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Zusammenfassung (Summary in German)

Die Dynamik eines komplexen physikalischen, biologischen oder chemischen
Systems kann oft durch einen zeitkontinuierlichen Markov-Prozess beschrieben
werden. Die grundlegenden Gleichungen dieser stochastischen Prozesse sind die
Fokker-Planck- und die Mastergleichung. Beide Gleichungen nehmen an, dass die
Zukunft eines Systems allein durch seinen gegenwärtigen Zustand bestimmt ist.
Während die Fokker-Planck-Gleichung ein System modelliert, dessen Zustand sich
mit der Zeit kontinuierlich ändert, beschreibt die Mastergleichung ein System, das
zwischen seinen Zuständen springt. In dieser Arbeit studieren wir die Theorie und
Anwendung dieser Gleichungen, mit einem Schwerpunkt auf der Mastergleichung.

I Mastergleichungen und die Theorie stochastischer Pfadintegrale
Nach Herleitung der Mastergleichung und ihres zeitinvertierten Gegenstücks im
ersten Kapitel, diskutieren wir analytische und numerische Methoden für ihre Aus-
wertung. Wir formulieren allgemeine Bedingungen unter denen die beiden Master-
gleichungen in vier lineare partielle Differentialgleichungen transformiert werden
können. Der hierfür entwickelte mathematische Formalismus verbindet verschie-
dene analytische Methoden, insbesondere Spektralmethoden und die sogenannte
Poisson-Darstellung. Die Transformation der Mastergleichungen ermöglicht es
uns, ihre Lösung durch zwei Pfadintegrale darzustellen. Beide Pfadintegrale werden
in der Lösung elementarer stochastischer Prozesse veranschaulicht. Zudem disku-
tieren wir verschiedene Pfadintegraldarstellungen der Fokker-Planck-Gleichung.

II Evolutionäre Nullsummenspiele und getriebene, dissipative Quantensysteme
Im Anschluss an die allgemeine Theorie studieren wir die Evolution von Nullsum-
menspielen in endlichen Populationen. Diese Spiele werden typischerweise im Rah-
men der evolutionären Spieltheorie studiert, doch ihre Mastergleichung beschreibt
auch die Dynamik von nicht-interagierenden Bosonen in getriebenen, dissipati-
ven Quantensystemen. Unsere Erklärung einer für diese Systeme vorhergesagten
Kondensation, sowie der Selektion von persistenten Strategien in evolutionären
Nullsummenspielen, wurde in zwei hier nachgedruckten Artikeln veröffentlicht.

III Die stochastische Dynamik expandierender Bakterienkolonien
Im abschließenden Kapitel verwenden wir die Mastergleichung zur Modellierung
expandierender Bakterienkolonien von toxin-produzierenden, sensitiven und resis-
tenten Escherichia coli Stämmen. In Kooperation mit der Gruppe von M. Opitz un-
tersuchten wir, welche Faktoren das Überleben der Stämme bedingen. Unser unab-
hängig kalibriertes Modell reproduzierte die in Experimenten gesehenen überleben-
den Stämme und ermöglichte die Vorhersage von Parametern für ihre Koexistenz.
Unsere Ergebnisse wurden in einem hier nachgedruckten Artikel veröffentlicht.
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Projects and contributions

The work presented in this thesis is divided into the following three chapters. Each
of the chapters represents a project on which I worked during my doctoral studies.
The projects are summarized on the next pages.

I Master equations and the theory of stochastic path integrals
with Erwin Frey.
The first chapter provides a comprehensive account of analytical and numerical
approaches to master equations. We develop a unified mathematical framework
for the study of master equations and derive new methods for their analysis. Based
on the framework, we formulate general conditions under which master equations
can be represented by two path integrals. The use of these path integrals is demon-
strated for various elementary processes. Due to the broad scope of this chapter,
its introduction and conclusion serve the whole thesis. An abridged version of the
first chapter has been accepted for publication in Reports on Progress in Physics.

II Evolutionary zero-sum games and driven-dissipative quantum systems
with Johannes Knebel, Torben Krüger, and Erwin Frey.
The second chapter focuses on zero-sum games. These games are studied in evolu-
tionary game theory but their master equation was also recently derived in a study
on the condensation of bosons in driven-dissipative quantum systems [1]. We
presented our results on these topics in the publication “Coexistence and survival
in conservative Lotka-Volterra networks”, Phys. Rev. Lett. 110(16), 168106 (2013),
to which I contributed as third author, and in the publication “Evolutionary games
of condensates in coupled birth-death processes”, Nat. Commun. 6, 6977 (2015), to
which I contributed as co-first author. The publications are reprinted in sections 2
and 3 of chapter II and will also be reprinted in the doctoral thesis of J. Knebel.

III The stochastic dynamics of bacterial range expansions
with Gabriele Poxleitner, Elke Hebisch, Erwin Frey, and Madeleine Opitz.
In the third chapter, we study range expansions of toxin-producing, sensitive, and
resistant strains of Escherichia coli. To understand the factors determining the sur-
vival of strains, we modelled their coarse-grained dynamics using a master equation.
Our independently calibrated model reproduced the surviving strains as seen in ex-
periments and predicted experimental parameters for three-strain coexistence. The
experiments were conducted by G. Poxleitner and E. Hebisch from the group of M.
Opitz. Our results were published in “Chemical warfare and survival strategies in
bacterial range expansions”, J. R. Soc. Interface 11(96), 20140172 (2014), to which I
contributed as first author. The publication is reprinted in section 2 of chapter III.
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Abstracts of the projects

The dynamics of a complex physical, biological, or chemical systems can often be
modelled in terms of a continuous-time Markov process. The governing equations
of these processes are the Fokker-Planck and the master equation. Both equations
assume that the future of a system depends only on its current state, memories of
its past having been wiped out by randomizing forces. Whereas the Fokker-Planck
equation describes a system that evolves continuously from one state to another,
the master equation models a system that performs jumps between its states.

In this thesis, we focus on master equations. We first present a comprehensive
mathematical framework for the analytical and numerical analysis of master
equations in chapter I. Special attention is given to their representation by path
integrals. In the subsequent chapters, master equations are applied to the study
of physical and biological systems. In chapter II, we study the stochastic and
deterministic evolution of zero-sum games and thereby explain a condensation
phenomenon expected in driven-dissipative bosonic quantum systems. Afterwards,
in chapter III, we develop a coarse-grained model of microbial range expansions and
use it to predict which of three strains of Escherichia coli survive such an expansion.
Master equations and the theory of stochastic path integrals
Mathematical analyses of master equations are often restricted to a regime of low
noise, requiring ad-hoc closure schemes for the derivation of low-order moment
equations, or relying on approximations such as the Kramers-Moyal or the system
size expansion. In the first chapter of this thesis, we discuss methods going
beyond the low-noise regime. We first derive the (forward) master equation and its
backward counterpart from the Chapman-Kolmogorov equation and discuss basic
analytical and numerical methods for their solution. Afterwards, we formulate
general conditions under which the forward and the backward master equation
can be cast into either of four partial differential equations (PDEs). Three of
these PDEs are discussed in detail. The first PDE governs the time evolution of a
generalized probability generating function whose basis depends on the stochastic
process under consideration. Various spectral methods and a variational approach
have recently been proposed for its analysis. The second PDE is novel and is
obeyed by a distribution that is marginalized over an initial state. It proves
useful for the computation of mean extinction times. The third PDE describes
the time evolution of a “generating functional”, which generalizes the so-called
Poisson representation. The solutions of the PDEs are subsequently expressed
in terms of two path integrals: a “forward” and a “backward” path integral.
Combined with inverse transformations, one obtains two distinct path integral
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representations of the conditional probability distribution solving the master
equations. We exemplify both path integrals in analysing elementary chemical
reactions. Moreover, we show how a well-known path integral representation of
averaged observables can be recovered from them. Upon expanding the forward
and the backward path integrals around stationary paths, we then discuss and
extend a recent method for the computation of rare event probabilities. Besides, we
also derive path integral representations for processes with continuous state spaces
whose forward and backward master equations admit Kramers-Moyal expansions.
A truncation of the backward expansion at the level of a diffusion approximation
recovers a classic path integral representation of the (backward) Fokker-Planck
equation. One can rewrite this path integral in terms of an Onsager-Machlup
function and, for purely diffusive Brownian motion, it simplifies to the path
integral of Wiener. Our discussion of the path integrals employs the language
of probability rather than quantum (field) theory to elucidate the probabilistic
structures behind coherent states, the Doi-shift, and normal-ordered observables.
Evolutionary zero-sum games and driven-dissipative quantum systems
In the second chapter, we study the stochastic and deterministic evolution of zero-
sum games and their connection to driven-dissipative bosonic quantum systems.
In a zero-sum game, each individual in a population of ”agents” is assigned a
particular strategy. The strategies of two agents are either mutually neutral,
meaning that the two agents do not interact with one another, or one of their
strategies dominates the other one. The agent with the inferior strategy then
adopts the superior strategy when playing a game. As time progresses, the number
of agents playing a particular strategy changes. Assuming that time progresses
continuously, one can describe these changes by a (forward) master equation.
Surprisingly, the master equation of zero-sum games was also recently derived
in a study on the condensation of non-interacting bosons in driven-dissipative
quantum [1]. The authors of that study observed that over time, the bosons cluster
in certain condensate states while the other states in the system are being depleted.
Similarly, we observed that the agents in a zero-sum game typically adopt certain
persistent strategies while abandoning other strategies.

After establishing that on the leading-order time scale, the dynamics of a zero-
sum game are described by the antisymmetric Lotka-Volterra equation, we could
show that the selection of persistent strategies is governed by the vanishing of
relative entropy production. The same principle underlies the selection of con-
densates in a driven-dissipative quantum system. Our insight enabled us to devise
an efficient algebraic algorithm for the identification of the persistent strategies
(condensates). This algorithm allowed us to study zero-sum games (quantum
systems) with hundreds of strategies (states) and to explore the interplay between
the condensation dynamics and the critical properties of random networks. Our
results were presented in two publications [2, 3], which are included as reprints.
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The stochastic dynamics of bacterial range expansions
In the third chapter, we focus on microbial range expansions. A microbial range
expansion occurs after a droplet of bacterial suspension is inoculated onto an
agar plate. In collaboration with the microbiology group of Madeleine Opitz, we
explored the determinants of bacterial coexistence when a suspension contains
three strains of Escherichia coli: a toxin-producing, a sensitive, and a resistant strain.
These strains have been proposed as a bacterial model system for the study of non-
transitive, cyclic communities [4]. In such a community, each strain dominates one
other strain and is being dominated by a third strain. Thus, the hierarchy in the
community resembles a “rock-paper-scissors game”. By using genetic engineering
to tune strain growth rates, we were in fact able to implement such a cyclic
dominance between the strains as well as two other ecological scenarios.

A bacterial strain is considered a survivor of a range expansion if it managed
to persist along the leading edge of an expanding colony. In order to understand
the factors that decide whether a bacterial strain typically survives a range ex-
pansion, we developed a stochastic lattice-based model of range expansions based
on a master equation. This master equation was evaluated numerically using the
stochastic simulation algorithm of Gillespie. The key parameters of the model
were identified as the initial ratios of the strains in the bacterial suspension, the
growth rates of the strains, and the range and strength of the toxin produced by one
of the strains (colicin E2). The values of the parameters were calibrated using inde-
pendent experiments on the growth of single-strain colonies. The calibrated model
successfully reproduced the surviving strains as seen in experiments and predicted
parameters at which three-strain coexistence could be observed experimentally.
Our analysis suggested that three-strain coexistence requires a balance between
strain growth rates and either a reduced initial ratio of the toxin-producing strain,
or a sufficiently short toxin range. The results of our work were presented in the
publication [5], which is included as a reprint.
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I Master equations and the theory of
stochastic path integrals

1 Introduction

1.1 Scope of this chapter

The theory of continuous-time Markov processes is largely built on two equations:
the Fokker-Planck [6–9] and the master equation [9, 10]. Both equations assume
that the future of a system depends only on its current state, memories of its
past having been wiped out by randomizing forces. This Markov assumption
is sufficient to derive either of the two equations. Whereas the Fokker-Planck
equation describes systems that evolve continuously from one state to another, the
master equation models systems that perform jumps in state space.

Path integral representations of the master equation were first derived around
1980 [11–20], shortly after such representations had been derived for the Fokker-
Planck equation [21–24]. Both approaches were heavily influenced by quantum
theory, introducing such concepts as the Fock space [25] with its “bras” and
“kets” [26], coherent states [27–29], and “normal-ordering” [30] into non-equilib-
rium theory. Some of these concepts are now well established and the original
“bosonic” path integral representation has been complemented with a “fermionic”
counterpart [31–36]. Nevertheless, we feel that the theory of these “stochastic”
path integrals may benefit from a step back and a closer look at the probabilistic
structures behind the integrals. Therefore, the objects imported from quantum
theory make place for their counterparts from probability theory in this text. For
example, the coherent states give way to the Poisson distribution. Moreover, we
use the bras and kets as particular basis functionals and functions whose choice
depends on the stochastic process at hand (a functional maps functions to num-
bers). Upon choosing the basis functions as Poisson distributions, one can thereby
recover both a classic path integral representation of averaged observables as well
as the Poisson representation of Gardiner and Chaturvedi [37, 38]. The framework
presented in this chapter integrates a variety of different approaches to the master
equation. Besides the Poisson representation, these approaches include a spectral
method for the computation of stationary probability distributions [39], WKB
approximations and other “semi-classical” methods for the computation of rare
event probabilities [40–43], and a variational approach that was proposed in the
context of stochastic gene expression [44]. All of these approaches can be treated
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within a unified framework. Knowledge about this common framework makes it
possible to systematically search for new ways of solving the master equation.

Before outlining the organization of this chapter, let us note that by focusing
on the above path integral representations of master and Fokker-Planck equations,
we neglect several other “stochastic” or “statistical” path integrals that have been
developed. These include Edwards path integral approach to turbulence [45, 46],
a path integral representation of Haken [47], path integral representations of
non-Markov processes [48–63] and of polymers [64–67], and a representation of
“hybrid” processes [68–70]. The dynamics of these stochastic hybrid processes are
piecewise-deterministic. Moreover, we do not discuss the application of renor-
malization group techniques, despite their significant importance. Excellent texts
exploring these techniques in the context of non-equilibrium critical phenom-
ena [71–73] are provided by the review of Täuber, Howard, and Vollmayr-Lee [74]
as well as the book by Täuber [75]. Our main interest lies in a mathematical
framework unifying the different approaches from the previous paragraph and in
two path integrals that are based on this framework. Both of these path integrals
provide exact representations of the conditional probability distribution solving
the master equation. We exemplify the use of the path integrals for elementary
processes, which we choose for their pedagogic value. Most of these processes
do not involve spatial degrees of freedom but the application of the presented
methods to processes on spatial lattices or networks is straightforward. A process
with diffusion and linear decay serves as an example of how path integrals can be
evaluated perturbatively using Feynman diagrams. The particles’ linear decay is
treated as a perturbation to their free diffusion. The procedure readily extends to
more complex processes. Moreover, we show how the two path integrals can be
used for the computation of rare event probabilities. Let us emphasize that we only
consider Markov processes obeying the Chapman-Kolmogorov equation and asso-
ciated master equations [9]. It may be interesting to extend the discussed methods
to “generalized” or “physical” master equations with memory kernels [76–79].

1.2 Organization of this chapter

The organization of this chapter is summarized in figure 1 and is as follows. In the
next section 1.3, we introduce the basic concepts of the theory of continuous-time
Markov processes. After discussing the roles of the forward and backward Fokker-
Planck equations for processes with continuous sample paths, we turn to processes
with discontinuous sample paths. The probability of finding such a “jump process”
in a generic state n at time τ > t0, given that the process has been in state n0 at
time t0, is represented by the conditional probability distribution p(τ, n |t0, n0).
Whereas the forward master equation evolves this probability distribution forward
in time, starting out at time τ = t0, the backward master equation evolves the
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Chapman-Kolmogorov 
equation (7)

Linear PDEs of the…

Backward master 
equation (14)
∂−τ p(t, n ⎜τ, n0) = …

Marginalized distribution (144):
⎜p( ⋅ ⎜τ)〉 =       p( ⋅ ⎜τ, n0) ⎜n0〉τ 

Poisson representation (195) [37, 38]

Generating functional (185):
〈g(τ ⎜⋅) ⎜ =       〈n ⎜τ p(τ, n ⎜⋅)

n

Generating function (48):
⎜g(τ ⎜⋅ )〉 =       ⎜n〉τ p(τ, n ⎜⋅)

Spectral method of Walczak et al. for 
stationary distributions [39] 
Spectral methods of Assaf and 
Meerson [41, 42] 
Variational method of Eyink [88] and 
of Sasai and Wolynes [44]

in (191)〈p(⋅ ⎜τ)⎜ =       p( ⋅ ⎜τ, n0) 〈n0 ⎜τ
n0

Forward master 
equation (11)
∂τ p(τ, n ⎜t0, n0) = …

•  Rare event theory in [40]

Path integral representation via the 
forward Kramers-Moyal expansion (318)

Forward path integral 
representation (302)-(304)

Backward path integral 
representation (212)-(214)

p = 〈n ⎜t           e 
−    ⎜n0〉 t0

 
[t0

t)

p = 〈n0 ⎜t0
           e 

−   † ⎜n〉 t
(t0

t]

n

n0

Mean extinction times

Path summation 
solution (23)

Path integral representation via the 
backward Kramers-Moyal expansion (230)

•  Rep. of averaged observables

1.4

1.3

1.3

2.1 2.3

3.4

5.1

4.1

6.17.3

7.1

3.1

5.4

4.4

3.4

3.5

3.3

Figure 1 Roadmap and summary of the methods considered in this chapter. The arrows
represent possible routes for derivations. Labelled arrows represent derivations that are
explicitly treated in the respective sections. For example, the forward and backward
master equations are derived from the Chapman-Kolmogorov equation in section 1.3. In
this section, we also discuss the path summation representation (23) of the conditional
probability distribution p(τ, n |t0, n0). This representation can be derived by examining
the stochastic simulation algorithm (SSA) of Gillespie [80–83] or by performing a Laplace
transformation of the forward master equation (11) (cf. appendix B). In sections 2 and 3,
the forward and the backward master equations are cast into four linear PDEs, also
called “flow equations”. These equations are obeyed by a probability generating function,
a probability generating functional, a marginalized distribution, and a further series
expansion. The flow equations can be solved in terms of a forward and a backward path
integral as shown in sections 4 and 5. Upon performing inverse transformations, the path
integrals provide two distinct representations of the conditional probability distribution
solving the master equations. Moreover, they can be used to represent averaged observables
as explained in section 6. Besides the methods illustrated in the figure, we discuss path
integral representations of processes with continuous state spaces whose master equations
admit Kramers-Moyal expansions (sections 4.4 and 5.4). A truncation of the backward
Kramers-Moyal expansion at the level of a diffusion approximation results in a path integral
representation of the (backward) Fokker-Planck equation whose original development
goes back to works of Martin, Siggia, and Rose [21], de Dominicis [22], Janssen [23, 24],
and Bausch, Janssen, and Wagner [24]. The representation can be rewritten in terms of
an Onsager-Machlup function [84], and it simplifies to Wiener’s path integral [85, 86]
for purely diffusive Brownian motion [87]. Renormalization group techniques are not
considered in our text. Information on these techniques can be found in [74, 75].
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distribution p(t, n |τ, n0) backward in time, starting out at time τ = t . Both master
equations can be derived from the Chapman-Kolmogorov equation (cf. left side of
figure 1). In section 1.4, we discuss two explicit representations of the conditional
probability distribution solving the two master equations. Moreover, we comment
on various numerical methods for the approximation of this distribution and for
the generation of sample paths. Afterwards, section 1.5 provides a brief historical
overview of contributions to the development of stochastic path integrals.

The main part of this chapter begins with section 2. We first exemplify how a
generalized probability generating function can be used to determine the station-
ary probability distribution of an elementary chemical reaction. This example
introduces the bra-ket notation used in this work. In section 2.1, we formulate
conditions under which a general forward master equation can be transformed
into a linear partial differential equation (PDE) obeyed by the generating function.
This function is defined as the sum of the conditional probability distribution
p(τ, n |t0, n0) over a set of basis functions {|n〉}, the “kets” (cf. middle column of
figure 1). The explicit choice of the basis functions depends on the process being
studied. We discuss different choices of the basis functions in section 2.2, first for a
random walk, afterwards for chemical reactions and for processes whose particles
locally exclude one another. Several methods have recently been proposed for the
analysis of the PDE obeyed by the generating function. These methods include
the variational method of Eyink [88] and of Sasai and Wolynes [44], the WKB
approximations [89] and spectral methods of Elgart and Kamenev [40] and of
Assaf and Meerson [41–43], and the spectral method of Walczak, Mugler, and
Wiggins [39]. We comment on these methods in section 2.3.

In section 3.1, we formulate conditions under which a general backward
master equation can be transformed into a novel, backward-time PDE obeyed by a
“marginalized distribution”. This object is defined as the sum of the conditional
probability distribution p(t, n |τ, n0) over a set of basis functions {|n0〉} (cf. middle
column of figure 1). If the basis function |n0〉 is chosen as a probability distribution,
the marginalized distribution also constitutes a true probability distribution.
Different choices of the basis function are considered in section 3.2. In section 3.3,
the use of the marginalized distribution is exemplified in the calculation of mean
extinction times. Afterwards, in section 3.4, we derive yet another linear PDE,
which is obeyed by a “probability generating functional”. This functional is
defined as the sum of the conditional probability distribution p(τ, n |t0, n0) over a
set of basis functionals {〈n |}, the “bras”. In section 3.5, we show that the way in
which the generating functional “generates” probabilities generalizes the Poisson
representation of Gardiner and Chaturvedi [37, 38].

Sections 4 and 5 share the goal of representing the master equations’ solution
by path integrals. In section 4.1, we first derive a novel backward path integral
representation from the PDE obeyed by the marginalized distribution (cf. right
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side of figure 1). Its use is exemplified in sections 4.2, 4.3, and 4.5 in which we
solve several elementary processes. Although we do not discuss the application
of renormalization group techniques, section 4.5 d includes a discussion of how
the backward path integral representation can be evaluated in terms of a perturb-
ation expansion. The summands of the expansion are expressed by Feynman
diagrams. Besides, we derive a path integral representation for Markov processes
with continuous state spaces in the “intermezzo” section 4.4. This representation
is obtained by performing a Kramers-Moyal expansion of the backward master
equation and it comprises a classic path integral representation [21–24] of the (back-
ward) Fokker-Planck equation as a special case. One can rewrite the representation
of the Fokker-Planck equation in terms of an Onsager-Machlup function [84]
and, for purely diffusive Brownian motion [87], the representation simplifies to
the path integral of Wiener [85, 86]. Moreover, we recover a Feynman-Kac like
formula [90], which solves the (backward) Fokker-Planck equation in terms of an
average over the paths of an Itô stochastic differential equation [91–93] (or of a
Langevin equation [94]).

In section 5, we complement the backward path integral representation with
a forward path integral representation. Its derivation in section 5.1 starts out from
the PDE obeyed by the generalized generating function (cf. right side of figure 1).
The forward path integral representation can, for example, be used to compute the
generating function of generic linear processes as we demonstrate in section 5.2.
Besides, we briefly outline how a Kramers-Moyal expansion of the (forward)
master equation can be employed to derive a path integral representation for
processes with continuous state spaces in section 5.4. This path integral can be
expressed in terms of an average over the paths of an SDE proceeding backward in
time. Its potential use remains to be explored.

Before proceeding, let us briefly point out some properties of the forward and
backward path integral representations. First, the paths along which these path
integrals proceed are described by real variables and all integrations are performed
over the real line. Grassmann path integrals [31, 32, 34–36] for systems whose
particles locally exclude one another are not considered. It is, however, explained
in section 2.2 d how such systems can be treated without the need for Grassmann
variables, based on a method recently proposed by van Wijland [95]. Second,
transformations of the path integral variables such as the “Doi-shift” [96] are
implemented on the level of the basis functions and functionals. Third, our deriva-
tions of the forward and backward path integral representations do not involve
coherent states or combinatoric relations for the commutation of exponentiated
operators. Last, the path integrals allow for time-dependent rate coefficients of the
stochastic processes.

In section 6, we derive a path integral representation of averaged observables (cf.
right side of figure 1). This representation can be derived both from the backward
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and forward path integral representations (cf. section 6.1), and by representing the
forward master equation in terms of the eigenvectors of creation and annihilation
matrices (“coherent states”; cf. section 6.2). The duality between these two
approaches resembles the duality between the wave [97] and matrix [98–100]
formulations of quantum mechanics. Let us note that our resulting path integral
does not involve a “second-quantized” or “normal-ordered” observable [101].
In fact, we show that this object agrees with the average of an observable over
a Poisson distribution. In section 6.3, we then explain how the path integral
can be evaluated perturbatively using Feynman diagrams. Such an evaluation is
demonstrated for the coagulation reaction 2 A → A in section 6.4, restricting
ourselves to the “tree level” of the diagrams.

In section 7, we review and extend a recent method of Elgart and Kamenev for
the computation of rare event probabilities [40]. As explained in section 7.1, this
method evaluates a probability distribution by expanding the forward path integral
representation from section 5 around “stationary”, or “extremal”, paths. In a first
step, one thereby acquires an approximation of the ordinary probability generating
function. In a second step, this generating function is transformed back into the
underlying probability distribution. The evaluation of this back transformation
typically involves an additional saddle-point approximation. In section 7.2, we
demonstrate both of the steps for the binary annihilation reaction 2 A → ∅,
improving an earlier approximation of the process by Elgart and Kamenev [40]
by terms of sub-leading order. In section 7.3, we then extend the “stationary
path method” to the backward path integral representation from section 4. The
backward path integral provides direct access to a probability distribution without
requiring an auxiliary saddle-point approximation. However, the leading order
term of its expansion is not normalized. We demonstrate the procedure for the
binary annihilation reaction in section 7.4.

Finally, section 8 closes with a summary of the different approaches discussed
in this part of the thesis and outlines open challenges and promising directions for
future research.

1.3 Continuous-time Markov processes and the forward and
backward master equations

Our main interest lies in a special class of stochastic processes, namely in the class
of continuous-time Markov processes with discontinuous sample paths. These
processes are also called “jump processes”. In the following, we outline the
mathematical theory of jump processes and derive the central equations obeyed
by them: the forward and the backward master equation. Before going into
the mathematical details, let us explain when a system’s time evolution can be
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modelled as a continuous-time Markov process with discontinuous sample paths
and what that phrase actually means.

First of all, if the evolution of a system is to be modelled as a continuous-time
Markov process, it must be possible to describe the system’s state by some variable
n. In fact, it must be possible to do so at every point τ in time throughout an
observation period [t0, t ]. A variable n ∈ Z could, for example, represent the
position of a molecular motor along a cytoskeletal filament, or a variable n ∈ R0
the price of a stock between the opening and closing times of an exchange. The
assumption of a continuous time parameter τ is rather natural and conforms to our
everyday experience. Still, a discrete time parameter may sometimes be preferred,
for example, to denote individual generations of an evolving population [102]. By
allowing τ to take on any value between the initial time t0 and the final time t , we
can choose it to be arbitrarily close to one of those times. Below, this possibility
will allow us to describe the evolution of the process in terms of a differential
equation.

The (unconditional) probability of finding the system in state n at time τ is
represented by the “single-time” probability distribution p(τ, n). Upon demanding
that the system has visited some state n0 at an earlier time t0 < τ, the probability
of observing state n at time τ is instead encoded by the conditional probability
distribution p(τ, n |t0, n0). If the conditional probability distribution is known,
the single-time distribution can be inferred from any given initial distribution
p(t0, n0) via p(τ, n) = ∑

n0 p(τ, n |t0, n0)p(t0, n0). A stochastic process is said to
be Markovian if a distribution conditioned on multiple points in time actually
depends only on the state that was realized most recently. In other words, a condi-
tional distribution p(t, n |τk,mk ; · · · ; τ1,m1; t0, n0) must agree with p(t, n |τk,mk)
whenever t > τk > τk−1, . . . , t0.1 Therefore, a Markov process is fully charac-
terized by the single-time distribution p(t0, n0) and the conditional distribution
p(τ, n |t0, n0). The latter function is commonly referred to as the “transition
probability” for Markov processes [103].

The stochastic dynamics of a system can be modelled in terms of a Markov
process if the system has no memory. Let us explain this requirement with the
example of a Brownian particle suspended in a fluid [87]. Over a very short
time scale, the motion of such a particle is ballistic and its velocity highly auto-
correlated [104]. But as the particle collides with molecules of the fluid, that
memory fades away. A significant move of the particle due to fluctuations in the
isotropy of its molecular bombardment then appears to be completely uncorrelated
from previous moves (provided that the observer does not look too closely [105]).
Thus, on a sufficiently coarse time scale, the motion of the particle looks diffusive

1 Note that we do not distinguish between random variables and their outcomes. Moreover, we
stick to the physicists’ convention of ordering times in descending order. In the mathematical
literature, the reverse order is more common, see e.g. [9].
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and can be modelled as a Markov process. However, the validity of the Markov
assumption does not extend beyond the coarse time scale.

The Brownian particle exemplifies only two of the properties that we are
looking for: its position is well-defined at every time τ and its movement is
effectively memoryless on the coarse time scale. But the paths of the Brownian
particle are continuous, meaning that it does not spontaneously vanish and then
reappear at another place. If the friction of the fluid surrounding the Brownian
particle is high (over-damped motion), the probability of observing the particle
at a particular place can be described by the Smoluchowski equation [106]. This
equation coincides with the simple diffusion equation when the particle is not
subject to an external force. In the general case, the probability of observing the
particle at a particular place with a particular velocity obeys the Klein-Kramers
equation [107, 108] (the book of Risken [109] provides a pedagogic introduction
to these equations). From a mathematical point of view, all of these equations
constitute special cases of the (forward) Fokker-Planck equation [6–9, 109]. For
a single random variable x ∈ R, e.g. the position of the Brownian particle, this
equation has the generic form

∂τp(τ, x |t0, x0) = −∂x �
ατ(x)p�

+
1
2
∂2
x

�
βτ(x)p�

. (1)

The initial condition of this equation is given by the Dirac delta distribution
(or generalized function) p(t0, x |t0, x0) = δ(x − x0). Here we used the letter
x for the random variable because the letter n would suggest a discrete state
space. The function ατ is often called a drift coefficient and βτ a diffusion
coefficient (note, however, that in the context of population genetics, βτ describes
the strength of random genetic “drift” [110, 111]). For reasons addressed below,
the diffusion coefficient must be non-negative at every point in time for every
value of x (for a multivariate process, βτ represents a positive-semidefinite matrix).
In the mathematical community, the Fokker-Planck equation is better known as
the Kolmogorov forward equation [110], honouring Kolmogorov’s fundamental
contributions to the theory of continuous-time Markov processes [9]. Whereas
the above Fokker-Planck equation evolves the conditional probability distribution
forward in time, one can also evolve this distribution backward in time, starting
out from the final condition p(t, x |t, x0) = δ(x − x0). The corresponding equation
is called the Kolmogorov backward or backward Fokker-Planck equation. It has
the generic form

∂−τp(t, x |τ, x0) = ατ(x0)∂x0p +
1
2
βτ(x0)∂2

x0
p . (2)
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The forward and backward Fokker-Planck equations provide information
about the conditional probability distribution but not about the individual paths
of the Brownian particle. A general theory of how partial differential equations
connect to the individual sample paths of a stochastic process goes back to works
of Feynman and Kac [90, 112]. Their theory allows us to write the solution of
the backward Fokker-Planck equation (2) in terms of the following Kolmogorov
formula, which constitutes a special case of the Feynman-Kac formula [113–115]:

p(t, x |τ, x0) = 


δ

�
x − x(t )���

W . (3)

The brackets 〈〈·〉〉W represent an average over realizations of a Wiener processW ,
which evolves through uncorrelated Gaussian increments dW . The Wiener process
drives the evolution of the sample path x(s) from x(τ) = x0 to x(t ) via the Itô
stochastic differential equation (SDE) [91–93]

dx(s) = αs (x(s)) ds +
√
βs (x(s)) dW (s) . (4)

The diffusion coefficient βs must be non-negative because x(s) describes the
position of a real particle. Otherwise, the sample path heads off into imaginary
space (for a multivariate process,

√
βs may be chosen as the unique symmetric

and positive-semidefinite square root of βs [116]). Algorithms for the numerical
solution of SDEs are provided in [113]. In the physical sciences, SDEs are often
written as Langevin equations [94].2 For a discussion of stochastic differential
equations the reader may refer to a recent report on progress [117]. Due to the
central importance of the Feynman-Kac formula, we provide a brief proof of it
in appendix A. We also encounter the formula in section 4 in evaluating a path
integral representation of the (backward) master equation.

After this brief detour to continuous-time Markov processes with continuous
sample paths, let us return to jump processes, whose sample paths are discon-
tinuous. A system that can be modelled as such a process are motor proteins on
cytoskeletal filaments [118–120]. The uni-directional walk of a molecular motor
such as myosin, kinesin, or dynein along an actin filament or a microtubule is
driven by the hydrolysis of adenosine triphosphate (ATP) and is intrinsically
stochastic [121]. Once a sufficient amount of energy is available, one of the
two “heads” of the motor unbinds from its current binding site on the filament
and moves to the next binding site. Each binding site can only be occupied by
a single head. On a coarse-grained level, the state of the system at time τ is
therefore characterized by the occupation of its binding sites. With only a single

2 The Langevin equation corresponding to the SDE (4) reads ∂s x(s) = αs (x(s)) +
√
βs (x(s))η(s),

with the Gaussian white noise η(s) having zero mean and the auto-correlation function
〈η(s)η(s ′)〉 = δ(s − s ′).
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cytoskeletal filament whose binding sites are labelled as {0, 1, 2, . . .} C L, the
variable n ≡ (n0, n1, n2, . . .) ∈ {0, 1}|L| can be used to represent the occupied and
unoccupied binding sites. Here, |L| denotes the total number of binding sites along
the filament and ni = 1 signifies that the i-th binding site is occupied. Since the
state space of all the binding site configurations is discrete, a change in the binding
site configuration involves a “jump” in state space. Provided that the jumps are
uncorrelated from one another (which needs to be verified experimentally), the
dynamics of the system can be described by a continuous-time Markov process
with discontinuous sample paths. Before addressing further systems for which this
is the case, let us derive the fundamental equations obeyed by these processes: the
forward and the backward master equation.

In his classic textbook [115], Gardiner presents a succinct derivation of both
the (forward) master and the (forward) Fokker-Planck equation by distinguishing
between discontinuous and continuous contributions to sample paths. In the fol-
lowing, we are only interested in the master equation, which governs the evolution
of systems whose states change discontinuously. To prevent the occurrence of
continuous changes, we assume that the state of our system is represented by a
discrete variable n and that the space of all states is countable. With the state
space Z, n could, for example, represent the position of a molecular motor along a
cytoskeletal filament. On the other hand, n ∈ N0 could represent the number of
molecules in a chemical reaction. The minimal jump size is one in both cases. By
keeping the explicit role of n unspecified, the following considerations also apply
to systems harbouring different kind of molecules (e.g. n ≡ (nA, nB, nC ) ∈ N3

0),
and to systems whose molecules perform random walks in a (discrete) space (e.g.
n ≡ {ni ∈ N0}i∈Z).

To derive the master equation, we start out by marginalizing the joint condi-
tional distribution p(t, n; τ,m |t0, n0) over the state m at the intermediate time τ
( t ≥ τ ≥ t0), resulting in

p(t, n |t0, n0) =
∑
m

p(t, n; τ,m |t0, n0) . (5)

Whenever the range of a sum is not specified, it shall cover the whole state space
of its summation variable. The above equation holds for arbitrary stochastic
processes. But for a Markov process, one can employ the relation

p(t, n; τ,m |t0, n0) = p(t, n |τ,m; t0, n0)p(τ,m |t0, n0) (6)
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between joint and conditional distributions to turn the equation into the Chapman-
Kolmogorov equation

p(t, n |t0, n0) =
∑
m

p(t, n |τ,m)p(τ,m |t0, n0) . (7)

Letting p(t |t0) denote the matrix with elements p(t, n |t0, n0), the Chapman-
Kolmogorov equation can also be written as p(t |t0) = p(t |τ)p(τ |t0) (semigroup
property). Note that the matrix notation requires a mapping between the state
space of n and n0 and an appropriate index set I ⊂ N. However, we also make use
of this notation when the state space is countably infinite.

To derive the (forward) master equation from the Chapman-Kolmogorov
equation (7), we define

Qτ,∆t (n,m) B p(τ + ∆t, n |τ,m) − δn,m
∆t

(8)

for all values of n and m and assume the existence and finiteness of the limits

Qτ(n,m) B lim
∆t→0

Qτ,∆t (n,m) . (9)

These are the elements of the transition (rate) matrix Qτ, which is also called
the infinitesimal generator of the Markov process or is simply referred to as
the Qτ-matrix. Its off-diagonal elements wτ(n,m) B Qτ(n,m) denote the rates
at which probability flows from a state m to a state n , m. The “exit rates”
wτ(m) B −Qτ(m,m), on the other hand, describe the rates at which probability
leaves state m. Both wτ(n,m) and wτ(m) are non-negative for all n and m. All of
the processes considered here shall conserve the total probability, requiring that∑

n Qτ(n,m) = 0 or, equivalently, wτ(m) = ∑
n wτ(n,m) (with wτ(m,m) B 0).

The finiteness of the exit rate wτ(m) and the conservation of total probability
imply that we consider a stable and conservative Markov process [122]. In the
natural sciences, the master equation is commonly written in terms of wτ, but
most mathematicians prefer Qτ . These matrices can be converted into one another
by employing

Qτ(n,m) = wτ(n,m) − δn,mwτ(m) . (10)

We refer to both matrices as transition (rate) matrices and to their off-diagonal
elements as transition rates. These rates fully specify the stochastic process.
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Assuming that the limit in (9) interchanges with a sum over the state m, the
(forward) master equation follows from the Chapman-Kolmogorov equation (7) as

∂τp(τ, n |t0, n0) = lim
∆t→0

p(τ + ∆t, n |t0, n0) − p(τ, n |t0, n0)
∆t

(11)

= lim
∆t→0

∑
m

p(τ + ∆t, n |τ,m) − δn,m
∆t

p(τ,m |t0, n0)

=
∑
m

Qτ(n,m)p(τ,m |t0, n0) .

Thus, the master equation constitutes a set of coupled, linear, first-order ordinary
differential equations (ODEs). The time evolution of the distribution starts out
from p(t0, n |t0, n0) = δn,n0 . In matrix notation, the equation can be written as
∂τp(τ |t0) = Qτp(τ |t0). In terms of wτ , it assumes the intuitive gain-loss form

∂τp(τ, n |t0, n0) =
∑
m

(
wτ(n,m) − δn,m

∑
k

wτ(k, n)
)
p(τ,m |t0, n0) (12)

=
∑
m

�
wτ(n,m)p(τ,m |·) − wτ(m, n)p(τ, n |·)� . (13)

The dot inside the probability distribution’s argument abbreviates the initial para-
meters t0 and n0, which are of secondary concern right here. That will change
below in the derivation of the backward master equation. An omission of the
parameters also makes it impossible to distinguish the conditional distribution
p(τ, n |t0, n0) from the single-time distribution p(τ, n). The single-time distribu-
tion obeys the master equation as well, as can inferred directly from the relation
p(τ, n) = ∑

n0 p(τ, n |t0, n0)p(t0, n0) or by summing the above master equation over
an initial distribution p(t0, n0). In fact, the single-time distribution would even
obey the master equation if the process was not Markovian, but without providing
a complete characterization of the process [75, 79]. The master equation (11)
or (12) is particularly interesting for transition rates causing an imbalance between
forward and backward transitions along closed cycles of states, i.e. for rates viol-
ating Kolmogorov’s criterion [123] for detailed balance [75]. Such systems are
truly out of thermal equilibrium. If detailed balance is instead fulfilled, the system
eventually converges to a stationary Boltzmann-Gibbs distribution with vanish-
ing probability currents between states [75]. Whether or not detailed balance
is actually fulfilled is, however, not relevant for the methods discussed in our
work. Information on the existence and uniqueness of an asymptotic stationary
distribution of the master equation can be found in [122].

The name “master equation” was originally coined by Nordsieck, Lamb, and
Uhlenbeck [10] in their study of the Furry model of cosmic rain showers [124].
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Shortly before, Feller applied an equation of the same structure to the growth
of populations [125] and Delbrück to well-mixed, auto-catalytic chemical reac-
tions [126]. Delbrück’s line of research was followed by several others [127–130],
most notably by McQuarrie [131–133] (see also the books [103, 115, 134]). In
these articles, several elementary chemical reactions are solved by methods that
also appear later in this chapter. When the particles engaging in a reaction can also
diffuse in space, their density may exhibit dynamics that are not expected from
observations made in well-mixed environments. Hence, reaction-diffusion master
equations have been the focus of intense research and have been analysed using
path integrals (see, for example, [101, 135–138] and the references in section 1.5).
Master equations, and simulations algorithms based on master equations, are
now being used in numerous fields of research. They are being applied in the
contexts of spin dynamics [139–142], gene regulatory networks [39, 143–148],
the spreading of diseases [149–152], epidermal homeostasis [153], nucleosome
repositioning [154], ecological [155–168] and bacterial dynamics [5, 163, 169–171],
evolutionary game theory [3, 172–182], surface growth [183], and social and
economic processes [184–187]. Queuing processes are also often modelled in terms
of master equations, but in this context, the equations are typically referred to
as Kolmogorov equations [188]. Moreover, master equations and the SSA have
helped to understand the formation of traffic jams on highways [189, 190], the
walks of molecular motors along cytoskeletal filaments [118–120, 191–193], and
the condensation of bosons in driven-dissipative quantum systems [1, 3, 194].
The master equation that was found to describe the coarse-grained dynamics of
these bosons coincides with the master equation of the (asymmetric) inclusion
process [195–198]. On the other hand, transport processes are more commonly
modelled in terms of the (totally) asymmetric simple exclusion process (ASEP
or TASEP) [199–202]. The ASEP describes the biased hopping of particles along
a one-dimensional lattice, with each lattice site providing space for at most one
particle. The ASEP and the TASEP are regarded as paradigmatic models in the field
of non-equilibrium statistical mechanics, with many exact mathematical results
having been established [203–214]. Some of these results were established by ap-
plying the Bethe ansatz to the master equation of the ASEP [207, 211]. The review
of Chou, Mallick, and Zia provides a comprehensive account of the ASEP and of
its variants [193]. The master equation of the TASEP with Langmuir kinetics was
recently used to understand the length regulation of microtubules [215].

Unlike deterministic models, the master equations describing the dynamics of
the above systems take into account that discrete and finite populations are prone
to “demographic fluctuations”. The populations of the above systems consist of
genes or proteins, infected persons, bacteria or cars and they are typically small,
at least compared to the number of molecules in a mole of gas. For example, the
copy number of low abundance proteins in Escherichia coli cytosol was found to
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be in the tens to hundreds [216]. Therefore, the presence or absence of a single
protein is much more important than the presence or absence of an individual
molecule in a mole of gas. A demographic fluctuation may even be fatal for a
system, for example, when the copy number of an auto-catalytic reactant drops to
zero. The master equation (11) provides a useful tool to describe such an effect.

Up to this point, we have only considered the forward master equation. But
just as the (forward) Fokker-Planck equation is complemented by the backward
Fokker-Planck equation, the (forward) master equation (11) is complemented
by a backward master equation. It follows from the Chapman-Kolmogorov
equation (7) as

∂−τp(t, n |τ, n0) = lim
∆t→0

p(t, n |τ − ∆t, n0) − p(t, n |τ, n0)
∆t

(14)

= lim
∆t→0

∑
m

p(t, n |τ,m)p(τ,m |τ − ∆t, n0) − δm,n0

∆t

=
∑
m

p(t, n |τ,m)Qτ(m, n0) .

Here, the transition rate is obtained in the limit lim∆t→0 Qτ−∆t,∆t (m, n0) (cf. (8)).
In matrix notation, the backward master equation reads ∂−τp(t |τ) = p(t |τ)Qτ . In
terms of wτ , it assumes the form (cf. (10))

∂−τp(t, n |τ, n0) =
∑
m

p(t, n |τ,m)(wτ(m, n0) − δm,n0

∑
k

wτ(k, n0)
)

(15)

=
∑
m

�
p(·|τ,m) − p(·|τ, n0)�wτ(m, n0) . (16)

In this equation, the dots abbreviate the final parameters t and n. The backward
master equation evolves the conditional probability distribution backward in time,
starting out from the final condition p(t, n |t, n0) = δn,n0 . Just as the backward
Fokker-Planck equation, the backward master equation proves useful for the com-
putation of mean extinction and first passage times (see [115, 217] and section 3.3).
Furthermore, it follows from the backward master equation (14) that the (condi-
tional) average 〈A〉(t |τ, n0) B ∑

n A(n)p(t, n |τ, n0) of an observable A fulfils an
equation of just the same form, namely

∂−τ〈A〉(t |τ, n0) =
∑
m
〈A〉(t |τ,m)Qτ(m, n0) . (17)

The final condition of the equation is given by 〈A〉(t |t, n0) = A(n0). The validity
of equation (17) is the reason why we later employ a “backward” path integral to
represent the average 〈A〉 (cf. section 6).
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1.4 Analytical and numerical methods for the solution of master
equations

If the dynamics of a system are restricted to a finite number of states and if
its transition rates are independent of time, both the forward master equation
∂τp(τ |t0) = Qp(τ |t0) and the backward master equation ∂−τ0p(t |τ0) = p(t |τ0)Q
are solved by [218]

p(τ |τ0) = eQ(τ−τ0)1 (18)

(recall that p(τ |τ0) is the matrix with elements p(τ, n |τ0, n0)). The Chapman-
Kolmogorov equation (7) is also solved by the distribution. Although the matrix
exponential inside this solution can in principle be evaluated in terms of the
(convergent) Taylor expansion

∑∞
k=0

(τ−τ0)k
k! Qk , the actual calculation of this series

is typically infeasible for non-trivial processes, both analytically and numerically
(a truncation of the Taylor series may induce severe round-off errors and serves
as a lower bound on the performance of algorithms in [219]). Consequently,
alternative numerical algorithms have been developed to evaluate the matrix
exponential. Moler and Van Loan reviewed “nineteen dubious ways” of computing
the exponential in [219, 220]. Algorithms that can deal with very large state spaces
are considered in [221, 222]. For time-dependent transition rates, the matrix
exponential generalizes to a Magnus expansion [223, 224].

In the previous paragraph, we restricted the dynamics to a finite state space
to ensure the existence of the matrix exponential in (18). Provided that the
supremum supm |Q(m,m)| of all the exit rates is finite (uniformly bounded Q -
matrix), the validity of the above solution extends to state spaces comprising a
countable number of states [225]. To see that, we define the left stochastic matrix
P B 1 + λ−1Q , with the parameter λ being larger than the above supremum.
Writing eQ∆t = e−λ∆teλ∆t P with ∆t B τ − τ0, the matrix exponential can be
evaluated in terms of the convergent Taylor series

p(τ |τ0) =
∞∑
k=0

e−λ∆t (λ∆t )k
k!

P k . (19)

Effectively, one has thereby decomposed the continuous-time Markov process with
transition matrix Q into a discrete-time Markov chain with transition matrix P ,
subordinated to a continuous-time Poisson process with rate coefficient λ (the
Poisson process acts as a “clock” with sufficiently high ticking rate λ ). Such a
decomposition is called a uniformization or randomization and was first proposed
by Jensen [226]. The series (19) can be evaluated via numerically stable algorithms
and truncation errors can be bounded [227, 228]. Nevertheless, the uniformization
method requires the computation of the powers of a matrix having as many rows
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and columns as the system has states. Consequently, a numerical implementa-
tion of the method is only feasible for sufficiently small state spaces. Further
information on the method and on its improvements can be found in [226–231].

The mathematical study of the existence and uniqueness of solutions of the
forward and backward master equations was pioneered by Feller and Doob in
the 1940s [232, 233]. Feller derived an integral recurrence formula [122, 232],
which essentially constitutes a single step of the “path summation representation”
that we derive further below. In the following, we assume that the forward and
the backward master equations have the same unique solution and we restrict
our attention to processes performing only a finite number of jumps during any
finite time interval. These conditions, and the conservation of total probability,
are, for example, violated by processes that “explode” after a finite time.3 More
information on such processes is provided in [122, 218].

In the following, we complement the above representations of the master
equations’s solution with a “path summation representation”. This representation
can be derived by examining the steps of the stochastic simulation algorithm (SSA)
of Gillespie (its “direct” version) [80, 81, 83] or by performing a Laplace trans-
formation of the forward master equation. Here we follow the former, qualitative,
approach. A formal derivation of the representation via the master equation’s
Laplace transform is provided in appendix B. Although the basic elements of the
SSA had already been known before Gillespie’s work [232–238], its popularity
largely increased after Gillespie applied it to the study of chemical reactions. In
chapter III, we use the SSA to evaluate a model of bacterial range expansions.
As the SSA is restricted to time-independent transition rates, so is the following
derivation of the path summation representation.

To derive the path summation representation, we prepare a system in state
n0 at time t0 as illustrated in figure 2. Since the process is homogeneous in time,
we may choose t0 = 0. The total rate of leaving state n0 is given by the exit
rate w(n0) = ∑

n1 w(n1, n0). In order to determine how long the system actually
stays in state n0, one may draw a random waiting time τ0 from the exponential
distribution Wn0(τ0) B w(n0)e−w(n0)τ0Θ(τ0). The Heaviside step function Θ
prevents the sampling of negative waiting times and is here defined as Θ(τ) = 1 for
τ ≥ 0 and Θ(τ) = 0 for τ < 0. Thus far, we only know that the system leaves n0
but not where it ends up. It could end up in any state n1 for which the transition
rate w(n1, n0) is positive. The probability that a particular state n1 is realized is
given by w(n1, n0)/w(n0). In a numerical implementation of the SSA, the state

3 Just as a population whose growth is described by the deterministic equation ∂τn = n2

explodes after a finite time, so does a population whose growth is described by the master
equation (12) with transition rate w(n,m) = δn,m+1m(m−1) [122]. This transition rate models
the elementary reaction 2 A→ 3 A as explained in section 1.5. An explosion also occurs for
the rate w(n,m) = δn,m+1m2.
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n

n0

n1

n2

n3

nJ−1

nJ

p(t, n ⎜t0, n0)

t0 t1 t2 t3 tJ−1 tJ t

probability to wait
for τ0 = t1− t0: n0(τ0)

probability to remain
in state nJ = n: n(t − tJ)

probability to jump
to n1: w(n1, n0)/w(n0)

Figure 2 Illustration of the stochastic simulation algorithm (SSA) and of the path
summation representation of the probability distribution p(t, n |t0, n0). In a numerical
implementation of the SSA, the system is prepared in state n0 at time t0. After a waiting
time τ0 that is drawn from the exponential distribution Wn0(τ0) = w(n0)e−w(n0)τ0Θ(τ0),
the system transitions into a new state. An arrival state n1 is chosen with probability
w(n1, n0)/w(n0). The procedure is repeated until after J steps, the current time t J ≤ t
plus an additional waiting time exceeds t . The sample path has thus resided in state n J
at time t . This information is recorded in a histogram approximation of p(t, n |t0, n0).
The path summation representation of p(t, n |t0, n0) requires n J to coincide with n. The
probability that the system has remained in state n over the last time interval [t J , t ] is
given by the survival probability Sn(t − t J ) = e−w(n)(t−t J )Θ(t − t J ). The total probability
of the generated path, integrated over all possible waiting times, is represented by pτ(PJ )
in (24). A summation of this probability over all possible sample paths results in the path
summation representation (23).

n1 is determined by drawing a second (uniformly-distributed) random number.
Our goal is to derive an analytic representation of the probability p(t, n |t0, n0) of
finding the system in state n at time t . Thus, after taking J − 1 further steps, the
sample path PJ B {n J ← · · · ← n1 ← n0} should eventually visit state n J = n at
some time t J ≤ t . The total time τJ−1 + · · · + τ0 until the jump to state n occurs is
distributed by the convolutions of the individual waiting time distributions, i.e.

by
J−1
?
j=0

Wn j . For example, τ B τ1 + τ0 is distributed by

(Wn1 ?Wn0)(τ) =
ˆ
R
dτ0 Wn1(τ − τ0)Wn0(τ0) (20)

= w(n1)w(n0)e−w(n1)τ
ˆ τ

0
dτ0 e(w(n1)−w(n0))τ0 Θ(τ) (21)
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=
w(n1)w(n0)�e−w(n0)τ − e−w(n1)τ�

w(n1) − w(n0) Θ(τ) . (22)

The probability that the system still resides in state n J = n at time t is determined
by the “survival probability” Sn(t − t J ) = e−w(n)(t−t J )Θ(t − t J ). After putting all
of these pieces together, we arrive at the following path summation representation
of the conditional probability distribution:

p(t, n |t0, n0) =
∞∑
J=0

∑
{PJ }

pt−t0(PJ ) with (23)

pτ(PJ ) =
(
Sn ?

( J−1
?
j=0

w(n j+1, n j )
w(n j ) Wn j

))(τ) . (24)

Here,
∑

{PJ } B
∑

n1 · · ·
∑

n J−1 generates every path with J jumps between n0 and
n J = n. The probability of such a path, integrated over all possible waiting times,
is represented by pτ(PJ ). By an appropriate choice of integration variables, the
probability pτ(PJ ) can also be written as

pτ(PJ ) =
( J−1∏
j=0

ˆ τ

0
dτj

w(n j+1, n j )
w(n j ) Wn j (τj )

)
Sn

�
τ − (τJ−1 + . . . + τ0)� .

The survival probability Sn is included in these integrations. Without the integra-
tions, the expression would represent the probability of a path with J jumps and
fixed waiting times. That probability is, for example, used in the master equation
formulation of stochastic thermodynamics in associating an entropy to individual
paths [239]. In appendix B, we formally derive the path summation representa-
tion (23) from the Laplace transform of the forward master equation (12).

The path summation representation (23) does not only form the basis of
the SSA but also of some alternative algorithms [240–245]. These algorithms
either infer the path probability pτ(PJ ) numerically from its Laplace transform or
evaluate the convolutions in (24) analytically. The analytic expressions that arise
are, however, rather cumbersome generalizations of the convolution in (22) [246,
247]. They simplify only for the most basic processes (e.g. for a random walk
or for the Poisson process). Moreover, care has to be taken when the analytic
expressions are evaluated numerically because they involve pairwise differences
of the exit rate w(n) (cf. (22)). When these exit rates differ only slightly along a
path, a substantial loss of numerical significance may occur due to finite precision
arithmetic. Future studies could explore how the convolutions of exponential
distributions in (24) can be approximated efficiently (for example, in terms of a
Gamma distribution or by analytically determining the Laplace transform of (24),
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followed by a saddle-point approximation [248] of the corresponding inverse
Laplace transformation). In general, both the SSA as well as its competitors suffer
from the enormous number of states of non-trivial systems, as well as from the
even larger number of paths connecting different states. In [242], these paths were
generated using a deterministic depth-first search algorithm, combined with a filter
to select the paths that arrive at the right place at the right time. In [244], a single
path was first generated using the SSA and then gradually changed into new paths
through a Metropolis Monte Carlo scheme. Thus far, the two methods have only
been applied to relatively simple systems and their prevalence is low compared
to the prevalence of the SSA. Further research is needed to explore how relevant
paths can be sampled more efficiently.

The true power of the SSA lies in its generation of sample paths with the
correct probability of occurrence. Thus, just a few sample paths generated with
the SSA are often sufficient to infer the “typical” dynamics of a process. A look
at individual paths may, for example, reveal that the dynamics of a system are
dominated by some spatial pattern, e.g. by spirals [172]. Efficient variations of
the above “direct” version of the SSA are, for example, described in [83, 249–251].
Algorithms for the fast simulation of biochemical networks or processes with
spatial degrees of freedom are implemented in the simulation packages [252–259].

The evaluation of the average 〈A〉 = ∑
n A(n)p(t, n |·) of an observable A typic-

ally requires the computation of a larger number of sample paths. However, since
the occurrence probability of sample paths generated with the SSA is statistically
correct, such an average typically converges comparatively fast. Furthermore, each
path can be sampled independently of every other path. Therefore, the computa-
tion of paths can be distributed to individual processing units, saving real time,
albeit no computation time. A distributed computation of the sample paths is
most often required, but possibly not even sufficient, if one wishes to compute the
full probability distribution p(t, n |t0, n0). Vastly more sample paths are required
for this purpose, especially if “rare event probabilities” in the distribution’s tails
are sought for. In particular, if the probability of finding a system in state n at time
t is only 10−10, an average of 1010 sample paths are needed to observe that event
just once. Moreover, the probability of observing any particular state decreases
with the size of a system’s state space. Thus, the sampling of full distributions
becomes less and less feasible as systems become larger. Various other challenges
remain open as well; for example, the efficient simulation of processes evolving on
multiple time scales. These processes are typically simulated using approximative
techniques such as τ-leaping [83, 251, 260–269]. Another challenge is posed by the
evaluation of processes with time-dependent transition rates [270–272].

For completeness, let us mention yet another numerical approach to the (for-
ward) master equation. Since the master equation (11) constitutes a set of coupled
linear first-order ODEs, it can of course be treated as such and be integrated nu-
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merically. The integration is, however, only feasible if the state space is sufficiently
small (or appropriately truncated) and if all transitions occur on comparable time
scales (otherwise, the master equation is quite probably stiff [273]). Nevertheless,
a numerical integration of the master equation may be preferable over the use of
the SSA if the full probability distribution is to be computed.

Neither the matrix exponential representation p(t |t0) = eQ(t−t0)1 of the con-
ditional probability distribution, nor its path summation representation (23) is
universally applicable. Moreover, even if the requirements of these solutions are
met, the size of the state space or the complexity of the transition matrix may
make it infeasible to evaluate them. In the next sections, we formulate conditions
under which the conditional probability distribution can be represented in terms
of the “forward” path integral

p(t, n |t0, n0) = 〈n |t
 t )

[t0
e−S |n0〉t0 (25)

and in terms of the “backward” path integral

p(t, n |t0, n0) = 〈n0 |t0
 t ]

(t0
e−S

† |n〉t . (26)

The meaning of the integral signs and of the bras 〈n | and kets |n〉 will become
clear over the course of our discussion. Let us only note that the integrals do not
proceed along paths of the discrete variable n, but over the paths of two continuous
auxiliary variables that are introduced for this purpose. The relevance of each path
is weighed by the exponential factors inside the integrals.

Besides these exact representations of the conditional probability distribution
solving the master equations, there exist powerful ways of approximating this
distribution and the values of averaged observables. These methods include the
Kramers-Moyal [108, 274] and the system-size expansion [103, 275], as well as
the derivation of moment equations. Information on these methods can be found
in classic text books [103, 115] and in a recent review [276]. Although moment
equations encode the complete information about a stochastic process, they typ-
ically constitute an infinite hierarchy whose evaluation requires a truncation by
some closure scheme [277–285]. On the other hand, the Kramers-Moyal and
the system-size expansion approximate the master equation in terms of a Fokker-
Planck equation. Both expansions work best if the system under consideration
is “large” (more precisely, they work best if the dynamics are centred around
a stable or meta-stable state at a distance N � 1 from a potentially absorbing
state; the standard deviation of its surrounding distribution is then of order

√
N ).

An extension of the system-size expansion to absorbing boundaries has recently
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been proposed in [286]. In sections 4.4 and 5.4, we show how Kramers-Moyal
expansions of the backward and forward master equations can be used to derive
path integral representations of processes with continuous state spaces. When the
expansion of the backward master equation stops (or is truncated) at the level of a
diffusion approximation, one recovers a classic path integral representation of the
(backward) Fokkers-Planck equation [21–24].

1.5 History of stochastic path integrals

The oldest path integral, both in the theory of stochastic processes and beyond [112,
287–289], is presumably Wiener’s integral for Brownian motion [85, 86]. The
path integrals we consider here were devised somewhat later, namely in the 1970s
and 80s: first for the Fokker-Planck (or Langevin) equation [21–24] and soon
after for the master equation. For the master equation, the theoretical basis
of these “stochastic” path integrals was developed by Doi [11, 12]. He first
expressed the creation and annihilation of molecules in a chemical reaction by
the corresponding operators for the quantum harmonic oscillator [290] (modulo
a normalization factor), introducing the concept of the Fock space [25] into
non-equilibrium theory. Furthermore, he employed coherent states [27–29]
to express averaged observables. Similar formalisms as the one of Doi were
independently developed by Zel’dovich and Ovchinnikov [13], as well as by
Grassberger and Scheunert [15]. Introductions to the Fock space approach, which
are in part complementary to our work, are, for example, provided in [75, 96,
291–293]. The review of Mattis and Glasser [291] provides a chronological list
of contributions to the field. These contributions include Rose’s renormalized
kinetic theory [14], Mikhailov’s path integral [16, 17, 19], which is based on
Zel’dovich’s and Ovchinnikov’s work, and Goldenfeld’s extension of the Fock
space algebra to polymer crystal growth [18]. Furthermore, Peliti reviewed the
Fock space approach and provided derivations of path integral representations of
averaged observables and of the probability generating function [20]. Peliti also
expressed the hope that future “rediscoveries” of the path integral formalism would
be unnecessary in the future. However, we believe that the probabilistic structures
behind path integral representations of stochastic processes have not yet been
clearly exposed. As illustrated in figure 1, we show that the forward and backward
master equations admit not only one but two path integral representations: the
forward representation (25) and the novel backward representation (26). Although
the two path integrals resemble each other, they differ conceptually. While the
forward path integral representation provides a probability generating function
in an intermediate step, the backward representation provides a distribution that
is marginalized over an initial state. Both path integrals can be used to represent
averaged observables as shown in section 6. The backward path integral, however,
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will turn out to be more convenient for this purpose (upon choosing a Poisson
distribution as the basis function, i.e. |n〉 B xne−x

n! , the representation is obtained
by summing (26) over an observable A(n)). Let us note that despite adopting
some of the notation of quantum theory, our text is guided by the notion that
quantum (field) theory is “totally unnecessary” for the theory of stochastic path
integrals. Michael E. Fisher once stated the same about the relevance of quantum
field theory for renormalization group theory [294] (while acknowledging that in
order to do certain types of calculations, familiarity with quantum field theory
can be very useful; the same applies to the theory of stochastic path integrals).

Thus far, path integral representations of the master equation have primarily
been applied to processes whose transition rates can be decomposed additively into
the rates of simple chemical reactions. Simple means that the transition rate of
such a reaction is determined by combinatoric counting. Consider, for example, a
reaction of the form k A→ l A in which k ∈ N0 molecules of type A are replaced
by l ∈ N0 molecules of the same type. Assuming that the k reactants are drawn
from an urn with a total number of m molecules, the total rate of the reaction
should be proportional to the falling factorial (m)k B m(m − 1) · · · (m − k + 1).
The global time scale of reaction is set by the rate coefficient γτ , which we allow to
depend on time. Thus, the rate at which the chemical reaction k A→ l A induces
a transition from state m to state n is wτ(n,m) = γτ(m)kδn,m−k+l . The Kronecker
delta inside the transition rate ensures that k molecules are indeed replaced by
l new ones. Note that the number of particles in the system can never become
negative, provided that the initial number of particles was non-negative. Hence,
the state space of n is N0. Insertion of the above transition rate into the forward
master equation (12) results in the “chemical” master equation

∂τp(τ, n |t0, n0) = γτ�(n − l + k)kp(τ, n − l + k |·) − (n)kp(τ, n |·)
�
. (27)

Microphysical arguments for its applicability to chemical reactions can be found
in [82]. According to the chemical master equation, the mean particle number
〈n〉 = ∑

n n p(τ, n |·) obeys the equation ∂τ〈n〉 = γτ(l − k)〈(n)k〉. For a system
with a large number of particles (n � k ), fluctuations can often be neglected in a
first approximation, leading to the deterministic rate equation

∂τ n̄ = γτ(l − k)n̄k , (28)

obeyed by a continuous particle number n̄(τ) ∈ R.
Path integral representations of the chemical master equation (27) are some-

times said to be “bosonic”. First, because an arbitrarily large number of molecules
may in principle be present in the system (both globally and, upon extending
the system to a spatial domain, locally). Second, because the path integral rep-



1 Introduction 23

resentations are typically derived with the help of “creation and annihilation
operators” fulfilling a “bosonic” commutation relation (see section 2.2 b). “Fermi-
onic” path integrals, on the other hand, have been developed for systems in which
the particles exclude one another. Thus, the number of particles in these systems
is locally restricted to the values 0 and 1. For systems with excluding particles,
the master equation’s solution may be represented in terms of a path integral
whose underlying creation and annihilation operators fulfil an anti-commutation
relation [31–36]. However, van Wijland recently showed that the use of operators
fulfilling the bosonic commutation relation is also possible [95]. These approaches
are considered in section 2.2 d.

