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1 Introduction 

1.1 The Nanotechnology Age 

New technologies can revolutionize economy and society if society is willing to adopt the 

technology in question and if there is a broader national consensus that allows the new 

technology to spread and transform from its initial niche to mass application.1 For an 

emerging technology, nanotechnology has made a significant economic impact in a relatively 

short period of time in diverse sectors ranging from semiconductor manufacturing, catalysts, 

medicine and agriculture to energy production, and can be considered one of the most 

important branches of technologial development in the early 21st century.2 As a research 

basis, nanotechnology initiatives were established in sixty countries all over the world 

between 2001 and 2004.1 One detailed definition of the term nanotechnology was generated 

after consultation of experts in over 20 countries by the National Science and Technology 

Council (NSTC) in 1999: “Nanotechnology is the ability to control and restructure the matter 

at the atomic and molecular levels in the range of approximately 1-100 nm, and exploiting the 

distinct properties and phenomena at that scale as compared to those associated with single 

atoms or molecules or bulk behavior. The aim is to create materials, devices, and systems 

with fundamentally new properties and functions by engineering their small structure. This is 

the ultimate frontier to economically change materials properties, and the most efficient 

length scale for manufacturing and molecular medicine. The same principles and tools are 

applicable to different areas of relevance and may help establish a unifying platform for 

science, engineering, and technology at the nanoscale. The transition from single atoms or 

molecules behavior to collective behavior of atomic and molecular assemblies is 

encountered in nature, and nanotechnology exploits this natural threshold.”3 

According to this definition, one may consider the engineering of nanostructures to create 

functional materials as the “holy grail” of nanotechnology. One rather recent class of 

materials has shown great potential to fullfil this goal, namely two-dimensional (2D) 

nanosheets. The term “nanosheets” was first used by Sasaki et al. to reflect the specific 

features of unilamellar titanium oxide layers with a thickness of around ~1 nm, a lateral size 

in the micrometer regime and an extremely high 2D anisotropy.4 Henceforth “nanosheet” was 

adopted by the nanotechnology community to describe similar 2D structures. In the ideal 

case nanosheets consist of single monolayers, but they are often manifested as incompletely 

exfoliated flakes comprising a small number (<10) of stacked monolayers.5 

Although 2D materials have a long history, it was the exfoliation of graphite that triggered a 

research fever due to the remarkable electronic and mechanical properties of isolated 

graphene nanosheets consisting of a flat monolayer of carbon atoms tightly packed into a 2D 

honeycomb lattice.6 In 2004, the group around Geim and Novoselov were first to confirm the 

existence of substrate-free 2D carbon nanosheets which are amenable to nanodevice 
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fabrication.7 An accomplishment for which Geim and Novoselov were awarded with the 

Nobel Prize in Physics in 2010. From then on, graphene has been proposed and widely 

explored for use in various applications, ranging from hybrid materials, energy conversion 

and storage systems, to next-generation electronic and optical devices, such as transistors, 

sensors, detectors, etc.8-9 Nevertheless, graphene is a simple material composed of only one 

element, carbon, which somewhat limits its versatility.10 A limit that will be overcome by new 

2D nanosheets that offer a vast diversity of composition, structure, and functionality. 

Figure 1.1 illustrates the arising research trend by plotting the number of publications 

referring to the keyword “nanosheet” for the last two decades applying SciFinder® as search 

engine. From the beginning in 1995 till 2003 there were only a few articles published. From 

2004 onwards the number of articles started to roughly double each two years, so that in 

2014 over 4800 articles dealt with the topic “nanosheets”. A trend that is expected to 

continue in the near future. 

 

 

Figure 1.1: Number of publications containing the keyword “nanosheet” for the last two decades using 

SciFinder® as search engine, showing roughly a duplication of publications each two years 

(18.10.2015). 

 

The present work deals with the synthesis and in-depth characterization of various 2D 

transition metal oxide (TMO) based nanosheets as well as their rearrangement as artificial 

solids. The following chapters will give a brief overview of layered bulk materials and their 

exfoliation into 2D nanosheets, with the focus on the compounds studied in this thesis. 

Several possibilites to utilize nanosheets as building blocks for the fabrication of new 

functional heterostructures are introduced. In the end, the objectives of this thesis are set 

with respect to the current research demands of nanotechnology. 
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1.2 Two-dimensional Nanosheets 

A 2D material is defined as a material in which the atomic organization and bond strength 

along two dimensions are similar and much stronger than along a third dimension.11 Besides 

graphite, there are manifold other layered materials that can be divided into two general 

groups, layered van der Waals solids and layered ionic solids. Layered van der Waals solids 

exhibit a crystal structure that features neutral layers of atoms or polyhedras with covalent or 

ionic bonding within the layer and van der Waals bonding between the layers. Graphite is the 

most prominent example of a layered van der Waals solid, but there are plenty of other 

examples like hexagonal boron nitride, layered transition metal dichalcogenides MX2 

(M = Mo, W, Ti, Zr, Hf, V, Nb, Ta, Re; X = S, Se, Te) and other chalcogenides like Bi2Te3, 

Sb2Te3 and β-FeSe, to name a few.11-12 In van der Waals solids weak interlayer energies of 

around 40-70 meV enalbe facile exfoliation by usage of for example the “Scotch tape” 

method or liquid exfoliation by dispersion of the solid in a solvent having the appropriate 

surface tension or intercalation of molecules/atoms and subsequent agitation (such as shear 

or ultrasonication) of the intercalated material.5, 11 

On the contrary, layered ionic solids feature bulk crystal structures with charged polyhedral 

slabs that are interleaved with electropositive cations or electronegative anions.11 Layered 

TMOs are the main group of compounds that form negatively charged nanosheets.13-14 Its 

parental compounds are all constituted of negatively charged layers of corner- and/or edge-

sharing BO6 (B = Ti, Nb, Mn, Ta, W etc.) octahedral units that are separated by cations or 

positively charged covalent networks, e.g. in the case of Aurivillius phases (AV) phases. 

Cs0.7Ti1.825O4, KTiNbO5, K4Nb6O17, K0.45MnO2 or Cs6+xW11O36 are some prominent layered 

TMO precursors for subsequent exfoliation experiments.13-14 Another major group of TMO 

oxides and also the central part of this work is the class of layered perovskites, which will be 

described in detail in the following. 

All layered perovskites are based on the perovskite structure with the general formula ABX3, 

where X is an anion and A and B are cations (Figure 1.2). Typically, the A cation is a large 

cation with low valency, e.g. an alkali or alkaline earth metal, and the B cation tends to be 

smaller and have a higher valency. X is usually O. Almost every element on the periodic 

table, aside from the noble gases, can be incorporated into the perovskite structure.15 In the 

perovskite structure, the unit cell can be thought of as a 3D network of corner-sharing BX6 

octahedra where the A cations sit in a cube out of 8 BX6 octahedra.16 Hence, within this 

structure the larger A-site cations are coordinated 12-fold by X, while the smaller B-site 

cations are coordinated 6-fold by X. 
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Figure 1.2: Polyhedral representation of the ternary perovskite structure ABX3. 

 

The ideal, undistorted structure is cubic and has the space group Pm3m. For the aristotype, 

the size of the unit cell is determined by the A-X and B-X bond lengths, RA-X and RB-X, 

respectively. These distances are related by the Goldschmidt tolerance factor17: 

 

𝜏 =  
𝑅𝐴−𝑋

√2𝑅𝐵−𝑋

 (Eq. 1.1) 

 

When τ ~ 0.9-1.0, the bond strain is minimized and the ideal geometry can be achieved. 

However, if τ < 0.9, the A cation is too small for the cavity created for it by the BX3 network.18 

For τ > 1.0 a hexagonal structure is formed. As a consequence, distortions and tilts of the 

BX6 octahedra can arise in depencence of the present elements, that despite the 

composition itself can have a major contribution to the properties of the perovskites.19 

In layered perovskites the perovskite motif is “infinite” in two dimensions, but interposed by 

cations or cationic structures in the third dimension. Hence, layered perovskites can be 

denoted by the generalized formula Mm[An-1BnO3n+1], where An-1BnO3n+1 represents the basic 

layer and M the interlayer cation or cationic structure.20 The thickness of the perovskite layers 

is determined by the number of corner-sharing BO6 octahedra, which is defined by n. 

Layered perovskites can be divided into Dion-Jacobson (DJ), Ruddlesden-Popper (RP) and 

AV phases and are shown with representative examples in Figure 1.3.14, 20  
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Figure 1.3: Schematic comparison of different layered perovskites with representative examples: a) 

Dion-Jacobson (DJ) phase KCa2Nb3O10, b) Ruddlesden-Popper (RP) phase Rb2La2Ti3O10 and 

Aurivillius (AV) phase Bi4Ti3O12. 

 

For the DJ series one monovalent interlayer cation M per formula unit separates the 

negatively charged [An-1BnO3n+1]- perovskite slabs. M and A are usually alkali, alkaline earth 

or rare earth elements and B transition metals like niobium, tantalum or titanium. One of the 

most common and structurally characterized DJ representatives is KCa2Nb3O10, which is also 

the central compound of this work.21 KCa2Nb3O10 crystallizes in the monoclinic space group 

P21/m and is built up of corner sharing NbO6 octahedra.22 The divalent Ca2+-cations are filling 

the cavities resulting from eight corner-sharing NbO6 octahedra, whereas the monovalent 

potassium cations separate and link the individual anionic niobate layers. As one can see, 

the NbO6 octahedra are tilted with respect to each other. In general, the distortion is higher 

for the outer octahedra and is usually less for larger interlayer cations.23 Equation 1.2 can be 

used to put theses distortions in relation to each other: 

  

𝑂𝑐𝑡𝑎ℎ𝑒𝑑𝑟𝑜𝑛 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 =  
(𝑙𝑎𝑟𝑔𝑒𝑠𝑡 −  𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡)𝐵 − 𝑂 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐵 − 𝑂 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 (Eq. 1.2) 

 

RP phases have two interlayer cations M2 per formula unit and thus twice the interlayer 

charge density compared to the DJ family.20 Rb2La2Ti3O10 is shown as a representative 

example.24 In general, one An-1BnO3n-1 perovskite structure block is embedded between two 

rock-salt structured MO layers. A cations show a cuboctahedral coordination, whereas the M 

cations have a nine-fold coordination in the interlayer. The unit cell of such RP phases is 
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elongated along the c-direction which leads to a distorted cubic unit cell of the pristine 

perovskite structure. In AV phases M is a covalent network built of (Bi2O2)2+ layers located 

between the 2D perovskite slabs [An-1BnO3n+1]2-
.
20 Bi4Ti3O12 is one prominent example for AV 

phases.25 

As mentioned, the perovskite structure itself shows great flexibility in composition, which of 

course accounts for all types of layered perovskites, too. Thus, the incorporation of ions of 

different sizes and charges allows for subtle distortions that ease the bond strains created by 

e.g. size mismatch. Perovskites and layered perovskites are of great interest for the wide 

variety of properties that they exhibit, which are directly influenced by the structure, as subtle 

changes alter symmetry considerations, bond overlap, and band energy levels.18 Despite 

these similarities, layered perovskites exhibit another useful feature: their cation-exchange 

property of the interlayer ions/structures. Ion-exchange and intercalation properties facilitate 

the process for chemically modifying the composition of the interlayer space at ambient 

temperature, while retaining the host slab units[20] - a unique characteristic that can be 

exploited for exfoliation of the layered perovskites into unilamellar nanosheets. 

For layered TMOs a common 2-step exfoliation procedure is schematically shown for the 

example of KCa2Nb3O10 in Figure 1.4. In the first step the interlayer potassium cations are 

exchanged against protons via acid treatment and a solid Brønsted acid HCa2Nb3O10•xH2O is 

achieved. In the second step, the protons are further exchanged against bulky organic 

cations such as tetra-n-butylammonium (TBA+) cations in aqueous basic solution to yield 

TBA1-yHyCa2Nb3O10. Note that bulky organic cations are usually too large to compensate the 

negative charge from one oxide unit cell and hence not every proton is exchanged.26 Such 

exchange reactions are frequently accompanied by the introduction of large volumes of 

water, which leads to a decrease of interaction between oxide layers. A swollen phase is 

formed, that in the ideal case can be separated into individual perovskite layers by weak 

agitation like stirring, shaking or ultrasonication. One main driving force for this reaction is the 

neutralization of the protons by the hydroxide counterions of TBA+. The degree of exfoliation 

along with the sheet quality are determined by certain factors, like composition, charge 

density, concentration and the nature of the exfoliating agent or solvent.14  
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Figure 1.4: Common 2-step exfoliation procedure of layered transition metal oxides (TMO)s 

schematically drawn for the example of KCa2Nb3O10. In step a) the cation is exchanged against a 

proton and subsequently against a bulky organic cation like tetra-n-butylammonium cation to yield 

individual nanosheets in step b). 

 

Layered double hydroxides (LDHs) and layered rare-earth hydroxides (LREHs) are up to now 

the main compounds that form positively charged nanosheets, whereby only LDHs play a 

crucial role in this work. LDHs are basically derived from the Brucite structure (Mg(OH)2) and 

exhibit the general formula [M2+
1-xM

3+
x(OH)2]

x+[An-
x/n]

x-•mH2O (with M2+ = Ca2+, Mn2+, Mg2+, 

Zn2+, Ni2+, Co2+, Fe2+ etc. and M3+ = Al3+, Fe3+, Cr3+, Mn3+, Ga3+, Co3+, Ni3+ etc.).27 Figure 1.5 

shows a representative unit of the MgAl-LDH structure. LDHs are built of edge-sharing 

M2+/M3+(OH)6 octahedra consisting of divalent and trivalent cations of similar ionic radii which 

are 6-fold coordinated by oxygen, forming infinite positively charged 2D Brucite-like sheets of 

[M2+
1-xM

3+
x(OH)2]

x+. These sheets can be stacked together in the third dimension via 

hydrogen bonds among the functional hydroxyl groups of adjacent layers.28 The positively 

charged framework built up of these sheets is a result of the partial substitution of M2+-

cations by M3+-cations. In order to maintain charge neutrality and compensate the positive 

layer charge, negatively charged counter anions An- such as SO4
2-, NO3

-, CO3
2-, halides or 

organic anions have to be intercalated between vicinal layers.27 Attractive electrostatic 

interactions between the Brucite-like host layers and the intercalated guest anions as well as 

hydrogen bonds between the functional hydroxyl groups and interlayer water molecules 

contribute to a stabilization of the layered structure.13, 27 
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Figure 1.5: Polyhedral representation of the layered double hydroxide (LDH) structure. 

 

LDHs can be synthesized in many different ways, whereas coprecipitation is one of the most 

commonly used methods.14 Other methods are e.g. homogeneous precipitation or ion-

exchange.14, 27 Coprecipitation relies on the precipitation of two aqueous metal salt solutions 

of the desired divalent and trivalent ions in the form of the corresponding metal hydroxides 

under conditions of supersaturation at constant alkaline pH.13 The strength of the 

electrostatic interaction between the host layers and the anion is determined by the 

characteristic properties of the anionic species. With decreasing size of the anion and 

simultaneously increasing charge the exchange of the anion is hindered due to its stronger 

electrostatic interactions within the lamellar composite suggesting that larger and lower 

charged ions facilitate the substitution process. The following sequence gives a general trend 

concerning the anion-exchangeability: CO3
2- >> SO4

2- >> OH- > F- > Cl- > Br- > NO3
- > I-.Thus, 

high exchangeability is expected if nitrate or halides are dissolved and the synthesis is 

performed under inert gas conditions in order to avoid the intercalation of carbonate from 

atmospheric CO2.29 

The exfoliation of LDHs is generally achieved by stabilizing solvents, e.g. the highly polar 

formamide, in order to overcome the attractive electrostatic forces between the cationic host 

layers and the charge balancing anions as well as the hydrogen bonds.30 Additionally, 

incorporation of organophilic anions like amino acids, long-chain carboxylates, or other 

anionic surfactants into LDHs can further help to weaken the layer-to-layer interaction and 

facilitate swelling and exfoliation in the respective organic solvent.14 Analogous to the 

exfoliating process of perovskites, the solvent is osmotically entering the interlayer gallery, 

interacting with the functional groups of the LDH, decreasing the electrostatic interaction 

between the host layers and the interlayer species and simultaneously causing an expansion 

of the crystal volume. Subsequent agitation like stirring, shaking or ultrasonication then leads 

to the final exfoliation into nanosheets.13 



 

9 

1.3 Nanosheet-Based Heterostructures 

Nanosheets out of layered ionic solids are excellent candidates to be used as 2D building 

blocks for the controlled construction of various tailored 3D assemblies with superlattice-like 

arrangement at a molecular scale and sophisticated functionalities. The basic principles of 

these low-temperature assemblies date back to the 1990s, where the concepts of Chimie 

Douce were established.20, 31-32 Mallouk and co-workers were among first to show “molecular 

beaker epitaxy” as solution-based counterpart to gas-phase molecular beam epitaxy.31 They 

designed artificial solids that are inaccessible by thermodynamically driven, high-temperature 

solid-state synthesis pathways. This methodology was mainly extended by Sasaki and co-

workers in the following years.10, 13-14 To date, well-established assembling methods for the 

fabrication of 2D crystal-based multifunctional heterostructures, are flocculation, layer-by-

layer (LbL) assembling techniques based on electrostatic sequential deposition (ESD) and 

the Langmuir-Blodgett method (LB) (Figure 1.6a-c). But also other traditional wet-processing 

film fabrication techniques like spin-coating or evaporation-induced self-assembly (EISA) 

(Figure 1.6d-e) can be used to create nanosheet-based heterostructures. 

Flocculation might be considered the simplest method to combine different types of 

nanosheets (Figure 1.6a). In a general approach, the colloidal suspension of nanosheets is 

destabilized by the addition of either oppositely charged nanosheets or by addition of 

electrolytes like NaCl.13 The advantages of such an approach are the speed as well as the 

amount of synthesized material, but the achieved heterostructures lack in terms of control 

over the layer structure, layer registry, and interfacial quality.33 Some interesting examples 

are e.g. restacked solids composed of Mg2Al(OH)6/Ca2Nb3O10,34 Ti1.83O0.17/Zn0.69Cr0.31(OH)2,35 

or (Ho0.096Yb0.23Y0.164)Ca1.760.24Nb3O10•1.4H2O36. The first example was also first to 

demonstrate the successful fabrication of a new type of inorganic sandwich structured 

materials between positively charged LDH nanosheets and negatively charged oxide 

nanosheets.34 In the second example, the photocatalytic activity for visible light induced O2 

generation and chemical stability of the resulting heterolayered nanohybrids in water was 

better than that of pristine Zn-Cr LDH itself.35 In the last example a new upconversion 

material was designed by mixing rare-earth salts with calcium niobate nanosheets where 

Ho3+, Yb3+ and Y3+ act as photoactivator, sensitizer and space filler ions and the nanosheet 

as structural and thermal stabilizer.36 

The ESD based LBL technique was used by Decher et al. to fabricate multilayer 

arrangements by alternately dipping a solid substrate in colloidal suspensions of oppositely 

charged nanoparticles or polyelectrolytes (Figure 1.6b).37-38 Polyethylenimine (PEI) and 

Poly(diallyldimethylammoniumchloride) (PDDA) are typically used polymeric counterparts for 

the deposition and adsorption of multilayer films. This approach can be transferred to 

fabricate heterostructures out of oppositely charged nanosheets or a combination of 



 

10 

polyelectrolytes with nanosheets.13, 39 The bottleneck of this approach is to achieve a dense 

monolayer packing for the first deposited layer. In most cases a pretreatment of the substrate 

with an organic polyelectrolyte of the opposite charge or self-assembled monolayers (SAMs) 

and a precise control of the pH is necessary in order to accomplish high surface coverage.40 

Afterwards, the LBL technique is a self-limiting process, as the adsorption of material stops, 

once the charge is compensated.33 Extensive washing steps can be applied in between to 

remove excess material, so that control of the array on the nanometer scale is possible. For 

example, a (Ca2Nb3O10/PDDA/LaNb2O7/PDDA/Sr2Nb3O10/PDDA/LaNb2O7/PDDA)n mixed 

layered perovskite was synthesized by LBL deposition, which is not accessible by bulk 

synthesis.40 Organic components can subsequently be decomposed by heat treament or UV 

irradiation if the deposited nanosheets are photocatalytically active.41 Examples of pure 

nanosheet based assemblies are (Mg2Al(OH)6/Ti0.91O2)n and (Mg2Al(OH)6/Ca2Nb3O10)n or 

(Eu(OH)3-x/Ti1.81O4)n.34, 42 In the latter, titanate nanosheets were used as an “antenna” for UV-

light harvesting and europium nanosheets as an emissive layer due to a strong Eu3+ 

emission under UV irradiation.42 Last but not least, multilayer films of only LDH nanosheets 

can typically be deposited with anionic poly(styrene 4-sulfonate) (PSS) as counter 

polyelectrolyte.43 

In the LB deposition/transfer a compressed floating monolayer of nanosheets is transferred 

onto the substrate (Figure 1.6c). Thus, LB deposition is the current tool of choice to create 

high quality multilayer nanosheet films as the problem of a dense monolayer packing in ESD 

based experiments is overcome. Recent examples are an all-nanosheet capacitor out of 

(Ru0.95O2
0.2-/Ca2Nb3O10

-/ Ru0.95O2
0.2-) where the ruthenium oxide sheets operate as electrodes 

and the calcium niobate sheets as dielectric block and (LaNb2O7
-/Ca2Nb3O10

-)n which shows 

a ferroelectric behavior despite the fact that both nanosheets are paraelectric.44-45 However, 

the LB transfer is rather time consuming and the organic ligand has to be decomposed in 

order to enable deposition of the next layer. Thus, the LB approach can be considered an 

essential way to gather fundamental knowledge of nanosheet devices, but its setup has to be 

modifided or transferred to other fabrication routes in order to match industrial needs. 

Flocculation, LBL assembly and LB transfer are currently the three main pathways for 

fabrication of multilayer nanosheet heterostructures, however other wet processing methods 

like spin-coating (Figure 1.6d) or EISA (Figure 1.6e) can also be useful tools. E.g., 

TBA1-yHyCa2Nb3O10 nanosheets were spin-coated as a novel electron transport material in 

solution-processed multi-junction polymer solar cells.46 Different niobate nanosheets derived 

from K4Nb6O17 were used to fabricate porous solids with EISA.47  

Overall one can see a rapid development in the fabrication of heterostructures out of 2D 

nanosheets in the last decade, but there still remain many obstacles that need to and will be 

overcome in future. 
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Figure 1.6: Schematic illustration of different wet-chemical assembly routes for heterostructures 

composed of nanosheets: a) flocculation, b) layer-by-layer (LBL) assembly, c) Langmuir-Blodgett (LB) 

transfer, d) spin-coating and e) evaporation induced self-assembly (EISA). 
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1.4 Objectives 

One key challenge for the future of the fast expanding field of nanotechnology is the 

assembly of individual nanostructures into “composite materials by design”.48 Thus, 

fabrication protocols need to be developed that allow for a flexible, automated, and scalable 

design of heterostructures, which are amenable to integration into the existing industrial 

schemes.33 This goes along with the improvement of the current exfoliation pathways. The 

size, regular shape, purity and yield of nanosheets has to be drastically improved to allow for 

an industrial-scale production.5 Sophisticated tuning of chemical composition and structure of 

the 2D nanosheets are an inevitable necessity in order to enable such fabrication protocols 

for the desired targeted functionality. Besides synthesis and exploration of properties, the in-

depth analysis and hence understanding of nanomaterials is another factor that should not 

be underestimated in order to accomplish the transition from the realm of fundamental 

research to industrial applications. According to these requirements, the present dissertation 

is divided into three main chapters: two-dimensional transition metal oxide nanosheets 

(Chapter 3), nanosheet based heterostructures (Chapter 4) and electronic structure 

investigations (Chapter 5). In the following, the key objectives are described in more detail 

with respect to the general context above. 

The development and expansion of a broad nanosheet library is the basis for the subsequent 

design of composite materials with manifold functionalities. Regarding water splitting Pb 

doping is a generic method of visible-light sensitization of layered TMOs for photochemical 

properties. In Chapter 3.1 we investigated the new solid solution RbCa2-xPbxNb3O10 and 

derived nanosheets for this purpose. To impart TMOs with photoluminescent properties, 

rare-earth doping into layered TMOs is a tool of choice. Thus, in Chapter 3.2 we examined 

the series of K1-xCa2-xLnxNb3O10 (Ln = lanthanide) compounds. New synthesis pathways are 

needed to extend the nanosheet library and improve nanosheet quality and yield. In 

Chapter 3.3, we established a new exfoliation route via an Ag exchange and subsequent 

exfoliation with a bulky organic iodide, following the Pearson acid base concept. 

Recent literature focuses mainly on the fabrication of thin films, whereas information on the 

solution-based bottom-up fabrication of bulk materials is still lacking. This profound 

knowledge is key for future industrial scale-up productions. In Chapter 4.1, we show the 

fabrication of a 100 bilayer stack out of layered perosvkite nanosheets and LDH nanosheets. 

In-depth transmission electron microscopy (TEM) coupled with energy-dispersive X-ray 

(EDX) spectroscopy and electron energy loss spectroscopy (EELS) is used to analyze the 

structure with state of the art tools. For future application of such heterostructures, many 

devices require high thermal stability, especially those in semiconductor industry, as well as 

smooth interfaces. We therefore analyzed the thermal behavior of fabricated hybrid stacks in 

Chapter 4.2. Another factor for consideration is that the function depends on parameters like 
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film thickness, porosity etc. Thus, we investigated several ways of exploiting the 2D 

nanosheet motif for the fabrication of various nanoscale morphologies in Chapter 4.3. 

A driving force of nanotechnology is the difference between bulk material and nanomaterial. 

For example profound knowledge about the band-gap of the material as a function of the size 

is inevitable for many applications. Thus, we used valence electron energy loss spectroscopy 

(VEELS) to characterize bulk KCa2Nb3O10 (Chapter 5.1) as well as TBA1-yHyCa2Nb3O10 

nanosheets and derived the bandgap of individual TMO nanosheets by VEELS for the first 

time (Chapter 5.2). 
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2 Methods 

2.1 Powder X-Ray Diffraction 

Powder X-ray diffraction (XRD) is a non destructive technique that allows to identifiy and 

characterize crystalline phases like layered TMOs regarding their lattice parameters, 

crystal structure, phase purity, crystallinity, orientation and particle size. A powder XRD 

diffractometer consists of an X-ray source, a sample stage, a detector and a way to vary 

the angle θ.1 Diffractometers can be operated either in transmission or in reflection 

geometry. X-rays are generated when matter like Cu or Ag is irradiated by a beam of 

high-energy electrons under vacuum conditions. The inner shell electrons of the material 

are excited to unoccupied states and emit X-rays or Auger electrons when they relax 

back to their ground state. These emissions are accompanied by “Bremsstrahlung” as a 

fraction of the incident electrons is slowed down in the Coulomb field of the atomic 

nucleus. The “Bremsstrahlung” and undesired emission lines are cut out by filters, 

monochromators or X-ray mirrors, before the resulting monochromatic X-rays are 

collimated and focused onto the specimen. 

In a diffraction experiment, the incident X-rays must have wavelengths comparable to 

the spacings between atoms. The main target is to know the particular condition in which 

the scattered X-rays from atoms and the incident X-rays are completely in phase and 

reinforce each other to produce a detectable diffracted beam (Figure 2.1.1).1 If the 

incident X-rays of wavelength λ impinge a crystal with a regular periodic array of atoms 

with interplanar spacing d, a diffracted beam of sufficient intensity is detected only when 

the Bragg’s law is fullfilled (Equation 2.1.1):2 

 

𝟐𝒅 𝒔𝒊𝒏 𝜽 = 𝒏𝝀 (Eq. 2.1.1) 

 

where the order of reflection n is an integer. The diffraction angle 2θ of any set of planes 

(hkl) can be calculated combining the Bragg condition with the plane-spacing equations 

for the seven crystal systems, which relate the relationship among the distance of 

adjacent planes to Miller indices and lattice parameters for each crystal system.1 On 

contrary, one can possibly determine an unknown crystal structure by measuring the 

diffraction angles and hence, relate the diffraction angles directly to the positions of 

atoms in the unit cell. In layered systems characteristic (00l) reflections arise that 

correspond to the basal d-spacing resulting from the stacked layers. Compared to 

layered bulk materials, 2D nanosheets show only (hk0) reflections, have a asymmetrical 

Warren-type peak profile and the peak position can be displaced with respect to the bulk 

material.3-4 
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Figure 2.1.1: Schematic drawing of the Bragg condition. Two X-rays with characteristic 

wavelength λ are scattered at an angle θ by atoms located at parallel lattice planes with distance 

d leading to a path difference 2d sinθ shown in red. 

 

In this thesis, XRD measurements were mainly used to monitor bulk precursors and 

intermediate cation-proton exchanged materials. XRD diffractograms were therefore 

analysed with the help of the software WINXPOW 5-6 and compared with the 

“International Centre for Diffraction Data” (ICDD)7 database and the “Pearson's Crystal 

Data - Crystal Structure Database for Inorganic Compounds” (PCD)8 and the “The 

Inorganic Crystal Structure Database” (ICSD)9. Furthermore, XRD was used to retrace 

structural changes in substitution experiments. In multilayer arrangements, XRD was 

performed to investigate the basal reflections. 

 

In total, three different instruments were used. A Huber G670 Guinier Imaging Plate 

diffractometer (HUBER X-Ray Diffraction Equipment, Rimsting; Cu Kα1-radiation, 

λ = 154.051 pm, Ge(111)-monochromator, external standard SiO2). A STOE Stadi P 

powder diffractometer in Debye–Scherrer-geometry (STOE & Cie GmbH, Darmstadt; 

Cu Kα1 radiation, λ = 154.056 pm, Ge(111)-monochromator, with a linear position 

sensitive detector). A Bruker D8 Advance diffractometer (Bruker, Billerica, Cu Kα1 

radiation, λ = 154.051 pm) in Bragg Brentano geometry. All measurements were 

performed at room temperature. Daniel Weber (Chapter 3.1), Christine Stefani and 

Tanja Holzmann (Chapter 4.1) assisted in additional measurements. 

 

2.2 Elemental Analysis 

2.2.1 Inductively Coupled Plasma and Atomic Emission Spectroscopy 

Inductively coupled plasma and atomic emission spectroscopy (ICP-AES) is a sensitive 

trace element analysis technique to determine which elements are present and at what 
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concentration10 In general, excited atoms and ions can emit electromagnetic radiation at 

specific wavelengths peculiar to their chemical character as they return to ground state. 

For ICP-AES experiments, a plasma source is used to dissociate the sample into its 

constituent atoms/ions, exciting them to a higher energy level. A single, characteristic 

wavelength for each element is selected and the intensity of the emitted energy related 

to the amount of that element present in the sample. Thus, by detection of the emitted 

wavelengths and their intensities, it is possible to quantify the elemental composition of 

the given sample relative to a reference standard.10 

 

In this thesis, ICP-AES was mainly used to ascertain a complete exchange of the 

layered bulk material interlayer cations against H+ or Ag+, respectively. Moreover, 

chemical composition and impurities were investigated. Two ICP-AES systems were 

used. First, a Vista Pro ICP-AES spectrometer (Varian Inc., Darmstadt) where the 

characteristic wavelengths were separated with an Echelle-Polychromator and detected 

with a photomultiplier. Second, a VISTA RL CCD and ICP-AES analyzer system (Agilent 

Technologies, Waldbronn). Measurements were performed by Marie-Luise Schreiber 

(Chapter 3.1) and Helmut Hartl (Chapter 4.1). 

 

2.2.2 CHNS Elemental Analysis 

CHNS elemental analysis can provide a rapid determination of carbon, hydrogen, 

nitrogen and sulphur in various types of materials. In a combustion process carbon is 

converted to carbon dioxide; hydrogen to water, nitrogen to nitrogen (oxides) and 

sulphur to sulphur dioxide.11 The desired combustion products are then separated and 

purified and their detection carried out, e.g. by gas chromatography and thermal 

conductivity measurements.11 Calibration for each element by comparison to high purity 

micro-analytical standards is necessary for absolute quantification. 

 

In this thesis, CHNS analysis was conducted to determine the amount of organic ligand 

surrounding inorganic nanosheets, e.g. TBA1-yHyCa2Nb3O10. Therefore, unexfoliated 

material in colloidal suspensions was first removed at low centrifugation speeds and 

nanosheets subsequently isolated at high centrifugation speeds. The supernatant was 

removed and the nanosheet pellet dried before CHNS elemental analysis. Based on the 

mass fraction of ligand specific elements C, N and/or S the amount of ligand was 

determined and the amount of crystal water set on basis of the excess H. CHNS 

analysis was performed on an Elementar Vario EL (Elementar Analysensysteme, Hanau) 

by R. Eicher (Chapter 4.1). 
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2.3 Electron Microscopy 

Electron microscopy today compromises a diversity of different techniques rather than just a 

single technique. These techniques offer unique possibilities to gain insights into structure, 

topology, morphology as well as composition of all kinds of materials. Manifold imaging and 

spectroscopic methods became indispensable tools for the characterization of specimens on 

an increasingly smaller size scale with the ultimate limit of a single atom. These profound 

possibilities are caused by the multitude of signals arising from the interaction of electrons 

with matter schematically depicted in Figure 2.3.1.12 In general, one can distinguish between 

elastic and inelastic interactions.13 In the former, no energy is transferred from the electron to 

the sample. This is the case, when the electron beam passes through the sample without 

any interaction and hence, no change in direction occurs. Another possibility is that electrons 

are deflected from their path by Coulomb interaction. In the case of scattering at the nucleus 

this can lead to backscattered electrons (BSE). However, for diffraction experiments the 

elastic scattering at the outer electron cloud is important. On contrary, analytical microscopy 

rather depends on the energy transfer of electrons to the specimen leading to different 

signals such as characteristic X-rays, Auger electrons, secondary electrons (SE), inelastically 

scattered electrons, plasmons, phonons etc.. In the following, main analytical methods like 

energy dispersive X-ray (EDX) spectroscopy and electron energy loss spectroscopy (EELS) 

will be explained in more detail before the basic principles of scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM) will be evaluated. 

 

 

Figure 2.3.1: Schematic illustration of electron-matter interactions that can occur from the impact 

of an electron beam onto a specimen. No interaction (direct beam), elastically scattered 

electrons, backscattered electrons (BSE), inelastically scattered electrons, characteristic X -rays, 

Bremsstrahlung, Auger electrons, secondary electrons (SE), electron-hole pairs 

(cathodoluminescence), visible light, absorbance of electrons, as well as phonon and plasmon 

oscillations (not shown). 
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2.3.1 Energy Dispersive X-Ray Spectroscopy 

EDX spectroscopy can be used in combination with SEM or TEM to determine the 

overall chemical composition of a sample or to analyze local differences in its 

composition. The generation of characteristic X-rays is visualized in Figure 2.3.2.13 In 

the first step an atom is ionized by an energy transfer from the incident electron to an 

inner shell electron of the atom. The inner shell electron is either excited to an 

unoccupied level or ejected into the vacuum. In the second step, this arising vacancy is 

filled by an electron from a higher state, which can be accompanied by the emission of 

an X-ray quantum as a result of the surplus difference energy. Note that the emission of 

an Auger electron is an alternative process, where the excess energy is transferred to a 

further electron that subsequently gets ejected into the vacuum.13 

 

 

Figure 2.3.2: Scheme of characteristic X-ray generation. The incident electron transfers energy 

to an inner shell electron of an atom that gets ejected. The remaining vacancy is filled by an 

electron of a higher state. The energy difference is emitted in form of characteristic X -rays. 

 

The emitted X-rays are characteristic for each element and can be used for quantitative 

analysis, especially for those with an atomic number Z > 13.12 Below this threshold 

characteristic X-rays are low in energy and can easily be absorbed by the sample or the 

detector window. As different transitions can occur they are named after the electron 

shell from which the electron is excited (K, L, M) and the electron shell from which the 
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electron comes to fill the vacancy (α, β, γ). Quantitative EDX can be performed, e.g. by 

applying the Cliff-Lorimer equation (Equation 2.3.1):14 

 

𝑵𝑨

𝑵𝑩
=  𝒌𝑨𝑩

𝑰𝑨

𝑰𝑩
 (Eq. 2.3.1) 

 

with NA and NB being the atomic% of element A and B, IA and IB the measured intensity 

of the elements and kAB being the Cliff-Lorimer factor. Note that first the unspecific 

background due to braking radiation (“Bremsstrahlung”) has to be subtracted, e.g. via 

the Kramer’s equation, and standards containing elements A and B should be used to 

obtain accurate values for the kAB factor .15 

 

2.3.2 Electron Energy Loss Spectroscopy 

EELS is an analytical technique that measures the change in kinetic energy of electrons 

after their interaction with the sample and can give structural and chemical information 

with a spatial resolution down to the atomic level. Inelastic scattered electrons are 

separated in dependence of their energy with help of a magnetic prism and thus, 

detected as a function of their energy loss.16 Figure 2.3.3 displays such an exemplary 

EEL spectrum. In the beginning the most dominant feature is visible, the zero loss peak 

(ZLP). It is related to all the elastically and quasielastically (i.e. vibrational- or phonon-) 

scattered electrons. Thus, for thin samples it is the most intense signal. The width of the 

ZLP, typically 0.2-2 eV, reflects mainly the energy distribution of the electron source and 

determines the overall spectral resolution. Adjacent to the ZLP the low loss region is 

found up to ~50 eV. The plasmon peaks are the dominant features in this region. 

Together with the ZLP the region can be used to determine the thickness of the sample. 

It is also referred to as valence electron energy loss spectrum (VEELS) as the 

excitations up to about 50 eV are predominantly caused by the excitations of the valence 

electrons.17 From careful data acquisition it is possible to extract the band gap and 

information on the dielectric function of applicable materials in this region.12 In the 

following core loss region the signal intensity drops rapidly and is mainly due to signals 

arising from e.g. plasmon tails and low energy edges.13 Above the background well 

defined peaks can be found that belong to ionization edges that are characteristic for 

each element. The onset of such edges corresponds to the threshold energy that is 

necessary to excite an inner shell electron from its ground to state to the lowest 

unoccupied level. Above threshold energy, not all further transitions are equally likely 

and for a crystal determined by the density of states (DOS) above the Fermi level.16 This 

gives rise to the electron energy loss near edge structure (ELNES) that reflects the DOS 

and thus, gives information about the bonding state. Information about coordination and 
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interatomic distances can be obtained by evaluation of the extended energy loss fine 

structure (EXELFS).16 

 

 

Figure 2.3.3: Exemplary EEL spectrum highlighting the essential three different regions: Zero 

loss peak, low loss and core loss region. 

 

EELS and EDX can be regarded as complimentary analytical methods. In comparison, 

EELS has a higher energy resolution and can detect light elements, but needs thin 

samples and suffers from low intensities for edges at higher energy losses >1000 eV. 

 

2.3.3 Scanning Electron Microscopy 

SEM can be used to obtain information on the external morphology, namely size and 

shape of the investigated sample as well as its chemical composition when coupled with 

EDX spectroscopy. A schematic setup of a SEM is shown in Figure 2.3.4.18 An electron 

gun, e.g. a thermionic gun, Schottky emitter or cold field emitter, emitts electrons which 

are then accelerated to energies between 1-30 keV. A condenser lens system, the 

objective lens and various apertures are used to demagnify the electron beam to a 

diameter of 2–10 nm and scanning coils are used to scan the beam across the sample. 

The investigated samples have to be conductive to avoid charging effects due to 

electron trapping, therefore non-conductive samples are coated with thin layers of e.g. 

amorphous carbon or gold. The generated signals of each sample point are detected. 

Due to the small scattering angles, SEM micrographs have a large depth of field yielding 
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a characteristic three-dimensional appearance useful for understanding the surface 

structure of a sample.18 SE with energies of a few eV arise from the upper layers 

(~50 nm) of the sample, are collected by an Everhart-Thornley detector and give 

information on the morphology. BSE are quasi-elastically scattered by the specimen and 

thus show energies close to the incident beam. They are detected with semiconductor 

devices and strongly depend on the atomic number. Thus, BSE can be used to 

determine element distribution within the sample. Generated X-rays provide information 

on the chemical composition as discussed in Chapter 2.3.1. 

 

 

Figure 2.3.4: Schematic setup of a SEM. From the electron gun the beam is focused through a 

condenser and objective lens system. Scanning coils are used to move the beam across the 

sample and at each point various signals are recorded by special detectors.  

 

In this thesis, SEM was used to invetigate morphology and platelet-size of layered bulk-

materials, cation-proton exchanged materials and restacked nanosheets. SEM 

measurements were performed on a JSM-6500F electron microscope (Co. JEOL Ltd., 

Tokyo) or a Vega TS 5130 MM (Tescan, Brno). All samples were sputter coated with 

carbon before investigation. Measurements were performed by Claudia Kamella 

(Chapter 3.1) and Christian Minke (Chapter 3.1-5.2). 
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2.3.4 Transmission Electron Microscopy 

TEM can provide image resolution down to the sub-angstrom regime and additional 

analytical measurements can be performed making an impressive amount of information 

accessible. Besides TEMs exceptional image resolution, it is possible to characterize 

crystallographic phases and their orientation with diffraction experiments, generate 

elemental maps by using EDX or electron energy loss spectroscopy, and to acquire 

images highlighting elemental contrast.12 Ultrathin samples along with a certain electron 

beam stability of the samples are a prerequisite for TEM investigations that are besides 

costs usually the bottleneck of the method. Samples investigated in this thesis were 

prepared in three different ways: As standard grid samples for bulk materials and 

nanosheets were used, while a lift-out technique or conventional cross-section sample 

preparation methods was applied for LBL deposited material.  

In the first case, the solid sample is suspended in a solvent, ultrasonicated to reduce its 

size to electron transparency and the resulting suspension dropped onto a TEM grid 

(Cu, Au, etc.) that is covered by an amorphous lacey-carbon film. In the case of 2D 

nanosheets only dilution of the suspension is necessary. 

The lift-out technique is performed in a focused ion beam (FIB) microscope.19 At high 

beam currents a focused beam of ions, e.g. Ga, can be used for site specific sputtering 

or milling to prepare a TEM lamella. The region of interest is coated with a protective 

layer, e.g. Pt, before two trenches are milled next to this region. The central membrane 

between the two trenches is thinned and release cuts are introduced below the formed 

lamella. The lamella is then fixed on one side to a probe, cut off from the remaining 

connections, transferred to a carrier holder and thinned to electron transparency using a 

low current Ga beam. 

Cross-sectional TEM samples were prepared as illustrated in Figure 2.3.5.20 In the first 

step, two substrates are glued together with a two-component glue with the coated 

surfaces facing each other. The achieved “sandwich” structure is than cut down with a 

diamond wire saw so that it fits into a brass tube with a diameter of ~2 mm, where it is 

immobilized with a two-component glue. From this brass tube discs of ~200 µm are cut 

off with the diamond wire saw, that are further thinned down to ~50 µm by grinding. The 

thickness in the center of the disc is then reduced to 15 µm with a dimpling wheel in 

combination with a diamond paste. In the final step, a precision ion polisher operated 

with two Ar ion beams removes wedge shape like remaining material until a hole forms 

in the middle of the sample. Right next to this hole, the sample is thin enough for TEM 

investigations, typically below 100 nm. 
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Figure 2.3.5: Illustration of different steps in TEM cross-sectional preparation: a)+b) gluing of 

two coated wafers into a “sandwich” structure; c) cutting of the “sandwich” into pieces that fit into 

d) a brass tube, where they are embedded in glue and further cutted into discs tha t are grinded 

down to ~50 μm; e) the inner part is further thinned with a dimple grinder and e) finalized with 

help of an ion polishing system. 

 

In the TEM, high energetic electrons are transmitted through the specimen and the 

various interactions are used to form an image or diffraction pattern and to gain 

analytical information. The instrument itself can be divided into three components: the 

illumination system, the objective lens/stage, and the imaging system.12 The role of the 

illumination system is to extract electrons from the gun and to transfer them through 

condensor lenses to the specimen. Depending on the mode the illumination can be 

either with a parallel beam or a convergent beam. While the former is used in 

conventional TEM imaging and selected area electron diffraction (SAED), the second is 

performed in scanning TEM (STEM) imaging and analytical experiments. In the center of 

the TEM the objective lens and the specimen stage are located and here the beam-

specimen interactions take place. In the last part of the TEM, the imaging system 

magnifies and focuses the produced image or diffraction pattern on the viewing screen 

or detector, respectively. 

Figure 2.3.6 describes basically the two operation modes of the conventional TEM: the 

diffraction mode and the imaging mode.12 As one can see, the diffraction pattern and the 

image are simultaneously present. The objective lens forms a diffraction pattern in the 

back focal plane (BFP) with electrons scattered by the sample and combines them to a 

first image.21 Controlled by the strength of the intermediate lens either the diffraction 

pattern or the image is produced on the viewing screen. 
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Figure 2.3.6: Schematic drawing of the two basic modes of conventional TEM and 

corresponding beam pathways: diffraction mode (left) and imaging mode (right).  

 

For the diffraction mode the diffraction pattern can be confined to a selected area of the 

specimen by insertion of a SAD aperture into the image plane. In the imaging mode, 

positioning of an objective aperture at a specific location in the BFP can be used to 

select electrons that have been diffracted by a specific angle.12 When the aperture is 

positioned to pass only the direct electron beam, a bright-field (BF) image is formed. As 

the contrast in conventional TEM is mainly due to diffraction contrast and mass-

thickness contrast, strongly scattering regions of the specimen (heavy elements, large 

thickness) show a lower intensity in the BF images than weakly scattering regions (light 

elements, small thickness). When the aperture is positioned to pass only diffracted 

electrons at a certain angle, a dark-field (DF) image is formed, which can give useful 

information, e.g. about planar defects, stacking faults or particle size. Hence, 

combination of both imaging modes can be used to obtain complementary information 

on the sample. SAED diffraction experiments are applied to determine the lattice plane 

distances and the crystal structure. 

The switchover from conventional TEM with a parallel beam to STEM with a convergent 

electron beam can be performed by a change in the illumination system.12 The quality of 

STEM images is not affected by aberrations of the imaging lenses, but rather depends 
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on the size of the formed probe and hence is related directly to the quality in the 

illumination system. For each scanned position the scattered signal is measured and an 

image is formed point by point. Three different detectors are placed in dependence on 

the scattering angle θ of the transmitted electrons with respect to the optical axis, so that 

complementary information of the specimen can be obtained (Figure 2.3.7): A BF 

detector with θ < 10-25 mrad, an annular dark-field (ADF) detector with 25 < α < 50 mrad 

and a high angle annular dark-field (HAADF) detector with β > 75 mrad. In STEM it is 

possible to achieve spatial resolutions of < 0.1 nm. In addition analytical signals, like 

EDX and EELS, can be acquired with a high spatial resolution. 

 

 

Figure 2.3.7: Schematic drawing of the various electron detectors in a STEM: BF- (θ < 10-

25 mrad), ADF- (25 < α < 50 mrad) and HAADF (β > 75 mrad) detector. 

 

In this thesis, TEM in combination with related spectroscopies was the main analytical 

tool for various purposes. First of all, TEM in addition to XRD and Raman spectroscopy 

was used for structure determination of various “new” layered bulk materials. Second, 

TEM was critical for the evaluation of exfoliation products and further the extraction of 

2D specific properties. Third, TEM allowed for in-depth characterization of 

heterostructures consisting of 2D nanosheets building blocks. Thus, several instruments 

were used in dependence of the purpose. An overview of all instruments is given in 

Table 2.3.1. 
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Table 2.3.1: Different TEMs used in this work, their specifications and their purposes . 

Microscope Specifications Purpose 

JEOL 2011 (JEOL Ltd., Tokyo) LaB6 cathode, 200 keV Pre-Investigations 

Philips CM30 ST (Royal Philips 

Electronics, Amsterdam) 

LaB6 cathode, 300 keV Basic nanosheet and 

LBL characterization, 

SAED of bulk 

materials 

FEI Titan 80-300 (S)TEM (FEI, 

Hillsboro) 

Field emission gun, 80-300 keV 

EDAX Sapphire Si(Li) detector (EDAX, 

Mahwah) 

Model 3000 HAADF detector (Fischione 

Instruments, Export) 

(HR)TEM, EDX and 

EELS of nanosheets 

and hybrid structures 

FEI Titan 80-300 Cubed 

(STEM) (FEI, Hillsboro) 

High brightness X-FEG, 80-300 keV 

Two Cs correctors 

Gatan GIF (model 866) spectrometer 

STEM, EDX and 

EELS of nanosheets 

and hybrid structures 

FEI Titan 80-300 (S)TEM 

(FEI, Hillsboro) 

Field emission gun, 80-300 keV 

Cs corrector (imaging lens) 

Gatan UltraScan 1000 (2k × 2k) slow 

scan CCD 

HRTEM of bulk 

materials 

FEI Titan 80-300 (S)TEM 

(FEI, Hillsboro) 

Field emission gun, 80-300 keV 

Cs corrector (probe lens) 

Gatan UltraScan 1000 (2k × 2k) slow 

scan CCD 

Wien-type monochromator 

STEM, EELS and 

EDX of bulk materials 

FEI Titan 80-300 (S)TEM 

(FEI, Hillsboro) 

Field emission gun, 80-300 keV 

2k x 2k CCD 

Gatan Tridiem 866 energy filter 

Wien-type monochromator 

STEM and VEELS on 

bulk materials and 

nanosheets 

 

TEM measurements were performed by Viola Duppel (Chapter 3.1-4.3); Teresa 

Dennenwaldt, Marc Heggen, Juri Barthel, Anna Frank and Christina Scheu 

(Chapter 3.1); Matthieu Bugnet (Chapter 3.2/4.1); Kulpreet Virdi and Yaron Kauffmann 

(Chapter 5.1-5.2). Additional cross-section preparation were performed by Tanja 

Holzmann as well as Arne Schwarze (Chapter 4.1) and Katarina Markovic (Chapter 4.2-

4.3). FIB samples were prepared by Bernhard Fenk (Chapter 4.3). 
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2.4 X-Ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) allows for the detection of all elements except 

hydrogen and helium and their bonding states, with an information depth in the 

nanometer region. The basic components of a typical XPS instrument are an ultrahigh 

vacuum (UHV) based stainless steel chamber containing the sample stage, an electron 

energy analyzer and detection system, an X-ray source and an ion gun for sample 

cleaning and for depth profiling.22 The chamber is connected to consoles with the 

electronics supply systems and the computer with the data acquisition and processing 

software on the outside. In XPS, the surface of a sample is irradiated with photons of 

characteristic energy, e.g. Mg Kα radiation, which directly interact with core electrons of 

the sample atoms. Ionized states are created in the sample and photoelectrons (SE) are 

emitted with kinetic energies given approximately by the difference between the photon 

energy and the binding energy of the specific element.22 This enables a fairly easy 

qualitative analysis of the samples, for example, by comparison with tabulated electron 

level energies and handbook spectra as each element will give rise to a characteristic 

set of peaks, but also quantitative analysis is possible. The exact binding energy of an 

electron depends on the level from which photoemission is occurring, the formal 

oxidation state of the atom and the local chemical and physical environment. 

 

In this thesis, XPS was used to distinguish between Pb II and PbIV species and to ensure 

that no reduction of NbV in the solid solution RbCa2-xPbxNb3O10 took place. 

