [139]. This size increase was accompanied by a decreased polyplex stability 

in case of AzMMMan-modified polyplexes. Polyplexes surface-modified with FolA-

PEG(5000)-AzMMMan were not stable over a period of 24h compared to untargeted 

AzMMMan-modified polyplexes. Interestingly, FolA-targeted NHS-modified 

polyplexes remained stable in size over 24h suggesting that the linker molecule has 

an effect on polyplex stability. However, this was not observed in case of untargeted 

stably or pH-sensitively shielded polyplexes. One likely cause of the observed 

instability of targeted polyplexes is the hydrophobicity of the FolA ligand causing 

polyplex aggregation [132, 149]. Recently, similar findings were made by Müller et al. 

after post-PEGylation of sequence-defined siRNA polyplexes with a FolA-targeted 

PEG reagent. However, polyplex aggregation was not observed after substituting the 
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targeting ligand FolA with an alternative tetra-γ-glutamyl folic acid (gE4-FolA) ligand. 

One possible explanation was given by the author referring to an increased negative 

zeta potential of gE4-FolA-targeted PEG-shielded siRNA polyplexes which is 

suggested to prevent polyplex aggregation due to an increased electrostatic 

repulsion [147].  

In transfection experiments using the FR-expressing KB cells, post-PEGylated FolA-

targeted pCMVL/784 polyplexes strongly increased luciferase expression level both 

for stably as well as pH-sensitively shielded polyplexes in comparison to untargeted 

polyplexes. This suggests that the introduction of a targeting ligand positively affects 

cellular binding and internalization as previously reported [73, 78, 103]. Overall, 

consistent with transfection experiments performed with untargeted shielded 

polyplexes, a pH-sensitively surface shielding with FolA-PEG-AzMMMan resulted in 

an improved transfection activity over targeted stably shielded polyplexes. These 

results are consistent with other reports, which found an increased gene transfer 

efficiency in case of EGF- or Tf-targeted pDNA/PEI polyplexes shielded with a pH-

sensitive PEG-acetal [82] or EGF-targeted pDNA/PEI polyplexes surface-modified 

with a pH-sensitive pyridylhydrazone-based PEG (HZN-PEG) reagent [78]. 

Pyridylhydrazone-based reversibly shielded polyplexes were further tested in an in 

vivo setting, demonstrating an enhanced tumor specific transgene expression after 

intravenous administration in a murine model of subcutaneous tumor. Taken 

together, these results provide further support for the hypothesis that polyplexes 

capable of cleaving off their PEG shield may overcome intracellular barriers such as 

endosomal membranes to promote significantly higher gene expression levels. 

Although these preliminary results are promising toward the design of polyplexes, 

which mimic the dynamic pH-dependent cell-entry process of viruses, transfection 

efficiency is still below that observed in case of pre-PEGylated FolA-targeted 

sequence-defined pDNA polyplexes [56, 132]. A possible explanation may be the 

complexity of the post-PEGylation process using a bifunctional FolA-targeted pH-

sensitively or stably modified PEG reagent. Additionally, the accessibility of the 

targeting ligand toward the FR might be reduced due to the rather high MW of the 

PEG(5000) moiety. In case of the above mentioned FolA-targeted sequence-defined 

siRNA polyplexes [147] or the pre-PEGylated pDNA polyplexes [132] a PEG(1200) 

moiety was used. Together with the hydrophobicity of FolA, DNA complexity and 
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stability might be decreased to an extent that after the addition of salt-containing cell 

medium, polyplexes tend to aggregate resulting in a ligand-independent gene 

transfer. Therefore, future research needs to examine more closely the post-

PEGylation process. In this regard, an optimized PEG length is required for 

maximizing polyplex stability as well as shielding efficiency. Another reasonable 

approach to tackle this issue could be the substitution of the targeting ligand FolA 

with a tetra-γ-glutamyl folic acid ligand, which provides four additional negative 

charges contributing to an increased polyplex stability due to an increased 

electrostatic repulsion.  

