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1. Zusammenfassung 

Akute Leukämien bestehen aus heterogenen Zellpopulationen, die sich sowohl in genetischen 

als auch in funktionellen Eigenschaften unterscheiden können. Letztendlich ist die jeweils 

aggressivste Subpopulation eines Tumors entscheidend für die Prognose und den 

Krankheitsverlauf des Patienten. Ein besseres Verständnis von aggressiven Subklonen sowohl 

bezüglich Genotyp als auch funktionellem Phänotyp ist erforderlich, um neue Angriffspunkte für 

Chemotherapeutika zu finden und so die Prognose und Heilungsrate von Krebspatienten zu 

verbessern. 

Ziel der vorliegenden Arbeit war es, Einzelzellklone zu charakterisieren, um neue therapeutische 

Targets zu identifizieren. Dafür wurden primäre Tumorzellen von einem Mädchen mit akuter 

lymphatischer Leukämie (ALL) im ersten Rezidiv in immunsupprimierte Mäuse transplantiert und 

mit Lentiviren genetisch so modifiziert, dass sie ein rotes, ein grünes und ein blaues 

Fluoreszenzprotein in verschiedenen Mengen und Kombinationen exprimierten (RGB marking, 

(Weber et al., 2011)). Im Anschluss wurden Einzelzellklone der Leukämieprobe hergestellt, 

indem wenige RGB-gefärbte Xenograftzellen in Mäuse transplantiert wurden und dadurch 

individuell gefärbt Einzelzellen amplifiziert wurden. Die Identität der Zellen der Einzelzellklone 

wurde mittels LM-PCR bestätigt.  

Um aggressive Subklone aufzuspüren, wurden verschiedene Klone gemischt, zusammen in 

Mäuse transplantiert und in vivo Proliferationsassays und Chemoresistenzassays durchgeführt. 

Dabei konnten die Klone mittels Durchflusszytometrie anhand ihrer unterschiedlichen 

molekularen Farbmarkierungen klar voneinander unterschieden werden. 

Bei gemeinsamer Transplantation von Mischungen von verschiedenen Klonen zusammen in eine 

Maus wurden einige Klone von anderen überwachsen, was auf ein aggressives, langsames 

Wachstumsverhalten der überwachsenen Klone schließen lässt. Außerdem wurden zwei Klone 

gemeinsam in Mäuse transplantiert und diese Mäuse mit Glucocorticoiden behandelt. Dabei 

wies ein Klon eine erheblich geringere Sensitivität gegenüber in vivo Glucocorticoid-Behandlung 

in Kombination mit einem langsamen Wachstumsverhalten auf, was diesen Klon als besonders 

aggressiv und schwer zu  behandeln identifizierte.  

Zusammenfassend wurde in der vorliegenden Arbeit eine neue Methode etabliert, um 

aggressive Subklone sowohl hinsichtlich funktioneller Besonderheiten als auch bezüglich 

genetischer Merkmale zu charakterisieren, was helfen wird, neue effiziente 
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Behandlungsmethoden zu entwickeln, um aggressive Subklone in Zukunft besser eliminieren zu 

können.  
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2. Abstract 

Acute leukemias consist of heterogeneous cell populations and the most aggressive 

subpopulation determines prognosis and outcome in each patient. A better understanding of 

challenging subclones is intensively desired, regarding both genotype and functional phenotype. 

New therapies are required which eradicate aggressive subpopulations in order to improve the 

prognosis and cure rate of patients with cancer. 

Here, we aimed at characterizing single cell clones in order to find putative therapeutic targets. 

Primary tumor cells from a girl with acute lymphoblastic leukemia (ALL) at first relapse were 

transplanted into severely immunocompromised mice and lentivirally modified to express the 

fluorochromes red, green and blue at different amounts and combinations (RGB marking, 

(Weber et al., 2011)). Single cell clones were generated by limiting dilution transplantation and 

their uniqueness was verified by LM-PCR.  

In order to identify challenging subclones, molecularly marked clone mixtures were transplanted 

into the same recipient mouse to perform competitive in vivo proliferation and drug sensitivity 

assays and analyzed separately by flow cytometry using their unique expression of molecular 

markers. In clone mixtures, certain clones were overgrown by others indicating unfavorable 

slow proliferation. When two clones were mixed and transplanted in groups of mice and animals 

were treated with glucocorticoids, one clone showed significantly reduced sensitivity against in 

vivo glucocorticoid treatment which was accompanied by slow growth, identifying this clone as 

especially aggressive and challenging for treatment.  

Taken together, the present work established a novel approach to characterize challenging 

subclones regarding functional features and genetic characteristics which will help to develop 

efficient novel treatment approaches to eliminate aggressive cell clones in the future. 
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3. Introduction  

Tumors consist of heterogeneous cells and the subpopulation with the most adverse 

characteristics determines the prognosis of cancer patients. Here, we used acute leukemia (AL) 

as a model disease in order to characterize unfavorable subclones in a patient’s sample with the 

final aim to develop future therapies which eliminate unfavorable subclones for the save of 

cancer patients.  

3.1. Acute leukemias 

Acute leukemias are hematologic malignancies that are characterized by the accumulation of 

immature, non-functional white blood cells in the bone marrow. They can be classified 

according to the cell-type affected by the disease: In acute lymphoblastic leukemia (ALL) the 

amount of abnormal lymphocytes is increased whereas in acute myeloid leukemia (AML) 

myeloblasts are affected. The symptoms of these diseases, such as fever, fatigue, pallor, weight 

loss, bleeding and an enhanced risk of infections, are rather unspecific. They are mainly based 

on the accumulation of not fully developed, non-functional leukemic blasts in the bone marrow 

that interfere with normal hematopoiesis leading to bone marrow failure (Esparza & Sakamoto, 

2005; E. H. Estey, 2014).  

3.1.1. Treatment and prognosis of patients  

In children, ALL occurs primarily between two and five years of age. Improved therapeutic 

strategies have markedly increased cure rates of pediatric ALL: in 1961, only 20% of all children 

diagnosed with ALL survived the disease, whereas 5-year survival rates today are above 90% (Pui 

& Evans, 2013). However, prognosis is still dismal in infant and adult patients. Especially 

relapsed disease is generally much less susceptible to treatment and associated with a poor 

overall survival rate. Current treatment strategies include a glucocorticoid in combination with 

vincristine and L-asparaginase or drugs such as anthracyclines and cytarabine (Inaba, Greaves, & 

Mullighan, 2013; Pui, Mullighan, Evans, & Relling, 2012).  

Patients suffering from AML are mainly adults and have a 5-year survival rate of only 30 to 40%. 

Particularly, for elderly patients over 65 years of age, prognosis is eminently poor with survival 

rates of just a few months. Chemotherapy of AML patients usually includes aggressive drugs 

such as anthracyclines and cytarabine which are often associated with severe side-effects. This is 
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a problem especially for elderly patients and contributes to an increased treatment-related 

mortality in this group (Dohner, Paschka, & Dohner, 2015; E. Estey & Dohner, 2006).   

In summary, despite improved survival rates especially for childhood ALL and for younger adults 

suffering from AML, prognosis for some groups of patients is still dismal, for instance for infant 

and adult ALL patients and for elderly AML patients. Thus, new treatment options are intensively 

desired in order to overcome treatment resistance and prevent relapse.  

3.1.2. Minimal residual disease as hallmark of intra-tumor heterogeneity  

While most tumor cells are in general sensitive to initial treatment and can be eradicated by 

chemotherapy, others escape and persist in the patient being a potential source of relapse.  

The development of the tumor load in leukemia patients during treatment is illustrated in Figure 

1. Chemotherapy reduces the amount of leukemic blasts within the patient by eradicating 

sensitive cells (green circle) so that complete remission is achieved in most patients. However, 

within some patients, few leukemic blasts that are resistant to treatment may persist after 

chemotherapy inducing minimal residual disease (MRD, red circles). In particular, MRD levels 

indicate the initial response to therapy. The existence of MRD reflects the diverse nature of 

cancer cells comprising tumor cells with enhanced survival properties compared to others. 

Therefore, the occurrence of MRD represents a hallmark of intra-tumor heterogeneity indicating 

that cells of the same tumor exhibit major differences regarding essential characteristics so that 

some cells are able to survive treatment.  

MRD has further proven to be of highly prognostic value (Inaba et al., 2013; Pui & Evans, 2013). 

Even minute proportions of MRD cells that cannot be detected using conventional methods 

(“complete MRD response”) may act as source of relapsed disease. Thus, MRD detection and 

monitoring is important to assess treatment efficacy and to start treatment upon regrowth of 

resistant cells as early as possible (Bruggemann, Raff, & Kneba, 2012; Pui et al., 2012; Stow et al., 

2010).  
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Figure 1: Functional heterogeneity of acute leukemia cells.  

Tumor load (proportion of leukemic cells among healthy cells) in leukemia patients can be reduced by 

chemotherapy. Persistence of therapy resistant MRD cells may cause treatment-refractory relapsed 

disease (hematological relapse). Leukemias are composed of functionally diverse subpopulations which 

differ in regard to drug sensitivity so that sensitive cells (green circle) are eliminated by therapy while 

resistant cells (red circles) may persist and induce relapse. Adapted from (Bruggemann et al., 2012) 

Permanent success of every cancer therapy is based on the elimination of as many tumor cells 

as possible in order to prevent relapse and consider the patient as cured. However, relapse 

occurs quite frequently and, in many cases, is caused by few cells that survived chemotherapy. 

Considering that most patients suffering from relapsed cancer finally succumb to the disease, a 

better understanding of the adverse clones of persistent, treatment-refractory disease during 

MRD is urgently needed. 

3.1.3. Acute leukemia as suitable model disease to study clonal heterogeneity   

Intra-tumor heterogeneity including subclones which differ in important features demonstrates 

the need of studying clonal heterogeneity by investigating the differences between single clones 

of the tumor. However, subclonal heterogeneity cannot be assessed in in vitro systems using cell 

line cells because cell lines do not represent the clonal composition existing in the original 

patient sample. In particular, cell lines may have changed clonal composition during the process 

of immortalization and extensive in vitro passaging. Therefore, suitable model systems are 

required which mimic the situation in the patient in the best possible manner.  
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In this context, leukemia represents a suitable model disease to study clonal heterogeneity since 

the individualized xenograft mouse model of acute leukemia allows amplification of primary 

patient cells derived from acute leukemia patients (Kamel-Reid et al., 1989; Lee, Bachmann, & 

Lock, 2007; Liem et al., 2004; Terziyska et al., 2012; Vick et al., 2015). Engrafting primary cells 

from leukemia patients in severely immunocompromised NSG mice lacking T-cells, B-cells and 

functional natural killer cells, allows stable engraftment and propagation of patient-derived 

xenograft (PDX) cells (Jacoby, Chien, & Fry, 2014; Schmitz et al., 2011; Shultz, Ishikawa, & 

Greiner, 2007; Shultz, Pearson, et al., 2007). Orthotopic disease distribution involving the 

leukemia-typical organs bone marrow, spleen, liver and blood enables a clinic-close modeling of 

acute leukemia in contrast to many xenograft models of solid tumors so that adverse clones 

relying on different niches throughout the body find their required environment. Xenograft 

samples are more closely related to the original patient’s leukemia and reproduce the 

heterogeneity of ALL and AML. For this reason, patients’ acute leukemia cells studied in the 

xenograft mouse model represent an especially suitable model for studying questions on clonal 

distribution of tumors in general. 

3.2. Adverse characteristics of tumor cells  

As described in 3.1.2, the existence of MRD represents a hallmark of intra-tumor heterogeneity 

suggesting that some cells exhibit features that are associated with a survival benefit. In detail, 

important unfavorable characteristics of tumor cells are quiescence, drug resistance and 

stemness rendering tumor cells difficult to eliminate. Since elimination of all tumor cells is the 

ultimate goal of therapy in order to cure the patient and prevent relapse, studies to further 

explore these features are of utmost importance.  

3.2.1. Quiescence  

Therapeutic failure may be related to persistence of tumor cells existing in an inactive, quiescent 

state. Eradication of inactive, non-cycling tumor cells is particularly challenging because many 

conventionally used therapeutic agents are developed to kill cycling cells and therefore do not 

eradicate resting, non-proliferating cells, for instance antimetabolites like cytarabine. 

Antimetabolites are incorporated into DNA instead of normal purine and pyrimidine bases and 

inhibit DNA polymerase causing chain termination (Galmarini, Mackey, & Dumontet, 2001). As a 

consequence, non-cycling tumor cells may be protected from eradication by cytotoxic drugs. 

Therapy-refractory, dormant cells may be able to survive for many years after treatment and be 
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responsible for relapse even after a long time (Clevers, 2011; Dick, 2008; Greaves, 2013). 

Therefore, new therapy concepts aim at targeting quiescent tumor cells by interrupting their 

dormancy and bringing them back to cycle (Saito et al., 2010).  

Notably, quiescence is a feature of cancer stem cells (CSCs, described in 3.2.3) which represents 

a challenge for cancer therapy since only CSCs maintain the tumor and, in theory, one single, 

surviving CSC should be enough to give raise to a whole tumor again. 

3.2.2. Drug resistance 

Another reason for treatment failure is caused by the emergence of resistant cells which are not 

eradicated by therapeutic drugs and may cause relapse in patients upon regrowth.  

The mechanisms leading to drug resistant variants are still poorly understood. Acquired genetic 

alterations may impair sensitivity of tumor cells towards drugs. In addition, chemotherapy may 

select for resistant cells leading to a more aggressive, drug resistant tumor or induce alterations 

conferring drug resistance. For instance, resistance towards glucocorticoids (GCs) is a major 

problem in the treatment of childhood ALL and the mechanisms leading to GC resistance are still 

unclear. In this context, GC resistance represents an important prognostic marker so that 

patients with a poor response to initial GC treatment have, in general, a worse prognosis 

compared to good responders  (Bhadri, Trahair, & Lock, 2012; Inaba & Pui, 2010). 

As described in 3.2.1, drug resistance may be associated with dormancy of tumor cells since it is 

challenging to target and eliminate cells that do not actively cycle because many conventional 

drugs interfere with the cell cycle. Besides, cells might be protected against chemotherapeutic 

agents by the surrounding environment where therapeutic agents cannot reach them or have 

impaired activity due to micro-environmental conditions (Ishikawa et al., 2007; Shlush et al., 

2012). 

Considering that relapsed disease is associated with a poor prognosis, eradication of drug 

resistant cells is a major issue for therapy of cancer patients. 

3.2.3. Stemness  

Ultimately, stemness has to be considered as an adverse characteristic of cancer cells. Stem cells 

may exist in an inactive, dormant state and consequently be drug resistant as described in 3.2.1 

and 3.2.2.  
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According to the cancer stem cell model, tumors are heterogeneous regarding growth capacities 

and a small rare subpopulation exists of cancer stem cells. CSCs maintain the tumor while 

non-CSCs do not contribute to disease propagation, because only CSCs have the capacity to 

self-renew. CSCs can in turn divide into CSCs and non-CSCs (Clevers, 2011; Dick, 2008; Magee, 

Piskounova, & Morrison, 2012). CSCs might be diverse regarding their genotype and their 

phenotype. Accordingly, subclones originating from different CSCs within one tumor might be 

heterogeneous in terms of genetic and phenotypic features as well. Survival benefit is only 

profitable for the tumor if it takes place in a tumor stem cell. Only then the survival advantages 

are passed on to daughter CSCs and will be stably present in the tumor. In contrast, as non-CSCs 

do not propagate the tumor, survival benefit in those cells is only temporary (Clevers, 2011; 

Greaves, 2013; Kreso & Dick, 2014; Magee et al., 2012). If only a subfraction of the tumor is able 

to propagate the disease, elimination of these cells is sufficient for the eradication of the whole 

tumor. It is thus not necessary to eliminate extensive numbers of non-CSCs as they cannot 

permanently maintain the tumor. Therapies that target only non-tumorigenic non-CSCs lead to 

relapse when CSCs regrow. Consequently, eradication of CSCs should be the goal of every cancer 

therapy (Dick, 2008; Eppert et al., 2011; Shackleton, Quintana, Fearon, & Morrison, 2009; Wang, 

2007).  

Leukemia cells that have the capacity to give rise to leukemia upon xenotransplantation are 

termed leukemia initiating cells or leukemic stem cells (LSCs) (Bonnet & Dick, 1997; Lapidot et 

al., 1994). Accordingly, LSCs are leukemic blasts which are capable of generating a xenograft in 

immunocompromised mice upon serial transplantation (Hope, Jin, & Dick, 2004). Like all CSCs, 

LSCs do also create non-LSCs that are incapable of tumor propagation upon serial 

transplantation (Clarke et al., 2006; Kreso & Dick, 2014). As leukemia growth is driven by LSCs, 

each therapy should aim at eradicating LSCs, respectively (Guzman & Allan, 2014). Each 

subclone within one patient’s leukemia originates from a different LSC and subclonal 

heterogeneity in leukemia is consequently based on the diversity of LSCs. 

At present, the gold standard assay to experimentally quantify cancer stem cells and their ability 

to self-renew is the xenograft assay (Hope et al., 2004; Lapidot et al., 1994). Stem cell 

frequencies in cancer samples can be estimated by transplanting limiting amounts of tumor cells 

into groups of immunocompromised mice. CSC frequencies can subsequently be calculated 

according to the number of engrafted mice upon injection of specific cell numbers. However, it 

has to be considered that tumor initiating potential of CSCs may be hampered by stress due to 

experimental settings and therefore CSC frequencies may be underestimated (Clarke et al., 

2006; Clevers, 2011).  
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Cancers were believed to be composed of a large mass of non-tumorigenic cells that are 

sustained by only a small subgroup of cancer stem cells with the ability to self-renew. However, 

it has been shown that CSCs do not necessarily need to be a minor part of the tumor mass. In 

some ALLs for example, LSCs are quite frequent (Kelly, Dakic, Adams, Nutt, & Strasser, 2007). 

Additionally, recent studies demonstrated that stem cell frequencies vary with respect to 

different cancer types: LSC frequencies in AML are generally rather low, whereas leukemia 

propagating activity in ALL is typically pretty high (Eppert et al., 2011; Rehe et al., 2013; Sarry et 

al., 2011; Shackleton et al., 2009). 

Taken together, quiescence, drug resistance and stemness represent adverse characteristics of 

tumor cells which may induce therapy failure.  

3.3. Intra-tumor heterogeneity   

Tumors are composed of heterogeneous cellular subpopulations which may differ in respect to 

genetic and epigenetic characteristics and in essential functional features such as growth 

behavior, drug resistance, self-renewal and other hallmarks of cancer (Hanahan & Weinberg, 

2011; Marusyk, Almendro, & Polyak, 2012). The presence of multiple subpopulations within one 

tumor and their diversity regarding genotype and functional phenotype makes the tumor less 

susceptible to cancer treatment. The intra-tumor heterogeneity provides a survival advantage 

for the tumor as evolution can continue from diverse subclones. Therefore, an efficient 

chemotherapy is challenging as it has to be directed against diverse subclones at the same time 

and relapse may still be initiated by a small amount of surviving cells. Hence, the most 

aggressive subpopulation will ultimately define the patient’s prognosis. Cancer therapy should 

therefore specifically aim at eradicating all subpopulations in order to prevent relapse. 

In 1976, Nowell developed the “clonal evolution concept” which was the cornerstone for 

considering cancer as a Darwinian evolutionary process (Nowell, 1976). According to his model, 

tumor progression is a dynamic process, meaning that subclonal architecture of tumors changes 

over time. Selective pressure induces the emergence of divergent subclones with different 

characteristics. In addition, chemotherapy may select for resistant subpopulations and thus 

contribute to a more aggressive disease (Choi et al., 2007). Moreover, mutagenic chemotherapy 

might even induce occurrence of drug resistance by inducing genetic alterations that lead to 

drug resistance (Landau, Carter, Getz, & Wu, 2014). Likewise, single cells that have acquired 

resistance to therapeutic drugs induce a treatment-refractory disease so that drugs that were 

effective at the beginning will be inefficient after some time (Almendro, Marusyk, & Polyak, 
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2013; Gerlinger et al., 2014; Swanton, 2012). The cause for phenotypic evolution towards more 

aggressive cancer cells might be associated with changes in their genotype that yield a survival 

benefit (Barber, Davies, & Gerlinger, 2014; Meacham & Morrison, 2013; Yates & Campbell, 

2012). As a consequence, clones that exhibit superior characteristics will outcompete less fit 

clones over time (Burrell, McGranahan, Bartek, & Swanton, 2013; Greaves & Maley, 2012).  

Future cancer therapies should therefore aim at targeting all subclones within the tumor of each 

patient as its efficiency relies on the capacity to eliminate the last, most aggressive subclone. 

3.3.1. Genetic heterogeneity  

Genomic profiling based on recent advances in sequencing technologies has uncovered 

substantial genetic complexity within one tumor (Burrell et al., 2013; Greaves & Maley, 2012). 

Tumors consist of various genetically distinct subpopulations which can be related to each other 

in a complex architecture (Ding et al., 2012; Greaves, 2010). Different approaches of single cell 

sequencing technologies have revealed further insights into the genomic architecture of 

leukemia on the single cell level. Genetic analysis of many single cells of one patient’s leukemia 

allows detection of cell-specific genetic aberrations. The occurrence of specific alterations may 

be used to track individual subpopulations and to estimate the number of genetic subclones 

within one tumor (Jan & Majeti, 2013; Klco et al., 2014). Moreover, clonal relationships can be 

reconstructed due to shared alterations of genetic subclones (Anderson et al., 2011; Gawad, 

Koh, & Quake, 2014; Saadatpour, Guo, Orkin, & Yuan, 2014; Shlush et al., 2012). Anderson and 

colleagues analyzed single cells of individual patients suffering from ETV6-RUNX1 positive ALL by 

fluorescence in situ hybridization. They have discovered a pronounced subclonal genetic 

heterogeneity of leukemic blasts following a complex architecture (Anderson et al., 2011). The 

type and amount of genetic lesions enabled the visualization of complex relationships between 

single clones. They observed that mutations occurred randomly and independently from each 

other. Hence, some ALLs consisted of only few subclones but, more often, they could detect up 

to ten subclones related to each other (Figure 2).  
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Figure 2: Subclonal architecture in ALL is complex.  

Multiplex fluorescence in situ hybridization (FISH) analysis of ETV6-RUNX1 positive ALL revealed diverse 

subclonal architecture. According to individual genetic alterations, the relationship of subclones can be 

assessed. (A) ALL consisting of three clones which can be aligned in a linear architecture based on different 

genetic alterations (loss of the untranslocated ETV6 allele and PAX5 allele) detected by FISH as shown on 

the right. (B) More complex architecture with six clones. Three subclones lost the untranslocated ETV6 

allele (boxes) independently from each other. yellow signal (F): ETV6–RUNX1 fusion gene; red signals: 

RUNX1 (one large and one small signal resulting from one normal RUNX1 allele and the residue from the 

translocation); green signal: untranslocated ETV6 allele; pink signal: PAX5. Adapted from (Anderson et al., 

2011). 

