
 
 

 

Aus dem Institut für Klinische Neuroimmunologie 

der Ludwig-Maximilians-Universität München 

Direktoren: Prof. Dr. Hohlfeld, Prof. Dr. Kerschensteiner 

 

Aus der Abteilung für Neuroimmunologie 

dem Max-Planck-Institut für Neurobiologie 

Direktor: Prof. Dr. Hartmut Wekerle 
 

 

Calcium signals in encephalitogenic T cells on their 
way into central nervous system tissues 

An in vivo imaging study 
 

 

 

 

Dissertation 

zum Erwerb des Doktorgrades der Naturwissenschaften 

an der Medizinischen Fakultät 

der Ludwig-Maximilians-Universität München 
 

 

 

vorgelegt von 

Nikolaos I. Kyratsous 

 
aus 

Kozani, Griechenland 

 

2016 



 
 

 
Mit Genehmigung der Medizinischen Fakultät 

der Ludwig-Maximilians-Universität München 

 

 

 

Betreuer:  Priv. Doz. Dr. Naoto Kawakami  

 

Mitgutachter:  Prof. Dr. Gerhild Wildner  

Klinikum der Universität München, München 

Augenklinik und Poliklinik 

   

Prof. Dr. Peter Nelson 

Klinikum der Universität München, München 

Medizinische Klinik und Poliklinik IV 

 

  Priv. Doz. Dr. Reinhard Obst 

  BioMedizinisches Zentrum der LMU, München 

Institut für Immunologie 

 

 

Dekan:    Prof. Dr. med. dent. Reinhard Hickel 

 

 

 

 

Tag der mündlichen Prüfung: 21.12.2016 

  





 
 

 

   

 

  

 

 

 

 

 

 

 

Στο Χρήστο και στο Στέφανο 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Εις τον Θεόκριτο παραπονιούνταν 
μια μέρα ο νέος ποιητής Ευμένης· 
«Τώρα δυο χρόνια πέρασαν που γράφω 
κ’ ένα ειδύλλιο έκαμα μονάχα. 
Το μόνον άρτιόν μου έργον είναι. 
Aλλοίμονον, είν’ υψηλή το βλέπω, 
πολύ υψηλή της Ποιήσεως η σκάλα· 
κι απ’ το σκαλί το πρώτο εδώ που είμαι 
ποτέ δεν θ’ ανεβώ ο δυστυχισμένος.» 
Είπ’ ο Θεόκριτος· «Aυτά τα λόγια 
ανάρμοστα και βλασφημίες είναι. 
Κι αν είσαι στο σκαλί το πρώτο, πρέπει 
νάσαι υπερήφανος κ’ ευτυχισμένος. 
Εδώ που έφθασες, λίγο δεν είναι· 
τόσο που έκαμες, μεγάλη δόξα. 
Κι αυτό ακόμη το σκαλί το πρώτο 
πολύ από τον κοινό τον κόσμο απέχει. 
Εις το σκαλί για να πατήσεις τούτο 
πρέπει με το δικαίωμά σου νάσαι 
πολίτης εις των ιδεών την πόλι. 
Και δύσκολο στην πόλι εκείνην είναι 
και σπάνιο να σε πολιτογραφήσουν. 
Στην αγορά της βρίσκεις Νομοθέτας 
που δεν γελά κανένας τυχοδιώκτης. 
Εδώ που έφθασες, λίγο δεν είναι· 
τόσο που έκαμες, μεγάλη δόξα.» 

Κ. ΚΑΒΑΦΗΣ - ΤΟ ΠΡΩΤΟ ΣΚΑΛΙ 

(Από τα Ποιήματα 1897-1933, Ίκαρος 1984)  

http://www.martino.gr/newspaper/57-issue23/339-kavafis.html
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SUMMARY 
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SUMMARY  

Multiple Sclerosis (MS) is an autoimmune disease, which features a highly complex pathogenic 

cascade and involves the infiltration of mononuclear cells into the brain and spinal cord. Although many 

essential steps in the development of the disease remain ambiguous, experimental and clinical studies 

indicate that autoreactive CD4+ helper T cells are crucial for induction of inflammation in the central 

nervous system (CNS). By using Experimental Autoimmune Encephalomyelitis (EAE) as an animal model 

for MS, it was previously shown that encephalitogenic T cells mature in peripheral organs. Next, T cells 

migrate to the CNS, become activated, and initiate inflammation. During their sojourn, the T cells perceive 

stimuli and respond to their microenvironment through signal transduction mechanisms.  

To portray the serial signaling in transfer EAE (tEAE), two activation reporters, a FRET-based 

calcium biosensor and a fluorescent NFAT activation marker were combined with in situ two-photon 

microscopy. The Twitch calcium sensor can detect weak signals which are accumulated within the cells and 

lead to T cell activation. On the other hand, NFAT sensor can reliably detect T cell activation induced by 

antigen recognition in vivo. During T cell maturation in the spleen, both myelin basic protein (MBP) specific 

encephalitogenic and OVA specific control T cells displayed similarly low frequent and short-lasting calcium 

signaling. This process was driven by chemokine and MHC class II-dependent signals. Next, arrived at 

leptomeningeal blood vessels, the portal to the spinal cord, intravascular T cells presented minimal calcium 

activity. Short-lasting calcium signaling was detected only during rolling-crawling transitions. After 

extravasation, in spinal cord leptomeningeal space and parenchyma, the T cells responded with high, 

sustained calcium plateaus, and NFAT translocation. T cells presented longer-lasting elevated calcium 

levels (>2 min) after contacting local antigen presenting (APC) cells, whereas OVA specific T cells presented 

only short calcium spikes. Each APC displayed different potential to stimulate T cells likely due to the 

limited availability of immunogenic myelin proteins. This T cell reaction was most pronounced in the 

prodromal phase, and followed a ‘first come – first served’ rule for antigen recognition. When MHC class 

II was blocked by intrathecal injection of blocking antibody, MBP specific T cells presented only short-

lasting calcium signaling similar to those in the spleen. Accordingly the treatment reduced the infiltration 

of T cells and clinical severity.  

To directly correlate the activation of encephalitogenic T cells with their calcium signaling, a new 

combined sensor was generated. The co-expression of Twitch and ∆NFAT protein required a set of 

fluorescent proteins (FP) that would have minimal bleed through in their emission channels. Five FPs were 

evaluated, and mRuby2 was selected as the red analogous counterpart of ∆NFAT-GFP. In combination with 
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Twitch, ∆NFAT-mRuby2 displayed similar translocation kinetics compared to ∆NFAT-GFP and presented 

adequate two-photon absorption. Nonetheless, more detailed studies need to be performed regarding the 

dual sensors‘ transduction efficiency.  
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ZUSAMMENFASSUNG 

Multiple Sklerose (MS) ist eine Autoimmunerkrankung mit einer hochkomplexen pathogenen 

Kaskade, die mit der Infiltration mononuklearer Zellen in das Gehirn und das Rückenmark einhergeht. 

Wenngleich viele essentielle Schritte in Krankheitsausbruch und -verlauf noch ungeklärt sind, offenbarten 

experimentelle und klinische Studien, dass autoreaktive CD4+-T-Helferzellen für die Induktion der 

Entzündung im zentralen Nervensystem eine wesentliche Rolle spielen. Mithilfe der experimentellen 

autoimmunen Enzephalomyelitis (EAE) als Tiermodell für MS konnte gezeigt werden, dass enzephalitogene 

T-Zellen in der Peripherie heranreifen, bevor sie in das ZNS einwandern, dort aktiviert werden und 

Entzündungen auslösen. Während ihres Aufenthalts erhalten die T-Zellen Stimuli und reagieren über 

Signaltransduktionsmechanismen auf ihre Mikroumgebung.  

Um die seriellen Signalwege in adoptiv transferierter EAE darstellen zu können, wurden zwei 

Aktivierungsreporter mit in situ Zwei-Photonen-Mikroskopie kombiniert: Twitch, ein FRET-basierter 

Calcium-Biosensor, und mit einem Fluorophor markiertes NFAT. Twitch ist in der Lage, schwache Signale 

zu detektieren, die in den Zellen akkumulieren und zur T-Zell-Aktivierung führen. Das mit einem Fluorophor 

markierte NFAT hingegen macht durch in vivo Antigenerkennung ausgelöste T-Zell-Aktivierung sichtbar.  

Während der T-Zellreifung in der Milz zeigten sowohl die für das Myelin-basische Protein (MBP) als auch 

die als Kontrolle dienenden für Ovalbumin (OVA) spezifischen T-Zellen wenige und kurze Calcium-Signale. 

Dieser Prozess wird von Chemokin- und MHCII-abhängigen Signalen gesteuert. Im nächsten Schritt - in den 

leptomeningealen Blutgefäßen, die für T-Zellen das Tor zum Rückenmark darstellen - wiesen intravaskuläre 

T-Zellen eine minimale Calcium-Aktivität auf. Kurze Calcium-Signale wurden nur während des Übergangs 

vom Rollen zum Kriechen der T-Zellen an der Blutgefäßwand detektiert.  Nach der Extravasation in den 

leptomeningealen Raum und das Rückenmarksparenchym reagierten die T-Zellen mit konstant hohen 

Calcium-Levels und NFAT-Translokation. Die MBP-spezifischen T-Zellen zeigten eine langanhaltende 

Erhöhung des Calciumspiegels (>2 min) nach dem Kontakt mit lokalen Antigen-präsentierenden Zellen, 

wohingegen in OVA-spezifische T-Zellen nur kurze Calcium-Spikes ausgelöst wurden. Die Antigen-

präsentierenden Zellen hatten unterschiedlich starke Effekte auf die T-Zell-Stimulation, vermutlich 

aufgrund der begrenzten Verfügbarkeit immunogener Myelinproteine. Diese Reaktion der T-Zellen war in 

der Prodromalphase am stärksten ausgeprägt und folgte in Bezug auf die Antigenerkennung dem Prinzip 

„wer zuerst kommt, mahlt zuerst“. Bei Blockierung der MHCII-Moleküle durch intrathekale Injektion 

blockierender Antikörper wiesen MBP-spezifische T-Zellen nur einen kurzen Anstieg der intrazellulären 

Calciumkonzentration auf, vergleichbar mit den Calciumsignalen während der Reifung in der Milz. 



ZUSAMMENFASSUNG 

4 

Dementsprechend minderte diese Behandlung die Infiltration von T-Zellen in das ZNS und somit den 

Schweregrad der klinischen Symptome.  

Für die direkte Korrelierung der Aktivierung der enzephalitogenen T-Zellen mit deren 

Calciumsignalen wurde ein kombinierter Sensor entwickelt. Die Co-Expression von Twitch und dem ∆NFAT-

Protein erforderte eine Zusammenstellung von Fluoreszenzproteinen mit minimalem Bleedthrough in die 

jeweils anderen Emissionswellenlängen.  Fünf Fluoreszenzproteine wurden getestet und mRuby2 wurde 

als im roten Wellenlängenbereich emittierendes Pendant zu ∆NFAT-GFP ausgewählt. In Verbindung mit 

Twitch wies ∆NFAT-mRuby2 eine ähnliche Translokationskinetik wie ∆NFAT-GFP mit geeigneter Zwei-

Photonen-Absorption auf. Nichtsdestotrotz sind detailliertere Untersuchungen nötig, um die 

Transduktionseffizienz des Doppelsensors vollständig zu bestimmen.  
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INTRODUCTION 

1.1 Multiple Sclerosis 

Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous 

system (CNS) in which the interplay between inflammatory and neurodegenerative processes results in 

inflammation, demyelination and axonal damage. The timeline of MS research arises with Charcot’s 

definition and naming of MS back in 1868 and Dawson’s reports about MS neuropathology in 1916. Since 

then, MS still remains an indecipherable disease which has been, however, treatable for approximately 

the last 20 years (Ransohoff et al., 2015). 

Four patterns of disease evolution have been described extensively. Relapsing remitting MS 

(RRMS), secondary progressive MS (SPMS), primary progressive MS (PPMS) and progressive relapsing MS 

(PRMS) share common pathophysiology but differ in symptom severity, clinical score and CNS lesion 

morphology. In RRMS, patients experience relapses about once per 2 years and after 15 to 25 years this 

MS pattern may lead to SPMS (Scalfari et al., 2014). On the contrary, in PPMS pattern no relapses occur 

and it targets only a small minority of total patients. Most people are diagnosed between the ages of 20 

and 40 (Ransohoff et al., 2015) and most forms of MS affect women with higher prevalence ratio (2.3-

3.5:1) (Harbo et al., 2013). 

Although the pathogenic mechanisms of MS are largely unknown, experimental and clinical studies 

implicate the immune system. Both T cell and B cell-dependent mechanisms are involved; B cells form 

follicle-like aggregates in the meninges of SPMS patients (Howell et al., 2011). While detailed mechanisms 

are not clear, CD4+ helper T cells play an important role in the formation of CNS infiltration. Autoreactive 

CD4+ T cells exist even in healthy individuals; however, in most cases, they do not induce autoimmunity. It 

is speculated that only after a specific triggering in peripheral organs, autoreactive T cells are able to 

infiltrate into their target organ and initiate a cascade of inflammatory events like recruiting other types 

of immune cells, such as monocytes and B cells. Leukocyte infiltration has been reported in grey and white 

matter and both in chronic and presymptomatic MS lesions (Ciccarelli et al., 2014). In addition, cytotoxic 

and pro-inflammatory factors from the inflamed meninges further activate CNS-homing and CNS-resident 

innate immune cells and contribute to demyelination and neurodegeneration (Friese et al., 2014). Notably, 

neuronal damage is the main contributor to permanent clinical disability in MS and may occur even 

without demyelination (Bitsch et al., 2000) or even with an intact Blood Brain Barrier (BBB) in patients with 

PPMS (Frischer et al., 2009). 
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 Numbers of studies have shown that MS presents a complex etiology and various risk factors 

influence MS incidence, e.g. genetic (Hillert and Olerup, 1993), environmental (Ragheb and Lisak, 1993) 

and viral infections through molecular mimicry (Serafini et al., 2007). Genetic predisposition is obvious in 

monozygotic twins, who they feature a much higher concordance (25%) when compared to dizygotic twins 

(5%) or to their non-twin siblings (2.9%) (Willer et al., 2003). The principal genetic loci determining 

susceptibility to MS is the Human Leukocyte Antigens (HLA) loci and it either has disease-associated alleles 

(e.g. HLA-A*0301) (Harbo et al., 2004) that confer a greater risk of MS development or protective-

associated alleles (e.g. HLA-A*0201, HLA-C*05) (Yeo et al., 2007, International Multiple Sclerosis Genetics 

et al., 2011) which decrease the risk of MS. In addition, recently genome-wide association studies have 

shown that an intriguing proportion of non-Major Histocompatibility Complex (MHC) genetic variants fall 

near genes related to the immune and nervous system and are significantly associated with the disease. 

In particular, many variants are located close to genes that are involved in the T helper cell differentiation 

pathway, including genes coding for cytokine pathway (e.g. CXCR5, IL7, IL12A) co-stimulatory (e.g. CD37, 

CD40) and signal transduction (e.g. STAT3, MALT1) (International Multiple Sclerosis Genetics et al., 2011).  

The IL2RA (also known as CD25) genetic variant has recently been negatively associated with MS 

susceptibility (Maier et al., 2009).   

As of today, Vitamin D has been highlighted as the most crucial environmental risk factor for MS 

and its role has been confirmed through many population and epidemiological studies. High-latitude 

regions tend to have higher rates of MS compared to regions closer to the equator where people get more 

sunlight and have higher blood levels of vitamin D (Smolders, 2011). However, a functional interaction 

between MS and vitamin D has been indicated by many genetic studies as well. The expression levels of 

HLA molecules have been linked to vitamin D levels (Ramagopalan et al., 2009) and it has been reported 

that the vitamin D receptor binding sites are significantly enriched near MS associated genes 

(Ramagopalan et al., 2010). 

1.2 Experimental Autoimmune Encephalomyelitis  

MS presents a complex disease with variable clinical and pathological manifestations and involves 

diverse pathogenic pathways that have been difficult to be fully recapitulated by a single experiment 

model. Experimental Autoimmune Encephalomyelitis (EAE) is a well-established animal model for MS and 

it is widely used. Although many different EAE models are available, none of them covers the entire MS 

pathology and each of them mimics only a particular facet of the disease. 
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A precursor of an EAE model was suggested by Rivers et al. in 1933 (Rivers et al., 1933). These early 

attempts were able to induce encephalomyelitis to rhesus monkeys by repeated injections of rabbit brain 

matter. The aim of this study was to decipher the pathogenesis of post rabies vaccination; however, during 

that time ‘the relation of the injections to the disease of the nervous system was not clear’. Only after the 

introduction of complete Freund’s adjuvant (Freund et al., 1947), the induction of EAE became more 

reliable and simple. At first, two protein components of myelin, myelin basic protein (MBP) and proteolipid 

protein (PLP), were characterized as encephalitogenic and considered target antigens in MS (Ben-Nun et 

al., 2014). Over the years, a plethora of potential autoantigens have been tested for the induction of EAE 

such as the myelin oligodendrocyte glycoprotein (MOG) or other non-myelin CNS antigens like the glial 

antigens GFAP and S100β (Krishnamoorthy and Wekerle, 2009). 

EAE can be induced by various ways, including active immunization with Freund’s adjuvant, 

spontaneous EAE models by using transgenic mice (Pöllinger et al., 2009) and adoptive transfer of 

autoreactive T cells (Ben-Nun et al., 1981a). The consensus behind these methods is the central role of 

autoreactive CD4+ helper T cells. For example, during active immunization with a target autoantigen, 

autoreactive T cells expand in vivo. Also, the transgenic mice which develop spontaneous EAE overexpress 

self-reactive T cell receptors (TCR). More directly, during adoptive transfer, autoreactive CD4+ T cells are 

the driving force that induces EAE. 

1.2.1 Adoptive transfer EAE in rat 

Although there are many EAE models available (Krishnamoorthy et al., 2006, Pöllinger et al., 2009, 

Madsen et al., 1999), unfortunately none of them can reproduce the MS disease course with precision. 

Therefore, it is necessary to select the suitable model for each research topic. Amongst the EAE models, 

the adoptive transfer EAE (tEAE) using Lewis rats is suitable for studying T cell infiltration into the CNS. 

tEAE has been used before for validating therapeutic compounds in drug screening and for studying the 

migratory behavior of T cells during the clinical course of EAE (Krishnamoorthy and Wekerle, 2009). 