We do not intend to delve further into the historic development and applica-
tions of stochastic path integrals at this point. Doing so would require a proper
introduction into renormalization group theory, which is of pivotal importance
for the evaluation of the path integrals. Readers can find information on the
application of renormalization group techniques in the review of Täuber, Howard,
and Vollmayr-Lee [74] and in the book of Täuber [75]. Introductory texts are
also provided by Cardy’s (lecture) notes [96, 295]. Roughly speaking, path in-
tegral representations of the chemical master equation (27) have been used to
assess how a macroscopic law of mass action changes due to fluctuations, both
below [101, 135, 137, 296–307] and above the (upper) critical dimension [297,
308, 309], using either perturbative [19, 75, 135–138, 296–303, 305–307, 310–318]
or non-perturbative [308, 309, 319–321] techniques. All of these articles focus
on stochastic processes with spatial degrees of freedom for which alternative ana-
lytical approaches are scarce. Path integral representations of these processes,
combined with renormalization group techniques, have been pivotal in under-
standing non-equilibrium phase transitions and they contributed significantly to
the classification of these transitions in terms of universality classes [72, 75, 322].
Moreover, path integral representations of master equations have recently been
employed in such diverse contexts as the study of neural networks [323–325], of
ecological populations [161, 162, 167, 168, 326, 327], and of the differentiation of
stem-cells [328].

1.6 Résumé

Continuous-time Markov processes with discontinuous sample paths describe
a broad range of phenomena, ranging from traffic jams on highways [189] and
on cytoskeletal filaments [118–120, 193] to novel forms of condensation in bo-
sonic systems [1, 3]. In the introduction, we laid out the mathematical theory
of these processes and derived the fundamental equations governing their evol-
ution: the forward and the backward master equations. Whereas the forward
master equation (11) evolves a conditional probability distribution forward in
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time, the backward master equation (14) evolves the distribution backward in
time. In the following main part of this chapter, we represent the conditional
probability distribution solving the master equations in terms of path integrals.
The framework upon which these path integrals are based unifies a broad range of
approaches to the master equations, including, for example, the spectral method
of Walzcak, Mugler, and Wiggins [39] and the Poisson representation of Gardiner
and Chaturvedi [37, 38].

2 The probability generating function

The following two sections 2 and 3 are devoted to mapping the forward and
backward master equations (11) and (14) to linear partial differential equations
(PDEs). For brevity, we refer to such linear PDEs as “flow equations”. In sections 4
and 5, the derived flow equations are solved in terms of path integrals.

It has been known since at least the 1940s that the (forward) master equation
can be cast into a flow equation obeyed by the ordinary probability generating
function

g(τ; q |t0, n0) B
∑
n∈N0

qnp(τ, n |t0, n0) , (29)

at least when the corresponding transition rate describes a simple chemical re-
action [127–133, 329]. The generating function effectively replaces the discrete
variable n by the continuous variable q . The absolute convergence of the sum
in (29) is ensured (at least) for |q | ≤ 1. The generating function “generates”
probabilities in the sense that

p(τ, n |t0, n0) = 1
n!
∂nq g(τ; q |t0, n0)���q=0 . (30)

This inverse transformation from g to p involves the application of the (real)
linear functional Ln[ f ] B 1

n!∂
n
q f (q)

�
q=0, which maps a (real-valued) function f

to a (real) number. Moreover, it fulfils Ln[ f + αg ] = Ln[ f ] + αLn[g ] for two
functions f and g , and α ∈ R. A more convenient notation for linear functionals
is introduced shortly. In the following, we generalize the probability generating
function (29) and formulate conditions under which the generalized function
obeys a linear PDE, i.e. a flow equation. But before proceeding to the general
case, let us exemplify the use of a generalized probability generating function
for a specific process (for brevity, we often drop the terms “probability” and
“generalized” in referring to this function).

As the example, we consider the bi-directional reaction ∅ 
 A in which
molecules of type A form at rate γ ≥ 0 and degrade at per capita rate µ > 0.
According to the chemical master equation (27), the probability of observing
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n ∈ N0 such molecules obeys the equation

∂τp(τ, n |t0, n0) = γ�
p(τ, n − 1|·) − p(τ, n |·)� (31)
+ µ

�(n + 1)p(τ, n + 1|·) − np(τ, n |·)� ,
with initial condition p(t0, n |t0, n0) = δn,n0 . This master equation respects the
fact that the number of molecules cannot become negative through the reaction
A→ ∅. By differentiating the probability generating function g(τ; q |t0, n0) in (29)
with respect to the current time τ, one finds that it obeys the flow equation

∂τg = (q − 1)(γ − µ∂q )g . (32)

Its time evolution starts out from g(t0; q |t0, n0) = qn0 . Instead of solving the flow
equation right away, let us first simplify it by changing the basis function qn of
the generating function (29). As a first step, we change it to (q + 1)n, turning the
corresponding flow equation into ∂τg = q(γ−µ∂q )g. As a second step, we multiply
the new basis function by e−

γ
µ (q+1) and arrive at the simplified flow equation

∂τg = −µq∂qg . (33)

The generating function obeying this equation reads

g(τ; q |·) =
∑
n∈N0

(q + 1)ne− γµ (q+1) p(τ, n |·) . (34)

As before, the dots inside the functions’ arguments abbreviate the initial parameters
t0 and n0.

The simplified flow equation (33) is now readily solved by separation of
variables. But before doing so, let us introduce some new notation. From now on,
we write the basis function as

|n〉q B (q + 1)ne− γµ (q+1) (35)

and the corresponding generalized probability generating function (34) as

|g(τ |·)〉q B
∑
n∈N0

|n〉q p(τ, n |·) . (36)

In quantum mechanics, an object written as | ·〉 is called a “ket”, a notation that
was originally introduced by Dirac [26]. In the above two expressions, the kets
simply represent ordinary functions. For brevity, we write the arguments of the
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kets as subscripts and occasionally drop these subscripts altogether. In principle,
the basis function could also depend on time (i.e. |n〉τ,q ).

Later, in section 2.2, we introduce various basis functions for the study of
different stochastic processes, including the Fourier basis function |n〉q B einq

for the solution of a random walk (with n ∈ Z). Moreover, we consider a
“linear algebra” approach in which |n〉 B ên represents the unit column vector in
direction n ∈ N0 (this vector equals one at position n + 1 and is zero everywhere
else; cf. section 2.2 c). The generating function (36) corresponding to this “unit
vector basis” coincides with the column vector p(τ |t0, n0) of the probabilities
p(τ, n |t0, n0). The unit vector basis will prove useful later on in recovering a path
integral representation of averaged observables in section 6.2.

In our present example and in most of this this, however, the generating
function (36) represents an ordinary function and obeys a linear PDE. For the
basis function (35), this PDE reads

∂τ |g〉 = −µq∂q |g〉 . (37)

Its time evolution starts out from |g(t0 |t0, n0)〉 = |n0〉.
In order to recover the conditional probability distribution from the generating

function (36), we now complement the “kets” with “bras”. Such a bra is written
as 〈·| and represents a linear functional in our present example. In particular, we
define a bra 〈m | for every m ∈ N0 by its following action on a test function f :

〈m | f B 1
m!

(
∂q +

γ

µ

)m
f (q)|q=−1 . (38)

The evaluation at q = −1 could also be written in integral form as
´
R dq δ(q +

1)(· · · ). The functional 〈m | is obviously linear and maps the basis function (35) to

〈m |n〉 = δm,n . (39)

Thus, the “basis functionals” in {〈m |}m∈N0 are orthogonal to the basis functions
in {|n〉}n∈N0 . The orthogonality condition can be used to recover the conditional
probability distribution from (36) via

p(τ, n |·) = 〈n |g(τ |·)〉 . (40)

Besides being orthogonal to one another, the kets (35) and bras (38) fulfil the
completeness relation

∑
n |n〉q〈n | f = f (q) with respect to analytic functions4

(note that 〈n | f as defined in (38) is just a real number and does not depend on
q ). Above, we mentioned that we later introduce alternative basis kets, including

4 As before, sums whose range is not specified cover the whole state space.
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the Fourier basis function |n〉q = einq for the solution of a random walk (with
n ∈ Z), and the unit column vector |n〉 = ên with n ∈ N0. These kets can also be
complemented to obtain orthogonal and complete bases, namely by complement-
ing the Fourier basis function with the basis functional 〈m | f B ´ π

−π
dq
2π e
−imq f (q)

(m ∈ Z), and by complementing the unit column vector with the unit row vector
〈m | B ê

ᵀ

m (m ∈ N0). For the unit vector basis {|n〉, 〈m |}n,m∈N0 , the completeness
condition

∑
n |n〉〈n | = 1 involves the (infinitely large) unit matrix 1.

Thanks to the new basis function (35), the simplified flow equation (37) can
be easily solved by separation of variables. Making the ansatz |g〉 = f (τ)ℎ(q),
one obtains an equation whose two sides depend either on f or on ℎ but not on
both. The equation is solved by f (τ) = e−kµ(τ−t0) and ℎ(q) = qk , with k being
a non-negative parameter. The non-negativity of k ensures the finiteness of the
initial condition |g(t0 |t0, n0)〉q = |n0〉q in the limit q → 0. By the completeness of
the polynomial basis, the values of k can be restricted to N0. It proves convenient
to represent also the standard polynomial basis in terms of bras and kets, namely
by defining 〈〈k | f B 1

k!∂
k
q f (q)|q=0 and |k〉〉q B qk . These bras and kets are again

orthogonal to one another in the sense of 〈〈k | l 〉〉 = δk,l and they also fulfil a
completeness relation (

∑
k |k〉〉〈〈k | represents a Taylor expansion around q = 0 and

thus acts as an identity on analytic functions). Using the auxiliary bras and kets,
the solution of the flow equation (37) can be written as

|g(τ |·)〉 =
∑
k∈N0

|k〉〉 e−kµ(τ−t0)〈〈k |n0〉 . (41)

We wrote the expansion coefficient in this solution as 〈〈k |n0〉 to respect the initial
condition |g(t0 |·)〉 = |n0〉.

The conditional probability distribution can be recovered from the generating
function (41) via the inverse transformation (40) as

p(τ, n |t0, n0) =
∑
k∈N0

〈n |k〉〉 e−kµ(τ−t0)〈〈k |n0〉 . (42)

The coefficients 〈n |k〉〉 and 〈〈k |n0〉 can be computed recursively as explained
in [330]. Here we are interested in the asymptotic limit τ → ∞ of the distri-
bution (42) for which only the k = 0 “mode” survives. Therefore, the distribution
converges to the stationary Poisson distribution

p(∞, n |t0, n0) = 〈n |0〉〉〈〈0|n0〉 = (γ/µ)ne−γ/µ
n!

. (43)

The above example illustrates how the master equation can be transformed
into a linear PDE obeyed by a generalized probability generating function and
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how this PDE simplifies for the right basis function. The explicit choice of the
basis function depends on the problem at hand. Moreover, the above example
introduced the bra-ket notation used in this thesis. In section 4.2, the reaction
∅
 A will be reconsidered using a path integral representation of the probability
distribution. We will then see that this process is not only solved by a Poisson
distribution in the stationary limit, but actually for all times (at least, if the number
of molecules in the system was initially Poisson distributed).

In the remainder of this section, as well as in section 3, we generalize the above
approach and derive flow equations for the following four series expansions (with
dynamic time variable τ ∈ [t0, t ]):∑

n
|n〉p(τ, n |t0, n0) , (44)∑

n0

p(t, n |τ, n0)|n0〉 , (45)

∑
n

〈n |p(τ, n |t0, n0) , (46)∑
n0

p(t, n |τ, n0)〈n0 | . (47)

Apparently, the series (44) coincides with the generalized probability generat-
ing function (36). In the next section 2.1, we formulate general conditions under
which this function obeys a linear PDE. The remaining series (45)–(47) may not
be as familiar. We call the series (45) a “marginalized distribution” (45). It will
be shown in section 3 that this series does not only solve the (forward) master
equation, but that it also obeys a backward-time PDE under certain conditions.
The marginalized distribution proves useful in the computation of mean extinction
times as we demonstrate in section 3.3. In section 3.4, we consider the “probability
generating functional” (46). For a “Poisson basis function”, the inverse trans-
formation, which maps this functional to the conditional probability distribution,
coincides with the Poisson representation of Gardiner and Chaturvedi [37, 38].
The potential use of the series (47) remains to be explored.

The goal of the subsequent sections 4 and 5 lies in the solution of the derived
flow equations by path integrals. In section 4, we first solve the flow equations
obeyed by the marginalized distribution (45) and by the generating functional (46)
in terms of a “backward” path integral. Afterwards, in section 5, the flow equations
obeyed by the generating function (44) and by the series expansion (47) are solved
in terms of a “forward” path integral. Inverse transformations, such as (40), will
then provide distinct path integral representations of the forward and backward
master equations.

2.1 Flow of the generating function

We now formulate general conditions under which the forward master equa-
tion (11) can be cast into a linear PDE obeyed by the generalized probability
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generating function

|g(τ |t0, n0)〉q B
∑
n

|n〉τ,q p(τ, n |t0, n0) . (48)

The basis function |n〉τ,q is a function of the variable q and possibly of the time
variable τ. But unless one of these variables is of direct relevance, its corresponding
subscript will be dropped. The explicit form of the basis function depends on the
problem at hand and is chosen so that the four conditions (O), (C), (E), and (Q)
below are satisfied (the conditions (O) and (C) concern the orthogonality and
completeness of the basis, which we already required in the introductory example).
The variable n again represents some state from a countable state space. For
example, n could describe the position of a molecular motor along a cytoskeletal
filament (n ∈ Z), the copy number of a molecule (n ∈ N0), the local copy numbers
of the molecule on a lattice (n ≡ {ni ∈ N0}i∈Z), or the copy numbers of multiple
kinds of molecules (n ≡ (nA, nB, nC ) ∈ N3

0). For the multivariate configurations,
the basis function is typically decomposed into a product |n1〉|n2〉 · · · of individual
basis functions |ni〉, each depending on its own variable qi . A process with spatial
degrees of freedom is considered in section 4.5 b. Besides, we also consider a system
of excluding particles in section 2.2 d. There, the (local) number of particles n is
restricted to the values 0 and 1.

The definition of the generating function (48) assumes the existence of a set
{|n〉τ} of basis functions for every time τ ∈ [t0, t ]. In addition, we assume that
there exists a set {〈m |τ} of linear basis functionals for every time τ ∈ [t0, t ]. These
bras shall be orthogonal to the kets in the sense that at each time point τ, they act
on the kets as

〈m |τ |n〉τ = δm,n (O)

(for all m and n). Here we note the possible time-dependence of the basis because
the (O)rthogonality condition will only be required for equal times of the bras
and kets. In addition to orthogonality, the basis shall fulfil the (C)ompleteness
condition ∑

n
|n〉τ〈n |τ f = f , (C)

where f represents an appropriate test function. The completeness condition
implies that the function f can be decomposed in the basis functions |n〉 with
expansion coefficients 〈n | f . In the introduction to this section, we introduced
various bases fulfilling both the orthogonality and the completeness condition. As
in the introductory example, the orthogonality condition allows one to recover
the conditional probability distribution via the inverse transformation

p(τ, n |t0, n0) = 〈n |g(τ |t0, n0)〉 . (51)
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Before deriving the flow equation obeyed by the generating function, let us
note that the (O)rthogonality condition differs slightly from the corresponding
conditions used in most other texts on stochastic path integrals (see, for example,
[18, 20] or the “exclusive scalar product” in [15]). Typically, the orthogonality
condition includes an additional factorial n! on its right hand side. The inclusion
of this factorial is advantageous in that it accentuates a symmetry between the bases
that we consider in sections 2.2 b and 3.2 b for the study of chemical reactions. Its
inclusion would be rather unusual, however, for the Fourier basis introduced in
sections 2.2 a and 3.2 a. The Fourier basis will be used to solve a simple random
walk. Moreover, the factorial obscures a connection between the probability
generating functional introduced in section 3.4 and the Poisson representation of
Gardiner and Chaturvedi [37, 38]. We discuss this connection in section 3.5.

To derive the flow equation obeyed by the generating function |g〉, we differ-
entiate its definition (48) with respect to the time variable τ. The resulting time
derivative of the conditional probability distribution p(τ, n |t0, n0) can be replaced
by the right-hand side of the forward master equation (11). In matrix notation,
this equation reads ∂τp(τ |t0) = Qτp(τ |t0). Eventually, one finds that

∂τ |g〉 =
∑
n

(
∂τ |n〉 +

∑
m

|m〉Qτ(m, n)
)
p(τ, n |·) . (52)

Our goal is to turn this expression into a partial differential equation for |g〉. For
this purpose, we require two differential operators. First, we require a differential
operator Eτ(q, ∂q ) encoding the time evolution of the basis function. In particular,
this operator should fulfil, for all values of n,

Eτ |n〉 = ∂τ |n〉 . (E)

By the (O)rthogonality condition, one could also define this operator in a “con-
structive” way as

Eτ B
∑
n

�
∂τ |n〉�〈n | . (54)

We call Eτ the basis (E)volution operator. In order to arrive at a proper PDE for
|g〉, Eτ(q, ∂q ) should be polynomial in ∂q (later, in section 2.2 d we also encounter
a case in which it constitutes a power series with infinitely high powers of ∂q ).
For now, the pre-factors of 1, ∂q , ∂2

q ,. . . may be arbitrary functions of q . Later,
in our derivation of a path integral in section 5, we will also require that the pre-
factors can be expanded in powers of q . Note that for a multivariate configuration
n ≡ (nA, nB, . . .), the derivative ∂q represents individual derivatives with respect
to q ≡ (qA, qB, . . .).
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The actual dynamics of a jump process are encoded by its transition rate
matrix Qτ (see section 1.3). The off-diagonal elements of this matrix are the
transition rates wτ(n,m) from a state m to a state n, and its diagonal elements
are the negatives of the exit rates wτ(m) = ∑

n wτ(n,m) from a state m (with
wτ(m,m) = 0; see (10)). We encode the information stored in Qτ by a second
differential operator called Qτ(q, ∂q ). This operator should fulfil, for all values
of n,

Qτ |n〉 =
∑
m

|m〉Qτ(m, n) . (Q)

In analogy with the transition (rate) matrix Qτ, we call Qτ the transition (rate)
operator (note that we only speak of “operators” with respect to differential
operators, but not with respect to matrices). Just like the basis (E)volution
operator, Qτ(q, ∂q ) should be polynomial in ∂q . In section 5, it will be assumed
that Qτ(q, ∂q ) can be expanded in powers of both q and ∂q . In a constructive
approach, one could also define the operator as

Qτ B
∑
m,n

|m〉Qτ(m, n)〈n | . (56)

This constructive definition does not guarantee, however, that Qτ(q, ∂q ) has the
form of a differential operator. This property is, for example, not immediately clear
for the Fourier basis function |n〉q = einq (with n ∈ Z), which we complemented
with the functional 〈n | f = ´ π

−π
dq
2π e
−inq f (q) in the introduction to this section.

Most of the processes that we solve in later sections have polynomial transition
rates. Suitable bases and operators for these processes are provided in the next
section 2.2. It remains an open problem for the field to find such bases and
operators for processes whose transition rates have different functional forms.
That is, for example, the case for transition rates that saturate with the number of
particles and have the form of a Hill function.

Provided that one has found a transition operator Qτ and a basis (E)volution
operator Eτ for a (C)omplete and (O)rthogonal basis, it follows from (52) that the
generalized generating function |g(τ |t0, n0)〉 obeys the flow equation5

∂τ |g〉 = (Eτ +Qτ)|g〉 C Q̃τ |g〉 . (57)

5 In deriving the forward path integral in section 5.1, we use the finite difference approximation

∂τ |g(τ |t0, n0)〉 = lim
∆t→0

|g(τ + ∆t |·)〉 − |g(τ |·)〉
∆t

= lim
∆t→0

(∑
n

|n〉τ+∆t − |n〉τ
∆t

�
p(τ, n |·) +O(∆t )� +

∑
n

|n〉τ
p(τ + ∆t, n |·) − p(τ, n |·)

∆t

)
= lim
∆t→0

�
Eτ,∆t +Qτ,∆t

�|g(τ |·)〉 = lim
∆t→0

Q̃τ,∆t |g(τ |·)〉 ,
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Its initial condition reads |g(t0 |t0, n0)〉 = |n0〉, with the possibly time-dependent
basis function |n0〉 being evaluated at time t0. Although time-dependent bases
prove useful in section 7, we mostly work with time-independent bases in the
following. The operators Q̃τ and Qτ then agree because Eτ is zero. Therefore, we
refer to both Q̃τ and Qτ as transition (rate) operators.

In our above derivation, we assumed that the ket |n〉 represents an ordinary
function and that the bra 〈n | represents a linear functional. To understand why we
chose similar letters for the Qτ -matrix and the Qτ -operator, it is insightful to con-
sider the unit column vectors |n〉 B ên and the unit row vectors 〈n | B ê

ᵀ

n (with
m, n ∈ N0). For these vectors, the right hand side of the transition operator (56)
simply constitutes a representation of the Qτ -matrix. Hence, Qτ is not a differen-
tial operator in this case but coincides with the Qτ -matrix. This observation does
not come as a surprise because we already noted that the generating function (48)
represents the vector p(τ |t0, n0) of all probabilities in this case. Moreover, the
corresponding flow equation (57) does not constitute a linear PDE but a vector
representation of the forward master equation (11).

Following Doi, the transition operator Q̃τ could be called a “time evolution”
or “Liouville” operator [11, 12], or, following Zel’dovich and Ovchinnikov, a
“Hamiltonian” [13]. The latter name is due to the formal resemblance of the flow
equation (57) to the Schrödinger equation in quantum mechanics [97] (this resemb-
lance holds for any linear PDE that is first order in ∂τ ). The name “Hamiltonian”
has gained in popularity throughout the recent years, possibly because the path
integrals derived later in this chapter share many formal similarities with the path
integrals employed in quantum mechanics [112, 287–289]. Nevertheless, let us
point out that Q̃τ is generally not Hermitian and that the generating function |g〉
does not represent a wave function and also not a probability (unless one chooses
the unit vectors |n〉 = ên and 〈n | = ê

ᵀ

n as basis). In our work, we stick to the
name transition (rate) operator for Q̃τ (and Qτ ) to emphasize its connection to
the transition (rate) matrix Qτ .

2.2 Bases for particular stochastic processes

In the previous section, we formulated four conditions under which the master
equation (11) can be cast into the linear PDE (57) obeyed by the generalized

with the operators being defined through their following actions on the basis functions:

Eτ,∆t |n〉τ = |n〉τ+∆t − |n〉τ
∆t

and Qτ,∆t |n〉τ =
∑
m

|m〉τQτ,∆t (m, n) .

The discretization scheme conforms with the derivation of the forward master equation (11).
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generating function (48). In the following, we illustrate how these conditions can
be met for various stochastic processes.

2.2 a Random walks

A simple process that can be solved by the method from the previous section is the
one-dimensional random walk. We model this process in terms of a particle sitting
at position n of the one-dimensional lattice L B Z. The particle may jump to the
nearest lattice site on its right with the (possibly time-dependent) rate rτ > 0, and
to the site on its left with the rate lτ > 0. Given that the particle was at position
n0 at time t0, the probability of finding it at position n at time τ obeys the master
equation

∂τp(τ, n |t0, n0) = rτ
�
p(τ, n − 1|·) − p(τ, n |·)� (58)
+ lτ

�
p(τ, n + 1|·) − p(τ, n |·)� ,

with initial condition p(t0, n |t0, n0) = δn,n0 . One can solve this equation by
solving the associated flow equation (57). But for this purpose, we first require an
(O)rthogonal and (C)omplete basis, as well as a basis (E)volution operator Eτ and
a transition operator Qτ (condition (Q)).

An appropriate choice of the orthogonal and complete basis proves to be the
time-independent Fourier basis

|n〉q B einq and 〈n | f B
ˆ π

−π

dq
2π

e−inq f (q) (59)

with n ∈ Z and test function f . For this basis, the generalized generating function
|g〉 = ∑

n einqp(τ, n |·) = 〈einq〉 coincides with the characteristic function. Moreover,
the corresponding orthogonality condition 〈m |n〉 = δm,n agrees with a common
integral representation of the Kronecker delta. The completeness of the basis can
be shown with the help of a Fourier series representation of the “Dirac comb”

D(q) =
∑
n∈Z

δ(q − 2πn) = 1
2π

∑
n∈Z

einq . (60)

It thereby follows that∑
n∈Z

|n〉q〈n | f =
∑
n∈Z

einq
ˆ π

−π

dq′

2π
e−inq

′

f (q′) (61)

=

ˆ π

−π
dq′ D(q − q′) f (q′) = f (q) . (62)
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Since the Fourier basis function is time-independent, the condition (E) is trivially
fulfilled for the evolution operator Eτ B 0. The only piece still missing is the
transition operator Qτ. Its defining condition (Q) requires knowledge of the
transition matrix Qτ whose elements

Qτ(m, n) = rτ(δm,n+1 − δm,n) + lτ(δm,n−1 − δm,n) (63)

can be inferred by comparing the master equation (58) with its general form (11).
The condition (Q) therefore reads

Qτ |n〉 = rτ
�|n + 1〉 − |n〉� + lτ�|n − 1〉 − |n〉� . (64)

One can construct a transition operator with this property with the help of the
functions c(q) B eiq and a(q) B e−iq . The function c shifts the basis function
|n〉q = einq to the right via c |n〉 = |n + 1〉, and the function a shifts it to the left
via a |n〉 = |n − 1〉. Thus, an operator with the property (64) can be defined as

Qτ(q, ∂q ) B rτ
�
c(q) − 1

�
+ lτ

�
a(q) − 1

�
. (65)

This operator can also be inferred from its constructive definition (56) by making
use of the Dirac comb.∑

m,n∈Z
|m〉qQτ(m, n)〈n | f =

ˆ π

−π
dq′ D(q − q′)�rτ(eiq ′ − 1) + lτ(e−iq ′ − 1)� f (q′)

= Qτ(q, ∂q ) f (q) . (66)

After putting the above pieces together, one finds that the generating function
|g(τ |t0, n0)〉q obeys the flow equation

∂τ |g〉 = �
rτ(eiq − 1) + lτ(e−iq − 1)�|g〉 (67)

for t0 ≤ τ ≤ t with the initial value |g(t0 |t0, n0)〉 = |n0〉 = ein0q . The flow equation
is readily solved by

|g〉 = exp
((eiq − 1)

ˆ τ

t0
ds r s + (e−iq − 1)

ˆ τ

t0
ds ls

) |n0〉 .

The conditional probability distribution can be recovered from this generating
function by performing the inverse Fourier transformation (51), i.e. by evaluating
p(τ, n |t0, n0) = 〈n |g〉. A series expansion of all of the involved exponentials and
some laborious rearrangement of sums eventually result in a Skellam distribution
as the solution of the process [331]. We outline the derivation of this distribution
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in appendix C. The distribution’s mean is µ = n0 +
´ τ
t0 ds (r s − ls ) and its variance

σ2 =
´ τ
t0 ds (r s + ls ). These moments also follow from the fact that the Skellam

distribution describes the difference of two Poisson random variables; one for
jumps to the right, the other for jumps to the left. The two moments can, also
be obtained more easily by deriving equations for their time evolution from the
master equation. Those equations do not couple for the simple random walk. Let
us also note that if the two jump rates rτ and lτ agree, the Skellam distribution
tends to a Gaussian for large times.

2.2 b Chemical reactions

As a second example, we turn to processes whose transition rates can be decom-
posed additively into the transition rates of simple chemical reactions. In such a
reaction, k1, k2, . . . molecules of types A1, A2, . . . come together to be replaced
by l1, l2, . . . molecules of the same types (with k j, l j ∈ N0). Besides reacting with
each other, the molecules could also diffuse in space, which can be modelled in
terms of hopping processes on a regular, d -dimensional lattice such as L B Zd .
Upon labelling particles on different lattice sites by their positions, the hopping of
a molecule of type A1 from lattice site i ∈ L to lattice site j ∈ L could be regarded
as the chemical reaction A(i)

1 → A( j)
1 . We consider the “chemical” master equation

associated to such hopping processes in section 4.5 b.
To demonstrate the generating function approach from section 2.1, we focus

on a system with only a single type of molecule A engaging in the “well-mixed”
reaction k A→ l A (k, l ∈ N0). Since the forward master equation (11) is linear
in the transition rate Qτ(n,m), the following considerations readily extend to
networks of multiple reactions, multiple types of molecules, and processes with
spatial degrees of freedom. The basis functions and functionals introduced below
can, for example, be used to study branching and annihilating random walks,
which are commonly modelled in terms of diffusing particles that engage in
the binary annihilation reaction 2 A → ∅ and the linear growth process A →
(1 +m)A [101, 137, 319, 332, 333]. For an odd number of offspring, these walks
exhibit an absorbing state phase transition falling into the universality class of
directed percolation (according to perturbative calculations in one and two spatial
dimensions [101, 137], according to non-perturbative calculations in up to six
dimensions [320]). The decomposition of a process into elementary reactions
of the form k A → l A is also possible in the contexts of growing polymer
crystals [18], aggregation phenomena [296], and predator-prey ecosystems [168].

As explained in section 1.5, the transition rate wτ(m, n) = γτδm,n−k+l (n)k of
the reaction k A→ l A is determined by combinatorial counting. Its proportion-
ality to the falling factorial (n)k = n(n − 1) · · · (n − k + 1) derives from picking
k molecules out of a population of n molecules. The overall time scale of the
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reaction is set by the rate coefficient γτ (this coefficient may also absorb a factorial
k! accounting for the indistinguishability of molecules). The above transition rate
guarantees that the number of molecules (or “particles”) in the system never drops
below zero, provided that it was non-negative initially. Thus, the state space of
n is N0 and we require basis functions |n〉 and basis functionals 〈n | only for such
values.

Before specifying the (C)omplete and (O)rthogonal basis as well as the basis
(E)volution operator Eτ , let us first specify an appropriate transition operator Qτ .
Its corresponding condition (Q) depends on the transition matrix Qτ , whose ele-
ments Qτ(m, n) = γτ(n)k(δm,n−k+l − δm,n) can be inferred from the rate wτ(m, n)
with the help of the relation (10). Consequently, the condition (Q) reads

Qτ |n〉 = γτ(n)k
�|n − k + l 〉 − |n〉� . (68)

This condition is met by the transition operator

Qτ(c, a) B γτ(c l − ck)ak , (69)

provided that there exist a “creation” operator c and an “annihilation” operator a
acting as

c |n〉 = |n + 1〉 and (70)
a |n〉 = n |n − 1〉 . (71)

The second of these relations ensures that basis functions with n < 0 do not
appear because a |0〉 vanishes. Both c and a may depend on time, just as the basis
functionals and functions 〈n | and |n〉 may do. It follows from (70) and (71) that
the two operators fulfil the commutation relation

[aτ, cτ] B aτcτ − cτaτ = 1 (72)

at a fixed time τ. The commutation relation is meant with respect to functions that
can be expanded in the basis functions yet to be defined. For brevity, we commonly
drop the subscript τ of the creation and annihilation operators. Together with the
orthogonality condition, the commutation relation implies that the operators act
on the basis functionals as

〈n |c = 〈n − 1| and (73)
〈n |a = (n + 1)〈n + 1| . (74)

In quantum mechanics, creation and annihilation operators prove useful in
solving the equation of motion of a quantum particle in a quadratic potential



2 The probability generating function 37

(i.e. in solving the Schrödinger equation of the quantum harmonic oscillator) [27,
334]. There, the ket |n〉 is interpreted as carrying n quanta of energy ~ω in
addition to the ground state energy ~ω/2 of the oscillator’s “vacuum state” |0〉
(with Dirac constant ~ and angular frequency ω). The creation operator then
adds a quantum of energy to state |n〉 via the relation c |n〉 = √n + 1|n + 1〉, and
the annihilation operator removes an energy quantum via a |n〉 = √n |n − 1〉 (a
also destroys the vacuum state). These relations differ from the ones in (70)
and (71) because in quantum mechanics, the creation and annihilation operators
are defined in terms of self-adjoint position and momentum operators, forcing the
former operators to be hermitian adjoints of each other (i.e. c = a† and a = c†).
Consequently, the relations corresponding to (73) and (74) read 〈n |a† = √n〈n − 1|
and 〈n |a = √n + 1〈n + 1|. Nevertheless, the commutation relation (72) also
holds in the quantum world in which its validity ultimately derives from the
non-commutativity of the position operator Q and the momentum operator
P (i.e. from [Q, P ] = i~, which follows from P being the generator of spatial
displacements in state space [334]). Besides, let us note that in quantum field
theory, the creation operator is interpreted as adding a bosonic particle to an
energy state, and the annihilation operator as removing one [335].

One may wonder whether the above interpretations can be transferred to the
theory of stochastic processes in which the creation and annihilation operators
need not be each other’s adjoints. For example, the creation operator in (70)
could be interpreted as adding a molecule to a system, and the corresponding
annihilation operator (71) as removing a molecule. The commutation relation (72)
may then be interpreted as that the addition of a particle to the system (one way to
do it) and the removal of a particle (many ways to do it) do not commute. Let us,
however, note that these interpretations only apply to the processes discussed in the
present section, which can be decomposed into reactions of the form k A→ l A
(with possibly multiple types of particles and spatial degrees of freedom). The
interpretations do not apply, for example, to the random walk of a single particle
with state space Z, which we discussed in the previous section (there, the “shift
operators” with actions c |n〉 = |n + 1〉 and a |n〉 = |n − 1〉 commute).

Whether creation and annihilation operators with the properties (70) and (71)
exist depends on the choice of the basis functions. For the study of chemical
reactions, a useful choice proves to be the basis function

|n〉q B (ζq + q̃)ne−x̃(ζ q+q̃) . (75)

Here, q̃(τ) and x̃(τ) are arbitrary, possibly time-dependent functions and ζ , 0 is
a free parameter. This parameter only becomes relevant in section 6 in recovering
a path integral representation of averaged observables. There, its value is set to
ζ B i but typically we choose ζ B 1. For the latter choice, the basis function (75)
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simplifies to
|n〉q = (q + q̃)ne−x̃(q+q̃) . (76)

Alternatively, the parameter ζ could be used to rescale the variable q by a system
size parameter N if such a parameter is available.

The two functions q̃ and x̃ may prove helpful in simplifying the flow equation
obeyed by the generating function. For example, we chose q̃ B 1 and x̃ B γ/µ in
the introduction to section 2 to simplify the flow equation of the reaction ∅
 A
(with growth rate coefficient γ and decay rate coefficient µ). Later, in section 7, q̃
and x̃ will act as the stationary paths of a path integral with q and an auxiliary
variable x being deviations from them. If both q̃ and x̃ are chosen as zero, the
basis function (76) simplifies to the basis function

|n〉q = qn (77)

of the ordinary probability generating function.
For the general basis function (75), creation and annihilation operators with

the properties (70) and (71) can be defined as

c(q, ∂q ) B ζq + q̃ and (78)
a(q, ∂q ) B ∂ζq + x̃ . (79)

Apparently, these operators are not each other’s adjoints. For the basis function
|n〉q = qn of the ordinary probability generating function, the operators simplify
to c = q and a = ∂q . The corresponding transition operator (69) reads Qτ(q, ∂q ) =
γτ(q l − qk)∂kq , resulting in the flow equation

∂τ |g〉 = γτ(q l − qk)∂kq |g〉 . (80)

Thus far, we have not specified the basis functionals. These functionals can be
defined using the annihilation operator (79). In particular, we complement the
basis function (75) with the functionals

〈n | f B an

n!
f (q)�q=−q̃/ζ , (81)

where f represents a test function. The (O)rthogonality of the basis {〈m |, |n〉}m,n∈N0

follows directly from the action of the annihilation operator on the basis function
|n〉, and from the vanishing of this function at q = −q̃/ζ , except for n = 0. In
particular,

〈m |n〉 = am

m!
|n〉�q=−q̃(τ)/ζ =

(
n
m

)
|n −m〉�q=−q̃(τ)/ζΘn−m = δm,n , (82)
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with Θn = 1 for n ≥ 0 and Θn = 0 otherwise. The (C)ompleteness of the basis is
also readily established.∑

n∈N0

|n〉q〈n | f =
∑
n∈N0

(ζ q + q̃)ne−x̃(ζq+q̃) (∂ζ q ′ + x̃)n
n!

f (q′)�q ′=−q̃/ζ (83)

= e−x̃(ζ q+q̃) ·
∑
n∈N0

(q + q̃/ζ )n
n!

�
∂q ′ + ζ x̃

�n f (q′)�q ′=−q̃/ζ (84)

= e−x̃(ζ q+q̃) ·
∑
n∈N0

(q + q̃/ζ )n
n!

∂nq ′
�
ex̃(ζq ′+q̃) f (q′)��

q ′=−q̃/ζ (85)

= e−x̃(ζ q+q̃) · ex̃(ζq+q̃) f (q) = f (q) . (86)

The only piece still missing is the basis (E)volution operator Eτ to encode the
time-dependence of the basis function (75). Differentiation of this function with
respect to time and use of the creation and annihilation operators (78) and (79)
show that

∂τ |n〉 = n |n − 1〉(∂τ q̃) + |n〉�−(∂τ x̃)(ζ q + q̃) − x̃∂τ q̃
�

(87)
= (∂τ q̃)a |n〉 − (∂τ x̃)|n + 1〉 − (∂τ q̃)x̃ |n〉 (88)
=

�(∂τ q̃)(a − x̃) − (∂τ x̃)c�|n〉 . (89)

Hence, the operator is given by6

Eτ(c, a) B (∂τ q̃)(a − x̃) − (∂τ x̃)c . (90)

Let us illustrate the use of the above basis for a process whose transition
operator can be reduced to a mere constant by an appropriate choice of q̃ and
x̃ . This simplification is, however, bought by making the basis functions time-
dependent. In particular, we consider the simple growth process ∅ → A for a
time-independent growth rate coefficient γ. By our previous discussions, one can
readily verify that the ordinary probability generating function with basis function
|n〉q = qn obeys the flow equation ∂τ |g〉 = γ(q − 1)|g〉 for this process. This flow
equation can be simplified by redefining the basis function of the generating
function as |n〉τ,q B (q + 1)ne−x̃(q+1), with x̃ solving the rate equation ∂τ x̃ = γ
of the process. Hence, the basis function depends explicitly on time through
its dependence on x̃(τ) = x̃(t0) + γ(τ − t0). Upon combining the transition

6 A forward-time discretization of the operator reads

Eτ,∆t B
q̃(τ + ∆t ) − q̃(τ)

∆t
(aτ − x̃(τ)) − x̃(τ + ∆t ) − x̃(τ)

∆t
cτ .
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operator (69) with the basis evolution operator (90), one finds that the generating
function now obeys the flow equation ∂τ |g〉 = −γ |g〉 (it follows from Qτ =

γ(cτ − 1) and Eτ = −(∂τ x̃)cτ = −γcτ that Q̃ = Q + E = −γ ). The equation
is readily solved by |g(τ |t0, n0)〉 = e−γ(τ−t0) |n0〉t0 . The conditional probability
distribution can be recovered via the inverse transformation (51) as

p(τ, n |t0, n0) = e−γ(τ−t0)〈n |τ |n0〉t0 . (91)

The coefficient 〈n |τ |n0〉t0 can be evaluated by determining how the functional 〈n |τ
acts at time t0. Using aτ − x̃(τ) = at0 − x̃(t0) and the binomial theorem, one can
rewrite the action of this functional as

〈n |τ f =
anτ
n!

f (q)�q=−1 =
1
n!

�
at0 + x̃(τ) − x̃(t0)�n f (q)�q=−1 (92)

=
1
n!

n∑
m=0

(
n
m

)
amt0

�
x̃(τ) − x̃(t0)�n−m f (q)�q=−1 (93)

=

n∑
m=0

�
γ(τ − t0)�n−m
(n −m)!

amt0
m!

f (q)�q=−1 =
n∑

m=0

�
γ(τ − t0)�n−m
(n −m)! 〈m |t0 f . (94)

By the (O)rthogonality condition, the conditional probability distribution (91)
therefore evaluates to the shifted Poisson distribution

p(τ, n |t0, n0) = e−γ(τ−t0)
�
γ(τ − t0)�n−n0

(n − n0)! Θn−n0 , (95)

where Θn B 1 for n ≥ 0 and Θn B 0 otherwise. The validity of this solution can
be verified by solving the corresponding flow equation of the ordinary generating
function.

In our above approach, we first established the form of the transition operator
because the basis function (75) is not the only possible choice. Ohkubo recently
proposed the use of orthogonal polynomials for this purpose [336]. In analogy
to the eigenfunctions of the quantum harmonic oscillator [27, 334], one can, for
example, choose the basis function as the Hermite polynomial

|n〉q B Hen(q) = (−1)neq2/2∂nq e−q
2/2 , (96)

with n ∈ N0. Hermite polynomials constitute an Appell sequence, i.e. they fulfil
∂qHen(q) = nHen−1(q) (18.9.27 in [337]). With a B ∂q , this property coincides
with the defining relation a |n〉 = n |n − 1〉 of the annihilation operator in (71).
Furthermore, Hermite polynomials obey the recurrence relation Hen+1(q) =
qHen(q) − nHen−1(q) (18.9.1 in [337]). Combined with the Appell property,
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c B q − ∂q therefore fulfils the defining relation c |n〉 = |n + 1〉 of a creation
operator in (70). After complementing the basis function (96) with the functional

〈m | f B 1
m!

ˆ ∞
−∞

dq
e−q2/2
√
2π

Hem(q) f (q) , (97)

the (O)rthogonality and (C)ompleteness of the basis are also established (18.3 and
18.18.6 in [337]). Thus, the chemical master equation (27) can be transformed into
a flow equation obeyed by a generating function based on Hermite polynomials.
To our knowledge, however, no stochastic process has thus far been solved or
been approximated along these lines. Besides Hermite polynomials, Ohkubo
also proposed the use of Charlier polynomials and mentioned their relation with
certain birth-death processes [336].

2.2 c Intermezzo: The unit vector basis

One may wonder why we actually bother with explicit representations of the bras
〈n | and kets |n〉. Often, these objects are introduced only formally as the basis
of a “bosonic Fock space” [11, 12, 96, 291, 338], leaving the impression that the
particles under consideration are in fact bosonic quantum particles. Although this
impression takes the analogy with quantum theory too far, the analogy has helped
in developing new methods for solving the master equations. In the previous
sections, we showed how the forward master equation can be cast into a linear
PDE obeyed by a probability generating function. Later, in section 5, this PDE
is solved in terms of a path integral by which we then recover a path integral
representation of averaged observables in section 6. This “analytic” derivation
of the path integral is, however, not the only possible way. In the following, we
sketch the mathematical basis of an alternative approach, which employs the unit
vectors ên as the basis. The approach ultimately results in the same path integral
representation of averaged observables as we show in section 6.2. The duality
between the two approaches resembles the duality between the matrix mechanics
formulation of quantum mechanics by Heisenberg, Born, and Jordan [98–100]
and its analytic formulation in terms of the Schrödinger equation [97].

The alternative derivation of the path integral also starts out from the forward
master equation ∂τp(τ |t0) = Qp(τ |t0). As before, p(τ |t0) represents the matrix
of the conditional probabilities p(τ, n |t0, n0), and Q is the transition rate matrix.
For simplicity, we assume the transition rate matrix to be independent of time.
Moreover, we focus on processes that can be decomposed additively into chemical
reactions of the form k A → l A with time-independent rate coefficients. The
elements of the transition matrix associated to this reaction read Q(m, n) =
γ(n)k(δm,n−k+l − δm,n). Since the particle numbers n and n0 may assume any
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values in N0, the probability matrix p(τ |t0) and the transition matrix Q have
infinitely many rows and columns.

In the introductory section 1.4, we formulated conditions under which the
forward master equation is solved by the matrix exponential p(τ |t0) = eQ(τ−t0)1
(in the sense of the expansion (19), the state space must countable and the exit rates
bounded). For the above chemical reaction, those conditions are not necessarily
met, and thus the matrix exponential may not exist. Nevertheless, we regard
p(τ |t0) = eQ(τ−t0)1 as a “formal” solution in the following. With the help of
certain mathematical “tricks”, this solution will be cast into a path integral in
section 6. But before, let us rewrite the transition matrix in the exponential in
terms of creation and annihilation matrices. For this purpose, we employ the
(infinitely large) unit column vectors |n〉 B ên and their orthogonal unit row
vectors 〈n | B ê

ᵀ

n as basis (with n ∈ N0). Individual probabilities can therefore be
inferred from the above solution as

p(τ, n |t0, n0) = 〈n |eQ(τ−t0) |n0〉 . (98)

For multivariate or spatial processes, the basis vectors can be generalized to tensors
(i.e. |n〉 = |n1〉 ⊗ |n2〉 ⊗ . . .).

The orthogonality of the basis allows us to rewrite the elements of the trans-
ition rate matrix of the reaction k A→ l A as

Q(m, n) = 〈m |(γ (n)k�|n − k + l 〉 − |n〉�) . (99)

A matrix with these elements can be written as

Q = γ(c l − ck)ak , (100)

with c acting as a “creation matrix” and a acting as an “annihilation matrix”. In
particular, we define c in terms of its sub-diagonal (1, 1, 1, . . .) and a in terms
of its super-diagonal (1, 2, 3, . . .). All of their other matrix elements are set to
zero. It is readily shown that these matrices fulfil c |n〉 = |n + 1〉 and a |n〉 =
n |n − 1〉 with respect to the basis vectors. These relations coincide with our
previous relations (70) and (71). Besides, the matrices also fulfil 〈n |c = 〈n − 1|
and 〈n |a = (n + 1)〈n + 1|, as well as the commutation relation [a, c] = 1. Further
properties of the matrices are addressed in section 6.2. By our previous comments
in section 2.1, it is not a surprise that the transition matrix (100) has the same form
as the transition operator (69). Both of them are normal-ordered polynomials in
c and a. This property will help us in section 6.2 in recovering a path integral
representation of averaged observables.
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2.2 d Processes with locally excluding particles

As noted in the introductory section 1.3, one can model the movement of molecu-
lar motors along a cytoskeletal filament in terms of a master equation [118–120].
In its simplest form, such a model describes the movement of mutually excluding
motors as a hopping process on a one-dimensional lattice L ⊂ Z, with attachment
and detachment of motors at certain boundaries. To respect the mutual exclusion
of motors, their local number ni on a lattice site i ∈ L is restricted to 0 and 1.
Various other processes can be modelled in similar ways, for example, aggregation
processes [31], adsorption processes [339, 340], and directed percolation [34]. In
the following, we show how the generating function approach from section 2.1
and its complementary approach from section 2.2 c can be applied to such pro-
cesses. To illustrate the mathematics behind these approaches while not burdening
ourselves with too many indices, we demonstrate the approaches for the simple,
non-spatial telegraph process [341, 342]. This process describes a system that
randomly switches between two states that are called the “on” and “off” states, or,
for brevity, the “1” and “0” states. The rate at which the system switches from
state 1 to state 0 is denoted as µ, and the rate of the reverse transition as γ. For
simplicity, we assume these rate coefficients to be time-independent. Consequently,
the master equation of the telegraph process reads

∂τp =
(
−µ γ
µ −γ

)
p , (101)

with p(τ |·) = (p(τ, 1|·), p(τ, 0|·))ᵀ being the probability vector. Alternatively, the
master equation can be written as ∂τp(τ, n |·) = ∑

m∈{1,0}Q(n,m)p(τ,m |·) with
transition matrix elements

Q(n,m) = µ(δn,0 − δn,1)δm,1 + γ(δn,1 − δn,0)δm,0 . (102)

One can solve the above master equation in various ways, for example, by evaluat-
ing the matrix exponential in p(τ |τ0) = eQ(τ−τ0)1 after diagonalizing the transition
matrix. The resulting solution reads

p =
1

γ + µ

(
γ + e−(γ+µ)(τ−t0)(µδ1,n0 − γδ0,n0)
µ − e−(γ+µ)(τ−t0)(µδ1,n0 − γδ0,n0)

)
. (103)

In the following, the telegraph process serves as the simplest representative of
processes with excluding particles and it helps in explaining how the methods
from the previous sections are applied to such processes. The inclusion of spatial
degrees of freedom into the procedure is straightforward.
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To apply the generating function technique from section 2.1, we require
orthogonal and complete basis functions {|0〉, |1〉} and basis functionals {〈0|, 〈1|},
as well as a transition operator Q(q, ∂q ) fulfilling condition (Q), i.e., for n ∈ {0, 1},

Q|n〉 = µ�|0〉 − |1〉)δn,1 + γ�|1〉 − |0〉)δn,0 . (104)

An operator with this property can be constructed in (at least) two ways: using
creation and annihilation operators fulfilling the “bosonic” commutation relation
[a, c] = ac−c a = 1, or using operators fulfilling the “fermionic” anti-commutation
relation {a, c} B ac + c a = 1.

Let us first outline an approach based on the commutation relation. The
approach was recently proposed by van Wijland [95]. To illustrate the approach,
we take the “analytic” point of view with c(q, ∂q ) and a(q, ∂q ) being differential
operators. However, the following considerations also apply to the approach from
the previous section where c and a represented creation and annihilation matrices.
To cast a master equation such as (101) into a path integral, van Wijland employed
creation and annihilation operators with the same actions as in section 2.2 b, i.e.
c |n〉 = |n + 1〉 and a |n〉 = n |n − 1〉. Besides complying with the commutation
relation [a, c] = 1, these relations imply that the “number operator” N B c a
fulfils N |n〉 = n |n〉. This operator may be used to define the “Kronecker operator”

δN ,m B

ˆ π

−π

du
2π

eiu(N−m) (105)

in terms of a series expansion of its exponential. The Kronecker operator acts on
the basis functions as δN ,m |n〉 = δn,m |n〉, and thus it can be used to replace the
Kronecker deltas in (104). One thereby arrives at the flow equation

∂τ |g〉 = Q|g〉 = �
µ(a − 1)δN ,1 + γ(c − 1)δN ,0

�|g〉 . (106)

On the downside, the flow equation now involves power series with arbitrarily
high derivatives with respect to q (upon choosing the operators as c = q and
a = ∂q ). In section 5, we show how the solution of a flow equation such as (106)
can be expressed in terms of a path integral. The derivation of the path integral
requires that the transition operator Q(q, ∂q ) is normal-ordered with respect to q
and ∂q , i.e. that all the q are to the left of all the ∂q in every summand. This order
can be achieved by the repeated use of [∂q, q] f (q) = f (q). More information on
the procedure can be found in [95]. Van Wijland applied the resulting path integral
to the asymmetric diffusion of excluding particles on a one-dimensional lattice.
Moreover, Mobilia, Georgiev, and Täuber have employed the method in studying
the stochastic Lotka-Volterra model on d -dimensional lattices [158]. The diffusion
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of excluding particles on a network L is described by the master equation

∂τp(τ,n |·) =
∑

m∈{0,1}|L|
Q(n,m)p(τ,m |·) (107)

with the transition matrix

Q(n,m) =
∑
〈i j〉

εi, j
�
δni,1δn j ,0δn−ê i+ê j ,m − δni,0δn j ,1δn,m

�
. (108)

Here, the sum proceeds over all pairs 〈i j〉 of connected nodes i ∈ L and j ∈ L. The
corresponding condition (Q) on the transition operator is met by

Q =
∑
〈i j〉

εi, j (ci a j − 1)δNi,0δN j ,1 . (109)

For the special case of a one-dimensional lattice L and rates εi+1,i = D + v
2 and

εi,i+1 = D − v
2 , one obtains the diffusion operator studied by van Wijland [95].

An alternative to the above approach lies in the use of operators fulfilling
the anti-commutation relation {a, c} = ac + c a = 1. This relation is clearly not
fulfilled by c B q and a B ∂q , at least not if q represents an ordinary real variable.
However, ∂qq + q∂q = 1 holds true if q represents a Grassmann variable (see [343,
344] for details). Grassmann variables commute with real and complex numbers
(i.e. [q, α] = 0 for α ∈ C), but they anti-commute with themselves and with other
Grassmann variables (i.e. {q, q̃} = 0). Grassmann variables have, for example,
proven useful in calculating the correlation functions of kinetic Ising models [345],
even when the system is driven far from equilibrium [346].

Instead of using Grassmann variables for the basis, let us consider a representa-
tion of the basis defined by the unit row vectors 〈0| = (0, 1) and 〈1| = (1, 0), and
by the unit column vectors |0〉 = (0, 1)ᵀ and |1〉 = (1, 0)ᵀ. Obviously, these vectors
fulfil the orthogonality condition 〈m |n〉 = δm,n, and ∑

n |n〉〈n | = 1 is the 2-by-2
unit matrix. The anti-commutation relation {a, c} = 1 is met by the creation and
annihilation matrices

c B σ+ =
( 0 1

0 0

)
and a B σ− =

( 0 0
1 0

)
. (110)

The creation matrix acts as c |0〉 = |1〉 and c |1〉 = 0, and the annihilation matrix as
a |1〉 = |0〉 and a |0〉 = 0 (zero vector). Consequently, the matrix product c a fulfils
c a |0〉 = 0 and c a |1〉 = |1〉, and thus it serves the same purpose as the Kronecker
delta δn,1 in (104). Analogously, the operator ac serves the same purpose as δn,0.
The master equation (101) can therefore be written in a form resembling the flow
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equation (106), namely as

∂τp =
�
µ(a − 1)c a + γ(c − 1)ac�

p . (111)

In this form, the stochastic process mimics a spin-1/2 problem (especially, if the
creation and annihilation matrices are written in terms of the Pauli spin matrices
σx , σy , and σz ). More information on spin-representations of master equations is
provided in [71, 339, 340, 347–350]. A spin-representation has, for example, been
employed in the analysis of reaction-diffusion master equations via the density
matrix renormalization group [351, 352]. In their study of directed percolation
of excluding particles on the one-dimensional lattice Z, Brunel, Oerding, and van
Wijland performed a Jordan-Wigner transformation of the spatially extended “spin”
matrices ci B σ+i and ai B σ−i ( i ∈ Z) [34]. The transformed operators fulfill anti-
commutation relations not only locally but also non-locally, and thus represent
the stochastic process in terms of a “fermionic” (field) theory (the “operators”
are actually tensors). While the Jordan-Wigner transformation provides an exact
reformulation of the stochastic process, its applicability is largely limited to systems
with one spatial dimension. Moreover, the transformation requires that the
stochastic process is first rewritten in terms of a spin-1/2 chain (typically possible
only for processes with a single species). Based on the (coherent) eigenstates of
the resulting fermionic creation and annihilation operators, Brunel et al. then
derived a path integral representation of averaged observables. The paths of
these integrals proceed along the values of Grassmann variables. According to
van Wijland, the path integral “proved, from a technical view, rather difficult
to analyze” [95]. Further information on the Jordan-Wigner transformation,
Grassmann path integrals, and alternative approaches can be found in [31–33, 35,
36, 353–355].

2.3 Methods for the analysis of the generating function’s flow
equation

In the following, we outline various approaches that have recently been proposed
for the analysis of the generating function’s flow equation.

2.3 a A spectral method for the computation of stationary distributions

In their study of a linear transcriptional regulatory cascade of genes and proteins,
Walczak, Mugler, and Wiggins developed a spectral method for the computation
of stationary probability distributions [39]. They described the regulatory cascade
on a coarse-grained level in terms of the copy numbers of certain chemical “species”
at its individual steps. By imposing a Markov approximation, the dynamics of the
cascade was reduced to a succession of two-species master equations. The solution
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of each master equation served as input for the next equation downstream. Every
of the reduced master equations allowed for the following processes: First, each
of the master equation’s two species i ∈ {1, 2} is produced in a one-step process
whose rate γi(n1) depends only on the copy number n1 of the species coming
earlier along the cascade. Second, each of the two species degrades at a constant
per-capita rate µi . With n B (n1, n2)ᵀ ∈ N2

0, the corresponding master equation
reads

∂τp(τ,n |·) = γ1(n1 − 1)p(τ,n − ê1 |·) − γ1(n1)p(τ,n |·) (112)
+ γ2(n1)�p(τ,n − ê2 |·) − p(τ,n |·)�
+ µ1

�(n1 + 1)p(τ,n + ê1 |·) − n1p(τ,n |·)�
+ µ2

�(n2 + 1)p(τ,n + ê2 |·) − n2p(τ,n |·)� .
Here, the unit vector ê i points in the direction of the i-th species. The master
equation can be cast into a flow equation for the generating function |g(τ |·)〉 =∑

n p(τ,n |·)|n〉 by following the steps in section 2.1. For this purpose, we choose
the basis function as a multivariate extension of the basis function from the
introduction to section 2, i.e. as |n〉q B |n1〉q1 |n2〉q2 with

|ni〉qi B (qi + 1)nie−
γ̄i
µi
(qi+1) . (113)

The values of the auxiliary parameters γ̄1 and γ̄2 are only specified in a numerical
implementation of the method and affect its stability. Information on how their
values are chosen is provided in [39]. For our present purposes, the values of the
parameters remain unspecified. By differentiating the generating function with
respect to time, one finds that the generating function obeys the flow equation
(with the creation and annihilation operators ci B qi + 1 and ai B ∂qi +

γ̄i
µi

)

∂τ |g〉 =
∑
n∈N2

0

(
γ1(n1)�|n + ê1〉 − |n〉� + γ2(n1)�|n + ê2〉 − |n〉� (114)

+ µ1n1
�|n − ê1〉 − |n〉� + µ2n2

�|n − ê2〉 − |n〉�)p(τ,n |·)
=

((c1 − 1)γ̂1 + (c2 − 1)γ̂2 + µ1(1 − c1)a1 + µ2(1 − c2)a2
) |g〉 (115)

=
(
q1γ̂1 + q2γ̂2 − µ1q1

(
∂q1 +

γ̄1

µ1

)
− µ2q2

(
∂q2 +

γ̄2

µ2

)) |g〉 (116)

= (Q0 +Q1)|g〉 . (117)
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In the last line, we introduced the transition operators

Q0 B −
∑

i∈{1,2}
µiqi∂qi and (118)

Q1 B −
∑

i∈{1,2}
qi(γ̄i − γ̂i) . (119)

Here, the two new operators γ̂1 and γ̂2 are defined in terms of their actions
γ̂i |n1〉 = γi(n1)|n1〉 on the basis functions. Surprisingly, the explicit form of these
operators is not needed. Thus, the spectral method even allows for non-polynomial
growth rates γi(n1).

The operator Q0 has the same form as the transition operator of the bi-
directional reaction ∅ 
 A from the introductory example. Without the per-
turbation Q1, the above flow equation could thus be solved by extending the
previous ansatz (41) to two species. To accommodate Q1 as well, it proves useful
to generalize that ansatz to

|g(τ |·)〉 =
∑
k∈N2

0

|k〉〉Gk(τ |·) , (120)

with yet to be determined expansion coefficients Gk(τ |·). The auxiliary ket is
defined as |k〉〉q B |k1〉〉q1 |k2〉〉q2 with |ki〉〉qi = qkii and is orthogonal to the bra
〈〈k | B 〈〈k1 |〈〈k2 | with 〈〈ki | f B 1

ki !
∂
ki
qi f (qi)|qi=0. These bras can be used to ex-

tract the expansion coefficient via Gk(τ |·) = 〈〈k |g(τ |·)〉. Differentiation of this
coefficient with respect to time and imposing stationarity eventually results in a re-
currence relation for Gk that can be solved iteratively. The steady-state probability
distribution of the stochastic process is then recovered from the generating function
via the inverse transformation (51). Using the corresponding creation and annihila-
tion operators b̄i B qi and bi B ∂qi ( i.e. b̄i |ki〉〉 = |ki +1〉〉 and bi |ki〉〉 = ki |ki −1〉〉),
differentiation of the expansion coefficient Gk(τ |·) = 〈〈k |g(τ |·)〉 results in

∂τGk(τ |·) = 〈〈k |∂τ |g(τ |·)〉 (121)

= −
∑

i∈{1,2}
µikiGk −

∑
k ′∈N2

0

〈〈k |
∑

i∈{1,2}
b̄i(γ̄i − γ̂i)|k′〉〉Gk ′ .
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Since both γ̂1 and γ̂2 act only on the first species, we can write

∂τGk = −
∑

i∈{1,2}
µikiGk −

∑
k ′1∈N0

〈〈k1 − 1|γ̄1 − γ̂1 |k′1〉〉Gk ′1,k2 (122)

−
∑
k ′1∈N0

〈〈k1 |γ̄2 − γ̂2 |k′1〉〉Gk ′1,k2−1

with the help of 〈〈ki |b̄i = 〈〈ki − 1|. Defining the coefficients

Γ
(i)
k1,k ′1
B

∑
n1∈N0

〈〈k1 |n1〉�γ̄i − γ(n1)�〈n1 |k′1〉〉 , (123)

insertion of the identity operator
∑

n1 |n1〉〈n1 | into the above expression results in

∂τGk1,k2 = − (µ1k1 + µ2k2)Gk1,k2 (124)

−
∑
k ′1∈N0

�
Γ
(1)
k1−1,k ′1

Gk ′1,k2 + Γ
(2)
k1,k ′1

Gk ′1,k2−1
�
.

Here, the operators γ̂1 and γ̂2 were replaced by the rates γ(n1) and γ(n2). The
functional forms of the operators were not needed. Thus, the method is not
restricted to polynomial rates. The “bra-kets” 〈〈k1 |n1〉 and 〈n1 |k′1〉〉 can be derived
recursively as explained in [39, 330].

As the next step, the flow equation (124) can be rewritten in matrix form. For
that purpose, we let L denote a matrix only with ones on its lower sub-diagonal.
Therefore, the matrix acts as (LA)i, j = Ai−1, j on other matrices. Furthermore, we
define the diagonal matrix D(k2) via D(k2)k1,k ′1

= (µ1k1 + µ2k2)δk1,k ′1
, as well as

the vector G(k2) B {Gk1,k2}k1∈N0 . In a numerical implementation, the length of
G is restricted by a cut-off in the range of k2 [39]. Using these definitions, the flow
equation (124) reads

∂τG(k2) = −(D(k2) + LΓ(1))G(k2) + Γ(2)G(k2 − 1) . (125)

Upon imposing the stationarity condition ∂τG = 0, the flow equation can be
written in terms of the recurrence relation

G s (k2) = −(D(k2) + LΓ(1))−1Γ(2)G s (k2 − 1) . (126)
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The initial condition of the relation is determined by

G s
k1
(0) =

∑
n
〈〈k1, 0|n〉p s (n |·) = e−γ̄2/µ2

∑
n∈N2

0

〈〈k1 |n1〉p s (n |·) (127)

= e−γ̄2/µ2
∑
n1∈N0

〈〈k1 |n1〉p s (n1 |·) . (128)

Here, we introduced the stationary limit of the marginal distribution

p(τ, n1 |t0,n0) =
∑
n2∈N0

p(τ,n |t0,n0) . (129)

The time evolution of this distribution can be inferred by summing the master
equation (112) over n2, resulting in

∂τp(τ, n1 |·) = γ1(n1 − 1)p(τ, n1 − 1|·) − γ1(n1)p(τ, n1 |·)
+ µ1

�(n1 + 1)p(τ, n1 + 1|·) − n1p(τ, n1 |·) .
The steady-state of this equation is now obtained by introducing the shift operator
T +γ1(n1) = γ1(n1 + 1), so that

∂τp(τ, n1 |·) = (T + − 1)�µ1n1p(τ, n1 |·) − γ1(n1 − 1)p(τ, n1 − 1|·)� .
The right-hand side of this expression vanishes for

p s (n1 |·) = p s (n1 − 1|·)
n1

γ1(n1 − 1)
µ1

=
p s (0|·)
n1!

n1−1∏
i=0

γ1(i)
µ1

. (130)

One can now compute G s (0), and by iteration also G s (k2) for k2 > 0. The
stationary distribution then follows via the inverse transformation (51) as

p s (n |·) =
∑
k∈N2

0

〈n |k〉〉G s
k(|·) . (131)

In [39], Walczak et al. computed the steady-state distribution of the transcriptional
regulatory cascade by solving the above recurrence relation for G s

k numerically.
In [39], Walczak et al. computed the steady-state distribution of the transcrip-

tional regulatory cascade by solving the recurrence relation for G s
k numerically.

The resulting distribution was compared to distributions acquired via an iterative
method and via the stochastic simulation algorithm (SSA) of Gillespie. The spec-
tral method was found to be about 108 times faster than the SSA in achieving the
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same accuracy. But as we already mentioned in the introductory section 1.4, the
SSA generally performs poorly in the estimation of full distributions, especially in
the estimation of their tails. As the spectral method has only been applied to cas-
cades with steady-state copy numbers below n ≈ 30 thus far, it may be challenged
by a direct integration of the two-species master equation (after introducing a
reasonable cut-off in the copy numbers). The integration of ∼1000 coupled ODEs
does not pose a problem for modern integrators and the integration provides the
full temporal dynamics of the process (see [273] for efficient algorithms). In its
current formulation, the spectral method is limited to the evaluation of steady-state
distributions and to simple one-step birth-death dynamics. It would be interesting
to advance the method for the application to more complex processes (possibly
with spatial degrees of freedom), and to extend its scope to the temporal evolution
of distributions.

2.3 b WKB approximations and related approaches

The probability distribution describing the transcriptional regulatory cascade from
the previous section approaches a non-trivial stationary shape in the asymptotic
time limit τ → ∞ (cf. figure 2 in [39]). Often, however, a non-trivial shape of the
probability distribution persists only transiently and is said to be quasi-stationary
or metastable. The lifetime and shape of such a distribution can often be ap-
proximated in terms of a WKB approximation [89]. A WKB approximation of a
jump process starts out from an exponential (eikonal) ansatz for the shape of the
metastable probability distribution (“real-space” approach) or for the generating
function discussed in the previous sections (“momentum-space” approach). In-
formation on the real-space approach can be found in [68, 69, 151, 175, 176, 181,
356–365]. The recent review of Assaf and Meerson provides an in-depth discussion
of the applicability of the real- and momentum-space approaches [366].