In addition, genomic profiling showed that some pathways are commonly altered in ALL (Kuiper 

et al., 2007; Mullighan, 2012; Mullighan et al., 2011; Zhang et al., 2011). Changes in genotype 

might be associated with changes in functional phenotype. Therefore, a better understanding of 

how genotype and phenotype relate to each other would offer the possibility to develop novel 

agents that specifically target mutated pathways (Pui et al., 2012; Roberts & Mullighan, 2015).  

Subclones may be defined by their individual mutations. Hence, genetic aberrations could be 

used as markers to trace single clones in order to investigate clonal evolution from diagnosis to 

relapse (Jan & Majeti, 2013). Recent studies in AML (Ding et al., 2012; Kronke et al., 2013; Parkin 

et al., 2013) and ALL (Anderson et al., 2011; Ma et al., 2015; Mullighan et al., 2008; van Delft et 

al., 2011) have explored the evolutionary trajectory from diagnosis to relapse by comparing the 

subclonal architecture of diagnosis and corresponding relapse samples. These studies have 

shown that subclonal diversity changed from diagnosis to relapse suggesting that some clones 

had a functional survival advantage which might be based on the acquisition of additional 

A B 
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mutations that contributed to drug resistance. Some pathways were observed to be frequently 

mutated in the relapse clone, for instance cell cycle regulation and B-cell development (Ma et 

al., 2015; Mullighan et al., 2008; Mullighan et al., 2011; van Delft et al., 2011). These studies 

have revealed that diagnosis and relapse samples were genetically related to each other in the 

majority of all cases suggesting clonal evolution from diagnosis to relapse or a common 

ancestral clone. Besides, the relapse clone was frequently present already at diagnosis as a 

minor subclone, strengthening the idea that additional mutations may confer resistance to 

therapy. Only in a minority of the cases (6%), the relapse clone was genetically not related to 

diagnosis (Figure 3).  

 

 

Figure 3: Relationship of diagnosis and relapse samples in ALL.  

In most cases, relapse ALL is genetically related to the diagnosis sample either originating from an 

ancestral pre-leukemic clone or from the diagnosis clone. Only in a minority of all cases, relapse is a 

genetically unrelated leukemia (6%). In general, the relapse clone has acquired additional mutations 

compared to the diagnosis clone. However, in many cases, the relapse clone is already present as a 

minority in the diagnosis sample. Adapted from (Mullighan et al., 2008). 

Remarkably, some studies have demonstrated that in general, more alterations could be 

detected at relapse compared to diagnosis proposing that mutagenic chemotherapy triggered 

DNA damage or additional spontaneously acquired mutations caused a survival benefit for the 
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respective cell population (Ding et al., 2012; Kronke et al., 2013; Mullighan et al., 2008; Shlush et 

al., 2012).  

In this regard, cytogenetic analyses are part of clinical routine diagnostic in AML and ALL and the 

prognostic value of chromosomal abnormalities is known since many years (Harrison, 2009; 

Secker-Walker, Lawler, & Hardisty, 1978; Williams et al., 1984).  

Individual genetic lesions may serve as potential targets for individualized therapies and allow a 

risk-adapted treatment of each patient according to specific genetic abnormalities (Downing et 

al., 2012; Hogan et al., 2011; Mullighan, 2012; Patel et al., 2012; Schlenk & Dohner, 2013). The 

use of tyrosine kinase inhibitors for the treatment of BCR-ABL positive leukemia for instance, has 

eminently improved survival rates in this group of patients (Pui, Carroll, Meshinchi, & Arceci, 

2011). Since the use of chemotherapeutic drugs is often limited by their toxicity and side-effects, 

targeted therapies are desperately needed in order to reduce chemotherapy related mortality 

and increase life quality of the patients. Novel treatment strategies should be based on the 

individual genetic alterations of each patient’s leukemia in order to eradicate all subpopulations 

present at diagnosis and to prevent relapse (Bhatla et al., 2014; Evans, Crews, & Pui, 2013). 

Besides, targeting of single resistance mechanisms might not be sufficient to reliably eliminate 

resistant subclones since cells might acquire resistance via various pathways simultaneously. 

Therefore, combination therapies consisting of several drugs targeting different lesions may be 

required in order to circumvent these resistance mechanisms (Aparicio & Caldas, 2013; Burrell & 

Swanton, 2014; Garraway & Janne, 2012; Roberts & Mullighan, 2015).  

3.3.2. Epigenetic heterogeneity 

Very recent studies have shown that epigenetic heterogeneity based on epigenetic instability of 

CSCs has to be taken into account as well. Subclones with the same genotype may still differ on 

the epigenetic level (Landau et al., 2014; Swanton & Beck, 2014). Specific leukemia subtypes 

may be defined by an individual epigenetic signature, for instance an increased global promoter 

hypermethylation (Figueroa et al., 2013; Figueroa et al., 2010; Schafer et al., 2010). Epigenetic 

modifications, such as differences in DNA methylation are accompanied by changes in gene 

expression: hypermethylation of cytosine rich regions in promoters mediates gene silencing in 

cancer cells whereas hypomethylation induces gene transcription (Berdasco & Esteller, 2010). 

Epigenetic changes may also be the reason for differences regarding functional features like 

proliferation rates or drug sensitivity (Figueroa et al., 2013; Figueroa et al., 2010). Thus, 

methylation of gene promoters directly influences gene expression levels and some genes are 
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recurrently found to be abnormally methylated in ALL and AML (Dawson & Kouzarides, 2012; 

Roberts & Mullighan, 2015). Accordingly, epigenetic mutations provide novel targets for 

personalized epigenetic therapies: 5-Azacitidine for example, an inhibitor of DNA 

methyltransferases was the first epigenetic drug in clinical use for treatment of leukemia 

patients (Bullinger & Armstrong, 2010; Geng et al., 2012; Mehdipour, Santoro, & Minucci, 2014; 

Yang, Lay, Han, & Jones, 2010).  

3.3.3. Functional heterogeneity  

In order to clearly define LSCs and to distinguish them from non-LSCs, extensive effort was put 

into characterizing LSCs phenotypically since expression of particular cell surface markers on 

LSCs would facilitate targeted therapies against LSCs. Earlier studies in AML demonstrated that 

LSCs, according to normal hematopoietic stem cells, were defined by expression of CD34 and 

CD38: the LSC phenotype was primarily found in CD34+CD38- cells (Bonnet & Dick, 1997; Lapidot 

et al., 1994). However, subsequent studies have revealed that LSCs in AML have a more 

heterogeneous phenotype. They are not restricted to the CD34+CD38- compartment, but can 

also be found in other compartments (Eppert et al., 2011; Sarry et al., 2011; Taussig et al., 2008; 

Taussig et al., 2010). Concordantly, no phenotypic marker exists to exactly define LSCs in ALL 

either. Definition of LSCs via cell surface markers is thus misleading because none of their 

markers are uniquely expressed by stem cells. Further studies have proven that leukemogenic 

activity can be enriched in subsets with particular phenotypic markers but is nevertheless not 

strictly defined by a definite immunophenotype (Anderson et al., 2011; Chiu, Jiang, & Dick, 2010; 

Klco et al., 2014; le Viseur et al., 2008; Notta et al., 2011; Rehe et al., 2013). In summary, this 

indicates that despite the increased expression of some markers on LSCs, targeted therapies 

against particular cell surface markers might not be sufficient as no marker is exclusively 

expressed by LSCs. 

Diversity of leukemic stem cells regarding functional features such as self-renewal ability, 

growth behavior, apoptosis, response to therapy, and other hallmarks of cancer is a major 

problem for treatment (Hope et al., 2004; Kreso & Dick, 2014). Since every subclone originates 

from a different LSC, each patient’s leukemia is composed of functionally heterogeneous 

subclones. Accordingly, clones with favorable growth properties will outcompete clones with 

dismal growth behavior over time. In contrast, clones that are less susceptible to treatment will 

overgrow sensitive clones during therapy. Importantly, clonal evolution during disease 

progression can emerge from diverse subpopulations, which makes leukemia difficult to treat.  
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Until now, the knowledge about the differences between resistant and sensitive cells is still 

fragmentary. In order to prevent relapse, a better understanding of the underlying mechanisms 

which cause functional phenotypes that, for instance, enable resistance towards chemotherapy 

is urgently needed. Thus, eradication of all relevant subpopulations present at diagnosis should 

be the goal for every cancer therapy in order to prevent relapse sustained by the regrowth of 

resistant cells showing advantageous survival properties leading to a treatment-refractory 

disease. 

Taken together, acute leukemias are heterogeneous diseases which involve diverse 

subpopulations with distinct survival properties. Intra-tumor heterogeneity acts as a reservoir 

for relapse clones providing genetically and functionally diverse subpopulations which help the 

tumor to adapt. Genetic and epigenetic variations may be linked with changes in phenotype and 

function providing a survival benefit. However it is still unclear which genetic changes are 

associated with which functional features (Klco et al., 2014; Kreso & Dick, 2014; Meacham & 

Morrison, 2013). Hence, possible connections between genotype and functional phenotype 

have to be further investigated in order to develop novel drugs that specifically target 

challenging subpopulations.  
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3.4. Aim of this work  

Despite improved treatment regimens for acute leukemia patients, survival rates still need to be 

improved. Particularly, patients suffering from relapsed disease have an extremely poor 

prognosis. Acute leukemias consist of heterogeneous cell populations and the most aggressive 

subpopulation determines prognosis and outcome in each patient. Thus, new therapies that 

eliminate all relevant subpopulations are urgently needed in order to cure the patient and 

prevent relapse. A better characterization of challenging subclones would help to find new 

targets for the eradication of treatment refractory subpopulations. Clonal evolution within one 

tumor can originate from divergent subclones which might differ regarding genotype and 

functional phenotype. In this regard, therapy is challenging as it should be directed against 

diverse subpopulations at the same time in order to eliminate all tumor cells. A better 

understanding of the biology of subclones with an aggressive phenotype is required to develop 

novel treatments that specifically target these challenging clones.  

Many studies have proven clonal heterogeneity of leukemias regarding their genotype, while 

clinic courses of patients, especially residual disease after treatment, suggest functional 

heterogeneity within a single tumor. Due to technical limitations, it remains unclear which 

genetic characteristics cause which functional phenotypes in tumor subclones.  

The present study aimed at establishing a method for studying single cell clones regarding 

functional phenotype in vivo in order to identify clones with unfavorable functional 

characteristics in an exemplary sample of a child with relapsed acute lymphoblastic leukemia.   

A better understanding of the genetic background of these clones may help to identify new 

targets for future therapy in order to develop efficient novel treatment approaches to eliminate 

aggressive cell clones in ALL. The present work envisions eliminating aggressive subclones to 

increase prognosis and cure rate of patients with cancer. 
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4. Material  

4.1. Equipment  

Incubator (bacteria)  B 6060 microbiological incubator, Heraeus, Hanau, Germany 

Flow cytometry   BD LSRFortessa, BD Bioscience, Heidelberg, Germany 

Cell sorting   BD FACSAriaIII, BD Bioscience, Heidelberg, Germany 

Incubator (cell culture)  Hera Cell, Heraeus, Hanau, Germany 

Light microscopy  Carl Zeiss 550 1317, Zeiss, Jena, Germany 

Fluorescence microscopy Carl Zeiss Axioplan, Zeiss, Jena, Germany 

PCR machine   Primus 25 advanced Thermocycler, PeqLab, Erlangen, Germany 

Gel documentation   E-BOX VX5, Vilbert Lourmat, Eberhardzelle, Germany 

Nanophotometer  Nanodrop 2000, Thermo Fischer Scientific, Waltham, MA, USA 

In vivo Imaging IVIS Lumina II Imaging System, Caliper Life Sciences, Mainz, 
Germany 

4.2. Substances  

Agarose  Biozym Scientific GmbH, Hessisch Oldendorf, Germany 

Ampicillin solution 25 mg / ml, sterile filtered, Sigma-Aldrich, St. Louis, MO, USA 

α-Thioglycerol  Sigma-Aldrich, St. Louis, MO,  USA 

Coelenterazine   Synchem OHG, Felsberg, Germany 

DAPI (1 mg / ml) Sigma-Aldrich, St. Louis, MO, USA 

DMEM    cell culture medium, Gibco, San Diego, CA, USA 

DMSO   Sigma-Aldrich, St. Louis, MO USA 

DNA Ladder Mix Thermo Fischer Scientific, Waltham, MA, USA 

DNA-loading dye6x Thermo Fischer Scientific, Waltham, MA,  USA 

dNTP mix  Thermo Fischer Scientific, Waltham, MA,  USA 

Ethidium Bromide  Carl Roth, Karlsruhe, Germany 

FCS   fetal calf serum, Biochrome, Berlin, Germany 

Ficoll    GE Healthcare, Freiburg, Germany 
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HBG buffer HEPES-buffered glucose containing 20 mM HEPES at pH 7.1, 
5% glucose w / v 

ITS   Insulin-Transferrin-Selenium, Gibco, San Diego, CA, USA 

LB medium 10 g tryptone, 5 g yeast extract, 5 g NaCl ad 1 l H2O, (1 ml Ampicillin, 
25 mg / ml), autoclaved 

LB agar 15 g / l agar in 1 l LB medium, autoclaved, 800 µl ampicillin solution were 
added before pouring into petridishes 

Patient medium RPMI-1640 supplemented with 20% FCS, 1% pen/strep, 1% gentamycin 
and 2 mM glutamine 

PBS (1x) 8 g NaCl, 0.2 g KaCl, 1.42 g Na2HPO4, ad 1 l H2O 

Pen/Strep Penicillin-Streptomycin 5000 U / ml, Gibco, San Diego, CA, USA 

Polybrene   2 mg / ml, Sigma-Aldrich, St. Louis, MO, USA 

RPMI-1640 cell culture medium, Gibco, San Diego, CA, USA 

Sodim pyruvat  100 mM, Sigma-Aldrich, St. Louis, MO, USA 

TAE-Buffer 1.8 g Tris / HCl, 1.14 ml acetic acid, 0.7 g EDTA, ad 1 l H2O (pH 8.5) 

Trypsin (1x) 0.5% Trypsin-EDTA, Invitrogen, Karlsruhe, Germany 

TFB I 1.491 g 100 mM KCl, 0.294 g 10 mM CaCl2, 0.588 g 30 mM K-acetate, 
1.979 g 50 mM MnCl2, 30.6 g 15% glycerol; pH 5.8, sterile filtered 

TFB II 0.074 g 10 mM KCl, 1.102 g 75 mM CaCl2, 0.209 g 10 mM MOPS, 15.3 g 
15% glycerol; pH 7.0, sterile filtered 

TurboFect Tansfection Reagent, Thermo Fischer Scientific, Waltham, MA, USA 

 

4.3. Primers, enzymes, plasmids 

 

Table 1: Primers. 

Number Sequence  Application Tm (°C) 

305 CCAATGCATATGGTGAGCAAGGGCGAG    

Amplification of mCherry, 

Venus, mtagBFP 

FWR 

65.5 

306 ACGCGTCGACTTACTTGTACAGCTCGTCCATGC    

Amplification of mCherry, 

Venus, mtagBFP 

REV 

66.5 
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Table 2: Enzymes. 

Enzyme Application  Manufacturer 

GoTaq Polymerase Colony PCR Promega, Madison, WI, USA 

Pfu Polymerase PCR Thermo Fischer Scientific, Waltham, MA, USA 

T4 DNA Ligase Ligation Thermo Fischer Scientific, Waltham, MA, USA 

SalI Restriction digest New England Biolabs, Frankfurt am Main, Germany 

NsiI Restriction digest New England Biolabs, Frankfurt am Main, Germany 

BamHI Restriction digest New England Biolabs, Frankfurt am Main, Germany 

 

Table 3: Plasmids. 

Plasmid Manufacturer Size (bp) 

pRSV-Rev (392) Addgene, Cambridge, MA, USA 4174 

pMDLg/pRRE (393) Addgene, Cambridge, MA, USA 8895 

pMD2.G Addgene, Cambridge, MA, USA 5824 

pCDH-EF1α-extGLuc-T2A-copGFP  Research Group Apoptosis (Terziyska et al., 2012) 8053 

pSicoR-U6-EF1α-mCherry Addgene, Cambridge, MA, USA 7484 

pRRL-PPT-SFFV-Venus Provided by Tim Schroeder 7304 

pmTagBFP-C1 Provided by Michael Schindler 4750 

pCDH-EF1α-MCS-T2A-copGFP System Bioscience, CA, USA 7253 

pCDH-EF1α-extGLuc-T2A-mCherry Cloned by Michela Carlet 7993 

pCDH-EF1α-extGLuc-T2A-Venus Cloned by Michela Carlet 8002 

pCDH-EF1α-extGLuc-T2A-mTagBFP Cloned by Michela Carlet 7984 

pCDH-EF1α-mCherry Cloned for this study 7193 

pCDH-EF1α-Venus Cloned for this study 7002 

pCDH-EF1α-mTagBFP Cloned for this study 7184 

 

  



Material  

29 
 

4.4. Cell lines  

All cell lines indicated below were tested negative for mycoplasma infection.  

Table 4: Cell lines.  

Cell line Source Use 

HEK-293T DSMZ, Braunschweig, Germany Packaging cell line for lentiviral particles 

NALM-6 DSMZ, Braunschweig, Germany Used to establish RGB marking 

EL08 DSMZ, Braunschweig, Germany Feeder cell line for in vitro culture of transduced 
PDX cells 

 

4.5. Antibodies for flow cytometry  

Table 5: Antibodies. 

Name Manufacturer 

APC-Cy7 anti-mouse CD45 (30-F11) (rat) Biolegend, San Diego, CA, USA 

APC anti-Annexin V BD Bioscience, Heidelberg, Germany 

4.6. Kits 

Table 6: Commercial kits.  

Name Application  Manufacturer  

Annexin V APC Apoptosis  
Detection Kit 

Staining of apoptotic cells 
BD Bioscience, 
Heidelberg, Germany  

NucleoSpin Gel and  
PCR Clean-up 

Purification of PCR products, extraction 
of DNA from agarose gels 

Macherey Nagel, Duren, 
Germany 

NucleoSpin Plasmid EasyPure Isolation of plasmid DNA (mini) 
Macherey Nagel, Duren,  
Germany 

NucleoBond Xtra Midi  Isolation of plasmid DNA (midi) 
Macherey Nagel, Duren, 
Germany 

QIAamp DNA Mini Kit Isolation of genomic DNA  Qiagen, Venlo, NL 
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4.7. Software 

Microsoft Office 

Adobe Photoshop CS3 

Axio Vision Zeiss 

Clone Manager 7 

FlowJo  V10 

GraphPad Prism 6 

Living Image software 4.4 

4.8. Statistics 

Two-tailed unpaired t-test was applied to determine the significance of differences in specific 

apoptosis rates upon drug testing between single cell clones. F-test was applied to compare 

variances and in cases in which variances differed significantly, Welch’s correction was 

employed. All statistical analyses were calculated using GraphPad Prism 6 software.  
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5. Methods 

5.1. Ethical issues 

5.1.1. Work with human material  

Fresh bone marrow or peripheral blood samples from adult AML patients were obtained from 

the Department of Internal Medicine III, Ludwig-Maximilians-Universität, Munich. Specimens 

were collected for diagnostic purposes before start of treatment. Written informed consent was 

obtained from the patients. The study was performed in accordance with the ethical standards 

of the responsible committee on human experimentation (written approval by Ethikkommission 

des Klinikums der Ludwig-Maximilians-Universität, Munich, number 068-08) and with the 

Helsinki Declaration of 1975, as revised in 2000. 

5.1.2. Work with animals 

NSG (NOD/scid, IL2 receptor gamma chain knockout) mice from The Jackson Laboratory (Lund, 

Sweden) were maintained under specific pathogen-free conditions in the research animal facility 

of the Helmholtz Zentrum München. Animals had free access to food and water, and were 

housed with a 12-hour light-dark cycle and constant temperature. All animal trials were 

performed in accordance with the current ethical standards of the official committee on animal 

experimentation (written approval by Regierung von Oberbayern, number 

55.2-1-54-2532-95-10). When clinical signs of illness became apparent (more than 60% leukemic 

cells within peripheral blood, rough fur, hunchback, or reduced motility), mice were sacrificed 

equally in all passages. If leukemia became not apparent, mice were killed and analyzed 25 

weeks after cell injection by latest.  

5.2. The individualized xenograft mouse model of acute leukemia  

We amplified cells from acute leukemia patients in immunocompromised NSG (NOD/scid, IL2 

receptor gamma chain knockout) mice from The Jackson Laboratory (Lund, Sweden) using the 

individualized xenograft mouse model as established in the lab (Kamel-Reid et al., 1989; Lee et 

al., 2007; Liem et al., 2004; Terziyska et al., 2012; Vick et al., 2015). 
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5.2.1. Expansion and purification of primary patient cells 

To amplify leukemic blasts from acute leukemia patients, peripheral blood or bone marrow 

aspirates were injected into 6 to 8 weeks old NSG mice via the tail vein (in 250 µl autoclaved and 

sterile filtered PBS). After injection, mice were treated with ciprofloxacin which was added to 

the drinking water in order to prevent infections. For expansion of PDX cells, freshly thawed PDX 

cells were injected into the tail vain of NSG mice (in 250 µl autoclaved and sterile filtered PBS). 

All animals were maintained under specific pathogen-free conditions in the research animal 

facility of the Helmholtz Zentrum München. Mice were sacrificed when blood measurement 

indicated leukemia disease or as soon as they showed any clinical signs of illness and human 

cells were isolated out of spleen or bone marrow subsequently. The spleen was homogenized 

through a 70 µm cell strainer and cells were purified using Ficoll gradient centrifugation (400 g, 

30 min, rt, without rotor brake). After centrifugation, mononuclear cells could be harvested as a 

layer at the interphase. Cells were washed twice with PBS and once with patient medium (RPMI 

supplemented with 20% FCS, 1% pen/strep, 1% gentamycin and 2 mM glutamine) (400 g, 

10 min, rt). After washing, cells were re-suspended in patient medium and stored at 37 °C for 

further use. Isolated bones were crushed in a porcelain mortar and suspended in PBS. The 

suspension was filtered through a 70 µm cell strainer and washed twice with PBS. Cells were 

re-suspended in patient medium and stored at 37 °C, respectively. Accuracy of sample identity 

was verified by repetitive finger printing using PCR of mitochondrial DNA (Hutter et al., 2004).  

5.2.2. Limiting dilution transplantation assay  

For limiting dilution transplantation assays (LDA), fresh cells of the RGB ALL-265 sample or 

freshly thawed cells of the RGB AML-393 sample were counted with trypan blue (5.3.6) and 

suspended in PBS. Cells of RGB ALL-265 and RGB AML-393 were diluted and intravenously 

injected into groups of NSG mice at cell numbers indicated in Table 12 and Table 11.  The 

amount of human cells in blood of mice was determined every second week to monitor disease 

progression. Mice were sacrificed and PDX cells were purified out of spleen and bone marrow. 

Stem cell frequencies were determined according to Poisson statistics, using the ELDA software 

application (http://bioinf.wehi.edu.au/software/elda/) (Hu & Smyth, 2009). 