In this model, EAE is induced in naïve recipient animals by adoptive transfer of in vitro activated 

CNS autoantigen specific T cells (Ben-Nun et al., 1981b). After a few days of pre-clinical phase, animals lose 

their body weight and show paralysis of tails and hind limbs. In contrast to MS or to other EAE models, 

demyelination in the CNS is minimum. The disease course is monophasic and lasts around 1 week. Then, 

the animals recover and do not show any signs of relapse. Notably, in this tEAE model, the T cell 

immigration to the CNS displays highly reproducible disease course and fits very well to clinical 

observations. 
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After transfer, the majority of activated autoreactive T cells do not directly migrate into the CNS; 

on the contrary, they take a complicated biphasic journey on their way to their target tissue (Fig. 1.2.1). 

Indeed, the migratory pathway of MBP specific T cells was revealed after their genetic labeling with Green 

fluorescent protein (GFP) (Flügel et al., 1999). Within 2 hours after the transfer, MBP specific T cells migrate 

to the lungs (Klinkert, 1987). Then, on day 1-2 post transfer (p.t.), they start to accumulate in the perithymic 

lymph nodes. Afterwards, T cells infiltrate into the spleen on day 3 p.t. via blood circulation. At the same 

time, T cells start to infiltrate into the CNS gradually and present massive infiltration on day 4 p.t. at the 

peak of the disease. During the acute phase of EAE, other types of immune cells, including T cells, B cells 

and macrophages are recruited into the CNS and contribute to the inflammation. During the recovery 

phase, the population of MBP specific T cells dramatically decreases and disappears from the CNS. 

 

Figure 1.2.1 Maturation of encephalitogenic T cells in peripheral organs. Encephalitogenic T cells acquire migratory 
phenotype which is characterized by down-regulation of activation markers and up-regulation of chemokine 
receptors and MHC class II. Thereafter, the mature migratory T cells can infiltrate into the CNS. There are several 
organs suggested as place for the maturation, such as the spleen, the small intestine and the lungs (adapted from 
Ransohoff, 2012).  

1.3 T lymphocytes infiltration into the CNS 

1.3.1 T lymphocytes in pre-clinical phase 

in vitro activated T cells infiltrate into the lung and the small intestine shortly after adoptive 

transfer. Afterwards, they acquire a migratory phenotype in the spleen where they down-regulate their 

cell surface activation markers, for example OX-40 and CD25 and they up-regulate chemokine receptors 

such as CCR5, CCR7 and CXCR4. Chemokine receptors may be important for the infiltration into the target 
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organ by detecting chemokines which are produced by endothelial cells and are embedded on extracellular 

matrix. Indeed, T cells transferred from the spleen infiltrate into the spinal cord faster than in vitro 

activated T cells (Flügel et al., 2001). Importantly, non-encephalitogenic activated T cells follow a similar 

migratory pathway but they infiltrate into the CNS in low numbers. 

However, it still remains under investigation why the T cells acquire this migratory phenotype in 

the spleen. There is possibly an antigen-dependent interaction between T cells and local antigen 

presenting cells (APCs), or alternatively, there is an interaction via adhesion molecules. Since many factors 

from the environment can be incorporated into the lung during breathing, the lung environment is 

certainly an interesting location for T cell maturation. In fact, recently, it was shown that the lungs are 

another milieu of maturation for MBP specific T cells (Odoardi et al., 2012, Ransohoff, 2012). In another 

study, it was suggested that gut microbiota activate encephalitogenic T cells in a mouse spontaneous EAE 

model (Berer et al., 2011). Taken together, T cells may get signaling in gut associated lymphoid tissue 

(GALT), including Peyer's patches and lamina propria. Nonetheless, more detailed studies need to be 

performed regarding the role of lung and GALT in T cell activation. 

1.3.2 Breaching the Blood Brain Barrier 

CNS is considered as an immunoprivileged site while a healthy brain is nearly devoid of immune 

cells. The presence of BBB acts as a physical and functional barrier that prevents the entry of toxic 

substances and immune cell trafficking from the periphery into the CNS. BBB is formed by a tightly sealed 

monolayer of endothelial cells and cooperates closely with the surrounding  astrocytes, pericytes and 

microglia (Zlokovic, 2008). This dynamic interface is not always solid while activated T cells are able to 

modify and breech the BBB permeability (Engelhardt and Coisne, 2011). During EAE, BBB breaching 

initiates with the prodromal T cell infiltration and progresses with the subsequent perivascular leukocyte 

accumulation. However, the infiltration of autoantigen specific T cells into the CNS seems to be insufficient 

to induce CNS inflammation. It was shown that both encephalitogenic T cell infiltration into the CNS and 

activation are necessary to induce clinical EAE (Kawakami et al., 2004).  

Adoptively transferred T cells appear within the blood vessels at the spinal cord leptomeninges. 

Those T cells, at first, roll and later crawl on the intraluminal surface (Fig. 1.3.1). Rolling cells follow the 

blood stream with high velocity and tether to the endothelial cells in a P-selectin-dependent manner 

(Piccio et al., 2002). Circulating CD4+ T cells with high levels of PSGL-1 and increased transmigration 

capacity across BBB have been found in MS patients (Bahbouhi et al., 2009). The transition from rolling to 

crawling is mediated mainly via integrins. Indeed, treatment with anti-integrin α4 and αL antibodies 
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diminished crawling cells and ameliorated the clinical symptoms of EAE (Bartholomäus et al., 2009). T cells 

adhere and crawl preferentially against the direction of the blood flow at velocities of 12-13 μm/min 

(Bartholomäus et al., 2009). Crawling is BBB-specific, as it is rarely observed in any peripheral organ 

(Bartholomäus et al., 2009) and it is antigen-independent (Pesic et al., 2013). 

After intraluminal crawling, which lasts 15 minutes on average, T cells extravasate to the 

leptomeningeal area through the BBB. Diapedesis occurs via two different pathways: either the para-

cellular or the trans-cellular pathway (Engelhardt and Ransohoff, 2012). The duration of diapedesis is 

around 10-20 min (Bartholomäus et al., 2009). Intraendothelially stored chemokines seems to play an 

important role in diapedesis (Shulman et al., 2012), however, as of today, the signals that favor diapedesis 

have remained obscure. 

 

Figure 1.3.1 The invasion steps of encephalitogenic T cells into the CNS tissue (adapted from Bartholomäus et al., 
2009). 

1.3.3 T lymphocytes infiltration into the CNS beyond the Blood Brain Barrier 

After the extravasation, infiltrated T cells continue to scan the outer surface of leptomeningeal 

vessels and interact with local APCs (Bartholomäus et al., 2009). Depending on the different stages of the 

clinical course, these contacts may vary from short interactions (only a few minutes) to constant prolonged 

interactions (10-30 min). Although all evidences suggest that T cells are activated in the spinal cord 

leptomeninges, as of today, it has not been possible to visualize the T cell activation in situ due to 
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methological limitations. Pesic et al. (Pesic et al., 2013) as well as others (Lodygin et al., 2013, Marangoni 

et al., 2013) visualized T cell activation by applying a nuclear factor of activated T cells (NFAT)-GFP fusion 

protein during intravital imaging. They reported that infiltrated encephalitogenic T cells become activated 

when they contact with local APCs, while NFAT-GFP fusion protein translocates from cytosol to nucleus. 

Afterwards, activated T cells penetrate deeper within the CNS parenchyma. The majority of T cells 

follow a motile pattern with high velocity and spontaneous movement (Kawakami et al., 2005). Intravital 

recordings revealed immunological synapses during the stationary phase of T cells. These results suggest 

that T cells may be further activated in parenchyma by local APCs. 

1.4 Calcium signaling in T lymphocytes 

Calcium is a universal second messenger important for a diverse range of T cell functions including 

proliferation, differentiation, homeostasis, activation and cell death. The sequence of T cell signaling 

events is tightly regulated by positive and negative feedback pathways that involve cytosolic and 

transmembrane molecules in cooperation with a plethora of ion channels. In resting T cells the cytosolic 

calcium concentration is maintained at ~50-100 nM, whereas following T-cell receptor (TCR) stimulation it 

elevates to ~1 μM (Joseph et al., 2014). The extracellular calcium concentration across the plasma 

membrane (PM) is ~1 mM and consists an important calcium pool in addition to the endoplasmic reticulum 

(ER) which also features elevated calcium concentration (~500 nM). 

T cells are processing extracellular stimuli into an encoded calcium signal which subsequently 

coordinates downstream T cell functions. During calcium signaling, calcium does not function as a binary 

switch; instead it displays a variety of signaling patterns like single transient spikes, repetitive oscillations 

or sustained plateaus. These patterns differ in amplitude and frequency which are important parameters 

for determining the efficiency and the specificity of cellular responses. For example, NFAT nuclear 

translocation initiates by frequent rapid oscillatory calcium signals (Dolmetsch et al., 1998) and is 

preserved with sustained and low-calcium levels (Dolmetsch et al., 1997). On the contrary, nuclear factor 

kappa B (NFκB) is activated only by transient and infrequent spikes of high-calcium signals (Song et al., 

2012) and remains in the nucleus for a longer period of time compared to NFAT (Dolmetsch et al., 1997). 

Moreover, the concentration of peptides affects the calcium oscillations in cytotoxic T cells, as low peptide 

concentrations reduce the magnitude of calcium and produce higher oscillations (Faroudi et al., 2003). On 

the other hand, it was reported that calcium oscillations increase the sensitivity of T cells to detect weak 

stimuli like low doses of antigen (Lewis, 2001). 
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1.4.1 Calcium flux through TCR engagement 

Upon a T cell recognizes its target cell and conjugates with it through the immunological synapse 

(IS), it undergoes cytoskeletal rearrangements and exhibits a dramatic increase of intracellular calcium 

concentration within seconds (Fig. 1.4.1). A key initiating event after the engagement of the specific 

antigen is the increased phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) 

on the cytosolic side of the TCR-CD3 complex by the SRC family kinases LCK and Fyn (Mustelin and Tasken, 

2003).  Subsequently, the ZAP-70, which is a CD3ζ-chain-associated tyrosine kinase protein (TKP), is 

activated and results in the formation of signaling microclusters (Balagopalan et al., 2009). The 

phosphorylation of the CD3ζ-chain also initiates other phosphorylation events for many adaptor proteins 

such as SLP76 (SRC-homology-2-domain-containing leukocyte protein of 76 kDa) and the transmembrane 

adaptor protein LAT (linker for activation of T cells) (Feske, 2007). LAT acts as a scaffold with many docking 

sites for SRC homology 2 (SH2) domain-containing adapter proteins including phospholipase Cγ1 (PLCγ1), 

Grb2 and Grb2-related adaptor proteins (GADS) (Joseph et al., 2014). SLP76 is indirectly associated to LAT 

through its binding with the SH3 domain of GADS and is involved in the recruitment of several signaling 

molecules including regulators of calcium signaling and integrin activation (Balagopalan et al., 2009). 

 

Figure 1.4.1 T cell calcium cascade through TCR engagement or chemokines. In resting T cells, a steep gradient in 
calcium concentrations exists between the cytoplasm and the extracellular space, as well as between the 
cytoplasm and the lumen of the ER. The intracellular calcium concentrations in T cells is tightly regulated and kept 
between ~100 nM in resting cells and ~1000 nM following TCR stimulation. Antigen recognition through the TCR 
results in the activation of protein tyrosine kinases, such as LCK and ZAP70, which initiate phosphorylation events 
of adaptor proteins, such as SLP76 and LAT. This leads to the recruitment and activation of ITK and PLCγ. Similarly, 
binding of G protein-coupled chemokine receptors results in the activation of PLCβ. PLCβ and PLCγ catalyse the 
hydrolysis of the membrane PtdIns(4,5)P2 to IP3 and DAG. IP3 binds to and opens IP3 receptors in the membrane 
of the ER, resulting in the release of calcium from intracellular calcium stores. A decrease in the calcium content of 
the ER is sensed by STIM1, which in turn activates CRAC channels in the plasma membrane. Calcium influx through 
CRAC channels and elevated intracellular calcium concentration activate calcium-dependent enzymes, such as 
calcineurin, and thereby transcription factors, such as NFAT or NF-κB (adapted from Feske, 2007). 



INTRODUCTION 

13 

A series of signaling events ensue following the phosphorylation of LAT. PLCγ1 is phosphorylated 

by the interleukin-2 (IL-2)-inducible T-cell kinase (Itk), and undergoes a conformational change (Joseph et 

al., 2014). PLCγ1 catalyses the hydrolysis of the membrane phosphatidylinositol 4,5-bisphosphate in order 

to produce the second messengers cytosolic inositol triphosphate (IP3) and membrane-associated lipid, 

diacylglycerol (DAG) (Christo et al., 2015). DAG activates PKCθ and the MAPK/ERK pathways that promote 

the activation of the transcription factors activator protein-1 (AP-1) and the NF-κB to induce cytokine gene 

transcription (Schulze-Luehrmann and Ghosh, 2006). IP3 binds to its tetrameric IP3 receptor (IP3R) on the 

ER membrane, triggering the opening of the IP3R channels and release of calcium from intracellular calcium 

stores (Joseph et al., 2014). The aforementioned release serves as the primary rise of calcium levels in the 

cytosol and generates an intracellular calcium concentration of up to 500nM, almost five-fold higher than 

the basal levels (Christo et al., 2015). 

Nevertheless, calcium influx from ER stores makes a relatively small contribution and mainly serves 

as a sensitive trigger for controlling a much larger flux of calcium across the plasma membrane. Several 

important ion channels that belong to store-operated calcium entry (SOCE) and mediate calcium influx and 

release have been reported including IP3 receptors (Kotturi et al., 2006), transient receptor potential 

channels (Omilusik et al., 2013), ATP-responsive purinergic P2 receptors (Junger, 2011), N-methy-D-

Aspartate activated receptors (Affaticati et al., 2011) and voltage-dependent calcium channels (Feske et 

al., 2012). 

In lymphocytes, the calcium-release-activated calcium (CRAC) channels are the main source of 

calcium influx and are composed of a hexamer containing six ORAI subunits (Hou et al., 2012).  The 

depletion of calcium from ER is sensed by the stromal cell interaction molecule (STIM) proteins STIM1 and 

STIM2 which translocate to PM via ER microtubules (Pozo-Guisado et al., 2013). These proteins are key 

regulators of SOCE and they trigger sustaining intracellular calcium above resting levels for some minutes, 

up to hours. In general, when calcium stores are replete in ER, STIM1 exists as a monomer and calcium 

binds to their EF hand domain causing a closed and stable inactive conformation. Following the depletion 

of calcium stores in ER, calcium dissociates from the EF hand domain of STIM1 resulting in the 

oligomerization of STIM1 molecules and their accumulation in puncta in regions of ER located 10-25nm 

beneath the PM (Park et al., 2009). ORAI1, which exists as a dimer in PM, upon STIM1 coupling forms 

tetramers and mediates the opening of the ORAI channels (Penna et al., 2008). 

Following the opening of ORAI channels, a sustained influx of extracellular calcium occurs and 

promotes the binding of calcium to the four high affinity EF-hands of calmodulin (CaM). CaM binds and 

activates calcineurin which in turn dephosphorylates the inactive NFAT transcription factor resulting in the 
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translocation of NFAT into the nucleus and the induction of NFAT-mediated gene transcription (Macian, 

2005). 

1.4.2 Calcium flux through chemokine receptors  

Independently of the TCR engagement, T cells may also attain a migratory phenotype through 

calcium influx pathways during leukocyte trafficking. This multi-step process involves a precise interplay 

between chemokines, selectins and integrins binding. For example, chemokines induce a conformational 

change to integrins from intermediate to high affinity and avidity in order to initiate firm arrest and support 

the subsequent migration. 

Chemokine receptors belong to the seven transmembrane (7TM) G protein coupled receptor 

(GPCR) family and play a crucial role in a diverse range of functions like in development and homeostasis, 

or in host response to inflammation and infection. In general, GPCRs trigger leukocyte mobilization 

towards the source of chemokine gradients, a process often referred to as chemotaxis. As of today, 23 

different chemokine receptors have been unidentified and 48 chemokine ligands can activate them 

(Zweemer et al., 2014). 

All 7TM receptors follow a general activating mechanism regardless the binding site of the agonist 

or the chemical nature of it (Jensen and Rosenkilde, 2009). Endogenous chemical agents or exogenous 

stimuli like peptides, ions or biogenic amines induce GPCRs activation and transduce this signal via a 

mechanism of G protein coupling. More specifically, upon ligand binding and agonist stimulation, 7TMs 

undergo intracellular conformational changes and form active-state complexes with heterotrimeric GTP-

binding proteins (G proteins). Also, it has been reported that some GPCRs reside in the PM in a 

conformational equilibrium between active and inactive biophysical states and the type of the ligand may 

shift the equilibrium toward the active receptor state (Bennett et al., 2011). In active state complexes, the 

recruited Gα subunits release GDP and exchange it for GTP. This exchange leads to the dissociation of G 

proteins into activated α subunit and βγ dimers (Reiter and Lefkowitz, 2006). Then, the G protein subunits 

stimulate enzymes such as adenylate cyclase or phospholipase Cβ (PLCβ) (Fig. 1.4.1). Next, PLCβ cleaves 

phospholipids to produce IP3 and DAG. Similar to calcium flux through TCR engagement, IP3 production 

triggers the release of calcium from intracellular ER stores. It is important to note that SOCE activation is 

triggered only by the reduction of calcium levels in ER stores and not by any signaling molecule like G 

proteins, PLC or IP3 (Park et al., 2009). 

The magnitude and the duration of the chemokine signaling are mainly dependent on five different 

factors; the chemokine concentration and exposure time, the GPCR desensitization, the GPCR 
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internalization and the GPCR phosphorylation. All these functions are regulated and coordinated by the G 

protein coupled receptor kinases (GRKs) and β-arrestins (Reiter and Lefkowitz, 2006). Also, evidence 

suggests that G proteins are also pre-coupled with GPCRs prior to ligand-induced activation in inactive 

state complexes in order to increase the sensitivity and accelerate the onset of signaling (Qin et al., 2011). 

1.5 Imaging T lymphocytes activation in vivo 

In the past 50 years, many studies have revealed the dynamic nature of immune cells that allows 

them to invade and migrate within different tissues (Gowans, 1966). However, only the last decade and 

with the advent of biochemical, genetic and high resolution imaging tools it has been possible to identify 

and analyze the choreography of specific immune cell populations at the single-cell level. Indisputably,  a 

crucial achievement was the introduction of fluorescent proteins into immune cells (Flügel et al., 1999). In 

combination with two-photon microscopy, it is possible nowadays to trace on a subcellular level the spatial 

and temporal regulation of many signaling pathways (Cahalan and Parker, 2008). 

