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1. INTRODUCTION 

1.1．Gene therapy 

Gene therapy is the use of genetic information to treat human diseases by the selective 

delivery of DNA into a patient’s cells defective or missing DNA sequences. Gene 

therapy was first conceptualized by Theodore Friedmann and Richard Roblin [1]. 

Martin Cline conducted the first gene therapy trial involving recombinant DNA in 1980. 

The first successful FDA approved gene therapy study was targeting ADA-SCID in the 

United States in 1990. Since then, the number of studies for gene therapy rapidly 

increased to > 2.000 completed or ongoing trials today. AAV-based gene therapy was 

first applied in 1997, and a decade later [2] reported improvement of human eyesight by 

using an AAV-mediated gene transfer.  

1.1.1. Viral vectors 

Viral and non-viral vectors are used for targeted gene delivery. Viral vectors are the 

most efficient for gene therapy, but their approach is limited by their immunogenicity, 

the available packaging size of DNA and their oncogenic potential. The most popular 

viral vectors for gene delivery are adenovirus [59], adeno-associated virus [14], 

retrovirus and lentivirus [60]. In principle, they display varying features: For example, 

the adenovirus has a naked coat, an icosahedral capsid, lacks virion polymerase, but 

provides a transient transgene expression and a packaging capacity of 7.5 kb. The 

adeno-associated virus has a naked coat, an icosahedral capsid, no virion polymerase, 

but provides long lasting transgene expression, and a packaging capacity of 4.5 kb. In 

contrast, retroviruses/lentiviruses have an enveloped coat, an icosahedral capsid, possess 

a virion polymerase, insert into the host genome, and provide a packaging capacity of 8 

kb (Table 1). 

 



Introduction 

 5  

   Adenovirus  AAV  Retro-/Lenti-virus  

Family  Adenoviridae  Parvoviridae  Retroviridae  

Coat  Naked  Naked  Enveloped  

Capsid  Icosahedral  Icosahedral  Icosahedral  

Genome  dsDNA  ssDNA  ssRNA(+)  

Virion polymerase  Negative  Negative  Positive  

Virion diameter  70 - 90 nm  18 - 26 nm  80 - 130 nm  

Genome size  39 - 38 kb  5 kb  3 - 9 kb  

Infection/tropism  Dividing and non-dividing cells  Dividing and non-dividing cells  Dividing cells  

Host genome interaction  Non-integrating  Non-integrating  Integrating  

Transgene expression  Transient  Potential long lasting  Long lasting  

Packaging capacity  7.5 kb  4.5 kb  8 kb  

 

Table 1 | Characterization of viral vectors. dsDNA, double-stranded DNA; ssDNA, single-stranded 

DNA. (Modified from Gene Therapy Net; http://www.genetherapynet.com/viral-vectors.html). 

1.1.2. Non-viral vectors 

Non-viral vectors possess several advantages compared to viral vectors, such as large 

capacity, a low production costs, a low immunogenicity as well as a low toxicity. The 

main limitation of non-viral vectors is their low continuous transfer efficiency compared 

to viral vectors in gene delivery. Nonetheless, recent studies of non-viral vectors show 

substantial progress [4]. 

Currently used non-viral vectors are inorganic, polymer, lipid-based or hybrid [8]. 

Specially, inorganic particles including gold nanoparticles, calcium phosphate, magnetic 

nanoparticles, and carbon nanotubes (CNTs) are commonly used for gene delivery 

materials. These particles possess advantages, such as easy preparation, quick 

transfection, wide availability, and high transfection efficiency. But they are toxic, 

non-biocompatible and imply low transferring efficiency.  

Polymer-based particles include cationic polymer, polysaccharide particle, 

polyethylenimin (PEI) polymers, dendrimers, poly lactic-co-glycolic acid 

(PLGA)-based nanoparticles, and poly-ion complex micelles (PICs). In addition to other 

advantages, they display high protection against enzymatic degradation, easy 



Introduction 

 6  

preparation, low toxicity and a high cationic potential. But they also feature low 

biodegradability and low transferring efficiency.  

Cationic lipids, cationic emulsions, and cationic liposomes are lipid-based particles 

commonly utilized for gene delivery to target cells. These particles have safe 

preparation, low immunogenicity, but a toxic in high dose, and difficult to prepare as 

well as transfer efficient. 

Hybrid particles contain two groups, such as liposome-polycation-DNA (LPD) particles 

and multilayered nanoparticles. These particles consist of polyplexes and liposomes, 

called as lipopolyplexes. Most of the polyplexes contain complexes of polymers with 

DNA, e.g. cationic polymers (such as NH2 surfaced-dendrimers) and their production is 

regulated by ionic interactions. One advantage compared to other non-viral vectors is 

their high transfection efficiency, similar to viral vectors. The properties, advantages, 

and disadvantages of these non-viral vectors are presented in Tables 2 [8]. 

