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Chapter 1

Introduction

The phenomenon of superconductivity (SC) gives the opportunity to transport an elec-

trical current in a material without any resistance below a given critical temperature Tc.

High-tech applications for superconductors are numerous, however, a broad application

is hindered by the low temperatures which are necessary for the superconducting state

to persist. Thus, it is not surprising that the ongoing search for new high-temperature

superconductors, in a hope of �nding maybe the long anticipated room temperature

superconductor, shapes several �elds of modern science.

Recently, in 2015, the �eld of high-temperature superconductivity (HT-SC) has

experienced groundbreaking news with the realization of superconductivity up to a

critical temperature of 203 K in H3S, which is the hydrogen-rich, high-pressure phase

of the well known compound H2S. [1] Notably, the fundamental idea of hydrogen-rich

superconductors goes back to the theoretical work of Ashcroft [2] in 1968 who proposed

metallic hydrogen to be a superconductor with a very high critical temperature. The

hydrogen-rich H3S system is the �rst time in history that a previously unknown com-

pound was �rst predicted from theory to be a high-temperature superconductor [3,4],

which was later experimentally con�rmed. [1,5] This emphasizes the crucial role theory

plays nowadays for new advances in the �eld of HT-SC.

Considering this actual relevance of SC in research, with more than �fty thou-

sand publications in the last ten yearsA, one would not expect that the phenomenon

is known for more than 100 years. It was �rst discovered by Onnes [6,7] in 1911 for

mercury below its critical temperature Tc of 4.2 K. For a long period of time nobody

believed that superconductivity could ever exist at temperatures above approximately

20 K. This was supported by the BCS theory [8] of Bardeen, Cooper and Schrie�er

AAccording to a search in the Web of Science v.5.22.3 performed in August 2016 for the terms

superconductor or superconductivity and for the years from 2005 to 2015
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Chapter 1. Introduction

who presented in 1957 a reasonable concept for the occurrence of superconductivity.

However, within this theory the formation of the necessary Cooper pairs is bound to a

phonon mediated interaction which was believed to restrict the critical temperature to

around 30 K.B In 1986 Bednorz and Müller discovered superconductivity in the cuprate

La1.85Ba0.15CuO4
[9] with a surprising Tc of 35 K. Nowadays this extraordinary discov-

ery is known as the beginning of high-temperature superconductivity. Shortly after, a

huge amount of new cuprate superconductors with intriguing high Tc values was found.

Although the cuprates have high critical temperatures, their material properties are

rather poor due to their ceramic nature.

It was only in 2008 when the iron arsenides or more general the transition metal

pnictides were discovered as second family of high-temperature superconductors. Great

international interest followed as Kamihara et al. [10,11] reported a critical temperature of

26 K in �uorine doped LaOFeAs. Previously, superconductivity was already discovered

in LaOFeP [12] and LaONiP [13,14], however, the relatively low Tc values of about 7 K

let these discoveries pass without further noti�cation. The highest reported critical

temperature of an iron pnictide so far is 55 K in SmO1−xFxFeAs [15], which has been at

this point the highest Tc since the days of the cuprate superconductors. Because of these

relatively high Tc values already under normal pressure and because the iron pnictides

are metals instead of ceramics, leading to more desired material properties, this group

is still very promising for the �eld of superconductivity. As it was already stressed, not

only the experimental advances have brought valuable new insights, but also theoretical

investigations of the iron pnictides have been performed very extensively and are an

important �eld of nowadays condensed matter science.

However, most iron pnictides are quite di�cult to characterize computationally by

density functional theory (DFT). [16�18] This is at least partly due to the complex phase

diagrams the iron superconductors exhibit, meaning most compounds show a structural

and magnetic phase transition at low temperatures. In particular, it is typically neces-

sary to dope the respective mother compounds e.g. by substitution of elements in order

to suppress the antiferromagnetic order and to induce superconductivity. Furthermore,

it is commonly believed that the emergence of unconventional superconductivity in the

iron pnictides is mediated by antiferromagnetic spin �uctuations and thus connected

to their complex magnetic properties. [19�21]

This work concentrates on a �rst-principles theoretical description of primarily the

antiferromagnetic phase of the iron pnictides and their related anisotropic properties.

BThat conventional superconductivity cannot exceed around 40 K was commonly believed until the

latter mentioned H3S was discovered, which is considered to be a conventional superconductor [1]
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For this goal it is most reasonable to focus on the so-called 122-family of iron pnictides

based on the mother compound BaFe2As2 as a prototype system, originally discovered

as a superconductor by Rotter et al. [22,23]. The superconductors of this family were most

extensively studied concerning their magnetic properties [18,24�26], di�erent elements for

substitution [22,27�30], angle-resolved photoemission spectroscopy (ARPES) [31�37], trans-

port properties [38�44] and hyper�ne interactions [45�48]. Consequently, the BaFe2As2 fam-

ily provides a huge range of experimental data concerning all physical properties of

interest, making it the ideal candidate for an extensive theoretical study.

A theoretical approach which can comprehensively deal with the iron pnictides

should be able to account for several key issues. First of all, the chemical disorder

which is introduced through the substitution of elements has to be dealt with, as

it was stressed to be of signi�cant importance. [49�52] Very recently, also the impact

of spin-orbit coupling for the iron superconductors was emphasized [53], meaning the

treatment of relativistic e�ects must not be neglected. Ideally, one should be able to

handle strong correlations if necessary, which are commonly discussed for the iron pnic-

tides. [54�59] Last but not least, spectroscopic properties like e.g. ARPES [31�37] or elec-

trical transport [38�44] are two main �elds of interest for the iron superconductors, which

are typically di�cult to describe by theory. One possible approach to deal simultane-

ously with the mentioned issues is the Munich SPR-KKR program package of Ebert

et al. [60,61] which is based on the multiple scattering Korringa-Kohn-Rostoker-Green

function (KKR-GF) method. The present work is the �rst that applies the Munich

SPR-KKR package in great detail to the �eld of iron pnictides, providing an additional

and useful approach to the established community. This gives in particular the oppor-

tunity to discover new roads and possibilities in order to understand unconventional

superconductivity in this important family of high-temperature superconductors.

Therefore, Chapter 2 will mainly introduce the physical and mathematical back-

ground of the applied KKR-GF method. Furthermore, the theoretical basics behind

ARPES and electrical transport are brie�y introduced. In Chapter 3 the chemical as-

pects of the iron pnictides are presented in general and also the 122-family of BaFe2As2,

as compound of interest, is discussed in detail. After this general background the

thesis is split into �ve Chapters, each one build around a respective publication of

the author. Chapter 4 introduces �rst work on the antiferromagnetic, orthorhombic

phase of BaFe2As2 and Ba(Fe1−xCox)2As2 which focuses on the magnetic properties

and the resulting anisotropy in the electronic structure. Chapter 5 continues with

the previous publication but now investigates directly the detwinned ARPES spec-

tra of BaFe2As2 and Ba(Fe1−xCox)2As2. Based on this work one can understand the

3



Chapter 1. Introduction

anisotropy observed in ARPES spectra as a direct consequence of the antiferromag-

netic order. Furthermore, surface e�ects are discussed helping to identify the surface

termination. Chapter 6 is related to ARPES experiments performed at the Swiss

Light Source (SLS) of the Paul Scherrer Institute in Switzerland on optimally doped

(Ba1−xKx)Fe2As2. The applied ARPES calculations in combination with dynamical

mean �eld theory (DMFT) approaches for strong correlations will reveal important

consequences for the e�ective mass enhancements based on e�ects which are related

to the ARPES spectra rather than to correlations. Chapter 7 investigates the ex-

tensively discussed resistivity anisotropy of BaFe2As2 and its substituted compounds

based on the Kubo-Greenwood formalism. Apart from common theories which explain

this phenomenon in terms of spin �uctuations or extended impurity states one can

understand this observation in terms of an anisotropic magnetoresistance based on the

anisotropic electronic structure. Chapter 8 �nally compares a huge variety of di�erent

types of substitution in BaFe2As2 and calculates the corresponding hyper�ne �elds in-

cluding spin-orbit coupling. This gives important insights for the experimentally used
57Fe Mössbauer spectroscopy. Finally, Chapter 9 summarizes all results and concludes

about the gained new insights.
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Chapter 2

Theoretical framework

The basis of quantum mechanics was already derived in the 1920s by the work of e.g.

de Broglie [62], Heisenberg [63], Born and Jordan [64], Schrödinger [65], and Dirac [66�68].

Even today the relativistic, time-dependent Dirac equation [66] (2.1) is the most sophis-

ticated basis in order to describe electronic properties. In a short notation it can be

expressed by

iγµ∂µψ = mψ , (2.1)

as written on the commemorative marker stone in Westminster Abbey using natural

units (~ = c = 1), the gamma matrices γµ for µ = 0, 1, 2, 3, the 4-gradient ∂µ, the

particle mass m and the wave function ψ.

Of course more feasible approaches are used to solve the electronic many particle

problem, most of them based on the much simpler Schrödinger equation. In quantum

chemistry Hartree-Fock [69,70] (HF), second order Møller-Plesset perturbation theory [71]

(MP2), con�guration interaction (CI) or the more sophisticated coupled cluster (CC)

approach [72,73] are commonly used. However, these methods are rather impracticable

to describe solids, thus density functional theory (DFT) is nowadays the most often

used approach in the �eld of solid state theory. The history of DFT goes back to the

late 1920s to the work of Thomas and Fermi [74�76], however, the validity of a mapping

to the density was �rst only postulated and could not be proved until 1964 by the

Hohenberg-Kohn theorems [77].

Apart from these common knowledge approaches this chapter will focus on the

Korringa-Kohn-Rostoker-Green function (KKR-GF) method to derive electronic prop-

erties as used in the Munich spin polarized relativistic Korringa-Kohn-Rostoker (SPR-

KKR) code package [61] applied for the presented work. In addition the physical prop-

erties behind the phenomena of interest should be brie�y reviewed.
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Chapter 2. Theoretical framework

2.1 The Korringa-Kohn-Rostoker Green function

method

Most approaches to calculate the electronic properties of a given system are based on

the Schrödinger equation [65] using wave functions. These wave functions are usually

expanded in terms of a de�ned basis set and the eigenvalue principle is applied to

solve the corresponding problem. Common examples are the pseudopotential methods

where plane waves are used as a basis or linear band structure methods [78] like e.g.

the linear augmented plane wave (LAPW) method which uses a separation of space

in interstitial space described by plane waves and a linear combination of atomic like

orbitals near the nuclei. [79] However, variational methods su�er from the problem that

a high number of basis functions is needed for very accurate results.

A di�erent approach is used in the KKR method which is based on multiple scatter-

ing theory (MST). The basic idea of the present version of the KKR ansatz goes back to

the work of Korringa [80] in 1947 and Kohn and Rostoker [81] in 1954. The central feature

of the KKR method is an integral formulation of the Schrödinger equation with an im-

plied minimal basis set provided by energy and angular momentum dependent partial

waves. It is further possible to provide the Green function (GF) of a system, as shown

by Beeby [82] in 1964. The modern development of non-relativistic KKR was in�uenced

by the work of Faulkner [83,84], Faulkner and Stocks [85] and Gyor�y and Stocks [86]. A

relativistic formulation of the KKR formalism was established by the work of Onodera

and Okazaki [87], Strange et al. [88], Weinberger [89] and Ebert [90].

Using a KKR-GF approach has several advantages. First, one should emphasize

the direct access to the Green function for a given system, which is enough to calcu-

late all single-particle expectation values and furthermore it does not implicitly require

spatial periodicity concerning the arrangement of atoms. In addition, the Green func-

tion of a perturbed system is rather easy to access by means of the Dyson equation.

The approach is split into two separate parts: the �rst potential-step considers only

the solution of a single-site problem, whereas the multiple scattering scenario can be

accounted for by the second geometry-step involving an array of �nite or in�nite scat-

tering centers. Altogether, these properties make the KKR-GF method extremely

powerful when talking about vacancies or impurities in a crystal [91], when considering

surfaces and interfaces [92] and also for disordered alloys [93]. Additionally, this approach

is in particular useful to describe unoccupied states which can have arbitrarily large

energies as is needed for spectroscopic applications.

The decomposition of space is generally done into an atomic region seen as an

6



2.1 The Korringa-Kohn-Rostoker Green function method

isolated system which is embedded into an electron gas. For example, the mu�n-tin

approach implies touching spheres for the atomic regions and an interstitial space with

a constant potential . Also very common in the KKR-GF formalism is the so-called

atomic sphere approximation (ASA), which uses overlapping spheres for the atomic

centers until a �lling of space is reached. In a more sophisticated way a full potential

(FP) approach can be used, which describes the space in terms of Wigner-Seitz cells

leading to a non-spherical description.

The time-independent formalism of the modern KKR-GF method will be brie�y

summarized in the following, based on the work of Ebert [61,94�96] and others [97�99].

2.1.1 General properties of the single-particle Green function

The time-independent Schrödinger equation [65], associated with the Hamiltonian Ĥ
and energy E, can be expressed by avoiding the eigenstates |ψ〉 in favor of the integral

operator Ĝ:

(E − Ĥ)Ĝ = 1̂ or Ĝ = (E − Ĥ)−1 . (2.2)

Here, Ĝ is called the resolvent operator, or equivalently the Green operator of the

Hamiltonian Ĥ. For known eigenvalues Ei and eigenstates |ψi〉 one can de�ne Ĝ in its

spectral representation

Ĝ =
∑

i

|ψi〉〈ψi|
E − Ei

, (2.3)

as a solution to the inhomogeneous Schrödinger equation for a complete set of or-

thonormal wave functions |ψi〉. However, for a continuous eigenvalues spectrum the

summation of equation (2.3) has to be replaced by an integral. To be more speci�c, this

summation is not de�ned for a Hermitian operator and has to be evaluated as a contour

integral because of singularities at the real energies Ei. This leads to a discontinuity

of the Green function. Thus, the limits while approaching the real axis from the up-

per and lower complex half-plane have to be investigated separately. [100] Consequently,

two kinds of Green functions are de�ned, depending whether the complex energy ar-

gument approaches the real axis from above (Ĝ+, retarded Green function) or from

below (Ĝ−, advanced Green function). They are formally given by the corresponding

spectral representation,

Ĝ± = lim
δ→0+

(E − Ĥ ± iδ)−1 , (2.4)

Ĝ± = lim
δ→0+

∑

i

|ψi〉〈ψi|
E − Ei ± iδ

. (2.5)

7



Chapter 2. Theoretical framework

The relation between the retarded and advanced Green functions is given by the ex-

pression (Ĝ+)† = Ĝ−, while the so-called homogeneous Green function G̃ is de�ned

as the di�erence between Ĝ+ and Ĝ−:

G̃ = Ĝ+ − Ĝ− = 2i Im Ĝ+ . (2.6)

If necessary, the Green operator Ĝ can be always recovered from

Ĝ(E) =
i

2π

∫ +∞

−∞

G̃(E ′)

E − E ′ dE
′ . (2.7)

For a perturbed system the full Hamiltonian Ĥ = Ĥ0 + V̂ splits into that of an

unperturbed reference system Ĥ0 and the perturbation V̂ . With respect to equation

(2.2) the Green function of the full perturbed system Ĝ = (E−Ĥ0−V̂ )−1 can lead to the

Dyson equation (2.8) as implicit representation. This can be iteratively reformulated

with the transition- or T-operator T̂ :

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ , (2.8)

= Ĝ0 + Ĝ0V̂ Ĝ0 + Ĝ0V̂ Ĝ0V̂ Ĝ0 + ... ,

= Ĝ0 + Ĝ0

(
V̂ + V̂ Ĝ0V̂ + ...

)
Ĝ0 ,

= Ĝ0 + Ĝ0T̂ Ĝ0 , (2.9)

T̂ = V̂ + V̂ Ĝ0V̂ + ... , (2.10)

= V̂ + V̂ Ĝ0T̂ = V̂ (1− Ĝ0V̂ )−1 . (2.11)

Hence, the full perturbed Ĝ can be determined from the unperturbed reference

system Ĝ0 and the transition-operator T̂ . The Dyson equation can also be written in

terms of the real space representation

G(r, r′, E) = G0(r, r′, E) +

∫
d3r′′ G0(r, r′′, E)V (r′′)G(r′′, r′, E) , (2.12)

equivalent to equation (2.8). Analogously, the Schrödinger equation of a perturbed

system is given by

(E − Ĥ0)|ψ〉 = V̂ |ψ〉 = |χ〉 . (2.13)

By expanding |ψ〉 =
∑

i ai|φi〉 and |χ〉 =
∑

i bi|φi〉 in the orthonormal basis of the

8



2.1 The Korringa-Kohn-Rostoker Green function method

eigenfunctions of Ĥ0 one can derive

|ψ〉 =
∑

i

|φi〉〈φi|
E − Ei

V̂ |ψ〉 = Ĝ0V̂ |ψ〉 . (2.14)

However, equation (2.14) is not the full solution to the inhomogeneous Schrödinger

equation, because one neglects all solutions |φ0〉, which satisfy the homogeneous prob-

lem (E−Ĥ0)|φ0〉 = 0, with V̂ being zero. These solutions can be added to |ψ〉, leading
to the Lippmann-Schwinger equation,

|ψ〉 = |φ0〉+ Ĝ0V̂ |ψ〉 , (2.15)

= |φ0〉+ Ĝ0V̂ |φ0〉+ Ĝ0V̂ Ĝ0V̂ |φ0〉+ ... , (2.16)

which is an implicit representation of |ψ〉. Thus it is a transformation of the Schrödinger

di�erential equation into an integral equation, in which the boundary conditions are

already implicitly contained in |φ0〉. Using the Born expansion in equation (2.16)

together with the de�nition of the T-operator from equation (2.10) on can derive an

expression of |ψ〉 in terms of |φ0〉:

|ψ〉 = |φ0〉+ Ĝ0T̂ |φ0〉 = (1 + Ĝ0T̂ )|φ0〉 . (2.17)

2.1.2 The free electron Green function

To derive solutions to the multiple scattering problem one starts from the non-relativistic

description of a free electron having momentum p and energy E = p2

2m
which is scat-

tered at a localized potential V . The corresponding scattered state ψ(r, E) is described

in terms of the Lippmann-Schwinger equation

ψ(r, E) = eipr +

∫
d3r′ G0(r, r′, E)V (r′)ψ(r′, E) , (2.18)

with an incoming free electron represented by a plane wave eipr and the retarded free

electron Green function G0(r, r′, E) describing an outgoing spherical wave. Using the

spectral representation of the Green function (2.5) one can express G0(r, r′, E) in terms

of a plane wave basis, leading after a summation over all states to [101,102]

G0(r, r′, E) = − 1

4π

eip|r−r
′|

|r − r′| . (2.19)
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Chapter 2. Theoretical framework

This Green function does not violate explicitly the translational symmetry of a crystal

as it depends only on the di�erence |r − r′| and not on the separated positions r and

r′. One can rewrite G0(r, r′, E) in its angular momentum representation

G0(r, r′, E) = −ip





∑
L j`(pr)h

+
` (pr′)YL(r̂)Y ∗L (r̂′) for r < r′

∑
L h

+
` (pr)j`(pr

′)YL(r̂)Y ∗L (r̂′) for r > r′
, (2.20)

expressing the plane waves in terms of complex spherical harmonics

eipr = 4π
∑

L

i`j`(pr)Y
∗
L (p̂)YL(r̂) , (2.21)

and using a combined angular index L = (`,m) and the spherical Bessel functions

j`(pr) and �rst kind Hankel functions h+
` (pr)C. [103]

For a relativistic formulation one can start from the free electron Dirac equation

(
E −

[
cα · p̂+ β

c2

2

])
G0(r, r′, E) = δ(r − r′) 14 , (2.22)

using atomic Rydberg unitsD, the momentum operator p̂, the vector α of the 4 × 4

Dirac matrices and the 4× 4 matrix β:

α =

[
0 σ

σ 0

]
and β =

[
12 0

0 −12

]
, (2.23)

with the standard Pauli matrices σ, given by

σx =

[
0 1

1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0

0 −1

]
. (2.24)

Thus, G0(r, r′, E) is a 4× 4 matrix which is constructed from the four-component

solutions of the free electron Dirac equation in analogy to equation (2.20):

G0(r, r′, E) = −ip





∑
Λ jΛ(r, E)h+×

Λ (r′, E) for r < r′

∑
Λ h

+
Λ(r, E)j×Λ (r′, E) for r > r′

. (2.25)

Here, the combined spin-angular index Λ = (κ, µ) is used, respectively −Λ = (−κ, µ),

CThe Hankel functions of �rst h+α and second h−α kind are de�ned as combination of Bessel functions

jα and von Neumann functions nα, meaning h±α = jα ± inα
DIn particular: ~ = 2me = e2

2 = 1

10



2.1 The Korringa-Kohn-Rostoker Green function method

having the magnetic quantum numbers µ and the quantum numbers κ which include

the orbital and angular momentum quantum numbers ` and j. This leads in particular

to the following relations:

κ =




−`− 1 for j = `+ 1

2

` for j = `− 1
2

, (2.26)

j = |κ| − 1

2
, (2.27)

−j ≤ µ ≤ +j , (2.28)

` =




−κ− 1 for κ < 0

κ for κ ≥ 0
, (2.29)

¯̀ = `− Sκ with Sκ =
κ

|κ| . (2.30)

Furthermore, we use in equation (2.25) the relativistic momentum p =
√
E2/c2 −m2c2

in addition to the corresponding four-component wave functions jΛ(r, E) and h+
Λ(r, E),

which are the relativistic versions of the Bessel and Hankel functions in the form of

bispinors

jΛ(r, E) =

√
E +mc2

c2

(
j`(pr)χΛ(r̂)

icpSκ
E+mc2

j¯̀(pr)χ−Λ(r̂)

)
, (2.31)

h+
Λ(r, E) =

√
E +mc2

c2

(
h+
` (pr)χΛ(r̂)

icpSκ
E+mc2

h+
¯̀ (pr)χ−Λ(r̂)

)
, (2.32)

and the left-hand side solutions of the Dirac equation as row spinors

j×Λ (r, E) =

√
E +mc2

c2

(
j`(pr)χ

†
Λ(r̂)

−icpSκ
E+mc2

j¯̀(pr)χ
†
−Λ(r̂)

)T

, (2.33)

h+×
Λ (r, E) =

√
E +mc2

c2

(
h+
` (pr)χ†Λ(r̂)

−icpSκ
E+mc2

h+
¯̀ (pr)χ†−Λ(r̂)

)T

. (2.34)

Finally, the spin-angular functions χΛ are expressed using Clebsch-Gordan coe�cients

C(`1
2
j;µ−ms,ms), complex spherical harmonics Y m`

` (r̂) and the Pauli spinor χms :

χΛ(r̂) =
∑

ms=± 1
2

C(`
1

2
j;µ−ms,ms) Y

µ−ms
` (r̂) χms . (2.35)

11



Chapter 2. Theoretical framework

2.1.3 Solving the single site scattering problem

As equation (2.25) gives the relativistic solution for the Green function of a free electron,

the next step is to evaluate the changes while the electron moves under the in�uence

of a spherically symmetric scattering potential V (r) of radius rcrit. For a mu�n-tin

construction this V (r) follows

V (r) =




V (r) for r ≤ rcrit

0 for r > rcrit
. (2.36)

Thus, one rewrites the Dirac equation in spherical coordinates, with V (r) represented

by an e�ective potential Ve� and an e�ective magnetic �eld Be�, according to relativistic

spin-polarized DFT:

(
E −

[
iγ5σrc

(
∂

∂r
+

1

r
(1− βK̂)

)
+ V (r) + (β − 1)

c2

2

])
Ψν(r, E) = 0 , (2.37)

V (r) = Ve�(r) + βσzBe�(r) . (2.38)

Herein, the spin-orbit operator K̂, described by the orbital angular momentum operator

L̂, and the matrices γ5 and σr are de�ned with respect to

K̂ = σ · L̂+ 1 with L̂ = r̂ × p̂ , (2.39)

γ5 =

[
0 −12

−12 0

]
and σr =

1

r
r · σ . (2.40)

To solve equation (2.37) for ν linearly independent solutions one follows the ansatz

Ψν(r, E) =
∑

Λ

ΦΛν(r, E) =
∑

Λ

(
gΛν(r, E)χΛ(r̂)

ifΛν(r, E)χ−Λ(r̂)

)
, (2.41)

with the four-component wave function Ψν(r, E) having a large gκ(r, E) and a small

fκ(r, E) radial component and corresponding spin-angular functions χΛ(r̂).

Inserting Ψν(r, E) from equation (2.41) into the Dirac equation (2.37) using spher-

ical coordinates and projecting onto the basis |χΛ〉 leads to the following set of coupled

12



2.1 The Korringa-Kohn-Rostoker Green function method

radial di�erential equations:

∂

∂r
PΛν(r, E) = − κ

r
PΛν +

[
E − Ve�(r)

c2
+ 1

]
QΛν(r, E)

+
Be�(r)

c2

∑

Λ′

〈 χΛ | σz | χΛ′ 〉 QΛ′ν(r, E) , (2.42)

∂

∂r
QΛν(r, E) = +

κ

r
QΛν − [E − Ve�(r)]PΛν(r, E)

+ Be�(r)
∑

Λ′

〈 χΛ | σz | χΛ′ 〉 PΛ′ν(r, E) , (2.43)

using PΛν(r, E) = rgΛν(r, E) and QΛν(r, E) = crfΛν(r, E). The corresponding spin-

angular matrix elements of σz are de�ned by

〈 χΛ | σz | χΛ′ 〉 = δµµ′





− µ
(κ+1/2)

for κ = κ′

−
√

1− ( µ
κ+1/2

)2 for κ = −κ′ − 1

0 otherwise .

(2.44)

With respect to the selection rules (2.44) only coupling between partial waves of the

same magnetic quantum number (∆µ = 0) is allowed, however, coupling for ∆` =

0,±2,±4, . . . leads to an in�nite set of coupled equations in (2.42) and (2.43). However,

higher terms for ∆` 6= 0 are in the order of 1
c2

and thus small enough to be reasonably

neglected. [104] Thus, ∆` = 0 can be applied, restricting the number of coupling terms

to at most two: Λ1 = (κ, µ) and Λ2 = (−κ − 1, µ). Still, truncating the angular

momentum expansion in equation (2.41) at `max leads to a set of 2(`max + 1)2 linearly

independent solutions which can be obtained by numerically solving equations (2.42)

and (2.43). The integration for the regular solutions is started at the innermost radial

mesh point (r → 0), demanding a boundary condition according to

Ψν(r, E)→ ΨΛ(r, E) for r → 0 , (2.45)

meaning pure spin-angular character in the vicinity of the origin. The following func-

tions Ψν(r, E) are constructed by expanding ΨΛ(r, E) at r = 0 and outward integration

according to the coupled radial di�erential equations (2.42) and (2.43), mixing contin-

uously other spin-angular contributions in.

The single-site scattering Green function G(r, r′, E) can be now written using the

13
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Dyson equation (2.12), leading to:

G(r, r′, E) = G0(r, r′, E) +

∫
d3r′′

∫
d3r′′′ G0(r, r′′, E)t(r′′, r′′′, E)G0(r′′′, r′, E) .

(2.46)

By inserting G0(r, r′, E) from equation (2.25) (for r, r′ > rcrit) into (2.46) one arrives

at the following equations, with the de�nition of tΛΛ′ given by equation (2.50):

G(r, r′, E) = −ip
∑

Λ

jΛ(r, E)h+×
Λ (r′, E) +

(
(−ip)2

∫
d3r′′

∫
d3r′′′

∑

Λ

h+
Λ(r, E)j×Λ (r′′, E)t(r′′, r′′′, E)

∑

Λ′

jΛ′(r
′′′, E)h+×

Λ′ (r′, E)

)
,

(2.47)

= −ip
∑

Λ

jΛ(r, E)h+×
Λ (r′, E) + (−ip)2

∑

ΛΛ′

h+
Λ(r, E)tΛΛ′(E)h+×

Λ′ (r′, E) ,

(2.48)

= −ip
∑

ΛΛ′

[
jΛ(r, E)− iph+

Λ(r, E)tΛΛ′(E)
]
h+×

Λ′ (r′, E) , (2.49)

tΛΛ′(E) =

∫
d3r′′

∫
d3r′′′ j×Λ (r′′, E)t(r′′, r′′′, E)jΛ′(r

′′′, E) . (2.50)

To ensure a proper and smooth boundary behavior not only for r > rcrit but also over

whole space r < rcrit one extends the free electron solutions to

jΛ(r, E)→ JΛ(r, E) and h+
Λ(r, E)→ HΛ(r, E) , (2.51)

and de�nes RΛ(r, E) and R×Λ(r, E) according to:

RΛ(r, E) = JΛ(r, E)− ip
∑

Λ′

HΛ′(r, E)tΛ′Λ(E) , (2.52)

R×Λ(r, E) = J×Λ (r, E)− ip
∑

Λ′

tΛΛ′(E)H×Λ′(r, E) . (2.53)

Thus, the complete single-site scattering Green function G(r, r′, E) is given by

G(r, r′, E) = −ip





∑
ΛRΛ(r, E)H×Λ (r′, E) for r < r′

∑
ΛHΛ(r, E)R×Λ(r′, E) for r > r′

. (2.54)

14



2.1 The Korringa-Kohn-Rostoker Green function method

The same result can be alternatively formulated using the functions ZΛ,

ZΛ(r, E) =
∑

Λ′

RΛ′(r, E)t−1
Λ′Λ(E) =

∑

Λ′

JΛ′(r, E)t−1
Λ′Λ(E)− ipHΛ(r, E) , (2.55)

giving for G(r, r′, E):

G(r, r′, E) = −ip





∑
ΛΛ′ ZΛ(r, E)tΛ′ΛH

×
Λ′(r

′, E) for r < r′

∑
ΛΛ′ HΛ(r, E)tΛΛ′Z

×
Λ′(r

′, E) for r > r′
, (2.56)

which results �nally for the single-site scattering Green function G(r, r′, E) in

G(r, r′, E) =
∑

ΛΛ′

ZΛ(r, E)tΛΛ′Z
×
Λ′(r

′, E)−





∑
Λ ZΛ(r, E)J×Λ (r′, E) for r < r′

∑
Λ JΛ(r, E)Z×Λ (r′, E) for r > r′

.

(2.57)

The only thing left now is an e�cient procedure to evaluate the corresponding elements

of the t-matrix tΛΛ′(E), which was derived by Ebert and Gyor�y [105], giving:

tΛΛ′(E) =
i

2p

(
[a(E)− b(E)]b−1(E)

)
ΛΛ′ , (2.58)

with the auxiliary matrices aΛΛ′(E) and bΛΛ′(E) according to

aΛΛ′(E) = −ipr2[h−Λ(r, E)ΦΛν(r, E)]r , (2.59)

bΛΛ′(E) = ipr2[h+
Λ(r, E)ΦΛν(r, E)]r . (2.60)

The term in square brackets of (2.59) and (2.60) corresponds to the relativistic form

of the Wronskian expression: [105]

[h+
Λ(r, E)ΦΛν(r, E)]r = h+

` (pr)cfΛν(r, E)− p

1 + E/c2
Sκh

+
¯̀ (pr)gΛν(r, E) . (2.61)

2.1.4 Solving the multiple scattering problem

The multiple scattering process assumes that the electrons can propagate freely between

the di�erent atomic sites acting as scattering centers with every scattering process

�nished before the next one starts. Thus, the propagation in the presence of the

perturbation potential V̂ splits up into a sum of non-overlapping single-site scattering

events. Using the single-site scattering operator ti with the non-overlapping single-site

potentials vi, given by ti = vi + viĜ0t
i with respect to equation (2.11), one can de�ne
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the scattering operator T̂ ,

T̂ =
∑

i

ti +
∑

i 6=j
tiĜ0t

j +
∑

i 6=k
k 6=j

tiĜ0t
kĜ0t

j + ... =
∑

ij

τ̂ ij , (2.62)

with the scattering path operator τ̂ ij, introduced by Gyor�y and Stott [106]. This τ̂ ij

acts on an incident electron wave at side j and creates an outgoing wave at site i

including all possible scattering events in between:

τ̂ ij = tiδij + tiĜ0t
j +
∑

i 6=k
k 6=j

tiĜ0t
kĜ0t

j + ... = tiδij +
∑

i 6=k
tiĜ0τ̂

kj . (2.63)

For the single-site Green function Gn and the operator T nn describing the whole

scattering of the system without scattering site n, one arrives at the corresponding real

space representation

G(r, r′, E) = Gn(r, r′, E) +

∫
d3r′′

∫
d3r′′′ Gn(r, r′′, E)T nn(r′′, r′′′, E)Gn(r′′′, r′, E) ,

(2.64)

with in reference to equation (2.62) the term T nn is given by

T nn(r, r′, E) =
∑

i 6=n

∑

j 6=n
τ ij(r, r′, E) , (2.65)

including the real space representation of τ ij:

τ ij(r, r′, E) = δijt
i(r, r′, E)

+

∫
d3r′′

∫
d3r′′′ ti(r, r′′′, E)

∑

k 6=i
G0(r′′, r′′′, E)τ kj(r′′′, r′, E) . (2.66)

Using spherical functions to describe the Green function in a real space representation

implies the use of site-centered coordinates ri = r −Ri. Thus, the Green function is

expanded around di�erent sites leading to the rewritten Gij
0 (ri, r

′
j, E):

G0(r, r′, E) = G0(ri +Ri, r
′
j +Rj, E) = Gij

0 (ri, r
′
j, E) = G0(ri − r′j,Rj −Ri, E) .

(2.67)

Because of non-overlapping sites one has always |Rj −Ri| > |ri − r′j|. Now one can

avoid irregular Hankel functions hΛ(r, E) by using regular Bessel functions jΛ(r, E)
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around two di�erent sites leading to a new equation for Gij
0 (ri, r

′
j, E):

Gij
0 (ri, r

′
j, E) =

∑

ΛΛ′

jΛ(ri, E)Gij
0,ΛΛ′j

×
Λ′(r

′
j, E) . (2.68)

The term Gij
0,ΛΛ′ depends not on the single-sites potentials but only on the relative

position between the two scattering sites i and j. Thus, these functions are commonly

called structure constants or structural Green functions. They are de�ned by

Gij
0,ΛΛ′ = −4πip

∑

Λ′′

i`−`
′−`′′h+

Λ′′(Rj −Ri, E)CΛΛ′Λ′′ , (2.69)

using the Gaunt coe�cients CΛΛ′Λ′′ according to

CΛΛ′Λ′′ =

∫
dΩ Y µ−ms∗

` (r̂)Y µ′−ms
`′ (r̂)Y µ′′−ms

`′′ (r̂) . (2.70)

Inserting equation (2.69) into (2.66) one can formulate the following matrix equation

τ ijΛΛ′(E) = δijt
i
ΛΛ′(E) +

∑

k 6=i

∑

Λ′′Λ′′′

tiΛΛ′′(E)Gik
0,Λ′′Λ′′′′(E)τ kjΛ′′′Λ′′(E) , (2.71)

with the matrix elements of the scattering path operator given by

τ ijΛΛ′(E) =

∫
d3r

∫
d3r′ j×Λ (ri, E)τ ij(ri, r

′
j, E)jΛ′(r

′
j, E) . (2.72)

One can set up the Green function of the whole system now in analogy to the single-

site scattering by going from the single-site t-matrix to the multiple scattering operator

τ ij. Thus the Green function G(ri, r
′
j, E) can be written in analogy to the single-site

expression (2.57) by the following equation using the functions ZΛ(ri, E) and JΛ(ri, E):

G(ri, r
′
j, E) =

∑

ΛΛ′

ZΛ(ri, E)τ ijΛΛ′(E)Z×Λ′(r
′
j, E)

− δij





∑
Λ ZΛ(ri, E)J×Λ (r′i, E) for r < r′

∑
Λ JΛ(ri, E)Z×Λ (r′i, E) for r > r′

. (2.73)

Alternatively one can express G(ri, r
′
j, E) in terms of the functions RΛ(ri, E) and

17



Chapter 2. Theoretical framework

HΛ(ri, E), using the structural Green function Gij
Λ′Λ(E):

G(ri, r
′
j, E) =

∑

ΛΛ′

RΛ(ri, E)Gij
ΛΛ′(E)R×Λ′(r

′
j, E)

− δij ip





∑
ΛRΛ(ri, E)H×Λ (r′i, E) for r < r′

∑
ΛHΛ(ri, E)R×Λ(r′i, E) for r > r′

. (2.74)

With the relativistic multiple scattering Green function G(ri, r
′
j, E) given by equations

(2.73) and (2.74) one remains with the problem of determining the scattering path

operator τ ij or the structural Green function Gij, respectively. For an ordered in�nite

system of scatterers the corresponding τ ij can be obtained by means of a lattice Fourier

transformation. The term τ ijΛΛ′(E) is given by an integral over the �rst Brillouin zone

(BZ) according to

τ ijΛΛ′(E) =
1

ΩBZ

∫

ΩBZ

d3k
[
t−1(E)−G0(k, E)

]−1

ΛΛ′ e
ik(Ri−Rj) , (2.75)

with G0(k, E) as the Fourier transform of the free electron Green function G0(r, r′, E).

Herein, the matrix [t−1(E)−G0(k, E)] corresponds to the so-called KKR-matrix, which

has to be inverted in order to obtain the scattering super matrix τ ijΛΛ′(E).