5.2.3. Competitive transplantation assay  

For competitive engraftment experiments, cells of each cell clone were thawed and counted 

using trypan blue (5.3.6). Cells were mixed in equal parts and 5 x 105 cells of the mixture were 
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stained with mouse CD45-APC-Cy7 antibody (Biolegend, San Diego, CA, USA) as described in 

5.3.6. Correct mixing was confirmed by flow cytometry before injection.  

For competitive xenograft experiments with five clones (6.4.1), cells of clone #1, clone #5, 

clone #6, clone #7 and clone #8 were mixed in equal parts and 2.5 x 105 cells of the mixture 

were subsequently injected into each mouse.  

For competitive transplantation of two clones (6.4.2), cells of clone #5 and clone #6, clone #5 

and clone #8 or clone #6 and clone #8 were mixed in equal parts and 1 x 105 cells of the mixtures 

were injected into mice.  

For in vivo therapy with dexamethasone (6.5.2), cells of clone #5 and clone #6 were mixed in 

equal parts and 1 x 105 cells of the mixture were injected into mice, respectively.  

For re-transplantation of samples of competitive transplantation experiments of combinations 

of two clones, 1 x 104 cells of two representative samples consisting either of clone #5 and 

clone #6 or of clone #5 and clone #8 after one mouse passage (6.4.2), were injected into 

secondary recipient mice.  

5.2.4. Bioluminescence in vivo imaging 

For in vivo imaging of NSG mice engrafted with PDX cells expressing Gaussia luciferase, we used 

the IVIS Lumina II Imaging System (Caliper Life Sciences, Mainz, Germany) (Barrett et al., 2011; 

Bomken et al., 2013; Terziyska et al., 2012). Mice were anesthetized with isoflurane and 

fastened in the imaging chamber.  Coelenterazine (Synchem OHG, Felsberg, Germany) was 

dissolved in acidified methanol to a final concentration of 10 mg / ml and diluted shortly before 

injection in sterile HBG buffer (HEPES-buffered glucose containing 20 mM HEPES at pH 7.1, 

5% glucose w / v). 100 µg of Coelenterazin were injected into the tail vein of the mice and 

pictures were taken immediately after injection (field of view: 12.5 cm, binning: 8, f / stop: 1 and 

open filter setting). Pictures were analyzed using Living Image software 4.4 (Caliper Life 

Sciences, Mainz, Germany)  

5.2.5. In vivo therapy with dexamethasone  

For dexamethasone (Dexa) treatment of mice engrafted with clone #5 and clone #6, stock 

solutions of Dexa were diluted in sterile PBS in a manner that all mice received 8 µl of the 

dilution per g body weight. Control mice received the same amounts of PBS. Mice were treated 
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with either PBS control or different concentrations of Dexa (2 mg or 8 mg per kg body weight) by 

intraperitoneal injection from Monday to Friday for five consecutive weeks. Body weights of 

treated animals were determined every second day. The loss of body weight never exceeded 

13% during treatment time. Bioluminescence in vivo imaging (5.2.4) was performed once a week 

to monitor disease progression. Control mice were sacrificed at advanced disease and treated 

mice were sacrificed subsequently.  

5.2.6. Analysis of bone marrow of mice treated with dexamethasone 

Dexa treated mice were sacrificed and bones (pelvis, long bones of the legs, backbone and 

sternum) were isolated. Cells were purified as described in 5.2.1 and 1 / 10 of the total bone 

marrow was stained with anti muCD45 antibody (Biolegend, San Diego, CA, USA) and in whole 

measured by flow cytometry.  

 

5.3. In vitro cell culture of cell lines and PDX cells 

5.3.1. Determination of cell numbers 

The density of PDX cells and cell line cells was determined using a “Neubauer” counting 

chamber. Adherent cells were detached from the flask and re-suspended prior to counting. 10 μl 

adequately diluted cell suspension were pipetted into the counting chamber and cells within the 

chamber were counted using light microscopy (Carl Zeiss 550 1317 with phase contrast filter). 

Cell suspension densities (cells per ml) were calculated as follows:  

Mean of counted cells x dilution factor x 104
 cells / ml.  

5.3.2. Freezing and thawing of cell line cells and PDX cells 

All cells were viably frozen at -80 °C in 1 ml FCS with 10% DMSO. To thaw cells, the cryotube 

containing the frozen cells was incubated at 37 °C for 1 min and then transferred into 9 ml fresh 

medium. After centrifugation (400 g, 5 min, rt) the pellet was dissolved in fresh medium and 

transferred into a new culture flask. Frozen PDX cells for re-passaging in NSG mice were thawed 

as described and re-suspended in a final volume of 250 µl of sterile PBS. Cells were injected into 

mice shortly after thawing.   
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5.3.3. In vitro cultivation of cell line cells and PDX cells 

Adherent cell lines HEK-293T (DSMZ, Braunschweig, Germany) for virus production and the 

mouse stromal cell line EL08 (DSMZ, Braunschweig, Germany) for co-culture of PDX cells, were 

grown in 75 cm2 culture flasks at 37 °C. HEK-293T cells were cultured in DMEM supplemented 

with 10% FCS and 1% glutamine and EL08 feeder cells were grown in RPMI supplemented with 

20% FCS and 1% glutamine. Every 2 to 3 days, confluent cells were split in a 1:10 ratio by taking 

away the old medium and adding 1 mL of trypsin solution to the cells and incubating for 5 min at 

37 °C. Subsequently, cells were re-suspended in fresh medium.  

NALM-6 cell line cells (DSMZ, Braunschweig, Germany) were kept in RPMI supplemented with 

10% FCS at a concentration of 0.5 to 2 x 106 cells / ml in 25 cm2 or 75 cm2 culture flasks. Cells 

were split every 2 to 3 days so that the concentration never exceeded 2 x 106 cells / ml.  

For in vitro culture of PDX cells, we used patient medium (RPMI supplemented with 20% FCS, 

1% pen/strep, 1% gentamycin and 2 mM glutamine) further supplemented with 6 mg / l insulin, 

3 mg / l transferrin, 4 µg / l selenium (ITS-G, Gibco, San Diego, CA, USA), 1 mM sodium pyruvate, 

50 µM α-thioglycerol (Sigma-Aldrich, St. Louis, MO, USA).  

5.3.4. Co-culture of transduced PDX cells 

For co-culture experiments, we used the mouse stromal cell line EL08 (DSMZ, Braunschweig, 

Germany). To detach adherent cells from the flask, 1 ml of trypsin was added to one 75 cm2 

culture flask of confluent cells and incubated for 5 min. Cells were re-suspended in fresh RPMI 

medium supplemented with 20% FCS and 1% glutamine and counted. In 24-well plates, 

40,000 cells were seeded per well in 1 ml medium. The next day, the cells were irradiated 

(16 Gy). Old medium was taken away and 0.5 x 106 transduced PDX cells were added per well in 

500 μl patient medium supplemented with 6 mg / l insulin, 3 mg / l transferrin, 4 µg / l selenium, 

1 mM sodium pyruvate, 50 µM α-thioglycerol.  

5.3.5. Limiting dilution of RGB marked NALM-6 cell line cells 

RGB marked NALM-6 cells were counted and stepwise diluted to a final concentration of 

5 cells / ml. 100 μl of the cell suspension were added to each well of a 96-well plate to a final 

concentration of 0.5 cells / well. Plates were incubated at 37 °C for 4 weeks. In those wells, 

where cells had regrown, color expression was determined by flow cytometry to verify clonal 

expansion of single cells.  
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5.3.6. Antibody staining of PDX cells and staining of apoptotic cells 

To exclude mouse cells, PDX cells were stained with mouse CD45-APC-Cy7 (Biolegend, San 

Diego, CA, USA). Fresh PDX cells were washed with PBS and re-suspended in PBS. Antibody was 

added according to the manufacturer’s instructions (1:100). To assess cell viability, 

Annexin V-APC detection kit (BD Biosciences, Heidelberg, Germany) and DAPI (at a final 

concentration of 1 µg / ml) were used. To exclude dead cells, trypan blue was added (1:2) and 

cells were counted. All antibodies and reagents were diluted according to the manufacturer’s 

instructions. 

5.3.7. Drug stimulation in vitro 

For in vitro apoptosis assays of single cell clones, cells were diluted to a final concentration of 

1 x 106 cells / ml and seeded in 96-well plates (1 x 105 cells / well). Stock solutions of all drugs 

were diluted as indicated in Table 7 and 1 µl drug dilution was added to 100 µl cell suspension. 

Cells were treated with the indicated drug concentrations in duplicate wells. 

Table 7: Drugs and dilutions for in vitro stimulation of single cell clones.  

Drug stock Final concentration Manufacturer 

Dexamethasone 10.19 mM 500 nM 
mibe GmbH Arzneimittel, Brehna, 
Germany   50 nM 

Prednisolone 27.22 mM 1.6 μM 
mibe GmbH Arzneimittel, Brehna, 
Germany   160 nM 

Daunorubicine 3.55 mM 250 nM 
PFIZER PHARMA GmbH, Berlin, 
Germany 25 nM 

Doxorubicine 3.68 mM 500 nM 
TEVA GmbH, Ulm, Germany 

50 nM 

Epirubicine 3.7 mM 370 nM 
TEVA GmbH, Ulm, Germany 

37 nM 

L-Asparaginase 2,500 U/ml 1 U/ml medac, Gesellschaft für klinische 
Spezialpräparate mbH, Wedel, 
Germany 

0.1 U/ml 

Cytarabine 206 mM 4 μM 
Mundipharma GmbH, Limburg an 
der Lahn, Germany 400 nM 
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72 hours after stimulation, 96-well plates were measured using the high throughput sampler of 

the BD LSRfortessa (5.5.7). Percentage of specific apoptosis was assessed by gating on dead cells 

in forward-side scatter and calculated as follows: 

 

% 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑝𝑜𝑝𝑡𝑜𝑠𝑖𝑠 = (
𝑎𝑝𝑜𝑝𝑡𝑜𝑠𝑖𝑠 (𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑) − 𝑎𝑝𝑜𝑝𝑡𝑜𝑠𝑖𝑠 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

100 − 𝑎𝑝𝑜𝑝𝑡𝑜𝑠𝑖𝑠 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
) ∙ 100 

  

5.4. Molecular biology 

5.4.1. Agarose gel electrophoresis of DNA 

Agarose gel electrophoresis to separate DNA fragments by size was performed on 1% agarose 

gels. Gels contained 1 g agarose (Biozym Scientific GmbH, Hessisch Oldendorf, Germany), 100 ml 

1xTAE buffer and 5 µl ethidium bromide (Carl Roth, Karlsruhe, Germany). Agarose and buffer 

were microwaved and ethidium bromide was added. Electrophoresis was performed in a gel 

electrophoresis chamber with 1xTAE buffer at 60 to 80 V.  10 µl DNA suspension were mixed 

with 5 µl 6xDNA-loading dye and run on the gel for one to two hours. The gel was checked under 

UV light and the respective bands were cut out from the gel.  

5.4.2. DNA gel extraction   

To extract and purify DNA from gels, NucleoSpin Gel and PCR Clean-up Kit (Macherey Nagel, 

Duren, Germany) was used. The gel slices were completely dissolved in membrane binding 

buffer by incubating at 50 °C for 10 min and vortexing. The mixture was loaded onto NucleoSpin 

Gel and PCR Clean-up Columns and centrifuged for 30 sec at 11,000 g to bind the DNA to the 

silica membrane of the column. The flow through was discarded and the column washed twice 

with ethanolic wash buffer to remove contaminations. The membrane was dried and DNA was 

eluted by adding elution buffer and centrifuging.  

5.4.3. Polymerase chain reaction  

Polymerase chain reaction (PCR) was applied to amplify the coding sequences for mCherry (from 

pSicoR-U6-EF1α-mCherry; Addgene, Cambridge, MA, USA), Venus (from plasmid 
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pRRL-PPT-SFFV-Venus, provided by Tim Schroeder) and mTagBFP (from plasmid pmTagBFP-C1, 

provided by Michael Schindler) using Pfu DNA Polymerase (Thermo Fischer Scientific, Waltham, 

MA, USA).  

 

The following components were used for 50 µl of PCR reaction:  

 5 µl 10xPfu-Buffer with MgSO4 

 2 µl dNTP mix 

 1 µl forward primer 

 1 µl reverse primer 

50 ng template DNA  

1 µl Pfu DNA Polymerase 

Ad 50 µl H2O (nuclease free) 

 

 

PCR was run in a PCR machine with the following program: 

 

 95 °C 2 min  

 95 °C 30 sec  

60 °C 30 sec   35x 

 72 °C 1 min 30 sec 

 72 °C 5 min   

 40 °C  10 min 

 

Subsequently, PCR products were checked on an agarose gel and purified. 

5.4.4. Colony-PCR 

One colony was picked and shaken over one day at room temperature in a 24-well plate 

containing 2 ml LB-medium with ampicillin. As template for the PCR, 2 µl of culture medium 

were used. 
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For colony PCR we used the following components (sufficient for 25 PCR products):  

104 µl GoTaq-Buffer 

 10.4 µl dNTP mix 

 20.8 µl forward primer 

 20.8 µl reverse primer 

2 µl template  

3.25 µl GoTaq Polymerase 

361 µl H2O 

 

PCR was run in a PCR machine with the following program: 

 

95 °C 2 min  

 95 °C 30 sec  

53 °C 30 sec   35x 

 72 °C 2 min  

 72 °C 5 min   

 

PCR products were subsequently checked on an agarose gel to detect the right colonies.  

5.4.5. Purification of PCR products 

PCR products were purified using the NucleoSpin Gel and PCR Clean-up Kit (Macherey Nagel, 

Duren, Germany). In short, two volumes of binding buffer were added to one volume of PCR 

product, loaded onto a NucleoSpin Gel and PCR Clean-up Column and centrifuged (30 s, 

11,000 g). The flow through was discarded and the silica membrane of the column was washed 

twice with ethanolic wash buffer. The membrane was dried by centrifuging for 1 min at 

11,000 g. Finally, DNA was eluted by incubating with 15 to 30 μl elution buffer and centrifuging 

(1 min, 11,000 g).  
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5.4.6.  Restriction digestion of DNA  

PCR products and the vector backbone were digested with the respective restriction enzymes 

(Table 2).  

Digestion took place at 37 °C for 45 min.  

10 U restriction enzyme 

1-2 μg DNA  

3 μl restriction enzyme buffer (10x)  

0.5 μl BSA 

ad 30 µl H2O   

 

After digestion of the plasmids, the efficiency was checked on an agarose gel. The bands were 

cut out and DNA was purified using NucleoSpin Gel and PCR Clean-up Kit (Macherey Nagel, 

Duren, Germany). 

5.4.7. Ligation of DNA fragments  

T4 DNA Ligase was used to ligate the DNA of the vector backbone with the corresponding 

fragment. The fragments were added at a 1:1 ratio. Usually, we used 100 ng DNA of the vector 

backbone and calculated the right amount of fragment which had to be ligated into the vector 

using the ligation calculator:  

http://www.promega.com/a/apps/biomath/index.html?calc=ratio 

Example:   

calculated amounts of vector and fragment  

1 µl Ligase Buffer 10x  

1 μl T4 DNA Ligase  

ad 10 μl H2O 

 

Ligations were incubated on a PCR thermoblock for 2 h at 22 °C.  

5.4.8. Plasmid minipreparation and midipreparation  

For plasmid minipreparations and midipreparations, cultures of E. coli in LB-medium with 

ampicillin were inoculated with starter cultures. Overnight cultures (5 ml for minipreparations, 
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50 ml for midipreparations) were pelleted (6,000 g, 4 °C, 10 - 30 min) and DNA was purified 

using NucleoSpin Plasmid EasyPure Kit for a minipreparation or NucleoBond Xtra Midi Kit for a 

maxipreparation (both from Macherey Nagel, Duren, Germany) according to the manufacturer’s 

instructions. In brief, pellets were re-suspended in buffer. DNA was released from the cells by 

adding lysis buffer and incubating for 2 to 5 min at room temperature. Subsequently, the 

mixture was neutralized by adding neutralization buffer, mixed and clarified by centrifugation.  

For a miniprep, the lysate was loaded onto a NucleoSpin Plasmid EasyPure Column and 

centrifuged (30 sec, 2,000 g). The column was washed and dried and DNA was eluted by adding 

50 μl elution buffer and centrifuging for 1 min at 12,000 g. 

For a midiprep, the lysate was filled into an equilibrated NucleoBond Xtra Column Filter which 

was put into a column. The filter was washed by adding equilibration buffer. Then, the filter was 

removed, the column was washed and DNA was eluted. The plasmid DNA was precipitated by 

adding isopropanol and centrifuging (30 min, 15,000 g, 4 °C). The supernatant was discarded and 

the pellet was washed with 70% ethanol (5 min, 15,000 g) and dried at room temperature. 

Finally, the pelleted plasmid DNA was dissolved in sterile water.  

5.4.9. Isolation of genomic DNA 

Genomic DNA was isolated out of 5 x 106 freshly thawed PDX cells using the QIAamp DNA Mini 

Kit (Qiagen, Venlo, NL). Briefly, cells were pelleted and re-suspended in PBS to a final volume of 

200 μl and 20 μl of protease were added. Subsequently, lysis buffer was added to the cell 

suspension and incubated at 56 °C for 10 min. Pure ethanol was added and the mixture was 

loaded onto a column and centrifuged (1 min, 6,000 g). After two washing steps, DNA was 

eluted from the column by adding elution buffer, incubating for 1 min and centrifuging.  

5.4.10. Determination of DNA quantity and quality 

DNA concentration and purity was determined by measuring 1 µl of DNA solution in a 

nanophotometer (Nanodrop 2000, Thermo Fisher Scientific, Waltham, MA, USA).  

 



Methods 

42 
 

5.5. Genetic engineering of cell lines and PDX cells 

5.5.1. Cultivation of E. coli DH5α cells 

E. coli DH5α cells were cultured at 37 °C. For long-term storage, cells were maintained in 

glycerol stocks. 1.5 ml of a bacterial culture were mixed with 100 μl of sterile glycerol solution, 

incubated for 30 min on ice and stored at -20 °C.  

5.5.2. Generation of competent cells for heat shock transformation  

100 ml LB medium was inoculated with 1 ml of an overnight culture of E. coli DH5α cells and 

cultured to an OD600 of 0.4 to 0.5. The OD600 of the culture was regularly checked on a 

photometer and as soon as the optimal density was reached, the culture was incubated on ice 

for 2 min. The cells were pelleted by centrifugation (5 min, 4,000 rpm, 4 °C) and the pellet was 

re-suspended in 15 ml TFB I on ice. After 5 min incubation on ice, the cells were centrifuged for a 

second time (5 min, 4,000 rpm, 4 °C) and the pellet was re-suspended in 4 ml TFB II on ice. Cells 

were stored in aliquots of 100 μl at -80 °C. 

5.5.3. Heat shock transformation of plasmid DNA into competent E. coli cells 

100 ng DNA were added to 50 μl of freshly thawed E. coli DH5α cells and gently mixed. The 

mixture was incubated on ice for 30 min, put at 42 °C for 90 sec and put back on ice for 2 min. 

The whole amount was transferred into 400 μl LB-medium and incubated at 37 °C for 45 min. 

Aliquots of 200 to 250 μl were plated onto agar-plates containing ampicillin and incubated at 

37 °C overnight. Plates were checked for colonies the next day.  

5.5.4. Lentivirus production using HEK-293T packaging cells 

Human cells were genetically engineered using third generation lentiviruses (Dull et al., 1998; 

Zufferey, Donello, Trono, & Hope, 1999). Lentiviruses were produced using the adherent cell line 

HEK-293T (human embryonic kidney cell line, DSMZ, Braunschweig, Germany) as packaging cell 

line. HEK-293T cells were grown in 75 cm2 culture flasks in DMEM supplemented with 10% FCS 

and 1% glutamine. At a confluency of 50 to 80%, cells of one 75 cm2 culture flask were 

transfected with the packaging plasmids 392 (2.5 µg), 393 (5 µg) und pMD2.G (1.25 µg) and the 

desired transfer vector (2.5 µg). Therefore, DNA suspension and 24 µl Turbofect (Thermo Fischer 
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Scientific, Waltham, MA, USA) were mixed with 1 ml DMEM (without FCS) and incubated for 

20 min at room temperature. Exhausted medium of HEK-293T cells was exchanged with fresh 

medium prior to transfection. DNA was added dropwise to the packaging cells. Transfected 

HEK-293T cells were incubated at 37 °C and 5% CO2 for 70 h. Subsequently, the supernatant was 

transferred into 15 ml falcons and centrifuged (400 g, 5 min, rt) to get rid of remaining cells. The 

supernatant was filtered and concentrated by centrifugation using Amicon-Ultra 15 centrifugal 

filter units (Merck Millipore, Darmstadt, Germany). The supernatant was centrifuged (2,000 g, 

30 min, rt) to a remaining volume of 200 to 250 µl and the virus concentrate was stored at -80 °C 

in aliquots of 10 µl.  

5.5.5. Determination of virus titers 

Titers of produced lentiviruses were determined on NALM-6 B-ALL cell line cells. 0.7 x 106 cells 

were seeded in 1 ml RPMI medium with supplements in a 24-well plate and virus was added at 

increasing concentrations (0.25 µl; 0.5 µl; 1 µl; 2 µl; 4 µl per well) together with 8 µg / ml 

polybrene. After 7 days, the amount of transduced cells for each virus concentration was 

assessed by flow cytometry and the virus titer was calculated as follows: 

 

𝑡𝑖𝑡𝑒𝑟 = (
𝐹 ∙ 𝑍

𝑉
) 𝑇𝑈/𝑚𝑙 

F = % of transduced cells 

Z = number of cells at infection 

V = volume of virus 

5.5.6. Lentiviral transduction of cell line cells and PDX cells 

For genetic engineering of cell line cells and PDX cells, we used the third generation lentiviral 

vector system described in 5.5.4. Prior to transduction, exhausted medium was exchanged with 

fresh medium. To increase transduction efficiencies, polybrene was added to a final 

concentration of 8 µg / ml. Polybrene reduces the charge repulsion between the viral particles 

and the cell surface (Davis, Rosinski, Morgan, & Yarmush, 2004). Subsequently, cell line cells or 

PDX cells were incubated with the lentivirus(es) encoding the desired transgene(s) at a 

multiplicity of infection of 300 to 1300. After 24 h, PDX cells were washed twice with PBS and 

either injected into a mouse or seeded on EL08 feeder cells. Transduced cell line cells were 

cultured in vitro. Transgene expression was assessed by flow cytometry.  
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5.5.7. Flow cytometry analysis of cell line cells and PDX cells 

All flow cytometry analyses were performed using a BD LSRFortessa (BD Biosciences, Heidelberg, 

Germany). Fluorescent proteins (mCherry, Venus, mTagBFP) and other fluorochromes (APC, 

APC-Cy7, DAPI) were measured using the laser and filter settings indicated in Table 8.  

Table 8: Filter settings of the BD LSRfortessa.  

Laser (nm) Longpass Filter Bandpass Filter Parameter 

355 505 450/50 DAPI 

405 595 605/12 Qdot 605  

 
475 525/50 Qdot 525 

  
450/50 mTagBFP 

488 600 695/40 PerCP-Cy5.5 

 
505 530/30 Venus 

  
488/10 SSC 

561 750 780/60 PE-Cy7 

 
685 710/50 PE-Cy5.5 

 
635 670/30 PE-Cy5 

 
600 610/20 mCherry 

 
570 585/15 PE 

640 750 780/60 APC-Cy7 

 
710 730/45 Alexa Fluor 700 

  
670/14 APC-Cy7 

 

96-well plates were measured using the High Throughput Sampler (HTS) option of the 

BD LSRFortessa. 