Vectors Toxicity Advantages Disadvantages 

Inorganic 
Frequently 

toxic 

Short time of transfection, easy preparation, wide 

availability, rich functionality, high transfection 

efficiency, potential capability for targeted delivery and 

controlled release 

Most of them are instable, toxic 

and non-biocompatible 

Polymer 
Low 

toxicity 

Small size, narrow distribution, more stability, high 

protection against enzymatic degradation, low toxicity 

and high cationic potential 

Low biodegradability, 

low efficacy 

Lipid Toxic Safe preparation, low immunogenicity 

Toxicity at high dose, difficult 

preparation, low transformation 

efficiency 

Hybrid 
Low 

toxicity 

Improved the loading dose of DNA cellular uptake, 

controlling the release of the DNA and target delivery 

compared to other non-viral vectors 

Toxicity at very high dose 

 

Table 2 | Different type of non-viral vectors in gene delivery. Toxicity; Cellular toxicity. (Modified 

from Dizaj et al., Nanoscale Research Letters 2014 [8]). 
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1.2．Adeno-associated virus 

Given the range of vector systems described above, adeno-associated viruses are a 

promising vector system for human gene therapy, since they are not known for human 

pathogenity, provide a long lasting effect at low immunologic side effects. The first 

serotype was discovered in 1965, isolated from a contaminant of simian adenovirus 

preparations [5]. AAVs are small viruses with a non-enveloped icosahedral capsid of a 

size between 18 ~ 26 nm (Figure 1) [6]. Although about 40-60% (depending on regional 

differences) of adults are sero-positive for AAV serotype 2 (AAV2), the infection has 

not been associated with any symptoms or disease. Because AAV serotypes are 

members of the Parvoviridae family and belong to the genus Dependovirus, they require 

a helper virus, such as adenovirus, to support productive infection and replication. The 

capsid structure controls in different tissues specificity and transduction efficiency [12]. 

The tropisms of each AAV serotypes are indicated as in Table 3. 

 

 

 

 

 

 

 

Figure 1 | Transmission electron microscopy image of AAV2 and Ad5. A, AAV2 and Ad5 particles in 

the nucleus of a HeLa cell at 48 hours after co-infection. Magnification: × 15,000. B, AAV2 virions in a 

HeLa cell at 48 hours after co-infection with Ad5. Magnification: × 40,000. (Adapted from Gonçalves 

MA, Virology Journal 2005 [6]). 
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Serotype Origin Receptor Co-receptor 

AAV1 Muscle, CNS 2.3N/2,6N-sialic acid Unknown 

AAV2 Muscle, liver, Kidney HSPG FGFR-1, integrin, HGFR, LamR 

AAV3 Inner ear HSPG FGFR-2, HGFR, LamR 

AAV4 CNS, Eye 2.3O-sialic acid Unknown 

AAV5 Lung, CNS, Photoreceptor cells 2.3N-sialic acid PDGFR 

AAV6 Skeletal muscle 2.3N/2,6N-sialic acid EGFR 

AAV7 Skeletal muscle N-sialic acid PDGFR 

AAV8 Heart, Liver, Pancreas, Skeletal muscle Unknown LamR 

AAV9 Heart, Liver, Skeletal muscle, Lung N-galactose LamR 

 

Table 3 | Tropisms, receptors and co-receptors of AAV serotype vectors. HSPG; heparan sulfate 

proteoglycan, FGFR; Fibroblast growth factor receptor, HGFR; hepatic growth factor receptor, PDGFR; 

platelet derived growth factor receptor, LamR; 37/67 KD laminin receptor, EGFR; epidermal growth 

factor receptor, CNS; Central nervous system. (Modified from Zhijian Wu et al., Molecular Therapy 2006 

[10] and Hyun-Joo Nam et al., J Virol 2007 [12]). 

1.2.1. Structure of AAV 

The virion shell of AAV has as a small (about 18~26 nm), naked coat, a T=1 

icosahedral capsid, negative virion polymerase, and a single stranded DNA genome 

(capacity ~4.7 kb). The AAV genome is packaged into T=1 icosahedral capsids 

consisting of 60 subunits of capsid proteins (CPs). The inverted terminal repeats (ITRs; 

~145 kb) flank the two viral open reading frames (ORFs) rep (replication) and cap 

(capsid) encoding non-structural and structural proteins [6]. The ITRs are required for 

genome replication and packaging. The rep non-structural ORF, encodes four 

replication proteins responsible for site-specific integration, nicking, and helicase 

activity. The cap structural ORF contain three viral proteins (VPs): VP1, VP2 and VP3, 

which assemble the capsid by 2-, 3-, and 5-fold symmetry-related interactions in 

proportions of about 1:1:10 (Figure 2) [7].  
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Figure 2 | Three-dimensional structure of AAV capsid and variable regions. A, Radially color-cued 

(from capsid center to surface: blue-green-yellow-red; ~110–130 Å) of the AAV1 capsid generated from 

60 VP monomers (RCSB PDB # 3NG9). The approximate icosahedral two-, three-, and five-fold 

symmetry axes are as well as the AAV capsid surface features are indicated by the arrows and labeled and 

indicated by the filled oval, triangle, and pentagon, respectively in (A & B). B, The capsid surface of 

AAV2 with VR-I to VR-IX colored (I: purple, II: blue, III: yellow, IV: red, V: black, VI: hot pink, VII: 

cyan, VIII: green, and IX: brown) and labeled as in (B & C). C, A ribbon diagram representation of the 

ordered over lapping VP3 monomer region of AAV1. The conserved β-barrel core motif (βBIDG-βCHEF, 

gray), conserved αA helix, DE loop (between βD and βE), HI loop (between βH and βI), VR-I to VR-IX 

are colored as in (B). The N and C labels are the N- and C-terminal ends of the ordered VP region, 

respectively. The (A) image was generated using the Chimera program. (B & C) were generated with the 