As it was mentioned before, calcium is one of the most well-known intracellular signaling 

molecules for many intracellular signaling cascades, including T cell activation and chemokine receptor 

triggering. Many experiments were performed before using chemically synthesized calcium indicator dyes 

such as Fura-2 (Grynkiewicz et al., 1985), Fluo-3 (Minta et al., 1989) and Indo-1 (Tsien et al., 1985) in 

immune and neuronal cells. However, a main disadvantage of these sensors is that T cells pump out dyes 

in a range of several hours via multi-drug resistance transporters (Sommer et al., 1994). Besides, they are 

applicable only for short-term experiments due to extensive cell proliferation (Randriamampita and 

Lellouch, 2014). 

To overcome the aforementioned limitations, a genetically encoded calcium Förster/fluorescence 

resonance energy transfer (FRET)-based biosensor (Miyawaki et al., 1997) was introduced in HeLa cells. 

This biosensor consisted of two fluorescent proteins (FP), CaM and a calmodulin-binding peptide M13 

derived from the myosin light-chain kinase. Upon calcium chelation, CaM wraps around the M13 domain 

and energy transfers between the flanking FPs. 

This proof of concept was followed later for the construction of the TNXXL biosensor (Mank et al., 

2008). TNXXL is based on a Troponin C (TnC) calcium binding domain instead of CaM, flanked by the two 

FPs CFP and cpCitrine. This intracellular calcium indicator was modified and optimized in order to be 

expressed in mouse T cells (Mues et al., 2013). Mues et al. described that the high degree of sequence 

homology in the coding regions of cpCitrine and CFP impeded the expression of TNXXL in T cells. In fact, 

Rhode et al. reported deletions of the direct tandem repeats during virus replication (Rhode et al., 1987). 
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To circumvent these limitations, cpCitrine was codon diversified (CD) by inserting silent mutations and 

maintaining the amino acid sequence intact. The affinity of this new calcium sensor, Twitch1, was further 

improved by replacing the TnC domain with a higher calcium-binding moiety.  

Similar to the first descripted FRET sensor, in a low-calcium environment, Twitch1 emits cyan 

fluorescence upon CFP excitation (Fig. 1.5.1A). This situation changes dramatically when intracellular 

calcium concentration elevates. Intracellular calcium binds very rapidly to the TnCCD domain and induces 

conformational change of Twitch1, i.e. CFP and cpCitrineCD become in close proximity to each other. Under 

this condition, emitted light from CFP excites cpCitrineCD and cpCitrineCD emits yellow fluorescence (Fig. 

1.5.1B). By analyzing the ratio (cpCitrineCD /CFP), the intracellular calcium could be quantified. This 

ratiometric analysis marks a major advantage on intravital imaging experiments. In general, because of the 

fact that T cells are moving in vivo at the three dimensional volume, the fluorescence can be influenced by 

the imaging depth and becomes error-prone. However, this is not the case for Twitch1 ratiometric analysis, 

since both CFP and cpCitrineCD emissions are influenced by imaging depth in the same manner. Also, 

Twitch1 expressing mouse T cells demonstrated similar reactivity against their specific antigens compared 

to Twitch1 negative counterparts. In addition, Twitch1-labeled encephalitogenic T cells did not lose their 

encephalitogenicity or alter their phenotype. It is important to note that the expression levels of Twitch1 

were constant during the entire course of the disease. 

 

Figure 1.5.1 A. Schematic representation of the calcium sensor TN-XXL. Cyan fluorescent protein (CFP) and a yellow 
fluorescent protein (cpCitrine) are connected by a calcium sensitive troponin C domain (TnC). At low calcium 
environment, protein emits blue light. Upon calcium influx, protein emits yellow light. B. Spectrophotometric 
analysis of lysate from TN-XXL–expressing EL4 cells before and after addition of 1 mM calcium. Excitation was at 
430 nm. FI, fluorescence intensity; AU, arbitrary units (adapted from Mues et al., 2013). 

An alternative activation sensor, which complements the Twitch1 sensor, has been developed 

(Pesic et al., 2013, Marangoni et al., 2013, Lodygin et al., 2013). T cell activation can be detected by 

analyzing sub-cellular localization of NFAT family. As it was described previously, upon T cell activation, the 

phosphatase calcineurin dephosphorylates NFAT and causes its nuclear translocation and the induction of 
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NFAT mediated gene transcription (Shaw et al., 1995). The NFAT1 protein, in particular, is a transcriptional 

factor that is expressed in most immune cells and is regulated by calcium signaling. In the non-activated T 

cells, NFAT is localized into the cytosol. However, upon TCR stimulation, NFAT rapidly translocates into the 

nucleus within only few minutes (Fig. 1.5.2B).  

The highly conserved DNA-binding domain of NFAT (Macian, 2005) was deleted so as not to 

interfere with endogenous gene regulation (Aramburu et al., 1998). Next, a GFP-labeled, truncated variant 

of NFAT1 was applied in order to visualize T cell activation within the spinal cord (Pesic et al., 2013) (Fig. 

1.5.2A). ∆NFAT-GFP translocation of autoreactive T cells was observed within the leptomeningeal area and 

after extravasation (Pesic et al., 2013, Lodygin et al., 2013). This activation signal occurs only within a few 

minutes after stimulation and does not necessarily demand a long-lasting contact. T cells with nuclear 

NFAT exhibit a reduced motility and are able to sequentially make contacts with meningeal phagocytes. 

 

Figure 1.5.2 ∆NFAT-GFP as an activation marker of T cells. A. Native and truncated versions of NFAT. Amino acids 
numbers are indicated. TAD, transcription activation domain. B. in vivo T cell activation indicated by the cellular 
localization of the NFAT-GFP marker. Two patterns of NFAT-GFP (green)/SNARF-1 (red) in double-labeled T cells: 
cytosolic in resting cells and nuclear in activated T cells. Scale bar: 5μm (Adapted from Pesic et al., 2013).
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OBJECTIVES 

The main question addressed in this study was how symphonic infiltration of autoreactive T cells 

into the CNS is initiated. The experimental model that was applied was tEAE, which has proved to be a very 

important model in the study of MS. Although autoreactive T cells exist in healthy individuals and do not 

induce EAE, unknown trigger(s) stimulate autoreactive T cells and start infiltration into the CNS. In order 

to visualize autoreactive T cell activation in vivo, two newly developed activation reporters, Twitch and 

fluorescent NFAT were combined with in situ imaging by using two-photon microscopy. 

The first aim of this study was to examine how T cells acquire a “migratory phenotype” in 

peripheral lymphoid organs. Since Twitch is a sensitive calcium sensing protein, it was speculated that it 

could detect weak signals such as the involvement of adhesion molecules and chemokine receptors.  

The second aim of this study was to detect crawling-rolling transition calcium signals and record 

their strength and rhythm. Previous attempts to visualize the activation status of intraluminal ΔNFAT-GFP-

expressing T cells during crawling and rolling were not successful. Most probably, the stimuli was not 

sufficient to translocate ∆NFAT-GFP to the nucleus.  

In addition, it was important to quantify the frequency, the duration and the topography of 

calcium signaling of autoreactive T cells during antigen recognition in the spinal cord meninges. As of today, 

the majority of studies on calcium imaging have been performed in lymph nodes after providing excessive 

amount of antigen by immunization. In this study, it was speculated that the limited availability of 

immunogenic myelin proteins, even during the acute phase of EAE, would better reflect the physiological 

context of antigen recognition.  

The last aim was to determine whether T cells accumulate calcium tonic signals from different 

APCs until a certain activation threshold is exceeded. For this reason, a new, dual Twitch and ∆NFAT sensor 

was generated. 
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MATERIAL & METHODS 

2.1 Material 

2.1.1 Bacteria 

E. coli NEB 5-alpha Electrocompetent (NEB C2989K) 

2.1.2 Oligonucleotides 

Name Sequence 5' →3' Purpose  

NFATdsRed2BglII GATCAGATCTAGCTTCCACCATGGACGTCC F2U-Δzeo-NFAT-DsRed2 

NFATdsRed2NotI GATCGCGGCCGCTACAGGAACAGGTGGTGG F2U-Δzeo-NFAT-DsRed2 

mRubyAgeIfw GATAAACCGGTCGCCACCATGGTGTCTAAGGGCGAAGAGCTG 
F2U-Δzeo-NFAT-
mRuby2-∆polyA 

mRubyNotIre CTATAGGCGGCCGCTTACTTGTACAGCTCGTCCATCCCA 
F2U-Δzeo-NFAT-
mRuby2-∆polyA 

NFATMfeIfw GATAACAATTGAGCTTCCACCATGGACGT 
PINCO-puro-∆NFAT-
mRuby2-Twitch2B 

mRuby2MfeIre CTATAGCAATTGAGGTCGAAAGGCCCGGA 
PINCO-puro-∆NFAT-
mRuby2-Twitch2B 

LSSmOrAgeIR CTATAGACCGGTGCGGCCGCTTACTTGTACAGCT 
pMSCV-ΔPGK-puro-
∆NFAT-LSSmOrange 

LSSmOrAgeIF GATAAACCGGTCGCCACCATGGTGAGCAAGGGC 
pMSCV-ΔPGK-puro-
∆NFAT-LSSmOrange 

Table 2.1.1 List of cloning primers. 

2.1.3 Plasmids 

Vector backbones Purpose Provider 

pRSET-B Expression vector Invitrogen, Karlsruhe 

pMSCVneo / pMSCVpuro Retroviral vector Clontech, Heidelberg 

F2U-∆Zeo Lentiviral vector 
(kindly provided by Stefan 
Lichtenthaler Lab, DZNE) 

PINCO Retroviral vector (Grignani et al., 1998) 

pFusionRed FusionRed fusion vector (Shemiakina et al., 2012) 

Table 2.1.2 List of vector backbones used in this study. 
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Name Provider 

pRSETB-LSSmOrange (kindly provided by Oliver Griesbeck Lab, MPI) 

pRSETB-mKate2 (kindly provided by Oliver Griesbeck Lab, MPI) 

pRSETB-mRuby2 (kindly provided by Oliver Griesbeck Lab, MPI) 

pMSCV-puro-∆NFAT-GFP (Pesic et al., 2013) 

PINCO-GFP (Grignani et al., 1998) 

pMSCV-Δneo-Twitch1 (Mues et al., 2013) 

pMSCV-Δneo-Twitch2B (Thestrup et al., 2014) 

pMSCV-neo-IRES-DsRed2 (Odoardi et al., 2007b) 

pMSCV-puro-∆NFAT-DsRed2 This study 

F2U-Δzeo-NFAT-DsRed2 This study 

pMSCV-puro-∆NFAT-mKate2 This study 

pRSETB-∆NFAT-mKate2 This study 

F2U-Δzeo-NFAT-DsRed2-∆polyA This study 

F2U-Δzeo-NFAT-mRuby2-∆polyA This study 

F2U-Δzeo-NFAT-FusionRed-∆polyA This study 

pMSCV-puro-∆NFAT-mRuby2 This study 

pMSCV-puro-∆NFAT-FusionRed This study 

PINCO-Twitch1 This study 

PINCO-Twitch2B  This study  

PINCO-puro-∆NFAT-mRuby2-Twitch2B (Proteas) This study 

pMSCV-ΔPGK-puro-∆NFAT-LSSmOrange This study 

Table 2.1.3 List of subcloned plasmids used or constructed in this study.  

2.1.4 Media, Reagents and Buffers 

Bacterial growth media and buffers Specified amount Constituents 

Luria-Bertani (LB) 

10 g/l Tryptone 

5 g/l Yeast Extract  

10 g/l NaCl  

100 µg/ml Ampicillin was added for selection 

Luria-Bertani (LB) Agar 

10 g/l Tryptone 

5 g/l Yeast Extract  

10 g/l NaCl  

15 g/l Bacto Agar 

100 µg/ml Ampicillin was added for selection 

TAE running buffer 

40 mM Tris-HCl 

20 mM Acetic acid 

1 mM EDTA (pH 8.0) 

DNA loading dye   R0611 (Thermo Scientific) 

DNA ladder  1kb GeneRuler (Thermo Scientific) 

Table 2.1.4 List of bacterial growth media and buffers used in this study.  
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Cell culture media, buffers and 
reagents 

Specified amount Constituents 

DMEM 
13.4 g/l DMEM powder 

3.7 g/l NaHCO3 

Freezing medium 

50 % Vol. Horse serum (inactivated) 

40 % Vol. EH 

10 % Vol. DMSO 

EH 
97.5 % Vol. DMEM 

2.5 % Vol. HEPES solution, 1M 

Restimulation medium (RM)  
99 % Vol. TCM 

1 % Vol. Rat serum 

TCGF 

80 % Vol. TCM 

10 % Vol. Horse serum (inactivated) Supernatant 

10 % Vol. 
Supernatant from ConA stimulated mouse 
splenocytes 

TCM 

ad 1 l DMEM 

2 mM L-Glutamine 

10 IU/ml Penicillin/Streptomycin 

10 ml/l Asparagine 

1 mM  Sodium-Pyruvate 

10 ml/l Non-essential amino acids 

4 μl/l 2-Mercaptoethanol 

TCM + FCS  
90 % Vol. TCM 

10 % Vol. Fetal calf serum (inactivated) 

Phosphate buffered saline (PBS) 
Adjusted to pH 7.4 

10 mM Na2HPO4 

1.8 mM KH2PO4 

140 mM NaCl 

2.7 mM KCl 

Lysis buffer 

150 mM NH4Cl  

1 mM KHCO3  

0.1 mM Na2EDTA 

FACS buffer 

99 % Vol. PBS 

1 % Vol. Rat serum 

0.05 % Vol. NaN3 

Isotonic Percoll 
90 % Vol. Original Percoll 

10 % Vol. 10x PBS 

Underlay Percoll 
64 % Vol. Isotonic Percoll 

36 % Vol. PBS 

CNS density gradient reagent 
10.8 ml Isotonic Percoll (1.124g/ml) 

10 ml Underlay Percoll (1.077g/ml) 

Blood lymphocyte gradient reagent 
100 μl Heparin (5000U/ml) 

0.63 ml for 5 ml blood Optiprep 

10x HBSS 
After bubbling with carbogen gas (95% O2 
/5%CO2), adjusted with NaHCO3 to pH 7. 

1368 mM NaCl 

53 mM KCl 

4.4 mM KH2PO4 

55mM Glucose 

3.3 mM Na2HPO4 

Ca2+ imaging buffer 
Adjusted to pH 7.4 

140 mM NaCl 

5 mM KCl 

1 mM MgSO4 * 7 H2O 

1 mM CaCl2 

1 mM NaH2PO4 * H2O 
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5.5 mM Glucose 

20 mM HEPES 

low-melting agarose solution 
 PBS 

3-4% Low-melting Agarose 

2x BES 
Adjusted to pH 6.95 

50 mM 
N,N-bis(2-hydroxyethyl)-2-
aminoethanesulfonic acid 

280 mM NaCl 

1.5 mM Na2HPO4 

Table 2.1.5 List of cell culture media, buffers and reagents used in this study. 

2.1.5 Antibodies 

Antibody                                                             
(clone, isotype) 

Host and specificity                                                                          
company 

Applications 

Isotope control                                                       
(MOPC31c) 

mouse                                                 
AbD Serotec 

Flow cytometry                                                                                
primary antibody 

CD4                                                         
(W3/25) 

mouse anti-rat                                
AbD Serotec 

Flow cytometry                                                                                
primary antibody 

abTCR                                                                   
(R73) 

mouse anti-rat                                
AbD Serotec 

Flow cytometry                                                                                
primary antibody 

CD25                                                                   
(OX-39) 

mouse anti-rat                                
AbD Serotec 

Flow cytometry                                                                                
primary antibody 

CD134                                                                   
(OX-40) 

mouse anti-rat                                
AbD Serotec 

Flow cytometry                                                                                
primary antibody 

CD49d                                                        
(TA-2) 

mouse anti-rat                                
AbD Serotec 

Flow cytometry                                                                                
primary antibody 

CD11a                                                              
(wt1) 

mouse anti-rat                                
AbD Serotec 

Flow cytometry                                                                                
primary antibody 

CD45RC                                                        
(OX-22) 

mouse anti-rat                                
AbD Serotec 

Flow cytometry                                                                                
primary antibody 

CD62L                                                          
(OX-85) 

mouse anti-rat                                
AbD Serotec 

Flow cytometry                                                                                
primary antibody 

CD11b                                                             
(OX-42)  

mouse anti-rat                                
AbD Serotec 

Flow cytometry                                                                                
primary antibody 

MHC class I                                                 
(OX-18) 

mouse anti-rat  
(in this study) 

Flow cytometry  / intravital imaging                                                                            
primary antibody 

MHC class II                                                    
(OX-6)  

mouse anti-rat  
(in this study) 

Flow cytometry  / intravital imaging                                                                        
primary antibody 

Allophycocyanin (APC) IgG  
Goat anti-mouse                                
Jackson Laboratories   

Flow cytometry                                                                                
secondary antibody 

IFNγ                                                                                  
(DB-1) 

mouse anti-rat                             
eBiosciences 

Flow cytometry                                                                                
primary antibody 

IL-17                                                                                
(TC11-18H10) 

PE-conjugated rat anti-mouse                                   
BD 

Flow cytometry                                                                                
primary antibody 

Isotype control 
(Rat, IgG1, k) 

PE-conjugated rat antibody 
BD 

Flow cytometry 
primary antibody 

Table 2.1.6 List of antibodies used in this study. 
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2.1.6 Antigens 

MBP was prepared from guinea pig brain homogenates as reported (Campbell et al., 1973). OVA 

was purchased from Sigma-Aldrich, Taufkirchen. 

2.1.7 Animals 

Lewis rats (body weight 100-150 g) were obtained from the breeding colony of the Max Planck 

Institute of Neurobiology. All animals were kept and bred in the animal facility at the Max Planck Institute 

of Neurobiology. All of the animal experiments were approved by the local authority (Regierung von 

Oberbayern). 

2.2 Methods 

2.2.1 DNA techniques 

in silico DNA analysis. Plasmid maps were drawn with Snap Gene Viewer Version 2.8.3 (GSL Biotech, 

Chicago, USA); restriction enzyme digestions were designed using NEBcutter 2.0 (NEB, Frankfurt) and Snap 

Gene Viewer Version 2.8.3. 