Measurements were performed by Mitsuharu Konuma (Chapter 3.1). 

 

2.5 Atomic Force Microscopy 

Atomic force microscopy (AFM) is a method that measures forces between a tip and a 

sample and can be used to provide true 3D surface profiles. Additional information like 

optical or magnetic properties can be obtained by modification of the basic AFM setup.  

The key components of an AFM are shown in Figure 2.5.1.23 A microcantilever scans 

across the sample in x, y direction, while the deflection is recorded by reflecting a laser 

on the back of the cantilever into a position sensitive photodiode. A feedback loop is 

used to keep the force, distance, amplitude etc. in z-direction constant with help of a 

piezoelectric transducer whilst the change in signal is recorded by the computer. 
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Figure 2.5.1: Schematic drawing of an AFM setup. A cantilever is scanned in x, y direction 

across the sample or vice versa, and the deflection of a laser beam at the back of the cantilever 

detected with a photodiode. Depending on the measurement the z height can be adjusted 

through a feedback loop. 

 

The Lennard-Jones potential is a frequently used model potential to describe tip-sample 

interactions qualitatively. This potential describes the interaction between two neutral 

atoms and consists of a term describing the attractive part like the van der Waals 

interactions and a part describing the repulsive part like Pauli interactions 

(Equation 2.5.1):24-25 

 

𝑼𝑳𝑱(𝒓) =  𝟒𝑼𝟎 [(
𝑹𝒂

𝒓
)

𝟏𝟐

 −  (
𝑹𝒂

𝒓
)

𝟔

] (Eq. 2.5.1) 

 

where U0 is the depth of the potential well, r is the distance between the atoms, and Ra 

is the distance at which ULJ(r) is zero. Hence, the attractive part is proportional to -1/r6 

and the repulsive part to 1/r12. In the experiment the tip can be considered to have zero 

deflection when it is far from the sample surface. Attractive forces arise when the tip 

approaches the surface and when the tip is close enough a “snap-in” occurs, meaning 

the tip jumps into contact with the surface. Approaching the surface even further leads 

into the “repulsive” regime, i.e. the tip applies force to the sample and vice versa. Once 

the direction movement is reversed, the attractive forces become more dominant until 
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the point is reached when the cantilever snaps off. An AFM can be operated in three 

different imaging modes, each operating in different regimes: contact-mode, intermittent-

contact-mode and noncontact-mode.23, 25-26 

In the contact-mode the tip of the cantilever has a gentle contact with the sample surface 

and thus, operates in the repulsive regime. A very weak repulsion between atoms 

produces the probe offset and the feedback is used to control a fixed value, usually 

constant height or constant force mode. Whilst keeping the height constant different 

forces affect the cantilever and hence its bending, which renders the topographic images 

of the sample surface. In the constant force mode, the sample probe is lifted by the 

z-piezo so that no bending of the cantilever occurs and the topographic image is 

obtained by conversion of the z-piezo signal. Contact-mode is the fasted mode and has 

a better resolution than the other modes, but access force might damage the sample in 

cases for soft matter or the tip of the cantilever in cases of hard matter, respectively. 

In the noncontact-mode detection is executed by using the long-range attraction (van 

der Waals forces) between the atoms. Modulation techniques like oscillation of the 

cantilever at its resonance frequency are required to increase the signal to noise ratio. 

The change of the oscillating frequency as well as the amplitude change is recorded 

during the scan and converted to produce a topographic image. One major drawback is 

the effect of a water film on the surface that drastically reduces the resolution Thus, 

vacuum conditions are needed for the non-contact mode. 

In tapping-mode, the probe repeatedly taps on the surface in a dynamic operating mode 

around the “zero-force” regime. The cantilever is oscillated near its resonance frequency 

and scanned across the sample with a micro-contact between the tip and the sample. 

The topographic image is generated by imaging the variation of the oscillating frequency 

due to the forces affecting the cantilever. Similar to the noncontact-mode a water film 

decreases the resolution. 

 

In this thesis, AFM’s main purpose was to investigate nanosheet morphology as well as 

sheet height and indirectly the amount of ligand surrounding the nanosheets. 

Furthermore, nanosheet surface coverage in dependence of various parameters as well 

as the surfaces and heights of multilayer arrangements were analysed. AFM 

investigations were performed on a MFP-3D Stand alone AFM (Asylum Research, Santa 

Barbara). Additional measurements were performed by Arne Schwarze (Chapter 3.2) 

and Stephan Werner (Chapter 4.1). 
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2.6 Infrared Spectroscopy 

Infrared (IR) spectroscopy is one of the most widely used and most important analytical 

methods in science in general. It allows to determine the structure or structural features 

of organic compounds and can also be useful to investigate characteristic vibrations in 

inorganic materials. The basic components of an IR spectrometer are the IR source, a 

beam splitter, a monochromator, a transducer, an analog to digital converter and a 

digital machine to quantify the readout.27 IR spectroscopy is based on the interaction of 

electromagnetic radiation with the sample, in most cases in the form of absorption of 

energy from the incident beam. The absorption of IR light induces transitions between 

the vibrational energy levels. The first necessary condition for the sample to absorb IR 

light is that the sample must have a vibration during which the change in dipole moment 

with respect to distance is non-zero:28 

 

𝝏𝝁

𝝏𝒙
≠ 𝒐 

(Eq. 2.6.1) 

 

with ∂μ being the change in the dipole moment and ∂x being the change in bond 

distance. The second necessary condition for IR absorbance is that the energy of the 

light impinging the sample must be equal to a vibrational energy level difference within 

this sample. 

 

In this thesis, IR spectroscopy was used to investigate the layered bulk material and its 

changes after cation-proton exchange as well as exfoliation. Special emphasis was laid 

to gain information on the ligands surrounding individual nanosheets. Characteristic 

vibrations for the main investigated compounds are listed in Table 2.6.1.29-31 A Spectrum 

BX II FT-IR with ATR unit and Spectrum Two IR Spectrometer with ATR unit (both 

PerkinElmer, Waltham) were used. Additional IR measurements were performed bei 

Marie-Luise Schreiber (Chapter 3.1/4.1) and Stephan Werner (Chapter 4.1). 

 

Table 2.6.1: Important IR bands for KCa2Nb3O10 and TBA1-yHyCa2Nb3O10 

σ (cm-1) Mode 

~587 asym. Nb-O bridge 

~771 sym. Nb-O bridge 

~924 Nb-O term. 

1370-1500 -C-H bend 

1638 H-O-H bend 

2800-3000 -C-H stretch 

~3300 -O-H stretch 
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2.7 Raman Spectroscopy 

Raman spectroscopy is very sensitive to the crystal structure and bond order of metal oxides 

and therefore is an effective method to obtain profound knowledge about structural features 

of layered perovskites, especially those regarding the interlayer gallery. The main 

components of a Raman system are a light source, optical components, such as lenses and 

mirrors, to focus the light onto a sample and collect the scattered light, a spectrometer and a 

detector.32 In Raman spectroscopy UV, VIS or NIR laser emitting monochromatic light are 

used as radiation source that exhibit higher energy than the IR source, so that absorption of 

photons is impossible. Instead the incident light will excite the system to a high-energy state 

leading to scattering reactions when the system returns to the ground state. The simplest 

way of explaining the classical or spontaneous Raman effect is via an energy level diagram 

between a ground state n = 0 and an excited state n = 1 separated by the energy hνM, where 

νM is the frequency of the molecular vibration (Figure 2.7.1).28 The incident light leads to a 

transition with energy hνL to a virtual level, from which the system can return to the initial 

state in three different ways, by emission of light with frequencies νL, νL - νM and νL - νM. The 

transition that starts and finishes at the same vibrational energy level arises from elastic 

Rayleigh scattering. Stokes and anti-Stokes Raman scattering depict the shifts to lower and 

higher frequencies, respectively. At ambient conditions, most molecular vibrations are in the 

ground state and thus the Stokes Raman scattering is more intense and the one that is 

routinely studied. 

 

 

Figure 2.7.1: The energy level diagram showing the basic transitions involved in the spontaneous 

Raman scattering: Stokes, Rayleigh and anti-Stokes. 
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In contrast to IR spectroscopy a change of the polarization potential α is necessary for a 

sample to exhibit a Raman effect.28 

 

𝝏𝜶

𝝏𝒙
≠ 𝒐 

(Eq. 2.7.1) 

 

with ∂α being the change in the dipole moment and ∂x being the change in bond distance. 

Hence, Raman spectroscopy is a complementary technique to IR spectroscopy. In cases 

where a chemical compound exhibits a center of symmetry, certain normal vibrations will be 

only Raman active and certain normal vibrations will be only IR active. In cases where the 

normal modes are allowed in both techniques, bands that are strong in the Raman are 

usually weak in the IR, and vice versa. 

 

In this thesis, Raman spectroscopy was primarily used to investigate structural changes 

in solid-solutions of layered TMOs. The Raman spectra were taken with a Typ V 010 

labram single grating spectrometer (HORIBA Jobin Yvon GmbH, Bensheim), equipped 

with a double super razor edge filter and a peltier cooled CCD camera. Measurments 

were performed by Armin Schulz (Chapter 3.1). 

 

2.8 UV-Vis Spectroscopy 

Ultraviolet-visible light (UV-Vis) spectroscopy can provide information about electronic 

transitions occuring in the material by measurement of the light absorption as a function of 

wavelength. In the absorption measurement, the light inensity after traversal I(z) is related to 

the incident intensity I0, the thickness z and the absorption coefficient αabs(ω) according to the 

Beer-Lambert law (Equation 2.8.1):33 

 

𝑰(𝒛) =  𝑰𝟎𝒆−𝜶𝒂𝒃𝒔(𝝎)𝒛 (Eq. 2.8.1) 

 

The absorption coefficient α, is a materials property which defines the amount of light 

absorbed by it. The inverse of the absorption coefficient, α–1, can be imagined as the average 

distance traveled by a photon before it gets absorbed. On basis of such measurements, a 

detailed band gap analysis can be provided by plotting and fitting the absorption data. 

Equation 2.8.2 shows a relation presented by Tauc as well as Davis and Mott, that usually 

accounts for values of α > 104 cm-1:34-35 

 

(𝜶𝒉𝝊)𝟏/𝒏 =  𝑨(𝒉𝝊 − 𝑬𝒈) (Eq. 2.8.2) 
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with h = Planck's constant, ν = frequency of light, Eg = band gap and A = proportional 

constant. n can take values of 1/2 for a direct allowed transition, 3/2 for a direct forbidden 

transition, 2 for an indirect allowed transition and 3 for an indirect forbidden transition. 

For solid samples like powders determination of an absorption coefficient in an absorption 

UV-Vis experiment can be inaccurate as the light will experience multiple passes through the 

sample due to reflection from the walls of the surrounding integrating sphere.36 Thus, 

samples are usually measured in a diffuse reclectance configuration as shown in 

Figure 2.8.1. The various components that incident light can split into after interaction with 

the sample are visualized in this figure and their relation is depcited in Equation 2.8.3:37 

 

𝑰𝟎 =  𝑨% + 𝑻 + 𝑹𝒔 + 𝑹𝒅 + 𝑺 (Eq. 2.8.3) 

 

with A% = absorptance, T = transmittance, Rs = specular reflectance, Rd = diffuse reflectance 

and S = forward scattering.  

 

 

Figure 2.8.1: Schematic drawing of a UV-Vis diffuse reflectance configuration using an integrating 

sphere with a specular reflectance plug. 

 

A typical integrating sphere has an input port connected to the light source, an output port 

connected to a signal meter that collects the diffusely reflected light, and an aperture against 

which the working or reference samples can be placed for measurement.36 The inside of an 

integrating sphere is covered with a highly reflective material like Ba2SO4, which is effective 

over a large wavelength region of interest, and also serves as a nearly ideal Lambertian 

scatterer by distributing the light uniformly throughout the entire surface of the integrating 

sphere.36 Note that specularly reflected light has not undergone an absorption process, and 

contains almost no information regarding electronic states within the material and thus 
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increases noise and decreases the accuracy of the measurment, respetively.37 Thus, its 

contributions are usually minimized with help of a specular reflectance plug.36 With this 

diffuce reflectance setup I = Rd can be measured and the Kubelka–Munk radiative transfer 

model quoted in Equation 2.8.4 be employed to extract the band gap:38 

 

𝑭(𝑹) =  
(𝟏 − 𝑹)𝟐

𝟐𝑹
=  

𝜶

𝒔
 (Eq. 2.8.4) 

 

where F(R) is the Kubelka–Munk function, α the absorption coefficient and s the scattering 

coefficient. If the scattering coefficient is assumed to be wavelength independent, then F(R) 

is proportional to α and the Tauc plots can be made using F(R) in place of α. For 

completeness it is emphasized at this point, that the optical band gap is not necessarily equal 

to the electronic band gap, which is defined as the energy difference between the valence 

band maximum and the conduction band minimum.36 

 

In this thesis, diffuse UV-Vis spectroscopy was used to determine band gap of layered 

bulk materials, their cation-proton exchanged and isolated exfoliated nanosheets. 

Optical diffuse reflectance spectra of the bulk material and the nanosheet pellet were 

collected at room temperature with a Cary 5000 UV-Vis-NIR diffuse reflectance 

spectrometer (Agilent Technologies, Santa Clara) at a photometric range of 200-800 nm. 

Powders were prepared in a sample carrier with a quartz glass window at the edge of 

the integrating sphere with BaSO4 as the optical standard. Kubelka–Munk spectra were 

calculated from the reflectance data. Measurements were performed by Brian Tuffy and 

Katharina Schwinghammer (Chapter 3.1/5.2). 
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ABSTRACT: Tuning the chemical composition and structure for targeted functionality in two-

dimensional (2D) nanosheets has become a major objective in the rapidly growing area of 

2D materials. In the context of photocatalysis, both miniaturization and extending the light 

absorption of UV active photocatalysts are major assets. Here, we bridge the gap between 

two photocatalytic systems known from literature to evolve H2 from water/methanol under UV 

– RbCa2Nb3O10 (Eg = 3.5 eV) – and visible light irradiation – RbPb2Nb3O10 (Eg = 2.4 eV) – by 

synthesizing the new solid solution RbCa2-xPbxNb3O10. While the calcium niobate can easily 

be exfoliated into individual nanosheets via cation-proton exchange and subsequent 

treatment with tetra-n-butylammonium hydroxide (TBAOH), the lead niobate barely yields 

nanosheets. Spectroscopic and microscopic analysis suggest that this is caused by 

volatilization of Pb during synthesis, leading to a local 3D linkage of RbPb2Nb3O10 perovskite 

units with hypothetical Pb deficient ’RbNb3O8’ units. On the one hand, this linkage 

progressively prevents exfoliation along with an increasing Pb content. On the other hand, 

introducing Pb into the perovskite blocks successively leads to band gap narrowing, thus 

gradually enhancing the light harvesting capability of the solid solution. Compromising this 

narrowing of the band gap with the possibility of exfoliation, visible light sensitized 

nanosheets can be engineered in good yield for an initial molar ratio of Ca:Pb ≥ 1:1. 

 

3.1.1 Introduction 

Over the past years, the development of renewable enenergy sources and their efficient 

utilization has become a hallmark of materials research.1-4 Photocatalysts are not only able to 

decompose organic and inorganic pollutants but also to convert solar energy into chemical 

fuels by water splitting or CO2 reduction. Today, the quest for efficient visible light 

photocatalysts for solar water splitting has become one of the most important topics in 

photocatalysis research. 

Layered transition metal oxides with d0 electron configuration (e.g. TiIV, NbV, TaV etc.) are 

promising candidates for overall water splitting. Among them, Dion-Jacobson (DJ) phases 

with the general formula M[An−1BnO3n+1] (M = H, Li, Na, K, Rb etc., A = Ca, Sr, Pb, La etc., 

B = Ti, Nb, Ta etc.), featuring layered perovskite blocks interleaved with alkali cations, have 
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attracted broad attention due to their excellent photocatalytic performance. 2D blocks 

composed of n corner-sharing BO6 octahedra form negatively charged [An−1BnO3n+1]− layers 

that are stacked along the c-axis which are interleaved with exchangeable monovalent 

cations to retain electroneutrality. It has been reported that KCa2Nb3O10 has a high 

photocatalytic activity due to its unique layered structure, which can promote the separation 

of photogenerated electrons and holes across the layers due to its reduced symmetry.5 

However, the large band gap of KCa2Nb3O10 (Eg = 3.1-3.3 eV) renders this material only 

moderately suitable for solar water splitting.6-8 On the contrary, the structurally related 

RbPb2Nb3O10 was reported to evolve H2 from an aqueous methanol solution under visible 

irradiation.9-10 The substitution of lead into layered perovskites was later on found to be a 

generic method of visible light sensitization for UV active materials.11 According to band 

structure calculations, the conduction and valence bands of these compounds mostly consist 

of empty Nb4d and occupied O2p orbitals, respectively, whereby the O2p orbitals are 

hybridized with Pb6s orbitals. This causes an upward shift of the position of the valence band 

leading to a narrower band gap compared to the lead-free structures.11 

To further improve the catalytic properties of these materials, nanostructuring has become a 

tool of choice as it increases the exposed surface area and shortens the transfer of 

photogenerated charge carriers to the surface. In a common approach, layered transition 

metal oxides are therefore converted into their protonic forms (e.g. HCa2Nb3O10) and 

subsequently exfoliated by neutralization of the interlayer protons and cation exchange, for 

example by TBAOH (e.g. TBA1-yHyCa2Nb3O10, 0 ≤ y ≤ 1).12 Introducing such bulky organic 

cations leads to a swelling of the interlayer gallery that is accompanied by the insertion of a 

large volume of water into the interlayer space. Individual nanosheets can then be separated 

with the aid of shear forces. Osterloh and co-workers have shown that in the case of 

KCa2Nb3O10, exfoliation can lead to a 16-fold increase in H2 evolution and an 8-fold increase 

in O2 evolution.13 On the contrary, it was shown that RbPb2Nb3O10 cannot be exfoliated under 

these mild conditions and high power ultrasonic treatment is necessary to accomplish 

exfoliation.14-15 Such harsh conditions usually lead to low-quality nanosheets which are 

smaller in size and often suffer from defects.12, 16-17 

In the present work, we report the full solid solution series RbCa2-xPbxNb3O10 (x = 0, 0.5, 1, 

1.5, 2) and thus bridge the gap between the formerly known end members RbCa2Nb3O10 and 

RbPb2Nb3O10. While the band gap gradually decreases with increasing Pb content the ability 

to exfoliate the material into nanosheets diminshes in the same direction. We reveal by a 

comprehensive spectroscopic and microscopic analysis that this is caused by local changes 

in the structure of parent RbCa2-xPbxNb3O10 at higher Pb levels due to volatilization of Pb 

during synthesis. Thus, nanosheets showing improved solar absorption can be synthesized 

in good yield for x ≤ 1, while at x > 1, exfoliation becomes inefficient. 
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3.1.2 Results and Discussion 

Bulk structure. A representative structural unit of RbCa2Nb3O10 is displayed in 

Figure 3.1.1 a. The x-ray diffraction (XRD) patterns of RbCa2-xPbxNb3O10 (x = 0, 0.5, 1.0, 1.5, 

2.0) are shown in Figure 3.1.1 b. RbCa2Nb3O10 was indexed on a tetragonal unit cell, space 

group P4/mmm (no. 123), with lattice parameters a = b = 3.863223(54) Å and 

c = 14.91398(25) Å, which is in accordance with data reported earlier (P4/mmm, 

(a = b = 3.85865(6) Å and c = 14.9108(3) Å)18 or (a = b = 3.8662(5) Å and 

c = 14.9424(6) Å)19). The reflections of the solid solution members are gradually shifted 

towards lower °2θ with increasing Pb content, suggesting a homogeneous distribution of Ca 

and Pb throughout the structure. The observed shifts are in line with a lattice expansion due 

to the larger ionic radius of lead (r(Pb2+) = 1.49 Å) compared to calcium (r(Ca2+) = 1.34 Å).20 

However, subtle differences become apparent upon close inspection of the XRD pattern of 

the most Pb-rich material RbPb2Nb3O10 . 

While indexing and simulating RbPb2Nb3O10 (a = b = 3.94 Å and c = 15.20 Å) according to 

the P4/mmm structure shows good agreement for most reflections, the enlarged XRD pattern 

in Figure 3.1.1 c reveals additional reflections that become more apparent with higher Pb 

content.21 In addition, a decrease in intensity pertaining to the (100), (004), (101) and (102) 

planes is apparent. Even more drastic changes are observed towards higher angles. Besides 

the first three unidentified reflections (marked with an asterisk in Figure 3.1.1 c), similar 

features are found in previously reported XRD patterns, which were indexed using a 

tetragonal unit cell with an orthorhombic distortion.10, 22 An extensive search did not result in a 

satisfactory match of these additional reflections with any known structure of any possible 

combination of the elements Rb, Pb, Nb and O. 

Likewise, the XRD patterns of the cation-proton exchanged forms are shown in Figure S3.1.1 

and further support structural differences as well as differences in crystallinity between the 

Ca and Pb end members (Rb,H)Ca2-xPbxNb3O10.23 As will be shown by solid-state nuclear 

magnetic resonance (ssNMR) spectroscopy later, these reflections are not due to a distinct 

side phase, but caused by local changes in the structure of the parent layered perovskite. 
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Figure 3.1.1: a) Representative structural unit of RbCa2Nb3O10 (space group P4/mmm), viewing 

direction along a and the Nb and O positions labeled on the left side, b) XRD patterns of 

RbCa2-xPbxNb3O10 (x = 0, 0.5, 1.0, 1.5, 2.0) and c) enlarged region from 5-35°2θ. RbPb2Nb3O10 is 

tentatively indexed and fitted in P4/mmm (a = b = 3.94 Å and c = 15.20 Å) according to the literature.19, 

21 Additional reflections are marked with an asterisk. Note that the intensity of the (100), (004), (101) 

and (102) reflections decreases with increasing lead content. 
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Inductively coupled plasma with atomic emission spectroscopy (ICP-AES) and energy 

dispersive X-ray spectroscopy (EDX) data were collected to quantify the emerging structural 

discrepancies upon introducing lead into the structure. As seen from ICP-AES data shown 

Table S3.1.1 the Rb and Ca content in RbCa2-xPbxNb3O10, the cation-exchanged form 

HCa2-xPbxNb3O10 and the exfoliated nanosheets TBA1-yHyCa2-xPbxNb3O10 for x = 0, 0.5, 1.0, 

1.5 and 2.0 agrees well with the expected values and is the same - within the error margin - 

for the bulk and cation-proton exchanged material. Note that the values for nanosheets vary 

more significantly and will be discussed later. Notably, the Pb content never reaches the 

stoichiometric quantity, which is confirmed by EDX data (Table S3.1.2). The observed trend 

is visualized for the bulk material and the cation-proton exchanged form by plotting the 

observed vs theoretical stoichiometry of Pb and Ca, respectively, in Figure 3.1.2. The 

expected stoichiometry is visualized by a black line, whereas the experimental values are 

shown in red for the bulk phase and green for the cation-proton exchanged form. Whilst the 

Ca content stays within the tolerance limit and hence lies on the expected trendline, the Pb 

content decreases in average linearly with a factor of 0.65x and lies below the trendline. 

Thus, the overall composition of the solid solution can be formulated as 

RbCa2-xPb0.65xNb3O10-0.35x, yielding e.g. Rb3Pb4Nb9O28 for x = 2. For the sake of simplicity we 

will stick to the ideal stoichiometry RbCa2-xPbxNb3O10 nomenclature in the following and refer 

to the actual composition if necessary. 

 

 

Figure 3.1.2: Theoretical expected Pb (left) and Ca (right) stoichiometry for RbCa2-xPbxNb3O10 and 

HCa2-xPbxNb3O10 ploted a as black line against x = 0, 0.5, 1.0, 1.5, 2.0 and the experimentally 

obtained values according to a) ICP-AES and b) EDX analysis shown as red triangle for the bulk and 

green triangle for the cation-proton exchanged material. 
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It is known that the high vapor pressure of lead oxide can be a limiting factor whilst heating at 

high temperatures.24 Hence, PbO is most likely to volatilize to some extent under the 

synthesis conditions applied resulting in a substoichiometric Pb exchange for Ca, thus 

forcing the system to adopt a new structure.9 The presence of Pb(IV) was excluded by 

means of X-ray photoelectron spectroscopy (XPS; Figure S3.1.2), which shows a Pb 4f7/2 

signal at 137.9 eV belonging to Pb(II).25 This is expected since the synthesis of RbPb2Nb3O10 

was performed with PbO9-10 or PbO2
14, 21, respectively, and PbO2 decomposes to PbO + ½ O2 

above temperatures of 550°C.26 The Nb 3d5/2 signal at 206.4 eV is uniform and close to the 

one obtained for calcium niobate Ca2Nb2O7.27 Thus, the reduction of Nb(V) can be excluded. 

If we take the structural formation of tetragonal RbPb2Nb3O10 as “host” for granted, the real 

obtained stoichiometry Rb3Pb4Nb9O28 for x = 2 can be rewritten as 

2*RbPb2Nb3O10•1*’RbNb3O8’, with ‘RbNb3O8’ being the hypothetical Pb deficient motif that is 

caused by local Pb volatilization. In an earlier study of the binary solid solution system Rb2O-

Nb2O5 RbNb3O8 was reported to have hexagonal symmetry P6322 (a = 7.45 Å and 

c = 7.66 Å) and to melt incongruently above 964°C.28 Our attempts to synthesize ‘RbNb3O8’ 

by mixing stoichiometric amounts of Rb2CO3 and Nb2O5 and applying the same synthesis 

conditions as for the solid solution did not yield any phase pure material. Stoichiometric 

related KNb3O8 was reported to crystallize in the orthorhombic space group Cmcm 

(a = 8.903(3) Å, b = 21.16(2) Å, c = 3.799(2))29 with a layered structure that can be exfoliated 

into Nb3O8
- nanosheets.30 ICP and EDX data show that Rb+ can be completely exchanged 

with H+ and hence must maintain an interlayer position in a layered structure. As under given 

circumstances exfoliation of the cation-proton exchanged material is subsequently inhibited 

with increasing Pb content, the resulting structure must on the one hand retain the layered 

motif, but on the other hand form local intergrowth structures that break this 2D motif into a 

3D linkage, as will be substantiated further based on transmission electron microscopy 

(TEM), Raman and ssNMR spectroscopy in the following. 

Figure 3.1.3 shows overview TEM images where the layered structure of RbPb2Nb3O10 is 

clearly visible. During the measurement, dark particles begin to form and separate from the 

structure as the material starts to decompose under electron beam irradiation. These 

particles are most likely PbO as is shown in Figure 3.1.3 c)+d), displaying a region with a 

crystalline particle which is highlighted in the HRTEM image. The d-spacings (2.86 Å and 

1.86 Å) extracted by fast Fourier transform (FFT) match well with those corresponding to the 

(110) and (112) planes (2.83 Å and 1.89 Å, respectively) of Litharge (PbO) with P4/mmm 

structure. During further electron beam irradiation the particles become amorphous. Hence, 

all following experiments were taken with care to avoid or at least minimize decomposition of 

the pristine material under the electron beam. 
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Figure 3.1.3: a) TEM overview image of RbPb2Nb3O10 where PbO particles are visible on its surface, 

b) TEM image of RbPb2Nb3O10 at higher magnification highlighting a possible change in the perovskite 

structure (orange arrows) and defects that might arise from local Pb deficiency (orange square), c) a 

region with a crystalline PbO particle and d) the corresponding FFT where the distances related to the 

particle are highlighted. 

 

Simulated selected area electron diffraction (SAED) patterns of theoretically tetragonal 

RbPb2Nb3O10 (P4/mmm (a = b = 3.94 Å and c = 15.20 Å)) in comparison with the 

experimentally obtained patterns acquired along [100] and [001] directions of the 

RbPb2Nb3O10 lattice are shown in Figure 3.1.4. Along [100] we find a RbPb2Nb3O10 rich 

region that matches well with the simulated SAED pattern (Figure 3.1.4 b)). The green circle 

indicates reflections arising from polycrystalline PbO due to decomposition effects. For all 

other regions we found patterns that look similar to the one presented in Figure 3.1.4 c). 

Besides the RbPb2Nb3O10 lattice shown in black, another lattice attributed to hypothetical Pb 

deficient regions (yellow) becomes apparent with reflections that do not belong to tetragonal 

RbPb2Nb3O10 nor PbO. One axis of this region is oriented along the c-axis of RbPb2Nb3O10 

and shows lattice parameters around 4.23 Å (b’1) and 2.12 Å (b’2) etc., which are obtained 

by dividing 12.7 Å - found in the XRD pattern - by integers. Using the layered structure of 

KNb3O8 as a basis, we chose b’ as the axis related to the layer thickness of a hypothetical 

‘RbNb3O8’ region. Note that the SAED reflections are very broad due to overlapping 
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reflections from both lattices as well as possible lattice strain between both domains. This is 

also seen in the broadening of the XRD reflections for increasing Pb content of the 

RbCa2-xPbxNb3O10 system. Figure 3.1.4 e)+f) depict the orientation of the other two axes: c’ 

runs along [110] of RbPb2Nb3O10 and forms an angle of 90±4° with a’. Hence the Pb deficient 

layer is rotated by 45±4° compared to the 2D perovskite layer of RbCa2-xPbxNb3O10 and can 

have 4 different orientations. This becomes clear as in Figure 3.1.4 e) we only see a’ 

reflections along one direction with different intensities and in Figure 3.1.4 f) we see these 

reflections also rotated by 90°. For a’ we find integers dividing 8.62 Å (a’1) and for c’ 5.45 Å 

(c’1), that can also be related to the XRD pattern. These structural conditions highlight the 

existence of two different patterns, whereof the one related to ideal RbPb2Nb3O10 can exist 

on its own, but the Pb deficient region is only observed in combination of both motifs. 

 

 

Figure 3.1.4: a) Simulated SAED pattern of RbPb2Nb3O10 along [100] viewing direction and b) 

corresponding experimental SAED pattern of a RbPb2Nb3O10 rich region where the green circle 

emphasizes polycrystalline reflections arising from PbO, and c) a common region where a second 

pattern belonging to a Pb deficient region is highlighted in yellow; d) simulated SAED pattern of 

RbPb2Nb3O10 along [001] and e) + f) corresponding experimental SAED patterns from an enlarged 

region of d) showing the two different axes of Pb deficient regions and their orientation with respect to 

the RbPb2Nb3O10. g) Resulting relation between the coordinate systems of RbPb2Nb3O10 (black) and 

Pb deficient regions as inferred from the TEM/SAED analysis. 

 

These findings are summarized in Figure 3.1.4 g). b’ runs along c and forms a 90° angle with 

respect to a’ and c’. c’ is rotated by 45° against a and b and forms a 90±4° angle with a’. This 

is interpreted as the formation of an intergrowth structure along the stacking direction c of 

[Pb2Nb3O10]- where the Pb deficient layers can take 4 different orientations compared to 
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[Pb2Nb3O10]-. Hence, as β’ is not 90° nor 120° a monoclinic symmetry for these regions 

arises. Such a distortion might be seen in Figure 3.1.3 b), highlighted by the orange arrows, 

and may also cause a partial breakup of the layered 2D character (orange circles in 

Figure 3.1.3 c). Unfortunately, decomposition of RbPb2Nb3O10 in the electron beam limits 

detailed analysis by scanning TEM (STEM) coupled with electron energy loss spectroscopy 

(EELS) line-scans, which we previously used to characterize bottom-up assembled, 

structurally related [Ca2Nb3O10]-/[Mn2Al(OH)6]+ hybrid stacks.31 

As SAED patterns are taken from larger sample regions and their sizes are determined by 

the aperture size of the instrument capture region (ca. 100-150 nm), we used FFT of HRTEM 

images to analyze the two different regions in more detail. Representative HRTEM images of 

RbPb2Nb3O10 in comparison with RbCa2Nb3O10 and their corresponding reduced FFT images 

along [001] are shown in Figure S3.1.3. The 90° angle between the (100) and (010) planes of 

RbCa2Nb3O10 clearly confirms its tetragonal structure. On the contrary, the angle of 

RbPb2Nb3O10 varies around 91.3-92.3°, depending on the selected area and, hence, 

suggests lowering of the symmetry to a monoclinic structure. We interpret this finding as a 

tilting of the NbO6 octahedra due to the lattice missmatch caused by the intergrowth of 

RbPb2Nb3O10 and Pb deficient regions, which proves a homogeneous distribution of these 

domains on the nanoscale.  

At this point it has to be mentioned that we tried to fit hypothetical ‘RbNb3O8’ on basis of the 

obtained lattice parameters and its relations according to orthorhombic KNb3O8 or a lowered 

monoclinic symmetry, but did not succeed to match a phase explaining the additional 

reflections in the XRD. Thus, we envision Rb3Pb4Nb9O28 to have tetragonal RbPb2Nb3O10 

domains that are ‘randomly’ 3D linked in Pb deficient regions. 

Since we were not able to synthesize ‘RbNb3O8’ under ambient conditions we tried to 

decompose RbPb2Nb3O10 in the electron beam following the equation: 

 

𝑅𝑏𝑃𝑏2𝑁𝑏3𝑂10  →  𝑅𝑏𝑁𝑏3𝑂8 + 2 𝑃𝑏𝑂 (Eq. 3.1.1) 

 

Figure 3.1.5 shows the investigated region before and after electron bombardment. EDX 

shows a transition from RbPb2Nb3O10 to Rb0.8Nb3O8 that in composition would be close to Pb 

deficient ‘RbNb3O8’ domains. Longer electron irradiation leads to further disintegration over 

Rb0.4Nb3O8 to a niobium oxide in the end. Hence, a loss of Rb and Pb is observed similar to 

the one induced by heating in the performed solid state synthesis. Rubidum niobates with the 

obtained stoichiometries in decomposition experiments were published as orthogonal for 

Rb0.105Nb0.379OZ/Rb0.83Nb3Oz (a = 12.991(4) Å, b = 7.5500(10) Å and c = 3.8978(8) Å) and 

tetragonal for Rb0.051Nb0.390OZ/Rb0.39Nb3Oz (a = 27.484(3) Å and c = 3.9656(4) Å) as part of a 

Rb2O-Nb2O5 equilibria study, but do not match our lattice parameters.32 We tried to stop 
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decomposition at Rb0.8Nb3O8 (Figure 3.1.5 c)+d)) and found regions that partly showed a 

layered structure similar to the one seen in Figure 3.1.3 b).  

SAED patterns of Rb0.8Nb3O8 displayed in Figure 3.1.5 e)+f) show similar, yet slightly larger 

lattice parameters which may be related to the lower Rb amount present. It is interesting to 

note the spreading of the reflections along the a’ axis (highlighted by the red line) is similarly 

to the ones observed in Figure 3.1.4 e). Thus, Rb0.8Nb3O8 may be structural related to Pb 

deficient intergrowth regions. 

 

 

Figure 3.1.5: TEM images of a) RbPb2Nb3O10 before and b) Rb0.8Nb3O8 after electron irradiation, with 

c) representative HRTEM image of Rb0.8Nb3O8 where the orange square is shown enlarged in d) and 

SAED patterns of Rb0.8Nb3O8 are shown along e) [100] and f) [010] directions. 

 

It is worth noting that along with the loss of Pb for increasing x in RbCa2-xPbxNb3O10 and 

HCa2-xPbxNb3O10 an increase in crystal size of both, the bulk and cation-proton exchanged 

materials is observed. The SEM images of RbCa2-xPbxNb3O10 and their cation-exchanged 

form HCa2-xPbxNb3O10 (x = 0, 0.5, 1.0, 1.5, 2.0) show plate-like morphology (Figure S3.1.4), 

where the size of the platelets increases from around 1-2 µm for the pure Ca compound 

(x = 0) by one order of magnitude to around 10 µm for the pure Pb (x = 2) compound. This is 

in contradiction with the XRD data where the full width at half maximum (FWHM) of the 
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related XRD reflections get significantly broader with higher Pb content, pointing towards 

smaller crystallites. Thus, the broadening must be due to strain or a structural disorder 

caused by a 3D linkage of the 2D layered structure. 

The Raman spectra of RbCa2-xPbxNb3O10 and HCa2-xPbxNb3O10 (x = 0, 0.5, 1.0, 1.5, 2.0) are 

given in Figure 3.1.6 and the corresponding Raman frequencies, labeled (1)-(5) and (1H)-

(5H), respectively, are listed in Table S3.1.3. The labeling of the Nb and O positions is given 

in Figure 3.1.1 a) and additional information to the following assigments provided in the 

Supporting Information (Chapter 3.1.5). The top images in Figure 3.1.6 a)+b) directly 

compare the Raman spectra of the end members RbCa2Nb3O10 and RbPb2Nb3O10 on the 

left, as well as HCa2Nb3O10 and HPb2Nb3O10 on the right, while the enlarged Raman spectra 

in the middle and on the bottom show the changes of Raman bands for all investigated solid 

solutions (Figure 3.1.6 c)+f)). Proceeding from RbCa2Nb3O10 to RbPb2Nb3O10 most Raman 

bands shift towards lower wavenumbers, but some Raman bands maintain their position and 

additionally new features appear and others disappear steadily.  

Starting with the most prominent band (1.1) around 930 cm-1 for RbCa2-xPbxNb3O10 (x = 0, 

0.5, 1.0, 1.5, 2.0), this band is related to the symmetrical stretch vibration of Nb(2)-O(4) and 

is characteristic for layered perovskites compared to regular perosvkites.33 For RbCa2Nb3O10 

one sharp band is found since all Nb(2)-O(4) positions are equal. With increase of the Pb 

content the Raman band (1.1) splits first into two and later into two-three bands (1.1), (1.2), 

(1.3), where the most intense band is still located around 930 cm-1, but the other ones are 

shifted towards lower wavenumbers. This means that instead of one terminal Nb(2)-O(4) 

position at least two other terminal Nb-O positions are present in RbPb2Nb3O10 with a longer 

and hence weaker Nb-O bond. Integration of the area under (1.1):(1.2):(1.3) gives a ratio of 

64%:24%:12% showing that roughly 2/3 of the terminal Nb(2)-O(4) positions in RbPb2Nb3O10 

are maintained, whereas 1/3 are modified. This matches with our scenario where we have a 

theoretical ratio of two differen motifs 2*RbPb2Nb3O10 to 1*‘RbNb3O8’. Further, this 

modification is accompanied by a change of the Rb-O-Nb linkage as known from literature.34-

36 Where Raman band (1.1) is related to a tilted Rb-O-Nb linkage in the tetragornal layered 

perovskite structure, the bands (1.2) and (1.3) related to the Pb deficient regions evolve 

towards a linear Rb-O-Nb linkage. 

Proceeding with Raman band (2) which is located around 761 cm-1 for RbCa2Nb3O10, this 

band is related to the slightly distorted inner Nb(1)O6 octahedra. Increasing the Pb content 

for the solid-solution RbCa2-xPbxNb3O10 (x = 0, 0.5, 1.0, 1.5, 2.0) we find a reversal of the 

I(1)/I(2) ratio from 2:1 via 1.4:1 to 1:1 to 1:1.6 to 1:2.1 for RbPb2Nb3O10 in the end. This trend 

suggests that more outer octahedra compared to the inner ones are present with higher Pb 

content, which is in agreement with the ssNMR data shown afterwards. Instead of corner 
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sharing NbO6 octahedra in the triple perovskite layer, hypothetical [Nb3O8]- layers might show 

corner and edge sharing octahedra like the ones found in KNb3O8 that cause this reversal. 

The position of Raman band (2H) for HCa2-xPbxNb3O10 (x = 0, 0.5, 1.0, 1.5, 2.0) stays nearly 

the same compared to their bulk counterpart as can be seen in Table S3.1.3. Accordingly, 

the vibration is not influenced by manipulation of the interlayer and belongs to the inner 

Nb(1)O6 octahedra. With increase of the lead content (2H) splits into two vibrational modes 

and bands become less distinguishable - which also arises from the overlap with (3H)-(5H) – 

which is not clearly observed for the bulk material. This points towards a lowering in 

symmetry, that might be due to the formation of two different kinds of inner octahedra, one in 

[Pb2Nb3O10]- and one in formal [Nb3O8]-. This is further underlined by Raman band (3), which 

we attribute to the Nb(2)O6 inner octahedra. Similar to Raman band (2) a split into two bands 

is observed.  

 

 

Figure 3.1.6: Raman spectra of a) RbCa2-xPbxNb3O10 and b) HCa2-xPbxNb3O10 for x = 0 (black) and 

x = 2 (cyan), and c)-f) close-ups of different regions for x = 0, 0.5 (red), 1.0 (green), 1.5 (blue), 2.0. The 

labeling (1)-(5) corresponds to characteristic vibrational modes for the bulk and (1H)-(5H) to 

corresponding modes after cation-proton exchange. 
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For completeness of the shown analysis complementary IR spectra and discussion are given 

in the Supporting Information (Figure S3.1.5) underlaying the same trend as observed for 

Raman spectroscopy. 

In Figure S3.1.6 93Nb ssNMR spectra in the series of RbCa2-xPbxNb3O10 (x = 0, 0.5, 1.0, 1.5, 

2.0) are shown. The spectrum of the parent RbCa2Nb3O10 shows a well defined quadrupolar 

pattern that could be fit by two Nb environments with a relative ratio 1:2. Both sites possess 

close to axial electric field gradient (EFG) tensors, while the magnitudes of the EFGs 

interactions with the quadrupole moments of the Nb atoms are substantially different. The 

more abundant site demonstrates a quadrupolar coupling constant CQ = 42.2 MHz, 

asymmetry parameter ηQ = 0.0, and isotropic chemical shift δiso = -1050 ± 50 ppm. The less 

abundant site has almost three times larger CQ = 114.2 MHz, ηQ = 0.1, and isotropic chemical 

shift δiso = -1070 ± 50 ppm. Both sites have similar chemical shifts, indicating similar oxygen 

environments. The larger magnitude of the quadrupolar interactions together with the lower 

population of the second site is in agreement with the crystal structure of the material and the 

local symmetry of the site Nb(1).18 The fact that both sites have the asymmetry parameters 

close to zero is an indication that the sites have local symmetry that include an axis of the 

third or higher order. 

We note, that only quadrupolar interactions are accounted in our fit, and a possible 

contribution from the chemical shift anisotropy (CSA) has been completely ignored. While it 

was previously demonstrated that the CSA can contribute in the 93Nb spectra of structurally 

similar RbSr2Nb3O10, this contribution at the moderate magnetic field of 9.4 T is relatively 

minor compared to dominant quadrupolar interaction.37 

The 93Nb spectrum of the material with the largest concentration of lead is also composed of 

two signals, with the magnitude of the quadrupolar interactions for the site Nb(1) significantly 

diminished, and for the site Nb(2) remaining almost unchanged. Our attempt to improve 

resolution with the magic angle spinning (MAS) resulted only in a partially resolved signal, 

and precluded obtaining more accurate chemical shifts and relative occupancies of Nb sites. 

One can conclude, however, that the site with the smaller quadrupolar interaction 

(CQ = 34.8 MHz, ηQ = 0.1, δiso = -1144 ± 50 ppm), is also less abundant than the second site 

(CQ = 45.3 MHz, ηQ = 0.1, δiso = -1060 ± 50 ppm). 

93Nb NMR spectra of the materials with intermedium concentrations of lead show a gradual 

transformation of the parent lead-free materials with no apparent indication of neither 

changing of the structural type (at least on the local level), nor formation of any foreign 

phases. Maintaining of the structural type on the local level is reflected primarily in preserving 

two distinct Nb sites, both possessing a higher than 2-fold rotational axis. 

207Pb solid state NMR spectra of RbCa2-xPbxNb3O10 (x = 0.5, 1.0, 1.5, 2.0) are shown in 

Figure S3.1.7. Overall, the observed isotropic shifts are well within the range expected for 
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Pb2+ ions 8-coordinated to oxygen atoms, which points towards a change of coordination 

from formerly 12-coordinated Ca2+ ions.38-39 At x = 0.5 and 1.0, the spectra are similar, and 

reminiscent of the axial anisotropy of the chemical shift with a substantial broadening due to 

the distribution of the chemical shift. The latter effectively prevents any appreciable signal 

narrowing by the MAS. Broadening of the signals in these materials due to the chemical shift 

distribution is not too surprising, as 207Pb is known for rather high sensitivity of the chemical 

shift to the local disorder. The isotropic chemical shifts δiso and the axiality of the CSA tensor 

δ= (δ33-δiso) for x = 0.5 and 1.0 are -2390 ± 40 and -2410 ± 40 ppm, and 366 ± 30 ppm and 

199 ± 30 ppm, respectively, with the anisotropy of the CSA tensor ηCS = (δ22-δ11)/(δ33-δiso) 

assumed to be 0 in both cases. The spectrum at x = 1.5 still shows axial anisotropy (ηCS = 0) 

and is broadened to about the same extent as previously. Two other parameters are slightly 

reduced: δiso = -2320 ± 30 ppm, δ = 160 ppm.  

For stoichiometric RbPb2Nb3O10 in P4/mmm space group, an axially anisotropic 207Pb 

spectrum is expected. The anisotropy in the spectrum of the material with x = 2.0, however, 

is visibly a non-axial: δiso = -2100 ppm, δ = -410 ppm, ηCS = 0.8. This suggests a breakage of 

the local C4 symmetry at the Pb sites, and perhaps is an indication of the RbNb3O8 linkages 

and the overall deficit of lead in the structure.  

Akin to the 93Nb data, the 207Pb NMR confirms the preservation of the original structural type 

and homogeneous distribution of the lead throughout the lattice without formation of 

additional phases. Preservation of the axial symmetry of the chemical shift tensor up to 

x = 1.5 is an indication of the lead atoms placement into the vacant Ca positions of the 

lattice. 

At this point we like to recall some important findings from the applied analysis methods, 

before a final structure model will be proposed on the additional information of the exfoliation 

results. First of all, instead of 2 distinct phases we deal with an local intergrowth structure 

that for an extreme hypothetical case can be thought of 2*RbPb2Nb3O10•1*‘RbNb3O8’. 

Second, according to TEM analysis there exist either RbPb2Nb3O10 or intergrowth regions. 

 

Exfoliation. With these structural insights in mind, exfoliation was performed by treatment of 

cation-proton exchanged materials with TBAOH in aqueous solution. Figure S3.1.8 shows a 

photograph of colloidal suspensions of TBA1-yHyCa2-xPbxNb3O10 nanosheets after removal of 

non-exfoliated material by centrifugation. Dense suspensions are obtained up to x ≤ 1, while 

above this composition rather clear solutions occur. Figure 3.1.7 depicts AFM images and 

the corresponding height profiles of dried TBA1-yHyCa2-xPbxNb3O10 suspensions on a Si 

substrate along with TEM images and corresponding SAED patterns of dried suspensions on 

a lacey carbon grid. For x ≤ 1 a large number of essentially unilamellar nanosheets with a 

height of ≈2.6 ± 0.1 nm are formed with a lateral range of 0.5-2 μm per edge. For a 
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concentrated suspension with x = 1.5 only few nanosheets with similar dimensions are found 

in the AFM, whereas plenty of nanosheets are observed in the TEM. For RbPb2Nb3O10 even 

after concentration of the suspension no nanosheets were observed in the AFM and only 

single nanosheets are visible in the TEM. 

 

 

Figure 3.1.7: AFM images (left) with corresponding height profiles (middle) and TEM images with 

corresponding SAED patterns as inset (right) of TBA1-yHyCa2-xPbxNb3O10 nanosheets x = a) 0, b) 0.5, 

c) 1.0 and d) 1.5. Note that for x = 2.0 no nanosheets were found in the AFM. 

 

Thus, the amount of exfoliated nanosheets is decreasing with increasing Pb content. The 

height of the nanosheets is slightly higher than their crystallographic thickness of an ideal 

[Ca2-xPbxNb3O10]- perovskite layer (~1.5 nm), since AFM measurements were carried out 



 

54 

under ambient conditions and are affected by TBA+/H+ as well as water adsorption.31 As 

expected, we did not find any evidence in the AFM for nanosheets with a different height that 

would point towards exfoliation of [Nb3O8]- nanosheets (~1.2 nm) and hence, relate the 

obtained nanosheets to the solid solution TBA1-yHyCa2-xPbxNb3O10 without Pb deficient 3D 

linkage. This is further supported by the d-values obtained by SAED listed in Table S3.1.4. 

Nanosheet lattices stay approximately the same within the limit of error and do not point 

towards a different structure. 

ICP-AES data obtained from a nanosheet pellet, thus averaging over a larger volume, show 

the same trend as discussed earlier for the bulk and cation-proton-exchange materials. On 

the contrary, TEM-EDX data show significant variations for different nanosheet regions. We 

focus on x = 1.0, 1.5 of TBA1-yHyCa2-xPbxNb3O10 where a bunch of overlapping nanosheets 

were measured (Figure 3.1.7 c)+d)), as the EDX signal is too low in intensity for individual 

nanosheet of TBA1-yHyPb2Nb3O10 due to the rapid disintegration under electron 

bombardment. Niobate nanosheets always had Pb incorporated along with Ca, proving the 

successful solid solution. On one region we also found pure lead niobate, but with a 1:3.8 

ratio of Pb:Nb. Thus, overall distribution of Ca and Pb is homogeneous but can be locally 

differ, which might be caused by volatilization effects. As expected, we did not find any 

region where possible [Nb3O8]- nanosheets were present. Figure S3.1.9 shows an EDX map 

of a particle of uncentrifuged TBA1-yHyPb2Nb3O10 nanosheets where Pb M, Nb Lα and O Kα 

peaks point towards a homogeneous distribution of all elements within the particle. The 

average composition of (TBA1-yHy)3Pb3.4Nb9Oz is close to the one for the bulk and cation-

proton exchanged forms. Thus, this further proves that instead of exfoliation, [Pb2Nb3O10]- 

and Pb deficient regions form an intergrowth with strong interactions between the layers, that 

can not be separated under the given synthesis conditions. 

Based on the combination of all analysis information obtained Figure 3.1.9 displays a 

structural model for RbPb2Nb3O10. The actual composition is Rb3Pb4Nb9O28 that can be 

written as 2*RbPb2Nb3O10•1*‘RbNb3O8’ for an edge case. Instead of the ideal P4/mmm 

structure shown in Figure 3.1.8 a) local loss of Pb during the synthesis causes the formation 

of Pb deficient regions ‘RbNb3O8’ denoted as B shown in Figure 3.1.8 b). These regions 

having a monoclinic symmetry, are rotated 45±4° against the parent tetragonal perovskite 

layers A, show more linear terminal Nb-O-Rb angles (Figure 3.1.8 c)+d)) and cause the 

additional reflections found in the XRD. Note that ssNMR suggests no overall change of the 

symmetry further pointing towards local effects. TEM-SAED investigations support this 

finding as Pb-deficient layers only exist along with the perovskite layers and cannot be 

exfoliated. Thus, the Pb loss must lead to a more or less directed 3D linkage of the layers as 

shown in Figure 3.1.8 e) and the composition of these layers might be more accurately 

pictured somewhere between RbPb2Nb3O10 and ‘RbNb3O8’. 
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Figure 3.1.8: Structural model for RbCa2-xPbxNb3O10 for x = 2 derived from a) ideal tetragonal 

structure of RbPb2Nb3O10. Local Pb volatilization leads to b) formation of Pb deficient regions B, that 

form c) an angle of 45±4° with the parent [Pb2Nb3O10]- layer A along the stacking direction. This 

causes d) a change of the Nb-O-Rb angle and can be pictured as e) a 3D linkage of Pb deficient 

regions B with the [Pb2Nb3O10]- layers A. 