PyMOL program. (Adapted from Tseng et al., Front Immunol 2014 [7]). 
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Three-dimensional structures have been determined for several serotypes of AAV (about 

AAV1-AAV9) by X-ray crystallography or cryo-reconstruction. These AAV serotypes 

are representatives of the over 100 AAV genomic isolates and 13 human and non-human 

serotypes. The AAVs have a sequence similarity that ranges from ~55 to 99% [7, 9, 12, 

21, 22]. These capsid proteins of 60 subunits have been positioned by three rules 

(Figure 2A, B): 

1. They assemble the capsid in 2-, 3-, and 5-fold symmetry-related interactions in 

proportions of about 1:1:10 [9]. 

2. 3-fold axes and 5-fold axes are at vertices joining 3-fold protrusions and 5-fold 

cylinders, respectively, and 2-fold depressions bisect neighboring 3-folds [7]. 

3. The 2-, 3-, 5-fold axes from a triangle (2-fold axes, as dimple, surrounding a 

cylindrical channel at the 5-fold axes, as canyon, and protrusions surrounding 

the 3-fold axes) and It may be repeated sixty-fold with icosahedral symmetry 

operators to generate the entire capsid [9, 12].  

 

The ribbon diagram of VP region consists of a eight stranded anti-parallel (bB-bI) 

β-barrel core motives, conserving alpha helix (αA), DE loop, HI loop, VR-I to VR-IX 

(Figure 2C). These VRs contribute to local topological differences between the AAV 

capsid surfaces. They assemble such that VR-I, III, VII, and IX contribute to the 

2/5-fold wall; VR-VI and VR-VII form their base; VR-IV, V, and VIII form the top of 

the 3-fold protrusion and VR-II forms the top of the 5-fold channel. Furthermore, they 

are dictate that including receptor attachment, antigenic reactivity, transduction 

efficiency, and functional differences [12, 13, 21, 22]. 
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1.2.2. The tissue tropism of AAV serotypes 

The transduction of AAV starts by binding to a receptor and/or co-receptor complex. 

The course of AAV transduction requires five steps (Figure 3): (1) cellular attachment, 

(2) initial interaction with receptors or co-receptors on the cell surface molecules, cf. 

(Table 3), (3) internalization of virion by the host cell, virus intracellular trafficking 

through the endosomal compartment, escape of the virus from the endosome, and virion 

uncoating, (4) entry into the nucleus and release of the single stranded vector genomes 

with subsequent viral genome conversion from single stranded to a double stranded 

DNA, and (5) chromosomal integration before gene expression. Of note, hybridization 

of complementary input genomes can occur from a double stranded template, or (6) 

deletion integration and gene expression. 

 

 

 

 

 

 

 

 

Figure 3 | Cell entry and trafficking of AAV. AAV enters the cell through receptor-mediated 

endocytosis. The transduction by AAV vectors showing six steps. The AAV vector particles are binding 

to cellular attachment (1) and an initial interaction with a variety of receptors or co-receptors on the cell 

surface molecules (2), as in (Table 3). Internalization of virion (3), nuclear entry and release of the single 

stranded vector genomes (4). Chromosomal integration before gene expression, and/or hybridization of 

complementary input genomes can occur from a double stranded template (5), or deletion integration and 

gene expression (6). (Modified from Russel DW et al., Blood 1999 [11]). 



Introduction 

 12  

The AAV pseudotyping experiments demonstrate that the varying cell tropism and 

transduction efficiencies are dictated by specific capsid viral protein (VP) amino acids 

[7, 9, 12, 21, 22]. Each serotype of AAV capsids mediates binding to a cellular receptor 

before cell entry (Table 3). For example, AAV serotype 2 makes its initiates first 

contact with the target cell by attaching to the receptor heparan sulfate proteoglycan 

(HSPG), which might be enhanced by co-receptors (as αVβ5 integrin, fibroblast growth 

factor receptor-1; FGFR-1, and hepatocyte growth factor receptor; HGFR) [10, 11, 21]. 

Each AAV serotype has specific binding receptors. However, the target specificity may 

be altered by AAV surface modification [15, 21], e.g., engineering of AAV2 capsid 

virion protein. Thus, deletion of heparan binding site (R484 and R585) diminishes 

hepatic expression and augments cardiac expression (Figure 4). 

 

 

 

 

 

 

 

 

 

Figure 4 | In vivo distribution of wild-type rAAV and rAAV mutant (R484E/R585E) in mouse 

tissues. Luciferase activities in different organs after intravenous injection of 1011 wild-type capsids or 

rAAV mutated in R484E and R585E, 3 weeks post infecion. Luciferase activities are depicted in relative 

light units (RLU) per milligram of protein. Error bars indicate standard deviations. (Adapted from A. 

Kern et al., J Virol 2003 [21]). 
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1.3．Nanoparticles 

Surface modification of AAV vectors comprises several possibilities, including peptide 

expression at privileged sites of the vector capsid [49] or shuffling of the capsid gene 

sequences of various strains [85]. A novel and promising approach consists of coating 

of vector capsids with dendrimeric nanoparticles. 