PCR primers. Oligonucleotide primers were designed with Snap Gene Viewer Version 2.8.3. All DNA 

oligonucleotides were synthesized by Metabion (Planegg/Steinkirchen, Germany) and reconstituted in 

sterile, deionised water to give a stock solution of 100 µM. 

DNA sequencing. The sequencing was conducted by the Sequencing Service of the Genomics Service Unit 

in Faculty of Biology (LMU, Martinsried) using an ABI 3730 capillary sequencer. DNA sequencing results 

were analyzed by Snap Gene Viewer Version 2.8.3 and sequence alignment was done by ClustalW (EMBL-

EBI, Cambridge, UK). 

DNA modification. DNA was modified with enzymes using standard protocols provided by the 

manufacturers (NEB, Frankfurt; MBI Fermentas, St. Leon-Rot). 

Plasmid purification. DNA purification was done with glycogen from Mytilus edulis (G1767) using a 

standard protocol provided by the manufacturer (Sigma-Aldrich, Taufkirchen). 

Polymerase Chain Reaction (PCR). All PCR assays were performed using iProof High –Fidelity Master Mix 

(Bio-Rad, Hercules, USA) in 50 μl reactions according to the instructions of the manufacturer. The optimal 
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annealing temperature for each pair of primers was determined by temperature gradient PCRs. Thermal 

cycles were performed using a PTC-200 DNAEngine (Bio-Rad, Hercules, USA) cycler. 

DNA purification. PCR products or DNA fragments were purified by the QIAquick PCR Purification Kit 

(Qiagen, Hilden) according to the instructions of the manufacturer. The DNA concentration was 

determined by using the Nanodrop spectrophotometer ND-100 (PeqLab, Erlangen). 

Agarose gel electrophoresis. The agarose gels were prepared by boiling agarose 1.0% (w/v) in 1 x TAE and 

adding 1 μg/ml ethidium bromide. DNA was separated at 120 volts for 90 min. Gels were visualised in the 

Geldoc XR system (Bio-Rad, Hercules, USA). An IL 200 M transilluminator (Bachofer, Reutlingen) was used 

in order to excise DNA bands from preparative gels. 

DNA extraction from agarose gels. DNA fragments were excised from agarose gels and DNA was isolated 

using the Wizard SV Gel Clean-Up System (Promega, Mannheim) according to the instructions of the 

manufacturer. 

Ligation of DNA fragments. Vector backbone and insert were mixed in molar ratios of 1:3 to 1:5. The 

ligation reaction was performed using T4 DNA ligase (NEB, Frankfurt) following manufacturer’s 

instructions. The fragments were ligated in a total volume of 20 µl T4 DNA ligase buffer using 400 units T4 

DNA ligase for 1 hour at RT or for 12 hours at 18oC. The ligase was deactivated by heating at 65°C for 20 

minutes. 

Electroporation of E. coli. Electrocompetent E. coli were thawed slowly on ice. Cell suspension was mixed 

gently to resuspend, and returned to the ice. 1 µl DNA and 50 microliters of cells were transferred to a 

chilled electroporation cuvette, and transfected using the GenePulser (Bio-Rad, Hercules, USA) at 25 µF, 

1.7 kV, and 200 Ω. After electroporation the bacteria were immediately transferred to 500 µl LB medium 

agitated for 30 min at 37°C. 200 µl of cell suspension were plated onto LB agar plates containing antibiotic 

selection and incubated at 37°C o/n. 

E. coli glycerol stock. 500 μl of an overnight culture was mixed with 500μl of 50% glycerol solution and 

stored in cryotubes at -80°C. 

Isolation of plasmid DNA from E. coli. Plasmid DNA was isolated with the HiSpeed Plasmid Midi Kit 

(Qiagen, Hilden) or with the NucleoBond Xtra Midi (Macherey-Nagel, Düren) according to the instructions 

of the manufacturers. DNA was always eluted in H2O. 



MATERIAL & METHODS 

25 

2.2.2 Cloning strategies  

PINCO-Twitch1 and PINCO-Twitch2B 

The reported PINCO-GFP vector was digested with BspQI and blunt ends were generated using a 

T4 DNA polymerase. Subsequently, the vector was further digested with SspI and EcoRI to substitute the 

sequence between the two long terminal repeats (LTRs) with the LTRs and the Twitch2B from the pMSCV-

Δneo-Twitch2B vector. Twitch2B including the LTRs was excised from the pMSCV-Δneo-Twitch2B vector 

by restriction digestion with SspI. Pinco-Twitch1 was generated with a similar cloning strategy (Fig. 2.2.1). 

 

Figure 2.2.1 A. Schematic representation of cloning strategy for constructing PINCO-twitch2B plasmid. PuroR: 
puromycin resistance gene; ori: origin of replication. 

pMSCV-puro-∆NFAT-DsRed2 

The pMSCV-neo-IRES-DsRed2 and pMSCV-puro-∆NFAT-GFP vectors were digested with AgeI. Then, 

DsRed2 and 120 bp from the beginning of the phosphoglycerate kinase (PGK) promoter were excised and 

exchanged with the sequence of GFP and part of the PGK promoter in pMSCV-puro-∆NFAT-GFP vector. 

Importantly, the open reading frame (ORF) of ∆NFAT-DsRed2 was continuous and maintained the same as 

∆NFAT-GFP (Fig. 2.2.2A). 
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F2U-Δzeo-NFAT-DsRed2 

∆NFAT-DsRed2 was cloned into the lentivirus F2U-∆Zeo plasmid. PCR based cloning was performed 

with NFATDsRed2BglII and NFATDsRed2NotI primers (see table 2.1.1). These primers added BglII and NotI 

restriction sites to the ends of ∆NFAT-DsRed2 fragment. After digestion, this fragment was cloned into the 

BamHI-NotI digested F2U-∆Zeo plasmid (Fig. 2.2.2B). 

 

Figure 2.2.2 A. Schematic representation of cloning strategy for constructing pMSCV-puro-∆NFAT-DsRed2 plasmid. 
B. Schematic representation of cloning strategy for constructing F2U-Δzeo-NFAT-DsRed2 plasmid. IRES: internal 
ribosome entry site; RRE: Rev Response element; cPPT: central polypurine tract; WPRE: Woodchuck Hepatitis Virus 
Posttranscriptional Regulatory Element. 

pMSCV-puro-∆NFAT-mKate2 

The pMSCV-puro-∆NFAT-GFP vector was digested with NcoI. ∆NFAT was excised and ligated 

upstream of mKate2 into the pRSETB-mKate2 vector. Then, the donor pRSETB-∆NFAT-mKate2 and the 

recipient pMSCV-puro-∆NFAT-GFP vectors were digested with EcoRI. During the final cloning step, 291 bp 
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from the end of ∆NFAT and mKate2 were excised and exchanged with the sequence of GFP and the 

identical area of ∆NFAT in the pMSCV-puro-∆NFAT-GFP vector (Fig. 2.2.3). 

 

Figure 2.2.3 Schematic representation of cloning strategy for constructing pMSCV-puro-∆NFAT-mKate2 plasmid. 

pMSCV-puro-∆NFAT-mRuby2 & pMSCV-puro-∆NFAT-FusionRed 

The same cloning strategy was followed in order to generate the ∆NFAT-mRuby2 and ∆NFAT-

FusionRed vectors. Both FPs were cloned downstream of the ORF of the NFAT gene into the lentivirus F2U-

Δzeo-NFAT-DsRed2-∆polyA plasmid. mRuby2 was amplified from the pRSETB-mRuby2 plasmid by PCR. The 

applied primers mRubyAgeIfw and mRubyNotIre (see table 2.1.1) added AgeI and NotI restriction sites to 

the ends of mRuby2 fragment. FusionRed was digested with AgeI and NotI from the pFusionRed vector 

and cloned directly to the aforementioned lentivirus vector. Next, the F2U-Δzeo-NFAT-mRuby2-∆polyA, 

F2U-Δzeo-NFAT-FusionRed-∆polyA and pMSCV-puro-∆NFAT-GFP vectors were digested with BamHI and 

NotI. During the final cloning step, 424 bp from the end of ∆NFAT and mRuby2/FusionRed were excised 

and exchanged with the sequence of GFP and the identical area of ∆NFAT in the pMSCV-puro-∆NFAT-GFP 

vector (Fig. 2.2.4). 
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Figure 2.2.4 Schematic representations of cloning strategies for constructing pMSCV-puro-∆NFAT-mRuby2 and 
pMSCV-puro-∆NFAT-FusionRed plasmids. 

pMSCV-ΔPGK-puro-∆NFAT-LSSmOrange 

LSSmOrange was amplified from the pRSETB-LSSmOrange plasmid by PCR. The applied primers 

LSSmOrAgeIR and LSSmOrAgeIF (see table 2.1.1) added AgeI restriction sites to the ends of LSSmOrange 

fragment. The pMSCV-puro-∆NFAT-mRuby2 vector was digested with AgeI and the mRuby2 was 

exchanged with the sequence of LSSmOrange (Fig. 2.2.5). 
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Figure 2.2.5 Schematic representation of cloning strategy for constructing pMSCV-ΔPGK-puro-∆NFAT-LSSmOrange 
plasmid. 

PINCO-puro-∆NFAT-mRuby2-Twitch2B (Proteas) 

To generate the PINCO-puro-∆NFAT-mRuby2-Twitch2B (Proteas) vector, PCR based directional 

cloning was performed. At first, the PINCO-Twitch2B vector was digested with EcoRI. ∆NFAT-mRuby2 and 

PGK promoter were amplified from the pMSCV-puro-∆NFAT-mRuby2 vector by PCR. The applied primers 

NFATMfeIfw and mRuby2MfeIre (see table 2.1.1) added MfeI restriction sites to the ends of ∆NFAT-

mRuby2 fragment. The ligation of the PINCO-backbone and the ∆NFAT-mRuby2 targeted insert was 

achieved with compatible cohesive ends (Fig. 2.2.6). 

 

Figure 2.2.6 Schematic representation of cloning strategy for constructing PINCO-puro-∆NFAT-mRuby2-Twitch2B 
(Proteas) plasmid. 
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2.2.3 Cell culture 

Cultivation of cell lines. Cell lines were checked daily to confirm they are growing as expected. They were 

cultivated in fully complemented DMEM medium in standard cell culture-treated plastic dishes (BD, 

Heidelberg) in a humidified incubator (Heraeus) at 37°C and 10% CO2. Adherent cells that required 

trypsinization, were treated with Trypsin-EDTA (PAA Laboratories) for 3-5 min at 37°C. In general, cultures 

were split when they were 80% confluent. Fresh media was added to cell cultures when they were not 

confluent in order to keep correct pH and replenish nutrients. Cells were pelleted by centrifugation at 300 

rcf for 7 min at 4°C. 

Cryopreservation of cell lines. For long-term storage of cell lines, 15-30×106 healthy cells with a viability 

of >90% were harvested and resuspended in 1.5 ml of freezing medium. Slow freeze was achieved by 

storing the cell lines in a dedicated Freezing Container (Thermo Fisher Scientific) at -80°C and subsequently 

in a liquid nitrogen tank. Cell lines were thawed quickly by incubation in a 37°C water bath for 3-5 minutes 

and washed once with 10 ml of EH to remove the cryoprotectant DMSO. Afterwards, cell lines were 

resupsended in 10 ml of warm medium. 

Calcium phosphate transfection of GP+E86 cells. Twenty-four hours prior to transfection, 2 x 106 GP+E86 

cells were inoculated per 10 cm culture dish in 10 ml TCM + FCS. The following day, 25 µM chloroquine 

(Sigma-Aldrich, Taufkirchen) was added to the medium. Next, a transfection mix was made by mixing 15-

20 µg DNA in 900 µl H2O and 50 µl 2 M CaCl2. 1 ml of 2x BES was added dropwise while aerating by vortex. 

After 20 min incubation at 37°C the transfection complex was transferred dropwise onto the GP+E86 cells. 

Twelve to sixteen hours after incubation, the medium was aspirated gently and was replaced with 10 ml 

of pre-warmed fresh medium. 

Lentivirus production and transduction. Lentivirus production and transduction was generated using the 

method of Kuhn et al. (Kuhn et al., 2010). Cell cultures were performed in a BSL 2 containment facility and 

according to work practices. However, due to technical reasons, all experiments were kindly performed by 

Stefan Lichtenthaler’s Lab (DZNE). 

Generation of retrovirally transduced, antigen-specific T cell lines. A previous reported protocol (Flügel 

et al., 1999) was applied in this study for generating antigen-specific T cell lines; some essential 

modifications were implemented regarding the Twitch1 fluorescent protein. 6-8 week old Lewis rats were 

immunized by subcutaneous injection of antigen (100 μg), emulsified in complete Freund’s adjuvant (CFA, 

Difco) containing the Mycobacterium tuberculosis strain H37RA (4 mg/ml). 10 days after immunization, 
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cells from the draining lymph nodes were isolated and co-cultured with monolayers of GP+E86 cells which 

produce a Twitch1 gene-coding retrovirus. The mixing ratio of T cells to GP+E86 cells was 2x106 cells/ml to 

1.5×105 cells/ml. Importantly, GP+E86 cells were cultured a few hours before adding T cells in order to 

adhere. Next, cells were transferred to a 96-well round-bottom plate in a total volume of 100µl RM 

containing 10µg/ml antigen. The selection process includes antibiotic resistance via retroviral gene 

delivery and antigen presentation. Two days later, IL-2 conditioned medium (TCGF) was added for 

expanding and maintaining selected cells. On day 6, T lymphocytes were either stored by cryopreservation 

or further restimulated. During the next round of restimulation, T cells were incubated with irradiated 

(5000 rad) syngeneic thymocytes in the presence of antigen. Twitch1-labelled T cells were enriched by flow 

cytometric sorting using a MoFlow (Dako, Hamburg) or a FACS Aria (BD). The transduced T cells were 

selected after the first restimulation by neomycin (400 µg/ml) only if the vector contained a neomycin 

resistance gene. The expression of Twitch1 was confirmed by fluorescence microscopy using an inverted 

Axiovert 200M microscope (Zeiss Microscopy, Jena) equipped with a CoolSnap CCD camera (Roper 

Scientific, Planegg). 

2.2.4 Flow Cytometry (FACS) 

Surface staining. in vitro activated GFP- or Twitch1-labeled T cells (1×106 cells per staining) were incubated 

with FACS buffer in a 96-well V bottom plate (Nunc) for 10 min on ice to prevent nonspecific antibody 

binding. Next, primary antibodies were added at optimized dilutions for 30 min on ice followed by two 

times washing in FACS buffer. A secondary antibody was applied afterwards using the same protocol. 

Lastly, the cells were washed once in FACS buffer and once in PBS. Every washing step required a 

centrifugation at 300 rcf for 10 min at 4°C. 

Intracellular staining. PMA (10µg/ml)/ionomycin (1µM) stimulated T cells were used as positive control. 

For intracellular stainings, cells were fixed in 2 % PFA for 20 min on ice. After incubation, cells were washed 

in PBS. After fixation, cells were permeabilized by incubation with BD Perm/Wash buffer on ice for 15 min. 

Every following washing step required BD Perm/Wash buffer. The primary antibody for IFNγ (diluted 1:200) 

was added and cells were incubated on ice for 30-60 min. After washing three times with BD Perm/Wash, 

cells were resuspended in BD Perm/Wash buffer with the secondary antibody (1:200 dilution) along with 

PE-IL-17 (1:400 dilution) antibody for 90 min on ice. Lastly, the cells were washed once with BD Perm/Wash 

and once with PBS. 



MATERIAL & METHODS 

32 

All samples were measured by FACS VERSE (BD) and data analysis was performed using the FlowJo 

software (FlowJo LLC). 

2.2.5 Animal experiments  

Fentanyl anesthesia mixture. Animals were anesthetized by intramuscular injection of 

fentanyl/midazolam/medetomidin mix (5 µg/kg, 2 mg/kg and 150 µg/kg, respectively) in PBS according to 

Bavarian state regulations for animal experimentation and approved by the appropriate authorities. 

Adoptive transfer EAE. Transfer EAE was induced by intravenous injection (i.v.) of ex vivo stimulated 

encephalitogenic T cells to 8-12 weeks old female Lewis rats. The number of injected T cell blasts depended 

on the experimental setup (Table 2.2.1). The animals were monitored for weight loss and clinical scores 

daily. Clinical evaluation was scored as follows: 0, no disease; 0.5, loss of tail tonus; 1, tail paralysis; 2, gait 

disturbance; 3, complete hind-limb paralysis; 4, tetraparesis; 5, death. 

Experiment T cells 
Number of transferred  
T cells  

Intravital imaging of Twitch1-labeled T cells in 
the spleen (3.1.2) 

TMBP-Twitch1 or TOVA-Twitch1 4.0-5.0×106 

Mechanisms of antigen independent calcium 
spikes (3.1.3) 

TMBP-Twitch1 or TOVA-Twitch1 
First transfer:12.0-15.0×106 
Retransfer: 10.0×106 

Intravital imaging of Twitch1-labeled T cells 
within leptomeningeal vessels (3.1.4) 

TMBP-Twitch1 or TOVA-Twitch1 3.0-5.0×106 

Intravital imaging of Twitch1-labeled T cells 
within leptomeninges (3.1.5) 

TMBP-Twitch1 or TOVA-Twitch1 
Day 2: 3.0-5.0×106 

Day 3: 2.6×106 

Intravital imaging of Twitch1-labeled T cells 
within parenchyma (3.1.6) 

TMBP-Twitch1 
2.6-8.0×106 (depends on the day of 
imaging)  

Deciphering the relation between antigen 
stimulation and intracellular calcium signaling 
(3.1.7) 

TMBP-Twitch1 or TOVA-Twitch1 2.6-3.2×106 

Leptomeningeal APCs have disparate functional 
potential (3.1.8) 

TMBP-Twitch1 or TOVA-Twitch1 2.6-3.5×106 

Table 2.2.1 Number of transferred T cells depending on the experimental setup. 

Retransfer after treatment with a chemokine receptor inhibitor. TOVA-Twitch1 were prepared three days 

after adoptive transfer (Pesic et al., 2013). Cells from the spleen were homogenized in EH via metal filter 

and treated with lysis buffer to remove erythrocytes. Next, the lymphocytes were treated with 

chemokine/chemokine receptor inhibitors for 60 min before transfer to secondary recipient animals. 