PDX samples were gated for living cells and for muCD45 negative cells to exclude mouse cells as 

shown in Figure 4. 
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Figure 4: Gating strategy for analysis of PDX cells by flow cytometry.  

Cells were gated on living cells in FSC/SSC (A) and on muCD45 negative cells to exclude mouse 

hematopoietic cells (B).   

5.5.8. Sorting of RGB PDX single cell clones 

ALL-265 single cell clones were sorted using the BD FACSAriaIII (BD Biosciences, Heidelberg, 

Germany). Cells were thawed and re-suspended in patient medium at a final concentration of 

10 x 106 cells / ml. Cells were sorted into a flow cytometry tube containing 500 µl RPMI medium. 

Finally, 1 x 105 cells of each cell clone were transplanted into two recipient mice in order to 

amplify each clone in two biological replicates.  
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6. Results  

Malignant tumors consist of heterogeneous tumor cells, and the most adverse clones within a 

tumor require effective treatment to cure the patient. Here, we aimed at a better understanding 

of clones with unfavorable characteristics with the final vision to eradicate aggressive subclones 

in the future. In this regard, we characterized single cell clones from a child with acute 

lymphoblastic leukemia regarding functional properties focusing on growth behavior and drug 

resistance. Our findings serve as basis to develop therapeutic strategies that eradicate 

aggressive subclones in the future.  

6.1. AL patients, the individualized xenograft mouse model of AL; genetic engineering 

in AL PDX cells and in vivo imaging of mice 

We aimed at characterizing functional characteristics of different subclones within a population 

of leukemia cells. Subclonal diversity cannot be investigated in leukemia cell lines because cell 

lines putatively changed clonal composition during the process of immortalization and in vitro 

passaging. However, primary leukemia cells from patients do not grow in vitro. 

To nevertheless be able to study patients’ cells, we amplified primary tumor cells derived from 

acute leukemia (AL) patients in severely immunocompromised mice, NSG mice, within the 

individualized xenograft mouse model (5.2). NSG mice lack T-cells, B-cells and functional natural 

killer cells and allow stable engraftment and propagation of acute leukemia patient samples 

(Jacoby et al., 2014; Schmitz et al., 2011; Shultz, Ishikawa, et al., 2007; Shultz, Pearson, et al., 

2007). Patient-derived xenograft (PDX) cells represent an attractive alternative to cell lines 

because they are more closely related to the original patient’s leukemia and reproduce the 

heterogeneity of ALL and AML. For this reason, PDX samples represent a suitable model for 

functional studies. 

For the experiments performed within this study, the PDX samples listed in Table 9 derived from 

three different acute leukemia patients were used: AML-393, AML-346 and ALL-265.  
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Table 9: PDX samples. 

PDX sample Patient Disease stage 
Passaging time  

(1 – 2 x 10
6
 cells / mouse) 

AML-393 Adult  
Relapse after stem cell 

transplantation  
35 days 

AML-346 Pediatric Relapse 42 days 

ALL-265 Pediatric Relapse 40 days 

 

All patients suffered from relapsed disease and thus aggressive and poor prognostic disease and 

are rather not to be considered representative.  PDX samples of these patients were established 

by engrafting primary patient cells in mice to propagate patients’ leukemia cells. Primary blasts 

of AML-393 were obtained from an adult patient treated at the Department of Internal 

Medicine III, Ludwig-Maximilians-Universität, Munich, and the xenograft sample was established 

in our lab. PDX AML-346 is derived from a child treated at the Kinderonkologie in Tübingen and 

the xenograft was established in Tübingen. PDX ALL-265 was established at the Kinderonkologie 

in Zürich by xenografting primary tumor cells from a child treated in Zürich.  

The time to cause a full leukemia in a mouse was similar for all three xenograft samples and 

varied between five and six weeks upon transplantation of 1 to 2 x 106 cells per mouse which is 

quite fast indicating that all three xenografts were derived from rather aggressive leukemia cells. 

When mice showed clinical signs of the disease, expanded PDX cells were recovered as 

described in 5.2.1 from mice spleens and bone marrows. Thus, PDX samples could be stably 

propagated in mice by serial re-passaging over multiple passages. Besides, PDX cells could be 

preserved by viably freezing at -80 °C and after thawing these cells could be re-injected into 

secondary recipient mice representing an enormous reservoir of PDX leukemia cells for 

experiments (5.3.2).   

Using a third generation lentiviral vector system, genetic engineering of PDX cells was 

successfully established in our lab in order to express diverse transgenes such as fluorescent 

proteins or luciferases in PDX cells (Terziyska et al., 2012) (5.5). In particular, expression of 

fluorescent proteins enables sorting and tracking of PDX cells while expression of luciferases 

allows monitoring of disease progression in a living mouse engrafted with leukemic cells. 

Expression of recombinant luciferase enables highly reliable and sensitive in vivo imaging for 

monitoring disease progression and treatment effects (Terziyska et al., 2012)(5.2.4).  
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Furthermore, as lentiviral transduction leads to an integration of the viral genome into the 

recipient genome, transgenes are stably expressed and hereditary.  

Unfortunately, in contrast to leukemic cell line cells, PDX cells are rather reluctant to lentiviral 

transduction and to receive high transduction efficiencies is challenging. Therefore, we aimed at 

working with PDX samples which could be efficiently lentivirally transduced in order to mark a 

representative amount of PDX cells which ensured to study a representative part of the whole 

patient sample. Besides, for the experiments performed in this study, preferably PDX samples 

with a short passaging time were chosen which could concomitantly be efficiently lentivirally 

transduced which was the case for all three PDX samples described here.  

Taken together, three PDX samples, AML-393, AML-346 and ALL-265, had been established in 

my lab or by others; samples exhibited reasonable passaging times in mice and enhanced 

susceptibility to lentiviral transduction and served as tools for my studies.  

6.2. Multicolor staining using lentiviral molecular marking   

In order to discriminate single cells from each other as prerequisite to generate single cell 

clones, I first molecularly marked cells of the chosen PDX AL samples with different colors. 

I used an innovative lentiviral multicolor staining termed red-green-blue (RGB) marking based on 

the RGB color model (Weber et al., 2011). The principle is that by mixing the three basic colors 

red, green and blue at different intensities, all colors of the rainbow can be generated. The RGB 

system is commonly used in electronic devices such as TV screens or video cameras. 

Weber and colleagues adapted the RGB technology to molecular marking of cells by 

simultaneously transducing cells with three different lentiviral vectors each coding for another 

fluorescent protein. If cells are transduced with three lentiviral vectors encoding a red, a green 

and a blue fluorescent protein at the same time, colors mix due to different numbers of each 

vector integrated per cell. Each cell can potentially be transduced with none, one, two, or three 

colors at a time and after transduction can contain different numbers of genomic integrations of 

each color. Consequently, each cell will express a specific, individual mixed color depending on 

the color transduced and the number of genomic integrations per color (Figure 5). 
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Figure 5: The principle of RGB marking.  

(A) Mixing of the basic colors red, green and blue at different intensities enables generation of various 

mixed colors. (B) Transduction of cells with three lentiviral vectors coding for a red, a green, and a blue 

fluorescent protein results in cells expressing numerous colors. Adapted from (Weber et al., 2011). 

To achieve mixed colors, more than one, at best multiple lentiviruses must enter the cell and 

transduction efficiencies must be high, at best above 50% for each color. Thus, high transduction 

efficiencies are crucial to obtain a sufficient color overlap in order to discriminate as many cells 

as possible based on their specific color. If efficiencies are too low, only single transgenic cells 

expressing either red or green or blue will be generated but no double transgenic and 

triple transgenic cells expressing more than one color.  

As a consequence, RGB marking allows tracking of individually marked cell clones over time. 

Moreover and in contrast to other methods, the great advantage of molecular color marking is 

that it allows separating living cells according to their specific colors and using these viable cells 

for further functional assays.  

6.2.1. Cloning of RGB transfer vectors for lentivirus production   

To perform molecular RGB marking in acute leukemia cell lines and PDX cells, we adapted the 

published RGB system to our vector system successfully used in our group before.  

Therefore, my colleague Michela Carlet cloned new lentiviral transfer vectors encoding a red, a 

green and a blue fluorescent protein together with Gaussia luciferase by replacing the 

copGFP gene in pCDH-EF1α-GLuc-copGFP by mCherry, Venus or mTagBFP. The copGFP gene was 

removed from the vector and the coding sequences for mCherry (from plasmid 

pSicoR-U6-EF1α-mCherry; Addgene, Cambridge, MA, USA), Venus (from plasmid 

pRRL-PPT-SFFV-Venus, provided by Tim Schroeder) and mTagBFP (from plasmid pmTagBFP-C1, 

provided by Michael Schindler), were PCR amplified (5.4.3) and cloned into the 

pCDH-EF1α-GLuc-copGFP vector using NsiI and SalI.   

A B 
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In addition, I cloned novel smaller lentiviral transfer vectors encoding mCherry, Venus or 

mTagBFP without Gaussia luciferase allowing to produce lentiviruses with enhanced titers due 

to decreased vector size. Therefore, the coding sequences for the three fluorescent proteins 

mCherry, Venus and mTagBFP were cloned downstream of the EF1α promoter using BamHI and 

SalI.  

These lentiviral vectors depicted in Figure 6 encoding three different fluorescent proteins with 

or without Gaussia luciferase were ultimately used to produce lentiviruses for transduction of 

cell line cells and PDX cells with the RGB system.   

 

 

Figure 6: Transfer vectors for production of third generation lentiviruses.  

(A) Transfer vectors encoding Gaussia luciferase and the three fluorescent proteins mCherry, Venus and 

mTagBFP. (B) Transfer vectors encoding the three fluorescent proteins without luciferase. 

EF1α = elongation factor 1 alpha promoter; GLuc = Gaussia luciferase; mCherry = red fluorescent protein; 

Venus = green fluorescent protein; mTagBFP = blue fluorescent protein; color indicates mCherry, Venus or 

mTagBFP.   

6.2.2. RGB marking enabled color marking of individual cell clones 

For RGB marking of cell line cells and PDX cells, we used lentiviruses that were produced with 

the plasmids depicted in Figure 6 coding for the fluorescent proteins mCherry, Venus and 

mTagBFP with or without Gaussia luciferase (5.5.4). Additional expression of Gaussia luciferase 

in the cells enabled bioluminescence in vivo imaging to follow leukemia development in living 

mice (Santos et al., 2009; Terziyska et al., 2012)(5.2.4).  

I established RGB marking in cell line cells first. Hence, NALM-6 pre-B-ALL cell line cells were 

transduced as described in 5.5.6 with lentivirus produced with the three different transfer 

vectors depicted in Figure 6A using a third generation lentiviral vector system (Dull et al., 1998; 

Zufferey et al., 1999). In comparison to PDX cells, lentiviral transduction of ALL cell lines is highly 

A B 



Results 

51 
 

efficient so that transduction efficiencies of 50% for each RGB virus were achieved in NALM-6 

cells in one single transduction. Fluorescence microscopy of RGB marked NALM-6 cells 

confirmed expression of different colors as shown in Figure 7 indicating color mixing of red, 

green and blue.  

 

 

 

Figure 7: Color expression of RGB marked cell line cells assessed by fluorescence microscopy.  

NALM-6 cell line cells were transduced with lentiviruses produced with the three constructs shown in 

Figure 6A and transgene expression was determined by fluorescence microscopy.  

Since flow cytometry allows analysis of a higher number of cells in parallel compared to 

fluorescence microscopy, I developed the published RGB method further and established flow 

cytometry analysis of RGB marked cells. Using a BD LSRfortessa with the filter settings indicated 

in Table 8 enabled to measure mCherry, Venus and mTagBFP in parallel (5.5.7). Flow cytometry 

analysis of RGB marked NALM-6 cells, 50% positive for each color, revealed expression of each 

mCherry, Venus and mTagBFP at different intensities suggesting different numbers of genomic 

integrations per color. Importantly, expression of only one color does not allow clear separation 

of subclones. Cells must express at least two or even better three colors at different intensities 

in order to be distinguishable from each other. A major number of cells were successfully 

transduced with several colors at the same time indicated by expression of several colors per 

cell (Figure 8A). As expected, expression of multiple colors appeared as homogeneous clouds in 

2-dimensional or 3-dimensional plots indicating multiple Gaussian distributions in each color in 

parallel. 

Because it was unknown how single cell clones would look like in flow cytometry, we generated 

single cells of the RGB marked NALM-6 cell line depicted in Figure 8A by limiting dilution and 
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seeding 0.5 cells per well in 96-well plates (5.3.5). Flow cytometric analysis of regrown cells 

confirmed clonal expansion of single cells: individual cell clones expressed unique colors and 

could be distinguished from each other using flow cytometry. Remarkably, RGB marking also 

enabled to detect that in some wells not only one cell but two cells had been seeded and 

amplified. Accordingly, cells in these wells did not consist of one but of two cell clones which 

could clearly be separated from each other due to individual color expression using flow 

cytometry (Figure 8B). Expansion of not one single cell but two cells occurred even in two out of 

five wells where RGB marked NALM-6 cells had regrown after limiting dilution. Using RGB 

marking, we could easily identify the wells containing more than one single cell clone.  
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Figure 8: Color expression of RGB marked cell line cells assessed by flow cytometry.  

(A) NALM-6 cell line cells were transduced (50% for each color) with lentiviruses produced with the three 

constructs shown in Figure 6A and transgene expression was determined by flow cytometry. Shown are 

three dot plots displaying expression of mCherry, Venus and mTagBFP and one cube illustrating color 

distribution in 3D; red arrow = mCherry, green arrow = Venus, blue arrow = mTagBFP; depicted dot plots 

are pregated on living cells in FSC/SSC. (B) RGB NALM-6 cells of (A) were seeded at a concentration of 

0.5 cells / well and expanded. Color expression was determined by flow cytometry upon regrowth of the 

cells in each well. Upper panel: amplification of one cell in one well, lower panel: amplification of two cells 

in one well.  

Single clones appeared ellipsoid in 2-dimensional and egg-shaped in 3-dimensional flow 

cytometry plots according to Gaussian distribution of each color. Unfortunately, single cell 

clones absorbed a large area or volume in 2-dimensional or 3-dimensional flow cytometry plots. 

This unexpected heterogeneity in color expression in genetically identical cells of one clone 

unpleasantly limited the number of single cell clones which could be monitored simultaneously 

using flow cytometry. 

A 
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In summary, these data indicate that RGB marking could be used to individually stain and track 

single cell clones as it enabled clear separation of single cell clones by their unique color using 

flow cytometry.  

6.2.3. RGB marking of PDX AL cells 

We aimed at studying subclonal heterogeneity in patients’ cells and not in leukemia cell lines. As 

ideal tool, we aimed at generating PDX samples with numerous cells expressing two or at best 

three colors and each color in Gaussian distribution. This proved a technically highly demanding 

task due to two major challenges - lentiviral transduction efficiency in PDX AL cells (described 

here) and homing efficiency of PDX AL cells in NSG mice (described in 6.2.4).  

Since PDX AL cells are rather reluctant towards lentiviral transduction, our studies were 

restricted to these patient samples which could be transduced to a high extent to perform a 

sufficient RGB marking and to discriminate as many cells as possible. Furthermore, we preferred 

AL PDX samples with a rather short passaging time in order to perform the experiments within a 

reasonable time frame.  

In the beginning, various attempts to generate an efficiently RGB marked PDX sample by 

simultaneous transduction with lentiviruses produced from the three lentiviral vectors encoding 

Gaussia luciferase and the different fluorescent proteins depicted in Figure 6A were 

unsuccessful due to too low transduction efficiencies. This one step transduction with all three 

viruses did not result in transduction efficiencies that were high enough to generate RGB 

marked PDX cells containing double colored and triple colored cells expressing multiple 

individual mixed colors besides single colored cells.  

We assumed that transduction with only one single vector per transduction round might yield a 

higher transduction rate for each single vector alone compared to transduction with three 

vectors at the same time. Therefore, I performed sequential rounds of lentiviral transduction 

with only one single vector per transduction round over three mouse passages to increase the 

efficiency for each single color. Indeed, sufficiently RGB marked PDX cells of PDX sample ALL-265 

cells could be generated by successive transduction with the three vectors depicted in Figure 6A 

encoding Gaussia luciferase and mCherry, Venus or mTagBFP (Figure 9). In detail, transduction 

of PDX ALL-265 cells in three steps yielded cells 40% transgenic for mCherry, 81% for Venus and 

18% for mTagBFP (see Table 10 and Figure 15A, upper panel).  
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Figure 9: Experimental procedure for generation of RGB ALL-265.  

PDX ALL-265 cells were successively RGB marked by consecutive transduction with the 3 lentiviruses 

depicted in Figure 6A encoding Gaussia luciferase and red, green or blue over 3 mouse passages resulting 

in RGB marked ALL-265 cells 40% transgenic for mCherry, 81% for Venus and 18% for mTagBFP (see Table 

10 and Figure 15A, upper panel).  

In addition, since it was known in the lab that smaller transfer vectors in general resulted in 

viruses with higher virus titers, we intended to increase virus titers by cloning of smaller 

constructs without expressing Gaussia luciferase depicted in Figure 6B. Indeed, compared to 

lentiviruses produced from transfer vectors encoding Gaussia luciferase and additionally one 

color, the smaller transfer vectors encoding one color but no Gaussia luciferase exhibited in 

general enhanced virus titers ranging from 1 x 1010 TU / ml to 1 x 1011 TU / ml compared to titers 

of big constructs (Figure 6A) which mainly varied between 1 x 109 TU / ml to 1 x 1010 TU / ml as 

determined on NALM-6 cell line cells (5.5.5).  

Finally, RGB marked cells of two AML samples, AML-393 and AML-346, could be generated by 

simultaneous transduction with the three viruses produced with these smaller constructs 

illustrated in Figure 10 indicating that decreased vector size resulted in increased transduction 

efficiencies. In detail, RGB marked AML-393 cells were 40% transgenic for mCherry, 66% for 

Venus and 82% for mTagBFP, while RGB marked AML-346 cells were 20% positive for mCherry, 

36% for Venus and 58% for mTagBFP (see Table 10 and Figure 12).  
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Figure 10: Experimental procedure for generation of RGB AML-393 and RGB AML-346.  

PDX AML-393 and AML-346 cells were RGB marked by simultaneous transduction with the 3 lentiviruses 

(encoding red, green and blue) depicted in Figure 6B resulting in RGB marked AML-393 cells expressing 

40% mCherry, 66% Venus and 82% mTagBFP and in RGB marked AML-346 cells 20% transgenic for 

mCherry, 36% for Venus and 58% for mTagBFP (see Table 10 and Figure 12A and B, upper panels).  

Taken together, three RGB marked PDX samples, ALL-265, AML-393 and AML-346, described in 

the following table, were successfully generated by one or three step transduction with 

lentiviruses encoding three different fluorescent proteins with or without Gaussia luciferase.  

 

Table 10: Transduction efficiencies of lentivirally transduced RGB PDX samples 

color = mCherry, Venus or mTagBFP; GLuc = Gaussia luciferase 

Sample Lentiviral vectors Transduction performed 
Transduction efficiencies (%) 

red green blue 

ALL-265 pCDH-EF1α-GLuc-color successively in three steps 40 81 18 

AML-393 pCDH-EF1α-color in one step 40 66 82 

AML-346 pCDH-EF1α-color in one step 20 36 58 

 

6.2.4. RGB marking uncovered clonal outgrowth upon in vivo transplantation of AML  

We aimed at generating RGB marked PDX AL cells as stable tools for future series of 

experiments. As PDX AL cells are reluctant towards growth in vitro, we relied on amplifying cells 

in NSG mice. 

Hence, as described, we transduced freshly isolated PDX cells with the RGB lentiviruses and 

transplanted RGB marked cells into one mouse for amplification. In parallel and in order to 

control for any influence that mouse passaging might have, transduced PDX cells were seeded 

on irradiated EL08 feeder cells and co-cultured in vitro (5.3.3, Figure 11). Generally, PDX cells do 
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not grow in vitro, however co-culture with EL08 feeder cells enabled to keep them alive in 

culture for several days allowing to monitor transgene expression. Accordingly, PDX cells of 

AML-393 and AML-346 were simultaneously transduced with the three RGB lentiviruses each 

encoding a different fluorescent protein (Figure 6B) as described in 6.2.3. RGB marked cells of 

both PDX samples were transplanted into mice and, in addition, co-cultured on feeder layer for 

several days until they expressed the transgenes. 

 

 

Figure 11: Amplification, lentiviral transduction and in vitro co-culture of RGB PDX cells.  

2.5 x 10
6
 PDX cells of AML-393 and AML-346 were RGB marked as described using three lentiviruses 

encoding red, green and blue depicted in Figure 6B. Transduced cells were either transplanted into 

recipient mice (1 x 10
6
 cells per mouse) or co-cultured with irradiated EL08 feeder cells. Transgene 

expression was measured by flow cytometry after 6 days of in vitro culture and after mouse passage.  

Flow cytometry analysis of in vitro co-cultured PDX AML-393 and AML-346 cells revealed 

sufficient transduction efficiencies, although unfortunately still well below cell lines; color 

expression revealed a Gaussian distribution for each color indicating that PDX cells were 

homogeneously transduced with red, green and blue (Figure 12A and B, upper panels). In 

contrast, when the same RGB marked PDX AML cells were amplified in mice, color expression in 

double and triple colored cells became patchy, while ellipsoid, egg-shaped clones started to 

appear (Figure 12A and B, lower panels). Patchiness is best analyzed in double and triple colored 

cells (upper right in the dot plots and upper right in the 3D cubes) because cells expressing two 

or three colors at different intensities can more easily be distinguished from each other than 

cells expressing only one color.  
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Figure 12: RGB marking of AML PDX cells revealed clonal outgrowth upon in vivo transplantation.  

Transgene expression of RGB AML-393 (A) and AML-346 (B) was determined by flow cytometry after 

6 days of in vitro co-culture (upper panel) and after xenotransplantation (1 x 10
6
 cells / mouse, lower 

panel). Red arrows highlight dominant clones. Cells are pregated on living cells in FSC/SSC.    

These data indicated that homing and growth of PDX AML cells in mice was not homogeneous, 

but rather some cells had homing and growth advantage, while other cells were completely lost 

resulting in areas in flow cytometry not covered by cells upon passaging. Thus, RGB marking of 

PDX AML cells detected that PDX AML samples changed during one mouse passage equaling 
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approximately six weeks and that the clonal composition of the sample was severely disturbed 

by passaging through mice. These data are in line with published data indicating that the 

individualized PDX mouse model of AML is associated with certain clonal selection (Klco et al., 

2014).  

6.2.5. Clonal outgrowth aggravated upon serial transplantation in ALL-265 

As mouse model-based clonal selection could potentially interfere with the scientific questions, 

we next changed the AL subtype and studied ALL cells which are known from the literature to 

suffer only limited clonal alterations upon passaging through mice (Schmitz et al., 2011). 