2.1.5 Substitutionally disordered alloys

Assuming a chemically disordered substitutional alloy AxABxB (with xA + xB = 1)

destroys the underlying Bloch symmetry of the crystal and is thus di�cult to describe

within DFT. One simple approach is the virtual crystal approximation (VCA), which

substitutes the atoms in a disordered compound by a dummy atom Z with the averaged

atomic mass Z = xAZA + xBZB. By doing so one restores the Bloch symmetry but

looses all individual information about the involved components. Another possibility

is to use supercells, which can account for disorder e�ects. However, such an approach

su�ers under the computational e�ort as it is necessary to use preferably very large

supercells and to average over several di�erent supercell compositions. [49]

Within the KKR-GF method the coherent potential approximation (CPA) can be

applied, which is the best possible single-site approach to describe random substitu-

tional alloys. [107] The idea is based on seeking the con�guration-averaged electronic

Green function 〈G〉, which is a valid procedure in contrary to using a con�guration-

averaged wave function. To implement this idea Korringa [108] and Beeby [109] repre-
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sented the t-matrix within the average t-matrix approximation (ATA) as tATA:

〈t〉 = tATA = xAtA + xBtB . (2.76)

However, this will lead to a Green function that does not stringently give a positive

de�nite density of states (DOS) for real energies. This issue was removed by Soven [93]

by introducing an auxiliary CPA medium which is meant to represent the con�gura-

tional average and thus acts like a mean �eld. This medium is de�ned in a way that

embedding the components into it will reproduce the CPA medium itself if the respec-

tive concentration-weighted averages are taken. The consequence of this assumption is

that the proper averages should cause no additional scattering compared with the CPA

medium, resulting in the following equations with the component projected scattering

path operators τ iiA and τ iiB :

xAτ
ii
A + xBτ

ii
B = τ iiCPA , (2.77)

τ iiα =
[
t−1
α − t−1

CPA + (τ iiCPA)−1
]−1 for: α = A,B . (2.78)

In addition, equation (2.79) has to be satis�ed:

τ
CPA

=
(
t−1

CPA
−G

0

)−1

. (2.79)

The procedure starts in practice with a guess tCPA ≈ tATA and evaluates tCPA and τ iiCPA
using an iterative algorithm. [110] The Green function of the disordered system can be

expressed in terms of the component weighted average, according to

GCPA(r, r′, E) =
∑

α=A,B,...

xαG
α(r, r′, E) . (2.80)

In contrast to the VCA the CPA provides a coherent potential VCPA which implies that

the electronic states described by the CPA have a �nite lifetime, due to their complex

energy eigenvalues. Still, it should be noted that the CPA is a single-site theory and

consequently short-range order is not included. However, this issue can be handled

with respect to recent developments in the �eld of non-local CPA. [111,112]
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2.1.6 Calculation of observables

As already mentioned the Green function can provide a straightforward access to all

physical observables. This is in particular true for the electron density n(r), the density

of states n(E), and the spin- and orbital magnetic moments µspin and µorb:

n(r) = − 1

π
Im Tr

∫ EF

dE G(r, r, E) , (2.81)

n(E) = − 1

π
Im Tr

∫

Ω

d3r G(r, r, E) , (2.82)

µspin = − 1

π
Im Tr

∫ EF

dE
∫

Ω

d3r βσzG(r, r, E) , (2.83)

µorb = − 1

π
Im Tr

∫ EF

dE
∫

Ω

d3r lzG(r, r, E) . (2.84)

For these quantities only the diagonal parts of G(ri, r
′
j, E) are needed because of the

trace in these equations. Thus, it is su�cient to calculate only the scattering path

operators τ ii. The analytical properties of G(ri, r
′
j, E) further lead to the advantage

that the energy integration can be carried out on a contour in the complex energy

plane, requiring in practice only about 32 energy mesh points for su�cient numerical

accuracy.

Another important quantity for detailed informations on the electronic structure is

the Bloch spectral function (BSF) AB(k, E). The BSF is de�ned as the imaginary part

of the Fourier transform of G(ri, r
′
j, E) and provides a k-resolved density of states:

AB(k, E) = − 1

π
Im Tr

1

N

N∑

ij

eik(Ri−Rj)

∫

Ω

d3r G(r +Ri, r
′ +Rj, E) , (2.85)

with the property,

n(E) =
1

ΩBZ

∫

ΩBZ

d3k AB(k, E) . (2.86)

For an ordered periodic system AB(k, E) corresponds to the dispersion relation E(k).

However, the advantage of the Bloch spectral function is that it is still well-de�ned

for a disordered system, while the dispersion relation E(k) breaks down for a broken

Bloch symmetry. This allows for the investigation of the impact of disorder on the

band structure of substitutionally disordered alloys.
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2.1 The Korringa-Kohn-Rostoker Green function method

2.1.7 Hyper�ne interactions

The magnetic hyper�ne interaction of an atom derives in the most general description

from the interaction of the electronic current density j with the vector potential An(r)

associated with the nuclear magnetic moment. This means in particular that the total

angular momentum of an electron stemming from spin-orbit coupling can interact with

the magnetic �eld of the nucleus, leading to contributions to the hyper�ne �eld Bhf

that are not accounted by a non-relativistic approach.

Within SPR-KKR [113] the relativistic operator Ĥhf is formulated based on the elec-

tronic current density operator ĵ = ecα coupling to the vector potential An as given

by

Ĥhf = eα ·An(r) = eα · (µn × r)An(r) , (2.87)

where An stems from the nuclear magnetic dipole µn with An(r) being the radial part

of the nuclear vector potential. Contributions of tightly bound core electrons Ecore
hf and

valence bands electrons Eval
hf to the hyper�ne interaction energy Ehf are separated by

this conventional splitting of the electronic system. Thus, Ecore
hf is obtained by

Ecore
hf =

∑

nΛ

〈ΦnΛ|Ĥhf|ΦnΛ〉 , (2.88)

while Eval
hf is given in terms of the electronic Green function with an energy integration

extending over the range of occupied states of the valence band up to the Fermi energy

EF :

Eval
hf = − 1

π
Tr Im

∫ EF

dE
∫

d3r Ĥhf G(r, r, E) . (2.89)

The hyper�ne �eld Bhf represents the nuclear Zeeman splitting and is an interaction

parameter related to Ehf by

Bhf =
Ehf

µn
, (2.90)

with the magnetic moment of the nucleus µn.

Typically, the �nite size of the atomic core is ignored, which means Bhf splits into

�ve di�erent contributions within the fully relativistic approach. Two contributions

are due to s-electrons and they are conventionally ascribed to the Fermi contact in-

teraction. The larger of both parts is the core polarization contribution Bc
s which is

proportional to the local spin magnetic moment µspin. [114�116] In addition, there is a

s-electron contribution from the valence band Bv
s that is due to the polarization and

the population mechanism. [117] All states apart from the p1/2-states with higher angu-
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lar momentum, i.e. �rst of all p- and d-states, have a zero probability density at the

nucleus and thus do not contribute to Bhf via the Fermi contact term. If spin-orbit

coupling is fully accounted for, there is an additional contribution due to the spin-orbit

induced orbital magnetization. [113,118] Furthermore, for systems with low symmetry a

spin-dipolar contribution for the non-s electrons can contribute. [113,118] However, be-

cause the orbital contribution is in general dominating compared to the spin-dipolar

one, the term orbital is used for the total �eld connected with non-s electrons in the

following. Thus, for a transition metal the remaining three contributions are the or-

bital �eld Bc
ns of the non-s core states and the orbital �elds Bv

p and Bv
d of the valence

electrons with p- and d-character, respectively. More details on the decomposition of

Bhf can be found in Ref. [113] by Battocletti and Ebert.

2.1.8 Dynamical mean �eld theory within SPR-KKR

Within DFT a respective exchange-correlation potential Vxc has to be chosen in order

to calculate the e�ective potential Ve�. The most commonly used scheme is the local

density approximation (LDA), which is justi�ed for systems with only slightly varying

density, treating the single points in space locally as a homogeneous free electron gas.

When dealing with strongly correlated matter, having e.g. more localized d and f

electrons with strong Coulomb interactions the LDA is no longer applicable. One

sophisticated approach to deal with strongly correlated matter within DFT is the

dynamical mean-�eld theory (DMFT), leading to so-called LDA+DMFT approaches

which can be also implemented within the KKR-GF method. [119,120] The basic idea of

DMFT is that in the limit of in�nite dimensions the self energy Σ becomes local. [121,122]

Thus, it was assumed that in �nite but not too low dimension, the in�nite lattice

can be mapped approximately onto an impurity problem, which can be solved self-

consistently. [122] The physics behind DMFT is non-trivial and a detailed explanation

goes beyond the scope of this work, thus, more details can be found in Ref. [119]. In

general, the electronic properties of a system are given by

[
E − Ĥ − Σ̂(E)

]
Ĝ = 1̂ , (2.91)

with the complex energy E and the e�ective self-energy operator Σ̂(E) which is assumed

to be a single-site quantity for site n according to

Σ̂(E) =
∑

ij

|φni〉 Σij(E) 〈φnj| . (2.92)
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2.1 The Korringa-Kohn-Rostoker Green function method

The self-energy matrix Σij(E) is a solution to the many-body problem of an impurity

placed into an e�ective medium which is described by the so-called bath Green function

matrix G given by

G−1
ij (E) = G−1

ij (E) + Σij(E) . (2.93)

Here, the one-electron Green function matrix Gij(E) is a projection of Ĝ(E) onto the

impurity site calculated via

Gij(E) = 〈φni|Ĝ(E)|φnj〉 . (2.94)

Consequently, the self-energy Σij(E) and the bath Green function Gij(E) depend on

each other, which means the problem has to be solved self-consistently. Thus, apart

from solving equation (2.91) one has to �nd the self-energy Σij(E) by solving the

e�ective many-body problem. This can be done by available DMFT-solvers [119], e.g.

for the presented work a perturbative SPTF (spin-polarized T -matrix + FLEX) solver

was applied.

For systems like the iron pnictides, the strength of correlation e�ects is under dis-

cussion [32,54�56,59,123,124] and thus one cannot straightforwardly know to what extent

strong correlations have to be accounted for. An example of strong correlations within

the iron pnictides, dealt with by means of LDA+DMFT, is discussed in Chapter 6.
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2.2 Angle-resolved photoemission spectroscopy

2.2.1 Experimental setup

All kinds of photoemission spectroscopy are based on the photoe�ect, which was ini-

tially observed by Hertz [125] in 1887 and �rst explained by Einstein [126] in 1905. The

variety of applications is signi�cant, however, for the scope of this work the focus will

be speci�cally angle-resolved photoemission spectroscopy (ARPES). [127�129]

ARPES is one of the most important tools to study the electronic structure of

solids as it provides experimentally direct access to k-resolved information. The cor-

responding setup (see Fig. 2.1) is realized via a ray of monochromatic light, typically

synchrotron radiation, with energy hν that hits the sample surface under �xed con-

ditions, de�ned by the spherical coordinates Θph and Φph. This leads to the emission

of photoelectrons which can be detected and characterized angle-resolved by the polar

(Θel) and the azimuth (Φel) emission angles. To analyze a whole area in k-space for

a constant Φel it is also possible to tilt the surface of the sample under the incoming

light along a �xed rotation axis.

Obviously the escape of an electron from the material is only possible if the energy of

the absorbed photon is large enough. It is not only necessary to overcome the binding

energy EB which is required to liberate the electron, but also the work function φ0

which is required to remove the excited electron from the sample surface. The �nal

kinetic energy of the emitted electron Ekin is then given by

Ekin = hν − |EB| − φ0 . (2.95)

The momentum K of the photoelectron in the vacuum depends only on the emission

angles Θel and Φel and the kinetic energy Ekin of the electrons, all measurable dur-

ing the experiment. Because the momentum of the probe surface k is related to K,

ARPES can derive k-resolved information. However, it is necessary to distinguish be-

tween the in-plane k‖ component (parallel to sample surface) and the z-component k⊥
(perpendicular to sample surface) of the wave vector k. The translational symmetry

of the crystal in the xy-plane preserves k‖, hence, for a negligible incoming photon

momentum compared to the emitted electron momentum one can directly calculate

|k‖| =
1

~
√

2meEkin sin Θel . (2.96)

However, the perpendicular component k⊥ is not conserved across the sample surface
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Figure 2.1. Schematic geometry of an ARPES experiment, where the emission direction of
the electron is speci�ed by the emission angles Θel and Φel.

due to the lack of translational symmetry along the surface normal. This uncertainty

is of minor relevance for strongly two-dimensional systems with a negligible dispersion

along z as e.g. many cuprate superconductors have. [127] Nevertheless, such an assump-

tion is invalid for the iron pnictides, which have a pronounced 3D electronic structure.

For a free-electron �nal state inside the solid one can obtain k⊥ from

k⊥ =
1

~
√

2me (Ekin cos2 Θel + V0) , (2.97)

with the inner potential V0 = |E0| + φ0, representing the energy of the bottom of the

valence band with respect to the vacuum level Evac. For photon energies between 10 eV

and 100 eV the mean free path of the electrons is in the order of 10 Å at maximum.

Thus, ARPES in this energy range is sensitive for the surface of the material. To have

a stronger focus on bulk properties one uses higher photon energies in the regime of

soft X-rays, ranging from approximately 300 eV up to 1 keV. For energies above 1 keV

one enters the regime of hard X-rays.

In the following the general theory of ARPES including the one-step model and

the theory of surface related phenomena will be brie�y reviewed based on the work of

Braun [128] and the work of Braun and Donath [129,130], respectively.

2.2.2 General theory

The quantity of most interest to describe the photoemission process is the correspond-

ing photocurrent. To derive an expression for it one starts from �rst-order time-
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dependent perturbation theory, assuming a small perturbation ∆. Here, the transition

probability per unit time w between the N -electron �nal state |Ψf〉 and initial state

|Ψi〉 is de�ned according to Fermi's golden rule:

w =
2π

~
|〈Ψf |∆|Ψi〉|2 δ(Ef − Ei − hν) , (2.98)

with the corresponding energies of �nal and initial state Ef and Ei and the excitation

energy hν, respectively. This transition probability w can be used to derive the pho-

toemission intensity I(hν) which is related to the one-electron spectral density Ai,i′ of

the initial state: [131,132]

I(hν) =
1

~
∑

f,i,j

∆∗f,iAi,i′(Ei)∆i′,f , (2.99)

Ai,i′(Ei) =
∑

s

〈Ψi|a†i′ |Ψs
f〉 δ(Ef − Ei − hν) 〈Ψs

f |ai|Ψi〉 , (2.100)

using the one-electron matrix element ∆f,i = 〈φf |∆|φi〉 and corresponding creation a†i
and annihilation ai operators for an electron i. Herein, one de�nes |Ψi〉 = |Ψ0

N〉 and
|Ψs

f〉 = a†i |Ψs
N−1〉 with the excited (N − 1)-particle state |Ψs

N−1〉 and the ground state

|Ψ0
N〉. At this point only the sudden approximation for the �nal state has been applied,

meaning the excitation of an electron happens so fast that there is no interaction

between the corresponding one-particle photoelectron state and the remaining (N−1)-

electron |Ψs
N−1〉 excited state, implying ai|Ψ0

N〉 = 0.

The one-electron spectral density Ai,i′ can be connected to a retarded one-electron

Green function Gi,i′(Ei) of the interacting system, which means the photoemission

intensity of equation (2.99) can be written as

I(hν) = − 1

~π
Im

∑

f,i,i′

〈φf |∆|φi〉 Gi,i′(Ei) 〈φi′|∆∗|φf〉 , (2.101)

and by using the representation G(Ei) =
∑

i,i′ |φi〉Gi,i′(Ei)〈φi′ | on arrives at

I(hν) = − 1

~π
Im

∑

f

〈φf |∆G(Ei)∆
∗|φf〉 . (2.102)

The remaining �nal state |φf〉 corresponds a time-reversed spin-polarized low energy

electron di�raction (SPLEED) state |k||, εf〉, depending on the wave vector component

parallel to the surface k|| and the single particle energy εf of the �nal state. [133] Note,
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2.2 Angle-resolved photoemission spectroscopy

that from now on the one-particle energies ε(k) are used, which result from band

structure calculations based on DFT [128]. By introducing the Green function G2 for

the �nal state one can express these states by means of

|φf〉 = G−2 |k||, εf〉 and 〈φf | = 〈εf ,k|||G+
2 , (2.103)

with the propagators G±2 derived from the KKR multiple scattering approach. [133�135]

The operator ∆ accounts for the coupling to the electromagnetic �eld. Within the

dipole approximation it reduces to ∆ ≈ e
mc
A0 · p̂, for the momentum operator p̂ and

the spatially constant amplitude of the electromagnetic vector potential A0. So far

G(Ei) contains all many-body e�ects within its complex self-energy Σ(Ei). In the

non-interacting limit, meaning for a zero self-energy Σ(Ei) = 0 the term G(Ei) can

be expressed as retarded Green function of the initial state G+
1 . Combining equations

(2.102) and (2.103) and for zero temperature T = 0 K the photoemission intensity can

be �nally written according to

I(εf ,k||) = − 1

~π
Im 〈εf ,k|||G+

2 ∆G+
1 ∆∗G−2 |k||, εf〉 . (2.104)

At this point it is important to note, that occupied and unoccupied states can be

investigated within the same theoretical framework due to a simple geometrical relation

between the photoemission intensity I(εf ,k||) and the inverse photoemission intensity

I invers(εf ,k||), given by [136]

I(εf ,k||) =
2(εf − hν)c2 cos Θel

ω2 cos Θph
I invers(εf ,k||) . (2.105)

2.2.3 One-step model of photoemission

Equation (2.104) is the basis of the so-called one-step model of photoemission, which

was �rst developed by Pendry et al. [133] and which is used in the SPR-KKR code pack-

age to calculate ARPES spectra. The following will describe the relativistic one-step

theory for a semi-in�nite stack of layers. For this reason equation (2.104) will be rewrit-

ten in terms of a real space representation, describing the corresponding photocurrent

I(εf ,k||):

I(εf ,k||) = − 1

π
Im

∫
d3r

∫
d3r′ Ψ†f (r)∆G+

1 (r, r′)∆†Ψf (r
′) , (2.106)
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with the time-reversed SPLEED state Ψ†f (r) = 〈r|G+
2 |εf ,k||〉. Herein, the propagators

G±2 and G+
1 are expressed by 4 × 4 matrices and Ψ†f (r) is a four-component Dirac

spinor. The relativistic interaction operator is de�ned by ∆ = −α ·A0.

The corresponding wave �eld of the �nal state Ψf (r) can be obtained everywhere

within the crystal, knowing the scattering properties of each layer. It is also su�cient

to account only for a �nite number of layers because the amplitude of the wave �eld

continuously diminishes further inside the crystal. Thus, one remains with the so far

unknown initial state propagator G+
1 . One can split the photocurrent into four di�erent

contributions:

I(εf ,k||) = Iatom(εf ,k||) + I intra(εf ,k||) + I inter(εf ,k||) + Isurf(εf ,k||) . (2.107)

The �rst three contributions can be easily denoted starting from (2.106) and replacing

G+
1 by the corresponding Green functions:

Iatom(εf ,k||) = − 1

π
Im
∫

d3r

∫
d3r′ Ψ†f (r)∆G+

1atom(r, r′)∆†Ψf (r
′) , (2.108)

I intra(εf ,k||) = − 1

π
Im
∫

d3r

∫
d3r′ Ψ†f (r)∆G+

1intra(r, r
′)∆†Ψf (r

′) , (2.109)

I inter(εf ,k||) = − 1

π
Im
∫

d3r

∫
d3r′ Ψ†f (r)∆G+

1inter(r, r
′)∆†Ψf (r

′) . (2.110)

Here, G+
1atom accounts for single site atomic contribution of the photocurrent, G+

1intra

considers for multiple scattering of the initial state inside the jth layer and G+
1inter

involves multiple scattering between the initial state and all other layers of the semi-

in�nite crystal. These contributions can be written explicitly as follows:

Iatom(εf ,k||) = − 1

π
Im

(
ik1

∑

j

∑

κκ′κ′′

∑

µµ′µ′′

AµjκDκµκ′µ′Mκκ′κ′′D
∗
κ′µ′κ′′µ′′A

µ′′∗
jκ′′

)
, (2.111)

I intra(εf ,k||) = − 1

π
Im

(
ik1

∑

j

∑

κκ′

∑

µµ′

AµjκM̃κκ′Dκµκ′µ′B
µ′

jκ′

)
, (2.112)

I inter(εf ,k||) = − 1

π
Im

(
ik1

∑

j

∑

κκ′

∑

µµ′

AµjκM̃κκ′Dκµκ′µ′G
µ′

jκ′

)
. (2.113)

This implies the spherical coe�cients of the �nal state Aµjκ as well as the radial and

angular matrix elements Mκκ′κ′′ , M̃κκ′ and Dκµκ′µ′ , plus the spherical coe�cients for

the intralayer part Bµ′

jκ′ and interlayer part Gµ′

jκ′ of the initial state wave �eld at the

jth layer, respectively.
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The last contribution based on the photocurrent Isurf accounts for the surface of

the semi-in�nite crystal. This contribution is treated non-relativistically because rela-

tivistic e�ects were shown to be negligible in the surface barrier region. [137] Thus, Isurf

is de�ned according to

Isurf(εf ,k||) = − 1

π
Im
∫

d3r Ψ∗surff (r)∆Ψsurf
i (r′) , (2.114)

Ψsurf
i (r) =

∫
d3r′ G+

1surf(r, r
′)∆∗Ψsurf

f (r′) . (2.115)

Because surface corrugations have only a small impact it is su�cient to treat the barrier

potential depending only on z. For such a z-dependent surface barrier potential VB(z),

the z-axis was de�ned pointing into the crystal, the initial and �nal state wave �elds

have to be calculated numerically in the surface region. [138] These wave �elds Ψsurf
i (r)

and Ψsurf
f (r) can be split into a z-dependent and a corresponding parallel component

as shown in the following:

Ψsurf
i (r) =

∑

gs

φgs(z)e
ikig|| (r−c)|| and Ψsurf

f (r) =
∑

gs

λgs(z)e
ikfg|| (r−c)|| .

(2.116)

This implies the regular solutions of the Schrödinger equation φgs and λgs to the

reciprocal lattice vector g for VB(z) in the range −∞ < z < cz and for the spin index

s. Here, cz corresponds to the point where the surface potential matches smoothly

with the inner potential of the bulk. Finally, the surface contribution can be evaluated

as

Isurf(εf ,k||) = − 1

π

Az
2ωc

Im

(
eiq||·c||

∑

gs

∫ cz

−∞
dz φgs(z)

dVB
dz

λgs(z) eiqzz

)
, (2.117)

for Az being the z component of A0 and q as wave vector of the photon �eld.

Lifetime e�ects in the �nal and initial states can be accounted for on the basis

of a parametrized complex inner potential Vo(E) = Vor(E) + iVoi(E), while the real

part corresponds to the reference energy inside the crystal with respect to the vacuum

level. The surface barrier potential connects this inner potential of the bulk crystal

with the vacuum level. A realistic description for the surface potential is given by the

spin-dependent Rundgren-Malmström barrier V ↑↓(z), which connects the asymptotic

region ∼ 1
z
to the bulk mu�n-tin zero Vor by a third-order polynomial in z. [139]
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2.2.4 Surface related states as observed in ARPES

The origin of various spectral features can be ascribed to di�erent electronic states

which can be observed in an ARPES measurement. Clearly, it is highly desirable to

be able to distinguish between di�erent states in a theoretical approach, especially

concerning their surface character. [129,130]

First of all, one can de�ne bulk states (BS) which have almost no surface character

at all. The wave function of these states extends deeply into the bulk crystal and shows

marginal decay only. Such states are characterized by a distinguished kz dispersion

which can be seen by measurements with varying photon energies. On the other hand,

the one-step model of photoemission can be used to identify surface related states, as

the origin of surface states has long been developed in multiple scattering theory. [140,141]

A surface state (SS) is characterized by a wave function that only exists at the vicinity

of the surface, between the asymptotic limit and the inner bulk potential. Such a state

has almost no penetration depth into the bulk crystal. Consequently, it shows no kz
dispersion and can be observed for small photon energies which guarantee a surface

sensitive spectrum. The condition for the occurrence of such a surface state is given

by the so called determinant condition D(E,k) given by

D(E,k) = det (1−Rb(E,k)Rv(E,k)) = 0 , (2.118)

using the re�ection matrices of the bulk crystal Rb and of the surface barrier potential

Rv. In addition, one can de�ne a third type of state, a so-called surface resonance (SR).

These surface resonances are wave functions which have their origin at the vicinity of

the surface but they can penetrate through several layers into the bulk crystal. The

wave function shows an exponential decay inside the bulk, however, as a combination

between bulk state and surface state a surface resonance can also be observed for

comparably high photon energies in the soft X-ray regime. Correspondingly, a surface

resonance is indicated by a minimum of D(E,k). Note, that sometimes the term

surface resonance is also used for a state with bulk Bloch asymptotic behavior and a

strong resonance at the vicinity of the surface.

For better visualization one typically plots 1/|D(E,k)| to identify the origin of a

state. If this expression is bigger than approximately 103 one can speak about a surface

state. For values between 100 and 103 the state is de�ned as a surface resonance.

Smaller values indicate a bulk state.
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2.3 Transport properties

Describing the transport properties of metals is a well-established and important �eld of

condensed matter physics, yet also an exceptional complex one. Concerning the scope

of this thesis, especially longitudinal transport described by linear response theory will

prove useful to study the iron pnictide superconductors. Consequently, the following

will give a brief overview mainly based on the work of Banhart [142] and Lowitzer [98]

concerning the di�erent approaches to study transport properties with focus on the

relevant equations applied.

2.3.1 General introduction

When talking about electron transport in a material the �rst important aspect to note

is that an ideal crystal with translational symmetry at a temperature of T = 0 K shows

no resistivity at all. This can be easily understood assuming an electron wave which

gets scattered at the crystal lattice but which can be reconstructed from constructive

interference without energy loss after the scattering process. A perturbation of the

translational symmetry, however, will lead to partly deconstructive interference, pre-

venting a loss-free electron transport. This breaking of translational symmetry can be

induced by either static perturbations like defects or alloying or it can emerge from

dynamic perturbations like thermal lattice �uctuations with respect to electron-phonon

interactions. Considering the temperature T = 0 K, the interest of this work is solely

focused on static perturbations induced by alloying the concerning the material of

interest.

Obviously, the description of electron transport in solids requires a statistic ap-

proach as it is not possible to treat every particle individually. In this context one can

distinguish between two di�erent methods, namely the kinetic theories and the linear

response theories. Kinetic theories are based on a statistic distribution function like

for example the Boltzmann equation in its semi-classical or quantum mechanical form.

These kinetic theories are typically useful for very strong external �elds, however, they

fail for strong scattering in concentrated alloys. The second approach is based on the

assumption of a fast equilibrium state, meaning one describes the response of the sys-

tem to a small perturbation. Because it is typically su�cient to consider only the �rst

order of the response these approaches are called linear response theories. A linear re-

sponse approach is in particular useful for strong scattering, meaning for concentrated

alloys, however, the external �eld cannot be arbitrarily strong.

Thus, when dealing with an alloy AxB1−x within the framework of KKR the most
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reasonable approach will be based on linear response theory. The expected behavior of

the resistivity for varying x can be described by the so-called Nordheim curves. This

implies a minima in resistivity for the weakest scattering at x = 0 or 1 and a maximum

for the strongest scattering at x = 0.5. Solving this issue quantitatively is based on an

approach �rst proposed by Kubo and others. [143�145] Thus, the following will introduce

the corresponding Kubo equation and the Kubo-Greenwood equation.

2.3.2 Kubo equation

The Kubo formalism can be understood as a whole set of equations which describe

linear response by means of correlation functions of the perturbation and the response in

a full quantum mechanical picture. First proposed by Green [146] in order to investigate

transport in liquids it was Kubo [145] who formulated the corresponding equations to

study electrical conductivity in solids. Starting from a system in equilibrium described

by a Hamiltonian Ĥ0 one assumes a small time-dependent perturbation Ŵ (t). The

expectation value of an arbitrary operator D̂ can be expressed using the density matrix

ρ0,

〈D̂〉 = Tr(ρ0D̂) with ρ0 =
e−βĤ0

Tr(e−βĤ0)
, (2.119)

using β = (kBT )−1 with the Boltzmann constant kB and the temperature T . In order

to calculate the expectation value of a time-dependent operator 〈D̂〉t one also needs to
account for a time-dependent density matrix ρ(t). Access to ρ(t) is given by the von-

Neumann-equation using a commutator between the total Hamiltonian Ĥ = Ĥ0 +Ŵ (t)

and ρ(t):

i~
∂

∂t
ρ(t) =

[
(Ĥ0 + Ŵ (t)), ρ(t)

]
. (2.120)

It is useful to transform equation (2.120) to the interacting picture

i~
∂

∂t
ρ(t) =

[
ŴI(t)), ρI(t)

]
, (2.121)

while avoiding Ĥ0 using the interaction terms WI(t) and ρI(t):

WI(t) = eiĤ0t/~ W (t) e−iĤ0t/~ and ρI(t) = eiĤ0t/~ ρ(t) e−iĤ0t/~ . (2.122)

Integrating over time will lead to an expression for ρ(t) which has to be solved itera-

tively. For small perturbations it is reasonable to account only for the �rst order term

and neglect higher terms, leading to a linear response approach. Thus, ρ(t) ≈ ρ(1)(t)
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which leads to

ρ(1)(t) = ρ0 −
i

~

∫ t

−∞
dt′ e−iĤ0t/~

[
ŴI(t

′), ρ0

]
eiĤ0t/~ . (2.123)

This can be used to describe 〈D̂〉t, giving the following equations:

〈D̂〉t = Tr(ρ0D̂)− i

~
Tr
∫ t

−∞
dt′ e−iĤ0t/~

[
ŴI(t

′), ρ0

]
eiĤ0t/~ D̂ , (2.124)

= 〈D̂〉 − i

~

∫ ∞

−∞
dt′ Θ(t− t′) 〈

[
D̂I(t), ŴI(t

′)
]
〉 . (2.125)

Here, the step function Θ(t−t′) assures that only perturbations for t < t′ are accounted

for the system at time t. With (2.125) the central equation of linear response theory

was derived, as it allows for calculation of the expectation value of an arbitrary time-

dependent operator 〈D̂〉t of the perturbated system using only the commutator of the

unperturbated density matrix ρ0 and the operator for the perturbation D̂.

In order to calculate now the response of a solid to an external electric �eld Et

one has to specify the operators of interest. Consequently, one has D̂ = ĵ with ĵ

being the electric current operator as response of the system. The interaction operator

Ŵt is de�ned by the frequency ω dependent electric �eld Et = E0e
−i(ω+iδ)t (with

δ → 0+, meaning for t → −∞ the system is unperturbed) and the electric dipole

moment operator P̂ =
∑N

i=1 qir̂i (with the charge qi and the position operator r̂i),

leading �nally to Ŵt = −P̂ ·Et. Insertion into equation (2.125) leads to

〈ĵµ〉t =
i

~
∑

ν

∫ ∞

−∞
dt′ Θ(t− t′) 〈

[
ĵµ,I(t), P̂ν,I(t

′)
]
〉 E0,νe

−i(ω+iδ)t′ , (2.126)

while the term 〈D̂〉 drops out because no current appears in the unperturbated system.

Equation (2.126) can be reformulated in terms of

〈ĵµ〉t =
i

~
∑

ν

∫ ∞

−∞
dt′′ Θ(−t′′) 〈

[
ĵµ, P̂ν,I(t

′′)
]
〉 Et,νe−i(ω+iδ)t′′ , (2.127)

where now only one operator from the commutator is still time dependent. Combined

with the relation jµ = σµνEν one obtains the conductivity tensor:

σµν =
i

~

∫ ∞

−∞
dt Θ(−t) 〈

[
ĵµ, P̂ν,I(t)

]
〉 e−i(ω+iδ)t. (2.128)
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Using the Kubo identity for any operator Â given by

[
Â(t), ρ

]
= −i~ρ

∫ (kBT )−1

0

dλ ˙̂
A(t− i~λ) , (2.129)

together with the expression ˙̂P = V ĵ, one can rewrite equation (2.128) to its �nal form

leading to the Kubo equation:

σµν = V

∫ (kBT )−1

0

dλ
∫ ∞

0

dt 〈ĵµĵI,µ(t+ i~λ)〉 ei(ω+iδ)t. (2.130)

The Kubo equation demands only the restriction to small perturbations, otherwise

it is an exact equation within a full many-body framework. Thus, solving the Kubo

equation proves too di�cult to be a feasible approach for the moment. Assuming

the independent electron approximation and neglecting the dependence on ω the so-

called Bastin equation can be derived. [147] Going additionally to the athermal limit

of T = 0 K one obtains the so-called Kubo-Str�eda equation. [148,149] Using the Kubo-

Str�eda approach the full conductivity tensor σ is available with all o�-diagonal parts.

Considering only the diagonal, symmetric part of σ one gets the Kubo-Greenwood

equation. [150] For the scope of this thesis, the more complex Bastin and Kubo-Str�eda

formalism are not treated in detail. Transport properties for the iron pnictides are

evaluated for the collinear antiferromagnetic phases only, meaning only the symmetric

part of the transport tensor is relevant. Thus, the following will focus directly on the

Kubo-Greenwood approach.

2.3.3 Kubo-Greenwood equation

To derive the Kubo-Greenwood equation one can start from the Kubo-Str�eda equation

for the full conductivity tensor as given by

σµν =
~

4πV
Tr〈ĵµ(G+ −G−)ĵνG

− − ĵµG+ĵν(G
+ −G−)〉c

+
e

4πiV
Tr〈(G+ −G−)(r̂µĵν − r̂ν ĵµ)〉c . (2.131)

Here, 〈 〉c indicates a con�gurational average with respect to an alloy, with G+ and

G− are the retarded and advanced Green function with respect to equation (2.4). All

energy dependent Green functions are evaluated at the Fermi energy EF . Using the

relations (G+ − G−) = 2iIm G+, G+ = Re G+ + iIm G+ and G− = Re G+ − iIm G+
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the Kubo-Str�eda equation (2.131) is reformulated to the following expressions:

σµν =
i~

2πV
Tr〈ĵµIm G+ĵν(Re G+ − iIm G+)− ĵµ(Re G+ + iIm G+)ĵνIm G+〉c

+
e

2πV
Tr〈Im G+(r̂µĵν − r̂ν ĵµ)〉c , (2.132)

=
i~

2πV
Tr〈[ĵµIm G+ĵν − ĵνIm G+ĵµ]Re G+〉c

︸ ︷︷ ︸
σAµν

+
~
πV

Tr〈ĵµIm G+ĵνIm G+〉c
︸ ︷︷ ︸

σBµν

+
e

2πV
Tr〈Im G+(r̂µĵν − r̂ν ĵµ)〉c

︸ ︷︷ ︸
σCµν

, (2.133)

= σAµν + σBµν + σCµν . (2.134)

These three terms of the Kubo-Str�eda equation ful�ll equation (2.135):

σAµν = −σAνµ and σBµν = σBνµ and σCµν = −σCνµ . (2.135)

Thus, it is obvious that only σBµν contributes to the diagonal part of the conductivity

tensor σ. Consequently, the �nal Kubo-Greenwood equation [150] for the symmetric

part of the conductivity tensor is given by

σµµ =
~
πV

Tr〈ĵµIm G+ĵµIm G+〉c . (2.136)
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Chapter 3

High-temperature iron pnictide

superconductors

It started in 2008 with the discovery of unconventional high-temperature superconduc-

tivity up to 26 K in �uorine doped LaOFeAs as discovered by Kamihara et al. [10,11]. In

the following years a large variety of di�erent superconducting iron based compounds

were found which all share common structural motifs. Today, the iron pnictides and

the iron chalcogenides are separated into several subgroups although the underlying

physics seem similar in most cases. [151,152]

Antiferromagnetic order and spin �uctuations play a signi�cant role for the emer-

gence of superconductivity which is nowadays discussed in terms of a s± pairing

state. [19,153] The Fermi surface as seen in ARPES measurements is quite complex and

shows clear indications for good nesting between hole and electron pockets. [31,33] Most

compounds undergo a phase transition from a tetragonal to a low temperature or-

thorhombic phase, typically accompanied by the formation of long-range antiferromag-

netic order. In this context strong in-plane anisotropy is reported, often discussed in

relation to a nematic order. [39,154,155] Concerning electronic properties, strong many-

body correlations seem of importance for some systems. [54,55]

Overall, the iron pnictides are a highly complex family of materials which are still

today far from fully understood. Thus, this chapter will give a brief overview concerning

the iron-based superconductors. It will deal with the di�erent subgroups and common

physical and chemical properties that all iron pnictides share. Additionally, the so-

called 122-compounds which are relevant for this work will be discussed in more detail.
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3.1 Classi�cation of iron pnictides

122-compound

BaFe2As2
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Figure 3.1. Crystal structures of the most important iron pnictide/chalcogenide based
compounds. The FeAs/FeSe-tetrahedron layer represents the common structural motif.