During this step, the macrophages were also removed by adhesion on culture dishes. The following 

inhibitors were used: Pertussis toxin (PTX) (List Biological Laboratories, 100 ng/ml), Maraviroc (Sigma, 25 
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µg/ml), AMD-3100 (Sigma, 25 µg/ml), and TAK-779 (Sigma, 22 µg/ml). After treatment, 10 x 106 Twitch1-

labelled T cells were washed with EH and retransferred into naïve recipients via the tail vein. 

Intrathecal injection. Stereotactic intrathecal injection was performed into the cisterna magna of 

anesthetized rats. For labeling of meningeal APCs, 6 μg of Texas Red or tetramethylrhodamine conjugated 

dextran (molecular size: 70 kDa or 2 MDa respectively from Molecular Probes) was injected into the 

cisterna magna between C1 and C2 using a 27G needle (BD). Intrathecal application of 0.2-0.3 mg anti-

MHC class II or anti-MHC class I blocking antibody was performed similarly. 

Antibody production. Anti-MHC class I and anti-MHC class II antibody producing hybridoma lines were 

purchased from Sigma. Cells were cultured in serum free medium (Life technologies). Supernatant was 

harvested from an overgrown cell culture. The antibodies in the supernatant were concentrated by using 

a Centricon Plus-70 according to manufacturer’s protocol. Antibody concentration was measured by 

Nanodrop. 

2.2.6 Fluorescence microscopy 

Fluorescent protein-labeled GP+E86 or HEK 293 cells were resuspended in calcium imaging buffer 

and incubated in cell culture dishes at 37°C for at least one hour. Time lapse video microscopy was 

performed at controlled temperature and CO2 conditions. Image acquisition in 30-s time intervals started 

before ionomycin treatment (4 μM) and continued for at least 13 min after stimulation. Time-lapse images 

were acquired on an inverted Axiovert 200M microscope (Zeiss Microscopy, Jena) equipped with a 37°C 

incubation chamber. Images were processed by MetaMorph software (Molecular Devices) and analyzed 

using ImageJ software (NIH). 

2.2.7 Intravital two-photon microscopy 

Animal preparation. Animals were anesthetized with isoflurane and subsequently with fentanyl 

anesthesia mixture. Next, they were intubated by tracheotomy and ventilated with 1.0-1.3% isoflurane. 

Importantly, isoflurane was supplied continuously during the whole imaging session. Animals were 

stabilized on a custom-made microscope stage and the body temperature was regulated by a heated pad 

(37.5°C). Electrocardiograms were recorded by electrocardiogram sensors on both forefeet, and 

physiological parameters, such as concentrations of inspiratory and expiratory gases, and ventilation 

pressure were constantly recorded during imaging. 
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Spinal cord imaging. For spinal cord imaging, laminectomy was performed at the upper part of lumber 

spinal cord (Bartholomäus et al., 2009). After midline skin incision of 2–3 cm, the paravertebral 

musculature was detached from the spine and a laminectomy on one spine disc was performed using a 

dental drill (Foredom, Bethel, USA). To exclude artifacts by the preparative disclosure of the spinal cord 

tissue as well as by the heart beat and breathing of the animal, 3 sequential spine discs were fixed using a 

custom made fixation. The water objective was embedded in a ring-shaped dam surrounding the spinal 

cord window built by using a low-melting agarose solution. Blood vessels and CNS meningeal APCs were 

visualized by intravenously and intrathecally respectively injected fluorescent dextran conjugates. 

Spleen imaging. For spleen imaging, a skin incision was made and the spleen was gently exposed with 

intact vasculature on a custom-made stage. Wiring of blood vessels and spleen was allowed through a 

small opening between the stage and the animal. To exclude artefacts, a glass bottom μ-Dish (Ibidi, 

Martinsried) was carefully placed on the top of the spleen and pressed slightly. 

Acute slice imaging. Spinal cord was excised from the T-cell-transferred animal at the acute phase of EAE. 

A tissue chopper was used for cutting the spinal cord into transversal 300µm-thickness slices. Slices were 

kept in ice-cold HBSS bubbled with carbogen gas (95%O2/5%CO2) and adjusted to pH 7. Next, the slices 

were placed at the bottom of a custom made chamber and stabilized with a slice anchor. Importantly, the 

slice anchor had the same thickness as the acute slice in order to stabilize it against the buffer flow and 

not to compress it. A buffer circulation at 37°C and bubbled with carbogen was critical for the T-cell 

motility. Dead cells, which may have been injured during slice preparation, were excluded from the analysis 

using low-dose (5 μg/ml) DAPI staining. 

Image acquisition. Images were acquired by using Leica SP2 (Leica, Mannheim) equipped with a 10W 

Millenia/Tsunami pulsed laser (Newport Spectra Physics, Darmstadt). Typically, 260 µm x 260 µm x 30 µm 

xyz-volume was imaged with 512 x 512 x 10 pixels with time interval of 19-21 sec. Imaging was done with 

2x zoom and with images line-averaged twice. Laser was adjusted to emit 835 nm excitation beam. The 

fluorescent signal was collected with water immersion objective (25x, NA 0,95) and detected by non-

descanned detectors equipped with 475/50 nm (CFP), 537/26 nm (FRET), and 630/69 nm (Texas Red) band-

pass filters (Semrock). 

Image processing. Images were processed using ImageJ. To obtain two-dimensional movies, a Gaussian 

blur filter was applied and maximum intensity z-projections were made. Additionally, a Median filter was 

used for removing noise. Artifacts from focal drift were removed using the StackReg/TurboReg plugin.  
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Image analysis. Images were analyzed using ImageJ and the computing of motility parameters and calcium 

signals was performed using Excel (Microsoft). At each time point, the cell shape was outlined manually in 

the maximum projection picture. Cell coordinates were obtained for calculating the cellular motility and 

generating cell trajectories. The latter were aligned accordingly for the starting position.  

Calculation of calcium signals. Intracellular calcium measurement in single cells was performed using the 

ratiometric calcium sensor Twitch1. The emission from CFP (CFP) and CpCititine (FRET) after CFP excitation 

was acquired. The bleed-through of CFP into the FRET channel was determined to be 44%, and the FRET 

signal for CFP bleed-through was corrected as cFRET = FRET − 0.44 × CFP. The ratio of cFRET/CFP was 

normalized as previously (Mues et al., 2013).  Ratio was calculated as ΔR/R = (R –R0)/R0 (R, actual ratio; R0, 

ratio at zero calcium). Ratiometric pseudocolor pictures were created according to the normalized formula 

and a fire lookup table was applied. 

Calculation of T cell-APCs interactions. Regions of interest (ROIs) that include the outline cell shape from 

both T cells and APCs were automatically crosschecked in ImageJ, and any overlap or bordering of the ROIs 

within 0.9375 μm was considered as a contact. A tolerance of one pixel was added to every ROI containing 

APCs. Because of the fact that the dendrites of the APCs were too delicate to be visualized in detail, the 

interruption of a contact over one time point was considered as a continuing contact. 

2.2.8 Statistical analysis 

For all statistical tests, Prism software (Graphpad) was used as described in the figure legends. 

Significance was indicated according to the p-value as the following: *p<0.05, **p<0.01, ***p<0.001. The 

scatter plots were constructed using R. The overlaid box plots extend from the twenty-fifth to the seventy-

fifth percentiles and the whiskers extend from the fifth to the ninety-fifth percentiles.  
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RESULTS 

3.1 Context-dependent calcium signaling in encephalitogenic T cells 

3.1.1 Establishing Twitch1-labeled T cells 

Fluorescent protein-labeled rat T cells can be established by applying simultaneous strong positive 

and negative selection pressures on them (Flügel et al., 1999). However, Twitch1 gene transfer into rat 

antigen specific T cells was initially not successful because the transduction efficiency was extremely low. 

It was speculated that two main factors may constrain the expression of Twitch1 into rat T cells; the size 

of the RNA packed into the retrovirus and the PGK promoter. Indeed, the sequence between the LTRs of 

the pMSCVneoTwitch1 plasmid is 2984 bp and reaches the upper limit of packaging capacity (Fig. 3.1.1A). 

In addition, the retroviral construct possesses two ORFs leaded by two different promoters. The ORF of 

Twitch1 is expressed only by the LTR promoter on the 5’ end while the ORF of the Neomycin resistance 

cassette (NeoR) follows a strong PGK promoter. This unbalanced transcription may decrease Twitch1 

expression and may enhance antibiotic resistance as well. 

 

Figure 3.1.1 Twitch1 retroviral constructs. The elements of each construct are shown here. A. pMSCVneoTwitch1 
B. pMSCVΔneoTwitch1 C. PINCOpuroTwitch1.  

In order to increase the packaging efficiency, the size of the retrovirus was reduced by 1.3 kbp after 

deleting the neomycin resistance gene and the PGK promoter (Fig. 3.1.1B). However, this deletion led to a 

low transduction efficiency again because it was not possible to select the GP+E86 cells which produce 

viruses. Based on these findings, a PINCO vector was used (Grignani et al., 1998). This vector possesses a 

NeoR outside the LTRs and provides antibiotic resistance to transfected packaging cells. Consequently, it 

offers a smaller RNA size (Fig. 3.1.1C). Indeed, this modification, combined with sorting by FACS, achieved 
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a high efficiency gene delivery and allowed a high yield isolation of pure Twitch1-labeled T cell lines. 

Afterwards, T cell lines were expanded for more than 7 rounds of restimulation and it was shown that they 

managed to maintain Twitch1 expression in high levels (Fig. 3.1.2). 

It should be mentioned that since the intracellular calcium binds to Twitch1, a high expression 

level of this sensor may possibly disturb some cellular functions. That was not observed in mouse T cells 

(Mues et al., 2013). However, it is not clear if the rat T cells present the same behavior because the 

sensitivity of T cells can differ among the species. Therefore, it was important to examine whether T cellular 

functions remain intact from the expression of Twitch1 or not. 

 

Figure 3.1.2 Representative flow cytometric histograms depicting Twitch1 expression levels in two different rounds 
of restimulation on day 2. 

Flow cytometry confirmed that Twitch1 overexpression and calcium binding did not alter the T cell 

phenotype. MBP specific encephalitogenic T cells (TMBP-Twitch1 cells) were compared with GFP-labeled 

counterparts and both of them showed similar expression patterns of cell surface molecules, including 

activation markers and adhesion molecules (Fig. 3.1.3A). Additionally, their intracellular production of 

inflammatory cytokines such as IFNγ and IL-17 was indistinguishable (Fig. 3.1.3B). 

Next, encephalitogenicity and infiltration kinetics into the CNS were directly tested by adoptive 

transfer into the recipient animals. In comparison to previous studies (Pesic et al., 2013), Twitch1 

expressing T cells behaved like their GFP or ∆NFAT-GFP expressing counterparts. Their encephalitogenic 

potential remained unimpaired (Fig. 3.1.3C-D), concluding that Twitch1 can be used as a reliable genetic 

indicator in rat T cells. 
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Figure 3.1.3 The phenotype of Twitch1-expressing T cells is compared with GFP-expressing T cells for cell surface 
markers (A) the production of inflammatory cytokines (B), and encephalitogenicity in vivo (C-D). A. The histograms 
depict the expression of cell surface markers on in vitro-activated GFP- or Twitch1-labeled T cells. TMBP-GFP (blue 
lines) and TMBP-Twitch1 (red lines) cells were stained with specific antibodies as indicated and analyzed by flow 
cytometry. B. Dot plots of IFNγ/IL-17 intracellular staining. The inserted numbers indicate the proportion of cells 
in each quadrant. C-D. EAE clinical course induced by transfer of TMOG-GFP or TMBP-GFP cells as well as TMOG-NFAT-GFP or 
TMBP-NFAT-GFP cells and compared with EAE clinical course induced by transfer of TMBP-Twitch1. A-D. Mean ± SD from at 
least 3 animals per group are shown. Representative data from 3 independent experiments per cell line (Figure D 
adapted from Pesic et al., 2013). 
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3.1.2 Intravital imaging of Twitch1-labeled T cells in the spleen 

Determining a threshold for high-calcium levels 

In the present work, OVA specific T cells (TOVA-Twitch1 cells) were used as a negative control. After in 

vitro activation, both TMBP-Twitch1 and TOVA-Twitch1 cells were adoptively transferred into the recipient animal. 

They accumulated within the spleen on day 3 after adoptive transfer and they were imaged by intravital 

microscopy. It was speculated that the presence of tiny amounts of MBP would be sufficient to provide 

weak stimulation on T cells and would reveal the antigen dependency of calcium signaling into the spleen.  

Regardless of the antigen specificity of T cells and behaving much like control TOVA-Twitch1 cells, TMBP-

Twitch1 cells continuously moved through the spleen milieu, by sporadically firing brief calcium spikes. 

However, the calcium levels of both TMBP-Twitch1 and TOVA-Twitch1 cells remained below the threshold (Fig. 

3.1.4).  

In order to set a specific ΔR/R threshold for high-calcium signaling, a 95% percentile was used. This 

percentile represents 95% of all analyzed calcium values of T cells in the spleen. In contrast, the upper 5% 

percentile, which exceeded the threshold of ΔR/R: 1.282, belongs to high-calcium signaling. 
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Figure 3.1.4 Twitch1-labeled T cells were imaged in the spleen on day 3 p.t. Cumulative plots of the calcium level 
(ΔR/R) are shown. Each dot represents a single time point in a particular cell. Hereafter, dotted horizontal lines 
(red) indicate the threshold (1.282) of the calcium level. Representative data from 2 independent experiments per 
cell line are shown.  
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Short high-calcium signaling in the spleen 

Both TMBP-Twitch1 and TOVA-Twitch1 cells showed similarly infrequent and short-lasting calcium spikes. 

As reported before (Wei et al., 2007), and also in the present study, the majority of these calcium spikes 

were shorter than 2 minutes (Fig. 3.1.5A-B) and they were commonly associated with lower motility (Fig. 

3.1.5C). 

 

Figure 3.1.5 Short calcium spikes in the spleen. A. Duration of high-calcium signaling in the spleen. Representative 
data from 2 independent experiments per cell line are shown. B. Series from in vivo calcium imaging of the spleen 
with TOVA-Twitch1 cells. A fluorescence overlay of TOVA-Twitch1 cells encircled (left) and a pseudocolour ratio image with 
T cells encircled (right) are depicted. The inserted numbers indicate the relative time after the start of image 
acquisition. Scale bar: 10 µm. C. Representative track for intracellular calcium levels (black line) and T cell velocities 
(red line) in the spleen with two short high-calcium spikes. The grey area indicates the three imaging frames from 
(A). 

Antigen application and maximum stimulation in the spleen 

In order to provide the maximum intracellular high-calcium stimulation, soluble antigen was 

injected intravenously during intravital imaging. Splenic APCs were labeled with intravenous injection of 

fluorescent dextran. In line with a previous study (Odoardi et al., 2007b), within a short time after soluble 

antigen treatment, T cells decelerated and stopped. In addition, the majority of them showed long-lasting 

high-calcium signaling (Fig. 3.1.6A). It is important to note that both TMBP-Twitch1 cells and TOVA-Twitch1 cells 

responded to their specific antigen with similar time kinetics (Fig. 3.1.6B). 
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Figure 3.1.6 Soluble antigen treatment. A. Series from in vivo calcium imaging of the spleen with TOVA-Twitch1 cells 
before and after soluble antigen treatment are shown. A fluorescence overlay of TOVA-Twitch1 cells (left) and a 
pseudocolour ratio image with T cells (right) are depicted. Scale bar: 50 µm. T cells (blue/yellow) and phagocytes 
(red) are shown in fluorescent overlay.  B. Time kinetics for the proportion of TMBP-Twitch1 (black line) and TOVA-Twitch1 
(grey line) cells with high-calcium levels. The vertical line indicates the time point of soluble antigen treatment. 
The results are representative of at least three independent experiments. 
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3.1.3 Mechanisms of antigen-independent calcium spikes 

MHC class II blocking in the spleen  

The calcium spikes of T cells in low antigen milieus could be triggered either through T cell 

receptors receiving tonic signals from unspecified self-antigens (Hochweller et al., 2010) or through 

antigen-independent mechanisms (Revy et al., 2001). The administration of anti-MHC class II-blocking 

antibody slightly reduced the frequency of calcium signaling (Fig. 3.1.7). 
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Figure 3.1.7 TOVA-Twitch1 cells were imaged in the spleen on day 3 p.t. before and after injection of anti-MHC class II 
(αMHCII) antibody. Cumulative plots of the calcium level (ΔR/R) are shown. Each dot represents a single time point 
in a particular cell. The results are the sum of at least three independent experiments per treatment. 

Chemokine signal induces short-lasting calcium spikes  

As it was described previously, short-lasting calcium spikes in the spleen may derive from antigen-

independent mechanisms. Thus, it was important to explore whether this calcium flux was induced 

through the chemokines receptors. In general, GPCRs trigger leukocyte locomotion and they are involved 

in chemokine activation. In contrast to in vitro activated T cells, which do not rearrange their gene 

expression profile, both TMBP-Twitch1 and TOVA-Twitch1 cells acquire a migratory phenotype in the spleen and 

express chemokine receptors. Consequently, in order to examine the GPCR effects in intrasplenic T cell 

behavior, TOVA-Twitch1 cells were purified from the spleen on day 3 after adoptive transfer. Then, the TOVA-

Twitch1 cells were treated in vitro with inhibitors for chemokine receptors and re-transferred into the naïve 

recipients. On the day following the re-transfer, many autoreactive T cells were found in the spleen. 

Initially, a general inhibitor of GPCRs was applied. PTX blocks a broad spectrum of chemokine 

receptors as it prevents the G proteins from interacting with their cognate GPCRs (Mangmool and Kurose, 
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2011). When TOVA-Twitch1 cells were treated with this bacterial exotoxin, the proportion of cells which 

showed calcium spikes was significantly reduced (Fig. 3.1.8). 

 

Figure 3.1.8 Scatter plots showing the TOVA-Twitch1 velocity versus the calcium-indicator ratio change for each 
individual time point with or without inhibitor treatment.  Mean values for ∆R/R and velocity are indicated along 
with a two-dimensional box plot. The results are the sum of at least three independent experiments per treatment. 

In addition, according to a previous study, T cells express CCR1, -2b, -3, -5, -7 and CXCR4 in the 

spleen after adoptive transfer (Flügel et al., 2001). In order to clarify whether these chemokine receptors 

induce high-calcium signaling, three potential inhibitors were used. AMD-3100, a CXCR4 inhibitor, almost 

diminished the short-lasting calcium spikes (Fig. 3.1.9A and 3.1.9C). In addition, Maraviroc, a CCR5 

inhibitor, and TAK-779, a CCR2-CCR5 inhibitor, reduced the frequency of short-lasting calcium spikes as 

effectively as PTX (Fig. 3.1.9A). However, none of these treatments influences T cell motility drastically (Fig. 