In the following, we outline the momentum-space WKB approximation for
a system in which particles of type A annihilate in the binary reaction 2 A→ ∅
with rate coefficient µ, and are replenished in the linear reaction A→ 2 A with
rate coefficient γ � µ. According to a deterministic model of the combined
processes with rate equation ∂τ n̄ = γn̄ − 2µn̄2, the particle number n̄ converges to
an asymptotic value n̄∞ = γ/(2µ) � 1. However, a numerical integration of the
(truncated) master equation of the stochastic process shows that the mean particle
number stays close to n̄∞ only for a long but finite time (cf. figure 3). Asymptotic-
ally, all particles become trapped in the “absorbing” state n = 0. Consequently,
the conditional probability distribution converges to p(∞, n |t0, n0) = δn,0. Up
to a pre-exponential factor, the time after which the absorbing state is reached
can be readily estimated using a momentum-space WKB approximation as shown
below [40]. The value of the pre-exponential factor was determined by Turner and
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Figure 3 Comparison of the deterministic particle number n̄(τ) (blue dashed line) and
the mean particle number 〈n〉(τ) of the stochastic model (orange line) of the combined
processes 2 A → ∅ and A → 2 A. The annihilation rate coefficient was set to µ = 1,
the growth rate coefficient to γ = 150. The deterministic trajectory started out from
n̄(0) = 40, the numerical integration of the master equation from p(0, n |0, 40) = δn,40. The
deterministic trajectory converged to n̄∞ = 75 for very large times, whereas the mean
particle number approached a quasi-stationary value close to n̄∞ before converging to the
absorbing state n = 0. The inset shows the conditional probability distribution at time
τ = 1016. At this time, a significant share of particles was already in the absorbing state
and the distribution was bimodal.

Malek-Mansour using a recurrence relation [367], by Kessler and Shnerb using a
real-space WKB approximation (in terms of the decay rate) [359], and by Assaf and
Meerson upon combining the generating function technique with Sturm-Liouville
theory [368] (the latter method was developed in [41, 42]; see also [369]). Using
this method, Assaf and Meerson also succeeded in computing the shape of the
metastable distribution. Moreover, they showed how a momentum-space WKB
approximation can be used to determine mean extinction times for processes with
time-modulated rate coefficients [43].

Upon rescaling time as γ τ → τ, the chemical master equation (27) of the
combined processes A→ 2 A and 2 A→ ∅ translates into the flow equation

∂τ |g〉 =
[(q2 − q)∂q + 1

2n̄∞
(1 − q2)∂2

q
] |g〉 . (132)

of the ordinary generating function g(τ; q |·) = ∑
n qnp(τ, n |·) (cf. sections 2.1

and 2.2 b). A WKB approximation of the flow equation can be performed by
inserting the ansatz

g(τ; q |·) = eS(τ,q) (133)
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with the “action”

S(τ, q) = 2n̄∞
∞∑
k=0

Sk(τ, q)
n̄k
∞

(134)

into the equation, followed by a successive analysis of terms that are of the same
order with respect to the power of the small parameter 1/n̄∞. Note that the
exponential ansatz (133) often includes a minus sign in front of the action, which
we neglect for convenience. The pre-factor “2” of the action (134) is also included
just for convenience. Upon inserting the ansatz (133) into the flow equation (132),
one obtains the equality

∂τS0 +O(1/n̄∞) = H (q, ∂qS0) +O(1/n̄∞) (135)

with the “Hamiltonian”

H (q, x) B (q2 − q)x + (1 − q2)x2 . (136)

Thus, at leading order of 1/n̄∞, we have obtained a closed equation for S0, which
has the form of a Hamilton-Jacobi equation [370]. A Hamilton-Jacobi equation
can be solved by the method of characteristics [370], with the characteristic curves
q(s) and x(s) obeying Hamilton’s equations

∂s x =
∂H (q, x)

∂q
= (2q − 1)x − 2qx2 and (137)

∂−sq =
∂H (q, x)

∂x
= (q2 − q) + 2(1 − q2)x . (138)

These equations are, for example, solved by q(s) = 1 and x(s) being a solution of
∂s x = x−2x2. Note that this equation corresponds to a rescaled rate equation. The
Hamiltonian vanishes along the characteristic curve because H (1, x) = 0. Further
“zero-energy” lines of the Hamiltonian are given by x = 0 and by x(q) = q

1+q . These
lines partition the phase portrait of Hamilton’s equations into separate regions as
shown in figure 4. The path (q, q

1+q ) from the “active state” (q, x) = (1, 1
2 ) to the

“passive state” (0, 0) constitutes the “optimal path to extinction” (see below) [40,
43, 371].

In addition to Hamilton’s equations, the method of characteristics implies that
the action S0 obeys

d
ds

S0 = −
�
x ∂−sq − H (q, x)� (139)

along characteristic curves (the minus signs are only included to emphasize a
similarity with an action encountered later in section 7.1). According to Elgart
and Kamenev, the (negative) value of the action (134) along the optimal path
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Figure 4 Phase portrait of Hamilton’s equations (137) and (138). The Hamiltonian
H (q, x) in (136) vanishes along “zero-energy” lines (orange dotted lines). These lines
connect fixed points of Hamilton’s equations (green disks). Hamilton’s equations reduce
to the (rescaled) rate equation ∂s x = x − 2x2 along the line connecting the fixed points
(1, 0) and (1, 1/2). The zero-energy line connecting the fixed point (1, 1/2) to (0, 0) denotes
the “optimal path to extinction” and can be used to approximate the mean extinction time
of the process.

to extinction determines the logarithm of the mean extinction time τ̄ from the
metastable state in leading order of n̄∞ [40]. As this path proceeds along a zero-
energy line, the action (134) evaluates to

S ≈ 2n̄∞S0 = 2n̄∞
ˆ 0

1

q dq
1 + q

= −2n̄∞(1 − ln 2) . (140)

Upon returning to the original time scale via τ → γ τ, the mean extinction time
follows as

τ̄ = A γ−1e2n̄∞(1−ln 2) (141)

with pre-exponential factor A. The value of this factor has been determined
in [359, 367, 368] and reads, in terms of our rate coefficients, A = 2

√
π/n̄∞. More

information on the above procedure can be found in [40, 43]. The method has
also been applied to classic epidemiological models [371] and to a variant of the
Verhulst logistic model [372] (exact results on this model with added immigration
have been obtained in [373] using the generating function technique).

2.3 c A variational method

The generating function’s flow equation can also be analysed using a variational
method as proposed by Sasai and Wolynes [44, 374]. Their approach is based on a
method that Eyink had previously developed (primarily) for Fokker-Planck equa-
tions [88]. Instead of dealing with flow equation ∂τ |g〉 = Q̃τ |g〉 of the generating
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function in its differential form (or in terms of its spin matrix representation sec-
tion 2.2 d), the variational method involves a functional variation of the “effective
action” Γ =

´ t
t0 dτ 〈ψL |(∂τ − Q̃τ)|ψR〉 with |ψR〉 = |g〉. To perform this variation,

one requires an ansatz for the objects 〈ψL | and |ψR〉, being parametrized by the
variables {αL

i }i=1,...,S and {αR
i }i=1,...,S . The values of these parameters are determ-

ined by requiring that 〈ψL | is an extremum of the action. Besides its application
to networks of genetic switches [44], the variational method has been applied to
signalling in enzymatic cascades in [374]. An extension of the method to mul-
tivariate processes is described in [375]. Whether or not the variational method
provides useful information mainly depends on making the right ansatz for 〈ψL |
and |ψR〉. The method itself does not suggest their choice. It remains to be seen
whether the method can be applied to processes for which only little is known
about the generating function.

2.4 Résumé

In the present section, we formulated general conditions under which the forward
master equation (11) can be transformed into a linear partial differential equation,
a “flow equation”, obeyed by the probability generating function

|g(τ |t0, n0)〉 =
∑
n

|n〉 p(τ, n |t0, n0) . (142)

First, the conditions (C) and (O) require that there exists a complete and ortho-
gonal basis comprising a set of basis functions {|n〉} and a set of basis functionals
{〈n |}. The basis functionals recover the conditional probability distribution via
p(τ, n |t0, n0) = 〈n |g(τ |t0, n0)〉 and the right choice of the basis functions may help
to obtain a simplified flow equation. We introduced different bases for the study
of random walks, of chemical reactions, and of processes with locally excluding
particles in section 2.2. Moreover, the conditions (E) and (Q) require that there
exist two differential operators: a basis evolution operator Eτ encoding the pos-
sible time-dependence of the basis, and a transition operator Qτ encoding the
actual dynamics of the process. The generating function (142) then obeys the flow
equation

∂τ |g〉 = (Eτ +Qτ)|g〉 = Q̃τ |g〉 . (143)

Various methods have recently been proposed for the study of such a flow equation
and were outlined in section 2.3. These methods include the variational approach
of Eyink [88] and of Sasai and Wolynes [44], WKB approximations and spectral
formulations of Elgart and Kamenev and of Assaf and Meerson [40–42], and the
spectral method of Walczak, Mugler, and Wiggins [39]. Thus far, most of these
methods have only been applied to systems without spatial degrees of freedom
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and with only one or a few types of particles. Future research is needed to
overcome these limitations. Later, in section 5, we show how the solution of
the flow equation (143) can be represented by a path integral. The evaluation
of the path integral is demonstrated in computing the generating function of
general linear processes. Moreover, we explain in section 7 how this path integral
connects to a recent method of Elgart and Kamenev for the computation of
rare event probabilities [40]. One can also use the path integral to derive a
path integral representation of averaged observables. But a simpler route to this
representation starts out from a different flow equation, a flow equation obeyed
by the “marginalized distribution”.

3 The marginalized distribution and the probability
generating functional

In the following, we discuss two further ways of casting the forward and backward
master equations into linear PDEs. The first of these flow equations is obeyed
by a “marginalized distribution” and is easily derived from the backward master
equation (14). The equation proves useful in the computation of mean extinction
times. Moreover, it provides a most direct route to path integral representations
of the conditional probability distribution and of averaged observables. To our
knowledge, the flow equation of the marginalized distribution has not been
considered thus far. In section 3.4, we then introduce a probability generating
“functional” whose flow equation is derived from the forward master equation. The
transformation mapping the functional to the conditional probability distribution
is shown to generalize the Poisson representation of Gardiner and Chaturvedi [37,
38].

3.1 Flow of the marginalized distribution

The generalized probability generating function (48) was defined by summing the
conditional probability distribution p(τ, n |t0, n0) over a set of basis functions, the
kets {|n〉}. In the following, we consider the distribution p(t, n |τ, n0) instead, i.e.
we fix the final time t while keeping the initial time τ variable. By summing this
distribution over a set of basis functions {|n0〉τ}, one can define the series

|p(t, n |τ)〉 B
∑
n0

p(t, n |τ, n0)|n0〉 . (144)

As before, the subscript denoting the time-dependence of the basis function is
typically dropped. The variables n and n0 again represent states from some
countable state space. Assuming that the basis functions {|n〉} and appropriately
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chosen basis functionals {〈n |} form a (C)omplete and (O)rthogonal basis, the
conditional probability distribution can be recovered from (144) via

p(t, n |τ, n0) = 〈n0 |p(t, n |τ)〉 . (145)

We call the function |p(t, n |τ)〉 a “marginalized distribution” because it proves
most useful when the summation in (144) constitutes a marginalization of the
conditional probability distribution p(t, n |τ, n0) over a probability distribution
|n0〉. The marginalized distribution then represents a “single-time distribution”
with respect to the random variable n in the sense of section 1.3. A basis function
to which these considerations apply is the “Poisson basis function” |n0〉x B xn0e−x

n0! .
We make heavy use of this basis function in the study of chemical reactions in
section 3.2 b. Since the definition of the marginalized distribution in (144) does
not affect the random variable n, the marginalized distribution of course solves the
forward master equation ∂t |p(t, n |τ)〉 = ∑

m Qt (n,m)|p(t,m |τ)〉 with the initial
condition |p(τ, n |τ)〉 = |n0〉τ. In the following, we formulate conditions under
which |p〉 also obeys a linear PDE evolving backward in time.

Before proceeding, let us briefly note that if the basis function of the marginal-
ized distribution is not chosen as a probability distribution, the name marginalized
“distribution” is somewhat of a misnomer; that is, for example, the case for the
Fourier basis |n0〉x B ein0x , which we consider in section 3.2 a.

The derivation of the linear PDE obeyed by the marginalized distribution
proceeds analogously to the derivation in section 2.1. But instead of employing
the forward master equation, we now employ the backward master equation
∂−τp(t |τ) = p(t |τ)Qτ for this purpose (recall that p(t |τ) is the matrix with ele-
ments p(t, n |τ, n0)). Upon differentiating the marginalized distribution (144) with
respect to the time parameter τ, one obtains the equation

∂−τ |p〉 =
∑
n0

p(·|τ, n0)
(
−∂τ |n0〉 +

∑
m

|m〉Qᵀτ (m, n0)
)
. (146)

The rateQᵀτ (m, n0) = Qτ(n0,m) represents an element of the transposed transition
matrix Qᵀτ .

As in section 2.1, two differential operators are required to turn the above
expression into a linear PDE. First, we require a basis evolution operator Eτ(x, ∂x )
fulfilling Eτ |n0〉 = ∂τ |n0〉 for all values of n0. The previous evolution operator (E)
serves this purpose. A second differential operator Q†τ(x, ∂x ) is required to encode
the information stored in the transition matrix. This operator should be a power
series in ∂x and fulfil, for all n0,

Q†τ |n0〉 =
∑
m

|m〉Qᵀτ (m, n0) . (Qᵀ )
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By the (C)ompleteness of the basis, one could also define this operator construct-
ively as

Q†τ B
∑
m,n0

|m〉Qᵀτ (m, n0)〈n0 | . (148)

We wrote these expressions in terms of the transposed transition matrix because
for the unit column vectors |m〉 = êm and the unit row vectors 〈n | = ê

ᵀ

n , Q†τ and
Qᵀτ coincide (with m, n ∈ N0). As we mostly consider bases whose kets and bras
represent functions and functionals, we call Q†τ the “adjoint” transition operator in
the following. Often, an operator O†(x, ∂x ) is said to be the adjoint of an operator
O(x, ∂x ) if the following relation holds with respect to two test functions f and g :

ˆ
dx

�
O†(x, ∂x ) f (x)�g (x) =

ˆ
dx f (x)�O(x, ∂x )g (x)� . (149)

However, whether an operator Qτ complementing the above Q†τ actually exists
will not be important in the following (except in our discussion of the Poisson
representation in section 3.5).

Provided that both a basis evolution operator Eτ and an adjoint transition
operator Q†τ are found for a particular process, it follows from the backward-
time equation (146) that the marginalized distribution |p(t, n |τ)〉 obeys the flow
equation7

∂−τ |p〉 = (−Eτ +Q†τ)|p〉 C Q̃†τ |p〉 . (150)

The evolution of this equation proceeds backward in time, starting out from the
final condition |p(t, n |t )〉 = |n〉.

In section 4, we show how the flow equation (150) can be solved in terms
of a “backward” path integral. Provided that the basis function |n〉 is chosen as

7 In the derivation of the backward path integral in section 4.1, we employ the finite difference
approximation

∂−τ |p(t, n |τ)〉 = lim
∆t→0

|p(·|τ − ∆t )〉 − |p(·|τ)〉
∆t

= lim
∆t→0

(∑
n0

�
p(·|τ, n0) +O(∆t )� |n0〉τ−∆t − |n0〉τ

∆t
+

∑
n0

p(·|τ − ∆t, n0) − p(·|τ, n0)
∆t

|n0〉τ
)

= lim
∆t→0

�
−Eτ−∆t,∆t +Q†τ−∆t,∆t

�|p(·|τ)〉 = lim
∆t→0

Q̃†
τ−∆t,∆t |p(·|τ)〉 ,

with the operators being defined through their following actions on the basis functions:

Eτ−∆t,∆t |n0〉τ = |n0〉τ − |n0〉τ−∆t
∆t

and Q†
τ−∆t,∆t |n0〉τ =

∑
m

|m〉τQᵀτ−∆t,∆t (m, n0) .

The discretization scheme conforms with the derivation of the backward master equation (14).
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a probability distribution, this path integral represents a true probability distri-
bution: the marginalized distribution. The fact that the backward path integral
represents a probability distribution distinguishes it from the “forward” path
integral in section 5. The forward path integral represents the probability gen-
erating function (48). Both the forward path integral and the backward path
integral can be used to derive a path integral representation of averaged observ-
ables, as we show in section 6. The derivation of this representation from the
backward path integral, however, is significantly easier. In fact, the path integral
representation of the average of an observable A will follow directly by summing
the backward path integral representation of the marginalized distribution over
A(n), i.e. via 〈A〉 = ∑

n A(n)|p(t, n |τ)〉. Note that this average also obeys the flow
equation (150). In section 3.3, we demonstrate how the flow equation can be used
to compute mean extinction times.

Before introducing bases for the analysis of different stochastic processes, let us
briefly note that if a process is homogeneous in time, its marginalized distribution
depends only on the difference t − τ. The above flow equation can then be
rewritten so that it evolves |p(τ, n |0)〉 forward in time τ, starting out from the
initial condition |p(0, n |0)〉 = |n〉. In section 3.3, we make use of this property to
compute mean extinction times.

3.2 Bases for particular stochastic processes

To demonstrate the application of the marginalized distribution (144), let us
reconsider the random walk from section 2.2 a and the chemical reaction from
section 2.2 b. The “Poisson basis function” introduced in the latter section will be
employed in the computation of mean extinction times in section 3.3. Moreover, it
will allow us to recover the Poisson representation of Gardiner and Chaturvedi [37,
38] in section 3.5.

3.2 a Random walks

The following solution of the random walk largely parallels the previous derivation
in section 2.2 a. In particular, we again use the orthogonal and complete Fourier
basis |n〉x = einx and 〈n | f = ´ π

−π
dx
2π e
−inx f (x) with n ∈ Z. Due to the time-

independence of the basis, the (E)volution operator Eτ is zero. The condition (Qᵀ )
on the adjoint transition operator Q†τ is specified by the transition matrix (63) of
the process and reads

Q†τ |n0〉 = rτ(|n0 − 1〉 − |n0〉) + lτ(|n0 + 1〉 − |n0〉) . (151)

As before, we employ the operators c(x) = eix and a(x) = e−ix , which act on the
basis functions as c |n〉 = |n + 1〉 and a |n〉 = |n − 1〉, respectively. Therefore, the
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adjoint transition operator with the above property can be defined as

Q†τ(x, ∂x ) B rτ
�
a(x) − 1) + lτ(c(x) − 1

�
. (152)

As this operator does not contain any derivatives, it is self-adjoint in the sense
of (149). Due to a mismatch in signs, it is, however, not the adjoint of the previous
operator Qτ in (65). This mismatch could be corrected by redefining the above
basis function as |n〉x B e−inx . Ignoring this circumstance, the flow equation of
the marginalized distribution follows as

∂−τ |p〉 = �
rτ(e−ix − 1) + lτ(eix − 1)�|p〉 , (153)

and is solved by

|p〉 = exp
((e−ix − 1)

ˆ t

τ
ds r s + (eix − 1)

ˆ t

τ
ds ls

) |n〉 . (154)

The conditional probability distribution is recovered via the inverse Fourier trans-
formation p(t, n |τ, n0) = 〈n0 |p〉. Upon inserting the explicit representation of the
basis, the derivation proceeds as in appendix C (with the substitutions x → −q ,
τ → t0 and t → τ ). Eventually, one recovers a Skellam distribution as the solution
of the process.

3.2 b Chemical reactions

To prepare the computation of mean extinction times in the next section as well
as the derivation of the Poisson representation in section 3.5, we now reconsider
processes that can be decomposed additively into chemical reactions of the form
k A → l A. Our later derivation of a path integral representation of averaged
observables is also restricted to such processes. The state space of the number of
molecules is again N0. Analogous to section 2.2 b, we require an (O)rthogonal and
(C)omplete basis, an (E)volution operator Eτ and an adjoint transition operator
Q†τ (condition (Qᵀ )) to specify the flow equation of the marginalized distribution.

As discussed in section 2.2 b, the elements of the transition rate matrix
of the reaction k A → l A with rate coefficient γτ are given by Qτ(m, n) =
γτ(n)k(δm,n−k+l − δm,n). The condition (Qᵀ ) on the adjoint transition operator
therefore reads

Q†τ |n0〉 = γτ�(n0 − l + k)k |n0 − l + k〉 − (n0)k |n0〉� . (155)
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This condition is met by8

Q†τ(c, a) B γτck(al − ak) , (156)

provided that there exist operators c and a fulfilling

c |n〉 = (n + 1)|n + 1〉 and (157)
a |n〉 = |n − 1〉 , (158)

respectively. We again call c the creation and a the annihilation operator, even
though the pre-factors in the above relations differ from the ones in (70) and (71).
Similar relations also hold with respect to the basis functionals, namely 〈n |c =
n〈n − 1| and 〈n |a = 〈n + 1| (assuming the orthogonality of the basis). The
operators also fulfil the commutation relation [a, c] = 1.

The actions of the creation and annihilation operators on the basis functions
hint at how the basis functions and functionals from section 2.2 b can be adapted
to meet the present requirements. In particular, the relations (157) and (158) can
be fulfilled by moving the factorial from the basis functional (81) to the basis
function (75) so that

|n〉x B (ζ x + x̃)ne−q̃(ζ x+x̃)
n!

and (159)

〈n | f B an f (x)�x=−x̃/ζ . (160)

Let us briefly note that we changed the argument of the basis function from q to
x as compared to section 2.2 b because both the generating function approach and
the marginalized distribution approach thereby result in the same path integral
representation of averaged observables (cf. section 6). Apart from this notational
change, the basis evolution operator9

Eτ(c, a) B (∂τ x̃)(a − q̃) − (∂τ q̃)c (162)

8 The discrete-time approximation of the operator as required in section 3.1 reads

Q†
τ−∆t,∆t = γτ−∆t c

k
τ (alτ − akτ )

Upon making an error of O(∆t ), we employ the following discretization in section 7.3:

Q†
τ−∆t,∆t = γτ−∆t c

k
τ−∆t (alτ−∆t − akτ−∆t ) .

9 A backward-time discretization of the operator reads

Eτ−∆t,∆t =
x̃(τ) − x̃(τ − ∆t )

∆t
(aτ − q̃(τ)) − q̃(τ) − q̃(τ − ∆t )

∆t
cτ .
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keeps the form it had in (90). The creation and annihilation operators also keep
their previous forms in (78) and (79), i.e.

c(x, ∂x ) B ζ x + x̃ and (163)
a(x, ∂x ) B ∂ζ x + q̃ . (164)

Despite their similar appearance, the operator Q†τ in (156) is not the adjoint of the
operator Qτ in (69). Nevertheless, the two operators fulfil Qτ(q, x) = Q†τ(x, q)
for scalar arguments. This relation is essentially the reason why we interchanged
the letters x and q as compared to section 2.2 b. Both the generating function
approach and the marginalized distribution approach thereby lead to the same path
integral representation of averaged observables, as will be shown in section 6.1.

The choice of the parameters ζ , 0, x̃(τ), and q̃(τ) in the basis function (159)
depends on the problem at hand. In section 7, x̃ and q̃ will act as “stationary” or
“extremal” paths, with x and an auxiliary variable q being deviations from them.
For ζ B q̃ B 1 and x̃ B 0, the basis function instead simplifies to the Poisson
distribution

|n〉x = xne−x

n!
. (165)

In the following, we make heavy use of this “Poisson basis function”. It will
play a crucial role in the formulation of a path integral representation of averaged
observables in section 6 and in recovering the Poisson representation in section 3.5.

Let us demonstrate the use of the Poisson basis function for the linear decay
process A→ ∅ with rate coefficient µτ. For the above choice of ζ , x̃ , and q̃ , the
creation operator (163) reads c = x and the annihilation operator (164) reads
a = ∂x + 1. With the transition operator (156), the flow equation (150) obeyed by
the marginalized distribution |p(t, n |τ)〉x follows as

∂−τ |p〉 = −µτx∂x |p〉 . (166)

This equation is solved by the Poisson distribution

|p(t, n |τ)〉x =
(αt,τx)ne−αt,τ x

n!
(167)

whose mean αt,τ x decays proportionally to αt,τ B e−
´ t
τ ds µs . To interpret this

solution, let us recall that the sum in the definition of the marginalized distribu-

Upon making an error of O(∆t ), we employ the following discretization in section 7.3:

Eτ−∆t,∆t =
x̃(τ) − x̃(τ − ∆t )

∆t
(aτ−∆t − q̃(τ − ∆t )) − q̃(τ) − q̃(τ − ∆t )

∆t
cτ−∆t . (161)
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tion (144) does not affect the particle number n. Therefore, upon relabelling the
time parameters, the above solution (167) also solves the forward master equation
of the process, namely

∂τ |p(τ, n |t0)〉x = µτ
�(n + 1)|p(τ, n + 1|t0)〉x − n |p(τ, n |t0)〉x

�
. (168)

Unlike the conditional distribution p(τ, n |t0, n0), however, the marginalized distri-
bution |p(τ, n |t0)〉x describes the dynamics of a population whose particle number
at time t0 is Poisson distributed with mean x . The conditional distribution is
recovered from it via the inverse transformation p(τ, n |t0, n0) = 〈n0 |p(τ, n |t0)〉
with 〈n0 | f = (∂x + 1)n0 f (x)|x=0. This transformation results in the Binomial
distribution

p(τ, n |t0, n0) =
(
n0

n

)�
ατ,t0

�n�
1 − ατ,t0

�n0−n . (169)

Both the mean value e−
´ τ
t0

ds µsn0 and the variance (1 − e−
´ τ
t0

ds µs ) e−
´ τ
t0

ds µsn0 of
this distribution decay exponentially for large times, provided that µs > 0.

If at most two reactants and two products are involved in a reaction, the
flow equation (150) of the marginalized distribution has the mathematical form
of a backward Fokker-Planck equation. That is, for example, the case for the
coagulation reaction 2 A→ A. For the Poisson basis function, the marginalized
distribution |p(t, n |τ)〉x of this process obeys the flow equation

∂−τ |p〉 = ατ(x)∂x |p〉 + 1
2
βτ(x)∂2

x |p〉 , (170)

with the drift coefficient ατ(x) B −µτx2 and the diffusion coefficient βτ(x) B
−2µτx2. Unlike the diffusion coefficient of the “true” backward Fokker-Planck
equation (2), this diffusion coefficient may be negative (e.g. for x ∈ R\{0}). The
final condition |p(t, n |t )〉x = xne−x

n! and the Feynman-Kac formula (449) imply that
the above flow equation is solved by

|p(t, n |τ)〉x =
〈〈 x(t )ne−x(t )

n!
〉〉
W
. (171)

Here, x(s) obeys the Itô SDE

dx(s) = αs (x(s)) ds +
√
βs (x(s)) dW (s) , (172)

which evolves x(s) from x(τ) = x to x(t ). The symbol 〈〈·〉〉W represents an
average over realizations of the Wiener processW . Since the diffusion coefficient
βτ(x) = −2µτx2 of the coagulation process can take on negative values, the sample
paths of the SDE may acquire imaginary components. This circumstance does
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not prevent the use of (171) for the calculation of |p(t, n |τ)〉, although it may
complicate numerical evaluations. Recently, Wiese attempted the evaluation of
the average in (171) via the generation of sample paths [338]. Over a short time
interval [τ, t ], he found a good agreement between the resulting distribution and
a distribution effectively acquired via the stochastic simulation algorithm (SSA)
in section 1.3. Over larger time intervals, however, the integration of the SDE
encountered problems regarding its numerical convergence. Future research is
needed to overcome this limitation. Moreover, it remains an open challenge to
specify the boundary conditions of the PDE (170) to enable its direct numerical
integration (an analogous problem is encountered for the flow equation of the
generating function, cf. [368]).

3.3 Mean extinction times

One often wishes to know the mean time at which a process first hits some target in
state space. Such a target could, for example, be a state in which no more particles
are left in the system. If the particles only replenish through auto-catalysis, the
process will then come to a halt. The mean time after which that happens is called
the mean extinction time. For Markov processes with continuous sample paths,
mean extinction times and, more generally, first-passage times, are commonly
calculated with the help of the backward Fokker-Planck equation (2). For jump
processes, one can use the backward master equation for this purpose. The
calculation, however, is typically feasible only for one-step processes and involves
the solution of a recurrence relation [115, 217]. In [376], Drummond et al. recently
showed how the calculation can be simplified using the Poisson representation of
Gardiner and Chaturvedi [37, 38]. We introduce this representation in section 3.5.
In the following, we outline how mean extinction times can instead be inferred in
an analogous way using the marginalized distribution from the previous sections.
For the Poisson basis function |n0〉x = xn0e−x

n0! , the marginalized distribution is a
true (single-time) probability distribution and is more easily interpreted than the
integral kernel of the Poisson representation.

We again consider a process that can be decomposed additively into chemical
reactions of the form k A→ l A. In addition, the transition matrix Q†τ = Q† of
the process shall now be time-independent and the particles in the system shall be
Poisson distributed with mean x at time τ = 0. Consequently, the probability of
finding n particles in the system at time τ ≥ 0 is described by the marginalized
distribution |p(τ, n |0)〉x , provided that its basis function is chosen as |n0〉x B xn0e−x

n0!
(cf. the definition (144) of the marginalized distribution). Since the Poisson basis
function is independent of time and the process under consideration homogeneous
in time, the marginalized distribution |p(τ, n |0)〉x obeys the forward-time flow
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equation (cf. (150))
∂τ |p〉 = Q† |p〉 . (173)

We define the probability of finding the system in an “active” state with n > 0
particles at time τ ≥ 0 as

α(τ; x) B
∞∑
n=1

|p(τ, n |0)〉x = 1 − |p(τ, 0|0)〉x . (174)

Over time, this probability flows into the “absorbing” state n = 0 at rate f (τ, x) B
−∂τα(τ; x). Since f (τ, x) dτ is the probability of becoming absorbed during the
time interval [τ, τ + ∆t ], one can define the mean extinction time as 〈τ〉x B´ ∞
0 dτ τ f (τ, x). An integration by parts transforms this average into

〈τ〉x = −
ˆ ∞

0
dτ τ∂τα(τ; x) =

ˆ ∞
0

dτ α(τ; x) . (175)

The boundary terms of the integration by parts vanished because we assume that all
particles are eventually absorbed (in particular, we assume limτ→∞ τα(τ; x) = 0).
The definition of the probability α(τ; x) in (174) implies that it fulfils the same
forward-time flow equation as the marginalized distribution |p(τ, n |0)〉x . Since
limτ→∞ α(τ; x) = 0, the mean extinction time (175) therefore obeys

−Q†(x, ∂x )〈τ〉x = α(0; x) = 1 − e−x . (176)

The last equality follows from the fact that a certain fraction of all particles, namely
e−x , has already been in the absorbing state initially. The above derivation readily
extends to higher moments of the mean extinction time.

For the linear decay process A → ∅ with decay rate coefficient µ, the equa-
tion (176) for the mean extinction time reads

µ∂x〈τ〉x = (1 − e−x )/x . (177)

This equation implies that the mean extinction time µ〈τ〉x increases logarithmically
with the particles’ mean initial distance x from the absorbing state (see figure 5).
The explicit solution of the equation is µ〈τ〉x = ln x + γ − Ei(−x) with Euler’s
constant γ and the exponential integral Ei (6.2.6 in [337]; the exponential integral
ensures that 〈τ〉0 = 0). The application of the functional 〈n0 | f = (∂x+1)n0 f (x)�x=0
to the solution returns the mean extinction time of particles whose initial number
is not Poisson distributed but that is fixed to some value n0 ≥ 0. The corresponding
mean extinction time µ〈τ〉n0 is given by the harmonic number Hn0 B

∑n0
i=1

1
i .
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Figure 5 Mean extinction time µ〈τ〉 of the linear decay process A→ ∅ with decay rate
coefficient µ. The blue line represents the mean extinction time if the number of particles
is initially Poisson distributed with mean x ∈ R≥0 ( µ〈τ〉x = ln x + γ − Ei(−x)). The
red circles represent the mean extinction time if the initial number of particles is set to
n0 ∈ N0 (harmonic number µ〈τ〉n0 = Hn0 ).

One can also infer the above result directly from the backward master equation

∂τp(τ, n |0, n0) =
∑
m∈Z

�
p(τ, n |0,m) − p(τ, n |0, n0)�w(m, n0) . (178)

The probability of finding the system in an active state is now given by α(τ, n0) B∑
n>0 p(τ, n |0, n0). Choosing n0 > 0, the initial probability fulfils α(0, n0) = 1.

The rate of extinction is given by f (τ, x) B −∂τα(τ, n0) and the mean time of
extinction by 〈τ〉n0 B

´ ∞
0 dτ τ f (τ, n0). (175) still applies in the sense of

〈τ〉n0 =

ˆ ∞
0

dτ α(τ, n0) . (179)

Moreover, the backward master equation implies

∂τα(τ, n0) =
∑
m∈Z

�
α(τ,m) − α(τ, n0)�w(m, n0) (180)

and can be used to transform the previous equation into∑
m∈Z

�〈τ〉n0 − 〈τ〉m
�
w(m, n0) = 1 . (181)
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For the linear decay process with w(m, n0) = µn0δm,n0−1, this equality reads

µn0
�〈τ〉n0 − 〈τ〉n0−1

�
= 1 . (182)

With the initial condition 〈τ〉0 = 0, the solution of the equation follows as the
harmonic number

µ〈τ〉n0 =

n0∑
i=1

1
i
= Hn0 . (183)

A summation of the harmonic number over a Poisson distribution with mean x
results in the previous solution.

Drummond et al. have extended the above computation to chemical reactions
with at most two reactants and two products [376]. For these reactions, the flow
equation (173) has the mathematical form of a (forward) Fokker-Planck equation
with adjoint transition operator

Q†(x, ∂x ) = α(x)∂x + 1
2
β(x)∂2

x . (184)

3.4 Flow of the generating functional

Both the probability generating function (48) and the marginalized distribu-
tion (144) were defined by summing the conditional probability distribution
over a set of basis functions, either at the final or at the initial time. In addition,
one can define the “probability generating functional”

〈g(τ |t0, n0)| B
∑
n

〈n |p(τ, n |t0, n0) (185)

by summing the conditional distribution over the set {〈n |} of basis functionals.
The definition of the generating functional is meant with respect to test functions
that can be expanded in the basis functions {|n〉}. As before, we assume that the
basis functions and functionals constitute a (C)omplete and (O)rthogonal basis.
The probability generating functional “generates” probabilities in the sense that

p(τ, n |t0, n0) = 〈g(τ |t0, n0)|n〉 . (186)

In the next section, we show how this inverse transformation reduces to the
Poisson representation of Gardiner and Chaturvedi [37, 38] upon choosing the
basis function |n〉 as a Poisson distribution.

The derivation of the flow equation of 〈g | proceeds analogously to the deriva-
tions in sections 2.1 and 3.1. Differentiation of its definition (185) with respect to
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τ and use of the forward master equation ∂τp(τ |t0) = Qτp(τ |t0) result in

∂τ〈g | =
∑
n

(
∂τ〈n | +

∑
m

Qᵀτ (n,m)〈m |)p(τ, n |·) . (187)

This equation can be cast into a linear PDE by using the basis (E)volution operator
Eτ and the adjoint transition operator Q†τ (condition (Qᵀ )). In particular, since
the Kronecker delta 〈n |m〉 = δn,m is independent of time, it holds that 〈n |∂τ |m〉 =
(−∂τ〈n |)|m〉. Consequently, the basis evolution operator in condition (E) fulfils

〈n |Eτ = −∂τ〈n | (188)

with respect to functions that can be expanded in the basis functions. Moreover, the
(O)rthogonality and (C)ompleteness of the basis imply that the adjoint transition
operator in condition (Qᵀ ) acts on basis functionals as

〈n |Q†τ =
∑
m

Qᵀτ (n,m)〈m | . (189)

Both of the above expressions hold for all values of n. If the two differential oper-
ators Eτ and Q†τ exist, the generating functional 〈g(τ |t0, n0)| obeys the functional
flow equation

∂τ〈g | = 〈g |(−Eτ +Q†τ) = 〈g |Q̃†τ , (190)

with initial condition 〈g(t0 |t0, n0)| = 〈n0 |. The flow equation employs the same op-
erator as the flow equation (150) of the marginalized distribution. Both equations
can be used to derive the “backward” path integral considered in section 4.10

As a side note, let us remark that the flow equation ∂τ |g〉 = (Eτ +Qτ)|g〉 of the
generating function in (57) also admits a functional counterpart. In particular, the
series

〈p(t, n |τ)| B
∑
n0

p(t, n |τ, n0)〈n0 | (191)

10 The backward path integral in section 4 can be derived using the finite difference approximation

∂τ〈g(τ |t0, n0 | = lim
∆t→0

〈g(τ + ∆t |·)| − 〈g(τ |·)|
∆t

= lim
∆t→0

(∑
n

〈n |τ+∆t − 〈n |τ
∆t

�
p(τ, n |·) +O(∆t )� +

∑
n

〈n |τ
p(τ + ∆t, n |·) − p(τ, n |·)

∆t

)
= lim
∆t→0

〈g(τ |·)|�−Eτ,∆t +Q†τ,∆t
�
= lim
∆t→0

〈g(τ |·)|Q̃†
τ,∆t ,

with the operators being defined through their following actions on the basis functionals:

〈n |τEτ,∆t = − 〈n |τ+∆t − 〈n |τ
∆t

and 〈n |τQ†τ,∆t =
∑
m

Qᵀτ,∆t (n,m)〈m |τ .
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obeys the flow equation

∂−τ〈p | =
∑
n0

p(·|τ, n0)
(
∂−τ〈n0 | +

∑
m

Qτ(n0,m)〈m |) (192)

= 〈p |(Eτ +Qτ) = Q̃τ〈p | , (193)

with final value 〈p(t, n |t )| = 〈n |. The corresponding inverse transformation reads
p(t, n |τ, n0) = 〈p(t, n |τ)|n0〉. Both the flow equation obeyed by the generating
function and the above flow equation can be used to derive the “forward” path
integral representation in section 5.11 Further uses of the series (191) remain to be
explored.

3.5 The Poisson representation

Assuming that the action of the generating functional 〈g | on a function f can be
expressed in terms of an integral kernel (also called g) as

〈g(τ |t0, n0)| f =
ˆ ∞
−∞

dx g(τ; x |t0, n0) f (x) , (194)

The discretization scheme conforms with the derivation of the forward master equation (11).
The operator Eτ,∆t from section 2.1 fulfils the first condition in O(∆t ) because

〈n |τEτ,∆t |m〉τ = 〈n |τ |m〉τ+∆t − |m〉τ
∆t

=
1
∆t

[(〈n |τ+∆t − �〈n |τ+∆t − 〈n |τ
�) |m〉τ+∆t − δm,n

]

= −
〈n |τ+∆t − 〈n |τ

∆t
|m〉τ+∆t = − 〈n |τ+∆t − 〈n |τ

∆t
|m〉τ +O(∆t ) .

11 The forward path integral in section 5 can be derived using the finite difference approximation:

∂−τ〈p(t, n |τ)| = lim
∆t→0

〈p(·|τ − ∆t )| − 〈p(·|τ)|
∆t

= lim
∆t→0

(∑
n0

�
p(·|τ, n0) +O(∆t )� 〈n0 |τ−∆t − 〈n0 |τ

∆t
+

∑
n0

p(·|τ − ∆t, n0) − p(·|τ, n0)
∆t

〈n0 |τ
)

= lim
∆t→0

〈p(·|τ)|�Eτ−∆t,∆t +Qτ−∆t,∆t
�
= lim
∆t→0

〈p(·|τ)|Q̃τ−∆t,∆t ,

with the operators being defined through their following actions on the basis functionals:

〈n0 |τEτ−∆t,∆t = 〈n0 |τ−∆t − 〈n0 |τ
∆t

and 〈n0 |τQτ−∆t,∆t =
∑
m

Qτ−∆t,∆t (n0,m)〈m |τ .

The discretization scheme conforms with the derivation of the backward master equation (14).
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the insertion of the Poisson basis function |n〉x = xne−x
n! into the inverse transform-

ation (186) results in

p(τ, n |t0, n0) =
ˆ ∞
−∞

dx g(τ; x |t0, n0) x
ne−x

n!
. (195)

A representation of the probability distribution of this form is called a “Poisson
representation” and was first proposed by Gardiner and Chaturvedi [37, 38]. Since
the integration in (195) proceeds along the real line, the above representation
is referred to as a “real” Poisson representation [377]. Although the use of a
real variable may seem convenient, its use typically results in the kernel being
a “generalized function”, i.e. a distribution. For example, the initial condition
p(t0, n |t0, n0) = δn,n0 is recovered for the integral kernel g(t0; x |t0, n0) = δ(x)(∂x +
1)n0 . By the definition

ˆ ∞
−∞

dx
�
∂
j
xδ(x)

�
f (x) B

ˆ ∞
−∞

dx δ(x)(−∂x ) j f (x)

of distributional derivatives (1.16.12 in [337], j ∈ N0), this kernel can also be
written as [(1 − ∂x )n0δ(x)]. The integral kernel δ(x − x0) instead results for a
Poisson distribution with mean x0. In [37], Gardiner and Chaturvedi used the
real Poisson representation to calculate steady-state probability distributions of
various elementary reactions. Furthermore, the real Poisson representation was
employed by Elderfield [378] to derive a stochastic path integral representation.
Droz and McKane [379] later argued that this representation is equivalent to a
path integral representation based on Doi’s Fock space algebra. Our discussion of
the backward and forward path integral representations in sections 4 and 5 clarifies
the similarities and differences between these two approaches.

To circumvent the use of generalized functions, various alternatives to the real
Poisson representation have been proposed: the “complex” and “positive” Poisson
representations [115, 377] as well as the “gauge” Poisson representation [380].
The former two representations as well as the real representation are discussed
in the book of Gardiner [115]. The complex Poisson representation is obtained
by continuing the Poisson basis function in (195) into the complex domain and
performing the integration around a closed path C around 0 (once in counter-
clockwise direction). Upon using Cauchy’s differentiation formula to redefine the
basis functional as

〈n | f B ∂nx e
x f (x)|x=0 =

˛
C
dx

n!
2πi

ex

xn+1
f (x) , (196)
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it becomes apparent that the initial condition p(t0, n |t0, n0) = δn,n0 is then re-
covered for the kernel g(t0; x |t0, n0) = n0!

2πi
ex

xn0+1
. As the interpretation of this

kernel is also not straightforward, we refrain from calling it a “quasi-probability
distribution” [37].

Let us exemplify the flow equation obeyed by the integral kernel for the
reaction k A → l A with rate coefficient γτ. The flow equation can be inferred
from the corresponding flow equation (190) of the generating functional and the
kernel’s definition in (194). Since we employ the Poisson basis function, the results
from section 3.2 b imply that the adjoint transition operator (156) reads

Q†τ = γτxk
�(∂x + 1)l − (∂x + 1)k�

. (197)

According to the flow equation (190) of the generating functional and the kernel’s
definition (194), it holds that

ˆ ∞
−∞

dx
(
∂τg(τ; x |·)

)
f (x) =

ˆ ∞
−∞

dx
(
g(τ; x |·)Q†τ

)
f (x) . (198)

Integrations by parts therefore result in the following flow equation obeyed by the
integral kernel:

∂τg = Qτ(x, ∂x )g = γτ�(1 − ∂x )l − (1 − ∂x )k�
xkg . (199)

To arrive at this equation, we performed repeated integrations by parts while
ignoring any potential boundary terms (cf. the definition of the adjoint operator
in (149)). The importance of boundary terms is discussed in [380].

Thus far, most studies employing the Poisson representation have focused
on networks of bimolecular reactions

∑
j k j A j →

∑
j l j A j with

∑
j k j ≤ 2 and∑

j l j ≤ 2. For these networks, the flow equation (199) assumes the mathematical
form of a forward Fokker-Planck equation with the derivatives being of at most
second order (the corresponding diffusion coefficient may be negative). It has
been attempted to map the resulting equation to an Itô SDE [37], but it should
be explored whether this procedure is supported by the Feynman-Kac formula
in appendix A. The numerical integration of an SDE with potentially negative
diffusion coefficient was attempted for the bi-directional reaction 2 A� ∅ in [381].
The value of the integration has remained inconclusive. Recently, an exponential
ansatz for the integral kernel g(τ; x |·) has been considered to approximate its
flow equation in the limit of weak noise [382] (cf. section 2.3 b). Moreover, a
gauge Poisson representation was recently employed in a study of the coagulation
reaction 2 A→ A [383].
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3.6 Résumé

In the previous section, we formulated general conditions under which the master
equation can be transformed into a partial differential equation obeyed by the
probability generating function (48). In the present section, we complemented
this flow equation by a backward-time flow equation obeyed by the marginalized
distribution (144) and by a functional flow equation obeyed by the probability
generating functional (185). Whereas the marginalized distribution

|p(t, n |τ)〉 =
∑
n0

p(t, n |τ, n0)|n0〉 (200)

was defined as the sum of the conditional probability distribution over a set of
basis functions, the generating functional

〈g(τ |t0, n0)| =
∑
n

〈n |p(τ, n |t0, n0) (201)

was defined as the sum of the distribution over a set of basis functionals. In
section 3.2, we introduced (O)rthogonal and (C)omplete basis functions and func-
tionals for the study of different stochastic processes, including the Poisson basis
for the study of chemical reactions ( |n〉x = xne−x

n! and 〈m | f = (∂x + 1)m f (x)�x=0).
Provided that there also exist a basis (E)volution operator Eτ and an adjoint
transition operator Q†τ (condition (Qᵀ )), the marginalized distribution obeys the
backward-time flow equation

∂−τ |p〉 = (−Eτ +Q†τ)|p〉 = Q̃†τ |p〉 (202)

with final condition |p(t, n |t )〉 = |n〉. Moreover, the probability generating func-
tional (185) then obeys the functional flow equation (190). The inverse trans-
formation p(τ, n |t0, n0) = 〈g(τ |t0, n0)|n〉 of this functional generalizes the Poisson
representation of Gardiner and Chaturvedi [37, 38] as shown in section 3.5. In
section 3.3, we showed how the flow equation (202) obeyed by the marginalized
distribution can be used to compute mean extinction times. Furthermore, the
equation will prove useful in the derivation of path integral representations of the
master equation and of averaged observables in sections 4 and 6. Future studies
could explore whether the flow equation obeyed by the marginalized distribution
can be evaluated in terms of WKB approximations or spectral methods.
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4 The backward path integral representation

In the previous two sections, we showed how the forward and backward master
equations can be cast into four linear PDEs for the series expansions (44)–(45).
In this section, as well as in section 5, the solutions of these four equations are
expressed in terms of two path integrals. Upon applying inverse transformations,
the path integrals provide distinct representations of the conditional probability
distribution solving the master equations. The flow equations obeyed by the
generating function (44) and by the series (47) will lead us to the “forward” path
integral representation

p(t, n |t0, n0) = 〈n |t
 t )

[t0
e−S |n0〉t0 , (203)

and the flow equations obeyed by the marginalized distribution (45) and by the
generating functional (46) to the “backward” path integral representation

p(t, n |t0, n0) = 〈n0 |t0
 t ]

(t0
e−S

† |n〉t . (204)

The meanings of the integral signs
ffl t )
[t0 and

ffl t ]
(t0, as well as of the exponential weights

are explained below. We choose the above terms for the two representations
because the forward path integral representation propagates the basis function
|n0〉t0 to time t , where it is then acted upon by the functional 〈n |t . Counter-
intuitively, however, this procedure requires us to solve a stochastic differential
equation proceeding backward in time (cf. sections 5.2 and 5.4). Analogously, the
backward path integral representation propagates the basis function |n〉t backward
in time to t0, where one then applies the functional 〈n0 |t0 . This procedure requires
us to solve an ordinary, forward-time Itô SDE (cf. section 4.3). The name “adjoint”
path integral representation may also be used for the backward representation. As
we will see below, its “action” S† involves the adjoint transition operator Q̃†τ .

To make the following derivations as explicit as possible, we now assume
the discrete variables n and n0 to be one-dimensional. Likewise, the variables x
and q of the associated flow equations are one-dimensional real variables. The
derivation below employs an exponential representation of the Dirac delta function.
Although such a representation also exists for Grassmann variables [384], we do
not consider that case. The extension of the following derivations to processes
with multiple types of particles is straightforward and proceeds analogously to the
inclusion of spatial degrees of freedom. A process with spatial degrees of freedom
is considered in sections 4.5 b to 4.5 d.
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After deriving the backward path integral representation in section 4.1, we
exemplify how this representation can be used to solve the bi-directional reaction
∅ 
 A (section 4.2), the pair generating process ∅ → 2 A (section 4.5 a), and a
process with diffusion and linear decay (sections 4.5 b to 4.5 d). The forward path
integral representation is derived in section 5 and is exemplified in deriving the
generating function of linear processes A→ l A with l ≥ 0. For the linear growth
process A → 2 A, we recover a negative Binomial distribution as the solution
of the master equation. Observables of the particle number are considered in
section 6.

As an intermezzo, we show in sections 4.4 and 5.4 how one can derive path in-
tegral representations for jump processes with continuous state spaces (or processes
whose transition rates can be extended to such spaces). The corresponding deriva-
tions are based on Kramers-Moyal expansions of the backward and forward master
equations. Since the backward and forward Fokker-Planck equations constitute
special cases of these expansions, we recover a classic path integral representation
whose development goes back to works of Martin, Siggia, and Rose [21], de
Dominicis [22], Janssen [23, 24], and Bausch, Janssen, and Wagner [24]. Moreover,
we recover the Feynman-Kac formula from appendix A, an Onsager-Machlup
representation [84], and Wiener’s path integral for Brownian motion [85, 86].

Before starting out with the derivations of the two path integral representa-
tions (203) and (204), let us note that these representations only apply if their
underlying transition operators Q̃τ or Q̃†τ can be written as power series in their
arguments (x and ∂x for the backward path integral and q and ∂q for the forward
path integral; the names of the variables differ because both path integrals then
lead to the same path integral representation of averaged observables in section 6
without requiring a change of variable names). In addition, the power series need
to be “normal-ordered”, meaning that in every summand, all the x are to the left
of all the ∂x (all the q to the left of all the ∂q ). This order can be established by the
repeated use of the commutation relation [∂x, x] f (x) = f (x) (or, more directly, by
invoking (∂x x)n f (x) = ∑n

m=0
�n+1
m+1

	
xm∂mx f (x) or (x∂x )n f (x) = ∑n

m=0
�n
m

	
xm∂mx ,

with the curly braces representing Stirling numbers of the second kind; cf. sec-
tion 26.8 in [337]). The transition operator Qτ = γτ(c l − ck)ak in (69) and the
adjoint transition operator Q†τ = γτck(al − ak) in (156) of the chemical reaction
k A → l A are already in their normal-ordered forms (with the creation and
annihilation operators in (78) and (79), or (163) and (164), respectively).

4.1 Derivation

We first derive the backward path integral representation (204) because its applic-
ation to actual processes is more intuitive than the application of the forward
path integral representation. For this purpose, we consider the flow equation
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Backward path integral 
representation (212)-(214)

Evaluation along the paths of 
the forward-time Itô SDE (223) 

Forward master 
equation (11)
∂τ p(τ, n ⎜⋅) = …

Backward master 
equation (14)
∂−τ p(⋅⎜τ, n0) = …

Flow equation (150) of the 
marginalized distribution

Flow equation (190) of the 
generating functional
∂τ 〈g(τ ⎜⋅)⎜ = …

∂−τ ⎜p(⋅⎜τ )〉 = …

p(t, n ⎜t0, n0) = 〈n0 ⎜t0        e− † ⎜n〉t
(t0

t]

3.4

3.1

4.1

4.1
4.3

Figure 6 Outline of the derivation of the backward path integral representation and of its
evaluation in terms of an average over the paths of an Itô stochastic differential equation.

∂−τ |p(·|τ)〉 = Q̃†τ |p(·|τ)〉 in (150) obeyed by the marginalized distribution. Its final
condition reads |p(t, n |t )〉 = |n〉. The conditional probability distribution is re-
covered from the marginalized distribution via p(t, n |t0, n0) = 〈n0 |p(t, n |t0)〉. As
the first step, we split the time interval [t0, t ] into N pieces t0 ≤ t1 ≤ . . . ≤ tN B t
of length ∆t B (t − t0)/N � 1. Over the time interval [t0, t1], the flow equation
is then solved by12

|p(t, n |t0)〉x0
= L†t0(x0, ∂x0)|p(t, n |t1)〉x0

(205)

with the generator L†τ B 1 + Q̃†τ∆t + O
�(∆t )2�

(see the footnote on page 58;
for brevity, we now write Q̃†τ instead of Q̃†

τ,∆t for the discrete-time operator).
Alternatively, the following derivation could be performed by solving the flow
equation (190) obeyed by the generating functional over the time interval [tN−1, t ]
as (cf. figure 6)

〈g(t |t0, n0)| = 〈g(tN−1 |t0, n0)|L†tN−1(xN−1, ∂xN−1) . (206)

Here, the generating functional 〈g | acts on functions f (xN−1), meets the ini-
tial condition 〈g(t0 |t0, n0)| = 〈n0 |, and is transformed back into the conditional
probability distribution via p(t, n |t0, n0) = 〈g(t0 |t0, n0)|n〉. Both of the above
approaches result in the same path integral representation. In the following, we
use the equation (205) for this purpose.

As the next step of the derivation, we insert the integral representation of
a Dirac delta between the generator L† and the marginalized distribution |p〉

12 This discretization of time conforms with the Itô prescription for forward-time SDEs and with
the derivation of the backward master equation (14) (see section 4.3 and also the footnote on
page 58).
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in (205), turning this expression into

|p(t, n |t0)〉x0
= L†t0(x0, ∂x0)

ˆ
R2

dx1 dq1

2π
e−iq1(x1−x0) |p(t, n |t1)〉x1

. (207)

The integrations over x1 and q1 are both performed along the real line from −∞
to +∞. If the adjoint transition operator Q̃†τ , and thus also L†τ , are normal-ordered
power series, we can replace ∂x0 by iq1 in the above expression and pull L†t0 to the
right of the exponential. Making use of the final condition |p(t, n |t )〉xN = |n〉t,xN ,
the above steps can be repeated until (207) reads

|p(t, n |t0)〉x0
=

 N

1

( N∏
j=1

e−iq j (x j−x j−1)L†t j−1(x j−1, iq j )
) |n〉t,xN , (208)

with the abbreviation  l

k
B

l∏
j=k

ˆ
R2

dx j dq j
2π

. (209)

To proceed, we now replace L†τ = 1+Q̃†τ∆t+O
�(∆t )2�

by the exponential eQ̃
†
τ∆t

(for brevity, we drop the correction term in the following). Note that the exponen-
tial eQ̃

†
τ∆t does not involve differential operators because those were all replaced by

the new variables iq j . 13 Whether the exponentiation can be made mathematically
rigorous is an open question and may possibly be answered positively only for a
restricted class of stochastic processes. Upon performing the exponentiation, one
obtains the following discrete-time path integral representation of the marginalized
distribution:

|p(t, n |t0)〉x0
=

 N

1
e−S

†

N |n〉t,xN with (210)

S†N B
N∑
j=1
∆t

(
iq j

x j − x j−1

∆t
− Q̃†t j−1(x j−1, iq j )

)
. (211)

The final condition |p(t, n |t )〉x = |n〉t,x is trivially fulfilled because only N = 0
time slices fit between t and t . The object S†N is called an “action”. The exponential

13 The derivation of the path integral representation of averaged observables in section 6.2
involves exponentials of the form ec2a2 (see also [96, 338, 385]), with c and a representing
infinitely-large creation and annihilation matrices, respectively. The existence of such an
exponential is not obvious.
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factor e−S
†

N weighs the contribution of every path (x1, q1) → (x2, q2) → . . . →
(xN , qN ).

As the final step of the derivation, we take the continuous-time limit N →
∞, or ∆t → 0, at least formally. The following continuous-time expressions
effectively serve as abbreviations of the above discretization scheme with the
identifications x(t0 + j∆t ) B x j and q(t0 + j∆t ) B q j . Further comments on
the discretization scheme are provided in section 4.4. Combined with the inverse
transformation (145), we thus arrive at the following backward path integral
representation of the conditional probability distribution:

p(t, n |t0, n0) = 〈n0 |t0,x(t0) |p(t, n |t0)〉x(t0) (212)

with |p(t, n |t0)〉x(t0) =
 t ]

(t0
e−S

† |n〉t,x(t ) (213)

and S† B
ˆ t

t0
dτ

�
iq∂τx − Q̃†τ(x, iq)

�
. (214)

Here we included x(t0) as an argument of the functional 〈n0 |t0,x(t0) to express
that this functional acts on x(τ) only for τ = t0. Moreover, we defined

ffl t ]
(t0 B

limN→∞
ffl N
1 to indicate that the path integral involves integrations over x(t ) and

q(t ), but not over x(t0) and q(t0).
The evaluation of the above path integral representation for an explicit pro-

cess involves two steps. First, the path integral (213) provides the marginalized
distribution |p(t, n |t0)〉. Second, this marginalized distribution is mapped to
the conditional probability distribution p(t, n |t0, n0) by the action of the func-
tional 〈n0 |.

4.2 Simple growth and linear decay

Let us demonstrate the above two steps for the bi-directional reaction ∅
 A. The
stationary distribution of this process was already derived in the introduction
to section 2. Both the growth rate coefficient γ and the decay rate coefficient µ
shall be time-independent, but this assumption is easily relaxed. As the first step,
the backward path integral (212) requires us to choose an appropriate basis. The
time-independent Poisson basis with the basis function |n〉x = xne−x

n! proves to be
convenient for this purpose (cf. section 3.2 b). The adjoint transition operator
follows from (156), (163), and (164) as Q̃†(x, ∂x ) = (γ − µx)∂x . Insertion of this
operator into the action (214) results in

S† =
ˆ t

t0
dτ iq

�
∂τx − (γ − µx)� (215)
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The integration over the path q(τ) from τ = t0 to τ = t is performed most easily
in the discrete-time approximation. The marginalized distribution thereby follows
as the following product of Dirac deltas:

|p(t, n |t0)〉x0
=

( N∏
j=1

ˆ
R
dx j δ

�
x j − x j−1 − (γ − µ x j−1)∆t

�) |n〉t,xN .
The function |n〉t,xN is also integrated over. Upon taking the continuous-time
∆t → 0 and performing the integration over the path x(τ), one finds that the
marginalized distribution is given by the Poisson distribution

|p(t, n |t0)〉x(t0) = |n〉t,x(t ) = x(t )ne−x(t )
n!

, (216)

with x(τ) solving ∂τx = γ − µx . This equation coincides with the rate equation
of the process ∅ 
 A. The solution x(τ) = e−µ(τ−t0)(x(t0) − γ

µ ) + γ
µ of the rate

equation specifies the mean and the variance of the above Poisson distribution.
For µ > 0, both of them converge to the asymptotic value γ/µ. In the next section
and in section 4.5, we generalize these results to more general processes.

The marginalized distribution (216) does not only solve the master equation
of the reaction ∅ 
 A, but it also establishes the link between the path integral
variable x and the moments of the particle number n. In particular, the mean
particle number evaluates to 〈n〉(t ) = x(t ), while higher order moments can
determined via 〈nk〉(t ) = ∑k

l=0
�k
l
	
x(t )l . The curly braces denote a Stirling number

of the second kind (cf. section 26.8 in [337]).
The conditional probability distribution can be calculated from the marginal-

ized distribution by applying the functional 〈n0 | f = (∂x(t0) + 1)n0 f (x(t0))|x(t0)=0
to the latter (cf. (160) and (164)). In the limit of a vanishing decay rate for which
x(τ) = x(t0) + γ(τ − t0), one recovers the shifted Poisson distribution (95), i.e.

p(t, n |t0, n0) = e−γ(t−t0)(γ(t − t0))n−n0

(n − n0)! Θn−n0 . (217)

Thus, the mean and variance of the conditional probability distribution grow
linearly with time. If the particles decay but are not replenished ( µ > 0 but γ = 0),
we instead recover the Binomial distribution (169).

4.3 Feynman-Kac formula for jump processes

We now show how the backward path integral representation (213) of the margin-
alized distribution can be expressed in terms of an average over the paths of an Itô
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stochastic differential equation (SDE). The resulting expression bears similarities
with the Feynman-Kac formula (3), especially when the adjoint transition operator
Q̃†τ(x, ∂x ) of the stochastic process under consideration is quadratic in ∂x . In the
general case, however, functional derivatives act on the average over paths. These
derivatives can, for example, be evaluated in terms of perturbation expansions
as we demonstrate in section 4.5 d. The procedure outlined below serves as a
general starting point for the exact or approximate evaluation of the backward
path integral (213).

In the following, we consider a stochastic process whose adjoint transition
operator has the generic form

Q̃†τ(x, ∂x ) = ατ(x)∂x + 1
2
βτ(x)∂2

x + P†τ (x, ∂x ) . (218)

As before, we call ατ a drift and βτ a diffusion coefficient. The object P†τ is
referred to as the (adjoint) perturbation operator, or simply as the perturbation.
The perturbation operator absorbs all the terms of higher order in ∂x and possibly
also terms of lower order. Thus, the above form of Q̃†τ is not unique and ατ, βτ,
and P†τ should be chosen so that the evaluation of the expressions below becomes
as simple as possible. If the perturbation operator P†τ is zero, those expressions
simplify considerably.

As the first step, let us rewrite the backward path integral representation (213)
of the marginalized distribution as

|p(t, n |t0)〉x(t0) =
ˆ
R2

dxN dqN
2π

e−iqN xNZ0,0 |n〉t,xN , (219)

where ZQ=0,X=0 represents a value of the (Q,X )-generating functional

ZQ,X B

 t )

(t0
eiqN xN −S†+

´ t
t0

dτ [Q(τ)x(τ)+X (τ)iq(τ)]
. (220)

Hence, we have singled out the integrations over xN and qN before performing the
continuous-time limit (cf. (210) and (213)). We call ZQ,X a generating functional
because a functional differentiation of ZQ,X with respect to Q(τ) generates a factor
x(τ), and a functional differentiation of ZQ,X with respect to X (τ) generates a
factor iq(τ).

Given the action (214) with the adjoint transition operator (218), the above
properties of the (Q,X )-generating functional can now be used to rewrite this
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function as (cf. appendix D)

ZQ,X = eiqN
δ

δQ(t )+
´ t
t0

dτ P†τ ( δ
δQ(τ) ,

δ
δX (τ) )Z0

Q,X (221)

with Z0
Q,X B




e
´ t
t0
dτQ(τ)x(τ)��

W . (222)

Here, 〈〈·〉〉W represents the average over realizations of a Wiener process W (τ).
This Wiener process influences the evolution of the path x(τ) through the Itô SDE

dx(τ) = �
ατ(x) + X (τ)� dτ + √

βτ(x) dW (τ) . (223)

The temporal evolution of x(τ) starts out from x(t0), which is determined by the
argument of the marginalized distribution (219). In section 4.5 d, we demonstrate
how the marginalized distribution can be evaluated in terms of a perturbation
expansion of the (Q,X )-generating functional (221) for a process of diffusing
particles that are also decaying. In order to perform the perturbation expansion,
let us already note that the value x(τ) of the path at time τ depends on the “source”
X (τ′) only for times τ′ < τ, and that δ

δQ(τ)
´ t
t0 dτ

′Q(τ′) f (τ′) = f (τ) holds for all
τ ∈ (t0, t ]. Moreover, let us note that the (Q,X )-generating functional depends on
qN and x(t0) but not on xN . These properties follow from the derivation of the
representation (221), which we outline in appendix D.

An important special case of the above representation is constituted by pro-
cesses whose perturbation operator P†τ is zero. For Q = X = 0, the generating
functional (221) then simplifies to Z0,0 = eiqN x(t ) and the marginalized distribu-
tion (219) follows in terms of the Feynman-Kac like fomula

|p(t, n |t0)〉x(t0) =


|n〉t,x(t )

��
W . (224)

Here, x(τ) solves the Itô SDE

dx(τ) = ατ(x) dτ +
√
βτ(x) dW (τ) (225)

with the initial value x(t0). For the Poisson basis function |n〉x = xne−x
n! , the

above representation of the marginalized distribution coincides with our earlier
result (171), which we encountered in the discussion of the coagulation reaction
2 A→ A. For the bi-directional reaction ∅ 
 A from the previous section with
adjoint transition operator Q̃†(x, ∂x ) = (γ − µx)∂x , the Itô SDE (225) simplifies
to the deterministic rate equation ∂τx = γ − µx . Thus, no averaging is required
to evaluate the marginalized distribution (224) and one recovers our earlier solu-
tion (216).

Our above discussion only applies to processes in well-mixed environments
with a single type of particles. A generalization of the results to processes with
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multiple types of particles or with spatial degrees of freedom is straightforward. A
spatial process will be discussed in section 4.5. In a multivariate generalization of
the above procedure, the adjoint transition operator (218) includes a vector-valued
drift coefficient ατ(x) and a diffusion matrix βτ(x). Moreover, the derivation of
the corresponding generating functional (221) requires that there exists a matrix
√
βτ B γτ fulfilling γτγ

ᵀ
τ = βτ . If the diffusion matrix βτ is positive-semidefinite,

its positive-semidefinite and symmetric square root
√
βτ can be determined via

diagonalization [116].
In section 4.5, we exemplify the use of our above results for various well-mixed

and spatial processes. But before, let us show how the results from the previous
sections can be used to derive a path integral representation for processes with
continuous state spaces.