Structural motif

The large family of iron based superconductors known so far is separated into several

subgroups according to the stoichiometry of the respective mother-compound. An

overview of the di�erent crystal structures for the most relevant iron based compounds

is given in Fig. 3.1. The structure types can be formally deduced from the anti -

PbO [156], anti -PbFCl [157], ThCr2Si2 [158] and ZrCuSiAs [159] structures. The simplest of

these subgroups are the 11-compounds which are strictly spoken not based on an iron

pnictide but an iron chalcogenide, namely FeSe. [160] There are also the 111-compounds

AFeAs [161] (A = Li, Na) and the 1111-compounds LOFeAs [10,11,162�167] (L = La, Ce,

Pr, Nd, Sm, Gd, Dy) which were discovered �rst. The focus of this thesis is on
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3.1 Classi�cation of iron pnictides

BaFe2As2 which is the prototype of the 122-compounds (A/E)Fe2As2
[23,168,169] (A =

Na, K, Rb, Cs; E = Ca, Sr, Ba). Notable are also the complex 21311-compounds

E2MO3FeAs [170�172] (E = Sr, Ba; M = Sc, V, Cr). Since 2011 the new 1038 and 1048

iron pnictides are known, namely (CaFeAs)10Pt3As8 and (CaFeAs)10Pt4As8. [173�175]

They posses quite complex structures with several di�erent phases and can have critical

temperatures up to a maximum of 35 K. [176,177] In 2014 the [(Li1−xFex)OH](Fe1−yLiy)Se

system was discovered, which notably shows the coexistence of superconductivity and

3d-ferromagnetism. [178]

All di�erent iron based compounds have one structural motif in common, namely

the very characteristic assembly of the iron pnictide/chalcogenide layer. This layer

consists of e.g. edge-sharing FeAs4/4 tetrahedrons and has formally a negative charge.

It is generally believed that these highly functional FeAs layers, which are separated

by arbitrary cations or cationic layers, are mainly responsible for the occurrence of

superconductivity. Furthermore, it should be mentioned that the respective mother

compounds, with very little exceptions, normally show no superconductivity. Only

after a reasonable substitution of elements or after a geometrical distortion, for ex-

ample induced by pressure, superconductivity can occur. One distinguishes indirect

doping [179,180], meaning the substitution on an arbitrary site outside the FeAs layer and

direct doping [181], meaning substitution within the FeAs layer itself. For both types of

substitution charge doping in terms of hole- or electron-doping is possible and normally

both can lead to superconductivity. [23,27] There are also cases in which isovalent doping

can lead to the occurrence of superconductivity. [28,30,182,183]

Phase transitions

The phase diagrams of all iron pnictide superconductors show similar behavior and

properties with increasing dopant concentration x. In Fig. 3.2 the phase diagrams for

(A) CeO1−xFxFeAs and (B) Ba(Fe1−xCox)2As2 are shown as generic examples. Gen-

erally, the undoped mother compounds at room-temperature are Pauli-paramagnets.

Thus, the white regions of the phase diagram can be fairly well approximated as a para-

magnetic state, although the phase diagrams here shown are simpli�ed, not accounting

for spin-�uctuations and possible anomalies. [185] By cooling the undoped compound,

one arrives at a structural phase transition at Ts, typically from a tetragonal to an

orthorhombic symmetry. This is connected to the occurrence of long-range antifer-

romagnetic (AFM) order at TN, which can be described in terms of a commensurate

spin-density wave (SDW) state. These two features are found always separated from
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Figure 3.2. Schematic phase diagram of (A) CeO1−xFxFeAs and (B) Ba(Fe1−xCox)2As2.
The phase region of long-range antiferromagnetic order is marked in orange, while the su-
perconducting region is marked on cyan. In (B) one has also a coexistence region marked in
yellow. The data is reproduced from the work of Zhao et al. [162] and Lester et al. [184].

each other. [186] However, for the 1111-compounds (Fig. 3.2 (A)) there is a clear separa-

tion with a P4/nmm to Cmma phase transition at Ts ≈ 155 K and a magnetic ordering

at lower temperature of TN ≈ 140 K, while for the undoped 122-compound (Fig. 3.2

(B)) the structural phase transition from I4/mmm to Fmmm and the commensurate

SDW ordering appear close together at a temperature Ts ≈ TN ≈ 135 K. [22,187]

When the dopant concentration x increases, the structural phase transition and

the antiferromagnetic ordering do progressively take place at lower temperatures un-

til they are completely suppressed when a critical concentration xcrit is reached. At

the vicinity of the magnetic long-range order breakdown, a commensurate to incom-

mensurate transition for the SDW state is principally possible, but typically only for

a very narrow region of the phase diagram. [26] This suppression of both, the ordered

SDW state and the structural phase transition at low temperatures, does obviously

correlate with the occurrence of superconductivity. In this context one should note a

coexistence region between superconductivity and antiferromagnetic order in the phase

diagram of Fig. 3.2 (B) marked in yellow, that is controversially discussed in the lit-

erature. This coexistence is known for several iron pnictides leading to the suggestion

that the full suppression of long-range magnetic order is not a mandatory requirement

for the occurrence of superconductivity. On the other hand, a phase separation in

the nanometer range into a non-magnetic superconducting and an antiferromagnetic

non-superconducting phase was proposed. [188] However this was proven wrong for the
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3.1 Classi�cation of iron pnictides

K-doped 122-compound. [189] Thus, nowadays the common opinion favors rather the

assumption of a coexistence between superconductivity and magnetism. [187,189,190]

In-plane anisotropy

The phase transitions common for all iron pnictides described in the latter subsection

have some important physical consequences as they result in a symmetry breaking

of the C4 rotational symmetry leading to a C2 symmetry. Thus, one can expect an

in-plane anisotropy for the electronic structure and all related physical properties. In

experiment this in-plane anisotropy was not properly observed for a long time due to

the fact that the structural phase transition in the iron pnictides is typically accom-

panied by a signi�cant twinning of the single crystals which leads to an averaging of

anisotropic e�ects. [191] However, it was possible to cancel out the e�ects of twinning by

using a device to apply uniaxial stress during the measurement, leading to detwinned

data showing strong in-plane anisotropy in e.g. electrical transport and ARPES spec-

tra. [36,38,39,192,193] In fact, this anisotropy is considerably stronger than what could be

expected only from the structural anisotropy between the a and b axes, which is rather

small. Consequently, the magnetic anisotropy of the antiferromagnetic state should be

of most relevance concerning the question of in-plane anisotropy in the iron pnictides.

Furthermore, there is a region for TN < T < Ts called nematic phase, showing also

strong electronic anisotropy speci�ed as nemanticity. [194] This anisotropy is discussed

in terms of spin �uctuations and nematic symmetry breaking, possibly induced by

anisotropic impurity states as seen in scanning tunneling microscopy. [40,41,43,154,155,195,196]

Spin-density waves

The magnetic order in the iron pnictides can be described by a so-called spin-density

wave (SDW), which was �rst proposed by Overhauser and Arrott in 1959. [197] It is

described as an instability in the non-interacting electron gas, which can lead to the

formation of a broken-symmetry ground state. In order to evaluate the properties of a

SDW state, consider the enhanced magnetic susceptibility χ(q): [198]

χ(q) =
χ0(q)

1− Iχ0(q))
, (3.1)

with χ0 as so-called unenhanced susceptibility which is calculated in the absence of

any enhancing exchange-correlation e�ects and a corresponding exchange-correlation

integral I. For a paramagnetic ground state χ(q) is positive and �nite for any Q.
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Obviously, χ(q) diverges for Iχ0(q) = 1. Such a singular behavior indicates an insta-

bility of the paramagnetic state towards the spontaneous formation of a state with spin

order. Thus, a su�ciently strong exchange-correlation interaction I together with a

large χ0(q) are the requirements for a SDW to emerge. These preconditions are easily

ful�lled for a one-dimensional system, in which the susceptibility diverges for Q = 2kF

with kF as Fermi wave vector. It should be noted that this corresponds to the perfect

nesting condition εk+Qi
= εk.

For Q = 0 the enhanced susceptibility from equation (3.1) recovers the Stoner

criterion for ferromagnetism. [199] Thus, for such q-vectors an instability towards a fer-

romagnetic ground state is expected. If Q is commensurate with any reciprocal lattice

vector an antiferromagnetic ground state will be realized, while di�erent high symmet-

ric points of the Brillouin zone represent di�erent antiferromagnetic con�gurations.

Divergence of χ(q) for a Q incommensurate with the reciprocal lattice would imply a

transition to a state of non-commensurate magnetization. Such a ground state has a

spatial spin density modulation, meaning there is a di�erence between the density for

electrons with spins polarized upwards (ρ↑(x) ≡ ρ+(x)) and the density for electrons

with spins polarized downwards (ρ↓(x) ≡ ρ−(x)). This di�erence is �nite and modu-

lated in space as a function of the position, thus, the SDW has electron densities for

both spin-channels ρ±(x) which are out of phase by π: [198]

ρ±(x) =
1

2
ρ0 [1± ρ1 cosQx] . (3.2)

The total charge ρ0 of a SDW is always constant and independent of the position x.

Consequently, the SDW ground state for an incommensurate Q with a long period in

the order of several lattice parameters can be accompanied with a spiral-like rotation

of neighboring spins, also incommensurate with the lattice. An important example is

the antiferromagnetism in chromium, which was identi�ed to be a static kind of SDW

resulting from Fermi surface nesting mechanism. [200,201]

Analogously, the long-range antiferromagnetic order of the iron pnictides has its

origin in a commensurate SDW state with e.g. for BaFe2As2 a vector QAFM = (1, 0, 1),

corresponding to antiferromagnetic coupling along the a and c axes. For Co doping

also incommensurate SDW states can be realized with the propagation vector τ =

QAFM + (0, ε, 0) = (1, ε, 1) for a small incommensurability ε ≈ 0.02 � 0.03. [26]

42



3.2 The subgroup of the 122-compounds

3.2 The subgroup of the 122-compounds

3.2.1 The BaFe2As2 mother compound

tetragonal - I4/mmm orthorhombic - Fmmm

(A) (B)

c

b
a

Ba

Fe

As

Figure 3.3. Crystal structures of the Ba-122 mother compound BaFe2As2 in (A) its room-
temperature tetragonal phase and in (B) its low-temperature, antiferromagnetic orthorhombic
phase. The blue arrows represent ordered magnetic moments.

For the Ba-122 mother compound BaFe2As2 two crystal structures are of importance.

Fig. 3.3 (A) shows the paramagnetic tetragonal phase at room-temperature, while

Fig. 3.3 (B) gives the orthorhombic low-temperature antiferromagnetic phase. The

transition between both is actually split into two processes (see also the phase diagram

already shown in Fig. 3.2 (B)). First, a from tetragonal I4/mmm to orthorhombic

Fmmm second-order phase transition occurs at Ts = 134.5 K. [186] This can be struc-

turally described by a 45◦ rotation of the unit cell in the ab plane. Compared with

the tetragonal phase, the a axis is marginally stretched in the orthorhombic structure,

whereas the now shorter b axis is clinched. The structural transition is followed by a

�rst-order antiferromagnetic transition at TN = 133.75 K. [186] These two phase tran-

sitions evolve for increasing substitution (e.g. with Co or Rh) into two clearly split

second-order transitions. [186]

Consequently, only the orthorhombic phase can exhibit a commensurate SDW state,

corresponding to an antiferromagnetic order with all spins rotated in-plane and aligned

parallel to the a axis. The orientation of spins is well examined by several groups

using neutron di�raction, 57Fe Mössbauer spectroscopy or Muon spin relaxation (µSR)

experiments. [22,24,25,45,202,203] The coupling is antiferromagnetic along the longer a axis
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and the c axis and ferromagnetic along the b axis. Although there is no question

about the spin orientation, the magnetic moments for Fe were reported di�erently

depending on the used analytical method. For neutron di�raction so far 0.99 µB
[25] are

reported for BaFe2As2 single crystals grown in Sn �ux and 0.87 µB
[24] were measured

with powder probes. However, one should note that crystals grown in a Sn �ux are

known to incorporate Sn into the crystal. [204,205] Using 57Fe Mössbauer spectroscopy

the hyper�ne �eld was determined to have a saturation value of 5.47 T at 4.2 K, which

was used to estimate the magnetic moment to be between 0.4 µB and 0.5 µB. [22,45]

Muon spin relaxation spectroscopy shows in principle results similar to the Mössbauer

spectroscopy with estimated moments around 0.5 µB. [202,203] The issue of magnetic

moments derived from Mössbauer spectroscopy will be also discussed in Chapter 8 of

this thesis.

In addition to the BaFe2As2 prototype also the other 122-compounds SrFe2As2 and

CaFe2As2 are known. However, the Sr-122 and Ca-122 compounds are quite similar in

their physical and chemical behavior to the Ba-122 compound which was most exten-

sively studied among the 122-compounds. [23,206�210] One should mention the existence

of a high pressure collapsed tetragonal phase for CaFe2As2
[211�213], although for the

scope of this work this phenomenon is of minor interest.

3.2.2 Substituted BaFe2As2 superconductors

Ba1−xKxFe2As2

Superconductivity within the 122-compounds was �rst discovered in potassium doped

Ba1−xKxFe2As2
[22,23,214] which up to now has still the highest critical temperature with

Tc = 38 K. In this hole doped compound superconductivity �rst occurs for x ≈ 0.1

and persists over the whole doping regime up to KFe2As2. The long-range antiferro-

magnetic order �nally breaks down for xcrit ≈ 0.25, thus a real coexistence between

superconductivity and antiferromagnetism has been observed. [189]

This compound is also known for its especially complex ARPES spectra which

were extensively studied in literature and which cannot be explained using DFT-based

electronic band structure calculations. [33,215�221] The in-plane resistivity anisotropy re-

ported of this compound is rather small and may even show sign changes. [43,222]
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Ba(Fe1−xCox)2As2

Soon after the discovery of superconductivity in hole doped BaFe2As2 the �rst electron

doped Ba-122 superconductor using Co doping was reported with a Tc up to 22 K. [27]

Nowadays, Ba(Fe1−xCox)2As2 is still the prototype for electron doping induced super-

conductivity in the 122 subgroup and it was also extensively studied. [184,223�225] The

respective phase diagram was shown in Fig. 3.2 (B). Superconductivity emerges �rst

for x ≈ 0.04, while the antiferromagnetic order persists up to xcrit ≈ 0.07. Supercon-

ductivity again vanishes in the over doped regime corresponding to x > 0.2.

Strong in-plane anisotropy in electric transport was �rst discovered for the Co doped

BaFe2As2 compound after detwinning of the crystals. [39] Thus, the system is also one

of the most famous prototypes with respect to unusual strong in-plane anisotropy, not

only seen in transport measurements [42,222,226,227] but also seen in ARPES spectra. [36]

Ba(Fe1−xTMx)2As2 with TM = Ni, Rh, Pd

Similar to the Co doped compound superconductivity is also found in Ni substituted

Ba(Fe1−xNix)2As2 with a maximum Tc ≈ 20 K. [29,228] Assuming TM2+ ions Co will

formally donate one electron to the FeAs layer, while Ni gives two electrons. Thus, the

occurrence of superconductivity and the suppression of long-range antiferromagnetic

order happens in Ba(Fe1−xNix)2As2 for lower doping ratios x compared to the Co

compound. However, the critical temperature in Ba(Fe1−xNix)2As2 and the size of

the superconducting dome are reduced. Ba(Fe1−xNix)2As2 has its maximum in Tc for

x ≈ 0.04 but the superconducting behavior vanishes already for x > 0.08. [228]

Apart from the 3d elements Co and Ni the corresponding 4d elements Rh and Pd are

known to induce superconductivity in Ba(Fe1−xRhx)2As2 and Ba(Fe1−xPdx)2As2. [229]

The phase diagrams of the Rh and Pd compounds are in principle completely analogous

to those of the 3d Co and Ni systems with maximal critical temperatures of Tc ≈ 24 K

and Tc ≈ 19 K for the Rh and Pd superconductors respectively.

Non-superconducting Ba(Fe1−xTMx)2As2 with TM = Cu, Mn

Continuing the electron doping 3d row from Co to Ni one advances further to Cu.

Yet, the trend of smaller superconducting domes and lower critical temperatures also

continues as it is very di�cult to prove superconductivity in Ba(Fe1−xCux)2As2. There

are reports of only one superconducting sample around x ≈ 0.04 with a Tc ≈ 2 K. [230]

As it was not reproduced one counts Ba(Fe1−xCux)2As2 today rather as a non-super-
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Chapter 3. High-temperature iron pnictide superconductors

conducting example where the excessive electron doping suppresses the superconduc-

tivity before it can really emerge. [228,230�232]

Trying to directly hole dope BaFe2As2 leads to Ba(Fe1−xMnx)2As2 which is also

non-superconducting. This compound is however unique among the iron pnictides as

the antiferromagnetic order persists after the orthorhombic to tetragonal phase tran-

sition. It seems that a complicated competition between di�erent antiferromagnetic

states allows for the persisting magnetic order and thus for a suppression of supercon-

ductivity. [232�234]

BaFe2(As1−xPx)2

It was rather unexpected to �nd evidence for suppressed magnetic order and super-

conductivity in isovalent doped iron pnictides, thus the P doped BaFe2(As1−xPx)2 was

one of the �rst ones. [30,182] Superconductivity emerges from x > 0.2 on until it vanishes

again for x > 0.7. The maximal critical temperature of Tc ≈ 30 K is rather high,

however, the mechanism for superconductivity seems to be not fundamentally di�erent

from charge doped iron pnictides.

Ba(Fe1−xRux)2As2

Another example of superconductivity induced by isovalent doping is Ba(Fe1−xRux)2As2

with a maximum in the critical temperature of Tc ≈ 17 K for x ≈ 0.3. [28,183] The phase

diagram is similar to that of the other iron pnictides, the antiferromagnetic order is

suppressed at xcrit ≈ 0.3 and superconductivity emerges from x ≈ 0.2 on until it van-

ishes for x ≈ 0.6. From the theoretical point of view it has an advantage over the

P doped BaFe2(As1−xPx)2 compound, because the substitution takes place on the Fe

sites. This makes Ba(Fe1−xRux)2As2 more closely related to the Ba(Fe1−xCox)2As2

system and thus comparisons between both more promising. [51]

There exist also several detailed ARPES studies on this system which support the

assumption of a more or less isoelectronic character of the electronic structure and the

Fermi surface. [37,235]
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Chapter 4

The antiferromagnetic ground state

4.1 Motivation

The motivation for this thesis was based on own preliminary work on the iron pnictides,

�rst experimental one on 1038 systems [176,177] and subsequent theoretical investigations

starting with a lab report followed by a Master's thesis [236] on Ba(Fe1−xCox)2As2.

At the beginning, the focus was on the question whether the substitution of Co

into BaFe2As2 in terms of Ba(Fe1−xCox)2As2 really leads to electron doping. At this

time, there was work stating that the injected electron of Co is rather localized at the

Co atoms due to charge localization and thus cannot lead to real electron doping of

the whole system. [237�239] This was in contradiction with DOS calculations showing the

expected broadening of states at the Fermi level, for the Fe d-states as well as for the

Co d-states. The question was soon su�ciently answered e.g. by Berlijn et al. [49] who

argued that none of the above pictures is individually su�cient to answer the issue

of localization. They used a sophisticated supercell approach with an average over 10

randomly-shaped supercells containing 400 atoms each in order to treat nonmagnetic

Ba(Fe0.875Co0.125)2As2. Their results clearly showed that there is no support for a

localization of the injected Co d-electron, thus, one can speak of electron doping. In

order to understand the results, they emphasized the substantial importance of disorder

e�ects which have been treated by their elaborate supercell approach.

However, the CPA was at this time practically not known to the community work-

ing on iron pnictides. At that time Khan et al. [52,240] were the �rst to present CPA

calculations on the iron pnictides, however, the important advantages of this approach

were not su�ciently clari�ed. In particular, the CPA allows for an investigation of

almost arbitrary dopant concentrations x, which is from practical reasons not possible

47
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for a supercell approach. Even more important, the computational e�ort of a credible

supercell calculations is by orders of magnitude higher compared to the CPA. In partic-

ular, an average over 4000 atoms was used by Berlijn et al. [49] to calculate nonmagnetic

Ba(Fe0.875Co0.125)2As2, while a similar result can be obtained from the CPA using only

1 cell with no more than 5 atoms. Note, that the disorder e�ects discussed by Berlijn

et al. [49] can be fully reproduced by the CPA.

The idea was to target a more complex situation with the CPA, which implies a

higher computational e�ort and thus limits the applicability of the supercell approach.

Most theoretical investigations at this time were performed on the nonmagnetic, tetrag-

onal phase, however, only little work considered the full antiferromagnetic, orthorhom-

bic phase. There are two apparent reasons which make the antiferromagnetic case more

complicated. First going from a 2-Fe unit cell to a 4-Fe cell in order to correctly ac-

count for the magnetic order doubles the size of the unit cell and signi�cantly increases

the computational e�ort. Secondly, DFT seemed to have problems in describing the

magnetic properties of the iron pnictides correctly. [16,18,19] In this context one has to

mention that the magnitude of the magnetic moment was typically overestimated by

DFT. [16,124,241�243] To describe the magnetic properties of the iron pnictides was thus a

challenging issue and it seemed even more bene�cial if one was able to equally account

for the disorder introduced through substitution in doped compounds.

Thus, the antiferromagnetic, orthorhombic phase of Ba(Fe1−xCox)2As2 was studied

by means of the KKR-CPA in order to prove its applicability to this complex iron pnic-

tide prototype compound as a prove of principle for all subsequent work. In particular,

not only the magnetic moments and the electronic band structure can be investigated,

but also the magnetic exchange coupling constants Jij can be calculated and applied

for subsequent Monte Carlo simulations.
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We present a comprehensive study on the low-temperature orthorhombic phase of Ba(Fe1−xCox)2As2 based
on the Korringa-Kohn-Rostoker-Green function approach. Using this band-structure method in combination
with the coherent potential approximation alloy theory we are able to investigate the evolution of the magnetic
and electronic properties of this prototype iron pnictide for arbitrary concentrations x, while dealing with the
chemical disorder without uncontrolled simplifications by using solely a rigid-band shift or the virtual crystal
approximation. We discuss the development of the site-resolved magnetic moments for the experimentally
observed stripe antiferromagnetic order together with the strong electronic anisotropy of the Fermi surface and
compare it with angle-resolved photoemission spectroscopy measurements of detwinned crystals. We furthermore
calculate magnetic exchange coupling parameters Jij and use them for Monte Carlo simulations on the basis of
the classical Heisenberg model to get an insight on the temperature dependence of the magnetic ordering on the
cobalt concentration.

DOI: 10.1103/PhysRevB.90.184509 PACS number(s): 74.20.Pq, 74.62.En, 74.70.Xa

I. INTRODUCTION

Over the last few years, the iron pnictides received tremen-
dous interest, following the discovery of high-temperature
superconductivity in La(O1−xFx)FeAs [1,2]. Its mechanism of
superconductivity is generally considered to be unconventional
and it is most likely connected to magnetic fluctuations [3–5].
This makes the magnetic behavior of the iron pnictides crucial
to understand their underlying physics and superconductivity.
However, this question turned out to be far from trivial
[6,7]. The complex magnetism of these compounds allows no
straightforward description concerning several aspects which
results in the fact that even today the iron pnictides are far from
fully understood.

To name a few examples, there was considerable discussion
whether the magnetic moments are better described by an
itinerant [4,6,8–10] or a localized [11–13] model, there is still
no consensus over the strength of correlation effects [14,15]
and finally the magnitude of the magnetic moments is highly
sensible on the system and computational parameters, which
leads to several seemingly quite different reports in literature
[7,16–19]. Experimental neutron diffraction data predict for
the low-temperature phase of BaFe2As2 magnetic moments
around 0.9μB per Fe atom (0.99μB in Sn flux [16], 0.87μB for
powder probes [20]), while from 57Fe Mössbauer spectroscopy
[17,21] and μSR spectroscopy [22,23] consistently a value of
around 0.5μB is estimated. However, in density functional
theory (DFT) calculations, the magnitude of the magnetic
moments is considerably overestimated, ranging from approx-
imately 1.2μB up to 2.6μB [7,8,24–26]. Furthermore, it is
well known that the magnetic moment depends surprisingly
strong on the free structural parameter z of the As position,
introducing another degree of freedom which makes reliable
predictions even more difficult [7,11,27].

*gerald.derondeau@cup.uni-muenchen.de

It is believed that the commensurate magnetic spin-density-
wave (SDW) state and the superconducting state compete with
each other, implying that the suppression of the long-range
magnetic order is coupled to the emergence of superconductiv-
ity [3,21,28]. Consequently, the understanding of the magnetic
state is crucial to understand the superconducting behavior of
these compounds.

In this paper, we address the magnetic state of the undoped
mother compound BaFe2As2 and focus on the impact of
chemical disorder effects induced by substitution of Fe by
Co. Most theoretical studies on the doping dependence of iron
pnictides are based on a virtual crystal approximation (VCA)
which introduces an averaged atomic charge Z for atomic sites
with chemical disorder [3,24,29]. Using the VCA one should
keep in mind that site-resolved information is lost and disorder
is not properly described. Recent publications stressed that it
is not sufficient for the iron pnictides to neglect these more
complex disorder effects and proved the necessity of more
sophisticated approaches [30,31]. As an example, impurity
scattering is discussed to be the crucial aspect for the newly
discovered in-plane resistivity anomaly in Ba(Fe1−xCox)2As2

which shows the pressing need to account for disorder effects
in an appropriate way within a theoretical description [32–34].

It is very difficult for wave-function-based methods to
achieve a reasonable inclusion of disorder effects, the most
common way is to use supercells [30,35]. The major disad-
vantage of such an approach is the high computational effort
which limits its possible applications. Using a Korringa-Kohn-
Rostoker-Green function (KKR-GF) based method the coher-
ent potential approximation (CPA) is a more straightforward
way to account for disorder compared to a supercell calculation
but with considerably less computational effort needed. Up to
now, investigations of the iron pnictides using the CPA are
extremely rare and recent in literature but nevertheless very
promising [36,37]. In this paper, we will exploit the significant
advantages of the CPA method to deal with the substitution
induced disorder in iron pnictides to achieve an improved

1098-0121/2014/90(18)/184509(9) 184509-1 ©2014 American Physical Society
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theoretical description for the doping-dependent evolution of
these compounds.

II. COMPUTATIONAL APPROACH

All calculations have been performed self-consistently
and fully relativistically within the four component Dirac
formalism, using the MUNICH SPR-KKR program package
[38]. We used always the local density approximation (LDA)
exchange-correlation potential with the parametrization given
by Vosko, Wilk, and Nusair [39]. The structural setup was
based on an orthorhombic unit cell of BaFe2As2 with four
Fe atoms per cell (4-Fe unit cell) in order to account for
the experimentally observed stripe antiferromagnetic spin
state with antiferromagnetic coupling along a and c and
ferromagnetic chains along b [see Fig. 1(a)]. With spin-orbit
coupling included by the four-component Dirac formalism,
the self-consistent field (SCF) calculations considered an
orientation of the magnetic moments along the a axis,
consistently with experiment [16]. We used a dense k mesh
of 20 × 18 × 20 points and considered for s, p, and d orbitals
as basis. As spherical approximation we used a so-called full-
charge ansatz which uses Voronoi polyeder as within the full-
potential scheme. Although all aspherical parts of the charge
density are fully accounted for, the aspherical parts of the
potential are neglected in a full-charge ansatz. We confirmed
that the electronic structure in a full-charge calculation is
comparable to the results from a real full-potential calculation
but is achievable with strongly reduced computational effort.
The exchange coupling constants Jij were calculated using the
Lichtenstein formula [40–42]. The definition of the various
Jij Fe-Fe coupling parameters between Fe atoms is shown in
Fig. 1(b). The treatment of disorder introduced through Co
substitution is fully dealt with on a CPA level.

Within this work, we used the experimental lattice param-
eters and the experimental As position z of BaFe2As2 [17].
However, in case of a large concentration regime (0 � xCo �
0.25) it is reasonable to consider structural relaxation as well.
Because there is no complete experimental data set for the
whole substitutional range, we used a linear interpolation

(a)

Ba

Fe

As

(b)

FIG. 1. (Color online) Crystal and magnetic structure of or-
thorhombic BaFe2As2. The blue arrows on Fe indicate the spin
magnetic moments. (a) Conventional orthorhombic Fmmm low-
temperature unit cell. (b) Magnetic structure of the Fe atoms with
the nearest- and next-nearest-neighbor exchange interactions. The
color code of the Jij values corresponds to Fig. 8.

based on available experimental data and Vegard’s law
which is commonly used for alloys [43]. Thus, we used the
experimentally observed lattice constants from Sefat et al.
[44] for BaFe2As2 and Ba(Fe0.9Co0.1)2As2 and extrapolated
linearly on this basis the change in the crystallographic c

parameter under Co substitution in the orthorhombic phase.
The lattice constants a and b were not changed for the
calculations because their deviation in experiment is reported
small enough to be assumed as unchanged within experimental
uncertainty [44]. The validity of such an extrapolation is
further supported by other work which shows similar trends
in the lattice parameters [24,45]. The linear change of the As
position was accounted for on the basis of single-crystal x-ray
diffraction data from a publication by Merz et al. [46]. All
used structure parameters are summarized in Table I of the
Appendix.

The phase transition from orthorhombic to tetragonal was
intentionally not considered because we wanted to focus on
the magnetic state and have the results comparable over the
whole doping regime.

III. RESULTS AND DISCUSSION

A. Magnetic moments

For the undoped orthorhombic mother-compound
BaFe2As2 we found a total magnetic moment of 1.19μB,
having a spin magnetic moment of 1.14μB and an orbital
magnetic moment of 0.05μB. It should be noted that
this is in quite reasonable agreement with experimental
neutron diffraction data [16,20] compared to other literature,
considering that we used a LDA exchange-correlation
potential and the experimental As position without structural
optimization [6,7,25,26].

In Fig. 2, we show the evolution of the different contribu-
tions to the total magnetic moment depending on the increasing
substitution of Co on the Fe sites. For each doping ratio
x the system was calculated fully self-consistently with the
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FIG. 2. (Color online) Magnetic spin moments (ms) and orbital
moments (mo) of Fe and Co for increasing Co ratio x. The black line
corresponds to the total magnetic moment which is the substitution-
dependent sum over all other plotted contributions. To show spin
and orbital moments in one graph the black, red, and green curves
correspond to the left y axis while the blue and magenta plots belong
to the right y axis which is reduced by one order of magnitude.
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CPA. The use of VCA calculations is insufficient for such
an investigation, not only because of the intrinsic deficiencies
of the made assumptions, but also because the VCA loses
every site-resolved information. Here, we can distinguish the
magnetic spin and orbital moments of Fe and Co, respectively.
Considering the lowest investigated Co concentration of 2.5%
per Fe in Ba(Fe0.975Co0.025)2As2 one has a total magnetic
moment of 1.15μB with already a noteworthy reduction
compared to the undoped case (1.19μB). On the one hand side,
this reduction is approximately due to the individual decrease
of the Fe magnetic moments and on the other hand due to
the smaller contribution of Co. In fact, the magnetic moments
of Co are almost by a factor of 3 smaller compared to the
Fe magnetic moments. This is a strong difference compared
to the bulk metals bcc-Fe and hcp-Co where the difference
in the magnetic moments is small and only about 36%. On
the other hand, BaFe2As2 has a clear magnetic transition with
finite moments while BaCo2As2 is a solely paramagnetic metal
without any signs for a magnetic transition [47].

For increasing doping ratio x obviously the influence of
Co on the decrease in the magnetic moments gets more
and more pronounced. Considering only the Co magnetic
spin and orbital moments it is obvious that they decrease
more or less linearly until they vanish completely. The
decrease in the Fe magnetic moments is less pronounced for
low-doping concentrations but gets significantly higher for
x values above 0.1. In the x range between 0.2 and 0.225,
the Co moments finally vanish, which is accompanied by a
drastic collapse of the Fe magnetic moments and the system
becomes paramagnetic. This collapse of antiferromagnetic
order differs from the experimental phase diagram [48]
of Ba(Fe1−xCox)2As2 because the experimentally observed
disappearance of long-range magnetic order is coupled to an
incommensurate SDW state or fluctuating magnetic moments
and not to a nonmagnetic state.

Nevertheless, it gives a very interesting insight on the
influence of Co doping on the magnetic order in BaFe2As2

and shows a clear nonlinear behavior. It further quantifies
how increasing substitution of Co on Fe sites weakens the
fixed commensurate SDW state until the influence becomes
strong enough to totally suppress magnetic long-range order.
Although this gives no direct information about the possible
existence of another spin state with fluctuating magnetic
moments, Co substitution proves to be quite efficient in
suppressing the commensurate SDW state in BaFe2As2 which
is obviously its crucial influence.

Finally, the influence of the As z position on the magnetic
moments should be briefly discussed. As we stressed before,
we used a linear extrapolation of z(x) depending on the Co
ratio x, based on experimental data to have our results as close
to experiment as possible. Because this means for the case of
Co doping a decrease in z(x) it is obvious that this implies also
a reduction of the magnetic moments, as discussed before by
several authors [6,7,11,27]. For the case of Ba(Fe0.9Co0.1)2As2

we calculated in addition the case where the As position
was not changed and has the experimental value for x = 0,
i.e., z(0.0) = 0.3538 instead of z(0.1) = 0.3529. Comparing
the corresponding moments one can approximately compare
the influence on the magnetic moments induced either by Co
doping or the chance in the As position. For z(0.1) (see results

from Fig. 2) one has for Ba(Fe0.9Co0.1)2As2 a total magnetic
moment of 0.98μB (Fespin: 1.01μB, Cospin: 0.29μB) while the
same system with an unchanged z(0.0) value gave a total
magnetic moment of 1.07μB (Fespin: 1.10μB, Cospin: 0.34μB).
Compared with the undoped BaFe2As2 with a total moment of
1.19μB it is obvious that the experimental adjustment of z(x)
further reduces the magnetic moment as one would expect.
Nevertheless, it is also clear that the most crucial influence
on the moment is due to the substitution of Co and not
the reduction in z. Consequently, one would expect the total
collapse of magnetic moments for constant z values for slightly
higher doping ratios x.

It should be noted that our extrapolation of z(x)
for increasing Co substitution is based on experimental
data and cannot be compared to the much stronger and
unreliable deviation in z obtained by structure optimizations
with nonmagnetic general gradient approximation (GGA)
calculations which are reported in literature to give
already for the undoped BaFe2As2 compound an As
position of z(GGA nonmagnetic) = 0.3448 [for comparison:
z(GGA magnetic) = 0.3520, z(expt) = 0.3545 [6]].

B. Bloch spectral functions

First, we demonstrate that the CPA is able to reproduce
all disorder effects necessary for a complete description of
the electronic structure. Berlijn et al. [30] calculated the band
structure of nonmagnetic, tetragonal Ba(Fe0.875Co0.125)2As2

for 10 randomly configured supercells containing 400 atoms
each in order to gain a description of disorder effects. In
Fig. 3, we show the Bloch spectral function for the same
system calculated with the CPA but using only one cell having
five atoms. As we do not have the band-structure data of
Berlijn et al. [30] available in a numerical form, a quantitative
comparison is not possible. Nevertheless, an inspection of
these data demonstrates full accordance between the two
calculation schemes. First of all, the supercell calculation
shows clearly a moderate scatter of the individual energy bands
implying for a given energy E a well-defined average value k̄
with a width �k that is much smaller than the dimension of
the Brillouin zone. This means disorder gives rise to a finite
lifetime reflected by �k but does not destroy a well-defined
dispersion relation E(k̄) for the configurational average. This
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FIG. 3. (Color online) Bloch spectral function of nonmagnetic,
tetragonal Ba(Fe0.875Co0.125)2As2 calculated with the CPA, using one
cell with five atoms. The corresponding Brillouin zone can be found
in Fig. 10 in the Appendix.
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important result is obviously fully in line with the Bloch
spectral function Ak(E) calculated by means of the KKR-CPA.
In a qualitative comparison one can also see that the disorder-
induced band broadening given by the CPA is in line with
Berlijn’s results [30] concerning intensity as well as position
in reciprocal space. For example, the broadening is strong in
the energy window from approximately −2 to 1 eV but weak
for energies below −2 eV. This is exactly the same information
that could be deduced from the supercell calculation. Thus,
we have further confidence concerning the applicability of the
CPA to treat the disorder in doped iron pnictides.

To further investigate the anisotropic effects of the stripe
antiferromagnetic order depending on the Co concentration we
compare the shapes of the different Fermi surfaces (FS) with
each other. To evaluate the electronic structure, we used the
converged potentials to calculate corresponding Bloch spectral
functions at the Fermi level which should reveal the strong
in-plane anisotropy. To see these important anisotropic ef-
fects in angle-resolved photoemission spectroscopy (ARPES)
experiments it is necessary to efficiently detwin the single
crystal after the structural and magnetic phase transitions at
low temperatures, for example, by applying in-plane uniaxial
stress. Corresponding precise ARPES measurements of de-
twinned crystals of BaFe2As2 which show the strong in-plane
anisotropy of the electronic structure are indeed available in
literature [49,50].

Concerning calculations, one should keep in mind that the
FS depends strongly on the magnetic moment which is not
easy to capture adequately. Furthermore, one must understand
the increasing backfolding of bands with simultaneously
increasing number Fe atoms per unit cell. Still, to describe the
experimentally observed stripe antiferromagnetic state with
antiferromagnetic coupling along c one needs to consider at
least a unit cell with four different Fe atoms (4-Fe). The effects
of backfolding are schematically explained in Fig. 4 where
we show the corresponding Brillouin zone (BZ) [Fig. 4(a)]
and compare the Fermi surfaces of orthorhombic undoped
BaFe2As2 derived from strict nonmagnetic calculations of a
2-Fe [Fig. 4(b)], a 4-Fe [Fig. 4(c)], and a 8-Fe [Fig. 4(d)] unit
cell. In the primitive 2-Fe unit cell [Fig. 4(b)] all points �,
X, Y, and Z are distinct. Note that the directions of X and
Y correspond directly to the real-space a and b directions. In
the 4-Fe unit cell [Fig. 4(c)], the backfolding results in two
points we will call Y′ and X′ where Y′ is a superposition of �

and Y while X′ is the corresponding superposition of X and Z.
Further backfolding results in Fig. 4(d) for the case of an 8-Fe
unit cell where only one point �′′ is the superposition of �,
X, Y, and Z. Because the calculations of the stripe magnetic
state require at least the 4-Fe unit cell, the Fermi surfaces will
correspond to an equivalent backfolding with only X′ and Y′
being distinct.