Fortunately, ALL-265 showed an only slightly altered color distribution upon amplification in 

mice. Nevertheless, clonal selection aggravated over serial transplantation as illustrated in 

Figure 13. 1 x 106 PDX ALL-265 cells expressing mCherry and Venus at different intensities 

(passage 1) were serially passaged through mice and transgene expression was checked after 

each additional mouse passage. Flow cytometric analysis uncovered slight clonal outgrowth 

already after passage 2 while after passage 3, we could clearly detect outgrowth of three double 

colored clones located in the upper right section of the dot plots.  

 

Figure 13: Clonal outgrowth aggravated upon passaging in ALL-265.  

Cells of a red and green colored PDX ALL-265 sample were serially passaged through mice 

(1 x 10
6
 cells / mouse, n = 5 for passage 2 and passage 3). Color distribution was checked by flow 

cytometry after each mouse passage. Shown is one dot plot out of five identical for passage 2 and passage 

3. Red arrows highlight dominant cell clones. Cells are gated on living cells in FSC/SSC and on 

muCD45 negative cells as shown in Figure 4.  

In summary, clonal selection aggravated upon passaging in PDX ALL-265 suggesting that some 

clones were more dominant compared to others and that during each mouse passage certain 



Results 

60 
 

cells got lost; nevertheless, we considered the color distribution of the three colored sample 

PDX ALL-265 (see Figure 15A, upper panel) generated as described in Figure 9 as sufficient for 

the planned studies. 

6.3. Limiting dilution transplantation of RGB PDX cells to generate single cell clones  

We next aimed at generating single PDX cell clones from our RGB stained samples. As described 

in 3.2.3, leukemias are maintained by their LSCs since only LSCs have the potential to initiate 

leukemia in xenografts and to propagate the disease upon serial transplantation. In contrast, 

non-LSCs without cancer initiating potential are lost upon serial transplantation.  Such, each 

single cell clone originates from a single RGB marked PDX stem cell and all cells developing 

thereof are putatively genetically identical. 

Towards this aim, we performed a limiting dilution transplantation assay (LDA, 5.2.2) in which 

we transplanted different numbers of RGB marked PDX cells into groups of mice. Subsequently, 

cells were recovered from spleen of diseased mice and analyzed by flow cytometry for color 

expression which was compared between the groups. In this context, we performed two LDAs 

with generated RBG marked PDX samples AML-393 and ALL-265.  

6.3.1. Stem cell frequencies of PDX ALL-265 and PDX AML-393 

AML-393 cells that were RBG marked by simultaneous transduction with the three lentiviruses 

as illustrated in Figure 10 were transplanted at limiting dilution into groups of mice as described 

in Table 11.  

Table 11: Numbers of cells and mice used for LDA of RGB AML-393.  

Calculated LSC frequency: 1/2,000 cells or higher. 

cells / mouse engraftment days to full leukemia (mean) 

2 x 10
6
 3/3 35 

2 x 10
5
 3/3 39 

2 x 10
4
 3/3 49 

2 x 10
3
 3/3 56 
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Accordingly, RGB ALL-265 cells generated as described in Figure 9 were subsequently 

transplanted at limiting dilution into groups of mice as shown in Table 12.   

Table 12: Numbers of cells and mice used for LDA of RGB ALL-265.  

Calculated LSC frequency: 1/27 cells (CI = 95%) (lower = 57.8; upper = 12.5). 

cells / mouse engraftment days to full leukemia (mean) 

1 x 10
5
 3/3 41 

1 x 10
4
 3/3 54 

1 x 10
3
 3/3 65 

333 5/5 83 

1 x 10
2
 10/10 81 

33 3/5 92 

 

Table 11 and Table 12 illustrate the amount of cells transplanted per mouse, the number of 

engrafted mice per group and the mean value of days until the mice had to be sacrificed due to 

leukemia for each group for both LDAs.  

Stem cell frequencies of RGB AML-393 and RGB ALL-265 were calculated based on the amount 

of transplanted cells and the total number of engrafted mice per group according to Poisson 

statistics, using the ELDA software application (http://bioinf.wehi.edu.au/software/elda/) (Hu & 

Smyth, 2009).  

For RGB AML-393, we could not clearly determine the LSC frequency because we observed 

engraftment in all mice that had received 2 x 103 cells but we did not check if a lower amount of 

cells would have initiated leukemia as well. Therefore, the stem cell frequency for RGB AML-393 

is at least 1 LSC in 2,000 cells or even higher and thus rather high compared to published data, 

although published data determined LSC frequency mostly upon transplanting primary AML cells 

and not PDX AML cells (Eppert et al., 2011; Sarry et al., 2011). 

For RGB ALL-265, we calculated a stem cell frequency of 1 LSC in 27 cells which is in line with 

published data showing that in ALL stem cell frequencies tend to be rather high (Kelly et al., 

2007; Rehe et al., 2013). Precisely, all ten mice that were injected with 100 cells engrafted and 

even 3 of 5 mice injected with only 33 cells engrafted suggesting that in line with published 

results nearly every cell of this ALL sample has stem cell properties and is able to propagate the 

disease.  
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6.3.2. Transplantation of low cell numbers delayed disease progression in recipient mice  

Both LDAs revealed a close correlation of the amount of transplanted cells and the survival time 

of the recipient mice. Mice transplanted with as many as 1 x 105 cells of RGB ALL-265, 

succumbed to the disease within 41 days, whereas mice that had been injected with only 

33 cells survived for up to 92 days (Table 12; Figure 14A). In the LDA of RGB AML-393, survival 

time of recipient mice ranged from 35 days for 2 x 106 transplanted cells  up to 56 days for mice 

injected with solely 2 x 103 cells (Table 11; Figure 14B). In general, mice that had received more 

cells died quicker, while disease progression was delayed upon transplantation of low cell 

numbers. These results are illustrated in the Kaplan Meier survival curves depicted in the 

following.  

 

 

Figure 14: Kaplan Meier survival curves for LDAs with cells of RGB ALL-265 and AML-393.  

Kaplan Meier survival curves for mice engrafted with different amounts of cells of RGB ALL-265 (A) and 

RGB AML-393 (B) as described in Table 11 and Table 12. Mice were sacrificed as soon as they showed 

clinical signs of the disease. 

6.3.3. Transplantation of low cell numbers allowed isolation of specifically colored single 

cell clones 

To investigate whether the amount of colors correlated with the amount of transplanted cells, 

color expression in spleen derived cells of each LDA mouse was determined when the mouse 

was sacrificed. Human cells in mouse spleens were purified and analyzed by flow cytometry for 

expression of mCherry, Venus and mTagBFP. For both PDX samples, ALL-265 and AML-393, we 
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found the amount of expressed colors to be dependent on the amount of transplanted cells. In 

general, the more cells were transplanted, the more colors were obtained (Figure 15). 

Accordingly, transplantation of many cells yielded only a slight decrease in colors whereas 

transplantation of marginal amounts of cells resulted in a profound reduction of colors. Upon 

transplantation of few cells, clonal outgrowth was more prominent in both samples and single 

cell clones could be distinguished from each other based on their individual colors. Ultimately, 

when only minute amounts of cells were injected into mice, flow cytometric analysis revealed 

clonal expansion of only one single clone.  
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Figure 15: Transplantation of low cell numbers decreased the amount of differently colored populations.  

Cells of RGB ALL-265 (A) and RGB AML-393 (B) were transplanted at limiting dilution as described in Table 

12 and Table 11. Expression of mCherry, Venus and mTagBFP was assessed by flow cytometry in spleen 

derived cells of all recipient mice. Color expression of one representative mouse for the indicated LDA 

group is shown in 2- and 3-dimensional plots. Depicted dot plots are pregated on living cells and on 

muCD45 negative cells as shown in Figure 4.  

B 
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6.3.4. Generating single cell clones of ALL-265 

We decided to restrict our further studies to sample PDX ALL-265. As described in 6.3.3, limiting 

dilution transplantation of RGB ALL-265 resulted in generation of numerous individually colored 

single cell clones. In those LDA samples of RGB ALL-265, in which either only one single cell had 

engrafted or engrafted single cell clones could clearly be separated from each other by flow 

cytometry, clones were purified for further studies using flow cytometry (5.5.8). This was the 

case in groups in which 33, 100 or 333 cells had been transplanted per mouse. To have enough 

cells for all functional analyses, sorted cells of each single cell clone were injected into two 

recipient mice for amplification in two biological replicates. Two samples without limiting 

dilution, but at different passages were used as control for further experiments and called 

“Bulk 1” and “Bulk 2”; Bulk 2 was obtained by amplification of 1 x 105 cells of Bulk 1. The 

experimental procedure for generation of single cell clones is summarized in Figure 16. 

 

Figure 16: Procedure for generation of single cell clones expressing unique colors.  

RGB ALL-265 Bulk 1 cells were transplanted at limiting dilution (Table 12, Figure 15A). Individually colored 

single cell clones could be distinguished upon injection of low cell numbers 

(333 , 1 x 10
2 

or 33 cells / mouse) and purified using flow cytometry. Bulk 2 was generated by 

transplantation of 1 x 10
5
 cells of Bulk 1. 

Thus, I generated eight single cell clones by limiting dilution transplantation of a RGB marked 

PDX ALL-265 sample. Since all clones originated from clonal expansion of single individually 
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colored LSCs, they were defined by unique colors and could be distinguished from each other 

using flow cytometry. Specific color expression was determined for each clone and could be 

illustrated in 2- or 3-dimensional plots as shown in Figure 17. As major advantage, single cell 

clones revealed highly distinct colors so that they could be distinguished from each other in 

mixtures using flow cytometry – an important characteristic for the later functional competitive 

analyses in mice. 
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Figure 17: Generated ALL-265 single cell clones. 

8 clones were sorted using flow cytometry and re-passaged for amplification (1 x 10
5
 cells / mouse; 

2 biological replicates / clone). Human cells were purified out of mouse spleens and measured by flow 

cytometry. Depicted are 2- and 3-dimensional plots to illustrate color expression of each cell clone. Cells 

are gated on living cells and muCD45 negative cells according to Figure 4; shown is color distribution of 

1 biological replicate per clone. 
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Although RGB marking indicates with a high likelihood that single cell clones resulted from a true 

single cell, two different cells might by chance receive and express the identical color 

combination. To verify that each clone was truly derived from a single cell at the beginning, our 

collaboration partner Kerstin Cornils (Forschungsabteilung Zell- und Gentherapie, UK Hamburg-

Eppendorf, Hamburg, Germany) performed LM-PCR to identify viral integration sites in all 

clones. In contrast to flow cytometry which could distinguish single cell clones by expression of 

different colors, LM-PCR allowed discrimination of single cell clones on the molecular level 

based on individual viral integration sites. LM-PCR detected at least two individual integration 

sites per clone which served as an exclusive marker for that clone strengthening the hypothesis 

that all clones originated from clonal expansion of single cells.  

In summary, combining the individualized xenograft mouse model with genetic engineering 

allowed multicolor staining of PDX cells. Limiting dilution transplantation enabled generating 

viable single cell clones from one patient’s ALL expressing an individual color and Gaussia 

luciferase enabling bioluminescence in vivo imaging. Finally, we had extensive amounts of viable 

cells of each cell clone at hands which we subjected to functional characterization in vitro and in 

vivo regarding growth behavior and chemosensitivity.  

6.4. Single cell clones differed in growth behavior in vivo  

The subclonal architecture in ALL is complex including different subpopulations. Moreover, 

subclonal composition in ALL patients is dynamic and changes during disease progression 

(Anderson et al., 2011; Ma et al., 2015; Mullighan et al., 2008; van Delft et al., 2011). 

Accordingly, leukemic clones that were dominant at diagnosis may be small clones at relapse or 

may even have disappeared entirely. In contrast, minor clones at diagnosis may become 

dominant at relapse indicating either favorable growth behavior or impaired sensitivity to 

chemotherapy. Hence, subclones with a particular survival benefit may outcompete less fit 

clones over time.  

Having now eight differently colored ALL-265 single cell clones at hand, we performed functional 

in vivo studies comparing the clones between each other using two bulk samples as controls.  

We first asked, whether certain clones might exhibit adverse growth properties and especially 

show slow growth patterns which is associated with stemness and drug resistance. Slow growth 

might be considered as adverse clonal characteristic as it might be related to drug resistance. To 
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answer this question, we subjected single cell clones to competitive xenotransplantation 

experiments.   

6.4.1. Competitive transplantation of five single cell clones uncovered divergent growth 

properties among clones 

To investigate whether the single cell clones differed in growth behavior, differently RGB 

marked clones were transplanted into the same recipient mice in a competitive setting. Since I 

could distinguish up to five single cell clones via flow cytometry based on their individual colors, 

I mixed five clones in equal parts and injected them into immunocompromised mice. Finally, I 

assessed how clonal composition had changed during one mouse passage by comparing clonal 

composition before and after mouse passage (Figure 18).  

 

 

 

Figure 18: Experimental procedure for competitive transplantation of five clones. 

Five differently colored clones were mixed in equal parts and injected into the same recipient mice 

(2.5 x 10
4
 cells / mouse; n = 4). After mouse passage, leukemic cells were isolated out of mouse spleens 

and percentage of each clone was assessed by flow cytometry.  

Due to individual color expression, the clones could clearly be separated from each other by 

flow cytometry (Figure 19). All five clones were mixed so that each clone accounted for 20% of 

total cells. When mice showed advanced disease, leukemic cells were analyzed for the presence 

of all five clones. Flow cytometry analysis of leukemic cells after mouse passage revealed 

marked changes in constitution of leukemic cells: two clones had overgrown the remaining 

three clones. In detail, we found clone #7 and clone #5 to be considerably enriched whereas 

clone #1, clone #8 and clone #6 had markedly decreased (Figure 19).  
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Figure 19: Competitive transplantation of five clones uncovered divergent growth behavior.  

Equal numbers of clones #1, #5, #6, #7 and #8 were mixed (left side, upper panel) and transplanted 

(2.5 x 10
5
 cells / mouse; n = 4). Percentage of each clone in spleen derived cells was assessed by flow 

cytometry after transplantation (left side, lower panel). Depicted are dot plots illustrating expression of 

mCherry and mTagBFP for all clones and cubes to illustrate color expression in 3D. Shown is one 

representative mouse out of four. Cells are pregated on living cells in FSC/SSC and muCD45 negative cells 

(Figure 4). The graph (right side) illustrates the percentage of each clone before and after transplantation 

(depicted are mean values for each clone, n = 4; SDs: clone #1 1.4%, #5 5.0%, #6 2.5%, #7 3.9%, #8 1.5%; 

results of single mice are illustrated in Figure 23C). 

Our data indicate that single PDX ALL cell clones reveal a marked heterogeneity regarding in vivo 

growth behavior and that certain clones show an especially slow growth pattern. 

6.4.2. Competitive transplantation of two single cell clones confirmed differences in 

growth behavior 

Competitive engraftment experiments with five clones clearly demonstrated the selective 

growth advantage of clone #7 and clone #5 compared to clone #1, clone #8 and clone #6. To 

further validate these findings, I reduced the complexity and repeated the experiment as 

depicted in Figure 20 with combinations of only two clones to test if clone #5 maintained its 

growth advantage when transplanted together with only one additional clone in a competitive 
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setting. This second, complementary experimental approach allows understanding, whether 

growth advantage is clone-inherent or a condition relying on the entire complex tumor. 

Accordingly, clone #5 was either combined with clone #6 or with clone #8 or in another 

experiment, I tested the combination of clone #6 and clone #8.   

 

 

Figure 20: Procedure for competitive transplantation of two clones. 

Two differently marked clones were mixed in equal parts and transplanted into mice (1 x 10
5
 cells / mouse; 

n = 5). After mouse passage, leukemic cells were isolated out of mouse spleens and the percentage of each 

clone was assessed by flow cytometry.  

Competitive transplantation of clone #5 and clone #6 revealed that clone #5 had significantly 

overgrown clone #6 so that in average 93% of total leukemic cells belonged to clone #5 and only 

7% to clone #6 (Figure 23A). The result taken from one representative mouse of this 

combination is depicted in Figure 21A.  

The same experiment was performed with mixtures of clone #5 and clone #8 and of clone #6 

and clone #8. The results of one representative mouse for each combination are depicted in 

Figure 21B and Figure 21C. Here, we could also detect differences in clonal composition before 

and after xenotransplantation. However, the effects were less prominent. In the combination of 

clone #5 and clone #8 we observed only a minor change in favor of clone #5 so that in average 

62% belonged to clone #5 and 38% to clone #8. Combination of clone #6 and clone #8 resulted 

in a slight outgrowth of clone #8 to 75% in average combined with a decrease of clone #6 to 25% 

in average (Figure 23A).  



Results 

73 
 

  

 

 

B 

C 

A 



Results 

74 
 

Figure 21: Competitive transplantation of two clones confirmed different growth properties in vivo.  

Cells of two differently marked clones were mixed in equal parts (upper panels) and transplanted 

(1 x 10
5
 cells / mouse; n = 5). Shown is one representative mouse for each of the three different 

combinations. (A-C) Results for competitive transplantation of indicated clone pairs. Percentage of each 

clone in spleen derived cells was determined by flow cytometry (lower panels). Depicted dot plots are 

gated on living cells in FSC/SSC and muCD45 negative cells (Figure 4). Graphs show ratios of both clones 

before and after mouse passage (n = 5, mean values; A: SD 1.2%; B: SD 3.2%; C: SD 5.0%; results of single 

mice are illustrated in Figure 23A). 

 

These results were consistent with our previous observations, obtained in the experiment in 

which we transplanted five clones described in 6.4.1, and confirmed that clone #5 kept its 

growth advantage in vivo irrespectively whether it was transplanted with one or four clones into 

the same mouse. Furthermore, clone #8 and, particularly, clone #6 exhibited impaired growth 

behavior when transplanted together with clone #5. In summary, these data indicate that the 

three clones tested showed divergent growth properties in vivo when mixed and transplanted in 

a competitive setting in pairs of two clones. Especially, the prominent increase of clone #5 when 

combined with clone #6 was remarkable and independent from the presence of other clones 

from the tumor. 

To investigate whether the growth advantage of clone #5 would persist over prolonged periods 

of time, we tested whether clone #5 would continue to overgrow clone #6 and clone #8 upon 

serial re-transplantation. Cells of two representative samples of the first competition cycle of 

the combination of clone #5 and clone #6 depicted in Figure 21A and of the combination of 

clone #5 and clone #8 depicted in Figure 21B were chosen and each injected into secondary 

recipient mice. As shown in Figure 22, clonal outgrowth of clone #5 proceeded also upon 

secondary transplantation for both combinations underlining favorable growth properties of 

clone #5 compared to clone #6 and clone #8.  
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Figure 22: Growth advantage of clone #5 continued upon re-transplantation. 

2 representative samples of clone #5 plus clone #6 (Figure 21A) and clone #5 plus clone #8 (Figure 21B) 

were injected into secondary recipient mice (n = 3 for each combination; 1 x 10
4
 cells / mouse); 

percentages for both clones were determined by flow cytometry, respectively. Graphs show mean values 

(n = 6: 2 biological and 3 technical replicates) of the percentages of each clone as injected (mix) and after 

first and second transplantation (for results of single mice and statistical data see Figure 23A and Figure 

23B).   

Remarkably, for all competitive engraftment experiments the results were highly comparable 

between all mice with astonishingly low inter-mouse variances. Upon transplantation of two 

single cell clones in a competitive setting, we detected only minor standard deviations between 

1.2% and 5.0% (Figure 23A). This was also true for the re-transplantation experiments of 

samples consisting of two clones in which two representative samples were transplanted into 

secondary recipient mice. Here, we discovered standard deviations of only 1.6% and 7.8%, 

although two different biological replicates were used for secondary transplantation (Figure 

23B). Ultimately, the percentages for each clone were also highly reproducible among all 

biological replicates with very low standard deviations between 1.4% and 5% when five clones 

were injected into the same mouse.  
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Figure 23: Outcompete experiments yielded reproducible results in all mice. 

Flow cytometry analysis of leukemic cells re-isolated after primary (A) or secondary (B) transplantation of 

mixtures of the indicated single cell clones. (A) Competitive transplantation of different pairs of clones as 

depicted in Figure 21. Clone #5 + clone #6: mean #5 93%, #6 7%, SD 1.2%; clone #5 + clone #8: 

mean #5 62%, #8 38%, SD 3.2%; clone #6 + clone #8: mean #6 25% #8 75%, SD 5.0%. †, $, § and # indicate 

samples that were injected into secondary recipients (B) Secondary transplantation as shown in Figure 22. 

Clone #5 + clone #6: mean #5 96%, #6 4%, SD 1.6, clone #5 + clone #8: mean #5 66%, #8 34%, SD 7.8. 

(C) Competitive transplantation of five clones as illustrated in Figure 19. Mean values: clone #1 15%, #5 

31%, #6 9%, #7 34%, #8 12%, SDs: #1 1.4%, #5 5.0%, #6 2.5%, #7 3.9%, #8 1.5%. Each bar illustrates 

analysis of cells re-isolated out of one single mouse.   

In summary, we could show that five single cell clones derived from PDX ALL-265 exhibited 

divergent growth behavior when transplanted into the same recipient mice. Using 

transplantation experiments with different combinations of two clones, we could confirm the 

tendencies observed in the competitive transplantation experiment with five clones: clone #6 

and clone #8 showed the putatively adverse characteristic of slow growth in all competitive in 

vivo proliferation assays.  

6.5. Single cell clones differed in chemosensitivity in vitro and in vivo 

A highly important functional characteristic of tumor cells determining the prognosis of patients 

is their response to treatment and potential drug resistance described in 3.2.2. Minimal residual 

disease cells described in 3.1.2 may survive therapy, regrow and induce relapse. Since leukemias 

A 
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are live-threatening diseases, patients receive treatment immediately after diagnosis. 

Consequently, the impact that chemotherapy has on clonal evolution has to be taken into 

account. Selective pressure of treatment may promote outgrowth of resistant subclones and, in 

addition, chemotherapy might even induce new mutations that may confer resistance to 

treatment.   

In a next step, I investigated, whether the generated ALL clones were heterogeneous in terms of 

chemosensitivity, in order to identify drug resistant subclones. 

6.5.1. Single cell clones differed in drug sensitivity in vitro  

To check if the clones exhibited differences regarding chemosensitivity in vitro, I systematically 

analyzed sensitivity of all clones towards specific drugs in vitro. Since PDX ALL cells do not grow 

in vitro and show markedly reduced viability after freezing and thawing, PDX ALL-265 cells 

freshly isolated from mice were subjected to short term culture with or without cytotoxic drugs 

(5.3.7, Table 7). In these cultures, PDX ALL cells show rapid spontaneous death so that 

experiments of a maximum of 72 hours can be performed. After 72 hours, the amount of 

apoptotic cells was quantified by flow cytometry using forward-side scatter analysis and specific 

apoptosis rates were calculated based on spontaneous apoptosis rates of untreated cells.  

At first, in order to validate the gating strategy for assessing the amount of apoptotic cells, 

non-transgenic PDX ALL-265 cells were treated with four different concentrations of cytarabine 

(AraC) for 72 hours. Specific apoptosis was measured by flow cytometry by gating on living cells 

in FSC/SSC as well as by double staining with DAPI and with anti Annexin V-APC antibody (5.3.6). 