4.4 Intermezzo: The backward Kramers-Moyal expansion

The transition rate wτ(m, n) denotes the rate at which probability flows from a
state n to a state m, or, considering an individual sample path, the rate at which
particles jump from state n to state m. Thus, κτ(∆n, n) B wτ(n + ∆n, n) denotes
the rate at which the state n is left via jumps of size ∆n (with n ∈ N0 and ∆n ∈ Z).
Thus far, we only considered jumps between the states of a discrete state space. But
in the following, we derive a path integral representation for processes having a
continuous state space.

4.4 a Processes with continuous state spaces

We consider a process whose state is characterized by a continuous variable x ∈ R≥0.
The change from the letter n to the letter x is purely notational and emphasizes that
the state space is now continuous (the change also highlights a formal similarity
between the linear PDEs discussed so far and the ones derived below). The
conditional probability distribution p(τ, x |t0, x0) describing the system shall be
normalized as

´
R dx p(τ, x |·) = 1 and obey the master equation

∂τp(τ, x |·) =
ˆ
R
d∆x

�
κτ(∆x, x − ∆x)p(τ, x − ∆x |·) − κτ(∆x, x)p(τ, x |·)� (226)

with the initial condition p(t0, x |t0, x0) = δ(x − x0). The structure of this master
equation is equivalent to the structure of the master equation (12). Provided that
the product κτ(∆x, x)p(τ, x |·) is analytic in x , one can perform a Taylor expansion
of the above master equation to obtain the (forward) Kramers-Moyal expansion [6,
108, 274]

∂τp(τ, x |·) =
∞∑

m=1

(−1)m
m!

∂mx
�
M(m)

τ (x)p(τ, x |·)� . (227)



82 Master equations and the theory of stochastic path integrals

The “jump moments” M(m)
τ are defined as

M(m)
τ (x) B

ˆ
R
d∆x (∆x)m κτ(∆x, x) . (228)

By Pawula’s theorem [109, 386, 387], the positivity of the conditional probability
distribution requires that the Kramers-Moyal expansion either stops at its first
or second summand, or that it does not stop at all. If the expansion stops at its
second summand, it assumes the form of a (forward) Fokker-Planck equation.
The drift coefficient of this Fokker-Planck equation is given by M(1)

τ (x) and its
non-negative diffusion coefficient by M(2)

τ (x). The sample paths of the Fokker-
Planck equation are continuous, however, contradicting our earlier assumption
of the process making discontinuous jumps in state space. For a jump process,
the Kramers-Moyal expansion cannot stop. Nevertheless, a truncation of the
Kramers-Moyal expansion at the level of a Fokker-Planck equation often provides
a decent approximation of a process, provided that fluctuations cause only small
relative changes of its state x .

The backward analogue of the master equation (226) reads

∂−τp(t, x |τ, x0) =
ˆ
R
d∆x

�
p(·|τ, x0 + ∆x) − p(·|τ, x0)�κτ(∆x, x0) , (229)

with the final condition p(t, x |t, x0) = δ(x − x0). Given the analyticity of p(·|τ, x0)
in x0, the backward master equation can be rewritten in terms of the backward
Kramers-Moyal expansion

∂−τp(·|τ, x0) = Q̃†τ(x0, ∂x0)p(·|τ, x0) (230)

with the adjoint transition operator

Q̃†τ(x0, ∂x0) B
∞∑

m=1

1
m!

M(m)
τ (x0)∂mx0

. (231)

This operator is the adjoint of the operator in the forward Kramers-Moyal expan-
sion (227) in the sense that

´
dx

�
Q̃†τ(x, ∂x ) f (x)

�
g (x) = ´ dx f (x)�Q̃τ(x, ∂x )g (x)�

(provided that all boundary terms in the integrations by parts vanish).

4.4 b Path integral representation of the backward Kramers-Moyal expansion

The adjoint transition operator Q̃†τ(x0, ∂x0) of the backward Kramers-Moyal expan-
sion (231) is normal-ordered with respect to x0 and ∂x0 . Moreover, the backward
Kramers-Moyal expansion (230) has the same form as the flow equation (150)
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obeyed by the marginalized distribution. One can therefore follow the steps
in section 4.1 to represent the backward Kramers-Moyal expansion by the path
integral

p(t, x |t0, x0) =
 t ]

(t0
e−S

†

δ(x − x(t ))�x(t0)=x0
(232)

with the action

S† B
ˆ t

t0
dτ

�
iq(τ)∂τx(τ) − Q̃†τ(x(τ), iq(τ))

�
. (233)

The integral sign in (232) is again defined as the continuous-time limit of (209)
and traces out all paths of x(τ) and q(τ) for τ ∈ (t0, t ] (note that x(τ) differs from
x and x0, which are fixed parameters; for brevity, however, x(τ) is occasionally
abbreviated as x below). A diagrammatic computation of multi-time correlation
functions based on a path integral representation equivalent to (232) has recently
been considered in [388].

Let us specify the path integral representation (232) for a model of the chemical
reaction k A → l A with rate coefficient γτ (and k, l ∈ N0). As we assume the
particle “number” x to be continuous, the model is only reasonable in an approx-
imate sense for large values of x . In defining the transition rate of the reaction,
one has to ensure the non-negativity of x and the conservation of probability. A
possible choice of the transition rate is

κτ(∆x, x) B γτxkΘ(x − k)δ�
∆x − (l − k)� . (234)

Here, the Heaviside step function Θ(x − k) ensures that a sufficient number of
particles are present to engage in a reaction (and it prevents the loss of probability
to negative values of x ).

Assuming a smooth approximation of the Heaviside step function that vanishes
for x < 0, the jump moments (228) follow as

M(m)
τ (x) = γτ(l − k)mxkΘ(x − k) . (235)

The corresponding adjoint transition operator evaluates to

Q̃†τ(x, iq) = γτ(xe−iq )k
�(eiq )l − (eiq )k�

Θ(x − k) . (236)

Path integrals with such an operator have been noted in [389–391], but their poten-
tial use remains to be fully explored. Curiously, upon ignoring the step function,
the operator (236) has the same structure as the transition operator (156) upon
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identifying xe−iq with the creation operator c , and eiq with the annihilation oper-
ator a (Cole-Hopf transformation [389–393]). Note, however, that the stochastic
processes associated to the two transition operators differ from each other (discrete
vs. continuous state space; different transition rates). The connection between the
two associated path integrals (213) and (232) should be further explored.

4.4 c Path integral representation of the backward Fokker-Planck equation

With the drift coefficient ατ(x) BM(1)
τ (x) and the non-negative diffusion coeffi-

cient βτ(x) BM(2)
τ (x), a truncation of the adjoint transition operator (231) at its

second summand reads

Q̃†τ(x0, ∂x0) = ατ(x0)∂x0 +
1
2
βτ(x0)∂2

x0
. (237)

Thus, the corresponding Kramers-Moyal expansion (230) recovers the backward
Fokker-Planck equation (2). Since the action (233) evaluates to

S† B
ˆ t

t0
dτ

(
iq

�
∂τx − ατ(x)� + 1

2
βτ(x)q2

)
, (238)

the corresponding path integral (232) coincides with a classic path integral repres-
entation of the (backward) Fokker-Planck equation. The original development
of this representation goes back to works of Martin, Siggia, and Rose [21], de
Dominicis [22], Janssen [23, 24], and Bausch, Janssen, and Wagner [24]. The
application of this path integral to stochastic processes is, for example, discussed in
the book of Täuber [75].

The transition operator (237) of the backward Fokker-Planck equation has the
same form as the transition operator (218) in section 4.3, but it does not involve a
perturbation operator P†τ . Therefore, one can follow the steps in that section to
evaluate the path integral (232) in terms of an average over the paths of an Itô SDE.
This procedure shows that the backward Fokker-Planck equation is solved by

p(t, x |t0, x0) = 


δ(x − x(t ))��W , (239)

with x(τ) solving the Itô SDE

dx(τ) = ατ(x(τ)) dτ +
√
βτ(x(τ)) dW (τ) (240)

with initial value x(t0) = x0. Hence, we have recovered the Feynman-Kac for-
mula (3) (apart from a notational change in the time parameters).
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4.4 d The Onsager-Machlup function

The connection between the above path integral representation of the (backward)
Fokker-Planck equation and the work of Onsager and Machlup [84] becomes ap-
parent upon the completion of a square (as in a Hubbard-Stratonovich transforma-
tion [394, 395]). For this purpose, the diffusion coefficient βτ in the transition
operator (237) must not only be non-negative but positive(-definite). One can
then complete the square in the variable q as

S†N =
N∑
j=1

((x j − x j−1 − αt j−1(x j−1)∆t ) iq j + 1
2
βt j−1(x j−1)∆t q2

j

)
(241)

=

N∑
j=1

βt j−1(x j−1)∆t
2

(
q j + i

x j − x j−1 − αt j−1(x j−1)∆t
βt j−1(x j−1)∆t

)2
(242)

+

N∑
j=1

�
x j − x j−1 − αt j−1(x j−1)∆t

�2

2βt j−1(x j−1)∆t .

Next, one performs the path integration over q . Returning to the discrete-time
approximation (211) of the action, one obtains the following representation of
the conditional probability distribution in terms of convolutions of Gaussian
distributions:

p(t, x |t0, x0) = lim
N→∞

(N−1∏
j=0

ˆ
R
dx j+1 Gµ j ,σ

2
j
(x j+1 − x j )

)
δ(x − xN ) . (243)

The Dirac delta function is included in the integrations. Moreover, µ j B αt j (x j )∆t
acts as the mean and σ2

j B βt j (x j )∆t as the variance of the Gaussian distribution

Gµ,σ2(x) B e−(x−µ)2/(2σ2)
√
2πσ2

. (244)

As before, ∆t = (t − t0)/N denotes the intervals between t0 ≤ t1 ≤ . . . ≤ tN = t .
Identifying x(t0 + j∆t ) with x j , one can rewrite the representation (243) as

p(t, x |t0, x0) =
 t ]

(t0
e−S

†

δ(x − x(t ))�x(t0)=x0
. (245)

This integral proceeds only over paths x(τ) with τ ∈ (t0, t ] because the q -variables
have already been integrated over. Paths are weighed by the exponential factor
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e−S† with the action

S† B lim
N→∞

N−1∑
j=0

�
x j+1 − x j − αt j (x j )∆t

�2

2βt j (x j )∆t . (246)

One may abbreviate the continuous-time limit of this action by the integral

S† =
ˆ t

t0
dτ

�
∂τx − ατ(x)�2

2βτ(x) . (247)

The integrand of this action is called an Onsager-Machlup function [84, 396]
and the representation (245) may, consequently, be called an Onsager-Machlup
representation (or “functional” in the sense of functional integration). Note that
the Onsager-Machlup representation involves the limit

 t ]

(t0
B lim

N→∞

N−1∏
j=0

ˆ
R

dx j+1√
2π βt j (x j )∆t

. (248)

Mathematically rigorous formulations of the Onsager-Machlup representation
have been attempted in [397–399]. For the other path integrals discussed in this
thesis, such attempts have not yet been made to our knowledge.

4.4 e Alternative discretization schemes

Up to this point, we have discretized time in such a way that the evaluation of the
path integrals eventually proceeds via the solution of an Itô stochastic differential
equation (cf. section 4.3). Alternative discretization schemes have been proposed
as well and are, for example, employed in stochastic thermodynamics [239]. To
illustrate these schemes, let us, for simplicity, assume that the drift coefficient α(x)
does not depend on time and that the diffusion coefficient D B βτ is constant.
A general discretization scheme — called the α-scheme but here we use a κ —
consists of shifting the argument x j of the drift coefficient in the action (246) to
x̄ j B κ x j+1 + (1 − κ)x j by writing

x j = x̄ j − κ(x j+1 − x j ) (249)

(with κ ∈ [0, 1]). Afterwards, the drift coefficient is expanded in powers of
x j+1 − x j , which is of order

√
∆t along relevant paths. Following [400], it suffices

to keep only the first two terms of the expansion of α(x j ) so that

x j+1 − x j − α(x j )∆t ≈
�
1 + κ α′(x̄ j )∆t

�(x j+1 − x j ) − α(x̄ j )∆t . (250)
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As the next step, we rename the variables x i to yi and define new variables x i via

x j+1 − x j B
�
1 + κ α′(ȳ j )∆t

�(y j+1 − y j ) (251)

(with x0 B y0). The Jacobian of this transformation vanishes everywhere ex-
cept on its diagonal and sub-diagonal. Its determinant therefore contributes the
following factor to the path integral

N−1∏
j=0

∂x j+1

∂y j+1
=

N−1∏
j=0

(
1 + κ α′(ȳ j )∆t + . . .

)
= exp

(
κ

N−1∑
j=0
∆t α′(ȳ j )

)
+ . . . . (252)

Consequently, the action (246) must be redefined as

S† B lim
N→∞

N−1∑
j=0

( �
x j+1 − x j − α(x̄ j )∆t

�2

2D∆t
+ κ α′(x̄ j )∆t

)
.

One may abbreviate this limit by

S† =
ˆ t

t0
dτ

( �
∂τx − α(x)�2

2D
+ κ α′(x)

)
. (253)

The Itô version of this action with κ = 0 has proved to be convenient in per-
turbation expansions of path integrals because so called “closed response loops”
can be omitted right from the start (see section 4.5 in [75]). Moreover, this pre-
scription does not require a change of variables and makes the connection to the
Feynman-Kac formula in appendix A most apparent. The Stratonovich version of
the action with κ = 1

2 is, for example, employed in Seifert’s review on stochastic
thermodynamics [239]. For a recent, more thorough discussion of the above
discretization schemes, as well as of conflicting approaches, we refer the reader
to [401] (the above action is discussed in the appendices).

4.4 f Wiener’s path integral

Before returning to processes with a discrete state space, let us briefly note how
the Onsager-Machlup representation (245) relates to Wiener’s path integral of
Brownian motion [85, 86], as it is discussed in [402]. It turns out that the
Onsager-Machlup representation in fact coincides with that path integral for one-
dimension Brownian motion, for which the drift coefficient vanishes and the
diffusion coefficient D = βτ is constant. Since the convolution of two Gaussian
distributions is again a Gaussian distribution, with means and variances being
summed, the solution of the process follows as p(t, x |t0, x0) = G0,D(t−t0)(x − x0).
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4.5 Further exact solutions and perturbation expansions

After this detour to processes with continuous state spaces, let us return to the
evaluation of the backward path integral representation (213). In the following,
we show how the method introduced in section 4.3 can be applied to several
elementary jump processes. We already applied a simplified version of the method
in section 4.2 to solve the bi-directional reaction ∅
 A. We now consider a generic
reaction k A → l A with rate coefficient γτ. Using the Poisson basis function
|n〉x = xne−x

n! , the adjoint transition operator of this reaction can be written as (cf.
section 3.2 b)

Q̃†τ(x, ∂x ) = Q†(c, a) = γτck(al − ak) (254)

=
�
γτ(l − k)xk�

∂x +
�
γτ

�
l (l − 1) − k(k − 1)�xk�∂2

x
2
+ P†τ (x, ∂x ) . (255)

Here we employed the creation operator c = x and the annihilation operator
a = ∂x + 1, and we performed a series expansion with respect to ∂x . Terms of
third and higher order in ∂x were shoved into the perturbation operator P†τ (x, ∂x ).
In the following, we approximate the marginalized distribution of the reaction
k A→ l A by first dropping both the diffusion coefficient and the perturbation
operator from (254). Afterwards, we reintroduce the diffusion coefficient and show
how the marginalized distribution follows as the average of a Poisson distribution
over the paths of an Itô SDE. For the pair generation process ∅ → 2 A, this
representation is exact because the perturbation operator associated to this process
is zero (cf. section 4.5 a). Later, in section 4.5 d, we solve a process with a
non-vanishing perturbation operator P†τ .

As a first approximation of the reaction k A→ l A, let us drop all the terms
of the adjoint transition operator (254) except for the drift coefficient ατ(x) =
γτ(l − k)xk . The SDE (223) then simplifies to the deterministic rate equation
∂τx = γτ(l − k)xk of the reaction. Its solution x(τ) acts as the mean of the
marginalized distribution, which, according to (219)–(222), is again given by the
Poisson distribution |p(t, n |t0)〉x(t0) = |n〉t,x(t ) in (216).

Going one step further, one may keep the diffusion coefficient in (254). The
marginalized distribution then reads

|p(t, n |t0)〉x(t0) =
〈〈 x(t )ne−x(t )

n!
〉〉
W

(256)

with x(τ) solving the Itô SDE

dx = γτ(l − k)xk dτ +
√
γτ

�
l (l − 1) − k(k − 1)�xk dW (τ) . (257)
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Hence, the Poisson distribution in (256) is averaged over all possible sample paths
of the SDE (257), whose evolution starts out from the initial value x(t0) (cf. (171)).
The above expression has also recently been derived by Wiese [338], although
based on the forward path integral that we will discuss in section 5. Apparently,
the expression under the square root in (257) is non-negative only if k ∈ {0, 1} or
if l ≥ k ≥ 2. If that is not the case, x(τ) strays off into the complex domain. SDEs
with imaginary noise (or the corresponding Langevin equations) have been studied
in several recent articles, most notably for the binary annihilation reaction 2 A→ ∅
and for the coagulation process 2 A→ A [338, 403, 404]. The numerical evaluation
of such SDEs, however, often encountered severe convergence problems [338,
381]. The appearance of imaginary noise has been linked to the anti-correlation of
particles in spatial systems [403], but as (257) shows, no spatial degrees of freedoms
are actually required for its emergence. As Wiese pointed out, imaginary noise
generally appears when, over time, the marginalized distribution (256) becomes
narrower than a Poisson distribution [338].

4.5 a Pair generation

For the pair generation process ∅ → 2 A with growth rate coefficient γτ , the drift
and the (squared) diffusion coefficients agree: ατ = βτ = 2γτ . As neither of them
depends on x(τ), the Itô SDE is readily solved by

x(t ) = x(t0) +
ˆ t

t0
dτ2γτ +

ˆ t

t0
dW (τ)√2γτ . (258)

Upon introducing the (rather daunting) parameter

ηk B
〈〈
e−(

´ t
t0

dτ γτ+
´ t
t0

dW (τ)√2γτ)
((ˆ t

t0
dτ 2γτ

)1/2
+

´ t
t0 dW (τ)√2γτ(´ t
t0 dτ 2γτ

)1/2

)k〉〉
W
, (259)

one can use the binomial theorem to write the marginalized distribution (256) as

|p(t, n |t0)〉x(t0) =
e−(x(t0)+

´ t
t0

dτ γτ)

n!

n∑
k=0

(
n
k

) (ˆ t

t0
dτ 2γτ

)k/2
ηk x(t0)n−k . (260)

If the rate coefficient γ is independent of time, one can show that the parameter
ηk coincides with the k-th moment of a Gaussian distribution with zero mean and
unit variance (i.e. ηk = 0 for odd k and ηk = (k − 1)!! for even k; note that the
sum of two Gaussian random variables is again a Gaussian random variable, with
its mean and variance following additively). This result is established most easily
in the discrete-time approximation and by noting that the sum over independent
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Gaussian random variables is again a Gaussian random variable. The mean and
variance of the new variable are given as the sums of the individual means and
variances. The integrals over the Gaussian increments ∆W1,∆W2, . . . in (259) can
thereby be replaced by a single integral overW (t ) = ∆W1 + ∆W2 + . . . so that

ηk =

ˆ ∞
−∞

dW (t ) e
−W (t )2/2(t−t0)√
2π(t − t0)

e−(γ(t−t0)+
√
2γW (t ))

(�
2γ(t − t0)�1/2 + W (t )

(t − t0)1/2
)k

=

ˆ ∞
−∞

dW (t ) e
−(W (t )+√2γ(t−t0))2/2(t−t0)√

2π(t − t0)
(�

2γ(t − t0)�1/2 + W (t )
(t − t0)1/2

)k
(261)

=

ˆ ∞
−∞

dU (t ) e
−U (t )2/2
√
2π

U (t )k . (262)

The marginalized distribution therefore follows as

|p(t, n |t0)〉x(t0) = e−(x(t0)+
´ t
t0

dτ γτ)
bn/2c∑
k=0

�´ t
t0 dτ γτ

�k

k!
(x(t0))n−2k
(n − 2k)! . (263)

Here, bn/2c represents the integral part of n/2. The marginalized distribu-
tion (263) solves the master equation of the pair generation process and is initially
of Poisson shape. For x(t0) = 0, the distribution effectively keeps that shape,
although only on the set of all even numbers (the reaction ∅ → 2 A cannot create
an odd number of particles when starting out from zero particles). Using Math-
ematica by Wolfram Research, we verified that the distribution also applies when
γτ depends on time. The evolution of the distribution is shown in figure 7 for the
rate coefficient γτ = 1/(1 +√τ). We refrain from computing the conditional distri-
bution from the marginalized distribution because the computation is unwieldy
and does not shed any more light on the path integral approach.

4.5 b Diffusion on networks

The backward path integral can also be used to solve spatial processes. In fact,
stochastic path integrals have been most useful in the study of such processes. If
particles engaging in a chemical reaction can also diffuse in space, their density may
evolve in ways that are not expected from the well-mixed, non-spatial limit. That
is, for example, the case for particles that annihilate one another in the reaction
2 A→ ∅ while diffusing along a one-dimensional line. From the well-mixed limit,
one would expect that the particle density decays asymptotically as t−1 with time
(see section 7), but instead it decays as t−1/2 [135, 296, 405]. The reason behind this
surprising decay law is the rapid condensation of the system into a state in which
isolated particles are separated by large voids. From that point on, further decay
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Figure 7 Evolution of the marginalized distribution |p(t, n |t0)〉 in (263), which solves the
pair generation process ∅ → 2 A (with t0 B 0). The initial mean of the distribution was
chosen as x(t0) = 0 and the rate coefficient of the reaction as γτ = 1/(1 + √τ).

of the particle density requires that two particles first find each other through
diffusion. Therefore, the process is “diffusion-limited” and exhibits a slower decay
of the particles (see e.g. [406] on the related “first-passage” problem). Path integral
representations of the master equation, combined with renormalization group
techniques, have been successfully applied to the computation of decay laws in
spatially extended systems, both regarding the (universal) exponents and the pre-
factors of these laws [135–137, 296, 308, 407]. For a broader discussion of systems
exhibiting a transition into an absorbing state see [73]. Before turning to the
particle density and, more generally, to observables of the particle number, we
now show how the backward path integral helps in computing the full probability
distribution of a spatial process.

As a first step, we consider a pure diffusion process with particles hopping
between neighbouring nodes of a network L. For now, the topology of the
network may be arbitrary, being either random or regular. In the next section, the
network topology will be chosen as a regular lattice. In the limit of a vanishing
lattice spacing (and an infinite number of lattice sites), a “field theory” will be
obtained. In section 4.5 d, the particles will also be allowed to decay.

The configuration of particles on the network may be represented by the vector
n ∈ N|L|

0 , with |L| being the total number of network nodes. The configuration
changes whenever a particle hops from some node i ∈ L to a neighbouring node
j ∈ Ni ⊂ L. The probability p(τ,n |t0,n0) of finding the system in configuration n
then obeys the master equation

∂τp(τ,n |·) =
∑
i∈L

ετ,i
∑
j∈Ni

�(ni + 1)p(τ,n + ê i − ê j |·) − nip(τ,n |·)
�
. (264)
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Here, ê i represents a unit vector that points in direction i ∈ L. Moreover, ετ,i acts
as a hopping rate and may depend both on time and on the node from which a
particle departs. Apparently, the above master equation has the same structure
as the chemical master equation (27). It may therefore be cast into a linear PDE
by extending the operators and basis functions from section 3.2 b to multiple
variables. In particular, we extend the Poisson basis function to

|n〉x B
∏
i∈L

xni
i e−x i

ni !
(265)

and employ the creation and annihilation operators

c B x and a B ∇ + 1 . (266)

Next, we derive the adjoint transition operator from the backward analogue of the
master equation (264). Using the transition rate

wτ(n,m) =
∑
i∈L

ετ,i
∑
j∈Ni

miδn+ê i−ê j ,m , (267)

the backward master equation follows from (15) as

∂−τp(t,n |τ,n0) =
∑
i∈L

ετ,i
∑
j∈Ni

n0,i
�
p(·|τ,n0 − ê i + ê j ) − p(·|τ,n0)� . (268)

Therefore, the time evolution of the marginalized distribution

|p(t,n |τ)〉 B
∑

n0∈N
|L|
0

p(t,n |τ,n0)|n0〉 (269)

is described by the flow equation

∂−τ |p(t, n |τ)〉x =
∑

n0∈N
|L|
0

∑
i∈L

ετ,i
∑
j∈Ni

p(·|τ,n0)
((n0,i + 1) x

n0,i+1
i e−x i

(n0,i + 1)!
xn0, j−1
j e−x j

(n0, j − 1)!

− n0,i
xn0,i
i e−x i

n0,i !

xn0, j
j e−x j

n0, j !
) ∏
k,i, j

xn0,k
k e−xk

n0,k !
(270)

=
∑
i∈L

ετ,i
∑
j∈Ni

(
x i(∂x j + 1) − x i(∂x i + 1)) |p(·|τ)〉x (271)
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=
∑
i∈L

ετ,i x i
∑
j∈Ni

�
∂x j − ∂x i

�|p(·|τ)〉x (272)

=
∑
i∈L

(∑
j∈N j

�
ετ, j x j − ετ,i x i

�)
∂x i |p(·|τ)〉x (273)

=
∑
i∈L

(∆ετ,i x i)∂x i |p(·|τ)〉x = Q̃†τ(x,∇)|p(·|τ)〉x . (274)

Hence, the marginalized distribution evolves via the flow equation ∂−τ |p(t, n |τ)〉 =
Q̃†τ |p(t, n |τ)〉 with the adjoint transition operator

Q̃†τ(x,∇) =
∑
i∈L

(∆ετ,i x i)∂x i . (275)

Here we introduced the discrete Laplace operator ∆ fi B
∑

j∈Ni ( f j − fi), which
acts both on ετ,i and on x i .

By following the steps in section 4.3, one finds that the marginalized distribu-
tion is given by the multivariate Poisson distribution

|p(t,n |t0)〉x(t0) =
∏
i∈L

x i(t )nie−x i (t )

ni !
. (276)

Its mean x(t ) solves the discrete diffusion equation

∂τx i =
∑
j∈Ni

�
ετ, j x j − ετ,i x i

�
= ∆ετ,i x i , (277)

with the initial condition x(t0). Let us note that the marginalized distribution
solves the master equation (264), but with the initial number of particles being
Poisson distributed locally.

The conditional distribution p(t,n |t0,n0) follows from the marginalized distri-
bution (276) by applying the functional

〈n0 |x(t0) f =
[∏
i∈L

�
∂x i (t0) + 1

�n0,i
]
f (x(t0))���x(t0)=0 (278)

to it (cf. (160) with (164)). The evaluation requires a prior solution of the discrete
diffusion equation (277). This equation can be written in matrix form as ∂τx =
Mτx with Mτ,i j = (Ai j − |Ni |δi j )ετ, j . Here, A represents the symmetric adjacency
matrix of the network and |Ni | represents the number of neighbours of node i ∈ L.
The matrix equation can in principle be solved through a Magnus expansion.
The solution has the generic form x(τ) = G(τ |t0)x(t0) with the “propagator”
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G solving ∂τG(τ |t0) = MτG(τ |t0). We write the elements of the propagator as
G(τ, i |t0, j). Its flow starts out from G(t0 |t0) = 1. For later purposes, let us note
the time-reversal property in terms of the matrix inverse G(t |τ)−1 = G(τ |t ) and
also the conservation law 1ᵀG(τ |t0) = 1ᵀ.

It proves insightful to consider the master equation (264) of the multi-particle
hopping process for the random walk of a single particle on the one-dimensional
lattice L = Z, which we already considered in sections 2.2 a and 3.2 a (with
symmetric hopping rates ετ,i = lτ = rτ ). The presence of only a single particle
can be enforced by choosing n0 as n0,k = 1 for one k ∈ Z and n0, j = 0 for all j , k.
By following the above steps, one eventually finds that the master equation (264)
is solved by the conditional probability distribution

p(t,n |t0,n0) =
∑
i∈Z

�∏
j,i

δn j ,0
�
δni,1G(t, i |t0, k) , (279)

with the propagator G solving the master equation (58) of the simple random
walk. Hence, the propagator evaluates to a Skellam distribution.

4.5 c Diffusion in continuous space

To make the transition to a field theory, one may specify the network as the
the d -dimensional lattice L = (lZ)d with the lattice spacing l > 0 going to zero.
In order to take this limit, we define the variable x(τ, r ) B xr (τ), the rescaled
Laplace operator ∆ B ∆/l 2, and the rescaled diffusion coefficient Dτ(r ) B l 2ετ,r
for r ∈ L. Assuming that these definitions can be continued to r ∈ Rd , the discrete
diffusion equation (277) becomes a PDE for the “field” x(τ, r ) in the limit l → 0,
namely ∂τx(τ, r ) = ∆(Dτ(r )x(τ, r )). Here, ∆ represents the ordinary Laplace
operator.14 The solution of the PDE acts as the mean of the multivariate Poisson
distribution (276) whose extension to r ∈ R is, however, not quite obvious. If the
diffusion coefficient is homogeneous in space, the PDE is solved by

x(τ, r ) =
ˆ
Rd

dr 0 G(τ, r |t0, r 0)x(t0, r 0) , (281)

14 With Nr denoting the neighbouring lattice site of r ∈ (lZ)d , the ordinary Laplace operator
follows as the limit of a finite-difference approximation, i.e. as

∑
r ′∈Nr

fr ′ − fr
l 2

→

d∑
i=1

∂2
ri f (r ) = ∆ f (r ) . (280)
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with the Gaussian kernel

G(τ, r |τ′, r ′) = e−(r−r ′)2/4
´ τ
τ′ ds D s√

4π
´ τ
τ ′ ds D s

. (282)

The action (214) can also be extended into continuous space. For that purpose,
one may rescale the second path integral variable as q(τ, r ) B l−dqr (τ) so that in
the limit l → 0,

S† =
ˆ t

t0
dτ

∑
r∈L

(
iqr

�
∂τxr − ∆ετ,r xr

�)
→

ˆ t

t0
dτ

ˆ
Rd

dr iq
�
∂τx − ∆Dτx

�
. (283)

The above rescaling of x and q is not unique and depends on the problem at
hand. Instead of dividing qr by the volume factor l d , this factor is sometimes
employed to cast xr and the particle number nr into densities [135]. In the study
of branching and annihilating random walks with an odd number of offspring, yet
another kind of rescaling may bring the action into a Reggeon field theory [75,
408–410] like form [101]. The critical behaviour of these random walks falls into
the universality class of directed percolation (DP) [101, 137]. Information on
this universality class can be found in the book [73], as well as in the original
articles of Janssen and Grassberger, which established the extensive scope of the
DP class [411, 412].

4.5 d Diffusion and decay

Let us exemplify how one can accommodate a non-vanishing perturbation operator
P†τ in the adjoint transition operator (218). As in the section before the last, we
consider a system of particles that are hopping between the nodes of an arbitrary
network L. The corresponding diffusive transition operator (275) shall specify
the drift coefficient ατ,i(x) = ∆ετ,i x i in the multivariate extension of (218). The
coefficient βτ,i j (x) is zero. Besides allowing for diffusion, we now allow the
particles to decay in the linear reaction A→ ∅. For the sake of brevity, we assume
that the corresponding decay rate coefficient µτ is spatially homogeneous. This
assumption can be relaxed but the equations that result cannot be written in
matrix form and involve many indices. We treat the adjoint transition operator
of the decay process as the perturbation, which reads, according to the flow
equation (166),

P†τ (x,∇) = −µτ
∑
i∈L

x i∂x i . (284)
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The combined process could also be solved directly by treating the decay process
as part of the drift coefficient ατ,i(x). For pedagogic reasons, however, we wish to
outline a perturbative solution using Feynman diagrams.

The first step of the derivation is to solve the differential equation (223) for
x , which now reads ∂τx i = ∆ετ,i x i + Xi(τ). The homogeneous solution of this
equation is given by x ℎ(τ) B G(τ |t0)x(t0), with G being the propagator from the
end of section 4.5 b. The solution of the full equation can be written as

x(τ) = x ℎ(τ) +
ˆ τ

t0
dτ′G(τ |τ′)X (τ′) . (285)

As the next step, the evaluation of the marginalized distribution (219) requires us
to compute the (Q,X )-generating functional (221) for Q = X = 0. By performing
a series expansion of its leading exponential, this function can be written as

Z0,0 =

∞∑
k=0

k∑
l=0

1
l !

(
iqN ·

δ

δQ(t )
) l ˆ t

t0
dτk−l P†τk−l · · ·

ˆ τ2

t0
dτ1 P†τ1 Z0

Q,X
�
Q=X=0 ,

with P†τ = δ
δX (τ) · (−µτ) δ

δQ(τ) . To evaluate Z0,0, it helps to note that lnZ0
Q,X =´ t

t0dτQ · x , from which it follows that for t0 ≤ τ ≤ t :

δ lnZ0
Q,X

δQ(τ)
����Q=X=0

= x ℎ(τ) and (286)

δ2 lnZ0
Q,X

δQi(τ)δX j (τ′)
����Q=X=0

= G(τ, i |τ′, j)Θ(τ − τ′) . (287)

The Heaviside step function is used with Θ(0) B 0 to take into account that
x ℎ(τ) depends on X (τ′) only for τ′ < τ (see appendix D). All other derivatives of
lnZ0

Q,X , as well as itself, vanish for Q = X = 0.
Upon inserting the perturbation (284) into (286), one observes that every

summand of the expansion can be written in terms of a combination of the
derivatives (286) and (287), and a terminal factor iqN . For example, the summand
with k = 2 and l = 1 reads

iqN ·
δ

δQ(t )
ˆ t

t0
dτ1

δ

δX (τ1) (−µτ1)
δ

δQ(τ1) Z
0
Q,X , (288)
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with Q = X = 0 being taken after the evaluation of the functional derivatives.
The evaluation of these derivatives results in

iqN ·

ˆ t

t0
dτ1 G(t |τ1)(−µτ1)x ℎ(τ1) . (289)

One can represent this expression graphically by a Feynman diagram according to
the following rules. First, every diagram ends in a sink , which contributes
the factor iqN . The incoming line, or “leg”, of the sink represents the derivative
δ

δQ(t ) . This leg may either be left dangling, resulting in a factor x ℎ(t ) according
to (286), or it may be “contracted” with the outgoing line of a vertex .
The two legs of this vertex reflect the two derivatives in the perturbation P†τ =

δ
δX (τ) · (−µτ) δ

δQ(τ) . According to (287), the contraction results in a propagator
G(t, i |τ, j) and the vertex itself contributes a factor −µτ. The incoming leg of
the vertex may again be left dangling or it may be connected to another vertex.
Therefore, each Feynman diagram is a straight line for the linear decay process.
The expression (289) can therefore be represented graphically by

iqN ·
−µτ1

´ t
t0 dτ1G(t |τ1) x ℎ(τ1)

. (290)

Dangling outgoing lines are not permitted because the derivative δ lnZ0
Q,X /δX (τ)

vanishes for Q = X = 0.
For more complex, non-linear processes, the Feynman diagrams may contain

multiple kinds of vertices, each representing an individual summand of P†τ . If there
exist vertices with more than two legs, the diagrams may exhibit internal loops (see
section 6.4). It is then usually impossible to evaluate the full perturbation series
and it needs to be truncated at a certain order in the number of loops. Further
information about these techniques, and about how renormalization group theory
comes into play, is provided, for example, by the book of Täuber [75]. Information
on a non-perturbative renormalization group technique can be found in [413].

For the simple diffusion process with decay, all the summands in the expansion
above (286) are readily cast into Feynman diagrams. However, it turns out that
individual summands of the expansion may be associated to multiple diagrams that
are not connected to one another. Furthermore, diagrams that represent summands
of lower order keep reappearing as unconnected components of summands of
higher order. Hence, there appears to be redundant information involved. This
redundancy is removed by a classical theorem from diagrammatic analysis. This
theorem states that the logarithm lnZ0,0 is given by the sum of only the connected
diagrams [414], i.e. by
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lnZ0,0 = +

+ + . . . .

(291)

This sum can be evaluated with the help of G(t |τ)G(τ |t0) = G(t |t0) as

lnZ0,0 =

∞∑
k=0

iqN ·

ˆ t

t0
dτk G(t |τk)(−µτk ) (292)

· · ·

ˆ τ2

t0
dτ1 G(τ2 |τ1)(−µτ1)x ℎ(τ1)

= iqN · x ℎ(t )e−
´ t
t0

dτ µτ . (293)

After inserting this expression into the marginalized distribution (219), one re-
covers the multivariate Poisson distribution (276). Its mean, however, has now
acquired the pre-factor e−

´ t
t0

dτ µτ , reflecting the decay of the particles.

4.6 Résumé

In the present section, we introduced the novel backward path integral representa-
tion

|p(t, n |t0)〉 =
 t ]

(t0
e−S

† |n〉t (294)

of the marginalized distribution (cf. section 3)

|p(t, n |t0)〉 =
∑
n0

p(t, n |t0, n0)|n0〉t0 . (295)

When the basis function |n〉x is chosen as a probability distribution (e.g. |n〉x =
xne−x
n! for all n ∈ N0), the backward path integral represents a true probability distri-

bution: the marginalized distribution |p(t, n |t0)〉. This distribution solves the for-
ward master equation (11) for the initial condition |p(t0, n |t0)〉 = |n〉 and it trans-
forms into the conditional probability distribution as p(t, n |τ, n0) = 〈n0 |p(t, n |τ)〉.
In section 4.3, we showed how the backward path integral (294) can be expressed
in terms of an average over the paths of an Itô stochastic differential equation.
This method provided the exact solutions of various elementary stochastic pro-
cesses, including the simple growth, the linear decay, and the pair generation
processes. Moreover, we showed how the path integral can be evaluated perturb-
atively using Feynman diagrams for a process with diffusion and linear particle
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Forward path integral 
representation (302)-(304)

p(t, n ⎜t0, n0) = 〈n ⎜t        e−  ⎜n0〉t0
[t0

t )

Evaluation along the paths 
of a backward-time SDE 

Forward master 
equation (11)
∂τ p(τ, n ⎜⋅) = …

Backward master 
equation (14)
∂−τ p(⋅⎜τ, n0) = …

Flow equation (193) of 
the series expansion (191)
∂−τ 〈p(⋅⎜τ )⎜ = …

Flow equation (57) of 
the generating function
∂τ ⎜g(τ⎜⋅)〉 = …
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3.4

5.1

5.3

Figure 8 Outline of the derivation of the forward path integral representation and of its
evaluation in terms of an average over the paths of a backward-time SDE.

decay. We hope that the backward path integral (294) will prove useful in the
study of reaction-diffusion processes. Thus far, the critical behaviour of such
processes could only be approached via path integral representations of averaged
observables or of the generating function [74, 415]. In section 6, we show how
the former representation readily follows from the backward path integral (294)
upon summing the marginalized distribution over an observables A(n). The cor-
responding representation is commonly applied in the study of diffusion-limited
reactions (e.g. [74, 101, 135–137], but we here show how it can be freed of some
of its quantum mechanical ballast (such as “second-quantized” or “normal-ordered”
observables and coherent states). Besides, we showed in section 4.4 how one can
derive a path integral representation of processes with continuous state spaces
whose (backward) master equations admit a Kramers-Moyal expansion. Provided
that this expansion stops at the level of a diffusion approximation, one recovers a
classic path integral representation of the (backward) Fokker-Planck equation and
also the Feynman-Kac formula (3). Moreover, the representation can be rewritten
in terms of an Onsager-Machlup function and, for diffusive Brownian motion, it
simplifies to the path integral of Wiener.

5 The forward path integral representation

Thus far, we have focused on the backward path integral (204). This integral will
be used again in section 6 to derive a path integral representation of averaged
observables. Moreover, we use it in section 7.4 to approximate the binary annihila-
tion reaction 2 A→ ∅. In the present section, however, we shift our focus to the
forward path integral (203). Its derivation proceeds analogously to the derivation
of the backward solution, so we keep it brief.
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5.1 Derivation

The forward path integral can be derived both from the flow equation (57)
obeyed by the generating function or from the flow equation (192) obeyed by the
series (191) (cf. figure 8). As it is more convenient to work with functions than
with functionals, we use the flow equation of the generating function for this pur-
pose. The derivation parallels a derivation of Elgart and Kamenev [40]. As in sec-
tion 4.1, we first split the time interval [t0, t ] into N pieces t0 ≤ t1 ≤ . . . ≤ tN B t
of length ∆t . Over a sufficiently small interval ∆t , the flow equation (57) is then
solved by

|g(t |t0, n0)〉qN = LtN−1(qN , ∂qN )|g(tN−1 |t0, n0)〉qN , (296)

with the generator Lτ B 1 + Q̃τ∆t +O
�(∆t )2�

. After inserting the integral form
of a Dirac delta between L and |g〉, the right-hand side of the equation reads

LtN−1(qN , ∂qN )
ˆ
R2

dqN−1 dxN−1
2π

e−ixN−1(qN−1−qN ) |g(tN−1 |·)〉qN−1 . (297)

Assuming that the transition operator Q̃τ, and therefore also Lτ, are normal-
ordered with respect to q and ∂q , we may replace ∂qN by ixN−1 and interchange
LtN−1 with the exponential. This procedure is repeated N times before invoking
the exponentiation Lτ = exp (Q̃τ∆t ). Using the inverse transformation (51) and
the initial condition |g(t0 |t0, n0)〉 = |n0〉, one obtains the discrete-time path integral
representation

p(t, n |t0, n0) = 〈n |t,qN |g(t |t0, n0)〉qN (298)

with |g(t |t0, n0)〉qN =
 N−1

0
e−SN |n0〉t0,q0 and (299)

SN B
N−1∑
j=0
∆t

(
ix j

q j − q j+1
∆t

− Q̃t j (q j+1, ix j )
)
. (300)

Here we again employed the abbreviation (209), i.e.

 l

k
=

l∏
j=k

ˆ
R2

dq j dx j

2π
. (301)

Moreover, the initial condition p(t0, n |t0, n0) = δn,n0 is again trivially fulfilled for
N = 0.
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Upon taking the continuous-time limit N → ∞, so that ∆t → 0, the forward
path integral representation of the master equation now follows as

p(t, n |t0, n0) = 〈n |t,q(t ) |g(t |t0, n0)〉q(t ) (302)

with |g(t |t0, n0)〉q(t ) =
 t )

[t0
e−S |n0〉t0,q(t0) (303)

and S B
ˆ t

t0
dτ

�
ix∂−τq − Q̃τ(q, ix)� . (304)

The limit
ffl t )
[t0B limN→∞

ffl N−1
0 now involves integrations over x(t0) and q(t0), but

not over x(t ) and q(t ).

5.2 Linear processes

The forward path integral (303) can, for example, be used to derive the generating
function of the generic linear process A → l A with rate coefficient µτ (and
l ∈ N0). For that purpose, we choose the basis function as |n〉τ,q = qn so that |g〉
coincides with the ordinary generating function. Since the basis function does not
depend on time, (69) alone specifies the transition operator

Q̃τ(q, ∂q ) = µτ(q l − q)∂q (305)

of the flow equation ∂τ |g(τ |·)〉 = Q̃τ(q, ∂q )|g(τ |·)〉. Consequently, the action

S =
ˆ t

t0
dτ ix

�
∂−τq − µτ(q l − q)� (306)

is linear in ix . To evaluate the path integral (303), it helps to reconsider the
discrete-time approximation

SN =

N−1∑
j=0

ix j
(
q j − (q j+1 + µt j (q lj+1 − q j+1)∆t )

)
. (307)

of the action. Upon integrating over all the q j -variables and taking the limit
∆t → 0, one obtains the generating function

|g(t |t0, n0)〉q(t ) = q(t0)n0 (308)
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with q(τ) solving ∂−τq = µτ(q l − q). The unique real solution of this equation
with final value q(t ) reads

q(τ) = q(t )
�
q(t )l−1 + e(l−1)

´ t
τ ds µs (1 − q(t )l−1)�1/(l−1)

. (309)

For the linear growth, or Yule-Furry [124, 416], process A→ 2 A ( l = 2), the
inverse transformation (302) casts the generating function into

p(t, n |t0, n0) =
( 1
n!
∂nq(t ) |g(t |t0, n0)〉q(t )

) ���q(t )=0 (310)

=

(
n − 1
n − n0

)�
e−

´ t
t0

dτ µτ �n0�
1 − e−

´ t
t0

dτ µτ �n−n0 (311)

for n > 0 and into δ0,n0 for n = 0. The above distribution has the form of a
negative Binomial distribution with probability of success e−

´ t
t0

dτ µτ , number of
failures n − n0, and number of successes n0 [417]. The mean value e

´ t
t0

dτ µτn0
of the marginalized distribution (311) grows exponentially with time as long as
µτ > 0, and so does its variance (e

´ t
t0

dτ µτ
− 1) e

´ t
t0

dτ µτn0.
For the linear decay process A→ ∅ ( l = 0), the inverse transformation in (310)

instead recovers the Binomial distribution (169).

5.3 Feynman-Kac formula for jump processes

The above procedure can be generalized to more complex processes, just as we did
in section 4.3 for the backward solution. Allowing for multiple types of particles
or for spatial degrees of freedom on a lattice L, the procedure applies to every
process whose transition operator can be written as

Q̃τ(q,∇q) = ατ(q) · ∇ + 1
2

∑
k,l

βτ,kl (q)∂qk∂ql + Pτ(q,∇) . (312)

The drift coefficient ατ and the perturbation operator Pτ may be arbitrary func-
tions. For the diffusion coefficient βτ, we require a matrix

√
βτ B γτ fulfilling

γτγ
ᵀ
τ = βτ . As shown in appendix E, the forward path integral (303) can then be

rewritten as

|g(t |t0,n0)〉q(t ) =
ˆ
R2|L|

dq0 dx0

(2π)|L| e−ix0·q0Z0,0 |n0〉t0,q0
(313)
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with the (X ,Q)-generating functional

ZX ,Q (x0, q(t )) = e
´ t
t0

dτ Pτ

�
δ
δX ,

δ
δQ

�
+ δ
δX (t0) ·ix0Z0

X ,Q (314)

with Z0
X ,Q (q(t )) =




e
´ t
t0
dτX ·q��

W . (315)

The average proceeds over realizations of the Wiener processW (τ). This process
governs the evolution of q(τ) through the “backward-time” Itô SDE

− dq(τ) = (ατ(q) +Q(τ)) dτ +
√
βτ(q) dW (τ) . (316)

with final value q(t ). If the perturbation operator Pτ does not vanish, a series
expansion of the exponential in (314) can again be organized in terms of Feynman
diagrams.

5.4 Intermezzo: The forward Kramers-Moyal expansion

The above procedure can be generalized to processes whose transition operator is
of the form

Q̃τ(q, ∂q ) = ατ(q)∂q + 1
2
βτ(q)∂2

q + Pτ(q, ∂q ) . (317)

The derivation proceeds analogously to section 4.3 and appendix D. The probabil-
ity distribution is thereby expressed as an average over the paths of a stochastic
differential equation proceeding backward in time. The merit of such a repres-
entation remains to be explored. In the following, we briefly outline how the
procedure is applied to processes with continuous sample paths.

In section 4.4, we explained how the forward master equation (226) of a
process with a continuous state space can be written in terms of the (forward)
Kramers-Moyal expansion

∂τp(τ, q |·) =
∞∑

m=1

(−1)m
m!

∂mq
�
M(m)

τ (q)p(τ, q |·)� (318)

with initial condition p(τ, q |t0, q0) = δ(q − q0). Here we changed the letter from x
to q to keep in line with the notation used in sections 5.1 and 5.2. If the Kramers-
Moyal expansion stops with its second summand, it coincides with the (forward)
Fokker-Planck equation

∂τp(τ, q |·) = −∂q �
M(1)

τ (q)p�
+

1
2
∂2
q

�
M(2)

τ (q)p�
. (319)
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To apply the procedure from the previous section to this equation, it needs to
be brought into the form ∂τp(τ, q |·) = Q̃τ(q, ∂q )p(τ, q |·) with a normal-ordered
transition operator Q̃τ(q, ∂q ). It is readily established that this operator can be
expressed in the form of (317) with the coefficients

ατ(q) B −M(1)
τ + ∂qM(2)

τ , (320)

βτ(q) BM(2)
τ , and (321)

Pτ(q) B −∂qM(1)
τ +

1
2
∂2
qM(2)

τ . (322)

The Fokker-Planck equation now has the same form as the flow equation obeyed
by the generating function in section 5.1. Therefore, we can follow the steps in
that section to represent the solution of the Fokker-Planck equation by the path
integral

p(t, q |t0, q0) =
 t )

[t0
e−S δ(q0 − q(t0))�q(t )=q (323)

with S B
ˆ t

t0
dτ

�
ix∂−τq − Q̃τ(q, ix)� . (324)

The evaluation of this path integral proceeds analogously to the derivation in sec-
tion 5.2 and appendix D. In particular, one can rewrite the probability distribution
as

p(t, q |t0, q0) = 


e
´ t
t0

dτ Pτ(q(τ))δ(q0 − q(t0))��W , (325)

with q(τ) solving the backward-time SDE

− dq(τ) = ατ(q(τ)) dτ +
√
βτ(q(τ)) dW (τ) . (326)

The time evolution of this SDE starts out from the final value q(t ) = q . In a
discrete-time approximation, the SDE reads

q j − q j+1 = αt j (q j+1)∆t +
√
βt j (q j+1)∆W j . (327)

The increments ∆W j are Gaussian distributed with mean 0 and variance ∆t . Let us
note that the two path integral representations (232) and (323) of the conditional
probability distribution belong to an infinite class of representations [47, 109, 418]
(see also section 4.4 e). We focus on the two representations that follow from the
backward and forward Kramers-Moyal expansions via the step-by-step derivations
in sections 4.1 and 5.1, respectively.



5 The forward path integral representation 105

To exemplify the validity of the path integral (323) and of the representa-
tion (325), we consider a process with linear drift and no diffusion, i.e. a process
with jump moments M(1)

τ = µq and M(2)
τ = 0. For this process, the representa-

tion (325) evaluates to

p(t, q |t0, q0) = e−µ(t−t0)δ(q0 − q e−µ(t−t0)) = δ(q − q0 eµ(t−t0)) . (328)

Thus, the leading exponential in (325) converted the argument of the Dirac delta
from the solution of a final value problem to the solution of an initial value
problem. It is, of course, no surprise that the probability distribution is given by a
Dirac delta function because the process is purely deterministic.

Another simple process that can be solved with the help of (325) is the pure
diffusion process with M(1)

τ = 0 and M(2)
τ = D . The derivation is performed most

easily in the discrete-time approximation and results in the Wiener path integral

p(t, q |t0, q0) = lim
N→∞

( N∏
j=1

ˆ
R
dq̃ j−1

) ( N∏
j=1

G0,D∆t (q̃ j−1 − q̃ j )
)
δ(q̃0 − q0) , (329)

with q̃N B q and Gaussian distribution Gµ,σ2 (cf. (244)). An evaluation of
the convolutions of Gaussian distributions shows that the process is solved by
G0,D(t−t0)(q − q0). Further uses of the path integral representation (323) of the
(forward) Fokker-Planck equation remain to be explored.

5.5 Résumé

Here we derived the forward path integral representation

|g(t |t0, n0)〉 =
 t )

[t0
e−S |n0〉t0 (330)

of the probability generating function |g(t |t0, n0)〉 = ∑
n |n〉t p(t, n |t0, n0). The

conditional probability distribution is recovered from the generating function via
the inverse transformation p(t, n |t0, n0) = 〈n |g(t |t0, n0)〉. The path integral repres-
entation of the generating function has, for example, been employed to compute
rare event probabilities [40] by a method that we discuss in section 7. Most often,
however, the representation has only served as an intermediate step in deriving
a path integral representation of averaged observables. Such a representation is
considered in the next section. In section 5.2, we showed how the forward path
integral (330) can be evaluated along the paths of a differential equation proceeding
backward in time. We thereby obtained the generating function of generic linear
processes. Besides, we derived a novel path integral representation of processes
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with continuous state spaces in section 5.4, based on the (forward) Kramers-Moyal
expansion. The potential use of this representation remains to be explored.

6 Path integral representation of averaged observables

The backward and forward path integral representations of the conditional prob-
ability distribution provide a full characterization of a Markov process. Yet, an
intuitive understanding of how a process evolves is often attained more easily by
looking at the mean particle number 〈n〉 and at its variance


�
n− 〈n〉�2�

. Although
both of these averages can in principle be inferred from a given probability distri-
bution, it often proves convenient to bypass the computation of the distribution
and to focus directly on the observables. Thus, we now show how one can derive
a path integral representation of the average



A

�
of an observable A(n). The path

integral representation applies to all processes that can be decomposed additively
into reactions of the form k A → l A in a well-mixed, non-spatial environment.
The extension of the path integral to multiple types of interacting particles and to
processes with spatial degrees of freedom is straightforward. In the derivation, we
assume that the number of particles in the system is initially Poisson distributed
with mean x(t0). This assumption is common in the study of reaction-diffusion
master equations and will allow us to focus on the marginalized distribution from
section 3 instead of on the conditional probability distribution.

6.1 Derivation

Assuming that the number of particles is initially Poisson distributed with mean
x(t0), the probability of finding n particles at time t is

p(t, n) =
∑
n0

p(t, n |t0, n0)p(t0, n0) . (331)

Here we employ the initial (single-time) distribution

p(t0, n0) = x(t0)n0e−x(t0)

n0!
. (332)

The average value of an observable A(n) at time t therefore evaluates to

〈A〉x(t0) =
∞∑
n=0

A(n)p(t, n) . (333)
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Here we emphasize that the average depends on the mean of the initial Poisson
distribution. As the single-time distribution coincides with the marginalized dis-
tribution |p(t, n |t0)〉 in (144) for the Poisson basis function |n0〉x(t0) = x(t0)n0e−x(t0)

n0! ,
the above average can equivalently be written as

〈A〉x(t0) =
∞∑
n=0

A(n)|p(t, n |t0)〉x(t0) . (334)

The path integral representation of 〈A〉x(t0) then follows directly from the back-
ward path integral representation (213) of the marginalized distribution as

〈A〉x(t0) =
 t ]

(t0
e−S

† 〈〈A〉〉x(t ) (335)

with 〈〈A〉〉x B
∞∑
n=0

xne−x

n!
A(n) . (336)

With the adjoint transition operator Q†τ(c, a) = γτck(al − ak) of the reaction
k A→ l A (cf. section 3.2 b), the action S† in (214) reads

S† =
ˆ t

t0
dτ

�
iq∂τx −Q†τ(x, iq + 1)� . (337)

The “+1” in the transition operator is called the “Doi-shift” [96]. In our above
derivation, this shift followed from choosing a Poisson distribution as the basis
function. The unshifted version of the path integral can be derived by choosing the
basis function of the marginalized distribution (144) as |n0〉x(t0) = x(t0)n0

n0! , turning
the average (334) into

〈A〉x(t0) = e−x(t0)
∞∑
n=0

A(n)|p(t, n |t0)〉x(t0) . (338)

Upon rewriting the marginalized distribution in terms of the backward path
integral (213), the action (337) acquires the addition summand x(t0) − x(t ) and
now involves the unshifted transition operator Q†τ(x, iq).

The average over a Poisson distribution in (336) establishes the link between
the particle number n and the path integral variable x . For the simplest observable
A(n) B n, i.e. for the particle number itself, it holds that 〈〈n〉〉x = x . This relation
generalizes to factorial moments of order k ∈ N for which 〈〈(n)k〉〉x = xk (recall
that (n)k B n(n − 1) · · · (n − k + 1)). The computation of factorial moments
may serve as an intermediate step in obtaining ordinary moments of the particle
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number. For this purpose, one may use the relation nk =
∑k

l=0
�k
l
	(n)l , where

the curly braces represent a Stirling number of the second kind (cf. section 26.8
in [337]). An extension of the path integral representation (335) to multi-time
averages of the form

∞∑
n2,n1=0

A(n2, n1)p(τ2, n2; τ1, n1 |t0, n0) (339)

remains open (with τ2 > τ1 > t0). The results of Elderfield [378] may prove
helpful for this purpose.

In a slightly rewritten form, the Doi-shifted path integral (335) was, for ex-
ample, employed by Lee in his study of the diffusion-controlled annihilation
reaction k A→ ∅ with k ≥ 2 [135, 385]. He found that below the critical dimen-
sion dc = 2/(k − 1), the particle density asymptotically decays as n ∼ Ak t−d/2
with a universal amplitude Ak . At the critical dimension, the particle density
instead obeys n ∼ Ak(ln t/t )1/(k−1). Neglecting the diffusion of particles, the above
action (337) of the reaction k A→ ∅ reads

S† =
ˆ t

t0
dτ

(
iq∂τx + γτxk

k∑
j=1

(
k
j

)
(iq) j ) . (340)

Besides using different names for integration variables (iq → ψ and x → ψ), the
action employed by Lee involves an additional boundary term. This term can be
introduced by rewriting the path integral representation (335) as

〈A〉λ0 =

 t ]

[t0
e−S

† 〈〈A〉〉x(t ) . (341)

This path integral involves integrations over the variables q(t0) and x(t0), and
the mean of the initial Poisson distribution is denoted by λ0. Consequently, one
needs to add the boundary term iq(t0)(x(t0) − λ0) to the action (340) to equate
x(t0) with λ0. The factor iq(t0)x(t0) of the new term is, however, often dropped
eventually [135, 385]. The convention of Lee is also commonly used, for example,
by Täuber [75]. The unshifted version of the path integral with transition operator
Q†τ(x, iq) is recovered via iq + 1→ iq .

For completeness, let us note that the path integral representation (335) can
also be derived from the forward path integral (299), provided that the observable
A(n) is analytic in n. It then suffices to consider the factorial moment A(n) B (n)k .
To perform the derivation, one may choose the basis function of the generating
function (48) as |n〉 B (iq + 1)n (insert ζ B i, q̃ B 1 and x̃ B 0 into (75)). As
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the first step, the forward path integral (303) is summed over an initial Poisson
distribution with mean x(t0). The average of the factorial moment is then obtained
via 〈(n)k〉x(t0) = ∂kiqN |g(t |t0; x(t0))〉qN |qN =0. To recover the action (337), one may

note that the operator Qτ(c, a) in (69) and the operator Q†τ(c, a) in (156) fulfil
Qτ(iq + 1, x) = Q†τ(x, iq + 1) for scalar arguments. Thus, both the marginalized
distribution approach and the generating function approach result in the same
path integral representation of averaged observables. A detailed derivation of the
path integral (335) from the generating function is, for example, included in the
article of Dickman and Vidigal [415] (see their equations (106) and (108)).

6.2 Intermezzo: Alternative derivation based on coherent states

We noted in section 2.2 c that the path integral representation (335) of the average

〈A〉x(t0) =
∞∑

n0,n=0
A(n) p(t, n |t0, n0) x(t0)

n0e−x(t0)

n0!
(342)

can be derived without first casting the master equation into a linear PDE [96,
135, 291, 338, 385]. The following section outlines this derivation for the process
k A→ l A with time-independent rate coefficient γ. Moreover, we assume A(n)
to be analytic in n.

The alternative derivation of the path integral representation (335) starts out
from the exponential solution of the master equation, i.e. from (cf. (98))

p(t, n |t0, n0) = 〈n |eQ(t−t0) |n0〉 . (343)

The bras are chosen as the unit row vectors 〈n | = ê
ᵀ

n and the kets as the unit column
vectors |n〉 = ên. As before, the transition matrix of the reaction k A→ l A with
rate coefficient γ reads (cf. (100))

Q(c, a) = γ(c l − ck)ak . (344)

The creation matrix fulfils c |n〉 = |n + 1〉 and 〈n |c = 〈n − 1|, and the annihilation
matrix a |n〉 = n |n − 1〉 and 〈n |a = (n + 1)〈n + 1|. The basis column vectors can
be generated incrementally via |n〉 = cn |0〉, the basis row vectors via 〈n | = 〈0| ann! .

Since the bra 〈n | is a left eigenvector of the number matrix N B c a with
eigenvalue n, one may write A(n)〈n | = 〈n |A(N ) for an analytic observable A.
After inserting the exponential solution (343) into the averaged observable (342),
an evaluation of the sums therefore results in

〈A〉x0 = 〈0|eaA(c a)eQ(c,a)(t−t0)ex0(c−1) |0〉 . (345)
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Here we employed the (infinitely-large) unit matrix 1. Moreover, we changed the
variable x(t0) to x0 in anticipation of a discrete-time approximation.

Following the lecture notes of Cardy [96], we now perform the Doi-shift
by shifting the first exponential in the above expression to the right. To do so,
we require certain relations, which are all based on the commutation relation
[a, c] = 1. First, it follows from this relation that [a, cn] = ncn−11 holds for all
n ∈ N0, and more generally that [a, [a · · · [a, cn]]] = (n) j cn− j1 holds for nested
commutators with j ≤ n annihilation matrices. Nested commutators of higher
order vanish. Using the Hadamard lemma [419], it follows for z ∈ C that

ez acn = (ez acne−z a)ez a = �
cn + [a, cn]z + 1

2
[a, [a, cn]]z2 + . . .

�
ez a (346)

=
�
cn + ncn−1z 1 +

(
n
2

)
cn−2z2 1 + . . .

�
ez a = (c + z1)nez a . (347)

This expression generalizes to shift operations for analytic functions, i.e.

ez a f (c) = f (c + z1)ez a and (348)
f (a)ezc = ezc f (a + z1) . (349)

Shifting of the first exponential in (345) to the right therefore results in

〈A〉x0 = 〈0|A�(c + 1)a�
eQ(c+1,a)(t−t0)ex0c |0〉 . (350)

Next, we split the time interval [t0, t ] into N pieces of length ∆t B (t − t0)/N .
The Trotter formula [420] can then be used to write

〈A〉x0 = lim
N→∞

〈0|A�(c + 1)a��
1 +Q(c + 1, a)∆t �N ex0c |0〉. (351)

This expression is now rewritten by inserting N of the identity matrices [20]

1 =

∞∑
m=0

|m〉〈m | =
∞∑

m,n=0

1
m!

(ˆ
R
dx (∂nx xm) δ(x)

) |m〉〈n | (352)

=

∞∑
m,n=0

1
m!

(ˆ
R
dx xm (−∂x )n

ˆ
R

dq
2π

e−iqx
)
cm |0〉〈0| a

n

n!
(353)

=

ˆ
R2

dx dq
2π

e−(iq−1)x e−xexc |0〉〈0|eiqa =
ˆ
R2

dx dq
2π

e−(iq−1)x |x〉〉〈〈−iq | . (354)

Note that potential boundary terms were neglected in the integrations by parts
(such integrations were not required in the analytic derivations in sections 4 and 5).
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Moreover, we introduced the right eigenvector |z〉〉 B ez(c−1) |0〉 of the annihilation
matrix (a |z〉〉 = z |z〉〉 with z ∈ C), and the left eigenvector 〈〈z? | B 〈0|ez a of the
creation matrix (〈〈z? |c = z〈〈z? |). These vectors are commonly referred to as
“coherent states”. The eigenvector conditions can be easily verified by rewriting
the vectors as

|z〉〉 =
∞∑

m=0

zme−z

m!
|m〉 and 〈〈z? | =

∞∑
n=0

zn〈n | . (355)

Insertion of the identity matrices into (351) results in

〈A〉x0 = lim
N→∞

 N

1
〈0|A((c + 1)a)exN c |0〉 (356)

·

N∏
j=1

〈0|e−iq j (x j−a)�1 +Q(c + 1, a)∆t �
ex j−1c |0〉 .

This expression can be simplified with the help of the shift operations in (348)
and (349). Since the Q -matrix (344) is a normal-ordered polynomial in c and a
(i.e. all the c are to the left of all the a ), and both 〈0|c and a |0〉 vanish, the above
expression evaluates to

〈A〉x0 = lim
N→∞

 N

1
〈0|A((c + 1)(a + xN1))|0〉 (357)

·

N∏
j=1

e−iq j (x j−x j−1)�1 +Q(iq j + 1, x j−1)∆t
�
.

The factor 〈0|A((c+1)(a+xN1))|0〉 could be evaluated by normal-ordering the
observable with respect to c and a before employing 〈0|c = 0 and a |0〉 = 0 again.
The resulting object is sometimes called a “normal-ordered observable” [338]. In
the following, we show that this object agrees with the average over a Poisson
distribution in (336). The proof of this assertion is based on the observation that
f j (x) B 〈0|((c + 1)(a + x1)) j |0〉 fulfils the following defining relation of Touchard
polynomials (see [421, 422] for information on these polynomials):

f j+1(x) = 〈0|(�(c + 1)(a + x1)� j+1 |0〉 (358)

= 〈0|(c + 1)�(a + x1)(c + 1)� j (a + x1)|0〉
= 〈0|�(c + 1)(a + x1) + 1� j x1 |0〉 (359)

= x
j∑

i=0

(
j
i

)
〈0|�(c + 1)(a + x1)�i |0〉 = x

j∑
i=0

(
j
i

)
fi(x) . (360)
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Here we used [a, c] = 1, a |0〉 = 0 and 〈0|c = 0. The recurrence relation starts out
from f0(x) = 1. Since the j -th Touchard polynomial f j (x) agrees with the j -th
moment of a Poisson distribution with mean x , i.e. with 〈〈n j〉〉x as defined in (336),
our above assertion holds true.