Dendrimers are repetitively branched macro molecules (three-dimensional polymers) 

with spherical, branched structures. Commonly used dendrimers are polyamines, 

polyamides, or polyesters. These molecules possess the central core, branches (which 

give rise to dendrimer generations) and surface peripheries (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 | Schematic representation of polyamidoamine (PAMAM) dendrimers. A, In contrast to 

traditional polymers, dendrimers are unique core-shell structures possessing three basic architectural 

components: (1) a core, (2) an interior of shells (an increase in generation number (G0 to G5) consisting 

of repeating branchpoints, and (3) surface functional groups. B, The characterization of generation of 

PAMAM. MW; Molecular Weight (Modified from Donald A et al., Materialstoday 2005 [34]). 
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The first report of repetitive growth with branching was provided by Buhleier in 1978 

[31]. The polyamineamide (PAMAM) dendrimers are the most common group of 

dendrimers suitable for applications of nano-medicine. These macromolecules 

constitute a class of hyperbranched polymers developed by Tomalia in 1979 [32]. 

PAMAM nanomolecules are readily used in non-viral gene delivery system for 

enhancing transduction efficiency (Figure 6) [33, 34].  

PAMAMs are highly variable in their molecule structure. An increase in generation 

number (G0 to G10) is provided by interiors. Five core types (cystamine, 

diaminobutane, diaminohexane, diamonododecane, and ethylenediamine core), and nine 

functional surface groups (amine, amidoethylethanolamine, amidoethanol, sodium 

carboxylate, succinamic acid, hexylamide, carbomethoxypyrrolidinone, 

tris-hydroxymethyl-amidomethane, and poly-ethyleneglycol) add to their variability 

(Figure 5A). 

 

 

 

 

 

 

 

 

 

Figure 6 | Factors affecting nanoparticle cellular uptake. A, Given similar surface characteristics, 

smaller nanoparticles are more efficiently internalized than larger nanoparticles. B, Cationic surface 

nanoparticles are preferentially taken up by cells. C, Cell specific targeting by a surface 

modified-nanoparticles (target cell membrane specific ligand conjugated ligands). D, Rapid uptake by 

conjugating protein transduction domains to the surface of the nanoparticle. E, Application of 

oligodeoxynucleotide (ODN) was found to aid in specific internal cellular localization. F, Positive surface 

charged nanoparticles can escape from endosomes. (Adapted from K. Ted Thurn et al., Nanoscale Res 

Lett 2007 [30]). 
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Furthermore, these PAMAMs display various external charge patterns: there are 

positively charged amino-termini (cationic), neutral hydroxyl-termini (neutral), or 

negatively charged carboxyl-termini (anionic) provided by the surface molecules [37]. 

The PAMAMs of generation 2 (PAMAM G2: 3,348 MW) and PAMAMs of generation 

5 (PAMAM G5: 28,918 MW) as used in this study are positively charged and have 16 

or 128 of NH2 surface groups, respectively (Figure 5B). 

The high density of surface functional groups on PAMAM dendrimers, which may be 

differently charged, enables the polymers to electrostatically interact with other charged 

surfaces like the plasmalemm of a cell (Figure 7). Commonly, most particles are 

transported and taken up by four major routes:  

1) Paracellular aqueous pathway, e.g. water-soluble agents, 2) passive diffusion, 3) 

carrier mediated, and 4) endocytosis via adsorption, receptor mediation or fluid phase. 

Most likely, PAMAM dendrimers are transported by routes 1) and 4) [35-38]. 

 The microvascular endothelium contains highly polar glycosaminoglycans (GAGs) on 

the surface [39]. The GAGs are classified by four groups, as heparin/heparan sulfate 

(HSGAGs), chondroitin/dermatan sulfate (CSGAGs), keratan sulfate and hyaluronic 

acid [40]. The heparin contain the highest negative charge density within GAGs. 

Therefore, the observed extravasation of cationic PAMAM dendrimers molecules may 

also be a function of the electrostatic interactions between the polymers and the 

negatively charged endothelium as in Figure 7 [38]. 
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Figure 7 | Schematic representation of cellular uptake of PAMAM dendrimer. The electrostatic 

interactions between the PAMAM dendrimer (cationic dendrimers; positive charged -NH2 surface) and 

the negatively charged endothelium. (Modified from Adamson RH et al., J Physiol. 1992 [36, 38]). 

1.4．Phage display 

In addition to utilization of nanoparticles to alter the negatively charged surface of the 

virus capsid, selective targeting can be achieved by peptides binding with high affinity 

to a specific cell-type. We attempted to select endothelial-targeted peptides via phage 

display and biopanning in endothelial cells. 

The phage display method is an efficient tool for affinity selection of target-specific 

peptides [45]. This technology was discovered by George P. Smith in 1985 [41], when 

he demonstrated that foreign DNA fragments inserted into filamentous phages (= 

bacteriophages = a virus that infects and replicates only within a bacterium) are 

displayed as fusion proteins with a random sequence. 

By selecting and sequencing the motives, protein-peptide, protein-protein, and 

protein-DNA interactions can be distinguished. The most common bacteriophages used 

in phage display are filamentous bacteriophage (M13 [25] and fd) and lytic phage (T4 

and T7 [26]), shown as in Figure 8. 
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Figure 8 | Structure of bacteriopahge. A filamentous M13 phage (A) and a lytic T7 phage (B). 