 

Figure S3.1.10 shows UV-VIS spectra of (Rb,H)Ca2-xPbxNb3O10 for x = 0, 0.5, 1.0, 1.5, 2.0 

and TBA1-yHyCa2-xPbxNb3O10 for x = 0, 0.5, 1.5, as too few nanosheets were obtained for 

x = 2. Introduction of Pb into the structure leads to a rapid red-shift for all materials. We 

extracted the optical band gaps (Eg) based on the Kubelka–Munk remission function 

F(R) = (1-R)2/2R (R = reflectance) and linear extrapolation of Tauc plots, plotting F(R)1/n 

against hv, using n = 1/2 for a direct semiconductor.8, 40 A summary is listed in Table 3.1.1. 

The band gap decreases about 1 eV down from ~3.5 eV to ~2.5 eV for all materials as Pb is 

introduced into the perovskite blocks. Interestingly, the minimum is found for 

RbCa0.5Pb1.5Nb3O10 with 2.4 ± 0.1 eV rather than for pure RbPb2Nb3O10. This anomaly may 

be due to the higher amount of the Pb deficient phase. 
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Table 3.1.1: Band gap of RbCa2-xPbxNb3O10, HCa2-xPbxNb3O10 and TBA1-yHyCa2-xPbxNb3O10 for x = a) 

0, b) 0.5, c) 1.0, d) 1.5 and e) x = 2.0 given in eV with an error of ± 0.1 eV for the bulk and cation-

proton exchanged form and ± 0.2 eV for the nanosheets 

Theoretical 

Formula  

Rb H TBA1-yHy 

MCa2Pb0Nb3O10 3.5 3.5 3.4 

MCa1.5Pb0.5Nb3O10 2.5 2.7 2.6 

MCaPbNb3O10 2.5 2.6 2.5 

MCa0.5Pb1.5Nb3O10 2.3 2.5 -* 

MCa0Pb2Nb3O10 2.4 2.6 -* 

* Amount of nanosheets too small for measurement 

 

3.1.3 Conclusion 

In conclusion, we have demonstrated the existence of solid solution RbCa2-xPbxNb3O10. For 

increasing Pb content local Pb volatilization leads to a change in structure that for x = 2 can 

be in an edge case formulated as 2*RbPb2Nb3O10•1*‘RbNb3O8’. ‘RbNb3O8’ cannot be 

synthesized applying the same synthesis protocol using Rb2CO3 and Nb2O5 as precursors. 

Neither is it possible to exfoliate the pure lead niobate. Thus, the Pb deficient layers seem to 

three dimensionally link [(Ca,Pb)2Nb3O10]- layers thereby exhibiting a composition 

somewhere between RbPb2Nb3O10 and ‘RbNb3O8’ as we have demonstrated by in depth 

TEM, Raman and ssNMR characterization. SAED showed that these layers are stacked 

along the c-axis of the perovskite and are rotated by an angle of 45±4° with respect to the 

host layer. As already a slight substitution of Pb for Ca leads to a significant decrease in the 

band gap, we found TBA1-yHyCaPbNb3O10 nanosheets to be the best compromise between a 

minimized band gap and a good yield of high quality nanosheets. 
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3.1.5 Supporting Information 

 

EXPERIMENTAL PROCEDURES: 

RbCa2-xPbxNb3O10 (x = 0, 0.5, 1.0, 1.5, 2.0) was synthesized similar to common solid state 

synthesis routes.1-3 Rb2CO3 (99%, Acros Organics), Nb2O5 (99.5%, Alfa Aesar), CaCO3 

(99+%, Sigma-Aldrich) and/or PbO (99.9+%, Acros Organics) were mixed in a molar ratio 

according to the stoichiometric ratio of RbCa2-xPbxNb3O10 and fired up to 1000°C for 32 h 

with one intermediate grinding step in between. 10% excess of Rb2CO3 was added for the 

compensation of volatilization losses. Cation-proton exchange was achieved by stirring the 

bulk material in 5 M HNO3 for at least 5 days with several renewals of the acid to ensure 

complete exchange. The washed and dried at 100°C HCa2-xPbxNb3O10 was dispersed in a 

molar ratio of 1:1 with tetra-n-butylammonium hydroxide (TBAOH) 30-hydrate (Sigma-
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Aldrich) in an aqueous solution and stirred for 3-4 weeks to achieve exfoliation. In order to 

analyze the exfoliated nanosheets TBA1-yHyCa2-xPbxNb3O10 the colloidal suspension was 

centrifuged using a bench top centrifuge Sigma 3-30K (Sigma Laborzentrifugen, Osterode). 

Unexfoliated material was removed at a centrifugation speed of 3000 rpm for 30 min and the 

supernatant either directly used for analysis or further processed. To isolate the nanosheets 

the supernatant was centrifuged at a speed of 25000 rpm for another 30 min, the remaining 

aqueous solution removed and the pellet dried at 60°C. 

CHARACTERIZATION: 

XRD. Powder X-ray diffraction (XRD) patterns were recorded on a STOE Stadi P powder 

diffractometer in Debye–Scherrer-geometry at 298 K utilizing Cu-Kα1 radiation 

(k = 154.056 pm) with a Ge(111)-monochromator with a linear position sensitive detector. 

ICP-AES. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was 

analyzed with a Vista Pro ICP-AES spectrometer. The characteristic wavelengths were 

separated with an Echelle-Polychromator (Varian, Darmstadt) and detected with a 

photomultiplier. 

SEM-EDX. Crystalline precursors and the nanosheet pellet were analyzed by scanning 

electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) on a 

Vega TS 5130 MM (Tescan, Brno) using a Si/Li detector (Oxford Instruments, Abingdon) and 

a JSM-6500F electron microscope (JEOL Ltd., Tokyo) equipped with a 7418 EDX detector 

(Oxford Instruments, Abingdon).  

XPS. X-ray photoelectron spectroscopy (XPS) was done on an Axis Ultra (Kratos Analytical, 

Manchester) X-ray photoelectron spectrometer with an Al anode (Al Kα radiation, 

hυ = 1486.58 eV, energy resolution ~0.1 eV). The binding energy scale was calibrated using 

the C 1s peak at 284.800 eV. 

TEM-EDX. Transmission electron microscopy (TEM) samples were prepared either by 

suspending the pestle powder in ethanol or diluting of the colloidal suspension of nanosheets 

and dropping the suspension onto a copper or gold grid coated with a lacey and holey 

carbon film, respectively. For TEM analysis, which were performed at 300 kV, the grid was 

mounted on a double tilt holder with a maximum tilt angle of 30°. High-resolution TEM 

(HRTEM) investigations were conducted on a FEI Titan 80-300 keV TEM equipped with a 

field emission gun, an imaging spherical aberration corrector element leading to sub 

Ångström resolution and a Gatan UltraScan 1000 (2k × 2k) slow scan charged coupled 

device camera system. Scanning TEM (STEM) were done on a FEI Titan 80-300 keV TEM 

equipped with a field emission gun, a probe spherical aberration corrector element along with 

an electron monochromator, leading to a sub Ångström resolution, a post column energy 

filter system and a Gatan UltraScan 1000 (2k × 2k) slow scan charged coupled device 

camera system. A Philips CM30 ST microscope (300 keV, LaB6 cathode, CS = 1.15 mm, 
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Royal Philips Electronics, Amsterdam) was used for imaging of nanosheets and determining 

their elemental composition via EDX measurements. Overall, TEM investigations were 

performed with a total of about 40 particles being analyzed. 

Raman. The raman spectra were taken with a Typ V 010 labram single grating spectrometer 

(HORIBA Jobin Yvon GmbH, Bensheim), equipped with a double super razor edge filter and 

a peltier cooled CCD camera. Spectra are taken in quasi-backscattering geometry using the 

linearly polarized 456.9 nm line of a diodelaser with power less then 1 mW, focused to a 

2 µm spot through a 100x microscope objective on to the top surface of the sample. The 

resolution of the spectrometer (grating 1800 L mm-1) is 1 wavenumber (cm-1). 

IR. Infrared (IR) spectroscopy was measured on a Spectrum Two IR Spectrometer with an 

attenuated total reflectance unit (PerkinElmer, Waltham). 

ssNMR. Solid state nuclear magnetic resonance (ssNMR) measurements of 1H, 93Nb and 

207Pb were performed on a Bruker Avance III 400 MHz instrument (B0=9.4 T), at resonance 

frequencies of 400.1, 97.96 and 83.71 MHz, respectively. Double channel Bruker 2.5 and 

4 mm magic angle spinning (MAS) probes were used for 207Pb experiments. Stationary 93Nb 

measurements were performed on a double-channel 5 mm solenoid probe from NMR 

Service. The chemical shifts of 207Pb are externally referenced to the signals of 

tetramethyllead (Pb(CH3)4). 93Nb NMR chemical shifts were referenced to a saturated 

solution of K[NbCl6] in acetonitrile (absolute frequency ratio 24.476 170 %).4 A total of 1200 

scans were acquired for 207Pb to achieve an acceptable signal-to-noise ratio. Stationary 93Nb 

NMR data were acquired as variable offset cumulative spectra (VOCS) using a (π/2–π–π/2)-

quadrupolar-echo pulse sequence with 0.8 μs RF pulses and 50 μs echo delays.5 Each 

spectrum is a sum of ten sub-spectra acquired in equal frequency offsets of 100 kHz, with 

128 scans per offset. Analytical simulations of experimental spectra were carried out with the 

Bruker TopSpin 3.2 Lineshape Analysis Tool and WinFit simulation package.6 

AFM. Atomic force microscopy (AFM) measurements were performed on a MFP-3D Stand 

alone AFM (Asylum Research, Santa Barbara). Tapping-mode was applied using OMCL-

AC160TS-R3 (Olympus, Tokyo) cantilevers with a resonant frequency of 300 kHz. For 

topography measurements of the nanosheets the colloidal suspension after centrifugation at 

3000 rpm was dropped on to a silicon wafer with (100) orientation (Silchem, Freiberg) for 15-

30 min before the wafer was dried in an N2 flow. 

UV-VIS. Optical diffuse reflectance spectra of the bulk material and the nanosheet pellet 

were collected at room temperature with a Cary 5000 UV-Vis-NIR diffuse reflectance 

spectrometer (Agilent Technologies, Santa Clara) at a photometric range of 200–800 nm. 

Powders were prepared in a sample carrier with a quartz glass window at the edge of the 

integrating sphere with BaSO4 as the optical standard. Kubelka–Munk spectra were 

calculated from the reflectance data. 
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Figure S3.1.1: a) XRD pattern of HCa2-xPbxNb3O10 (x = 0, 0.5, 1.0, 1.5, 2.0) and b) enlarged region 

from 5-35 °2θ comparing the bulk material of endmembers with their cation-proton exchanged forms. 

 

 

Figure S3.1.2: XPS spectrum of RbPb2Nb3O10 showing the Pb 4f5/2 and Pb 4f7/2 peaks for PbII 

species. 
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Table S3.1.1: ICP-AES data for weighted samples RbCa2-xPbxNb3O10, their cation-proton exchanged 

forms HCa2-xPbxNb3O10 and the separated nanosheets TBA1-yHyCa2-xPbxNb3O10 with x = 0, 0.5, 1.0, 

1.5, 2.0. The theoretical expected formula is listed along with the analytical values given in wt% as 

average of 2-4 measurements, as well as the resulting experimental formula. 

Theoretical Formula  Rb Ca Pb Nb Experimental Formula  

RbCa2Nb3O10  13.3 13.21 - 46.18 Rb0.9Ca2.0Pb0.0Nb3Oz 

HCa2Nb3O10
 a - 14.39 - 53.50 HyCa1.9Pb0.0Nb3Oz 

TBA1-yHyCa2Nb3O10
 a

  - 12.86 - 42.08 TBA1-yHyCa2.1Pb0.0Nb3Oz 

RbCa1.5Pb0.5Nb3O10  12.55 9.55 9.17 45.34 Rb0.9Ca1.5Pb0.3Nb3Oz 

HCa1.5Pb0.5Nb3O10
 a - 9.89 12.08 45.84 HyCa1.5Pb0.4Nb3Oz 

TBA1-yHyCa1.5Pb0.5Nb3O10
 a - 10.38 7.36 41.18 TBA1-yHyCa1.8Pb0.3Nb3Oz  

RbCaPbNb3O10  10.93 6.55 23.10 40.33 Rb0.9Ca1.1Pb0.8Nb3Oz  

HCaPbNb3O10
 a - 6.15 22.48 44.95 HyCa1.0Pb0.7Nb3Oz 

TBA1-yHyCaPbNb3O10
 a - 6.51 19.22 36.26 TBA1-yHyCa1.3Pb0.7Nb3Oz  

RbCa0.5Pb1.5Nb3O10  9.71 2.55 32.17 35.14 Rb0.9Ca0.5Pb1.2Nb3Oz  

HCa0.5Pb1.5Nb3O10
 a - 2.87 35.82 37.42 HyCa0.5Pb1.3Nb3Oz  

TBA1-yHyCa0.5Pb1.5Nb3O10
 a  - 2.46 25.15 32.72 TBA1-yHyCa0.5Pb1.1Nb3Oz 

RbPb2Nb3O10  9.80 - 32.72 33.32 RbCa0.0Pb1.3Nb3Oz  

HPb2Nb3O10
 a - - 35.94 38.10 HyCa0.0Pb1.3Nb3Oz 

TBA1-yHyPb2Nb3O10
 a - - 32.82 34.11 TBA1-yHyCa0.0Pb1.3Nb3Oz 

a Note that neither the H and O content, nor the amount of TBA+ can be determined via ICP-AES 
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Table S3.1.2: EDX data for weighted samples RbCa2-xPbxNb3O10, their cation-proton exchanged 

forms HCa2-xPbxNb3O10 both conducted on the SEM-EDX and for the separated nanosheets 

TBA1-yHyCa2-xPbxNb3O10 conducted on the TEM-EDX with x = 0, 0.5, 1.0, 1.5, 2.0. The theoretical 

expected formula is listed along with the analytical values given in at% as average of at least 3 

measurements, as well as the resulting experimental formula. 

Theoretical Formula  Rb Ca Pb Nb O Experimental Formula  

RbCa2Nb3O10  6.66 12.60 - 18.17 62.57 Rb1.1Ca2.1Pb0.0Nb3O10.3  

HCa2Nb3O10
 a 0.2 11.20 - 18.27 70.33 HyCa1.9Pb0.0Nb3O11.5  

TBA1-yHy-Ca2Nb3O10
 a - 10.74 - 24.77 64.49 TBA1-yHy-Ca1.3Pb0.0Nb3O7.80  

RbCa1.5Pb0.5Nb3O10  6.84 8.39 1.32 16.52 66.93 Rb1.2Ca1.5Pb0.2Nb3O12.2  

HCa1.5Pb0.5Nb3O10
* - 8.41 1.11 16.55 73.93 HyCa1.5Pb0.2Nb3O13.4  

TBA1-yHy-

Ca1.5Pb0.5Nb3O10
a 

- 9.02 3.17 27.68 60.13 TBA1-yHy-Ca1.0Pb0.3Nb3O6.50  

RbCaPbNb3O10  6.25 6.32 3.52 16.76 67.15 Rb1.1Ca1.1Pb0.6Nb3O12.0  

HCaPbNb3O10
 a - 6.96 3.50 18.37 71.17 HyCa1.1Pb0.6Nb3O11.6  

TBA1-yHy-CaPbNb3O10
a - 5.78 4.06 20.87 69.29 TBA1-yHy-Ca0.8Pb0.6Nb3O10  

RbCa0.5Pb1.5Nb3O10  6.64 2.70 5.85 16.09 68.72 Rb1.2Ca0.5Pb1.1Nb3O12.8  

HCa0.5Pb1.5Nb3O10 
a - 3.32 5.97 17.87 72.84 HyCa0.6Pb1.0Nb3O12.2  

TBA1-yHy-

Ca0.5Pb1.5Nb3O10
a 

- 1.31 1.67 10.60 86.42 TBA1-yHy-Ca0.4Pb0.5Nb3O24.5  

RbPb2Nb3O10  6.88 - 8.93 17.57 66.62 Rb1.2Ca0.0Pb1.5Nb3O11.4 

HPb2Nb3O10
a - - 8.52 19.60 71.88 HyCa0.0Pb1.3Nb3O11.0 

TBA1-yHy-Pb2Nb3O10
a.b - - - - - -  

a Note that neither the H, nor the amount of TBA+ can be determined via EDX 

b Due to the lack of material EDX yielded too less counts for element identification 
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Figure S3.1.3: HRTEM images and corresponding FFTs of a) RbCa2Nb3O10 and b) RbPb2Nb3O10. 

 

 

Figure S3.1.4: SEM images of RbCa2-xPbxNb3O10 (right) and cation-proton exchanged 

HCa2-xPbxNb3O10 (left) for x = a) 0, b) 0.5, c) 1.0, d) 1.5 and e) 2.0 showing larger platelets with 

increasing Pb content. 
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Table S3.1.3: Maxima of vibrational Raman bands found for RbCa2-xPbxNb3O10 (1)-(5) and 

corresponding HCa2-xPbxNb3O10 (1H)-(5H) in the region of 1050-350 cm-1 with x = 0, 0.5, 1.0, 1.5, 2.0. 

All frequencies are given in cm-1. 

 x = 0 x = 0.5 x = 1.0 x = 1.5 x = 2.0 

(1.1) 940 939 937 937 936 

(1.2) - 910 910 905 904 

(1.3) - - 878 878 878 

(1H) 990/961 987 983/928 977/942 973/926 

(2) 761 751 728 700 674 

(2H) 770 759 733 704 725/679 

(3) 580 579 577 565 582/547 

(3H) 575 575 567 555 593/537 

(4) 501 490 479 465 448 

(4H) 499 491 481 464 442 

(5) 457 453 391 391 387 

(5H) 459 456 438 395 388 

 

Raman data is shown in Figure 3.1.6 and Table S3.1.3 and evaluated in the main 

manuscript. Additional information is given in the following. The assignment of the vibrational 

modes of our material is based on a comprehensive Raman study of several niobium oxides 

by Jehng and Wachs.7 We further refer to systematic studies by Byeon and co-workers8-10 

dealing with the structurally related A2La2Ti3O10 (M = Li, Na, K, Rb) and their relation to 

ACa2Nb3O10 (A = Na, K, Rb, Cs), including a detailed investigation of the solid solutions 

between the end members of both, and a normal coordinate analysis of Nozaki et al.11 

Associated Raman bands (1.1) for ACa2Nb3O10 (A = Na, K, Rb, Cs) as well as the ones for 

CsM2Nb3O10 (M = Ca, Sr, Ba), regardless of the change of A or M, were reported to maintain 

their position since the A-O-Nb linkage is not influenced by cation substitution.9-10 On the 

contrary, moving from RbLa2-xCaxTi2-xNb1+xO10 (2 ≥ x ≥ 0) to Rb2-xLa2Ti3-xNbxO10 (1 ≥ x ≥ 0), a 

shift of Raman band (1.1) from ~930 cm-1 down to 867 cm-1 is observed because of a 

structurally introduced linear Rb-Ti-O linkage.10 The bands at 904 cm-1 (1.2) and 878 cm-1 

(1.3) fall in between these two boundaries. Hence, the additional intergrowth phase evolves 

towards a linear Rb-O-Nb linkage. If a Pb deficient [Nb3O8]- motif is integrated in four different 

orientations in the perovskite matrix, this seems to be the reason for the split of Raman band 

(1.1). 

Cation-proton exchange of RbCa2-xPbxNb3O10 (x = 0, 0.5, 1.0, 1.5, 2.0) has a direct influence 

on the Raman band (1.1) due to association of the proton with the terminal oxygen atoms.7 

Hence, a broadening as well as a shift and a splitting of the Raman band is observed for (1H) 

of HCa2Nb3O10. Consequently, we also observe a shift and broadening of (1.2) and (1.3) for 

RbPb2Nb3O10 after the cation-proton exchange proving that vibrations (1.2) and (1.3) belong 
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to terminal Nb=O vibrations. Instead of several split bands a broad reflection with two 

shoulders becomes apparent. 

Regarding Raman Band (2) Jehng and Wachs determined between inner and outer NbO6 

octahedra by taking the ratio of the integrated Raman intensity of the bands I(1)/I(2). They 

found a 2:1 ratio reflecting the ratio of inner to outer octahedra as can be seen in 

Figure 3.1.1 a).7 For RbCa2-xPbxNb3O10 the Raman band is shifted towards 674 cm-1 and the 

overlap with Raman band (3)-(5) as well as a shoulder at higher wavenumbers becomes a 

major issue and makes integrating challenging. We used a Voigt function to fit the Raman 

bands as it accounts Doppler (Gaussian) and Stark (Lorentz) broadening of the line profiles. 

Nevertheless, for a proper fit of the Voigt function neighboring Raman bands should be 

sufficiently separated. Hence, the given ratios given in the main manuscript are interpreted 

rather as trend than absolute values. 

For Raman band (3) around 580 cm-1 there are contrary opinions whether this vibration is 

associated with the highly distorted Nb(2)O6 outer octahedra or the slightly distorted Nb(1)O6 

inner octahedra. Byeon et al. assigend the Raman band to the outer octahedral, deriving 

their interpretation from the comparison of ALaNb2O7 (A = Na, K, Rb, Cs), having only highly 

distorted outer octahedral, and ACa2Nb3O10. For ALaNb2O7 Raman band (2) was not 

observed, whereas Raman band (3) was present in both. Hence, they concluded that it must 

belong to the Nb(2)O6 outer octahedra.9 Jehng and Wachs linked the Raman band to the 

inner octahedra due to the area ratio of the bands compared to each other.7 This is further 

supported by the normal coordinate analysis of Nozaki et al..11 We attributed Raman band (3) 

to the Nb(2)O6 inner octahedra, since Raman band (3H) does not show any significant shift 

after cation-proton exchange 

Raman bands (4), (5) and (4H), (5H), respectively, seem to belong to the inner octahedra, 

too. Since they are less intense, no additional information was maintained from analysis of 

these vibrational modes. 

 

IR absorption spectra of RbCa2-xPbxNb3O10 and HCa2-xPbxNb3O10 (x = 0, 0.5, 1.0, 1.5, 2.0) 

are shown in Figure S3.1.5. IR spectroscopy is complementary to Raman spectroscopy and 

can also give structural insights. For example phase transitions in BaTiO3 and related 

materials like LiNbO3 and KNbO3 was probed with IR spectroscopy.12 To the best of our 

knowledge IR spectroscopy has not been applied to probe structural changes in Dion 

Jacobson phases until now. Only exchange of interlayer ions against organic cations or 

bases was monitored via IR spectroscopy.13 Hence, little is known about the investigated and 

related systems. On the basis of Raman spectroscopy we find similar characteristics in the 

IR spectra. A strong band around 910 cm-1 for RbCa2Nb3O10 (930 cm-1 in Raman) splits into 

3-4 bands for RbPb2Nb3O10. A new band at 797 cm-1 is found that might belong to a 
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vibrational mode where O(2) and O(4) move in the opposite direction than the O(3)s. This 

mode was reported to be Raman active by Nozaki et al. but is barely seen in the Raman 

spectra.11 765 cm-1 (761 cm-1 in Raman) as well as the band around 797 cm-1 disappear with 

increasing lead content and seem to become inactive for IR spectroscopy. Hence, a change 

in structure is indicated. Vibrations at 567 cm-1 and 537 cm-1 most likely belong to Raman 

bands (3) and (4), whereas two new bands are found at 476 cm-1 and 454 cm-1. When 

exchanging Rb+ against H+ the vibrational mode at 910 cm-1 is largely influenced since the 

Nb(2)-O(4) stretching mode is largely dependent on the interlayer ion. Vibrational modes at 

lower wavenumbers are as well found at the approximately same position. Similar to Raman 

spectroscopy IR spectra become less distingushable with increasing lead content for the 

cation-proton exchanged form. 

 

 

Figure S3.1.5: IR absorption spectra of a) RbCa2-xPbxNb3O10 and b) HCa2-xPbxNb3O10 with x = 0, 0.5, 

1.0, 1.5 and 2.0. 
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Figure S3.1.6: Experimental 93Nb solid state NMR spectra of the series RbCa2-xPbxNb3O10 (x = 0, 0.5, 

1.0, 1.5, 2.0) acquired with VOCS (10 offsets) and MAS (only for RbCa0Pb2Nb3O10, bottom spectrum), 

shown with corresponding simulations. The vertical dotted lines only for guiding an eye, and point into 

singularities of the two Nb sites in the lead loaded materials. 

 

 

 

Figure S3.1.7: Experimental 207Pb solid state NMR spectra of the series RbCa2-xPbxNb3O10 (x = 0, 0.5, 

1.0, 1.5, 2.0) acquired with Hahn-echo and MAS (only for RbCa0Pb2Nb3O10, bottom spectrum), shown 

with corresponding simulations. 
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Figure S3.1.8: Image of colloidol suspensions of TBA1-yHyCa2-xPbxNb3O10 after centrifugation at 

3000 rpm for x = a) 0, b) 0.5, c) 1.0, d) 1.5 and e) 2.0. 

 

 

Table S3.1.4: Several lattice parameters for TBA1-yHyCa2-xPbxNb3O10 nanosheets and angle between 

directions as average out of 3-5 SAED patterns 

Theoretical Formula  A B C D E 

TBA1-yHyCa2Pb0Nb3O10 3.79 Å 2.68 Å 1.90 Å 1.70 Å 1.34 Å 

TBA1-yHyCa1.5Pb0.5Nb3O10 3.80 Å 2.70 Å 1.91 Å 1.70 Å 1.35 Å 

TBA1-yHyCaPbNb3O10 3.84 Å 2.70 Å 1.93 Å 1.72 Å 1.36 Å 

TBA1-yHyCa0.5Pb1.5Nb3O10 3.84 Å 2.72 Å 1.93 Å 1.72 Å 1.36 Å 

TBA1-yHyCa0Pb2Nb3O10 3.82 Å 2.71 Å 1.91 Å 1.71 Å 1.35 Å 

 

 

 

Figure S3.1.9: EDX mapping of a TBA1-yHyRb2Nb3O10 nanosheets showing homogeneous distribution 

of all elements. Pb M, Nb Kα and O Kα were measured. 
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Figure S3.1.10: UV-VIS spectra of a) RbCa2-xPbxNb3O10 b) HCa2-xPbxNb3O10 and c) 

TBA1-yHyCa2-xPbxNb3O10 for x = a) 0, b) 0.5, c) 1.0, d) 1.5 and e) x = 2.0. 
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3.2 Structural Investigations on New Niobate Nanosheet Phosphors 

 

Christian Ziegler, Laura Kohout, Stephanie Linke, Matthieu Bugnet, Viola Duppel, 

Gianluigi A. Botton, Christina Scheu, Bettina V. Lotsch 

 

Unpublished results. 

 

ABSTRACT: Luminescent nanosheets with high photoactivator concentration are promising 

candidates for optical devices because of their two-dimensional (2D) morphology, an efficient 

host to activator energy transfer, and their high luminescence intensities. Here, we 

systematically investigated a series of Dion-Jacobson (DJ) type K1-xCa2-xLnxNb3O10 (x = 0.05, 

0.25, 0.50, 0.75; Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb) layered perovskites, 

where the intrananosheet photoactivator concentration can be tuned by increasing levels of 

rare earth dopant. Exfoliation via a cation-proton exchange and subsequent treatment with 

tetra-n-butylammonium hydroxide (TBAOH) showed that only up to 20 at% of the rare earth 

ions can be incorporated into the host matrices during bulk synthesis. These findings also 

hold for the structurally similar Rb1-xSr2-xLnxNb3O10 (Ln = La, Eu, Er) where 10 at% rare earth 

ions can be incorporated. Consequently, the structural evolution of K1-xCa2-xLnxNb3O10 is 

evaluated for the Eu3+ series and a possible miscibility gap is proposed. Eu3+, Sm3+ and 

mixed valence Pr3+/4+ containing nanosheets showed red, Dy3+ containing yellow and Er3+ 

modified materials green emission under excitation at λ = 366 nm, and are therefore 

promising candidates for nanosheet-based lightning applications. 

 

3.2.1 Introduction 

In the last decade, nanosheet-based phosphors exfoliated from (doped) layered transition 

metal oxides (TMOs) opened up a field in the design of new types of phosphor materials.1-9 

With a height around ~1 nm and a lateral size in the micrometer-regime, nanosheets offer a 

unique 2D morphology that has certain advantages over that of their bulk counterparts.10-11 

For example, their large surface area enables nanosheets to efficiently absorb excitation 

energy and relatively high concentrations of photoactivators can be incorporated into a 2D 

host without diminishment of emission intensity by cross relaxation processes.3, 5, 7 

Additionally, several studies showed that photoluminescene emissions from rare earth 

photoactivated TMO nanosheets are rather dominated by host excitation than by direct rare 

earth photoactivator excitation.10 Hence, the optimum excitation wavelength can be 

exclusively adjusted by an appropriate choice of host material for intended applications. 

Table 3.2.1 lists, to the best of our knowledge, all layered TMO-based photoluminescent 

nanosheets that have been synthesized up to now. Besides the blue emitting 
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EA1.12Bi0.16Sr0.75Ta2O7
1 (EA = ethylamine) which exhibits photoluminescence itself, all other 

nanosheets show photoluminescence due to the insertion of rare earth ions. A green 

emission is found for the compounds doped with Tb3+, whereas red emissions are obtained 

by inserting Eu3+ or Sm3+ into the nanosheet host. EA2Gd1.4Eu0.6Ti3O10 nanosheets are an 

interesting example for an energy transfer cascade from the Ti-O network of the nanosheet 

to Gd3+ and then to Eu3+, yielding a higher luminescence intensity of the phosphor and further 

extend the possibilities of material design.4 

 

Table 3.2.1: Overview of layered bulk TMO based phosphors that have been exfoliated into 

photoluminescent nanosheets either with EA or TBAOH as exfoliation agent. 

Red Phosphors KLa0.90Eu0.05Nb2O7 to TBALa0.90Eu0.05Nb2O7
2 

 Li2Eu0.56Ta2O7 to TBA2Eu0.56Ta2O7 3 

 KLa0.95Eu0.05Nb2O7, RbLa0.95Eu0.05Ta2O7, K2Ln1.9Eu0.1Ti3O10 (Ln = La, Tb) and 

K2Gd2-xEuxTi3O10 (x = 0, 0.02, 0.04, 0.1, 0.2, 0.6, 1, 2) all to EA-TMOs4 

 K(K1.5Eu0.5)Ta3O10 to TBA(K1.5Eu0.5)Ta3O10
5 

 KLa0.90Sm0.05Nb2O7 to TBALa0.90Sm0.05Nb2O7
6 

 Li2La2/3-xEuxTa2O7 to TBA2La2/3-xEuxTa2O7
7 

Green Phosphors RbLa1-xTbxTa2O7 (x = 0.01, 0.05, 0.30, 0.50, 1.00) to EALa1-xTbxTa2O7
4 

 CsCa2-xTbxTa3O10 (x = 0.001-0.1) to TBACa2-xTbxTa3O10
9 

Blue Phosphors Bi2SrTa2O9 to EA1.12Bi0.16Sr0.75Ta2O7
1 

 KLa0.90Dy0.05Nb2O7 to TBALa0.90Dy0.05Nb2O7
8 

 

These options can be further extended by the most intriguing property of nanosheets, the 

possibility to use them as building blocks for the fabrication of hybrid materials with tailor-

made properties based on their assembly via various layer-by-layer (LBL) techniques.10-11 

Such and related approaches allow to overcome thermodynamic constrains due to the high 

temperatures usually used for solid-state synthesis and, hence, open up pathways to new 

functional materials.10-11 In a typical experiment a colloidal suspension of negatively charged 

nanosheets, e.g. Ti0.91O2
-, Ti4O9

2-, Nb6O17
4- etc., are either flocculated with dissolved rare 

earth ions or stacked in a LBL fashion by dipping a substrate alternatingly into both 

suspensions/solutions.12-17 This rather straightforward procedure was recently used to 

fabricate a new upconversion material by flocculation of calcium niobate with rare earth salts 

yielding (Ho0.096Yb0.23Y0.164)Ca1.760.24Nb3O10•1.4H2O ( = vacancy) where Ho3+, Yb3+ and 

Y3+ act as photoactivator, sensitizer and space filler ions and the nanosheet as structural and 

thermal stabilizer.18 

Above all these versatile pathways, it is possible to monitor the local atomic configuration for 

thin TMO-based nanosheets and to correlate e.g. concentration-based quenching effects to 

structural arrangements. Recently, Ida and co-workers determined the photofunctional 

centers in TBACa2-xTbxTa3O10 with the help of high-angle annular dark-field scanning 
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transmission electron microscopy (HAADF-STEM) and found that no concentration-based 

quenching was observed even for centers lying in close proximity to each other.9 Thus, 

nanosheets can play a crucial role in order to understand fundamental properties of light-

energy-converting materials, which demonstrates the need for extension of the currently 

restricted nanosheet library. 

Our study focuses on the synthesis, rare earth doping and substitution, subsequent 

exfoliation and structural evaluation of one of the most prominent bulk materials for the 

fabrication of oxide nanosheets, KCa2Nb3O10.19 First studies of doping La3+ and Eu3+ into 

KCa2Nb3O10 and its cation-proton exchanged form HCa2Nb3O10 revealed that both systems 

are excellent hosts for these photoactivators.20-21 Secondly, it was reported that 

K1-xCa2-xLaxNb3O10 is a layered perovskite series with variable inter- (K) and intralayer (La) 

cation density, thus enabling the tuning of the rare earth element to an optimal photoactivator 

concentration within the host.22 A schematic drawing of both end-members is shown in 

Figure 3.2.1. 

 

 

Figure 3.2.1: Schematic representation of end-members of K1-xCa2-xLnxNb3O10 series: a) KCa2Nb3O10 

and b) CaLnNb3O10. 

 

KCa2Nb3O10 has a monoclinic structure with space group P21/m as determined by neutron 

diffraction experiments.23 CaLaNb3O10 has been described as orthorhombic similar to the 

results of an early X-ray diffraction (XRD) structure refinement of KCa2Nb3O10 without 

specification of the space group.22 Note that for the sake of simplicity a monoclinic cell 

instead of the assumed orthorhombic structure for CaLaNb3O10 is shown in Figure 3.2.1. 

Within the K1-xCa2-xLnxNb3O10 series, the Ln3+ ions can, in principle, replace the K+ ions 

located in the interlayer region as well as the Ca2+ located at the A position of the perovskite 

layer. It is found that that Ln3+ exchanges for the A position and, hence, decreases the 
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perovskite layer charge density successively with increasing x. In terms of structure, this 

means that in KCa2Nb3O10 and LaCaNb3O10 the adjacent triple perovskite layer blocks are 

stacked with a displacement by a/2 along the [110] direction and are bonded by weak van 

der Waals forces.21 In contrast to literature reports, our findings indicate that a homogeneous 

perovskite series with variable interlayer cation density does not occur and provide evidence 

that only up to 20 at% rare earth element content can be incorporated into the [Ca2Nb3O10]- 

layers, decreasing the interlayer charge by 20% yielding A0.8Ln0.2Ca1.8Nb3O10 (A = K, H, TBA) 

at maximum. Still, Eu, Sm, Pr, Dy and Er doped materials seem to be good photoactivators 

for niobate-based nanosheet phosphors. This finding also holds for the structurally similar 

A1-xSr2-xLnxNb3O10 (A = Rb, H, TBA, Ln = La, Eu, Er) system, where a maximum 

photoactivator concentration of 10 at% was observed for that case. 

 

3.2.2 Results and Discussion 

Figure 3.2.2 displays the XRD patterns for K1-xCa2-xEuxNb3O10 (x = 0.05, 0.25, 0.50, 0.75) in 

comparison with standard cards of KCa2Nb3O10
23 and CaLaNb3O10

22. For the sake of 

simplicity, we first comprehensively investigate the series A1-xCa2-xEuxNb3O10 (A = K, H, TBA) 

and subsequently discuss structural similarities and differences between distinct rare earth 

elements of the A1-xCa2-xLnxNb3O10 (x = 0.05, 0.25, 0.50, 0.75, A = K, H, TBA; Ln = La, Pr, 

Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb) series (Figure S3.2.1-S3.2.4). The Eu3+ series was 

chosen because the bulk material is known to show the characteristic red emission of the 

Eu3+ ions due to an energy transfer between the host material and the Eu3+ dopant, whereas 

exfoliation into luminescent nanosheets has to the best of our knowledge not been reported 

yet.20 Additional XRD data of the La series is evaluated in more detail as this is the only 

series where structural data of the end-members KCa2Nb3O10
23 and CaLaNb3O10

22 were 

published before. XRD patterns of K1-xCa2-xLaxNb3O10 (x = 0.05, 0.25, 0.50, 0.75) are shown 

in Figure 3.2.3. As can be seen, the monoclinic P21/m structure of the parent compound 

KCa2Nb3O10 is almost maintained for x = 0.05.23 Nevertheless, additional reflections - mainly 

the one at 21°2Ɵ - become apparent. Bizeto et al. attributed this to minor structural 

modifications due to the rare earth dopant.20 We find, however, that these reflections can 

also be due to the second prominent (211) reflection plane (and higher orders) of Ca2Nb2O7, 

as most of the Ca2Nb2O7 reflections overlay with those from KCa2Nb3O10 and minor intense 

reflections vanish in the background.24 With increasing rare earth content, the intensity of 

KCa2Nb3O10-related reflections decreases, and new reflections arise and/or should shift 

towards the positions of the reflections of CaLaNb3O10, which is partly the case. Note that we 

did not synthesize the CaLnNb3O10 end-members as the main goal was to investigate 

nanosheets derived from the interlayer exchange of K+ and subsequent exfoliation with the 

bulky organic cation TBA+, which is not possible for the end-members. 
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Figure 3.2.2: XRD patterns of K1-xCa2-xEuxNb3O10 (x = 0.05, 0.25, 0.50, 0.75) in comparison with 

reference end-members KCa2Nb3O10 and CaLaNb3O10.22-23 

 

 

Figure 3.2.3: XRD patterns of K1-xCa2-xLaxNb3O10 (x = 0.05, 0.25, 0.50, 0.75) in comparison with 

reference end-members KCa2Nb3O10 and CaLaNb3O10.22-23 

 

Figure 3.2.4 highlights the XRD patterns of the more highly substituted 

K0.25Ca1.25La0.75Nb3O10 and K0.25Ca1.25Eu0.75Nb3O10 compared to KCa2Nb3O10
23 and 

CaNb2O6
25. The resulting rare earth containing K0.25Ca1.25Ln0.75Nb3O10 compounds can be 

described as a phase mixture consisting of KCa2Nb3O10, CaNb2O6 and at least one additional 

phase that might be related to a rare earth containing compound (orange arrows). Neither 
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Ln2O3 reported as impurity phase by Huang et al., nor LnNbO4 or other rare earth containing 

references of various databases matched these reflections.21 As the reaction progress was 

not complete, we used various temperatures between 1100-1300°C for the 

K1-xCa2-xLaxNb3O10 synthesis as suggested in the literature, and around 1200°C where we 

obtained phase pure KCa2Nb3O10.20-22, 26 For lower temperatures the formation of Ca2Nb2O7 

was favored, whereas for higher temperatures CaNb2O6 was observed as side phase. For 

none of the applied temperature profiles we obtained any phase-pure doped material and 

hence have no evidence of a homogeneous formation of a solid solution of the 

A1-xCa2-xLnxNb3O10 series under these synthesis conditions. 

 

 

Figure 3.2.4: XRD patterns of K0.25Ca1.25La0.75Nb3O10 and K0.25Ca1.25Eu0.75Nb3O10 in comparison with 

the standard cards of KCa2Nb3O10 and CaNb2O10. Additional reflections are marked with an orange 

arrow.23, 25 

 

SEM-EDX measurements were conducted to evaluate the chemical homogeneity of the 

reaction products in more detail. SEM images for K1-xCa2-xEuxNb3O10, its proton-exchanged 

form and dried nanosheets are shown in Figure 3.2.5. Images of A1-xCa2-xLaxNb3O10 are 

displayed in Figure S3.2.5. Both series show the expected plate-like shape for all doping 

degrees. The dimension of the platelets is around 10 μm and no other morphology is 

observed. The same is the case for the cation-proton exchanged forms. Thus, occuring side 

phases seem also to exhibit the plate-like morphology. Exfoliated nanosheets form rather 

large aggregates with dimensions of 30-100 μm as they restack whilst drying. In the following 

EDX data was taken as average from larger aggregates as no distinction of different phases 

due to the morphology was possible. 
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Figure 3.2.5: SEM images of A1-xCa2-xEuxNb3O10 (A = K, H, TBA, x = 0.05, 0.25, 0.50, 0.75), showing 

plate-like morphology for all samples. 

 

Corresponding EDX data for the Eu3+ series is listed in Table 3.2.2. For all other rare earth 

substituted A1-xCa2-xLnxNb3O10 samples the values can be found in Table S3.2.1-S3.2.4 and 

will be discussed further below. Stoichiometric ratios of bulk K1-xCa2-xEuxNb3O10 samples 

match well within the measurement uncertainties for lower substitution degrees, while a lack 

of Eu3+ is observed for higher substitution degrees. Still, the trend of decreasing K+ and Ca2+ 

and increasing Eu3+ is obvious. This is different for the cation-proton exchanged forms that 

show in average a high loss in the Eu3+ content with increasing x compared to the bulk 

material. This might be related to degradation of the material due to acid treatment. Either 

way, K+ ions of all samples can be completely removed or exchanged against protons H+ 

during acid treatment with three renewals of the acid. Sometimes a fourth or fifth treatment is 

necessary in order to complete the exchange, hence minor K+ contents can still be present in 

some cases. As will be shown below, all cation-proton exchanged H1-xCa2-xEuxNb3O10 

samples can be exfoliated into nanosheets due to intercalation of TBA+ ions into the 

interlayer region of the perovskites in aqueous solution. 

EDX measurements for nanosheet samples were conducted in three different ways. First, 

non-exfoliated material was removed by centrifugation at low speeds. The residue was 

washed, dried and investigated via SEM-EDX measurements. Secondly, the obtained 
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colloidal suspension was dropped onto a lacey carbon-coated TEM grid and individual 

nanosheets were studied in the TEM. Last, a nanosheet pellet from the colloidal suspension 

was collected at high centrifugation speed, dried, washed and also analyzed with SEM-EDX. 

An important observation is the fact that the amount of isolated material became less with 

increasing x. As one can see from all three measurements, the rare earth content in the 

nanosheets becomes similar to the cation-proton exchanged form significantly lower for 

higher substitution degrees and seems to have a maximum of about 20 at% in total. 

Especially TEM-EDX measurements of individual nanosheets did not give any hint for a 

higher rare earth content in the substituted nanosheets and only shows minimal deviation 

from the given average value. 

 

Table 3.2.2: EDX measurements of K0.95Ca1.95Eu0.05Nb3O10, K0.75Ca1.75Eu0.25Nb3O10, 

K0.5Ca1.5Eu0.5Nb3O10, K0.25Ca1.25Eu0.75Nb3O10, their cation-proton exchanged and exfoliated forms 

given in at%; r = residue after centrifugation at 3000 rpm, c = nanosheets after centrifugation at 

20000 rpm, t = nanosheets measured in the TEM; at% values are average values of three EDX 

measurements. 

Theoretical formula K [%] Eu [%] Ca [%] Nb [%] O [%] Experimental formula 

K0.95Ca1.95Eu0.05Nb3O10 4.32 8.00 0.22 13.42 74.04 K0.96Ca1.79Eu0.05Nb3.00O16.9 

H0.95Ca1.95Eu0.05Nb3O10 - 19.29 0.29 18.15 71.27 Ca1.72Eu0.05Nb3.00O11.9 

Ca1.95Eu0.05Nb3O10
0.95-

 r - 11.79 0.25 16.61 70.15 Ca2.14Eu0.05Nb3.00O12.94 

Ca1.95Eu0.05Nb3O10
0.95- c - 13.34 0.37 20.50 65.79 Ca1.95Eu0.05Nb3.00O9.71 

K0.75Ca1.75Eu0.25Nb3O10 3.27 0.56 8.33 15.7 71.6 K0.64Ca1.60Eu0.11Nb3.00O13.7 

H0.75Ca1.75Eu0.25Nb3O10 - 1.20 6.40 13.2 79.2 Ca1.46Eu0.27Nb3.00O18.0 

Ca1.75Eu0.25Nb3O10
0.75- r - 0.87 6.59 14.6 78.0 Ca1.35Eu0.18Nb3.00O16.0 

Ca1.75Eu0.25Nb3O10
0.75- c 0.10 0.60 10.4 17.0 71.4 K0.02Ca1.84Eu0.11Nb3.00O12.6 

K0.5Ca1.5Eu0.5Nb3O10 2.37 0.70 6.85 13.7 76.3 K0.58Ca1.52Eu0.17Nb3.00O17.1 

H0.5Ca1.5Eu0.5Nb3O10 - 0.71 8.40 13.6 77.3 Ca1.88Eu0.16Nb3.00O17.1 

Ca1.5Eu0.5Nb3O10
0.5- r 0.09 0.88 8.94 15.5 74.6 K0.01Ca1.72Eu0.17Nb3.00O15.3 

Ca1.5Eu0.5Nb3O10
0.5- c 0.15 0.58 10.4 17.0 71.6 K0.03Ca1.83Eu0.10Nb3.00O12.7 

Ca1.5Eu0.5Nb3O10
0.5- t - 1.10 10.3 23.2 65.4 Ca1.33Eu0.14Nb3.00O8.5 

K0.25Ca1.25Eu0.75Nb3O10 1.47 1.73 5.93 13.6 77.3 K0.28Ca1.29Eu0.38Nb3.00O17.7 

H0.25Ca1.25Eu0.75Nb3O10 - 0.47 8.30 15.2 76.0 Ca1.65Eu0.09Nb3.00O15.2 

Ca1.25Eu0.75Nb3O10
0.25- r - 0.49 6.96 11.9 80.3 Ca1.75Eu0.12Nb3.00O20.3 

Ca1.25Eu0.75Nb3O10
0.25- c - 0.59 9.94 16.2 72.1 Ca1.84Eu0.10Nb3.00O13.7 

Ca1.25Eu0.75Nb3O10
0.25- t 1.00 0.50 8.00 13.0 77.5 K0.23Ca1.84Eu0.19Nb3.00O17.9 

 

There are two explanations for this observation. First, a certain layer-charge might be 

required in order to ion exchange and intercalate TBA+ cations. Second, substitution of Ln3+ 

ions into the KCa2Nb3O10 host is only possible up to a certain amount before a miscibility gap 

arises. Thus, we may infer that the obtained overall composition encompasses the following 
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known compounds, as we have already seen the existence of both KCa2Nb3O10 and 

CaNb2O6-related compounds in the XRD data: 

 

x = 0.25: K3Ca7LnNb12O40 = 3 KCa2Nb3O10:Lny + CaNb2O6:Lnz + ‘Ln1-y-zNbO4’ (Eq. 3.2.1) 

x = 0.50: KCa3LnNb6O20 = KCa2Nb3O10:Lny + CaNb2O6:Lnz + ‘Ln1-y-zNbO4’ (Eq. 3.2.2) 

x = 0.75: KCa5Ln3Nb12O40 = KCa2Nb3O10:Lny + 3 CaNb2O6:Lnz + 3‘Ln1-y-zNbO4’ (Eq. 3.2.3) 

 

Rare earth ortho-niobates LnNbO4 are materials with a fergusonite structure that changes 

into a scheelite structure.27 At this point we cannot give clear evidence on the formation of 

these phases on the basis of XRD analysis as the reflections of the standard cards do not 

match the experimental reflections exactly. Nevertheless, this finding is supported by the 

analysis of the residue. As the rare earth content of the residue is only slightly higher than 

the one of the individual nanosheets, this means that some rare earth containing compound 

must have been disintegrated and dissolved due to the acid-treatment or while switching to 

the highly basic environment in the exfoliation process. As the residue consists mainly of 

non-exfoliated material, the rare earth elements might be incorporated into CaNb2O6 or 

LnNbO4.28 Note that the sum of CaNb2O6 and LnNbO4 yields the end-member CaLnNb3O10 of 

K1-xCa2-xLnxNb3O10 series for x = 1, which is further pointing towards a miscibility gap. 

Figure 3.2.6 shows photographs of the colloidal suspensions of TBA1-xCa2-xEuxNb3O10. The 

one with the lowest Eu3+ concentration is apparently more concentrated in terms of exfoliated 

material than those with higher Eu3+ concentrations. Since the possible side-phases 

CaNb2O6 and LnNbO4 have no layered structure, less material for exfoliation is available for 

higher x decreasing the amount of nanosheets present in suspension. For increased Eu3+ 

content no clear difference is distinguishable by the eye due to the strong light scattering 

property of the nanosheets.  

 

 

Figure 3.2.6: Photographs of colloidal suspensions and the resulting Tyndall effect of the exfoliated 

compounds TBA1-xCa2-xEuxNb3O10 illuminated by laser light. 
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AFM images and corresponding height profiles for the Eu3+ nanosheet series are displayed in 

Figure 3.2.7. All samples yielded unilamellar nanosheets of dimensions up to 1 μm length 

and heights between 2.4-2.8 nm; only TBA0.95Ca1.95Eu0.05Nb3O10 gave larger sheets with a 

lower height around 2.0 nm. Nanosheets are generally thicker compared to the theoretical 

height of an individual perovskite layer due to the attached ligand and ambient water.4 We 

have previously shown that the amount of ligand is determined by a H+ – TBA+ exchange 

reaction depending on the TBAOH concentration (see Chapter 4.1).29 The more precise sum 

formula would therefore be (TBA1-yHy)1-xCa2-xLnxNb3O10, where y can be tuned by the 

concentration of the aqueous colloidal suspension. Thus, samples with less exfoliateable 

material available would likely show a comparably higher TBAOH concentration, yielding 

slightly thicker nanosheets in the AFM because of the more densely packed TBA attached to 

the nanosheet surface. Another possibility would be a change in the acidity of the perovskite 

layers that leads to a higher attachement of ligands with increasing lanthanoide content. 

 

 

Figure 3.2.7: AFM overview images, as well as images of individual nanosheets and corresponding 

height profiles of the exfoliated compounds TBA1-xCa2-xEuxNb3O10. 

 

TEM images of TBA0.95Ca1.95Eu0.05Nb3O10 versus TBA0.50Ca1.50Eu0.50Nb3O10 are shown in 

Figure 3.2.8. Again, nanosheets for the x = 0.05 compound seem to be larger and less 

fragmented. At higher magnification dark spots on the nanosheets become visible. One may 

assume that these spots arise due to the contrast of more strongly diffracting Eu3+ ions, but 
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in fact they arise from a Cu impurity attached to the nanosheet. Figure S3.2.6 shows a 

STEM-EELS line scan where the signal for the Cu L2,3 edge at 931 eV and 951 eV is 

extracted. The EEL spectra were recorded on a free-standing sheet in the middle of a TEM 

grid cavity, so that contributions of the Cu grid can be neglected. Also, the intensity of the Cu 

signal was higher in the middle of the particle than between both particles. Thus, the impurity 

likely stems from Cu dissolved from the TEM Cu grid which we used for sample preparation, 

since no Cu was detected in SEM-EDX measurements for bulk, cation-proton exchanged 

materials and centrifuged nanosheets. Note that on top of the Cu L2,3 edge the Eu M4,5 edge 

at 1131 eV and 1161 eV, respectively, is visible. Hence, rare earth elements seem to be 

homogeneously distributed throughout the nanosheet and no possibly luminescent particles 

are attached to the surface.  