The path integral representation (335) of averaged observables is recovered as
the continuous-time limit of (357) (upon rewriting 1 +Q∆t as an exponential).
the action (337) is recovered because the transition matrix in (344) and the adjoint
transition operator in (156) fulfil Q(iq + 1, x) = Q†(x, iq + 1) for scalar arguments.

6.3 Perturbation expansions

The path integral representation (335) of factorial moments can be rewritten in
terms of a (Q,X )-generating functional analogously to section 4.3. The resulting
expression may serve as the starting point for a perturbative [20, 75] or a non-
perturbative analysis [413] of the path integral. Here we focus on the perturbative
approach. To derive the representation, we assume that the adjoint transition
operator can be split into drift, diffusion, and perturbation parts as in (218), i.e.

Q†τ(x, ∂x + 1) = ατ(x)∂x + βτ(x)∂
2
x
2
+ P†τ (x, ∂x ) . (361)

By following the steps in appendix D (with N being replaced by N + 1), the path
integral representation of a factorial moment can be written as

〈(n) j〉x(t0) =
δ j

δQ(t ) j e
´ t
t0

dτ P†τ ( δ
δQ(τ) ,

δ
δX (τ) )Z0

Q,X
���Q=X=0 , (362)

where Z0
Q,X =




e
´ t
t0
dτQ(τ)x(τ)��

W represents the (Q,X )-generating functional (222).
Moreover, x(τ) solves the Itô SDE

dx(τ) = �
ατ(x) + X (τ)� dτ + √

βτ(x) dW (τ) (363)

with initial condition x(t0). If both the diffusion and perturbation parts of the
transition operator (361) vanish, the factorial moment at time t obeys the statistics
of a Poisson distribution, i.e. 〈(n) j〉 = x(t ) j . The representation (362) can be
evaluated perturbatively by expanding its exponential as [20]

e
´ t
t0

dτ P†τ =
∞∑

m=0

ˆ t

t0
dτm P†τm · · ·

ˆ τ2

t0
dτ1 P†τ1 . (364)

Unlike the expansion (286), this expansion involves only a single sum.
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6.4 Coagulation

Let us exemplify the perturbation expansion of (362) for particles that diffuse and
coagulate in the reaction 2 A → A. This reaction exhibits the same asymptotic
particle decay as the binary annihilation reaction 2 A → ∅ and thus belongs
to the same universality class [296, 423]. Only a pre-factor differs between the
perturbation operators of the two reactions (see below). A full renormalization
group analysis of general annihilation reactions k A → l A with l < k was
performed by Lee [135, 385] (see also [74]). The procedure of Lee differs slightly
from the one presented below, but it involves the same Feynman diagrams. We
restrict ourselves to the “tree level” of the diagrams. The coagulation reaction
2 A→ A and the annihilation reaction 2 A→ ∅ eventually cause all but possibly
one particle to vanish from a system. The transition into an absorbing steady state
can be prevented; for example, by allowing for the creation of particles through
the reaction ∅ → A. The fluctuations around the ensuing non-trivial steady state
have been explored with the help of path integrals in [300, 310].

In the following, we consider particles that diffuse on an arbitrary network L
and that coagulate in the reaction 2 A→ A. Hence, all results from section 4.5 d
apply here as well, except that the transition operator of the coagulation reaction
now acts as a perturbation. With the local coagulation rate coefficient µτ,i at lattice
site i ∈ L, this perturbation reads (cf. (156))

P†τ (x, iq) =
∑
i∈L

µτ,i x2
i
�(iqi + 1) − (iqi + 1)2�

(365)

=
∑
i∈L

�(−µτ,i)x2
i iqi + (−µτ,i)x2

i (iqi)2
�
. (366)

For the binary annihilation reaction 2 A → ∅, the first rate coefficient µτ,i in
this expression differs by an additional pre-factor 2. Note that we allow the rate
coefficient to depend both on time and on the node i ∈ L.

As explained in section 4.5 d, summands of the expansion of (362) can be
represented by Feynman diagrams. For the mean local particle number 〈ni〉, each
diagram is composed of a sink with one incoming leg, and possibly of the vertices

−µτ,i and −µτ,i . (367)

According to the functional derivative (287), contracted lines, either between two
vertices or between a vertex and the sink, are associated to the propagator G(τ |τ′).
Dangling incoming lines, on the other hand, introduce a factor x ℎ(τ), representing
the homogeneous solution of ∂τx i = ∆ετ,i x i + Xi(τ) (cf. (285) and (286)).



114 Master equations and the theory of stochastic path integrals

In general, diagrams constructed from the above building blocks exhibit in-
ternal loops. The simplest connected diagram with such a loop and with a single
sink is given by

. (368)

This loop is part of the m = 2 summand of (364). Its mathematical expression is
obtained by tracing the diagram from right to left and reads
ˆ t

t0
dτ2

∑
j∈L

G(t, i |τ2, j)(−µτ2, j )
ˆ τ2

t0
dτ1

∑
k∈L

2
�
G(τ2, j |τ1, k)�2(−µτ1,k)

�
xℎ,k(τ1)

�2
.

(369)
The combinatorial factor 2 stems from the two possible ways of connecting the
two vertices (either outgoing leg can connect to either incoming leg). Note that
the sink, which corresponds to the final derivative δ/δQ(t ), is not associated to an
additional pre-factor (unlike in section 4.5 d).

In the following, we focus on the contribution of “tree diagrams” to the mean
particle number. These diagrams do not exhibit internal loops. Thus, upon
removing all the diagrams containing loops from the expansion of (362), one can
define the “tree-level average”

n̄i(t ) B + + 2 + . . . .

(370)

The corresponding mathematical expression reads

n̄i(t ) = xℎ,i(t ) +
ˆ t

t0
dτ1

∑
j∈L

G(t, i |τ1, j)(−µτ1, j )
�
xℎ, j (τ1)

�2 (371)

+ 2
ˆ t

t0
dτ2

∑
j∈L

G(t, i |τ2, j)(−µτ2, j )xℎ, j (τ2)

·

ˆ τ2

t0
dτ1

∑
k∈L

G(τ2, j |τ1, k)(−µτ1,k)
�
xℎ,k(τ1)

�2
+ . . . .

The inclusion of diagrams with loops would correct n̄i to the true mean 〈ni〉. For
the treatment of loops, see for example [75, 135, 295, 385].
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The tree-level average n̄i defined above fulfils the deterministic rate equation
of the coagulation process, i.e. it fulfils

∂τ n̄i = ∆ετ,i n̄i − µτ,i n̄2
i . (372)

If both the rates ετ and µτ , and also the mean x(t0) of the initial Poisson distribu-
tion are spatially homogeneous, the well-mixed analogue of (372) can be derived
by direct resummation of (371). In the general case, the validity of the rate equa-
tion (372) can be established by exploiting a self-similarity of n̄i . For that purpose,
we assume that n̄i(τ) is known for τ < t and we want to extend its validity up to
time t . To do so, we remove all the sinks from the diagrams in (370) and connect
their now dangling outgoing legs with the incoming leg of another three-vertex at
time τ. The second incoming leg of this vertex is contracted with every other tree
diagram and its outgoing leg with a sink at time t . The corresponding expression
reads

∑
j∈LG(t, i |τ, j)(−µτ, j )n̄ j (τ)2 and it contributes to n̄i(t ) for every time τ. To

respect also the initial condition n̄i(t0) = x i(t0), we introduce the first diagram
of (370) by hand so that in total

n̄i(t ) = xℎ,i(t ) +
ˆ t

t0
dτ

∑
j∈L

G(t, i |τ, j)(−µτ, j )n̄ j (τ)2 . (373)

Differentiation of n̄i(t ) with respect to t confirms the validity of (372).

6.5 Résumé

Path integral representations of averaged observables have proved useful in a variety
of contexts. Their use has deepened our knowledge about the critical behaviour of
diffusion-limited annihilation and coagulation reactions [74, 75, 135, 295, 296, 304,
306, 307, 318, 403], of branching and annihilating random walks and percolation
processes [74, 75, 101, 137, 138, 303, 305, 424, 425], and of elementary multi-species
reactions [136, 297–299, 301, 302, 311–313, 315, 426, 427]. In the present section,
we derived a path integral representation of averaged observables for processes that
can be decomposed additively into reactions of the form k A→ l A. Provided that
the number of particles n in the system is initially Poisson distributed with mean
x(t0), the average of an observable A(n) can be represented by the path integral

〈A〉x(t0) =
 t ]

(t0
e−S

† 〈〈A〉〉x(t ) (374)

with 〈〈A〉〉x =
∞∑
n=0

xne−x

n!
A(n) . (375)
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We derived this representation in section 6.1 by summing the backward path
integral representation (213) of the marginalized distribution over the observable
A(n) (using the Poisson basis function |n〉 = xne−x

n! ). The generalization of the
above path integral to reactions with multiple types of particles and spatial degrees
of freedom is straightforward. The above path integral representation was found to
be equivalent to Doi-shifted path integrals used in the literature [75, 101, 135–138].
Its unshifted version is obtained for a redefined basis function. Unlike path integral
representations encountered in the literature, our representation (374) does not
involve a so-called “normal-ordered observable”. By using a defining relation of
Touchard polynomials, we could show that this object agrees with the average (375)
of A(n) over a Poisson distribution (cf. section 6.2).

As shown in section 6.3, the path integral representation (374) can be rewritten
in terms of a perturbation expansion. We demonstrated the evaluation of this
expansion in section 6.4 for diffusing particles that coagulate according to the
reaction 2 A → A. In doing so, we restricted ourselves to the tree-level of the
Feynman diagrams associated to the perturbation expansion. Information on
perturbative renormalization group techniques for the treatment of diagrams with
loops can be found in [74, 75]. Recently, non-perturbative renormalization group
techniques have been developed for the evaluation of stochastic path integrals [319,
413]. These techniques have proved particularly useful in studying branching and
annihilating random walks [319, 320] and annihilation processes [308, 309].

7 Stationary paths

In the previous sections, we outlined how path integrals can be expressed in terms
of averages over the paths of stochastic differential equations (SDEs). Corrections
to those paths were treated in terms of perturbation expansions. In the following,
we formulate an alternative method in which the variables of the path integrals
act as deviations from “stationary”, or “extremal”, paths. The basic equations
of the method have the form of Hamilton’s equations from classical mechanics.
Their application to stochastic path integrals goes back at least to the work of
Mikhailov [16].

More recently, Elgart and Kamenev extended the method for the study of rare
event probabilities [40] and for the classification of phase transitions in reaction-
diffusion models with a single type of particles [322]. These studies are effectively
based on the forward path integral representation (299) of the generating function.
After reviewing how this approach can be used for the approximation of probabil-
ity distributions, we extend it to the backward path integral representation (210)
of the marginalized distribution. Whereas the generating function approach re-
quires an auxiliary saddle-point approximation to extract probabilities from the
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generating function, the backward approach provides direct access to probabilities.
A proper normalization of the resulting probability distribution is, however, only
attained beyond leading order. The generating function technique respects the
normalization of the distribution even at leading order, but this normalization
may be violated by the subsequent saddle-point approximation.

The methods discussed in the following all apply to the chemical master
equation (27) and employ the basis functions that we introduced in sections 2.2 b
and 3.2 b. Moreover, we assume the number of particles to be initially Poisson
distributed with mean x(t0). This assumption proves to be convenient in the
analysis of explicit stochastic processes but it can be easily relaxed.

7.1 Forward path integral approach

Our goal lies in the approximation of the marginalized probability distribution

|p(t, n |t0)〉x(t0) =
∞∑

n0=0
p(t, n |t0, n0) x(t0)

n0e−x(t0)

n0!
. (376)

For this purpose, we employ the forward path integral (299) to formulate an
alternative representation of the ordinary probability generating function

|g(t |t0, n0)〉q(t ) B
∞∑
n=0

q(t )np(t, n |t0, n0) . (377)

As the first step, we rewrite the argument q(t ) of this function in terms of a
deviation ∆q(t ) from a “stationary path” q̃(t ), i.e. q(t ) = q̃(t ) + ∆q(t ). The path
q̃(t ) and an auxiliary path x̃(τ) are chosen so that the action of the resulting path
integral is free of terms that are linear in the path integral variables ∆q(τ) and
∆x(τ) (with τ ∈ [t0, t ]). Thus, the approach bears similarities with the stationary
phase approximation of oscillatory integrals [428]. In the next section, we apply
the method to the binary annihilation process 2 A→ ∅.

In order to implement the above steps, we define the basis function

|n〉τ,∆q(τ) B (ζ∆q(τ) + q̃(τ))ne−x̃(τ)(ζ∆q(τ)+q̃(τ)) (378)

for yet to be specified paths q̃(τ) and x̃(τ), and a free parameter ζ . The basis
function has the same form as the basis function (75) but with its second argument
being written as ∆q(τ). Provided that the path q̃(τ) fulfils the final condition
q̃(t ) = q(t ), one can trivially rewrite the generating function (377) in terms of the
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above basis function as

|g〉q(t ) = ex̃(t )q̃(t )
( ∞∑
n=0

|n〉t,∆q(t ) p(t, n |·)
) ���∆q(t )=0 . (379)

The term in brackets has the form of the generalized generating function (48), and
thus it can be rewritten in terms of the forward path integral (303) by following
the steps in section 5.1. Using ∆q(τ) and ∆x(τ) as labels for the path integral
variables, one arrives at the representation

|g〉q(t ) = ex̃(t )q̃(t )
( t )

[t0
e−S |n0〉t0,∆q(t0)

) ���∆q(t )=0 . (380)

In analogy with (301), the integral sign is defined as the continuous-time limit

 t )

[t0
= lim

N→∞

N−1∏
j=0

ˆ
R2

d∆x j d∆q j
2π

. (381)

The action (304) inside the generating function (380) reads

S =
ˆ t

t0
dτ

�
i∆x∂−τ∆q − Q̃τ(∆q, i∆x)� . (382)

As emphasized above, our interest lies in a system whose initial number of
particles is Poisson distributed with mean x(t0). Thus, instead of dealing with the
ordinary generating function (377), it proves convenient to work in terms of the
generating function

|g(t |t0; x(t0))〉q(t ) B
∞∑

n0=0
|g(t |t0, n0)〉q(t )

x(t0)n0e−x(t0)

n0!
(383)

= ex̃(t )q̃(t )−x(t0)
 t )

[t0
e−S ���∆q(t )=0 . (384)

To arrive at the second line, we made use of the path integral representation (380)
while requiring that the path x̃(τ) meets the initial condition x̃(t0) = x(t0). Note
that the marginalized distribution (376) is recovered from the redefined generating
function via

|p(t, n |t0)〉x(t0) =
1
n!
∂nq(t ) |g(t |t0; x(t0))〉q(t )���q(t )=0 . (385)
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Thus far, we have not yet specified the paths q̃(τ) and x̃(τ), besides requiring
that they fulfil the boundary conditions q̃(t ) = q(t ) and x̃(t0) = x(t0). We specify
these paths in such a way that the action (382) becomes free of terms that are linear
in the deviations ∆q and ∆x . For this purpose, let us recall the definitions of the
creation operator c = ζ∆q + q̃ and of the annihilation operator a = ∂ζ∆q + x̃ from
section section 2.2 b, as well as the definition of the transition operator

Q̃τ(∆q, ∂∆q ) = Qτ(c, a) + Eτ(c, a) . (386)

The basis evolution operator is specified in (90) as

Eτ(c, a) = (∂τ q̃)(a − x̃) − (∂τ x̃)c . (387)

Upon performing a Taylor expansion of the operator Q̃τ(∆q, i∆x) in the ac-
tion (382) with respect to the deviations ∆q and ∆x , one observes that terms that
are linear in the deviations vanish from the action if the paths x̃(τ) and q̃(τ) fulfil15

∂τ x̃ =
∂Qτ(q̃, x̃)

∂q̃
with x̃(t0) = x(t0) and (388)

∂−τ q̃ =
∂Qτ(q̃, x̃)

∂ x̃
with q̃(t ) = q(t ) . (389)

These equations resemble Hamilton’s equations from classical mechanics. Just as in
classical mechanics, Qτ is conserved along solutions of the equations if it does not
depend on time itself. This property follows from d

dτQτ(q̃, x̃) = ∂τQτ(q̃, x̃), with
d
dτ being the total time derivative. Since the ordinary generating function obeys
the flow equation ∂τ |g〉q = Qτ(q, ∂q )|g〉q , the conservation of total probability
requires that Qτ(1, ∂q ) = 0. This condition is, for example, fulfilled by the
transition operator Qτ(q, ∂q ) = γτ(q l − qk)∂kq of the generic reaction k A→ l A
(cf. (69)). For the final value q(t ) = 1, Hamilton’s equations (388) and (389)
are solved by q̃(τ) = 1 with x̃(τ) solving the rate equation ∂τ x̃ = γτ(l − k)x̃k
of the process. Elgart and Kamenev analysed the topology of Qτ(q̃, x̃) = 0 lines

15 If Hamilton’s equations are fulfilled, it holds that

Q̃τ(∆q, i∆x) = �
Qτ(q̃, x̃) + ∂Qτ

∂q̃
ζ∆q +

∂Qτ

∂ x̃
ζ−1i∆x + ∆Qτ

�

+
�(∂τ q̃)ζ−1i∆x − (∂τ x̃)(ζ∆q + q̃)�

= −∂τ(x̃ q̃) − �
x̃∂−τ q̃ −Qτ(q̃, x̃)� + ∆Qτ .

Here, ∆Qτ represents all terms of the Taylor expansion of Qτ that are of second or higher
order in the deviations.
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of reaction-diffusion models with a single type of particles to classify the phase
transitions of these models [322] (with label p instead of q̃ , and q instead of x̃ ).

Provided that Hamilton’s equations (388) and (389) are fulfilled, the ac-
tion (382) evaluates to

S =
ˆ t

t0
dτ

�
i∆x∂−τ∆q − Q̃τ(∆q, i∆x)� (390)

= x̃(t )q̃(t ) − x̃(t0)q̃(t0) +
ˆ t

t0
dτ

�
x̃∂−τ q̃ −Qτ(q̃, x̃)� (391)

+

ˆ t

t0
dτ

�
i∆x∂−τ∆q − ∆Qτ

�

= x̃(t )q̃(t ) − x(t0) + S̃ + ∆S , (392)

with the definitions

S̃ B x(t0)(1 − q̃(t0)) +
ˆ t

t0
dτ

�
x̃∂−τ q̃ −Qτ(q̃, x̃)� (393)

and ∆S B
ˆ t

t0
dτ

�
i∆x∂−τ∆q − ∆Qτ

�
. (394)

The transition operator ∆Qτ absorbs all terms of the Taylor expansion of Qτ

that are of second or higher order in the deviations. Combined with (384), the
above action results in the following path integral representation of the generating
function:

|g(t |t0; x(t0))〉q(t ) = e−S̃
 t )

[t0
e−∆S

�
∆q(t )=0 . (395)

Although this path integral representation may seem daunting, our primary
interest lies only in its leading-order approximation |g〉 ≈ e−S̃ . This approximation
is exact if ∆Qτ vanishes. That is, for example, the case for the simple growth
process ∅ → A. For the binary annihilation reaction 2 A→ ∅, the leading-order
approximation was evaluated by Elgart and Kamenev up to a pre-exponential
factor [40]. The pre-exponential factor was later approximated by Assaf and
Meerson for large times [41]. In the next section, we evaluate the leading-order
approximation of the binary annihilation reaction and evaluate its pre-exponential
factor for arbitrary times.
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Figure 9 Phase portrait of Hamilton’s equations (396) and (397) for the rate coefficient
µτ = 1. The transition operator Qτ(q̃, x̃) = µτ(1 − q̃2)x̃2 of the binary annihilation
process vanishes for x̃ = 0 and q̃ = 1 (orange dotted lines). The green disk represents the
fixed point (q̃, x̃) = (1, 0) of Hamilton’s equations. The red dash-dotted line exemplifies a
particular solution of Hamilton’s equations for a given time interval (t0, t ), a given initial
value x(t0) and a given final value q(t ) (black dashed lines).

7.2 Binary annihilation

Let us demonstrate the use of the representation (395) for the binary annihilation
reaction 2 A → ∅ with rate coefficient µτ. First, we evaluate the generating
function in leading order. Afterwards, the generating function is cast into a
probability distribution using the inverse transformation (51). The derivatives
involved in the inverse transformation are expressed by Cauchy’s differentiation
formula, which is evaluated in terms of a saddle-point approximation.

The transition operator of the binary annihilation reaction follows from (69)
as Qτ(cτ, aτ) = µτ(1 − c2

τ)a2
τ with the annihilation rate coefficient µτ . Therefore,

Hamilton’s equations (388) and (389) read

∂τ x̃ = −2µτ q̃ x̃2 with x̃(t0) = x(t0) and (396)
∂−τ q̃ = 2µτ(1 − q̃2)x̃ with q̃(t ) = q(t ) . (397)

A phase portrait of these equations is shown in figure 9. Equation (397) is
solved by q̃ = 1, for which the previous equation simplifies to the rate equation
∂τ x̃ = −2µτ x̃2 of the process. This rate equation is solved by

x̄(t ) B x̃(t ) = x(t0)
1 + x(t0)/x̄∞(t ) (398)
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with the asymptotic limit x̄∞(t ) B (2 ´ t
t0 dτ µτ)−1 → 0. Since Hamilton’s equa-

tions conserve (q̃2 − 1)x̃2, one can rewrite the equation (397) as

∂τ q̃ = −2µτx(t0)
√

1 − q̃(t0)2
√

1 − q̃2 . (399)

Here we assume q̃(t ) = q(t ) < 1 but the derivation can also be performed for
q(t ) > 1 (these inequalities are preserved along the flow). The above equation
only allows for an implicit solution that provides q̃(t0) for a given q(t ), namely16

arccos q̃(t0) + x(t0)
x̄∞(t )

√
1 − q̃(t0)2 = arccos q(t ) . (400)

The first term of this equation was neglected in previous studies [40, 41] (for large
times t , q̃(t0) ≈ 1). Using the conservation of (q̃2 − 1)x̃2 once again, the action in
the leading-order approximation |g〉q(t ) = e−S̃(q(t )) can be written as

S̃(q(t )) = �
1 − q̃(t0)�x(t0) +

�
1 − q̃(t0)2�

x(t0)2
2x̄∞(t ) . (401)

We have thus fully specified the generating function in terms of its argument
q(t ) and the mean x(t0) of the initial Poisson distribution. The leading-order
approximation |g〉q(t ) = e−S̃(q(t )) respects the normalization of the underlying
probability distribution because

∞∑
n=0

p(t, n |t0, n0) = |g〉q(t )=1 = 1 . (402)

Here we used that for q(t ) = 1, Hamilton’s equation (397) is solved by q̃(τ) = 1,
implying that S̃(q(t ) = 1) = 0.

The probability distribution follows from the generating function via the
inverse transformation |p(t, n |t0)〉x(t0) = 1

n!∂
n
q(t ) |g〉q(t )

�
q(t )=0. This transformation

16 For q(t ) > 1, the rate equation reads

∂τ q̃ = 2µτx(t0)
√
q̃(t0)2 − 1

√
q̃2 − 1 .

It preserves q(τ) > 1 for all times τ and it is solved by

arcosh q̃(t0) + x(t0)
x̄∞(t )

√
q̃(t0)2 − 1 = arcosh q(t ) .

Since arcosh y = −i arccos y holds for y > 0 and √y = −i√−y for y > 0, the solution agrees
with (400).
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is trivial for n = 0, for which one obtains the probability of observing an empty
system. For other values of n, the derivatives can be expressed by Cauchy’s
differentiation formula so that in leading order

|p(t, n |t0)〉x(t0) =
1

2πi

˛
C

dq(t )
q(t ) e−S̃(q(t ))−n ln q(t ) . (403)

Here, C represents a closed path around zero in the complex domain and is
integrated over once in counter-clockwise direction.

The contour integral in (403) can be evaluated in a saddle-point approximation:

|p(t, n |t0)〉x(t0) ≈
q−ns e−S̃(qs )√

2π(n − q2
s S̃′′(qs ))

. (404)

The saddle-point qs is found by solving the equation n/qs = −S̃′(qs ). To obtain a
closed expression for qs , we first differentiate both sides of (400) with respect to
q(t ) and find

−
1√

1 − q(t )2
= −

1√
1 − q̃(t0)2

dq̃(t0)
dq(t ) −

x(t0)
x̄∞(t )

q̃(t0)√
1 − q̃(t0)2

dq̃(t0)
dq(t ) (405)

= −
1√

1 − q̃(t0)2
(
1 +

x(t0)q̃(t0)
x̄∞(t )

) dq̃(t0)
dq(t ) . (406)

The saddle-point condition n/qs = −S̃′(qs ) therefore becomes

n
qs
=

(
x(t0)dq̃(t0)dq(t ) +

q̃(t0)x(t0)2
x̄∞(t )

dq̃(t0)
dq(t )

) ���q(t )=qs (407)

= x(t0)
(
1 +

x(t0)q̃(t0)
x̄∞(t )

) dq̃(t0)
dq(t )

���q(t )=qs = x(t0)
√

1 − q̃(t0)2√
1 − q2

s

. (408)

A closed equation for qs is obtained by combining this equation with the implicit
solution (400). The resulting equation is solved by qs = 1 for n = x̄(t ), i.e. if n lies
on the trajectory of the rate equation. For other values of n, the equation has to be
solved numerically. Once qs has been obtained, q̃(t0) can be inferred from (408).
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One piece is still missing for the numeric evaluation of the probability distri-
bution (404), namely its denominator. It evaluates to17

n − q2
s S̃′′(qs ) = x̄∞(t )q

2
s α − n/x̄∞(t )

q2
s − 1

(409)

with α B 1 −
(
1 +

x(t0)q̃(t0)
x̄∞(t )

)−1
. (410)

The pre-exponential factor of the distribution (404) computed by Assaf and Meer-
son [41] is recovered for large times for which x̄∞(t ) → 0 and thus α → 1. The
above expressions hold both for qs < 1 and qs > 1. Care has to be taken in
evaluating the limit qs → 1. A rather lengthy calculation employing L’Hôpital’s
rule shows that the left-hand side of (409) evaluates to18

2
3
x̄(t )

(
1 +

1
2

[
1 +

x(t0)
x̄∞(t )

]−3)
. (411)

17 The derivation proceeds as

n − q2
s S̃ ′′(qs ) = n + q2

s
d

dq(t )
(
x(t0)

√
1 − q̃(t0)2√
1 − q(t )2

) ���q(t )=qs

= n +
q2
s

1 − q2
s

(
qs x(t0)

√
1 − q̃(t0)2√
1 − q2

s

− q̃(t0)x(t0)
√

1 − q2
s√

1 − q̃(t0)2
dq̃(t0)
dq(t )

���q(t )=qs
)

= n +
q2
s

1 − q2
s

(
n −

x(t0)q̃(t0)
1 + x(t0)q̃(t0)

x̄∞(t )

)
= n −

q2
s

q2
s − 1

(
n − x̄∞(t )α

)
= x̄∞(t ) q

2
s α − n/x̄∞(t )

q2
s − 1

.

18 With the help of the saddle-point condition (408), equation (409) can be rewritten as

lim
qs→1

(n − q2
s S̃ ′′(qs )) = −x̄∞(t ) lim

qs→1

qs
√

1 − q2
s α −

x(t0)
x̄∞(t )

√
1 − q̃(t0)2

(1 − q2
s )3/2/qs

= (?) .

To apply L’Hôpital’s rule, both the numerator and the denominator must be differentiated
with respect to qs . Differentiation of the numerator results in

1 − 2q2
s√

1 − q2
s

α + qs
√

1 − q2
s
(
1 +

x(t0)q̃(t0)
x̄∞(t )

)−2 x(t0)
x̄∞(t )

dq̃(t0)
dqs

+
x(t0)
x̄∞(t )

q̃(t0)√
1 − q̃(t0)2

dq̃(t0)
dqs

and of the denominator in
−

√
1 − q2

s (2q2
s + 1)/q2

s .
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The pre-factor of this expression matches the normalization constant that Elgart
and Kamenev inserted by hand [40].

After putting all of the above pieces together, the probability distribution (404)
provides a decent approximation of the binary annihilation process. Figure 10
compares the distribution with a distribution that was obtained through a numer-
ical integration of the master equation. For very large times, the quality of the
approximation deteriorates. In particular, the approximation does not capture
the final state of the process in which it is equally likely to find a single surviving
particle or none at all. Limiting cases of the approximation (404) are provided
in [40, 41].

Although the above evaluation of the saddle-point approximation is rather
elaborate, it is still feasible. It becomes infeasible if one goes beyond the leading-
order term of the generating function. In the section after the next, we show how
higher order terms can be included in a dual approach, which is based on the
backward path integral (213).

By combining the two, one finds that

(?) = x̄∞(t ) lim
qs→1

( q2
s (1 − 2q2

s )
(1 − q2

s )(2q2
s + 1)α +

q3
s

2q2
s + 1

(
1 +

x(t0)q̃(t0)
x̄∞(t )

)−3 x(t0)
x̄∞(t )

√
1 − q̃(t0)2√
1 − q2

s

+
q2
s

(1 − q2
s )(2q2

s + 1)α
)

= x̄∞(t )
(
lim
qs→1

2q2
s

2q2
s + 1

α +
1
3
(
1 +

x(t0)
x̄∞(t )

)−3 x(t0)
x̄∞(t ) lim

qs→1

√
1 − q̃(t0)2√
1 − q2

s

)

=
2
3

x(t0)
1 + x(t0)/x̄∞(t )

(
1 +

1
2
(
1 +

x(t0)
x̄∞(t )

)−3)
=

2
3
x̄(t )

(
1 +

1
2
(
1 +

x(t0)
x̄∞(t )

)−3)
.

In the third step, we used L’Hopital’s rule again:

lim
qs→1

√
1 − q̃(t0)2√
1 − q2

s

= lim
qs→1

q̃(t0)
qs

√
1 − q2

s√
1 − q̃(t0)2

dq̃(t0)
dqs

=
(
1 +

x(t0)
x̄∞(t )

)−1
.
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Figure 10 Solution of the binary annihilation reaction 2 A → ∅ via the numerical
integration of the master equation (blue lines) and approximation of the process using the
stationary path method in section 7.2 (red circles). The figures in the left column show
the marginalized probability distribution |p(t, n |0)〉 at times (a) t = 0.001, (b) t = 0.1,
and (c) t = 1 on a linear scale. The figures in the right column show the distribution at
times (d) t = 0.001, (e) t = 0.1, and (f) t = 1 on a logarithmic scale. The rate coefficient
of the process was set to µτ = 1. For the numerical integration, the master equation was
truncated at n = 450. The marginalized distribution was initially of Poisson shape with
mean x(0) = 250. Its leading-order approximation is given in (404).
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7.3 Backward path integral approach

The above method can be readily extended to a novel path integral representation
of the marginalized distribution

|p(t, n |t0)〉x(t0) =
∞∑

n0=0
p(t, n |t0, n0) x(t0)

n0e−x(t0)

n0!
. (412)

Unlike in the previous section, no saddle-point approximation is required to evalu-
ate |p(t, n |t0)〉x(t0). The resulting path integral can also be evaluated beyond leading
order, at least numerically. In the next section, we outline such an evaluation for
the binary annihilation reaction 2 A → ∅. On the downside, the leading order
of the “backward” approach does not respect the normalization of |p(t, n |t0)〉x(t0).
The normalization of the distribution has to be implemented by hand or by
evaluating higher order terms.

To represent the marginalized distribution (412) by a path integral, we require
that for a given particle number n and for a given initial mean x(t0), there exist
functions x̃(τ) and q̃(τ) fulfilling

∂τ x̃ =
∂Q†τ(x̃, q̃)

∂q̃
with x̃(t0) = x(t0) and (413)

∂−τ q̃ =
∂Q†τ(x̃, q̃)

∂ x̃
with q̃(t ) = n

x̃(t ) . (414)

Since the transition operators Q†τ in (156) and Qτ in (69) are connected via
Q†τ(x̃, q̃) = Qτ(q̃, x̃), the above equations differ from the previous equations (388)
and (389) only in the final condition on q̃ . As shown below, the marginalized
distribution (412) can then be expressed as

|p(t, n |t0)〉x(t0) =
x̃(t )ne−S̃†

n!

 t ]

(t0
e−∆S

† �
∆x(t0)=0 (415)

with S̃† B x(t0) +
ˆ t

t0
dτ

�
q̃∂τ x̃ −Q†τ(x̃, q̃)

�
(416)

and ∆S† B n
( ζ∆x(t )

x̃(t ) − ln
[
1 +

ζ∆x(t )
x̃(t )

] )
+

ˆ t

t0
dτ

�
i∆q∂τ∆x − ∆Q†τ

�
. (417)

The variables ∆x and ∆q again represent deviations from the stationary paths x̃
and q̃ . The transition operator ∆Q†τ encompasses all the terms of an expansion of
Q†τ(ζ∆x + x̃, ζ−1i∆q + q̃) that are of second or higher order in the deviations. A
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Taylor expansion of the action shows that it is free of terms that are linear in ∆x
and ∆q .

The derivation of the above representation proceeds analogously to section 7.1.
It begins by using x̃(t0) = x(t0) and the basis function |n〉τ,∆x = 1

n! (ζ∆x +
x̃)ne−q̃(ζ∆x+x̃) from (159) to rewrite the right-hand side of the marginalized distri-
bution (412) as

e(q̃(t0)−1)x̃(t0)
∞∑

n0=0
p(t, n |t0, n0)|n0〉t0,∆x(t0)

�
∆x(t0)=0 . (418)

The sum in this expression can be represented by the backward path integral (210),
turning the expression into

e(q̃(t0)−1)x̃(t0)
 t ]

(t0
e−S

† |n〉t,∆x(t )
�
∆x(t0)=0 . (419)

Recalling the definition of Eτ in (162), the transition operator

Q̃†τ(∆x, i∆q) = Q†τ(ζ∆x + x̃, ζ−1i∆q + q̃) − Eτ(ζ∆x + x̃, ζ−1i∆q + q̃) (420)

can now be expanded in the deviations. We thereby obtain the action19

S† =
ˆ t

t0
dτ

�
i∆q∂τ∆x − Q̃†τ(∆x, i∆q)

�
(421)

= q̃(t0)x̃(t0) − q̃(t )x̃(t ) +
ˆ t

t0
dτ

�
q̃∂τ x̃ −Q†τ(x̃, q̃)

�
+

ˆ t

t0
dτ

�
i∆q∂τ∆x − ∆Q†τ

�
.

The path integral representation (415) follows upon inserting this action into (419)
and employing the final condition q̃(t ) = n/x̃(t ).

7.4 Binary annihilation

To complement the approximation of the binary annihilation reaction 2 A→ ∅
with rate coefficient µτ in section 7.2, we now perform an approximation of the
process using the backward path integral representation (415) of the marginalized

19 The proof employs

Q̃†τ(∆x, i∆q) = Q†τ(x̃, q̃) + ∂Q
†
τ

∂ x̃
ζ∆x +

∂Q†τ
∂q̃

ζ−1i∆q + ∆Q†τ − (∂τ x̃)ζ−1i∆q + (∂τ q̃)(ζ∆x + x̃)

= ∂τ(x̃ q̃) −
(
q̃∂τ x̃ −Q†τ(x̃, q̃)

)
+ ∆Q†τ .
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distribution. We first perform the approximation in leading order, which amounts
to the evaluation of the pre-factor of (415). For the simple growth process ∅ → A
and for the linear decay process A→ ∅, the pre-factor provides exact solutions.

7.4 a Leading order

The evaluation of the leading-order approximation

|p(t, n |t0)〉x(t0) ≈
x̃(t )ne−S̃†

n!
(422)

proceeds very much like the derivation in section 7.2. Using the adjoint transition
operatorQ†τ(cτ, aτ) = µτc2

τ(1−a2
τ) from (156), one finds that Hamilton’s equations

∂τ x̃ = −2µτ q̃ x̃2 with x̃(t0) = x(t0) and (423)
∂−τ q̃ = 2µτ(1 − q̃2)x̃ with q̃(t ) = n/x̃(t ) (424)

agree with (396) and (397), apart from the final condition on q̃ . The conservation
of (q̃2 − 1)x̃2 and the asymptotic deterministic limit x̄∞(t ) = (2 ´ t

t0 dτ µτ)−1 can
be used to rewrite the action (416) as

S̃† = x(t0) + q̃(t )x̃(t ) − q̃(t0)x̃(t0) +
ˆ t

t0
dτ

�
x̃∂−τ q̃ −Q†τ(x̃, q̃)

�
(425)

= n + (1 − q̃(t0))x̃(t0) + (1 − q̃(t0)2)x(t0)2
2x̄∞(t ) (426)

= n + (1 − q̃(t0))x̃(t0) + (1 − q̃(t )2)x̃(t )2
2x̄∞(t ) (427)

= n +
(
1 −

√
1 −

x̃(t )2 − n2

x(t0)2
)
x(t0) + x̃(t )2 − n2

2x̄∞(t ) . (428)

In addition, the conservation law can be used to infer the flow equation

∂τ q̃ = −2µτ
√

1 − q̃2
√
x̃(t )2 − n2 . (429)

Here we assume q̃(t ) < 1 but the derivation can also be performed for q̃(t ) > 1.
The equation is implicitly solved by

arccos

√
1 −

x̃(t )2 − n2

x(t0)2 +

√
x̃(t )2 − n2

¯̃x∞(t )
= arccos

n
x̃(t ) . (430)
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For a given initial mean x(t0), this equation can be solved numerically for x̃(t ),
which is then inserted into (422). Upon normalizing the distribution by hand, it
provides a reasonable approximation of the process. The quality of the approxima-
tion comes close to the quality of the approximation discussed in section 7.2.

7.4 b Beyond leading order

Instead of normalizing the function (422) by hand, it can be normalized by
evaluating the path integral (415). In the following, we perform this evaluation,
but only after restricting the action ∆S† in (417) to terms that are of second order
in the deviations ∆x and ∆q , i.e. to

∆S† ≈ −(∆x(t ))
2

2
n

x̃(t )2 +
ˆ t

t0
dτ

�
i∆q∂τ∆x − ∆Q†τ

�
. (431)

The corresponding transition operator

∆Q†τ ≈ ∆xi∆q
∂2Q†τ
∂ x̃∂q̃

+
(ζ−1i∆q)2

2
∂2Q†τ
∂q̃2 +

(ζ∆x)2
2

∂2Q†τ
∂ x̃2 (432)

= i∆q∆x ατ −
(∆q)2

2
βτ +

(∆x)2
2

cτ (433)

is obtained as explained in section 7.3 (with ζ B i). Its coefficients read

ατ B −4µτ x̃ q̃ , βτ B 2µτ x̃2 , cτ B 2µτ(q̃2 − 1) . (434)

The path integral can now be evaluated in one of the following two ways.
On the one hand, the transition operator ∆Q†τ has the same form as the one

in section 4.3 and thus can be treated in the same way. Following appendix D,
the path integral (415) can be expressed in terms of the following average over a
Wiener processW :

 t ]

(t0
e−∆S

† �
∆x(t0)=0 =

〈〈
exp

( (∆x(t ))2
2

n
x̃(t )2 +

ˆ t

t0
dτ

(∆x)2
2

cτ
)〉〉

W
. (435)

Here, ∆x(τ) solves the Itô SDE

d∆x = ατ∆x dτ +
√
βτ dW (τ) , (436)

with initial value ∆x(t0) = 0. Unfortunately, the computation of a sufficient
number of sample paths to approximate the average (435) was found to be rather
slow.
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Figure 11 Solution of the binary annihilation reaction 2 A → ∅ via the numerical
integration of the master equation (blue lines) and approximation of the process using the
stationary path method in section 7.4 (red circles). The figures in the left column show
the marginalized probability distribution |p(t, n |0)〉 at times (a) t = 0.001, (b) t = 0.1,
and (c) t = 1 on a linear scale. The figures in the right column show the distribution at
times (d) t = 0.001, (e) t = 0.1, and (f) t = 1 on a logarithmic scale. The rate coefficient
of the process was set to µτ = 1. For the numerical integration, the master equation
was truncated at n = 450. The marginalized distribution was initially of Poisson shape
with mean x(0) = 250. Its leading-order approximation (422) was corrected by the factor
1/
√
det A (cf. section 7.4 b). The numerical solution of the fixed point equation (430)

failed for large times (missing circles in (f)).
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As an alternative to the above way, one can discretize the action ∆S† and cast
it into the quadratic form ∆S† = 1

2ξ
ᵀAξ with ξ B {∆q j,∆x j} j=1,...,N . The matrix

A is symmetric and tridiagonal. It is specified by its diagonal

(β0∆t,−c1∆t, . . . ,−cN−1∆t, βN−1∆t,−n/x̃(t )2)
and by its super- and sub-diagonal

(i,−i − iα1∆t, i, . . . ,−i − iαN−1∆t, i) .
If A is also positive-definite, the path integral (415) evaluates to 1/

√
det A. Curi-

ously, we found that this factor even matches the average (435) when A is not
positive-definite. Therefore, we used the factor 1/

√
det A to correct the approxima-

tion (422) and evaluated the resulting expression for various times t . A comparison
with distributions obtained via a numeric integration of the master equation is
provided in figure 11. Apparently, the quality of the approximation is even better
than the quality of the approximation discussed in section 7.2, at least for early
times. However, upon approaching the asymptotic limit of the process, it becomes
increasingly difficult to numerically solve (430) for a fixed point x̃(t ).

7.5 Résumé

The solution of a master equation can be approximated by expanding its forward
or backward path integral representations around stationary paths of their respect-
ive actions. Such an expansion proves particularly useful in the approximation of
“rare-event” probabilities in a distribution’s tail. Algorithms such as the stochastic
simulation algorithm (SSA) of Gillespie typically perform poorly for this purpose.
Whereas the expansion of the forward path integral representation provides the
ordinary probability generating function (377) as an intermediate step, the ex-
pansion of the backward path integral representation provides the marginalized
distribution (412). In both cases, the stationary paths obey differential equations
resembling Hamilton’s equations from classical mechanics. In sections 7.2 and 7.4,
we demonstrated the two approaches in approximating the binary annihilation
reaction 2 A→ ∅. Our approximation based on the forward path integral amends
an earlier computation of Elgart and Kamenev [40]. The computation requires a
saddle-point approximation of Cauchy’s differentiation formula to extract prob-
abilities from the generating function. The advantage of the approach lies in
the fact that its leading order term respects the normalization of the underlying
probability distribution. The backward approach does not require the auxiliary
saddle-point approximation but its leading order term is not normalized. In the
approximation of the binary annihilation reaction, we demonstrated how the
expansion of the backward path integral can be evaluated beyond leading order.
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Future studies are needed to explore whether the two approaches are helpful in
analysing processes with multiple types of particles and spatial degrees of freedom.
The efficient evaluation of contributions beyond the leading order approximations
also remains a challenge.

8 Summary and outlook

On sufficiently coarse time and length scales, many complex systems appear to
evolve through finite jumps. Such a jump may be the production of an mRNA
or protein in a gene regulatory network [143, 144, 147], the step of a molecular
motor along a cytoskeletal filament [118–120], or the flipping of a spin [139–142].
The stochastic evolution of such processes is commonly modelled in terms of a
master equation [9, 10]. This equation provides a generic description of a system’s
stochastic evolution under the following three conditions: First, time proceeds
continuously. Second, the system’s future is fully determined by the system’s
present state. Third, changes of the system’s state proceed via discontinuous jumps.

In this chapter, we reviewed the mathematical theory of master equations and
discussed analytical and numerical methods for their solution. Special attention
was paid to methods that apply even when stochastic fluctuations are strong and
to the representation of master equations by path integrals. In the following, we
provide brief summaries of the discussed methods, which all have their own merits
and limitations. Information on complementary approximation methods can be
found in the text books [103, 115] and in the review [276].

The stochastic simulation algorithm (section 1.4)
The SSA [80–83] and its variations [83, 249–251] come closest to being all-purpose
tools in solving the (forward) master equation numerically. The SSA enables the
computation of sample paths with the correct probability of occurrence. Since
these paths are statistically independent of one another, their computation can be
easily distributed to individual processing units. Besides providing insight into a
system’s “typical” dynamics, the sample paths can be used to compute a histogram
approximation of the master equation’s solution or to approximate observables.
In principle, the SSA can be applied to arbitrarily complex systems with multiple
types of particles and possibly spatial degrees of freedom. Consequently, the
algorithm is commonly used in biological studies [143, 144, 147] (see chapter III
for its application to microbial range expansions). The SSA has been implemented
in various large-scale simulation packages [252–259]. A fast but only approximate
alternative to the SSA for the simulation of processes evolving on multiple time
scales is τ-leaping [83, 251, 260–269]. Algorithms for the simulation of processes
with time-dependent transition rates are discussed in [270, 271]. Let us note,
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however, that for small systems, a direct numerical integration of the master
equation may be more efficient than the use of the SSA.

Alternative path summation algorithms (section 1.4)
Given enough time, the SSA could be used to generate every possible sample path
of a process (at least if the state space is finite). If every path is recorded just once,
the corresponding histogram approximation of the conditional probability distri-
bution p(τ, n |τ0, n0) would agree with the “path summation representation” (23).
Various alternatives to the SSA have been proposed for the numerical evaluation
of this representation, mostly based on its Laplace transform [240–245]. Thus far,
these algorithms have remained restricted to rather simple systems. The analytical
evaluation of the sums and convolutions that are involved proves to be a challenge.

Exponentiation and uniformization (section 1.4)
If the state space of a system is finite, the (forward) master equation ∂τp(τ |t0) =
Qp(τ |t0) is solved by the matrix exponential p(τ |τ0) = eQ(τ−τ0)1. Here, Q repres-
ents the transition matrix of a process and p(τ |t0) the matrix of the conditional
probabilities p(τ, n |τ0, n0). If the state space of the system is countably infinite
but the exit rates from all states are bounded (i.e. supm |Q(m,m)| < ∞), the
conditional probability distribution can be represented by the “uniformization”
formula (19). As the evaluation of this formula involves the computation of an
infinite sum of matrix powers, its use is restricted to small systems and to systems
whose transition matrices exhibit special symmetries. The same applies to the eval-
uation of the above matrix exponential note, however, the projection techniques
proposed in [221, 222].

Flow equations (sections 2 and 3)
For the chemical master equation (27) of the reaction k A → l A with rate
coefficient γτ , it is readily shown that the probability generating function

|g(τ |t0, n0)〉 =
∑
n

|n〉 p(τ, n |t0, n0) (437)

with basis function |n〉q = qn obeys the linear partial differential equation, or
“flow equation”

∂τ |g〉 = γτ(q l − qk)∂kq |g〉 . (438)

Analogously, the marginalized distribution

|p(t, n |τ)〉 =
∑
n0

p(t, n |τ, n0)|n0〉 (439)
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with Poisson basis function |n0〉x = xn0e−x
n0! obeys the backward-time flow equation

∂−τ |p〉 = γτxk�(∂x + 1)l − (∂x + 1)k�|p〉 . (440)

After one has solved one of these equations, the conditional probability distribu-
tion can be recovered via the inverse transformations p(τ, n |t0, n0) = 〈n |g(τ |t0, n0)〉
or p(t, n |τ, n0) = 〈n0 |p(t, n |τ)〉. In sections 2 and 3, we generalized the above ap-
proaches and formulated conditions under which the forward and backward master
equations can be transformed into flow equations. Besides the flow equations
obeyed by the generating function and the marginalized distribution, we also
derived a flow equation obeyed by the generating functional

〈g(τ |t0, n0)| =
∑
n

〈n |p(τ, n |t0, n0) . (441)

For the Poisson basis function |n〉x = xne−x
n! , the inverse transformation p(τ, n |t0, n0) =

〈g(τ |t0, n0)|n〉 of this functional recovers the Poisson representation of Gardiner
and Chaturvedi [37, 38]. The Poisson representation can, for example, be used for
the computation of mean extinction times [376], but we found the marginalized
distribution to be more convenient for this purpose (cf. section 3.3).

Thus far, most methods that have been proposed for the analysis of the gener-
ating function’s flow equation have only been applied to systems without spatial
degrees of freedom. These methods include a variational approach [44, 88], spectral
formulations and WKB approximations [39, 41–43, 330, 368, 369, 372, 429]. We
outlined some of these methods in section 2.3. “Real-space” WKB approximations,
which employ an exponential ansatz for the probability distribution rather than
for the generating function, were not discussed in this thesis (information on these
approximations can be found in [68, 69, 151, 175, 176, 181, 356–362, 364, 365]).
WKB approximations often prove helpful in computing a mean extinction time or
a (quasi)stationary probability distribution. Future studies could explore whether
the flow equation obeyed by the marginalized distribution can be evaluated in
terms of a WKB approximation or using spectral methods. Moreover, further
research is needed to investigate whether the above methods may be helpful in
studying processes with spatial degrees of freedom and multiple types of particles.
For that purpose, it will be crucial to specify satisfactory boundary conditions
for the flow equations obeyed by the generating function and the marginalized
distribution (see [368] for a discussion of “lacking” boundary conditions in a study
of the branching-annihilation reaction A→ 2 A and 2 A→ ∅).

Recently, we have been made aware of novel approaches to the generating
function’s flow equation based on so-called duality relations [430–434]. These
approaches are not yet covered here.
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Stochastic path integrals (sections 4–6)
Path integral representations of the master equation have proved invaluable tools in
gaining analytical and numerical insight into the behaviour of stochastic processes,
particularly in the vicinity of phase transitions [19, 74, 75, 101, 135–138, 167, 295–
321, 323, 325–327, 403, 424–427]. A classical example of such a phase transition
is the transition between an active and an absorbing state of a system [73]. In
section 6, we showed that for a process whose initial number of particles is Poisson
distributed with mean x(t0), the average of an observable A(n) at time t can be
represented by the path integral

〈A〉x(t0) =
 t ]

(t0
e−S

† 〈〈A〉〉x(t ) (442)

with 〈〈A〉〉x B
∞∑
n=0

xne−x

n!
A(n) . (443)

The above path integral can be derived both from the novel backward path integral
representation

p(t, n |t0, n0) = 〈n0 |t0
 t ]

(t0
e−S

† |n〉t , (444)

of the conditional probability distribution (cf. section 4), and from the forward
path integral representation

p(t, n |t0, n0) = 〈n |t
 t )

[t0
e−S |n0〉t0 (445)

(cf. section 5). The meanings of the integral signs and of the actions S and S† were
explained in the respective sections. We derived both of the above representations
of the conditional probability distribution from the flow equations discussed in the
previous paragraph. An extension of the path integrals to systems with multiple
types of particles or spatial degrees of freedom is straightforward. We demonstrated
the use of the integrals in solving various elementary processes, including the pair
generation process and a process with linear decay of diffusing particles. Although
we did not discuss the application of renormalization group techniques, we showed
how the above path integrals can be evaluated in terms of perturbation expansions
using Feynman diagrams. Information on perturbative renormalization group
techniques can be found in [74, 75], information on non-perturbative techniques
in [413]. Besides the above path integrals, we showed how one can derive path
integral representations for processes with continuous state spaces. These path
integrals were based on Kramers-Moyal expansions of the respective backward and
forward master equations. Upon truncating the expansion of the backward master
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equation at the level of a diffusion approximation, we recovered a classic path
integral representation of the (backward) Fokker-Planck equation [21–24]. We
hope that our exposition of the path integrals helps in developing new methods
for the analysis of stochastic processes. Future studies may focus directly on
the backward or forward path integral representations (444) and (445) of the
conditional probability distribution, or use the representation (442) to explore
how (arbitrarily high) moments of the particle number behave in the vicinity of
phase transitions.

Stationary path approximations (section 7)
Elgart and Kamenev recently showed how the forward path integral represent-
ation (445) can be approximated by expanding its action around “stationary
paths” [40]. The paths obey Hamilton’s equations of the form

∂τ x̃ =
∂Qτ

∂q̃
and ∂−τ q̃ =

∂Qτ

∂ x̃
, (446)

with the transition operator Qτ acting as the “Hamiltonian”. In section 7, we
reviewed this “stationary path method” and showed how it can be extended to
the backward path integral representation (444). We found that this backward
approach does not require an auxiliary saddle-point approximation if the number
of particles is initially Poisson distributed, but that a proper normalization of
the probability distribution is only attained beyond leading order. Future work
is needed to apply the method to systems with spatial degrees of freedom and
multiple types of particles. The latter point also applies to the classification of
phase transitions based on phase-space trajectories of the equations (446) as has
been proposed in [322].

We hope that our discussion of the above methods inspires future research on
master equations and that it helps researchers who are new to the field of stochastic
processes to become acquainted with the theory of “stochastic” path integrals.
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A Proof of the Feynman-Kac formula in section 1.3

Here we provide a brief proof of a special case of the Feynman-Kac, or Kolmogorov,
formula (see section 4.3.5 in [115]). In particular, we assume that for τ ∈ [t0, t ], a
function u(τ, x) obeys the linear PDE

∂−τu(τ, x) = ατ(x)∂xu + 1
2
βτ(x)∂2

xu (447)

with final value u(t, x) = G(x) . (448)

The function ατ is called a drift coefficient and βτ a diffusion coefficient. According
to the Feynman-Kac formula, the above PDE is solved by

u(τ, x) = 


G(X (t ))��W (449)

with 〈〈·〉〉W representing an average over realizations of the Wiener processW . The
function X (s) with s ∈ [τ, t ] and τ ≥ t0 represents a solution of the Itô stochastic
differential equation (SDE)

dX (s) = αs (X (s)) ds + √
βs (X (s)) dW (s) (450)

with initial value X (τ) = x . (451)

If the initial value x of the SDE is chosen as a real number, the drift coefficient αs
is a real function, and the diffusion coefficient βs as a real non-negative function,
the “sample path” X (s) assumes only real values along its temporal evolution.
In a multivariate extension of the Feynman-Kac formula, one requires a matrix
√
βs B γs fulfilling γsγ

ᵀ
s = βs . If βs is symmetric and positive-semidefinite, one

may choose γs as its unique symmetric and positive-semidefinite square root [116].
The solution (3) of the backward Fokker-Planck equation (2) constitutes a

special case of the above formula. There, the independent variable is x0 instead of x ,
and u(τ, x0) is the conditional probability distribution p(t, x |τ, x0) (with x being
an arbitrary parameter). The final value of the distribution is G(x0) = δ(x − x0).
The Feynman-Kac formula (449) then implies that




δ(x − X (t ))��W solves the

backward Fokker-Planck equation (2). Note that in the main text, we use a small
letter to denote the sample path.
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To prove the Feynman-Kac formula (449), we assume that X (s) solves the
SDE (450). By Itô’s Lemma and the PDE (447), it then holds that

du(s,X (s)) = ∂u
∂s

ds +
∂u

∂X (s) dX (s) + 1
2

∂2u
∂X (s)2 dX (s)2 (452)

=
(∂u
∂s
+ αs (X (s)) ∂u

∂X (s) +
1
2
βs (X (s)) ∂2u

∂X (s)2
)
ds +

∂u
∂X (s)

√
βs (X (s)) dW (s)

=
∂u(s,X (s))
∂X (s)

√
βs (X (s)) dW (s) . (453)

As the next step, we integrate this differential from s = τ to s = t and average
the result over realizations of the Wiener process W . Since 〈〈dW 〉〉W = 0, it
follows that 〈〈u(τ,X (τ))〉〉W = 〈〈u(t,X (t ))〉〉W . This expression coincides with
the Feynman-Kac formula (449) because the initial condition (451) implies that
u(τ,X (τ)) = u(τ, x) does not depend on the Wiener process, and because the final
condition (448) implies that u(t,X (t )) = G(X (t )).

B Proof of the path summation representation in
section 1.4

In the following, we prove that the path summation representation (23) solves the
forward master equation (12) if the transition rate w(n,m) is independent of time.
Hence, the process is homogeneous in time and we may choose t0 B 0. After
defining d(n,m) B δn,mw(m) = δn,m

∑
k w(k,m), we first rewrite the master

equation as
∂τp(τ |0, n0) = (w − d)p(τ |·) (454)

with the probability vector p(τ |t0, n0). Note that the matrix notation assumes
some mapping between the state space of n and an index set I ⊂ N. Follow-
ing [241], the Laplace transform

L f (s) B
ˆ ∞

0
dτ e−sτ f (τ) (455)

of the above master equation is given by

sLp(s |·) − ên0 = (w − d)Lp(s |·) . (456)

Here, p(0|0, n0) = ên0 represents a unit vector pointing in direction n0. Note that
s is a scalar but that w and d are matrices. Making use of the unit matrix 1, the
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above expression can be solved for Lp(s |·) and be rewritten as

Lp(s |·) = �
1 − (s1 + d)−1w�−1(s1 + d)−1ên0 . (457)

The value of the real part of s is determined by the parameter ε in the inverse
Laplace transformation

f (t ) = 1
2πi

ˆ ε+i∞

ε−i∞
ds es tL f (s) . (458)

We assume that ε can be chosen so large that the first factor in the solution (457)
can be rewritten as a geometric series, i.e. as

Lp(s |·) =
∞∑
J=0

�(s1 + d)−1w�J (s1 + d)−1ên0 . (459)

This expression may be simplified by noting that

�(s1 + d)−1w�
n,m =

w(n,m)
s + w(n) . (460)

By defining
∑

{PJ } B
∑

n1 · · ·
∑

n J−1 , (459) becomes

Lp(s, n |·) =
∞∑
J=0

∑
{PJ }

( J−1∏
j=0

w(n j+1, n j )
) J∏

j=0

1
s + w(n j )

����n J=n
. (461)

Since an exponential function f (τ) B e−ατΘ(τ) transforms as L f (s) = (s +
α)−1 and since the Laplace transform converts convolutions into products, we
thus find that (461) agrees with the Laplace transform of the path summation
representation (23).

C Solution of the random walk (sections 2.2 a and 3.2 a)

We here provide the conditional probability distribution p(τ, n |t0, n0) solving
the random walk from sections 2.2 a and 3.2 a. In the first of these sections,
we showed that this distribution is obtained by applying the functional 〈n | f =´ π
−π

dq
2π e
−inq f (q) to the generating function |g(τ |t0, n0)〉, which we derived as

exp
((eiq − 1)

ˆ τ

t0
ds r s + (e−iq − 1)

ˆ τ

t0
ds ls + in0q

)
.
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Series expansions show that this expression can be rewritten as e−
´ τ
t0

ds (r s+ls ) times

∞∑
k=0

k∑
m=0

�´ τ
t0 ds r s

�m

m!

�´ τ
t0 ds ls

�k−m

(k −m)! ei(2m−k+n0)q .

We ignore the constant pre-factor e−
´ τ
t0

ds (r s+ls ) for now and apply the functional 〈n |
to this expression. After carefully noting the restrictions imposed by Kronecker
deltas, the resulting expression reads

∞∑
k=0

�´ τ
t0 ds r s ·

´ τ
t0 ds ls

�k

k!(k + |n − n0 |)! · (462)

This sum can be expressed by a modified Bessel function of the first kind (10.25.2
in [337]), resulting in

(´ τt0 ds r s´ τ
t0 ds ls

) n−n0
2 In−n0

(
2
(ˆ τ

t0
ds r s

ˆ τ

t0
ds ls

) 1
2
)
.

Multiplied with e−
´ τ
t0

ds (r s+ls ), this expression corresponds to a Skellam distribution
with mean µ = n0 +

´ τ
t0 ds (r s − ls ) and variance σ2 =

´ τ
t0 ds (r s + ls ).

D Evaluation of the backward path integral
representation in section 4.3

In the following, we fill out the missing steps in section 4.3 and rewrite the
backward path integral representation (213) of the marginalized distribution in
terms of the (Q,X )-generating functional (221). Upon comparing the discrete-
time approximation of the marginalized distribution (210) with its representation
in (219), one observes that the (Q,X )-generating functional should read

ZQ,X ,N B

 N−1

1
eiqN xN −S†N eZN (463)

with ZN B
N∑
j=1
∆t Q j x j−1 +

N−1∑
j=1
∆t X j−1iq j . (464)

A differentiation of (463) with respect to ∆t Q j generates a factor x j−1, a differen-
tiation with respect to ∆t X j−1 a factor iq j . Upon recalling the definition of the
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action S†N in (211), the first exponential in (463) can be rewritten via

iqN xN − S†N = −
N−1∑
j=1

iq j
(
x j −

�
x j−1 + αt j−1(x j−1)∆t

�)
(465)

−

N−1∑
j=1

q2
j

2
βt j−1(x j−1)∆t +

N−1∑
j=1
∆t P†t j−1(x j−1, iq j ) + iqN xN−1 .

The equality holds up to corrections of O(∆t ) (because of the sums, all remaining
terms are of O(1)). Note that the right hand side of (465) is independent of xN .
One can linearize the terms that are quadratic in q j by the completion of a square.
In particular, we write

exp
(
−

N−1∑
j=1

q2
j

2
βt j−1(x j−1)∆t

)
=

〈〈
exp

(N−1∑
j=1

iq j
√
βt j−1(x j−1)∆W j

)〉〉
W

(466)

with the average being defined as




·

��
W B

(N−1∏
j=1

ˆ
R
d∆W j G0,∆t (∆W j )

)�
·

�
. (467)

The average employs the Gaussian distribution

G0,∆t (∆W j ) = e−(∆W j )2/(2∆t )
√
2π∆t

(468)

with zero mean and variance ∆t (cf. (244)). The sequence ∆W1, . . . ,∆WN−1 can
be interpreted as the steps of a discretized Wiener process. To proceed with
the derivation, we now move the perturbation operator P† to the front of the
(Q,X )-generating functional (463) by writing

e
∑N−1

j=1 ∆t P
†
t j−1

(x j−1,iq j )eZN = e
∑N−1

j=1 ∆t P
†
t j−1

�
1
∆t

∂
∂Qj

, 1
∆t

∂
∂X j−1

�
eZN . (469)

Upon combining all of the above steps, one finds that

ZQ,X ,N = e
iqN 1

∆t
∂

∂QN
+
∑N−1

j=1 ∆t P
†
t j−1

�
1
∆t

∂
∂Qj

, 1
∆t

∂
∂X j−1

�
Z0
Q,X ,N (470)
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with the definition

Z0
N B

〈〈(N−1∏
j=1

ˆ
R
dx j δ

(
x j − x j−1 −

{�
αt j−1(x j−1) + X j−1

�
∆t +

√
βt j−1(x j−1)∆W j

}))
· e

∑N
j=1 ∆t Q j x j−1+O(∆t )〉〉

W
. (471)

The sequence of Dirac delta functions implies that x j depends on Xi only for i < j .
This property has to be kept in mind when the functional derivatives in (470)
are evaluated in continuous-time. In the continuous-time limit, i.e. for N → ∞
and ∆t → 0, one recovers the marginalized distribution (219) with generating
functional (221) and Itô SDE (223).

E Evaluation of the forward path integral representation
in section 5.3

The forward path integral (303) can be rewritten in terms of the (X ,Q)-generating
functional (314) following the same steps as above. First, we compare (313) with
the discrete-time representation (299). The comparison shows that the (X ,Q)-
generating functional should be defined as

ZX ,Q,N B

 N−1

1
eix0·q0e−SN eZN . (472)

with ZN B
N−1∑
j=0
∆t X j · q j+1 +

N−1∑
j=1
∆t Q j+1 · ix j . (473)

Up to corrections of O(∆t ), the action (300) can be rewritten as

SN = ix0 · q0 +

N−1∑
j=1

ix j ·
(
q j −

�
q j+1 + αt j (q j+1)∆t

�)
(474)

+

N−1∑
j=1

1
2
xᵀj βt j (q j+1)x j∆t −

N−1∑
j=1
∆t Pt j (q j+1, ix j ) − ix0 · q1 .

By making use of
√
βτ
√
βτ
ᵀ
= βτ and

−
1
2
xᵀ βx∆t −

1
2∆t

�
∆W − i

√
β
ᵀ
x∆t

�2
= −

(∆W )2
2∆t

+ ix ·
√
β∆W , (475)
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the quadratic term can be linearized via

exp
(
−

N−1∑
j=1

1
2
xᵀj βt j (q j+1)x j∆t

)
=

〈〈
exp

(N−1∑
j=1

ix j ·
√
βt j (q j+1)∆W j

)〉〉
W
. (476)

Here we introduced the following average over Gaussian distributions with vari-
ance ∆t :




·

��
W B

(N−1∏
j=1

ˆ
R|L|

d∆W j G0,∆t (∆W j )
)�
·

�
. (477)

As the next step, the perturbation operator P is moved to the front of (472) by
writing

e
∑N−1

j=1 ∆t Pt j (q j+1,ix j )eZN = e
∑N−1

j=1 ∆t Pt j

�
1
∆t

∂
∂X j

, 1
∆t

∂
∂Q j+1

�
eZN . (478)

After combining all of the above steps, one obtains

ZN = e
∑N−1

j=1 ∆t Pt j

�
1
∆t

∂
∂X j

, 1
∆t

∂
∂Q j+1

�
+ 1
∆t

∂
∂X 0
·ix0Z0

N (479)

with the definition

Z0
N =

〈〈(N−1∏
j=1

ˆ
R|L|

dq j δ
(
q j − q j+1 −

�(αt j (q j+1) +Q j+1)∆t +
√
βt j (q j+1)∆W j

�))
· e

∑N−1
j=0 ∆t X j ·q j+1+O(∆t )〉〉

W
. (480)

In the continuous-time limit ∆t → 0, one obtains the representation (313)–(315).
Note that the above derivation implies that q j depends on Qi only for i > j .