(Adapted from Keisuke Fukunaga et al., Journal of Nucleic Acids 2012 [45]). 

The phage display technology allows for identification of specific interactions between 

randomized phage library peptides on the phage and target proteins, peptides, or other 

molecules [24]. The M13 CX7C phage display library system (C; cystein, X7; 7-mer 

random aa) is based on a vector of M13 phage encoding N-terminal library random 

peptide fused to a gp3 coat protein. The gp3 plays a critical role for phage infection, 

since randomized 7-mer aa peptides are fused in all five copies of the gp3. Infectivity of 

the M13 phage can be significantly affected by a random sequence of the displaying 

peptides. Amplification efficiency of the each selected-M13 phage clone is determined 

by a combination of the infection and secretion rates. A M13 phage library displaying 

CX7C random peptides was screened to enrich phage that selectively bind to target, as 

cells or other molecules shown as in Figure 9. 

 

 

 



Introduction 

 18  

 

 

 

 

 

 

 

 

Figure 9 | Procedural of biopanning by phage-display library. The sequence of events that are 

followed in phage display screening to identify polypeptides that bind with high affinity to desired target 

protein or DNA sequence. A typical procedure of the biopanning. 1) binding, 2) washing, 3) eluting of the 

selected phage, 4) amplification of the phage library subset, which bound to the bait, 5) repeating 3-4 

times (rounds; 1 to 4), and analysis of bound phages. (Adapted from Keisuke Fukunaga et al., Journal of 

Nucleic Acids 2012 [45]). 

1.5．Aim of study 

In this study, we aim at retargeting an AAV2/9 virus strain towards endothelial 

transduction. Since all AAV strains have a low transduction efficacy in endothelium 

(Figure 10-a), we utilized surface modifications of the virus capsid to achieve 

endothelial retargeting. We used a three-step strategy to achieve this aim.  

1. First, we tested the combination of AAV2/9 and two cationic PAMAM 

dendrimer (G2 and G5) for endothelial transduction in vivo (figure 10-b). 

2. Secondly, we identified endothelial targeting peptide motifs of 7 amino-acid 

length, by M13 phage-display technology. 

3. Thirdly, we linked the endothelial targeting peptide to PAMAMs for targeting 

endothelial cells in vivo (figure 10-c). 
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Figure 10 | Design of gene delivery system by surface modified AAVs by different type of PAMAM 

dendrimers. a, AAV2/9CMV-Cre virus have a tropism in heart. b, Cationic PAMAM dendrimer (G2 or 

G5) coated AAV2/9CMV-Cre virus. c, AAV2/9CMV-Cre/PAMAM G2-PEG linker-Endo peptide; 

Endothelial cell target motives (P1 or P3) are displayed on PAMAM surface (PEG linker pre-conjugated 

G2 PAMAM) and thereafter coated to AAV2/9CMV-Cre virus. 
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2. MATERIALS AND METHODS 

2.1.  Materials 

2.1.1. Chemicals, solutions and enzymes 

Product Company 

Acetonitril Roth GmbH, Lübeck, Germany 

Agarose Life tech. GmbH, Darmstadt , Germany 

Ampicillin Sigma-Aldrich GmbH, Munich, Germany 

APS Merck, Darmstadt, Germany 

Bacto-agar BD GmbH, Heidelberg, Germany 

Bacto-tryptone BD GmbH, Heidelberg, Germany 

Bovine Serum Albumine (BSA) Sigma-Aldrich GmbH, Munich, Germany 

Calcium Chloride Sigma-Aldrich GmbH, Munich, Germany 

Claycomb medium Sigma-Aldrich GmbH, Munich, Germany 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich GmbH, Munich, Germany 

DMEM Invitrogen GmbH, Darmstadt, Germany 

DNA Ladder 50 bp NEB GmbH, Frankfurt, Germany 

DNA Ladder 1k bp NEB GmbH, Frankfurt, Germany 

DTT Sigma-Aldrich GmbH, Munich, Germany 

EDTA Invitrogen GmbH, Darmstadt, Germany 

Endothelial medium 200 Invitrogen GmbH, Darmstadt, Germany 

Ethanol Roth GmbH, Lübeck, Germany 

Ethidium Bromide Roth GmbH, Lübeck, Germany 

FCS Invitrogen GmbH, Darmstadt, Germany 

Glycerol Roth GmbH, Lübeck, Germany 
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Glycine Roth GmbH, Lübeck, Germany 