The amount of apoptotic cells assessed by these two different strategies correlated very well as 

shown in Figure 24. As a consequence, we assessed the number of apoptotic cells after in vitro 

drug treatment of single cell clones by gating on living cells in FSC/SSC.  
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Figure 24: Percentage of specific apoptosis is independent from gating strategy  

PDX ALL-265 cells were treated with different concentrations of cytarabine (AraC) for 72 hours. (A) Cells 

were stained with DAPI and with anti Annexin V-APC. Flow cytometry analysis was performed and the 

amount of apoptotic cells was assessed by two different strategies: gating on living cells in FSC/SSC and on 

cells double positive for DAPI and Annexin V. Debris was excluded in a first gating step. (B) Both strategies 

yielded similar results. 

We first asked, whether the spontaneous apoptosis rate would differ between the clones, but 

did not detect major differences regarding spontaneous apoptosis rates among all single cell 

clones and bulk cells (Figure 25).  

B 
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Figure 25: Single cell clones exhibited similar spontaneous apoptosis rates in vitro. 

Fresh cells of each clone were cultured without treatment (1 x 10
5
 cells / well; 2 biological replicates and 

2 technical replicates / clone; n = 4). Spontaneous apoptosis rates after 72 hours were determined by flow 

cytometry by gating on living cells in FSC/SSC as described.  

Upon drug treatment, remarkably, the measured specific apoptosis rates were highly 

reproducible with very low standard deviations between duplicate wells and even between 

biological replicates (Figure 26 and Figure 27).  

In general, I discovered profound diversity in drug response among all eight clones tested; 

specific apoptosis rates after stimulation with different drugs were diverse among all clones. 

Response to some drugs was rather homogeneous while sensitivity towards other drugs was 

different among clones. For instance, I detected only minor variances upon stimulation with the 

three anthracyclines daunorubicine, doxorubicine and epirubicine (Figure 26A). But still, I found 

these differences to be significant in some cases. For example sensitivity of clone #6 which was 

the least affected and clone #8 which was the most sensitive towards stimulation with all three 

anthracyclines differed significantly. Strikingly, even if I observed only small differences in 

sensitivity against all three anthracyclines among all clones, the trends were similar so that, for 

instance, clone #6 was least susceptible against all three compounds while bulk cells, clones #1, 

#2, #7 and #8 were always highly sensitive.   

Upon treatment with cytarabine and L-asparaginase, the results were more heterogeneous 

(Figure 26B). Here, measured drug response between several clones and bulk cells varied 

profoundly. For example, bulk cells, clone #7 and clone #8 were highly sensitive to cytarabine 

while clone #5 and clone #6 were less susceptible. Upon stimulation with L-asparaginase, I 

observed major differences, too: bulk cells, clone #1, clone #7 and clone #8 were more sensitive 
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compared to the other clones. Remarkably, clone #3 which was sensitive towards all 

antracyclines and towards cytarabine, was less affected by L-asparaginase treatment.  

 

 

 

Figure 26: Drug sensitivities were diverse among all clones.  

Freshly isolated cells of each single cell clone and cells of Bulk 2 were stimulated with different drugs at 

indicated concentrations in vitro (1 x 10
5
 cells / well, 2 biological replicates / clone, 2 technical 

replicates / concentration; n = 4). The amount of apoptotic cells was determined by flow cytometry after 

72 hours and specific apoptosis rates were calculated compared to untreated control as described in 5.3.7. 

(A) Stimulation with different concentrations of daunorubicine, doxorubicine and epirubicine. Sensitivity of 

clone #6 and clone #8 differed significantly in the indicated concentrations. Depicted are mean values with 

SD. * p < 0.05, *** p < 0.001 by two-tailed unpaired t-test (doxorubicine) and two-tailed unpaired t-test 

with Welch’s correction (daunorubicine, epirubicine) (B) Stimulation with different concentrations of 

cytarabine and L-asparaginase.  

A 
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Upon stimulation with the glucocorticoids (GCs) dexamethasone (Dexa) and prednisolone 

(Pred), we detected the most striking differences between the clones (Figure 27). This finding 

was particularly interesting because GCs are important drugs in clinical treatment of ALL 

patients (Inaba et al., 2013; Pui et al., 2012). Furthermore, GC resistance is a common reason for 

treatment failure in ALL (Bhadri et al., 2012; Inaba & Pui, 2010).  

As shown in Figure 27, clone #6 was markedly less affected by stimulation with both GCs. In 

contrast, clone #5 was highly sensitive to Dexa and Pred treatment in vitro in all concentrations 

tested. Sensitivity of all clones against Dexa and Pred was comparable: clones were either 

sensitive or resistant to both drugs. 

 

Figure 27: Clones exhibited major differences regarding glucocorticoid sensitivity. 

Fresh cells of each single cell clone and of Bulk 2 were treated with dexamethasone or prednisolone at 

indicated concentrations in vitro (1 x 10
5
 cells / well, 2 biological replicates / clone, 2 technical 

replicates / concentration; n = 4). The amount of apoptotic cells was assessed after 72 hours and specific 

apoptosis rates were calculated, respectively. Specific apoptosis rates of clone #5 and clone #6 differed 

significantly in all 4 concentrations tested. Depicted are mean values with SD. ** p < 0.01, *** p < 0.001, 

**** p < 0.0001 by two-tailed unpaired t-test (Dexa 500 nM, Pred 1.6 μM) and two-tailed unpaired t-test 

with Welch’s correction (Dexa 50 nM, Pred 160 nM). 

In summary, I discovered a prominent heterogeneity in sensitivity against different drugs in vitro 

among all clones and bulk cells. Sensitivities against some drugs were similar while response 

towards others was diverse, including resistant clones. In general, clone #6 seemed to be less 

sensitive towards most drugs. In contrast, bulk cells, clone #7 and clone #8 were generally more 

affected. Clone #3 was sensitive towards all drugs except L-asparaginase. Importantly, 
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stimulation with GCs revealed prominent differences in sensitivities among all clones, with 

clone #5 being highly sensitive and clone #6 being rather resistant against GCs in vitro.  

6.5.2. Single cell clones differed in drug sensitivity in vivo  

Our previous investigations revealed that the generated single cell clones were heterogeneous 

in terms of growth properties in vivo (6.4) and in terms of drug sensitivity in vitro (6.5.1).  

Ultimately, we aimed at studying drug sensitivity of single cell clones in vivo in order to 

investigate whether the in vitro data would be transferable to in vivo conditions. 

Since we observed profound differences regarding GC sensitivity in vitro and since GC resistance 

is a prominent challenge for ALL therapy, we chose Dexa for in vivo treatment. Based on the 

observed in vitro sensitivity against Dexa depicted in Figure 27, we chose clone #5 (highly 

sensitive in vitro; rapid in vivo growth) and clone #6 (less susceptible in vitro; slow in vivo 

growth) for the in vivo study. Both clones were mixed in equal parts and the mixture was 

transplanted into groups of mice. The mice were either treated with different concentrations of 

Dexa or with PBS for five days per week and five consecutive weeks as shown in Figure 28. 

Subsequently, percentages of clone #5 and clone #6 in bone marrows of treated and untreated 

mice were quantified.  

 

 

 

Figure 28: Experimental procedure for in vivo therapy with dexamethasone. 

Clone #5 and clone #6 were mixed in equal parts and injected into mice (1 x 10
5
 cells / mouse; n = 5). After 

4 days, mice were treated with Dexa (2 or 8 mg/kg BW ip) or with PBS from Monday to Friday for 

5 consecutive weeks. Bone marrow cells of treated and untreated mice were analyzed for the presence of 

clone #5 and clone #6 by flow cytometry (untreated: days 54 – 57; treated: days 62 - 64). dpi = days post 

injection.  

Weekly bioluminescence in vivo imaging based on transgenic expression of luciferase enabled 

visualization of disease progression in treated and untreated animals (5.2.4). In vivo imaging 
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revealed that treatment with dexamethasone markedly delayed disease progression in mice as 

illustrated in Figure 29. 

 

 

Figure 29: Disease progression was delayed in treated animals. 

Expression of Gaussia luciferase in single cell clones enabled bioluminescence in vivo imaging of mice 

engrafted with clone #5 and clone #6. Pictures were taken once a week to follow disease progression over 

time. (A) Shown are pictures of one mouse per group taken at day 40, 54 and 61 after transplantation 

(units in rainbow color scales are photons per second per cm
2
 per steradian (photons s

-1
 cm

2-1 
sr

-1
)). 

(B) Quantification of imaging signals as shown in (A). 

In good reliability to the proliferation experiments described in 6.4, flow cytometric analyses of 

bone marrow cells of untreated mice revealed that clone #5 overgrew clone #6 so that in 

average 88% of cells were derived from clone #5 and only 12% from clone #6 at the end of the 

experiment. Importantly, clone #6 was markedly less affected by Dexa treatment compared to 

clone #5 so that bone marrows of mice treated with Dexa contained considerably more clone #6 

cells, in average 44% in mice treated with 2 mg Dexa and even 54% in mice treated with 

8 mg Dexa (see Figure 32). Accordingly, in mice treated with 8 mg Dexa, clone #6 had overgrown 

clone #5 suggesting that Dexa affected primarily clone #5 but less clone #6. The results for one 

mouse of each group are depicted in Figure 30. 

 

B A 
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Figure 30: Dexamethasone treatment of mice engrafted with clone #5 and clone #6 particularly 

decreased clone #5. 

Flow cytometry analysis of bone marrows of (A) untreated (ctr) and (B) mice treated with 2 mg or 

8 mg Dexa. Shown are one dot plot illustrating expression of Venus and mTagBFP and one cube of a 

control mouse and a mouse treated with 2 mg or 8 mg Dexa (one mouse close to the mean for each group) 

to illustrate color expression in 2D and 3D. Depicted dot plots are gated on living cells in FSC/SSC and 

muCD45 negative cells as shown in Figure 4. Graphs show mean values of percentages of clone #5 and 

clone #6 for treated and untreated animals (n = 5;  control: SD 2.7%; 2 mg Dexa: SD 28.6%; 8 mg Dexa: 

SD 25.6%; results of  single mice are illustrated in Figure 32). 

In summary, the results obtained in the in vivo treatment experiment were fully consistent with 

the in vitro data. Clone #5 was considerably reduced upon Dexa treatment in vivo, whereas 

clone #6 was less susceptible to Dexa. Moreover, we observed that eradication of clone #5 was 

dose dependent as, in average, treatment with 8 mg Dexa was more effective compared to 

treatment with 2 mg Dexa (Figure 31). 
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Figure 31: Eradication of clone #5 was dose dependent.  

Mice engrafted with clone #5 and clone #6 were either treated with Dexa (2 or 8 mg/kg BW ip) or with 

buffer for 5 weeks. Depicted are percentages of each clone (mean values) in untreated (ctr) and Dexa 

treated (2 mg, 8 mg) mice (for results of single mice and statistical data see Figure 32). 

Unfortunately and in contrast to the reliable results observed in competitive transplant 

experiments without additional treatment depicted in Figure 23, eradication of clone #6 was less 

constant between different mice (Figure 32). Variations were much higher among treated mice 

than among control mice, suggesting that some mice responded better to treatment than 

others. Thus, either an unknown mouse recipient-dependent influence exists on Dexa sensitivity 

or clones might have derived new sub-clonal heterogeneities upon repetitive passaging.  

 

Figure 32: In vivo therapy yielded high variations in treated mice.  

Percentages of clone #5 and clone #6 in bone marrows of untreated (control) and treated (2 mg, 8 mg 

Dexa) mice. Each bar represents one single mouse. Control: mean #5 88%, #6 12%, SD 2.7%; 2 mg Dexa: 

mean #5 56%, #6 44%, SD 28.6%; 8 mg Dexa: #5 46%, #6 54%, SD 25.6%.  

Taken together, our previous experiments revealed prominent differences of ALL single cell 

clones regarding functional properties. We could demonstrate profound diversity in respect to 

growth behavior in vivo and to chemosensitivity in vitro and in vivo. Clone #6 was specifically 

interesting as it revealed a combination of two unfavorable characteristics: slow growth 

associated with or even causing increased resistance against Dexa treatment in vitro and in vivo.   
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7. Discussion 

Subclonal heterogeneity represents a major challenge for acute leukemia patients as a single, 

rare, unfavorable subclone is sufficient to induce relapse with poor prognosis (Inaba et al., 2013; 

Kreso & Dick, 2014; Pui et al., 2012).  

Still, the biology underlying more aggressive and therapy resistant subclones is not fully 

understood. Since the most aggressive subpopulation defines the patient’s outcome, a better 

characterization of challenging subclones is urgently needed in order to develop novel therapies 

that eliminate them.  

In this study, I characterized eight single cell clones from a child with ALL regarding their clonal 

growth behavior and drug sensitivity in a xenograft mouse model in vivo. I found that a slowly 

growing subclone showed resistance against dexamethasone treatment in vivo. 

7.1. Molecular marking of PDX cells using RGB   

To generate single cell clones from acute leukemia PDX samples, I used RGB marking, an 

innovative multicolor staining based on lentiviral transduction. Weber and colleagues 

established RGB marking in cell line cells (Weber et al., 2011). However, cell lines are no suitable 

model to study clonal subpopulations as they putatively are monoclonal. Besides, during the 

process of immortalization and extensive passaging in vitro, important functional characteristics 

may be altered. In contrast, PDX cells represent the complexity of the individual patient’s 

leukemia and reproduce the heterogeneity of ALL and AML. Therefore, I adapted the 

RGB system to acute leukemia PDX cells that were amplified in mice. Towards this aim, I 

combined RGB marking with our established individualized xenograft mouse model of acute 

leukemia which enabled multicolor staining of PDX cells.  

Weber and colleagues used fluorescence microscopy to analyze specifically colored cell clones. 

Since microscopy does not allow cell enrichment and sorting, I introduced flow cytometry 

analyses of RGB marked cells. In addition, I replaced the original blue fluorescent protein 

cerulean because, in contrast to cell line cells, it was not expressed brightly enough in PDX cells. 

Thus, we cloned mTagBFP as a blue component into our lentiviral vector which was expressed 

much brighter in PDX cells (Subach et al., 2008). Flow cytometry allowed evaluating more cells 

per sample compared to fluorescence microscopy and enabled analyzing several, differently 

marked clones within a cell mixture. Furthermore, RGB marking combined with flow cytometry 
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allowed enriching single cell clones to increase clonal purity which is impossible if other types of 

molecular marking are used such as genetic barcoding (Bystrykh, de Haan, & Verovskaya, 2014). 

For genetic engineering of cell line cells and PDX cells, I used a third generation lentiviral vector 

system (Dull et al., 1998; Naldini et al., 1996; Zufferey et al., 1999). This system enabled 

transduction of non-dividing cells which is important as xenograft cells generally do not cycle in 

vitro (Terziyska et al., 2012). Lentiviral integration into the genome of xenograft cells could 

possibly alter their properties. However, until now, we could not detect any alterations in 

behavior of xenograft cells that could have been caused by lentiviral transduction (Terziyska et 

al., 2012; Vick et al., 2015).  

For efficient RGB marking, high transduction efficiencies of around 50% for each vector were 

required to have a sufficient color overlap. Low efficiencies would only result in cells expressing 

either red, or green, or blue and no double and triple transgenic cells expressing two or three 

colors. But only when the majority of the cells expressed more than one color, single cells or 

clones could clearly be distinguished. In general, PDX cells cannot easily be transduced and it is 

challenging to obtain such high transduction efficiencies. Since I could only work with those 

PDX samples that could be most efficiently transduced I optimized virus production by 

concentrating the viral particles to a high extent to obtain very high virus titers. In addition, I 

cloned novel smaller lentiviral vectors encoding a red, a green and a blue fluorescent protein 

without Gaussia luciferase because, in general, smaller constructs allow generation of viruses 

with higher titers compared to larger constructs. Finally, I only used viruses with titers of 1 x 109 

to 1 x 1011 TU / ml (assessed on NALM-6 cells) for successful RGB marking of PDX cells. Still, 

sufficient RGB marking could only be achieved in two AML PDX samples, AML-346 and AML-393, 

by simultaneous transduction with all three lentiviral vectors. Transductions with three lentiviral 

vectors at the same time yielded in general lower efficiencies for each single vector compared to 

consecutive transductions with only one vector. For this reason, I performed three consecutive 

lentiviral transductions with only one virus to generate efficiently RGB marked ALL-265 cells.  

Basically, we chose RGB marking because it allowed separation and isolation of living cells 

according to their unique color. Using RGB marking enabled discrimination and isolation of 

different cell clones based on their individual color by flow cytometry. Hence, I had numerous 

living cells of the same cell clone at hand, which I extensively characterized regarding functional 

properties. Yet, RGB marking has some limitations which have to be taken into account.  

First, one color can possibly contain different clones. Two cells can potentially be transduced 

with the same vector combination resulting in two clones, although genetically diverse, 
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expressing the same color. However, LM-PCR performed as a quality control detected different 

integration sites for all eight clones proving their clonal uniqueness.  

Second, one single clone might also have different colors since cells that belong to the same cell 

clone could be stained differently. Nevertheless, I detected profound differences among all 

clones regarding functional features strengthening the hypothesis that I clonally amplified single 

cells belonging to at least partially diverse clones.  

Third, RGB marking cannot visualize clonal evolution which took place after the clone was 

already RGB marked. To limit proliferation times and putative clonal evolution therein, each 

clone was amplified in two biological replicates and cells were viably frozen. All experiments 

were subsequently performed with these cells without additional amplification.  

Despite these limitations, RGB marking offers the unique possibility to isolate viable cells of 

different single cell clones based on their specific color and to analyze these cells. Using 

RGB marking, we could trace single cell clones by flow cytometry in outcompete and treatment 

experiments. Thus, RGB marking represents an exclusive tool to generate viable single cell 

clones from a patient’s sample for further functional and genetic analyses. 

7.2. Limiting dilution transplantation allowed visualization of selective engraftment of 

leukemic stem cells 

Comparing color expression of the same freshly RGB marked cells before and after 

xenotransplantation enabled visualization how the colors of an acute leukemia PDX sample 

changed during one mouse passage equaling approximately six weeks. Comparing expressed 

colors directly after transduction and after mouse passage revealed a loss of colors among the 

transplanted cells indicating that certain cells got lost upon transplantation. The two tested 

AML samples became patchy upon first transplantation and in one ALL sample we detected 

clonal outgrowth after serial-transplantation over three mouse passages. This experiment 

allowed an estimation how representatively PDX samples are propagated when many cells 

(1 x 106) are transplanted. Clonal outgrowth suggested that not all RGB marked cells engrafted 

in the mouse and that some clones were more dominant compared to others. Accordingly, upon 

each mouse passage, several cells got lost and clonal outgrowth aggravated over passaging.  

Only LSCs can initiate leukemia in immunocompromised mice and maintain the disease upon 

serial transplantation. Thus, PDX samples are propagated by their containing LSCs while 

non-LSCs are not able to establish a full leukemia in immunocompromised mice (Clarke et al., 
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2006; Kreso & Dick, 2014). We assume that by comparing the amount of colors before and after 

mouse passage, we have visualized engrafting LSCs. Since non-LSCs will not engraft, the amount 

of patchiness may be determined by the amount of homing LSCs. The fact that the two 

AML samples tested became patchy already after first transplantation while in one ALL sample 

clonal outgrowth became visible only after serial transplantation would argue for a reduced 

amount of LSCs in the AML samples.  Consequently, 1 x 106 cells of AML-393 and of AML-346 

would comprise less LSCs able to home in mice than 1 x 106 cells of ALL-265. Correspondingly, 

some publications could show that in B-ALL many cells exhibit leukemia propagating activity 

whereas in AML stem cell frequencies tend to be markedly lower (Kelly et al., 2007; Rehe et al., 

2013; Sarry et al., 2011). In fact, for ALL-265, we determined a very high LSC frequency of 1 stem 

cell in 27 cells using limiting dilution transplantation assay. However, we did not clearly define 

the stem cell frequencies of AML-393 and AML-346. For AML-393, the amount of stem cells in 

the sample has to be at least 1 in 2,000 cells since all of the mice that had been transplanted 

with 2 x 103 cells developed leukemia, but it may be even higher. Consequently, more 

experiments would be needed to prove this hypothesis. Still, our findings may suggest that ALL 

and AML samples differ in the amount of LSCs but more experiments would be required to 

strengthen this idea. In summary, these findings indicate that RGB marking combined with 

xenotransplantation enabled visualization of engraftment of leukemia propagating cells in mice.  

By transplanting limiting numbers of RGB ALL-265 and RGB AML-393 cells, we discovered that 

the amount of differently colored populations after the additional mouse passage was 

dependent on the amount of transplanted cells as expected. Transplantation of many cells 

caused only small changes in expressed colors whereas upon transplantation of few cells, we 

observed a prominent decrease of colors. Ultimately, transplantation of only some hundred cells 

resulted in engraftment of single cells and in generation of single cell clones.  

Since ALL and AML PDX samples are defined by the amount of containing LSCs or their stem cell 

frequency (Clarke et al., 2006; Clevers, 2011; Kreso & Dick, 2014), the number of transplanted 

LSCs is dependent on the total amount of transplanted cells. The fewer cells are transplanted, 

the fewer LSCs are transplanted, respectively. Consequently, the number of LSCs among all 

transplanted cells would determine the amount of colors. 

Upon transplantation of 2 x 103 cells of AML-393 we could clearly distinguish single cell clones. 

In contrast, single cell clones of ALL-265 could only be distinguished after transplantation of as 

few as 333 cells or less. These findings would, again, implicate that the same amount of cells of 

AML-393 comprised less LSCs compared to ALL-265. Besides, all single cell clones originated 
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from clonal expansion of single LSCs. Conversely, for RGB ALL-265 we determined a stem cell 

frequency of 1 in 27 cells. Nevertheless, upon transplantation of only 333 or 100 cells per 

mouse, we observed engraftment of only one or two cells in most cases, even if, according to 

the determined LSC frequency, there should have engrafted up to 12 cells according to 

theoretical calculations. In none of the mice injected with 333 cells we detected engraftment of 

12 cells. This might be caused by experimental conditions like the hostile environment in the 

mouse, but might also challenge the suggested proportional correlation between numbers of 

PDX cells injected and numbers of PDX cells engrafted. 

7.3. Competitive transplantation experiments revealed divergent growth behavior of 

clonal subpopulations  

Unique color expression of RGB marked single cell clones allowed reliable separation of 

individually colored single cell clones by flow cytometry. However, due to overlap in colors and 

the surprisingly high diversity in color expression within each single cell clone resulting in a large 

3-dimensional space obtained by each clone in flow cytometric analysis, we could only measure 

up to five differently marked clones in parallel.  

To detect differences regarding growth behavior among single cell clones, I performed 

competitive engraftment experiments in which differently colored clones were injected into the 

same recipient mice. Competitive transplantation of five clones clearly demonstrated the 

growth advantage of clone #5 and clone #7. I could further strengthen these findings as I 

discovered the same tendencies when I transplanted different combinations of two clones. Still, 

the effects were more pronounced when only two clones grew in the same mouse indicating 

that expansion is hampered when more clones grow in the same mouse and that outcompete 

would take longer. Serial transplantation of these samples might result in more pronounced 

effects. However, trends were similar indicating that predominant clones kept their growth 

advantage irrespective of competing with one or four clones. Taken together, these findings 

suggest that subclones exhibited divergent growth properties most probably determined by 

clone-intrinsic features. 