II Evolutionary zero-sum games and
driven-dissipative quantum systems

1 Introduction

Evolutionary game theory (EGT) explores how the popularity of certain “strategies”
changes in a population [177, 435–437]. Such a strategy may be to keep silent
or blame your accomplice after a robbery (prisoner’s dilemma [438]), to swerve
your car or hold it steady while driving on the wrong side of the road (game
of chicken [439]), or to play rock in a game of rock-paper-scissors [177, 436].
The rock-paper-scissors game constitutes the simplest game with a cyclic, non-
transitive dominance between its strategies. A biological system in which such a
cyclic dominance can be implemented is explored in chapter III, where we study
range expansions of three Escherichia coli strains. But for our present purpose,
another property of the rock-paper-scissors game is more relevant — namely, that
it constitutes a zero-sum game [440].

The following sections introduce the mathematical theory of zero-sum games.
The defining properties of these games can be understood from the viewpoint of
classical game theory (CGT) by considering the interaction of two “agents”. We
then turn towards EGT, in which games are played within a whole population
of agents. The success and failure of the agents’ strategies feed back into the
popularity of the strategies. The frequency at which the strategies are used in
the population can be modelled both on a deterministic and a stochastic level.
The stochastic model is based on a master equation. Surprisingly, just the same
master equation was recently derived also in another context, namely in a study
on the condensation of bosons in driven-dissipative quantum systems [1]. This
condensation phenomenon, and the general stability of zero-sum games, were the
focus of our publications “Coexistence and survival in conservative Lotka-Volterra
networks” [2] and “Evolutionary games of condensates in coupled birth-death
processes” [3], which are reprinted in sections 2 and 3. The following text serves
as an introduction to these publications.

1.1 Zero-sum games

To set the stage for our discussion of zero-sum games, we consider a game between
two agents. Both of the agents may choose one strategy out of the S different
choices {E1, . . . , ES}. In the following, we assume that agent 1 has opted for



146 Evolutionary zero-sum games and driven-dissipative quantum systems

−A23A31E3 0

(a) (b)
E1

−A12

A12

E1 E2

E1
E2

Agent 2

A
ge

nt
 1

E3

A31A12

A23
E2

0
0 −A31

A23

E3

Figure 1 Two representations of the payoff matrix A of the rock-paper-scissors game
(with strategies E1 B rock, E2 B scissors, and E3 B paper). (a) A matrix element Ai j
represents the payoff an agent 1 with strategy Ei receives or looses in a game against an
agent 2 with strategy E j . The payoff matrix is antisymmetric because the gain of one agent
equals the loss of the other agent (zero-sum game). (b) Representation of the payoff matrix
as a directed graph. A labelled arrow from strategy E j to Ei (coloured disks) denotes the
payoff Ai j the agent with strategy E j provides to the agent with strategy Ei during a game.

strategy Ei and that agent 2 has opted for strategy E j (with i, j ∈ {1, . . . , S}). The
performance of a strategy shall not depend on the agent using it. Games with
this property are called symmetric games. The outcome of a game between the
two agents is now decided by assigning the “payoff” Ai j to agent 1 and the payoff
A j i to agent 2. Both of these payoffs can be identified with elements of the same
payoff matrix A because the game is symmetric. Provided the two payoffs balance
one another irrespective of the strategies that are used (i.e. A j i = −Ai j for all
i, j ∈ {1, . . . , S}), the game is called a zero-sum game. In other words, a game is
a zero-sum game if its payoff matrix is antisymmetric (i.e. Aᵀ = −A). Figure 1
shows the antisymmetric payoff matrix of the rock-paper-scissors game.

1.2 Game theory and the deterministic time evolution of zero-sum
games

Classical game theory (CGT) was developed to explain the decision-making of
rational (egocentric) agents in parlour games [441], assuming that what is learned
here extends to the decision-making of rational people in economics [440]. A
typical question posed in CGT is: how can an agent maximize the payoff it
accumulates over multiple rounds of a game? After each round, the agent may
decide on which strategy it uses in the next round. On the mathematical level, this
decision-making process is typically encoded in a pre-defined rule. The rule should
prepare the agent in the best possible way against any opponent. Its details depend
both on the game that is played and on the memory span of the agents. A large
number of publications have been devoted to iterated two-player games, including
Axelrod and Hamilton’s classic article on the iterated prisoner’s dilemma [442]
and a recent article by Press and Dyson on “zero-determinant” rules [443].
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Our interest lies in evolutionary game theory (EGT), which differs from
CGT in two central points: First, EGT typically considers a population of agents.
Second, it assumes that the payoff received by agents with a particular strategy
determines the reproductive success of theses agents, i.e. their “fitness”. The
motivation for the second assumption stems from the application of game theory
to biological systems in which the strategies represent species. The idea of relating
payoff to fitness was first formulated by Maynard Smith and Price [444].

One can implement the idea that payoff relates to fitness in a mathematical
model of how the popularity of the strategies changes over time. This model
can be formulated both in discrete and in continuous time. The discrete-time
formulation results in a set of difference equations and is, for example, appropriate
when a population changes only seasonally. The continuous-time formulation
instead results in a set of first-order ordinary differential equations and admits
the population to change at any time. Both of these cases were first discussed by
Taylor and Jonker [445]. Our interest lies in the continuous-time evolution. To
derive the corresponding equations, we consider pairwise games in a population
of N ∈ N0 agents. The variable ni ∈ N0 shall denote the number of agents having
adopted strategy Ei at a certain time τ, and x i B ni/N shall be their fraction of
the whole population (with N =

∑
i ni ). We also refer to x i as a “concentration”.

By our previous discussion of two-player games, an agent with strategy Ei
should expect the payoff pi(x) ≈ ∑

j Ai j x j when playing against a randomly chosen
opponent. The central hypothesis of Taylor and Jonker’s model is that this payoff
coincides with the effective rate at which the agents with strategy Ei reproduce. In
other words, one assumes that the payoff pi(x) coincides with the fitness fi(x) in
the rate equation ∂τni = ni fi(x). After defining f̄ (x) B ∑

j x j f j (x) as the average
fitness of the agents, this rate equation is readily converted into a differential
equation for the concentration x i = ni/N . The resulting equation

∂τx i = x i( fi(x) − f̄ (x)) (1)

is called a replicator equation [436, 446] and holds for all i ∈ {1, . . . , S}. The total
concentration

∑
i x i = 1 is conserved along its temporal evolution. The replicator

equation provides a deterministic approximation of how the popularity of strategy
Ei changes over time. The discreteness and finiteness of the population of agents
are neglected by the equation and the concentration x i is treated as a continuous
variable. The validity and use of such a deterministic approximation regarding
zero-sum games is discussed below and in our publication [3].

For zero-sum games, the antisymmetry of the payoff matrix A implies the
vanishing of the average fitness f̄ (x) = xᵀAx because xᵀAx = −xᵀAx = 0. There-
fore, for all i ∈ {1, . . . , S}, the replicator equation (1) simplifies to the antisymmet-
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ric Lotka-Volterra equation (ALVE) [447–449]

∂τx i = x i(Ax)i . (2)

According to the ALVE, any change in the concentration x i due to games being
played between agents with strategies Ei and E j is accompanied by an equal but
negative change in the concentration x j . In other words, any term x iAi j x j in ∂τx i
is accompanied by a term x jA j i x i = −x iAi j x j in ∂τx j . In our above discussion,
we assumed that changes in the concentrations are caused only indirectly by the
birth and death of agents. But for zero-sum games, the balancing of gain and loss
admits also the following interpretation: a positive payoff Ai j can be interpreted
as the rate at which an agent with strategy E j adopts strategy Ei . The ways in
which the agents change their strategies can be visualized in terms of a directed
graph. Figure 1(b) shows such a graph for the rock-paper-scissors game.

A natural extension of the rock-paper-scissors game to five strategies is depicted
in figure 2(a) [450]. This game served as an example in our publication “Coex-
istence and survival in conservative Lotka-Volterra networks” [2], which I wrote
together with Johannes Knebel, Torben Krüger, and Erwin Frey. A reprint of the
publication is included in section 2 of this chapter. In the publication, we studied
the ALVE in a biological context and formulated criteria under which a zero-sum
game admits the coexistence of its strategies (its species; the ALVE is referred to
as a conservative Lotka-Volterra model in the publication). For the five-strategy
game in figure 2(a), the coexistence of all strategies is only possible if the rate A12
is chosen as A12 = 5. This rate makes the kernel of the antisymmetric rate matrix
A three-dimensional, implying three conservation laws besides the conservation of
the total concentration (

∑
i x i = 1). The conservation laws constrain all strategy

concentrations to neutrally-stable periodic orbits at a finite distance from zero,
guaranteeing the coexistence of all strategies. For A12 , 5, the kernel of A is
only one-dimensional, leading to the extinction of strategy E2 for A12 > 5 and of
strategy E1 for A12 < 5. The agents abandon these strategies exponentially fast as
shown in figure 2(b). The time until extinction was found to obey a power law in
the distance from the critical rate A12 = 5 [2].

The extinction of individual strategies is typical for the evolution of a zero-sum
game. In our above publication [2], we asked how the strategies that do not
go extinct and thus persist in the population can be identified for a given rate
matrix A. This question was answered in our later publication “Evolutionary
games of condensates in coupled birth-death processes” [3] (see section 3 for a
reprint). Here, a “condensate” denotes a persistent strategy and the selection of
these strategies is interpreted as a “condensation” phenomenon. The reason for this
terminology derives from a recent study of Vorberg et al. on the condensation of
non-interacting bosons in driven-dissipative quantum systems [1]. To understand
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Figure 2 Deterministic evolution of a cyclic zero-sum game with five strategies. (a)
Representation of the rate matrix A of the game as a directed graph (cf. figure 1). Every
strategy E j (coloured disk) is dominated by the two strategies E j+1 and E j+2 with the
corresponding rates A j+1, j and A j+2, j ( indices modulo 5). As shown in our publication [2],
the choice A12 = 5 results in the coexistence of all strategies, A12 > 5 in the extinction of
strategy E2, and A12 < 5 in the extinction of strategy E1 (a different convention for the
direction of arrows is used in the publication). (b) Deterministic trajectories obtained from
a numerical integration of the ALVE (2) for the rate A12 = 4. The colors correspond to the
strategies in (a). The agents abandon strategy E1 exponentially fast. The concentrations
(fractions) of the remaining strategies converge to a neutrally-stable periodic orbit.

why the selection of persistent strategies in a zero-sum game is mathematically
equivalent to the selection of condensates in a driven-dissipative quantum system,
we introduce the stochastic basis of the ALVE (2) in the following.

1.3 The stochastic time evolution of zero-sum games

Both the replicator equation (1) and the ALVE (2) neglect fluctuations that are
caused by the discreteness and finiteness of the population of agents. Provided that
the agents have no memory, these aspects can be incorporated in a mathematical
model based on the (forward) master equation

∂τp(τ,n |t0,n0) =
∑
m

�
wτ(n,m)p(τ,m |·) − wτ(m,n)p(τ,n |·)� . (3)

The dots “·” in this equation abbreviate the initial parameters (t0,n0). The
temporal evolution of the conditional probability distribution starts out from
p(t0,n |t0,n0) = δn,n0 , with the multivariate Kronecker delta being defined as
δm,n =

∏S
i=1 δmi,ni . As explained in section 1.3 of chapter I, a master equation

describes the evolution of a continuous-time Markov process with discontinuous
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sample paths. Here, these paths proceed along realizations of the discrete variable
n = (n1, . . . , nS )ᵀ ∈ NS

0 , denoting the number of agents with strategies E1, . . . , ES .
The master equation of zero-sum games follows from equation (3) by specifying

its transition rate wτ(m,n). Since ni agents with strategy Ei can potentially play
against n j agents with strategy E j , the rate at which games between these agents
occur is proportional to the product nin j . Consequently, the rate at which
agents with strategy E j adopt strategy Ei is given by Γi← j (ni, n j ) = Ri jnin j , with
Ri j ≥ 0 (for i, j ∈ {1, . . . , S} and Rii = 0). Note that both Ri j and R j i may be
positive for given indices i and j . The relation between the rate matrix R and the
antisymmetric rate matrix A is discussed shortly. After complementing Γi← j with
the correct reaction kinetics in the transition rate

wτ(m,n) =
S∑

i, j=1
Γi← j (ni, n j )δm,n−ê j+ê i , (4)

equation (3) simplifies to the master equation of zero-sum games

∂τp(τ,n |·) =
S∑

i, j=1

�
Γi← j (ni−1, n j+1)p(τ,n+ ê j− ê i |·) − Γi← j (ni, n j )p(τ,n |·)

�
. (5)

Sample paths of the master equation can be generated using the stochastic simula-
tion algorithm (SSA) of Gillespie [80, 81] (cf. section 1.4 of chapter I). The total
number of agents N =

∑
i ni is conserved along these paths.

Before proceeding, let us introduce a small generalization of the master equa-
tion. In particular, let us allow agents to spontaneously switch their strategy from
E j to Ei with per-capita rate Ri jSi j (Si j ≥ 0). The combined transition rate reads

Γi← j (ni, n j ) = Ri j (Si j + ni)n j . (6)

1.4 Condensation in driven-dissipative quantum systems

The reason for our generalization of the transition rate Γi← j is that for Si j = 1,
the master equation (5) coincides with the master equation that Vorberg et al.
derived in their study on the condensation of non-interacting bosons in driven-
dissipative quantum systems [1]. These quantum systems are weakly coupled to a
reservoir for dissipation and are driven by an external time-periodic force (Floquet
system). In this context, the configuration n = (n1, . . . , nS )ᵀ ∈ NS

0 denotes the
numbers of bosons occupying the (pseudo-)energy states E1, . . . , ES . The rate
Γi← j = Ri j (1 + ni)n j describes the rate at which bosons transition from the state
E j to the state Ei . These transitions are effectively classical because of certain
assumptions that were made in the derivation of the master equation (Born,
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Markov, and rotating wave approximation). The bosonic quantum statistics is only
apparent from the proportionality of Γi← j to the (future) occupation 1 + ni of the
arrival state. The rate coefficients Ri j can be inferred from microscopic parameters
of the quantum system as explained in the supplemental material of [1].

Depending on the values of the rate coefficients Ri j , the master equation (5) pre-
dicts the formation of two groups of states. One of these groups comprises states
that are depleted exponentially fast. In the other group, the boson concentrations
of states approach metastable levels at a finite distance from zero. Consequently,
each of these states carries a finite fraction of all bosons. Their boson concen-
trations may either remain effectively constant, or they may oscillate due to the
exchange of bosons with other metastable states. Figure 3 demonstrates both pos-
sibilities for a system with seven states. The duration over which the metastable
states persist scales linearly with the total number of bosons N =

∑
i ni [2].

Vorberg et al. interpreted the splitting into depleted states and states with a
finite fraction of all bosons as a condensation phenomenon [1]. Given a rate matrix
R, they asked how one can identify the states with a positive boson occupation.
We answered this question and our previous question regarding the selection of
persistent strategies in zero-sum games in our publication “Evolutionary games of
condensates in coupled birth-death processes” [3].

1.5 Evolutionary games of condensates

In the following, the main results of our publication [3] are briefly summarized.
The publication is reprinted in section 3 of this chapter. Author contributions are
listed on page 8 of the publication (page 173 of this thesis).

In the first part of our publication, we showed that the metastable states (i.e. the
condensates/the persistent strategies) of the master equation (5) with rate (6) agree
with the neutrally-stable states of the ALVE (2) with rate matrix A = R − Rᵀ. We
established this result by performing a Kramers-Moyal expansion of the master
equation and by identifying the time scales on which the individual terms of the
expansion act. The Kramers-Moyal expansion was introduced in section 4.4 of
chapter I in this thesis. Our analysis showed that on the leading-order time scale,
the dynamics of the master equation are described by the deterministic ALVE (2)
with the antisymmetric rate matrix A = R − Rᵀ. Figure 3 provides a comparison
between stochastic trajectories of the master equation and deterministic trajectories
of the ALVE for a system with seven states (strategies).

Demographic fluctuations act only on sub-leading time scales and are sup-
pressed by at least a factor 1/

√
N as compared to the terms of the ALVE (see

the Supplementary Note 1 of [3], which is reprinted on pages 179–183). The
fluctuations cause slow amplitude changes of the deterministic trajectories (cf. fig-
ure 3). The linear contribution Ri jSi jn j to the rate (6) also becomes relevant on
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Figure 3 Stochastic and deterministic evolution of a system (zero-sum game) with seven
states (strategies). (a) A labelled arrow represents the rate Ri j at which bosons transition
from an initial state E j to an arrival state Ei (the rate at which agents with strategy
E j adopt strategy Ei . (b) Coloured trajectories show the stochastic temporal evolution
of the strategy concentrations x i = ni/N . The total number of bosons was chosen as
N =

∑
i ni = 106. The trajectories were obtained from a Gillespie simulation of the master

equation (5). The corresponding rate matrix R is represented by the graph in (a) (with
Si j = 1). The scale of the horizontal axis changes from linear to logarithmic at time
t = 100. The dashed black lines in the left half of the figure represent trajectories obtained
from a numerical integration of the ALVE (2) with rate matrix A = R − Rᵀ. The ALVE
approximates the stochastic dynamics on the leading-order time scale. In [3], we showed
how the metastable states (condensates/persistent strategies) can be identified from the
condensate vector c of the antisymmetric matrix A (here, c = (0, 4, 1, 1, 7, 0, 8)ᵀ ). Over
longer time scales, fluctuations on sub-leading time scales cause amplitude changes and
eventually a transition into the absorbing state E7 (the “absorbing state” of the system in
the sense of non-equilibrium theory is given by the vector n = (0, 0, 0, 0, 0, 0,N )).
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sub-leading time scales. A positive value of this contribution may affect whether
or not the corresponding initial state E j is absorbing.

After establishing that the condensates correspond to the neutrally-stable
states of the ALVE (2), we developed an algebraic method to identify these states.
The identification employed a theorem from linear programming theory [451] by
which there exists a “condensate vector” c with the following properties: its entries
ci are positive for i ∈ I ⊆ {1, . . . , S} and zero for i ∈ I B {1, . . . , S} \ I , whereas
(Ac)i is zero for i ∈ I and negative for i ∈ I . Although multiple condensate
vectors may exist, the index set I is unique. After proving that the relative entropy

D(c ||x) =
∑
i∈I

ci log (ci/x i) (7)

of the “condensate vector” c from the state concentration x is a Lyapunov function,
we were able to show that the states Ei with i ∈ I become the condensates and
that the states with i ∈ I are depleted. The depletion occurs exponentially fast.
For systems whose rates Ri j (or Ai j ) are sampled from continuous probability
distributions, the condensate vector is unique (up to normalization) and |(Ac)i |
denotes the rate at which a state Ei with i ∈ I is depleted.

The above algebraic relations fulfilled by the condensate vector c can be reph-
rased in terms of the linear inequalities

Ac ≤ 0 and c − Ac > 0 , (8)

which are both understood component-wise. Given an antisymmetric matrix
A, one can solve the inequalities numerically via linear programming. We im-
plemented an efficient algorithm for this purpose and applied the algorithm to
large networks of states. The networks were characterized by their total number
number of states S and by their connectivity C . The connectivity denotes the
probability that two states Ei and E j are connected by a positive effective rate
Ai j = Ri j − R j i or A j i . Effective rates were sampled from a Gaussian distribution
with zero mean and unit variance. Our algorithm succeeded in the identification of
condensates for fully connected systems with up to S = 2000 states and for sparsely
connected systems with up to S = 500 states. In studying the average number of
condensates supported by a system per the number of its states, we found that this
number exhibits a minimum along the power lawC ∼ 1/Sγ with γ = 0.998±0.008
(s.e.m.). Our results showed that the number of condensates supported by a sys-
tem depends on an interplay between the condensation dynamics and the critical
properties of random matrices. Finally, we explained how one can design systems
that condense into a particular set of states and formulated conditions under which
a system condenses into a “rock-paper-scissors game of condensates”.
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Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the total

biomass is conserved is of vital importance for the characterization of long-term dynamics of ecological

communities. Here, we introduce a classification scheme for coexistence scenarios in these conservative
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and find a generalized scaling law for the extinction time.
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Understanding the stability of ecological networks is
of pivotal importance in theoretical biology [1,2].
Coexistence and extinction of species depend on many
factors such as inter- and intraspecies interactions [3,4],
population size [5–9], and mobility of individuals [10–16].
An intriguing question is how the stability of ecosystems
depends on the interaction network between species.
Is it the topology of the network (whose links may arise
through predation, competition over common resources,
or mutual cooperation) that sets the level of biodiversity?
And how important is the strength of a single interaction
link? Stable coexistence can, for example, be observed
for natural populations in nonhierarchical networks that
are comprised of species that interact in a competitive and
predator-prey-like manner [17,18]. By understanding the
interplay between the structure of the interaction network
and the strengths of its links, it is possible to reveal
mechanisms that underlie this stability.

A paradigm in addressing these ecologically important
questions from a theoretical perspective are Lotka-Volterra
(LV) models [19,20] in which the total biomass of species
is conserved. These conservative LV systems [12,21,22]
originate in the well-mixed limit from agent-based formu-
lations of reaction-diffusion systems, where individuals of
S different species A1; A2; . . . ; AS compete directly with
each other following the simplified reaction scheme [23]:
Ai þ Aj ! Ai þ Ai. Species Ai beats species Aj with rate

kij and immediately replaces an individual of species Aj

with an own offspring. Species Aj is thus degraded at the

same rate such that the interaction matrix GS ¼ fkijgi;j is
skew-symmetric. The interaction network can be visualized
by a graph; see Fig. 1. Neglecting demographic fluctua-
tions [24], the deterministic dynamics for the species’
concentration vector x ¼ ðx1; . . . ; xSÞT is given by the
rate equations (REs)

@txi ¼ xiðGSxÞi; for all i ¼ 1; . . . ; S: (1)

This conservative LV model has been investigated as a
prototype to understand principles of biodiversity from a
theoretical point of view [8,25]. While these systems are
also of central importance to many other fields of science
(e.g., plasma physics [26], evolutionary game theory
[27,28], and chemical kinetics [29]), no general scheme
to classify coexistence, survival, and extinction of species
has been established so far. It is frequently assumed that the
topology of the interaction network alone determines coex-
istence of species [30,31], i.e., that such systems can be
regarded as Boolean networks [32]. Recent investigations
of specific topologies indicate, however, that knowledge
about the network topology may not suffice to conclude
whether all species coexist or if some of them go extinct
[33–35]. These questions on global stability properties
have been previously addressed successfully for various
particular LV systems [27,36] and for hierarchical
networks [37,38].
In this Letter, we present a general classification of

coexistence scenarios in conservative LV networks with
an arbitrary number of species. We elucidate the conse-
quences of the interplay between the network structure and

FIG. 1 (color online). Two interaction topologies specifying
the conservative LV systems. (a) The general cyclic four species
systems (4SS). (b) The general cyclic five species system (5SS)
as a natural extension of the rock-papers-scissors configuration
(RPS) [44].
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the strengths of its interaction links on global stability. By
analyzing conserved quantities, we find conditions on the
reaction rates that yield coexistence of all species. In our
mathematical framework this amounts to the characteriza-
tion of positive kernel elements of the interaction matrix:
By employing the algebraic concept of the Pfaffian of
a skew-symmetric matrix, we are able to generalize
previous approaches [34,39] and to quantify the extinction
process when no conserved quantities exist. We illustrate
our general results for coexistence and survival scenarios
of four and five species systems (4SS and 5SS); cf. Fig. 1.
Moreover, we demonstrate the implications of our
findings for the stability of stochastic systems: We show
how the extinction time diverges with the distance to
the critical rate at which coexistence of all species is
observed.

First, we discuss some general results for the REs (1)
before the specific interaction topologies in Fig. 1 are
analyzed. In order to characterize the stability of the
generic LV system, we study conserved quantities. We
elaborate on the form of conserved quantities, under which
conditions they exist at all, and how many conserved
quantities there are for a given interaction network. Since
the interaction matrix GS is skew-symmetric, the REs (1)
conserve the sum over all species’ concentrations
�0 ¼ x1 þ . . . xS, independent of the interaction scheme.
Hence, the dynamics can be normalized onto the (S� 1)-
dimensional simplex where all concentrations are non-
negative and add up to 1. The vertices of the simplex
correspond to the extinction of all but one species, its edges
reflect the extinction of all but two species, and so on.
Further conserved quantities have previously been derived
as � ¼ xp1

1 . . . xpS

S [20,27,39]. Interestingly, these con-

served quantities can be obtained from solutions of the
linear problem GSp ¼ 0 because _� ¼ ��hGSp;xi, with
p ¼ ðp1; . . . ; pSÞT . One infers that � is conserved if the
exponent vector p is an eigenvector corresponding to
eigenvalue 0 [39], or in other words, if p lies in the kernel
of the matrix GS.

Coexistence means that all concentrations stay away
from the boundary of the simplex by a finite distance for
all times. Since the species’ concentrations are bounded to
the interval [0,1], one concludes from the structure of
the conserved quantity � that all S species coexist if
the kernel of the interaction matrix is positive; i.e., one
finds an element p in the kernel of GS with positive entries
pi>0 for all i. Hence, to reveal coexistence scenarios in
the conservative LV model, one has to characterize the
kernel of the interaction matrix GS and identify its positive
elements. Note that this conclusion goes beyond stating
that a positive kernel element corresponds to a stationary
point in the inside of the simplex; see REs (1).

The existence of conserved quantities constrains the
dynamics to a submanifold of the simplex whose
dimension Dc is determined as follows. The rank of a

skew-symmetric matrix is always even, because its non-
zero eigenvalues are purely imaginary, conjugate pairs.
The rank-nullity theorem [40] then implies that the dimen-
sion of the kernel ofGS is odd whenever S is odd, and even
whenever S is even. Each linearly independent kernel
element gives rise to an independent conserved quantity
�which constrains the degrees of freedom of the trajectory.
Together with �0, one finds that the dynamics in the case
of nonstationary motion is constrained to a deformed
sphere of dimension Dc¼S�1�dimKerðGSÞ for a posi-
tive kernel; see the Supplemental Material [41] for mathe-
matical details. Thus, coexistence in high-dimensional
systems is generically observed on nonperiodic trajectories
(Dc>1); see Movie M1 in Supplemental Material [41].
Only if the reaction rates are fine-tuned to a positive and
maximal kernel of dimension S� 2 is the dynamics re-
stricted to periodic orbits (Dc ¼ 1); see Fig. 2(a) and
Movie M2 in Supplemental Material [41]. In particular,
for S ¼ 3 or 4, a positive kernel immediately implies
coexistence on periodic orbits. This follows from the fact
that with three species, the kernel is always one-
dimensional. For the general 4SS, the dimension of the
kernel of the interaction matrix is either 0 or 2. A two-
dimensional, positive kernel yields coexistence on periodic
orbits; see Fig. 2(a). If dimKerðGSÞ ¼ 0, i.e., if the kernel
is trivial, one observes extinction of species as detailed
below.
Next, we focus on the mapping between the reaction

rates in GS and its kernel elements in order to find the
stationary points. To this end, we apply the concepts of the
Pfaffian and of the adjugate matrix [40,42]. The Pfaffian is
a simpler form of the determinant tailored to skew-
symmetric matrices with the property that its square equals
the value of the determinant. In contrast to the non-
negative determinant of skew-symmetric matrices, the
Pfaffian carries a sign which will turn out to be crucial

FIG. 2 (color online). Coexistence and survival in the general
cyclic 4SS are controlled by the Pfaffian of the interaction
matrix. (a) For PfðG4Þ ¼ 0, one obtains coexistence of all
species on periodic orbits. (b) Deterministic survival diagram:
for PfðG4Þ< 0, species A, B, and D survive in a stable RPS
configuration, whereas A, C, and D survive for PfðG4Þ> 0.
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for our purposes. For a skew-symmetric matrix, the
Pfaffian can be computed recursively as

PfðGSÞ ¼
XS
i¼2

ð�1Þik1iPfðG1̂ îÞ; (2)

with G1̂ î being the matrix where both the first and ith
column and row have been removed from the matrix GS.
The Pfaffian of a 2� 2 skew-symmetric matrix G2 ¼
fkABg, is given by PfðG2Þ ¼ kAB. For the interaction matrix
corresponding to the LV network in Fig. 1(a),

G4 ¼

0 kAB kAC �kDA

�kAB 0 kBC kBD

�kAC �kBC 0 kCD

kDA �kBD �kCD 0

0
BBBBB@

1
CCCCCA;

the Pfaffian is PfðG4Þ ¼ kABkCD � kACkBD � kDAkBC.
The Pfaffian always vanishes for odd S as opposed to

systems with an even number of species [42]. In the latter
case, the Pfaffian is zero only if a constraint on the reaction
rates is fulfilled. If the Pfaffian vanishes, one finds more
kernel elements than just the null vector and, thus, con-
served quantities of form � exist. In the following, we
distinguish between even and odd S.

For an even number of species and a two-dimensional
kernel, positive kernel elements can be identified via the
adjugate matrix RS which is a generalized inverse of the
interaction matrix such that GSRS ¼ �PfðGSÞIS, with IS
being the identity matrix [42]. The adjugate matrix can be
computed as ðRSÞij ¼ ð�1Þ�PfðGî ĵÞ, where ð�1Þ� denotes

the sign of the permutation � ¼ ðij1 . . . î . . . ĵ . . . SÞ, and
the columns of RS give two independent kernel
elements of GS.

As an example, consider again the general cyclic 4SS
depicted in Fig. 1(a). By setting all reaction rates equal
to each other (e.g., to 1), the Pfaffian does not vanish
and, therefore, not all species can coexist. Only when the
rates are chosen such that PfðG4Þ ¼ 0, do we obtain two
independent kernel elements of G4: From its adjugate
matrix, R4, we identify p1 ¼ ðkCD; 0; kDA; kACÞT and p2 ¼
ðkBD; kDA; 0; kABÞT . We infer the two conserved quantities

�1 ¼ x
kCD
A xkDA

C x
kAC
D and �2 ¼ xkBDA xkDA

B xkABD , and conclude

that the kernel is positive and coexistence occurs on peri-
odic orbits; see Fig. 2(a). Hence, classifying LV networks
in terms of their topology is incomplete; the strengths of
the interaction links are crucial in general.

In general, if the Pfaffian for a system with even S is
nonzero, i.e., when only the null vector lies in the kernel,
coexistence of all species is not possible. Still one can
quantify the extinction process by generalizing an appr-
oach of Durney et al. [34] for a system with S ¼ 4 to
systems composed of an arbitrary even number of species.
We define the function � ¼ xq11 . . . xqSS in the same way as

the conserved quantity �, but this time choosing the

exponent vector qS ¼ �RS1 with 1 ¼ ð1; . . . ; 1ÞT . It is
straightforward to show that this function evolves expo-
nentially in time:

�ðtÞ ¼ �ð0Þe�PfðGSÞt; (3)

generalizing previous investigations [24,33–35]. It is quite
remarkable that � quantifies the global collective dynamics
of systems with an arbitrary interaction topology and
even S. Depending on the sign of the Pfaffian, � grows
or decays exponentially fast with the Pfaffian of the inter-
action matrix as rate. Since the system’s dynamics is driven
towards the boundary of the simplex, one can conclude on
the extinction of some species. This feature of � is remi-
niscent of a Lyapunov function; note also that � becomes a
conserved quantity � if the Pfaffian is zero. An interesting
question for future investigations is to ask whether further
quantities exist that characterize the dynamics of conser-
vative LV networks.
For the general 4SS shown in Fig. 1(a), we find q4 ¼

ð�kCD þ kBD � kBC; kCD þ kDA þ kAC;�kBD � kDA �
kAB; kBC � kAC þ kABÞT . The fact that ðq4Þ2 is always
positive suggests that species B goes extinct for a positive
Pfaffian, and that the converse holds true for ðq4Þ3 and
species C for a negative Pfaffian. In both cases, the system
tends to a stable rock-paper-scissors (RPS) configuration.
In summary, we derive the survival diagram shown in
Fig. 2(b). Interestingly, A and D always survive in this
topology although D can be easily tuned to be the weakest
species. We emphasize that this result depends on the sign
of the Pfaffian and cannot be obtained from applying the
concept of the determinant. Again, since the Pfaffian of the
interaction matrix characterizes the dynamics of this 4SS,
its topology alone does not determine the long-time
dynamics. These findings unify previous results for other
4SS [24,33,34], and show that rules like ‘‘survival of the
strongest’’ or ‘‘survival of the weakest’’ [25,43] cannot be
formulated in general.
For an odd number of species, the kernel ofGS is always

nontrivial. In general, if dimkerGS ¼ 1, we determine the
independent kernel element via the adjugate vector [42],
rS ¼ ðPfðG1̂Þ;�PfðG2̂Þ; . . . ; PfðGŜÞÞT , which enables us to

investigate the influence of the reaction rates on the sur-
vival scenarios. For S ¼ 3, only the well-studied RPS
topology [8,27] leads to a positive adjugate vector r3. In
other words, coexistence of all three species depends only
on the topology of the network. This behavior is unique to
S ¼ 3 and changes dramatically for systems with more
than three species.
We illustrate the importance of the reaction rates for a

system of five interacting species; see Fig. 1(b). This
interaction topology where each species dominates two
species and is outperformed by the two remaining species,
recently gained attention as a natural extension of the RPS
game [30,44,45]. For specificity, we investigate the depen-
dence of the survival scenarios on the rate kAB with which
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species A beats species B and chose the other rates [see
Fig. 3(b), left inset] such that either five or four species
survive depending on the value of kAB; see Fig. 3(a). The
kernel of the interaction matrix depends on kAB and is
characterized by the adjugate vector r5 ¼ ð0; 0; 3kAB �
15; 5� kAB; 5kAB � 25ÞT . For kAB � 5, the kernel is
one-dimensional and nonpositive, and four species survive.
In contrast, for kAB ¼ 5, r5 equals the null vector which in
turn means that the kernel becomes three-dimensional
[42]. Since we have ensured that the kernel is also positive,
we obtain coexistence of all five species on periodic
orbits (Dc ¼ 1).

Finally, we discuss the implications of our findings by
asking how demographic noise affects the stability of
stochastic LV systems. We analyze ecological LV systems
with a finite number N of interacting individuals in the eye
of the knowledge gained from the deterministic analysis.
It has been shown that due to demographic fluctuations the
system ultimately reaches an absorbing state that is char-
acterized by the extinction of all but one species [46–49].
Moreover, the scaling behavior of the mean extinction time
with the system size N characterizes the stability of the
interaction network [14,48].

As an example, we continue the discussion of the 5SS
from Fig. 3(b), left inset. We have carried out extensive
computer simulations employing the Gillespie algorithm
[50] to measure the time Text until the first species has
become extinct for different system sizes N and different
reaction rates kAB. The results are displayed in Fig. 3(b)
and highlight the significance of the deterministic drift
underlying the stochastic dynamics. We observe a peak
in the extinction time as the reaction rate kAB approaches
the critical value kcr ¼ 5 for which we obtain coexistence

of all species in the deterministic case. The divergence
of the extinction time for kAB ! kcr becomes more pro-
nounced for larger system sizes as the system reaches the
deterministic limit for N ! 1.
A scaling analysis reveals how the extinction time peaks

in the vicinity of the coexistence scenario. Near the critical
rate, the extinction time scales linearly with the system size
leading to neutrally stable interaction networks [8,24,51].
At larger distance from the critical rate, the deterministic
driving force to the absorbing boundary becomes more
dominant than the demographic fluctuations; see Fig. 3(b),
right inset. The interplay between the stochastic and deter-
ministic forces is reflected by the scaling law

Text /
(
N for kAB ¼ kcr;

lnN
jkAB�kcrj for kAB � kcr;

(4)

which extends the linear scaling Text / N of neutral coex-
istence. We observe a power-law dependence in the dis-
tance of the reaction rates to the critical rate and
logarithmic scaling withN for attracting boundaries [8,52].
The observed scaling law (4) for kAB � kcr can be

attributed to the exponentially fast extinction of species
xi ¼ xið0Þ expð��itÞ; see Eq. (1). The extinction rate �i is
computed via the temporal average over the trajectory hxi
as �i ¼ �ðGShxiÞi, which becomes linear in the distance
to the critical rate jkAB � kcrj for large times. The logarith-
mic dependence on N follows by defining that a species
with concentration xi less than 1=N has become extinct.
With this scaling behavior at hand, we are able to compare
the ecological stability of different interaction networks
based on our analysis of the REs (1).
In this Letter, we investigated global stability properties

of conservative LV networks. By employing the Pfaffian
of the interaction matrix, we revealed the relation between
the reaction rates and the conditions for coexistence, and
exemplified the implications for the stability of ecological
networks with finite populations. We expect that our results
will also stimulate further progress for the investigation of
extinction scenarios. Beyond analyzing whether an eco-
system is stable or unstable, it would be highly interesting
to actually predict which of its species ultimately survive
for a general conservative LV system. This would, for
example, allow us to predict the eventual outcome of an
unstable version of the five species system shown in
Fig. 1(b), and to formulate the conditions under which
3- or 4-species cycles are attained. First insights into these
extinction dynamics will be outlined in a future publication
[53]. We believe that a full characterization of general
conservative LV dynamics is possible.
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FIG. 3 (color online). Stability of the cyclic 5SS. (a) For the
interaction scheme [left inset of (b)], one obtains coexistence
of all species for the critical rate kAB ¼ 5. (b) Stability of the
stochastic system, reflected by the extinction time Text, peaks at
the critical rate, which becomes more pronounced as N ! 1.
We find a scaling law for Text in the distance to the critical rate
(right inset). Initial conditions were chosen as xð0Þ ¼ 1=5� 1.
Larger line gap corresponds to smaller N.
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Characterization of coexistence scenarios of conservative LV networks

In this supplemental material, we extend the characterization of the qualitative behavior

of coexistence scenarios for the conservative LV model as defined in the main text,

∂txi = xi · (GSx)i , (1)

where GS is a skew-symmetric matrix. We show that trajectories lie on odd dimensional,

deformed spheres. In case of a positive and maximal kernel of the interaction matrix this

behavior translates to periodic orbits.

In the main text of this letter, we define coexistence of all species for the deterministic

case if the species’ concentrations retain a finite distance to the absorbing boundary for

all times and a given set of initial conditions. Furthermore, we show that a positive

kernel of the interaction matrix implies this coexistence. We call the kernel of the in-

teraction matrix positive if there exists an element p in the kernel of GS with pi > 0 for all i.

First, we show that the motion of the LV system defined in Eq. (1) is either stationary or

restricted to a (S − 1− n)-dimensional manifold M , where n denotes the dimension of the

kernel of GS. Let us assume a LV system characterized by an interaction matrix GS with

a positive, n-dimensional kernel. Note that n has the same parity as S since the rank of

a skew-symmetric matrix is always even. In a sufficiently small neighborhood of a positive

element p of the kernel of the interaction matrix, the kernel is still positive and contains n

1



linearly independent vectors p(1), . . . ,p(n). We can assume these vectors to be normalized

such that
∑S

i=1 p
(l)
i = 1 holds true for l = 1, . . . , n. They give rise to n constants of motion

of the form

τl = x
p
(l)
1

1 . . . x
p
(l)
S

S ,

as shown in the main text. In addition, the trivially conserved quantity

τ0 =
S∑

i=1

xi = 1 ,

always exists. In order to prove linear independence of these conserved quantities, we com-

pute:

0 =
n∑

l=1

cl · d log τl + c0 · dτ0 =
S∑

i=1

(
n∑

l=1

clp
(l)
i + c0xi

)
dxi
xi

,

with arbitrary real constants c0, c1, . . . , cn. In case of x /∈ kerGS, the latter equation

holds true only if cl = 0 for all l = 0, . . . , n. This result shows the linear indepen-

dence of dτ0, dτ1, . . . , dτn. For x ∈ kerGS, the motion of the system is stationary

as can be seen from Eq. (1). Hence, we conclude that the motion is either stationary

or restricted to a (S−1−n)-dimensional manifold M and the dimension of M is always odd.

In the following, we elucidate that this manifold is diffeomorphic to a sphere of dimension

(S − 1− n). We introduce the coordinates

u1 = log x1, . . . , uS = log xS ,

and note that the manifold M can be characterized in these new coordinates by the inter-

section U ∩ {f(u) = 1}. The latter U denotes the set

U =

{
u ∈ RS :

∑

i

p
(l)
i ui = αl; l = 1, . . . , n

}
,

which is an (S−n)-dimensional affine subspace given by the intersection of the hypersurfaces

defined by the conserved quantities τ1, . . . , τn. The constants α1, . . . , αS < 0 are determined

by the initial conditions. The function

f : u 7→
∑

i

eui

2



corresponds to the sum over the species’ concentrations xi and is a strictly convex function.

Provided that minu∈U f(u) < 1, this property implies that the set {u ∈ U : f(u) ≤ 1} is

a strictly convex bounded subset of U with open interior and smooth boundary which is,

therefore, diffeomorphic to a sphere. If on the other hand minu∈U f(u) = 1, then U consists

of only one point and the motion is stationary.

As a consequence, the motion along solutions of Eq. (1) is either stationary or takes place

on an odd dimensional, deformed sphere in case of a positive kernel. From the observation

that M cannot contain an element of the kernel of GS for non-stationary motion, it follows

via the equations of motion (1) that ∂txi 6= 0 and together with the compactness of M , we

conclude that |∂txi| ≥ const > 0 for all i and all times. In other words, the dynamics on

these odd-dimensional spheres does not come to rest.

In summary, if the kernel is positive, quasi-periodic and non-periodic trajectories are

typically observed as can be seen from the corresponding Fourier spectrum; see also Movie

M1 of the Supplemental Material (SM). If the dimension of the kernel is maximal, that is

if dim kerGS = S − 2, the non-stationary trajectories are restricted to deformed circles and

they never come to rest. Therefore, the motion occurs on periodic orbits; see Movie M2 of

the SM.
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Condensation phenomena arise through a collective behaviour of particles. They are observed

in both classical and quantum systems, ranging from the formation of traffic jams in mass

transport models to the macroscopic occupation of the energetic ground state in ultra-cold

bosonic gases (Bose–Einstein condensation). Recently, it has been shown that a driven and

dissipative system of bosons may form multiple condensates. Which states become the

condensates has, however, remained elusive thus far. The dynamics of this condensation are

described by coupled birth–death processes, which also occur in evolutionary game theory.

Here we apply concepts from evolutionary game theory to explain the formation of multiple

condensates in such driven-dissipative bosonic systems. We show that the vanishing

of relative entropy production determines their selection. The condensation proceeds

exponentially fast, but the system never comes to rest. Instead, the occupation numbers

of condensates may oscillate, as we demonstrate for a rock–paper–scissors game of

condensates.
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C
ondensation phenomena occur in a broad range of
contexts in both classical and quantum systems. Networks
such as the World Wide Web or the citation network

perpetually grow by the addition of nodes or links and they evolve
by rewiring. Over time, a finite fraction of the links of a network
may be attached to particular nodes. These nodes become hubs
and thereby dominate the dynamics of the whole network; they
become condensate nodes1–3. Condensation also occurs in
models for the jamming of traffic4–7 and in related mass
transport models in which particles hop between sites on a
lattice3,8,9. A condensate forms when a finite fraction of all
particles aggregates into a cluster that dominates the total particle
flow. Bose–Einstein condensation, on the other hand, is a
quintessentially quantum mechanical phenomenon. When an
equilibrated, dilute gas of bosonic particles is cooled to a
temperature near absolute zero, a finite fraction of bosons may
condense into the energetic ground state10–12. Long-range phase
coherence builds up and quantum physics becomes manifest on
the macroscopic scale13,14.

In both the classical and the quantum mechanical context,
condensation occurs when one or multiple states become
macroscopically occupied (they become condensates), whereas
the other states become depleted15,16. However, the physical
origins of condensation in the above examples differ from each
other. Why and how condensation arises in a particular system
remains a topic of general interest and vivid research.

Here we study condensation in two systems from different
fields of research: incoherently driven-dissipative systems of non-
interacting bosons and evolutionary games of competing agents.
As we show below, the physical principle of vanishing entropy
production governs the formation of condensates in both of these
systems. The entities that constitute the respective system shall be
called particles. They may be quantum or classical particles
(bosons or agents). The dynamics of these particles eventually
lead to the condensation into particular states (quantum states or
strategies). Before describing the above two systems, we now
introduce the mathematical framework of our study.

On an abstract level, we consider a system of S (non-
degenerate) states Ei; i ¼ 1; . . . ; S, each of which is occupied by
NiZ0 indistinguishable particles, see Fig. 1a. The configuration of
the system at time t is fully characterized by the occupation
numbers N ¼ ðN1;N2; . . . ;NSÞ. This configuration changes
continuously in time due to the transition of particles between
states. The total number of particles in this coupled birth–death
process is conserved ðN ¼

P
i NiÞ. We are interested in the

probability P(N, t) of finding the system in configuration N at
time t. The temporal evolution of the probability distribution
P(N, t) is governed by the classical master equation17,18:

@tPðN; tÞ ¼
XS

i;j¼1
j 6¼ i

Gi jðNi� 1;Njþ 1ÞPðN� eiþ ej; tÞ
�

�Gi jðNi;NjÞPðN; tÞ
�
;

ð1Þ

where ei 2 ZS denotes the unit vector in direction i (equal to 1 at
index i, otherwise 0). The rate for the transition of particles from
state Ej to Ei depends linearly on the number of particles in the
departure and in the arrival state:

Gi j ¼ rijðNiþ sijÞNj ; ð2Þ
with rate constant rijZ0 and constant sijZ0.

Condensation in this framework is understood as the
macroscopic occupation of one or multiple states15,16: We
consider a state Ei as a condensate when the long-time average
of the number of particles in this state scales linearly with the
system size (hNiit � OðNÞ for large t). Hence, a condensate

harbours a finite fraction of the total number of particles for large
systems (N � 1). We refer to a state as depleted when its average
occupation number scales less than linearly with the system size.
Therefore, the fraction of particles in a depleted state vanishes in
the limit of large systems.

Depending on the values of the rate constants rij, numerical
simulation of equations (1) with rates (2) reveals that all states,
multiple states or only one state become condensates when the
particle density N/S is large enough to detect condensation19.
Thus far, various questions about condensation have remained
elusive for the coupled birth–death process defined by equation
(1): Which of the states become condensates? How does this
selection of condensates proceed? Is it possible to construct
systems that condense into a specific set of condensates?

In the following, we answer these questions by illuminating the
physical principle that governs the formation of multiple
condensates on the leading-order timescale. We show that the
vanishing of relative entropy production determines the selection
of condensates (see equations (3) and (4) below). We elaborate
how condensate selection is determined by the rate constants rij.
The condensation proceeds exponentially fast into a dynamic,
metastable steady state within which the occupation numbers of
condensates may oscillate. By applying our general results to
systems with many states, we show that the interplay between
critical properties of such networks of states20 and dynamically
stable network motifs21 determines the selection of condensates.
The results of our analysis apply to any system whose dynamics
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Figure 1 | Condensation into multiple states due to particle transitions

between states and mathematics of condensate selection. (a) With

respect to condensation in an incoherently driven-dissipative quantum

system, each bowl represents a state Ei that is occupied by Ni non-

interacting bosons (filled circles). If indicated by an arrow, bosons may

undergo transitions from state Ej to state Ei at a rate Gi’j¼ rij(Niþ 1)Nj, with

rate constant rij. In the language of evolutionary game theory, the figure

depicts the interaction of Ni agents (filled circles) playing strategies Ei

(bowls) for i¼ 1,...,S. An agent playing strategy Ej adopts strategy Ei at a rate

Gi’j¼ rijNiNj. The above rate of bosonic condensate selection is recovered if

agents may also spontaneously mutate from Ej to Ei at a rate rij. (b) A

condensate vector c for an antisymmetric matrix A has two properties: its

entries are positive for indices for which Ac is zero, and they are zero for

indices for which Ac is negative (‘‘-’’ signifies the antisymmetry of matrix

A). Temporal evolution of the relative entropy of the condensate vector to

the state concentrations under the ALVE (3) relates positive entries of the

condensate vector to condensates, and its zero entries to depleted states.

Generically, positive entries of c represent the asymptotic temporal average

of oscillating condensate concentrations according to the ALVE (3), and

negative entries of Ac represent depletion rates.
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are described by the coupled birth–death processes (1) with
rates (2). Before proceeding to the mathematical and numerical
analysis of condensation in these processes, we now give a brief
overview of such systems.

Results
Non-interacting bosons in driven-dissipative systems. The
classical master equation (1) has recently been derived by
Vorberg et al.19 in the study of bosonic systems that are
dissipative and driven by external sources. For a system of non-
interacting bosons that is weakly coupled to a reservoir and
driven by an external time-periodic force (a so-called Floquet
system)22–24, one can eliminate the reservoir degrees of freedom
(Born and Markov approximation)25,26 and the density matrix of
the system becomes diagonal (see the Supplement of the work
of Vorberg et al.19). The effective dynamics of the bosons
become incoherent and are captured on a macroscopic level in
terms of the coupled birth–death processes (1) with rates
Gi’j¼ rij(Niþ 1)Nj (that is all sij¼ 1 in the rates (2)). These
non-equilibrium set-ups may not only lead the bosons into a
single, but also into multiple condensates19.

For the incoherently driven-dissipative systems described
above, the state Ei denotes a time-dependent Floquet state22–24.
The total rate Gi’j for the transition of a boson from state Ej to Ei

depends linearly on the number of bosons in the departure state
(Nj) and the arrival state (Niþ 1). The latter factor stems from the
indistinguishability of bosons and reflects their tendency to
congregate. Although we refer to equation (1) as a classical master
equation and coherence does not build up, the quantum statistics
of bosons is still encoded in the functional form of Gi’j. The rate
constant rij is determined by the microscopic properties of the
system and the reservoir.

Condensation in the above set-up is to be distinguished from
Bose–Einstein condensation. Typically, studies on Bose–Einstein
condensation focus on the existence of long-range phase
coherence in thermal equilibrium10–15, its kinetic
formation13,14,27–32 and the fragmentation of a coherent
condensate into multiple condensates (for example, when the
equilibrium ground state is degenerate)13,16. In contrast, the
classical birth–death processes (1) with rates (2) describe
condensation in bosonic systems that are externally driven by a
continuing supply of energy, dissipate into the environment and
exhibit decoherence.

Equations of type (1) may also arise in atomic physics and
quantum optics and are known as Pauli master equations33–35.
They describe how the population of S non-degenerate energy
levels changes over time when a system harbours N
indistinguishable, non-interacting bosonic atoms. Such changes
may occur by interactions with a radiation field that induces
transitions between energy levels. A theoretical description of
these transitions in terms of a Pauli master equation is
appropriate if coherence is negligible. As in the previous
example, the system then approaches a state in which some of
the energy levels are macroscopically occupied (condensates),
whereas the others are depleted. More generally, whenever a rate
constant rij governs the transition of a single boson from a state Ej

to Ei, the rates (2) with sij¼ 1 for all i and j apply if N
non-interacting bosons are brought into the system19.

Strategy selection in evolutionary game theory. The classical
master equation (1) also occurs in evolutionary game theory
(EGT). Historically, EGT was developed to study the evolutionary
processes that are driven by selection and mutation36,37 and seeks
to identify optimal strategies for competitive interactions.
For example, EGT has been applied in the study of the
prominent ‘rock–paper–scissors’ (RPS) game, which was

proposed as a facilitator of species coexistence and has inspired
both experimental and theoretical research38–42. Furthermore, the
‘prisoner’s dilemma’ game serves as a paradigmatic model to
explore the evolution and maintenance of cooperation43,44. The
interplay between non-linear and stochastic effects underlies the
dynamics of such evolutionary games45–50.

In EGT, one typically considers a system of N interacting
agents (classical particles) who repeatedly play one fixed strategy
Ei out of the S possible choices E1; E2; . . . ; ES. In each succeeding
interaction, the defeated agent adopts the strategy of its opponent.
Since Nj agents playing strategy Ej can potentially be defeated by
one of the Ni agents playing strategy Ei, the rate of change is
Gi’j¼ rijNiNj. If an agent who plays Ej can also spontaneously
mutate into an agent who plays Ei (with rate mij¼ rijsij), one
recovers the classical master equation (1) with rates (2).

Thus, there exists a correspondence between condensation in
incoherently driven-dissipative bosonic systems and strategy
selection in EGT—the transition of bosons between states can
be interpreted in terms of the interaction and mutation of agents
employing evolutionary strategies. In effect, the states in an
incoherently driven-dissipative set-up play an evolutionary game
and the winning states form the condensates.

After having introduced the above examples, we now proceed
with the mathematical and numerical analysis of the classical
master equation (1). We show that the dynamics of condensation
change on two distinct timescales. At the leading-order timescale,
the dynamics are described by a set of non-linearly coupled,
ordinary differential equations (see equation (3) below), which
determine the states that become condensates. We identify these
states by applying concepts from EGT. After an exposition of the
physical principles that underlie the condensation dynamics,
implications of our general results for incoherently driven-
dissipative systems are discussed.

The antisymmetric Lotka–Volterra equation. The total number
of particles needed for condensation phenomena to occur is large
(N � 1). To detect macroscopic occupancies, it is also assumed
that the particle density N/S is large. Therefore, one may
approximate the classical master equation (1) by a Langevin
equation for the state concentrations xi(t)¼Ni(t)/N (details of the
derivation are provided in Supplementary Note 1). Originally
proposed for Brownian particles suspended in a liquid, the
Langevin equation decomposes the dynamics of a sample
trajectory of the random process into two contributions—into a
deterministic drift and into noise stemming from the discreteness
of particle numbers (‘demographic fluctuations’). Both the
demographic fluctuations and the contribution to the determi-
nistic drift that corresponds to mutations in the EGT setting are
suppressed by a small prefactor 1/N. Therefore, these terms
change the dynamics only slowly. The deterministic drift that
corresponds to interactions between agents is, however, not
suppressed. It thus governs the dynamics to leading order.

Hence, we find that the leading-order dynamics of the
condensation process (1)–(2) are described by the differential
equations:

d
dt

xi ¼ xiðAxÞi : ð3Þ

The matrix A is antisymmetric and encodes the effective
transition rates between states (aij¼ rij–rji). The constants sij that
occur in the definition of the rates (2) do not change the leading-
order dynamics, but they become relevant on subleading-order
timescales.

We refer to equation (3) as the antisymmetric Lotka–Volterra
equation (ALVE). It provides a description of pairwise interac-
tions that preserve the total number of particles. Therefore, the

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7977 ARTICLE

NATURE COMMUNICATIONS | 6:6977 | DOI: 10.1038/ncomms7977 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.



ALVE finds a broad range of applications in diverse fields of
research, in addition to the aforementioned condensation of
bosons far from equilibrium. It was first studied by Volterra51

in the context of predator–prey oscillations in population
biology47,52,53. In plasma physics, the ALVE describes the
spectra of plasma oscillations (Langmuir waves)54,55, and in
chemical kinetics it captures the dynamics of bimolecular
autocatalytic reactions18,56–58. In EGT, the ALVE is known as
the replicator equation of zero-sum games such as the RPS
game47,59–61. Table 1 summarizes all of the above analogies.

Despite the simple structure of the ALVE, it exhibits a rich and
complex behaviour. In the following, we show how the
mathematical analysis of the ALVE explains condensation into
multiple states (condensate selection). To this end, we extend an
approach for the analysis of the ALVE that was introduced in the
context of EGT59,60.

Production of relative entropy and condensate selection. Our
analysis starts from a theorem in linear programming theory62.
Given an antisymmetric matrix A, it is always possible to find a
vector c that fulfils the following conditions: its entries are
positive for indices in I � f1; . . . ; Sg and zero for indices in
�I ¼ f1; . . . ; Sg� I, whereas the entries of Ac are zero for indices
in I and negative for indices in �I (Fig. 1b). Although several
vectors c with these properties may exist, the index set I is unique
and, thus, determined by the antisymmetric matrix A. Finding

such a ‘condensate vector’ c is crucial for the understanding of
condensate selection and of the condensation dynamics. The
condensate vector has the following physical interpretations.

All condensate vectors yield fixed points of the ALVE (3).
Because of the antisymmetry of matrix A, a linear stability
analysis of these fixed points does not yield insight into the global
dynamics (Supplementary Note 1). However, the global stability
properties can be inferred by showing that the relative entropy of
a condensate vector to the state concentrations,

D c jjxð Þ ¼
X
i2I

ci log ci=xið Þ ; ð4Þ

is a Lyapunov function (note that we do not consider the relative
entropy of the state concentrations to the condensate vector, but
define the relative entropy vice versa). The relative entropy (4)
decreases with time and is bounded from below (see Methods and
Supplementary Fig. 1). Therefore, the dynamics relax to a
subsystem in which the relative entropy production is zero. The
relaxation of relative entropy production is reminiscent of
Prigogine’s study of open systems in non-equilibrium thermo-
dynamics. Indeed, we find that the system, to cite Prigogine’s
phrase, ‘settles down to the state of least dissipation’63.

This state of least dissipation is characterized even further by
the condensate vector c. Considering the definition of the relative
entropy (4) and its boundedness, it follows that every concentra-
tion xi with iAI remains larger than a positive constant. On the

Table 1 | Condensation processes described by the ALVE in different fields of research.

Field of research Entity State Process Dynamics

Quantum physics19 Boson Quantum state Incoherent transition Condensation/depletion
Evolutionary game theory59,60 Agent Strategy Game (þmutation) Win/loss
Population dynamics47,51–53 Individual Species Competition (þmutation) Survival/extinction
Chemical kinetics56–58 Molecule Chemical species Reaction (þ conversion) Production/consumption
Plasma physics54,55 Plasmon Jet Scattering Increase/decrease

ALVE, antisymmetric Lotka–Volterra equation.
The ALVE (3) governs condensation processes in diverse fields of research. For example, for incoherently driven-dissipative bosonic systems, the ALVE describes condensation and depletion of states by
incoherent transitions of non-interacting bosons. In EGT, the ALVE occurs in the context of winning and losing strategies played by agents.
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other hand, states with indices in �I become depleted for long
times (see Methods). Therefore, we find that the condensate
vector determines the selection of condensates. Positive entries of
c correspond to states that become condensates, whereas zero
entries of c correspond to states that become depleted. Both the
set of condensates and the set of depleted states are unique
(Fig. 1b) and independent of the initial conditions. Generically,
the entries of the condensate vector are also unique upon
normalization (its entries sum up to one) and yield the rate |(Ac)i|
at which a state Ei becomes depleted. The condensate selection
occurs exponentially fast (see Fig. 2 and Methods).

After relaxation, the dynamics of the system are restricted to
the condensates. In other words, the condensates form the
attractor of the dynamics. However, the dynamics in this
subsystem do not come to rest. The state of least dissipation is
a dynamic state with a perpetually changing number of particles
in the condensates—periodic, quasiperiodic and non-periodic
oscillations are observed (Fig. 2b and Supplementary Fig. 1). In
the generic case, the entries of the condensate vector represent the
temporal average of condensate concentrations according to the
ALVE (3). After condensate selection, the dynamics of these
active condensates take place on a high-dimensional, deformed
sphere61.

An algebraic algorithm to find the condensates. Numerical
integration of the ALVE (3) is neither a feasible nor a reliable

method for identifying condensates (Fig. 2, Supplementary Figs 1
and 2). Instead, we determine these states by numerically
searching for a condensate vector c. To this end, we reformulate
the above conditions on c in terms of two linear inequalities62:

Ac � 0 and c�Ac40 : ð5Þ
We solve these inequalities with a linear programming algorithm
that is both reliable and efficient. The time to find a condensate
vector scales only polynomially with the number of states S (see
Supplementary Fig. 3 and Methods for details).

Condensation in large random networks of states. We used our
combined analytical and numerical approach to study how the
connectivity of a random network of states affects the selection of
condensates under the dynamics of the ALVE (3). The con-
nectivity specifies the percentage of states between which particle
transitions occur20,64. After having generated a network with a
given connectivity, the strength and direction of an allowed
transition between states Ej and Ei were determined by randomly
sampling the corresponding effective rate constant aij¼ rij–rji.

Our results for condensation in large random networks of
states are summarized in Fig. 3. When the connectivity of a
network is zero, all of its states are isolated. Particles are not
exchanged between states and none of the states becomes
depleted. For an increased connectivity, isolated pairs of states
are sampled in a random network. One state in an isolated pair is
always depleted and the average number of condensates decreases
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rapidly. On approaching a critical connectivity, cycles and trees of
all orders become embedded in a random network. This critical
connectivity scales inversely with the number of states20. We
observe that, under the dynamics of the ALVE (3), the average
number of condensates becomes minimal for a connectivity that
also scales inversely with the number of states (see Fig. 3g). We
attribute this minimum to the interplay between the criticality
of random networks and condensate selection on connected
components of the network61,65. Embedded directed cycles are a
recurring motif21 in the remaining network of condensates after
condensate selection. Above the critical connectivity, a single
giant cluster is formed. On average, half the number of states in
this giant cluster become condensates once the network is fully
connected (C¼ 1; Fig. 3a)19,60,66. Thus, our analysis emphasizes
the importance of critical properties of random networks for
condensate selection.

Design of active condensates. Our understanding of the con-
densate selection can be used to design systems that condense
into a particular network of states, a game of condensates. We
exemplify this procedure by formulating conditions under which
a system relaxes into a RPS game of condensates40. Three
particular states E1, E2 and E3 in a system become a RPS cycle of
condensates if, and only if, the following two conditions are
fulfilled (Fig. 4). First, the ‘RPS condition’ requires that the rate
constants between the three states form a RPS network (for
example, r124r21, r234r32 and r314r13). Second, the ‘attractivity
condition’ requires that the inflow of particles into the RPS cycle
from any other state Ek is greater than the outflow to that state Ek

(for all k ¼ 4; . . . ; S). The values of the rate constants between
the states that become depleted are irrelevant. More complex
games of condensates can be designed by formulating similar
conditions on the rate constants. These conditions are formulated
as inequalities that depend on Pfaffians of the antisymmetric
matrix A and its submatrices (see Methods)61. The flow of
particles between states in these systems causes condensate
concentrations to oscillate (Fig. 2b).

Discussion
Our findings thus suggest intriguing dynamics of condensates in
systems whose temporal evolutions are captured by the classical
master equation (1) with rates (2), for example, in driven-
dissipative systems of non-interacting bosons. Condensates
observed on the leading-order timescale are metastable. For
longer times, relaxation into a steady state occurs19,67. When
detailed balance is broken in the system of condensates, the net
probability current between at least two states does not vanish
and a non-equilibrium steady state is approached68,69. The
simplest way of designing such condensates is illustrated by the
above RPS game. In this game, detailed balance is broken, for
example, when the transition of particles is unidirectional (with
totally asymmetric rate constants r124r21¼ 0, r234r32¼ 0, and
r314r13¼ 0). For non-interacting bosons in driven-dissipative
systems, the continuing supply with energy through the external
time-periodic driving force (Floquet system) and the dissipation
of energy into the environment may, therefore, prevent the
system from reaching equilibrium. How such systems may be
realized in an experiment poses an interesting question for future
research.

The transition of particles between condensates in the here-
studied coupled birth–death processes parallels the interaction
and mutation of winning agents in evolutionary game theory,
reflecting an ‘evolutionary game of condensates’. Our results
suggest the possibility of creating novel bosonic systems with an
oscillating occupation of condensates. Non-interacting bosons in
incoherently driven-dissipative systems are promising candidates.
Since the antisymmetric Lotka-Volterra equation also arises in
population biology, chemical kinetics and plasma physics, all of
our mathematical results apply to these fields as well.

Methods
Asymptotics of the ALVE. The asymptotic behaviour of the ALVE (3) can be
characterized as follows: for every antisymmetric matrix A there exists a unique
subset of states I � f1; . . . ; Sg whose concentrations stay away from zero for all
times, that is,

xiðtÞ � ConstðA; x0Þ40 for all t � 0 and for every i 2 I : ð6Þ

The set I is the set of condensates. All of the other states with indices in
�I ¼ f1; . . . ; Sg� I become depleted as t-N, that is,

xiðtÞ ! 0 as t !1 for every i 2 �I : ð7Þ

The set of condensates can be determined algebraically from the
antisymmetric matrix A and does not depend on the initial conditions
x0 2 DS� 1 ¼ fx 2 RS j xi40 for all i;

PS
i¼1 xi ¼ 1g.

To show this result, the time-dependent entropy D(c||x)(t) of a condensate
vector c ¼ ðc1; . . . ; cnÞ 2 DS� 1 (ciZ0 for all i and

P
i ci ¼ 1) relative to the

trajectory x(t) is considered (that is, the Kullback–Leibler divergence of x(t)
from c), see equation (4). A condensate vector is defined via the properties
(see Fig. 1b):

ci40 and ðAcÞi ¼ 0 for i 2 I; and ð8Þ

ci ¼ 0 and ðAcÞio0 for i 2 �I : ð9Þ

Such a vector can always be found for an antisymmetric matrix62. Notably, the
index set I is unique although more than one condensate vector may exist.

Considering the time derivative of the relative entropy D(c||x)(t) and employing
equations (3) and (8) yields:

d
dt

Dðc jjxÞðtÞ ¼ �
XS

i¼1

ci
@t xi

xi
¼ �

XS

i¼1

ciðAxÞi ¼
XS

i¼1

ðAcÞixi

¼
X
i2�I

ðAcÞixi : ð10Þ

Since ðAcÞ�Io0 and x40, it follows that @tD(c||x)(t)o0 (please note the overbars
in subscripts, which may be lost when read in low resolution). Therefore, the
relative entropy D(c||x) is a Lyapunov function if c is chosen in accordance with
equations (8) and (9). Moreover, D(c||x) is bounded from above by D(c||x)(0) and
from below by zero for all times. This can be seen from the definition of D, and

r12

E1

r21r13

r31

r32

r23

E3 E2

RPS condition Attractivity condition

E4

Ek

ES

Figure 4 | Conditions for the emergence of a RPS cycle of condensates.