In Fig. 5(a), we show the Fermi surface of undoped
BaFe2As2 in its stripe antiferromangetic state. Even con-
sidering the expected 4-Fe unit-cell backfolding, the strong
in-plane anisotropy of the electronic structure is obvious. The
red points correspond to the reconstructed Brillouin zone of
Yin et al. [49] which was derived from ARPES measurements
on detwinned crystals. This reconstructed BZ is a combination
of all measured ARPES data and would hence correspond to
an overlay of X′ and Y′ in the definition of Fig. 4(c). The good
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FIG. 4. (Color online) (a) Brillouin zone of orthorhombic
BaFe2As2. Corresponding Fermi surfaces are derived from nonmag-
netic calculations in the �XY plane for increasing size of the unit
cell, (b) two Fe per cell, (c) four Fe per cell, (d) eight Fe per cell,
showing increasing backfolding of the bands.
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FIG. 5. (Color online) Fermi surfaces of the experimental stripe
antiferromagnetic state of orthorhombic Ba(Fe1−xCox)2As2 cal-
culated with a 4-Fe unit cell for different Co concentrations
x. (a) Undoped BaFe2As2 with an overlay of the reconstructed
Brillouin zone of Yin et al. [49] from ARPES measure-
ments, (b) Ba(Fe0.975Co0.025)2As2, (c) Ba(Fe0.925Co0.075)2As2, (d)
Ba(Fe0.875Co0.125)2As2.
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agreement with the experimental ARPES data is obvious. We
lose in the calculations the inner circles of the reconstructed
BZ which would arise from bands around � but the most
important bands, namely, the anisotropic ones are strikingly
well preserved. They are described in literature as small bright
spots along X (corresponding to the antiferromagnetic real-
space a direction) and larger petals along Y (corresponding to
ferromagnetic real-space b direction) [49]. The bright spots
along X are perfectly reproduced. The petals along Y are
a bit bigger than in experiment, but their characteristics are
clearly identifiable. More or less comparable Fermi surfaces
for the stripe antiferromagnetic iron pnictides were predicted,
for example, by Andersen and Boeri [51].

In addition to the undoped Ba-122 compound, we per-
formed the calculation of Bloch spectral functions for the
whole Co doping regime considered in this work. The CPA
allows a very precise investigation of the influence of Co
on the electronic structure considering the induced chemical
disorder. Furthermore, it is interesting to see the change in
the Fermi surface for decreasing strength of the long-range
antiferromagnetic order. In Fig. 5(b), the shape of the FS
has not drastically changed, however, a blur in the intensity
is already quite visible. These blurs or band broadening
effects are due to the disorder induced by Co. For the higher
concentrations in Figs. 5(c) and 5(d), the shape of the bright
spots along a starts to change. While the spots around X′ shrink
the ones around Y′ increase in size and start to blur out. This
trend continues as can be seen in Fig. 6(a), which shows for
x = 0.175 still a comparable FS before the antiferromagnetic

(a) x = 0.175

Y′
X′

Y′ X′

� a

�
b

(b) x = 0.200

Y′
X′

Y′ X′

arb.
units

0.1

1

10

100

(c) x = 0.213

Y′
X′

Y′ X′

� a

�
b

(d) x = 0.225

Y′
X′

Y′ X′

arb.
units

0.1

1

10

100

FIG. 6. (Color online) Fermi surfaces of the experimental stripe
antiferromagnetic state of orthorhombic Ba(Fe1−xCox)2As2 calcu-
lated with a 4-Fe unit cell for different Co concentrations x. These
Fermi surfaces are close to the collapse of long-range antiferro-
magnetic order (a) Ba(Fe0.825Co0.175)2As2, (b) Ba(Fe0.8Co0.2)2As2,
(c) Ba(Fe0.787Co0.213)2As2, (d) Ba(Fe0.775Co0.225)2As2.

order collapses for higher Co concentrations. The initially
bright spots around Y′ have developed to petal-like structure
like the ones around X′ along the b direction. However, they
are still clearly distinguishable through the different strength
of band blurring. The crucial change of the FS happens
in Fig. 6(b) where the anisotropic features finally start to
vanish and become symmetric propellerlike structures. Note,
however, that the electronic structure along the b direction,
with ferromagnetic coupling, is perfectly sharp with no signs of
disorder effects, while the band blur along the a direction, with
antiferromagnetic coupling, is strongest in this picture. For
x = 0.213 in Fig. 6(c) the matching of the propeller structures
is already nearly perfect although there is still a finite magnetic
moment on Fe. Additionally, a squarelike feature forms around
X′ which originates most likely through the backfolding from
the original Z point in the 2-Fe unit cell. The collapse of
long-range magnetic order is complete in Fig. 6(d) where
now the propeller structures are perfectly symmetric. There
are clearly no in-plane anisotropic features of the electronic
structure left. Note that the absence of a perfect fourfold
rotational symmetry of the FS is only due to the effects of
backfolding in the �XY plane (compare Fig. 4).

The same effect is more clearly visible if one shifts the
Bloch spectral function from the �XY plane with kz = 0.5
towards the Z point. The corresponding TPN plane [see
Fig. 4(a)] has the property to show the restoration of the
fourfold rotational symmetry after the collapse of long-range
magnetic order despite the backfolding of bands in a 4-Fe
unit cell. While Fig. 7(a) for the magnetic state with x = 0.0
has an obvious twofold rotational symmetry, the fourfold
rotational symmetry is clearly restored after the collapse
of the long-range antiferromagnetic order in Fig. 7(b) for
x = 0.225. Note further that this disappearance of the in-plane
anisotropy occurs for an orthorhombic lattice. Consequently,
one can state that the origin of the strong anisotropy in
ARPES measurements is practically only due to the stripe
antiferromagnetic order while the effect of the lattice distortion
is practically neglectable.

(a) x = 0.000

T P

N

� a

�
b

(b) x = 0.225

T P

N

arb.
units

0.1

1

10

100

FIG. 7. (Color online) Fermi surfaces of Ba(Fe1−xCox)2As2 cal-
culated with a 4-Fe unit cell in the TPN plane, which is shifted
by kz = 0.5 in Z direction. (a) For x = 0.0 the fourfold rotational
symmetry in the magnetic state is clearly broken. (b) For x = 0.225
in the paramagnetic state the fourfold rotational symmetry is in
principle perfectly restored, despite the 4-Fe unit cell and despite
the orthorhombic distortion.
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It is also striking that the band blurring effects for x = 0.225
[see Fig. 6(d)] are significantly reduced compared to, for
example, x = 0.2 [see Fig. 6(b)]. This is surprising as one
would expect a continuous increase of the band blurring
effects to the maximum of substitutional disorder at 50%
Co substitution. The deviation from the expected behavior
is obviously connected to the antiferromagnetic order and its
collapse for x = 0.225. Additionally, the in-plane anisotropy
of the disorder in Fig. 6(b) may be an interesting first
indication for anisotropic effects in the transport properties
at the proximity of the magnetic phase. It has recently been
discussed that these effects are possibly due to anisotropic
scattering properties [33]. Still, an investigation of only the
Fermi surface is insufficient for even qualitative statements
and specific calculations of the linear-response properties [52]
of these systems are necessary and planned for the future.

C. Exchange-coupling constants

To further investigate the magnetic structure of or-
thorhombic Ba(Fe1−xCox)2As2, we investigated the exchange-
coupling constants Jij between sites i and j . Calculations are
based on the magnetic force theorem and implemented in the
multiple scattering formalism by the formula of Lichtenstein
et al. [40–42].

We focus our discussion on the most important coupling
constants J1a , J1b, J2, and Jz between neighboring Fe atoms,
defined according to Fig. 1(b). Experimentally, it is often not
possible to directly determine these values independently but
one fits the experimental data based on a chosen model, e.g.,
a Heisenberg model [53,54]. Sometimes, the relative strength
of the different coupling constants is further fixed in their ratio
based on theoretical calculations while fitting [53]. Although
there are numerous calculations in literature on the relative and
absolute strength of the coupling constants, there is no clear
consensus and the published values differ in magnitude and
ratio [11,27,53–56]. Thus, it is difficult to compare the results
due to different definitions of the exchange-coupling constants,
the different approximations to calculate them and because
the calculated magnetic moments may differ significantly. For
the iron pnictides, it is known that the exchange energies are
quite sensitive with respect to the magnitude of the magnetic
moment, which consequently may result in different absolute
values [11,27,55].

The exchange-coupling constants discussed here refer to a
Fe atom in center coupling with the neighboring Fe atoms or
substituted Co atoms on Fe sites. The corresponding classical
Heisenberg Hamiltonian has the form H = −∑

ij Jij eiej ,
where we use unit vectors ei(j ) instead of spin vectors Si(j )

[41,57]. Here, a negative sign corresponds to antiferromagnetic
coupling, while a positive sign favors a ferromagnetic inter-
action. The coupling constants between Fe and Co behave in
principle similarly, only the absolute values of Co are reduced
by a factor of approximately 3, which could be expected as
it is a similar ratio compared to the relative strength of the
magnetic moments.

We plotted the isotropic exchange-coupling constants for
Fe coupling with Fe as a function of the Co doping ratio x

in Fig. 8. Here, J� is defined as J1a − J1b and corresponds
to the real-space in-plane anisotropy between a and b. As

-15
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0 0.05 0.1 0.15 0.2 0.25

J
ij
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eV
]

x of Ba(Fe1-xCox)2As2
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J1a(Fe)
J2 (Fe)
Jz (Fe)
JΔ(Fe)

FIG. 8. (Color online) Isotropic exchange-coupling constants Jij

of Fe coupling with neighboring Fe atoms. J� is defined as J1a − J1b.

can be seen in the plot, J� decreases nearly linearly for
increasing Co substitution. J1a and J1b are the dominating
interaction parameters with significant dependence on the Co
doping, while J2 and Jz are smaller and their change due to Co
substitution is only weak. Interestingly, J1a shows a strong and
continuous decrease while J1b even shows a small increase in
the coupling strength for low Co ratios and reaches a maximum
at 7.5% of Co substitution. The derived coupling constants are
in reasonable agreement with experimental neutron diffraction
data on BaFe2As2 [53,58,59]. The values seem a bit smaller,
but this is primarily due to the definition of the Heisenberg
Hamiltonian (see above) with the spin moment incorporated
into the Jij ’s [41,57].

It should be noted that the signs for all calculated nearest-
neighbor interactions are negative and would hence prefer an
antiferromagnetic order. As the system obviously cannot fulfill
all of these conditions at the same time, there is a competition
of magnetic states, in accordance with other reports in literature
[55,60].

D. Monte Carlo simulations

To solve the problem of competing magnetic states on an
accurate level we performed Monte Carlo simulations based
on the classical Heisenberg model. It should be noted that
although the iron pnictides have clearly itinerant aspects in
their magnetic structure, it is still too rash to completely
dismiss the Heisenberg model for predictions of the magnetic
ordering. On a simple level, the Heisenberg model was
successfully used in several publications giving useful results
as long as one keeps the underlying approximations in mind
[53–55].

For the Monte Carlo simulations we used 2744 atoms and
solved the competition of magnetic states in an accurate way as
we reproduced correctly the experimental stripe antiferromag-
netic structure as magnetic ground state for T = 0 K as seen
in Fig. 9(a). These calculations allowed us further to include
temperature-dependent effects to evaluate, for example, the
Néel temperature TN of the ground state. For the undoped
BaFe2As2, the estimated Néel temperature of TN ≈ 142 K is
in perfect agreement with the experimental TN, expt ≈ 140 K.
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FIG. 9. (Color online) (a) Magnetic ground state of BaFe2As2 ac-
cording to Monte Carlo simulations. (b) Evolution of the Néel temper-
atures TN depending on the Co concentration x in Ba(Fe1−xCox)2As2.
The experimental data TN, expt were reproduced from the work of
Lester et al. [48].

These results make us confident that the exchange-coupling
constants are in the right order of magnitude and the Heisen-
berg model can be successfully used as a satisfying basis for
Monte Carlo simulations.

We further evaluated the change of the Néel temperature for
increasing Co substitution and show this behavior in Fig. 9(b)
together with experimental data taken from the work of Lester
et al. [48]. One should still keep in mind that the calculated
collapse of antiferromagnetic order happens for relatively high
Co ratios, meaning it cannot be directly compared to the
experimental phase diagram concerning the Co concentration
as we did not consider for incommensurate spin states.

Still, accounting for this stretching of the calculated phase
diagram, the overall trends in the behavior of the Néel
temperature in Fig. 9(b) are rather well reproduced. Also,
in the experimental data from Lester et al. [48] one can
see a split of the Co dependence of the Néel temperature
in two approximately linear regions with different slope.
Experimentally, in the first region TN decreases from 140 K
down to approximately 40 K until the proximity of the
magnetic collapse is reached. For higher Co ratios, the decrease
of TN from 40 K down to 0 K (collapse of long-range magnetic
order) goes faster, leading to an almost perpendicular drop of
the Néel temperature. In the calculated Néel temperatures, one
can see also these two regions with the same behavior, even
for the same values of TN.

IV. SUMMARY

In this work, we evaluated the magnetic and electronic
properties of Ba(Fe1−xCox)2As2 in its orthorhombic, stripe
antiferromagnetic ordered state. The substitution of Co on
Fe sites was dealt within the CPA which allows in a quite
sophisticated way to deal with the disorder of the system on
a level beyond a VCA or a rigid-band-shift calculation. We
further showed that the CPA results are fully in line with
expensive supercell calculations of Berlijn et al. [30].

We calculated the site-resolved magnetic spin and orbital
moments fully relativistically over a wide doping regime from
x = 0.0 to 0.25 in steps of 2.5%. For the undoped BaFe2As2,
we got a total magnetic moment of 1.19μB per Fe which
is smaller and closer to experimental neutron data compared
to other publications which used LDA and the experimental,
not optimized As position z [6,7,25,26]. We found decreasing
magnetic moments on Fe and Co in Ba(Fe1−xCox)2As2 for
increasing Co concentration as expected until the system
becomes paramagnetic at x = 0.225. Although this collapse
of long-range magnetic order cannot be directly compared
to the disappearance of antiferromagnetic order in the phase
diagram, it is still important concerning the decreasing stability
of a commensurate SDW state under Co substitution.

The change of the electronic structure at the Fermi level
was also evaluated with special focus on the strong in-plane
anisotropy observed in ARPES measurements. We were able
to reproduce the anisotropic feature of the Fermi surface in
an adequate way and observed that this anisotropy decreases
together with the magnetic moments until it completely
vanishes where the system becomes paramagnetic. As this was
obtained in an orthorhombic lattice, it is quite clear that the
origin of this exceptional strong electronic anisotropy is only
due to the stripe magnetic order while the lattice distortion
effects between a and b can be neglected.

Furthermore, we calculated the isotropic exchange-
coupling constants Jij for Fe and Co. We observed strong
in-plane anisotropy between J1a and J1b which again con-
sequently decreases for increasing Co concentration. The
coupling constants had the same sign for all nearest-neighbor
interactions, indicating competition of magnetic states and
showed reasonable agreement with experimental values
[53,58,59]. The dilemma of competing magnetic states could
be successfully solved by Monte Carlo simulations based on a
classical Heisenberg model, which reproduced almost perfect
Néel temperatures and the stripe antiferromagnetic spin state
as magnetic ground state.

Overall, we showed successfully the decrease of the strong
in-plane anisotropy Ba(Fe1−xCox)2As2 for increasing Co
concentration within the CPA. Thus, the CPA has proven to be
a highly valuable and precise tool to investigate the influence
of chemical disorder introduced by substitution of elements
which is crucial for understanding the iron pnictides.
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APPENDIX

In Fig. 10, the tetragonal Brillouin zone of BaFe2As2 is
shown with its definition of high-symmetric points correspond-
ing to Fig. 3.
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FIG. 10. (Color online) Brillouin zone of tetragonal BaFe2As2,
corresponding to Fig. 3.

In Table I, all structure parameters used for the calculations
are summarized for the sake of completeness. For the undoped
compound only the experimental lattice values from Rotter
et al. [17] were used. For increasing Co concentration, the
change of the lattice parameters was linearly extrapolated on
basis of experimental data and Vegard’s law. For the c axis,
we used results from Sefat et al. [44], while the change of the

TABLE I. Summary of all used structure parameters of or-
thorhombic Ba(Fe1−xCox)2As2 (space group 69, Fmmm).

Co ratio x Lattice constants (Å) As position

a = 5.6146
x = 0.000 b = 5.5742 z = 0.3538

c = 12.9453

x = 0.025 c = 12.9349 z = 0.3536
x = 0.050 c = 12.9244 z = 0.3534
x = 0.075 c = 12.9140 z = 0.3531
x = 0.100 c = 12.9035 z = 0.3529
x = 0.125 c = 12.8931 z = 0.3527
x = 0.150 c = 12.8827 z = 0.3525
x = 0.175 c = 12.8722 z = 0.3522
x = 0.200 c = 12.8618 z = 0.3520
x = 0.213 c = 12.8564 z = 0.3519
x = 0.225 c = 12.8514 z = 0.3518
x = 0.250 c = 12.8409 z = 0.3516

As position was linearly extrapolated based on single-crystal
x-ray diffraction data of Merz et al. [46]. Similar trends of
the lattice parameters are also found elsewhere in literature
[24,45]. Note that a and b were held constant over the whole
doping regime.
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4.3 Discussion

The publication presented in this chapter was successful concerning its original moti-

vation. The antiferromagnetic phase of Ba(Fe1−xCox)2As2 could be well described and

the CPA proved to be a powerful and valid tool to study the disorder of iron pnictides

fully comparable to the extensive supercell approach.

In particular, a strong anisotropy was found in the electronic structure as seen in

the Fermi surface cuts, which is in qualitative agreement with experimental ARPES

spectra of detwinned crystals. [36] However, from experiment alone it was not de�nitely

clear whether this anisotropy arises from the orthorhombic lattice distortion or from

the anisotropic magnetic behavior or from a combination of both. Theory could verify

that the lattice distortion, which is indeed very small (a/b ≈ 1.007), has no apparent

in�uence on the anisotropy of the electronic structure. Thus, the magnetic ordering

alone, meaning antiferromagnetically ordered chains along a and ferromagnetically or-

dered chains along b is the relevant origin of the anisotropic behavior. This anisotropy

will be discussed in more detail in the subsequent publications, as it is an important

intrinsic property of the iron pnictides in their antiferromagnetic phase and has conse-

quences for e.g. ARPES (see Chapter 5) and for electrical transport (see Chapter 7).

The already here mentioned anisotropy in disorder will be especially relevant for trans-

port considerations.

It was also a valuable �nding to theoretically describe the magnetic phase diagram of

Ba(Fe1−xCox)2As2 depending on the dopant concentration x in a type-resolved way in-

cluding spin-orbit coupling. Especially the reproduced breakdown of antiferromagnetic

order at xcrit was an important success because the disappearance of long range anti-

ferromagnetic order is obviously coupled to the occurrence of superconductivity. [21,26]

Understanding this magnetic breakdown is thus a crucial key in order to search for

new types of substitution which might also induce superconductivity. However, at

this point the agreement with experiment is reasonably good but not quite perfect.

The reproduced xcrit = 0.225 is signi�cantly higher than the experimentally observed

xcrit,ex ≈ 0.07 [184] for Ba(Fe1−xCox)2As2. Also the magnitude of the magnetic moment

in the calculations of undoped BaFe2As2 with 1.19 µB is still higher than the 0.87 µB
[24]

predicted from neutron di�raction.E During the time of this thesis some possible im-

provements to these results became apparent. It was already mentioned, that the

magnetic properties of the iron pnictides are highly sensible on computational param-

EThe apparent di�erence in the estimated magnetic moment between neutron di�raction [24] and
57Fe Mössbauer spectroscopy [22,45] will be discussed in more detail in Chapter 8.
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Chapter 4. The antiferromagnetic ground state

eters, which means that a careful study is necessary. It was found that an increase of

the angular momentum expansion `max has a huge impact on the results within KKR.

Better results could be obtained by going from `max = 2 within the present publication

to `max = 3 or 4 as will be used in the subsequent work. More details on the compu-

tational subtleties can be found in Appendix A. Consequently, the magnitude of the

magnetic moment and the concentration xcrit will deviate in the further studies from

the results presented in the previous due to subtle improvements. However, the trends

and the physical implications stay the same during the whole thesis and for all of the

presented work.

Noteworthy is also the consistent description of the antiferromagnetic order within

DFT and the Monte Carlo simulations. The experimentally observed spin structure

was applied for the DFT calculations in order to make close comparisons with ex-

periment possible. However, this proves not automatically that the proper ground

state orientation within theory was considered. In particular, the presented exchange

coupling constants Jij showed the same sign for J1a, J1b and J2 indicating that an

antiferromagnetic coupling for all of them would be preferred. Obviously, this leads

to magnetic frustration because at least one of these couplings must be ferromagnetic

for geometrical reasons. Yet, how the system solves this frustration cannot be derived

from the Jij values only, indicating the need for Monte Carlo simulation. Here, the

experimental spin structure with ferromagnetic coupling along the b axis was not prede-

�ned, but nevertheless exactly this spin structure was obtained. In particular, also the

Néel temperature TN for the mother compound BaFe2As2 was reproduced in very good

agreement with experiment. This ensures that the applied KKR-GF approach gives

a trustworthy and consistent theoretical description of the antiferromagnetic phase of

the iron pnictides, providing a basis for further studies.
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Chapter 5

Anisotropic properties seen in

photoemission

5.1 Motivation

Based on the latter publication, preliminary work on BaFe2As2 and Ba(Fe1−xCox)2As2

in their antiferromagnetic phase was available and could be applied for further and

more comprehensive studies. One important advantage of the KKR-GF method is the

comparably easy access to spectroscopic quantities via the Green function. Therefore,

the one-step model of photoemission (see section 2.2) can be applied in order to cal-

culate the ARPES spectra of the iron pnictide superconductors. Such an approach

accounts in detail for the experimental geometry and is thus directly comparable to

ARPES experiments. Consequently, all e�ects stemming from the photoemission ex-

periment are by construction included in these calculations. These e�ects due to the

photoemission response can be e.g. matrix element e�ects, surface e�ects, polarization

e�ects as well as initial and �nal state e�ects. The possible impact of these ARPES

related e�ects will be more extensively discussed in Chapter 6.

For now, the main motivation was to investigate the anisotropy of the electronic

structure as already seen in the latter publication in direct comparison to ARPES ex-

periments. In this context it is important to understand that the anisotropic properties

of the low-temperature phases of the iron pnictides were not correctly observed for quite

a long time. One of the �rst ARPES publications on BaFe2As2 from Fink et al. [31] in

April 2009 could not resolve a di�erence in the electronic structure for 300 K and 20 K,

respectively. Subsequently, the ARPES spectra of the low-temperature antiferromag-

netic phase in BaFe2As2 and Ba(Fe1−xCox)2As2 were resolved and they showed consid-
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Chapter 5. Anisotropic properties seen in photoemission

erable di�erences from the room-temperature data. [34,35,244,245] However, the formation

of twinned single crystals during the phase transition from tetragonal to orthorhombic

resulted in mixed magnetic domains which are orthogonal to each other. [191,246] Thus,

macroscopic tools like ARPES could only see the averaged information, while informa-

tion on the anisotropy was lost. Only in 2011 �rst ARPES measurements on detwinned

single crystals were performed [36,193], using a device to apply uniaxial stress during the

measurement, e�ectively detwinning the sample this way. Thus, one has to distin-

guish three types of ARPES measurements for the BaFe2As2 family resulting in three

di�erent types of spectra. First, the spectra of the room-temperature paramagnetic

phase having a distinct C4 rotational symmetry and secondly the spectra of twinned

crystals in the low-temperature antiferromagnetic phase which are typically close to C4

symmetry due to the twinning. Additionally, there are the spectra of detwinned crys-

tals in the antiferromagnetic phase showing the real anisotropy and having a distinct

C2 rotational symmetry. Only the last ones are interesting concerning the anisotropic

properties and these were of most interest for the present work. [36,193]

Thus, the ARPES spectra of antiferromagnetic BaFe2As2 and Ba(Fe1−xCox)2As2

were calculated by means of the one-step model of photoemission and compared to

recent data of detwinned single crystals by Yin et al. [36]. Applying the CPA allows

for a distinct study of the evolution of the anisotropic bands depending on the con-

centration x until xcrit is reached. Furthermore, the inclusion of surface e�ects can

be used in order to discuss di�erent surface terminations. It should be noted, that

there is no real consensus about the surface termination in BaFe2As2 from experimen-

tal scanning tunneling microscopy (STM) and low-energy electron-di�raction (LEED)

measurements. [247�250]

Note further, that from now on the parameters for the calculations marginally

changed, leading to results closer to experiment for the magnetic moments and the

critical concentration xcrit. For more details see Appendix A.
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Theoretical study on the anisotropic electronic structure of antiferromagnetic
BaFe2As2 and Co-doped Ba(Fe1−xCox)2As2 as seen by angle-resolved photoemission
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By means of one-step model calculations the strong in-plane anisotropy seen in angle-resolved photoemission
of the well-known iron pnictide prototype compounds BaFe2As2 and Ba(Fe1−xCox)2As2 in their low-temperature
antiferromagnetic phases is investigated. The fully relativistic calculations are based on the Korringa-Kohn-
Rostoker–Green function approach combined with the coherent potential approximation alloy theory to account
for the disorder induced by Co substitution on Fe sites in a reliable way. The results of the calculations can be
compared directly to experimental spectra of detwinned single crystals. One finds very good agreement with
experiment and can reveal all features of the electronic structure contributing to the in-plane anisotropy. In
particular the local density approximation can capture most of the correlation effects for the investigated system
without the need for more advanced techniques. In addition, the evolution of the anisotropy for increasing Co
concentration x in Ba(Fe1−xCox)2As2 can be tracked almost continuously. The results are also used to discuss
surface effects and it is possible to identify clear signatures to make conclusions about different types of surface
termination.

DOI: 10.1103/PhysRevB.93.144513

I. INTRODUCTION

Nowadays the family of iron pnictides is a well-established
and important prototype system for unconventional high-
temperature superconductivity. Starting with the first famous
compound La(O1−xFx)FeAs [1,2] in 2008, today several
different subfamilies with a wide structural variety are known.

All different groups of iron pnictides share some common
physical properties, such as their interesting and sometimes
puzzling magnetic behavior. Most compounds show a phase
transition at low temperatures from a tetragonal to an or-
thorhombic crystal symmetry which is typically accompanied
by the formation of long-range antiferromagnetic order [3,4].
It is common belief that the suppression of these phase
transitions for example by chemical substitution is crucial
for the emergence of unconventional superconductivity [5,6].
Although it is obvious that an understanding of the magnetic
fluctuations in the iron pnictides is mandatory to unveil the
physics underlying the superconductivity, this task has proven
to be more complex than anticipated [6–8].

For example, there was discussion in the literature about
whether the magnetic moments are better described by an
itinerant [6,7,9–11] or a localized [12–14] model and there
is up to now no consensus concerning the role of correlation
effects [15–18]. Furthermore, the magnitude of the magnetic
moments is difficult to reproduce within density functional
theory (DFT) and it is known to be quite sensitive to
computational parameters [3,8,19–21].

One of the most important experimental tools to get
insight into the electronic structure of the iron pnictides is
angle-resolved photoemission spectroscopy (ARPES). There
are numerous publications on this topic, although it was shown
that DFT calculations have typically problems in reproducing

*gerald.derondeau@cup.uni-muenchen.de

all features of the ARPES spectra correctly [17,22–25]. This
is often ascribed to strong correlation effects, although this
question is still under discussion [17,26,27].

Another important difficulty which so far is often ignored
is the connection between the magnetic phase of the iron
pnictides and the resulting consequences for ARPES. This
is due to the formation of twinned crystals during the phase
transition from tetragonal to orthorhombic and it results in
mixed magnetic domains which are orthogonal to each other.
Macroscopic tools such as ARPES or transport measurements
can so only see the averaged information, while information
on the anisotropy is lost [28,29]. This is a huge drawback
considering a comprehensive study of the electronic structure
in the iron pnictides, as it is known that the in-plane
anisotropy plays a significant role [30–32]. In experiment
it is possible to effectively detwin the crystals by applying
uniaxial stress during the measurement. This was already done
successfully for the 122-prototype BaFe2As2 in the undoped
and in the Co-doped case. However, such measurements are
connected with several technical difficulties and consequently
they are rarely done [28,29]. Yet, to fully understand the
electronic properties of the iron pnictide superconductors in a
comprehensive way and to get a deeper insight concerning the
influence of the in-plane anisotropy in the magnetic phase
such studies are absolutely mandatory. Although there are
nowadays experimental data on detwinned crystals showing
clearly the anisotropy in the Fermi surface there is hardly
any theoretical work focusing on this problem of magnetic
anisotropy in ARPES data.

In this work this issue is addressed by a comprehensive DFT
study on the magnetic phase of Ba(Fe1−xCox)2As2 and on the
corresponding ARPES spectra. The computational results can
be directly compared to the available experimental ARPES
data on detwinned crystals [28,29].

In order to deal with this complex situation the Korringa-
Kohn-Rostoker–Green function (KKR-GF) approach is used,

2469-9950/2016/93(14)/144513(10) 144513-1 ©2016 American Physical Society
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which was already shown to be indeed a very useful and
accurate tool to deal with the iron pnictides [33]. The impact
of disorder due to substitution is dealt with by means of the
coherent potential approximation (CPA), giving results fully
compatible with supercell calculations and more reliable than
those based on the virtual crystal approximation (VCA) [33].

II. COMPUTATIONAL DETAILS

All calculations have been performed self-consistently and
fully relativistically within the four component Dirac formal-
ism, using the Munich SPR-KKR program package [34,35].
The orthorhombic, antiferromagnetic phase of BaFe2As2 is
investigated in its experimentally observed stripe spin state
using a full 4-Fe unit cell. This implies antiferromagnetic
chains along the a and c axes and ferromagnetic chains
along the b axis. The lattice parameters where chosen
according to experimental x-ray data and the experimental As
position z [19]. To account for the influence of substitution
in Ba(Fe1−xCox)2As2 a linear interpolation for the lattice
parameters with respect to the concentration x is used based
on available experimental data [19,36] and Vegard’s law [37].
More details on the procedure can be found in a previous
publication [33]. The treatment of disorder introduced by
substitution is dealt with by means of the CPA. The basis
set considered for a lmax = 4 includes s, p, d, f , and g

orbitals. For the electronic structure calculations the local
density approximation (LDA) exchange-correlation potential
with the parametrization given by Vosko, Wilk, and Nusair
was applied [38].

The spectroscopical analysis is based on the fully relativistic
one-step model of photoemission in its spin density matrix
formulation. For more technical details on these calculations
see Refs. [39,40]. The geometry of the spectroscopy setup
was taken from experiment including a tilt of the sample
around either the a or b axis. The incident light hit the
sample under a constant polar angle θlight = −45◦ and an
azimuthal angle φlight of either 180◦ or 270◦. These geometries
are referred to as q ||AFM and q ||FM, meaning the direction of
the incident light is either parallel to the antiferromagnetic
or the ferromagnetic in-plane directions. The corresponding
electrons were collected with an angle φelectron of 0◦ or 90◦ and a
varying angle θelectron between −15◦ and 15◦. This geometry is
in line with the experimental setup. If not indicated otherwise,
an As-terminated surface was chosen. However, the question
of surface termination will be discussed in more detail in the
following.

Compared with previous work [33] on this compound, we
increased the lmax expansion for better numerical results. The
important difference is however the application of the one-step
model of photoemission, which allows for a comprehensive
spectroscopical study which is significantly more credible
when discussing ARPES spectra.

III. RESULTS AND DISCUSSION

A. Magnetic moments

To describe the anisotropy of the iron pnictides in ARPES
calculations reasonably well one needs first to ensure that the

spin-dependent potentials from the self-consistent field (SCF)
calculations are accurate enough. Obviously, the magnetic
ordering plays a significant role concerning the anisotropy of
the electronic structure and hence the quality of the theoretical
description of the ARPES spectra is determined by the quality
of the spin-dependent potentials.

The most meaningful indication for a proper description
of the magnetic state is good agreement with experimental
data on the magnetic order. For the iron pnictides this is
known to be a nontrivial task as the magnetic moments are
often overestimated by DFT [7,8,16]. For the undoped mother
compound BaFe2As2 a total magnetic moment of 0.73μB

was obtained. Experiment reports a total magnetic moment
of approximately 0.9μB from neutron diffraction [3,41]
while 57Fe Mössbauer spectroscopy [19,42] and μSR spec-
troscopy [43,44] coherently give a value of around 0.5μB.
Hence, the calculated total magnetic moment is found in good
agreement with experiment and captures the proper order of
magnitude accurately [7–9,16,45,46].

More importantly, the CPA allows us to evaluate
the substitution-dependent self-consistent evolution of the
magnetic moments with increasing Co concentration in
Ba(Fe1−xCox)2As2. The corresponding results are shown in
Fig. 1, where the results for spin and orbital magnetic moments
are given in an atom-resolved way. The total magnetic moment
is calculated as a substitutionally averaged sum over all
contributions.

In agreement with experiment the total magnetic moment
shows a nearly linear decay until the long-range magnetic order
disappears [47]. In the calculations the critical Co substitution
for the disappearance of antiferromagnetic order occurs for
xcrit = 0.15, which is in reasonably good agreement with
the experimental value xcrit,exp ≈ 0.07 [45,48]. It should be
mentioned that the results in Fig. 1 are slightly improved
with respect to experiment in comparison with our previous
work [33] due to the higher lmax expansion used here.

0.0

0.2

0.4

0.6

0.8

0 0.05 0.1 0.15
0.00

0.02

0.04

0.06

0.08

S
p
in

m
om

en
t
m

s
[μ

B
]

O
rb
it
al

m
om

en
t
m

o
[μ

B
]

x of Ba(Fe1-xCox)2As2

ms(Fe)
mo(Fe)
ms(Co)
mo(Co)
mtot

FIG. 1. Magnetic spin moments (ms) and orbital moments (mo)
of Fe and Co for increasing Co substitution x. The black line
corresponds to the total (spin and orbital) magnetic moment which
is the substitutionally averaged sum over all other contributions. The
left axis corresponds to the spin magnetic moments ms, while the
right axis shows the orbital magnetic moments mo.
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However, the trends in the magnetic moments and the resulting
conclusions are the same.

B. Anisotropy of the undoped compound

As the one-step model of photoemission fully accounts
for matrix elements as well as for surface effects the resulting
spectra can be directly compared to experimental ARPES data.

As stressed before, it is extremely difficult to see the
magnetic anisotropy correctly in experimental spectra because
of the twinning of crystals. Here reference is made especially to
the work of Yi et al. [28], who did remarkable measurements on
detwinned single crystals of BaFe2As2 and Ba(Fe1−xCox)2As2
by applying uniaxial stress to the crystals. Similar results
were obtained for example by Kim et al. [29]. In this context
it is important to note that the Brillouin zone (BZ) of the
magnetic 4-Fe spin-density-wave (SDW) state is only half the
size compared to the BZ in the nonmagnetic 2-Fe state. For that
reason it is most appropriate to use in the following notation
for the 4-Fe SDW BZ where the information of �̄ and X̄ from
the nonmagnetic BZ is down-folded to one �̄ point [28,49].

In Fig. 2 the Fermi surface around the �̄ point is shown in
the SDW BZ as calculated from the spin-dependent potentials
for a photon energy of hν = 22 eV. The overlay of black points
corresponds to the experimentally measured BZ, reproduced
from the work of Yi et al. [28]. As can be seen, the agreement
of the calculated Fermi surface and the experimental data is
remarkably good. Characteristic are the bright intensity spots
along the kx direction (i.e., along a), corresponding directly
to the antiferromagnetic order along the a axis and the bigger
pedal-like structures along the ky direction (i.e., along b) which
corresponds to the ferromagnetic order along the b axis.

It should be noted that in Fig. 2 the intensity over two
different light polarizations was averaged, namely for the
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FIG. 2. Calculated ARPES spectrum mapping the Fermi surface
of BaFe2As2 at �̄ in the 4-Fe SDW BZ for a photon energy of hν =
22 eV. The overlay of black points is a reconstruction of the SDW
BZ from experimental ARPES data, reproduced from the work of Yi
et al. [28].
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FIG. 3. Calculated ARPES spectra mapping the Fermi surface
of BaFe2As2 for the polarization of light being either parallel to
the ferromagnetic b axis (a) or parallel to the antiferromagnetic
a axis (b).

direction of the incident light either parallel to the antifer-
romagnetic a axis q ||AFM or parallel to the ferromagnetic b

axis q ||FM. All features of the electronic structure are visible
for both polarizations of light. However, the intensity patterns
vary notably with the polarization due to matrix element
effects, indicating strong multiorbital character, just as seen
in experiment [28]. If not indicated otherwise this averaging
will be applied in the following. For comparison the two
contributions to the total Fermi surface for hν = 22 eV are
shown polarization-resolved in Fig. 3, for the incident light
direction being either parallel to the b-axis q ||FM [Fig. 3(a)] or
parallel to the a-axis q ||AFM [Fig. 3(b)].