 

 

Figure 3.2.8: TEM images of a) TBA0.95Ca1.95Eu0.05Nb3O10 and b) TBA0.50Ca1.50Eu0.50Nb3O10 at 

different magnifications. 

 

Figure 3.2.9 shows STEM images and EELS box measurement for three different 

TBA0.50Ca1.50Ln0.50Nb3O10 (Ln = La, Eu, Er) nanosheets. The extracted rare earth M4,5 edges 

are shown next to the STEM image where the area of the EEL spectrum is marked with an 

orange box. As one can see, the white lines of La M4,5 at 832 eV and 849 eV are clearly 

visible for a single-sheet as the edge is not overlaid with the following Cu L2,3 edge arising 

from an impurity attached to the sheet. This is different to the Eu M4,5 edge at 1131 eV and 

1161 eV, as well as the Er M4,5 edge at 1409 eV and 1453 eV, which suffer from the Cu L2,3 

edge-induced background and the general decrease in intensity due to the lower ionization 

cross sections at higher energies. For both signals the M4 edge is barely visible. Hence, 

larger areas or regions of double-triple-sheets are necessary to obtain a signal. This can also 

be related to the fact that only a maximum of 20 at% lanthanide ions can be incorporated into 
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the nanosheet and thus, the signal weakening the signal. Nevertheless, the substituted rare 

earth elements seem to be homogeneously integretated into the nanosheet rather than being 

attached to the surface or forming regions or clusters with higher and lower dopant levels, 

respectively. This is in line with the XRD and AFM results. 
 

 

Figure 3.2.9: STEM images of a) TBA0.50Ca1.50La0.50Nb3O10, c) TBA0.50Ca1.50Eu0.50Nb3O10, e) 

TBA0.50Ca1.50Er0.50Nb3O10 nanosheets with the area of the performed EELS scan (orange square) 

highlighted, and the corresponding extracted rare earth M4,5 edges for b) La, d) Eu and f) Er. 

 

Figure 3.2.10 compares photographs of A1-xCa2-xEuxNb3O10 (A = K, H, TBA, x = 0.05, 0.25, 

0.50, 0.75) under UV excitation at λ = 366 nm. All samples show the characteristic red 

emission of the Eu3+ ions. The intensities of the potassium-containing and cation-proton 

exchanged bulk materials are similar and much stronger than those of the precipitated 

nanosheets. This can be rationalized as follows: First, non-layered materials might also 

exhibit luminescence, for example, CaNb2O6:Ln3+ is known as photoluminescent material.28 

Thus, the luminescence intensity of impurity phases might be stronger than the one of doped 

perovskites. Secondly, much more substance was available for the measurements of the 

parent compounds. The luminescence of the nanosheets is fairly homogeneous, only for 

TBA0.5Ca1.5Eu0.5Nb3O10 the larger part of the sample does not seem to exhibit any 

photoluminescence and may belong to undoped Ca2Nb3O10
-. Further TEM-EDX experiments 

would be necessary to prove this assumption. The above results suggest that Eu3+-

substituted TBA1-xCa2-xEuxNb3O10 seems to be a suitable material for further luminescence 

studies. 
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Figure 3.2.10: Luminescence photographs of A1-xCa2-xEuxNb3O10 (A = K, H, TBA, x = 0.05, 0.25, 0.50, 

0.75) under UV irradiation at λ = 366 nm. 

 

So far mainly the Eu3+ series was evaluated. According to XRD, SEM-EDX and AFM 

measurements most of the A1-xCa2-xLnxNb3O10 (x = 0.05, 0.25, 0.50, 0.75; A = K, H, TBA; 

Ln = La, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb) samples followed a similar trend concerning 

structure, chemical composition and photoluminescent properties. Figure S3.2.1-S3.2.4 

displays the XRD patterns of all materials including Eu3+ for different rare earth contents x. 

As can be seen from XRD data all lanthanide ions can be incorporated into the monoclinic 

host KCa2Nb3O10. The inset in Figure S3.2.1 shows a close-up of the evolution of the 

reflections of the (001) plane for the x = 0.05 series as a function of the type of rare earth 

cation. The reflections shift towards lower 2Ɵ values upon substitution of the larger 

La3+(1.36 Å) for the smaller Ca2+ (1.34 Å) site and then back to higher 2Ɵ values due to the 

lanthanide contraction.30 On the contrary, the reflection at 21°2Ɵ is only present in some 

cases and does not shift, and hence may in fact belong to a Ca2Nb2O7 impurity as mentioned 

earlier. For increasing x the evolution of the XRD patters is similar to those discussed for 

Eu3+ versus La3+, while only mixed valence Pr3+/4+ and the smaller Tm3+ and Yb3+ substituted 

samples show greater divergence. The reason for these deviations might be the mixed 

valence precursor Pr6O11 for Pr3+/4+ on the one hand as quadrivalent ions do not substitute as 

good as trivalent in the investigated system, and the size of Tm3+ and Yb3+ on the other side. 

EDX data of K1-xCa2-xLnxNb3O10 and acid treated materials are listed in Table S3.2.1-S3.2.4. 

Doping with low amounts of rare earth leads to the successful incorporation into the host 

lattice and all materials can be exfoliated, while a higher substitution degree leads to 
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inhomogeneous samples as detected by the XRD. These results are in good agreement with 

those for the Eu3+ series. Thus, not all exfoliated materials were centrifuged for further 

analysis. 

Despite the trend of a limited solid solution range for A1-xCa2-xLnxNb3O10, some of the doped 

materials still exhibit notable luminescence properties. The Sm3+ and Pr3+/4+ materials show 

red emissions, whereas Dy3+ compounds exhibit a rather yellow one. Er3+ materials yield an 

intense green photoluminescene. Photographs under UV irradiation for the respective bulk 

materials can be seen in Figure 3.2.11. 

 

 

Figure 3.2.11: Luminescence photographs of various K1-xCa2-xLnxNb3O10 bulk materials under UV 

irradiation at λ = 366 nm. 

 

Since substitution within the A1-xCa2-xLnxNb3O10 crystal structure seems to be limited, we 

investigated also the structurally similar compounds K1-xSr2-xLnxNb3O10 and 

Rb1-xSr2-xLnxNb3O10 with larger Sr2+ ions on the A site of the perovskite lattice in order to 

achieve a complete solid solution with tunable photoactivator concentration. Again, reaction 

temperatures of 1100-1300°C were used to synthesize homogeneous samples. All K 

containing samples showed a very inhomogeneous distribution of elements and the 

formation of different phases according to XRD and SEM-EDX analysis. The reason might be 

that the small K+ may lead to too high lattice distortions of the larger Sr containing perovskite 

lattice.31 We therefore continued with the Rb containing samples which showed identical 

XRD patterns in the synthesis temperature range of 1200-1300°C. Figure 3.2.12 shows the 

XRD patterns for a Rb0.5Sr1.5Ln0.5Nb3O10 (Ln = La, Eu, Er) compound compared to 

RbSr2Nb3O10
32 and SrNb2O6

33. The RbSr2Nb3O10 reflections are in agreement with the 

literature and shift as a function of the lanthanide ion; also, additional reflections become 

apparent. These do not belong to SrNb2O6 and hence do not follow the same trend as for the 

Ca analogue. Nevertheless, these reflections again suggest the presence of a side phase, 

and no homogeneous series of Rb1-xSr2-xLnxNb3O10 could be obtained. 
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Figure 3.2.12: XRD patterns of Rb0.5Sr1.5Ln0.5Nb3O10 (Ln = La, Eu, Er) in comparison with standard 

cards of RbSr2Nb3O10 and SrNb2O6.32-33 

 

Figure S3.2.7 displays SEM images for A0.5Sr1.5Eu0.5Nb3O10, showing the expected plate-like 

morphology. With around 10 μm their size is similar to those of the Ca analogues. 

Table 3.2.3 lists the corresponding EDX measurements. The composition 

Rb0.36Sr0.91Eu0.78Nb3.00O15.4 suggests the formation of a different composition with increased 

Eu and decreased Rb and Sr content, with an inhomogeneous mixture of compounds. Acid 

treatment and exfoliation leads to nanosheets with a composition close to that of the Ca 

analogue, showing that only 10 at% of Eu3+ can be substituted into a Sr2Nb3O10
- host. 

 

Table 3.2.3: EDX measurements of Rb0.50Sr1.50Eu0.50Nb3O10, and its cation-proton exchanged as well 

as exfoliated forms given in at%; at% values are average values of three EDX measurements. 

Theoretical formula Rb [%] Eu [%] Sr [%] Nb [%] O [%] Experimental formula 

Rb0.5Sr1.5Eu0.5Nb3O10 1.75 4.43 3.78 14.5 74.9 Rb0.36Sr0.91Eu0.78Nb3.00O15.4 

H0.5Sr1.5Eu0.5Nb3O10 0.00 9.13 0.53 16.3 71.3 Rb0.00Sr1.67Eu0.09Nb3.00O15.4 

Sr1.5Eu0.5Nb3O10
0.50- 0.00 9.73 0.62 17.4 72.1 Rb0.00Sr1.67Eu0.10Nb3.00O12.4 

 

AFM images and individual height profiles of the obtained nanosheets are depicted in 

Figure 3.2.13 for TBA0.5Sr1.5Eu0.5Nb3O10 and TBA0.5Sr1.5Er0.5Nb3O10. The sheets are fairly 
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large in size (around 2 μm) and larger in height due to the larger Sr2+ ion as well as a denser 

packed TBA+ ligand shell. 

 

 

Figure 3.2.13: AFM images of individual TBA0.5Sr1.5Eu0.5Nb3O10 (top) and TBA0.5Sr1.5Er0.5Nb3O10 

(bottom) nanosheets and the corresponding height profiles. 

 

Luminescence photographs of Rb0.5Sr1.5Eu0.5Nb3O10, Rb0.5Sr1.5Er0.5Nb3O10 and 

TBA0.5Sr1.5Er0.5Nb3O10 are depicted in Figure 3.2.14, showing the red and green emissions of 

Eu3+ and Er3+ samples. The amount of TBA0.5Sr1.5Eu0.5Nb3O10 nanosheets was too little for a 

photograph. In comparison, the Sr samples are less intense than their Ca counterparts. This 

might be due to the lower photoactivator concentration in the strontium niobate perovskite 

host and for bulk materials also be caused by the absence of photoluminescent impurity 

phases. 

 

 

Figure 3.2.14: Luminescence photographs of various A1-xSr2-xLnxNb3O10 bulk materials under UV 

irradiation at λ = 366 nm. 
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3.2.3 Conclusion 

In the present study, we systematically investigated the layered perovskites 

K1-xCa2-xLnxNb3O10 (x = 0.05, 0.25, 0.50, 0.75; Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, 

Yb), where the La series is reported in the literature to possess a variable interlayer cation 

density due to the homogeneous and aliovalent replacement of K+ and Ca2+ ions by Ln3+ 

ions. In reproducing these samples, XRD measurements suggest that instead CaNb2O6 and 

another rare earth containing compound for increasing x is formed along with KCa2Nb3O10 at 

various synthesis temperatures. SEM- and TEM-EDX measurements revealed that only up to 

20 at% rare earth ions can be incorporated into the KCa2Nb3O10 systems, yielding a 

maximum of K0.8Ca1.8Ln0.2Nb3O10 before a miscibility gap arises. Exfoliation of these rare 

earth containing parent compounds gives rise to nanosheets that show red emissions in case 

of Eu3+, Sm3+, Pr3+/4+, green emissions for Er3+, and yellow emissions for Dy3+ under 

excitation at λ = 366nm. A similar scenario was obtained for Rb1-xSr2-xLnxNb3O10 (x = 0.50, 

Ln = La, Eu, Er), yielding nanosheets with a maximum uptake of 10 at% rare earth ions and 

correspondingly lower emission intensity.  
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3.2.5 Supporting Information 

 

EXPERIMENTAL PROCEDURES: 

Chemicals. All chemicals and solvents were purchased from commercial suppliers and used 

without further purification: Potassium carbonate (K2CO3, Merck KGaA, >99%), rubidium 

carbonate (Rb2CO3, Alfa Aesar, 99.8%), calcium carbonate (CaCO3, Grüssing, 99%), 

strontium carbonate (SrCO3, Merck KGaA, 99%), niobium(V) oxide (Nb2O5, Alfa Aesar, 

99.5%), lanthanide(III) oxides (Ln2O3, Ln = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Alfa 

Aesar, 99.9%), praseodymium(III;IV) oxide (Pr6O11, Alfa Aesar, 99.9%) and tetra-n-

butylammonium hydroxide (TBAOH, [CH3(CH2)3]4NOH•30 H2O, Sigma-Aldrich, 98%). 

Deionized water was used throughout all synthesis procedures. 

Bulk synthesis. Layered bulk materials K1-xCa2-xLnxNb3O10 (x = 0.05, 0.25, 0.50, 0.75; 

Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb) and (K,Rb)1-xSr2-xLnxNb3O10 (x = 0.50; 

Ln = La, Eu, Er) were synthesized according to protocols modified from those reported in the 

literature.1-4 In general, A2CO3 (A = K, Rb), BCO3 (B = Ca, Sr) and Nb2O5 were mixed with 

the respective lanthanide oxide in a stoichiometric ratio depending on the lanthanide content 

x. 20 at% excess of the alkaline carbonate was added to compensate for evaporation losses 

during heating. The mixture was thoroughly grinded and fired up to temperatures between 

1100-1300°C in an alumina crucible. The final product was washed with deionized water and 

dried at room temperature or 100°C. 

Cation-proton exchange. The cation-proton exchange was carried out by stirring the as-

prepared bulk materials in 5M aqueous HNO3 solution for 5−6 days at room temperature. To 

ensure complete exchange of all alkaline-ions with protons, the acid was replaced several 

times. After the reaction was complete, the products were filtered, washed with a small 

amount of distilled water, and dried at room temperature. 

Exfoliation. After cation-proton exchange, exfoliation was performed with two different 

exfoliation reagents. 250 mg of the cation-proton exchanged solid products were admixed 

with a 1:1 molecular ratio with TBAOH in 40 mL aqueous solution and shaken for 3 weeks 

with an orbital shaker at RT. To remove non-exfoliated material, all suspensions were 

centrifuged at 3000 rpm for 30 min. The supernatants were collected and used for atomic 

force microscopy (AFM) and transmission electron microscopy (TEM) measurements. To 

isolate nanosheets for further investigations, the supernatants were centrifuged at 20000 rpm 

for 30 min and the isolated nanosheets dried at RT. 
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CHARCTERIZATION: 

X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) coupled with energy-

dispersive X-ray (EDX) analysis, AFM and TEM coupled with EDX spectroscopy and electron 

energy loss spectroscopy (EELS) were used to monitor starting and intermediate compounds 

as well as the obtained nanosheets.  

XRD. XRD data of powders were collected using a Huber G670 (Huber, Rimsting; Cu Kα1-

radiation, λ = 154.051 pm, Ge(111)-monochromator, external standard SiO2) Guinier Imaging 

Plate diffractometer.  

SEM-EDX. SEM was conducted on a JSM-6500F electron microscope (JEOL Ltd., Tokyo). 

The microscope was equipped with a 7418 EDX detector (Oxford Instruments, Abingdon).  

AFM. AFM measurements were performed on a MFP-3D stand alone AFM (Asylum 

Research, Santa Barbara). Tapping-mode was applied using OMCL-AC160TS-R3 (Olympus, 

Tokio) cantilevers with a resonant frequency of 300 kHz.  

TEM-EDX. For TEM characterization a Philips CM30 ST microscope (300 kV, LaB6 cathode, 

Cs = 1.15 mm, Royal Philips Electronics, Amsterdam), a FEI Titan 80-300 (300 kV, field 

emission gun, FEI, Hillsboro) equipped with an EDAX Sapphire Si(Li) detector (EDAX, 

Eindhoven) and a FEI Titan 80-300 Cubed (S)TEM (300 kV, high intensity X-FEG, FEI, 

Hillsboro) equipped with two aberration correctors for the probe and the image forming 

lenses and a Gatan GIF (model 866) spectrometer were used. 
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Figure S3.2.1: XRD patterns of K0.95Ca1.95Ln0.05Nb3O10 (Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, 

Yb) in comparison with the reference end-members KCa2Nb3O10 and CaLaNb3O10. The inset shows a 

close-up of the region around the reflections belonging to the (001) plane.1, 5 
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Figure S3.2.2: XRD patterns of K0.75Ca1.75Ln0.25Nb3O10 (Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, 

Yb) in comparison with the reference end-members KCa2Nb3O10 and CaLaNb3O10.1, 5 
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Figure S3.2.3: XRD patterns of K0.50Ca1.50Ln0.50Nb3O10 (Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, 

Yb) in comparison with the reference end-members KCa2Nb3O10 and CaLaNb3O10.1, 5 
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Figure S3.2.4: XRD patterns of K0.25Ca1.25Ln0.75Nb3O10 (Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, 

Yb) in comparison with the reference end-members KCa2Nb3O10 and CaLaNb3O10.1, 5 
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Figure S3.2.5: SEM images of A1-xCa2-xLaxNb3O10 (A = K, H, TBA, x = 0.05, 0.25, 0.50, 0.75) showing 

plate-like morphologies for all samples. 
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Table S3.2.1: EDX measurements of K0.95Ca1.95Ln0.05Nb3O10, H0.95Ca1.95Ln0.05Nb3O10 and 

Ca1.95Ln0.05Nb3O10
0.95- nanosheets (Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb) given in at%. at% 

values are average values of three EDX measurements. 

Theoretical formula K [%] Ca [%] Ln [%] Nb [%] O [%] Experimental formula 

K0.95Ca1.95La0.05Nb3O10 4.91 9.33 0.24 15.12 70.4 K0.97Ca1.85La0.05Nb3.00O14.0 

H0.95Ca1.95La0.05Nb3O10 - 9.77 0.25 15.83 74.2 Ca1.85La0.05Nb3.00O14.1 

Ca1.95La0.05Nb3O10
0.95- - 10.17 0.23 16.15 73.5 Ca1.89La0.04Nb3.00O13.7 

K0.95Ca1.95Pr0.05Nb3O10 3.49 8.09 0.36 12.5 75.6 K0.84Ca1.94Pr0.09Nb3.00O18.5 

K0.95Ca1.95Nd0.05Nb3O10 5.02 8.16 0.21 13.4 73.8 K0.95Ca1.82Nd0.05Nb3.00O16.7 

H0.95Ca1.95Nd0.05Nb3O10 - 8.20 0.20 13.5 78.1 Ca1.82Nd0.04Nb3.00O17.5 

Ca1.95Nd0.05Nb3O10
0.95- - 10.2 0.27 16.1 73.4 Ca1.89Nd0.05Nb3.00O14.0 

K0.95Ca1.95Sm0.05Nb3O10 4.82 9.10 0.22 14.8 71.1 K0.98Ca1.83Sm0.04Nb3.00O14.6 

H0.95Ca1.95Sm0.05Nb3O10 - 12.0 0.26 19.1 68.6 Ca1.87Sm0.04Nb3.00O10.9 

Ca1.95Sm0.05Nb3O10
0.95- - 12.1 0.33 18.5 69.1 Ca1.96Sm0.05Nb3.00O11.2 

K0.95Ca1.95Gd0.05Nb3O10 0.15 8.17 0.19 13.3 74.1 K1.01Ca1.84Gd0.04Nb3.00O16.8 

H0.95Ca1.95Gd0.05Nb3O10 - 9.69 0.27 15.73 74.31 Ca1.85Gd0.05Nb3.00O14.2 

Ca1.95Gd0.05Nb3O10
0.95- - 10.8 0.27 17.2 71.6 Ca1.88Gd0.05Nb3.00O12.7 

K0.95Ca1.95Tb0.05Nb3O10 - 8.88 0.28 11.6 76.0 Ca2.31Tb0.42Nb3.00O19.7 

H0.95Ca1.95Tb0.05Nb3O10 - 7.60 0.34 13.0 78.4 Ca1.75Tb0.08Nb3.00O18.1 

Ca1.95Tb0.05Nb3O10
0.95- - 13.2 0.58 20.5 65.7 Ca1.93Tb0.08Nb3.00O9.62 

K0.95Ca1.95Dy0.05Nb3O10 3.86 9.19 0.21 15.0 70.7 K0.98Ca1.84Dy0.04Nb3.00O14.5 

H0.95Ca1.9Dy0.05Nb3O10 - 9.04 0.25 14.8 75.9 Ca1.83Dy0.05Nb3.00O15.4 

Ca1.95Dy0.05Nb3O10
0.95- - 11.6 0.29 18.1 69.8 Ca1.92Dy0.05Nb3.00O11.7 

K0.95Ca1.95Ho0.05Nb3O10 3.86 7.35 0.18 12.1 76.5 K0.95Ca1.81Ho0.05Nb3.00O20.0 

H0.95Ca1.95Ho0.05Nb3O10 - 11.6 0.28 18.3 69.8 Ca1.91Ho0.05Nb3.00O11.5 

Ca1.95Ho0.05Nb3O10
0.95- - 10.8 0.23 17.2 71.8 Ca1.88Ho0.04Nb3.00O12.6 

K0.95Ca1.95Er0.05Nb3O10 5.02 9.22 0.10 15.0 70.7 K1.19Ca1.84Er0.02Nb3.00O16.6 

H0.95Ca1.95Er0.05Nb3O10 - 10.2 0.45 16.3 73.2 Ca1.88Er0.03Nb3.00O13.5 

Ca1.95Er0.05Nb3O10
0.95- - 12.5 0.28 18.9 68.4 Ca1.97Er0.04Nb3.00O11.5 

K0.95Ca1.95Tm0.05Nb3O10 4.82 0.91 0.24 14.6 71.2 K0.97Ca1.85Tm0.05Nb3.00O14.6 

H0.95Ca1.95Tm0.05Nb3O10 - 8.48 0.28 14.1 77.1 Ca1.80Tm0.06Nb3.00O17.0 

Ca1.95Tm0.05Nb3O10
0.95- - 10.1 0.26 16.2 73.4 Ca1.88Tm0.05Nb3.00O13.6 

K0.95Ca1.95Yb0.05Nb3O10 0.15 9.93 0.20 12.8 64.4 K0.04Ca2.36Yb0.05Nb3.00O15.2 

H0.95Ca1.95Yb0.05Nb3O10 - 10.2 0.24 16.3 73.3 Ca1.87Yb0.04Nb3.00O13.6 

Ca1.95Yb0.05Nb3O10
0.95- - 11.9 0.28 18.2 69.7 Ca1.96Yb0.05Nb3.00O11.6 
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Table S3.2.2: EDX measurements of K0.75Ca1.75Ln0.25Nb3O10 and H0.75Ca1.75Ln0.25Nb3O10 nanosheets 

(Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb) given in at%. at% values are average values of 

three EDX measurements. 

Theoretical formula K [%] Ca [%] Ln [%] Nb [%] O [%] Experimental formula 

K0.75Ca1.75La0.25Nb3O10 5.44 8.94 1.15 16.4 68.0 K1.00Ca1.64La0.21Nb3.00O12.5 

H0.75Ca1.75La0.25Nb3O10 - 10.1 1.30 15.8 72.83 Ca1.90La0.25Nb3.00O14.1 

K0.75Ca1.75Pr0.25Nb3O10 3.31 5.37 0.93 12.9 77.5 K0.78Ca1.24Pr0.22Nb3.00O19.5 

H0.75Ca1.75Pr0.25Nb3O10 1.77 5.33 1.33 14.5 77.1 K0.37Ca1.11Pr0.28Nb3.00O16.1 

K0.75Ca1.75Nd0.25Nb3O10 4.71 8.61 0.91 14.9 70.9 K0.94Ca1.72Nd0.18Nb3.00O17.7 

H0.75Ca1.75Nd0.25Nb3O10 - 8.55 0.86 14.9 75.7 Ca1.70Nd0.17Nb3.00O15.8 

K0.75Ca1.75Sm0.25Nb3O10 3.28 8.25 0.57 15.3 72.4 K0.65Ca1.29Sm0.11Nb3.00O14.2 

H0.75Ca1.75Sm0.25Nb3O10 - 7.95 0.56 14.5 76.9 Ca1.64Sm0.12Nb3.00O15.8 

K0.75Ca1.75Gd0.25Nb3O10 5.08 9.24 0.68 15.6 69.4 K0.98Ca1.52Gd0.13Nb3.00O13.7 

H0.75Ca1.75Gd0.25Nb3O10 - 8.20 0.73 14.7 76.4 Ca1.68Gd0.15Nb3.00O16.3 

K0.75Ca1.75Dy0.25Nb3O10 3.54 7.42 0.58 31.1 75.3 K0.81Ca1.69Dy0.13Nb3.00O17.4 

H0.75Ca1.75Dy0.25Nb3O10 - 8.98 0.74 15.0 75.2 Ca1.80Dy0.15Nb3.00O15.4 

K0.75Ca1.75Ho0.25Nb3O10 3.39 5.41 0.64 11.7 78.9 K0.87Ca1.37Ho0.17Nb3.00O20.4 

H0.75Ca1.75Ho0.25Nb3O10 - 8.98 0.35 16.2 74.5 Ca1.69Ho0.07Nb3.00O15.1 

K0.75Ca1.75Er0.25Nb3O10 1.47 7.58 0.26 15.6 75.1 K0.35Ca1.47Er0.06Nb3.00O14.9 

H0.75Ca1.75Er0.25Nb3O10 - 10.1 0.32 16.5 72.9 Ca1.84Er0.05Nb3.00O13.4 

K0.75Ca1.75Tm0.25Nb3O10 2.47 8.56 0.62 12.52 75.8 K0.60Ca1.72Tm0.15Nb3.00O18.2 

H0.75Ca1.75Tm0.25Nb3O10 - 7.72 1.34 13.4 77.5 Ca1.63Tm0.63Nb3.00O14.3 

K0.75Ca1.75Yb0.25Nb3O10 5.94 3.36 0.51 14.4 75.8 K1.27Ca0.69Yb0.10Nb3.00O16.2 

H0.75Ca1.75Yb0.25Nb3O10 3.59 4.65 1.32 16.1 74.3 K0.64Ca0.90Yb0.24Nb3.00O14.0 
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Table S3.2.3: EDX measurements of K0.50Ca1.50Ln0.50Nb3O10 and H0.50Ca1.50Ln0.50Nb3O10 nanosheets 

(Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb) given in at%. at% values are average values of 

three EDX measurements. 

Theoretical formula K [%] Ca [%] Ln [%] Nb [%] O [%] Experimental formula 

K0.5Ca1.5La0.5Nb3O10 2.87 7.65 1.49 13.0 75.1 K0.69Ca1.76La0.34Nb3.00O17.5 

H0.5Ca1.5TLa0.5Nb3O10 - 8.50 1.83 15.0 74.7 Ca1.71La0.40Nb3.00O15.0 

K0.5Ca1.5Pr0.5Nb3O10 4.40 6.36 1.26 14.7 73.3 K0.90Ca1.31Pr0.26Nb3.00O14.5 

H0.5Ca1.5Pr0.5Nb3O10 - 7.13 1.21 5.48 76.9 Ca1.45Pr0.24Nb3.00O15.8 

K0.5Ca1.5Nd0.5Nb3O10 3.03 7.66 0.98 15.0 73.4 K0.62Ca1.54Nd0.20Nb3.00O14.8 

H0.5Ca1.5Nd0.5Nb3O10 0.07 6.80 0.72 14.4 78.0 K0.01Ca1.42Nd0.20Nb3.00O16.3 

K0.5Ca1.5Sm0.5Nb3O10 1.34 6.52 0.62 13.6 77.9 K0.28Ca1.43Sm0.14Nb3.00O17.3 

H0.5Ca1.5Sm0.5Nb3O10 - 5.77 0.58 12.3 81.4 Ca1.42Sm0.15Nb3.00O20.1 

K0.5Ca1.5Gd0.5Nb3O10 4.03 7.94 0.79 13.8 73.4 K0.86Ca1.70Gd0.18Nb3.00O16.6 

H0.5Ca1.5Gd0.5Nb3O10 - 7.13 1.12 15.8 77.0 Ca1.46Gd0.24Nb3.00O16.2 

K0.5Ca1.5Dy0.5Nb3O10 2.70 7.99 0.67 15.3 73.3 K0.61Ca1.07Dy0.14Nb3.00O15.0 

H0.5Ca1.5Dy0.5Nb3O10 - 9.21 0.79 16.5 73.5 Ca1.65Dy0.14Nb3.00O14.0 

K0.5Ca1.5Ho0.5Nb3O10 4.14 5.32 0.68 13.3 76.7 K0.93Ca1.65Ho0.14Nb3.00O17.7 

H0.5Ca1.5Ho0.5Nb3O10 0.25 9.03 0.90 15.2 74.6 K0.05Ca1.78Ho0.17Nb3.00O14.7 

K0.5Ca1.5Er0.5Nb3O10 2.86 7.05 4.89 15.1 70.07 K0.52Ca1.36Er1.07Nb3.00O14.7 

H0.5Ca1.5Er0.5Nb3O10 - 8.79 0.34 14.3 76.7 Ca1.82Er0.07Nb3.00O16.7 

K0.5Ca1.5Tm0.5Nb3O10 5.41 5.01 0.74 15.7 73.2 K1.03Ca1.11Tm0.15Nb3.00O14.1 

H0.5Ca1.5Tm0.5Nb3O10 - 10.5 0.96 15.7 72.9 Ca2.02Tm0.19Nb3.00O14.2 

K0.5Ca1.5Yb0.5Nb3O10 1.21 4.13 3.72 16.1 75.5 K0.26Ca0.47Yb0.69Nb3.00O14.7 

H0.5Ca1.5Yb0.5Nb3O10 3.43 2.50 0.51 17.4 76.2 K0.55Ca0.49Yb0.09Nb3.00O13.4 
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Table S3.2.4: EDX measurements of K0.25Ca1.25Ln0.75Nb3O10 and H0.25Ca1.25Ln0.75Nb3O10 nanosheets 

(Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb) given in at%. at% values are average values of 

three EDX measurements. 

Theoretical formula K [%] Ca [%] Ln [%] Nb [%] O [%] Experimental formula 

K0.25Ca1.25La0.75Nb3O10 1.78 6.14 1.52 14.2 76.2 K0.38Ca1.30La0.33Nb3.00O16.4 

H0.25Ca1.25La0.75Nb3O10 - 5.52 0.92 13.0 80.6 Ca1.27La0.22Nb3.00O19.0 

K0.25Ca1.25Pr0.75Nb3O10 - 5.28 5.87 10.3 78.4 Ca1.52Pr1.72Nb3.00O16.3 

K0.25Ca1.25Nd0.75Nb3O10 - 7.62 0.94 16.8 74.6 Ca1.35Nd0.17Nb3.00O13.4 

H0.25Ca1.25Nd0.75Nb3O10 - 6.45 0.73 14.4 78.5 Ca1.35Nd0.16Nb3.00O16.8 

K0.25Ca1.25Sm0.75Nb3O10 3.08 6.77 1.57 13.4 75.0 K0.70Ca1.52Sm0.35Nb3.00O16.9 

H0.25Ca1.25Sm0.75Nb3O10 - 6.74 2.08 14.1 77.0 Ca1.39Sm0.47Nb3.00O16.8 

K0.25Ca1.25Gd0.75Nb3O10 0.08 4.07 2.81 11.9 81.2 K0.02Ca1.37Gd0.07Nb3.00O19.4 

H0.25Ca1.25Gd0.75Nb3O10 - 6.74 2.08 14.1 77.0 Ca1.43Gd0.24Nb3.00O18.7 

K0.25Ca1.25Dy0.75Nb3O10 1.42 8.40 0.87 17.87 71.1 K0.27Ca1.16Dy0.21Nb3.00O12.2 

H0.25Ca1.25Dy0.75Nb3O10 - 5.17 1.85 12.0 81.0 Ca1.29Dy0.48Nb3.00O20.5 

K0.25Ca1.25Ho0.75Nb3O10 0.09 6.18 0.89 14.3 78.9 K0.02Ca1.30Ho0.19Nb3.00O16.8 

H0.25Ca1.25Ho0.75Nb3O10 - 5.08 8.04 17.9 68.9 Ca0.72Ho1.57Nb3.00O12.2 

K0.25Ca1.25Er0.75Nb3O10 0.40 3.13 7.16 13.1 75.7 K0.23Ca0.43Er1.56Nb3.00O18.3 

H0.25Ca1.25Er0.75Nb3O10 - 6.74 1.85 14.7 76.7 Ca1.37Er0.40Nb3.00O16.1 

K0.25Ca1.25Tm0.75Nb3O10 - 11.8 4.46 10.2 73.5 Ca3.73Tm1.24Nb3.00O21.7 

H0.25Ca1.25Tm0.75Nb3O10 3.06 1.53 0.48 18.5 78.2 K0.22Ca0.36Tm0.09Nb3.00O13.7 

K0.25Ca1.25Yb0.75Nb3O10 5.07 3.57 1.17 16.3 73.9 K0.93Ca0.66Yb0.22Nb3.00O13.6 

H0.25Ca1.25Yb0.75Nb3O10 - 6.69 0.78 13.6 78.9 Ca1.48Yb0.17Nb3.00O17.5 
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Figure S3.2.6: a) STEM image of a TBA0.25Ca1.25Eu0.75Nb3O10 nanosheet and EELS line scan (orange 

bar), and b) corresponding extracted Cu L2,3 edge based on the EELS line scan showing that bright 

particles belong to a copper impurity. 

 

 

Figure S3.2.7: SEM images of A0.5Sr1.5Ln0.5Nb3O10 (A = K, H, TBA, Ln = Eu, Er)) showing plate-like 

morphologies for all samples. 
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ABSTRACT: Layered transition metal oxide (TMO) nanosheets have emerged as one of the 

most promising classes of two-dimensional (2D) materials in the post-graphene area due to 

their diversity in composition, structure, and functionality. Improving and extending exfoliation 

pathways is currently one key requirement for the posterior fabrication of functional devices 

utilizing nanosheets as principal components. Here, we present a new exfoliation route on 

the examples of Dion-Jacobson (DJ) type layered perovskites KLaNb2O7 and KCa2Nb3O10 

that allows for a simple introduction of organic ligands with functional groups into the 

intergallery space and, subsequently, attachment to the nanosheet surface during the 

exfoliation process. Interlayer cation-silver exchange of the bulk materials and subsequent 

treatment with bulky organic iodides in an aqueous medium under weak agitation forces 

leads to the formation of unilamellar nanosheets. The silver based route yields nanosheets 

that are similar in quality compared to those achieved through the commonly applied route 

via a cation-proton exchange and subsequent treatment with organic bases, but beyond that 

allows for an enormous extension of the applicable exfoliation reagents. Thus, it was 

possible to attach choline, thiocholine and 1-allyl-3-methlyimidazolium ligands with functional 

hydroxyl groups, thiol groups or a double bond, respectively, to the nanosheet. Preliminary 

investigations on various tantalate nanosheets show that the silver based route can be 

extended to other layered systems and can act as complementary pathway to the proton 

based route. 

 

3.3.1 Introduction 

Topochemical reactions are considered to be the toolbox of solid-state chemists, while 

mostly relying on the kinetic control of product phases under low-temperature conditions 

rather than on the thermodynamically controlled product formation under high-temperature 

conditions. Although still limited compared to the large library of organic reactions, 

topochemical reactions have made some astonishing progress within the last decades. 

Focusing on layered TMOs and especially layered perovskites, (de)intercalation, layer 

extraction or construction, pillaring, substitution, ion exchange and grafting reactions have 

become a tool of choice to manipulate crystalline lattices and hence, direct properties into a 
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certain direction.1-3 The ultimate goal is the establishment of a reaction library that allows for 

the rational design of new targeted compounds with specific properties and their utilization in 

fields like catalysis, optics, superconductivity and many others. While the listed topochemical 

modifications mostly deal with the retention of crystalline integrity, exfoliation of layered 

TMOs offers another promising approach to amplify the existing toolbox. Exfoliation denotes 

the separation of layered materials into individual 2D nanosheets with heights around 1 nm 

and a lateral size up to a few micrometers. The nanosheets themselves show intriguing 

properties due to their enhanced surface and quantum-confinement effects, and in addition 

can serve as building blocks for the fabrication of tailor-made devices.4-6 

In a typical two-step route, interlayer ions of layered TMOs are first exchanged against 

protons and the obtained solid acid is further reacted with bulky organic bases, usually 

quarternary ammonium hydroxides like tetra-n-butylammonium hydroxide (TBA+OH-). 

Exfoliation is then facilitated for the appropriate reagent ratio and mechanical forces like 

shaking or stirring. Single layers of Ti-, Mn-, Nb-, Ta-, Mo-, Ru-, and W oxides as well as 

sheets of several perovskites have been separated from bulk samples through this 

procedure.4-7 In this ion-exchange based exfoliation route, a chemical intercalant is always 

required that assists in the separation of layers, compensates the charge and hampers the 

reassembly of the bulk lamellar material. Thus, TMO nanosheets can be seen as 

combination of an inorganic nanosheet with an organic ligand. 

Up to now, the main focus in the literature is based on the exfoliation of new materials and 

the exploration of their properties, which is mainly related to the inorganic part of the 

nanosheets. On the contrary, less is known on the chemical manipulation based on the 

organic part attached to the TMO nanosheets. Recently, Shori et al. showed that 

phenylphosphonate (PPA) can be directly grafted onto the hydroxyl groups of exfoliated 

calcium niobate nanosheets.8 Kim et al. have shown that (3-aminopropyl)trimethoxysilane 

(APS) can be coupled onto the hydroxyl groups of TBACa2Nb3O10 nanosheets and that the 

functional amino-group can further be utilized to bind oleic acid-ligated magnetic Fe3O4 

clusters.9 This approach was further extended to bind citrate-stabilized Pt and IrO2 particles 

to the APS-functionalized nanosheets.10 Another approach was performed by 

Mochizuki et al. where octylamine was intercalated into a layered tungstate H2W2O7 as well 

as a layered titanate HxTi2-x/4□x/4O4. The titanate was further reacted with allyltrimethoxysilane 

to immobilize alkene groups, and the tungstate was hybridized with 

3-mercaptopropyltrimethoxysilane to insert thiol groups.11 After exfoliation of the materials via 

ultrasonication, a thiol-ene click reaction was performed between the two “functional” 

nanosheets. This approach was used for tuning the interlayer distances by varying the chain-

length of organic ligands as well as subsequent intercalation of cationic dyes like 

rhodamine B into the hybrid materials.12-13 These examples indicate the feasibility of 
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combining organic with inorganic synthesis protocols, though a general approach for 

introducing of functional ligands on the nanosheet surface without post-modification of the 

nanosheet is still missing. 

Here, we present a new exfoliation pathway based on the cation-silver exchange of layered 

bulk materials and the subsequent addition of bulky organic iodides that allows for 

introducing ligands with various functional groups.14 Through electron microscopy and atomic 

force microscopy (AFM) we show on the example of KLaNb2O7, KCa2Nb3O10 and various 

other layered materials that nanosheets similar in quality to those of the commonly 

performed cation-proton exchanged route can be obtained. For the first time we used 

choline, thiocholine and 1-allyl-3-methlyimidazolium as organic ligands to introduce hydroxyl 

groups, thiol groups or double bonds, respectively, onto the inorganic nanosheets. We 

believe that this new exfoliation pathway further narrows the gap between organic and 

inorganic synthesis protocols and can be interpreted in terms of the Pearson acid base 

concept, which may help to gain fundamental knowledge of the required driving forces to 

establish exfoliation for a specific system in the near future. 

 

3.3.2 Results and Discussion 

Powder X-ray diffraction (XRD) patterns of KLaNb2O7, KCa2Nb3O10 and their cation-silver 

exchanged forms are shown in Figure 3.3.1, those for their cation-proton exchanged forms in 

Figure S3.3.1. KLaNb2O7 and KCa2Nb3O10 are DJ type layered perovskites that crystallize in 

space group C222 (No. 21) or P21/m (No. 11), respectively.15-16 They consist of a 2D double 

or triple perovskite layer of corner-sharing NbO6 octahedra with La or Ca located in the 

intralayer A sites and K in the interlayer region, which separates the perovskite blocks along 

the stacking direction c. Both precursors were synthesized similar to routes known from 

literature and match well with the reported structures.15-16 The same accounts for the cation-

proton exchanged materials HLaNb2O7 (P4/m, No. 83), HCa2Nb3O10 (P4/mbm, No. 127) and 

cation-silver exchanged AgLaNb2O7 (I41/acd, No. 142).17-19 Additionally, EDX data show the 

expected atomic ratios of incorporated elements listed in Table S3.3.1. The layered motif is 

kept for all of the exchanged materials, only differences in size of the introduced ions can 

either lead to a distortion of the NbO6 octahedra or a shift of the perovskite layers with 

respect to each other, thus altering the overall symmetry. AgCa2Nb3O10 is the only compound 

whose structure has not yet been determined, but has been part of a recent study of 

Boltersdorf and Maggard.20 Similar to their findings we observe with energy dispersive X-ray 

(EDX) spectroscopy and inductively coupled plasma - atomic emission spectroscopy (ICP-

AES) that the interlayer cations can be completely replaced by Ag (Table S3.3.1 and 

Table S3.3.2), while the XRD pattern exhibits a lower degree in crystallinity compared to the 

bulk material (Figure 3.3.1 c). Boltersdorf and Maggard related the AgCa2Nb3O10 structure to 
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layered Ag1.1Ca0.9[Ca0.6Ag0.9Nb3O10], where Ag(I) and Ca(II) ions occupy both interlayer and 

intralayer positions.21 As we will show later through exfoliation experiments, EDX data of 

calcium niobate nanosheets do not give any evidence for the presence of Ag within the 

nanosheets and show the expected composition related to [Ca2Nb3O10]- perovskite blocks. 

Thus, we reason that the cation-silver exchange most likely leads to structural changes 

similar to the ones observed for the ion-exchange reactions described above. In the case of 

AgCa2Nb3O10 this change causes the near-extinction of the (00l) reflections and compared to 

the bulk material a general shift of the reflections towards higher angles, which is most likely 

caused by the smaller ionic radii of Ag+ compared to K+. Some additional reflections e.g. 

around 37 and 61° 2θ appear, that do not match any known phases out of the participating 

elements in the ICSD database and are hence also be attributed to AgCa2Nb3O10. 

 

 

Figure 3.3.1: XRD patterns of a) KLaNb2O7, b) AgLaNb2O7 and c) KCa2Nb3O10 and AgCa2Nb3O10 in 

comparison with the respective simulated powder patterns taken from the ICSD database.15-16, 19 Note 

that the broad reflections around 18°2θ and 23°2θ marked with an asterisk are due to the polyester 

mounting foil in the XRD setup. 

 

An overview and comparison of the exfoliation experiments conducted with KLaNb2O7 is 

displayed in Figure 3.3.2. For separation and exfoliation of the 2D perovskite layers into 

individual nanosheets the ion-exchange capability of the layered perovskites is a crucial 
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requirement.2, 7 In the most common approach depicted in Figure 3.3.2 a) a cation-proton 

exchange of the interlayer ions yields the “protonated” form HLaNb2O7 that is further treated 

with bulky organic bases like TBAOH to achieve exfoliation. One main driving force of this 

reaction interpreted on the basis of the Pearson’s concept of “hard and soft acids and bases” 

(HSAB) is the acid-base reaction of a relatively “hard” proton H+ with a “hard” hydroxide OH-, 

which is accompanied by the insertion of the bulky organic cation and simultaneous 

formation of water.7, 14 This leads to the separation of the perovskite layers to and extent that 

mechanical agitation like shaking or stirring results in exfoliation of the material. Based on 

Pearson’s concept we hypothesized that the Lewis acid-base reaction of “soft” Ag+ with “soft” 

I- contained in various ligands (Figure 3.3.2 b)) may likewise present an effective driving force 

for the exfoliation of layered materials.14 

 

 

Figure 3.3.2: Schematic overview of the exfoliation of KLaNb2O7 via a) HLaNb2O7 through addition of 

bulky organic hydroxides or b) AgLaNb2O7 through addition of bulky organic iodides into unilamellar 

nanosheets LLaNb2O7 (L = TBA, Ch, Th, Ami, TBS). 

 

TEM and AFM images of TBALaNb2O7 nanosheets derived from AgLaNb2O7 and TBAI are 

compared to TBALaNb2O7 nanosheets derived from HLaNb2O7 and TBAOH in Figure 3.3.3, 

and likewise for TBACa2Nb3O10 in Figure 3.3.4. The corresponding atomic ratios determined 

bei EDX spectroscopy are listed in Table S3.3.3 and match with the ratios of the perovskite 

layers found for the precursors. Hence, Ag intercalation into the perovskite layer during the 

cation-silver exchange can largely be excluded. 
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Figure 3.3.3: TEM overview images (top), corresponding SAED patterns of single nanosheets along 

the [001] direction (middle) and AFM overview images of TBALaNb2O7 nanosheets (bottom) derived 

from a) AgLaNb2O7 / TBAI and b) HLaNb2O7 / TBAOH. 

 

For the lanthanum niobate the two exfoliation pathways yielded nanosheets with different 

lateral sizes ranging from 50 nm-2.5 μm that are randomly distributed over the Si wafer or 

lacey carbon grid, respectively. Random AFM screening experiments of 3 different 

20 μm x 20 μm nanosheet containing areas after a 1 day, 3 days, 5 days and 8 days 

exfoliation period revealed a similar trend for both methods. After 1 day only a few 

nanosheets with an initial height of 2.1 nm were observed. Regions with plenty of 

nanosheets deposited on the Si wafer were obtained after 5 days exfoliation for the silver 

and 3 days for the proton pathway, pointing towards a somewhat faster separation in the 

common H-based approach. After 8 days the average height of nanosheets was 2.7 nm in all 

experiments. Thus, for both materials the height is significantly higher than the 

crystallographic thickness of the double perosvkite layer (~1.05 nm).22 This is caused by the 

adsorption of water and the ligand shell surrounding the nanosheet under ambient 

measurement conditions.23 In an earlier publication, we showed that subsequent dilution of 

the colloidal nanosheet suspension can lead to a replacement of TBA+ cations by H+ that 

causes a decrease of the height in the AFM measurements (see Chapter 4.1).24 Accordingly, 

in the present case the increase in height with longer exfoliation is consistent with a larger 

amount of TBA+ cations attached to the nanosheet surface. As TBA+ is too large in size to 
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compensate one negative charge per unit cell, this observation might point towards the 

attachment of a second TBA+ layer on the nanosheet surface.25 SAED patterns and the 

resulting d-values are the same within the margin of error (Table S3.3.4) for both unilamellar 

nanosheets and in accordance with the ones found for the bulk materials along stacking 

direction. 

 

 

Figure 3.3.4: TEM overview images, corresponding SAED patterns of single nanosheets along [001] 

direction and AFM overview images of TBACa2Nb3O10 nanosheets derived from a) AgCa2Nb3O10 / 

TBAI and b) HCa2Nb3O10 / TBAOH. 

 

Similar observations are made for TBACa2Nb3O10 nanosheets derived from AgCa2Nb3O10 

and TBAI on the one hand and from HCa2Nb3O10 and TBAOH on the other hand. 

Nanosheets with lateral dimensions between 50 nm and 2.5 μm are randomly distributed for 

both exfoliation pathways. For the proton-based approach even slightly larger nanosheets up 

to 5 μm are found. After 1 day of exfoliation nanosheets with an average height of 2.7 nm are 

obtained in the beginning that grow to a height around 3.3 nm to 3.5 nm for longer exfoliation 

periods. The relative difference in height compared to TBALaNb2O7 is caused by the larger 

crystallographic thickness of the triple perovskite layer (~1.44 nm) as compared to the double 

layer (~1.05 nm).22 Comparing the changes for both nanosheet types, the absolute difference 

in height after a 1 day and 8 days exfoliation period is around 0.6 nm in both cases, thus 

further pointing to the attachment of an addtitional TBA+ layer after longer exfoliation periods. 
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Again, the H+ approach (3 days) to quantitative exfoliation into TBACa2Nb3O10 nanosheets 

seems to be slightly faster than the Ag+ (5 days) approach. The extracted d-values from the 

SAED patterns are the same within the margin of error for both exfoliation pathways and 

listed in Table S3.3.4. 

Although both exfoliation procedures seem to yield similar results for lanthanum and calcium 

niobate nanosheets, we like to mention two findings we made for the structurally related 

tantalate nanosheets TBALaTa2O7 and TBACa2Ta3O10. Powder XRD patterns of bulk 

RbLaTa2O7 (P4/mmm, No. 123) and RbCa2Ta3O10 (P4/mmm, No. 123), their cation proton-

exchanged forms HLaTa2O7 and HCa2Ta3O10, as well as their cation-silver exchanged forms 

AgLaTa2O7 (I4/mmm, No. 139) and AgCa2Ta3O10 (P4/mmm, No. 123) are displayed in 

Figure S3.3.2 along with their EDX quantification data in Table S3.3.5. The bulk structures 

are similar to those reported in the literature.26 No refererence data was available for 

comparison of the cation-proton exchanged materials. Judging from EDX data the interlayer 

Rb+ cations were completely exchanged for protons in HCa2Ta3O10, but ~30% Rb+ remained 

in HLaTa2O7. For both cation-silver exchanged materials the Rb+ cations can be completely 

exchanged for Ag+, but additional reflections in the XRD may point towards the formation of a 

minor impurity phase.27 Exfoliation experiments on the tantalates were conducted in a similar 

fashion as those of the niobates. AFM images of TBALaTa2O7 and TBACa2Ta3O10 are 

compared in Figure S3.3.3. For both exfoliation pathways we did not succeed to produce 

large amounts of unilamellar nanosheets. Still, despite similarities with the niobate systems 

we found two main differences for the tantalate systems: First, while the proton approach 

yielded some nanosheets for TBALaTa2O7, we did not find any after silver based exfoliation. 

Second, for TBACa2Ta3O10 both approaches yielded nanosheets, but with the Ag route it was 

possible to isolate unilamellar nanosheets, whilst nanosheets seemed still to be linked 

together with the H route. Thus, depending on the layer composition one route might give 

advantages over the other route. 

In the next step, we tested various organic iodides on the silver-exchanged lanthanum and 

calcium niobates. Choline iodide (ChI) was the first iodide investigated. Ch+ and the 

N,N,N-trimethylethanolammonium cations are quarternary ammonium cations like TBA+, but 

instead feature a hydroxyl group at one end. The TEM overview images and corresponding 

SAED patterns along with AFM images of single ChLaNb2O7 and ChCa2Nb3O10 nanosheets 

are depicted in Figure 3.3.5. TEM reveals nanosheets with sharp edges and lateral 

dimensions of a few hundred nanometers up to ~1.5 μm per edge. Their composition and 

SAED patterns match with those of their TBA-analogues (Table S3.3.6 and Table S3.3.7). 

Additionally, we observed the prescence of crystalline silver particles attached to the surface 

of the nanosheets, as shown for ChLaNb2O7 in Figure S3.3.4.The main d-spacing of 2.34 Å 

found in the particles belongs to the (111) plane of elemental Ag. This can be explained as 
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follows. During exfoliaton the interlayer Ag+ reacts with the I- to form a yellow AgI precipitate 

that is afterwards removed without nanosheets via low-speed centrifugation. A XRD of the 

dried precipitate is shown in Figure S3.3.4, where the reflections and can be assigned to AgI. 