Three particular states E1, E2 and E3 (blue, red and yellow disks) of a

network condense into a RPS cycle if, and only if, two conditions are

fulfilled: First, the ‘RPS condition’ requires that the rate constants rij

between the three states form a RPS network: ri� 1,iþ 14riþ 1,i� 1 (indices are

counted modulo 3, for example, r42¼ r12 (framed arrows denote rate

constants that are larger than rate constants for the respective reverse

direction). Differences between these rate constants define the entries

ci¼ ri� 1,iþ 1–riþ 1,i� 1 of an admissible condensate vector c. Second, the

‘attractivity condition’ requires that the weighted sum of rates from any

exterior state Ek (purple disks) into the RPS cycle,
P3

j¼1 cjrjk (framed

arrows), is larger than the weighted sum of outbound rates,
P3

j¼1 cjrkj (black

arrows). In other words, the inflow of particles into the RPS cycle from any

exterior state needs to be greater than the outflow to that state.
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from the integration of equation (10) (using that ðAcÞ�Io0 and x40):

0 � Dðc jjxÞðtÞ ¼ Dðc jjxÞð0Þþ
Z t

0
ds
X
i2�I

ðAcÞixiðsÞ � Dðc jjxÞð0Þ : ð11Þ

From the definition of the relative entropy in equation (4), it follows that every
concentration xi with iAI remains larger than a positive constant, that is,
xi(t)ZConst(A, x0)40 for all times t (if xi(t)-0 for iAI, it follows that D-N,
which contradicts the boundedness of D).

Furthermore, equation (11) implies that,

�
Z t

0
ds ðAcÞixiðsÞ � �

Z t

0
ds
X
i2�I

ðAcÞixiðsÞ � Dðc jjxÞð0Þ ; ð12Þ

for every i 2 �I and for all t. Therefore, concentration xi is integrable for every i 2 �I
(xiAL1(0,N)) with the bound:

0o
Z 1

0
ds xiðsÞ �

Dðc jjxÞð0Þ
� ðAcÞi

¼ ConstðA; x0Þ for every i 2 �I : ð13Þ

Since the derivative of the concentrations is bounded from above and below,
|@txi|¼ |xi(Ax)i|r || (Ax) ||Nr || A ||N-NrConst(A), one concludes that xi is
uniformly continuous (|| A ||N-N denotes the operator norm of A induced
by the maximum norm on RS). Together with the integrability (13), it follows
that the states with indices in �I become depleted as t-N, that is, xi(t)-0
for i 2 �I.

In conclusion, given an antisymmetric matrix A¼R–RT via a rate constant
matrix R¼ {rij}i,j, one finds a condensate vector c that satisfies inequalities (8)–(9).
The index set I, for which the entries of c are positive, represents condensates. The
index set �I, for which entries of c are zero, represents states that become depleted.
Moreover, equation (10) implies that the relative entropy becomes a conserved
quantity in the subsystem of condensates (Supplementary Fig. 1).

Temporal average of condensate concentrations. The ALVE (3) is solved
implicitly by,

xiðtÞ ¼ xið0Þet	 Ahxitð Þi ; ð14Þ
with the time average of the trajectory hxit defined as:

hxit ¼
1
t

Z t

0
ds xðsÞ : ð15Þ

It is shown above that 0oConst(A, x0)rxi(t)r1 holds for the states that
become condensates (iAI). By rearranging equation (14), one thus obtains:

Ahxit
� �

i

�� �� � 1
t

log
xiðtÞ
xið0Þ

� �����
���� � ConstðA; x0Þ

t
for all i 2 I : ð16Þ

Note that Const is used to denote arbitrary positive, time-independent constants.
Therefore, the right-hand side of equation (16) vanishes for t-N. On the other
hand, xi is integrable for i 2 �I (equation (13)). Thus, the corresponding component
of the time average converges to zero,

hxiit �
ConstðA; x0Þ

t
! 0 as t !1 for every i 2 �I : ð17Þ

Hence, the distance of the time average hxit to the kernel of the antisymmetric
submatrix AI converges to zero (the submatrix AI corresponds to the system of
condensates with indices in I).

Structure of a generic antisymmetric matrix. For systems with an even number
of states S, the antisymmetric matrix A¼R–RT generically has a trivial kernel,
whereas for systems with an odd number of states, the kernel of A is generically one
dimensional. A higher dimensional kernel of A only occurs if the matrix entries are
tuned52,61,70. As a consequence, when all of the entries above the diagonal of A are,
for example, randomly drawn from a continuous probability distribution (for
example from a Gaussian distribution), all 2S submatrices of A have a kernel with
dimension of less than or equal to one.

The projection of x 2 RS to the subspace RðJÞ � RS for an arbitrary
index set J � f1; . . . ; Sg is defined as xJ:¼ PJx:¼ (xj)jAJ. In other words,
entries of xJ are zero for indices in the complement �J . In the following,
the short notation AJ:¼PJAPJ is also used (see above). Furthermore, the set of
antisymmetric matrices whose submatrices have a kernel with dimension r1 is
defined:

O :¼ A 2 RS�S j A is antisymmetric and dim ker AJ � 1 for all J � f1; . . . ; Sg
� �

:

ð18Þ
The complement �O has measure zero with respect to the flat measure dA on
antisymmetric matrices (the translation invariant measure, which is sigma-finite
and not trivial).

For antisymmetric matrices AAO, the kernel can be characterized as
follows61,70. If the number of states S is even, the kernel of A is trivial: ker A¼ {0}.
If the number of states is odd, the kernel is one-dimensional: ker A¼ {v}.
This kernel element can be computed analytically in terms of Pfaffians of

submatrices of A:

v ¼ Pf A1̂ð Þ; �Pf A2̂ð Þ; . . . ;Pf AŜ

� �� �
: ð19Þ

The submatrix Ak̂ 2 RðS� 1Þ�ðS� 1Þ denotes the matrix for which the k-th column
and row are removed from A.

For antisymmetric matrices AAO, the normalized condensate vector c withP
i ci ¼ 1 and with properties (8), (9) is unique. The latter follows from AIc¼ 0

(equations (8) and (18)). Therefore, the condensate vector is the unique kernel
vector of the subsystem of condensates whose interactions are characterized by the
matrix AI. Furthermore, I contains an odd number of elements. To determine the
condensate vector for AAO, one can proceed as follows. For each odd-dimensional
submatrix AI with I � f1; . . . ; Sg, one computes the kernel element v according
to equation (19) and defines the vector w 2 RS by setting wI¼ v and w�I ¼ 0. There
exists exactly one set I for which ðAwÞ�Io0. The corresponding vector w is the
unique condensate vector upon normalization.

Temporal average of condensate concentrations (generic case). It was shown
above that the temporal average of condensate concentrations hxit converges to a
non-negative kernel element of the antisymmetric matrix AI. In the generic case,
the condensate vector c is the unique kernel element of AI upon normalization.
Therefore, positive entries of c represent the asymptotic temporal average of
condensate concentrations,

xh it � c
		 		

1�
ConstðA; x0Þ

t
! 0 as t !1: ð20Þ

Exponentially fast depletion of states (generic case). On inserting
equation (20) into the implicit solution (14) of the ALVE, the exponentially fast
depletion of states with i 2 �I can be seen as follows (note that (Ac)io0 according to
the choice of the condensate vector in equations (8) and (9)):

xiðtÞ ¼ xið0Þet	 Ahxitð Þ
i ð21Þ

� xið0Þet	 ðAcÞi þkAðhxit � cÞk1ð Þ ð22Þ

� xið0Þet	ðAcÞi þConstðA;x0Þ ð23Þ

¼ ConstðA; x0Þet	ðAcÞi ; ð24Þ
and analogously,

xiðtÞ ¼ xið0Þet	 Ahxitð Þ
i � ConstðA; x0Þet	ðAcÞi : ð25Þ

Therefore, condensate selection occurs exponentially fast at depletion rate |(Ac)i|.
The dynamics of cases for non-generic antisymmetric matrices are discussed in
Supplementary Note 2.

Linear programming algorithm. For the numeric computation of condensate
vectors c, a finite threshold d40 was introduced into the inequalities (5): Acr0
and c–AcZd40. Its value was set to d¼ 1 by rescaling of c. Numerical solution of
the inequalities was performed by using the IBM ILOG CPLEX Optimization
Studio 12.5 and its interface to the Cþþ language. The software Mathematica 9.0
from Wolfram Research was also found to be applicable. Further information on
the calibration of the linear programming algorithm and a simplified Mathematica
algorithm are provided in Supplementary Note 3.
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Supplementary Figure 1. Advantage of the algebraic algorithm over numerical integration of the antisymmetric

Lotka-Volterra equation (ALVE). (a) A fully connected network with 20 states (colored disks). Effective transition

rates aij (arrows) are listed in Supplementary Note 3 and were sampled from a Gaussian distribution (zero mean, unit

variance). Computation of the unique normalized condensate vector c identifies 11 states as condensates (red and

green disks) and depletion of 9 states (blue, yellow, and purple disks). (b) Trajectories show the temporal evolution of

state concentrations xi (colors in accordance with (a)). Numerical integration of the ALVE is highly unstable. Only

the routine NDSolve with method “StiffnessSwitching” of Mathematica from Wolfram Research was able to track the

concentrations for a sufficiently long time. Routines offered by the GNU Scientific Library failed (Dormand-Prince and

Runge-Kutta-Fehlberg). The concentration corresponding to the green state transiently decreases to a value of 4·10−473

before recovering. Its asymptotic temporal average is given by the corresponding entry of the condensate vector c as

1.6 · 10−4 . This average could, however, not be verified by integration due to numerical failure at t = 414960.

Negative entries of Ac determine the rates of exponentially fast depletion as illustrated by the black line for the yellow

state (note the logarithmic scaling). (c) Temporal evolution of the relative entropy D(c||x)(t) (blue line). The relative

entropy decreases towards a non-zero asymptotic value. (d) The production of relative entropy ∂tD(c||x)(t) (blue

line) is, therefore, negative and vanishes for large times.
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Supplementary Figure 2. Identification of condensates for a system with five states. (a) Colored disks represent

states Ei. An arrow from Ej to Ei denotes an effective rate constant aij = rij − rji. (b) Computation of condensate

vectors for different values of a12 yields depletion of states E1 and E3 for a12 < 5, depletion of state E3 for a12 = 5,

condensation of all states for 5 < a12 < 8 + 1/3, depletion of state E4 for a12 = 8 + 1/3, and depletion of states E2

and E4 for a12 > 8 + 1/3. These results can be verified by using the Mathematica code supplied in Supplementary

Note 3. (c) Numerical integration of the ALVE confirms the selection of condensates, but becomes error-prone in the

vicinity of values of a12 at which the set of condensates changes. The trajectories were obtained for a12 = 8.3, which

is slightly smaller than the value at whichE4 becomes depleted. Identification of condensates from trajectories requires

the introduction of a threshold for concentrations below which states are considered as depleted. If such a threshold is

set to values larger than∼ 2.5 ·10−265, state E4 is erroneously considered to be depleted, despite its periodic recovery.
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Supplementary Figure 3. Run-time analysis of the linear programming algorithm for fully connected random

networks of states. The computation time to find a condensate vector was measured for systems with up to S = 2000

states. The systems were constructed by sampling effective rate constants aij = rij − rji from a Gaussian distribution

(zero mean, unit variance). The numbers of systems (ensemble size) that were analyzed for different numbers of states

S are indicated at the top. (a) The median of computation times is shown in red, the regime between the 5th and

95th percentiles in green, and the range of computation times in grey (log-log graph). Computation time increases

at most polynomially as indicated by the black line (linear fit of the median with exponent 3.221 ± 0.008 (s.e.m.)).

(b) Percentage of networks for which a condensate vector was found (red dots). The lowest percentage was 99.6%.

All computations were performed on machines with 10 Intel Xeon E5-2670v2 cores (2.50 GHz) and 128 GB RAM.

Parallelization was not used in CPLEX.
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Supplementary Figure 4. Reliability of the linear programming algorithm for large random networks. Color-

coded representation of the percentage of random networks with S states and connectivity C for which the linear

programming algorithm found a suitable condensate vector (≥ 104 analyzed systems per data point; the figure accom-

panies Fig. 3b). The percentage was close to 100% for most parameters but decreased in the vicinity of the power law

shown in Fig. 3b (lowest percentage: 94.9% for networks with S = 500 states and connectivity C = 0.013).
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SUPPLEMENTARY NOTE 1: APPROXIMATION OF THE CLASSICAL MASTER EQUATION BY STOCHASTIC

DIFFERENTIAL EQUATIONS AND OCCURRENCE OF THE ANTISYMMETRIC LOTKA-VOLTERRA EQUATION

In the following, we supplement the discussion of the classical master equation that governs condensation of non-

interacting bosons in an incoherently driven-dissipative system. When the total number of particles in the system is

large (N � 1), the classical master equation can be approximated by a Fokker-Planck equation. This Fokker-Planck

equation is rewritten as an Itō stochastic differential equation, which is equivalent to a Langevin equation. From the

analysis of the stochastic differential equation, we find that the leading order dynamics of the condensation process is

governed by the antisymmetric Lotka-Volterra equation (equation (3) in the main text).

Classical master equation for the coupled birth-death processes with conservation of total particle number

We consider a system of S non-degenerate statesEi, i = 1, . . . , S, each of which is occupied byNi indistinguishable

particles (Fig. 1a). The configuration of the system at time t is fully characterized by the vector of occupation numbers

N = (N1, N2, . . . , NS) ∈ ZS with Ni ≥ 0. It changes only due to coupled creation (birth) and annihilation (death)

processes between two connected states Ei and Ej :

(N1, . . . , Ni − 1, . . . , Nj + 1, . . . , NS) � (N1, . . . , Ni, . . . , Nj , . . . , NS) � (N1, . . . , Ni + 1, . . . , Nj − 1, . . . , NS) .

(1)

We introduce the following short-hand notation for these processes:

N− ei + ej � N � N + ei − ej . (2)

Here, the vector ei ∈ ZS denotes the unit vector in direction i (equal to one at index i, otherwise zero). The above

creation and annihilation processes conserve the total number of particles N =
∑

iNi. We are interested in the

probability P (N, t) of finding the system in configuration N at time t, given that it was initially in configuration N0

at time t0. The temporal evolution of the probability distribution P (N, t) is governed by the classical master equation

(equation (1) in the main text):

∂tP (N, t) =
S∑

i,j=1
j 6=i

(
Γi←j(Ni − 1, Nj + 1)P (N− ei + ej , t)− Γi←j(Ni, Nj)P (N, t)

)
. (3)

In our work, we consider the following transition rate from configuration N to configuration N + ei − ej :

Γi←j(Ni, Nj) = rij(Ni + sij)Nj , with sij ≥ 0 and rij ≥ 0 . (4)

This transition rate encompasses the two model classes of condensate selection in bosonic systems and in evolutionary

game theory (EGT) as described in the main text. In the context of bosonic condensation, the parameters sij are equal

to 1 for all i and j, whereas it may assume any non-negative value in the context of EGT. In EGT, sij contributes to the

mutation or switching rate [1].
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For the study of incoherently driven-dissipative systems of non-interacting bosons, the above description in terms

of a classical master equation requires that the system under consideration is weakly coupled to a reservoir [2–5].

The reservoir has to be such that correlations in it decay rapidly. In particular, the Born-Markov and the rotating

wave approximation are assumed in the derivation of the classical master equation. These assumptions imply that off-

diagonal entries in the reduced density operator of the system decay fast enough such that coherence in the quantum

system is negligible. In addition, the initial states of the system and the reservoir should not be correlated after their

preparation.

These conditions are, for example, fulfilled in systems of non-interacting bosons that are both periodically driven in

time (Floquet systems) and weakly coupled to a thermal bath (see Vorberg et al. [2] for a detailed discussion).

Derivation of the Fokker-Planck equation

In the following, we approximate the classical master equation (3) in the limit of a large number of particles

(N � 1) [6]. For that purpose, we introduce state concentrations x = (x1, . . . , xS) with xi = Ni/N . The con-

centrations are intensive variables and elements of the (S − 1)-dimensional open simplex ∆S−1 = {x ∈ RS | xi >
0 for all i,

∑S
i=1 xi = 1}. In the limit N → ∞, they become continuous variables. We denote their corresponding

probability distribution by p(x, t). Furthermore, we rescale time by t→ t/N . It can be straightforwardly seen that the

following formulation of the classical master equation for p(x, t) is equivalent to the form given in equation (3):

∂tp(x, t) =
S∑

i,j=1
j 6=i

∫

R
d∆xi

∫

R
d∆xj

∑

k∈{0,1}
N1−k

(
γ(k)(∆xi,∆xj ;xi −∆xi, xj −∆xj) p(x−∆xiei −∆xjej , t)

− γ(k)(∆xi,∆xj ;xi, xj) p(x, t)
)
, (5)

with γ(0)(∆xi,∆xj ;xi, xj) = rijxixj δ(∆xi − 1/N)δ(∆xj + 1/N) , (6)

and γ(1)(∆xi,∆xj ;xi, xj) = rij sij xj δ(∆xi − 1/N)δ(∆xj + 1/N) . (7)

This classical master equation can be approximated by performing a Kramers-Moyal expansion. Truncation of the

expansion at second order, leads to the Fokker-Planck equation:

∂tp(x, t) = −
S∑

i=1

∂i
(
αi(x)p(x, t)

)
+

1

2N

S∑

i,j=1

∂i∂j
(
βij(x)p(x, t)

)
. (8)

Here, α(x) is the drift vector and β(x) the diffusion matrix.

The drift vector is given by:

αi(x) =
S∑

j=1
j 6=i

∫

R
d∆xi

∫

R
d∆xj

∑

k∈{0,1}

1

Nk

(
γ(k)(∆xi,∆xj ;xi, xj) + γ(k)(∆xj ,∆xi;xj , xi)

)
N∆xi , (9)

= xi

S∑

j=1

(rij − rji)xj +
1

N

S∑

j=1

(rijsijxj − rjisjixi) =: αi,0(x) +
1

N
αi,1(x) . (10)
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At leading order in 1/N (that is, at order O(1)), the drift vector is determined by the antisymmetric part A = R−RT

of the rate constant matrix R = {rij}i,j . In other words, the matrix A is antisymmetric with entries aij = rij − rji.

For the diffusion matrix, we have to distinguish between its diagonal entries,

βii(x) =
S∑

j=1
j 6=i

∫

R
d∆xi

∫

R
d∆xj

∑

k∈{0,1}

1

Nk

(
γ(k)(∆xi,∆xj ;xi, xj) + γ(k)(∆xj ,∆xi;xj , xi)

)
N2∆x2

i , (11)

=
S∑

j=1
j 6=i

(rij + rji)xixj +
1

N

S∑

j=1
j 6=i

(rijsijxj + rjisjixi) =: βii,0(x) +
1

N
βii,1(x) , (12)

and its off-diagonal entries (i 6= j):

βij(x) =

∫

R
d∆xi

∫

R
d∆xj

∑

k∈{0,1}

1

Nk

(
γ(k)(∆xi,∆xj ;xi, xj) + γ(k)(∆xj ,∆xi;xj , xi)

)
N2∆xi∆xj , (13)

= −(rij + rji)xixj −
1

N

(
rijsijxj + rjisjixi

)
=: βij,0(x) +

1

N
βij,1(x) . (14)

Both diagonal and off-diagonal entries of the diffusion matrix are determined by the symmetric part of the rate constant

matrix R at leading order in 1/N .

Derivation of the stochastic differential equations

The Fokker-Planck equation (8) can be transformed into a system of Itō stochastic differential equations (SDEs) [6]:

dxi = αi(x) dt+
1√
N

S∑

j=1

ζij(x) dWj . (15)

Here, dWj represents a Wiener increment of zero mean and unit variance. The matrix ζ(x) is a square root of the

diffusion matrix β(x) in the sense that ζζT = β (the diffusion matrix β is positive semi-definite). Although ζ is

not unique, its choice does not change the stochastic nature of the process (an orthogonal transformation ζ → ζT
with T T T = IS does not change the corresponding Fokker-Planck equation). The decomposition βij = βij,0 + 1

N βij,1

in equations (11) and (13) implies that ζ can be written as ζij = ζij,0 +O
(

1
N

)
.

The Itō SDEs (15) can also be written in Langevin form, which are often used in the physics literature [6, 7]:

d

dt
xi = αi(x) +

1√
N

S∑

j=1

ζij(x) ηj . (16)

Here, ηj represents uncorrelated Gaussian white noise.



8

The antisymmetric Lotka-Volterra equation

We identify a leading (fast) and a subleading (slow) timescale of the SDE (15). On the leading timescale (t ∼
O(1)), only the drift term αi,0 is relevant, whereas on the subleading timescale (t ∼ O(N)), the terms αi,1 and ζij,0

compete. The latter terms cause only slow changes on the leading O(1)-timescale. In other words, the dynamics on

the subleading timescale cause only slow changes of the O(1)-trajectory.

More specifically, we find that at order t ∼ O(1), only αi,0 determines the change in concentrations such that:

d

dt
xi = xi

∑

j

(rij − rji)xj = xi(Ax)i . (17)

As stated in the main text, we refer to this equation as the antisymmetric Lotka-Volterra equation (ALVE). The initial

concentrations are assumed to lie in the open simplex ∆S−1, that is x(t = 0) =: x0 ∈ ∆S−1. We note that the

dynamics defined by equation (17) cannot leave the simplex, that is x(t) ∈ ∆S−1 for all times [8].

We note that the van Kampen system size expansion [9] of the master equation (3) yields the same deterministic

equation (17) as our derivation via Fokker-Planck and Langevin equation at the leading order timescale.

Stability in the linear approximation around fixed points of the ALVE

We discuss the fixed points x∗ ∈ ∆S−1 (x∗i ≥ 0 and
∑

i x
∗
1 = 1) of the ALVE (17), that is the points for which the

dynamics is stationary (∂tx∗i = x∗i (Ax∗)i = 0). In the following, we show that a linear stability analysis of these fixed

points does not yield insight into the global dynamics of the ALVE.

First, every condensate vector c (normalized such that
∑

i ci = 1) of the antisymmetric matrixA yields a fixed point

of the ALVE. This can be seen from the properties of a condensate vector c (see Methods section of the main text) [10]:

ci > 0 and (Ac)i = 0 for i ∈ I , and (18)

ci = 0 and (Ac)i < 0 for i ∈ Ī . (19)

Notably, the index set I is unique although more than one condensate vector may exist. Furthermore, there exist fixed

points x∗ ∈ ∆S−1 and a different index set J 6= I for which x∗j > 0 and (Ax∗)j = 0 for j ∈ J , and x∗j = 0 for j ∈ J̄
but (Ax∗)j < 0 does not hold for all j ∈ J̄ (in other words, condition (18) is fulfilled, but condition (19) is not).

We first study the stability in the linear approximation around the fixed points that are given by condensate vectors.

Upon introducing the distance ∆x of a normalized condensate vector x∗ = c from the concentrations x as a new

variable, ∆x := x− c, one obtains from the ALVE (17) the temporal behavior of that translated variable as follows:

d

dt
∆xi = ∆xi(Ac)i + ci(A∆x)i + ∆xi(A∆x)i , that is, (20)

for i ∈ I :
d

dt
∆xi =

S∑

j=1

ciaij∆xj +R(∆x) , (21)

for i ∈ Ī :
d

dt
∆xi = (Ac)i∆xi +R(∆x) , (22)
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with R(∆x) = ∆xi(A∆x)i = O(‖∆x‖2).

Next, we discuss the stability of the condensate vectors in the linear approximation (linear stability analysis of fixed

points). The cardinality of the set I is referred to as |I|. After relabeling of the indices, one obtains up to linear order

in ‖∆x‖:

d

dt


 ∆xI

∆xĪ


 =


 Ãc B

0 Ãs




 ∆xI

∆xĪ


 =: Ã∆x , (23)

with Ãc denoting the (|I| × |I|)-dimensional matrix with elements (Ãc)i,j = ciaij for i, j ∈ I . Ãs denotes the

diagonal, ((S − |I|)× (S − |I|))-dimensional matrix with entries (Ãs)i,j = (Ac)iδij for i, j ∈ Ī . The matrix B is of

dimension |I| × (S − |I|) with elements Bij = ciaij for i ∈ I and j ∈ Ī .

The eigenvalues of the matrix Ã determine the linear stability of the fixed points. Because of the block upper triangular

structure of the matrix Ã, its eigenvalues are given by the eigenvalues of the matrices Ãs and Ãc. All eigenvalues of the

diagonal matrix Ãs are negative because (Ac)i < 0 for i ∈ Ī . All eigenvalues of the matrix Ãc have vanishing real part.

The latter can be seen from defining the nonsingular, (|I| × |I|)-dimensional matrix V with elements (V )i,j = ciδij

for i, j ∈ I . Since the matrix AI is an antisymmetric matrix, all eigenvalues of Ãc = V AI are purely imaginary

as well (the (|I| × |I|)-dimensional submatrix AI corresponds to the system of condensates with indices in I; see

Methods section of the main text). However, the matrix Ãc is not antisymmetric in general. This argument can be seen

as follows (see for example the Appendix in [11]): Consider the diagonal, nonsingular matrix V 1/2, whose square is

the matrix V , and whose inverse is the matrix V −1/2. The matrix V −1/2(V AI)V 1/2 has the same eigenvalues as the

matrix V AI . Since the matrix V −1/2(V AI)V 1/2 = V 1/2AIV 1/2 is antisymmetric and, thus, has purely imaginary

eigenvalues, also the matrix V AI has purely imaginary eigenvalues.

Consequently, the fixed points of the ALVE (17) that are given by the condensate vectors possess a (S − |I|)-

dimensional local, invariant stable manifold Ms and a |I|-dimensional local, invariant center manifold Mc (see for

example Theorem 3.2.1 in [12]). Concentrations with initial conditions chosen inMs decay to zero exponentially fast.

However, for initial concentrations that do not lie in Ms, the temporal behavior cannot be inferred (“linearly stable

solutions may be nonlinearly unstable” [12]).

We note that the above linear stability analysis applies to any fixed point of the ALVE. Any fixed point of the ALVE

possesses an at least |J |-dimensional local, invariant center manifold Mc (see definition of J above). Therefore, a

linear stability analysis of the fixed points of the ALVE (17) does not yield insight into the global dynamics of the

ALVE, at least not in the straightforward fashion.
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SUPPLEMENTARY NOTE 2: DYNAMICS OF CASES FOR NON-GENERIC ANTISYMMETRIC MATRICES

Some of the results presented in the main text for generic antisymmetric matrices (A ∈ Ω) can be extended to matri-

ces with higher dimensional kernels. Here, Ω is defined as in equation (18) of the main text as the set of antisymmetric

matrices whose submatrices have a kernel with dimension less than one or equal to one:

Ω =
{
A ∈ RS×S | A is antisymmetric and dim kerAJ ≤ 1 for all J ⊆ {1, . . . , S}

}
. (24)

When submatrices ofA have a kernel of dimension greater than or equal to two (A /∈ Ω) the statements generalize as

follows: The temporal average of the projection to the surviving concentrations converges to the positive kernel of the

attractive subsystem. This convergence takes place on a time scale which is not slower than 1/t. More precisely, the

distance between the time average of the concentrations of the selected states and the kernel of the surviving subsystem

tends to zero for large times:

dist
(
〈xI〉t , kerAI

)
≤ Const(A,x0)

t
. (25)

Typically, one still finds exponentially fast depletion of states. The effective bounds on the depletion rates may depend

on initial conditions.
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SUPPLEMENTARY NOTE 3: LINEAR PROGRAMMING ALGORITHMS

In the following, we supplement the description and discussion of the linear programming algorithm from the Meth-

ods section in the main text. We detail on the CPEX algorithm and discuss its calibration, and provide a simplified

Mathematica code.

CPLEX algorithm

The IBM ILOG CPLEX Optimization Studio 12.5 was used to numerically search for a condensate vector c for

a given antisymmetric matrix A. Direct solution of the inequalities Ac ≤ 0 and c − Ac ≥ 1 turned out to be

numerically infeasible for systems with a large number of states S. Therefore, condensate vectors were primarily

determined by solving the following linear programming problem: minimize ε1 + . . . + εS , subject to −Ac + ε ≥ 0

and c−Ac ≥ 1, with non-negative auxiliary variables ε := (ε1, . . . , εS). The resulting vector c was used to define the

set I := {i | ci > 5 ·10−8} and its complement Ī = {1, . . . , S}−I = {i | ci ≤ 5 ·10−8}. The vector c was accepted as

condensate vector, the set I as set of condensates, and the set Ī as set of depleted states if: |(Ac)i| < 10−6 for all i ∈ I ,

and −(Ac)i > 10−6 for all i ∈ Ī . Minor extensions were added to the CPLEX algorithm to handle matrices for which

an appropriate condensate vector could not be found. The Mathematica code in the following section exemplifies one

of these extensions.

The above numerical thresholds were optimized by comparing inferred sets of condensates and of depleted states to

sets that were derived using an alternative method. This alternative method is based on an analytical expression for

kernel vectors (see equation (19) in the Methods section of the main text and [13, 14]). It is reliable but restricted to

systems in which the network of states has connectivity C = 1 and in which the number of states is small (compu-

tational complexity grows exponentially with S). The correct identification of condensates and depleted states by the

CPLEX algorithm was validated for 106 randomly sampled networks of states with connectivity C = 1 and S = 18

states. A detailed evaluation of the reliability of the CPLEX linear programming algorithm is provided in Supplemen-

tary Figs. 3 and 4.

Mathematica code

The following code for Mathematica 9.0 from Wolfram Research determines a condensate vector c by minimizing

ε1 + . . .+ εS , subject to −Ac ≥ 0 and c− Ac + ε ≥ 1. The resulting vector is used to infer the set of condensates I

and the set of depleted states Ī . The code can be used to verify the selection of states for the systems shown in

Supplementary Figs. 1 and 2.
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lpAlgorithm[noOfStates_, matrix_] :=
Block[{condensateVector, condensates, depletedStates},
Block[
{
solution
(* solution: first half: condensate vector b, second half: aux. vector ε *),
vector = Join[ConstantArray[0., noOfStates], ConstantArray[1., noOfStates]]
(* vector: first half: w.r.t condensate vector b, second half: w.r.t. aux. vector ε *),
lhs = ConstantArray[0., {2*noOfStates, 2*noOfStates}]
(* lhs: upper left: -Ab, lower half: b-Ab+ε *),
rhs = ConstantArray[0., 2*noOfStates]
(* rhs: upper left: 0, lower half: 1 *)
},

Do[
(* -Ab >= 0 *)
Do[lhs[[i, j]] = -matrix[[i, j]], {j, 1, noOfStates}];
rhs[[i]] = 0.;

(* b-Ab+ε >= 1 *)
lhs[[noOfStates + i, i]] = 1.;
Do[lhs[[noOfStates + i, j]] -= matrix[[i, j]], {j, 1, noOfStates}];
lhs[[noOfStates + i, noOfStates + i]] = 1.;
rhs[[noOfStates + i]] = 1.;

, {i, 1, noOfStates}];

solution = Check[LinearProgramming[vector, lhs, rhs], {}];
condensateVector = solution[[1;;noOfStates]];
];

condensates = Flatten[Position[condensateVector, _?(# > 0.1&)]];
depletedStates = Complement[Range[noOfStates], condensates];
Return[{condensates, depletedStates, condensateVector/Total[condensateVector]}];
];

The following code can be used to verify the selection of states for the system with five states shown in Supplemen-

tary Fig. 2:

noOfStates = 5;
a12 = 8.3;
matrix = {{0,a12,4,-3,-5},{-a12,0,3,4,-5/3},{-4,-3,0,5,1},{3,-4,-5,0,5},{5,5/3,-1,-5,0}};

{condensates, depletedStates, condensateVector} = lpAlgorithm[noOfStates, matrix];

Print["Condensates: ", Length[condensates]];
Print[" Indices: ", condensates];
Print[" b: ", condensateVector[[condensates]]];
Print[" A.b: ", (matrix.condensateVector)[[condensates]]];
Print[];

Print["Depleted states: ", Length[depletedStates]];
Print[" Indices: ", depletedStates];
Print[" b: ", condensateVector[[depletedStates]]];
Print[" A.b: ", (matrix.condensateVector)[[depletedStates]]];
Print[];
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To verify the selection of states for the system with 20 states that is shown in Supplementary Fig. 1, the first two lines

of the above code have to be changed to:

noOfStates = 20;
matrix=
{{0.0000000000,0.1012965582,0.0960864501,0.1257833702,-0.0595764929,0.0924501179,-0.1016301739,
-0.0795618281,0.0487881199,-0.1122071087,-0.0286971727,-0.1000496191,-0.0103185636,0.0130714180,
-0.0572150115,-0.0129797149,-0.0706576396,-0.0389344063,0.0663966936,0.1467041892},{-0.1012965582,
0.0000000000,-0.0712011514,0.0415422138,-0.0019111200,-0.0816168047,-0.0477211059,-0.1006350936,
0.1522277516,0.0720296603,-0.2058646002,-0.1253355555,0.0717377587,-0.1063033227,-0.0942343547,
-0.0391532296,0.0049849208,-0.0929232005,-0.0840063075,0.0559612167},{-0.0960864501,0.0712011514,
0.0000000000,-0.0304803123,-0.1741821153,0.0076812872,0.0297497936,-0.0075143775,-0.0120359985,
-0.0110515825,-0.0808005342,0.2738320344,0.1170451029,-0.0357777508,-0.0896471841,-0.1577036387,
-0.3757310353,0.0296054422,-0.2259424452,0.0989073494},{-0.1257833702,-0.0415422138,0.0304803123,
0.0000000000,0.0510755453,0.0115416481,0.0985481106,0.0272202852,0.0213164598,-0.0535439544,
-0.0456534129,0.1362532620,0.1074372756,0.0375029473,-0.0533083982,0.1648089686,-0.0526653130,
0.0389051602,0.0438611333,0.0539352012},{0.0595764929,0.0019111200,0.1741821153,-0.0510755453,
0.0000000000,0.0109896214,0.1353304974,0.0912349277,0.0296142827,-0.1538255140,0.0431260101,
-0.0502994390,-0.0163964089,-0.1759377604,0.0481992186,0.0664062093,0.1736770927,-0.0448630119,
0.0535605474,-0.0257754999},{-0.0924501179,0.0816168047,-0.0076812872,-0.0115416481,-0.0109896214,
0.0000000000,-0.1090515383,-0.1188694334,0.0514000882,-0.0331443533,0.1623742129,0.0492738763,
0.0176787814,-0.1341072593,-0.0009543378,-0.0789222831,-0.0579314512,0.0892386351,-0.0686414708,
0.0492364011},{0.1016301739,0.0477211059,-0.0297497936,-0.0985481106,-0.1353304974,0.1090515383,
0.0000000000,-0.0303370160,0.0506580949,0.0225254369,0.1119589132,-0.2732763845,0.0903284019,
0.0780506743,0.1487517615,-0.0050831919,-0.0357202770,-0.1006725919,-0.0014275275,0.0744309213},
{0.0795618281,0.1006350936,0.0075143775,-0.0272202852,-0.0912349277,0.1188694334,0.0303370160,
0.0000000000,0.0881041025,0.0210453129,-0.0131581374,-0.0515644614,0.0300418276,0.0765770257,
0.1482013668,0.0876706565,-0.1600022303,-0.1501954314,0.0381309952,0.1069018065},{-0.0487881199,
-0.1522277516,0.0120359985,-0.0213164598,-0.0296142827,-0.0514000882,-0.0506580949,-0.0881041025,
0.0000000000,-0.0937867616,-0.1253362044,0.1051027292,-0.0160557361,0.0120747605,0.0410327424,
-0.1178120937,-0.0104974723,0.1001865178,0.0915443356,-0.0590317396},{0.1122071087,-0.0720296603,
0.0110515825,0.0535439544,0.1538255140,0.0331443533,-0.0225254369,-0.0210453129,0.0937867616,
0.0000000000,-0.1718419085,0.0842948432,0.1084407671,-0.1297238294,0.0768833880,-0.0866723482,
0.0062786219,-0.0986826408,-0.1352434973,-0.1425316892},{0.0286971727,0.2058646002,0.0808005342,
0.0456534129,-0.0431260101,-0.1623742129,-0.1119589132,0.0131581374,0.1253362044,0.1718419085,
0.0000000000,0.1936649126,-0.0428450371,0.0782428143,0.0592244942,-0.0554995964,0.0105651402,
-0.0184545141,0.1317087624,-0.1175718037},{0.1000496191,0.1253355555,-0.2738320344,-0.1362532620,
0.0502994390,-0.0492738763,0.2732763845,0.0515644614,-0.1051027292,-0.0842948432,-0.1936649126,
0.0000000000,0.0668839360,0.0174093226,0.0573713882,-0.0610992396,-0.0280347431,0.1058623608,
0.1781275929,0.0152443634},{0.0103185636,-0.0717377587,-0.1170451029,-0.1074372756,0.0163964089,
-0.0176787814,-0.0903284019,-0.0300418276,0.0160557361,-0.1084407671,0.0428450371,-0.0668839360,
0.0000000000,0.0571450290,0.1871354534,0.0147123474,0.1010276308,0.0366350187,0.0630761367,
-0.0728212225},{-0.0130714180,0.1063033227,0.0357777508,-0.0375029473,0.1759377604,0.1341072593,
-0.0780506743,-0.0765770257,-0.0120747605,0.1297238294,-0.0782428143,-0.0174093226,-0.0571450290,
0.0000000000,0.0158510770,-0.0301637492,0.0379895572,0.0353221008,-0.0410300505,0.0399902646},
{0.0572150115,0.0942343547,0.0896471841,0.0533083982,-0.0481992186,0.0009543378,-0.1487517615,
-0.1482013668,-0.0410327424,-0.0768833880,-0.0592244942,-0.0573713882,-0.1871354534,-0.0158510770,
0.0000000000,-0.1410043405,0.0473724443,0.1164556594,0.0120263929,0.0383652365},{0.0129797149,
0.0391532296,0.1577036387,-0.1648089686,-0.0664062093,0.0789222831,0.0050831919,-0.0876706565,
0.1178120937,0.0866723482,0.0554995964,0.0610992396,-0.0147123474,0.0301637492,0.1410043405,
0.0000000000,-0.0051486466,0.0770482371,-0.0619160030,0.1041763643},{0.0706576396,-0.0049849208,
0.3757310353,0.0526653130,-0.1736770927,0.0579314512,0.0357202770,0.1600022303,0.0104974723,
-0.0062786219,-0.0105651402,0.0280347431,-0.1010276308,-0.0379895572,-0.0473724443,0.0051486466,
0.0000000000,0.0771683333,0.0494219197,0.3405228485},{0.0389344063,0.0929232005,-0.0296054422,
-0.0389051602,0.0448630119,-0.0892386351,0.1006725919,0.1501954314,-0.1001865178,0.0986826408,
0.0184545141,-0.1058623608,-0.0366350187,-0.0353221008,-0.1164556594,-0.0770482371,-0.0771683333,
0.0000000000,-0.1856676553,0.0357968997},{-0.0663966936,0.0840063075,0.2259424452,-0.0438611333,
-0.0535605474,0.0686414708,0.0014275275,-0.0381309952,-0.0915443356,0.1352434973,-0.1317087624,
-0.1781275929,-0.0630761367,0.0410300505,-0.0120263929,0.0619160030,-0.0494219197,0.1856676553,
0.0000000000,0.1384008887},{-0.1467041892,-0.0559612167,-0.0989073494,-0.0539352012,0.0257754999,
-0.0492364011,-0.0744309213,-0.1069018065,0.0590317396,0.1425316892,0.1175718037,-0.0152443634,
0.0728212225,-0.0399902646,-0.0383652365,-0.1041763643,-0.3405228485,-0.0357968997,-0.1384008887,
0.0000000000}};
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III The stochastic dynamics of bacterial
range expansions

1 Introduction

When environmental conditions change or resources are depleted, the survival of a
species often depends on its ability to colonize new territory. The understanding
of these abilities is of pivotal importance in many fields of biological research.
On the macroscopic scale, global changes are currently being observed in the
distribution of animals and plants due to anthropogenic climate change [452]. On
the microscopic scale, the ability of pathogenic bacteria to colonize human tissue
and catheter surfaces poses threats to immunocompromised patients [453, 454].

The colonization of new territory by a species is called a range expansion. In
the following, we study such range expansions for a bacterial model system of three
Escherichia coli strains. Together with the microbiology group of M. Opitz, we ex-
plored the determinants of the strains’ coexistence during range expansions, both
from an experimental and a theoretical perspective. The following text serves as an
introduction to our publication “Chemical warfare and survival strategies in bac-
terial range expansions” [5], which is reprinted in section 2 of this chapter. Author
contributions are listed on page 8 of the publication (page 203 of this thesis).

Throughout the recent years, microbial systems have received increasing at-
tention in the study of range expansions [4, 5, 455–465]. Although observations
made on the microscopic scale may not translate directly to the macroscopic scale,
certain characteristics of range expansions may well be universal. That is, for
example, the case for their decrease of genetic diversity [457, 463, 464, 466] and
for the “surfing” of genes (or alleles) along expanding population fronts [457, 467–
471]. When a population expands spatially, offspring in newly colonized territory
are more likely to have descended from an individual along the population’s front
than from an individual in the population’s bulk (provided that mixing within
the population is slow). This “founder effect” [472] reduces the genetic diversity
in newly colonized territory and also results in the spatial demixing of genetic
traits [457]. Both effects have been observed in expanding microbial colonies [457,
463, 464] and in data on the genetic diversity of modern humans [466, 473, 474].
Furthermore, the founder effect acts as a continual population bottleneck and
amplifies genetic drift along an expanding front. Selectively neutral and even
deleterious mutations thereby gain the ability to surf along the front and can reach
high frequencies [457, 467–471].
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Experiments on expanding microbial populations are also increasingly per-
formed to test principles of theoretical ecology and game theory [4, 5, 461–464].
Thus far, most of these studies have been limited to communities of two bacterial
strains [461–464]. It was, for example, shown that the genetic demixing caused
by range expansions promotes the evolution of cooperation in a system of two
strains of the budding yeast Saccharomyces cerevisiae. In this system, range expan-
sions cause a spatial separation of invertase producers (the “cooperators”) and
non-producers (the “defectors”), protecting the cooperators from exploitation.
Furthermore, genetic demixing was found to impede weak or asymmetric mutual-
ism between two cross-feeding strains of S. cerevisiae [464]. In our work [5], we
explored the role of an ecological pattern that has been linked to the maintenance
of biodiversity in communities of at least three strains (or species): intransitive,
cyclic dominance [4, 102, 172, 475–488].

1.1 Bacterial model system of three Escherichia coli strains

A perfect cyclic dominance holds for the strategies of the rock-paper-scissors game:
rock crushes scissors, scissors cut paper, paper covers rock. In biological systems,
cyclic dominance is hardly realized in such a perfect way and only holds with
respect to appropriately chosen observables. For example, Sinervo and Lively ob-
served a cyclic dominance between the mating strategies of three morphs of male
lizards with respect to estimates of their fitnesses [102]. Each morph population
was found to be susceptible to invasion by lizards of other morphotypes in a cyclic
way.

The possibility of cyclic dominance between three strains of E. coli was pro-
posed on theoretical grounds in [478, 480] and was tested experimentally both in
vitro [4] and in vivo [482]. In these experiments, one of the strains was a producer
of a toxin (strain C), one strain was resistant to the toxin (strain R), and one strain
was sensitive to it (strain S). The toxin was either colicin E2, which cleaves the
DNA of sensitive cells [4, 482], or colicin E1, which depolarizes their cytoplasmic
membranes [482]. Pairwise competition experiments established that the sensitive
strain outgrew the resistant strain and that the resistant strain outgrew the toxin-
producing strain — thus completing the cycle. In the in vitro experiments, Kerr
and co-workers conducted competitions between small single-strain colonies and
found that the three strains can coexist in a static spatial environment [4].

In our work [5], we conducted in vitro experiments and theoretical modelling
to understand the role of cyclic dominance and of two other “ecological scenarios”
in maintaining coexistence during range expansions (for the colicin E2 system).
A range expansion experiment can be started by inoculating a droplet of bac-
terial suspension onto an agar plate containing appropriate growth medium [457].
After a lag phase [489, 490], the bacterial cells start to divide and to deplete the
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 C (no fluorescent protein) | R (mCherry)

24 h
48 h

radial
expansion

3 mm

1 mm

Figure 1 Range expansion of a bacterial colony that initially comprised three strains
of Escherichia coli (equal initial strain ratios; cyclic dominance scenario). The strain
C produced the DNase colicin E2, the strain R was resistant to this colicin and was
labelled with the red fluorescent protein mCherry, and the strain S was sensitive to the
endonuclease activity of colicin E2 and was labelled with the green fluorescent protein
(GFP). The colony was inoculated from a 1 µl mixture of overnight liquid cultures as
explained in our article [5] (reprinted in section 2). The diameter of the colony’s homeland
measured approximately 3mm as indicated by the dashed white line. Monoclonal sectors
were founded by toxin-producing and resistant cells. The sensitive strain S was already
suppressed in the colony’s homeland and failed to establish sectors. The solid white lines
denote the colony’s boundary after 24 and 48 hours (overlay with bright-field image). The
original picture was taken by G. Poxleitner and is included in our article [5].

resources in the colony’s “homeland”. Nutrients become limited to the colony’s
boundary and fuel its radial expansion. Figure 1 illustrates the expansion of a
colony that initially comprised all of our three E. coli strains. Besides radial, ef-
fectively two-dimensional expansions, researchers have also studied expansions
from linear inoculations [457] and are now turning towards three-dimensional ex-
pansions [491–493]. Three-dimensional range expansions are of clinical relevance
because they occur, for example, when a tumour invades healthy tissue [494].

By assigning the fluorescent proteins mCherry and GFP to our strains, we were
able to design three different ecological scenarios: a cyclic dominance scenario, a
hierarchical scenario, and an intermediate scenario (cf. figure 2 and figure 1 of [5]).
Besides allowing us to distinguish the strains by their fluorescence, the fluorescent
proteins gave us control over the strains’ growth rates. These growth rates were
identified with the maximal radial expansion velocities of single-strain colonies (see
the Electronic Supplementary Material of our publication [5] on pages 204–217 of
this thesis). We observed that strains labelled with mCherry suffered a significant



192 The stochastic dynamics of bacterial range expansions

Growth rate μ (μm/h)

St
ra

in

(a) Cyclic dominance

S
R
C

20 30 40 50

S
R
C

20 30 40 50

(b) Hierarchical

Growth rate μ (μm/h)
St

ra
in

S
R
C

20 30 40 50

(c) Intermediate

Growth rate μ (μm/h)

St
ra

in

Figure 2 Growth rates of our E. coli strains in three ecological scenarios (colicin-producing
strain C, resistant strain R, and sensitive strain S; slow growth conditions). The growth
rates represent the maximal radial expansion velocities of single-strain colonies (see the
Electronic Supplementary Material of [5]). The colour of a bar indicates the fluorescent
protein assigned to the strain (grey: no fluorescent protein, red: red fluorescent protein
mCherry, green: green fluorescent protein (GFP)). (a) Cyclic dominance scenario with
growth rate hierarchy µS > µR > µC . The cycle is closed by the action of the colicin on
the sensitive strain S. (b) Hierarchical scenario with growth rate hierarchy µR > µS ≥ µC .
Colonies of the resistant strain R outgrew colonies of both other strains. (c) Intermediate
scenario with the growth rates µR and µS being significantly larger than µC .

decrease in the speed at which they colonized new territory. Making use of this
finding, we implemented a scenario with cyclic dominance between the strains by
labelling the resistant strain R with mCherry. Assigning mCherry to the sensitive
strain S instead resulted in a hierarchical scenario. In this scenario, single-strain
colonies of strain R outgrew colonies of both C and S. An intermediate scenario
was obtained by assigning mCherry to strain C. Here, the growth rates of both R
and S were significantly larger than the growth rate of strain C. The growth rate
hierarchies of these scenarios are shown in figure 2.

1.2 Computational model of bacterial range expansions

Upon inoculating droplets containing equal amounts of the three E. coli strains
onto agar plates (M63 medium), we found that only the resistant strain survived
range expansions in the hierarchical and intermediate scenarios. For the cyclic
dominance scenario, the toxin-producing strain survived as well, but three-strain
coexistence was not observed (cf. figure 2 of our publication [5]). To under-
stand which strains survive along the expanding front of a colony, we devised a
computational model of range expansions.

Whether a bacterial strain manages to establish and to maintain an outward
sector depends on chance effects during the reproduction of cells (random genetic
drift). To incorporate such effects into a model, we described the proliferation
of cells and their long-range interaction via colicin in terms of a continuous-time
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1 mm

 C (no fluorescent protein) | S (GFP) | R (mCherry)

Figure 3 Dynamics of a simulated range expansion. The simulation was performed using
the stochastic simulation algorithm (SSA) as explained in the Electronic Supplementary
Material of [5] (see pages 204–217 of this thesis). The simulation parameters were adjusted
to the cyclic dominance scenario whose strain and marker combinations are shown below
the time-lapse. The grey background of the figure represents uncolonized agar with M63
growth medium. Black, green, and red regions indicate a colonization by the respective
strain (dark green: lysed sensitive strain). At the beginning of the simulation, strains
were randomly distributed over a circular region of the simulation lattice whose radius
represented 1.5mm. The initial filling fraction of this homeland was assumed to be 25%
and the initial strain ratios were chosen as S:R:C=1:1:0.1. These ratios allowed for a
coexistence of all three strains until the simulation was stopped at a colony radius of 3mm.

Markov process with discontinuous sample paths (see chapter I). Thus, our model
was based on a master equation. Due to the model’s complexity, it is, however,
impossible to write this equation down. Individual in silico range expansions were
generated using the stochastic simulation algorithm (SSA) of Gillespie [80, 81]
(cf. section 1.4 of chapter I). Figure 3 demonstrates the expansion of a simulated
colony for the cyclic dominance scenario with a low initial amount of the toxin-
producing strain. Unlike generation-based stepping-stone models [495, 496], our
continuous-time description of the expansion process enabled us to consider
growth rate differences between the individual strains. Their growth dynamics
was modelled in terms of hopping processes on a discrete spatial lattice. Every
combination of strain and fluorescent marker was characterized by a growth rate
parameter and a lag time parameter for this purpose (an uncolonized lattice site
could only be colonized from a neighbouring site after the lag time of the respective
strain had passed). The toxin interaction between cells was modelled in terms of a
source and degradation process. Since the diffusion of colicin happens on a much
faster time scale than the division of individual E. coli cells (the diffusion constant
of colicin is on the order of 10−7 cm2/s [497]), we approximated the solution of the
source and degradation process in terms of quasi-static, exponentially decreasing
colicin profiles around toxin-producing sites. The shape of the profiles depended on
a strength and on a range parameter. Further details on the model can be found in
the Electronic Supplementary Material of our publication (reprinted on pages 204–
217 of this thesis). Let us emphasize that the values of the above parameters were
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1 mm

 C (no fluorescent protein) | S (GFP) | R (mCherry)
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Figure 4 Comparison of the simulated colony from figure 3 on the left to an experi-
mentally observed colony on the right (cyclic dominance scenario; initial strain ratios
S:R:C=1:1:0.1). The experiment was conducted by G. Poxleitner as part of our publica-
tion [5]. Both images were part of figure 4 in the publication. The experimental image
was overlaid with a bright-field image to help the distinction between sectors of the toxin-
producing strain and the background. Both the simulated colony and the experimentally
observed colony exhibit a coexistence of all three strains at their fronts with faint sectors
of the toxin-producing strain C.

calibrated using data from independent experiments on the growth of single-strain
colonies. The values of the mesoscopic growth rates and lag times were calibrated
so as to reproduce experimentally determined growth curves. The strength and
range of the toxin interaction were determined by comparing inhibition zones
between colliding sensitive and colicin-producing colonies.

The fully-calibrated model both reproduced the surviving strains of range ex-
pansion experiments and allowed us to formulate phenomenological “biodiversity
laws” (cf. figure 5 of our publication [5]). These laws described experimental para-
meter regimes around which three-strain coexistence was expected to be maximal.
We found that cyclic dominance was not a prerequisite for three-strain coexistence.
Instead, the strains’ coexistence depended on the right balance between strain
growth rates, initial strain ratios, and the range of the toxin. For the cyclic domin-
ance scenario, the model predicted three-strain coexistence around initial strain
ratios of S:R:C=1:1:0.1 in the inoculum (cf. figure 3 of [5]). Figure 4 compares a
simulated and an experimentally observed colony for these strain ratios, which
both exhibit the coexistence of all strains. Moreover, our model predicted the
possibility of three-strain coexistence at equal initial strain ratios of S:R:C=1:1:1
but for a characteristic toxin range that was reduced from 125 µm to approximately
50 µm. The experimental test of this prediction remains for future work.
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and Madeleine Opitz2

1Arnold Sommerfeld Center for Theoretical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München,
Theresienstraße 37, Munich 80333, Germany
2Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1,
Munich 80539, Germany

Dispersal of species is a fundamental ecological process in the evolution and

maintenance of biodiversity. Limited control over ecological parameters has

hindered progress in understanding of what enables species to colonize new

areas, as well as the importance of interspecies interactions. Such control is

necessary to construct reliable mathematical models of ecosystems. In our

work, we studied dispersal in the context of bacterial range expansions and

identified the major determinants of species coexistence for a bacterial model

system of three Escherichia coli strains (toxin-producing, sensitive and resistant).

Genetic engineering allowed us to tune strain growth rates and to design differ-

ent ecological scenarios (cyclic and hierarchical). We found that coexistence of

all strains depended on three strongly interdependent factors: composition of

inoculum, relative strain growth rates and effective toxin range. Robust agree-

ment between our experiments and a thoroughly calibrated computational

model enabled us to extrapolate these intricate interdependencies in terms

of phenomenological biodiversity laws. Our mathematical analysis also

suggested that cyclic dominance between strains is not a prerequisite for

coexistence in competitive range expansions. Instead, robust three-strain

coexistence required a balance between growth rates and either a reduced

initial ratio of the toxin-producing strain, or a sufficiently short toxin range.

1. Introduction
The fate of a species depends on the abilities of its members to colonize new

areas and to outperform competitors [1,2]. A central theme of ecological research

is to understand these abilities and to explain how many competing species still

manage to live in lasting coexistence, especially during arms races over

common resources [3–10]. Structured environments were theoretically pro-

posed to be facilitators of biodiversity [3,11–19]. However, experimental

verification of the proposed mechanisms promoting biodiversity is hard to

come by. Ecological studies traditionally focused on systems of mammals

and plants, but the long reproduction times and large spatial scales involved

impede experimental progress [20]. To circumvent these problems, recent

studies have turned to microbial model systems in which both spatial and tem-

poral scales are experimentally better accessible [3,21–23]. New methods of

genetic engineering even admit the possibility to modify the behaviour of test

species. These methods stimulated further research on microbial systems and

increased our knowledge about their transient and long-term dynamics [24].

For microbial life in well-mixed culture, for example, experimental and theoreti-

cal models have recently shown how transient processes can be amplified by

recurring life cycles to change a system’s long-term fate [25,26]. In spatial

environments, long-term limits are more difficult to attain. We followed a pre-

vious study on competitions of three bacterial strains of Escherichia coli (toxin-

producing, sensitive and resistant) in fixed spatial environments [3] and

& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
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identified traits that ensure the transient coexistence of strains

during the course of range expansions.

What determines whether a bacterial species thrives or fal-

ters as it explores new areas can be studied systematically after

droplet inoculation on an agar plate [5,27–30]. Recent exper-

imental studies have highlighted the importance of random

genetic drift in driving population differentiation along the

expanding fronts of bacterial colonies—an effect that gives

rise to monoclonal sectoring patterns [5,31]. Natural microbial

colonies and biofilms are characterized by a complex commu-

nity structure [21,22,32], which is shaped by competition

between strains for resources such as nutrients and space

[2,5,27–30], interference competition through the production

of toxins [3,8,22,29,33,34], and different forms of mutualism,

cooperation and cheating [4,6,22,35]. Only a few recent studies,

most of them theoretical, have explored the role of such inter-

actions for expanding populations [36–38]. Experimental

studies are appearing just recently [10,39,40] and are much

needed to identify and characterize the key principles that

drive population dynamics in expanding systems. In our

work, we investigated range expansions for a bacterial

model system comprising three Escherichia coli strains: a toxic

strain, a sensitive strain (facing death upon the encounter of

toxins) and a resistant strain. By genetically altering strain

growth rates, we created three different ecological scenarios,

including a hierarchical scenario and a scenario that mimicked

a cyclic rock–paper–scissors game (figure 1) [3,18]. Control

over strain growth rates also enabled us to acquire sufficient

experimental data to construct and validate a computational

model of the expansion process. The model was used to pre-

dict parameter regimes for which coexistence of all three

strains was observed in experiments. Furthermore, we ident-

ified the factors that determined a strain’s chance of survival

(composition of the inoculum, relative growth rates and effec-

tive toxin range), and quantified the relationship between

these factors in terms of phenomenological ‘biodiversity

laws’. Our work highlights the central importance of bacterial

interactions in the evolution and maintenance of biological

diversity, and pursues the theoretical aim to understand how

interactions affect coexistence [41].

2. Material and methods
2.1. Bacterial strains and fluorescent proteins
The strains used in our study represent the Escherichia coli Colicin

E2 system (BZB1011 (sensitive ‘S’ strain), E2C-BZB1011 (toxic ‘C’

strain) and E2R-BZB1011 (resistant ‘R’ strain)) [3]. For visualization

of distinct strains, plasmids expressing either the green fluorescent

protein (GFP), the red fluorescent protein mCherry (mCh) or no

fluorescent protein (nfp) were introduced into S, R and C, respect-

ively. The resulting strains were named: SGFP, SmCh, Snfp, RGFP, etc.

All fluorescent proteins were expressed from the arabinose-induci-

ble promoter pBAD as present in the plasmid pBAD24.

Introduction of the fluorescent proteins resulted in the plasmids

pBAD24-GFP [42] and pBAD24-mCherry [43]. To prevent plasmid

loss, all plasmids, including the plasmid not expressing a fluor-

escent protein, carried an ampicillin antibiotic resistance.

2.2. Preparation of the system and growth conditions
Bacteria were grown in overnight cultures of liquid M63 medium

at 378C, supplemented with glycerol (0.2%), casein hydrolysate

(0.2%) and arabinose (0.2%) for fluorescence induction, and

with ampicillin (100 mg ml21). Analysis of colony development

was performed on M63 agar plates (1.5% agar) that were pre-

pared as above for the liquid culture.

Strain mixtures were diluted from the overnight culture to

OD 0.1 at different initial ratios as indicated in the next sections.

Ratios S : R : C (shorthand for rS : r R : r C) of 1 : 1 : 1 represent an

equal amount of all three strains. Ratios 5 : 1 : 1 indicate that

the S strain was initially added five times more than the R and

C strains, whereas ratios of 1 : 1 : 0.1 indicate that the C strain

was added at one-tenth of the other two strains. Droplets of

the resulting mixture (1 ml) were applied to M63 agar plates in

triplicate. The time between mixing of strains and inoculation

had to be kept short, because droplets of inoculum temporarily

form well-mixed environments. Tuning the pH level of our

agar plates resulted in slow colony growth at pH 6 (slow

growth condition ‘S’) compared with fast colony growth at opti-

mal pH 7 (fast growth condition ‘F’). Each experiment (for slow

and fast growth conditions) was performed two times and

revealed qualitatively the same result.

2.3. Analysis of colony development
Colony development was recorded using an upright microscope

(90i, Nikon, Düsseldorf, Germany). Fluorescence was analysed

using filter sets with 472/30 nm excitation for GFP (DM: 495,

BA: 520/35 BP), whereas excitation for mCherry was 562/

25 nm (DM: 593, BA: 641/45 BP). Images were taken with a

DS-Qi1MC digital camera (Nikon). Background correction and

image analysis were performed using the free software IMAGEJ.

In order to quantify the growth dynamics of the three strains,

we recorded the expansion of single-strain colonies for each com-

bination of strain, fluorescent marker and growth condition in

parallel by taking bright field images. For slow growth con-

ditions, these pictures were recorded every 2 h from 4 to 34 h

after inoculation. A final picture was recorded 48 h after inocu-

lation. For fast growth conditions, the pictures were recorded

C nfp

S GFP
outgrows

outgrows

R mCh

lyses

C mCh

S GFP
~ neutral

outgrows

R nfp

lyses

C nfp

S mCh
outgrows

outgrows

R GFP

lyses

(b)(a) (c)

Figure 1. Three ecological scenarios that were designed by altering strain growth rates through the expression of the fluorescent protein mCherry. (a) In the cyclic
scenario I, the hierarchy of single strain growth rates was mS . mR . mC ( for numerical values, see the electronic supplementary material, table S1 and figure
S1). Cyclic dominance held because colicin emitted by the toxin-producing C strain inhibited, and eventually lysed, cells of the sensitive S strain. (b) In the hier-
archical scenario II, the resistant strain outperformed the two other strains and the growth rate hierarchy was mR . mS � mC. (c) In the intermediate scenario III,
colonies formed by either the S or the R strain expanded at roughly the same rate, and outgrew colonies formed by the toxin-producing C strain.
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every hour from 4 to 16 h and every 2 h from 16 to 30 h after

inoculation. A final picture was recorded 50 h after inoculation.

Bright field images were also recorded for the expansion of

multi-strain colonies 48 h after inoculation, together with images

for the two fluorescent proteins GFP and mCherry. Only colour

overlays of the two fluorescence channels are shown. We chose

a natural representation of colours for the visualization of fluor-

escent strains. Strains expressing the GFP are, therefore, shown

in green, strains expressing the red fluorescent protein mCherry

are shown in red. The choice helps to identify the strain that suf-

fered a significant decrease in growth rate owing to the expression

of mCherry. For slow growth conditions, expression of mCherry

by the C strain caused a decrease of its growth rate of 21.5%

when compared with its non-fluorescent state, for the R strain, a

decrease of 22.6%, and for the S strain, a decrease of 24.3%.

Growth rate decrease was less for fast growth conditions: 13.0%

for C, 16.4% for R and 15.7% for S. All growth rates are listed

and displayed in the electronic supplementary material, table S1

and figure S1. A strain not expressing a fluorescent protein (nfp)

was present in black areas of a colour overlay. For cases in

which the non-fluorescent strain could not be distinguished

from surrounding agar, we used a bright field image to delineate

the boundary of the colony (cf. figure 2).

2.4. Computational model of competitive range
expansions

Our theoretical model rested on a coarse-grained, mesoscopic

description of the bacterial expansion process. The model was

agent-based, and movement of agents was restricted to a two-

dimensional lattice, following previous stochastic simulations of

range expansions [31]. Owing to the exceedingly large number

of bacterial cells in experimentally observed colonies, it was not

possible to treat individual bacterial cells as agents. Instead, each

agent (a colonized lattice site) represented the bacterial strain

that locally dominated a certain area (patch) of a colony (further

details on the physical size represented by lattice sites can be

found in the electronic supplementary material, appendix S1

and table S1). Our model thereby coarse-grained the microscopic

dynamics and reduced both high cell numbers in the lateral direc-

tion as well as the increasing number of cell layers in the vertical

direction to a lattice of patches.

The growth dynamics of the expansion process was modelled

as ‘hopping processes’ from colonized to free patches. The speed

of these processes depended on two strain-dependent par-

ameters: mesoscopic growth rate mm and mesoscopic lag-time

tm. These parameters were adjusted such that our simulation

reproduced experimental data on the radial growth of single-

strain colonies. The mesoscopic lag-time helped us to effectively

add a time dependence to the mesoscopic growth rate (a colo-

nized patch could proliferate only after its lag-time tm had

passed). This time dependence also allowed us to reproduce

the lag phase and the gradual expansion of colonies during accel-

eration phase that were observed in growth curves (see electronic

supplementary material, figure S8). In order to match simulated

growth curves to experimental data, we sampled tm on initially

colonized lattice sites from broad, strain- and marker-dependent

Gaussian distributions. The calibration of these distributions is

explained in the electronic supplementary material, appendix S1.

The temporal dynamics of range expansions was simulated

employing a Gillespie algorithm [44]. The algorithm also gov-

erned the toxin interaction between sensitive and toxic lattice

sites (we assumed that 3% of initially and newly colonized lattice

sites dominated by the C strain were toxic [45]). Our inclusion of

this interaction explicitly accounted for the long-range diffusion

of colicins (a nearest-neighbour interaction would have been

insufficient to recover experimental results). Because diffusion

of colicins happens on a much faster time scale than consecutive

cell divisions of E. coli (diffusion constant of colicins of the order

of 1027 cm2 s21 [46]), we approximated the colicin dynamics

by a stationary source and degradation process. The process

suggested exponentially decaying colicin profiles around toxin-

producing lattice sites. The colicin profiles introduced two

additional parameters into the simulation: their heights around

sources (local colicin strength k) and their widths (characteristic

length scale l). We adjusted the parameters using estimates

from the literature [33,47] and by calibrating them to experi-

ments on colliding sensitive and colicin producing colonies (see

electronic supplementary material, figure S11).