HEPES Sigma-Aldrich GmbH, Munich, Germany 

IPTG Sigma-Aldrich GmbH, Munich, Germany 

Isopropanol Roth GmbH, Lübeck, Germany 

KAPA HiFi DNA polymerase PEQLAB Biotech., Erlangen, Germany 

Macro-prep high S BioRad GmbH, Munich, Germany 

Magnesium Chloride Sigma-Aldrich GmbH, Munich, Germany 

NHS-PEG-OPSS Rapp Polymere GmbH, Tübingen, Germany 

NP-40 Sigma-Aldrich GmbH, Munich, Germany 

Nuclease Free Water (NFW) Promega GmbH, Mannheim, Germany 

O.C.T. compound Sakura Finetek Germany GmbH, Germany 

Opti-MEM Invitrogen GmbH, Darmstadt, Germany 

PAMAM dendrimers (G2 or G5) Dendritic Nanotech. Inc, Michigan, USA 

PEG 8000 Sigma-Aldrich GmbH, Munich, Germany 

Penicillin/Streptomycin Invitrogen GmbH, Darmstadt, Germany 

Peptide (no.1 or no.3) Biosyntan GmbH, Berlin, Germany 

RPMI-1640 medium Sigma-Aldrich GmbH, Munich, Germany 

Sephadex G-25 superfine Sigma-Aldrich GmbH, Munich, Germany 

Skim-milk Roth GmbH, Lübeck, Germany 

Sodium chloride Roth GmbH, Lübeck, Germany 

Sodium Dodecyl Sulfate (SDS) Sigma-Aldrich GmbH, Munich, Germany 

Sodium Phosphate Sigma-Aldrich GmbH, Munich, Germany 

Spectra/Por membranes Spectrum Lab. Inc, Breda, Netherlands 

Sucrose Sigma-Aldrich GmbH, Munich, Germany 

T4 DNA Ligase Invitrogen GmbH, Darmstadt, Germany 

TEMED Sigma-Aldrich GmbH, Munich, Germany 



Materials and Methods 

 22  

Tetracycline Sigma-Aldrich GmbH, Munich, Germany 

TFA Roth GmbH, Lübeck, Germany 

TNBS Sigma-Aldrich GmbH, Munich, Germany 

Tris Sigma-Aldrich GmbH, Munich, Germany 

Triton X 100 Roth GmbH, Lübeck, Germany 

TRIzol  Ambion GmbH, Darmstadt, Germany 

Trypsin-EDTA Invitrogen GmbH, Darmstadt, Germany 

Tween 20 Roth GmbH, Lübeck, Germany 

Vectashield H-1200 Vector Lab. Inc., Burlingame, CA, USA 

X-gal Roth GmbH, Lübeck, Germany 

Yeast extract BD GmbH, Heidelberg, Germany 

The water was used as purified by Milli-Q, Millipore Centrifugal filter units Amicon 

Ultra 0.5ml, 3K and 50K from Millipore GmbH (Darmstadt, Germany). All other 

chemicals were bought from Sigma-Aldrich (Munich, Germany), Invitrogen GmbH 

(Darmstadt, Germany) or Roth GmbH (Karlsruhe, Germany). 

2.1.2. Standard kits 

Product Company 

DNeasy Kit Roche Diagnostics GmbH, Penzberg, Germany 

EndoFree Plasmid Kits Macherey-Nagel GmbH, Düren, Germany 

Gel Extraction Kit Macherey-Nagel GmbH, Düren, Germany 

KAPA Mouse genotyping kit PEQLAB Biotech., Erlangen, Germany 

PCR Purification Kit Macherey-Nagel GmbH, Düren, Germany 

Ph.D. CX7Cphage display library NEB GmbH, Frankfurt, Germany 

Reverse transcription system kit Promega GmbH, Mannheim, Germany 

SYBR Green kit BioRad GmbH, Munich, Germany 

TMB Substrate Kit Thermo GmbH., Bonn, Germany 
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2.1.3. Plasmids 

1. pAAV-CMV-eGFP: EGFP cDNA controlled by the human cytomegalovirus (CMV) 

promoter with Ampicillin resistance. 

2. pAAV-CMV-Cre: Cre cDNA controlled by the human cytomegalovirus (CMV) 

promoter with Ampicillin resistance. 

3. pAdΔF6: PolyFlo®Purified Plasmid pAdΔF6 (P.O. Number 03032012 Lot# C30JA) 

from Puresyn Inc. (Malvern, PA) [16, 17]. 

4. pVP2: AAV based helper plasmid containing the AAV2 Rep and Cap open reading 

frame (ORF) with Ampicillin resistance [20]. 

5. pVP2/6: AAV based helper plasmid containing the AAV2/6 Rep and Cap open 

reading frame (ORF) with Ampicillin resistance. 

6. pVP2/9: AAV based helper plasmid containing the AAV2/9 Rep and Cap open 

reading frame (ORF) with Ampicillin resistance [16, 17]. 

7. pVP2/9Endo: AAV based helper plasmid containing the AAV2/9Endo, Endothelial 

cell target peptide (SLRSPPS) displayed on virion, Rep and Cap open reading 

frame (ORF) with Ampicillin resistance [24]. 

8. pAAV-CMV-S1FG: S1FG cDNA controlled by the human cytomegalovirus (CMV) 

promoter with Ampicillin resistance [55]. 

2.1.4. Primers 

M13 phage PCR primer (forward; 5’- TTA TTC GCA ATT CCT TTA GTG G -3’, 

reverse; 5’- CCC TCA TAG TTA GCG TAA CG -3’All primers have been purchased 

from MVG (Ebersberg, Germany). 
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2.1.5. Antibodies 

Name Immunogen Manufacturer 

CD31 PerCP human eBioscience 

Troponin I Alexa647 human BD Biosciences 

CD45 eFluor450 mouse eBioscience 

CD144 eFluor660 mouse eBioscience 

IgG2a K PerCP rat eBioscience 

M13-pIII M13 coat protein III NEB GmbH 

M13-pVIII M13 coat protein VIII Abcam plc 

 

2.1.6. Bacteria strain 

ER2738: The host cell of M13phage. 