When exfoliation is carried out under light the highly photosensitive AgI decomposes to 

Ag + ½ I2 and the formed silver particles attach to the nanosheet surface. Thus the silver-

based exfoliation should be carried out under exclusion of light. On the other hand the silver 

route might be useful for photochemical labeling, where the exfoliation and photochemical 

labeling are performed in one step rather than in two steps.28 Photochemical labeling can be 

employed to probe charge separation and the distribution of redox-active sites on the surface 

of nanosheets. 

 

 

Figure 3.3.5: TEM overview images, corresponding SAED patterns of single nanosheets along [001] 

and AFM overview images of a) ChLaNb2O7 nanosheets and b) ChCa2Nb3O10 nanosheets after silver 

based exfoliation. 

 

Contrary to the TEM observations, only a few nanosheets are found in the AFM. They exhibit 

rather round edges and are mostly found on some rough surface. Thus, niobate nanosheets 

with Ch+ attached seem to have a weaker interaction with the Si wafer than those with TBA+, 

and choline tends to form some kind of organic film on the surface. This film makes 

assignment of an absolute height difficult. For the ChLaNb2O7 we found relative heights down 

to 2.4 nm and for ChCa2Nb3O10 down to 2.0 nm proving the formation of unilamellar 
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nanosheets. At this point we note that the silver exfoliation route was based on the Pearson 

acid - base concept and thus the formation of AgI instead of H2O.14 Our attemps to 

synthesize ChLaNb2O7 nanosheets via exfoliation of AgLaNb2O7 with choline chloride (ChCl) 

or choline hydroxide (ChOH) did not give any evidence for the presence of nanosheets in 

TEM and AFM analysis, which is in line with the expected higher propensity of Ag+ and I- to 

form insoluble precipitates.  

As an alternative exfoliation agent we chose thiocholine iodide (ThI) which exhibits the same 

structure as choline, but features a thiol group instead of the hydroxyl group. Figure 3.3.6 

shows an overview TEM image and the SAED pattern of a single ThLaNb2O7 nanosheet, the 

corresponding d-values are listed in Table S3.3.7 and match with those for lanthanum 

niobate nanosheets. The EDX plot for ThLaNb2O7 is given in Figure S3.3.5 showing the 

presence of all anticipated elements. The S Kα signal overlaps with the Nb Lα signal, but its 

maximum is clearly distinguishable proving the successful attachment of Th+ to the 

nanosheet. The nanosheets are similar in size to the previous ones. A height determination 

via AFM was not possible, as the thiocholine forms an organic film worse than choline on the 

Si wafer making the detection of single nanosheets impossible under the applied conditions. 

Further, it has to be mentioned that the colloidal ThLaNb2O7 suspension is only stable for a 

few days before a precipitate begins to settle down. This might be due to the formation of 

disulfide bridges, which could explain why we did not obtain ThCa2Nb3O10 nanosheets but 

instead a precipitate at the bottom of the reaction vessel. Addition of e.g. sodium thiosulfate 

or others along with different solvents have to be tested in future experiments to stabilize 

colloidal suspensions.29 

 

 

Figure 3.3.6: TEM overivew image and corresponding SAED pattern of ThLaNb2O7 nanosheets 

exfoliated from AgLaNb2O7 / ThI. 

 

As third exfoliation agent we chose 1-allyl-3-methylimidazolium iodide (AmiI) as it features a 

double bond attached to the methylimdazolium ring. In addition to the niobates a 

phosphatotantalate was tested as a non-perovskite model system. The bulk material 

KTaP2O8 crystallizes in the monoclinic space group C2/m (No. 12) and is isotypic to 

KFe(SO4)2. This compound exhibits a layered structure composed of TaP2O8
- layers 
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separated by K+ layers and is known for its proton exchange ability. TEM overview images 

and corresponding SAED patterns along with AFM images of single AMILaNb2O7, 

AMICa2Nb3O10 and AMITaP2O8 nanosheets are displayed in Figure 3.3.7. TEM images show 

nanosheets for all materials and the elemental composition along with the SAED patterns 

match with the theoretical values (Table S3.3.8 and Table 3.3.9). The niobate nanosheets 

furnished using AmiI are similar in size to those obtained in the other exfoliation experiments. 

The phosphatotantalate shows significantly larger nanosheets that are hard to distinguish 

due to the overlap of the nanosheets. While AMILaNb2O7 nanosheets have a height around 

2.1 nm, AMICa2Nb3O10 did not deposit on the Si wafer and AMITaP2O8 was only detectable 

on a rough surface, exhibiting a relative height of ~2.5 nm. Hence, the silver route can be 

extended to other ionic layered structures as well. 

The last exfoliation agent investigated was tri-n-butylsulfonium iodide (TBSI), which again 

demonstrates that like earlier mentioned for the tantalates an exfoliation route might work for 

one system, but fail for the other. Figure S3.3.6 shows a TEM image of successfully 

exfoliated TBSTaP2O8 nanosheets, whilst for the niobates no nanosheets were obtained with 

TBSI. 

 

 

Figure 3.3.7: TEM overview images, corresponding SAED patterns and AFM images of a) 

AMILaNb2O7, b) AMICa2Nb3O10 and c) AMITaP2O8 nanosheets. 
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3.3.3 Conclusion 

In conclusion, we established an alternative exfoliation pathway for layered TMOs that relies 

on silver-exchange of the interlayer ions followed by treatment with bulky organic iodides in 

aqueous solution. The nanosheets obtained with TBAI as exfoliation agent are similar in size 

and quality compared to those achieved by the common route via cation-proton exchange 

and treatment with TBAOH for the lanthanum and calcium niobates. The silver based 

exfoliation route allows for an easy attachment of ligands with functional groups onto the 

nanosheet surface, which we have shown for hydroxyl groups (Ch), thiol groups (Th) and 

double bonds (Ami), that in this form have not been reported by the proton based exfoliation 

route as yet. This functional groups can be imagined to be beneficial in various ways, e.g. for 

the specific binding of nanoparticles onto the nanosheet surface, which can be useful for 

catalysis purposes; to improve the surface coverage in LBL approaches; or to allow for a 

denser packing in heterostructures like the one we achieved with tetra-n-butylphosphonium 

(TBP+) ligands shown in Chapter 4.3. Another major advantage would be to bridge the gap 

between inorganic and organic synthesis e.g. by performing click-chemistry between the 

double bond and the thiol group on a substrate that would allow for an enhanced portfolio in 

the fabrication of hybrid nanostructures. 

Our preliminary comparison of various materials suggests that depending on their 

composition and structure, exfoliation can be possible via one route, whilst it is not possible 

via the other. A theory to explain the exfoliation trends needs to be established in the future 

based on e.g. size and charge of ligand and nanosheet, synthesis properties like pH, 

concentration and other factors. 
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3.3.5 Supporting Information 

 

EXPERIMENTAL PROCEDURES: 

Chemicals. K2CO3 (>99%) and KNO3 (99%) was purchased from Merck; CaCO3 (99%) from 

Grüssing; AgNO3 (99.8%+), tetra-n-butylammonium iodide (TBAI, C16H36IN, 99%) and tetra-

n-butylammonium hydroxide 30-hydrate (TBAOH, C16H37NO•30 H2O, 98%) 1-allyl-3-

methylimidazolium iodide (AmiI, C7H11IN2 98%) from Aldrich; Rb2CO3 (99.8%), La(OH)3 

(99.95%), Nb2O5 (99.5%), Ta2O5 (99%), choline iodide (ChI, C5H14INO, 98%), choline 

hydroxide (ChOH, C5H15NO2, 46% w/w aqueous solution) from Alfa Aesar; NH4H2PO4 (98%) 

from Acros Organics, choline chloride (ChCl, C5H14ClNO, 99%+) from Fluka, 

acetylthiocholine iodide (AcI, C7H16INOS, 99%+) from Roth, and tri-n-butylsulfonium iodide 

(TBSI, C12H27IS >96%) from TCI. All chemicals were used as purchased. 

Bulk materials. Layered Dion-Jacobson (DJ) phases KLaNb2O7, KCa2Nb3O10, RbLaTa2O7, 

and RbCa2Ta3O10 were synthesized similar to procedures known from literature.1-3 All bulk 

materials were synthesized by thoroughly mixing of stoichiometric amounts of respective 

carbonates, oxides and/or hydroxides. 20% excess of K2CO3 or 40% excess of Rb2CO3 were 

used to compensate for the loss due to volatilization of the alkali source. KLaNb2O7 and 

KCa2Nb3O10 were obtained by heating starting materials at 1200 °C for 60 h, RbLaTa2O7 at 

1100 °C for 12 h and RbCa2Ta3O10 at 1150 °C for 60 h. For synthesis of KTaP2O8 

stoichiometric amounts of KNO3, Ta2O5 and NH4H2PO4 were preheated at 250°C for 16 h, 

grinded and finally fired up to 950°C for 24 h.4-5 

Cation-proton exchange. HLaNb2O7, HCa2Nb3O10, HLaTa2O7 and HCa2Ta3O10 were 

obtained through a common acid exchange.6-7 In general, 2 g of the bulk material was stirred 

in 200-250 mL acid for 5-7 days with several replacements of the acid in between. All DJ bulk 

materials were treated with 5M HNO3 and KTaP2O8 with 8M HCl. Afterwards all materials 

were filtrated, washed with distilled water or ethanol and dried at 60 °C over night. 

Cation-silver exchange. AgLaNb2O7, AgCa2Nb3O10, AgLaTa2O7 and AgCa2Ta3O10 and 

AgTaP2O8 were prepared similar to routes reported in the literature.8-10 Therefore, bulk 

materials were treated with a 4x molar excess of molten AgNO3 at 260 °C for 12-24 h. After 

the reaction, cation-silver exchanged materials were washed with distilled water and dried at 

60 °C over night. 

Thiocholine iodide. Thiocholine iodide (ThI) was synthesized through deacetylation of 

acetylthiocholine according to Peng et al..11 Acetylthiocholine (1000 mg, 3.46 mmol) was 

suspended in 30 mL ethanol. After adding 8 mL hydrochloric acid the weakly yellow 

suspension was refluxed for seven hours. The yellow suspension was allowed to cool down 

and distilled to remove the ethanol. A small amount of ethanol was added to the oily liquid 

and distilled again. The colorless crystals of thiocholine iodide were washed with ethanol and 
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allowed to dry at 60°C. The product was verified via mass spectroscopy, elemental analysis 

and NMR analysis.  

NMR: 1H-δ (MetOH-d3): 2.8 (CH2-S); 3.16 ((Me)3N); 3.4 (CH2-N)  

MS (FAB-): calculated for I-: 126.9; measured: 127.1  

MS (FAB+): calculated for C5H14NS+: 120.2; measured: 120.2  

EA: C5H14NSI calculated: N: 5.67; C: 24.30; H: 5.71; S: 12.97; measured: N: 5.76; C: 24.42; 

H: 5.53; S:12.84 

Exfoliation. For exfoliation experiments 250 mg of silver- or proton-exchanged materials 

were mixed in a 1:1 molar ratio with the exfoliation agent in 40 mL of aqueous solution and 

shaken for several days in the dark. Silver-exchanged compounds were treated with TBAI, 

ChI, ChCl, ChOH, ThI, AmiI and TBSI, while proton-exchanged compounds were treated with 

TBAOH. For further characterization, the suspensions were centrifuged at 3000 rpm for 

30 min in order to remove non-exfoliated material. 

 

CHARACTERIZATION: 

XRD. Powder X-ray diffraction (XRD) patterns of bulk materials, cation- or silver-exchanged 

materials were recorded on a Huber G670 Guinier Imaging Plate diffractometer (HUBER X-

Ray Diffraction Equipment, Rimsting; Cu Kα1-radiation, λ = 154.051 pm, Ge(111)-

monochromator, external standard SiO2). 

EDX. Composition of bulk materials, cation- or silver-exchange materials was determined by 

scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy 

(EDX) on a JSM-6500F electron microscope (JEOL Ltd., Tokyo) equipped with a 7418 EDX 

detector (Oxford Instruments, Abingdon).  

ICP-AES. Inductively coupled plasma and atomic emission spectroscopy (ICP-AES) was 

performed on a VISTA RL CCD and ICP-AES analyzer system (Agilent Technologies, 

Waldbronn) to ascertain complete cation-silver exchange.  

AFM. Atomic force microscopy (AFM) topography measurements of nanosheets were 

performed after deposition of a colloidal suspension centrifuged at 3000 rpm for 15-30 min 

on a Si wafer with (100) orientation after ultrasonication in 5% HNO3 (Silchem, Freiberg). A 

MFP-3D Stand alone AFM (Asylum Research, Santa Barbara) operated in tapping-mode 

was used with OMCL-AC160TS-R3 (Olympus, Tokyo) cantilevers with a resonant frequency 

of 300 kHz.  

TEM. Transmission electron microscopy (TEM) samples were prepared by dropping a diluted 

colloidal nanosheet suspension onto a copper or gold grid coated with a lacey and holey 

carbon film, respectively. A Philips CM30 ST microscope (300 kV, LaB6 cathode, CS = 

1.15 mm, Royal Philips Electronics, Amsterdam) was used for imaging of nanosheets and 

determining their elemental composition via EDX measurements.  
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Figure S3.3.1: Powder XRD patterns of a) HLaNb2O7 and b) HCa2Nb3O10•0.5H2O in comparison with 

the respective simulated patterns taken from the ICSD data base.6-7 Note that the broad reflections 

around 18°2θ and 23°2θ are due to the polyester mounting foil in the XRD setup. 

 

Table S3.3.1: SEM-EDX quantification data of bulk, cation-proton and cation-silver exchanged 

lanthanum niobates or calcium niobates, respectively. The theoretical formula is compared to the 

experimental formula determined by the element specific signals given in at%. 

Theoretical formula      Experimental formula 

 K Kα Ag Lα La Lα Nb Lα O Kα  

KLaNb2O7 8.6 - 8.0 16.6 66.8 KLaNb2O8 

HLaNb2O7 0.3 - 7.2 14.9 77.6 (H)LaNb2O10.4 

AgLaNb2O7 - 6.2 6.0 13.4 74.4 Ag0.9La0.9Nb2O11.1 

 K Kα Ag Lα Ca Kα Nb Lα O Kα  

KCa2Nb3O10 5.6 - 10.9 16.9 66.6 KCa2Nb3O10.7 

HCa2Nb3O10 - - 11.9 18.2 69.9 (H)Ca2Nb3O11.5 

AgCa2Nb3O10 - 5.3 11.0 17.1 66.6 Ag0.9Ca1.9Nb3O11.7 

 

Table S3.3.2: ICP-AES data after cation-silver exchange of KLaNb2O7 and KCa2Nb3O10 showing 

complete exchange of K after cation-silver exchange. 

Sample Ag [µg/g] Ca [µg/g] La [µg/g] Nb [µg/g] K [µg/g] 

AgLaNb2O7 132.1 - 105.8 304.0 - 

AgCa2Nb3O10 146.5 115.5 - 390.5 - 
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Table S3.3.3: Comparison of TEM-EDX data of TBALaNb2O7 and TBACa2Nb3O10 nanosheets after 

exfoliation via the silver or proton route. All values are given in at%. 

Theoretical formula      Experimental formula 

 K Kα Ag Lα La Lα Nb Lα O Kα  

Ag: TBALaNb2O7 - - 7.8 21.0 71.2 (TBA)La0.7Nb2O6.8 

H: TBALaNb2O7 - - 6.5 16.6 76.9 (TBA)La0.8Nb2O9.3 

 K Kα Ag Lα Ca Kα Nb Lα O Kα  

Ag: TBACa2Nb3O10 - - 8.9 14.3 76.8 (TBA)Ca1.9Nb3O16.1 

H: TBACa2Nb3O10 - - 12.4 21.5 66.1 (TBA)Ca1.7Nb3O9.2 

 

Table S3.3.4: Most prominent d-spacings and corresponding (hkl) values observed by SAED of 

TBALaNb2O7 and TBACa2Nb3O10 nanosheets after exfoliation via the silver or proton route. The 

values are given in Å and the margin of error is ±0.3 Å. 

 (001) (101) (002) (201) (202) 

Ag: TBALaNb2O7 3.88 2.73 1.94 1.72 1.37 

H: TBALaNb2O7 3.92 2.75 1.96 1.74 1.38 

 (200) (220) (400) (420) (440) 

Ag: TBACa2Nb3O10 3.88 2.76 1.94 1.73 1.38 

H: TBACa2Nb3O10 3.85 2.72 1.92 1.73 1.36 

 

Table S3.3.5: SEM-EDX quantification data of bulk, cation-proton and cation-silver exchanged 

lanthanum tantalates or calcium tantalates, respectively. The theoretical formula is compared to the 

experimental formula determined by the element specific signals given in at%. 

 Rb Kα Ag Lα La Lα Ta Lα O Kα  

RbLaTa2O7 6.1 - 7.3 14.5 72.1 Rb0.8LaTa2O9.9 

HLaTa2O7 2.2 - 8.5 17.6 71.7 Rb0.3LaTa2O8.1 

AgLaTa2O7 - 7.3 13.0 6.6 73.1 Ag1.1LaTa2O11.3 

 Rb Kα Ag Lα Ca Kα Ta Lα O Kα  

RbCa2Ta3O10 4.2 - 9.8 14.4 71.6 Rb0.9Ca2Ta3O14.9 

HCa2Ta3O10 - - 8.4 13.8 77.8 (H)Ca1.8Ta3O16.9 

AgCa2Ta3O10 - 5.0 10.7 19.7 64.6 Ag0.8Ca1.6Ta3O9.8 
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Figure S3.3.2: Powder XRD patterns of a) RbLaTa2O7 and b) RbCa2Ta3O10 bulk materials, c) 

HLaTa2O7 + d) HCa2Ta3O10 after cation-proton exchange, and e) AgLaTa2O7 + f) AgCa2Ta3O10 after 

cation-silver exchange of the bulk material in comparison with the respective simulated patterns taken 

from the ICSD data base.3, 10 Note that for both cation-proton exchanged forms no references were 

available, and the XRD patterns are therefore compared to the bulk patterns. The asterisks mark 

additional reflections found in the cation-silver exchanged forms that might arise from minor impurities. 

The broad reflections around 18°2θ and 23°2θ are due to the polyester mounting foil in the XRD setup. 
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Figure S3.3.3: AFM overview images of TBALaTa2O7 nanosheets derived from a) AgLaTa2O7 / TBAI 

and b) HLaTa2O7 / TBAOH as well as TBACa2Ta3O10 nanosheets derived from c) AgCa2Ta3O10 / TBAI 

and d) HCa2Ta3O10 / TBAOH. Note that for a) we did not find any evidence for a successful exfoliation 

after investigation of 3 wafers and ~25 different regions per wafer. 

 

 

Figure S3.3.4: a) XRD of isolated yellow precipitate after Ag exfoliation belonging to AgI and b) TEM 

image of ChLaNb2O7 nanosheets after exfoliation of AgLaNb2O7 / ChI showing crystalline particles on 

the surface. The inset shows the FFT of the marked particle, the found distance belongs to the 

distance of the (111) plane of Ag. 

 

Table S3.3.6: Comparison of TEM-EDX data of ChLaNb2O7 and ChCa2Nb3O10 nanosheets after 

exfoliation via the silver or proton route. All values are given in at%. 

Theoretical formula      Experimental formula 

 K Kα Ag Lα La Lα Nb Lα O Kα  

TBALaNb2O7 - - 7.0 14.4 78.6 (TBA)LaNb2O10.9 

 K Kα Ag Lα Ca Kα Nb Lα O Kα  

TBACa2Nb3O10 - - 8.1 17.9 74.0 (TBA)Ca1.4Nb3O12.4 
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Table S3.3.7: Most prominent distances and corresponding (hkl) values observed by SAED of 

ChLaNb2O7, ChCa2Nb3O10 and ThLaNb2O7 nanosheets after exfoliation via the silver route. The 

values are given in Å and the margin of error is ±0.3 Å. 

 (001) (101) (002) (201) (202) 

ChLaNb2O7 3.92 2.73 1.96 1.73 1.36 

ThLaNb2O7 3.90 2.74 1.95 1.72 1.37 

 (200) (220) (400) (420) (440) 

ChCa2Nb3O10 3.85 2.71 1.93 1.73 1.35 

 

 

Figure S3.3.5: EDX plot for ThLaNb2O7 showing the overlap of Nb Lα and S Kα signals. Note that the 

Cu signal is due to the TEM grid. 

 

Table S3.3.8: Comparison of EDX data of AmiLaNb2O7, AmiCa2Nb3O10 and AmiTaP2O8 nanosheets 

after exfoliation via the silver or proton route in at%. 

Theoretical formula      Experimental formula 

 K Kα Ag Lα La Lα Nb Lα O Kα  

AmiLaNb2O7 - - 8.3 15.5 76.2 (Ami)La1.1Nb2O9.8 

 K Kα Ag Lα Ca Kα Nb Lα O Kα  

AmiCa2Nb3O10 - - 14.3 21.6 64.1 (Ami)Ca2Nb3O8.9 

 K Kα Ag Lα P Kα Ta Lα O Kα  

AmiTaP2O8 - - 13.2 8.9 77.9 (Ami)TaP1.4O8.8 

 

Table S3.3.9: Most prominent distances observed by SAED and corresponding (hkl) values of 

AmiLaNb2O7, AmiCa2Nb3O10 and AmiTaP2O8 nanosheets after exfoliation via the silver route. The 

values are given in Å and the margin of error is ±0.3 Å. 

 (001) (101) (002) (201) (202) 

AmiLaNb2O7 3.90 2.74 1.95 1.74 1.37 

 (200) (220) (400) (420) (440) 

AmiCa2Nb3O10 3.87 2.73 1.94 1.73 1.36 

 (110) (020) (220) 

AmiTaP2O8 4.38 2.59 2.27 
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Figure S3.3.6: TEM image and corresponding SAED pattern of a TBSTaP2O8 nanosheet. 
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ABSTRACT: Two-dimensional materials do not only attract interest owing to their anisotropic 

properties and quantum confinement effects, but also lend themselves as well-defined 

building blocks for the rational design of 3D materials with custom-made structures and, 

hence, properties. Here, we present the bottom-up fabrication of an artificial superlattice 

derived from positively charged layered double hydroxide (LDH) and negatively charged 

perovskite layers sequentially assembled by electrostatic layer-by-layer deposition. In 

contrast to previously employed bulk methods averaging out the elemental distribution within 

such stacks, we use a combination of HRTEM, STEM and EEL spectroscopy to elucidate the 

structure and composition of the multilayer stack with a high spatial resolution on the 

subnanometer scale. Atomic column resolved STEM coupled with EELS line-scans confirms 

the periodic arrangement of individual nanosheets by evaluation of the Ca L2,3 and Mn L2,3 

edges. Furthermore, HRTEM confirms the formation of up to 100 double layer thick films, 

thus demonstrating the transition from ultrathin nanosheet assemblies to artificial bulk solids 

with engineered structures and, hence, property profiles. We ascertain the formation of 

densely packed stacks with a well-ordered layered morphology, while non-idealities such as 

lack of in-plane layer registry, layer terminations, sheet bending and contamination by 

residual ligands are side effects of the solution-based deposition process. In addition, we 

demonstrate that the packing density of the multilayer system can be tuned by changing the 

LDH dispersing agent from formamide to water, resulting in porous stacks containing about 

eight-times less LDH and featuring significantly increased interlayer distances. 
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4.1.1 Introduction 

The rational design of solids with tailor-made properties has been a hallmark of soft 

chemistry and a major driving force of modern materials science. In principle, high 

temperature solid-state synthesis is governed by thermodynamic principles and is therefore 

inherently constrained with respect to the compositions and structures that can be realized. 

In contrast, kinetically controlled soft chemistry protocols, relying on the use of pre-formed 

building blocks and operating at low temperatures, open up pathways to unconventional 

solids with large compositional scope, albeit often at the expense of stability. Driven by the 

rise of nanochemistry and the ability to sculpture well-defined nanoscale building blocks such 

as two-dimensional (2D) nanosheets, the modular assembly of preformed nano-objects into 

hierarchical superlattices has taken shape in recent years, based on the pioneering work by 

Mallouk1-6 and by Sasaki7-10. As a prerequisite for designing complex solids from nanosheet 

building blocks, the successful isolation of graphene, along with the identification of its 

unique properties, has sparked the quest for inorganic 2D materials with extraordinary 

physical characteristics.11-17 Given the rapidly increasing number of nanosheets such as 

LDHs,18 transition metal oxides,19 metal disulfides20 and other layered materials21 at hand, we 

envision the rational synthesis of complex, multifunctional solids by combining different types 

of nanosheets into precisely arranged heterostructures with unique property profiles. The 

design of artificial solids with custom-made properties, which are otherwise inaccessible due 

to thermodynamic constraints under high temperature conditions, will be useful in a range of 

applications, including spintronics, optoelectronics and catalysis.1, 4, 7-8, 22 For example, 

vertical heterojunctions composed of photoactive layers may be engineered to optimize 

charge separation and transport, and miniaturized versions of photocatalytic donor-acceptor 

systems are accessible using the 2D building block approach. To achieve maximum control 

over the layer sequence, we use an electrostatic layer-by-layer (LBL) procedure (also known 

as electrostatic self-assembly deposition, ESD). Alternative deposition protocols that have 

been employed by other groups include the Langmuir-Blodgett (LB) method23-29 or 

flocculation30-35 of oppositely charged nanosheets, although the former lacks scalability and 

the latter typically yields disordered assemblies. In LBL, multilayer films form due to 

electrostatic and hydrophobic forces between positively and negatively charged nanosheets 

in a self-limiting fashion, thus allowing for a high level of control over the layer sequence at 

the (sub)nanoscale.6 In previous works, anionic inorganic nanosheets were stacked with 

cationic polymers such as poly(diallyldimethylammonium chloride) (PDDA),4, 7-8, 36 whereas 

cationic inorganic nanosheets can be assembled with anionic polymers such as poly(sodium 

styrene-4-sulfonate) (PSS).37 Recent approaches have delineated routes to obtain polymer-

free films after ultraviolet-visible (UV) irradiation of the hybrid films, leading to the 

photoinduced decomposition of the polycations forming the organic substructure.23-26 In 
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contrast, only very few studies have been dedicated to the direct combination of positively 

and negatively charged inorganic nanosheets. An important advantage of using charged 

nanosheets to assemble multilayer structures instead of organic polyelectrolytes is that 

sequentially grown layers do not necessarily interpenetrate, thus giving rise to more rigid, 

structurally well-defined superlattices.38 Li et al. reported a successful LBL assembly of 

anionic Ti0.91O2
0.36- or Ca2Nb3O10

- with cationic Mg0.67Al0.33(OH)2
0.33+ nanosheets with up to 10 

bilayers.39 Other examples are Ni0.8Fe0.2(OH)2/MnO2,40
 Mg0.67Al0.33(OH)2/MnO2,

41 

Co0.67Al0.33(OH)2/montmorillonite,42 Co0.67Al0.33(OH)2/polyvinyl alcohol/ graphene oxide43 and 

Ni0.66Al0.33(OH)2/TaS2,44 which were assembled into hybrid thin films by exfoliation-restacking 

experiments. Ida et al. developed a synergistic LBL system exhibiting a drastic change in 

photoluminescence, using Ti1.81O4 as an “antenna” for UV-light harvesting and Eu(OH)3-x as 

an emissive layer in Eu(OH)3-x/Ti1.81O4 nanocomposites. This system, similar to the others, 

was only composed of 1-4 layers.45  

All of these studies, however, monitor the assembly process only indirectly, implicitly 

assuming the alternate stacking of oppositely charged and fully delaminated monolayers. 

Thus, ultimate evidence of the alternate layer stacking by means of high-resolution analytical 

techniques is still elusive. Furthermore, the transition from ultrathin films to artificial solids 

with bulk dimensions has yet to be demonstrated.  

To fill this gap, we present a locally resolved, precise elemental and structural analysis of a 

novel artificial solid composed of perovskite and layered double hydroxide nanosheets. We 

use high-resolution TEM (HRTEM) as well as scanning TEM (STEM) combined with energy-

dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS) to 

elucidate both the composition and structure of the hybrid system with ultrahigh resolution to 

yield insights into the interfacial quality, real structure and morphology of the stack. The 

thickness of the 200-layer system approaches the bulk level, thus demonstrating the 

feasibility of the modular, rational synthesis of new solids from 2D building blocks by soft 

chemistry. In addition, our analysis adds to the understanding and improvement of the 

colloidal interactions and interfacial integrity determining the overall quality of the resulting 

superlattices.  

 

4.1.2 Results and Discussion 

We assembled a multilayer film composed of nanosheet building blocks by sequentially 

adsorbing cationically charged [Mn2Al(OH)6]+[ES]- nanosheets (abbreviated as Mn2Al(OH)6
+ 

in the following; ES-: ethylbenzenesulfonate) suspended in either formamide or water and 

anionically charged [(TBA)1-xHx]+[Ca2Nb3O10]- nanosheets (abbreviated as Ca2Nb3O10
- in the 

following; TBA+: tetra-n-butylammonium) suspended in water on a planar Si/SiO2 substrate. 

Before we consider the multilayer stacks, the building blocks - Mn2Al(OH)6
+ and Ca2Nb3O10

- 
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nanosheets – will be briefly discussed in the following. LDHs are described by the general 

formula [MII
1-xMIII

x(OH)2][A
n-

x/n · m H2O], where MII and MIII represent di- and trivalent metal 

ions within the Brucite-like layers (here MnII and AlIII), and An- is an organic or inorganic 

interlayer anion (e.g. ES).46 The structure of a LDH is depicted in Figure 4.1.1 (red). 

Attractive electrostatic forces between the cationic layers and the interlayer anions stabilize 

the structure. To overcome these forces and exfoliate the layered structure, the LDH is 

typically swollen with formamide and exfoliated by ultrasonication, yielding positively charged 

nanosheets.47 The empirical formula of the synthesized LDH was determined to be 

[Mn2.1Al(OH)6][ES • 1.3 H2O] by ICP-AES and elemental analysis. 

 

 

Figure 4.1.1: Schematic drawing of the liquid-phase process, employed to construct hybrid 

superlattices. Exfoliation of the layered bulk materials into Mn2Al(OH)6
+ and Ca2Nb3O10

- nanosheets is 

followed by electrostatic LBL assembly with intermediate washing steps in order to achieve 3D 

(LDH/per)n heterostructures immobilized on a substrate. 

 

Dion-Jacobson-type layered perovskites can be described by the general formula 

M[An-1BnO3n+1] (A = Ca, Sr, La etc. B = Ti, Nb, Ta etc.), where the negatively charged 

[An-1BnO3n+1]– layers composed of blocks of n corner-sharing BO6 octahedra are interleaved 

with exchangeable monovalent cations M+ (M = H, K, Rb etc.).6 In the monoclinic structure of 

KCa2Nb3O10 the corner sharing BO6 octahedra are distorted from the idealcubic structure as 

shown in Figure 4.1.1 (blue). Both types of nanosheets were synthesized by intercalation – 

exfoliation protocols according to established procedures, which are detailed in the 

Supporting Information.48-50 Atomic force microscopy (AFM) typically reveals Mn2Al(OH)6
+ 

nanosheets with a height around 1.5-1.7 nm and lateral dimensions of several hundreds of 

nanometers (Figure S4.1.3, Figure S4.1.4), when exfoliated in formamide or water, 
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respectively. Ca2Nb3O10
- nanosheets were determined with a typical height of 3.5 nm and 

lateral sizes around 1-2 μm (Figure 4.1.2 a). Note that the nanosheet thicknesses are higher 

than the crystallographic thicknesses or those determined experimentally under ultra-high 

vacuum conditions (0.48 nm51 to 0.81 nm18 for Mn2Al(OH)6
+ and 1.44 nm39 to 1.80 nm28 for 

Ca2Nb3O10
-), which is rationalized by the presence of the ligand shell and adsorption of 

water, as AFM measurements were carried out under ambient rather than vacuum 

conditions.52 To prove this hypothesis, the contribution of the TBA+ ligand shell to the overall 

height of the Ca2Nb3O10
- nanosheets was established. (Figure 4.1.2). 

First, the amount of TBA+ in [(TBA)1-xHx]+[Ca2Nb3O10]- was determined to be 0.84 (x = 0.16) 

by elemental analysis (see Table S4.1.1) In the second step, the nanosheet suspension was 

subjected to a 1:2 dilution with water, since the comparatively high amount of TBA+ suggests 

a relatively dense packing of TBA+ on the nanosheet surface.4 Figure 4.1.2 displays AFM 

measurements of the undiluted (top) and diluted samples (bottom) with the corresponding 

height profiles. The undiluted sample shows an almost flat surface of the nanosheet with an 

initial height of 3.5 nm, whereas the diluted sample exhibits the formation of spots on the 

surface, along with a decrease of the initial height to around 2.5 nm. With higher dilution the 

spots vanish almost completely. We attribute these observations to the reversible proton – 

TBA+ exchange between [(TBA)1-xHx]+[Ca2Nb3O10]- and water: 

 

𝑻𝑩𝑨𝑪𝒂𝟐𝑵𝒃𝟑𝑶𝟏𝟎 +  𝑯𝟐𝑶 ⇌  𝑯𝑪𝒂𝟐𝑵𝒃𝟑𝑶𝟏𝟎 +  𝑻𝑩𝑨𝑶𝑯 (Eq. 4.1.1) 

 

 

Figure 4.1.2: AFM images and corresponding height profiles of Ca2Nb3O10
- nanosheets after 

a) synthesis and b) 1:2 dilution of the sample shown in (a) with water. 

 

Our assumption that TBA+ is washed away by diluting with water was further confirmed by IR 

spectroscopy (Figure 4.1.3). While the spectrum of TBA0.84H0.16Ca2Nb3O10 shows strong 

absorption bands due to the organic ligand, the intensity of these bands at 3300 and 

1638 cm-1 are strongly decreased compared to the Nb-O stretching band just below 
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1000 cm-1 in the spectrum of the nanosheets diluted with water. Therefore, taking into 

account the thickness calculated from crystallographic data of one perovskite block in the 

KCa2Nb3O10 bulk material (1.44 nm) and the coverage of the nanosheets with TBA+ (top and 

bottom, ≈ 2 • 0.2 nm28), as well as the presence of surface-adsorbed water, we can ascertain 

the formation of single Ca2Nb3O10
- nanosheets.39 

 

 

Figure 4.1.3: IR spectra of TBA0.84H0.14Ca2Nb3O10 before 1 and after 2 dilution with water. 

 

Figure 4.1.1 schematically depicts the formation of (LDHfa/aq/per)n multilayer films (fa = LDH 

exfoliated in formamide, aq = LDH exfoliated in water, n = number of bilayers). Mn2Al(OH)6
+ 

and Ca2Nb3O10
- are alternately adsorbed on a Si/SiO2 substrate with washing steps in 

between to remove excess material and avoid flocculation of the colloidal suspensions. All 

protocols in the literature relying on positively charged LDH nanosheets use sheets 

suspended in formamide in order to avoid contamination with carbonate dissolved in water 

through contact with air. This measure accounts for the fact that the cationic LDH layers have 

a high affinity to divalent carbonate anions, which are difficult to exchange for monovalent 

anions and could therefore influence the LBL assembly.39 In the present study Ca2Nb3O10
- 

was dispersed in water rather than formamide, since no signs of agglomeration of 

Mn2Al(OH)6
+ during the LBL process was observed. 

Figure 4.1.4 a shows an overview HRTEM image of a cross-section sample of a multilayer 

(LDHfa/per)100 film. The layers are grown in an ordered fashion on the Si/SiO2 substrate, yet 

“real structure” effects as opposed to an ideally ordered structure composed of infinitely 

extended sheets are clearly visible. The layers show a significant degree of flexibility and 

bending around defects such as sheet terminations, which leads to voids and overlaps in the 

assembly. Hence, displacements and small holes are visible in the cross-section sample, 

which can also arise from mechanical forces acting on the sample during the TEM cross-

section preparation. Accordingly, the XRD pattern of a (LDH/per) multilayer stack shows two 

(00l) reflections around 5.5 and 11.0° 2 theta, pointing to a double layer thickness of 
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≈ 1.6 nm (Figure 4.1.4 b). The reflections are broadened due to sheet bending and different 

layer packing densities as seen in the TEM cross-section images of the stack. The number of 

counted bilayers (100±5) and the effective thickness of the stack (250 nm) roughly 

correspond to that expected for a 100 bilayer film (100 • (1.44 nm + 0.48 nm) = 192 nm), 

taking holes and irregularities into account. A plot of the number of bilayers, determined by 

AFM, vs. thickness of the stack shows a linear progression of the layer thickness 

(Figure S4.1.5). 

 

 

Figure 4.1.4: a) Bright field HRTEM micrograph of the cross-section of a 100 bilayer (LDHfa/per)100 

film obtained by electrostatic LBL assembly. b) XRD pattern of (LDH/per)80 measured in reflection 

mode. 
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The presence of both components – Mn2Al(OH)6
+ and Ca2Nb3O10

- – in the assembly was 

verified based on an EDX mapping of the LDH- and perovskite-specific elements, 

respectively (Figure 4.1.5). The signal of the Al Kα, Mn Kα, Ca Kα, Nb Lα, and O-Kα peaks 

from EDX maps shows evidence of a homogeneous distribution throughout the multilayer, 

thus confirming the formation of a hybrid nanostructure featuring layered components 

intimately mixed at the nanoscale. The observed carbon signal either arises from the 

remaining organic counterions (TBA+ and ES-) or from the glue used for TEM sample 

preparation. EDX quantification confirms that the amount of Ca2Nb3O10
- is 2-3 times higher 

than that of Mn2Al(OH)6
+. Individual spectra and related quantification data are shown in 

Figure S4.1.7 and Table S4.1.3. In order to draw further conclusions on the local structure of 

the stack and to ascertain the sequential assembly of nanosheets (rather than the formation 

of a disordered nanocomposite as obtained by flocculation), atomic column resolved high-

angle annular dark field (HAADF)-STEM measurements were performed. 

 

 

Figure 4.1.5: EDX mapping of a (LDHfa/per)20 stack on Si showing homogeneous distribution of all 

elements. Si Kα, C Kα, O Kα, Al Kα, Mn Kα, Ca Kα and Nb Lα signals were measured. 

 

The HAADF image (Figure 4.1.6 a) shows an alternating sequence of three bright 

columns/planes with one broad dark layer in between. Given the sensitivity to the atomic 
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number in HAADF imaging, we attribute the dark slabs to the LDH as will be discussed 

below. Nevertheless, STEM measurements reveal rapid disintegration under the electron 

beam, which might explain why no crystalline signature was obtained in these regions. The 

bright columns/planes arranged in regular “triplets” originate from the heavy niobium atoms 

and hence can be related to the perovskite layer composed of three edge-sharing NbO6 

octahedra as fundamental structural motif. These layers are not always oriented along the 

zone axis as expected for the bulk material, but tilted with respect to each other within the 

plane of the sheets (i.e. by rotation around a common axis perpendicular to the substrate); 

thus, the atomic columns can appear as lines in the off-axis orientation. This is clear 

evidence of the presence of individual delaminated perovskite sheets rather than non-

exfoliated bulk material. Some of the perovskite sheets are brighter than others; this is likely 

related to their orientation with respect to the electron beam. Indeed, it can be observed that 

brighter layers are atomically resolved, whereas the darker layers are not. 

Besides the stacking disorder due to sheet terminations and corrugations owing to varying 

amounts of adsorbed LDH between the perovskite layers, another observation should be 

pointed out: In Figure 4.1.6 a the white ellipse marks an area where additional niobium 

columns seem to be present. This can result from inhomogeneous adsorption of LDH and, 

hence, formation of wedges causing a tilting of the perovskite layers in the projection of the 

TEM foil. 

Figure 4.1.6 b shows the corresponding intensity profile taken along the orange bar 

(Figure 4.1.6 a). This intensity profile yields Nb-Nb distances inside a perovskite layer of 

3.6-4.2 Å and shows Nb-Nb distances between two different layers starting from 6-9 Å. 

Figure 4.1.7 a shows the atomic distances of Nb-Nb and Ca-Ca within a perovskite layer in 

horizontal and vertical directions. In Table S4.1.4 these distances are listed and compared to 

the values obtained from the perovskite layer in the bulk materials KCa2Nb3O10 (monoclinic, 

space group P21/m) and HCa2Nb3O10 • 0.5 H2O (tetragonal, space group P4/mbm). The 

values are significantly different and can therefore not be considered an imaging artifact. All 

experimental values are in agreement with the distances found in the bulk materials. The 

inset of Figure 4.1.6 b displays a smaller distance marked with a blue circle next to a larger 

distance marked with a green cross between two perovskite layers, which is also highlighted 

in the intensity profile. This observation confirms that the distances between the perovskite 

layers are not constant due to different amounts of adsorbed LDH. The smaller distance is 

close to the distances found between two perovskite layers in the HCa2Nb3O10 • 0.5 H2O bulk 

material and might suggest deposition of multilple layers of HCa2Nb3O10
 upon partial TBA+ – 

proton exchange during the LBL process. To test this possibility and its impact on the 

multilayer formation, we attempted to assemble Ca2Nb3O10
- without Mn2Al(OH)6

+ under 

otherwise identical experimental conditions and found that this leads to a random 
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accumulation of sheets without a defined multilayer structure. Similarly, the addition of Mn2+ 

and Al3+ ions in solution does not lead to multilayer structures but rather to the deposition of a 

few layers of Ca2Nb3O10
- on the substrate (Figure S4.1.6). Hence, as expected and in line 

with the TEM results, oppositely charged nanosheets are crucial for the fabrication of such 

heterostructures and multilayer stacking of HCa2Nb3O10 without the presence of LDH can be 

excluded (Figure 4.1.7a). 

 

 

Figure 4.1.6: a) High-resolution HAADF-STEM image of a (LDHfa/per)100 film and b) intensity profile 

taken along the orange bar with the green cross marking a large and the blue circle a smaller distance 

between individual perovskite layers, as shown in the inset. The white ellipse highlights a region where 

additional columns are visible due to a projection effect. 

 

Another factor already evident from the EDX data is that less Mn2Al(OH)6
+ than Ca2Nb3O10

- is 

present throughout the sample. Hence, the signal for the Mn L2,3 edge is weak. In addition, 

elements tend to have a low inelastic scattering cross-section at high energy losses. 

Figure 4.1.7 c shows enlarged the extracted and normalized signal of Ca L2,3 and Nb M2,3, 
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whereas the Mn L2,3 and the O K edge are depicted in Figure 4.1.7 d with the individual 

spectra of the bright perovskite layer (blue line) and the dark LDH layer (red line), 

respectively. Note that the signal of the Ca L2,3 and Nb M2,3 edges decreases, but does not 

totally vanish. This can be explained by a slight tilt of the measured multilayer region with 

respect to the incident beam and the finite resolution of the experimental technique, giving 

rise to signal contributions from layer regions deeper in the stack. Furthermore, a change of 

the O K near-edge fine structures is visible, indicating a change of the environment of the 

oxygen atoms when comparing the pristine perovskite with the hybrid superlattice. An 

intensity profile of the extracted Ca L2,3, Mn L2,3 and O K edges is shown in Figure 4.1.7 e (for 

details see Supporting Information).  

 

 

Figure 4.1.7: a) STEM cross-section image of a (LDHfa/per)100 film. The inset shows the vertical (vert) 

and horizontal (horiz) distances between A) Nb-Nbhoriz, B) Nb-Nbvert, C) Ca-Cavert, D) Ca-Cahoriz. The 

orange line corresponds to an EELS line-scan, where b) shows the corresponding summed up EEL 

spectra, c) the individual EEL spectra of the Ca L2,3 and Nb M2,3 edges without shift and d) the 

individual EEL spectra of the O K and Mn L2,3 edge with a vertical shift of the blue spectra. In c) and d) 

the spectra from the bright layer (perovskite) are shown in blue, those from the dark layer (LDH) in red. 

e) Extracted intensity profiles of Ca L2,3, Mn L2,3, O K, and the HAADF signal taken along the orange 

line in (a). 
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Figure 4.1.7a shows a HR-STEM image where an EELS line-scan was performed along the 

orange line. 128 EEL spectra were taken along a distance of 16.3 nm with a dispersion of 

0.5 eV/channel. In the range from 169 to 1193 eV most major ionization edges of interest are 

visible: the Nb-M4,5 with an onset at 205 eV and a delayed maximum, the Ca-L2,3 with two 

white-lines at 346 eV and 350 eV, the Nb-M2,3 at 363 eV and 378 eV with a sharp threshold 

peak, the O-K at 532 eV, and the Mn-L2,3 at 640 eV and 651 eV. Figure 4.1.6b depicts all 

EEL spectra integrated over the full set of data with the energy scale calibrated based on the 

Ca-L3 edge in the dataset. The Mn-L2,3 edge is only visible in the dark layer, whereas the Ca-

L2,3 is always present, but with significantly decreased intensity in the dark layer. This is 

different to measurements known from literature performed on (LaNb2O7
-/Ca2Nb3O10

-)n 

multilayer stacks, where the perovskite layers are less sensitive to electron irradiation and 

the signals can clearly be distinguished.28 

The maximum of the Mn L2,3 signal consistently lies in the minimum of the Ca L2,3 signal, thus 

proving the alternate stacking of individual Mn2Al(OH)6
+ nanosheets with Ca2Nb3O10

- 

nanosheets at the nanometer scale. Notably, this finding implies full delamination of the LDH 

and perovskite sheets in solution or upon interaction with the respective oppositely charged 

top nanosheet layer. 

The O K signal is more dominant in the perovskite region, but less pronounced than the 

Ca L2,3 signal showing the additional existence of oxygen atoms between the layers, which 

can be attributed to the Mn2Al(OH)6
+ layers. The Al L2,3 edge (73 eV) is influenced by the 

rising background from the Nb N2,3(34 eV), Ca M2,3 (25 eV) and Mn M2,3 (49 eV) edges. In 

addition, the amount of aluminum present in the sample is low, which makes the detection of 

the Al L2,3 edge difficult. Also, the Al K edge is located at much higher energy-losses 

(~1560 eV) and hence shows a weaker signal for the same acquisition time. However, an 

increased exposure time quickly leads to contamination and therefore to an enhanced 

background of the C K edge, which renders the detection of the Al K edge challenging and 

rather unreliable under the present conditions and nature of the sample.  

The above analysis yields insights into the structure and morphology of the multilayer stack 

both on the atomic and nanoscale. In line with the solution-based stepwise “growth” process, 

epitaxial layer stacking is neither expected nor observed. 

Nevertheless, the adsorption process generates densely packed regions with little defects 

next to regions with major stacking faults and locally aggregated organic residues, which 

likely stem from residual, non-exchanged ligands. 

Along these lines, it is instructive to probe the influence of the assembly conditions on the 

structure and interfacial quality of the resulting heterostructures. Therefore, in addition to the 

(LDHfa/per)100 multilayer film assembled with formamide as dispersing solvent for the LDH, a 
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(LDHaq/per)90 stack using aqueous suspensions throughout was synthesized. Accordingly, 

exfoliation of the LDH was carried out in H2O rather than formamide.  

A low-resolution cross-sectional STEM image of both samples is shown in Figure 4.1.8 for 

comparison. In contrast to the (LDHfa/per)100 film, the (LDHaq/per)90 film is less densely 

stacked and apparently exhibits larger distances between the perovskite layers. The amount 

of LDH attached to the perovskite sheets appears to be less than in the (LDHfa/per)100 stack 

and the space between the perovskite layers is not as homogeneously filled. EDX analysis 

suggests that approximately ten times less Mn2Al(OH)6
+ is present in the (LDHaq/per)90 stack 

than in the (LDHfa/per)100 film. In agreement with its porous and less ordered structure, the 

(LDHaq/per)90 film is less stable under the electron beam, making EELS line-scans unfeasible 

under the given circumstances. 

 

 

Figure 4.1.8: Comparison of STEM cross-section images taken from a (LDHfa/per)100 film assembled 

with the LDH being dispersed in formamide (a), and a (LDHaq/per)90 film with the LDH dispersed in 

water (b). 

 

Figure 4.1.9 displays an overall EEL spectrum for the (LDHaq/per)90 stack, similar to the one 

shown for (LDHfa/per)100. All edges are less pronounced and the signal for the Mn L2,3 edge is 

further decreased, with only a small peak visible as shown in the inset (marked with a red 
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circle). We attribute the lower amount of LDH in the water-based sample to the equilibrium 

reaction described above (Eq. 4.1.1), which is visualized schematically in Figure 4.1.10. 

During the LDH deposition, the outer [(TBA)1-xHx]+[Ca2Nb3O10]- layer of the stack is exposed 

to water. According to Eq. 4.1.1, the equilibrium is shifted to the right, thus increasing the 

degree of protonation (larger x) for the [(TBA)1-xHx]+[Ca2Nb3O10]- nanosheets whilst diluting 

the suspension with water. Hence, less TBA+ is present on the nanosheets, thus reducing the 

apparent layer charge density on the nanosheet surface when assuming only minimal 

dissociation of the protons in contrast to TBA+. Therefore, the fraction of cations at the 

nanosheet surface exchangeable with LDH is reduced, giving rise to an overall higher 

amount of protons along with a lower amount of LDH in the final heterostructure. This is 

further substantiated by monitoring the pH whilst adding HCl to an aqueous 

TBA0.84H0.16Ca2Nb3O10 suspension. Figure S4.1.8 shows the pH plotted versus the molar 

fraction of TBA+ in TBAxH1-xCa2Nb3O10. Similar to the titration of TBAxH1-xTiNbO5 with HCl3 

two equivalent points were found. 

 

 

Figure 4.1.9: EELS line-scan of a (LDHaq/per)90 film showing all spectra summed in black and the O K 

and Mn L2,3 edge (marked in red) enlarged in the inset. 

 

The relevant one for the LbL assembly is the equivalent point at pH 8.7. Above this pH a 

single phase unilamellar colloid exists, which is necessary for a successful LbL deposition. 

Just below pH 5.5 solid TBAxH1-xCa2Nb3O10 with a proton fraction of more than 50% starts 

precipitating. We infer from these results that the change of solvents employed for the 

dispersion of the nanosheets apparently has a major impact on the structure and 
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composition of the resulting superlattices. Although the choice of solvent is limited by the 

limited dispersability of the nanosheets in many solvents, this finding nevertheless points out 

an important design criterion in the assembly of nanosheets, which is governed by colloidal 

stability, ionic strength, composition of the Helmholtz double layer and solution equilibria 

influenced by the pH. 

 

 

Figure 4.1.10: Scheme depicting the proposed formation mechanism of a (LDH/per)n film as a 

function of the equilibrium reaction (a). Densely packed (LDHfa/per)n films are obtained in step (b), 

while in step (c) less dense (LDHaq/per)n films are generated due to a shift of the equilibrium reaction 

of TBAOH and water. 