It can be seen that for q ||FM the intensity of the bright spots
along the a axis is significantly enhanced while for q ||AFM

the intensity around the inner circle of �̄ is enhanced. This
polarization dependence is again in full agreement with the
experimental findings [28].

At this point it was shown that the detwinned, antiferro-
magnetic Fermi surface obtained by the calculations agrees
very well with experiment. One may also ask how the Fermi
surface of a twinned, antiferromagnetic crystal should look
and how does it differ from the nonmagnetic case. Therefore,
the calculated Fermi surfaces for both cases are shown in
Fig. 4 and compared with experimental ARPES data [49] of
twinned BaFe2As2 crystals at T = 150 K (a) and T = 10 K
(b). Please note that the transition from a paramagnetic to
an antiferromagnetic state occurs at around T = 140 K;
accordingly the experimental data shown as overlay of black
points corresponds to the nonmagnetic and the twinned
antiferromagnetic state, respectively. The representation of the
twinned Fermi surface is based on a superposition of spectra
obtained independently for antiferromagnetic states rotated
by 90◦ against each other which is supposed to be a good
approximation for twinned crystals; see for example the work
of Tanatar et al. [50].

Comparing the nonmagnetic and the twinned antiferro-
magnetic state with each other it is obvious that there is
a significant difference in the shape of the Fermi surface
which is due to the underlying change of the electronic
structure during the magnetic phase transition. However, the
twinned Fermi surface is in principle isotropic along kx

and ky due to the fact that the in-plane anisotropy cancels
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FIG. 4. Calculated Fermi surfaces of BaFe2As2 as seen by
ARPES for the nonmagnetic phase (a) and a hypothetical twinned
magnetic phase (b). The twinned calculation is based on a super-
position of two antiferromagnetic cells which are rotated by 90◦

against each other. The overlay of black points is reproduced from
the experimental ARPES data of Yi et al. [49].

almost completely for two magnetic domains that are rotated
by 90◦ against each other. This means that although some
influence of the magnetic ordering can be seen for twinned
crystals, it is not possible to deduce information about the
important in-plane anisotropy from the corresponding spectra.
This stresses again the importance of ARPES measurements
and calculations on detwinned crystals to investigate the
magnetic structure correctly. To summarize, the agreement of
the calculations with the experimental data is altogether quite
good for the nonmagnetic as well as for the twinned magnetic
state.

Going back to the original study of detwinned antiferro-
magnetic crystals the kz dispersion is shown along the a and b

axes in Fig. 5. The difference between � and Z manifests
itself mainly by the alternating intensity distributions. We
find � for photon energies of hν = 22 eV and hν = 48 eV,
respectively, while Z can be found at hν = 34 eV. This is in
good agreement with literature which reports Z at hν = 35 eV
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FIG. 5. Calculated kz dispersion of BaFe2As2 as seen by ARPES
along both the in-plane real-space axes a (a) and b (b). The black lines
mark the photon energies where the alternation of � and Z can be
seen along kz. Notably, the vertical intensity stripes at kx ≈ ±0.2 Å
in (a) seem almost independent of kz, indicating some connection to
a surface-related phenomenon.
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FIG. 6. Calculated Fermi surfaces of BaFe2As2 for two additional
photon energies hν = 34 eV and hν = 48 eV, corresponding to either
Z (a) or to � (b). It can be seen that the topology of interest, namely
the anisotropic features, are principally independent of kz.

and � at hν = 49 eV [51]. The anisotropic features, namely
the bright spots along kx and the pedals along ky , seem quite
independent of kz, which agrees with the experimental reports
on the detwinned crystals [28]. For further discussion the
Fermi surfaces for hν = 34 eV and hν = 48 eV, respectively,
are shown in Fig. 6. The important aspect to note is that
the anisotropic features are preserved independently of kz,
meaning they are preserved for � as well as for Z. However,
the most striking anisotropy between the a and b directions
seen in the kz dispersion is the almost vertical intensity lines
along the a axis for kx ≈ ±0.2 Å. They are surprisingly robust
concerning the kz dispersion, already indicating possible
surface-related phenomena, as will be discussed later in more
detail.

To complete the study of the in-plane anisotropy in the
undoped compound the spin-dependent bands are investigated
polarization-dependently along the two in-plane directions a

and b for hν = 22 eV and for comparison the isotropic bands
of the nonmagnetic case. Anisotropies due to the orthorhombic
lattice distortion for the nonmagnetic case are very small
and have no significant influence, as shown also in earlier
work [33].

The nonmagnetic bands for the polarizations q ||FM and
q ||AFM are shown in Figs. 7(b) and 7(e), respectively. Already
for the nonmagnetic case it becomes obvious that more
information can be deduced for light with a polarization
parallel to the ferromagnetic chains. For a perpendicular light
polarization the intensity for some bands decreases so strongly
that they practically seem to vanish. This is however not due
to a vanishing of the bands but only due to the strong intensity
variation, i.e., matrix element effects, as already mentioned
before and as seen in experiment.

For the spin-polarized band structure with antiferromag-
netic order along the a axis the corresponding cases for q ||FM
and q ||AFM are shown in Figs. 7(a) and 7(d), respectively. The
green solid lines are guides to the eye which emphasize the two
important anisotropic bands in these spectra. First of all, there
is some significant reorientation of the bands compared to the
nonmagnetic case. Most striking is the appearance of a steep
W-shaped band which was not visible in the nonmagnetic case.
This new appearance is most likely due to down-folding of the
Brillouin zone when going from the 2-Fe cell to a magnetic
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FIG. 7. Calculated bands of BaFe2As2 as seen by ARPES depending on the polarization of light, q ||FM [(a)–(c)] and q ||AFM [(d)–(f)], as well
as on the orientation of the magnetic phase, either along the antiferromagnetic a axis [(a) and (d)] or along the ferromagnetic b axis [(c) and
(d)]. The band structure of the nonmagnetic phase is shown for comparison in (b) and (e). The solid green lines are guides to the eye for the
important anisotropic bands in the magnetic phase. The black points in (a) are reproduced from experimental data of Yi et al. [28] indicating
the cut at the Fermi level for the two important anisotropic bands along the a axis as seen by ARPES.

4-Fe cell. The second important band is a pure hole pocket
which is compared to the nonmagnetic case shifted to higher
binding energies. It should be noted that the intensity of this
band is extremely polarization dependent. It is the dominating
band for q ||FM while it is barely visible for q ||FM. Comparing
with the polarization dependent Fermi surface in Fig. 3 it
is obvious that this band is also part of the bright intensity
spots in the Fermi surface along the a direction and very
characteristic for the anisotropy. It is also noteworthy that these
two significant bands cross each other exactly at the Fermi
level. This crossing is also reported in experiment as can be
seen from the black points in Fig. 7(a), which are reproduced
from the experimental ARPES data of Yi et al. [28]. Thus, the
experimental ARPES data could be again well reproduced by
the calculations.

The situation for the magnetic bands with ferromagnetic
order along the b axis as shown in Figs. 7(c) and 7(f) is
in many aspects similar to that for the bands along the a

direction. One can identify two prominent anisotropic bands,
one with a W-like shape which has a higher intensity for
a light polarization of q ||AFM, while the other band marked
with the solid green line is the dominating one for light
q ||FM. The important difference is that these bands do not
touch each other as they are significantly shifted away in
binding energy. Note that also no crossing is reported in
experiment [28]. Why these steep bands with the W shape
cannot be seen in experiment for the b direction also becomes
clear: The responsible band is simply completely shifted
above the Fermi level. This observation can in principle be
compared to the band splitting in ferromagnets. Note that
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along the b axis there is ferromagnetic coupling while along
the a axis the magnetic order is antiferromagnetic. Thus, for
BaFe2As2 one sees along the ferromagnetic chains a band
splitting of approximately 0.2 eV for a magnetic moment
around 0.7μB. This is comparable for example to Ni which
shows a band splitting of approximately 0.3 eV for a moment
of approximately 0.6μB [52]. Consequently, for decreasing
magnetic moments upon alloying one expects a reduced band
splitting together with a continuous matching of the anisotropic
bands. To investigate this issue in further detail one has to look
at the evolution of the ARPES band structure for increasing
Co substitution on the Fe position which goes in hand with the
reduction of the magnetic moments.

C. Influence of Co substitution on the anisotropy

Substitution of Fe with Co in Ba(Fe1−xCox)2As2 is one of
the common ways to induce superconductivity in BaFe2As2 by
electron doping. The substitution does consequently diminish
the strength of the antiferromagnetic coupling within this

compound until the long-range magnetic order collapses and
superconductivity emerges [36,48]. As the strength of the
magnetic order decreases with Co doping, in experiment
as well as in the calculations, it can be assumed that the
strong in-plane anisotropy does also decrease. The breakdown
of the long-range antiferromagnetic order in Fig. 1 appears
for a somewhat higher Co concentration than in experiment.
Thus, the breakdown of the anisotropy is expected at higher
doping levels. This is true for a concentration of x = 0.15
in Ba(Fe1−xCox)2As2 which is the first substitution level
where the magnetic order did completely vanish in the
self-consistent calculation. Considering the evolution of the
magnetic moments in Fig. 1 one can see that the initial
magnetic moment decreased to approximately 75%, 50%, and
25% of the original value for Co substitutions of x = 0.05,
0.10, and 0.125, respectively.

To investigate the impact of alloying in detail, the ARPES
band structure for these concentrations including the already
nonmagnetic x = 0.15 for both directions a and b is presented
in Fig. 8. The calculations are performed for hν = 22 eV
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−1

(b) x = 0.10

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.4 -0.2 0.0 0.2 0.4

kx Å
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FIG. 8. Calculated bands of Ba(Fe1−xCox)2As2 as seen by ARPES for different Co concentrations x depending on the axes a [(a)–(d)] and
b [(e)–(h)] with a constant light polarization of q ||FM to easily identify the important bands. The black dashed lines correspond to the initial
position of the anisotropic bands in the undoped compound; see Fig. 7. The green solid lines are guides to the eye for the corresponding
important anisotropic bands to see their change under increasing Co substitution. Their anisotropy vanishes together with the long-range
antiferromagnetic order at x = 0.15.

144513-6



THEORETICAL STUDY ON THE ANISOTROPIC . . . PHYSICAL REVIEW B 93, 144513 (2016)

comparable to Fig. 7 but they are only shown for a light
polarization of q ||FM because it was already clarified that
the anisotropic bands can be best seen with this specific
polarization. The black dashed lines in Fig. 8 are shown
for comparison and they correspond to the band position of
the anisotropic bands in the undoped compound BaFe2As2
with the highest anisotropy, seen in Figs. 7(a) and 7(c).
The green solid lines are guides to the eye to identify
more easily the corresponding anisotropic bands for the
specific Co concentrations. The difference between black
dashed lines and green solid lines is thus the change of the
original anisotropy with increasing Co substitution. For the
case of the nonmagnetic Ba(Fe1−xCox)2As2 with x = 0.15
shown in Figs. 8(d) and 8(h) the anisotropy has completely
vanished and the band structures coincide with each other.
This could be expected from experiment and is reproduced
in the calculations. It should be noted again at this point
that the crystal lattice is still orthorhombic; however, the
lattice anisotropy is indeed too weak to be visible in the band
structure [33].

Some other interesting findings can be deduced from the
evolution of the band structure upon Co substitution. First of
all the intensity of the W-shaped band decreases continuously;
however, it only completely disappears after the collapse of the
long-range antiferromagnetic order. The change in anisotropy
for the antiferromagnetic order along the a axis is mostly
characterized with the consequent shift of the hole pocket to
lower binding energies. This is also experimentally reported
for a decrease in the magnetic coupling strength, either induced
through Co doping or increasing temperature [28]. Concerning
this situation for the ferromagnetic order along the b axis the
most prominent feature is the shift of the W-shaped band to
lower binding energies. What can be seen in Figs. 7(e) to 7(h) is
that the energy difference of these two main anisotropic bands
does strongly and continuously decrease. This is in agreement
with the assumption of a smaller band splitting for decreasing
ferromagnetic coupling strength.

In summary one can say that for the antiferromagnetic order
along the a axis mostly the hole pocket changes while the W-
shaped band stays more or less constant. For the ferromagnetic
order along the b axis it is the other way round. The W-shaped
band undergoes the strongest change while the other band
stays more or less unchanged in energy and shape. The final
result is the same in both cases, a matching of the bands and
a consequent isotropic in-plane band structure. This detailed
analysis allows us to follow the change from the strong in-
plane anisotropy of the undoped compound to the isotropic
behavior in the Co-substituted system in a continuous way
with direct correspondence to ARPES. Thus, this approach
based on KKR-CPA proves its advantages for investigating the
iron pnictide superconductors at regions of interest which are
difficult to evaluate by means of other band structure methods.

D. Surface termination

Using the one-step model of photoemission one can identify
different surface states and can thus clarify the origin of surface
bands. The reason for the occurrence of surface states has
long been developed in multiple scattering theory, which is
the underlying basis of the SPR-KKR method [53,54]. The

so-called determinant condition uses the reflection matrices of
the bulk crystal Rb and of the surface barrier potential Rv,
which connects the inner potential of the bulk crystal with the
vacuum level. The appearance of a surface state is given by
the following condition:

D(E,k) = det [11 − Rb(E,k)Rv(E,k)] = 0. (1)

For better visualization we plot 1/|D(E,k)| in the following.
If this expression is bigger than approximately 103 we speak
about a surface state. For values between 100 and 103 the state
is defined as a so-called surface resonance. For values below
one has bulk states. More details can be found in the overview
by Braun and Donath [55].

The application of this determinant approach is demon-
strated in Fig. 9. Here one can see the Fermi surfaces and
the band structures along the a axis for an As-terminated
and a Ba-terminated surface, respectively, together with the
corresponding plot of 1/|D(E,k)| on the right-hand side of
each picture. The bands are shown for hν = 22 eV and they
are averaged over the two light polarizations q ||FM and q ||AFM
in order to make all relevant contributions equally visible.

It should be noted that the determinant condition itself and
without a high intensity in the corresponding band structure
plot is only an indication for a surface state or a surface
resonance. Only if a high intensity in the 1/|D(E,k)| plot
coincides with a band in the band structure can one associate
this band with a clear surface character. For example, the bright
octagon shape of the determinant plot of the Fermi surface in
Fig. 9(a) does not have a corresponding counterpart in the
band structure plot. The two high-intensity spots along the a

axis which are equally visible on the Fermi surface as well
as in the determinant condition are in clear contrast to this
behavior. Thus, this feature has a surface-related origin, more
specifically a surface state as the intensity of 1/|D(E,k)| is on
the order of 106.

This surface state can be also identified in the band structure
along the a axis as shown in Fig. 9(b) where a strong intensity
in the determinant plot coincides with the steep bands that cut
the Fermi level and which are part of the already discussed W
shape. Consequently, these bands can be identified as surface
states. This is in accordance with the earlier findings for the
kz dispersion in Fig. 5(a) where the vertical intensities at kx ≈
±0.2 Å were independent of kz, indicating a connection to a
surface-related phenomenon.

Another verification for the surface-related origin of these
bands is shown in Figs. 9(c) and 9(d), where the corre-
sponding Fermi surface and band structure are shown for a
Ba-terminated surface. As already indicated before all other
calculations presented in this paper are under the assumption
of an As-terminated surface. Obviously, the assumed surface
termination has also an influence on surface-related phenom-
ena and surface states might be shifted significantly in energy.
Indeed, the surface states discussed for the As-terminated sur-
face have completely vanished in the Ba-terminated case. The
corresponding high intensities are missing in the 1/|D(E,k)|
plots and in the band structure of Fig. 9(d) the characteristic
steep bands from the As-terminated surface have also vanished.
No intensities in the determinant plot coincide with features in
the band structure and thus surface effects have been removed
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FIG. 9. Calculated Fermi surfaces and band structures of BaFe2As2 for either an As-terminated surface [(a) and (b)] or a Ba-terminated
surface [(c) and (d)]. The right side of each panel shows the corresponding plot of 1/|D(E,k)|, meaning a high intensity indicates a possible
surface state if this specific structure can be also identified in the regular electronic structure calculation. Clear surface states can be identified
for the As-terminated surface as bright spots in the Fermi surface (a) and as corresponding steep bands in the band structure (b). These surface
states are missing for a Ba-terminated surface.

by the Ba termination. Overall, the Fermi surface and the band
structure have undergone significant changes for the altered
surface termination. The characteristic anisotropic features
of the Fermi surface in Fig. 9(a) are hardly visible in the
Ba-terminated case in Fig. 9(c). It seems like the Ba layer
on top acts as some kind of damping layer which reduces
the intensity and blurs the electronic states which are clearly
visible in an As-terminated surface. In particular one has to
note that the agreement with experimental ARPES data is
significantly better for an As-terminated surface compared
to the Ba-terminated one. Especially the steep bands along
the a axis are seen in experiment [28] and they could be
successfully identified as surface states which are only visible
for an As-terminated surface.

This result can be used for conclusions on the most likely
surface termination of BaFe2As2. Interestingly, the surface
termination in this material is still not clear and under debate,
although several experimental measurements and theoretical
calculations exist [56]. According to first-principles calcula-
tions only three possibilities for the surface termination exist,
namely a fully As-terminated or a fully Ba-terminated surface
as well as an As surface covered with half of the stoichiometric
Ba atoms [57]. There are experimental scanning tunneling

microscopy (STM) and low-energy electron-diffraction
(LEED) measurements which indicate a Ba-terminated sur-
face [58]. However, there are also experimental STM+LEED
data which clearly favor an As-terminated surface [59]. The
ARPES calculations clearly favor an As-terminated surface as
it was shown that agreement with experiment is considerably
better compared to the Ba-terminated one. This cannot rule
out the possibility of some partial covering with few Ba
adatoms but one can state that every Ba atom on top muffles
the electronic structure seen in experiment and that this
structure is due to an As-terminated compound. So one would
expect a more or less clean As-terminated surface as the
most probable surface termination for BaFe2As2. Additional
covering with some Ba atoms might be possible but also might
have some degrading influence on the quality of the ARPES
measurement.

IV. SUMMARY

The Munich SPR-KKR package was used for self-
consistent and fully relativistic calculations of orthorhombic
Ba(Fe1−xCox)2As2 in its experimentally observed stripe anti-
ferromagnetic ground state for x = 0.0 up to x = 0.15. The
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substitutional disorder induced by Co on Fe positions was
dealt with on a CPA level which was earlier shown to be fully
equal to a comprehensive supercell calculation [33]. Magnetic
moments of 0.73μB for undoped BaFe2As2 were reproduced
and additionally a reasonable magnetic behavior for increasing
Co substitution with a continuous decrease of the magnetic
moments until a collapse of the antiferromagnetic order at
15% Co concentration was reached. This is in good agreement
with experimental behavior [41,42,48].

Concerning ARPES most experimental data available are
actually insufficient to talk about in-plane anisotropy due
to twinning effects during the phase transition from the
nonmagnetic tetragonal to the antiferromagnetic orthorhombic
phase. A complicated detwinning process, typically with
uniaxial stress on the single crystal, is necessary to gain
anisotropic data of the electronic structure [28,29]. Referring to
the available experimental data it was possible to reproduce the
electronic structure of BaFe2As2 in very good agreement with
experiment. The Fermi surface shows all important anisotropic
features, namely some bright spots of intensity along the
antiferromagnetic order along the a axis and more blurred
pedals along the ferromagnetic order along the b axis. Also
in agreement with experiment a strong dependence on the
polarization of light was found, being either parallel to the
ferromagnetic or to the antiferromagnetic order, indicating
the strong multiorbital character. For comparison the Fermi
surface of the nonmagnetic phase as well as a hypothetical
Fermi surface for a twinned ARPES measurement as a
superposition of two antiferromagnetic cells rotated by 90◦
to each other was shown. Both were again in agreement with
experiment. In addition to the anisotropic kz dispersion some
focus was put on the anisotropic band structure along the a

and b axes and it was compared to the nonmagnetic case. One
could identify the important anisotropic bands and these could
be interpreted in terms of band splitting for the ferromagnetic
chains along the b axis, principally comparable to typical
ferromagnetic band splitting as observed for example in Ni.

In addition the evolution of these anisotropic bands for
small steps of x in Ba(Fe1−xCox)2As2 was presented until
the breakdown of long-range antiferromagnetic order. The
decreasing band splitting and a continuous matching of the
anisotropic bands could be reproduced in great detail and
consistent with experimental findings.

Finally the so-called determinant condition 1/|D(E,k)|
was used to evaluate possible surface states of the band
structure. It was possible to identify steep bands along the
a axis as surface states. These are at least partially responsible
for the characteristic bright intensity spots in the electronic
structure along the a axis and can also be seen in experiment.
Interestingly, these surface states are only visible near the
Fermi level for an As-terminated surface. It was shown that a
Ba-terminated top layer acts as some kind of damping which
moves the surface states far away and blurs the electronic
structure. Significantly better agreement with experimental
data is found for an As-terminated surface. This leads to
the conclusion that an As-terminated surface would be most
likely, an issue that is in fact experimentally not convincingly
clarified [56,58,59]. Some Ba adatoms might be still possible
but one would expect a negative influence on the quality of the
measurements.

To conclude, this publication was successful in reproducing
the strong in-plane anisotropy of BaFe2As2 and its behavior
under substitution in very good agreement with experiment
using ARPES calculations. These calculations allow even
predictions on possible surface terminations.
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Chapter 5. Anisotropic properties seen in photoemission

5.3 Discussion

In this publication it was shown that the applied one-step model of photoemission is

able to reproduce the anisotropy in ARPES spectra of the iron pnictide superconduc-

tors in great detail and agreement with experiment. In particular, the importance

of detwinned ARPES measurements was theoretically emphasized, because only these

are able to capture the real anisotropy from an experimental point of view. This has

relevant implications for further studies, as only little experimental ARPES data on de-

twinned samples are available at the moment, due to the complex experimental setup.

In order to understand the anisotropic behavior of the iron pnictides in detail it is how-

ever mandatory to unveil the full anisotropic electronic structure. Obviously, theory

can help in this context as it is easier to calculate the spectra for a full series of di�erent

dopant concentrations x then to prepare each sample individually and measure them

at low temperatures using a detwinning device.

Another very important result obtained by theory is information about the sur-

face termination. As already stressed, there is a certain discrepancy in the literature

concerning this topic from experimental STM and LEED measurements [247,248] and

also according to other theoretical work [249] di�erent types of surface termination are

possible. The presented publication was unambiguously able to show that only an

As-terminated surface can explain the electronic spectra as seen by ARPES measure-

ments which clearly favors the As-terminated surface over a Ba-terminated one. In this

context also the general ability of theory to identify surface related states should be

emphasized once more. For example, the observed anisotropic bright intensity spots

along the antiferromagnetic a axis could be identi�ed as surface states due to an As-

terminated surface. This means that surface states in general are quite important

for the iron pnictides and cannot be neglected in further studies when discussing the

electronic states derived by ARPES.

Thus, the applied theory proved to be very reliable for iron pnictides, even account-

ing for their complex ARPES spectra. These were hardly investigated theoretically so

far having the here presented agreement with experiment. Additional information e.g.

on surface related states only accessible by theory can further support experimental

measurements by crucial new insights.

Additionally, one should note once more that the presented ARPES data show in

agreement with the previous publication that the tetragonal to orthorhombic lattice

distortion is negligible and the observed anisotropy stems only from the anisotropic

magnetic order.
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Chapter 6

Impact of the photoemission response

6.1 Motivation

The motivation for the work presented in this chapter stemmed from a cooperation with

the experimentalists Vladimir N. Strocov, Federico Bisti et al. [251] from the Swiss Light

Source (SLS) of the Paul Scherrer Institute, Villigen, Switzerland. In the beginning,

the interest was based on a quite surprising intensity distribution between the Γ̄ and Γ̄′

points of neighboring Brillouin zones in the ARPES spectra of the optimally K-doped

(Ba1−xKx)Fe2As2 superconductor as shown in Fig. 6.1.
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Figure 6.1. Experimental ARPES Fermi surface cuts of (Ba0.6K0.4)Fe2As2 measured with
p-polarized light for (A) hν = 392 eV and for (B) hν = 430 eV. [251]
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Chapter 6. Impact of the photoemission response

The experimental data of (Ba0.6K0.4)Fe2As2 was measured for high photon energies

in the soft-X-ray range and is shown in particular for Fig. 6.1 (A) hν = 392 eV and for

(B) hν = 430 eV. [251] For such high photon energies the electronic structure around X̄ is

hardly identi�able, whereas the �ower-like topology with four-fold rotational symmetry

around Γ̄′ in comparison to the circle topology around Γ̄ is the most prominent feature.

Such a pronounced di�erence between neighboring Brillouin zones is rather unexpected.

Similar topologies were �rst discovered by Zabolotnyy et al. [33] for lower photon energies

around hν = 80 eV, however, they could not provide an explanation and only stressed

that the �apparently di�erent intensity distributions at neighboring Γ̄ points appear

unusual�. [33]

The electronic structure of 122-family of iron pnictides has a distinct three-dimensional

character and an apparent kz dispersion with alternating Γ and Z points. This was

also veri�ed by a corresponding experimental kz scan shown in Fig. 6.2 where the two

photon energies of the Fermi surface cuts in Fig. 6.1 are marked as black lines. [251]
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Figure 6.2. Experimental kz scan with p-polarized light for (Ba0.6K0.4)Fe2As2 showing
clearly the kz dispersion and alternating Γ and Z points at Γ̄ and Γ̄′, respectively. The photon
energies hν = 392 eV and hν = 430 eV are marked with a black line. [251]

One might tend to explain the occurrence of the �ower-like topology at Γ̄′ in terms

of this kz dispersion, however, this is obviously not true. As can be seen from Fig. 6.2

the two photon energies hν = 392 eV and hν = 430 eV correspond to transitions at Γ

and Z, respectively. Consequently, one should see in Fig. 6.1 the �ower like topology for

one photon energy at Γ̄ and for the other photon energy at Γ̄′, respectively. However,

the �ower-like feature of the Fermi surface cut can be only observed at Γ̄′ of the second

Brillouin zone and independent on kz it is never visible at Γ̄ of the �rst Brillouin zone.

This proved already without doubt that the unexpected �ower-like topology at Γ̄′ is

not connected to the kz dispersion. Thus, it remained an open question how to explain
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6.1 Motivation

this peculiar phenomenon which was the original motivation to theoretically investigate

this system.

However, it proved to be a non-trivial task to capture the individual characteristics

of the ARPES spectra of (Ba1−xKx)Fe2As2 correctly. Note, that this compound is

one of the most investigated and discussed prototype systems for the iron pnictide

superconductors in terms of ARPES. [33,215�217,252�254] A theoretical explanation of the

ARPES spectra of iron pnictides is known to be di�cult and often it is necessary to

consider strong correlation e�ects in order to obtain reasonable results. [54�59,255�257] Also

for the present case it proved to be mandatory to include strong correlations in term

of a LDA+DMFT approach. However, it was additionally necessary to combine the

LDA+DMFT method with the ARPES one-step model of photoemission in order to

�nally obtain a satisfactory result. During this long-term investigation in cooperation

with experiment the original motivation of understanding the �ower-like topology at

Γ̄′ was no longer the only interest. It was possible to discuss two additional spectral

features of interest thanks to the subsequently more detailed study.

First, the exceptional propeller-like Fermi surface topology of (Ba0.6K0.4)Fe2As2 at

the X̄ point [33,216,252] could be investigated in detail due to the applied LDA+DMFT

approach and by extending the theoretical ARPES study also to lower photon energies.

This feature is discussed in terms of a Lifshitz transition [258], meaning topological

changes in the Fermi surface which mark the onset of superconductivity. Consequently,

the correct explanation of these Lifshitz transitions is of tremendous relevance for the

iron pnictides. [35,52]

Secondly, the applied approach could be used to investigate the e�ective electron

masses. Note, that a signi�cant discrepancy between the e�ective masses derived from

experimental ARPES spectra m∗exp and from LDA band structure calculations m∗LDA
was reported. [256,257] This observation is typically ascribed to strong correlations and

band renormalization as LDA+DMFT calculations for e�ective masses tend to give

better results compared to LDA. [57,259] However, one important point was so far missing

in the literature, namely the in�uence of e�ects inherent to the photoemission response

which can be e.g. surface e�ects, matrix element e�ects or �nal state e�ects. These

phenomena alter the true band dispersion, meaning the apparent mass enhancement

seen in the ARPES spectra is not an entirely intrinsic property anymore.

Thus, the following work can discuss several important physics of the iron pnictides

concerning the ARPES spectra and correlation e�ects which can be both adequately

described by the applied LDA+DMFT+ARPES approach. Note, that within this

chapter the tetragonal, nonmagnetic phase of (Ba0.6K0.4)Fe2As2 was investigated.

77



Chapter 6. Impact of the photoemission response

6.2 Publication: arXiv 1606.08977

Fermi surface and e�ective masses in photoemission

response of the (Ba1−xKx)Fe2As2 superconductor

Gerald Derondeau,1 Federico Bisti,2 Jürgen Braun,1 Victor A. Rogalev,2

Masaki Kobayashi,2,3 Ming Shi,2 Thorsten Schmitt,2 Junzhang Ma,2,4,5

Hong Ding,4,5 Hubert Ebert,1 Vladimir N. Strocov,2 and Ján Minár1,6

1Department Chemie, Physikalische Chemie, Universität München, München, Germany

2Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

3Department of Applied Chemistry, School of Engineering, University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

4Beijing National Laboratory for Condensed Matter Physics

5Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

6NewTechnologies-Research Center, University of West Bohemia, Pilsen, Czech Republic

available at: arXiv 1606.08977v2 [cond-mat.supr-con]

submitted to: Scienti�c Reports on 11th of October 2016

Copyright 2016, Nature Publishing Group

78

https://arxiv.org/abs/1606.08977v2


Fermi surface and effective masses in photoemission response
of the (Ba1−xKx)Fe2As2 superconductor

Gerald Derondeau,1, ∗ Federico Bisti,2 Jürgen Braun,1 Victor A. Rogalev,2 Masaki Kobayashi,2, 3 Ming Shi,2

Thorsten Schmitt,2 Junzhang Ma,2, 4, 5 Hong Ding,4, 5 Hubert Ebert,1 Vladimir N. Strocov,2, † and Ján Minár1, 6, ‡

1Department Chemie, Physikalische Chemie, Universität München, Butenandtstr. 5-13, 81377 München, Germany
2Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

3Department of Applied Chemistry, School of Engineering,
University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

4Beijing National Laboratory for Condensed Matter Physics
5Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

6NewTechnologies-Research Center, University of West Bohemia, Pilsen, Czech Republic
(Dated: September 15, 2016)

The angle-resolved photoemission spectra of the superconductor (Ba1−xKx)Fe2As2 have been
investigated both experimentally and theoretically. Our results explain the previously obscured
origins of all salient features of the ARPES response of this paradigm pnictide compound and
reveal the origin of the Lifshitz transition. Comparison of calculated ARPES spectra with the
underlying DMFT band structure shows an important impact of final state effects, which results
for three-dimensional states in a deviation of the ARPES spectra from the true spectral function.
In particular, the apparent effective mass enhancement seen in the ARPES response is not an
entirely intrinsic property of the quasiparticle valence bands but may have a significant extrinsic
contribution from the photoemission process and thus differ from its true value. Because this effect is
more pronounced for low photoexcitation energies, soft-X-ray ARPES delivers more accurate values
of the mass enhancement due to a sharp definition of the 3D electron momentum.

The iron pnictides are nowadays one of the most stud-
ied examples for unconventional superconductivity. Due
to their complex properties standard theoretical meth-
ods based on a local density approximation (LDA) within
density functional theory (DFT) often fail.[1–3] This is
especially true if one tries to explain angle-resolved pho-
toemission (ARPES) spectra of the iron pnictides.[4–
11] In this context a significant discrepancy between
the effective masses derived from experimental ARPES
spectra m∗exp and from LDA band structure calculations
m∗LDA was reported.[9, 11] Correct trends in the effective
masses can be observed using dynamical mean-field the-
ory (DMFT) approaches which quantifies the importance
of correlation effects for the iron pnictides.[12, 13]

Various advanced approaches have been applied in the
field, accounting for different phenomena. This covers
the treatment of disorder in an appropriate way [14–16],
the inclusion of spin-orbit coupling (SOC) [17] and in
order to calculate ARPES spectra correctly the influence
of matrix element effects and surface effects was recently
stressed [18, 19]. Finally, electron-electron correlation
effects are one of the most important issues discussed.[8,
12, 20–24] All these aspects were shown to play a crucial
role for the iron pnictides, yet most approaches so far can
deal with only one of these issues at the same time.

In this work we will present a theoretical approach
which accounts for all of the above mentioned issues
leading in this way to a very satisfactory agreement with
experimental ARPES data of the iron pnictides. Here
we investigate one of the most prominent prototype
systems in the family of iron pnictides, namely the K

substituted (Ba1−xKx)Fe2As2 compound [25, 26], which
was extensively studied by ARPES.[4–7, 10, 27, 28]
There is common agreement, that the Fermi surface
(FS) of this compound is quite complex and cannot
be obtained from plain DFT calculations. In fact, an
exceptional propeller-like FS topology at the X̄ point
is found [4–6] which is discussed in terms of a Lifshitz
transition, meaning topological changes in the FS which
mark the onset of superconductivity.[16, 29] Also a
rather puzzling change in the intensity distribution at
neighboring Γ̄ points is known.[4] Until now there is
no theoretical work which would explain all the salient
features of the ARPES spectra of (Ba1−xKx)Fe2As2.

Results

Impact of correlations on the electronic structure.
The crystal structure of (Ba0.6K0.4)Fe2As2 is shown in
Fig. 1 (A), with the corresponding Brillouin zone (BZ)
and its two-dimensional counterpart for a (001) orien-
tated surface given in Fig. 1 (B). The electronic structure
is represented by means of the Bloch spectral function
(BSF), which has the significant advantage that in the
presented approach all disorder effects induced through
substitution are fully accounted for. The LDA based
band structure is shown in Fig. 1 (C) with the corre-
sponding Fermi surface (FS) cut shown in Fig. 1 (D).
The topology of this FS cut fails to explain the Fermi
surface seen by ARPES.[4] It can neither reproduce the
well-known propeller-like features at the X̄ point, nor it
can explain the flower-like topology at Γ̄′.[4] Thus, the
applied LDA approach is insufficient to deal accurately
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FIG. 1. (A) Crystallographic unit cell of tetragonal (Ba1−xKx)Fe2As2 with (B) corresponding Brillouin zones indicating the
important high symmetric points. Γ̄, Γ̄′ and X̄ indicate the two-dimensional Brillouin zone for a (001) orientated surface. (C +
D) BSF and FS of (Ba0.6K0.4)Fe2As2 calculated on the basis of LDA. (E + F) Corresponding BSF and FS of (Ba0.6K0.4)Fe2As2
calculated on the basis of LDA+DMFT. The blue lines always indicate the path chosen for the presented band structure.

with these prominent features. To account for the neces-
sary correlation effects fully self-consistently, we have ap-
plied subsequent LDA+DMFT calculations. We used for
Fe an averaged on-site Coulomb interaction U = 3.0 eV
and an exchange interaction J = 0.9 eV, which are com-
monly used for the iron pnictides.[8, 30, 31] The impact
of correlation effects represented by the DMFT on the
band structure in Fig. 1 (E) and on the Fermi surface
cut in Fig. 1 (F) is tremendous. We see strong renor-
malization of the dxy and dxz/yz bands, in agreement
with other literature.[13] However, most prominent are
the changes around the X point where a significant up-
wards shift of the bands towards the Fermi level (EF )
leads to the hole and electron pockets responsible for the
appearance of the propeller like topology at X̄ in agree-
ment with experimental ARPES data.[4–6] Note, that a
similar upwards shift at X of around 0.1 eV was also ob-
served by Werner et al.[8] [32], although the qualitative
agreement of our results with experiment seems slightly
better. In comparison, Werner et al. used a frequency
dependent screening which leads to strong incoherence.
However, based on suggestions by Tomczak et al.[12] and
because we look only at energies close to the Fermi level
it seems like an acceptable approximation to use a static
coulomb interaction U . In particular, we are able to fully
account for the chemical disorder of the K-doped com-

pound in terms of the coherent potential approximation
(CPA) which seems to be more relevant for the prob-
lem at hand. Considering the LDA band structure from
Fig. 1 (C) one can already see strong band broadening
for the hole band of interest at X. Thus, incoherence due
to disorder effects is strongest for explicitly this band and
it would be invalid to neglect this. Consequently, strong
incoherence at X for the LDA+DMFT band structure
makes it difficult to resolve the exact band shape. Based
on the ARPES data of Zabolotnyy et al.[4] the electron
pocket and the hole pocket at X should hybridize even
more than in the presented calculations. This effect is
covered in our results due to the strong incoherence and it
might be also a shortcoming of the applied FLEX DMFT
solver.