Using the individualized xenograft mouse model enabled investigating the growth behavior of 

subclones from one patient’s leukemia without the impact of drugs. The xenograft mouse model 

of acute leukemia is the best model system available to simulate the complex biology of ALL that 

exists in the patient (Lee et al., 2007; Liem et al., 2004). In this respect, xenografts in 
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immunocompromised mice allow studies on clonal evolution that cannot be investigated in 

patients.  

In line with published data, I could show that subclones of one patient’s leukemia exhibited 

divergent growth behavior since I observed that some clones overgrew others when 

transplanted in a competitive setting (Jan & Majeti, 2013; Ma et al., 2015).  

One explanation for the increase of clone #5 and clone #7 could be that these two clones have 

enhanced proliferation rates and grow quicker than the other clones. Consequently, clones that 

grow slower would be overgrown by clones that grow faster.   

Additional gene expression analyses may give a hint if “slow” clones and “fast” clones differ in 

expression of particular genes that are implicated in proliferation. For instance, it would be 

interesting to check if proliferation pathways are altered in clone #5 and clone #7 compared to 

clone #1, clone #6 and clone #8. In this respect, differentially expressed genes might serve as 

candidate genes for knock-down experiments that could give evidence if particular functional 

features are caused by specific genotypes. 

Another explanation for the impaired expansion of clone #6, clone #8 and clone #1 would be 

that these clones contained more resting stem cells than clone #5 and clone #7. The presence of 

many quiescent, non-cycling LSCs that do not contribute to sustained tumor growth would 

explain why clone #6, clone #8 and clone #1 were overgrown by clone #5 and clone #7. In 

addition, this may as well explain why the clones with inferior growth properties in outcompete 

experiments were still present in the bulk sample, considering the rounds of 

xenotransplantation of this PDX sample. Resting stem cells may persist without proliferating for 

a long time but may finally start to cycle again (Clevers, 2011; Dick, 2008; Greaves, 2013). 

Consequently, an increased number of LSCs might delay growth, but when the dormant cells 

restart to cycle, the clone would reappear.  

In general, it would be highly interesting to know the LSC frequencies of all clones in order to 

understand if slowly growing clones contained less LSCs compared to clone #5 and clone #7.  

Unfortunately, comparing LSC frequencies among the generated single cell clones is technically 

highly demanding. As few as 33 cells per mouse of ALL-265 engrafted and caused leukemia in all 

mice. Consequently, to detect an increased LSC frequency in single cell clones, transplantation of 

even less than 33 cells per mouse would be necessary. In addition, to minimize experimental 

variations (variability in cell counting and in injection into the tail vein, decreased viability due to 

experimental stress) and mouse specific variations (variability in engraftment) each dilution 
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requires a very high number of mice as slight differences in LSC frequencies may always be 

based on technical variations. Due to the technical challenges and a low likelihood to generate 

reliable data, we did not undertake these highly resource intensive experiments. 

In summary, these findings provide that PDX samples are still comprised of divergent subclones 

even after passaging in immunocompromised mice. Additionally, these results demonstrate that 

even without the selective pressure and the mutagenic effect that chemotherapy may have on 

leukemic subclones, differences regarding growth behavior have an impact on clonal 

composition in leukemia. Fast growing clones may contribute to a quickly growing tumor load 

while slowly growing and eventually resistant clones could be the reason for recurrent leukemia 

after treatment.  

7.4. Drug treatment of single cell clones revealed heterogeneity in drug response  

Using competitive engraftment experiments, I identified divergent growth properties among five 

single cell clones. Next, I investigated whether the clones also differed in respect to drug 

sensitivity. To identify drug resistant clones, I performed a drug screening in which I tested 

several drugs in various concentrations in vitro. Remarkably, in the in vitro assays I obtained 

stable results with very low standard deviations between biological and technical replicates 

indicating the high quality of the experiment. Furthermore, I discovered highly comparable 

results for drugs belonging to the same groups (anthracyclines, glucocorticoids). In summary, I 

detected similar sensitivities towards some drugs while I discovered prominent differences in 

response to others among all clones and bulk cells. However, I identified profound diversity in 

specific apoptosis rates upon stimulation with cytarabine, L-asparaginase, dexamethasone and 

prednisolone. Bulk cells were usually sensitive towards treatment. Clone #6 was generally less 

susceptible to treatment while other clones were sensitive to some drugs and resistant to 

others.  

Since glucocorticoids (GCs) play an essential role in treatment of ALL patients, the observed 

diversity in sensitivity against GCs in vitro was very interesting. The initial response to GCs 

represents an important prognostic factor and patients responding poorly to initial GC 

treatment typically have a worse outcome compared to GC good responders (Dordelmann et al., 

1999; Inaba & Pui, 2010). Especially the great difference between clone #5 and clone #6 was 

surprising: clone #5 was highly sensitive whereas clone #6 was quite resistant. When we 

subjected mice that were engrafted with clone #5 and clone #6 to treatment with Dexa we 

observed that Dexa treatment particularly eliminated clone #5 while clone #6 was less impaired. 
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These findings were fully consistent with the in vitro drug response of these two clones. As 

expected and in accordance with the outcompete proliferation assay, in the untreated control 

group, clone #5 significantly overgrew clone #6 indicating that clone #5 had a growth advantage 

compared to clone #6. In summary, despite its inferior growth rate, clone #6 was increased in 

the treated mice implicating that Dexa treatment selected for the resistant clone #6.  

Heterogeneity of tumor subpopulations regarding drug sensitivity is a central problem for 

therapy of leukemia (Hanahan & Weinberg, 2011; Marusyk et al., 2012). Patients can only be 

cured when all relevant leukemic subclones are eradicated by chemotherapy. Since survival of 

treatment-refractory cells may be the reason for MRD and disease relapse, a better 

understanding of the characteristics of resistant cell clones is of particular importance. In line 

with published data, I could show that treatment selected for outgrowth of the resistant clone 

supporting the hypothesis that selective pressure of therapy promotes expansion of resistant 

clones (Greaves & Maley, 2012; Landau et al., 2014). Consistent with Nowell’s clonal evolution 

model, I observed that Dexa treatment contributed to the progression towards a more 

aggressive disease with an increased amount of the resistant cell clone after Dexa treatment 

(Nowell, 1976). Besides, these findings are consistent with numerous publications that have 

uncovered that even a minor clone at diagnosis may be dominant at relapse and thus ultimately 

lethal for the patient (Anderson et al., 2011; Ma et al., 2015; Mullighan et al., 2008; Shlush et al., 

2012; van Delft et al., 2011).  

Since clone #6 could potentially comprise more quiescent stem cells compared to clone #5, this 

would explain its slow growth. However, it does not explain the impaired sensitivity against 

Dexa because the mechanism of action of Dexa should be independent from cell cycle. 

Consequently, also non-cycling cells should be eradicated by Dexa (Bhadri et al., 2012; Inaba & 

Pui, 2010). Here, further analyses are required to investigate the mechanisms of GC resistance 

of clone #6 on the molecular level. Since the current knowledge about GC resistance is still 

fragmentary (Bhadri et al., 2012), genetic characterization of clone #6 might help to increase the 

knowledge about alterations that are associated with a decreased sensitivity towards GCs. 

Nevertheless, resting stem cells might reside in another niche of the bone marrow than cycling 

cells. Since LSCs might be protected by the micro-environmental conditions in their niche, they 

would be less affected by treatment which would explain the impaired sensitivity of a cell clone 

containing more stem cells (Ishikawa et al., 2007; Shlush et al., 2012). 

Still, it would be interesting to perform the same experiment with drugs that specifically target 

cycling cells, for instance antimetabolites. Against cytarabine, clone #5 and clone #6 were 
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similarly sensitive in vitro (Figure 26). Since PDX cells hardly cycle in vitro, differences in 

sensitivity would mainly be observed under in vivo conditions with actively cycling cells. 

Therefore, cytarabine treatment of mice engrafted with these two clones may give another hint 

if the clones differ in the amount of containing LSCs. Accordingly, clone #6 would be less 

impaired by cytarabine in vivo compared to clone #5.  

Furthermore, it would be interesting to check whether genes known to be implicated in 

apoptosis pathways are differentially regulated in sensitive and resistant cell clones. 

Remarkably, I observed a high variability in response to treatment among all mice. In average, 

mice treated with a higher concentration of Dexa contained less clone #5 but standard 

deviations for the percentages of both clones were quite high among all mice. Variations in drug 

applications and metabolic differences in individual mice could be the reason for these 

discrepancies. In contrast, in untreated mice, standard deviations were marginal.  

Taken together, I could show that within the heterogeneous tumor bulk aggressive subclones 

exist showing slow tumor growth and drug resistance.  

7.5. Conclusion and outlook  

In summary, my studies represent the first experimental in vivo evidence that functionally 

heterogeneous subclones exist within a single ALL PDX sample. Functional characterization 

detected profound diversity in terms of growth behavior and drug sensitivity among the single 

cell clones.  

As conclusion, we have established a technique which now allows targeting functionally adverse 

subclones specifically by combining the individualized mouse model of acute leukemia with 

genetic engineering, multicolor molecular staining, limiting dilution transplantation assays and 

competitive in vivo functional assays.  

By combining in vivo functional assays with genetic characterization, the approach allows 

characterizing adverse single cell clones in order to establish novel treatment options against 

them. As outlook, our detected functional results require further studies in order to reveal any 

putative causative relationship between functional phenotype and genotype. My studies 

highlight that it is important to characterize adverse single cell clones and develop treatment 

options against the most resistant clone within a single tumor. It is important to address adverse 
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functional characteristics such as quiescence and drug resistance in order to completely 

eliminate an entire tumor and to improve prognosis and survival of cancer patients.  

 



List of tables and list of figures 

96 
 

8. List of tables and list of figures  

 

List of tables 

Table 1: Primers. ............................................................................................................................ 27 

Table 2: Enzymes. .......................................................................................................................... 28 

Table 3: Plasmids. .......................................................................................................................... 28 

Table 4: Cell lines. .......................................................................................................................... 29 

Table 5: Antibodies. ....................................................................................................................... 29 

Table 6: Commercial kits. .............................................................................................................. 29 

Table 7: Drugs and dilutions for in vitro stimulation of single cell clones. .................................... 36 

Table 8: Filter settings of the BD LSRfortessa. ............................................................................... 44 

Table 9: PDX samples. .................................................................................................................... 47 

Table 10: Transduction efficiencies of lentivirally transduced RGB PDX samples ......................... 56 

Table 11: Numbers of cells and mice used for LDA of RGB AML-393. ........................................... 60 

Table 12: Numbers of cells and mice used for LDA of RGB ALL-265. ............................................ 61 

 

 

List of figures  

Figure 1: Functional heterogeneity of acute leukemia cells. ......................................................... 14 

Figure 2: Subclonal architecture in ALL is complex. ...................................................................... 20 

Figure 3: Relationship of diagnosis and relapse samples in ALL. ................................................... 21 

Figure 4: Gating strategy for analysis of PDX cells by flow cytometry. ......................................... 45 

Figure 5: The principle of RGB marking. ........................................................................................ 49 

Figure 6: Transfer vectors for production of third generation lentiviruses................................... 50 

Figure 7: Color expression of RGB marked cell line cells assessed by fluorescence microscopy. . 51 

Figure 8: Color expression of RGB marked cell line cells assessed by flow cytometry. ................ 53 

Figure 9: Experimental procedure for generation of RGB ALL-265. .............................................. 55 

Figure 10: Experimental procedure for generation of RGB AML-393 and RGB AML-346. ............ 56 

Figure 11: Amplification, lentiviral transduction and in vitro co-culture of RGB PDX cells. .......... 57 

Figure 12: RGB marking of AML PDX cells revealed clonal outgrowth upon in vivo 

transplantation. ............................................................................................................................. 58 

Figure 13: Clonal outgrowth aggravated upon passaging in ALL-265. .......................................... 59 



List of tables and list of figures 

97 
 

Figure 14: Kaplan Meier survival curves for LDAs with cells of RGB ALL-265 and AML-393. ........ 62 

Figure 15: Transplantation of low cell numbers decreased the amount of differently colored 

populations. ................................................................................................................................... 65 

Figure 16: Procedure for generation of single cell clones expressing unique colors. ................... 66 

Figure 17: Generated ALL-265 single cell clones. .......................................................................... 68 

Figure 18: Experimental procedure for competitive transplantation of five clones. .................... 70 

Figure 19: Competitive transplantation of five clones uncovered divergent growth behavior. ... 71 

Figure 20: Procedure for competitive transplantation of two clones. .......................................... 72 

Figure 21: Competitive transplantation of two clones confirmed different growth properties in 

vivo................................................................................................................................................. 74 

Figure 22: Growth advantage of clone #5 continued upon re-transplantation. ........................... 75 

Figure 23: Outcompete experiments yielded reproducible results in all mice. ............................ 76 

Figure 24: Percentage of specific apoptosis is independent from gating strategy ....................... 78 

Figure 25: Single cell clones exhibited similar spontaneous apoptosis rates in vitro. .................. 79 

Figure 26: Drug sensitivities were diverse among all clones. ........................................................ 80 

Figure 27: Clones exhibited major differences regarding glucocorticoid sensitivity..................... 81 

Figure 28: Experimental procedure for in vivo therapy with dexamethasone. ............................ 82 

Figure 29: Disease progression was delayed in treated animals. .................................................. 83 

Figure 30: Dexamethasone treatment of mice engrafted with clone #5 and clone #6 particularly 

decreased clone #5. ....................................................................................................................... 84 

Figure 31: Eradication of clone #5 was dose dependent............................................................... 85 

Figure 32: In vivo therapy yielded high variations in treated mice. .............................................. 85 

 

 

 

 



List of abbreviations 

98 
 

9. List of abbreviations  

 

A  Adenine 

ALL  acute lymphoblastic leukemia 

AML  acute myeloid leukemia 

APC  allophycocyanin 

B-ALL  B-cell acute lymphoblastic leukemia 

bp  base pair 

C  Cytosine 

°C  degree Celsius 

CI  confidence interval 

CSC  cancer stem cell 

d  day 

DAPI  4',6-diamidino-2-phenylindole 

Dexa  dexamethasone 

DMSO  dimethyl sulfoxide 

DNA  deoxyribonucleic acid 

dpi  days post injection  

E. coli  Escherichia coli 

EDTA  Ethylenediaminetetraacetic acid 

FCS  fetal calf serum 

FSC  forward scatter 

GC  glucocorticoid 

G  Guanine 

g  gram 

h  hour 

k  kilo  

l  liter 

LB  lysogeny broth 



List of abbreviations 

99 
 

LDA  limiting dilution transplantation assay 

LSC  leukemic stem cell  

M  molar [1 M = 1 mol/l] 

m  milli (10-3) 

µ  mikro (10-6) 

MCS  multiple cloning site 

min  minute 

mRNA  messenger ribonuclein acid 

n  nano (10-9) 

NSG non obese diabetic / severe combined immunodeficiency / gamma chain 
depleted (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) 

OD600 optical density, absorbance at a wavelength of 600 nm 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 

PDX  patient-derived xenograft  

Pred  prednisolone 

RGB  red-green-blue 

RNA   ribonucleic acid 

rt  room temperature 

SD  standard deviation  

sec  second 

SSC  side scatter 

sr  steradiant 

T  Thymine 

Tm  melting temperature  

UV  ultraviolet 

V  volt 

 



 
References 

100 
 

10. References  

Almendro, V., Marusyk, A., & Polyak, K. (2013). Cellular heterogeneity and 
molecular evolution in cancer. Annu Rev Pathol, 8, 277-302. doi: 
10.1146/annurev-pathol-020712-163923 

Anderson, K., Lutz, C., van Delft, F. W., Bateman, C. M., Guo, Y., Colman, S. M., 
. . . Greaves, M. (2011). Genetic variegation of clonal architecture and 
propagating cells in leukaemia. Nature, 469(7330), 356-361. doi: 
10.1038/nature09650 

Aparicio, S., & Caldas, C. (2013). The implications of clonal genome evolution for 
cancer medicine. N Engl J Med, 368(9), 842-851. doi: 
10.1056/NEJMra1204892 

Barber, L. J., Davies, M. N., & Gerlinger, M. (2014). Dissecting cancer evolution 
at the macro-heterogeneity and micro-heterogeneity scale. Curr Opin 
Genet Dev, 30C, 1-6. doi: 10.1016/j.gde.2014.12.001 

Barrett, D. M., Seif, A. E., Carpenito, C., Teachey, D. T., Fish, J. D., June, C. H., . 
. . Reid, G. S. (2011). Noninvasive bioluminescent imaging of primary 
patient acute lymphoblastic leukemia: a strategy for preclinical modeling. 
Blood, 118(15), e112-117. doi: 10.1182/blood-2011-04-346528 

Berdasco, M., & Esteller, M. (2010). Aberrant epigenetic landscape in cancer: 
how cellular identity goes awry. Dev Cell, 19(5), 698-711. doi: 
10.1016/j.devcel.2010.10.005 

Bhadri, V. A., Trahair, T. N., & Lock, R. B. (2012). Glucocorticoid resistance in 
paediatric acute lymphoblastic leukaemia. J Paediatr Child Health, 48(8), 
634-640. doi: 10.1111/j.1440-1754.2011.02212.x 

Bhatla, T., Jones, C. L., Meyer, J. A., Vitanza, N. A., Raetz, E. A., & Carroll, W. L. 
(2014). The biology of relapsed acute lymphoblastic leukemia: 
opportunities for therapeutic interventions. J Pediatr Hematol Oncol, 36(6), 
413-418. doi: 10.1097/MPH.0000000000000179 

Bomken, S., Buechler, L., Rehe, K., Ponthan, F., Elder, A., Blair, H., . . . 
Heidenreich, O. (2013). Lentiviral marking of patient-derived acute 
lymphoblastic leukaemic cells allows in vivo tracking of disease 
progression. Leukemia, 27(3), 718-721. doi: 10.1038/leu.2012.206 

Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as 
a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 
3(7), 730-737.  

Bruggemann, M., Raff, T., & Kneba, M. (2012). Has MRD monitoring superseded 
other prognostic factors in adult ALL? Blood, 120(23), 4470-4481. doi: 
10.1182/blood-2012-06-379040 



 
References 

101 
 

Bullinger, L., & Armstrong, S. A. (2010). HELP for AML: methylation profiling 
opens new avenues. Cancer Cell, 17(1), 1-3. doi: 
10.1016/j.ccr.2009.12.033 

Burrell, R. A., McGranahan, N., Bartek, J., & Swanton, C. (2013). The causes 
and consequences of genetic heterogeneity in cancer evolution. Nature, 
501(7467), 338-345. doi: 10.1038/nature12625 

Burrell, R. A., & Swanton, C. (2014). Tumour heterogeneity and the evolution of 
polyclonal drug resistance. Mol Oncol, 8(6), 1095-1111. doi: 
10.1016/j.molonc.2014.06.005 

Bystrykh, L. V., de Haan, G., & Verovskaya, E. (2014). Barcoded vector libraries 
and retroviral or lentiviral barcoding of hematopoietic stem cells. Methods 
Mol Biol, 1185, 345-360. doi: 10.1007/978-1-4939-1133-2_23 

Chiu, P. P., Jiang, H., & Dick, J. E. (2010). Leukemia-initiating cells in human T-
lymphoblastic leukemia exhibit glucocorticoid resistance. Blood, 116(24), 
5268-5279. doi: 10.1182/blood-2010-06-292300 

Choi, S., Henderson, M. J., Kwan, E., Beesley, A. H., Sutton, R., Bahar, A. Y., . . 
. Norris, M. D. (2007). Relapse in children with acute lymphoblastic 
leukemia involving selection of a preexisting drug-resistant subclone. 
Blood, 110(2), 632-639. doi: 10.1182/blood-2007-01-067785 

Clarke, M. F., Dick, J. E., Dirks, P. B., Eaves, C. J., Jamieson, C. H., Jones, D. 
L., . . . Wahl, G. M. (2006). Cancer stem cells--perspectives on current 
status and future directions: AACR Workshop on cancer stem cells. 
Cancer Res, 66(19), 9339-9344. doi: 10.1158/0008-5472.CAN-06-3126 

Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. 
Nat Med, 17(3), 313-319. doi: 10.1038/nm.2304 

Davis, H. E., Rosinski, M., Morgan, J. R., & Yarmush, M. L. (2004). Charged 
polymers modulate retrovirus transduction via membrane charge 
neutralization and virus aggregation. Biophys J, 86(2), 1234-1242. doi: 
10.1016/S0006-3495(04)74197-1 

Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: from mechanism to 
therapy. Cell, 150(1), 12-27. doi: 10.1016/j.cell.2012.06.013 

Dick, J. E. (2008). Stem cell concepts renew cancer research. Blood, 112(13), 
4793-4807. doi: 10.1182/blood-2008-08-077941 

Ding, L., Ley, T. J., Larson, D. E., Miller, C. A., Koboldt, D. C., Welch, J. S., . . . 
DiPersio, J. F. (2012). Clonal evolution in relapsed acute myeloid 
leukaemia revealed by whole-genome sequencing. Nature, 481(7382), 
506-510. doi: 10.1038/nature10738 

Dohner, K., Paschka, P., & Dohner, H. (2015). [Acute myeloid leukemia]. Internist 
(Berl). doi: 10.1007/s00108-014-3596-5 



 
References 

102 
 

Dordelmann, M., Reiter, A., Borkhardt, A., Ludwig, W. D., Gotz, N., Viehmann, 
S., . . . Schrappe, M. (1999). Prednisone response is the strongest 
predictor of treatment outcome in infant acute lymphoblastic leukemia. 
Blood, 94(4), 1209-1217.  

Downing, J. R., Wilson, R. K., Zhang, J., Mardis, E. R., Pui, C. H., Ding, L., . . . 
Evans, W. E. (2012). The Pediatric Cancer Genome Project. Nat Genet, 
44(6), 619-622. doi: 10.1038/ng.2287 

Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., & Naldini, 
L. (1998). A third-generation lentivirus vector with a conditional packaging 
system. J Virol, 72(11), 8463-8471.  

Eppert, K., Takenaka, K., Lechman, E. R., Waldron, L., Nilsson, B., van Galen, 
P., . . . Dick, J. E. (2011). Stem cell gene expression programs influence 
clinical outcome in human leukemia. Nat Med, 17(9), 1086-1093. doi: 
10.1038/nm.2415 

Esparza, S. D., & Sakamoto, K. M. (2005). Topics in pediatric leukemia--acute 
lymphoblastic leukemia. MedGenMed, 7(1), 23.  