3.1.9B) indicating that T cell migration is not depending on CCR2, CCR5 or CXCR4. 
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Figure 3.1.9 A. Percentage of high-calcium signaling per track in the spleen with or without inhibitor treatment. B. 
Quantification of the average T cell velocity in the spleen with or without inhibitor treatment. C. Representative 
images from in vivo calcium imaging of the spleen with TOVA-Twitch1 cells. A fluorescence overlay of TOVA-Twitch1 cells 
(left) and a pseudocolour ratio image with T cells (right) are depicted. A cell with elevated calcium is encircled in 
the pseudocolour ratio image. The inserted numbers indicate the relative time after the start of image acquisition. 
Scale bar: 50 µm. T cells (blue/yellow) and phagocytes (red) are shown in fluorescent overlay. (A-B) The data are 
presented as the mean ± s.e.m. The results are the sum of at least three independent experiments per treatment. 

3.1.4 Intravital imaging of Twitch1-labeled T cells within leptomeningeal vessels 

Bartholomäus et al. described the process of MBP specific encephalitogenic T cell infiltration into 

the CNS (Bartholomäus et al., 2009). After acquiring a migratory phenotype in the spleen and before the 

onset of EAE, TMBP-GFP cells appear in the blood vessels at the spinal cord leptomeninges. Within the 

leptomeningeal vessels, T cells roll, adhere, and crawl on the intraluminal surface. It is noteworthy to 

mention here, that both the crawling and the rolling T cells restrict ∆NFAT-GFP to their cytosol (Pesic et 

al., 2013). However, it has remained unclear whether T cells display different calcium levels during these 

interactions. 

 

 

 



  RESULTS 

45 

Activation status of rolling T cells  

Intravital imaging using TMBP-Twitch1 and TOVA-Twitch1 cells was performed on day 2 p.t. in order to 

analyze the calcium dynamics of rolling T cells. Although two-photon microscopy is not an ideal method 

for detecting rolling cells, due to its relatively slow scanning rate, some rolling cells can be occasionally 

detected. Indeed, in this study, two-photon microscopy detected individual rolling T cells as a series of 

round cells within one single time frame (Fig. 3.1.10A-C). 

 

Figure 3.1.10 Detection of rolling and crawling cells by two-photon microscopy. Scheme to detect rolling and 
crawling cells. A. Scanning of z-dimension acquires a series of images. B. Typical cellular size is 10µm. Since z-
interval is around 3-4 µm, one cell can be detected multiple times. The motility of rolling T cells is very high, 
therefore, a rolling cell locates at different x,y position in subsequent frames. For example, a rolling cell appears in 
images A-F in seven different positions (R1-R7). In images G-I, a crawling cell appears (C1). Scale bar: 10 µm.) C. Z-
projection of images (A) reveals a trace of a rolling cell (R1-R7) and a crawling cell (C1). Scale bar: 50 µm. A 
fluorescence overlay of TMBP-Twitch1 cells (left) and a pseudocolour ratio image with T cells (right) are depicted. T 
cells (blue/yellow) and blood vessel (red) are shown in fluorescent overlay. 
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Instantaneous velocity and intracellular calcium were analyzed at each event precisely. While 

rolling along the luminal surface, the T cells displayed no detectable calcium activity (Fig. 3.1.11A). Few 

events that correspond to the transition from rolling to crawling and from crawling to rolling were detected 

(Fig. 3.1.11B-C). Intriguingly, during this transition, cells often showed higher calcium spikes when they 

started to crawl without, however, following a constant and repetitive pattern (Fig. 3.1.11B). 

 

Figure 3.1.11 A. Scatter plot showing TMBP-Twitch1 velocity versus calcium-indicator ratio change for each individual 
time point during rolling. The results are sum of three independent experiments. B-C Representative results of two 
TMBP-Twitch1 cells and their calcium levels during transition from rolling to crawling. Velocity (red line) and calcium 
level (black line) are plotted. B. The rolling cell showed high-calcium spikes during transition. C. The rolling cell 
showed constant low-calcium levels during transition.  

Activation status of crawling T cells  

Opposed to intraluminal rolling, intraluminal crawling can be reliably detected by two-photon 

microscopy. The analysis showed that T cells rarely presented calcium spikes, regardless of their antigen 

specificity and instantaneous velocity (Fig. 3.1.12A-B). Therefore, the intraluminal crawling of T cells 

proceeded without elevated calcium signaling. Overall, the intraluminal locomotions of TMBP-Twitch1 and TOVA-

Twitch1 cells were indistinguishable.  
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Figure 3.1.12 Scatter plots showing (A) TMBP-Twitch1 and (B) TOVA-Twitch1 velocity versus calcium-indicator ratio change 
for each individual time point during crawling. TMBP-Twitch1 (2.2%) and TOVA-Twitch1 (1.3%) showed rarely calcium spikes. 
The results are the sum of at least three independent experiments. 

3.1.5 Intravital imaging of Twitch1-labeled T cells within leptomeninges 

T cell activation during the prodromal phase of infiltration  

After diapedesis and during the early prodromal phase of infiltration on day 2 p.t., TMBP-Twitch1 cells 

remained in close proximity with the abluminal vascular surface of pial blood vessels. At this point, right 

before the onset of clinical EAE, the number of cells in the spinal cord was low. They started scanning the 

CNS vessel-associated milieu seeking for APCs and forming short or long-lasting contacts with them (Fig. 

3.1.13A). Upon antigen recognition, T cells decelerated and kept either a slow motility or they completely 

arrested around the APCs. In parallel, TCR stimulation led to high intracellular calcium signals that varied 

from infrequent short-lasting peaks to sustained plateaus (Fig. 3.1.13B). Confirming previous studies (Mues 

et al., 2013), it was observed that the velocity of T cells was inversely correlated to high-calcium signaling 

(Fig. 3.1.13B). In contrast to a previous study in which excessive amount of endogenous antigen was 

applied (Wei et al., 2007), here, it was showed that low levels of endogenous antigen were sufficient to 

induce long-lasting calcium spikes. 
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Figure 3.1.13 A. A series from in vivo calcium imaging of the meninges on day 2 p.t. is depicted. A fluorescence 
overlay of TMBP-Twitch1 cells (left) and a pseudocolour ratio image (right) are shown. A trajectory line (white) is 
overlaid and represents a single TMBP-Twitch1 cell track. The inserted numbers indicate the relative time after the start 
of image acquisition. Scale bar: 10 µm. T cells (blue/yellow) and phagocytes (red) are shown in fluorescent overlay. 
B. Representative track of a TMBP-Twitch1 cell (depicted in A) showing the intracellular calcium levels (black line) and 
T cell velocities (red line) in the meninges on day 2 p.t. The dotted line depicts the ΔR/R threshold. A calcium history 
plot is overlaid. In the calcium history plots, a blue colour indicates low-calcium levels, a green colour indicates 
high-calcium levels shorter than 2 min and a red colour indicated high-calcium levels longer than 2 min. 

T cell activation during the EAE onset 

The behaviour of TMBP-Twitch1 cells altered on day 3 p.t., at the onset of clinical EAE. T cells crossed 

the BBB at a higher rate and migrated randomly in all directions. T cell-APC contacts were followed by 

intensive intracellular high-calcium signals that varied from scattered, short-lived peaks to sustained 

plateaus (Fig. 3.1.14D). Although they presented similar calcium signatures as the ones from day 2 p.t. (Fig. 

3.1.14B-C), they also started scanning the entire leptomeningeal space (Fig. 3.1.14E). Surprisingly, despite 

the similar percentage of long high-calcium signaling between day 2 and day 3 p.t. (Fig. 3.1.14C), the 

duration of high-calcium signaling was different (Fig. 3.1.14A). In general, T cells on day 2 and day 3 p.t. 

presented sustained high-calcium signals that lasted less than 20 min. However, it was only the T cells that 

initially breached the BBB which maintained increased intracellular calcium concentrations for over 20 

min. On day 2 p.t., the longest high-calcium signal lasted for almost 2 hours. 
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Figure 3.1.14 A. Cumulative plots of long high-calcium signaling (over 2 min) on days 2 and 3. B-C. The percentage 
of short (B) or long (C) high-calcium signaling per track on days 2 and 3. D. Calcium history plots of TMBP-Twitch1 cells 
on days 2 and 3. Each line represents single T cell track. In the calcium history plots, a blue colour indicates low-
calcium levels, a green colour indicates high-calcium levels shorter than 2 min and a red colour indicated high-
calcium levels longer than 2 min. E. Time projections from four representative movies are shown for TMBP-Twitch1 

cells (green) on day 2 (upper pictures) and day 3 (lower pictures) p.t.. Scale bar: 50 μm. A-D The results are the sum 
of at least three independent experiments. 

3.1.6 Intravital imaging of Twitch1-labeled T cells within parenchyma 

During the acute phase of the EAE on day 4 p.t., TMBP-Twitch1 cells massively invade the CNS and 

infiltrate deep into the parenchyma (Kawakami et al., 2005). Although the two-photon microscopy has a 

superior penetration depth, it is still impossible to perform imaging deep inside the spinal cord 

parenchyma. Therefore, imaging in the acute explant was performed as previously described (Kawakami 

et al., 2005) and dead cells were eliminated from the analysis after DAPI staining with low dose. Also, in 

order to identify the interaction partners of TMBP-Twitch1 cells in the CNS parenchyma, the spinal cord explants 

were stained with fluorescent conjugated isolectin B4. The latter stained the microglia as well as the 
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infiltrated monocytes/macrophages. Two-photon imaging in the stained explant revealed an interaction 

between TMBP-Twitch1 cells and microphage-like cells (Fig. 3.1.15). In addition, during this interaction TMBP-

Twitch1 cells showed both short- and long-lasting high-calcium spikes. 

 

Figure 3.1.15 Sample image from an acute explant in the parenchyma with TMBP-Twitch1 cells. A fluorescence overlay 
of TMBP-Twitch1 cells (left) and a pseudocolour ratio image with T cells (right) are depicted. The acute explant was 
stained with isolectin B4 (red) and DAPI (blue) in left panel. Cells with elevated calcium are indicated with white 
arrowheads. Scale bar: 50 μm. 

3.1.7 Deciphering the relation between antigen stimulation and intracellular 

calcium signaling 

In contrast to encephalitogenic MBP specific T cells, OVA specific T cells do not infiltrate into the 

CNS. Therefore, TOVA-Twitch1 cells can be piloted there when they are co-transferred with non-labeled MBP 

specific T cells. The latter cells open the BBB and create an inflammatory microenvironment (Flügel et al., 

2001). Two-photon imaging of TOVA-Twitch1 cells was performed in the spinal cord leptomeninges together 

with labeled APCs. The results indicated that TOVA-Twitch1 cells displayed significantly higher motility than 

TMBP-Twitch1 cells (Fig. 3.1.16A-B), which is in line with previous reports (Bartholomäus et al., 2009, Kawakami 

et al., 2005). As expected by their antigen specificity, the infiltrated TOVA-Twitch1 cells rarely emitted calcium 

spikes (Fig. 3.1.16A, Fig. 3.1.17A-B and Fig. 3.1.18). TOVA-Twitch1 cells spiked less than once per hour (Fig. 

3.1.17A), while less than 1% of each analyzed TOVA-Twitch1 cell track showed high-calcium intracellular 

signaling during intravital imaging (Fig. 3.1.17B). However, those calcium spikes are always short-lasting, 

comparing to those of TMBP-Twitch1 cells. The TMBP-Twitch1 cells spiked 8.6 times per hour in average (Fig. 

3.1.17A) and presented both long and short elevated calcium signaling (Fig. 3.1.17B). 



  RESULTS 

51 

 

Figure 3.1.16 A. Scatter plots showing TOVA-Twitch1 or TMBP-Twitch1 velocity versus calcium-indicator ratio change for 
each individual time point with or without antibody treatment. Mean values for ∆R/R and velocity are indicated 
along with a two-dimensional box plot. (B) Quantification of the average T cell velocity in the spinal cord 
leptomeninges with or without antibody treatment. A-B. The results are the sum of at least three independent 
experiments per treatment. 

Further evidence for antigen-dependent activation of encephalitogenic T cells emerged from 

intrathecal application of anti-MHC class II blocking antibody. As shown in Fig. 3.1.16B, the infusion of anti 

MHC class II restored the motility of TMBP-Twitch1 cells to the level of TOVA-Twitch1 cells. In addition, anti-MHC 

class II treatment reduced the number of spikes in TMBP-Twitch1 cells to less than one per hour, again similar 

to TOVA-Twitch1 cells. In contrast, anti-MHC class I antibody did not show any effect neither in locomotion nor 

in calcium responses. In fact, after MHCI treatment, the TMBP-Twitch1 cells displayed similar calcium signatures 

with the non-treated ones whereas the anti-MHC class II treatment calcium signatures were similar to TOVA-

Twitch1 cell tracks (Fig. 3.1.18). As shown by panoramic pictures, this blocking effect was demonstrable in a 

larger area of spinal cord (Fig. 3.1.17C). 

It is important to note that in contrast to peripheral treatment, only the anti-MHC class II 

treatment in the CNS blocked the development of clinical EAE dramatically (Fig. 3.1.17D). These results 

indicated that antigen-dependent stimulation induced long-lasting high-calcium signaling, which was 

definitely a crucial step to initiate CNS inflammation. 
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Figure 3.1.17 A-B. Frequency of high-calcium signals over the threshold normalized per hour (A) and the proportion 
of short or long high-calcium signaling during imaging (B) are shown. The results are the sum of at least three 
independent experiments per treatment. C. Representative panoramic pictures of TMBP-Twitch1 cells in the spinal cord 
leptomeninges after PBS or anti MHC class II intrathecal injection are shown. Fluorescence overlay (upper) and a 
pseudocolour ratio image (lower) were obtained from intravital imaging on day 3 p.t.. Scale bar: 300 µm D. EAE 
clinical score induced by transfer of TMBP-Twitch1 cells with or without anti MHC class II intrathecal (1x) or intravenous 
(3x) injections. Mean ± SD from at least 3 animals per group are shown. αMHCI: anti MHC class I. 
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Figure 3.1.18 Calcium history plots of non-treated TOVA-Twitch1 cells and TMBP-Twitch1 cells on day 3 p.t. with or without 
antibody treatment. Each line represents one single T cell track. In the calcium history plots, the blue colour 
indicates low-calcium levels, the green colour indicates high-calcium levels shorter than 2 min, and the red colour 
indicates high-calcium levels longer than 2 min. 

3.1.8 Leptomeningeal APCs have disparate functional potential 

From intravital imaging, it was observed that not all APCs have the capacity to stimulate the T cells. 

CNS infiltrated T cells often passed neighbor APCs without stopping or presenting high-calcium signaling. 

Besides, the antigen presenting capacity of APCs in the CNS leptomeninges is considered very low 

(Bartholomäus et al., 2009). Time projection of pseudo-colored images revealed a mosaic of different 

calcium potentials amongst APCs (Fig. 3.1.19A). Single APCs were identified and the capacity was evaluated 

by calculating the percentage of activated T cells when T cells contacted them (Fig. 3.1.19B). The results 

confirmed an unequal distribution of calcium spikes, indicating that some APCs could activate T cells more 

efficiently than others (Fig. 3.1.19C). For example, APC No. 12 in Fig. 3.1.19B had a strong potential to 

stimulate T cells, whereas other APCs, such as APC No.3, hardly induced any T cell activation, although 

several T cells passed by. 
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Figure 3.1.19 A. Sample images from in vivo calcium imaging of leptomeningeal vessels on day 3 p.t. A fluorescence 
overlay of TMBP-Twitch1 cells and APCs (i), only APCs (ii) and a pseudocolour ratio image with TMBP-Twitch1 cells and APCs 
(iii) are depicted. APCs with high and low potential to stimulate T cells are encircled. B. Calcium history plots of the 
TMBP-Twitch1 cells during contact with APCs. Numbers represent APCs identified in (Aii). Each line represents single 
continuous contact. Blue colour indicates low-calcium levels, green colour indicates high-calcium levels shorter 
than 2 min and red colour indicates high-calcium levels longer than 2 min. C. High-calcium potential in T cells during 
T cell/APC contacts. The calcium potential depicts the time proportion of the total short and/or long high-calcium 
signaling during T cell/APC contacts. Calcium potential=Duration of high-calcium signaling/duration of 
contact*100. The results are the sum of three independent experiments per time point. 
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3.2 A dual sensor: Combining NFAT and Twitch sensors  

3.2.1 Comparing NFAT and Twitch1 sensors  

Previously, MBP-specific T cells and MOG-specific T cells from Lewis rats were chosen as EAEhi (high 

encephalitogenic) and EAElo (low encephalitogenic) respectively for the study of differential T cell 

activation in vivo by using a ∆NFAT-GFP sensor (Pesic et al., 2013). TMBP-NFAT-GFP cells made stable contacts 

with local APCs in the CNS, became activated and triggered classical acute EAE. On the other hand, MOG-

specific T cells displayed no activation, and hardly mediated any clinical defects. Similar to TOVA-Twitch1 cells 

which presented almost exclusively low-calcium levels, TMOG-NFAT-GFP cells restricted ∆NFAT-GFP to the 

cytoplasm (Fig. 3.2.1C). In contrast, MBP-specific T cells with nuclear ∆NFAT-GFP showed intercalated 

segments of coiled tracks (Fig. 3.2.1A). TMBP-Twitch1 cells showed cramped zig-zag movement and presented 

sporadic short- and long-lasting high-calcium signaling (Fig. 3.2.1A-B). In addition, the percentage of cells 

with high-calcium levels was significantly lower compared to cells with nuclear ∆NFAT- GFP (Fig. 3.2.1C). 

 

Figure 3.2.1 A. T cell trajectories from representative movies were superimposed; each line starts at the coordinate 
origin. Lines were colored to indicate the ∆NFAT-GFP location or the calcium levels. B. Calcium history plots of TMBP-

Twitch1 on day 3 from Figure A. Each line represents one single cell track. In the calcium history plots, the blue colour 
indicates low-calcium levels, the green colour indicates high-calcium levels shorter than 2 min and the red colour 
indicates high-calcium levels longer than 2 min. C. ∆NFAT-GFP and calcium level patterns in the TMOG/MBP-NFAT-GFP 

and TOVA/MBP-Twitch1 cells were categorized, and their relative occurrence calculated. n.a.: not analyzable. Results for 
A, B are representative and for C are mean with S.D, from at least three different experiments per cell line. (NFAT 
results adapted from Pesic et al., 2013). 