 

4.1.3 Conclusion 

We have demonstrated the rational synthesis of a complex two-component solid composed 

of Mn2Al(OH)6
+ and Ca2Nb3O10

- nanosheets by means of electrostatic layer-by-layer 

assembly, which highlights the feasibility of the “rational design” of complex solids through 

judicious combination of nanosheet building blocks. For the first time, we have been able to 

map out the structure and elemental distribution within the stacks locally resolved by 

HRTEM, STEM and EELS analysis, and ascertained the presence of alternating, 

compositionally distinct LDH and perovskite layers of consistent and reproducible minimum 

thickness, i.e. single sheets. While the perovskite layers are highly crystalline and stable, no 

crystalline signature of the LDH layers was obtained owing to their rapid damage under the 

electron beam. The morphology of the multilayer films can be modified by selection of 

different nanosheet dispersing solvents, which was demonstrated by fabricating dense 

stacks from LDH dispersed in formamide, whilst suspension in water leads to less dense 
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stacks containing a smaller overall amount of LDH. This feature will be helpful as a future 

design criterion to tune the composition and porosity of the stacks. 

In addition, we demonstrated that multilayer films composed of 100 double layers (and 

possibly more) can easily be obtained by ESD, which is a first step towards the synthesis of 

tailor-made bulk solids rather than ultrathin films from individual 2D building blocks. Finally, 

with this study we add evidence to the notion that solids can in fact be “designed” in a 

rational way by taking advantage of soft chemistry routes to new solids, rather than relying 

on traditional explorative solid-state synthesis which is largely driven by thermodynamic 

principles. 
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4.1.5 Supporting Information 

 

EXPERIMENTAL PROCEDURES: 

Chemicals. All chemicals and solvents were purchased from commercial suppliers and used 

without further purification: 4-ethylbenzenesulfonic acid (Sigma-Aldrich, 95%), manganese 

nitrate (Mn(NO3)2 • 4 H2O, Sigma-Aldrich, 97%), aluminum nitrate (Al(NO3)3 • 9 H2O, Fluka, 

99%), sodium hydroxide (NaOH, AppliChem, 97%), formamide (Fluka, 98%), potassium 

carbonate (K2CO3, Merck KGaA, 99%), calcium carbonate (CaCO3, Grüssing, 99%), niobium 

pentoxide (Nb2O5, Alfa Aesar, 99.5%), tetra-n-butylammonium hydroxide 30-hydrate 

(TBAOH, Sigma-Aldrich, 98%). Deionized water was used throughout all procedures. 

Mn2Al(OH)6
+ Synthesis. The LDH bulk compounds were synthesized by a typical 

coprecipitation method according to the literature.1 Mn(NO3)2 • 4 H2O (3.33 mmol, 835 mg) 

and Al(NO3)3 • 9 H2O (1.67 mmol, 626 mg) were dissolved in 100 mL water. An aqueous 

solution of 4-ethylbenzenesulfonic acid (1 mM, 100 mL) was added to the metal nitrate 

solution. Under Argon atmosphere (to avoid absorption of ambient CO2) 1 M NaOH was 

added dropwise to the solution to adjust the pH to 9.0. The brown precipitate was recovered 

by filtration, washed with water and acetone and dried under vacuum for 24 h. Exfoliation of 

MnAl ethylbenzenesulfonate (ES) LDH in formamide was carried out by dispersing 25 mg of 

the bulk material in 50 mL formamide and subsequent sonication for 30 min. The resulting 

colloidal suspensions were centrifuged at 1,000 rpm for 10 min to remove possible non-

exfoliated particles. The supernatant was used for further synthesis. Exfoliation of the LDH in 

water was done by dispersing 25 mg bulk LDH in 50 mL water and subsequent sonication for 

5 min. 

Ca2Nb3O10
- Synthesis. KCa2Nb3O10 was synthesized in a modified procedure according to 

Dion et al..2 K2CO3, CaCO3 and Nb2O5 were mixed and thoroughly grinded in the molar ratio 

1.2 : 4 : 3. The mixture was then fired up to a temperature of 1200 °C for 60 h. 1 g of the as-

synthesized powder was stirred in 40 mL 5M HNO3 for 5 days to achieve cation-proton 

exchange. The acid was replaced every day.3 For exfoliation 0.2 g of the proton-exchanged 

form HCa2Nb3O10∙0.5 H2O were dispersed with tetra-n-butylammonium hydroxide 30-hydrate 

(TBAOH) at a molar ratio of 1:1 in 50 mL aqueous solution. The suspension was shaken for 

4 weeks and non-exfoliated particles were removed by centrifugation at 3,000 rpm for 

30 min. The supernatant with a nanosheet concentration of ~2mg/mL was used for further 

synthesis.  

Multilayer assembly. The multilayer films composed of Mn2Al(OH)6
+ and Ca2Nb3O10

- were 

assembled using a StratoSequence 6 LBL robot (nanoStrata Inc., Tallahassee). After 

exfoliation, a Si (100) wafer terminated with a native SiO2 layer (Si/SiO2) was first immersed 

into the LDH nanosheet suspension in formamide for 10 min, then rinsed in water for 1 min, 



 

142 

immersed in the perovskite nanosheet suspension in water for 10 min and rinsed in water 

again for 1 min. This procedure was repeated n times in order to obtain multilayer films 

depicted as (LDHfa/per)n. The washed film was dried under N2 gas flow for 1 min after each 

cycle. Multilayer films based on LDH suspended in water instead of formamide were 

assembled in the same way and are labelled as (LDHaq/per)n. 

Cross-section preparation. For transmission electron microscopy (TEM) characterizations 

a sandwich structure was prepared by gluing two Si/SiO2 wafers together on the side of the 

multilayers and subsequently cutting the sandwich structure into discs. The discs were 

grinded, dimpled and ion-thinned. 

 

CHARACTERIZATION: 

X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) coupled with energy-

dispersive X-ray (EDX) analysis, inductively coupled plasma atomic emission spectroscopy 

(ICP-AES), elemental analysis, atomic force microscopy (AFM) and transmission electron 

microscopy (TEM) were used to monitor starting and intermediate compounds as well as the 

obtained nanosheets.  

XRD. XRD data of powders were collected using a Huber G670 (Huber, Rimsting; Cu Kα1-

radiation, λ = 154.051 pm, Ge(111)-monochromator, external standard SiO2) Guinier Imaging 

Plate diffractometer. XRD of multilayer stacks was performed on a Bruker D8 Advance 

diffractometer (Bruker, Billerica, Cu Kα1-radiation, λ = 154.051 pm).  

SEM-EDX. SEM was conducted on a JSM-6500F electron microscope (JEOL Ltd., Tokyo). 

The microscope was equipped with a 7418 EDX detector (Oxford Instruments, Abingdon). 

ICP-AES. ICP-AES was done using a VISTA RL CCD and ICP-AES analyzer system 

(Agilent Technologies, Waldbronn).  

Elemental Analysis. An Elementar vario EL (Elementar Analysensysteme, Hanau) was 

employed for elemental analysis (EA). To this end, nanosheets were isolated by 

centrifugation and the carbon, hydrogen and nitrogen mass fraction measured. The excess 

hydrogen content not attached to the TBA+ was calculated and used for the determination of 

x.  

AFM. AFM measurements were performed on a MFP-3D Stand alone AFM (Asylum 

Research, Santa Barbara). Tapping-mode was applied using OMCL-AC160TS-R3 (Olympus, 

Tokio) cantilevers with a resonant frequency of 300 kHz.  

(S)TEM-EDX. A Philips CM30 ST microscope (300 kV, LaB6 cathode, CS = 1.15 mm, Royal 

Philips Electronics, Amsterdam) was used for EDX mapping. The HAADF STEM imaging, 

and STEM-EDX/EELS investigations were performed in a FEI Titan 80-300 Cubed (S)TEM 

(FEI, Hillsboro) operated at 300 kV, equipped with a high brightness X-FEG, two aberration 



 

143 

correctors for the probe and the image forming lenses, and a Gatan GIF (model 866) 

spectrometer.  

EELS. The EELS line-scan was performed taking 128 spectra along a distance of 16.3 nm 

with a dispersion of 0.5 eV/channel. Exposure time was 0.4 s. Energy-windows of 353.0-

366 eV for Ca L2,3, 533.0-581 eV for O K and 640.0-652 Mn L2,3 were used for the signal 

extraction along the measured distance. 

 

 

Figure S4.1.1: a) XRD and b) IR of MnAl ES LDH, c) and d) photographs of Mn2Al(OH)6
+ nanosheets 

suspended in formamide and water, respectively. 
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Figure S4.1.2: Left: XRD patterns of a) KCa2Nb3O10,b) HCa2Nb3O10 × 0.5 H2O with the respective 

simulated patterns4,5 taken from the ICSD data base; right: IR of c) KCa2Nb3O10 and d) HCa2Nb3O10. 

 

 

Table S4.1.1: EDX quantification data for KCa2Nb3O10, HCa2Nb3O10 • 0.5 H2O and Ca2Nb3O10
- 

Element (atomic%) 

Compund 

K Kα Ca Kα Nb Lα O Kα 

KCa2Nb3O10 5.7 11.0 19.0 64.4 

HCa2Nb3O10* - 11.7 20.6 67.8 

Ca2Nb3O10
- - 12.2 19.0 67.4 

*ICP-AES yielded HCa2.2Nb3O10 × n H2O without traces of K. 

 

 

Table S4.1.2: Elemental analysis (C, H, N) of Ca2Nb3O10
-. The values are given in weight-% 

N C H Formula 

0.79 % 10.05 % 2.18 % TBA0.84H0.16Ca2Nb3O10 
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Figure S4.1.3: AFM image and corresponding height profile of a [Mn0.67Al0.33(OH)2]0.33+[ES0.33]0.33- (ES: 

ethylbenzenesulfonate) nanosheet exfoliated in formamide. 

 

 

 

Figure S4.1.4: AFM image and corresponding height profile of a [Mn0.67Al0.33(OH)2]0.33+[ES0.33]0.33- (ES: 

ethylbenzenesulfonate) nanosheet exfoliated in water. 

 

 

 

Figure S4.1.5: Number of bilayers vs. film thickness. 
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Figure S4.1.6: a) AFM image of 100 layers of Ca2Nb3O10
- nanosheets and b) its corresponding height 

profile. c) AFM image of 60 layers of Ca2Nb3O10
- nanosheets and MnCl2/AlCl3 dissolved in formamide. 

The images show that perovskite nanosheets stacked without positively charged counterparts and 

perovskite nanosheets stacked with Mn2+ and Al3+ ions do not form thick multilayer films. 

 

 

Figure S4.1.7: EDX spectra of (LDHfa/per)100 and (LDHaq/per)90. 
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Figure S4.1.8. HCl titration curve of TBAxH1-xCa2Nb3O10. 

 

Table S4.1.3: EDX quantification data for the spectra shown in Figure S4.1.7. 

Stack/Element (atomic%) Mn Kα Al Kα Ca Kα Nb Lα O Kα C Kα Si Kα Cu Kα 

(LDHfa/per)100 2.4 0.9 3.9 9.0 45.3 2.4 36.0 0.1 

(LDHaq/per)90 0.6 0.3 6.5 13.0 45.7 25.1 8.4 0.4 

 

Table S4.1.4: Comparison of Nb-Nb and Ca-Ca distances in the perovskite layer found in the bulk 

materials KCa2Nb3O10 and HCa2Nb3O10 • 0.5 H2O, along with the experimentally obtained values. 

KCa2Nb3O10, shows a larger distribution of interatomic distances owing to its lower (monoclinic) 

symmetry. 

 KCa2Nb3O10 HCa2Nb3O10 • 0.5 H2O Experimental 

Nb-Nbvert 4.2/4.3 Å 4.2 Å 3.9 ± 0.1 Å 

Nb-Nbhoriz 3.8/3.9 Å 3.9 Å 3.8 ± 0.1 Å 

Ca-Cavert 4.1/4.5 Å 4.3 Å 4.5 ± 0.1 Å 

Ca-Cahoriz 3.5/3.7/4.0/4.3 Å 3.9 Å 4.3 ± 0.1 Å 
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ABSTRACT: The construction of vertical heterostructures out of 2D building blocks has 

become a promising route to rationally design complex multilayer systems with intriguing 

properties at mild synthesis conditions. Here, we present the thermal post-treatment of such 

a multilayer stack (LDH/per)n consisting of anionic calcium niobate perovskite nanosheets 

and cationic manganese aluminium layered double hydroxide (LDH) nanosheets. Cross-

sections were prepared and high-resolution transmission electron microscopy (HRTEM) 

coupled with energy-dispersive X-ray spectroscopy (EDX) was used to monitor structural 

changes in the range of 300-1000°C under ambient conditions. The (LDH/per)n stack shows 

diffusion of elements up to 500°C and starts to transform to other crystalline phases at 

temperatures ≥ 600°C. For annealing temperatures of 1000°C crystalline particles of different 

compositions were obtained. We present evidence for the formation of unknown Al-Mn-Nb-O 

phases that have not been reported to be accessible by means of conventional synthesis 

routes. Besides, the formation of known AlxMn2-xO3 and MnNb2O6 compounds was verified 

with EDX and selected area electron diffraction (SAED). 

 

4.2.1 Introduction 

Tremendous research efforts have been directed to the development of miniature, 

hierachical functional systems through the controlled organization of two-dimensional (2D) 

nanosheets utilized as building blocks for these hybrid structures.1 For example, a 

miniaturized all-nanosheet capacitor has been synthesized out of (Ru0.95O2
0.2-/Ca2Nb3O10

-/ 

Ru0.95O2
0.2-) nanosheet assemblies where the ruthenium oxide sheets operate as electrodes 

and the calcium niobate sheets act as dielectrics.2 Due to its ultrathin size, the multilayer 

assembly showed a nearly 10 times higher capacitance than the state-of-the-art HfO2-based 

capacitor and may hence find use in the fabriaction of high-density dynamic random access 

memory devices (DRAM) in the future. Another example is the alternate stacking of 

(LaNb2O7
-/Ca2Nb3O10

-)n nanosheet layers, which showed ferroelectric behavior despite the 

fact that both types of nanosheets and stacks made out of only one type of nanosheets are 

paraelectric.3 Combination of Zn-Cr layered double hydroxides (LDHs) with layered titanates 

or polyoxometalates leads to a remarkably enhanced photocatalytic activity for water 
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oxidation compared to the pristine Zn-Cr-LDH.4-5 As the list goes on, a lot of reviews have 

been devoted to monitor the rapid process in this emerging field of nanoarchitectonis.1, 6-13  

For the fabrication of electrostatically assembled heterostructures three major techniques, 

namely flocculation, Langmuir-Blodgett (LB) transfer and layer-by-layer (LBL) assembly are 

applied. Flocculation is the simplest method and achieved by destabilization of (a) colloidal 

suspension(s), yielding large amounts of precipitated nanosheets or heterostructures thereof. 

The LB technique uses self-assembled and compressed monolayers floating at the air-

solvent interface, which are transferred onto a substrate by horizontal or vertical lifting of the 

substrate, producing densely packed films. Whereas flocculation lacks control over the layer 

structure and registry, LB is a time-consuming process which is rather difficult to scale up. 

The LBL approach combines both techniques and heterostructures are built up by an 

alternate immersion of a substrate into oppositely charged suspensions with extensive 

washing steps in between to remove excess material. Independent of the technique, most 

works focus on the synthesis and properties of ultrathin multilayers up to a maximum of 

25-30 layers. In a recent study, we have demonstrated the rational synthesis of a complex 

(LDH/per)n heterostructure composed of up to 100 bilayers of perovskite TBA1-yHyCa2Nb3O10 

and LDH ES[Mn2Al(OH)6] (TBA = tetra-n-butylammonium, ES = ethylbenzenesulfonate) 

nanosheets, aiming for the directed synthesis of functional bulk materials rather than ultrathin 

films (see Chapter 4.1).14 A detailed TEM study coupled with several spectroscopic 

techniques has proven the formation of densely packed stacks on the one hand side, but 

also demonstrated non-idealities and real structure effects that need to be overcome in future 

approaches on the other side. Thermal annealing of such heterostructures can be one route 

to reduce such non-idealities as organic residues incorporated into the heterostructures can 

be completely decomposed, which should lead to a compression of the complete stack. 

Exceeding a certain temperature the different nanosheets might arrange to form smooth 

interfaces or for even higher temperatures exhibit the formation of metastable phases due to 

the arrangement of materials at the nanometer scale that cannot be achieved via common 

synthesis protocols.  

In the following, we investigate the thermal behavior of these (LDH/per)n stacks upon 

annealing them in the temperature range between 300°C-1000°C under ambient conditions. 

Cross-sections of the stacks were analyzed with HRTEM coupled with EDX spectroscopy 

and SAED. While recent studies focus on the thermal stability of solely perovskite stacks, our 

analysis monitors, for the first time, the thermal transformation of a mixed perovskite / LDH 

heterostructure and shows the possibility to construct new “3D” compounds that may not be 

accessible by common solid-state methods.15 
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4.2.2 Results and Discussion 

Cross-section HRTEM images of (LDH/per)n multilayers heated at temperatures of 300°C-

500°C are shown in Figure 4.2.1. Different crystalline, amorphous and intermediate layers 

are visible for all stacks and labeled with (A)-(D) to facilitate comparison in the following. 

 

 

Figure 4.2.1: HRTEM overview images at two different magnifications of (LDH/per)n multilayer stacks 

annealed at a) 300°C (n = 40), b) 400°C (n = 30) and c) 500°C (n = 50). (A) denotes a alternatingly 

stacked layer close to the substrate, (B) a LDH enriched layer, (C) a perovskite enriched layer and (D) 

an amorphous region. Note that the bright SiO2 layer on top of the Si wafer increases successively for 

higher temperatures and longer heating rates as all experiments are performed under ambient 

conditions, i.e. in the presence of oxygen. 
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Assigments of regions (A)-(D) are based on EDX measurements (Table 4.2.1) and TEM 

investigations. Region (A) is always located close to the substrate and displayed at higher 

magnification in Figure S4.2.1. For the 300°C annealed sample, features similar to those 

without heating are present.14 We conclude, that crystalline layers of perovskite nanosheets 

[Ca2Nb3O10]- are stacked in a homogeneous fashion and interleaved with amorphous LDH 

nanosheets [Mn2Al(OH)6]+ of various thicknesses, because elements of both, perovskite and 

LDH, are present in ratios similar to those of the non-annealed sample. The LDH nanosheets 

are crystalline in the beginning of the experiment but rapidly disintegrate under electron 

beam irradiation so that only amorphous regions remain, as we have shown for the room-

temperature prepared heterostructures.14 The different thicknesses of the amporphous LDH 

layers arise from the exfoliation process as not all LDH nanosheets are exfoliated down to a 

single layer and sometimes double or triple layers can be deposited. This is exemplary 

highlighted in Figure S4.2.1. Region (A) is followed by a sponge-like region (B) that will be 

discussed later and region (C) which shows more densely packed layers of the perovskite 

that exhibit the same findings as discussed for region (A). The amorphous region (D) is most 

likely related to intercalated, carbon-based glue used for TEM sample preparation, which is 

sometimes found in the outer layers. For region (C) as well as region (A) at higher 

temperatures an average thickness of around 1.46 nm for the crystalline layers is observed. 

This is close to the crystallographic thickness of 1.44 nm for a [Ca2Nb3O10]- layer in the 

KCa2Nb3O10 bulk compound measured between the outer oxygen atoms.16 We have shown 

with XRD and TEM that the average ([Ca2Nb3O10]-/[Mn2Al(OH)6]+) bilayer is around 1.6 nm, 

but can be smaller or larger depending on the packing density and other effects like sheet 

bending, sheet terminations etc.14 As heating of the heterostructure leads to decomposition 

of organic residues related to the ligands of both nanosheets, it is most likely that we find 

more densely packed regions. As mentioned for region (A), EDX measurements were 

performed to verify an alternating stacking of both nanosheets and the results are listed for 

all samples heated between 300°C-600°C in Table 4.2.1. Note that the EDX values should 

be interpreted qualitatively rather than quantitatively as we measured larger areas to 

enhance the signal to noise ratio and thus adjacent layers might contribute to the signal. For 

all regions (A) and (C), signals of Ca and Nb from the perovskite along with Mn and Al from 

the LDH are detected and point towards an alternating stacking sequence of both for all 

these regions as we observe a regular stacking in the TEM. For the denser regions we 

observe a relative decrease of Ca as well as a relative decrease of Mn along with increasing 

temperatures, compared to the room temperature stoichiometry. For all regions (B) the LDH 

signal is drastically increased compared to the perovskite signal and thus explains the 

sponge-like appearance where sometimes individual perovskite layers are included. We did 

not obtain such areas for the (LDH/per)n stack at room temperature and thus attribute this 
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LDH enrichment to an effect caused by the heating of the stack. At room temperature 

perovskite and LDH layers are deposited alternatingly by electrostatic layer by layer 

assembly driven by the strong interaction of the oppositely charged nanosheets, while 

excess nanosheets with the same charge show weak interaction among themselves and are 

removed by the washing step. Hence, at higher temperatures we find that complete 

nanosheets and/or ions out of nanosheets seem to migrate during the heating of the stack, 

such that phase separation occurs. This is different to stacks fabricated out of [Ca2Nb3O10]- 

nanosheets only, which exhibit thermal stability up to 700°C.15 Note that these stacks are 

synthesized with the LB technique where the organic TBA+ ligand is decomposed with UV 

light after each step to enable deposition of the next layer, where the formed stack is most 

likely similar to “bulk” HCa2Nb3O10. 

 

Table 4.2.1: EDX data of (LDH/per)n multilayers heated at temperatures between 300°C-600°C at 

various regions found on the sample. 

T / °C Region Ca / at% Nb / at% Mn / at% Al / at% O / at% 

300 (A) 11.85 26.29 6.88 2.85 52.13 

 (B) 3.76 11.04 27.81 17.78 39.61 

 (C) 13.28 27.91 6.40 2.89 49.52 

400 (A) 6.39 16.54 4.90 2.89 69.28 

 (B) 0.42 6.49 15.12 13.03 64.94 

500 (3 h) (A) 3.13 12.10 7.57 5.93 71.27 

500 (10 h) (A) 7.54 21.72 9.23 7.46 54.05 

 (B) 5.76 16.02 13.97 10.44 53.81 

 (C) 8.64 21.32 5.70 2.42 61.92 

 (B) 5.09 15.08 14.07 9.16 56.61 

600 (A) 3.89 14.60 10.73 9.54 60.20 

 

To visualize these observations, EDX line-scans of (LDH/per)n multilayers heated at 

maximum temperatures of 300°C-500°C are displayed in Figure 4.2.2. Where for 300°C 

annealing the LDH enriched region (B) was formed between two alternatingly stacked 

regions to give an A-B-C stacking, this layer (B) seems to migrate to the outer boundary 

surface with increased annealing temperatures so that we only observe an A-B stacking in 

the end. Note that it is also possible that the outer layer (C) was removed during ion thinning 

where usually the glue as “weakest” part is removed first. Weak interaction between e.g. 

region (B) and region (C) might also lead to a removal of the layer instead of thinning of the 

material. Overall, annealing between 300°C-500°C leads to a separation of a perovskite rich 

and a LDH rich region, whereas the LDH rich region seems to move away from the 

substrate. 
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Figure 4.2.2: TEM images and corresponding EDX line-scans of (LDH/per)n multistacks annealed at 

a) 300°C (n = 40), b) 400°C (n = 30) and c) 500°C (n = 50). (A) denotes an alternatingly stacked layer 

close to the substrate, (B) a LDH enriched layer, (C) a perovskite enriched layer and (D) an 

amorphous region. 

 

In the next step, the effects of a change in heating rate were studied. The results for a stack 

annealed at 500°C for 6 h are displayed in Figure 4.2.3, where the time to reach the 

maximum temperature has been increased from 3 h to 10 h. The HRTEM image for this 

slowly heated sample clearly displays the formation of a phase-separated darker (crystalline) 

(A)+(C) and a sponge-like brighter region (B), alternating for three periods. The EDX line-

scan shows that the darker area is perovskite-rich, whereas the brighter region is LDH 

dominated. Hence, instead of one LDH-rich layer, several layers are formed in which the 

perovskite and LDH nanosheets are clustered, respectively, which might point towards an 

intermediate step before all layers migrate to the outer boundary and completely separate. 

According to the EDX data given in Table 4.2.1, the loss of Ca is clearly reduced compared 

to the faster heated stack. No significant change for the LDH was observed. Thus, a slower 

heating rate might suppress the Ca loss and have a direct influence on the formation of new 

structures at higher temperatures. 
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Figure 4.2.3: TEM image and corresponding EDX line-scans of a (LDH/per)40 multilayer stack 

annealed at 500°C with a slower heating and cooling rate (50°C/h). (A)+(C) denote a perovskite 

enriched layer, (B) a LDH enriched layer. 

 

At temperatures of 600°C no distinct lamellar nanoscale structures are visible anymore and 

the whole stack appears amorphous, as can be seen in Figure 4.2.4. Only a slight difference 

in contrast is apparent. The brighter outer region shows a relatively higher amount of LDH-

related elements as compared to the darker inner region where the heavier Nb atoms of the 

perovskite are present. Overall, 600°C seems to be a transition point where the whole 

layered structure collapses and thermally rearranges, forming new structures.  

 

 

Figure 4.2.4: TEM image and corresponding EDX line-scans of a (LDH/per)30 multilayer stack 

annealed at 600°C. 

 

Figure S4.2.2 shows HRTEM images at various magnifications for the samples heated at 

700°C. The increased temperature leads to the formation of some crystalline domains. 

Interestingly, a large Mn-oxide particle was found as shown in Figure S4.2.3. Since we can 

exclude that this particle was brought in as an impurity, the Al must have been diffused out 

into e.g. the perovskite region, leaving a crystalline Mn oxide behind. Since we did not find 

Ca enriched regions for this sample nor for the following ones, we hypothesize that Ca 

concomitantly moved towards the Si where it possibly formed a calcium silicate. As regions 
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get thicker towards the substrate - making TEM investigations impossible - we cannot 

provide evidence for this assumption at this point. Another possibility would be that Ca is 

removed into the gas phase. 

1000°C was chosen as the maximum heating temperature. An overview TEM image is 

shown in Figure 4.2.5. While at temperatures of 700°C crystalline domains were still in close 

vicinity and overlapping, at 1000°C crystalline particles are now separately embedded into a 

thick SiO2 matrix. The dark region below the particle on the right is due to a thickness effect 

and EDX showed no elements besides Si and O. EDX data of 22 particles are listed in 

Table S4.2.2. As apparent from these data, the local difference in chemical composition is 

very large and hence, we categorized the particles into different groups. The most prominent 

group has a higher atomic ratio of Nb to the sum of Mn+Al+(Ca); the second group 

possesses an elemental content of Mn>Nb>Al>(Ca), while we identified AlxMn2-xO3 as a third 

and MnNb2O6 as a fourth group, and, finally, we list those regions whose composition was 

found only once. All these compounds do not have any Si present and hence do not show 

any reaction with the substrate at this temperature. In the following we focus on the analysis 

of the first, third and fourth group. 

 

 

Figure 4.2.5: Overview TEM image of a (LDH/per)20 multilayer stack annealed at 1000°C. The orange 

arrows point towards the embedded particles. 

 

AlxMn2-xO3 was identified to be one motif that is formed out of the (LDH/per)n stack under the 

applied synthesis conditions. Figure 4.2.6 displays a HRTEM image of a crystalline particle 

along with the corresponding SAED pattern. The corresponding d-values are 9.22 Å, 4.61 Å, 

4.18 Å, 3.09 Å, 2.31 Å etc. and the measured angle between two independent planes in the 

present orientation is 90°. The composition according to EDX is Al0.2Mn1.8Ox and similar to a 

compound known from literature, Al0.2Mn1.8O3. Al0.2Mn1.8O3 crystallizes in the cubic space 

group Ia3̅ (no. 206) with cell parameters a = 0.94 nm and α = β = γ = 90°.17 This or similar 

compositions were found for 4 out of 22 particles. Occasionally, a slight amount of Ca and 
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Nb was present. The reason for this “impurity” could either be a doping of the elements into 

the structure or too quick embedding into the SiO2 matrix, so that elements did not have 

enough time to diffuse and phase-separate. 

 

 

Figure 4.2.6: HRTEM image and corresponding SAED pattern of an AlxMn2-xO3 particle formed from a 

(LDH/per)100 multilayer stack annealed at 1000°C. 

 

The second structural motif we found was MnNb2O6 which we obtained 3 out of 22 times. 

The HRTEM image along with the SAED pattern is displayed in Figure 4.2.7. MnNb2O6 

crystallizes in the orthorhombic space group Pbcn (no. 60) with lattice parameters 

a = 1.44376(3) nm, b = 0.57665(1) nm, c = 0.50841(1) nm and α = β = γ = 90°.18 The particle 

is oriented along the b axis and SAED reflections of 7.19 Å along one direction as well as 

2.52 Å in the orthogonal direction match well with 7.22 Å for (200) and 2.54 Å for the (002) 

planes. 

 

 

Figure 4.2.7: HRTEM image and corresponding SAED pattern of a MnNb2O6 particle formed from a 

(LDH/per)100 multilayer stack annealed at 1000°C. 
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Last, 7 out of 22 times we obtained phases where the atomic Nb content exceeds the sum of 

the other elements. However, the obtained ratios vary greatly and the corresponding 

particles also exhibit different morphologies. Figure 4.2.8 exemplarily shows the HRTEM 

image and corresponding SAED pattern of a particle with composition Al0.9Mn1.2Nb3Ox, 

Table 4.2.2 lists the obtained d-values in comparison with the ones found for KCa2Nb3O10. To 

our knowledge, no compounds based on the elements Al-Mn-Nb-O are known yet; thus, 

irrespective of their exact composition all 7 particles might belong to new compounds, 

assuming phase-pure materials. As mentioned for the perovskite layers found for lower 

temperatures close to the substrate (A), it seems that Ca diffuses out of the perovskite 

structure, while Al and the remaining Mn compensate the charge. 

 

 

Figure 4.2.8: HRTEM image and corresponding SAED pattern of an Al-Mn-Nb-O particle formed from 

a (LDH/per)20 multilayer stack annealed at 1000°C. 

 

Table 4.2.2: dhkl-values of the particle Al0.9Mn1.16Nb3O15.56 in comparison to the Dion-Jacobson (DJ) 

phase KCa2Nb3O10. 

d / Å d (KCa2Nb3O10) (hkl) 

7.18   

3.59 3.78 (200) 

 3.44 (210) 

 2.74 (220) 

 2.68 (024) 

2.54 2.54 (300) 

2.40   

2.24 2.17 (230) 

1.80 1.84 (410) 

 1.61 (028) 

1.44 1.46 (430) 
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4.2.3 Conclusion 

In conclusion, we have investigated the thermal behavior of ([Ca2Nb3O10]-/[Mn2Al(OH)6]+)n 

multilayer systems in the temperature range between 300°C and 1000°C. The initial 

alternately stacked nanosheets begin to phase segregate at temperatures between 300 and 

500°C into a crystalline perovskite dominated layer and an amorphous LDH layer. The 

perovskite-dominated layer shows a significant loss of Ca and Mn with increasing annealing 

temperatures and thus gives rise to the formation of an unknown phase with approximate 

composition Al0.9Mn1.2Nb3Ox at 1000°C, which to our knowledge has not been synthesized by 

conventional solid-state routes yet. The LDH rich layer, on the contrary, migrates to the outer 

boundary and may act there as a crystallization nucleus for the formation of AlxMn2-xO3 as 

well as MnNb2O6 at 1000°C, which we could identify by SAED and EDX analysis. Besides 

this, several other compositions have been obtained that highlight the possibility to use the 

LBL assembly scheme with subsequent annealing for the fabrication of nanostructures with 

compositions that are not accessible by conventional solid-state synthesis in the 

thermodynamic regime. Although this might be considered a preliminary study, we like to 

emphasize our results as a “proof-of-principle” and are aware of the fact that in order to aim 

for a controlled synthesis of new materials the multilayer arrangement has first to be well-

controlled and, as importantly, increased numbers of multilayers have to be obtained in order 

to target true bulk-scale synthesis. For thicker samples, XRD could then be used to monitor 

reaction products faster than by means of TEM cross-sections and reaction parameters may 

then be adjusted accordingly. 
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4.2.5 Supporting Information 

 

EXPERIMENTAL PROCEDURES: 

Chemicals. All chemicals and solvents were purchased from commercial suppliers and used 

without further purification: Potassium carbonate (K2CO3, Merck KGaA, >99%), calcium 

carbonate (CaCO3, Grüssing, 99%), niobium(V) oxide (Nb2O5, Alfa Aesar, 99.5%), sodium 

hydroxide (NaOH, AppliChem, 97%), tetra-n-butylammonium hydroxide (TBAOH, 

[CH3(CH2)3]4NOH•30 H2O, Sigma-Aldrich, 98%), manganese nitrate (Mn(NO3)2•4H2O, Sigma-

Aldrich, 97%), 4-ethylbenzenesulfonic acid (Sigma-Aldrich, 95%) aluminum nitrate 

(Al(NO3)3•9H2O, Fluka, 99%), and formamide (Fluka, 98%).  

Nanosheets. TBA1-yHyCa2Nb3O10 nanosheets were synthesized in a 3-step procedure. First, 

the bulk material was synthesized by mixing stoichiometric amounts of K2CO3, CaCO3 and 

Nb2O5, and subsequent heating of the material at 1200°C for 60 h. 20% excess of K2CO3 

was added to compensate for volatilization losses. Second, 1 g of KCa2Nb3O10 was stirred in 

40 mL 5M HNO3 for 5 days to exchange the cation for a proton to yield HCa2Nb3O10. To 

ensure complete cation-exchange, the acid was renewed on a daily basis. Last, for 

exfoliation 0.2 g of HCa2Nb3O10 were mixed with TBAOH at a molar ratio of 1:1 and 50 mL 

water was added. The suspension was shaken for 2-4 weeks and non-exfoliated particles 

were removed by centrifugation at 3000 rpm for 30 min. The supernatant with a 

concentration of 2mg/mL was used for the LBL assembly. 

ES[Mn2Al(OH)6] nanosheets were synthesized in a 2-step procedure. The LDH bulk 

compound was synthesized by a typical co-precipitation method where Mn(NO3)2•4H2O 

(3.33 mmol, 835 mg) and Al(NO3)3•9H2O (1.67 mmol, 626 mg) were dissolved in 100 mL 

water and an aqueous solution of 4-ethylbenzenesulfonic acid (1 mM, 100 mL) was added to 

the solution. The pH was then adjusted to 9.0 with 1 M NaOH under an Argon atmosphere 

and the brown precipitate recovered by filtration. After a washing step with water and 

acetone, the filtrate was dried under vacuum for 24 h. Exfoliation of ES[Mn2Al(OH)6] was 

performed by dispersing 25 mg of the bulk material in 50 mL formamide and subsequent 

sonication for 30 min. The resulting colloidal suspension was centrifuged at 3000 rpm for 

30 min to remove possible non-exfoliated particles and used for LBL assembly.  

LBL. (LDH/per)n (n = 20-100) multilayer films were fabricated with a StratoSequence 6 LBL 

robot (nanoStrata Inc., Tallahassee) on a Si (100) substrate. Wafers were cleaned with 

ethanol and dried under nitrogen prior to use and then placed into the sample holder. First, 

the Si wafer was immersed into the colloidal ES[Mn2Al(OH)6] nanosheet suspension for 

10 min and excess material removed by 1 min rinsing and spinning of the wafer in H2O. The 

same procedure was then applied for the TBA1-yHyCa2Nb3O10 deposition. After each layer the 
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substrate was dried under nitrogen flow for 1 min. The procedure was repeated n-times to 

obtain (LDH/per)n multilayer films. 

Calcination. (LDH/per)n (n = 20-100) multilayer stacks were heated applying two different 

programs in a muffle furnace under ambient conditions. For 300-700°C the samples were 

heated up for 3 h, the maximum temperature kept for 6 h and the stack cooled down within 

3 h. Additionally, the 500°C and the 1000°C samples were heated up for 10 h, the maximum 

temperature kept for 6 h and the stack cooled down within 10 h. The detailed temperature 

programs are listed in Table S4.2.1. 

Cross-section. In order to characterize the multilayer assemblies by TEM, cross-section 

samples were prepared. Two halves of a Si wafers were glued together using a two-

component adhesive creating a sandwich structure with the lamellar multilayer film in the 

middle. Subsequently, the sandwich was inserted into a Cu-tube and cut into thin discs. After 

a grinding and dimpling step and subsequent polishing with two different diamond pastes, the 

sample was ion-thinned until a small hole was visible. 

 

CHARACTERIZATION: 

TEM. A Philips CM30 ST microscope (300 kV, LaB6 cathode, CS = 1.15 mm, Royal Philips 

Electronics, Amsterdam) was used for TEM investigations and EDX analysis of (LDH/per)n 

cross-section samples. 

 

Table S4.2.1: Temperature programs and number of bilayers used for the heating study. 

Temperature program Bilayers / n 

RT –   3 h –   300°C – 6 h –   300°C –   3 h – RT 40 

RT –   3 h –   400°C – 6 h –   400°C –   3 h – RT 30 

RT –   3 h –   500°C – 6 h –   500°C –   3 h – RT 50 

RT – 10 h –   500°C – 6 h –   500°C – 10 h – RT 40 

RT –   3 h –   600°C – 6 h –   600°C –   3 h – RT 30 

RT –   3 h –   700°C – 6 h –   700°C –   3 h – RT 50 

RT – 10 h – 1000°C – 6 h – 1000°C – 10 h – RT 20 

RT – 10 h – 1000°C – 6 h – 1000°C – 10 h – RT 100 
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Figure S4.2.1: HRTEM images of (LDH/per)n multilayer stacks annealed at a) 300°C (n = 40), and b) 

500°C (n = 50). (A) denotes a homogeneous, alternatingly stacked layer close to the substrate, (C) a 

perovskite enriched layer. 
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Figure S4.2.2: HRTEM images of a (LDH/per)50 multilayer stack annealed at 700°C, showing different 

regions at various magnifications. 

 

 

Figure S4.2.3: HRTEM image of a Mn-oxide particle formed out of a (LDH/per)50 multilayer stack 

annealed at 700°C. 
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Table S4.2.2: EDX data for 22 crystalline particles obtained after heating (LDH/per)n multilayers at 

temperatures of 1000°C, sorted according their composition. 

No° Ca / at% Nb / at% Mn / at% Al / at% O / at% 

Nb > Mn+Al+(Ca) 

1 0.19 11.20 5.32 1.32 81.96 

2 0.17 12.44 6.45 2.85 78.10 

3 - 8.12 3.72 1.72 86.44 

4 0.09 26.11 9.58 1.29 62.94 

5 0.23 13.75 5.52 0.85 79.65 

6 0.19 15.74 5.29 1.88 76.89 

7 2.91 19.92 7.57 6.32 63.28 

Mn > Nb > Al > (Ca) 

8 - 6.99 10.84 1.62 80.54 

9 1.11 5.33 25.31 5.96 62.30 

10 1.32 8.17 17.16 6.66 66.69 

11 0.41 7.07 26.86 4.00 61.67 

12 0.41 15.63 18.99 1.70 63.27 

AlxMn2-xO3 

13 0.26 0.19 17.29 3.21 79.06 

14 0.10 0.09 17.12 6.69 76.00 

15 - - 28.46 4.39 67.16 

16 - 1.04 27.60 3.83 67.52 

MnNb2O6 

17 0.79 16.30 9.16  73.76 

18 0.89 15.56 5.31  78.25 

19 1.37 21.91 6.86  69.86 

Various 

20 0.26 10.59 9.01 13.15 66.99 

21 1.80 1.49 0.86 5.16 90.69 

22 - 17.32 17.25 1.96 63.46 

 

  



 

165 

4.3 Nanoarchitectonics of Calcium Niobate Nanosheets 

 

Christian Ziegler, Annekathrin Ranft, Maximilian Lamoth, Katarina Marković, Stephanie 
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ABSTRACT: Two-dimensional (2D) transition metal oxide (TMO nanosheets have remarkable 

potential as building blocks for hierarchically structured assemblies. We present the 

construction of several nanoarchitectures based on A1-yHyCa2Nb3O10 (A+ = TBA+, TBP+; 

TBA+ = tetra-n-butylammonium, TBP+ = tetra-n-butylphosphonium) perovskite nanosheets 

and evaluate specific nanosheet properties that enable these architectures. For the first time 

we investigate an artificial layer-by-layer (LBL) heterostructure of TBA1-yHyCa2Nb3O10 and 

poly(diallyldimethyl ammonium chloride) (PDDA) with up to 80 bilayers by transmission 

electron microscopy (TEM) and propose improvements for bottom-up synthesized bulk 

materials. The influence of the ligand is discussed for a similar approach where 

TBP1-yHyCa2Nb3O10 nanosheets were combined with layered double hydroxide (LDH) 

[Mn2Al(OH)6]+ nanosheets. Transferable multilayers of TBA1-yHyCa2Nb3O10 were achieved by 

evaporation induced self-assembly (EISA) of the nanosheets on a Si substrate and mixing 

with polystyrene (PS) spheres lead to a macroporous morphology after calcination of the as-

deposited material. Finally, a multilayer material was fabricated by an alternate stacking of 

spin-coated nanosheets and melted PS spheres that were deposited on the nanosheet layer 

by a “self-assembly on water surface” (SAWS) approach. All morphologies were investigated 

by atomic force microscopy (AFM), scanning electron microscopy (SEM) or TEM and 

highlight possibilities and drawbacks in the fabrication of functional materials based on 2D 

TMO nanosheets in the context of nanoarchitectonics. 

 

4.3.1 Introduction 

Complex next-generation nanomaterials with precisely controlled architectures and interfaces 

demand new synthetic innovations in order to aim for a targeted functionality in such hybrid 

materials.1 Among all types of 2D inorganic nanosheets, TMO nanosheets offer a large 

variety of layered precursors with intriguing functional properties that can be exfoliated into 

unilamellar layers under mild solution-based processes at room temperature.2-6 Such 

nanosheets show potential to be used as insulators, semiconductors and even conductors 

depending on their stoichiometry, and can be imagined as part of future high-performance 

devices for energy conversion, nanoelectronic or optoelectronic applications.7 TMO 

nanosheets possess an extremly high 2D anisotropy with a thickness down to 1 nm, lateral 



 

166 

sizes of ~1 μm and offer a well-defined composition and structure as 2D single crystal. These 

features make them perfect candidates for the fabrication of specific hierarchical 

nanoarchitectures. 

TBA1-yHyCa2Nb3O10 nanosheets are a prominent member of this material class and have for 

example proven capable of photocatalytic water splitting, to be used as electron transport 

material for solution-processed multi-junction polymer solar cells or as part of ultrathin 

capacitors.8-10 TBA1-yHyCa2Nb3O10 nanosheets are derived from a Dion-Jacobson-type 

layered perovskite KCa2Nb3O10, where negatively charged [Ca2Nb3O10]- perovskite layers 

consisting of corner-sharing NbO6 octahedra and Ca2+ in the A-site position of the perovskite 

are interleaved with exchangeable K+ ions.11-12 In a two-step soft-chemical reaction 

monovalent K+ can be exchanged against H+ and then against TBA+ or other bulky organic 

cations to yield colloidal suspensions of unilamellar nanosheets. Starting from this point 

several approaches are known to form nanosheet architectures with different morphologies. 

Note that an overview scheme for all applied synthesis routes is given in Figure 1.6 in 

Chapter 1. For TBA1-yHyCa2Nb3O10 main fabrication routes focused on layer-by-layer (LBL) 

assembly via electrostatic sequential deposition (ESD) or Langmuir-Blodgett (LB) 

procedures. In the first approach, negatively charged [Ca2Nb3O10]- nanosheets are stacked 

with positively charged materials like poly(allylamine hydrochloride) (PAH) or 

poly(dialllyldimethyl ammonium chloride) (PDDA),13-14 layered double hydroxides,15-16 or 

organic dyes.17 This procedure can also be used to synthesize core-shell structures.18 In the 

latter, amphiphilic ammonium cations are used to form a floating nanosheet monolayer that 

can be transformed by vertical or horizontal dipping and lifting.19-25 For both, the number of 

multilayers is still limited and additional experiments are necessary to evaluate the critical 

step from ultrathin layers back to 3D bulk materials. Tuning of the layer thickness, 

modification of the morphology, as well as transfer of the achieved nanostructures are other 

factors that need to be investigated for each individual nanosheet itself. Here we present 

several approaches that show the flexibility and at the same time limitations for 

nanoarchitectures based on [Ca2Nb3O10]- nanosheet building blocks.  

 

4.3.2 Experimental Section 

 

EXPERIMENTAL PROCEDURES: 

Chemicals. Water was purified by a Milli-Q purification system (Milli-Q Academic A10) and 

millipore water (M-H2O) was used throughout all procedures. All chemicals and solvents 

were purchased from commercial suppliers and used without further purification: Potassium 

carbonate (K2CO3, Merck KGaA, >99%), calcium carbonate (CaCO3, Grüssing, 99%), 

niobium(V) oxide (Nb2O5, Alfa Aesar, 99.5%), tetra-n-butylammonium hydroxide (TBAOH, 
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[CH3(CH2)3]4NOH•30 H2O, Sigma-Aldrich, 98%), tetra-n-butylphosphonium hydroxide 

(TBPOH, Sigma-Aldrich, 40 wt%), 4-ethylbenzenesulfonic acid (ES, Sigma-Aldrich, 95%), 

manganese nitrate (Mn(NO3)2•4H2O, Sigma-Aldrich, 97%), aluminum nitrate (Al(NO3)3•9H2O, 

Fluka, 99%), sodium hydroxide (NaOH, AppliChem, 97%), formamide (Fluka, 98%), (3-

Aminopropyl)triethoxysilane (APTES, C9H23NO3Si, Alfa Aesar, 98%), polyethyleneimine (PEI, 

(C2H5N)n, 50 wt% in H2O, Sigma-Aldrich), poly(diallyldimethylammonium chloride) (PDDA, 

(C8H16NCl)n, 20 wt% in H2O, Sigma-Aldrich), sodium dodecyl sulfate (SDS, NaC12H25SO4, 

Acros, 99%) and polystyrene spheres (PS, (C8H8)n, 5% dispersion in M-H2O, diameter 

d = 0.172 μm, 0.617 μm, Microparticles GmbH). 

A1-yHyCa2Nb3O10 (A+ = TBA+, TBP+). KCa2Nb3O10 was synthesized according to procedures 

known from literature.16, 26 Stoichiometric amounts of K2CO3, CaCO3 and Nb2O5 were mixed 

and thoroughly grinded. 20% excess of K2CO3 was added to compensate for volatilization 

losses. The mixture was fired up to a temperature of 1200°C for 60 h. 1 g of the bulk material 

was stirred in 40 mL 5M HNO3 for 5 days to completely exchange the cation for a proton with 

daily renewal of the acid. For exfoliation 0.2 g of HCa2Nb3O10 were dispersed with TBAOH or 

TBPOH, respectively, at a molar ratio of 1:1 in 50 mL aqueous solution. The suspension was 

shaken for 2-4 weeks and non-exfoliated particles were removed by centrifugation at 

3000 rpm for 30 min. The supernatant with a nanosheet concentration of ~2 mg/mL was 

used for further synthesis and investigations. Stability of nanosheets was tested by 

ultrasonication and heating of the material. TBA ratios, concentration influence, dipping time 

and modifications of the Si wafer as pretreatment with 5% HNO3, H2SO5 or pre-

functionalization with PEI, PDDA and APTES were tested to optimize surface coverage.  

ES[Mn2Al(OH)6]. The layered double hydroxyide (LDH) bulk compound was synthesized by 

a typical coprecipitation method.27 Mn(NO3)2•4H2O (3.33 mmol, 835 mg) and Al(NO3)3•9H2O 

(1.67 mmol, 626 mg) were dissolved in 100 mL water and an aqueous solution of 4-

ethylbenzenesulfonic acid (1 mM, 100 mL) was added to the metal nitrate solution. 1 M 

NaOH was added dropwise to the solution under an Argon atmosphere to adjust the pH to 

9.0. The brown precipitate was recovered by filtration, washed with water and acetone and 

dried under vacuum for 24 h. Exfoliation of ES[Mn2Al(OH)6] in formamide was performed by 

dispersing 25 mg of the bulk material in 50 mL formamide and subsequent sonication for 

30 min. The resulting colloidal suspensions were centrifuged at 3000 rpm for 30 min to 

remove possible non-exfoliated particles.  

Layer-by-Layer assembly (LBL). Si wafers were dipped in 5% HNO3 and sonificated for 

30 min at 30°C. Afterwards, they were thorougly rinsed with distilled H2O and dried at 60°C. 

The wafers were stored in EtOH and dried with N2 before usage. Wafer functionalization with 

APTES was performed by dipping the wafer into a 1 mM solution of APTES in EtOH for 

30 min at room temperature. Afterwards, the wafers were thoroughly rinsed with H2O and 
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EtOH for 30 min and dried with N2. The LBL assembly was then performed on a 

StratoSequence 6 LBL robot (nanoStrata Inc., Tallahassee). For the best quality stack the 

wafer was placed into the holder and first dipped for 20 min into a TBA1-yHyCa2Nb3O10 

perovskite nanosheet suspension where the pH was adjusted to 11 with 1m NaOH, then 

rinsed and spinned in water for 5 min, immersed in a diluted 5 wt% PDDA solution, rinsed 

and spinned in water for 5 min again. This procedure was repeated 80 times in order to 

obtain multilayer films (Per/PDDA)80. The washed film was dried under N2 gas flow for 1 min 

after each layer. For the (LDH/per)50 stack, ES[Mn2Al(OH)6] and TBP1-yHyCa2Nb3O10 were 

used and the dipping time for the perovskite and LDH suspensions reduced to 10 min. 

Cross-section preparation. For transmission electron microscopy (TEM) characterizations 

a sandwich structure was prepared by gluing two Si wafers together on the side of the 

multilayers and subsequently cutting the sandwich structure into discs. The discs were 

grinded, dimpled and ion-thinned. A part of the TEM lamellae was prepared by focused ion 

beam (FIB) using the lift-out technique. 

Evaporation induced self-assembly (EISA) and macroporous solids. EISA was 

performed based on studies of Kuroda et al.28 To achieve thick TBA1-yHyCa2Nb3O10 films, the 

colloidal nanosheet suspension was filled into a glass vial and a Si (100) wafer of 

1 cm x 1.5 cm was vertically dipped into the suspension. The suspension was slowly 

evaporated at temperatures of 30°C, 60°C or 80°C in a muffle furnace. For the fabrication of 

macroporous solids the nanosheet suspension was mixed with PS bead suspensions with 

various diameters at various ratios of 1:4, 1:10, 1:15, 1:20, 1:25 and 1:30. The deposited 

material was then calcined at various temperatures between 300°C-700°C to remove the PS 

beads. 

Spin-coating and self-assembly on water surface (SAWS). Multilayers of 

TBA1-yHyCa2Nb3O10 and melted PS layers were formed by a combination of spin-coating and 

SAWS. SAWS is based on protocols of Giersig et al. with modifications made by Qi et al.29-30 

First, a colloidal nanosheet suspension was spin-coated onto a Si substrate with a speed of 

2 k rpm/s and an acceleration speed of 1 k rpm/s. Therefore, one drop of about 0.05 mL was 

added and spinning was kept on for 2.5 min. The wafer was then calcined for 1 h on a hot-

plate at 250°C. For the next layer a plasma cleaned glass of 1 cm² was placed in the middle 

of a glass culture dish with a diameter ~9 cm, which was filled with M-H2O in such a way that 

the substrate was just not covered with water. Afterwards, 20 μL of an equal mixture of EtOH 

and PS beads (d = 0.172 μm) was gently dropped on the glass, so that the film spread out on 

the water surface. To condense the beads in one half of the dish, one drop of SDS solution 

was added very gently down from the surface of the edge of the dish, so that only a fraction 

of the SDS got in contact with the water before the rest and further drops were added. To 

cover the nanosheet substrate surface, the Si wafer was immersed under the water surface 
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and the monolayers “fished” from the bottom up very slowly. The wafer was dried for 1 h at 

120°C and the procedure repeated without a calcination step. 