Still, the consequence of this phenomenon is a topo-
logical change in the FS contour, indicating a so-called
Lifshitz transition which is crucial for the emergence of
superconductivity.[16, 29] This Lifshitz transition was
already discussed for high K concentrations (x ≈ 0.9)
within a LDA framework.[16, 28] The present as well
as previous experimental work [4–6], however, clearly
shows the emergence of the petal topology around X̄
already for optimal doping (x ≈ 0.4). Based on the
latter discussion and by comparing Fig. 1 (C) and (D)
one can see that the origin of the Lifshitz transition at
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FIG. 2. Fermi surfaces cuts of (Ba0.6K0.4)Fe2As2 for hν = 75 eV as seen by one step model ARPES calculations for (A) LDA
and (B) LDA+DMFT. The overlay of black isolines always corresponds to experimental ARPES data taken with permission
from Zabolotnyy et al.[4]. The green solid lines are guides for the eyes to indicate surface state related features.

lower K concentrations is fully controlled by correlation
effects accounted for by the applied LDA+DMFT
approach. Consequently, the Lifshitz transition can also
qualitatively explain the breakdown of magnetic order
for (Ba1−xKx)Fe2As2, which takes place at low doping
ratios x < 0.4 [26], as it destroys the nesting condition
[33]. More details showing the clear dependence on the
Coulomb interaction U are found in the Supplemental
Material.[34] Although, the applied self-consistent
DMFT approach has brought important new insights
on the topology around X̄, it is not able to reproduce
the flower-like intensity distribution observed at Γ̄′

compared to Γ̄.[4]

Impact of ARPES response effects. To understand
this flower-like feature, additional calculations based on
the one-step model of ARPES have been done, account-
ing for the experimental geometry [35, 36] including sur-
face effects as well as matrix element effects. These cal-
culations were performed using the LDA potentials and
within the LDA+DMFT framework. The corresponding
spectroscopic Fermi surface cuts obtained from the one-
step model ARPES calculations of (Ba0.6K0.4)Fe2As2 for
hν = 75 eV are shown in Fig. 2 (A) for LDA and in Fig. 2
(B) for the LDA+DMFT calculations. For comparison
we show in both pictures the original experimental data
from Zabolotnyy et al. [4] as an overlay of black isolines,
measured at hν = 80 eV.

The ARPES calculations based on the LDA+DMFT
shown in Fig. 2 (B) reveal very good agreement with the
experimental data, concerning the Lifshitz transition in-
duced propeller structure at X̄ (only one part of the pro-
peller is clearly visible for the chosen light polarization
as was also found in experiment [4]) indicating that the
previously discussed electronic structure is correctly re-
produced. Furthermore, we obtain good agreement con-

cerning the flower intensity distribution at Γ̄′. It should
be stressed that there is no alternation of this circle and
flower topology around Γ̄ and Γ̄′, respectively, with al-
ternating Γ and Z points in the kz direction by changing
hν. Thus, the origin of this interesting topology is not
connected to the alternation between Γ and Z points of
the bulk Brillouin zone.

The general appearance of two different shapes be-
tween Γ̄ and Γ̄′ can be explained by the structure fac-
tor and the light polarization in terms of a 1-Fe or 2-Fe
cell, as discussed by e.g. Moreschini et al. [37] or Lin
et al. [38]. Note, that a correct treatment of the phase
difference between two atoms of a unit cell and the light
polarization is by construction included in the one-step
model of photoemission (see Ref. [39]), thus the theory
can sufficiently account for this. However, we find that at
the same time other effects can contribute, in order to ob-
tain this flower topology in agreement with experiment.
As can be seen from Fig. 2 (A) the intensity distribution
at Γ̄′ has a fourfold rotational symmetry, although the
flower-like topology is not adequately reproduced com-
pared to the result in Fig. 2 (B). This difference cannot
be explained without additional contributions.

It is known that the intensity distributions in ARPES
might change for neighboring Brillouin zones between
Γ̄ and Γ̄′ due to matrix element effects, however, such
a strong change in the intensity distribution as seen in
experiment [4] and reproduced in Fig. 2 (B) is rather
uncommon and unexpected. Yet, it is also known that
the influence of matrix element effects can be enhanced
in the vicinity of surface related states. Surface phe-
nomena can be investigated by the applied method, as
it is explained in more detail in Ref. [40]. In particular,
we have recently shown that surface states have a
significant influence on the ARPES spectra of Co-doped
BaFe2As2 [19]. Subsequently, one is able to identify
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FIG. 3. Fermi surface cuts of (Ba0.6K0.4)Fe2As2 for (A+C) hν = 425 eV ARPES calculation using LDA+DMFT and (B+D)
hν = 430 eV experimental data. The incoming light was either (A+B) p-polarized or (C+D) s-polarized.

in the spectra of (Ba0.6K0.4)Fe2As2 surface resonance
states which wave functions have bulk Bloch asymptotic
behavior and exhibit a strong resonance at the vicinity
of the surface. This means such surface resonances can
show a kz dispersion and they can be observed also
for comparably high photon energies. The positions
of these ring-shaped surface resonances is marked with
solid green lines as an overlay in Fig. 2. For LDA
in Fig. 2 (A) one can see that this surface resonance
is compressed and thus its influence on the intensity
distribution at Γ̄′ is less significant. In comparison,
the surface resonance is shifted for the LDA+DMFT
calculation in Fig. 2 (B) where it cuts precisely through
the clearly visible petals of the flower topology, affecting
the intensity distribution at this position. We believe,
that these contributions from the surface resonances can

12
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FIG. 4. Experimental kz scan with p-polarized light for
(Ba0.6K0.4)Fe2As2 from 350 eV up to 500 eV. It is showing
the clear kz dispersion at Γ̄ and Γ̄′. The photon energy of
hν = 430 eV is marked with a black line.

add up to the commonly discussed explanation based
on the 1-Fe/2-Fe scheme, giving finally an overall good
agreement with experimental data.

New bulk sensitive ARPES experiments. Addi-
tional bulk sensitive soft-X-ray photoemission measure-
ments for hν = 430 eV were performed for samples
of (Ba0.6K0.4)Fe2As2. The resulting spectra are pre-
sented in Figs. 3 (B) and (D) for p-polarized and s-
polarized light, respectively. Notably, for p-polarized
light the flower shaped topology at Γ̄′ is enhanced in
intensity while for s-polarized light the propeller topolo-
gies at X̄ are enhanced. Corresponding calculations for
hν = 425 eV are presented in Figs. 3 (A) and (C), which
show very good agreement with the experimental data
concerning the relevant topologies and the polarization
dependence. Thus, these experiments are fully in line
with the argumentation of this work so far and further
validate our results. Additional extended Fermi surface
cuts for higher Brillouin zones can be found in the Sup-
plemental Material.[34]

Furthermore, the experimental kz scan from 350 eV
up to 500 eV is shown in Fig. 4 with the photon energy
of hν = 430 eV explicitly marked with the black line.
This shows clearly the kz dispersion and thus the strong
3D character of the iron pnictides.

Effective masses derived from ARPES spectra
Finally, the electronic structure derived from BSF cal-
culations and ARPES calculations was used to analyze
the effective masses which are of great actual interest
for the iron pnictides.[9, 11–13] The results for the mass
ratios of the inner and outer hole pockets around Γ in
the ΓZ direction and additionally for the hole pocket at
X in the ΓX direction are summarized in Tab. I. More
details are found in the Supplemental Material.[34] As
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TABLE I. Ratio of effective masses of m∗DMFT to m∗LDA for
the Bloch spectral function (BSF) calculations as well as for
the ARPES calculations with hν = 75 eV and 425 eV, re-
spectively. The values correspond to the inner and outer hole
pockets around Γ showing strong kz dispersion and to the
hole pocket at X showing weak kz dispersion.[34]

m∗
DMFT

m∗
LDA

BSF
ARPES
75 eV

ARPES
425 eV

Inner pocket Γ 2.59 3.66 2.94

Outer pocket Γ 1.70 2.28 1.98

Hole pocket X 1.43 1.56 1.58

it is commonly done, all values of m∗ are normalized
to the LDA value m∗LDA deduced from the ground
state BSF. First, consider the mass enhancement at
Γ only, where the influence of DMFT on the band
dispersion can be seen for the BSF, with an average
mass enhancement of 2.15 (meaning an average over
inner and outer hole pocket Γ), being in good agreement
with literature (e.g. 2.04 for KFe2As2 [13]). Of more
interest is the apparent mass enhancement deduced
from the ARPES calculations compared to the BSF
band dispersion. The difference is attributed to the fact
that the calculated ARPES spectra include not only the
correlation effects of DMFT but also final state effects
which, as explained below, modify the ARPES spectral
shape. On the experimental side, such an apparent mass
enhancement has already been observed in ARPES for
e.g. the BaFe2As2 parent compound and connected with
the kz dispersion of the valence states.[9] The apparent
mass enhancement is given by the fact that the ARPES
response of the 3D valence states is formed by averaging
of their matrix-element weighted kz dispersion over
an interval of the intrinsic final state kz broadening
(∆kz) determined by the photoelectron mean free path
λ.[41, 42] As illustrated in Fig. S5 in the Supplemental
Material [34], near the extremes of the valence band kz
dispersions this averaging effectively shifts the ARPES
peaks from true kz dispersions into the band interior
(for detailed physical picture see Ref. [41]). In k||
dependent ARPES intensities this shift is seen as an
apparent bandwidth reduction and corresponding mass
enhancement. One can expect a stronger influence of
these final state effects at lower photon energies where
∆kz is larger due to a smaller λ. Indeed, our calculations
find significant differences in the mass enhancement at Γ
depending on hν. For the low hν of 75 eV (∆kz = 0.2779
Å−1, which makes about 30% of the perpendicular BZ
dimension) we find an average mass enhancement of
2.97 at Γ which is higher than the value of 2.15 obtained
from the BSF. The significantly higher hν of 425 eV
(∆kz = 0.1228 Å−1) increases λ and concomitantly
improves the kz definition. The final state effects have
therefore a less pronounced contribution, reducing the
average mass enhancement at Γ to 2.46. This is true for

almost all bands in the iron pnictides as they are 3D
materials with most bands showing a clear kz dispersion.
One of the rare exceptions for the (Ba1−xKx)Fe2As2
compound is the hole pocket at X which has almost
2D character and shows hardly a kz dispersion as can
be seen in Fig. 1 (C + E) for the path ΓXZ. In such
a case one would expect significantly less influence of
the final-state effects and indeed, Tab. I shows that the
apparent mass enhancement for high and low hν at X
is almost the same and very similar to the BSF mass
enhancement. This finally explains discrepancies in the
observed mass enhancement for the iron pnictides. To
reduce these hν dependent deviations of the ARPES
response from the true 3D valence bands, we justify the
use of higher hν in the soft-X-ray regime to improve the
kz definition.

Discussion
In conclusion, the presented LDA+DMFT+ARPES
study is the first to quantitatively match theoretical de-
scription and experimental ARPES data on the paradigm
high-temperature superconductor (Ba0.6K0.4)Fe2As2.
These results enable better physical understanding
of the unconventional superconductivity in pnictides
and will be of great importance for future studies
on similar systems. In particular, the origin of the
Lifshitz transition in (Ba1−xKx)Fe2As2, crucial for its
superconductivity, is identified as fully controlled by
electron correlation effects, which we have discussed in
detail. Furthermore, we have shown that due to the
inherently 3D nature of the iron pnictides their ARPES
response is significantly influenced by final state effects,
shifting the spectral peaks from the true quasiparticle
valence bands. Their mass enhancement apparent in
the ARPES spectra is then different from the true value
and, moreover, will depend on the photon energy. Thus,
the mass renormalization observed in previous ARPES
works on iron pnictides is not an entirely intrinsic
property of the quasiparticle valence band structure or
spectral function, but has a significant contribution due
to a peculiarity of the photoemission process extrinsic
to the true valence band properties.

Methods
Computational method. Within the present work,
the multiple scattering Korringa-Kohn-Rostoker-Green
fuction (KKR-GF) method was applied which allows to
deal simultaneously with all mentioned spectroscopic
and many-body aspects. All calculations have been
performed within the fully relativistic four component
Dirac formalism [43, 44], accounting this way for all
effects induced by spin-orbit coupling. Disorder effects
are dealt with by means of the coherent potential
approximation (CPA).[16, 19, 45] ARPES calculations
are based on the one-step model of photoemission in its
spin density matrix formulation using the experimental
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geometry.[46, 47] Thus, the theory accounts for effects
induced by the light polarization, matrix-element effects,
final state effects and surface effects. To account for
correlation effects fully self-consistently (concerning
charge as well as self energy) the LDA+DMFT method
using a FLEX solver was applied.[48] For Fe an averaged
on-site Coulomb interaction U = 3.0 eV and an exchange
interaction J = 0.9 eV were applied. In the Supplemen-
tal Material calculations for different values of U are
shown.[34] The lattice constants of the tetragonal cell of
(Ba0.6K0.4)Fe2As2 were taken from experimental data.
[26]

ARPES experiments. New ARPES experiments in
the soft-X-ray photon energy (hν) range above 400 eV
were performed at the ADRESS beamline of the Swiss
Light Source synchrotron facility.[35, 36] By using higher
hν compared to the conventional ultraviolet ARPES,
higher bulk sensitivity is achieved due to an increase of
the photoelectron mean free path λ as expected from the
well-known “universal curve”. Crucial for 3D materials
like the iron pnictides is that the increase of λ results, by
the Heisenberg uncertainty principle, in a sharp intrin-
sic definition of the momentum kz perpendicular to the
surface.[41] As explained in the paper, the latter becomes
important for the correct evaluation of the true valence
band dispersions and effective masses.

In particular, bulk sensitive soft-X-ray photoemis-
sion measurements for hν = 430 eV were performed
for in-situ cleaved samples of (Ba0.6K0.4)Fe2As2 at a
temperature of around 12 K and with an overall energy
resolution of around 70 meV.
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1. LIFSHITZ TRANSITION

A Lifshitz transition is characterized as a topological change of the Fermi surface.[1] For the

iron pnictide superconductors this type of transition is of crucial importance as it is believed to

mark the onset of superconductivity.[2–5] The K-doped (Ba1−xKx)Fe2As2 is a famous example

for such a Lifshitz transition around the X point, leading to the discussed propeller topologies

seen in ARPES experiments.[5–8] As known from experimental data [6–8] and the experiments

performed within this work these topological features are already clearly visible for the optimally

doped (Ba0.6K0.4)Fe2As2. This is expected, following the argumentation that the Lifshitz transition

suppresses the magnetic order due to a reduced nesting and thus induces superconductivity.[2, 9]

However, the observed Lifshitz transition on the basis of the LDA was so far discussed only for

high doping concentrations x ≈ 0.9. [5, 10] It is also known that it is difficult to prepare homo-

geneous samples of over-doped (Ba1−xKx)Fe2As2 [5] which might explain discrepancies between

various experiments about the onset of the Lifshitz transition.[6, 8, 10, 11] One remarkable and

important paper from Khan and Johnson used the CPA to investigate the Lifshitz transition for

(Ba1−xKx)Fe2As2 and they found a similar emergence of these propeller-like topologies for the

heavily over-doped (Ba0.1K0.9)Fe2As2.[5] However, with our new findings this result is now fully

understandable. Using only a LDA based approach the relevant bands around X are still around

0.1 eV below the Fermi level (EF ). One can use over-doping with K in order to decrease EF . The

disadvantage of this approach is however that not only the relevant bands around X but the whole

band structure is moved. Using a LDA+DMFT based approach one can see that correlation effects

alter the electronic structure around X already for optimally doped (Ba0.6K0.4)Fe2As2 so that the

Lifshitz transition can emerge for lower doping concentration, in agreement with experiments.[6–8]

In order to show how this topology is affected by the correlation strength we show the corre-

sponding BSF and FS in Fig. S1 for (A) LDA and LDA+DMFT with a varying on-site Coulomb

interaction of (B) U = 2.0 eV, (C) U = 3.0 eV and (D) U = 4.0 eV with a constant exchange

interaction J = 0.9 eV for Fe. Best agreement with experiment can be found for U = 3.0 eV as

used and discussed in the main paper but it is also obvious that bands responsible for the Lifshitz

transition are directly controlled by the Coulomb interaction U . Thus, we show that the origin of

the important Lifshitz transition in (Ba1−xKx)Fe2As2 can be fully explained by correlation effects.

Still, it is also interesting to note that recent work on the ARPES spectra of the electron doped

Ba(Fe1−xCox)2As2 was successful using only a LDA approach.[12] The strength of correlation

effects in the iron pnictides seem to vary with electron or hole doping.
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(G) DMFT: U = 4 eV
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FIG. S1. (Color online) (A + B) BSF and FS of (Ba0.6K0.4)Fe2As2 calculated on the basis of LDA.
Corresponding BSF and FS of (Ba0.6K0.4)Fe2As2 calculated on the basis of LDA+DMFT with (C + D)
U = 2.0 eV, (E + F) U = 3.0 eV and (G + H) U = 4.0 eV for Fe (J = 0.9 eV).
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2. EXTENDED FERMI SURFACE CUT

In correspondence to Fig. 3 of the main manuscript we present additionally extended Fermi

surface cuts of (Ba0.6K0.4)Fe2As2 for experimental data and theoretical calculations, respectively.

Thus, Fig. S2 (A) shows the experimental data up to the second Brillouin zone and (B) the

calculated Fermi surface cut up to the forth Brillouin zone, both images for p-polarized light

and hν = 430 eV. This verifies that the alternating symmetry of the flower-like topology at Γ̄′

compared to Γ̄ is preserved over the whole k-space, in agreement with the data of Zabolotnyy et

al. [6]. Interestingly, the flower-like topology changes a little bit for the third and forth Brillouin

zone in Fig. S2 (B) which is connected to the kz dispersion. Note, that the calculation is shown

for a fixed photon energy of hν = 430 eV, thus, the effect of the kz dispersion increases for higher

Brillouin zones (see also the kz scan in Fig. 4). In the experimental data of Fig. S2 (A) the value

of kz is corrected on the other hand. The blue square in (B) corresponds to the part of the Fermi

surface shown in (A).
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FIG. S2. Fermi surface cuts of (Ba0.6K0.4)Fe2As2 with a fixed hν = 430 eV and for p-polarized light
extending over several Brillouin zones. This is shown for (A) experimental data and (B) ARPES calculations
using LDA+DMFT. The blue square in (B) corresponds to the part seen in (A).

3. DERIVED EFFECTIVE MASS ENHANCEMENT

In order to derive the mass enhancements shown in Tab. I the corresponding bands shown in

Fig. S3 were used with the applied parabolic fits shown as solid green and red lines on top. For the

BSF in Fig. S3 (A + B) and (E + F) the band dispersion can be fitted very reasonably by parabolic
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functions. For the ARPES response however, final state effects, matrix element effects and surface

effects alter the true band dispersion which results in bands showing more deviation from the

perfect parabolic behavior. As discussed in the main paper, this is mainly due to final state effects

which have a stronger impact the more pronounced the kz dispersion of the corresponding bands

is. Thus, the deviations from the perfect parabolic behavior are stronger in Fig. S3 (C + D) at the

Γ point, compared to Fig. S3 (G + H) at the X point, because the bands at Γ have stronger 3D

character whereas the band at X considered here is almost a 2D band. Furthermore, one should

note that in the ARPES spectra the two outer bands around Γ are hardly distinguishable due to

intensity loss connected to the ARPES response. As a technical detail, the calculations used an

imaginary energy of 0.025 eV for the initial states and of 5.0 eV for the final states.

The resulting mass renormalization is shown in Fig. S4 (A - C) with the LDA bands from

Fig. S3 (A) on top of the respective DMFT BSF and the DMFT ARPES response as dashed

green and red lines. In addition, the DMFT bands of Fig. S3 (B) are shown on top of the ARPES

spectra in Fig. S4 (D - E). This shows explicitly the deviation of the ARPES response from the true

band dispersion derived from DMFT BSF. Consequently, the apparent mass enhancement seen in
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FIG. S3. Bands for which the mass enhancement is shown in Tab I. The solid red and green lines correspond
to the applied parabolic plot fit. They are shown for (A - D) the Γ point having a strong kz dispersion and
for (E - H) the X point having a weak kz dispersion. (A + E) BSF based on LDA, (B + F) BSF based on
LDA+DMFT and (C + G) ARPES calculations based on DMFT for hν = 75 eV and (D + H) the same for
hν = 425 eV.
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FIG. S4. (A - C) Band renormalization for BSF DMFT and the ARPES response with the LDA bands of
Fig. S3 (A) on top. (D - E) The same ARPES spectra but with the DMFT bands of Fig. S3 (B) on top in
order to show the effect only due to the ARPES response.

ARPES is affected by these ARPES response effects and thus it is not an intrinsic property of the

quasiparticle valence band structure or spectral function. Why the ARPES response is affected by

the kz broadening ∆kz is depicted schematically in Fig. S5. As discussed in the main paper, ∆kz

can be reduced by choosing a higher photon energy, although the resulting effects can be never

fully avoided for 3D materials like the iron pnictides.

E

kz

kz
E

IARPES

E

FIG. S5. Mechanism of the apparent mass enhancement (assuming a constant matrix element). The ARPES
signal is formed by averaging of the valence band dispersion within the ∆kz broadening interval. Near the
extremes of the kz dispersion, this averaging results in asymmetry of the ARPES weight and shifting of
the resulting spectral peak away from the extreme towards the band interior (for a more detailed picture
including lifetime broadening of the valence states see Ref. [13]). Concerning its k|| dependence of the
ARPES spectra this shift causes an apparent reduction of the bandwidth and an increase of m∗.
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6.3 Additional calculations

6.3 Additional calculations

Due to the extensive long-term study, which resulted in a huge amount of data, only a

small part of the performed calculations could be shown in the published manuscript.

Especially parts which were too technical had to be skipped. In the following some

additional calculations on this topic will be presented for the sake of completeness

and in order to further support the presented work. This will focus especially on the

�ower-like Fermi surface topology seen at Γ̄′.

The kz dispersion

The original motivation was based on the unexpected �ower-like topology which was

found by experiment to be always at Γ̄′ independent on kz. The clear kz dispersion

of the compound was mentioned in the presented work and shown for experiment,

however, it was not explicitly shown for the calculations due to lack of space. For

the sake of consistency, the corresponding calculated Fermi surface cuts are shown in

Fig. 6.3 for (A) hν = 392 eV and (B) hν = 430 eV in comparison to the experimental

data presented in Fig. 6.1.
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Figure 6.3. Calculated ARPES Fermi surface cuts of (Ba0.6K0.4)Fe2As2 measured with
p-polarized light for (A) hν = 392 eV and for (B) hν = 430 eV, in comparison to Fig. 6.1.

It is obvious that the �ower-like topology of interest can be found in both calcu-

lations at Γ̄′ and is thus independent on kz as one should expect from experiment.

In addition, the calculated kz dispersion is shown in Fig. 6.4, corresponding to the

experimental result from Fig. 6.2.
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Figure 6.4. Calculated kz scan, in comparison to Fig. 6.2, with p-polarized light for
(Ba0.6K0.4)Fe2As2 showing kz dispersion and alternating Γ and Z points. The photon en-
ergies hν = 392 eV and hν = 430 eV are marked by black lines.

Minor details in the intensity distribution of the calculated kz scan deviate from

experiment, which might be due to small deviations in the angle of the incident light.

However, more important is the obvious kz dispersion and the alternating points of

high and low intensities, representing Z and Γ, respectively. This is reproduced in

good agreement with experimental data. Furthermore, one can see that hν = 392 eV

and hν = 430 eV correspond in experiment and in the calculations to approximately

the same lines in k-space.

Impact of the surface barrier

It was explicitly shown that the unexpected topologies in the ARPES spectra of

(Ba0.6K0.4)Fe2As2 as presented in the original motivation in section 6.1 could be re-

produced concerning all aspects by the applied method. However, the details of the

surface resonance states, which are believed to be crucial for the �ower-like topology

at Γ̄′, were not discussed in the published manuscript, as this would have been too

technical for the general reader.

Thus, we show in Fig. 6.5 the calculated Fermi surface cuts with hν = 80 eV for

three di�erent values of the surface barrier in (A) � (C), respectively. As explained in

subsection 2.2.3, the surface potential is described by the spin-dependent Rundgren-

Malmström barrier, which connects the asymptotic region ∼ 1
z
to the bulk mu�n-tin

zero by a third-order polynomial in z. [139] The surface barrier parameter, given in

atomic units, now speci�es the distance between the crystal and the image plane.

Thus, it is connected to the width of the third-order polynomial and parameterizes the
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6.3 Additional calculations

(A) surface barrier: 0.22 a.u.
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(B) surface barrier: 0.27 a.u.
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(C) surface barrier: 0.32 a.u.
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Figure 6.5. Fermi surfaces cuts of (Ba0.6K0.4)Fe2As2 for hν = 80 eV as obtained by one step
model ARPES calculations for (A) LDA and (B) LDA+DMFT. The overlay of black isolines
always corresponds to experimental ARPES data taken with permission from Zabolotnyy et

al. [33]. The green solid lines are guides for the eyes to indicate surface state related features.

impact of the surface. Changing the surface barrier will consequently shift states which

have a surface character. To identify such states, the already described determinant

condition is used, as explained in subsection 2.2.3.

The right panel of Fig. 6.5 corresponds to the respective plot of the determinant

condition, equal to the discussion of surface states in Chapter 5. One can see that the

dark areas of the determinant condition do not correspond to real features of the Fermi

surface, meaning these indications show no real surface states. On the other hand, the
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Chapter 6. Impact of the photoemission response

dark yellow rings around Γ̄ and Γ̄′ correspond directly to the respective outer ring of

the Fermi surface cut. Thus, the outer ring around Γ̄ can be clearly identi�ed as a

surface resonance state.

Assuming di�erent values for the surface barrier does shift these surface resonances

in their binding energy, meaning they will cut the Fermi surface at di�erent positions,

respectively. This e�ect can be also observed in the Fermi surface cuts on the left panel,

meaning the outer ring around Γ̄ gets continuously more compressed for higher values

of the surface barrier. Thus, the position of these surface resonances has a signi�cant

impact on the resulting spectrum and also on the �ower-like topology at Γ̄′. As men-

tioned in the main paper the di�erence between two Brillouin zones can be understood

based on the structure factor, meaning the phase di�erence between di�erent atoms of

one unit cell has to be accounted for. Based on the light polarization, now di�erent

orbitals are exited for the �rst and the second Brillouin zone, as explained e.g. by

Moreschini et al. [260]. Note, that using the multiple scattering approach within SPR-

KKR accounts by construction correctly for the structure factor. Thus, the correct

polarization-depend intensities at Γ̄ and Γ̄′ are reproduced by the presented calcula-

tions in good agreement with the work of Moreschini et al. [260]. However, as shown in

Fig. 6.5, one �nds that the correct treatment of the structure factor alone is not su�-

cient to explain completely the topology observed in the experimental ARPES spectra

of (Ba0.6K0.4)Fe2As2. Additionally, the ring-shaped surface resonance in�uences and

enhances the �ower-like topology at Γ̄′. Best agreement with experiment can be ob-

served in Fig. 6.5 (B) for a surface barrier of 0.27 a.u., where the surface resonance

is precisely enhancing the four petals at Γ̄′. Note, that all calculations shown in the

manuscript thus used a surface barrier of 0.27 a.u., corresponding to (B).
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6.4 Discussion

The original phenomenon of interest, namely the �ower-like Fermi surface topology

at Γ̄′ of the second Brillouin zone, could be successfully reproduced by theory. It

was shown that the presented ARPES calculations which by construction include the

correct treatment of the structure factor and the light polarization are able to capture

all e�ects which are necessary to reproduce this four-fold �ower pattern for the second

Brillouin zone. Thus, all e�ects which are discussed e.g. by Moreschini et al. [260] can

be correctly described by the applied SPR-KKR method combined with the one-step

model of photoemission. Additionally, it was shown that surface resonances play an

important role in the spectra of (Ba0.6K0.4)Fe2As2 and they have a signi�cant in�uence

on the shape of the �ower-like topologies. Only if these surface resonances are correctly

accounted for, an overall good agreement with experiment could be reached. Thus,

future studies on the iron pnictides have to account for surface related e�ects, as it was

already stressed for Ba(Fe1−xCox)2As2 in Chapter 5.

Apart from this, other relevant results of this chapter should be emphasized. With-

out doubt ARPES is the most informative experimental tool for the electronic struc-

ture of the iron pnictides, however, a comprehensive theoretical study of their ARPES

spectra is up to now rarely successful. On the other hand, the present work has ex-

haustively explained all salient features of the ARPES spectra in (Ba0.6K0.4)Fe2As2 by

using a combination of LDA+DMFT+ARPES calculations, which was not achieved so

far. One should also note, that the applied approach can handle low photon energies

in the UV regime as well as high photon energies in the soft-X-ray region at the same

time. This correct treatment of ARPES is obviously very important, as two points

obtained with the presented approach will signi�cantly a�ect future ARPES studies

on the iron pnictides.

First, this work could identify the origin of the Lifshitz transition in the K-doped

(Ba0.6K0.4)Fe2As2 superconductor for a reasonable doping concentration x, which is

crucial for the emergence of superconductivity. It was shown that this Lifshitz tran-

sition seems to be fully controlled by electron correlation e�ects accounted for within

the DMFT framework. This emphasizes the impact strong correlations can have on

the iron pnictides and it should help further research in order to control the emer-

gence of superconductivity. At this point one should also note, that the importance

of strong correlations seem to vary for di�erent compounds. The ARPES spectra of

antiferromagnetic Ba(Fe1−xCox)2As2 in Chapter 5 could be obviously well described

by using only a LDA approach. On the other hand, correlations as accounted for
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Chapter 6. Impact of the photoemission response

by the LDA+DMFT method were mandatory to obtain correct results for nonmag-

netic (Ba0.6K0.4)Fe2As2 as shown in this chapter. This behavior seems to be connected

to the di�erence concerning electron or hole doping. There is work in the literature

which supports this idea, indicating indeed that the hole-doped iron pnictides might

be stronger a�ected by correlations. [55,261] However, the results obtained in this publi-

cation cannot exclude that a di�erence in the correlation strength might be also due

to the antiferromagnetic to nonmagnetic transition.

Secondly, it was shown that there is an inevitable di�erence between the spectra

seen in ARPES and the band dispersion derived from DMFT. This traces back to the

photoemission response, including �nal state e�ects or also surface e�ects and matrix

element e�ects. In particular, it was discovered that the e�ective mass renormalization

observed in all previous ARPES studies on iron pnictides is actually not an entirely

intrinsic property of the quasiparticle valence band structure, but has a signi�cant

extrinsic contribution due to the photoemission process itself. This phenomenon is

essentially determined by the three-dimensional momentum de�nition of the photoe-

mission �nal states, resulting in a kz broadening of the electronic structure. This ∆kz

has a stronger impact at lower photon energies in the ultraviolet energy range, which

is commonly used in ARPES experiments. Thus, higher photon energies in the soft-

X-ray region should provide better results for the mass renormalization. However, one

should keep in mind that a higher hν also goes in hand with a reduced resolution.

Still, the here published information is crucial to know because it a�ects all published

experimental results on the e�ective mass renormalization so far. Consequently, it has

also a signi�cant impact on theoretical models discussing strong correlations in the iron

pnictides based on the obtained e�ective mass renormalization.
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Chapter 7

Anisotropic magnetoresistance

7.1 Motivation

The idea for the work presented in the following started already with the �rst inves-

tigation of the doping dependent behavior of Ba(Fe1−xCox)2As2 in Chapter 4. It was

observed, that not only the electronic structure shows a prominent in-plane anisotropy,

but also the strength of disorder e�ects varied between the a and b axes, respectively.

Consequently, it was noted in the published manuscript:

�Additionally, the in-plane anisotropy of the disorder [...] may be an in-

teresting �rst indication for anisotropic e�ects in the transport properties

at the proximity of the magnetic phase. [...] Still, an investigation of

only the Fermi surface is insu�cient [...] and speci�c calculations of the

linear-response properties of these systems are necessary and planned for

the future.� [262]

It turned out that an extensive study was mandatory to investigate this issue in more

detail to get satisfactory results. However, the interest was certainly justi�ed. The in-

plane resistivity anisotropy of the 122-family of iron pnictides was since its discovery in

2010 for BaFe2As2
[38] and Ba(Fe1−xCox)2As2

[39] one of the most discussed and inves-

tigated issues of the following years. This interest was mainly due to the unexpected

behavior, meaning a higher resistivity along the shorter ferromagnetically coupled b

axis was reported, while the lower resistance was found along the antiferromagneti-

cally coupled a axis. [38,39,42] Furthermore, signi�cant deviations in the resistivity were

reported for di�erent kinds of substitution in BaFe2As2. [43,192,222,263] Altogether, it is

quite di�cult to �nd a reasonable explanation for this confusing resistivity behavior

and several sometimes contradicting theories were developed on this topic.
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Chapter 7. Anisotropic magnetoresistance

From the experimental site, scanning tunneling microscope (STM) experiments

had observed local anisotropic defect states with a size of approximately 22 Å, ex-

tending over several unit cells. [40,195,196] Thus, several experimentalists assumed such

anisotropic scattering states as origin of the resistivity anisotropy [42,263], however, other

experimental work argued vigorously against such extrinsic sources in favor of the in-

trinsic band structure [44] as origin. From theory, the issue was extensively investi-

gated, although mainly based on model Hamiltonian approaches. [155,264�270] Some work

stressed the importance of spin �uctuations [269,270], while other was able to repro-

duce so-called nematogen impurity states which explain the origin of the resistivity

anisotropy by means of extended impurity states similar to the already mentioned

STM experiments. [155,266,267]

In any case, the majority of nowadays theories on the topic of the resistivity

anisotropy has abandoned the idea of linking this phenomenon to the anisotropic band

structure, except of e.g. Kuo and Fisher [44]. The idea was suggested in the beginning

from ARPES measurements [36] but it was never really quanti�ed how the electronic

band structure and the resistivity anisotropy might be related to each other. Thus, it

was striking to observe an in-plane anisotropy of the disorder induced band broaden-

ing of the electronic structure in Ba(Fe1−xCox)2As2 as presented in Chapter 4. After

all, the in�uence of the anisotropic band structure to this controversial phenomenon

was never investigated on a �rst-principles level so far. Thus, the Kubo-Greenwood

formalism as available within the SPR-KKR package provided the necessary technical

opportunity.
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Ba(Fe1−xCox)2As2, (Ba1−xKx)Fe2As2 and Ba(Fe1−xRux)2As2
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Using the Kubo-Greenwood formalism the resistivity anisotropy for electron doped
Ba(Fe1−xCox)2As2, hole doped (Ba1−xKx)Fe2As2 and isovalently doped Ba(Fe1−xRux)2As2 in their
antiferromagnetic state has been calculated in order to clarify the origin of this important phe-
nomenon. The results show good agreement with experiment for all cases without considering im-
purity states extending over several unit cells or temperature induced spin fluctuations. From this
it is concluded that the resistivity anisotropy at low temperatures is primarily caused by an in-plane
anisotropic magnetoresistance. Accounting for the band dispersion with respect to kz is however
mandatory to explain the results, showing the importance of the three-dimensional character of the
electronic structure for the iron pnictides. Furthermore, it is shown that the counterintuitive sign of
the resistivity anisotropy is no fundamental property but just a peculiarity of the anisotropic band
structure.

The iron pnictide superconductors are one of most im-
portant examples for unconventioanl superconductivity,
with the physical interest of the last few years mainly fo-
cused on their strong in-plane anisotropy which emerges
for various physical properties [1–6]. This anisotropy
is prominent in electrical transport [1–3, 7–11] but also
shows up in angle-resolved photoemission spectroscopy
(ARPES) [4, 12], neutron diffraction [5] or optical spec-
troscopy [6, 13]. Of special interest is the in-plane re-
sistivity anisotropy (∆ρ = ρa − ρb) for the BaFe2As2
family as it seems to involve several physical phenom-
ena. Notably, the higher resistivity was observed along
the shorter b axis (ρb) which corresponds to ferromag-
netically coupled chains, while the lower resistivity was
found along the a axis (ρa) along which the spins cou-
ple antiferromagnetically [1, 2]. A quite different be-
havior is reported for different kinds of substitution
in BaFe2As2 [9, 10, 14, 15]. Compared to electron
doped Ba(Fe1-xCox)2As2 [1, 3] a smaller resistivity and
anisotropy is seen in isovalent Ba(Fe1-xRux)2As2 [15]
and an almost negligible resistivity and possibly inverted
anisotropy is reported for hole doped (Ba1-xKx)Fe2As2
[7, 10].

Obviously, it turned out to be non-trivial to find a the-
oretical explanation which can account for all these find-
ings. There is recent theoretical work by several groups
based on model Hamiltonian approaches [16–22] and lit-
tle numerical work based on Monte Carlo simulations
[23]. However, the origin of ∆ρ is still under discus-
sion. For example Kuo and Fisher [11] ascribe ∆ρ exclu-
sively to contributions of the intrinsic anisotropic band
structure. Another approach is to assume extrinsic de-
fect states which extend over several unit cells [3, 15].
These can be explained theoretically [17–19] and mon-
itored by scanning tunneling microscope (STM) exper-
iments which see local anisotropic defect states with a
size of approximately 22 Å [24–26]. What is missing

so far is theoretical work that is not based on a model
Hamiltonian but on a parameter-free application of den-
sity functional theory (DFT) or a comparable scheme,
showing whether and how the intrinsic band structure
can explain the observed resistivity anisotropy ∆ρ.