 

. 
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5. Summary 

Enhancing gene transfection efficiency of non-viral carriers still remains as challenge 

for researchers beyond discipline boundaries. The future of non-viral gene therapy 

depends on an improved understanding of the barriers imposed to non-viral gene 

transfer, and on the development of realistic delivery strategies that can circumvent 

these obstacles. In this regard, researchers can learn from the attributes of natural 

viruses, which have evolved to invade cells and to deliver their genetic payload. For 

instance, viruses use the endosomal acidification process after endocytosis to trigger 

conformational changes of key viral proteins in order to facilitate membrane fusion or 

disruption. This strategy of structural transformation upon acidification was adopted in 

the design of pH-sensitively shielded non-viral gene carriers to overcome the "PEG 

dilemma". PEGylation of polyplexes provides excellent particle stability and 

prolongation of blood circulation time but affords only suboptimal membrane fusion 

and endosomal release. Polyplexes surface-modified with a pH-sensitive shielding 

polymer are intended to remain shielded at physiological pH. However, after entering 

a slight acidic environment, the pH-sensitive linkage is hydrolyzed and the delivery 

system with its original endosomolytic capacity is restored enabling endosomal 

release. 

One aim of this thesis was a tailor-design of precise multifunctional four-arm 

oligocations as basis for the preparation of well-compacted, stable pDNA polyplexes 

highly effective in gene transfer, both in vitro and in vivo. Therefore, lysine residues 

were incorporated into the sequence of a previously synthesized four-arm oligomer 

606. Those new oligomers, comprising H-Sph-K or Sph-K repeating sequence 

pattern, form polyplexes of higher stability and smaller sizes. Additionally, luciferase 

marker gene expression levels in vitro and in vivo are increased compared to the 

lysine-free benchmark oligomer 606.  

The additional lysine residues not only improved DNA polyplex stability, but also 

provided attachment points for subsequent polyplex functionalization with amine-

reactive pH-sensitively or stably modified shielding polymers PEG or pHPMA, the 

second aim of this thesis. Surface-shielding of pDNA polyplexes with PEG or pHPMA 

resulted in a very efficient decrease in the zeta potential of the polyplexes, consistent 

with the degree of shielding. Additionally, modification of the surface of polyplexes 

with shielding polymers strongly reduced the interaction with PBS, albumin and 
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human plasma. Comparisons of the different shielding polymers revealed a better 

shielding ability of the multivalent pHPMA (20kDa, 30kDa) over monovalent PEG 

(5kDa) or monovalent pHPMA (10kDa, 20kDa, 30kDa).  

At pH 6.0, only AzMMMan-modified pDNA polyplexes underwent a deshielding 

process, which is expected to be beneficial for endosomal escape. As a result, pH-

sensitively shielded polyplexes achieved higher luciferase gene expression levels 

compared to their stably shielded counterparts. Moreover, pH-sensitively multivalent 

pHPMA-shielded polyplexes mediated an enhanced in vivo transgene expression 

toward the tumor and a reduced expression in other organs such as the liver.  

The third aim of this thesis was the incorporation of the targeting ligand FolA within 

this delivery system to promote receptor-mediated cellular uptake. Preliminary DNA 

transfection studies in vitro identified binding of the FolA-targeted PEGylated 

polyplexes to the FR and an increased transfection efficiency over the untargeted 

counterparts. In combination with a pH-sensitive shielding in vitro transgene 

expression levels were increased compared to the stably shielded polyplexes.  

Hence, results presented in this thesis demonstrate that by using AzMMMan as a pH-

sensitive linker, primary amino group containing pDNA polyplexes can be shielded in 

a dynamic, bioreversible way. This provides an excellent starting point for further 

advances in existing carriers toward new bioresponsive polyplexes.  
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7. Appendix 

7.1. Abbreviations 

AA Amino acid 

ACN Acetonitrile 

APS Ammonium persulfate 

AzMMMan 3-(azidomethyl)-4-methyl-2,5-furandione  

Boc tert-Butoxycarbonyl protecting group 

BrMMan 3-(bromomethyl)-4-methyl-2,5-furandione 

DAPI 4',6-diamidino-2-phenylindole 

DBCO Dibenzocyclooctyl 

DBCO-NH2 3-amino-1-(11,12-didehydrodibenzo[b,f]azocin-5(6H)-yl)propan-1-one  

DBU 1,8-diazabicyclo[5.4.0]undec-7-en 

DCC N,N′-Dicyclohexylcarbodiimide  

DCM Dichloromethane 

DMMAN 2,3-dimethylmaleic anhydride  

DiBrMMan 3,4-bis(bromomethyl)furan-2,5-dione 

DIPEA N,N-Diisopropylethylamine 

DLS Dynamic light scattering  

DMEM Dulbecco’s Modified Eagle’s Medium - high glucose 

DMF N,N-Dimethylformamide 

DMSO Dimethyl sulfoxide 

EDTA Ethylenediaminetetraacetic acid  

EtBr Ethidium bromide 

EtOH Ethanol 

eq Equivalent 

FACS Fluorescence-activated cell sorting 

FCS Fetal calf serum 

Fmoc Fluorenylmethoxycarbonyl protecting group 

FolA Folic acid 

FR Folic acid receptor 

HBG Hepes-buffered glucose 
HBTU 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate 