 

CHARACTERIZATION: 

SEM coupled with energy-dispersive X-ray (EDX) analysis, ellipsometry, AFM and TEM were 

used to characterize the obtained nanosheets and the derived structures out of them. 

SEM-EDX. SEM was conducted on a JSM-6500F electron microscope (JEOL Ltd., Tokyo). 

The microscope was equipped with a 7418 EDX detector (Oxford Instruments, Abingdon). 

Ellipsometry. Ellipsometry was carried out on a M2000D (J.A. Woollam Co, Lincoln) with 

detection angles of 65°/70°/75°, a spectral range of 190-1000 nm and a fitting range of 350-

1000 nm.  

AFM. AFM measurements were performed on a MFP-3D Stand alone AFM (Asylum 

Research, Santa Barbara). Tapping-mode was applied using OMCL-AC160TS-R3 (Olympus, 

Tokio) cantilevers with a resonant frequency of 300 kHz. For statistics at least 3-6 positions 

of 20 μm x 20 μm were measured depending on the homogeneity of the samples.  

TEM. A Philips CM30 ST microscope (300 kV, LaB6 cathode, CS = 1.15 mm, Royal Philips 

Electronics, Amsterdam) was used for TEM investigations. 

 

4.3.3 Results and Discussion 

In an earlier study we have shown that the applied synthesis route yields TBA1-yHyCa2Nb3O10 

nanosheets with a TBA+ amount of 0.84 (y = 0.16), lateral dimensions around 1-2 μm and a 

height of 3.5 nm according to AFM measurements under ambient conditions (see 

Chapter 4.1).16 The height of the nanosheets is higher than the crystallographic thickness of 

the perovskite layer (~1.44 nm) due to adsorption of water and also caused by the dense 

ligand shell surrounding it. Subsequent dilution of the colloidal suspension showed that TBA+ 

cations can be replaced by H+ due to the following equilibrium reaction: 

 

𝑯𝑪𝒂𝟐𝑵𝒃𝟑𝑶𝟏𝟎 +  𝑻𝑩𝑨𝑶𝑯 ⇌  𝑻𝑩𝑨𝑪𝒂𝟐𝑵𝒃𝟑𝑶𝟏𝟎 +  𝑯𝟐𝑶 (Eq. 4.3.1) 

 

In contrast to this post-treatment a change of the TBA+ ratio before exfoliation has a different 

influence as shown in Figure 4.3.1. For a molar ratio of 1:0.1 of HCa2Nb3O10 to TBAOH only 

a few nanosheets are obtained, which are smaller in size ~0.5 μm and also thinner with a 

height ~2.6 nm. For a ratio of 1:0.5 nanosheets become larger (~1 μm) and the height 

increases slightly to ~2.8 nm. For ratios between 1:1-1:4 TBA1-yHyCa2Nb3O10 nanosheets 

show dimensions around 3.5 nm in height and 1-2 μm in size as described in the beginning. 

Further increase of the TBAOH amount leads to a successive prevention of exfoliation, which 

is shown for the extreme case of a ratio of 1:24. This finding is similar to studies on 
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lepidocrocite-type titanate nanosheets and for lower ratios to an AFM study of [Ca2Nb3O10]- 

with various ligands.31-33 A large excess of aqueous TBA+ ions leads to a swelling via osmotic 

hydration of the material in the interlayer region, whereas a 5-fold excess down to an 

equivalent amount of TBA ions favors complete delamination. Below a certain concentration 

no exfoliation occurs. Note that the solid to solution ratio seems to affect the transition from a 

swollen phase to exfoliated nanosheets as well as certain other factors such as composition, 

charge density and the nature of the exfoliating agent or solvent play crucial roles in this 

process as well.34 

 

 

Figure 4.3.1: Comparison of AFM images and corresponding height profiles of HCa2Nb3O10 exfoliated 

with a a) 1:0.1, b) 1:0.5, c) 1:24 ratio to TBAOH. 

 

Once exfoliated, TBA1-yHyCa2Nb3O10 nanosheets seem to be extremely mechanically stable 

to ultrasonication compared to other niobate nanosheets. Figure 4.3.2 shows AFM images of 

nanosheets that were ultrasonicated for 1-12 h. In contrast to nanosheets derived from 

K4Nb6O17 that get smaller with increased ultrasonication duration, no signifcant change in 

size was observed for the calcium niobate.28 Neither did ultrasonication show an influence on 

the height and hence the TBA+ amount present on the sheet. Only small multilayer parts that 

are sometimes present at the nanosheet surface got removed. Thus, ultrasonication might be 

exploited to clean the nanosheets from residues. Note that the initial size of the nanosheets 

is dependent on the crystallite size of the bulk phase and the exfoliation method, e.g. 
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nanosheets get larger in size for lower shaking or stirring speeds. Regarding thermal 

stability, we found that individual nanosheets deposited on a Si wafer start to decompose at 

temperatures ≥300°C. 

 

Figure 4.3.2: AFM images of TBA1-yHyCa2Nb3O10 nanosheets on a Si substrate after ultrasonication 

for a) 1 h, b) 2 h, c) 4 h and d) 12 h. 

 

Exfoliation of HCa2Nb3O10 with TBPOH leads to unilamellar TBP1-yHyCa2Nb3O10 nanosheets, 

which has been up to our knowledge not been demonstrated before. AFM images are shown 

in Figure 4.3.3 and display slightly smaller nanosheets with a lateral dimension of 500 nm - 

1 μm. Contrary to the TBA1-yHyCa2Nb3O10 nanosheets, the wafer had to be washed with 

water before mesurement as TBP+ samples form some kind of “sticky” film on the Si surface. 

The height of the nanosheets is around 2.9 nm and thus smaller compared to 

TBA1-yHyCa2Nb3O10. This might be due to removal of the ligand during the washing step. 

Thus, TBPOH can - similar to titanate nanosheets - also be used for calcium niobates as 

exfoliation agent.35 

 

 

Figure 4.3.3: AFM image and corresponding height profile of TBP1-yHyCa2Nb3O10 nanosheets on a Si 

substrate after washing. 
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For LBL purposes, surface coverage is one main drawback that needs to be overcome. As 

simple surface activation by acid treatment of Si wafers with 5% HNO3 or conc. H2SO5 did 

not show a significant improvement in surface coverage, we tested several primers for the 

nanosheets. The AFM images for Si wafer coated with 5 wt% PEI, 20 wt% PDDA or 1 mM 

APTES after dip-coating in a TBA1-yHyCa2Nb3O10 nanosheet suspension are given in 

Figure 4.3.4. Similar to the results shown in literature PDDA and PEI can yield an (almost) 

complete coverage of the substrate depending on the concentration, pH and dipping time.13,16 

Higher concentration, a pH ≥ 8.4 and longer dipping times favor complete coverage, but also 

cause many overlaps and attachment of smaller parts. In contrast, it seems possible to 

achieve a densely packed monolayer without many overlaps with the aid of APTES. APTES 

forms thin self-assembled monolayers and does not coil like the polymers.36 Thus, LBL 

experiments were performed with APTES functionalized Si wafers. 

 

 

Figure 4.3.4: Comparison of Si wafers coated with TBA1-yHyCa2Nb3O10 primed with a) 5 wt% PEI, b) 

20 wt% PDDA and c) 1 mM APTES. 

 

TEM images of a (Per/PDDA)80 stack at various magnifications are shown in Figure 4.3.5. 

The stack has an average thickness of around 230 nm. This is about half of the sum of 

crystallographic thickness of [Ca2Nb3O10]- (80 x 1.44 nm = 115.2 nm). Mallouk et al. have 

shown with ellipsometric measurements that the increase due to PDDA is around 

0.19±0.07 nm, which would yield an overall thickness of around 130 nm for the “theoretical” 

(Per/PDDA)80 stack. Thus, we obtain a difference of roughly 100 nm in comparison to the 

experimental stack in the end.13 This difference is caused by various factors. As can be seen 

from Figure 4.3.5 b)-c) the stack is very homogeneous for the first layers, but with increasing 

bilayer number the arrangement gets inhomogeneous as effects of sheet termination, sheet 

overlap and inclusion of agglomerates add up. Amorphous gaps form where no sheets are 

deposited. These gaps get bigger for the outer layers and can be up to 10-15 nm in size. 

This might also be caused by an agglomeration of the PDDA polymer. Another reason might 

be the restacking of nanosheets and deposition of multilayer sheets. During optimization of 

the stacking parameters we encountered one main difficulty, the carryover of the polymer 

into the TBA1-yHyCa2Nb3O10 suspension that leads to flocculation of the nanosheets. We 
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found a decrease of the PDDA concentration from 20 wt% down to 5% as most effective way 

to resolve this problem. An increase of washing time did not show a significant effect. 

Concentrations ≤1 wt% lead to no LBL deposition at all. Note that the deposited layers are 

partly detached from the surface and can easily be removed from the substrate as will be 

discussed later. 

 

 

Figure 4.3.5: a) Overview TEM image of a (Per/PDDA)80 stack and b)+c) an enlarged region at higher 

magnification. 

 

Another possibility to arrange perovskite nanosheets in a LBL-manner is the use of positively 

charged LDH nanosheets. We have characterized in detail a (LDH/per)n stack composed of 

TBA1-yHyCa2Nb3O10 and ES[Mn2Al(OH)6] nanosheets, as discussed in Chapter 4.1.16 

Applying various analysis methods, we concluded that only TBA+ can be exchanged against 

[Mn2Al(OH)6]+ and thus be used to regulate the density of the multilayer arrangement. In the 

following the difference between TBA+ and TBP+ is investigated in more detail. The resulting 

(LDH/per)50 stack for TBP1-yHyCa2Nb3O10 and ES[Mn2Al(OH)6] nanosheets is shown in 

Figure 4.3.6. The stack is similar to the TBA+ based arrangement and thus very 

homogeneous. With a height of 70 nm (50 x (1.44 nm + 0.48 nm) = 96 nm) the 

heterostructure is around 26 nm smaller than expected. Thus, the proposed exchange of 

TBA+ against LDH+ layers might be slower when TBP+ is used instead. An incomplete 

exchange would lead to regions where the negatively charged perosvkite layer is not covered 

with a positively charged LDH layer and hence, the next deposited perovskite layer would be 

washed away due to a weaker bonding force between similar charged layers.16 According to 

EDX the ratio of Per:LDH is 3:1 and therefore approximately the same as for the TBA based 

multilayer stack. Applying longer dipping time, TBP+ might be more suitable to form 

homogeneous LBL structures than TBA+. 
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Figure 4.3.6: Overview TEM images of a (LDH/per)50 stack synthesized by alternate stacking of 

TBP1-yHyCa2Nb3O10 and ES[Mn2Al(OH)6] nanosheets and b) an enlarged region at higher 

magnification. 

 

An approach to deposit “thick” TBA1-yHyCa2Nb3O10 nanosheet films without any oppositely 

charged cations is shown in Figure 4.3.7 and is based on EISA, using substrates that were 

vertically placed in a suspension of nanosheets. According to AFM measurements, slow 

evaporation of the solvent leads to deposition of 300-600 nm thick restacked nanosheet 

films. The thickness depends mainly on the concentration of the nanosheet suspension, 

whereas the homogeneity is governed by the temperature. We found a dilution of the mother 

nanosheet suspension (~2 mg/mL) of 1:16 and a temperature of 60°C to yield the most 

uniform films. Still, vibrations and air circulation in the muffle furnace seemed to be the main 

drawback in order to fabricate homogeneous films and have to be eliminated in future 

setups. Nevertheless, one main advantage of this assembly is that these films can be 

separated from the substrate by simply rinsing the wafer in water, and thus they can easily 

be lifted off and transferred onto another substrate. Thus, no complicated embedding in 

polymers or stamping procedures are necessary. Once the multilayers are heated above 

300°C the decomposition of the ligand leads to an immobilization of the nanosheets onto the 

wafer surface and harsher conditions like boiling in 6M HCl are necessary to remove the 

films. 

 

 

Figure 4.3.7: Photographs of a) the experimental EISA setup, b) coated wafers of TBA1-yHyCa2Nb3O10 

nanosheets deposited at 60°C at various dilutions of the mother nanosheet suspension with a 

concentration of ~2mg/mL (1:0, 1:1, 1:2, 1:4 from left to right) and c) nanosheet platelets removed 

from the wafer. 
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To demonstrate the viability of this method for the fabrication of more complex films, we used 

EISA to deposit TBA1-yHyCa2Nb3O10 nanosheets along with PS spheres. Figure 4.3.8 displays 

SEM images of a deposited film before and after calcination at 300°C. Macroporous solids 

are formed in good quality, similar to works on K4Nb6O17 based nanosheets.28 As mentioned 

above, we found that dilution of the stock nanosheet suspension at concentrations down to 

0.1 mg/mL gave the most uniform films. Since TBA1-yHyCa2Nb3O10 nanosheet sizes cannot 

be tuned by ultrasonication, we used larger PS spheres (d = 0.617 μm) to achieve a good 

network where enough but not to many nanosheets are present to wrap around the PS 

beads. Smaller PS spheres lead to a more densely packed nanosheet film with less pores, 

as nanosheets do not wrap around the spheres and rather re-stack. From literature it is 

known, that an additional heating step >700°C can be performed to further improve 

crystallization of the network to form e.g. Ca4Nb6O19.24 Not that calcination at 300°C is 

necessary as direct heating at 700°C leads to a collapse of the network. 

 

 

Figure 4.3.8: SEM images of a) TBA1-yHyCa2Nb3O10 nanosheets (c = 0.1 mg/mL) mixed with PS 

(d = 0.617 μm) spheres after EISA depostion at 60°C and b) side and c) top image (c = 0.2 mg/mL) 

after removal of PS spheres. 

 

In the last approach we used the PS spheres to generate a Bragg stack-like material with 

periodically alternating layers of nanosheets. Figure 4.3.9 shows the SEM image of an 

alternate stacking of a TBA1-yHyCa2Nb3O10 nanosheet layer with melted PS spheres and 

unmelted PS spheres on top. Contrary to the EISA approach the layer thickness can be more 

precisely tuned by spin-coating and yields smoother surfaces. Table 4.3.1 lists the obtained 

layer thickness for TBA1-yHyCa2Nb3O10 nanosheets (c = 6 mg/mL in 20% M-H2O/80% EtOH) 

at the given spinning conditions. After an initial layer with a thickness of ~29 nm each 

additional drop adds a layer of around 40 nm. Note that a calcination step is necessary to 

decompose the organic ligand layer and hence, to enable interaction of the deposited layer 

with the new nanosheets. Without the calcination step a maximum thickness of ~35 nm 

independet of the material quantity was reached. The layer can also be decomposed by UV 

irradiation.20 This is a crucial point in the utilization of TBA1-yHyCa2Nb3O10 nanosheets as 
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building blocks. Nanosheets are achieved through a swelling process and the loss of the 

interaction between neighbouring layer. Once deposited on a substrate the interaction is still 

weak so that for example only monolayers stay attached on the surface and a LBL approach 

is possible. Once the ligand is decomposed the bonding increases and multilayers are 

stabilized. We used this behavior to first immobilize a perovskite multilayer and then added a 

PS layer that was melted at 120°C. From that point onwards an alternate stacking was 

possible as can be seen in the SEM image (Figure 4.3.9). The orange arrows point to 

TBA1-yHyCa2Nb3O10 layers with a thickness of around 30 nm similar to the one observed for 

the initial layer and the PS spheres on top (d = 0.172 μm). The melted PS layer shows a 

decreased thickness of ~134 nm. With this the applicability of perovskite nanosheets in 

Bragg stack materials is imaginable once more alternating layers are deposited. In future 

approaches UV irradiation instead of thermal treatment might enable to maintain the PS 

sphere layers, thus enabaling an easy control of the layer thickness in dependence of the 

sphere diameter. 

 

 

Figure 4.3.9: Multilayer stack of TBA1-yHyCa2Nb3O10 nanosheets (orange arrows) with melted PS layer 

(red) and PS (d = 0.172 μm) layer before melting (green). 

 

Table 4.3.1: Ellipsometric analysis determing the layer thickness of spin-coated TBA1-yHyCa2Nb3O10 

layers (c = 6 mg/mL in 20% M-H2O/80% EtOH). 

Layer Thickness Increase 

1 28.84 ± 0.09 nm - 

2 69.58 ± 0.16 nm 40.74 nm 

3 113.90 ± 0.41 nm 44.32 nm 

4 152.58 ± 0.65 nm 38.38 nm 
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4.3.4 Conclusion 

In conclusion, we have shown fabrication of five different heterostructures with perovskite 

A1-yHyCa2Nb3O10 (A+ = TBA+, TBP+) nanosheets that highlight both possibilities and 

challenges for a controlled design of variable morphologies and hence functionalities. For the 

first time we have investigated a machine-dip-coated LBL fabrication of (Per/PDDA) 

heterostacks up to 80 bilayers, exceeding similar multilayer formations by more than 3-fold. 

As we go from 2D towards 3D materials, several factors like sheet termination/overlap and 

flocculation lead to more inhomogeneities for higher bilayer numbers, whereas the first 

multilayers always show a homogeneous stacking. In order to resolve these problems, 

different solvents and an enhanced washing procedure have to be tested. Additional 

calcination steps might be beneficial for monolayer homogeneity. Using LDH+ instead of a 

polymer we have shown that also the ligand of the nanosheet can have an influence on the 

stacking quality. We found TBP+ to exchange more slowly against LDH+ than TBA+, resulting 

in a more densely packed film. In-depth characterization and monitoring of various ligands 

(e.g. those shown in Chapter 3.3) in future experiments can be one approach to optimize 

understanding and synthesis of nanosheet based heterostructures. For the deposition of 

thick TBA1-yHyCa2Nb3O10 films on a substrate we used EISA where the solvent is slowly 

evaporated. Both films can easily be separated from the substrate and transferred on top of 

each other by rinsing off the deposited material in water. Once the perovskite nanosheets are 

heated above 300°C this simple separation is not possible anymore, since the nanosheets 

seem to form a (covalent) bond with the Si surface and possibly also among each other. 

Adding PS spheres to a TBA1-yHyCa2Nb3O10 suspension we were able to fabricate 

“macroporous” solids after the mixture was deposited via EISA and the PS spheres removed 

at 300°C. Since TBA1-yHyCa2Nb3O10 nanosheets have a high mechanical stability, large PS 

spheres (d = 0.617 μm) had to be used to enable a wraping of the nanosheets around the 

spheres, which is the basis of the formation of such porous materials. The deposited porous 

layer with its cavities might be useful for future photochemical devices. Combination of spin-

coating of perovskite nanosheets and deposition of PS spheres with SAWS and susequent 

calcination allowed us to form the basis of a 1D Bragg stack like multilayer, that once more 

layers are deposited may be interesting for certain sensing applications, e.g. as humidity 

sensor. Overall, TBA1-yHyCa2Nb3O10 nanosheets have proven to be a multifaceted building 

block for nanoarchitectonics. 
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ABSTRACT: KCa2Nb3O10 is a layered Dion-Jacobson-type perovskite important for a number 

of applications such as photocatalysis and as a building block for heteronanostructures. 

Despite this, some of its central electronic properties such as the band gap and dielectric 

function are not well understood. In this report we have attempted to determine the band gap 

and understand the electronic structure of KCa2Nb3O10 using density functional theory. 

Simultaneously, the band gap and loss function have been determined experimentally using 

valence electron energy loss spectroscopy. The theoretical results indicate that KCa2Nb3O10 

is a direct band gap semiconductor with a sparse density of states close to the onset of the 

conduction band. The calculated band gap value of 3.1 eV is in excellent agreement with the 

3.2 ± 0.1 eV measured experimentally. The loss functions computed and experimentally 

determined show good agreement up to 20 eV, but the theoretical peak positions at higher 

energy do not agree with the experimental electron energy loss spectrum. These transitions 

originate from K-3p, Ca-3p, and Nb-4p semicore states and their positions are not well 

described by Kohn-Sham eigenvalues. After a scissors shift of transitions due to these states 

by about 2.5 eV to higher energies we obtain good agreement with the experimental loss 

function and can thus explain the origin of all the features seen in the experimental electron 

energy loss spectrum. 

 

5.1.1 Introduction 

Since first being synthesized nearly three decades ago1-2 KCa2Nb3O10, a Dion-Jacobson-type 

perovskite, has constantly attracted the attention of the scientific community for various 

possibilities it offers. Researchers have reported it to be an interesting material for 

applications such as ionic conductivity3 and photocatalysis.4 Upon intercalation with Li, 

KCa2Nb3O10 has been shown to turn superconducting.5 Upon doping with Eu3+ or La3+ it has 

been reported to become photoluminescent.6 In recent years interest in the material has 

surged again as it has been used as the parent compound for exfoliation into two-
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dimensional nanosheets, whereby the K+ ions of the KCa2Nb3O10 have been chemically 

replaced during exfoliation by bulky organic cations.7 Possible applications of such 

nanosheets range from dielectrics to building blocks for layered heterostructures.8-9 Despite 

the large interest in pure and doped KCa2Nb3O10, a basic understanding of the electronic 

structure of this material is lacking. The crystal structure of KCa2Nb3O10 was studied using 

single crystal x-ray diffraction analysis by Fukuoka et al.10 whereby it was suggested to be 

orthorhombic, space group Cmcm. However, in this experiment only an average structural 

model could be obtained with partial occupation of some O sites.10 Tokumitsu et al. argued11 

that as neutron beams interact more strongly with the nuclei than the x-rays, neutron 

diffraction offered the opportunity to better understand the positions of oxygen atoms. They 

improved11 upon the structure model of Fukuoka et al.10 and indicated a monoclinic structure 

(space group P21/m) with no partial occupancies. Density functional theory (DFT) has proven 

to be an invaluable tool for understanding many material properties like bulk moduli, phase 

diagrams, and crystal structures;12-13 however, its ability to successfully predict properties 

relating to excited states (band gaps in particular) has been less successful.14-15 This is a 

direct consequence of the fact that the Hohenberg-Kohn theorem16 is mathematically valid 

only for ground states.17 Standard DFT has been infamous in the study of semiconductors for 

underestimating band gaps and more sophisticated, computationally expensive methods 

must be used. Recently, progress has been made for calculating band gaps more effectively 

by using the Tran-Blaha modified Becke Johnson (TB-mBJ) potential.18 This approach has 

been successfully demonstrated18 to predict band gaps of semiconductors (Si, Ge, GaAs, 

etc.), insulators (LiF, Ne, Kr, etc.), and even correlated transition metal oxides (MnO, NiO). 

Employing this approach18 we have attempted to understand the electronic structure of 

KCa2Nb3O10 by obtaining the band structure, density of states (DOS), dielectric function, and 

loss function. 

With the advent of commercially available monochromators on transmission electron 

microscopes (TEM), determination of band gaps using valence electron energy loss 

spectroscopy (VEELS) has become an interesting experimental option,19-22 specifically 

relating to nanostructures where other methods cannot offer sufficient spatial resolution.23 In 

this work we have determined the band gap of KCa2Nb3O10 using VEELS. In addition, the 

loss function S is determined from VEELS and subsequently compared to the theoretically 

calculated loss function. 
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5.1.2 Computational and Experimental Methodology 

 

COMPUTATIONAL DETAILS: 

As an input, the structure of KCa2Nb3O10 proposed by Tokumitsu et al.,11 determined by 

powder neutron diffraction, was used for calculations as it offered well defined and fully 

occupied oxygen sites in contrast to the model of Fukuoka et al.10 In this structure model11 

KCa2Nb3O10 crystallizes into a monoclinic crystal, space group P21/m (space group number 

11). We have interchanged the crystal axes compared to Ref. 11 by redefining crystal 

parameters a, b, c, and γ to 14.859 Å, 7.7418 Å, 7.7073 Å, and 97.51°, respectively. Density 

functional theory based calculations were performed on KCa2Nb3O10 using an augmented 

plane wave + local orbitals (APW + lo) approach as incorporated in the WIEN2K code.24 The 

atomic spheres used for K, Ca, Nb, and O were 2.42, 2.03, 1.69, and 1.50 a.u. respectively. 

The wave functions in the atomic spheres were expanded as spherical harmonics up to 

angular momentum l = 10. Local orbitals were used for the semicore states (Ca-3s,3p; 

K-3s,3p; Nb-4s,4p; O-2s). In the interstitial region between the atomic spheres, a plane wave 

expansion was used, fixing the parameter RMTKmax = 7, which is the product of the smallest 

muffin tin radius and the largest plane wave Kmax. The adequacy of the choice of the plane 

wave basis set size was checked by additional calculations using RMTKmax = 8. The 

calculated forces on the atoms with this enlarged RMTKmax stayed within the convergence 

criterion used for structure optimization, thereby validating the choice of the size of the plane 

wave basis set. For optimizing the atomic positions in the unit cell and determining the 

energy of the system, exchange correlation effects were treated using the generalized 

gradient approximation as proposed by Perdew, Burke, and Ernzerhof (PBE-GGA).25 

Since it is well known that PBE-GGA underestimates band gaps,26 the electronic structure 

calculations (DOS, band structure, and dielectric function) were performed using the TB-mBJ 

potential18 which usually predicts band gaps with higher accuracy. The original Becke-

Johnson potential27 is an approximation to the “exact-exchange” optimized effective potential 

in atoms. Tran and Blaha18 have introduced a weighing factor for the two terms of this 

potential (the approximate Slater potential and the response part), which is determined from 

the average of ∇ρ/ρ (where ρ corresponds to the electron density) of the specific system 

under investigation. It has been shown in numerous applications18, 28-30 that the TB-mBJ 

methodolgy predicts band gaps in very good agreement with experiment and much more 

expansive Green’s function based (GW) calculations. 

The irreducible Brillouin zone was sampled with a [2 × 4 × 4] k-point mesh for the self-

consistency cycle which was taken to be converged when the forces on the atoms fell below 

1.0 mRy/a.u. For geometry optimization the structure was optimized by minimizing the forces 

on the atoms, keeping the overall unit cell parameters constant. The structure was assumed 
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relaxed when the force components on individual atoms fell below 5.0 mRy/a.u. A denser k 

mesh with [4 × 8 × 8] k points was then used to sample the irreducible Brillouin zone to 

extract the density of states and the optical properties. 

Optical properties were determined by employing the OPTIC program31 of the WIEN2K code, 

whereby momentum matrix elements were computed in an energy range of −5 to 5 Ry. Two 

different calculations were performed; in the first, no scissor operator was used because of 

the usage of TB-mBJ potential18 which models the valence and conduction band states well. 

However, the TB-mBJ potential does not give correct energy positions of the semicore states 

(K-3s,3p; Ca-3s,3p; Nb-4p) and in order to determine the dielectric function at higher 

energies, the transitions due to these states were shifted to a higher energy by an amount 

ΔE = 2.5 eV in the ε2 calculated from the momentum transfer matrix elements. 

 

SYNTHESIS: 

KCa2Nb3O10 synthesis was carried out in a way similar to the one performed by Jacobson 

and co-workers.2 Commercially available K2CO3 (Merck, 99% purity), CaCO3 (Grüssing 

GmbH Germany, 99% purity), and Nb2O5 (Alfa Aesar, 99.5% purity) in a stoichiometric ratio 

of 1.1:4:3 were thoroughly ground and mixed. A preheating step at 900°C was undertaken 

before firing up the pelletized compound to 1200°C for 60 h. The purity of the as-synthesized 

KCa2Nb3O10 was checked by means of x-ray diffraction where all reflections obtained were 

characterized as those of KCa2Nb3O10. For TEM analysis, the KCa2Nb3O10 was suspended in 

ethanol, stirred, and drop coated onto lacy carbon coated copper TEM grids (Plano GmbH 

Germany), and allowed to dry in air. 

 

VEELS MEASUREMENTS AND DATA ANALYSIS: 

The KCa2Nb3O10 TEM samples were investigated using a FEI Titan 80-300 scanning 

transmission electron microscope equipped with a field emission gun, a Wien-type 

monochromator, and a Gatan Tridiem 866 energy filter having a 2k CCD camera to obtain 

the VEEL spectra. A freely suspended particle of KCa2Nb3O10 was chosen and checked for 

thickness by obtaining an electron energy loss spectroscopy (EELS) thickness map which 

suggested that the thickness of the particle investigated was about 0.3 times the inelastic 

mean-free-path length. The sample was oriented into a random orientation such that it was 

not in a zone axis for a high-symmetry plane. Measurements for band gap and loss function 

extraction were performed in scanning transmission electron microscopy (STEM) mode with 

a stationary spot using convergence and collection angles of 9.5 mrad each. A spectrometer 

dispersion of 0.02 eV/channel was used for acquiring the VEEL spectra. Additionally, to 

obtain the core loss excitations Ca M2,3 and Nb N2,3 EEL spectrum was acquired in TEM 

mode from a different region using parallel illumination, collection angle (governed by the 
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objective lens aperture and the spectrometer entrance aperture in TEM mode32) of 9.5 mrad, 

and a dispersion of 0.2 eV/channel. The chosen collection angle resulted in a momentum 

transfer of ∼3 Å−1, due to which the contribution of dipole-forbidden transitions32-34 to the 

EELS signal was reduced. 

The VEEL spectra of KCa2Nb3O10 were acquired in a two-step process. In the first step, 

50 spectra were acquired with acquisition times of 0.14 s each, such that the spectra 

spanned across the tail of the zero-loss peak (ZLP) on the negative side up to the valence 

loss features of importance (-6 to +34 eV). Next, 50 spectra were acquired with an 

acquisition time of 1.12 s each, where the spectra spanned from the tail of the ZLP on the 

positive side of the energy loss until the features of interest (+1 to +41 eV). The spectra in 

the first set containing the complete ZLP were aligned to get the maximum overlap between 

all ZLPs and were then added, to get a single spectrum, using EELS tools routines35 

implemented in the commercially available software package Digital Micrograph (Gatan Inc., 

Pleasanton California). The 50 spectra in the second set were also added to get a single 

spectrum. These two spectra were calibrated in the following way. The maximum of the ZLP 

in the first spectrum was defined to be zero energy loss. Then the uncalibrated second 

spectrum containing the valence loss features with a better signal-to-noise ratio was 

superimposed on the first spectrum and then calibrated such that the positions of valence 

loss excitations in both spectra overlapped. The calibrated spectra were then spliced to form 

a single spectrum which was used for subsequent analyses. The energy resolution, as 

governed by the full width at half maximum of the ZLP, was 0.2 eV and was achieved for 

settings where the ZLP was not symmetric. Due to this, the method of subtracting the 

mirrored negative side of ZLP19, 22 was not used for removing the ZLP contribution from the 

spectra. Instead a power-law function was used to describe the tail of the ZLP as has been 

used by Erni and Browning36 and then subtracted from the spectrum to obtain the loss 

function. However, we did not use a Lorentzian fit of the first derivate like Erni and 

Browning36 to determine the conduction band onset. 

 

5.1.3 Results and Discussion 

 

DFT CALCULATIONS: 

The crystal structure of KCa2Nb3O10 is shown in Figure 5.1.1. It consists of two-dimensional 

(2D) planes containing K, Ca, or Nb atoms parallel to the crystallographic (100) plane. There 

are two different NbO2 planes in the structure, one located between the KO2 and CaO planes 

(Nb atoms referred to subsequently as Nb3 and Nb4), the other located in the 

crystallographic (200) plane between two CaO planes (Nb atoms referred to subsequently as 

Nb1 and Nb2). Geometry optimization of the KCa2Nb3O10 structure changed the fractional 
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atomic positions (see Table 5.1.1) up to 0.03 Å (Ca3) as compared to the experimental 

structure proposed by Tokumitsu et al. The Nb1(2)-O octahedra are not significantly 

modified; the corresponding Nb-O distances change by less than 0.02 Å. Overall the 

Nb1(2)O2 plane is less buckled. On the other hand the Nb3(4)-O octahedra rotate slightly 

and the Nb-O distances change up to 0.07 Å. This makes the Nb3-O and Nb4-O octahedra 

more similar. Partly due to these rotations, but in particular due to large movements of the Ca 

ions, some Ca-O bond lengths change by up to 0.3 Å, thereby increasing the shortest Ca-O 

distances and making the complex Ca-O polyhedra more isotropic. The large changes 

around Ca also change the bond valence sums from 2.44-1.90-1.65-2.34 to 2.33-2.16-1.81-

2.02 (Ca1-Ca2-Ca3-Ca4), making them much closer to the formal valence of Ca. Some K-O 

distances change by up to 0.2 Å which makes the K1-O2-K2 distances much more similar. 

 

 

Figure 5.1.1: (Color online) Unit cell of KCa2Nb3O10 indicating the planes of K, Ca and Nb atoms; Nb 

atoms in the median plane have been labeled Nb1 and Nb2 whereas the ones in the planes between 

K and Ca planes are labeled as Nb3 and Nb4.  

 

The total density of states obtained using modified Becke-Johnson potential18 showed the 

valence band having a width of about 5 eV separated from the conduction band by a band 

gap value of 3.1 eV (Figure 5.1.2). At the conduction band onset the DOS is fairly low up to 

4.3 eV, after which there is a sudden increase up to 6 eV, where another gap separates the 

conduction bands into two regions. The low-energy part of the DOS can be attributed to the 

semicore states as follows: Between -30.9 and -30.3 eV are the Nb-4p states (which 

incidentally are spin-orbit split by about 0.2 eV); between -28.6 and -27.9 eV K-3s states; 

between -20.2 and -19.0 eV Ca-3p states; between -18.4 and -16.2 eV O-2s states; between 

-11.3 and -10.8 eV K-3p states. Transitions from these semicore states into the conduction 

band should be delineated in the imaginary part of the dielectric function ε2. 
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Table 5.1.1: Theoretically optimized (top row) and experimental (bottom row) atomic positions in 

KCa2Nb3O10. 

Ca 1 0.6495 

0.653 

0.7855 

0.78 

0.75 

0.75 

Ca 2 0.3405 

0.346 

0.7023 

0.717 

0.75 

0.75 

Ca 3 0.6384 

0.628 

0.2893 

0.322 

0.75 

0.75 

Ca 4 0.3480 

0.351 

0.1969 

0.201 

0.75 

0.75 

K 1 0.0203 

0.035 

0.6302 

0.616 

0.25 

0.25 

K 2 0.0071 

0.008 

0.1226 

0.132 

0.25 

0.25 

Nb 1 0.5 

0.5 

0 

0 

0 

0 

Nb 2 0.5 

0.5 

0.5 

0.5 

0 

0 

Nb 3 0.7900  

0.7848 

0.5778 

0.571 

0.9960 

0.004 

Nb 4 0.7889  

0.789 

0.0733 

0.075 

0.9943 

0.987 

O 1 0.6293  

0.629 

0.4998 

0.495 

0.0304 

0.033 

O 2 0.9091 

0.905 

0.6220 

0.594 

0.9644 

0.983 

O 3 0.7741 

0.77 

0.3211 

0.316 

0.0136 

0.012 

O 4 0.7444 

0.749 

0.5503 

0.541 

0.75 

0.75 

O 5 0.7764 

0.775 

0.5923 

0.574 

0.25 

0.25 

O 6 0.5226 

0.514 

0.5660  

0.576 

0.75 

0.75 

O 7 0.5131 

0.520 

0.7536 

0.755 

0.0673 

0.053 

O 8 0.6286 

0.630 

0.0635 

0.006 

0.0486 

0.052 

O 9 0.9067 

0.906 

0.0879 

0.081 

0.9530 

0.953 

O 10 0.7464 

0.748 

0.8139 

0.818 

0.9869 

0.974 

O 11 0.7389 

0.733 

0.0757 

0.065 

0.75 

0.75 

O 12 0.7842 

0.782 

0.0504 

0.069 

0.25 

0.25 

O 13 0.5309 

0.528 

0.9570 

0.973 

0.75 

0.75 
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Figure 5.1.2: (Color online) Calculated total (full black line) DOS of KCa2Nb3O10 showing a band gap 

of 3.1 eV and sparse availability of conduction band states close to the onset of conduction band. The 

partial DOS of Ca (red dashed line), K (blue full line), Nb (green dash-dot curve) and O (magenta 

dotted curve) show the respective partial contributions to the DOS. 

 

As is evident from the partial DOS (PDOS), the valence band is dominated by O-2p states 

with some admixture of Nb-d states, while in the conduction band Nb-d states dominate and 

the O-p PDOS is small (Figure 5.1.2). We determined the contributions of t2g- and eg-like Nb 

orbitals to the conduction band. For this purpose a local coordinate system around each Nb 

site was introduced such that the axes point as close as possible towards the six O 

neighbors which form distorted octahedra around the Nb sites. In these local coordinate 

systems we call the two Nb-4d orbitals pointing towards the O atoms as eg-like and the other 

three Nb-4d orbitals pointing between O atoms as t2g-like. Of course the eg-like and t2g-like 

are no irreducible representations for this low-symmetry-point group. The partial DOS due to 

these Nb t2g-like and eg-like orbitals are shown in Figure 5.1.3. We see that up to 6 eV the 

conduction band has a predominant t2g-like character while the eg-like orbitals dominate the 

partial DOS at higher energies. 

As mentioned before, the four inequivalent Nb sites group into two different types (Nb1 and 

Nb2 in the central layer between two Ca layers and Nb3 and Nb4 between a K and Ca layer). 

The Nb DOS within such pairs is nearly the same, but the partial DOS from the different 

planes differ significantly (Figure 5.1.4). Interestingly the conduction band onset at 3.1 eV is 

primarily due to Nb1 and Nb2 states, while Nb3 and Nb4 states are shifted to slightly higher 

energies. The unoccupied Ca-3d states are about 8-10 eV above the Fermi energy and 

coincide with the Nb-eg states, while the K-3d states are shifted even higher up to 12-14 eV. 
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Figure 5.1.3: (Color online) Partial DOS contribution of the eg-like (dashed black curve) and t2g-like 

(full red line) orbitals of Nb to the conduction and valence bands.  

 

 

Figure 5.1.4: (Color online) The partial DOS contribution shows two distinct varieties of Nb atoms, 

Nb1 and Nb2 (full red line) and Nb3 and Nb4 (dashed black curve) with the conduction band onset 

contributed by the Nb1, Nb2 atoms. 

 

The band structure of KCa2Nb3O10 is shown in Figure 5.1.5. One observes a large number of 

fairly flat bands at the top of the valence band (within 2 eV from the valence band maximum), 

while for the lower valence bands some dispersion is evident. Specifically, the top of the 

valence band is nearly degenerate at several high-symmetry points in k space (Γ, A, B, and 

C). On the contrary the conduction band onset at 3.1 eV is constituted by two strongly 
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dispersive bands whose energy minima occur at the Γ and A points, thereby showing that 

KCa2Nb3O10 is a direct band gap semiconductor. The conduction band states in the energy 

range 3.1-4.4 eV are quite dispersed, while bands in the energy range of 5.5-6.0 eV are less 

dispersed. As expected from the short Γ-A direction (large periodicity in direct space) and the 

2D nature of KCa2Nb3O10 where the Nb-O perovskitelike layers (with fairly localized wave 

functions) are completely decoupled in the a direction by the K layers, all bands in this 

direction are very flat. 

 

 

Figure 5.1.5: (Color online) Band structure of KCa2Nb3O10 (along with the shape of the Brillouin zone) 

indicating it to be a direct band gap semiconductor. 

 

The optical properties, namely the real and imaginary parts of the dielectric function ε and the 

loss function, were computed by the OPTIC program.31 All these properties are in principle 

tensors of the order 3 × 3; however, simplifications were made for easier interpretation. While 

in monoclinic systems, the dielectric tensor contains nonzero off-diagonal elements,31, 37 we 

have neglected such (small) terms in our analysis. In addition the average dielectric function 

ε was defined as the average of the three diagonal elements εxx , εyy , εzz (Equation 5.1.1) for 

simplicity. 

 

𝜺 =
(𝜺𝒙𝒙 +  𝜺𝒚𝒚 +  𝜺𝒛𝒛)

𝟑
 (Eq. 5.1.1) 
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The dielectric function is a complex function (ε = ε1 + ε2) and its imaginary part ε2 is 

obtained31 from the joint density of states including the momentum matrix elements p 

between occupied and empty states (Equation 5.1.2). 

 

𝜺𝒊𝒋 ≈
𝟏

𝝎𝟐
∑ ∫ 𝒑𝒊;𝒐,𝒆,𝒌 𝒑𝒋;𝒐,𝒆,𝒌𝜹(𝑬𝒆,𝒌 − 𝑬𝒐,𝒌 − 𝝎)

𝒌
𝒐,𝒆

 (Eq. 5.1.2) 

 

The real part ε1 has been extracted using the Kramers-Kronig transformation.38 In addition, 

the loss function S, which is related to dielectric function32 as described by Equation 5.1.3, 

has also been calculated: 

 

𝑺 = 𝑰𝒎 [−
𝟏

𝜺
]

𝜺𝟐

(𝜺𝟏
𝟐 + 𝜺𝟐

𝟐)
 (Eq. 5.1.3) 

 

The average dielectric function is shown in Figure 5.1.6. From the complex dielectric function 

the refractive index and the extinction coefficient could be extracted.39 In addition from the 

real part, one could ascertain the position of plasmon excitation Ep as points where ε1(E) is 

zero and has a positive slope with respect to energy.39-41 At three values of energy (11.3, 

30.0, and 37.0 eV) these two conditions are satisfied, indicating plasmon excitation of 

valence electrons at these energy values. It is worth noting that close to E = 24 eV the value 

of ε1 comes very close to zero but still does not cross the energy axis. From the real part of 

the dielectric function we have determined the ion clamped (high frequency) macroscopic 

dielectric constant ε∞ of KCa2Nb3O10 as 0.77.38 

It is worth mentioning that Li and co-workers42 have determined the dielectric constant of 

KCa2Nb3O10 in the low-frequency regime (101-106 Hz) to be varying between 500 and 1800. 

A comparison of our calculated dielectric function to their measurements would rather be 

inappropriate, because electronic transitions calculated in our methodology constitute the 

predominant dielectric response only at very high frequencies (1013 Hz and higher).39 

The imaginary part of the dielectric function offers insight into the interband transitions. A 

closer look at the partial density of states and the character of the corresponding bands 

enables us to analyze the features observed in ε2. The initial set of transitions occurring 

between 4.5 and 7.0 eV is due to transitions from the valence band into the Nb-t2g bands, 

whereas the one between 7.0 and 11.0 eV is due to excitations of valence electrons into the 

Nb-eg states. The transitions depicted close to 25 eV are due to excitations from the K-3p 

bands into the K-3d states (located more than 12 eV above the valence band maximum), 

while the sharp peak around 28 eV corresponds to the promotion of electrons from Ca-3p 

states to the Ca-3d states in the upper conduction bands. Finally Nb-4p semicore electrons 

constitute the transitions starting at 35 eV. 
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Figure 5.1.6: Computed real and imaginary parts of the dielectric function of KCa2Nb3O10. From the 

real part one would establish 11.3, 30.0 and 37.0 eV to be plasmon excitations. 

 

VEELS AND BAND GAP EXTRACTION: 

VEEL spectrum of KCa2Nb3O10 in the energy loss range 0-10 eV is shown in Figure 5.1.7. 

One can establish that the onset of the conduction band is 3.2 ± 0.1 eV which confirms our 

calculated value of 3.1 eV and the value of 3.35 eV experimentally determined4 by Domen 

and co-workers. The error in our measurement is governed by the calibration method and the 

signal-to-noise ratio. Improving the quality of data with regard to the onset of the conduction 

band is difficult. On one hand, one could improve the signal-to-noise ratio by increasing the 

exposure time, but then one risks increasing the chances of contamination, beam damage, 

and detector damage, which are common limitations in STEM and VEELS. Another possible 

alternative is choosing a thicker region for investigations, thereby increasing the scattering 

cross section. However, the chances of Cerenkov radiation causing an artifact for band gap 

extraction in the VEEL spectra increase for thicker samples.19 Rafferty and Brown43 proposed 

that for direct band gap semiconductors in the VEEL spectrum, the region close to the band 

onset could be described by (E - Eg)0.5, where Eg is the band gap. Knowing from our 

calculations that KCa2Nb3O10 is a direct band gap semiconductor, we avoid fitting such a 

function to the onset. Clearly a function of the form (E - Eg)0.5 would indicate an abrupt onset; 
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however, we observe a very gentle onset. The very gentle onset observed by us conforms 

well to the fact that only a few conduction band states are available below 4 eV. 

It is necessary to highlight that we have not applied deconvolution to the acquired VEELS for 

removal of multiple scattering, a method which has been used regularly.44-46 The justification 

lies in the fact that we have acquired VEEL spectra from a thin region (thickness ∼0.3 mean-

free-path length) in which the scattering cross section for multiple scattering events is 

negligible. 

 

 

Figure 5.1.7: Onset of the conduction band at 3.2 ± 0.1 eV indicated by ZLP subtracted VEELS of 

KCa2Nb3O10. 

 

The surface plasmon is an important loss mechanism, for thin samples when probed in the 

transmission electron microscope, especially in the valence loss region. It has been 

suggested that for thin samples44 this excitation can superimpose on other valence 

excitation, thereby making it hard to extract the band gap. Therefore it is necessary to 

understand if such an excitation is interfering in our measurements. The surface plasmon 

becomes an important loss mechanism only in cases where the thickness of the material is 

less than 20 nm32 or when the loss spectrum is acquired in aloof conditions (i.e., the beam is 

placed just outside the edge of the sample).47 From EELS thickness maps we have 

estimated the thickness of the region investigated to be around 0.3 times the inelastic mean-

free-path length. Using the model for calculating mean-free-path length proposed by Malis 

and co-workers48 we estimate the thickness of our material to be about 42 nm. As such the 

chances for a surface plasmon signal making a significant contribution to the loss spectrum 

are negligible. 
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Cerenkov losses are another pitfall which can hinder44 the identification of the conduction 

band onset from VEELS. When the velocity of an electron passing through a medium 

exceeds the phase velocity of light in that medium, Cerenkov radiation is generated.19, 32, 49 

Clearly, for electrons with an energy of 300 keV Cerenkov radiation would be generated in 

KCa2Nb3O10 whose ε1 varies between 4 and 7 in the energy range 0-5 eV. As such it is 

necessary to discuss the possible chances of such losses interfering with our measurements. 

It has been known50-51 that Cerenkov radiation has an angular distribution such that most of 

the radiation is confined within an angular width of the order of 0.1 mrad. This implies that for 

a conventionally used collection angle of about a few milliradians, nearly all Cerenkov 

radiation generated would be collected for an on-axis spectrometer entrance aperture.21 One 

way of limiting the contribution of Cerenkov radiation would be using a dedicated dark-field 

spectrometer entrance aperture (for details see Ref. 19); however, that was not possible 

using our apparatus. 

Cerenkov radiation generation can, however, be strongly damped when the thickness of the 

material probed is less than about 100 nm.19, 51-54 Erni and Browning showed54 that there are 

negligible Cerenkov losses for thickness below 100 nm in materials with normalized emission 

rate below 0.9. The normalized emission rate54 for KCa2Nb3O10 can be determined on the 

basis of the computed maximum value of ε1 (6.95) to be 0.76. Therefore on the basis of the 

analysis of Erni and Browning,54 it can be deduced that in a VEELS measurement from a 

42-nm-thick region of KCa2Nb3O10, the Cerenkov radiation generation is heavily damped and 

as such does not contribute significantly to the scattering cross section. 

van Benthem and co-workers determined45 the optical properties of SrTiO3 using VEELS 

(STEM mode, 6.5 mrad convergence and collection angles, respectively) and vacuum 

ultraviolet spectroscopy. They found45 good agreement between the two methods and 

concluded that Cerenkov losses did not contribute to the VEELS signal in any significant 

manner. 

In light of these results19, 21, 45, 50-54 and the fact that our calculated and experimentally 

determined loss function show good agreement (Figure 5.1.8), it can be assumed that 

Cerenkov losses on account of damping do not contribute significantly to the VEEL spectra 

acquired. 

The band gap values determined using VEELS (3.2 ± 0.1 eV) and DFT (3.1 eV) compare 

well with the band gap value of 3.35 eV measured by Domen and co-workers4 using 

photocatalysis. This shows the success in usage of VEELS and modified Becke-Johnson 

potentials18 for ascertaining the band gaps with reasonable accuracy. 
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Figure 5.1.8: Theoretically computed and experimentally determined loss functions. 

 

LOSS FUNCTION COMPARISON: 

In an electron energy loss spectrum, the double differential scattering cross section32 is 

directly proportional to the loss function S. Therefore the intensity measured in EELS 

experiments is directly related to the loss function. A big advantage of this technique is the 

easy identification of plasmon excitations,39 which in thicker samples would dominate the 

EELS. Moreover it serves as a good method of comparing the agreement between theory 

and experiments. To this end the loss function of KCa2Nb3O10 was extracted from 

experimental VEELS and theoretically computed dielectric function and plotted for 

comparison in Figure 5.1.8. When one compares the experimental and calculated loss 

functions one sees good agreement in the regime E < 20 eV. 

 

LOSS FUNCTION AT HIGHER ENERGIES: 

In order to better understand the semicore states, we acquired EELS in TEM mode with a 

larger dispersion (0.2 eV/channel). The EEL spectrum is shown in Figure 5.1.9. There are 

two distinct features visible, namely the peaks at 35 and 45.5 eV. A comparison with the 

literature55-56 helps in identifying the feature with a maximum at 35 eV to be the Ca M2,3 edge. 

Bach and co-workers have shown57 that Nb in an oxidation state of +5 yields a Nb N2,3 edge 

at 46 eV; hence we designate the peak at 45.5 eV as that due to Nb N2,3 excitation. 

In the calculated imaginary part of the dielectric function, shown in Figure 5.1.6, we had 

designated the transitions at 28 and 37 eV to electrons from the Ca-3p and Nb-4p states. 

The excitations due to the corresponding energy levels (Ca-3p and Nb-4p) in EEL spectrum 

occur at higher energies (35 eV Ca M2,3 edge and 46 eV Nb N2,3 edge). Even taking into 
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account that peaks in loss function are usually a few eV higher in energy than the peaks in 

ε2, because low values (zeroes) in ε1 appear usually a few eV after peaks in ε2, the positions 

of excitations due to Ca-3p and Nb-4p electrons are not optimal. This points to shortcomings 

in our computational methodology specifically for semicore states. It has been shown 

previously58 that DFT based methods predict the semicore states at higher energies than the 

ones that are experimentally measured. This is related to the fact that these methods cancel 

the self-interaction incompletely,59 and also the TB-mBJ method cannot cure the problems for 

these low-lying states. In addition, such localized excitations are known60 to produce large 

excitonic effects which cannot be modeled by single particle approaches. 

 

 

Figure 5.1.9: EELS acquired in TEM mode indicating Ca M2,3 and Nb N2,3 edges. 