DH5α:   The host cell of viral vectors for transformation. 

2.1.7. Cell lines 

bEnd3:   Mouse brain endothelial cell line [16]. 

HEK293: Human embryonic kidney cells [17]. 

HL-1:   Mouse cardiomyocyte. 

HMEC:  Human microvascular cells. 

HUVEC:  Human umbilical vein endothelial cells. 
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2.2. Methods 

2.2.1. Viral vectors 

All vectors were designed to express transgenes or reportergenes (Cre reporter genes) 

under the control of two promoters. The pAAV-CMV-eGFP and pAAV-CMV-Cre 

vectors carry a cytomegalovirus (CMV) enhancer promoter. The constructed plasmids 

(pAAV-CMV-eGFP and pAAV-CMV-Cre), contain 5’- Inverted terminal repeats (ITR), 

a CMV promoter, a transgene (eGFP or Cre), a posttranscriptional regulatory element 

(WPRE), a bovine growth hormone polyadenylation signal (bGHpA), 3’- ITR, a region 

for resistance to the antibiotic Ampicillin (Amp) Figure 11-A. The viral vector plasmids 

were provided by James Wilson, University of Pennsylvania, Philadelphia, USA and 

Oliver J. Müller, University of Heidelberg, Germany. 

2.2.2. Recombinant AAV production 

All production of recombinant AAV was performed using a triple plasmid transfection 

method in principle as described [20]. Briefly, the triple plasmids were an adenovirus 

(Ad) helper plasmid (pAdΔF6), a chimeric trans plasmid containing the AAV2 rep gene 

fused to the capsid gene of the AAV serotype of interest (crosspackaging of pseudotyped 

vectors), and a ITRs-positive rAAV vector plasmid. AAVs were produced with triple the 

pAdΔF6 as Ad helper plasmid. rAAV2-CMV-eGFP virus was produced by 

cotransfection of U293 cells with pAAV-CMV-eGFP and pDG (R484E/R585E) 

containing mutations of two amino acids involved in heparin binding of AAV2 

(R484E/R585E) [21]. rAAV2/6-CMV-eGFP virus used pAAV-CMV-eGFP and pDP6. 

The rAAV2/9-CMV-eGFP and rAAV2/9-CMV-Cre virus used each a pAAV-CMV-eGFP 

or pAAV-CMV-Cre with pDP9. Furthermore, the cross packaging of rAAV2/9Endo-Cre 

virus pseudotyped vector was accomplished with pAAV-CMV-Cre and Endo endothelial 

cell targeting peptide (SLRSPPS) inserted on the surface of A589 of AAV9 capsid 

(p5E18-VD-2/9- SLRSPPS) [24]. After 2-3 days, cells were harvested and viruses were 
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purified using standard cesium sedimentation as previously described [22]. The titer of 

rAAVs viral particle was determined using real-time PCR against the untranslated 

region of the DNA encoded transcript in each AAV vectors. The bGHpA primer 

sequences were forward 5′-TCT AGT TGC CAG CCA TCT GTT GT-3′, and reverse 

5′-TGG GAG TGG CAC CTT CA-3′, Cre primer sequences were forward 5’- AGA 

GGA AAG TCT CCA ACC TG -3’, reverse 5′- ACA CAG ACA GGA GCA TCT TC -3’, 

and eGFP primer sequences were forward 5’- GCC ACA ACG TCT ATA TCA TGG -3’, 

reverse 5′- GGT GTT CTG CTG GTA GTG GT -3’. Real-time PCR was performed 

using SYBR Green for 40 cycles (30 seconds at 95°C, 30 seconds at 58°C, 30 seconds 

at 72°C) by an iQ-Cycler (Bio-Rad, Germany). Cross packaging constructs of 

pseudotyped vectors were provided by Oliver J. Müller, University of Heidelberg, 

Heidelberg, Germany [25]. 

2.2.3. Coating of AAVs with PAMAM dendrimer 

The complexes of rAAVs and nanoparticles (PAMAM G2, PAMAM G5), at times 

carrying endothelial targeting peptides P1 and P3 (PAMAM G2 P1, and PAMAM 

G2-P3) were formed by diluting indicated amounts of AAVs in Opti-MEM (Invitrogen, 

Germany). Viral particles were added to the PAMAM diluted solution, immediately 

mixed by gentle aspiration with the pipet tip and allowed to incubate for at RT/30 min 

before further use, as in Figure 11-B. 

2.2.4. Panning 

In this study we use a phage peptide library Ph.D. CX7C M13KE kit. 2.0E+11 plaque 

forming units (pfu) of the phage library was incubated with 1 ml of 1% BSA/DMEM in 

1.0E+07 cells/tube of the HMEC or HUVEC cells and incubated for 120 min at 4°C 

with gently rolling. After washing 5 times with TBST (TBS/0.1% Tween 20) and 

spinning down at RT/1200 rpm/5 min, bound phages were eluted with a 1 ml of 0.2M 

Glycine-HCl (pH 2.2)/1 mg/ml BSA by centrifugation at 4°C/13000 rpm/5 min. The 
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supernatant of elute was neutralized with a 200 µl of Tris-HCl (pH 8.0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 | Construction of gene delivery viral vector and modifications by PAMAM with or 

without peptide linkage. A, pAAV-CMV-eGFP vector (upper part) and pAAV-CMV-Cre vector (lower 

part). B, PAMAM dendrimers (G2, G2P1, G2P3, or G5) coated to AAV (rAAV2, rAAV2/6, rAAV2/9 or 

rAAV2/9Endo) at RT/30 min. 