Pesic et al. addressed the question whether sequential or stable T cell/APC interactions induced 

the T cell activation. It was indicated that very often “non-activating” contacts with high motility precede 
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the “activating” ones but mainly the long-lasting contacts are vital for T cell activation (Fig. 3.2.2B). During 

this study, it was found that a single T cell may interact with different APCs and receive diverse tonic or 

sustained high-calcium signals from them (Fig. 3.2.2A). 

Nevertheless, the calcium signaling pattern that leads to NFAT translocation remains obscure. It is 

still not clear whether the accumulation of tonic signals is sufficient for T cell activation or a single long 

high-calcium spike implies NFAT mobilization. A combination of NFAT and Twitch1 would reveal the single-

cell dynamics and interpret the various signaling sequences which lead to activation. 

 

Figure 3.2.2 A. Representative track of a TMBP-Twitch1 cell depicting the intracellular calcium levels (black line) and T 
cell velocities (red line - averaged over three time points) in the meninges on day 3 p.t.. The dotted line depicts the 
ΔR/R threshold. A calcium history plot is overlaid. In the calcium history plots, a blue colour indicates low-calcium 
levels, a green colour indicates high-calcium levels shorter than 2 min and a red colour indicated high-calcium levels 
longer than 2 min. Background colours represent contacts with four APCs. B. Instantaneous velocity (averaged over 
three time points) for two representative TMBP- NFAT-GFP cells, making various “non-activating” (before c-n) contacts 
with APCs and finally making the “activating” one (c-n). Line color indicates ∆NFAT-GFP subcellular localization, 
and background color indicates T cell/APC interaction. (adapted from Pesic et al., 2013). 

3.2.2 Evaluation of red fluorescent proteins for NFAT sensor  

Pesic et al. introduced a GFP-conjugated, truncated variant of NFAT1 as a “functional” tag to 

visualize the real-time activation events (Pesic et al., 2013). This construct enclosed the regulatory domain 

of NFAT1 that is essential for phosphorylation, cytoplasmic sequestration, and calcium-induced and 

calcineurin-mediated dephosphorylation. Part of the DNA-binding domain of native NFAT was deleted 

(∆NFAT-GFP) (Aramburu et al., 1998) so that it does not interfere with gene regulation by endogenous 

NFAT (Fig. 1.5.2A). 

Depending on calcium levels, Twitch1 emits cyan fluorescence and/or yellow fluorescence upon 

CFP excitation. On the other hand, GFP possesses an emission spectra which is fairly close with YFP (Fig. 

3.2.3A). Consequently, in two-photon microscopy it is almost impossible to discriminate between and 
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separate Twitch1 from ∆NFAT-GFP. For this reason, it was important to choose a set of FPs that would 

have minimal crosstalk in their emission channels. During this study, five candidates with different 

properties (regarding their emission spectra and their physiological quaternary structure) were tested for 

∆NFAT fusion (Table 3.2.1).  

  λex λem Oligomerization status 

eGFP 488 507 monomer 

DsRed2 558 583 tetramer 

mKate2 588 633 dimer 

mRuby2 559 600 monomer 

Fusion Red 580 608 monomer 

LSSmOrange 437 572 monomer 

Table 3.2.1 Properties of selected FPs. The peak excitation (Ex) and emission (Em) wavelengths and physiological 
quaternary structure are listed. 

∆NFAT DsRed2 fusion 

During co-transferred experiments, DsRed2-labeled MBP specific T cells were injected together 

with TOVA-Twitch1 cells in order to navigate the latter to meninges (see 3.1.7) (Fig. 3.2.3B). However, the 

transfection efficiency was not similar for NFAT-DsRed2 retroviral construct. The pMSCV-puro-∆NFAT-

DsRed2 retroviral vector (see 2.2.2) was transfected into packaging cells, GP+E86 cells, using the calcium 

phosphate method. While PuroR was expressed in retrovirus producing packaging cells, all attempts to 

express DsRed2 were unsuccessful. HEK 293 cells were transfected with the F2U-Δzeo-NFAT-DsRed2 

plasmid and expressed both PuroR and DsRed2 (Fig. 3.2.3C). Nevertheless, there was no virus production 

after plasmid transfection. Notably, no ∆NFAT-DsRed2 translocation was observed after ionomycin 

stimulation (Fig. 3.2.3C). 
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Figure 3.2.3 A. Fluorescence emission spectra of ECFP (blue) EGFP (deep green) EYFP (lighter green) and DsRed 
(yellow) (BD FLUORESCENCE SPECTRUM VIEWER) B. Sample images from in vivo calcium imaging of the meninges 
with TOVA-Twitch1 cells (green) and TMBP-DsRed2 cells (red – encircled). A pseudocolour ratio image with T cells (right) 
are depicted. Scale bar: 50 µm. C. Epifluorescence images of NFAT-DsRed2 expressing HEK 293 cells, before (i. Left) 
and after (ii. Right) addition of 4 µM ionomycin. Scale bar: 50 µm. 

∆NFAT mKate2 fusion 

GP+E86 cells were transfected with the pMSCV-puro-∆NFAT-mKate2 and expressed both PuroR 

and mKate2 (Fig. 3.2.4A). Similar to other red FPs, mKate2 presented a strong two-photon absorption in 

the region between 760-800 nm (Fig. 3.2.4B). Next, the translocation dynamics of ∆NFAT-GFP and ∆NFAT-

mKate2 were investigated. Time-lapse recordings of in vitro co-cultured ∆NFAT-GFP and ∆NFAT-mKate2 

expressing GP+E86 cells were acquired by fluorescent video-microscopy (Fig. 3.2.4C). Upon ionomycin 

stimulation, ∆NFAT-mKate2 was not toxic for the GP+E86 cells and the fluorescent signal of mKate2 was 

equally distributed at high expression levels within the cytosol or nucleus. However, the translocation 

of ∆NFAT-mKate2 from cytosol to nucleus occurred more slowly compared to ∆NFAT-GFP (Fig. 3.2.4D).  
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Figure 3.2.4 A. Flow cytometric analysis of ∆NFAT-mKate2 expression in GP+E86 cells before and after transfection. 
B. Two-photon microscopic acquisition of ∆NFAT-mKate2 expressing GP+E86 cells at two excitation wavelengths. 
C. Series from in vitro co-cultured ∆NFAT-GFP and ∆NFAT-mKate2 expressing GP+E86 cells before (left) and after 
(right) addition of 4 µM ionomycin. Images were acquired by fluorescence microscopy. D. Comparison of ∆NFAT-
GFP and ∆NFAT-mKate2 translocation kinetics observed in vitro before and after addition of 4 µM ionomycin. The 
vertical line indicates the time point of ionomycin treatment. The results are representative of two independent 
experiments.  B-C scale bar: 50 µm. 

∆NFAT mRuby2 and FusionRed fusions 

GP+E86 cells were transfected with the pMSCV-puro-∆NFAT-mRuby2 or pMSCV-puro-∆NFAT-

FusionRed vectors and later they were co-cultured with ∆NFAT-GFP expressing GP+E86 cells. The two-

photon absorption properties of ∆NFAT-mRuby2 and ∆NFAT-FusionRed were tested at various excitation 

wavelengths (Fig. 3.2.5A and Fig. 3.2.6A). Upon two-photon irradiation, ∆NFAT-FusionRed presented a 

relatively stronger emission compared to ∆NFAT-mRuby2, nevertheless, both of them were visible in the 

spectral region of 800-810 nm.  

As in the aforementioned ∆NFAT-mKate2 experiment and in order to examine the translocation 

dynamics, time-lapse recordings of vitro co-cultured ∆NFAT-GFP and ∆NFAT-mRuby2/∆NFAT-FusionRed 

expressing GP+E86 cells were acquired by fluorescent video-microscopy (Fig. 3.2.5B and Fig. 3.2.6B). Upon 

4 µM ionomycin stimulation, the translocation of all fused proteins from cytosol to nucleus occurred 

simultaneously (Fig. 3.2.5C and Fig. 3.2.6C).  
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Figure 3.2.5 A. Two-photon microscopic acquisition of ∆NFAT-mRuby2 and ∆NFAT-GFP expressing GP+E86 cells at 
various excitation wavelengths. B. Series from in vitro co-cultured ∆NFAT-GFP and ∆NFAT-mRuby2 expressing 
GP+E86 cells before (left) and after (right) addition of 4 µM ionomycin. Images were acquired by fluorescence 
microscopy. A-B scale bar: 50 µm. C. Comparison of ∆NFAT-GFP and ∆NFAT-mRuby2 translocation kinetics 
observed in vitro before and after addition of 4 µM ionomycin. The vertical line indicates the time point of 
ionomycin treatment. The results are representative of two independent experiments. 
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Figure 3.2.6 A. Two-photon microscopic acquisition of ∆NFAT-FusionRed and ∆NFAT-GFP expressing GP+E86 cells 
at various excitation wavelengths. B. Series from in vitro co-cultured ∆NFAT-GFP and ∆NFAT-FusionRed expressing 
GP+E86 cells before (left) and after (right) addition of 4 µM ionomycin. Images were acquired by fluorescence 
microscopy. A-B scale bar: 50 µm. C. Comparison of ∆NFAT-GFP and ∆NFAT-FusionRed translocation kinetics 
observed in vitro before and after addition of 4 µM ionomycin. The vertical line indicates the time point of 
ionomycin treatment. The results are representative of two independent experiments. 
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∆NFAT LSSmOrange 

GP+E86 cells were transfected with the pMSCV-ΔPGK-puro-∆NFAT-LSSmOrange vector and they 

were co-cultured with ∆NFAT-GFP counterparts. ∆NFAT-LSSmOrange showed similar two-photon 

absorption compared to ∆NFAT-GFP in the spectral region between 800-900 nm (Fig. 3.2.7).  

 

Figure 3.2.7 Two-photon microscopic acquisition of ∆NFAT-LSSmOrange and ∆NFAT-GFP expressing GP+E86 cells 
at various excitation wavelengths. 

3.2.3 Combing NFAT and Twitch2B sensors 

∆NFAT-mRuby2 was selected as a reliable counterpart of ∆NFAT-GFP and was used for the 

construction of the dual sensor. The ∆NFAT-mRuby2-Twitch2B sequence was cloned into the PINCO vector 

(Fig. 3.2.8A) and time-lapse recordings of in vitro PINCO-puro-∆NFAT-mRuby2-Twitch2B (Proteas) 

expressing GP+E86 cells were acquired by fluorescent video-microscopy, capturing the effects before and 

after ionomycin stimulation (Fig. 3.2.8B). As expected, the expression levels of both sensors differed 

amongst the cells. For this reason, dual expressing GP+E86 cells were isolated through cell sorting followed 

by further puromycin selection (Fig. 3.2.8C). 
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Figure 3.2.8 A. PINCO-puro-∆NFAT-mRuby2-Twitch2B (Proteas) retroviral construct. B. Sample images from in vitro 
co-cultured GP+E86 cells with different expression patterns after Proteas transfection before (left) and after (right) 
addition of 4 µM ionomycin. i. cells expressing mainly Twitch2B ii. cells expressing only ∆NFAT-mRuby2 iii. cells 
expressing mainly ∆NFAT-mRuby2 iv. cells expressing both ∆NFAT-mRuby2 and Twitch2B. Images were acquired 
by fluorescence microscopy. Scale bar: 10 µm. C. Proteas expressing GP+E86 cells isolation by FACS sorting. A 
representative FACS graph of cells prepared in vitro after Proteas transfection. The P2 gate (green) represents 
highly expressing Proteas GP+E86 cells. 

3.2.4 Two-photon microscopy of Proteas  

The two-photon absorption properties of Proteas were tested over a range of 790–835 nm (Fig. 

3.2.9A). The excitability and the fluorescence yield of both sensors strongly depended on the excitation 

wavelength. For example, at 790 nm only the ∆NFAT-mRuby2 was visible while at 835 nm it was barely 

detected. However, even far below the excitation peak for both sensors, it was still possible to generate 

reliable emission data. Series from in vitro calcium imaging of Proteas expressing GP+E86 cells were 

acquired by two-photon microscopy at 830 nm (Fig. 3.2.9B). Upon ionomycin stimulation, high-calcium 

signaling was instantly observed whereas the translocation of ∆NFAT-mRuby2 from cytosol to nucleus 

occurred within 5 minutes. 
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Figure 3.2.9 A. Two-photon microscopic acquisition of Proteas expressing GP+E86 cells at various excitation 
wavelengths after addition of 4 µM ionomycin. B. Series from in vitro calcium imaging of Proteas expressing 
GP+E86 cells before and after addition of 4 µM ionomycin at 830 nm wavelength. A fluorescence overlay of Proteas 
expressing GP+E86 cells (left) and a pseudocolour ratio image (right) are depicted. The inserted numbers indicate 
the relative time after the start of image acquisition. A-B. scale bar: 50 µm. 
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3.2.5 Establishing Proteas-labeled T cells 

Primary T lymphocytes of preimmunized animals with MBP were cultivated together with Proteas 

transfected GP+E86 cells, producing a replication-deficient retrovirus. However, a Proteas gene transfer 

into rat antigen specific T cells was not successful (Fig. 3.2.10A). The gene transfer rates were extremely 

low, ranging between 0.05% and 0.1%. 

The viral titers of three different viruses were tested in order to determine the retroviral 

integration and expression of Proteas in primary T lymphocytes. In a previous study, GFP transfected 

GP+E86 cells provided optimal doses of retroviruses to antigen specific T cells (Flügel et al., 1999) and 

Twitch1 transfected GP+E86 cells achieved a high efficiency gene delivery (see 3.1.1). Here, when NIH3T3 

cells were treated with GFP and Twitch1 retroviruses, they produced high levels of transgene expression 

as measured by FACS (Fig. 3.2.10B). In contrast, the transduction efficiency of NIH3T3 cells with Proteas 

retroviruses was once again extremely low. 

 

Figure 3.2.10 A. Representative flow cytometric histograms depicting Twitch2B expression levels of Proteas-
expressing MBP specific T cells on day 5 after two rounds of restimulation. B. Comparison of GFP, Twitch1 and 
Proteas retroviral titers. 
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DISCUSSION 

4.1 Context-dependent calcium signaling in encephalitogenic T cells 

The autoreactive T cells follow a fascinating trek before they reach their ultimate target, the CNS 

white matter (Flügel et al., 2001). Their odyssey is not limited to one particular tissue; they travel through 

several distinct cellular milieus and they interact with local cells in the presence or absence of cognate 

antigen. These migratory cells receive signals that regulate their function and control their activation. Most 

of these signals are intimately linked with the intracellular calcium levels. The frequency, the duration and 

the topography of calcium signaling constitute indispensable indications for revealing indirectly the current 

status of a cell. In this study, calcium signaling was successfully visualized by applying the Twitch1 calcium 

sensor at a single cell resolution. During this study, Twitch1 was further optimised in order to express into 

rat T cells. As key modifications, the NeoR was shifted outside of the LTRs and the retroviral burden was 

reduced almost by 1.3 kb. 

In order to study the effect of a chemokine or an antibody, it is always imperative to apply an 

experimental setup that reflects the physiological context. Especially for the GPCR-dependent short-lasting 

calcium spikes, numerous co-receptors and adaptor proteins are involved into the chemokine receptor 

signal. For example, calcium ionophores such as ionomycin that are used primarily in in vitro studies cannot 

mimic physiological stimuli and provoke similar signal transductions. Thus, only intravital imaging can 

reproduce the in vivo situation better than in vitro cell lines experiments. In addition, FACS calcium analysis 

cannot decipher the extent of activation and cannot track the contribution of a single cell to the overall 

response. Moreover, mouse EAE models are not the optimal to study encephalitogenic T cell infiltration 

into the CNS, because T cell infiltration kinetics vary among individuals. In contrast, tEAE model in Lewis 

rat showed excellent reproducibility and, therefore, is suitable to study T cell infiltration and interactions 

with local APCs. 

The autoreactive T cells were imaged by two-photon intravital imaging both in the peripheral 

organs and the CNS. The limited scanning speed of the intravital two-photon setup that was used could 

not resolve calcium oscillations of <1 Hz such as those in neuronal cells, but it was sufficient to document 

intracellular calcium changes in T cells. Initially, during T cell-transferred EAE, freshly activated 

encephalitogenic T cells migrate to the peripheral organs (Wekerle et al., 1986) where they become 

licensed for CNS invasion (Schlager et al., 2016). Re-education occurs in the paracortical areas of 2° 

lymphatic tissues, which are occupied by T cells, DCs, macrophages, and fibroblastic reticular cells (Turley 

et al., 2010). 
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Next, in the spleen, the effector T cells are reprogrammed by down-regulating activation markers 

and up-regulating gene products that facilitate locomotion and cellular homing (Flügel et al., 2001). 

Interestingly, both MBP specific encephalitogenic and OVA specific non-encephalitogenic T cells showed 

similarly less frequent and short-lasting calcium spikes in the absence of specific antigen. Consequently, 

both MBP and OVA specific T cells acquire a migratory phenotype in the spleen. These spikes were partially 

blocked after the infusion of anti-MHCII antibodies. Antigen-independent intracellular calcium signaling 

could be triggered through GPCR signal transduction. Previously, fast confocal laser scanning technology 

revealed calcium spiking in response to GPCR engagement (Hillson and Hallett, 2007). In contradiction to 

an earlier report (Asperti-Boursin et al., 2007), it was described during this study that, PTX as well as other 

GPCR antagonists diminished short-lasting high-calcium signaling in the spleen without interfering with T 

cell migration. Besides, induction of calcium signaling in vivo with chemokine ligands would have been 

ambigious, mainly because the latter usually bind to the same receptor and activate different intracellular 

pathways (Zweemer et al., 2014). Antigen-independent intracellular calcium signaling was described 

previously in vitro by Revy et al. (Revy et al., 2001). They observed that in the absence of antigen, T cell-

DC interactions produce weak and short calcium spikes. These responses were triggered mainly in naïve 

CD4+ T cells which expressed a specific isoform of the repulsive molecule CD43. Since CD43 is involved in 

IS, calcium signaling seems to correlate with the formation of IS. 