HCl Hydrochloric acid 

HEPES N-(2-hydroxyethylpiperazine-N'-(2-ethanesulfonic acid) 

H2O water 

HOBt 1-hydroxybenzotriazole 

HPLC High-performance liquid chromatography  

HPMA N-(2-Hydroxypropyl)methacrylamide 

KCN Potassium cyanide 

LPEI Linear polyethylenimine 

LSM Laser-scanning microscopy 

MeOH Methanol 

Mn Number-average molecular weight 

MTBE Methyl tert-butylether 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

https://www.google.de/search?biw=1585&bih=1110&q=Ethylenediaminetetraacetic+acid&spell=1&sa=X&ved=0CBoQvwUoAGoVChMIzebr_JbOxgIVygrbCh0xtgDG&dpr=0.8
https://de.wikipedia.org/wiki/Fluorescence_activated_cell_sorting
https://www.google.de/search?biw=1585&bih=1110&q=N-%282-hydroxyethylpiperazine-N%27-%282-ethanesulfonic+acid%29&spell=1&sa=X&ved=0CBoQBSgAahUKEwi9wYSal87GAhXGstsKHZyZCGo&dpr=0.8
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCoQFjABahUKEwjH-ZyBos7GAhXnqtsKHVgKCIw&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHigh-performance_liquid_chromatography&ei=_4WeVYf-I-fV7gbYlKDgCA&usg=AFQjCNGrwx9EAl3-5WoPwPIieR9W0ELeEw&bvm=bv.96952980,d.ZGU
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Mw Weight-average molecular weight 

N/P (Protonatable) nitrogen to phosphates ratio 

Na2SO4 Sodium sulfate 

NaCl Sodium chloride 

NaOH Sodium hydroxide 

NBS N-Bromosuccinimide 

NHS N-Hydroxysuccinimide 

NMP N-Methyl-2-pyrrolidone 

NMR Nuclear magnetic resonance 

OPSS Ortho-pyridyl disulfide 

PBS Phosphate-buffered saline 
pCMVL Plasmid encoding for firefly luciferase under the control of the 

cytomegalie virus (CMV) promoter 

pDNA Plasmid DNA 

PEG Polyethylene glycol 

PEHA Pentaethylenehexamine 

PyBOP Benzotriazol-1-yloxy-tripyrrolidinophosphonium hexafluorophosphate 

RNA Ribonucleic acid 

RT Room temperature 

SDS Sodium dodecyl sulfate 

SEC Size-exclusion chromatography 

SPH Succinyl-penthaethylene hexamine 

SPPS Solid-phase assisted peptide synthesis 

TEMED N,N,N',N'-Tetramethylethylendiamin 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

TIS Triisopropylsilane 

Tris Tris(hydroxymethyl)aminomethane 

TT Thiazolidine-2-thione  
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7.2. Analytical data 

1H-NMR spectra of the pH-sensitive linker AzMMMan (400MHz;CDCl3) 

 

1H-NMR spectra of key oligomer 784 (400MHz; D2O) 
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7.3. Summarized spectral data 

Oligomer 497 – Sequence C→N: AK[K(SPH3-C)2]2 

1H-NMR (400 MHz, D2O) δ= 1.2-1.5 (m, 21H, β-H alanine, β-γ-δ-H lysine), 2.3-2.7 

(m, 48H, -CO-CH2-CH2-CO-succinic acid), 2.8-3.9 (m, 254H, -CH2-PEHA, β-H 

cysteine, ε-H lysine), 4.0-4.3 (m, 8H, α-H alanine, α-H cysteine, α-H lysine) 

 