 

In order to model the high energy loss function in a more realistic manner, we computed ε2 

due to valence and semicore states separately. The momentum transfer matrix was 

computed, first using all the electrons and then using only the valence band electrons 

(E > -5.3 eV). Then the ε2 calculated for valence band electrons was subtracted from the ε2 

calculated for all electrons to get ε2 for the semicore states. This ε2 due to the semicore 

electrons was shifted by energy ΔE where ΔE > 0 because the semicore states are located 

at energies lower than what were computed. Then the partial ε2 due to the valence electrons 

and the semicore states after the shift were added to get the corrected ε2. Then the Kramers-

Kronig analysis was applied on this corrected ε2 to get the real part of the dielectric function 

and the loss function. 

This procedure was undertaken for different values of ΔE until a good agreement was 

reached between the theoretical and experimental loss functions with regard to the positions 

of Ca M2,3 and Nb N2,3 edges. We found the best agreement using a ΔE value of 2.5 eV. The 

calculated ε1, ε2, and loss function, after correction, are shown in Figure 5.1.10. In the 

corrected loss function, the feature at 29 eV stems from the excitation of K-3p electrons, the 
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peak around 34 eV from Ca-3p electrons, and the broad Nb N2,3 edge is between 40 and 

47 eV. These energies agree well with the experimental EEL spectrum (Figure 5.1.9). 

 

 

Figure 5.1.10: The corrected dielectric function and loss function obtained by shifting the transitions 

due to semicore states by 2.5 eV towards higher energies. 

 

5.1.4 Conclusions 

Density functional theory based calculations show that the KCa2Nb3O10 structure is more 

symmetric than the experimental structure previously proposed and some bond distances (in 

particular Ca-O) differ by as much as 0.3 Å. The central NbO2 plane is less buckled. 

KCa2Nb3O10 is a direct band gap semiconductor with a calculated band gap of 3.1 eV. The 

conduction band onset is dominated by Nb1, Nb2 t2g-like states (in the central plane between 

two Ca layers), whereas the Nb3, Nb4 (between K and Ca layers) states are shifted 

upwards. The large crystal field separates the empty Nb t2g and eg states by a small gap. On 

the other hand the valence band is dominated by O-2p states. The Ca-3d (and even more 

the K-3d) states start only at more than 8 eV above the valence band maximum. The band 

gap value of 3.2 ± 0.1 eV extracted from the STEM-VEELS measurement matches well with 

the theoretical results and a value reported in the literature. The loss function shows good 

agreement between theory and experiment up to about 20 eV but large deviations occur at 

higher energies. This comes about because the position of the semicore states predicted 
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DFT calculations is higher than in reality, and for a proper modeling of the loss function at 

such high energies one needs to manually shift the position of the transitions due to these 

states. 
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ABSTRACT: Rapid progress in the synthesis of nanostructures with tailor-made morphologies 

necessitates adequate analytical tools to unravel their physical properties. In our study, we 

investigate, on the nanometer scale, the band gap of individual [TBAxH1-x]+[Ca2Nb3O10]- 

nanosheets obtained through intercalation – exfoliation of the layered bulk phase 

KCa2Nb3O10 with tetra-n-butylammonium hydroxide (TBAOH) using valence electron energy 

loss spectroscopy (VEELS) in the scanning transmission electron microscope (STEM). The 

nanosheets consist of an anionically charged perovskite layer with cationic organic ligands 

surrounding it. Due to the hybrid nature, a careful acquisition and analysis protocol is 

required since the nanosheets disintegrate easily under electron beam irradiation. The 

VEELS data reveal a fundamental band gap of an individual freely suspended perovskite 

nanosheet to be 3.0 ± 0.2 eV and optically allowed transitions above 3.8 ± 0.2 eV (“optical 

band gap”). The spatial resolution of the measurements is about 9 nm, taking into account 

50% of the excitations when illuminating with an incident electron beam of 1 nm diameter. 

Our investigations reveal that the band gap of an individual nanosheet is not changed 

significantly compared to the bulk phase, which is confirmed by UV-Vis data. This is 

rationalized by the quasi 2D electronic structure of the bulk material being preserved upon 

delamination.  

 

5.2.1 Introduction 

Since the discovery of graphene1 the scientific community has paid considerable attention to 

apply the principles of two-dimensional (2D) synthesis to other families of materials. A viable 

approach to various classes of inorganic 2D-nanostructures has been the solution-mediated 

delamination of layered bulk materials down to the single sheet level. This has led to the 

synthesis of 2D-nanosheets based on e.g. oxides,2 boron nitride,3 metal dichalcogenides,4 

and metal disulphides5. One prominent class of such materials is derived from the Dion-

Jacobson family of layered perovskites, with the prototypic member KCa2Nb3O10
6,7. This 

perovskite was delaminated into 2D-nanostructures consisting of monolayer sheets for the 

first time about two decades ago.8 A systematic study of the synthesis procedure and 

corresponding characterization of the sheets was made by Schaak and Mallouk.9 
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[TBAxH1-x]+[Ca2Nb3O10]- nanosheets have a structure similar to the layered Dion-Jacobson 

perovskite KCa2Nb3O10 shown in Figure 5.2.1a. The K+ ions of KCa2Nb3O10 are chemically 

replaced during the intercalation process by the bulky TBA+ cation. This replacement is 

accompanied by the introduction of a large amount of water and causes significant reduction 

in the interaction between adjacent [Ca2Nb3O10]- perovskite blocks to the extent that the 

blocks become independent of each other. In contrast to the structure of other types of 

nanosheets3 such as BN or MoS2 where the delaminated structure is charge neutral, 

[TBAxH1-x]+[Ca2Nb3O10]- nanosheets have a “two component” structure with the delaminated 

sheet consisting of a [Ca2Nb3O10]- block with a layer of charge compensating cationic ligands 

around it (Figure 5.2.1b). These nanosheets have been suggested as possible candidates for 

various types of applications.2, 9-18 Sasaki and co-workers proposed the use of them as 

ultrathin dielectrics.2, 13, 18,10,17,16 The group of Osterloh has demonstrated the photochemical 

water splitting capability of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets11 and investigated the 

redoxactive sites by photolabeling.19 They also showed that high angle annular dark field - 

scanning transmission electron microscopy (HAADF-STEM) is an excellent tool for 

characterizing the nanosheets loaded with metal and metal oxide nanoparticles.19 In addition, 

they used the sheets as an electron transport layer in solution-processed multi-junction 

polymer solar cells.14 The group of Ishihara showed a high photocatalytic activity of Rh-

doped calcium niobate nanosheets for H2 production from the water / methanol system 

without catalyst loading,12 while a co-catalyst was necessary for their N-doped nanosheets 

which than also exhibited excellent photocatalytic properties20. In other research studies, 

several functional multilayers and superlattices were constructed by sequential deposition of 

[TBAxH1-x]+[Ca2Nb3O10]- and other nanosheets.10, 15 

 

 

Figure 5.2.1: KCa2Nb3O10 has a layered structure (a) with parallel planes of K+ ions sandwiched 

between perovskite blocks consisting of corner-sharing NbO6 octahedra (illustrated in green with red 

oxygen atoms at the apex and Nb atoms in the centre), filled with Ca2+ ions on the A site positions. 

[TBAxH1-x]+[Ca2Nb3O10]- nanosheets (b) have a structure derived from KCa2Nb3O10 where the K+ ions 

are replaced by bulky TBA+ and protons for charge balance. 
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In light of such intense research activities, it is important to understand the electronic 

properties of these nanosheets, the band gap in particular. Compton et al.11 determined the 

optical band gap and found a value of 3.53 eV, whereby the exfoliated material was dried 

and studied by means of diffuse reflectance measurements. Akatsuka et al. investigated21 

the electronic structure of [TBAxH1-x]+[Ca2Nb3O10]- nanosheet films (number of layers between 

1 and 10) deposited on an indium-tin-oxide coated glass. They determined an optical band 

gap of 3.44 eV for the nanosheets using photocurrent measurements upon ultraviolet 

illumination and assuming an indirect semiconducting character.21 In both studies the 

obtained optical band gap values were determined macroscopically and found to be larger 

than the one reported in literature for the parent bulk KCa2Nb3O10 phase of 3.35 eV which 

was determined in an early study via diffuse reflectance spectroscopy.22 Thus, to facilitate a 

better comparison of the obtained band gap values it would be beneficial to use a technique 

that allows for the detection of individual nanosheets and to use the same technique and 

ideally same equipment for the nanosheet and bulk measurements in order to minimize e.g. 

systematic calibration artefacts. One of such techniques can be VEELS in STEM.23,24 

With the development of commercially available monochromators in recent years, VEELS 

has become an interesting approach for determining band gaps in S/TEM with a high spatial 

resolution.25-28,29,30,31 Gu and co-workers have demonstrated25 the applicability of this method 

for bulk Si and GaN thin films. Erni and Browning28 successfully used the technique to 

determined the size-dpendent band gap of CdSe quantum dots. Park et al.26 and 

Dennenwaldt et al.30 measured the band gap of amorphous SiO2 thin films and nanotubes, 

respectively. Kuykendall et al.27 applied the technique for measuring the band gaps of 

individual InGaN nanowires with different atomic ratios while Keller et al. studied 

Cu(In,Ga)Se2 thin solar cells29. Jiang and Spence investigated ZrSiO4 and ZrO2 bulk 

ceramics and discussed the effect of surface excitations on band gap values determined by 

VEELS.31 In the present work, we demonstrate that we can determine the band gap of beam 

sensitive [TBAxH1-x]+[Ca2Nb3O10]- nanosheets using VEELS which we shall compare with our 

findings about bulk KCa2Nb3O10.32 We describe in detail the acquisition procedure which is 

necessary to prevent artefacts due to radiation damage. Similar to King et al.33 who used 

optical absorption data to calculate the band gap of bulk In2O3, we distinguish in the following 

between the “fundamental gap” (which is the energy position where the first transition occurs) 

and the “optical gap” (where a significant intensity is measured in the VEELS or the UV-Vis 

data). The results obtained by VEELS are discussed in light of the band structure and 

compared to the results of UV-Vis measurements performed on a macroscopic scale. An 

important finding is that for our calcium niobate perovskite the fundamental as well as optical 

band gap values are not changed significantly when going from the 3D to the 2D structure.  
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5.2.2 Experimental Section 

 

EXPERIMENTAL PROCEDURES: 

Synthesis of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets. The parent bulk material KCa2Nb3O10 

was synthesized in a method similar to that proposed by Jacobson and co-workers7 whereby 

a stoichiometric mixture of commercially available K2CO3 (Merck, >99% purity), CaCO3 

(Grüssing GmbH Germany, 99 % purity) and Nb2O5 (Alfa Aesar, 99.5 % purity) with a 10% 

molar excess of K2CO3 was thoroughly ground, mixed and fired to a temperature of 1200°C 

for 60 h. KCa2Nb3O10 has a layered structure, as shown in Figure 5.2.1a, containing layers of 

K and Ca atoms along with layers of edge-sharing NbO6 octahedra. For nanosheet synthesis 

a methodology similar to that proposed by Ebina et al. was used.18 KCa2Nb3O10 (1 g) was 

treated with 5M HNO3 (40 cm³) for 4 days with daily renewal of the acid for conversion to the 

protonic oxide HCa2Nb3O10•1.5H2O. The product was recovered by filtration, washed with 

water and air-dried. For exfoliation into nanosheets HCa2Nb3O10•1.5H2O (0.2 g) was 

dispersed in 50 cm³ TBAOH•30-hydrate (Sigma-Aldrich, 98% purity) aqueous solution at a 

molar ratio of 1:1. The solution was shaken for 4 weeks and non-dispersed solid removed via 

centrifugation at 3000 rpm.  

 

CHARACTERIZATION: 

ICP-AES and AFM. The chemical composition was measured by inductive coupled plasma-

atomic emission spectroscopy (ICP-AES) and revealed a value of x ≈ 0.8 for 

[TBAxH1-x]+[Ca2Nb3O10]-.15 Atomic force microscopy (AFM) measurements were performed on 

the diluted suspension of nanosheets allowed to dry on a silicon substrate using an Asylum 

MFP-3D Stand Alone AFM microscope (Asylum Research, Santa Barbara, CA). A Si micro 

cantilever (300 Hz resonant frequency and 26.1 N/m spring constant) was used and images 

taken in tapping mode.  

TEM-(V)EELS. For TEM studies the resulting colloidal suspension was diluted 4 times with 

water and drop coated onto lacey carbon coated Cu grids. TEM investigations were 

performed using a FEI TITAN 80-300 STEM (operated at 300 keV) equipped with a field 

emission gun, a Wien-type monochromator and Gatan Tridiem 866 energy filter having a 

2k x 2k CCD camera. For all spectroscopy measurements, STEM mode was used with 

convergence and collection angles of 9.5 mrads each. For VEELS measurements a 

spectrometer dispersion of 0.02 eV/channel was chosen whereas for the core-loss EELS 

measurements a dispersion of 0.2 eV/channel was used. The full width at half maximum 

(FWHM) for the VEELS measurements was 0.20 eV.  

To obtain a good signal-to-noise ratio (SNR) in the VEELS data we followed a two-fold path 

reported in literature.34 Five spectra were acquired within five seconds of irradiation 
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(acquisition time 0.01 s each) spanning the energy range -5 eV to + 35 eV such that they 

contained the complete zero-loss peak (ZLP) and also the plasmon excitation. These five 

spectra were aligned, summed into a single spectrum and the position of the plasmon peak 

was determined. This procedure was repeated fifteen times to determine the position of the 

plasmon with an accuracy of ±0.2 eV. In the next step, we acquired spectra spanning the 

energy range +1.5 eV to 41 eV such that they contained the tail of the ZLP on the positive 

side and also the plasmon excitation. Five spectra acquired in this way within the first five 

seconds of irradiation (acquisition time 0.64 s each) were summed up to obtain a better SNR. 

This spectrum was calibrated according to the position of the plasmon peak determined 

previously. The calibrated spectrum was used for band gap determination. For the 

fundamental gap the value was taken where the intensity was just above the baseline. To 

determine the optical gap value, we performed a linear fit to the low loss region with a strong 

intensity increase and used the value of the first intersection with the baseline. 

UV-Vis. The optical band gap values of the sheets and the parent bulk material KCa2Nb3O10 

were also determined on a macroscopic scale by diffuse reflectance spectroscopy. The 

spectra were acquired at room temperature with a UV-Vis-NIR diffuse reflectance 

spectrometer (Agilent Technologies, Cary 5000) at a wavelength range of 200-800 nm. 

Samples were studied as powders using a carrier system with a quartz glass window at the 

edge of the integrating sphere and using BaSO4 as an optical standard. The nanosheets 

were separated by centrifugation (speed of 20000 rpm), the supernatant removed and the 

pellet dried at 100°C. From the reflectance data R the Kubelka–Munk remission function 

F(R) = (1-R)2/2R was calculated for both the nanosheet as well as the bulk.35, 36 For a 

semiconductor with a direct band gap F(R)2  (E-Eg) while for an indirect semiconductor 

F(R)0.5  (E-Eg).37 Our density functional theory (DFT) calculations of the parent bulk material 

KCa2Nb3O10 have revealed direct transitions32 and preliminary DFT results of the sheets 

indicate that the direct semiconductor character is retained. Thus, Tauc-plots were obtained 

by plotting (F(R)hν)2 versus the photon energy, the linear part of the curve was extrapolated 

to the baseline and the optical band gap was extracted from the value of intersection.38 For 

the fundamental gap we used the value where (F(R)hν)2 is above the baseline. 

 

5.2.3. Results and Discussion 

AFM images reveal that the nanosheets are a few hundreds of nanometers to a few microns 

in lateral dimension and they tend to stack one above the other when dried on the substrate 

to form regions of multiple sheets (Figure 5.2.2). AFM height profiles indicated jumps in 

height of about 3.4 nm between the substrate and the single sheet regions. For subsequent 

steps however, the increase in height is a little less (~2.9 nm) when one moves from one 

sheet to the next. The thickness of the sheets is larger than the values reported in the 
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literature which range between 1.85 and 3.0 nm as determined by AFM 19, 21, 39. Schaak and 

Mallouk9 synthesized [TBAxH1-x]+[Ca2Nb3O10]- nanosheets and measured a [TBA]+ 

concentration of ~0.15-0.20 whereas the [TBA]+ concentration in our sheets is higher (~0.8), 

as indicated by ICP-AES data.15 A height of 1.85 nm was observed by Li et al.10 using AFM 

under vacuum conditions. Okamoto et al.12 synthesized 3% Rh-doped calcium niobate 

nanosheets (Rh atoms replacing Nb atoms in the nanosheet) and found a height of 

2.8-3.0 nm by AFM, which was attributed to adsorption of water and amine on the nanosheet 

surface.12 We conclude that the observed higher thickness of our sheets is due to a higher 

[TBA]+ concentration as well as hydration under ambient conditions (AFM measurements 

were carried out in air and at atmospheric pressure). 

 

 

Figure 5.2.2: AFM image (a) of the [TBAxH1-x]+[Ca2Nb3O10]- nanosheets dispersed on a Si wafer, 

which indicates lateral sizes of the order of a few hundred nanometers. Height profile (b) acquired 

along the arrow shown in (a) depicts the height of a single nanosheet to be 3.4 nm and that of each 

subsequent sheet in a stack about 2.9 nm. 

 

HAADF-STEM investigations reveal that the perovskite nanosheets are a few hundreds of 

nanometer up to a few microns in lateral dimension (Figure 5.2.3), which is in agreement with 
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the AFM measurements. The HAADF-STEM images show dark regions which we classify as 

vacuum regions (regions without material). This was confirmed by EEL spectra acquired in 

the dark regions, where the intensity in the low-loss region (1.5-42 eV) was within the noise 

level indicating absence of any matter.  

 

 

Figure 5.2.3: HAADF-STEM image (a) shows dark regions representing vacuum and regions with 

progressively increasing intensity indicating single, double and triple sheets. The intensity profile (b) 

along the arrow shown in (a) indicates quantum jumps of intensity when one moves from one sheet to 

another. 

 

HAADF intensity profiles which are related to mass-thickness contrast23 show quantum 

jumps in intensity (Figure 5.2.3), which are attributed to the nanosheets, which are stacked 

one above the other. Regions where two sheets overlap (labeled double sheets), as well as 

triple or multiple sheet stacks were observed. The first jump in intensity from vacuum to the 

region of a single nanosheet (7700 counts) is greater than the following intensity jumps from 

one sheet to the next sheet (~6000 counts). On the basis of AFM and STEM-HAADF 

intensity profiles, one can conclude that the ligands in the region between two [Ca2Nb3O10]- 
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layers are more closely packed compared to the ligand layer shell surrounding a single sheet 

leading to a larger thickness. 

The [TBAxH1-x]+[Ca2Nb3O10]- nanosheets are highly crystalline as observed by high-resolution 

transmission electron microscopy (HRTEM). An exemplary HR-TEM image from a single 

sheet along with its fast Fourier transform (FFT) is shown in Figure 5.2.4a. The observed d-

values of about 3.9 Å match well with the interplanar Nb-Nb distances40 of 3.93 Å and 3.86 Å, 

respectively, in KCa2Nb3O10. In the case of a double sheet region Moiré fringes appear in the 

HR-TEM images indicating the presences of two crystals slightly rotated with respect to each 

other, which is further supported by the corresponding FFT (Figure 5.2.4b). This suggests 

that two subsequent nanosheets have negligible interaction between them, which is in 

agreement with the findings by Akatsuka et al. based on photocurrent measurements of 

[Ca2Nb3O10]- nanosheets.21 

 

 

Figure 5.2.4: HR-TEM images acquired from a single sheet (a) and double sheet (b) highlight the 

highly crystalline nature of the sheet as substantiated by the FFTs shown in the insets labeled S for 

single sheet and D for double sheet. 

 

Core-loss EELS measurements were performed to obtain further insights into the bonding 

characteristics, oxidation state of the individual atoms and chemical composition of a single 

nanosheet. The scattering cross section for core-loss excitations is typically several orders of 

magnitude less than that for the valence loss excitations,41 hence to obtain a reasonable 

signal from a very thin specimen region, a larger acquisition time is required. EEL spectra 

were acquired in STEM mode cumulatively with an overall acquisition time of 10 s. As will be 

shown below, in that time frame the sheet structure can decay due to irradiation, however the 

measurements still allowed to obtain compositional information, as decomposition induced 

loss of crystallinity and carbon contamination, but insignificant changes in the elemental 

ratios. Core-loss EEL spectra of the parent bulk KCa2Nb3O10 phase are used for comparison. 

The EEL spectrum acquired from a single nanosheet, shown in the top of Figure 5.2.5, 

illustrates the various edges. A comparison with literature allows identifying the edge onsets 
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as follows: 240 eV, Nb-M4,5 edge;42-43 284 eV, C-K edge;42 346 eV, Ca-L2,3 edge;44 363 eV, 

Nb-M2,3 edge;43 and 532 eV, O-K edge42. The [TBA]+ ions have a composition of [C16H36N]+ 

which implies a very low atomic percentage of N in the overall nanosheet structure. 

Conforming to this fact, we are hardly able to detect a signal for the N-K edge around 

401 eV. The EEL spectrum of bulk KCa2Nb3O10 (acquired in diffraction mode32) shows the K-

L2,3 edge instead of the C-K edge seen in the nanosheet. This further confirms that during 

exfoliation nearly all of the K+ is replaced by [TBA]+ ions which contribute to the C-K edge 

signal. We did not observe a chemical shift or change in the shape of the energy loss-near 

edge structure (ELNES) of the element specific ionization edges of the nanosheet compared 

to the bulk. This indicates that the valence state and type of bonding within the nanosheet 

remains similar as in the bulk, e.g Ca2+ and Nb5+. 

 

 

Figure 5.2.5: Core-loss EEL spectrum (a) of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets acquired in STEM 

mode and (b) of bulk KCa2Nb3O10 acquired in diffraction mode. 

 

To determine the band gap of the nanosheets, it was necessary to identify a single sheet 

region, which we were able to do by using the STEM-HAADF intensity profile. Second, to 

obtain high spatial resolution, spectra had to be acquired with a small stationary spot 

positioned on the nanosheet. However, a hybrid nanostructure when irradiated with 300 kV 

electrons at a stationary spot of diameter < 1 nm could disintegrate. As such, before making 
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a comprehensive set of measurements, understanding the possible degradation of the 

material under the acquisition conditions is crucial. To this end we acquired 50 spectra at a 

rate of 1 acquisition per second, irradiating a spot on a single sheet region. The successive 

VEEL spectra are depicted in Figure 5.2.6 and illustrate a change in the state of the sample 

as it is (carbon) contaminated and damaged due to the electron beam. We found that there is 

no significant difference between the spectra acquired within the first five seconds; hence we 

assumed that there was no apparent damage to the nanosheet in the first five seconds of 

irradiation. Furthermore, we imaged a single sheet region after five seconds of irradiation and 

found no perceivable damage. As such, all VEEL spectra used for analysis were acquired 

within the first five seconds of irradiation with a stationary electron beam. 

 

 

Figure 5.2.6: Deterioration of the nanosheets with time is exemplified by the change in the VEEL 

spectra showing the spectra acquired after one, five, ten, fifteen, twenty, thirty, forty and fifty seconds 

of irradiation under the electron beam. 

 

Nanostructures by virtue of their small sizes have a very small double differential scattering 

cross-section, and as such the intensity of their valence loss excitations in the VEEL 

spectrum is very low (Figure 5.2.7a). A closer look at the valence loss (inset in Figure 5.2.7a) 

shows that the intensity of the valence loss excitations is three orders of magnitude less than 

that of the ZLP. Consequentially it was practically impossible to obtain a better SNR when 

the ZLP and the valence loss excitations are acquired in the same spectrum. Therefore we 

used the two-fold path34 as described in detail above. The sum of five spectra acquired with 

the complete ZLP and the plasmon excitation were used to determine the position of the 

plasmon peak. The high noise level of the plasmon peak limited the accuracy to ±0.2 eV 

(Figure 5.2.7a). A second set of five spectra were acquired containing the tail of the ZLP on 
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the positive side and also the plasmon region, summed up and calibrated according to the 

position of the plasmon peak from the other data set. The resulting spectrum has a good 

SNR as illustrated in the Figure 5.2.7b and was used for band gap determination for a single 

sheet region. The process was repeated for acquiring the VEEL spectra from double and 

triple sheet regions. 

 

 

Figure 5.2.7: VEEL spectrum acquired from a single sheet (a) show very little signal for valence loss 

excitations as exemplified by the magnified view in the inset (a). When a separate spectrum is 

acquired for the valence excitations (b) alone, a better signal to noise ratio can be obtained. 

 

The conduction band onset can be determined from a VEEL spectrum upon careful 

subtraction of the ZLP.28, 45 In our data, the tails of the ZLP are noisy, and therefore 

subtracting a spectrum acquired in vacuum as an approximation to the ZLP could be 

counterproductive. Hence, instead we subtracted the tail of the ZLP by describing it with a 

power-law function similar to Erni and Browning.28 However, we did not use a Lorentzian fit to 

the first derivative to determine the onset, but rather we determined the fundamental band 

gap by directly measuring the onset of the ZLP subtracted spectrum. Because of the nano 

dimensions of the structures investigated, the probability of multiple scattering is negligible; 

hence we did not apply any deconvolution routine to the VEEL spectrum. 

ZLP-subtracted VEEL spectra from the single, double and triple sheets are presented in 

Figure 5.2.8a. The fundamental conduction band onset for the single, double and triple sheet 
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regions is the same and amounts to 3.0 ± 0.2 eV whereby the error is governed by the 

alignment procedure described above, i.e. determining the plasmon peak position in the 

individual noisy spectra. As can be seen in the close-up in Figure 5.2.8 b, above the 

fundamental gap a low intensity region occurs followed by a strong increase in intensity. The 

low intensity at the beginning is related to the low density of states in this regime as revealed 

in our DFT calculation for the bulk phase32 and in preliminary calculations of the nanosheets. 

Dipole forbidden transitions and weak (optical) transition matrix elements are most likely 

responsible for this low signal, which is also observed for the bulk phase (Figure 5.2.8 d) 

similar to the results discussed by King et al.33 for bulk In2O3. The fundamental gap for the 

bulk phase is 3.2 ± 0.1 eV as we have reported previously.32 Besides the fundamental gap 

remaining essentially unchanged when going from the 3D structure to the nanosheet, the 

same holds true for the optical gap determined by VEELS, where we found values of 

3.8 ± 0.2 eV and 3.9 ± 0.1 eV for the nanosheet and the parent bulk phase KCa2Nb3O10, 

respectively (see Figure 5.2.8). All values are summarized in Table 5.2.1. 

 

Table 5.2.1: Fundamental and optical band gap values determined via VEELS and UV-Vis diffuse 

reflectance data using the Tauc plot method. 

 Fundamental gap (eV)   Optical gap (eV)  

 Sheet Bulk Sheet Bulk 

VEELS 3.0±0.2 3.2±0.1 3.8±0.2 3.9±0.1 

Tauc Plot 3.4±0.1 3.4±0.1 3.6±0.1 3.6±0.1 
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Figure 5.2.8: VEEL spectra after ZLP subtraction, acquired from single, double and triple sheet 

regions (a). (b) The close-up indicates a fundamental gap at 3.0 ± 0.2 eV and a monotonic increase in 

the scattering cross section. The optical gap is located at 3.8 ± 0.2 eV. The VEEL spectrum (c) of the 

bulk KCa2Nb3O10 after ZLP subtraction32 shows clear similarities with that of the nanosheets, 

especially for the single electron valence excitations, while the plasmon region differs strongly. The 

close-up (d) was used to determine the fundamental and the optical gap. 

 

The fact that the optical and fundamental band gap values are similar for the nanosheets and 

the bulk is also confirmed by UV-Vis diffuse reflectance measurements which are presented 

in Figure 5.2.9. The bandgap values estimated via Tauc plots (using (F(R)hν)2 as a function 

of the photon energy) yield a fundamental gap value of 3.4 ± 0.1 eV and an optical gap of 

3.6 ± 0.1 eV for both the powder of turbostratically re-stacked nanosheets and the parent 

bulk phase KCa2Nb3O10 (Table 5.2.1). A similar discrepancy of around 0.2 eV for the optical 

gap values determined by VEELS and UV-Vis data was observed by Erni and Browning.28 

Most likely this is related to the fact that we did not normalize the absorption coefficient, 

resulting in an underestimation of band gap values using Tauc plots.35 In addition calibration 

errors of our energy loss dispersion values can explain the difference between the UV-Vis 

and VEELS data. The higher value of the fundamental gap determined by UV-Vis diffuse 

reflectance data might be related to the uncertainties arising from the fact that we do not 

measure dipole forbidden transitions in the reflectance data but only those with a weak 

(optical) transition matrix element.33 
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Figure 5.2.9: Tauc plots determined from UV-Vis reflectance data for a) dried re-stacked 

[TBAxH1-x]+[Ca2Nb3O10]- nanosheets and b) KCa2Nb3O10 bulk. Assuming a direct semiconductor, 

(F(R)hν)² was plotted against the photon energy. A linear extrapolation was used to determine the 

optical band gap which is 3.6 ± 0.1 eV for both materials. The fundamental gap is located around 

3.4 ± 0.1 eV. 

 

It is worthwile comparing our band gap values determined by UV-Vis diffuse reflectance 

spectroscopy to the ones reported in the literature.11, 21-22 Our optical band gap value for the 

nanosheets are slightly larger than the values of Compton et al.11 and Akatsu et al.21. One 

reason for this is that the determined band gap values depend on the analysis routine and 

the photon energy region used for doing the linear fit procedure.33, 36, 38 Furthermore, we 

assumed a direct semiconducting character as predicted by our DFT calculation, while 

Akatsu et al. assumed an indirect semiconductor for the Tauc plot analyis.21 Besides this, the 

studied nanosheets might differ slightly in their chemical composition, as the ligand shell 

around the nanosheets is a mixture of protons and TBA+ cations with varying compositions, 

see above.11, 21 In particular the different fitting routine and a different experimental setup 

used by Domen et al. might be responsible for the lower optical band gap value which they 

found for the bulk phase.22 Since we applied the same type of spectrometer as well as 
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VEELS on the nanosheet and the bulk material, we are confident to conclude that the band 

gap is not strongly modified when going from the 3D to the 2D structure. 

It is well known that the valence excitations in VEELS are not localized to specific atoms, but 

span larger regions partly because the valence electrons are delocalized.46-49 For example, 

Couillard et al. showed that in nanostructured multilayered gate oxides, despite a small local 

probe confining to a single layer, the excitations due to interband transitions, interface 

plasmons and Cerenkov radiation due to multiple layers interfere, thereby making it hard to 

extract the signal due to a single layer from the stack.49 In light of the above mentioned 

observation it is worth discussing the possible limit of our experimental methodology with 

regards to spatial resolution. Egerton described50 the delocalization of an excitation with a 

parameter d50 such that 50% of the excitation events occur within a diameter d50: 

 

𝑑50 ~ 0.8 𝜆 [
𝐸0

𝐸
]

3/4

 (Eq. 5.2.1) 

 

Here E0 is the energy of the primary electrons, E the energy at which the excitation occurs 

and λ the wavelength of the electrons. Using this relation we determine d50 to be about 9 nm. 

Surface plasmons are a collective excitation mode of the electrons at the surface. They can 

significantly contribute to the scattering cross-section in the case of nanostructures, as has 

been shown previously by Nelayah et al. for the case of Ag nanoprisms.51 It has been 

suggested that surface plasmons can interfere with the valence loss excitations thereby 

making the extraction of the band gap difficult.52, 53 As such it is necessary to check the 

possible implications of surface plasmon excitations to our band gap measurements. Surface 

plasmons are an important excitation mode when the sample is excited in so-called aloof 

condition, i.e. the beam in STEM mode is placed right outside the edge of the sample.54 Such 

aloof measurements are often performed for nanostructures.46, 55-58 The viability of this 

method is based on the fact that the valence loss excitations are delocalized46-47 and as such 

a beam in aloof conditions (within a few nm from the edge) is able to trigger low energy 

valence loss excitations. Despite that, we did not observe a measureable signal above the 

noise level when we acquired VEEL spectra by placing the beam one nanometer off the 

sheet. A possible cause for this could be the [TBA]+ ligands which screen the electric field 

and hinder its effective penetration into the [Ca2Nb3O10]- layer. Determining the exact cause 

of the limited scattering cross section in aloof mode excitation for our nanosheets is beyond 

the scope of the present study and as such was not further investigated. 

Cerenkov losses have also been reported52 to be another hindrance to band gap 

measurements using VEELS, however, they become dominant only in thicker samples 

(thickness greater than 0.6 times the mean free path length) or for very small collection 

angles (few µrads).25 Given that our measurements were done on regions only a few 
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nanometers thick using a collection angle of 9.5 mrads, the possibility of strong contributions 

due to Cerenkov radiation interfering in our measurements can be neglected. 

The structural similarity between the [TBAxH1-x]+[Ca2Nb3O10]- nanosheets and KCa2Nb3O10 

makes it is worth comparing the electronic structure between the two materials. Our DFT 

calculations32 using the Tran-Blaha modified Becke Johnson potential (which predict band 

gaps with high accuracy59) suggest a fundamental band gap of 3.1 eV for KCa2Nb3O10 

whereby the partial density of states contribution of K atoms to the valence and conduction 

bands adjacent to the band gap is negligible. The calculated fundamental gap value is in 

good agreement with the one obtained by VEELS measurements for bulk KCa2Nb3O10 which 

is 3.2 ± 0.1 eV.32 This indicates that removal of the K atoms during exfoliation does not 

change the fundamental band gap value significantly when considering the experimental 

error (3.0 ± 0.2 eV for the nanosheet versus 3.2± 0.1 eV for the bulk). Similar arguments hold 

for the optical gap.  

The Ca-M2,3 edge at 34 eV42 (representing the excitation of Ca-3p electrons into unoccupied 

levels) can be hardly identified in the VEEL spectra acquired from the single sheet 

(Figure 5.2.8). In spectra acquired from the triple sheet region, the Ca-M2,3 edge becomes 

more pronounced and in the spectra acquired from the bulk KCa2Nb3O10 it becomes very 

intense. Furthermore one sees an increase in the intensity of the plasmon excitation which is 

expected on the basis of increase in the thickness as one moves from regions of single to 

double to triple sheet. The most distinguishable difference between the VEELS from 

nanosheets and the bulk material is the region between 18 and 30 eV. In the 

[TBAxH1-x]+[Ca2Nb3O10]- nanosheets we observe a broad plasmon in this energy range, which 

has a greater scattering cross-section than that for single electron excitations. Given the 

structural similarity between the nanosheet and the bulk materials, the difference in VEELS 

would imply that the plasmon excitation in the nanosheets is predominantly contributed or 

modified by the ligand layer.  

 

5.2.4 Conclusion 

We have successfully demonstrated the use of STEM-VEELS for determining the band gap 

of [TBAxH1-x]+[Ca2Nb3O10]- nanosheets with a high spatial resolution. These sheets are highly 

crystalline and have minimal interaction between the individual nanosheets when they stack 

on each other. The measured fundamental and optical band gap values of individual sheets 

are close to the band gap values of the bulk KCa2Nb3O10 phase and considered invariant 

within the range of experimental error. This is in accordance to UV-Vis reflectance data and 

might be also valid for other 2D materials obtained via intercalation – exfoliation from 

anisotropic bulk oxide phases. The measured band gap values provide insight into the 

electronic structure at high spatial resolution of about 9 nm. The sheets disintegrate within 
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five seconds under the electron beam bombardment, therefore to effectively determine the 

band gap fast acquisition is paramount. The valence electron excitations in the nanosheet 

are similar to that in the bulk KCa2Nb3O10 except for the strong plasmon excitation, most 

likely caused by the ligand layer.  

In summary, STEM-VEELS presents a powerful tool for the extraction of local band gaps and 

as such will be a suitable method for a wide variety of nanostructures which are inaccessible 

to alternative techniques with typically low spatial resolution. The technique is able to probe 

also wide band gap semiconductors with thicknesses in the range of a few nanometers and 

without optical signatures in the visible range.  
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6 Summary 

A summary and connection of all topics covered in this PhD thesis is schematically depicted 

in Figure 6.1. Various layered TMOs were synthesized, analyzed and exfoliated into 

unilamellar nanosheets. The main investigated compound was a DJ type layered perovskite 

KCa2Nb3O10 that was exfoliated into [TBA1-yHy]+[Ca2Nb3O10]- nanosheets via a common 

cation-proton exchange and subsequent treatment with TBAOH in aqueous solution. Density 

functional theory calculations showed that KCa2Nb3O10 is a direct band gap semiconductor 

with a fundamental band gap of Eg = 3.1 eV (Chapter 5.1). The conduction band is 

dominated by the inner Nb t2g-like states of the central NbO6 layer in the triple perovskite 

block motif and the valence band by the O-2p states. In accordance with these calculations, 

STEM-VEELS gave a band gap of Eg = 3.2 ± 0.1 eV for the layered bulk material and was 

therefore demonstrated to be an alternative analysis method for the determination of the 

band gap of semiconductor materials. On the basis of these findings, we showed that the 

band gap of individual [TBA1-yHy]+[Ca2Nb3O10]- nanosheets is invariant within the 

experimental error in STEM-VEELS measurements as the partial density of states 

contribution of interlayer atoms and ligands to the upper valence and lower conduction band 

states adjacent to the band gap is negligible (Chapter 5.2). 

KCa2Nb3O10 and structurally related RbCa2Nb3O10 were the source for further substitution 

experiments. On the one hand, replacement of Ca by Pb in the bulk material and subsequent 

exfoliation lead to a decrease in band gap down to Eg = 2.6 eV. Thus, visible-light 

sensitization of the material can be useful for photochemical water splitting (Chapter 3.1). 

The solid-solution RbCa2-xPbxNb3O10 was not homogeneous as an additional phase with 

hypothetical composition “RbNb3O8” started to form along with increasing lead content. 

HRTEM, SAED, Raman and ssNMR spectroscopy showed that the resulting structure can be 

seen as an intergrowth structure, where the layered perovskite motif seems to stabilize 

“RbNb3O8”, which is not accessible via common solid-state synthesis methods. The formation 

of this intergrowth seems to cause a 3D linkage in the former layered perovskite structure 

and thus, hinders exfoliation for higher Pb contents. As compromise between nanosheet 

yield and band gap narrowing, nanosheets best suitable for photochemical purposes were 

achieved for an initial molar ratio of Ca:Pb of 1:1. 

On the other hand, a successive replacement of K+ and Ca2+ by rare earth elements showed 

that nanosheets containing Eu3+, Sm3+, Pr3+/4+ exhibit red emissions, Er3+ containing show 

green emissions and Dy3+ containing nanosheets exhibit yellow emissions under excitation at 

λ = 366nm (Chapter 3.2). Contrary to literature, SEM and TEM coupled with EDX revealed 

that only up to 20 at% rare earth ions can be incorporated in the KCa2Nb3O10 system yielding 

a maximum Ln3+ content according to K0.8Ca1.8Ln0.2Nb3O10. Still, the achieved “diluted” 
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nanosheets can be considered for future applications in (electro)optical devices and as 

luminescent probes for chemical and bioanalytical sensors. 

In addition to the existing exfoliation protocols we established another route based on a 

cation-silver-exchange rather than a cation-proton-exchange (Chapter 3.3). Once Ag+ is 

intercalated into the interlayer region of layered materials, bulky organic iodides can be 

incorporated similarly to the bulky organic bases for materials with H+ in the interlayer space. 

We showed that for exfoliation of AgLaNb2O7, AgCa2Nb3O10 and AgTaP2O8 functional ligands 

that are otherwise inaccessible as exfoliation agents can be attached to the surface, thus 

enabling an extension of the “inorganic” nanosheet chemistry to “organic” chemistry. 

2D nanosheets can be utilized as 2D building blocks for the fabrication of functional 

heterostructures. We used [TBA1-yHy]+[Ca2Nb3O10]- nanosheets to synthesize a 

[Mn2Al(OH)6]+/[Ca2Nb3O10]- hybrid structure with up to 100 bilayers and verified the alternate 

stacking of Ca-Nb perosvkite and Mn-Al LDH nanosheets with atomically resolved STEM-

EELS measurements (Chapter 4.1). Thus, a LBL approach enables the construction of 

rationally desigend bulk materials on a large scale, but still needs to overcome some 

obstacles as sheet terminations, sheet overlap and stacking faults add up for the increased 

layer number. Here, the ligand has direct influence on the interlayer distance. 

[TBA1-yHy]+[Ca2Nb3O10]- nanosheets with lower TBA content lead to the formation of less 

densely packed films. This fine-tuning of the film morphology can be of use for 

photocatalysis, to enable faster transportation pathways. 

In a following approach we evaluated the thermal behavior of the [Mn2Al(OH)6]+/[Ca2Nb3O10]- 

stack at various temperatures to probe the densification of the film with possible formation of 

cross-layer bonds (Chapter 4.2). In the range of 300°C-500°C a re-arrangement of the layer 

takes place, where the LDH rich layer moves away from the substrate and the perovskite rich 

layer shows a loss in the Mn and Ca content. From 700°C a transformation takes place and 

at temperatures of 1000°C fully crystalline particles of various compositions are formed. We 

identified AlxMn2-xO3 and MnNb2O6 and found evidence for formation of an unknown Mn-Al-

Nb-O composition. The controlled LBL alignment and subsequent annealing of the stacks 

can therefore be used for the fabrication of compounds with compositions not accessible via 

common solid-state approaches. 

In the last part, the ability of [TBA1-yHy]+[Ca2Nb3O10]- nanosheets to form a variety of 

nanoscale morphologies was shown based on several examples (Chapter 4.3). Using EISA 

thick nanosheet films where accessible, whereas dip-coating can be used to deposite thin 

layers. Incorporation of polystyrene spheres PS was exploited to form macroporous 

materials, whereas an alternate stacking of PS with perovskite nanosheets lead to a Bragg 

stack-like material. Instead of LDH, PDDA was shown to be an alternative cationic 
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polyelectrolyte to form ordered perovskite-only bulk materials which are glued together by 

organic ligands. 

 

 

Figure 6.1: Schematic overview and connection of topics covered in “Two-dimensional Transition 

Metal Oxide Nanosheets for Nanoarchitectonics”. 
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7 Conclusion and Outlook 

Nanotechnology is still in an early stage regarding characterization methods for multi-

component hybrid nanostructures, the (high) level of empiricism in synthesis, and the 

development of complex nanosystems. 2D nanosheets have shown to be chameleonic 

materials that do not only have intriguing properties, but also lend themselves as building 

blocks for the fabrication of functional materials by design. Graphene as the pioneering 2D 

material has rapidly evolved towards industrial large-scale production and may become part 

of a broad range of electronic products in the future. This trend will continue for other 2D 

materials within the next years as complex nanosystems require sophisticated positioning, 

mutual arrangement, interplay as well as tuning in chemical composition of the processed 

materials in order to achieve and improve the performance of fabricated devices. Among 

others, we have shown that TMO nanosheets are excellent candidates for these purposes 

due to their versatility in composition and their flexibility in the arrangement at the nanometer 

scale. There are already prototypes for the utilization of TMO nanosheets as ultrathin 

dielectrics in next-generation nanoelectronics as they exhibit a superior high-κ performance. 

Still, one main hurdle is the current inability to produce large amounts of identical 

nanostructures with a reasonable lateral size that allows to produce large-scale devices and 

3D blocks/solids without defects. Currently the size of TMO nanosheets is mainly determined 

by the size of the parent bulk material and the applied mechanical force during the exfoliation 

process. Thus, for large single crystals of layered bulk materials an infinite time for solution-

based exfoliation would be necessary. Consequently, bottom-up synthesis of nanosheets 

rather than the current top-down approach might be the tool of choice to produce high-quality 

nanosheets in the future. Another approach would be to anneal a thin film of nanosheets 

after the film has been removed from the substrate. The prodcution of large nanosheets 

would also help to overcome obstacles we have encounterd for the fabrication of bulk 

materials by means of a LBL assembly. 

Another - often overlooked – feature of charged nanoscale materials is the ligand 

surrounding it. We have shown that the tetra-n-butylammonium ligand surrounding calcium 

niobate nanosheets can be removed due to an equilibrium reaction with water and hence 

shows only weak interaction with the nanosheet itself. This is an observation that has to be 

investigated as a function of the nanosheet composition in the future in order to deepen the 

knowledge of nanosheet chemistry. Furthermore, new exfoliation routes like our soft-soft 

chemical approach might enable the introduction of ligands with a stronger nanosheet-ligand 

interaction that can be exploited for targeted deposition or arrangement of individual 

nanosheets. A different thought is the usage of “functional” nanosheets in catalysis. Market 

research estimates that nanostructured catalysts will cover 50% of the world market in 2020. 
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The functional groups of ligands might therefore be used to deposit co-catalysts or to couple 

other groups like dyes to enhance catalytic activity.  

There is and will be a tremendous need in understanding the transition from the nanoscale to 

the bulk scale, as nanosheets and other nanomaterials find their way into industrial 

application. Atomic column resolved TEM coupled with several spectroscopies is a powerful 

but still expensive tool to gather such information. Further improvement of the 

instrumentation like a decrease of the accelaration voltage whilst maintaining the resolution 

or an enhancement of the spectroscopy signals will contribute to this knowledge. Other 

characterization methods such as AFM will be improved as well and new analysis methods 

will be developed to match the needs of the nano-dimension. As we are still in the beginning 

of nanotechnology in terms of the complexity in the interplay between individual building 

blocks, our knowledge is mainly based on distinct examples. In the long run, the creation of 

an extensive library of nanoscale materials that correlates synthesis of nanomaterials and 

their properties with their behaviour in composite materials will be realized.  

Nanotechnology in the broader context will contribute to breakthrough discoveries and 

innovation, build materials and systems by nanoscale design, predict the behavior of 

materials and last but not least will improve the understanding of nature. With this, 

nanotechnology will contribute to economic and societal progress within the next decades. 
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8 Appendix 

8.1 List of Publications 

Basic results compiled in this thesis were published in scientific journals according to the 

below-mentioned list. As the scope of the thesis was the synthesis and characterization as 

well as the assembly of 2D nanosheets, publications beyond this scope are not explicitely 

listed in prior chapters and are here referred to as not part of this thesis. Talks and posters 

presentations at scientific conferences as well as workshop participations are summarized 

separately. 

 

03 Crystalline Carbon Nitride Nanosheets for Improved Visible-Light 

Hydrogen Evolution 

Katharina Schwinghammer, Maria B. Mesch, Viola Duppel, Christian Ziegler, Jürgen 

Senker, Bettina V. Lotsch 

J. Am. Chem. Soc. 2014, 136, 1730–1733; DOI: 10.1021/ja411321s 

 

02 Artificial Solids by Design: Assembly and Electron Microscopy Study of 

Nanosheet-Derived Heterostructures 

Christian Ziegler,^ Stephan Werner,^ Matthieu Bugnet, Matthias Wörsching, Viola 

Duppel, Gianluigi A. Botton, Christina Scheu, Bettina V. Lotsch 

Chem. Mater. 2013, 25, 4892–4900; DOI: 10.1021/cm402950b 

 

01  Electronic structure of KCa2Nb3O10 as envisaged by density functional theory 

and valence electron energy loss spectroscopy 

Kulpreet Singh Virdi, Yaron Kauffmann, Christian Ziegler, Pirmin Ganter, Bettina V. 

Lotsch, Wayne D. Kaplan, Peter Blaha, Christina Scheu 

Phys. Rev. B 2013, 87(11), 115108; DOI: 10.1103/PhysRevB.87.115108 
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8.2 Chapter Contributions 

The following overview lists briefly the main contributions of the authors listed at the 

beginning of each chapter of this thesis. Note that authors dealing rather with the analysis of 

the materials and not their interpretation are listed in Chapter 2 and are therefore not 

repeatedly mentioned. 

 

Chapter 1, 2, 6, 7: For these chapters, writing the manuscript, screening the literature and 

creating the graphics was done by Christian Ziegler. Christina Scheu and Bettina V. Lotsch 

revised the manuscript. 

 

Chapter 3.1: For this chapter, first synthesis of the samples, writing the manuscript, 

screening the literature, editing the graphics, interpretation and disussion of the analysis was 

done by Christian Ziegler. Claudia Kamella helped with large-scale synthesis of the 

materials, Daniel Weber performed the Rietveld refinements and assisted with continuative 

analysis, Igor Moudrakovski did the main part of the ssNMR interpretation. Daniel Weber, 

Teresa Dennenwaldt, Christina Scheu and Bettina V. Lotsch revised the manuscript. 

 

Chapter 3.2: For this chapter, supervision of students Laura Kohout and Stephanie Linke, 

writing the manuscript, screening the literature, editing the main part of the graphics, 

interpretation and discussion of the analysis was done by Christian Ziegler. Christina Scheu 

and Bettina V. Lotsch revised the manuscript. 

 

Chapter 3.3: For this chapter, supervision of Anne Friedrichs, additional synthesis, writing 

the manuscript, screening the literature, editing the graphics, interpretation and disussion of 

the analysis was done by Christian Ziegler. Pirmin Ganter performed synthesis and analysis 

on phophatotantalates and revised the manuscript with Christina Scheu and Bettina V. 

Lotsch. 

 

Chapter 4.1: For this chapter, Stephan Werner and Christian Ziegler equally performed 

synthesis of the samples, writing of the manuscript, screening of the literature, editing of the 

graphics, interpretation and disussion of the analysis, Matthias Wörsching was supervised by 

Christian Ziegler, Viola Duppel and Matthieu Bugnet helped with the TEM analysis. All 

authors revised the manuscript. 

 

Chapter 4.2: For this chapter, supervision of Katarina Marković, synthesis of the samples, 

writing the manuscript, screening the literature, editing the graphics, interpretation and 
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disussion of the analysis was done by Christian Ziegler. Christina Scheu and Bettina V. 

Lotsch revised the manuscript. 

 

Chapter 4.3: For this chapter, supervision of Katarina Marković, Stephanie Linke, Matthias 

Wörsching, writing the manuscript, screening the literature, editing the graphics, 

interpretation and disussion of the analysis was done by Christian Ziegler. Annekathrin Ranft 

contributed equally to the supervision of Maximilian Lamoth. Christina Scheu and Bettina V. 

Lotsch revised the manuscript. 

 

Chapter 5.1: For this chapter, supervision of Pirmin Ganter, synthesis of the material, 

assisting discussion of the data was done by Christian Ziegler. Kulpreet S. Virdi did the main 

part of writing the manuscript, screening the literature, editing the graphics, interpretation and 

disussion of the analysis. Peter Blaha did the main part of the calculations. All authors 

revised the manuscript. 

 

Chapter 5.2: For this chapter, supvervision of Pirmin Ganter, synthesis of the materials, 

editing of some graphics, AFM measurements, analyzing and discussing the optical data, an 

additional literature survey was done by Christian Ziegler. Kulpreet S. Virdi did the main part 

of writing the manuscript, screening the literature, editing the graphics, interpretation and 

disussion of the analysis. All authors revised the manuscript. 
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11 “The Postgraphene Area” (oral presentation) 

13.04.-16.04.2015 Annual Meeting at Deutsches Museum, Munich, Germany 

 

10 “Synthesis, Characterization and Application of Transition Metal Oxide 

Nanosheets and Their Utilization as Two-Dimensional Building Blocks” (oral 

presentation) 

11.03.2015 Nanosystems Initiative Munich Winter Meeting, Munich, Germany 

 

09 “Multicomponent Nanostructures: Inorganic Nanosheets and Fabrication of 

Artificial Solids” (oral presentation) 
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Hybridmaterials” (poster presentation) 
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presentation) 
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