With this work we present a first principles DFT-
based study on ∆ρ in three exemplary iron pnic-
tides: electron doped Ba(Fe1-xCox)2As2 (Co-122), hole
doped (Ba1-xKx)Fe2As2 (K-122) and isovalent doped
Ba(Fe1-xRux)2As2 (Ru-122). In order to reliably ac-
count for the disorder induced by substitution we use
the Korringa-Kohn-Rostoker-Green function (KKR-GF)
approach together with the coherent potential approx-
imation (CPA) alloy theory, which proved already to
be a very powerful and accurate tool to study the elec-
tronic structure of the substitutional iron pnictides [27–
29]. Access to the longitudinal resistivity is given by
the Kubo-Greenwood equation [30, 31], which allows for
a direct comparison with experiment. All calculations
have been performed self-consistently and fully relativis-
tically within the four component Dirac formalism based
on the local density approximation (LDA) [32, 33]. The
applied theory thus accounts for all effects of the intrinsic
band structure and of disorder induced impurity scatter-
ing in terms of the CPA. On the other hand, it does not
account for anisotropic impurity states extending over
several unit cells or for temperature induced spin fluc-
tuations. More details are found in the Supplemental
Material.[34]

The magnetic properties of the investigated com-
pounds are summarized in Fig. 1 together with the or-
thorhombic unit cell in its experimental magnetic con-
figuration. The obtained magnetic moment of undoped
BaFe2As2 is 0.73 µB and thus in good agreement with
experimental data (0.87 µB [35]). Using the CPA allows
for a site resolved investigation of the magnetic moments,
thus, the solid lines correspond to the average magnetic
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FIG. 1. (Left) Magnetic moments for Co-122 (red), K-122
(blue) and Ru-122 (black) depending on the dopant concen-
tration x. The solid lines correspond to mavg, meaning the
substitutional dependent average, while the dashed lines cor-
respond to the pure Fe moment mFe. (Right) Orthorhombic
unit cell with the experimental magnetic configuration.

moment while the dashed lines give the Fe contribution
only. The collapse of long range antiferromagnetic or-
der at the critical concentration xcrit for Co-122 and
K-122 is in reasonable agreement with experiment, al-
though it is slightly shifted to higher x values when com-
pared with experiment (Co-122: xexpcrit ≈ 0.07 [36]; K-122:
xexpcrit ≈ 0.25 [37]). Yet, for isovalent doped Ru-122 the av-
erage magnetic moments decrease due to the increasing
Ru concentration which has a low magnetic moment in
the order of 0.07 µB (not shown in Fig. 1), however, the
individual Fe magnetic moments surprisingly increase. In
the literature magnetic dilution was already discussed as
the main driving force for the magnetic breakdown in
Ru-122 [38, 39], yet in the investigated regime of x the
magnetic order did not disappear, i.e. xcrit should be
higher than 0.4 (see Fig. 1).

Accounting for the magnetic configuration the in-plane
longitudinal resistivity was calculated, with the main re-
sults shown in Fig. 2. First consider Co-122 in (A), where
the resistivity of the antiferromagnetic (AFM) configu-
ration has a dome-like variation with increasing dopant
concentration x until the collapse of the AFM order takes
place at xcrit. Note that the resistivity ρb AFM along the
ferromagnetic b axis (red) is always larger than the resis-
tivity ρa AFM along the antiferromagnetic a axis (blue)
with a maximum of the anisotropy roughly at xcrit/2.
This behavior is in full agreement with experiment [1, 3].
In Fig. 2 (A) we also give the experimental data of Ishida
et al.[3] for ρa and ρb using specifically adapted scales
to the right and top of the figure. A direct comparison
of the theoretical and experimental data seems never-
theless justified for two reasons. First of all, the self-
consistently calculated collapse of the AFM order takes
place at a higher xcrit compared to experiment, thus one
should account for that by adjusting the experimental

and theoretical x axis in a way that the breakdown of
magnetic order coincides. Secondly, it is known that the
resistivity decreases significantly for annealed crystals,
indicating a strong contribution of crystal defects [3, 9].
Thus it is expected to find the calculated resistivity to be
lower than the experimental one, consequently the axis
to the right for the experimental resistivity is adjusted
by a factor of 2. Most important are the order of mag-
nitude and the dependency of ∆ρ on the doping, which
are rather well reproduced by the presented calculations.
For comparison we show also the calculated resistivity of
the same orthorhombic crystal but for the nonmagnetic
(NM) state, using green (a axis) and purple (b axis) lines
in Fig. 2. Notably, the resistivity of the orthorhombic
NM Co-122 is almost by a factor of 10 reduced compared
to the AFM case and it shows neither a dome-like behav-
ior nor a significant anisotropy due to the lattice distor-
tion. This unambiguously shows that the lattice has a
negligible contribution to the anisotropic behavior com-
pared to the magnetic structure, as was stressed before
in Refs [27, 29].

Next, consider K-122 in Fig. 2 (B), where we show no
experimental data because ∆ρ is reported to be almost
immeasurably small with even possible sign changes [7,
10]. Indeed, the calculations find an in-plane resistivity
always below 8 µΩ cm which is reduced by a factor of
15 compared to Co-122. Replacing Fe with Co or Ru
affects the d-electronic states which are dominating at the
Fermi level (EF ) for the iron pnictides. Thus, disorder
introduced for sp-elements like Ba or K hardly affects
the resistivity of the compound. The calculations further
support the possibility of sign changes in ∆ρ with x.

Finally, consider Ru-122 in Fig. 2 (C), with recent ex-
perimental data taken from Liu et al. [15] shown as for
the Co-122 case with axes at the top and on the right
adjusted the same way. The sign of ∆ρ is the same as
for Co-122, however, the anisotropy does not disappear
as the magnetic order in Ru-122 (see Fig. 1) also does
not disappear for the investigated regime of substitution.
In addition, one has to note that for comparable dopant
concentrations the resistivity in Ru-122 is reduced com-
pared to Co-122, as it was also observed in experiment
[15]. Thus, again the trends and the order of magnitude
for the resistivity are in reasonable agreement with recent
experimental data.

In summary, in all three representative iron pnictides
it was possible to reproduce the qualitative behavior
of ∆ρ in the antiferromagnetic phase based on a LDA
approach without considering spatially extended impu-
rity states or spin fluctuations. Thus, the resistivity
anisotropy of the iron pnictides at low temperatures can
be well understood in terms of an in-plane anisotropic
magnetoresistance (AMR) [40]. This leads to the ques-
tion how the anisotropic band structure can influence
this AMR. The idea of linking ∆ρ to the band structure
as seen e.g. by ARPES was already proposed by Yi et
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FIG. 2. In-plane resistivity calculated for (A) Co-122, for (B) K-122 and for (C) Ru-122 up to xcrit as a function of the
concentration x. The blue and red curves correspond to the antiferromagnetic (AFM) state, while the green and purple lines
correspond to the same orthorhombic lattice but for the nonmagnetic (NM) case. The pluses and crosses are experimental data
[3, 15] with the corresponding concentration x (exp) and resistivity ρ (exp) axes given at the top and right of the figure.

al. [4], however, corresponding explanations were hardly
successful so far [15]. The main reason for this apparent
incompatibility is due to the fact that ARPES is a sur-
face sensitive method. For the iron pnictides, however,
it is absolutely mandatory to account for the dispersion
of bands with kz as was also recently stressed in the con-
text of the effective mass enhancement seen in ARPES
[41]. Accounting for the kz dispersion of the anisotropic
bands will thus allow for more meaningful results and an
at least qualitative understanding of the observed trends.

Discussing the presented resistivity data, one should
first note that the resistivity anisotropy is also observed
for the parent compound BaFe2As2, although it is re-
ported to be small after annealing [2, 9]. Still, the Lif-
shitz transition [42], i.e. the topological change of the
Fermi surface when going from the nonmagnetic to the
antiferromagnetic state, should influence the resistivity
behavior. Indeed, the formerly almost isotropic bands in
the NM state undergo a significant band splitting result-
ing in a considerable anisotropy after the Lifshitz transi-
tion to the AFM state [27, 29, 42]. When accounting for
the kz dispersion, one can qualitatively understand the
higher resistivity along b in terms of a hybridization of
hole and electron pockets seen also in ARPES [42]. This
leads to the formation of a band gap and of minima from
electron pockets at the Fermi level only along the b axis.
This Lifshitz transition of BaFe2As2 and the implications
for ∆ρ are discussed in more detail in the Supplemental
Material.[34]

A qualitative discussion of ∆ρ for the investigated
compounds will be exemplarily done for Co-122 with
x = 0.075, having the highest value of ∆ρ for Co sub-
stitution and for Ru-122 with x = 0.10 as an example
of isovalent doping. The band structures are shown for
different kz values in Fig. 3 with the paths ΓY and ΓX
corresponding to directions in k-space parallel to the b
and a axes, respectively. First consider the Co-122 case

in panels (A - E), where a strong dependence of the bands
on kz is obvious. Of most interest are the W- or S-shaped
bands (W-band: two minima along both directions ΓY
and ΓX; S-band: only one minimum along ΓY) which are
a result of the previously discussed hybridization with
significant band broadening due to the disorder. The
highest ∆ρ is observed for x = 0.075 in Co-122 because
for exactly this concentration most of these W- and S-
bands have their minimum precisely at EF . Approaching
these extrema, the slope of the bands is decreasing, lead-
ing to a decrease of the quasiparticle velocities and thus
to an increase of the resistivity. Additionally, the appar-
ently strong disorder-induced broadening of the W- and
S-bands leads to a decreased quasiparticle lifetime which
again increases the resistivity. It would be difficult to ex-
plain ∆ρ based on their contribution at EF in Co-122 for
some values of kz, e.g. for Fig. 3 (A) kz = 0.0, (B) 0.25
and (D) 0.75. However, for (C) kz = 0.5 and (E) 1.0 the
contribution at EF is clearly anisotropic with a higher
impact along the ΓY path, leading to a higher resistivity
ρb compared to ρa.

Analogously, ∆ρ can be explained for the Ru-122 com-
pound with x = 0.1, but now the strong anisotropic
contribution can be seen for Fig. 3 (F) kz = 0.0 and
(I) 0.75, where one has either a band gap along ΓY, or
the minimum of a S-shaped band at EF . The Ru-122
system is an interesting prototype system for isovalent
doping because the Ru substitution induces disorder but
EF is only marginally changed. The crucial impact of
the anisotropic band structure can be easily shown by
artificially changing the Fermi energy by ∆EF and recal-
culating the resistivity ρa(b) for Ba(Fe0.9Ru0.1)2As2. The
results are presented in Fig. 4 where some exemplary val-
ues are highlighted by the cyan, black, green and purple
lines. The corresponding energies are indicated in Fig. 3
(F - J) for comparison. It becomes immediately obvious,
that the magnitude and the sign of ∆ρ = ρa−ρb depends
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FIG. 3. Bloch spectral functions for different values of kz in units of 2π
c

, with ΓY and ΓX corresponding to paths parallel to the
b and a axes, respectively. The panels (A - E) and (F - J) show results for Co-122 with x = 0.075 and Ru-122 with x = 0.10,
respectively, with the colored cuts corresponding to the cuts in Fig. 4.

strongly on the chosen energy. For ∆EF = −0.125 eV
(cyan line) one arrives at the minimum of a band at X,
whose impact is strong enough to change the sign of ∆ρ,
meaning a higher resistivity ρa compared to ρb. This
is comparable to K-122, where the hole doping induces
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FIG. 4. Change in ρa(b) for Ru-122 with x = 0.1 depending
on an artificial shift ∆EF of the Fermi energy. The cyan,
black, green and purple cuts correspond to the cuts in the
band structures in Fig. 3.

this energy shift and explains the possible sign change
in ∆ρ. Increasing the energy to ∆EF = 0.10 eV (green
line) significantly increases ∆ρ that gets comparable to
the Co-122 case for x = 0.075 in Fig. 3 (A - E). Fur-
ther increasing the shift to ∆EF = 0.20 eV (purple line)
moves again away from this peculiar band situation, de-
creasing ∆ρ as it is the case for overdoped Co-122 with
x > 0.1.

Altogether, we have shown that ∆ρ in the low tem-
perature phase of the iron pnictides can be explained in
terms of an in-plane AMR. Additional contributions of
extended impurity states obviously cannot be ruled out.
Furthermore, we do not disagree with work considering
the impact of higher temperatures in the nematic phase
[17–19, 21], rather we provide new insights from first-
principles calculations on real materials. These disproved
in particular recent suggestions that the anisotropic band
structure has no impact on ∆ρ [15] and highlighted the
importance of the dispersion with kz.

In conclusion, this work is the first to present first prin-
ciples transport calculations of the resistivity anisotropy
in the low temperature antiferromagnetic phase of the
iron pnictide superconductors. We show for three exem-
plary systems resistivity values in good agreement with
experiment. It turned out that it is sufficient to dis-



5

cuss ∆ρ in the antiferromagnetic phase in terms of an
anisotropic magnetoresistance. This AMR can be tuned
by either disorder scattering from impurities or by an
energy shift due to respective electron or hole doping.
Most important, it was mandatory to account for the kz
dispersion in order to understand the results based on
the anisotropic band structure, showing the crucial im-
pact of the three-dimensional character of the electronic
structure for the iron pnictides which future studies have
to account for. Furthermore, resistivity calculations for
varying energy reveal that the sign of ∆ρ is no funda-
mental property of the pnictides but rather a peculiarity
of the anisotropic band structure.
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1. COMPUTATIONAL DETAILS

All calculations have been performed self-consistently and fully relativistically within the four

component Dirac formalism using the coherent potential approximation (CPA) alloy theory as

implemented in the Munich SPR-KKR program package [1, 2]. The treatment of disorder via the

CPA was already shown to be a powerful and accurate tool, fully comparable to recent supercell

calculations that have to take the average over many configurations [3, 4]. Doing so, would however

give no direct access to the in-plane resistivity anisotropy as it is possible within the presented

approach. Furthermore, the CPA allows for an investigation of isovalent doped Ru-122 which is not

accessible by e.g. a virtual crystal approximation (VCA). Furthermore, the Dirac formalism implies

by construction a full inclusion of effects induced by spin-orbit coupling, which was recently shown

to be important for the iron pnictides [5]. The crystal structure is based on the orthorhombic 4-Fe

unit cell in its experimental magnetic configuration [6], implying antiferromagnetic chains along

the a and c axes and ferromagnetic chains along the b axis. The magnetic moments are oriented in-

plane along the a axis. The lattice parameters where chosen according to experimental X-ray data

and using a linear interpolation to account for the influence of substitution based on available data

[7–10]. More details on the procedure can be found in a previous publication [3]. For all electronic

structure calculations the local density approximation (LDA) exchange-correlation potential was

applied, using the parameterization of Vosko, Wilk and Nusair [11]. The longitudinal resistivity

was calculated using the Kubo-Greenwood equation within KKR-CPA [12, 13], for the symmetric

part of the conductivity tensor (1):

σµµ =
~
πV

Tr〈ĵµImG+ĵµImG+〉c , (1)

with G+ being the retarded Green’s functions, V the cell volume and ĵµ the µ component of the

electric current operator. In the relativistic formulation the latter reads ĵµ = −|e|cαµ, with the

elementary charge e, the speed of light c and αµ being one of the 4 × 4 Dirac α matrices. The

brackets 〈 〉c indicate a configurational average with respect to an alloy in terms of the CPA.

2. VERTEX CORRECTIONS

The CPA vertex corrections [12, 13] are included in all resistivity calculations, ensuring proper

averaging of the product of two Green’s functions in equation (1). Still, the overall impact of

the vertex corrections is comparably small (in the order of at most 7 %) which indicates that

incoherent scattering processes are less important. This is in agreement with having mainly d

character for the electrons at the Fermi level. Furthermore, this means that it is a reasonable
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approximation to look at the effective single particle Bloch spectral function in order to investigate

this resistivity anisotropy [14]. However, it is interesting to note that the vertex corrections itself

are also highly anisotropic as can be seen in Fig. S1. Here, ρa and ρb of the AFM state are shown for

all investigated compounds, including vertex corrections (VC) and also without vertex corrections

(nVC). It is obvious that the impact of vertex corrections on ρa is almost zero in all cases while

the influence on ρb is especially for Co-122 and Ru-122 much more pronounced. This finding is

consistent with a stronger impact of disorder on the AFM coupling along b.
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FIG. S1. In-plane resistivity of the AFM state for (A) Co-122, for (B) K-122 and for (C) Ru-122 depending
on the substitution level x. The results are split into ρa and ρb either including vertex corrections (VC)
with solid lines or without any vertex corrections (nVC) shown in dashed lines.

3. LIFSHITZ TRANSITION OF THE PARENT COMPOUND

Lifshitz transitions are characterized as a topological change of the Fermi surface.[15] There

are several kinds of Lifshitz transitions discussed for the iron pnictides and these are of significant

importance for the underlying physics and superconductivity.[16–19] The topological change of

the Fermi surface for the BaFe2As2 mother compound when going from the nonmagnetic to the

antiferromagnetic state can be also understood in terms of a Lifshitz transition, introducing strong

anisotropy into the AFM electronic structure.[3, 4] The corresponding electronic structure for

BaFe2As2 is shown in Fig. S2 for the (A - E) AFM state and the (F - J) nonmagnetic case. For

comparison, all calculations are presented with respect to the same orthorhombic 4-Fe unit cell

which implies a back-folding of bands into a smaller Brillouin zone, compared to the 2-Fe cell. See

also Ref. [20] for further information on the magnetic Brillouin zone in BaFe2As2. The upper rows

show the band structure for different values of kz, while the lower rows depict the respective Fermi

surface cuts. As in the main paper, the paths ΓY and ΓX correspond to paths in k-space which

are parallel the b and a axes, respectively.
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BaFe2As2 - antiferromagnetic AFM
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FIG. S2. Bloch spectral functions of orthorhombic BaFe2As2 for different values of kz in 2π
c , with ΓY and

ΓX corresponding to paths parallel to the b and a axes, respectively. Shown for (A - E) the AFM state and
for (F - J) the nonmagnetic case. The upper panel presents the band structure and the lower panel shows
the corresponding cut of the Fermi surface. In order to allow direct comparison, all images are shown for
the 4-Fe unit cell with a back-folding of bands onto Γ.

Going from a 2-Fe unit cell to the 4-Fe cell implies that the hole pockets and the electron pockets

of the 2-Fe cell are back folded onto each other in one Γ point as can be seen for the nonmagnetic

band structure of a 4-Fe unit cell in Fig. S2 (F - J). An additionally emerging antiferromagnetic

order leads to a hybridization of these hole- and electron pockets as shown in Fig. S2 (A - E), which
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was discussed in detail by e.g. Liu et al. [16] in terms of a Lifshitz transition. It is possible to discuss

the emergence of a non-zero ∆ρ already at this point, although earlier attempts were less fruitful.[21,

22] The reason for this apparent incompatibility is that the iron pnictides are clearly 3D materials

whose bands show typically a strong kz dispersion, which is often not sufficiently accounted for.[23]

This becomes obvious in Fig. S2 where especially in the AFM case a strong electronic anisotropy

emerges which does significantly depend on the value of kz. For the nonmagnetic case in Fig. S2

(F - J) the corresponding electronic structure is, when considering the kz dispersion, more or less

isotropic. The situation is completely different for the AFM state in Fig. S2 (A - E). With a

similar argumentation as used in the main paper one can qualitatively expect a ∆ρ with a higher

ρb along the path ΓY for e.g. kz = 0.0 and 0.75. The hybridization does lead first of all to the

opening of a band gap only along the ΓY path for kz = 0.0. For kz = 0.75 a minimum of an

electron pocket at EF leads to a minimum of the quasiparticle velocity, increasing the resistivity.

Using an even higher resolution in the kz dispersion (45 different values were calculated) shows

clearly that these two distinct features emerge only along ΓY and never along ΓX. This can already

qualitatively explain the occurrence of ∆ρ in the undoped BaFe2As2. This effect increases with

substitution, as disorder-induced anisotropic band broadening leads to a simultaneous reduction of

the quasiparticle lifetime as discussed in the main paper. Electron or hole doping do further move

the Fermi level and can either increase or decrease the anisotropy, as was shown in Fig. 4.
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Chapter 7. Anisotropic magnetoresistance

7.3 Discussion

The original question was whether it is possible to use the Kubo-Greenwood formalism

as implemented within the SPR-KKR program package in order to reasonably describe

the resistivity anisotropy of the 122 iron pnictides. This goal could have been de�nitely

realized. Therefore, not only electron doped Ba(Fe1−xCox)2As2 was investigated, but

also hole doped (Ba1−xKx)Fe2As2 and the isovalently doped Ba(Fe1−xRux)2As2 in order

to account for every relevant scenario. All three cases could be well described by

the applied method and showed good agreement with experimental data. This direct

comparison of experimental data of real materials with resistivity calculations was a

major achievement which could be only realized thanks to the applied �rst-principles

approach.

It is very important to note, that this good agreement was obtained without con-

sidering for spin �uctuations or extended impurity states in our theory, but only by

correctly accounting for the electronic band structure. This information is a crucial

discovery, because most recent studies argue in either of these two ways. Recent work

by Liu et al. [263] even claims that the anisotropic band structure has no impact at all

on the resistivity anisotropy, which was clearly disproved by the presented work. Quite

on the contrary, the results were explained based on the anisotropic band structure

and it was shown that previous attempts in this direction were less fruitful because

the three-dimensional character of the band structure was not su�ciently accounted

for. Note, that this crucial importance of the three-dimensional electronic structure is

perfectly in line with the last publication presented in Chapter 6. Thus, one should

stress once more that the iron pnictides are clearly no two-dimensional materials and it

is absolutely mandatory to fully account for the three-dimensional electronic structure

is order to capture their properties correctly.

Interestingly, the presented results mean at the same time that the counterintuitive

sign of the resistivity anisotropy is no fundamental property of the iron pnictides, but

just a peculiarity of the anisotropic band structure. In particular, one should stress

that this work provides a new interpretation of this important phenomenon in terms of

an anisotropic magnetoresistance (AMR), meaning this property can be well described

by nothing more than its anisotropic magnetic ordering. This calls for an extensive

reinterpretation of the resistivity anisotropy in the iron pnictides for the future.
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Chapter 8

Relativistic hyper�ne interactions

8.1 Motivation

It was mentioned in subsection 3.2.1 that a discrepancy is reported in the magnitude of

the Fe magnetic moment in BaFe2As2, depending on the chosen experimental method.

Neutron di�raction data predicts a magnetic moment of 0.87 µB
[24] from powder sam-

ples, while from 57Fe Mössbauer spectroscopy a value between 0.4 � 0.5 µB
[22,45] was

estimated in the literature. The motivation for this work was to explain and resolve

this issue.

In experiment, it is a common practice to use the measured total hyper�ne �eld Bhf

and estimate with it the average magnetic moment µ of the compound. This procedure

is based on assuming a linear relationship between Bhf and µ, which would result in

a constant ratio A = −Bhf/µ. Commonly applied are the ratios based on bulk Fe,

A(Fe) = 15 T/µB or based on Fe3+ ions in Fe2O3, A(Fe3+) = 11 T/µB. Using these

values for BaFe2As2 with a measured hyper�ne �eld of −5.47 T [22,45] would result in a

magnetic moment in the order of 0.4 � 0.5 µB. However, one can question whether these

proportionality ratios of Fe or Fe2O3 are really appropriate for the iron pnictides. [271] As

it was described in subsection 2.1.7 the total hyper�ne �eld is formed by contributions

not only from the Fermi contact term but also from orbital or dipolar parts. If these

terms are neglected this can reasonably explain huge deviations from the expected

relation. Indeed, it was already suggested that a non-zero contribution of d-orbitals to

the hyper�ne �eld with an opposite sign to that of the Fermi contact �eld might have

a signi�cant impact for BaFe2As2. [46] This would imply that a more reliable estimation

of the magnetic moments based on 57Fe Mössbauer spectroscopy is not referring to

bulk Fe and thus lies not between 0.4 and 0.5 µB, explaining the discrepancy from
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neutron di�raction. However, this issue could not be quanti�ed so far as it requires a

fully relativistic treatment in order to calculate Bhf including d-orbital contributions.

Although there is theoretical work available on the issue of hyper�ne �elds in the

BaFe2As2 family it was not performed relativistically and thus it could not capture the

necessary e�ects. [272]

In order to �nally solve this long standing problem it was the idea to calculate

the hyper�ne �eld Bhf with its various contributions for the BaFe2As2 family in a fully

relativistic way. Numerous 57Fe Mössbauer spectroscopy data are available for di�erent

BaFe2As2 compounds covering several types of substitution [45�48], which means the

calculations can be compared to experimental values in order to verify the applicability.

At this point one can make use of the CPA in order to investigate the magnetic moments

and the corresponding hyper�ne �elds of not only the mother compound BaFe2As2, but

of a wide variety of di�erent dopants. Thus, �ve di�erent kinds of substitution were

studied, covering electron doped Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2, hole doped

(Ba1−xKx)Fe2As2 and also isovalently doped Ba(Fe1−xRux)2As2 and BaFe2(As1−xPx)2.

This way a comprehensive study of the hyper�ne �elds and its relation to the magnetic

moments is possible, depending on the concentration x.

116



8.2 Publication: Physical Review B 94, 214508

8.2 Publication: Physical Review B 94, 214508

Hyper�ne �elds in the BaFe2As2 family and their

relation to the magnetic moment

Gerald Derondeau,1 Ján Minár,1,2 Hubert Ebert1

1Department Chemie, Physikalische Chemie, Universität München, München, Germany

2NewTechnologies-Research Center, University of West Bohemia, Pilsen, Czech Republic

published in: Physical Review B 94, 214508 (2016).

Copyright 2016, American Physical Society.

This publication was selected as Editors' Suggestion.

117

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.214508


PHYSICAL REVIEW B 94, 214508 (2016)

Hyperfine fields in the BaFe2As2 family and their relation to the magnetic moment
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The hyperfine field Bhf and the magnetic properties of the BaFe2As2 family are studied using the fully
relativistic Dirac formalism for different types of substitution. The study covers electron doped Ba(Fe1−xCox)2As2

and Ba(Fe1−xNix)2As2, hole doped (Ba1−xKx)Fe2As2, and also isovalently doped Ba(Fe1−xRux)2As2 and
BaFe2(As1−xPx)2 for a wide range of the concentration x. For the substituted compounds the hyperfine fields
show a very strong dependence on the dopant type and its concentration x. Relativistic contributions were found
to have a significantly stronger impact for the iron pnictides when compared to bulk Fe. As an important finding,
we demonstrate that it is not sensible to relate the hyperfine field Bhf to the average magnetic moment μ of the
compound, as it was done in earlier literature.

DOI: 10.1103/PhysRevB.94.214508

I. INTRODUCTION

Since the discovery of high-temperature superconductivity
in La(O1−xFx)FeAs [1,2] the iron pnictides are currently one
of the most important prototype systems for unconventional
superconductivity. The mechanism of superconductivity is
more than likely connected to magnetic fluctuations [3–5],
which makes the magnetic behavior of the iron pnictides a
crucial property [6,7]. Despite tremendous research over the
last years the complex magnetism of these compounds is still
nontrivial to explain and some problems remain unsolved.

For example, a discrepancy is observed concerning the
magnitude of the magnetic moment, depending on the chosen
experimental method. Neutron diffraction data predict for
the low-temperature phase of BaFe2As2 a total magnetic
moment of 0.87 μB per Fe from powder samples [8], while
from 57Fe Mössbauer spectroscopy [9,10] a value between
0.4 μB and 0.5 μB was estimated. One should note that
the magnetic moments in the iron pnictides are generally
considered to behave nearly itinerant [4,6,11–13], although
sometimes a localized picture might be more appropriate
[14–16]. Furthermore, density functional theory (DFT) cal-
culations often overestimate the magnitude of the magnetic
moments, ranging from approximately 1.2 μB up to 2.6 μB

[7,11,17–19]. Thus, the magnetic moments are known to be
highly sensitive to the system and computational parameters,
which makes estimations difficult and leads sometimes to
seemingly contradicting reports [7,9,20–22]. Furthermore, the
importance of spin-orbit coupling for the iron pnictides was
only recently stressed [23].

Nowadays, a lot of 57Fe Mössbauer spectroscopy data are
available for the BaFe2As2 family with different types of
substitution and doping [10,24–27]. The previously mentioned
discrepancy between neutron diffraction and 57Fe Mössbauer
spectroscopy is often ascribed to possible nonzero contribu-
tions of d orbitals to the hyperfine field with an opposite sign
to that of the Fermi contact field [24]. This would explain why
the suggested hyperfine proportionality constant A between
the experimentally measured hyperfine field Bexp and the

*gerald.derondeau@cup.uni-muenchen.de

underlying magnetic moment μ(Fe) has a nonlinear behavior
and is in particular not comparable to the corresponding value
for bulk Fe. This would imply that a more reliable estimation
of magnetic moments based on 57Fe Mössbauer spectroscopy
lies not between 0.4 μB and 0.5 μB but has a higher value.
Although such aspects were already suggested as a most
likely explanation for this discrepancy [24], a quantitative
study of the theoretical hyperfine fields including relativistic
contributions is still missing [28].

To clarify this situation, we address in this paper the
antiferromagnetic state of the undoped mother compound
BaFe2As2 together with a large variety of different types
of substitution. These include electron doping in the case
of Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2, hole doping as
in (Ba1−xKx)Fe2As2, and also isovalently doped compounds
such as Ba(Fe1−xRux)2As2 and BaFe2(As1−xPx)2. To deal
adequately with substitutional systems the fully relativis-
tic Korringa-Kohn-Rostoker-Green’s function (KKR-GF) ap-
proach is used, which was already shown to be an appropriate
tool to investigate various properties of the iron pnictides
[29–31]. Chemical disorder due to substitution is dealt by
means of the coherent potential approximation (CPA), which
effectively gives results comparable to the tedious average over
many supercell configurations and is much more reliable than
the virtual crystal approximation (VCA) [29,32]. Application
of the CPA to the iron pnictides was already shown to be
quite successful [29,30,33–35]. Using this approach, one can
not only investigate the type-resolved evolution of magnetic
moments with composition, but also the doping dependence of
the hyperfine fields. Furthermore, all contributions to the total
hyperfine field Bhf can be separated, revealing the direct impact
of orbital non-s-electron parts within the fully relativistic
approach.

II. COMPUTATIONAL DETAILS

All calculations have been performed self-consistently
and fully relativistically within the four component Dirac
formalism, using the Munich SPR-KKR program package
[36,37]. The crystal structure is based on the orthorhombic,
antiferromagnetic phase of BaFe2As2 in its experimentally
observed stripe spin state using a 4-Fe unit cell. This implies

2469-9950/2016/94(21)/214508(8) 214508-1 ©2016 American Physical Society
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antiferromagnetically ordered chains along the a and c axes
and ferromagnetically ordered chains along the b axis. With
spin-orbit coupling included within the relativistic approach
the orientation of the magnetic moments was chosen to be in
plane along the a axis, in line with experiment [20]. The lattice
parameters and As position z where chosen according to exper-
imental x-ray data [9]. To account for the influence of different
substitutions, a linear interpolation of the lattice parameters
with respect to the concentration x was performed based on
Vegard’s law [38]. This interpolation was individually done
for each type of substitution, based on available experimental
data [9,39–43]. More details on this procedure can be found
in previous publications [29,30]. The treatment of disorder
introduced by substitution is dealt with by means of the CPA.
For the angular momentum expansion of the KKR Green’s
function an upper limit �max = 4 was used, i.e., s, p, d, f , and
g orbitals were included in the basis set, although contributions
to the hyperfine field of Fe from f and g orbitals are zero, as
one would expect. All DFT calculations used the local spin-
density approximation (LSDA) exchange-correlation potential
with the parametrization as given by Vosko, Wilk, and Nusair
[44]. The calculation and decomposition of the hyperfine field
Bhf is done in its fully relativistic form as discussed in detail
in Ref. [45].

III. RESULTS AND DISCUSSION

A. Undoped mother compound

The calculated total magnetic moment of Fe in the undoped
mother compound BaFe2As2 is μ(Fe) = 0.73 μB, as was
already published in earlier work [30]. This moment splits into
a spin magnetic moment of μspin(Fe) = 0.70 μB and an orbital
magnetic moment of μorb(Fe) = 0.03 μB. Obviously, this is in
good agreement with experimental neutron diffraction data of
pure BaFe2As2 being 0.87 μB [8].

If the finite size of the atomic core is ignored, as usually
done, the fully relativistic approach described in Ref. [45] splits
Bhf into five contributions. There are two contributions due to
the s electrons that are conventionally ascribed to the Fermi
contact interaction. The larger part is the core polarization
contribution Bc

s that was demonstrated in numerous studies
to be proportional to the local spin magnetic moment μspin

[46–48]. In addition, there is a s-electron contribution from
the valence band Bv

s that is due to the polarization and
also dominantly due to the population mechanism [49]. For
systems with low symmetry there may be a spin dipolar
contribution to Bhf for the non-s electrons [45,50]. Apart from
p1/2 states, states with higher angular momentum such as p

and d states have zero probability density at the core and for
that reason do not contribute to Bhf via the Fermi contact term.
If spin-orbit coupling is accounted for, as done here, there
is an additional contribution due to the spin-orbit induced
orbital magnetization [45,50]. As the orbital contribution is
in general dominating compared to the spin-dipolar one [45],
we use in the following the term orbital for the total field
connected with non-s electrons. Thus, for a transition metal,
the remaining three contributions are the orbital field Bc

ns of the
non-s core states and the orbital fields Bv

p and Bv
d of the valence

electrons with p and d character, respectively. One arrives for

cc Fe
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FIG. 1. Contributions to the hyperfine field Bhf for (a) bcc Fe
and for (b) Fe in antiferromagnetic BaFe2As2. For comparison,
experimental values are shown as Bexp [9,10,51]. ˜Bhf is based on
Eq. (2) and includes an enhancement of the core polarization Bc

s of
25%.

the hyperfine field Bhf at the following decomposition [45]:

Bhf = Bc
s + Bc

ns + Bv
s + Bv

p + Bv
d . (1)

Figure 1(a) shows for bcc Fe numerical results for the
various contributions to the hyperfine field. As it is well known,
Bhf of bcc Fe is dominated by its large core polarization
contribution Bc

s . This is enhanced by the field Bv
s , which

is also negative. All other contributions are much smaller
and positive. Comparing the total calculated hyperfine field
Bhf = −26.7 T with the corresponding experimental value
Bexp = −33.9 T, one finds the theoretical values too small
by about 25% [52]. This well known problem is primarily
to be ascribed to shortcomings of LSDA when dealing with
the core polarization cased by the spin polarization of the
valence electrons [53–55]. To cure this problem it is common
to enhance Bc

s by about 25% [53–56]. Using this empirical
approach one has for the enhanced hyperfine field ˜Bhf the
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TABLE I. Different contributions to the hyperfine field Bhf for
BaFe2As2, depending on the magnetization direction axis. Consistent
with experiment is an orientation of magnetic moments along the a

axis, which was applied throughout this work.

Axis μspin (μB) Bc
s (T) Bc

ns (T) Bv
s (T) Bv

p (T) Bv
d (T) Bhf (T)

a 0.696 −7.37 0.035 1.48 0.37 1.86 −3.62
b 0.698 −7.39 0.036 1.48 −0.34 2.66 −3.55
c 0.695 −7.36 0.035 1.48 −0.10 −0.13 −6.08

relation

˜Bhf = 1.25 Bc
s + Bc

ns + Bv
s + Bv

p + Bv
d . (2)

As can be seen in Fig. 1(a), this leads to ˜Bhf = −32.9 T for
bcc Fe, in good agreement with experiment. Next, consider Fe
in the undoped mother compound BaFe2As2 as presented in
Fig. 1(b). Comparing the calculated Bhf = −3.62 T with the
experimental one Bexp = −5.47 T [9,10], the shortcomings
of LSDA are obviously the same as for bcc Fe, as one
would expect. However, the enhanced field ˜Bhf = −5.46 T
is in perfect agreement with experiment, confirming the
transferability of the enhancement factor in Eq. (2). Compared
with bcc Fe, the various contributions to ˜Bhf of Fe in BaFe2As2

show two major differences. First, the sign of the valence band
s-electron contribution Bv

s is different, and, second, the spin-
orbit induced contribution of d electrons Bv

d is considerably
higher in the latter case. Both features lead to a very different
relation between the enhanced hyperfine field ˜Bhf and the local
spin magnetic moment μspin for the two systems. As ˜Bhf of bcc
Fe is dominated by its enhanced core polarization contribution
˜Bc

s (˜Bhf/˜Bc
s ≈ 1.07), which is proportional to μspin, it seems

justified to assume that the experimental field Bexp reflects in a
one-to-one manner the local spin moment. For Fe in BaFe2As2,
on the other hand, we find ˜Bhf/˜Bc

s ≈ 0.59, i.e., the total field
˜Bhf can by no means be used to monitor the local spin magnetic
moment of Fe.

It was found that this unexpected behavior of BaFe2As2

compared to bcc Fe is mainly due to its in-plane orientation
of magnetic moments along the a axis. It was already
stressed that this magnetization direction is conform with
experiment [20] and can be theoretically described by the
applied inclusion of spin-orbit coupling. For comparison, we
show in Table I the components of the hyperfine field of
BaFe2As2 depending on the magnetization direction. It is
obvious that the contributions Bv

p and Bv
d depend strongly on

the chosen orientation, although the spin magnetic moment of
Fe μspin and the other contributions to the hyperfine field only
marginally change. This has naturally an impact on the total
hyperfine field Bhf which thus depends on the magnetization
direction in BaFe2As2.

B. Electron and hole doping

Having investigated the hyperfine field contributions of the
undoped BaFe2As2 including relativistic effects, an interesting
issue is their variation under different types of substitution in
the BaFe2As2 family.