3. Results and discussion
3.1. Design of distinct ecological scenarios
As detailed in the Material and methods section, we studied

competitive microbial range expansion for a prominent

model system that comprises three genetically distinct strains

of Escherichia coli [3]: a toxin-producing strain (C), a sensitive

strain (S) and a resistant strain (R). During growth, around

3% [45] of the C cells undergo lysis and release colicin E2 (dif-

fusion constant of the order of 1027 cm2 s21 [46]). The colicins

subsequently diffuse through the extracellular fluid around bac-

terial cells until possibly being absorbed by sensitive E. coli cells.

The sensitive cells are prone to the endonuclease activity of coli-

cin and suffer a degeneration of their DNA, which inhibits

further cell divisions [48]. Eventually, the cells lyse. Inhibition

zones around toxic C cells may be as large as 100–400 mm in

radius [33,47]. Because colicin production is costly, the growth

rate of these cells is significantly lower than those of the other

two strains. We genetically engineered two of our three strains

to express either GFP or the red fluorescent protein mCherry

(the strain not expressing a fluorescent protein is marked as

nfp). We observed that while a strain expressing GFP could

expand at roughly the same speed as its non-fluorescent

counterpart, this did not hold for strains expressing mCherry.

We discovered that their growth rate was significantly reduced

by the expression of mCherry (see the electronic supplementary

material, figure S1a). This effect was also observed for growth

in liquid culture [43]. The fluorescent proteins thereby allowed

us to design different ecological scenarios by changing the

order in which the proteins were assigned to our strains

(figure 1). Every scenario differed from one another by changes

in relative strain growth rates as described in the following. Fur-

thermore, the fluorescent proteins allowed us to visualize each

strain independently during its expansion in range (see Material

and methods).

The control over the growth rates of our three strains

enabled us to design three different ecological scenarios

and to study how the composition of expanding colonies

depended on the interplay between resource and interference

competition. In a first scenario (I), we arranged the bacterial

growth rates such that mS . mR . mC (mCherry expressed

by the R strain). As detailed in the electronic supplementary

material, appendix S1, we determined these growth rates by

measuring the maximal radial expansion velocity (mm h21)

of single-strain S, R, and C colonies. These rates were thus

independent of the toxin action of C on S, which was quanti-

fied independently as described further below. It followed

from the above hierarchy mS . mR . mC and from the toxin

action of C on S that our first ecological system exhibited a

cyclic (non-transitive) dominance: C dominated S by killing
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it, S outgrew R, which, in turn, outgrew C (figure 1a). This

hierarchy resembled the order of strategies in the children’s

game rock–paper–scissors [3,18]. In the second scenario

(II), the ordering of growth rates was chosen as: mR . mS �
mC (mCherry expressed by the S strain). Hence, the inter-

action network was strictly hierarchical (transitive), with R

displacing C because of its growth advantage, and C displa-

cing S through its allelopathic effect on S (figure 1b). In a third

intermediate scenario (III), the toxic strain had by far the

lowest growth rate, whereas those of R and S were nearly

equal (mCherry expressed by the C strain). Under these con-

ditions, the competition network was neither cyclic nor

strictly hierarchical: R dominated C by resource competition,

and C dominated S by interference competition, but the

interaction between R and S was selectively nearly neutral

(figure 1c). After droplet inoculation of 1 ml mixtures on

agar plates (supplemented with minimal M63 medium; see

Material and methods), we tracked the composition of bac-

terial colonies over 48 h and identified the strains that

coexisted along expanding fronts of colonies. The strains

that were present along these fronts after 48 h were con-

sidered as survivors of the range expansion. It was

sufficient that a strain had established at least one stable

sector that touched the edge of an expanding colony to be

considered a survivor. Our notion of survival and coexistence

did not evaluate the number of stable sectors or the relative

frequency of strains along the fronts of colonies.

We developed a theoretical model to explain the outcome

of bacterial competitions and to predict growth parameters

for which a maximal degree of coexistence could be observed

in experiments along the expanding fronts of colonies. The

predictions were verified experimentally as described in the

following. Let us note that we focused on the transient coex-

istence of bacterial strains on time spans that were accessible

to experiments. Korolev et al. [49] developed methods to

determine when such transient coexistence is eventually

lost. However, the approach does not consider toxin inter-

action between strains and can only be applied to cases in

which either the S or the C strain has already disappeared

from a colony’s front. In such situations, the strain that even-

tually dominates may be inferred from the radial expansion

velocities of single-strain colonies that are listed in the elec-

tronic supplementary material, table S1.

3.2. Cyclic dominance is not sufficient to ensure
coexistence of all strains

We first sought to determine the surviving strains when a

droplet of inoculum that contained an equal number of all

three strains (initial ratios S : R : C ¼ 1 : 1 : 1) expanded in

range. Surprisingly, in the cyclic rock–paper–scissors scen-

ario I, we found no evidence for coexistence of all three

strains. In a previous report, such three-strain coexistence

was observed for spatially extended systems with a regular

arrangement of neighbouring single-strain colonies [3]. Com-

petitive exclusion with dominance of the fastest-growing

strain (S) was not observed either. Instead, we found that S

was driven to extinction, whereas strains R and C dominated

the colony front, where they formed monoclonal sectors

(figure 2a). Notably, in the non-cyclic scenarios II and III,

coexistence was completely lost. Here, the R strain outcom-

peted both S and C, and was the only survivor with access

to uncolonized area (figure 2b,c). Hence, ‘survival of the fast-

est’ [10] could only be observed in hierarchical scenario II,

whereas who survived in the other two scenarios was more

subtle and was heavily affected by the long-range toxin

action. The outcomes of our bacterial competitions were

shown to be robust against small changes in relative growth

rates of the strains (induced by reassigning the fluorescent

protein GFP while keeping the assignment of mCherry; see

the electronic supplementary material, appendix S1), and

robust against changes in overall growth conditions (slow

growth at pH 6, fast growth at pH 7; see Material and methods

and the electronic supplementary material, figure S1). The

results of supporting experiments are listed in the electronic

supplementary material, figures S3 and S4.

3.3. Identification of biodiversity zones
To elucidate the above findings and to identify the factors that

promote or jeopardize survival of the competing strains, we

developed a stochastic agent-based model to capture the

system dynamics on a coarse-grained scale (see Material and

methods and the electronic supplementary material, appendix

S1). Our theoretical approach rested on a lattice-based

 S GFP | R mCh | C nfp

S mCh | R GFP | C nfp

S GFP | R nfp | C mCh

cyclic scenario I

hierarchical scenario II

intermediate scenario III

(b)

(a)

(c)

Figure 2. Segregation patterns arising in range expansions initiated at initial
strain ratios S : R : C ¼ 1 : 1 : 1. Experimental outcomes are displayed in the
left column (images obtained 48 h after inoculation), simulation results in the
right column (simulations stopped after colony had reached a radius of
3 mm). Different strain/fluorescent marker combinations were used for visualiza-
tion and to implement distinct ecological scenarios. The combinations are
indicated above individual rows (GFP, green fluorescent protein; mCh, red fluor-
escent protein mCherry; nfp, no fluorescent protein). For further information on
the robustness of experimental as well as theoretical results, see the electronic
supplementary material, appendix S1 and figures S3 and S4. White scale bars
represent 1 mm. (a) Transient coexistence of the R and the C strain was main-
tained in the cyclic scenario I. (b,c) The R strain outcompeted both the S and the
C strain in the strictly hierarchical scenario II and in the intermediate scenario III.
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description of range expansions and extended previous models

[31] by considering the long-range nature of the toxin inter-

action. We performed additional experiments on the

expansion of single-strain colonies to adjust the model’s par-

ameters. Comparisons between experimental and simulated

growth curves enabled us to determine all model parameters

except for the toxin interaction. We modelled this interaction

based on a source and degradation process, and estimated its

range and strength by measuring the distance between the

front of a growing C colony and the front of a neighbouring

S colony (see the electronic supplementary material, appendix

S1). The estimate complies with literature values [33,47]. Even

though our theoretical model simplified the bacterial dynamics

(e.g. by considering only a single bacterial layer, whereas the

real colony piled up in hundreds of them in its interior), the

model captured the essential parameters. We successfully

applied the model to reproduce experimentally observed

segregation patterns and to predict the strains that survived a

range expansion (figure 2). Let us emphasize that the

model’s parametrization rested on independent experiments

as described above.

After having established and validated a reliable theoreti-

cal model that reproduced our experimental observations, we

investigated whether it was possible to rescue the S strain. As

the survival of the S strain was directly coupled to the C

strain’s presence, we analysed how reductions in the initial

ratio of the C strain affected the other strains’ survival (in

particular of the S strain). Simulation data for the cyclic

ecological scenario I predicted that reduction of its initial

ratio should lead to the formation of broader R sectors at

the expense of C (figure 3). The same effect was seen in

experiments with initial ratios of S : R : C ¼ 1 : 1 : 0.5 (see the

electronic supplementary material, figure S5). Further

reduction of the initial ratio of C in our simulations revealed

a regime of three-strain coexistence centred around S : R : C ¼

1 : 1 : 0.1 (figure 3). This permissive zone of biodiversity

in parameter space coincided remarkably well with our

experimental observations of transient three-strain coexis-

tence at ratios 1 : 1 : 0.1 (figure 4a). For ecological scenarios

with a more hierarchical interaction relationship between

strains (scenarios II and III), the R strain was clearly domi-

nant (figure 4b,c). Hence, toxin resistance is apparently a

more effective survival strategy than either rapid growth or

toxin production if the hierarchical order in the competition

network is enhanced.

Whether a bacterial strain manages to survive a range

expansion and to populate a colony’s expanding front

depends on two aspects: first, on its ability to form initial

clusters in the inoculum from which outward sectors may

emerge; second, on the stability of the arising sectors to the

annihilation of neighbouring sector boundaries [5]. Both of

these aspects are subjected to random genetic drift and may

prevent the establishment of stable sectors in a simulation

(figure 3). However, whether a specific outcome of the
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Figure 3. Dependence of the degree of coexistence on the relative initial
amount of the C strain. With initial ratios of S : R : C ¼ 1 : 1 : 1 (rS: rR: rC) in
the cyclic scenario I, the R and C strain came to dominate the expanding
front. As the initial ratio of the C strain rC was reduced, R strain sectors
became broader, in agreement with experimental observations (depicted
below the theoretical results; see also the electronic supplementary material,
figure S5). Further reduction of the initial ratio of C weakened its allelopathic
effect on S such that expanding S sectors emerged. A maximal number of coex-
isting strains along colony fronts was observed around S : R : C ¼ 1 : 1 : 0.1
(24% of simulations exhibited three-strain coexistence; error bars: s.e.m., n ¼
250). The three-strain coexistence at this initial ratio was also observed in
experiments. White scale bars represent 1 mm.
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Figure 4. Range expansions at initial ratios S : R : C ¼ 1 : 1 : 0.1. See the
legend of figure 2 for additional information. (a) A transient coexistence
of all three strains was observed along the colony’s expanding rim in the
cyclic scenario I. The distinct protrusions formed by SGFP hint at its selective
advantage over the other two strains (see the electronic supplementary
material, table S1). Simulations and deterministic analysis anticipated an
eventual dominance of SGFP on longer time scales [49]. (b) In the strictly
hierarchical scenario II, the growth rate of the S strain was slowed by the
expression of mCherry such that it could not compete against R, despite
the low initial ratio of C. (c) Both R and S strains survived the range expan-
sion in the intermediate scenario III, with the former strain being dominant
over the latter.
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bacterial competition is possible in principle depended solely

on the interplay between three factors in our experiments:

(i) on the initial strain ratios in the inoculum (demographic

noise owing to low absolute cell numbers was of minor

importance), (ii) on the relative growth rates of the three

strains, and (iii) on the effective range of colicin toxicity. On

the other hand, differences in lag-times between strains

played only a minor role in deciding whether a particular

strain survived along the expanding front of a colony. To

gain insights into the mechanisms responsible for the depen-

dence of biodiversity on the three factors (i)–(iii) and into

how they are correlated with each other, we extended our

simulations to explore broad parameter ranges.

If the initial ratios of R and C were varied with respect to

the initial ratio of S in cyclic ecological scenario I, then our

simulations showed that biodiversity was most pronounced

when the initial ratio rC of the C strain was reduced to

5–20% of that of the S strain (figure 5a). Higher initial

ratios of C suppressed growth of the S strain completely,

but the R strain ended up dominating the expanding front.

In this case, toxin resistance may be seen as a ‘cheating’ strat-

egy: the R strain could profit from colicin production by the

‘cooperating’ C strain without having to pay the associated

metabolic costs. By cheating, the R strain managed to beat

S, even though it would have been the loser in a direct

pairwise competition. Conversely, at lower initial ratios of

the C strain, the S strain could still bear the incurred costs.

Both R and S outgrew the C strain and eventually shared

the expanding front. Our results indicated that a narrow

range of initial ratios delineated a regime of maximal

biodiversity. Biodiversity required that increases in the initial

ratio of C were compensated for by even larger increases in

the initial ratio of R. The correlation was quantified by the sat-

uration law—a ‘biodiversity law’—shown in figure 5a. We

attributed the saturation to the finite range of colicin toxicity:

dense swathes of R cells were needed to shield sensitive cells

from the toxin emitted by the C strain. Behind these barriers,

surviving S cells could give rise to sectors, leading to the

eventual coexistence of all three strains.

Subsequently, we set the initial ratios of the three strains

to the rescue window S : R : C ¼ 1 : 1 : 0.1 and investigated

how changes in the relative growth rates of the strains

(i.e. changes in the interaction hierarchy) affected the degree

of coexistence. Our simulations showed that three-strain

coexistence was most pronounced when the growth rates

were of comparable size and when the growth rates of strains

C and R were varied in a correlated fashion: mR � mC

(figure 5b). As our model predicted two- and three-strain

coexistence (as well as its absence) in full accordance with

experimental results (R and S in the intermediate scenario

III, all three strains in the cyclic scenario I, but only the R

strain in the hierarchical scenario II), we expect our theoreti-

cal predictions to be highly relevant for future experimental

studies. Moreover, our simulations revealed that cyclic dom-

inance is not a necessary prerequisite for biodiversity. For

range expansion ecologies, biological diversity can even be

maintained if the toxin-producing C strain grows fastest.

This result seems paradoxical at first sight, but it demon-

strates that both the initial ratios and the growth rates

of competing strains are equally important ecological
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Figure 5. Coexistence diagrams and formulation of ‘biodiversity laws’. We extended the simulations to study the individual impact of initial strain ratios, relative growth
rates and toxin range. Parameters not under consideration were set to their values in the cyclic scenario I (see the electronic supplementary material, table S1). Letters
within the figure indicate strains that survived a range expansion in the corresponding parameter regime. The colour scale on the bottom visualizes the level of coex-
istence averaged over 250 simulations. Solid lines delineate regimes of maximal three-strain coexistence and are referred to as ‘biodiversity laws’. (a) Studying the initial
ratios of strain C (rC) and of strain R (rR) revealed a regime of maximal coexistence that followed the saturation law rC ¼ (0.01þ 0.14rR)/(0.24þ rR). Three-strain
coexistence at the lower white circle was supported by experimental realizations. At the upper white circle, survival of R and C was seen in experiments. (b) Varying
the relative growth rates of strains R and C with respect to that of S revealed that cyclic dominance is not a prerequisite for the maintenance of biodiversity (initial ratios
S : R : C ¼ 1 : 1 : 0.1). Maximal coexistence follows the linear law gR ¼ 0.17þ 0.49gC (straight line). White circles represent experimental results that were in accord-
ance with our theoretical predictions for the indicated ecological scenario (including experimental results for fast growth conditions and for small growth rate variations;
see the electronic supplementary material, appendix S1). The red cross indicates an experiment in which stable coexistence was not observed (F0.1 in the electronic
supplementary material, figure S7). Surviving strains were also required to have expanded by at least half the distance of the leading strain out of an inoculum. The
criterion was only relevant for highly diverging growth rates (e.g. in the lower left). (c) Coexistence diagram for the influence of the C strain’s toxicity. The colicin
interaction with characteristic length scale of l ¼ 125 mm led to survival of both R and C at initial ratios S : R : C ¼ 1 : 1 : 1 and 1 : 1 : 0.5, and to three-strain
coexistence at 1 : 1 : 0.1 in experiments (white circles). Simulations predicted an increased level of coexistence along the power law rC � 1/l2.46.
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parameters. During the initial phase of expansion after inocu-

lation, the combined effect of the two parameters determines

which strain is more likely to establish sector-like domains.

In order to avoid being overgrown by the other two strains,

the C strain must compensate for its lower initial ratio by

growing at a faster rate. A phase diagram that resembled

the one in figure 5b was computed for range expansions of

selectively neutral, non-interacting strains at equal initial

strain ratios. The biodiversity window of this null model dis-

appeared in the presence of toxin interaction, but was

recovered upon reducing the initial C strain ratio. The

changes to the null model were crucial for predicting the sur-

viving strains in our experiments. It would be highly

interesting to study how other kinds of bacterial interactions

affect the coexistence diagram of the null model.

Finally, to understand the role of colicin in maintaining

biodiversity during range expansions, we analysed the

importance of the toxin’s effective range (see the electronic

supplementary material, appendix S1). Our in silico studies

revealed that maintenance of biodiversity required a strong

inverse correlation between the initial ratio of the toxic

strain and the length scale of colicin toxicity: rC � 1/l2.46

(figure 5c). A long-range toxin interaction (length scale of

l � 125 mm) was, therefore, optimal for species coexistence

around the initial strain ratios S : R : C ¼ 1 : 1 : 0.1. However,

our simulations suggested that a more circumscribed radius

of toxin action (l � 50 mm) would be necessary to sustain

coexistence at equal strain ratios 1 : 1 : 1. The reduction in

colicin range weakened the allelopathic effect of C on the

fast-growing S strain to a level at which all strains could coex-

ist along the expanding front, despite equal initial ratios

in the inoculum. In conclusion, the coexistence diagram in

figure 5c revealed that changes in the range of colicin toxicity

have a strong impact on biodiversity. The maintenance of

coexistence relied on the fine-tuning of the interference com-

petition via colicin between the strains. In more general

terms, the biodiversity law encodes how coexistence depends

on the balance between the amount of the producers of an

interaction agent and the range of the agent. We expect that

the inverse correlation between the two can also be observed

in other systems in which an inhibiting interaction is

mediated by an agent. Future studies should explore how

the law changes for other kinds of interactions.

4. Conclusion
Range expansion experiments provide a new perspective on

the significance of competition between species in spatially

extended ecological systems. Neither strength of numbers,

nor growth rate differences, nor choice of competition strat-

egy alone determines success of their dispersal. The right

balance between these factors must be struck. We identified

this balance for range expansions of a bacterial model

system of three Escherichia coli strains and experimentally

validated theoretical predictions on strain coexistence. We

used the model to extrapolate in parameter space and

described the regimes of maximal coexistence in terms of

phenomenological ‘biodiversity laws’. The laws showed

how changes in the interaction between bacterial strains can

have subtle but lasting effects on the eventual composition

of a microbial ecosystem. Our approach may help to under-

stand more complex ecosystems whose dynamics cannot be

formulated in terms of simplistic rules.
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Appendix S1. Supporting Information on experimental and theoretical methods. 
 
The following text comprises an experimental and a theoretical part. The 
experimental section includes additional experimental results, further information 
about experimental procedures and data analysis, and a description of the 
experimentally derived parameters that were used in the accompanying theoretical 
model. The subsequent section gives a detailed report on our theoretical model of 
competitive range expansions.  
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Abbreviations 
 
Bacterial strains of Escherichia coli:  
 S = sensitive 
 R = resistant 
 C = colicin producing 
 
Ecological scenarios (see main text):  
 I and I* = cyclic (non-transitive)  
 II and II* = strictly hierarchical (transitive)  
 III and III* = intermediate (neither cyclic nor strictly hierarchical) 
 
Growth conditions:  
 S = slow 
 F = fast 
 
Initial strain ratios S:R:C (shorthand for rS:rR:rC):  
 1 = 1:1:1 
 0.5 = 1:1:0.5 
 0.1 = 1:1:0.1  
 
Fluorescent proteins:  
 nfp = no fluorescent protein 
 GFP = green fluorescent protein  
 mCh = red fluorescent protein mCherry 
 
Statistics:  
 s.d. = standard deviation 
 s.e.m. = standard error of the mean 
 r.s.e.m. = relative standard error of the mean 
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1. Experimental Part 

1.1. Results 

1.1.1. Tuning of Growth Conditions 
As described in Materials and Methods (main text), plasmids expressing either no 
fluorescent protein (nfp), the green fluorescent protein (GFP), or the red fluorescent 
protein mCherry (mCh) were introduced into the sensitive (S), resistant (R), and 
colicin producing (C) strains that were used in this study. Expression of a fluorescent 
protein affected the growth of single-strain colonies in two ways: it altered its growth 
rate µ (figure S1) and/or its lag time τ (figure S2). We refer the reader to section 1.2 
for definitions of these two parameters. That section also gives a detailed description 
of how the respective numerical values in table S1 (depicted in figures S1 and S2) 
were determined. We obtained data for two different growth conditions: slow (S) and 
fast (F). These growth conditions are described in Materials and Methods.  

1.1.2. Robustness of Results for Equal Initial Strain Ratios 
We analysed three distinct ecological scenarios (cyclic scenario I, hierarchical 
scenario II, and intermediate scenario III) with respect to resource and interference 
competition (see main text). Our experiments were performed as triplicates and 
clearly showed that under the same growth conditions, only little variation in 
experimental outcomes could be observed (figure S3).  
Furthermore, we analysed the effect of small growth rate differences on coexistence 
patterns as described in the following. Only expression of the red fluorescent protein 
mCherry led to a significant reduction of colony growth rate (figure S1). We obtained 
the differences between ecological scenarios I, II, and III by using a different 
assignment of mCherry to our three strains. We complemented these three scenarios 
by exchanging the assignment of GFP between the two strains not expressing 
mCherry. Expression of GFP resulted in only small changes in growth rate and lag 
time (figures S1 and S2). In this way, we obtained the new auxiliary scenarios I*, II*, 
and III*, where I/I*, II/II*, and III/III* are pairs of scenarios in which the same strain 
expressed mCherry. Similar coexistence patterns as observed for scenarios I-III were 
observed for the new scenarios I*-III*. A stable coexistence of strains R and C was 
observed in cyclic scenario I*, and survival of only strain R in both the hierarchical 
scenario II* and in the intermediate scenario III* (figure S3). This finding 
demonstrated the robustness of our experimental results for scenarios I-III. 
Furthermore, the analysis confirmed that no plasmid loss or spontaneous mutations 
had occurred during our experiments, effects that might have affected coexistence 
patterns due to a loss of fluorescence. Hence, small variations in growth rates did not 
affect our essential experimental outcomes (figure S3). 
We next assessed the impact of overall growth conditions on coexistence patterns. 
We compared the data obtained for slow growth conditions to data obtained for fast 
growth conditions (figure S4; see Materials and Methods for details). Under slow 
growth conditions (S) (growth rate of 42 µm/h averaged over all strain/marker 
combinations; cf. table S1), the resistant strain R outcompeted the S and the C 
strain, with the exception of cyclic scenarios I and I* for which a stable coexistence of 
R and C was observed (over the experimental time frame of 48 h). This finding 
agreed with our expectations based on experimentally observed growth rates and lag 
times. Fast growth conditions (F) (average growth rate of 46 µm/h) led to a significant 



 4 

increase of colony sizes, but similar segregation patterns as for slow growth 
conditions were observed. This observation demonstrated the robustness of our 
findings with respect to environmental conditions. Only cyclic scenario I* differed by a 
significantly reduced amount of the C strain at the edge of colonies. The R and the C 
strain had similar growth rates in this scenario (figure S1), but differed in their lag 
times (figure S2). Under slow growth conditions, the C strain was able to establish a 
stable coexistence with R, despite its longer lag time. However, this coexistence was 
reduced under fast growth conditions, and the C strain was only present in a few 
sectors at the colony front. Stable coexistence between R and C could be 
established in cyclic scenario I under fast growth conditions. 

1.1.3. Influence of the Initial Ratio of the C Strain 
To study the influence of the toxin colicin on strain coexistence, we repeated the 
experiments under slow growth conditions but with different initial ratios of the C 
strain. At reduced initial ratios of the C strain, less colicin was present in the system. 
We compared our data obtained for equal initial ratios (S:R:C = 1:1:1) with data for 
the ratios 1:1:0.5 and 1:1:0.1 (figure S5). Experiments with initial ratios of 1:1:0.5 
showed little qualitative differences as compared to results from experiments with 
ratios 1:1:1, in accordance with our theoretical findings (figure S6). For the cyclic 
scenarios I and I*, we observed a shift of sector sizes towards larger sectors of the R 
strain. This finding was captured by simulations (figure 3 in the main text). A further 
reduction of the initial C strain ratio to 0.1 resulted in a qualitatively different outcome: 
a transient coexistence of all three strains was observed in cyclic scenarios I and I*, 
although less pronounced in the latter (figure S5). This finding indicated the presence 
of a threshold: below a specific colicin concentration, coexistence of all strains was 
possible in cyclic scenarios, while above this threshold, coexistence of only two 
strains, namely R and C, could be observed. The outcomes of the strictly hierarchical 
scenarios II and II* remained the same as compared to the 1:1:1 experiments, 
whereas traces of S could be detected at the edge of colonies in the intermediate 
scenarios III and III*. Therefore, it seemed that the C strain’s initial ratio had no effect 
on strictly hierarchical ecological systems, and that it had only a small influence on 
systems whose competition network is intermediate (as defined in figure 1). 
Subsequently, we analysed whether under fast growth conditions, reduction of the C 
strain’s initial ratio also had an effect in comparison to results for equal initial ratios 
(figures S4 and S7). Again, similar results as for slow growth conditions were 
detected, with an increased presence of the S strain in cyclic scenarios I and I*, and 
in intermediate scenarios III and III*. However, the pronounced coexistence of all 
three strains observed in cyclic scenario I under slow growth conditions was not 
present under fast growth conditions. In particular, after a short phase of coexistence 
of the R and the S strain, S was outgrown by the R strain. Furthermore, C strain 
sectors arose at a certain distance from the inoculum, resulting in the eventual 
coexistence of R and C at the colony front. This observation indicated that a stable 
equilibrium between resource and interference competition could only be established 
under slow growth conditions. As this finding could not be observed in our theoretical 
simulations (see section 2), we attributed it to additional factors on the microscopic 
level, such as the presence of multiple bacterial layers that are not captured by the 
theoretical modelling. However, both experiment and theory indicated that under fast 
growth conditions, three-strain coexistence was principally possible in the cyclic 
scenario I* (figure S7). 
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1.2. Analysis of Experimentally Derived Parameters 
Bacterial growth in liquid medium is well studied and can be divided into six 
phases [1]. In the first phase, called the lag phase, bacteria adapt to their new 
environment and to new nutrient conditions. Second, growth rate increases during 
the acceleration phase until the third phase, the exponential phase, is reached. Here, 
growth conditions are optimal and growth rate maximal. Afterwards, growth 
decelerates during the fourth phase, called retardation phase. In the fifth phase, 
growth ceases. This stage is called the stationary phase. Unfavourable conditions 
such as nutrient limitation or toxin accumulation may be the reason. Finally, death of 
bacteria may cause a negative growth rate and, thereby, the sixth phase, where 
growth declines.  
Bacteria that form colonies on solid surfaces undergo the same phases of life as 
described above. However, one must distinguish between the growth of single 
bacteria within the colony (microscopic level) and the growth of the colony itself 
(macroscopic level). In our experiments, 1 µl droplets of bacterial mixture were 
inoculated on agar surface. These droplets of optical density 0.1 partly evaporated 
and left a single layer of cells on the surface. The layer covered only part of the 
inoculation area. When the first bacteria in such an inoculation area have overcome 
their lag phase, these bacteria start to multiply and fill out free space in the area 
(acceleration phase on the microscopic level). Growth in the vertical direction occurs 
as well, until the macroscopic colony has reached a height of approximately 
200 µm [2]. Both the filling out of free space and the growth in the vertical direction 
sum up to the macroscopic lag phase of a colony. After this macroscopic lag phase 
has passed, a significant two-dimensional expansion can first be observed 
(acceleration phase on the macroscopic level). However, the bacterial colony does 
not reach the phase of exponential growth, but a phase of linear growth (if growth 
conditions are good). In the centre of the colony, several hundred bacterial layers can 
be present and most cells enter the stationary growth phase. The number of bacterial 
layers decreases towards the expanding front of the colony [3] where cells are still in 
the exponential phase. If growth conditions worsen, both bacterial cells at the front of 
the colony, and the colony itself, may enter the retardation and stationary phases. 
Bacterial colony growth was monitored over time using an upright microscope and 
appropriate filter sets as described in Materials and Methods (main text). The sizes of 
colonies were measured in terms of their two-dimensional areas (in units mm2). The 
data were obtained via thresholding, using analysis tools offered by the freeware 
ImageJ. The determined areas were converted to effective colony radii r = A /π  
(figure S8a). The resulting radial growth curves were used to obtain radial growth 
rates and lag times of single-strain colonies. For this purpose, we fitted the growt 
curves to the sigmoidal five-parameter logistic function (figure S8a): 

r(t) = a+ r0 − a
(1+ (t / c)b )d

 

This function provided a good approximation of all our data sets and made it easy to 
formulate analytic expressions for characteristic observables (e.g. for the growth 
rate). We used the software Mathematica 8.0.1 by Wolfram Research to find best-fit 
parameters (based on a Levenberg-Marquardt algorithm). We defined the growth 
rate µ of colonies as the maximal slope of the logistic fit (measured in µm/h). For the 
lag time τ (measured in h), we adapted a definition of Lodge and Hinshelwood [4] as 
stated in the classic review of Monod on growth in liquid culture [1] to the expansion 

. (1) 
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of colonies. We defined τ as the difference between the time when a colony reached 
the radius rµ where its radial growth rate is maximal (i.e. equal to µ), and the time at 
which an ideal colony (no lag phase, radius that increases linearly in time) expanding 
at growth rate µ would reach radius rµ (figure S8a). When the radial growth curve of 
the ideal colony is shifted by the lag time τ, it touches the real colony’s growth curve 
tangentially at the radius rµ. The values of the growth rate µ and of the lag time τ 
depend on the specific strain, on the expressed fluorescent protein, and on the 
growth condition that is considered. They were, therefore, determined for each 
combination of strain, fluorescent marker and growth condition. Mean values that 
were each averaged over three experimental data sets are listed in table S1. 

2. Theoretical Part 
In the following, we introduce a mathematical model that was used to reproduce our 
experimental observations of bacterial segregation patterns that arose in range 
expansions of competing sensitive (S), resistant (R), and colicin producing (C) 
Escherichia coli strains. Maintenance and extinction of bacterial competitors was 
found to depend on the strains’ growth properties, as well as on the colicin condition. 
The latter comprises the fraction of C cells producing and releasing colicin, the 
effective diffusion range of colicin, and the rate at which sensitive cells become 
growth inhibited (and are subsequently lysed) due to colicin uptake. Our theoretical 
model reproduced essential features of spatial segregation patterns that we 
experimentally observed in competitive range expansions. The model correctly 
predicted the surviving strains for the different ecological scenarios discussed in the 
main text. Our mesoscopic description of bacterial dynamics may serve as reference 
for future research on the coexistence of bacterial strains in expanding populations. 

2.1.  Experimentally Motivated Simulation Parameters 
Our theoretical model coarse-grained the microscopic bacterial dynamics and gives a 
mesoscopic description of competitive range expansions. It was based on a set of 
parameters that we found to be essential for reproducing experimentally observed 
segregation patterns. The parameters governing the radial expansion of simulated 
colonies were called “mesoscopic growth rate” µm and “mesoscopic lag time” τm. 
They were determined by comparing experimentally determined growth curves and 
simulated growth curves as described in the next section. The parameter τm was 
considered a Gaussian random variable with standard deviation Δτm. As discussed in 
the next section, it enabled us to implement an effective time dependence of the 
mesoscopic growth rate µm, and, as a consequence, to model the time dependence 
of colony growth rates (during the lag, acceleration and linear growth phases). In 
order to calibrate the parameters, we introduced an auxiliary observable for technical 
purposes. We used the logistic fit (1) to measure the times over which experimentally 
determined growth curves exhibited positive curvature. We refer to the corresponding 
parameter as “time frame” Δt. In order to obtain numerical estimates for Δt, we 
evaluated the curvature of experimentally determined growth curves. We defined Δt 
as the distance between which the curvature was equal to its maximal value, times a 
factor of exp(-0.5). We made the observation that regimes of positive curvature could 
be well approximated by Gaussian functions of the form (figure S8b): 

M ∗exp −
(t − tM )

2

2∗ (∆ t / 2)2
#

$
%

&

'
(  (2) 
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(with maximal curvature M and time of maximal curvature tM). Numerical estimates of 
Δt were averaged over values obtained from three independent experiments (for 
each combination of strain, marker, and growth condition). In the next section, we 
describe how Δt was used to initialise the standard deviation Δτm of the random 
variable τm. 
Our theoretical model required two additional parameters to incorporate the toxin 
interaction between the colicin producing and the sensitive strain. We captured the 
production and diffusion of colicin, as well as the rate at which sensitive cells became 
growth inhibited due to colicin uptake, in terms of an effective interaction length scale 
λ and an effective interaction strength κ. These parameters were adjusted to 
reproduce qualitative features that we saw in experiments on competing single-strain 
S and C colonies, and also comply with estimates from literature [5, 6]. Further 
details are given in the next section. 

2.2. Modelling of Single-Strain Colony Growth 
The following two sections propose a theoretical model that reproduced bacterial 
segregation patterns seen in competitive range expansions of sensitive (S), resistant 
(R), and colicin producing (C) E.coli strains. We combined previous coarse-grained 
approaches to the stochastic modelling of segregation patterns of two non-interacting 
bacterial strains [7, 8] with models of the interference competition between sensitive 
and toxic strains [9, 10]. We explicitly accounted for the long-range nature of the toxin 
interaction between S and C cells, with allelopathic effects being perceptible over 
distances larger than 100 µm [5, 6]. Our theoretical approach modelled the toxin 
interaction via colicin on the basis of stationary solutions of source and degradation 
processes as explained in the next section. Furthermore, the mesoscopic lag times 
already introduced above enabled us to reproduce experimentally determined growth 
curves of single-strain colonies. This aspect of the model will be discussed in the 
present section. We emphasise that the values of all simulation parameters were 
motivated by experimental data obtained from either the growth of single-strain 
colonies, or from competitions of S and C strain colonies. They also comply with 
literature estimates [5, 6] on the range of toxins.  
We assumed that bacterial dispersal to uncolonised area was dominated by steric 
exclusion following cell division, and that dynamics inside colonised domains were 
negligible. Spatial segregation patterns that arose during the expansion of bacterial 
colonies were frozen in time over the course of experimental observation. 
Considering the high number of bacterial cells that are already present in droplets of 
inoculum from liquid culture (on the order of 106-107 cells), we resorted to a 
mesoscopic description of the growth dynamics. Fast simulations were needed for 
both the adjustment of simulation parameters, and for the computation of 
extrapolating diagrams as shown in figure 5 (main text). We chose a stochastic 
lattice-based description with 750x750 lattice sites (see table S1 for parameters used 
in the simulation). The number of lattice sites was a compromise between a low 
impact of small number fluctuations on the results of simulations, and the possibility 
both to calibrate our model, and to perform statistical analyses (figure 5 in the main 
text). It became increasingly difficult to achieve sufficient sample sizes when the 
number of lattice sites was increased (mainly due to the explicit modelling of the 
long-range toxin interaction described below). However, our prediction of transient 
three-strain coexistence in cyclic scenario I around a reduced C strain ratio of rC=0.1 
(figure 3 in the main text) remained valid for lattices with 1500x1500 sites. The 
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images of simulated bacterial colonies presented in our study stem from simulations 
using triangular lattices (lattice sites with 6 nearest neighbours). Only negligibly small 
changes were observed when using square lattices with Moore neighbourhoods 
(lattice sites with 8 nearest neighbours; growth rates along diagonal directions were 
reduced by a factor of 1/√2. The length scale of our model was fixed by interpreting 
the lattice’s side length as 7.14 mm of physical length. Each lattice site carried an 
integer valued simulation parameter to denote the locally dominant strain of either 
sensitive  (S), resistant (R), or colicin producing (C) E.coli cells, or to denote 
uncolonised area (agar site A). In the following, we occasionally refer to S, R, or C 
lattice sites by which we mean the associated parameter that described the locally 
dominant strain. We did not consider dynamics on sub-lattice scales but only 
between different lattice sites. As only around 3% of bacterial C cells actually 
produce and emit colicins [11], our theoretical model needed to distinguish between 
lattice sites dominated by non-toxic wild-type cells (Cwild) or by toxic cells (Ctoxic). 
Colicin-producing E.coli cells lyse upon the emission of colicins, but we did not find it 
necessary to consider lattice sites dominated by lysed C cells in order to reproduce 
bacterial segregation patterns. However, sensitive E.coli cells suffer DNA 
degradation and growth inhibition upon the uptake of diffusing colicin, leading to 
subsequent lysis. Our model accounted for the growth inhibition by distinguishing 
between lattice sites dominated by active (Sactive) or by growth inhibited cells (Sinhib.). 
The mesoscopic bacterial colonisation of agar sites by adjacent colonised sites is 
described by the following interaction scheme: 
 Cwild + A → Cwild + Cwild (0.97 µm,C) 
 Cwild + A → Cwild + Ctoxic (0.03 µm,C) 
 R + A → R + R (µm,R) 
 Sactive + A → Sactive + Sactive (µm,S) 
These processes occured at the mesoscopic growth rates listed in brackets. As 
apparent from these interactions, we assumed that 3% of agar lattice sites colonised 
by adjacent Cwild sites turned out to be dominated by toxic cells. Toxic C sites could 
not proliferate to adjacent agar sites because colicin-emitting cells are lysed during 
the emission [11]. Lattice sites that were dominated by growth inhibited S cells were 
also excluded from proliferation. Lattice sites could not be recolonised. Toxic C sites 
were depicted in slightly lighter colours than wild C sites in pictures of simulated 
bacterial colonies, inhibited S sites in slightly darker colours than active S sites.  
“Chemical reactions” of the above form can be directly translated into stochastic 
Master equations and can be evaluated with the help of the Gillespie algorithm [12]. 
Coexistence diagrams as shown in figure 5 (main text) required more than 106 
individual realizations of the expansion process (statistics over 250 runs for each of 
the 75x75 parameter points). In order to generate these diagrams, an efficient 
implementation of the Gillespie algorithm was needed (we used a binary reaction rate 
tree [13]). We decided for the use of the Gillespie algorithm because it preserves the 
correct temporal dynamics of stochastic processes. Correct temporal dynamics were 
important for the inclusion of mesoscopic lag times and of the toxin interaction. The 
latter acted on a multitude of time scales, depending on the distance between 
sensitive and toxic lattice sites. 
As explained in section 1.2, only a part of inoculation areas was initially filled with 
bacteria. The remaining free space was colonised during the acceleration phase of 
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growth after bacteria awoke from their lag phase. We assumed that in silico 
inoculation areas were disc-shaped with radii of 1.5 mm and approximated that 25% 
of the areas were initially filled with bacteria. The reduced initial density enabled us to 
capture patterns that emerged inside the inoculation area of colonies. Given an initial 
strain ratio of rS:rR:rC, we initialised lattice sites within a distance of 1.5 mm of the 
simulation lattice’s centre to be dominated by either S, R, Cwild, or Ctoxic with 
probabilities 0.25 * (rS, rR, 0.97*rC, 0.03*rC) / (rS+rR+rC), respectively. The remaining 
vacant lattice sites were interpreted as agar. Simulations were stopped after a 
simulated colony had reached a radius of 3 mm. Our model did not consider that 
experimentally recorded growth curves levelled off at later times (retardation phase). 
This effect was due to dehydration of agar and possibly also nutrient depletion (cf. 
figure S9). However, the effect did not influence bacterial segregation patterns 
because these were mainly shaped during early growth phases. 
In our experiments, droplets of inoculum were taken from overnight culture in which 
the stationary growth phase had been reached. After inoculation, bacterial colonies 
required a certain time before lateral growth could be detected (figure S8a). The 
length of this time period differed from strain to strain and also depended on the 
expression of fluorescent markers and on the overall growth condition (figure S2). 
We reproduced the time dependence of radial colony growth during lag and 
acceleration phase with the help of the mesoscopic lag time τm in the following way. 
We required that the colonisation of agar lattice sites by adjacent colonised sites 
could only occur after a certain time τm had passed. The time differed from site to site 
and was drawn from a strain and marker dependent Gaussian distribution p(τm) (we 
use the same letter τm to denote the mean and the samples of the distribution, and 
also the random variable itself). The calibration of the distribution is described below. 
Different samples of τm on individual lattice sites introduced an effective time 
dependence of the local mesoscopic growth rate µm (it was zero on a lattice site 
before its lag time τm had passed). Such a time dependence of reaction rates is 
commonly beyond the scope of the classical Gillespie algorithm and extensions of 
the algorithm [14, 15] are numerically inadequate for large spatial systems. However, 
our (local) mesoscopic growth rates were simple piecewise constant functions of time 
and could be modelled by implementing a “stochastic clock”. This clock was a 
stochastic process that was executed at a high ticking rate, but did not change the 
system’s state. In this manner, we enforced frequent updates of the Gillespie 
algorithm’s event driven simulation time. After the simulation time had exceeded the 
mesoscopic lag time on a lattice site, the growth rate on that lattice site was set to its 
finite, strain and marker dependent value µm. Without the stochastic clock, it could 
have occurred that a local growth rate remained zero for too long. A high ticking rate 
of the stochastic clock ensured that time increments were small and reduced 
numerical errors due to deprecated zero growth rates. This way of incorporating time 
dependent growth rates incurred computational costs due to a larger number of 
exponentially distributed time increments that were needed to reach a specific 
simulation time. However, we found that these costs were negligible as compared to 
costs that arose from the Gillespie algorithm’s search of reaction channels. 
Furthermore, the stochastic clock was deactivated after all mesoscopic lag times had 
passed. 
We were now left with three parameters that needed to be adjusted to recover 
experimentally determined single-strain growth curves: the mesoscopic growth 
rate µm, the mean τm of the mesoscopic lag time’s Gaussian distribution p(τm), and 
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the distribution’s standard deviation Δτm. In order to reproduce the lag and 
acceleration phases of experimentally determined growth curves, we found it 
necessary to choose Δτm to be sufficiently large. We set the value of Δτm to the value 
of the time frame Δt (depending on the specific strain/marker combination). This time 
frame measured the range over which experimentally determined growth curves of 
single-strain colonies exhibited positive curvature (see section 2.1). 
As the next step, we adjusted µm and τm. For this purpose, we performed simulations 
for a wide range of values of these parameters and computed macroscopic growth 
rates µ and lag times τ from the resulting simulated growth curves (cf. section 1.2). 
By means of polynomial interpolation, we determined functional relations that 
connected µ and τ to µm and τm. By numerically inverting these relations, we 
determined values of µm and τm such that the resulting µ and τ matched values that 
had been determined from our experimental data (cf. section 1.2). We thereby 
obtained simulation parameters that made it possible to closely approximate 
experimentally determined growth curves. We compare such growth curves to 
averaged simulated growth curves in figure S9a (expansion of RmCh colonies; fast 
growth conditions). 
We also tested whether a model with fixed (i.e. not randomly distributed), 
strain/marker dependent mesoscopic lag times could approximate experimentally 
determined growth curves and segregation patterns. For this purpose, we assumed 
equal lag times τm for every lattice site initially colonised by a specific strain and 
expressed marker. Averaged simulated growth curves based on this model 
approximated experimental data reasonably well, with only small deviations during 
the acceleration phase (figure S9b). These differences originated from the simulated 
colonies’ abrupt radial expansion after the mesoscopic lag time had passed 
(simultaneously on every lattice site). However, we did not manage to reproduce 
experimentally observed segregation patterns with this model (after including the 
toxin interaction described in the next section). At equal initial strain ratios, the R 
strain was found to be the only survivor in all ecological scenarios (figure S10a). Due 
to the short lag time of R as compared to that of C (cf. figure S2), and also due to 
growth inhibition of S by colicin, lattice sites dominated by the R strain rapidly 
multiplied and barred other strains from uncolonised sites. At a low initial ratio of the 
C strain, at most two-strain coexistence of species was observed using this model. 
Furthermore, we tested a model that neglected the lag phase. For that purpose, we 
used the mesoscopic growth rates determined for the model with fixed, strain/marker 
dependent mesoscopic lag times, but subsequently set all lag times to zero. We 
thereby lose the possibility to reproduce experimentally observed growth curves. 
However, it turned out that the reduced model was able to reproduce bacterial 
segregation patterns seen in experiments. For cyclic scenario I and equal initial strain 
ratios, experimental and theoretical patterns matched even closer. A larger number 
of Cnfp sectors was observed (figure S10). The reduced model led to similar 
predictions on biodiversity zones, with three-strain coexistence around the reduced 
initial C strain ratio of rC=0.1 in cyclic scenario I. However, our original model based 
on Gaussian distributed mesoscopic lag times could reproduce both experimentally 
determined growth curves and predict the correct survivors of range expansions. The 
broadness of Gaussian distributions in this model significantly overlapped for 
different strain/marker combinations. This aspect appeared to be important for 
achieving the latter agreement. 
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2.3. Modelling of the Toxin Interaction 
The following section complements our model of single-strain colony growth with a 
theoretical approach to the toxin interaction between sensitive and toxic bacterial 
cells. In a schematic way, the interaction can be written as: 
 Ctoxic +  S → Ctoxic + Sinhib.  .  
Since the size of colicin lies on the order of a few nanometres (60 kDa [11]) and is, 
therefore, a factor 1000 smaller than individual E.coli cells, we believed an effective 
mesoscopic theory to be more suitable than a microscopic approach. In the 
experimental setting, colicin accumulates inside of toxic C cells and is emitted once 
lysis proteins trigger the carrier's cell death [11]. After colicins are released, they 
diffuse through the extracellular fluid surrounding bacterial cells until possibly being 
absorbed by sensitive E.coli. The sensitive cells are prone to the endonuclease 
activity of colicin and suffer a degeneration of their DNA. Thereby, they loose the 
ability to undergo cell divisions [16]. Eventually, these cells lyse. We resorted to an 
effective description of the process and neglected the time dependence of the 
emission and diffusion of colicins. This left us with a source and degradation process 
in which toxic C cells acted as sources of colicin. The diffusion constant of colicin is 
on the order of 10-7 cm2/s [17]. Hence, the diffusion of colicin happens on a much 
faster time scale than the time scale on which E.coli undergo cell division 
(approximately 1 h). Therefore, we assumed that sources and sinks in our model 
were essentially static in space. It followed from the source and degradation process 
that toxin producing C cells were surrounded by quasi-static, exponentially 
decreasing colicin concentration profiles [18, 19]. Therefore, we incorporated the 
toxin interaction on the mesoscopic scale of our theoretical model by assuming 
exponentially decreasing colicin profiles κ ∗exp(−x / λ)  around toxic C sites, with 
approximated characteristic scale λ = 125 µm, and approximated strength κ = 3 h-1. 
The approach was robust against changes in the colicin concentration profiles, as 
long as growth inhibition of sensitive sites acted strongly around sources, and 
concentration profiles fell off over distances between λ = 100–175 µm (in consistency 
with literature values [5, 6]; note that these references give maximal colicin ranges, 
not characteristic length scales). The concentration profiles defined the rates at which 
sensitive lattice sites at a distance x from a toxic C site absorbed colicin and became 
growth inhibited. Our results depended only weakly on κ for values between 1.5 h-1 
and 3.5 h-1. For larger lattices, the value of κ had to be decreased in order to 
compensate for a larger number of toxic lattice sites (note that sites of our simulation 
lattice do not correspond to individual bacteria). The parameters chosen for our 
model made it possible to recover qualitative features that had been observed during 
the competition of neighbouring single-strain Cnfp and SmCh colonies (figure S11). 

2.4. Comparison of Segregation Patterns 
The previous two sections outline how the parameters of our theoretical model of 
range expansions were adjusted to reproduce experimentally determined growth 
curves of single-strain colonies. It also describes the way in which we modelled the 
allelopathic interaction between toxic and sensitive E.coli. Combining these two 
aspects of our model, and initializing inoculation areas with multiple bacterial strains 
made it possible to recover bacterial segregation patterns seen in experiments. As 
explained in the main text, our first theoretical intent was to test whether our fully 
calibrated model was able to reproduce patterns observed at equal initial strain ratios 
(S:R:C = 1:1:1). Figures S3 and S4 give a comparison between experimental and 
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simulated colonies for these ratios. These two figures exemplify experimentally 
observed and simulated bacterial colonies for the ecological scenarios I-III and for 
the auxiliary scenarios I*-III*. The auxiliary scenarios were obtained by exchanging 
the strains expressing nfp and GFP (see section 1.1.2).  We tested the stability of 
segregation patterns that had been observed for slow growth conditions (figure S3) 
by performing experiments and simulations for fast growth conditions (figure S4). Our 
theoretical model recovered the essential features of expanding colonies that we saw 
in competitive range expansions of S, R, and C at equal initial ratios. It correctly 
predicted the strains that populated the fronts of colonies. Even subtle details such 
as the strains dominating the areas of inoculation showed agreement between 
experiment and theory for most of the scenarios. However, our simulation could not 
capture the fine and evenly distributed sectors formed by the R and C strains in the 
cyclic scenarios I and I*. We attributed this observation to the fact that our simulation 
was limited to a two-dimensional lattice, whereas natural colonies grew in several 
bacterial layers. Our theoretical model could not account for layer-dependent 
alterations of growth parameters.  
Our experimental and theoretical studies agreed on the observation that for equal 
initial strain ratios, at most two strains survived a competitive range expansion. One 
of these two was always the R strain, irrespective of the ecological scenario. The R 
strain was, however, weakened by the expression of mCherry in cyclic scenarios I 
and I*, such that it had to share the expanding fronts of colonies with the C strain. As 
outlined in the main text, we asked ourselves whether it was possible to tune initial 
strain ratios to allow for coexistence of all three strains. Based on the two-strain 
coexistence observed in cyclic scenario I, we used our theoretical model to study 
how bacterial segregation patterns changed upon reducing the C strain’s initial ratio. 
Following a transient increase of the width of R strain sectors, we observed 
qualitative changes around an initial C strain ratio of 0.1 (figure 3 in the main text). 
Approximately 24% of our simulations showed coexistence of all three strains for this 
initial ratio, with C strain sectors being the smallest (figure S6). In order to test 
whether this prediction also held true in experiments, we performed range expansion 
experiments for cyclic scenario I at initial strain ratios S:R:C = 1:1:0.1. A comparison 
between figures S5 and S6 showed adequate agreement. It was, furthermore, tested 
whether the results obtained from our simulations agreed with experimentally 
observed segregation patterns for the other ecological scenarios (figures S5 and S6), 
and whether the agreement was robust against changes of overall growth conditions 
(figure S7). We found agreement between all patterns except for scenario I under 
fast growth conditions and, to a lesser degree, for scenario I* under slow growth 
conditions. In the former case, experimentally observed colonies displayed an 
increased amount of sensitive bacteria around their areas of inoculation, but the 
sensitive bacteria’s radial growth was inhibited and small C strain sectors eventually 
emerged. A similar phenomenon occurred in the second case (cyclic scenario I*, 
slow growth conditions) where expanding C strain sectors arose at a certain distance 
from the area of inoculation and impeded the growth of S (small amounts of S could 
still be found along the expanding front).  
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Table S1. Simulation parameters and data on single-strain colony growth.  
 

Dimensions of the lattice 750 x 750 
Physical side length of the lattice 7.14 mm 
Tessellation of the lattice triangular 
Radius of the initial colony 1.5 mm 
Colony radius at which the simulation is stopped 3.0 mm 
Filling fraction of the inoculation area 0.25 
Fraction of Ctoxic among initial C sites and among offspring of Cwild sites 0.03 
Characteristic length scale λ of the toxin interaction 125 µm 
Local strength κ of the colicin interaction 3 h-1 

Strain and marker dependent observables of expanding single-strain colonies 
 Cnfp CGFP CmCh Rnfp RGFP RmCh Snfp SGFP SmCh 

Slow growth conditions (S) 

µ (µm/h) 37.3 
(4.2%) 

34.7 
(4.3%) 

29.3 
(4.7%) 

50.6 
(2.5%) 

50.9 
(2.9%) 

39.2 
(4.4%) 

50.6 
(3.7%) 

47.6 
(4.0%) 

38.3 
(6.0%) 

τ (h) 
11.12 
(3.7%) 

10.71 
(2.0%) 

10.97 
(2.6%) 

7.78 
(4.3%) 

8.19 
(2.8%) 

8.73 
(2.6%) 

7.96 
(3.7%) 

8.20 
(3.4%) 

8.69 
(2.8%) 

Δt (h) 3.11 
(9.7%) 

3.42 
(2.9%) 

3.43 
(6.1%) 

2.89 
(10.1%) 

3.50 
(7.5%) 

3.01 
(6.1%) 

3.87 
(5.8%) 

4.43 
(2.4%) 

4.24 
(7.0%) 

Fast growth conditions (F) 

µ (µm/h) 39.3 
(3.0%) 

40.6 
(1.2%) 

34.2 
(2.2%) 

52.1 
(1.3%) 

57.3 
(1.7%) 

43.6 
(2.2%) 

50.3 
(2.9%) 

56.2 
(5.4%) 

42.4 
(1.7%) 

τ (h) 
6.94 
(2.1%) 

8.17 
(1.8%) 

8.95 
(2.4%) 

5.33 
(2.9%) 

5.89 
(1.8%) 

6.15 
(1.8%) 

5.39 
(2.2%) 

5.49 
(4.2%) 

6.14 
(2.3%) 

Δt (h) 4.55 
(0.9%) 

5.02 
(1.4%) 

5.37 
(2.8%) 

2.52 
(6.0%) 

2.28 
(3.5%) 

3.00 
(6.9%) 

2.30 
(4.2%) 

2.75 
(11.4%) 

3.45 
(6.8%) 

 
The upper half of the table lists important parameter values of our theoretical model. We 
refer the reader to section 2 of appendix S1 in which each of these parameters is 
explained in detail. The lower half of the table lists maximal radial growth rates (µ), lag 
times (τ), and time frames (Δt) that were obtained from logistic fits of experimental data on 
the growth of single-strain colonies (each averaged over three independent realizations). 
Values in brackets represent relative standard errors of the mean (r.s.e.m.). For a 
definition of parameters, we refer the reader to sections 1.2 and 2.1 in appendix S1. The 
data were used to calibrate our simulations as explained in section 2.1.  
 



Figure S1. Impact of fluorescent protein expression on single-strain colony growth rates.  
 

 
 
This figure illustrates the growth rates µ (µm/h) of single-strain S, R, and C colonies when 
cells expressed the green fluorescent protein GFP (green), the red fluorescent protein 
mCherry (red), or no fluorescent protein (grey) for the different growth conditions slow 
(light colours) and fast (dark colours). Data represent averages over three different 
experiments. Error bars give standard errors of the mean (s.e.m.). (a) The data are 
grouped by strain and growth condition. While expression of the green fluorescent protein 
had only a small effect on bacterial growth rates, they were significantly reduced when the 
red fluorescent protein mCherry was expressed. Independent of the expressed fluorescent 
protein, the C strain showed a reduced growth rate as compared to the S and the R strain 
whose growth rates were of comparable magnitude. The growth rates are also listed in 
table S1. (b) The data are grouped by growth condition and ecological scenario (including 
the auxiliary scenarios I*-III* introduced in appendix S1, section 1.1.2) 
 



Figure S2. Impact of fluorescent protein expression on single-strain colony lag times.  
 

 
 
This figure illustrates the lag times τ (h) of single-strain S, R, and C colonies when cells 
expressed the green fluorescent protein GFP (green), the red fluorescent protein mCherry 
(red), or no fluorescent protein (grey) for the different growth conditions slow (light colours) 
and fast (dark colours). Data represent averages over three different experiments. Error 
bars give standard errors of the mean (s.e.m.). (a) The data are grouped by strain and 
growth condition. The lag time of the C strain was significantly longer as compared to 
those of the R and the S strain. Expression of the green or red fluorescent protein resulted 
in no, or only a small, change in lag time (significant change only for the strain C with fast 
growth conditions). The lag times are also listed in table S1. (b) The data are grouped by 
growth condition and ecological scenario (including the auxiliary scenarios I*-III* 
introduced in appendix S1, section 1.1.2) 
 
 



Figure S3. Colony development for slow growth conditions (initial strain ratios 
S:R:C = 1:1:1, observation after 48 h).  

 
 
(a) Experimental data, (b) Simulation results. Triplicates of experimental colonies were 
analysed for each ecological scenario. The S, R, and C strains expressed fluorescent 
proteins as depicted above the individual rows: black = nfp, green = GFP, red = mCherry.  
Red lines depict the edge of the colony in scenarios II* and III. White scale bars 
represent 1 mm. Scenarios marked by an asterisk (*) are auxiliary scenarios that were 



obtained by exchanging the assignment of GFP between the two strains not expressing 
mCherry (see appendix S1, section 1.1.2). 



Figure S4. Colony development for slow (S1) and fast (F1) growth conditions (initial strain 
ratios S:R:C = 1:1:1, observation after 48 h).  
 

 
 
(a) Experimental data, (b) Simulation results. We analysed experimental colonies obtained 
for each ecological scenario. The S, R, and C strains expressed fluorescent proteins as 
depicted above the individual rows: black = nfp, green = GFP, red = mCh.  Red lines 
depict the edge of the colony in scenarios II* and III. White scale bars represent 1 mm. 



Scenarios marked by an asterisk (*) are auxiliary scenarios that were obtained by 
exchanging the assignment of GFP between the two strains not expressing mCherry (see 
appendix S1, section 1.1.2). 



Figure S5. Colony development for different initial ratios of the C strain (experimental 
data, observation after 48 h).  
 

 
 
For slow growth conditions, different initial ratios of the colicin producing strain C were 
added at the time of inoculation t0, resulting in different colicin concentrations. We 
analysed experimental colonies obtained for each ecological scenario. The S, R, and C 
strains expressed fluorescent proteins as depicted above the individual rows: black = nfp, 



green = GFP, red = mCh. Initial ratios S:R:C from left to right: S1 = 1:1:1, S0.5 = 1:1:0.5, 
S0.1 = 1:1:0.1. Corresponding colony images obtained from simulations are shown in 
figure S6. Red lines depict the edge of the colony in scenarios II* and III. White scale bars 
represent 1 mm. Scenarios marked by an asterisk (*) are auxiliary scenarios that were 
obtained by exchanging the assignment of GFP between the two strains not expressing 
mCherry (see appendix S1, section 1.1.2).  



Figure S6. Colony development for different initial ratios of the C strain (simulation 
results).  
 

 
 
Simulations of colony growth under slow growth conditions were performed for different 
initial ratios of the colicin producing strain C. The figure displays final colonies acquired 
from simulations for each ecological scenario and accompanies the experimentally 
observed colonies shown in figure S5 (see that figure for further information on the 



presentation; initial strain ratio SX = 1:1:X for S, R, and C, respectively). Simulation 
parameters were chosen as listed in table S1. White scale bars represent 1 mm.  
Scenarios marked by an asterisk (*) are auxiliary scenarios that were obtained by 
exchanging the assignment of GFP between the two strains not expressing mCherry (see 
appendix S1, section 1.1.2). 
 



Figure S7. Colony development at a low initial ratio of the C strain for slow (S0.1) and fast 
(F0.1) growth conditions (initial strain ratios S:R:C = 1:1:0.1, observation after 48 h).  
 

 
 
(a) Experimental data, (b) Simulation results. We analysed experimental colonies obtained 
for each ecological scenario. The S, R, and the C strain expressed fluorescent proteins as 
depicted above the individual rows: black = nfp, green = GFP, red = mCh. Red lines depict 
the edge of the colony in scenarios II* and III. White scale bars represent 1 mm. Scenarios 



marked by an asterisk (*) are auxiliary scenarios that were obtained by exchanging the 
assignment of GFP between the two strains not expressing mCherry (see appendix S1, 
section 1.1.2). 



Figure S8. Definition of the growth rate µ, of the lag time τ and of the time frame Δt.  
 

 
 
(a) Three experimental data sets (black dots) exemplify the radial expansion of R mCherry 
(RmCh) colonies. The R strain expressed mCherry and proliferated under fast growth 
conditions (F). Red solid lines: logistic fits of the experimental data (cf. equation (1)). 
Green solid lines: definition of the maximal growth rate µ and of the lag time τ. Black lines 
with respect to the uppermost growth curve: (right dashed line) linear fit through the point 
of maximal growth rate µ, (left dashed line) linear fit shifted by the lag time τ, (upper dotted 
line) radius rµ attained at the point of maximal growth rate, (lower dotted line) initial colony 
radius r0. (b) The black solid line exemplifies the curvature of the logistic fit of an 
experimentally determined growth curve (using the uppermost red curve shown in (a)). 
The time frame Δt = t2 – t1 measures the time over which the growth curve exhibits positive 
curvature. The times t1 and t2 mark the locations at which the curvature assumes its 
maximal value multiplied by exp(-0.5). The Gaussian function defined in equation (2) of 
appendix S1 provided a good approximation of the growth curve’s regime of positive 
curvature (red dashed line). 
 



Figure S9. Comparison between experimentally determined and simulated growth curves 
for the growth of R mCherry (RmCh) colonies under fast growth condition (F).  
 

 
 
The experimentally determined growth curves (black dots) in figure S8a were shifted by 
their initial colony radii and were compared with averaged simulated growth curves. 
Dashed black lines represent logistic fits of experimental data (equation (1)) as discussed 
in section 1.2 of appendix S1. The mean growth curve obtained from simulations is shown 
as red line and was acquired by averaging over 1000 simulated growth processes. Error 
bars depict one standard deviation of the sample of simulated growth curves. The insets 
focus on the initial regimes of maximal positive curvature (acceleration phase).  
(a) The averaged simulated growth curve was based on a model with Gaussian distributed 
mesoscopic lag times τm (see section 2.2 of appendix S1). The rescaled Gaussian 
distribution that was used for sampling of τm on individual lattice sites is illustrated on the 
negative y-axis. The lag and acceleration phase of experimental growth curves were 
approximated reasonably well. We attributed the deviations that arose at later times 
(t > 17.5 h) to the dehydration of agar and to nutrient depletion in the experimental system. 
(b) When fixed (i.e. not randomly distributed), strain/marker dependent mesoscopic lag 
times were used on initially colonised lattice sites, we observe a larger deviation between 
simulated growth curves and experimental data during the acceleration phase. The 
corresponding model also failed to reproduce experimentally observed segregation 
patterns.	
  



Figure S10. Simulated colonies based on different implementations of mesoscopic lag 
times, and visualisation of the toxin interaction’s impact on segregation patterns.  
 

 
 
All figures correspond to cyclic scenario I and slow growth conditions. The images may be 
compared to their corresponding experimental counterparts in figures 2a and 4a (main 
text). Initial strain ratios and the strain/fluorescent marker combination are depicted above 
the colonies. White scale bars represent 1 mm. (a) As discussed in appendix S1, a model 
based on fixed (i.e. not randomly distributed), strain/maker dependent mesoscopic lag 
times failed to reproduce experimentally observed segregation patterns. At equal initial 
strain ratios, only the R strain persisted, whereas R and C survived in experiments. The 
model also failed to capture the experimentally observed coexistence of all three strains 
when the C strain ratio was reduced to rC=0.1. (b) A model that neglected the lag phase 
could capture experimentally observed segregation patterns both at rC=0.1 and rC=1. The 
model could not be used to reproduce experimentally determined radial growth curves.  
(c) A model based on randomly distributed mesoscopic lag times could reproduce both 
experimentally determined growth curves and predict the correct surviving strains of 
competitive range expansions. A fewer number of Cnfp sectors was observed as compared 



to the results shown in (b). Predictions on biodiversity zones (figure 3) were similar. 
(d) Without toxin interaction, simulations predicted that the sensitive S strain survived even 
at equal initial strain ratios. The patterns shown for C strain ratios of rC=0.1 and rC=1.0 
were at odds with the experimental results shown in figures 2a and 4a. Colicin was always 
present in these experiments. 
 



Figure S11. Effective range of colicin.  
 

 
 
Colicin produced by toxic C cells diffuses through extracellular fluid until possibly being 
absorbed by sensitive (S) cells. Upon absorption, the endonuclease activity of colicin 
causes DNA degeneration of the S cells and inhibits further cell divisions. Eventually, the 
S cells are lysed. These figures exemplify the interaction between single-strain Cnfp (black) 
and SmCh (red) colonies under slow growth conditions. White scale bars represent 1 mm. 
(a) Experimental results. A droplet of inoculum that contained 1 µl of SmCh was placed next 
to a droplet that contained 1 µl of Cnfp (with a small overlap). The picture was taken after 
12 hours of incubation at 37°C. Up to this time, growth was mainly observed in the inside 
of the areas of inoculation, accompanied by an increasing thickness of the colonies. The 
colonies’ effective radii increased only slightly. (b) Simulation of the experiment. The initial 
colony radii were set to 1.5 mm and the simulation was stopped after 12 hours of 
simulated time. Darkened red regions represent lattice sites with a majority of lysed S 
cells. The sparsely populated area between the two colonies could not be colonised by S 
cells due to inhibition by the toxin. Simulation parameters were chosen in accordance with 
table S1.	
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