After acquiring a migratory phenotype in the spleen, the incoming T cells slow down and begin 

rolling along the inner vascular surface at spinal cord leptomeninges. Next, they attach firmly and crawl 

preferentially against the bloodstream until they extravasate or they are washed away. Short-lasting 

calcium spikes were observed when T cells proceeded from rolling to crawling. This infrequent high-

calcium signaling could be explained by the fact that chemokines released by macrophages induce calcium 

influx via GPCRs and the elevated intracellular calcium switches the integrin confirmation from low to high 

affinity. Consequently, during leucocyte arrest, calcium influx promotes strengthened adhesion and 

cytoskeletal arrangement of many different cell types such as platelets, lymphocytes, fibroblasts, and 

endothelial cells (Dixit and Simon, 2012). For example, Orai1 synchronizes the transition between 

neutrophil rolling and arrest (Dixit and Simon, 2012).  

T cell emigration into the leptomeningeal microenvironment occurs in two waves. After 

diapedesis, the prodromal T cells roam in close proximity within the perivascular area, until they encounter 

a particular set of local phagocytes (Bartholomäus et al., 2009). Upon antigen recognition, T cells present 

extensive high-calcium signaling ranging from some minutes to hours. At this point, the number of 

infiltrated T cells is quite low and T cells migrate along the blood vessels. The limited scope of scanning 
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around the meningeal vessels highlights the major contribution of perivascular macrophages in this 

process. In addition, both the expression of MHC class II molecules on glia cells and the production of 

inflammatory cytokines are low (Odoardi et al., 2012). Despite the fact that the capacity of antigen 

presentation to the T cells at the pre-clinical phase of EAE is limited (Bartholomäus et al., 2009), the 

duration of calcium spikes is longest on day 2 p.t. In fact, the early invading activated T cells start to produce 

inflammatory cytokines, which sequentially recruit other T cells and finally increase the permeability of 

BBB. This feedback-loop is in harmony with the hockey-stick kinetics of T cell invasion, which results in the 

exponential increase of the infiltrated T cell number. 

A key finding that emerged from this study was the diversity of the stimulatory potential of 

individual leptomeningeal phagocytes. Each APC has different potential to stimulate T cells; some APCs 

attract numerous T cells and induce high-calcium responses, whereas other APCs are less active. This is not 

surprising because the availability of immunogenic myelin proteins is limited and the damage of the myelin 

sheath is minor in this EAE model. The infusion of myelin protein into the leptomeningeal space converted 

low-encephalitogenic T cells to high-encephalitogenic T cells (Odoardi et al., 2007a) and provided an 

indirect confirmation regarding the availability of endogenous antigens. In addition, those local APCs are 

not professional APCs, which are mainly found in the peripheral LNs (Bartholomäus et al., 2009). The 

stimulatory potential of individual leptomeningeal phagocytes can be linked to a ‘first come – first served’ 

rule.  

Mempel et al. showed that antigen recognition can be separated into three phases (Mempel et 

al., 2004). During the initial phase, T cells showed repeated short-lasting contacts with APCs, which were 

followed by stable long-lasting contact on phase II. Later T cells detached from APCs and re-started free 

migration. In addition, T cell engagement is characterized by two distinct dynamics in vivo (Dustin, 2008). 

Upon encounter with an APC, T cells either develop transient contacts, termed immunological kinapses, or 

maintain sustained contacts from stable junctions called immunological synapses. The first type of 

behavior occurs during the early stages of T cell activation and mainly during Phase I and Phase III 

(Fooksman et al., 2010). In contrast, complete arrest of T cell migration and formation of synapses occurs 

only in Phase II. Nevertheless, during this study, no separated and distinct phases were observed for the 

majority of T cells. According to the aforementioned scheme, most of the APC contacts qualify as kinapses. 

Synapses were observed mainly during the ‘first come – first served’ phase, where contacts lasted for 

several hours and presented high intracellular calcium signals. This might be explained by the different 

type of T cells that were used. Antigen experienced effector T cells were injected, whereas Mempel et al. 

used naïve T cells. Effector T cells may possibly not need phase I, as they are already stimulated. It was 
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often observed that within a 10 minutes time frame, a particular encephalitogenic T cell makes multiple 

short-lasting contacts with APCs with acute calcium spikes, before it finally makes a stable contact with an 

APC with sustained calcium signaling. This sustained calcium signaling is much shorter compared to the 

contact duration of phase II that Mempel et al. described before. However, the three phase model fits 

perfectly for the early invading activated T cells during the ‘first come – first served’ phase. It can be 

speculated that CNS invasion initially follows the three phase model for breaching the BBB and, later, 

during the onset of tEAE, effector T cells preserve a maintenance phase. These findings support a previous 

suggestion that T cell-APC interactions within the leptomeninges serve to navigate effector T cells into the 

CNS parenchyma rather than arresting them for extended periods of time (Bartholomäus et al., 2009). 

Wei et al. imaged calcium spikes in lymph node explants ex vivo by introducing T cells loaded with 

small-molecular fluorochrome (Wei et al., 2007). They described infrequent short-lasting calcium signaling 

under non-inflammatory condition as well as decreased motility during sustained high-calcium signaling. 

Moreover, they reported long-lasting calcium signaling, persisting over hours, under immunized condition, 

in contrast to this current study, which rarely showed contacts lasting for hours in the spinal cord 

leptomeninges. The aforementioned difference could be explained by the quality and quantity of antigen 

presentation. Immunization provides excess amount of antigen to professional APCs in lymph nodes; on 

the other hand, in the spinal cord meninges, even during the acute phase of inflammation, the quantity of 

local APCs and their saturation by endogenous antigen is limited. As Celli et al. suggested the availability 

of antigen presented on APC influences the duration of contacts and, hence, the T cell activation (Celli et 

al., 2007). Also, the antigen affinity determines the fate of a contact. Low-affinity antigens induce an 

exploratory behavior, characterized by partial deceleration and transient interactions with APCs (Moreau 

et al., 2015). The quality and the quantity of the antigen probably favors kinapses over synapses during 

the acute phase of inflammation in tEAE. In fact, this hypothesis was tested by administrating excess 

amount of specific antigen in the spleen. Infusion of soluble antigen caused direct arrest of specific T cells 

around the APCs, and constant rise of intracellular calcium levels. 

In summary, it was shown that T cells present two different types of calcium signaling throughout 

their journey from i.v. transfer into the CNS parenchyma. The first type is antigen-independent and short-

lasting, and is induced by GPCR-mediated and MHC-mediated signals. This type of calcium signaling might 

be essential in order to reprogram fully activated T cells to the migratory phenotype required for CNS 

infiltration. The second type of calcium signaling is the long-lasting, which depends on antigen and is 

closely linked with low motility and APC engagement. Sequentially, the saturated calcium signaling results 

in the nuclear translocation of NFAT and induces T cell activation. 
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The decryption of antigen-dependent and antigen-independent calcium responses in brain-

autoimmune T cells may offer new therapeutic options. In peripheral immune organs, in particular, the 

reprogramming of freshly activated T cells to a “migratory” phenotype could be targeted. For example, 

Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) antagonist, BZ194, efficiently blocks intracellular 

calcium signaling (Dammermann et al., 2009) and ameliorates clinical EAE induced by the active 

immunization of myelin antigen via both prophylactic and therapeutic applications (Cordiglieri et al., 2010). 

Autoantigen presentation in the CNS leptomeninges should be reconsidered as an early therapeutic target, 

although previous treatment trials with MAbs were discouraging. In addition, the elevation of free 

chemokine levels may result in enhanced pathology (Zweemer et al., 2014). Nonetheless, more detailed 

studies need to be performed regarding the pharmacological blockade of GPCRs. 

4.2 A dual sensor: Combing NFAT and Twitch sensors 

Many aspects of CNS inflammation were still obscure, even after the development of the ∆NFAT-

GFP activation sensor from the host lab (Pesic et al., 2013). Nevertheless, the obtained results significantly 

deepened the understandings of autoreactive T cell activation. In fact, the use of a Twitch calcium sensor 

enlightened the migratory mechanisms of CNS inflammation by successfully detecting weak signals such 

as the chemokine stimulation and the rolling-crawling transition. 

Full activation, reflected by both the Twitch and NFAT sensors, happened in T cells with a high 

pathogenic potential, but not in weak encephalitogenic or non-encephalitogenic T cells (Kawakami et al., 

2004). T cell activation often initiated with a series of brief contacts between T cells and APCs without 

∆NFAT-GFP translocation, but ended in sustained adhesion with nuclear ∆NFAT displacement (Pesic et al., 

2013). On the other hand, TMBP-Twitch1 responded with acute calcium spikes during short-lasting contacts 

preceding arrest and long-lasting calcium spikes. Taken together, it can be speculated that calcium 

signaling is cumulative from multiple sources, and only after sufficient tonic signals ∆NFAT-GFP 

translocates to the nucleus (Henrickson et al., 2008). To test this hypothesis, the co-expression of Twitch 

and ∆NFAT-GFP within the same cell was necessary. 

At first, it was essential to determine the ideal red fluorescent protein for ∆NFAT fusion. Five 

candidates ranging from the orange to the far-red fluorescence emission spectra were tested and 

compared with ∆NFAT-GFP. Two basic comparison criteria were evaluated: the two-photon absorption in 

the spectral region between 800-835 nm and the translocation dynamics upon stimulation. It is important 

to note that the excitation peak of an FP in two-photon microscopy does not always correspond with twice 

the wavelength of the one-photon microscopy excitation peak. In two-photon microscopy, many red FPs 
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have a broad excitation spectrum and high two-photon cross section in the range of 700-770 nm due to a 

higher-energy or short wavelength transitions of their chromophores (Fig. 4.2.1) (Drobizhev et al., 2011). 

 

Figure 4.2.1 The one-photon (A) and two-photon (B) spectra of the Fruit series of fluorescent proteins.  (adopted 
from Drobizhev et. al., 2011). 

DsRed2 was the first tested candidate fused to ∆NFAT. It is a variant of red fluorescent protein 

drFP583, originally isolated from the sea anemone Discosoma striata (Matz et al., 1999). This FP is an 

obligate tetramer and presents higher solubility and lower tendency to form aggregates compared to 

DsRed1 (Clontech). DsRed2 was initially selected as a putative candidate for NFAT fusion because it exhibits 

distinct spectral properties in multicolor labeling experiments (Bartholomäus et al., 2009). In fact, in co-

transferred experiments, DsRed2-labeled MBP specific T cells served to guide TOVA-Twitch1 cells to meninges. 

However, all the attempts to express a DsRed2-∆NFAT fusion protein were unsuccessful. After lentiviral 

transfection, brightly fluorescent dots in cells were observed. This cytotoxic effect was caused by non-

specific dsRed2 oligomerization and formation of large aggregates. Besides, it was previously reported that 

DsRed-Express2 protein is suitable only for labeling whole cells rather than generating fusion proteins 

(Strack et al., 2008). 

Next, the mKate2 fluorescent protein was evaluated. This is a far-red fluorescent protein 

generated after site-directed and two rounds of random mutagenesis of mKate (Shcherbo et al., 2009). 

Originally, the precursor FP mKate derived from the TagRFP which is expressed on the sea anemone 

Entacmaea quadricolor (Shcherbo et al., 2007). mKate2 was selected as a putative candidate for NFAT 

fusion because it is considered a super bright far-red FP (Shcherbo et al., 2009). Indeed, this FP is 

almost 3-fold brighter than mKate and 10-fold brighter than mPlum. In addition, mKate2 has been 

reported before for its successful performance in the majority of fusion constructs and its high level 

photostability during long-term time-lapse imaging, under both widefield and confocal microscopy 

(Shcherbo et al., 2009). Importantly, no visible aggregates or non-specific localizations were observed 

within 4 days of transfection in mammalian cells at high expression levels (Shcherbo et al., 2009). 

However, the translocation kinetics of ∆NFAT-mKate2 turned out slower compared to ∆NFAT-GFP. Despite 
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the initial naming of mKate2 where m- stands for monomeric, mKate2 is not monomeric. Indeed, high-

pressure liquid chromatography revealed a dimeric character for the mKate2 (Shemiakina et al., 2012). 

Consequently, translocation occurred only partially because the monomer–dimer mKate2 equilibrium 

interfered with the normal function and localization of the ∆NFAT fusion protein. 

Similar to mKate2, the far-red FP mRuby2 descends from the sea anemone Entacmaea 

quadricolor (Kredel et al., 2009, Lam et al., 2012). Together with the FP Clover, they consist an 

excellent pair for FRET imaging that exhibits less photobleaching when compared to mRuby (Lam et 

al., 2012). Since the FP Clover has longer excitation and emission maxima compared to EYFP,  it was 

considered that mRuby2 and Twitch1 would have minimal crosstalk in their emission channels as well. 

FusionRed derives from mKate2 and demonstrates similar brightness, spectral and biochemical properties 

with its precursor (Shemiakina et al., 2012). This FP has been subjected to artificial monomerization 

(Shemiakina et al., 2012) because, as it was already mentioned, mKate2 displays a monomer-dimer 

equilibrium at low micromolar concentrations (Lin et al., 2009). FusionRed was selected as a putative 

candidate for NFAT fusion due to its proven performance in the majority of fusion constructs while no 

lysosomal localization was observed after 4 days of expression (Shemiakina et al., 2012). According 

to the present study, both ∆NFAT-mRuby2 and ∆NFAT-FusionRed presented sufficient two-photon 

absorption within the required spectral region and similar translocation dynamics compared to ∆NFAT-

GFP. Therefore, both can be applied as a reliable counterpart of ∆NFAT-GFP. 

The last tested candidate fused to ∆NFAT was LSSmOrange. It is a large Stokes shift (LSS) 

monomeric FP with red-shifted emission spectra derived from mOrange (Shaner et al., 2004). This FP 

was selected as a putative candidate for NFAT fusion because it is spectrally compatible with the CFP-

YFP pair and was efficiently excited before in a four color single excitation confocal microscopy 

(Shcherbakova et al., 2012). Similar to mRuby2 and FusionRed, this FP demonstrated high 

photostability. Unfortunately, due to technical limitations, it was not possible to test this sensor under 

fluorescent video-microscopy. Thus, the translocation dynamics of ∆NFAT-LSSmOrange were not studied. 

Five red FPs were evaluated and it was concluded that ∆NFAT-mRuby2, ∆NFAT-FusionRed and 

possibly ∆NFAT-LSSmOrange (more detailed studies need to be performed concerning the translocation 

dynamics) consist a reliable counterpart of ∆NFAT-GFP and could be used for the construction of a dual 

sensor. However, mRuby2 was preferred because it was used before in combination with Clover (Lam et 

al., 2012) and it would be an ideal partner for Twitch2B as well. Indeed, in vitro two-photon 

microscopic acquisition of Proteas (PINCO-puro-∆NFAT-mRuby2-Twitch2B) expressing GP+E86 cells 

displayed excellent translocation kinetics and adequate two-photon absorption. Nevertheless, Proteas 
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gene transfer into rat antigen specific T cells was not successful. The low transduction efficiency of Proteas 

retrovirus probably occurred because of a promoter interference between the LTRs and the PGK. In 

general, internal strong promoters such as the PGK promoter compete with the transcription signals of the 

retroviral enhancers and severely decrease the viral titers (Blo et al., 2008). 

Overall, this study made a substantial contribution to the body of knowledge in the visualization 

of fusion proteins by evaluating five candidates from the red fluorescent protein color palette. It consists 

a crucial step for expressing combined sensors and deciphering complex processes of the immune 

response. 
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7TM seven transmembrane  

αMHCI anti-MHC class I 

αMHCII anti-MHC class II  

ΔNFAT truncated NFAT 

APC Antigen Presenting Cell 

BBB Blood-Brain Barrier  

c cytosolic 

CaM Calmodulin  

CD Codon Diversified 

CD Cluster of Differentiation 

CFP Cyan Fluorescent Protein  

CMV Cytomegalovirus 

CNS Central Nervous System  

CRAC Calcium-Release-Activated Calcium 

DAG Diacylglycerol  

DMEM Dulbecco's Modified Eagle Medium 

DMSO Dimethyl Sulfoxide 

EAE Experimental Autoimmune Encephalomyelitis  

EDTA Ethylenediaminetetraacetic Acid 

EH Eagle’s HEPES 

ER Endoplasmic Reticulum  

FACS Fluorescence-Activated Cell Sorting 

FCS Fetal Calf Serum 

FP Fluorescent Protein 

FRET Förster/Fluorescence Resonance Energy Transfer  

G proteins GTP-binding proteins  

GALT Gut Associated Lymphoid Tissue  
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GFP Green Fluorescent Protein  

GPCR G Protein Coupled Receptor   

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HLA Human Leukocyte Antigens 

i.v. intravenous   

IFNγ Interferon Gamma 

IRES Internal Ribosomal Entry Site 

IL Interleukin 

IP3 Inositol triphosphate  

IP3R tetrameric IP3 Receptor  

IS Immunological Synapse  

ITAM Immunoreceptor Tyrosine-based Activation Motif 

ITK IL-2 Inducible T cell Kinase 

LAT Linker for Activation of T cells 

LCK Lymphocyte-specific protein tyrosine Kinase 

LSS large Stokes Shift  

LTR Long Terminal Repeat 

MBP Myelin Basic Protein  

MHC Major Histocompatibility Complex  

MOG Myelin Oligodendrocyte Glycoprotein 

MS Multiple Sclerosis  

n nuclear 

NeoR Neomycin Resistance cassette  

NFAT Nuclear Factor of Activated T cells  

NF-κB Nuclear Factor kappa B  

ns not significant 

ORF Open Reading Frame 

ori origin of replication 

OVA Ovalbumin 
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p.t. post transfer  

PBS Phosphate Buffered Saline  

PCR Polymerase Chain Reaction  

PFA Paraformaldehyde 

PGK Phosphoglycerate Kinase promoter 

PLCγ1 Phospholipase Cγ1  

PM Plasma Membrane  

PMA Phorbol 12-Myristate 13-Acetate 

PTX  Pertussis Toxin  

PuroR Puromycin Resistance gene 

R Ratio 

rcf relative centrifugal force 

RFP Red Fluorescent Protein 

ROI Regions Of Interest 

SLP76  SRC-homology-2-domain-containing Leukocyte Protein of 76 kDa 

SNARF Seminaphthorhodafluor 

SOCE Store-Operated Calcium Entry  

SRC Sarcoma tyrosine kinase 

STIM Stromal Cell Interaction Molecule  

TCGF T Cell Grow Factor 

TCM T Cell Medium 

TCR T Cell Receptor 

tEAE transfer EAE  

TnC Troponin C  

YFP Yellow Fluorescent Protein 

ZAP Zeta-chain-Associated Protein kinase 
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