Oligomer 606– Sequence C→N: AK[HK[(H-SPH)3-HC]2]2 

1H-NMR (400 MHz, D2O) δ= 1.2-1.5 (m, 21H, β-H alanine, β-γ-δ-H lysine), 2.3-2.7 

(m, 48H, -CO-CH2-CH2-CO-succinic acid), 2.8-3.9 (m, 290H, -CH2-PEHA, β-H 

cysteine, β-H histidine, ε-H lysine), 4.0-4.3 (m, 8H, α-H alanine, α-H cysteine, α-H 

lysine), 4.6-4.7 (m, 18H α-H histidine), 7.0-7.5 (s, 18H, Ar-H-histidine), 8.59 (s, 18H, 

Ar-H histidine)  

 

Oligomer 748– Sequence C→N: AK[HK[(H-SPH)3-HKC]2]2 

1H-NMR (400 MHz, D2O) δ= 1.2-1.5 (m, 45H, β-H alanine, β-γ-δ-H lysine), 2.3-2.7 

(m, 48H, -CO-CH2-CH2-CO-succinic acid), 2.8-3.9 (m, 298H, -CH2-PEHA, β-H 

cysteine, β-H histidine, ε-H lysine), 4.0-4.7 (m, 30H, α-H alanine, α-H cysteine, α-H 

lysine, α-H histidine), 7.0-7.5 (s, 18H, Ar-H-histidine), 8.59 (s, 18H, Ar-H histidine)  

 

Oligomer 749– Sequence C→N: AK[HK[(H-SPH)3-HKKC]2]2 

1H-NMR (400 MHz, D2O) δ= 1.2-1.5 (m, 69H, β-H alanine, β-γ-δ-H lysine), 2.3-2.7 

(m, 48H, -CO-CH2-CH2-CO-succinic acid), 2.8-3.9 (m, 306H, -CH2-PEHA, β-H 

cysteine, β-H histidine, ε-H lysine), 4.0-4.7 (m, 34H, α-H alanine, α-H cysteine, α-H 

lysine, α-H histidine), 7.0-7.5 (s, 18H, Ar-H-histidine), 8.59 (s, 18H, Ar-H histidine)  
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Oligomer 784 – Sequence C→N: KK[HK[(H-SPH-K)3-HC]2]2 

1H-NMR (400 MHz, D2O) δ= 1.2-1.5 (m, 96H, β-γ-δ-H lysine), 2.4-2.6 (m, 48H, -CO-

CH2-CH2-CO-succinic acid), 2.8-3.9 (m, 316H, -CH2-PEHA, β-H cysteine, β-H 

histidine, ε-H lysine), 4.0-4.7 (m, 38H, α-H cysteine, α-H lysine, α-H histidine)  7.253 

(s, 18H, Ar-H-histidine), 8.588 (s, 18H, Ar-H histidine)  

 

Oligomer 785 – Sequence C→N: KK[HK[(H-SPH-K)4-HC]2]2 

1H-NMR (400 MHz, D2O) δ= 1.2-1.5 (m, 120H, β-γ-δ-H lysine), 2.4-2.6 (m, 64H, -CO-

CH2-CH2-CO-succinic acid), 2.8-3.9 (m, 412H, -CH2-PEHA, β-H cysteine, β-H 

histidine, ε-H lysine), 4.0-4.7 (m, 46H, α-H cysteine, α-H lysine, α-H histidine)  7.253 

(s, 22H, Ar-H-histidine), 8.588 (s, 22H, Ar-H histidine) 

 

Oligomer 797 – Sequence C→N: KK[HK(H-SPH-K-H-H-K-H-H-SPH-K-H-SPH-K-H-

C)2]2 

1H-NMR (400 MHz, D2O) δ= 1.2-1.5 (m, 120H, β-γ-δ-H lysine), 2.4-2.6 (m, 48H, -CO-

CH2-CH2-CO-succinic acid), 2.8-3.9 (m, 348H, -CH2-PEHA, β-H cysteine, β-H 

histidine, ε-H lysine), 4.0-4.7 (m, 54H, α-H cysteine, α-H lysine, α-H histidine)  7.253 

(s, 30H, Ar-H-histidine), 8.588 (s, 30H, Ar-H histidine) 

 

Oligomer 935 – Sequence C→N: KK[K[(SPH-K)3-C]2]2 

1H-NMR (400 MHz, D2O) δ= 1.2-1.5 (m, 96H, β-γ-δ-H lysine), 2.4-2.6 (m, 48H, -CO-

CH2-CH2-CO-succinic acid), 2.8-3.9 (m, 280H, -CH2-PEHA, β-H cysteine, β-H 

histidine, ε-H lysine), 4.0-4.7 (m, 20H, α-H cysteine, α-H lysine)  
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