Estey, E., & Dohner, H. (2006). Acute myeloid leukaemia. Lancet, 368(9550), 
1894-1907. doi: 10.1016/S0140-6736(06)69780-8 

Estey, E. H. (2014). Acute myeloid leukemia: 2014 update on risk-stratification 
and management. Am J Hematol, 89(11), 1063-1081. doi: 
10.1002/ajh.23834 

Evans, W. E., Crews, K. R., & Pui, C. H. (2013). A health-care system 
perspective on implementing genomic medicine: pediatric acute 
lymphoblastic leukemia as a paradigm. Clin Pharmacol Ther, 94(2), 224-
229. doi: 10.1038/clpt.2013.9 

Figueroa, M. E., Chen, S. C., Andersson, A. K., Phillips, L. A., Li, Y., Sotzen, J., . 
. . Mullighan, C. G. (2013). Integrated genetic and epigenetic analysis of 
childhood acute lymphoblastic leukemia. J Clin Invest, 123(7), 3099-3111. 
doi: 10.1172/JCI66203 

Figueroa, M. E., Lugthart, S., Li, Y., Erpelinck-Verschueren, C., Deng, X., 
Christos, P. J., . . . Melnick, A. (2010). DNA methylation signatures identify 
biologically distinct subtypes in acute myeloid leukemia. Cancer Cell, 
17(1), 13-27. doi: 10.1016/j.ccr.2009.11.020 

Galmarini, C. M., Mackey, J. R., & Dumontet, C. (2001). Nucleoside analogues: 
mechanisms of drug resistance and reversal strategies. Leukemia, 15(6), 
875-890.  

Garraway, L. A., & Janne, P. A. (2012). Circumventing cancer drug resistance in 
the era of personalized medicine. Cancer Discov, 2(3), 214-226. doi: 
10.1158/2159-8290.CD-12-0012 



 
References 

103 
 

Gawad, C., Koh, W., & Quake, S. R. (2014). Dissecting the clonal origins of 
childhood acute lymphoblastic leukemia by single-cell genomics. Proc Natl 
Acad Sci U S A, 111(50), 17947-17952. doi: 10.1073/pnas.1420822111 

Geng, H., Brennan, S., Milne, T. A., Chen, W. Y., Li, Y., Hurtz, C., . . . Melnick, A. 
M. (2012). Integrative epigenomic analysis identifies biomarkers and 
therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer 
Discov, 2(11), 1004-1023. doi: 10.1158/2159-8290.CD-12-0208 

Gerlinger, M., McGranahan, N., Dewhurst, S. M., Burrell, R. A., Tomlinson, I., & 
Swanton, C. (2014). Cancer: evolution within a lifetime. Annu Rev Genet, 
48, 215-236. doi: 10.1146/annurev-genet-120213-092314 

Greaves, M. (2010). Cancer stem cells: back to Darwin? Semin Cancer Biol, 
20(2), 65-70. doi: 10.1016/j.semcancer.2010.03.002 

Greaves, M. (2013). Cancer stem cells as 'units of selection'. Evol Appl, 6(1), 
102-108. doi: 10.1111/eva.12017 

Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 
481(7381), 306-313. doi: 10.1038/nature10762 

Guzman, M. L., & Allan, J. N. (2014). Concise review: Leukemia stem cells in 
personalized medicine. Stem Cells, 32(4), 844-851. doi: 
10.1002/stem.1597 

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next 
generation. Cell, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 

Harrison, C. J. (2009). Cytogenetics of paediatric and adolescent acute 
lymphoblastic leukaemia. Br J Haematol, 144(2), 147-156. doi: 
10.1111/j.1365-2141.2008.07417.x 

Hogan, L. E., Meyer, J. A., Yang, J., Wang, J., Wong, N., Yang, W., . . . Carroll, 
W. L. (2011). Integrated genomic analysis of relapsed childhood acute 
lymphoblastic leukemia reveals therapeutic strategies. Blood, 118(19), 
5218-5226. doi: 10.1182/blood-2011-04-345595 

Hope, K. J., Jin, L., & Dick, J. E. (2004). Acute myeloid leukemia originates from 
a hierarchy of leukemic stem cell classes that differ in self-renewal 
capacity. Nat Immunol, 5(7), 738-743. doi: 10.1038/ni1080 

Hu, Y., & Smyth, G. K. (2009). ELDA: extreme limiting dilution analysis for 
comparing depleted and enriched populations in stem cell and other 
assays. J Immunol Methods, 347(1-2), 70-78. doi: 
10.1016/j.jim.2009.06.008 

Hutter, G., Nickenig, C., Garritsen, H., Hellenkamp, F., Hoerning, A., Hiddemann, 
W., & Dreyling, M. (2004). Use of polymorphisms in the noncoding region 
of the human mitochondrial genome to identify potential contamination of 
human leukemia-lymphoma cell lines. Hematol J, 5(1), 61-68. doi: 
10.1038/sj.thj.6200317 



 
References 

104 
 

Inaba, H., Greaves, M., & Mullighan, C. G. (2013). Acute lymphoblastic 
leukaemia. Lancet, 381(9881), 1943-1955. doi: 10.1016/S0140-
6736(12)62187-4 

Inaba, H., & Pui, C. H. (2010). Glucocorticoid use in acute lymphoblastic 
leukaemia. Lancet Oncol, 11(11), 1096-1106. doi: 10.1016/S1470-
2045(10)70114-5 

Ishikawa, F., Yoshida, S., Saito, Y., Hijikata, A., Kitamura, H., Tanaka, S., . . . 
Shultz, L. D. (2007). Chemotherapy-resistant human AML stem cells home 
to and engraft within the bone-marrow endosteal region. Nat Biotechnol, 
25(11), 1315-1321. doi: 10.1038/nbt1350 

Jacoby, E., Chien, C. D., & Fry, T. J. (2014). Murine models of acute leukemia: 
important tools in current pediatric leukemia research. Front Oncol, 4, 95. 
doi: 10.3389/fonc.2014.00095 

Jan, M., & Majeti, R. (2013). Clonal evolution of acute leukemia genomes. 
Oncogene, 32(2), 135-140. doi: 10.1038/onc.2012.48 

Kamel-Reid, S., Letarte, M., Sirard, C., Doedens, M., Grunberger, T., Fulop, G., . 
. . Dick, J. E. (1989). A model of human acute lymphoblastic leukemia in 
immune-deficient SCID mice. Science, 246(4937), 1597-1600.  

Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L., & Strasser, A. (2007). Tumor 
growth need not be driven by rare cancer stem cells. Science, 317(5836), 
337. doi: 10.1126/science.1142596 

Klco, J. M., Spencer, D. H., Miller, C. A., Griffith, M., Lamprecht, T. L., 
O'Laughlin, M., . . . Ley, T. J. (2014). Functional heterogeneity of 
genetically defined subclones in acute myeloid leukemia. Cancer Cell, 
25(3), 379-392. doi: 10.1016/j.ccr.2014.01.031 

Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell 
Stem Cell, 14(3), 275-291. doi: 10.1016/j.stem.2014.02.006 

Kronke, J., Bullinger, L., Teleanu, V., Tschurtz, F., Gaidzik, V. I., Kuhn, M. W., . . 
. Dohner, K. (2013). Clonal evolution in relapsed NPM1-mutated acute 
myeloid leukemia. Blood, 122(1), 100-108. doi: 10.1182/blood-2013-01-
479188 

Kuiper, R. P., Schoenmakers, E. F., van Reijmersdal, S. V., Hehir-Kwa, J. Y., van 
Kessel, A. G., van Leeuwen, F. N., & Hoogerbrugge, P. M. (2007). High-
resolution genomic profiling of childhood ALL reveals novel recurrent 
genetic lesions affecting pathways involved in lymphocyte differentiation 
and cell cycle progression. Leukemia, 21(6), 1258-1266. doi: 
10.1038/sj.leu.2404691 

Landau, D. A., Carter, S. L., Getz, G., & Wu, C. J. (2014). Clonal evolution in 
hematological malignancies and therapeutic implications. Leukemia, 28(1), 
34-43. doi: 10.1038/leu.2013.248 



 
References 

105 
 

Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., . 
. . Dick, J. E. (1994). A cell initiating human acute myeloid leukaemia after 
transplantation into SCID mice. Nature, 367(6464), 645-648. doi: 
10.1038/367645a0 

le Viseur, C., Hotfilder, M., Bomken, S., Wilson, K., Rottgers, S., Schrauder, A., . 
. . Vormoor, J. (2008). In childhood acute lymphoblastic leukemia, blasts at 
different stages of immunophenotypic maturation have stem cell 
properties. Cancer Cell, 14(1), 47-58. doi: 10.1016/j.ccr.2008.05.015 

Lee, E. M., Bachmann, P. S., & Lock, R. B. (2007). Xenograft models for the 
preclinical evaluation of new therapies in acute leukemia. Leuk 
Lymphoma, 48(4), 659-668. doi: 10.1080/10428190601113584 

Liem, N. L., Papa, R. A., Milross, C. G., Schmid, M. A., Tajbakhsh, M., Choi, S., . 
. . Lock, R. B. (2004). Characterization of childhood acute lymphoblastic 
leukemia xenograft models for the preclinical evaluation of new therapies. 
Blood, 103(10), 3905-3914. doi: 10.1182/blood-2003-08-2911 

Ma, X., Edmonson, M., Yergeau, D., Muzny, D. M., Hampton, O. A., Rusch, M., . 
. . Zhang, J. (2015). Rise and fall of subclones from diagnosis to relapse in 
pediatric B-acute lymphoblastic leukaemia. Nat Commun, 6, 6604. doi: 
10.1038/ncomms7604 

Magee, J. A., Piskounova, E., & Morrison, S. J. (2012). Cancer stem cells: 
impact, heterogeneity, and uncertainty. Cancer Cell, 21(3), 283-296. doi: 
10.1016/j.ccr.2012.03.003 

Marusyk, A., Almendro, V., & Polyak, K. (2012). Intra-tumour heterogeneity: a 
looking glass for cancer? Nat Rev Cancer, 12(5), 323-334. doi: 
10.1038/nrc3261 

Meacham, C. E., & Morrison, S. J. (2013). Tumour heterogeneity and cancer cell 
plasticity. Nature, 501(7467), 328-337. doi: 10.1038/nature12624 

Mehdipour, P., Santoro, F., & Minucci, S. (2014). Epigenetic alterations in acute 
myeloid leukemias. FEBS J. doi: 10.1111/febs.13142 

Mullighan, C. G. (2012). The molecular genetic makeup of acute lymphoblastic 
leukemia. Hematology Am Soc Hematol Educ Program, 2012, 389-396. 
doi: 10.1182/asheducation-2012.1.389 

Mullighan, C. G., Phillips, L. A., Su, X., Ma, J., Miller, C. B., Shurtleff, S. A., & 
Downing, J. R. (2008). Genomic analysis of the clonal origins of relapsed 
acute lymphoblastic leukemia. Science, 322(5906), 1377-1380. doi: 
10.1126/science.1164266 

Mullighan, C. G., Zhang, J., Kasper, L. H., Lerach, S., Payne-Turner, D., Phillips, 
L. A., . . . Downing, J. R. (2011). CREBBP mutations in relapsed acute 
lymphoblastic leukaemia. Nature, 471(7337), 235-239. doi: 
10.1038/nature09727 



 
References 

106 
 

Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., . . . Trono, 
D. (1996). In vivo gene delivery and stable transduction of nondividing 
cells by a lentiviral vector. Science, 272(5259), 263-267.  

Notta, F., Mullighan, C. G., Wang, J. C., Poeppl, A., Doulatov, S., Phillips, L. A., . 
. . Dick, J. E. (2011). Evolution of human BCR-ABL1 lymphoblastic 
leukaemia-initiating cells. Nature, 469(7330), 362-367. doi: 
10.1038/nature09733 

Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 
194(4260), 23-28.  

Parkin, B., Ouillette, P., Li, Y., Keller, J., Lam, C., Roulston, D., . . . Malek, S. N. 
(2013). Clonal evolution and devolution after chemotherapy in adult acute 
myelogenous leukemia. Blood, 121(2), 369-377. doi: 10.1182/blood-2012-
04-427039 

Patel, J. P., Gonen, M., Figueroa, M. E., Fernandez, H., Sun, Z., Racevskis, J., . . 
. Levine, R. L. (2012). Prognostic relevance of integrated genetic profiling 
in acute myeloid leukemia. N Engl J Med, 366(12), 1079-1089. doi: 
10.1056/NEJMoa1112304 

Pui, C. H., Carroll, W. L., Meshinchi, S., & Arceci, R. J. (2011). Biology, risk 
stratification, and therapy of pediatric acute leukemias: an update. J Clin 
Oncol, 29(5), 551-565. doi: 10.1200/JCO.2010.30.7405 

Pui, C. H., & Evans, W. E. (2013). A 50-year journey to cure childhood acute 
lymphoblastic leukemia. Semin Hematol, 50(3), 185-196. doi: 
10.1053/j.seminhematol.2013.06.007 

Pui, C. H., Mullighan, C. G., Evans, W. E., & Relling, M. V. (2012). Pediatric 
acute lymphoblastic leukemia: where are we going and how do we get 
there? Blood, 120(6), 1165-1174. doi: 10.1182/blood-2012-05-378943 

Rehe, K., Wilson, K., Bomken, S., Williamson, D., Irving, J., den Boer, M. L., . . . 
Vormoor, J. (2013). Acute B lymphoblastic leukaemia-propagating cells 
are present at high frequency in diverse lymphoblast populations. EMBO 
Mol Med, 5(1), 38-51. doi: 10.1002/emmm.201201703 

Roberts, K. G., & Mullighan, C. G. (2015). Genomics in acute lymphoblastic 
leukaemia: insights and treatment implications. Nat Rev Clin Oncol. doi: 
10.1038/nrclinonc.2015.38 

Saadatpour, A., Guo, G., Orkin, S. H., & Yuan, G. C. (2014). Characterizing 
heterogeneity in leukemic cells using single-cell gene expression analysis. 
Genome Biol, 15(12), 525. doi: 10.1186/s13059-014-0525-9 

Saito, Y., Uchida, N., Tanaka, S., Suzuki, N., Tomizawa-Murasawa, M., Sone, A., 
. . . Ishikawa, F. (2010). Induction of cell cycle entry eliminates human 
leukemia stem cells in a mouse model of AML. Nat Biotechnol, 28(3), 275-
280. doi: 10.1038/nbt.1607 



 
References 

107 
 

Santos, E. B., Yeh, R., Lee, J., Nikhamin, Y., Punzalan, B., Punzalan, B., . . . 
Brentjens, R. J. (2009). Sensitive in vivo imaging of T cells using a 
membrane-bound Gaussia princeps luciferase. Nat Med, 15(3), 338-344. 
doi: 10.1038/nm.1930 

Sarry, J. E., Murphy, K., Perry, R., Sanchez, P. V., Secreto, A., Keefer, C., . . . 
Carroll, M. (2011). Human acute myelogenous leukemia stem cells are 
rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-
deficient mice. J Clin Invest, 121(1), 384-395. doi: 10.1172/JCI41495 

Schafer, E., Irizarry, R., Negi, S., McIntyre, E., Small, D., Figueroa, M. E., . . . 
Brown, P. (2010). Promoter hypermethylation in MLL-r infant acute 
lymphoblastic leukemia: biology and therapeutic targeting. Blood, 115(23), 
4798-4809. doi: 10.1182/blood-2009-09-243634 

Schlenk, R. F., & Dohner, H. (2013). Genomic applications in the clinic: use in 
treatment paradigm of acute myeloid leukemia. Hematology Am Soc 
Hematol Educ Program, 2013, 324-330. doi: 10.1182/asheducation-
2013.1.324 

Schmitz, M., Breithaupt, P., Scheidegger, N., Cario, G., Bonapace, L., Meissner, 
B., . . . Bourquin, J. P. (2011). Xenografts of highly resistant leukemia 
recapitulate the clonal composition of the leukemogenic compartment. 
Blood, 118(7), 1854-1864. doi: 10.1182/blood-2010-11-320309 

Secker-Walker, L. M., Lawler, S. D., & Hardisty, R. M. (1978). Prognostic 
implications of chromosomal findings in acute lymphoblastic leukaemia at 
diagnosis. Br Med J, 2(6151), 1529-1530.  

Shackleton, M., Quintana, E., Fearon, E. R., & Morrison, S. J. (2009). 
Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell, 
138(5), 822-829. doi: 10.1016/j.cell.2009.08.017 

Shlush, L. I., Chapal-Ilani, N., Adar, R., Pery, N., Maruvka, Y., Spiro, A., . . . 
Shapiro, E. (2012). Cell lineage analysis of acute leukemia relapse 
uncovers the role of replication-rate heterogeneity and microsatellite 
instability. Blood, 120(3), 603-612. doi: 10.1182/blood-2011-10-388629 

Shultz, L. D., Ishikawa, F., & Greiner, D. L. (2007). Humanized mice in 
translational biomedical research. Nat Rev Immunol, 7(2), 118-130. doi: 
10.1038/nri2017 

Shultz, L. D., Pearson, T., King, M., Giassi, L., Carney, L., Gott, B., . . . Greiner, 
D. L. (2007). Humanized NOD/LtSz-scid IL2 receptor common gamma 
chain knockout mice in diabetes research. Ann N Y Acad Sci, 1103, 77-89. 
doi: 10.1196/annals.1394.002 

Stow, P., Key, L., Chen, X., Pan, Q., Neale, G. A., Coustan-Smith, E., . . . 
Campana, D. (2010). Clinical significance of low levels of minimal residual 
disease at the end of remission induction therapy in childhood acute 
lymphoblastic leukemia. Blood, 115(23), 4657-4663. doi: 10.1182/blood-
2009-11-253435 



 
References 

108 
 

Subach, O. M., Gundorov, I. S., Yoshimura, M., Subach, F. V., Zhang, J., 
Gruenwald, D., . . . Verkhusha, V. V. (2008). Conversion of red fluorescent 
protein into a bright blue probe. Chem Biol, 15(10), 1116-1124. doi: 
10.1016/j.chembiol.2008.08.006 

Swanton, C. (2012). Intratumor heterogeneity: evolution through space and time. 
Cancer Res, 72(19), 4875-4882. doi: 10.1158/0008-5472.CAN-12-2217 

Swanton, C., & Beck, S. (2014). Epigenetic noise fuels cancer evolution. Cancer 
Cell, 26(6), 775-776. doi: 10.1016/j.ccell.2014.11.003 

Taussig, D. C., Miraki-Moud, F., Anjos-Afonso, F., Pearce, D. J., Allen, K., Ridler, 
C., . . . Bonnet, D. (2008). Anti-CD38 antibody-mediated clearance of 
human repopulating cells masks the heterogeneity of leukemia-initiating 
cells. Blood, 112(3), 568-575. doi: 10.1182/blood-2007-10-118331 

Taussig, D. C., Vargaftig, J., Miraki-Moud, F., Griessinger, E., Sharrock, K., Luke, 
T., . . . Bonnet, D. (2010). Leukemia-initiating cells from some acute 
myeloid leukemia patients with mutated nucleophosmin reside in the 
CD34(-) fraction. Blood, 115(10), 1976-1984. doi: 10.1182/blood-2009-02-
206565 

Terziyska, N., Castro Alves, C., Groiss, V., Schneider, K., Farkasova, K., Ogris, 
M., . . . Jeremias, I. (2012). In vivo imaging enables high resolution 
preclinical trials on patients' leukemia cells growing in mice. PLoS One, 
7(12), e52798. doi: 10.1371/journal.pone.0052798 

van Delft, F. W., Horsley, S., Colman, S., Anderson, K., Bateman, C., Kempski, 
H., . . . Greaves, M. (2011). Clonal origins of relapse in ETV6-RUNX1 
acute lymphoblastic leukemia. Blood, 117(23), 6247-6254. doi: 
10.1182/blood-2010-10-314674 

Vick, B., Rothenberg, M., Sandhofer, N., Carlet, M., Finkenzeller, C., Krupka, C., 
. . . Jeremias, I. (2015). An advanced preclinical mouse model for acute 
myeloid leukemia using patients' cells of various genetic subgroups and in 
vivo bioluminescence imaging. PLoS One, 10(3), e0120925. doi: 
10.1371/journal.pone.0120925 

Wang, J. C. (2007). Evaluating therapeutic efficacy against cancer stem cells: 
new challenges posed by a new paradigm. Cell Stem Cell, 1(5), 497-501.  

Weber, K., Thomaschewski, M., Warlich, M., Volz, T., Cornils, K., Niebuhr, B., . . . 
Fehse, B. (2011). RGB marking facilitates multicolor clonal cell tracking. 
Nat Med, 17(4), 504-509. doi: 10.1038/nm.2338 

Williams, D. L., Look, A. T., Melvin, S. L., Roberson, P. K., Dahl, G., Flake, T., & 
Stass, S. (1984). New chromosomal translocations correlate with specific 
immunophenotypes of childhood acute lymphoblastic leukemia. Cell, 
36(1), 101-109.  



 
References 

109 
 

Yang, X., Lay, F., Han, H., & Jones, P. A. (2010). Targeting DNA methylation for 
epigenetic therapy. Trends Pharmacol Sci, 31(11), 536-546. doi: 
10.1016/j.tips.2010.08.001 

Yates, L. R., & Campbell, P. J. (2012). Evolution of the cancer genome. Nat Rev 
Genet, 13(11), 795-806. doi: 10.1038/nrg3317 

Zhang, J., Mullighan, C. G., Harvey, R. C., Wu, G., Chen, X., Edmonson, M., . . . 
Hunger, S. P. (2011). Key pathways are frequently mutated in high-risk 
childhood acute lymphoblastic leukemia: a report from the Children's 
Oncology Group. Blood, 118(11), 3080-3087. doi: 10.1182/blood-2011-03-
341412 

Zufferey, R., Donello, J. E., Trono, D., & Hope, T. J. (1999). Woodchuck hepatitis 
virus posttranscriptional regulatory element enhances expression of 
transgenes delivered by retroviral vectors. J Virol, 73(4), 2886-2892.  

 

 



Acknowledgment 

 

110 
 

11.  Acknowledgment 

 

Ein großes Dankeschön an…. 

 

meine Betreuerinnen Prof. Dr. Irmela Jeremias und PD Dr. Ursula Zimber-Strobl, die es 

mir ermöglicht haben, meine Doktorarbeit in ihrer Arbeitsgruppe durchzuführen. Vielen 

Dank für die gute Betreuung! 

Dr. Philipp Greif für die Planung der genetischen Analyse der Klone und für die 

konstruktiven Ideen im Rahmen des Thesis Committees.  

Sebastian Vosberg für die Hilfe bei der Auswertung der genetischen Daten.   

Dr. Kerstin Cornils für die zuverlässige Kooperation bei der Durchführung der LM-PCR. 

alle Gruppenmitglieder der Arbeitsgruppe für die angenehme Arbeitsatmosphäre, die 

vielen Kuchenorgien, die tollen Laborausflüge, movie nights, grillen, Eis essen uvm…!!! 

alle TAs der Gruppe für die immense Hilfe bei der Aufarbeitung der Mäuse, vor allem an 

Fabian für die Übernahme des Sortens der Klone und fürs Managen der genetischen 

Analysen in Heidelberg.  

alle Mitarbeiter der Tierhaltung, vor allem Franziska Liebel für die 

Wochenendbereitschaft und fürs Anrufen bei Notfällen.  

Michela für ein immer offenes Ohr und die Hilfe in allen Bereichen während der letzten 

drei Jahre. 

Jenny, Erbey und Sarah - my best office mates.  

Nina, Sybille und Steffi für die Aktivitäten fernab des Labors.  

Thomas und Jan und vor allem meinen Eltern für die immerwährende Unterstützung und 

Hilfe.   