Two examples of electron doping were investigated,
namely, Ba(Fe1−xCox)2As2 (Co-122) and Ba(Fe1−xNix)2As2
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FIG. 2. (a) Component-resolved magnetic moments for Co-122
depending on the concentration x. The left (right) scale refers to the
spin (orbital) magnetic moment. (b) Corresponding hyperfine field
contributions for Fe in Co-122. The experimental data Bexp (dashed
orange lines) [24] refer to the upper axis, with the upper and lower
axes for the concentration x chosen such that xcrit = xcrit,exp.

(Ni-122), with the corresponding data shown in Figs. 2
and 3, respectively. Furthermore, one case of hole doping,
(Ba1−xKx)Fe2As2 (K-122), has been considered (see Fig. 4).
In all cases, the magnetic moments of the components are pre-
sented in Figs. 2(a), 3(a), and 4(a), respectively, as a function
of the concentration. The magnetic moments for Co-122 in
Fig. 2(a) were published before [30], and are reproduced here
to supply a reference for the hyperfine field and to allow for
direct comparison with other systems. The various figures give
in a component-resolved manner the spin magnetic moments
μspin (left axis) and the orbital magnetic moments μorb (right
axis). The concentration dependent average of the system
with composition Ba(Fe1−xT Mx)2As2 is shown as μavg =
(1 − x)[μspin(Fe) + μorb(Fe)] + x[μspin(T M) + μorb(T M)].

First consider the electron doped compounds Co-122
and Ni-122. Both systems show a similar decrease in
μavg until the breakdown of long range antiferromagnetic
(AFM) order at xcrit is reached, with xcrit(Co-122) = 0.125
and xcrit(Ni-122) = 0.075, respectively. This is in reasonable
agreement with experiment, with the experimental xcrit,exp

being lower [xcrit,exp(Co-122) ≈ 0.075 [57], xcrit,exp(Ni-122) ≈
0.0375 [58]]. Concerning the instability of the antiferromag-
netic order, the electronic structure calculations account for a
change in the nesting condition due to a shift of the Fermi level
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GERALD DERONDEAU, JÁN MINÁR, AND HUBERT EBERT PHYSICAL REVIEW B 94, 214508 (2016)

(a)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.025 0.05 0.075 0.1
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

µ
sp
in
[µ

B
]

µ
o
rb

[µ
B
]

x for Ba(Fe1−xNix)2As2

µspin(Fe)
µorb (Fe)
µspin(Ni)
µorb (Ni)
µavg

(b)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

0 0.025 0.05 0.075 0.1

0 0.025 0.05

B
[T
]

x for Ba(Fe1−xNix)2As2

x (Bexp)

Bc
s

Bv
s

Bc
ns

Bv
p

Bv
d

Bhf

Bhf

Bexp

FIG. 3. Same as for Fig. 2, but for Ni-122 with experimental data
from Ref. [25].

due to doping but they do not explicitly account for fluctuating
magnetic moments or incommensurate spin-density waves
[59]. This might explain the observed discrepancies between
xcrit and xcrit,exp, implying that these aspects should be
accounted for in order to get better agreement.

In line with experiment, xcrit for Ni-122 is found to be only
half of Co-122. This had to be expected because of the formal
doubling of electron doping by Ni compared to Co substitution
of Fe. Another difference between these two compounds is
the lower Ni moment in Ni-122 compared to that of Co in
Co-122. In this context one should also note that the rather
small orbital moment of Ni has a different sign compared to
its spin moment. The various hyperfine field contributions for
Fe in Co-122 and Ni-122 are shown in Figs. 2(b) and 3(b),
respectively. The trends of the Fe magnetic moments and in
the hyperfine field contributions behave in a similar way. The
figures show also experimental data for the hyperfine field Bexp

[24,25]. These has been plotted using a different scale for the
concentration x at the top of the figure that was chosen such
that theoretical and experimental critical concentrations agree
(xcrit = xcrit,exp). With the aforementioned enhancement of the
core polarization field by 25% and the rescaling of the x axis,
one finds a very satisfying agreement for ˜Bhf and Bexp for
Co-122 [Fig. 2(b)] as well as Ni-122 [Fig. 3(b)].

Next, the K-122 compound is discussed with its mag-
netic moments shown in Fig. 4(a) (see also Ref. [60]). A
breakdown of the AFM order is found from the calculations
at xcrit(K-122) = 0.35, while a lower xcrit,exp(K-122) ≈ 0.25

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

µ
sp
in
[µ

B
]

µ
o
rb

[µ
B
]

x for (Ba1−xKx)Fe2As2

µspin(Fe)
µorb (Fe)
µavg

(b)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0 0.05 0.1 0.15 0.2 0.25

B
[T
]

x for (Ba1−xKx)Fe2As2

x (Bexp)

Bc
s

Bv
s

Bc
ns

Bv
p

Bv
d

Bhf

Bhf

Bexp

FIG. 4. Same as for Fig. 2, but for K-122 with experimental data
from Ref. [10].

[40] is observed in experiment. It should be noted that the
substituted K does not have a noteworthy magnetic moment.
As the Fe concentration does not change with substitution
on the Ba position, the average moment is therefore equal
to the Fe moment, leading in this case to μavg = μ(Fe) =
μspin(Fe) + μorb(Fe). One can see that for K-122 the magnetic
moments change only marginally over a wide concentration
range x and undergo a sharp drop for x > 0.25. The same
behavior can be seen in the hyperfine field contributions of
K-122, as shown in Fig. 4(b). Experimental data for Bexp

[10], referring again to the upper axis, are in good agreement
with the enhanced theoretical field ˜Bhf. In particular, the
experimental Bexp is also nearly constant over a large range
of concentration, in variance to the electron doped systems
considered above.

C. Isovalent doping

The subsequently discussed Ba(Fe1−xRux)2As2 (Ru-122)
and BaFe2(As1−xPx)2 (P-122) compounds are fundamentally
different from the systems considered above because of the
isovalent doping. This means, in particular, that the VCA
is inappropriate to deal with these systems in a meaningful
way. Still, a supercell approach could be applied to deal with
the substitution [61]. However, the large computational effort
makes theoretical work on these compounds rare and difficult.
On the other hand, CPA-based approaches provide an efficient
and powerful framework for this task.
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FIG. 5. Same as for Fig. 2, but for P-122.

We show the component-resolved magnetic moments of
P-122 and Ru-122 in Figs. 5(a) and 6(a), respectively. The first
point to note is that the calculations do not lead to a critical
concentration xcrit within the investigated regime of substitu-
tion, while on the experimental side one has xcrit,exp(Ru-122) ≈
xcrit,exp(P-122) ≈ 0.3 [62,63]. Isovalent doping should in gen-
eral shift the Fermi level EF only marginally, leading to an
unchanged nesting behavior. Thus, magnetic ordering may
be preserved as long as the substitutional limit x → 1 has
a finite magnetic moment. In the case of electron or hole
doping of BaFe2As2 the breakdown of magnetic order at a
critical concentration xcrit can be understood solely by the
nesting condition when the Fermi energy EF changes due to
substitution. Note that also K-122 shows a finite xcrit with good
agreement to experiment, although the substitution happens
not on the Fe position but within the Ba layer. On the other
hand, isovalent substitution either within (Ru-122) or outside
(P-122) the Fe layer cannot explain the magnetic breakdown by
the substitution alone. This indicates that other phenomena not
accounted for within the CPA mean field approach influence
the stability of the magnetic structure. In the literature, e.g.,
magnetic dilution was discussed as the main driving force for
the magnetic breakdown in Ru-122 [64,65]. Although we find
a decrease in the magnetic moments due to the decrease in
the Fe content, it seems not sufficient to cause a breakdown of
the magnetic order without further reasons. Spin fluctuations
and incommensurate spin-density waves can have an impact
on the stability of the antiferromagnetic order, but also the
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FIG. 6. Same as for Fig. 2, but for Ru-122 with experimental data
from Ref. [26].

emergence of a competing superconducting state might play a
role. In any case, it becomes obvious that the isovalently doped
compounds of the BaFe2As2 family are even more difficult
to understand than the electron and hole doped variants.
Nevertheless, LSDA-based calculations can reproduce the
decrease of the average magnetic moment μavg for Ru-122
as well as for P-122, although the details of this reduction in
the magnetic moments are fundamentally different.

The magnetic moments and the hyperfine field contribu-
tions of Fe in P-122 shown in Fig. 5 behave in a similar way
as those of K-122 (Fig. 4). In both cases the substitution takes
place outside the Fe layer; i.e., although the Fe concentration
does not change the total Fe moment, μ(Fe) does. The
hyperfine field contributions of Fe in P-122 vary again similar
with composition as the magnetic moments do. Of course,
this has to be expected as the hyperfine field reflects the
magnetization of the Fe atoms, which are the only magnetic
components of these systems.

For Ru-122 the average moment μavg shown in Fig. 6(a)
decreases due to the increasing concentration of Ru which
has a small induced magnetic moment of around μ(Ru) ≈
0.07μB, independent on the concentration x. However, the
local Fe spin magnetic moment μspin(Fe) and orbital μorb(Fe)
magnetic moments surprisingly increase. This is a rather
unexpected finding as it was not observed so far within
theoretical investigations on the iron pnictides. Accordingly,
the corresponding relation to the directly measurable hyperfine
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field Bhf of Fe is of interest as it provides an element specific
probe of the magnetic properties. As can be seen in Fig. 6(b),
Bhf stays more or less constant over the whole investigated
regime of substitution, although μ(Fe) increases. This is due
to the fact that μspin(Fe) and μorb(Fe) simultaneously increase,
leading to a subsequent increase of the absolute values of Bc

s

and Bv
d . Because the sign of both contributions is different,

their changes essentially compensate each other. This does
not contradict with experimental findings of Reddy et al. [26]
depicted in Fig. 6(b) which show a more or less constant Bhf

for Ru concentrations x � 0.1. The rapid drop to lower Bhf

values for Ru-122 for x � 0.2 is most likely connected to the
proximity to the critical concentration xcrit, which could not
be reproduced by our LSDA-based calculations.

In conclusion, a quite unexpected and interesting variation
of the magnetic moments and the hyperfine field with the
concentration x of the Ru-122 compound was found which
is consistent with experimental findings. This shows, in
particular, that Ru-122 and P-122 differ more from each other
with respect to their magnetic properties, as one might expect
for two isovalently doped pnictides.

D. Relation to the magnetic moment

Finally, the results can be used to clarify the relation
between Bhf and the average magnetic moment μavg. It is
quite common to assume that the ratio A

avg
hf = −Bhf/μavg or

Ahf = −Bhf/μspin(Fe) is constant and use this value in order
to obtain the magnetic moments in related compounds from
the Fe hyperfine fields. For example, A

avg
hf (Fe) = 15 T/μB

was given for bulk Fe and A
avg
hf (Fe3+) = 11 T/μB for Fe3+

ions in Fe2O3 [25]. These values give for BaFe2As2 with
an experimental hyperfine field Bexp = −5.47 T a magnetic
moment μavg ∼ 0.4–0.5 μB [9,10]. Later on it was questioned
whether these ratios A

avg
hf are applicable to the iron pnictides

[24,25]. In addition, there is general work showing that a
scaling of Bhf with the corresponding magnetic moment μavg

cannot be assumed a priori because A
avg
hf varies strongly for

different materials [51]. This is in line with our results that
can be used to quantify A

avg
hf . Additionally, the assumption

of a constant ratio A
avg
hf for doped systems can be disproved,

supporting other work [24] which concludes that Bhf is indeed
not proportional to μavg for BaFe2As2-based substitutional
systems.

As stressed already, the core s-electron contribution Bc
s

is indeed proportional to μspin(Fe), which is quantified for
our calculations in Fig. 7(a), where we show the ratio Ac =
−Bc

s /μspin(Fe) for all investigated compounds depending on
the concentration x. Independent on x, we find the value
of Ac is nearly constant, 10.6 T/μB. This is in reasonable
agreement with earlier work of Lindgren and Sjøstrøm where
a value around 12.6 T/μB was calculated [48]. However, Bc

s

can obviously vary significantly from Bhf, as was extensively
shown in the literature.

At least for the undoped BaFe2As2, the average mo-
ment equals the total Fe moment and is close to the
spin magnetic moment of iron, μavg = μspin(Fe) + μorb(Fe) ≈
μspin(Fe). Based on the calculations, one gets for BaFe2As2

a ratio Ahf = −Bhf/μspin(Fe) = 5.2 T/μB, or based on the
enhanced hyperfine field ˜Bhf, a ratio ˜Ahf = 7.8 T/μB. This
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FIG. 7. (a) The ratio Ac = −Bc
s /μspin(Fe) is shown for all

investigated compounds, depending on the respective dopant and its
concentration x. The constant behavior shows a reasonable relation
to the magnetic moment μ. However, the same ratios are shown for
(b) Ahf = −Bhf/μspin(Fe) and for (c) A

avg
hf = −Bhf/μavg, having huge

deviations for an constant Ahf behavior, depending on x and on the
chosen dopant.

is by a factor of 2–3 different from the ratio A
avg
hf (Fe) applied

in previous publications [9,10]. Consequently, the magnetic
moment of BaFe2As2 based on the measured hyperfine field
of 5.47 T should be not between 0.4 μB and 0.5 μB but
rather in the range between 0.7 μB and 1.0 μB, which is in
better qualitative agreement with neutron diffraction, reporting
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0.87 μB [8]. Nevertheless, one should keep in mind that this
is a qualitative estimation and it is clear from the literature
[24,51] and from our work that an estimation of μavg based on
Bhf should be avoided as far as possible.

However, for the doped iron pnictides there is a sig-
nificant difference between μavg and μspin(Fe). Thus, the
relation between Bhf and μavg leads to an unpredictable,
nonlinear behavior of the ratio A

avg
hf . To quantify our claim

we plot the obtained values of Ahf = −Bhf/μspin(Fe) and
A

avg
hf = −Bhf/μavg depending on the concentration x for all

investigated compounds in Figs. 7(b) and 7(c), respectively.
Already the ratio Ahf, which is coupled to the spin magnetic
moment of Fe, depends strongly on the respective dopant and
on the concentration x. It becomes apparent that for such a
behavior no reasonable relation between Bhf and μspin(Fe)
is possible. This problem becomes even more obvious when
considering A

avg
hf . Here, the Ru-122 compound is interesting to

mention because Ahf decreases with x while A
avg
hf increases

with the concentration. This is due to the fact that the
Fe moment in Ru-122 increases while the average moment
decreases (see also Fig. 6). Thus, it can be crucially misleading
to relate Bhf to the average magnetic moment μavg in doped iron
pnictides. Consequently, the presented study clearly shows that
the hyperfine fields Bhf of Fe obtained from 57Fe Mössbauer
spectroscopy are not suitable to make predictions about the
respective magnetic moment μavg in doped iron pnictide
superconductors for different substitutions.

IV. SUMMARY

To summarize, this work presented a comprehensive the-
oretical study of the hyperfine fields in the iron pnictide
superconductor family of BaFe2As2 with good agreement
with experiment. The CPA was applied to a variety of

compounds, dealing accurately with the substitutional disorder
and accounting for all variants of doping. This includes
electron doped Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2,
hole doped (Ba1−xKx)Fe2As2, and also isovalently doped
Ba(Fe1−xRux)2As2 and BaFe2(As1−xPx)2. All systems were
investigated in their antiferromagnetic state which was used to
study the magnetic moments depending on the concentration x

in detail. In order to get meaningful results the fully relativistic
Dirac formalism was applied, which ensured that all relativistic
contributions to Bhf were accurately dealt with. Indeed, spin-
orbit induced contributions were found to have a significantly
higher influence on Fe in BaFe2As2, as found for bulk Fe.
In particular, the orientation of magnetic moments along the a

axis, consistent with experiment, plays a significant role for the
hyperfine field. Consequently, we have quantified in detail why
it is not sensible to apply the bulk Fe ratio A

avg
hf (Fe) = 15 T/μB

to the iron pnictides in order to obtain estimations for the
magnetic moment from 57Fe Mössbauer spectroscopy. As a
crude estimate, one might rather expect for undoped BaFe2As2

ratios around 5.0–7.5 T/μB, leading to a magnetic moment of
roughly 0.7–1.0 μB, which is more consistent with neutron
diffraction reporting 0.87 μB [8]. However, it is best to avoid
such estimations, as was shown for the substituted iron pnictide
systems. Here, the behavior of A

avg
hf with the concentration x

is clearly unpredictable and might lead to wrong conclusions.
Thus, relating the hyperfine fields Bhf of Fe obtained via 57Fe
Mössbauer spectroscopy with the magnetic moments should
be avoided for substituted iron pnictides.
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Chapter 8. Relativistic hyper�ne interactions

8.3 Discussion

The original motivation was to explain quantitatively why there is a di�erence in the

reported magnitude of the magnetic moment in BaFe2As2 between neutron di�raction

and 57Fe Mössbauer spectroscopy. This question could be satisfactory answered by

discussing the relation between the measured hyper�ne �eld Bhf and the magnetic

moment µ. It was found that the commonly applied hyper�ne �eld proportionality ratio

of around 15 T/µB, stemming from bulk Fe, cannot be applied to BaFe2As2. This is

due to considerably stronger relativistic e�ects in BaFe2As2, which lead to a signi�cant

contribution of d-electrons to the hyper�ne �eld. Thus, the previous approximation of

the magnetic moment in BaFe2As2 of 0.4 � 0.5 µB was based on wrong assumptions

concerning the proportionality parameter A. For undoped BaFe2As2 values around

5.0 � 7.5 T/µB would be more appropriate, leading to a magnetic moment of roughly

0.7 � 1.0 µB per Fe in BaFe2As2, which is more consistent with neutron di�raction

reporting 0.87 µB. [24]

However, one should stress once more that such proportionality relations are clearly

not justi�ed for substituted iron pnictide compounds. We have quanti�ed that the hy-

per�ne �eld shows a strong dependence on the dopant type and the concentration

x. Thus, estimations of the magnetic moment based on the hyper�ne �eld should be

preferably avoided for the iron pnictides because the behavior of A with the concen-

tration x is too unpredictable and might lead to wrong conclusions. These �ndings

should be accounted for in future studies.

Finally, the presented work has demonstrated the wide applicability of the CPA

for di�erent substitutions in the iron pnictides. Two di�erent types of electron dop-

ing, namely by Co and Ni, could have been compared to each other in good agree-

ment with experiment. Furthermore, the behavior of the magnetic moments with the

concentration x was well reproduced for all investigated electron or hole doped com-

pounds. In this context one should note the striking results for the isovalent compounds

Ba(Fe1−xRux)2As2 and BaFe2(As1−xPx)2. Both did not show a critical concentration

xcrit in the calculations which indicates that their magnetic properties might be di�er-

ent from the electron and hole doped scenarios. In particular, we have found that the

magnetic moments evolve already for these two compounds completely di�erent with

x. Although for both systems the average magnetic moments do decrease, this change

is related to a decrease of the Fe moment in BaFe2(As1−xPx)2 and a surprising increase

of the local Fe moment in Ba(Fe1−xRux)2As2. Future studies will have to clarify this

increase of the Fe magnetic moment for the Ru-substituted system.
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Chapter 9

Summary

This work has dealt with a theoretical description of the electronic and magnetic proper-

ties of the BaFe2As2 122-family of iron pnictide superconductors. Special focus was put

on the antiferromagnetic, orthorhombic phase of the 122-compounds and its striking

anisotropic properties. Therefore, the Munich SPR-KKR program package was applied

with great success for the �rst time to the iron pnictides. Most of the properties cru-

cial for the physics of iron pnictides could be well described within one framework, i.e.

the treatment of magnetic properties in a fully relativistic way, the correct inclusion

of disorder by means of the coherent potential approximation (CPA), calculations of

angle-resolved photoemission spectroscopy (ARPES) data and of electrical transport

properties including the in-plane anisotropic behavior. One can note, that the SPR-

KKR method does indeed provide a useful and powerful tool in order to investigate

the iron pnictide superconductors which will be also valuable for future studies.

In particular the anisotropic electronic structure and the magnetic properties of

BaFe2As2 and Ba(Fe1−xCox)2As2 were studied in great detail for a varying Co concen-

tration. This includes also an investigation of the exchange coupling constants Jij and

of the temperature dependent magnetic behavior in terms of Monte-Carlo simulations.

It was found that chemical disorder plays an important role and the in-plane anisotropy

seen in the electronic structure stems mainly from the anisotropic magnetic order. [262]

Continuing the investigation of antiferromagnetic BaFe2As2 and Ba(Fe1−xCox)2As2

also the ARPES spectra of detwinned crystals were calculated using the one-step model

of photoemission. The results showed very good agreement with experiment and the

anisotropy seen in ARPES could be fully reproduced. In addition, the importance of

surface e�ects for the ARPES spectra of Ba(Fe1−xCox)2As2 was stressed, which is a

valuable �nding for future studies. In particular, this information could be used to
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specify the surface termination to be As terminated, which was not identi�ed without

doubt by experiment so far. [273]

Having the opportunity to deal accurately with ARPES data of the iron pnic-

tides, subsequently the ARPES spectra of nonmagnetic, tetragonal (Ba1−xKx)Fe2As2

were investigated within an cooperation with experimental groups at the Swiss Light

Source of the Paul Scherrer Institute, Switzerland. This was the �rst time theoret-

ical results could be presented which exhaustively explaining all salient features of

the ARPES spectra in (Ba1−xKx)Fe2As2 by using a combination of local density ap-

proximation (LDA), plus dynamical mean �eld theory (DMFT), plus one step model

ARPES calculations. Especially electron-electron correlations which are accounted for

by the LDA+DMFT approach were found to have a signi�cant in�uence on the Lifshitz

transition which is crucial for the emergence of superconductivity in this compound.

Furthermore, it was shown that there is an inevitable di�erence between the spectra

seen in ARPES and the true band dispersion, e.g. derived from DMFT. This goes back

to inherent e�ects of the ARPES process, i.e. surface e�ects, matrix element e�ects or

�nal state e�ects. Thereby especially the three-dimensional momentum de�nition of

the photoemission �nal states must be accounted for. This means in particular that

the mass renormalization observed in all previous ARPES works on iron pnictides is

actually not an entirely intrinsic property but has a signi�cant extrinsic contribution

due to the photoemission process itself. [274]

Concerning the in-plane anisotropic properties also the resistivity anisotropy of an-

tiferromagnetic Ba(Fe1−xCox)2As2, (Ba1−xKx)Fe2As2 and Ba(Fe1−xRux)2As2 was in-

vestigated. This topic was extensively studied during the last �ve years and the strong

anisotropy of the resistivity between the orthorhombic a and b axes was commonly

ascribed to spin �uctuations or extended impurity states in the order of 22 Å. Quite

on the contrary, it was found that the resistivity anisotropy of all three compounds

could be reproduced on the basis of the anisotropic electronic structure within �rst-

principles theory. Thus, the important phenomenon of the resistivity anisotropy and

its peculiar sign can be fully explained and reinterpreted in terms of an anisotropic

magnetoresistance (AMR). [275]

Finally, the hyper�ne �elds of the BaFe2As2 122-family were studied and the relation

to the magnetic moment was clari�ed. Therefore, a wide range of di�erent substitutions

was investigated, covering electron doped Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2,

hole doped (Ba1−xKx)Fe2As2 and also isovalently doped compounds Ba(Fe1−xRux)2As2

and BaFe2(As1−xPx)2. It was found that the hyper�ne �elds show a strong dependence

on the respective dopant and its concentration x. In particular, it could be quanti�ed
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that relativistic contributions to the hyper�ne �eld play a much more crucial role for

bulk Fe. This e�ect hinders a straightforward relation between the total hyper�ne

�eld and the average magnetic moment. Thus, the longstanding discrepancy in the

reported magnitude of the magnetic moment of BaFe2As2 between neutron di�raction

and 57Fe Mössbauer spectroscopy could be resolved. [276]

Conclusion

In conclusion, based on the results obtained within this thesis, three main messages

can be formulated which should be accounted for by all future theoretical studies of

the iron pnictide superconductors.

1. Despite their layered crystal structure the members of the 122-family show a

distinct three-dimensional electronic structure. Thus, the iron pnictides in general

are clearly three-dimensional materials and this three-dimensional character of

the electronic properties should be always accounted for. Furthermore, chemical

disorder is important when considering the substituted compounds.

2. The dispersion of the ARPES spectra of iron pnictides signi�cantly deviates from

the electronic band dispersion which can be obtained from LDA or LDA+DMFT.

Therefore, theoretical approaches which study the ARPES spectra of iron pnic-

tides should be able to account for these inherent e�ects. This is in particular

true if one is interested in the e�ective mass renormalization related to strong

correlations.

3. The in-plane anisotropic behavior of the 122-compounds in their antiferromag-

netic phase is mainly controlled by the anisotropic electronic structure. In partic-

ular the ferromagnetically ordered chains along the b axis and the antiferromag-

netic coupling along the a axis is of most importance, whereas the orthorhombic

lattice distortion has a negligible contribution. This applies not only to the

anisotropy seen in ARPES but also to the in-plane resistivity anisotropy. Thus,

the phenomenon of the resistivity anisotropy can be reinterpreted by means of

an anisotropic magnetoresistance (AMR).
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Appendix A

Computational details

A detailed investigation and benchmarking of all input parameters was always per-

formed in order to obtain reliable results. The following will extensively record all

chosen input details for the sake of reproducibility and validity. First, general in-

formation is given and then a separation is done into the self-consistent �eld (SCF)

calculations, the ARPES calculations and the resistivity calculations. Details on the

chosen structural input are given in Appendix B.

All calculations have been performed in the framework of density functional theory

self-consistently and fully relativistically within the four component Dirac formalism,

using the Munich SPR-KKR program package using version 7.2 or higher. [61] The cho-

sen exchange-correlation potential was always based on the local density approximation

(LDA) with the parameterization as given by Vosko, Wilk and Nusair. [277]

A.1 Self-consistent �eld calculations

All SCF calculations used a dense k-mesh of 20× 18× 20 for the orthorhombic crystal,

respectively a k-mesh of 20× 20× 20 for tetragonal systems, corresponding to around

8000 k-points. For magnetic systems the magnetization direction was rotated in-plane

along the a axis in agreement with experiment. [25] For a reliable determination of the

Fermi level, Lloyd's formula was generally applied, unless indicated otherwise.

The �rst calculations shown in Chapter 4 used an angular momentum expansion

of `max = 2 and a full-charge (FC) ansatz as spherical approximation. Although all

aspherical parts of the charge density are fully accounted for by the FC approach,

the aspherical parts of the potential are neglected. Improvements were done for the

subsequent calculations, in particular in all following chapters a `max = 4 within the
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atomic sphere approximation (ASA) was used. It was found that these input param-

eters provided the best results within reasonable computational e�ort. It is possible,

but often not necessary, to introduce an additional empty sphere in the Ba layer. The

corresponding electronic structure and magnetic moments of BaFe2As2 are however

almost identical for `max = 4, meaning µ(Fe) = 0.73 µB without empty spheres and

µ(Fe) = 0.79 µB including an empty sphere. Going from the ASA to a full-charge or

a full-potential scheme does typically increase the magnetic moments, in agreement

with the literature. [16] In particular, additional empty spheres and higher angular mo-

mentum expansions seem necessary for full-potential approaches in order to reduce the

problem of very sharp and asymmetric Voroni polyhedra for the As atom site which

signi�cantly increases the computational e�ort up to a point where the calculations are

no longer feasible. Consequently, good results can be obtained using the ASA as long

as the angular momentum expansion `max is high enough.

The LDA+DMFT calculations presented in Chapter 6 were performed strictly non-

magnetic and without Lloyd's formula. The DMFT FLEX solver was generally applied

and di�erent values for the on-site Coulomb interaction U and the exchange interac-

tion J of Fe were tested (U = 2.0 � 5.0 eV and J = 0.7 � 0.9 eV). Best agreement

with experiment was found for U = 3.0 eV and J = 0.9 eV, which were used for the

subsequent ARPES calculations.

A.2 ARPES calculations

The presented spectroscopical analysis is based on the fully relativistic one-step model

of photoemission in its spin density matrix formulation. [278,279] The geometry of the

setup was always chosen in line with experiment as far as possible, including a tilt of

the sample around either the a or b axis. The incident light hits the sample typically

under a constant polar angle θlight = −45◦ (p-polarized light) or θlight = 0◦ (s-polarized

light) with an azimuthal angle φlight of either 180◦ or 270◦. The corresponding electrons

were collected with an angle φelectron of 0◦ or 90◦ and a varying angle θelectron between

approximately −40◦ and 40◦ at maximum. The imaginary part of the energy of the

initial states was in the order of typically 0.015 � 0.05 eV and imaginary part of the

energy of the �nal states was between 2.0 � 5.0 eV. The applied work function was

always 5.0 eV. LDA+DMFT calculations were done using the input parameters pre-

sented in section A.1. The angular momentum cut-o� was for every ARPES calculation

`max = 3, including f -orbitals to account reasonably for excitation processes. If not

indicated otherwise, always an As-terminated surface with an As-Fe-As-Ba stacking
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was chosen. Alternatively, a Ba-terminated surface was used for comparison.

A.3 Resistivity calculations

All calculations of the resistivity tensor applying the Kubo-Greenwood formalism used

an angular momentum expansion of `max = 3, including f -orbitals. Of most com-

putational relevance is a su�ciently high number of k-points, thus convergence with

k-points has to be carefully investigated. For the antiferromagnetic, orthorhombic crys-

tals a k-mesh of 162 × 150 × 162 was found to be su�cient, corresponding to around

4 · 106 k-points. Calculations were tested up to 6 · 106 k-points, showing no signi�cant

changes any more.
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Appendix B

Structural details

The chosen lattice parameters are of great importance for theoretical work on the

iron pnictides. [16,18] Within this work it was the goal to stay with crystallographic

data from experiment concerning the lattice constants as well as concerning the free

As position z in BaFe2As2. However, for large concentration regimes in the case of

substituted compound it is reasonable to consider structural relaxation as well. Because

there is typically no complete experimental dataset for the whole substitutional range

a linear extrapolation based on available experimental data and Vegard's Law was

applied, which is commonly used for alloys. [280] Thus, within this work the lattice

constants and sometimes also the free As parameter z were linearly extrapolated based

on experimental data and individually for di�erent kinds of substitution. For the sake

of completeness and the sake of reproducibility, all used parameter sets will be given

in this appendix.

It should be noted, that in the early years after the discovery of the iron pnic-

tides some unreliable structure optimizations were performed based on nonmagnetic

general gradient approximation (GGA) calculations. [18] These optimizations reported

signi�cant deviations in the As position z. This, on the other hand, in�uenced the

magnetic moments which are reproduced by DFT, leading this way to wrong results

in the end. Only by including the correct magnetic state in the structure optimiza-

tions this error could be avoided, giving again reasonable results. For comparison:

z(GGA-nonmagnetic) = 0.3448, z(GGA-magnetic) = 0.3520 and z(exp.) = 0.3545). [18]

It should be stressed, that the extrapolation of z in this work is based on experimen-

tal data and is thus completely di�erent and more reasonable than the much stronger

deviating and unreliable data derived from nonmagnetic GGA based structure opti-

mizations.
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B.1 Undoped mother compound

The lattice parameters and the free As position z for undoped BaFe2As2 were taken

directly from experimental data of Rotter et al. [22] without further adaption. The cor-

responding data for the tetragonal and orthorhombic phase including Wyko� positions

are summarized in Tab. B.1.

Table B.1. Experimental, crystallographic data of the tetragonal phase and the low-
temperature orthorhombic phase of BaFe2As2 according to Rotter et al. [22]

Tetragonal phase

Spacegroup Wyko� positions Lattice
parameters [Å]

I4/mmm (139) Ba 2a (0 0 0) a = 3.9625

Free parameter Fe 4d (1
2

0 1
4
) b = a

z = 0.3545 As 4e (0 0 z) c = 13.0168

Orthorhombic phase

Spacegroup Wyko� positions Lattice
parameters [Å]

Fmmm (69) Ba 2a (0 0 0) a = 5.6146

Free parameter Fe 8f (1
4

1
4

1
4
) b = 5.5742

z = 0.3538 As 8i (0 0 z) c = 12.9453
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B.2 Co-122 compound

The experimentally observed lattice constants from Sefat et al. [27] for BaFe2As2 and

Ba(Fe0.9Co0.1)2As2 in their tetragonal phase were used and extrapolated linearly on

this basis for the orthorhombic phase. The lattice constants a and b were not changed,

because their deviation in experiment is reported small enough to be assumed as un-

changed within experimental uncertainty. [27] The validity of such an extrapolation is

further supported by other work. [224,241] The linear change of the As position was ac-

counted for on the basis of single crystal x-ray di�raction data from Merz et al. [281,282].

All parameters are summarized in detail in Tab. B.2.

The same lattice parameters were applied for the Ni-122 compound. This is justi�ed

due to the strong similarity of both compounds and because for Ba(Fe1−xNix)2As2 only

low dopant concentrations x ≤ 0.075 were relevant.

Table B.2. Crystallographic data of the orthorhombic phase of Ba(Fe1−xCox)2As2 used
within this work, based on linear extrapolation of experimental data. [27,281,282]

Co-122: Ba(Fe1−xCox)2As2
Dopant

concentration
Lattice parameters [Å] Free As

parameter

x a b c z

0.000 5.6146 5.5742 12.9453 0.3538

0.025 5.6146 5.5742 12.9349 0.3536

0.050 5.6146 5.5742 12.9244 0.3534

0.075 5.6146 5.5742 12.9140 0.3531

0.100 5.6146 5.5742 12.9035 0.3529

0.125 5.6146 5.5742 12.8931 0.3527

0.150 5.6146 5.5742 12.8827 0.3525

0.175 5.6146 5.5742 12.8722 0.3522

0.200 5.6146 5.5742 12.8618 0.3520

0.213 5.6146 5.5742 12.8564 0.3519

0.225 5.6146 5.5742 12.8514 0.3518

0.250 5.6146 5.5742 12.8409 0.3516
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B.3 K-122 compound

The experimentally observed lattice parameters a, b and c and the As position z from

Rotter [283] for BaFe2As2 and (Ba0.8K0.2)Fe2As2 in their orthorhombic phase were used

and extrapolated linearly on this basis. All parameters are summarized in detail in

Tab. B.3.

Table B.3. Crystallographic data of the orthorhombic phase of (Ba1−xKx)Fe2As2 used within
this work, based on linear extrapolation of experimental data. [283]

K-122: (Ba1−xKx)Fe2As2
Dopant

concentration
Lattice parameters [Å] Free As

parameter

x a b c z

0.00 5.6146 5.5742 12.9453 0.3538

0.05 5.6043 5.5673 12.9821 0.3538

0.10 5.5940 5.5603 13.0190 0.3538

0.15 5.5837 5.5534 13.0558 0.3537

0.20 5.5734 5.5464 13.0926 0.3537

0.25 5.5631 5.5395 13.1294 0.3537

0.30 5.5528 5.5325 13.1663 0.3537

0.35 5.5425 5.5256 13.2031 0.3536

0.40 5.5322 5.5186 13.2399 0.3536

0.45 5.5219 5.5117 13.2767 0.3536

0.50 5.5116 5.5047 13.3136 0.3536
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B.4 Ru-122 compound

The experimentally observed linear extrapolation of the lattice parameters a and c from

Thaler et al. [28] for Ba(Fe1−xRux)2As2 in its tetragonal phase was used and applied for

the orthorhombic phase. An extrapolation of the free As position z was not applied

due to missing experimental data. All parameters are summarized in detail in Tab. B.4.

Table B.4. Crystallographic data of the orthorhombic phase of Ba(Fe1−xRux)2As2 used
within this work, based on linear extrapolation of experimental data. [283]

Ru-122: Ba(Fe1−xRux)2As2
Dopant

concentration
Lattice parameters [Å] Free As

parameter

x a b c z

0.00 5.6146 5.5742 12.9453 0.3538

0.05 5.6244 5.5840 12.9162 0.3538

0.10 5.6343 5.5937 12.8870 0.3538

0.15 5.6441 5.6035 12.8579 0.3538

0.20 5.6539 5.6132 12.8288 0.3538

0.25 5.6637 5.6230 12.7997 0.3538

0.30 5.6736 5.6327 12.7705 0.3538

0.35 5.6834 5.6425 12.7414 0.3538

0.40 5.6932 5.6522 12.7123 0.3538

0.45 5.7030 5.6620 12.6832 0.3538

0.50 5.7129 5.6717 12.6540 0.3538
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B.5 P-122 compound

The experimentally observed lattice parameters a and c and the As position z from

Rotter [283] for BaFe2As2 and BaFe2(As0.53P0.47)2 in their tetragonal phase were used

and extrapolated linearly on this basis for the orthorhombic phase. All parameters are

summarized in detail in Tab. B.5.

Table B.5. Crystallographic data of the orthorhombic phase of BaFe2(As1−xPx)2 used within
this work, based on linear extrapolation of experimental data. [283]

P-122: BaFe2(As1−xPx)2
Dopant

concentration
Lattice parameters [Å] Free As

parameter

x a b c z

0.00 5.6146 5.5742 12.9453 0.3538

0.05 5.6062 5.5659 12.9162 0.3538

0.10 5.5978 5.5575 12.8872 0.3539

0.15 5.5894 5.5492 12.8581 0.3539

0.20 5.5810 5.5409 12.8291 0.3539

0.25 5.5726 5.5325 12.8000 0.3540

0.30 5.5642 5.5242 12.7710 0.3540

0.35 5.5558 5.5158 12.7419 0.3540

0.40 5.5474 5.5075 12.7128 0.3541

0.45 5.5390 5.4992 12.6838 0.3541

0.50 5.5306 5.4908 12.6547 0.3541
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