2.2.5. Amplification of selected phage clones 

1 ml of selected phage eluate was incubated with 20 ml of an E. coli ER2738 bacteria 

suspension (A600 nm 0.5) by vigorous shaking at 37°C/4.5 hr in 250 ml volume. The 

amplified phage was purified according to the method in principle as described [27, 28]. 

Briefly, recovered phages were centrifuged at 4°C/13000 rpm/20 min. Then, the upper 

80% of supernatant were transferred to a fresh tube with 1/6 volume of 20% PEG/2.5M 

NaCl and incubated overnight at 4°C. Thereafter, the phage was pelleted by spinning 
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down at 4°C/13000 rpm/15 min and the supernatant was discarded. The phage pellet 

was completely resuspend with 1 ml of TBS by gently rocking overnight at 4°C. 

Residual pellets were spun down at 4°C/13000 rpm/20 min and the supernatant was 

purified by syringe filter with 0.45 µm (Life Sciences, Germany). Each round of eluted 

solutions was used for determination of phage titration by plaque assay [26]. The 

amplified phage was used as input for the next round and the phage titration used as 

output data. 

2.2.6. Direct phage PCR and sequencing 

10 µl of phage elutes (2 and 3 rounds) were incubated overnight with 300 µl of an E. 

coli ER2738 bacteria suspension (A600 nm OD 0.5) and 3 ml of prewarmed TOP-agar 

medium (10 g Bacto-Tryptone, 5 g yeast extract, 5 g NaCl, and 7 g Bacto-agar per liter) 

onto a LB/IPTG/X-gal plates (1l LB medium, 15 g/l agar, 0.05 g of IPTG, and 0.04 g of 

X-gal per liter). Each of 488 single blue (positive) plaques were random selected and 

amplified with 2 ml of an E. coli ER2738 bacteria suspension (A600 nm OD 0.5) by 

vigorous shaking at 37°C/4.5 hr. Each of purified plaques (488 single positive plagues) 

were reselected by direct PCR. The direct PCR enrichment was performed using DNA 

polymerase for 35 cycles by an iQ-Cycler. Then, 169 phage (positive of direct PCR 

products) were selected by gel electrophoresis. 58 phage DNA sequences were 

identified by sequencing analysis, and finally 10 phage DNA sequences were selected. 

The M13 phage primer sequences were forward 5’- TTA TTC GCA ATT CCT TTA 

GTG G -3’, reverse 5’- CCC TCA TAG TTA GCG TAA CG -3’. The direct PCR 

enrichment was performed using KAPA HiFi DNA polymerase (peqlab, Germany) for 

35 cycles with the following cycling parameters: 3 minutes at 98°C; 35 cycles of 15 

seconds at 98°C, 30 seconds at 53°C, 30 seconds at 72°C; 30 seconds at 72°C by an 

iQ-Cycler (Bio-Rad, Germany). Thereafter PCR products were separated by DNA gel 

electrophoresis compact XS/S (Biometra, Germany). The sequences of the PCR 

products (selected phage DNA) were identified by MWG (Eurofins MWG Operon, 
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Germany). 

2.2.7. Phage ELISA 

10,000 cells/well of HUVEC, and HMEC cells were incubated in a micro 96-well plate 

(Nunc, Germany) overnight at 37°C in 5% CO2. The cell plates were washed with 1x 

phosphate buffered saline (PBS) and fixed with 4% PFA at RT/15 min. Thereafter they 

were washed and blocked at RT for 30 min with 100 µl/well of 2% skim-milk in 1x 

TBST (as blocking buffer). The blocking buffer was removed and individual 10 

amplified phage clones were incubated at RT for 60 min with in endothelial cell 

(HUVEC or HMEC). 50 µl/well of 1:200 HRP-conjugated M13 PVIII antibody were 

added in 2% skim-milk in 1x TBST (as primary antibody solution) and incubate 

overnight at 4°C. Plates were washed 5 times with 100 µl/well of 1x TBST. 100μL/well 

of TMB Substrate (Thermo Fisher Scientific, Germany) were added and incubated at RT 

for 15 min. After adding 100μL/well of TMB Stop Solution, the absorbance at 450nm 

(A450) was analyzed. 

2.2.8. Nanoparticle synthesis 

The PAMAM G2 dendrimer (Figure 12-A) and PAMAM G5 dendrimer (Figure 12-B) 

were synthesized by Dendritic Nanotech. Inc, Michigan, USA. The conjugation of a 

PAMAM G2 dendrimer, a NHS-PEG-OPSS linker and endothelial cell specific 

transduction peptides (P1 or P3) was performed according to [29]. Briefly, 1 μmol of G2 

(MW = 3,284 Da) was incubated with 4 μmol of NHS-PEG-OPSS (2 kDa) dissolved in 

DMSO at 37°C/3 hr. The reaction mixtures were loaded on a cation-exchange column 

(Macro-Prep High S; BioRad) and fractioned with a salt gradient from 0.6 to 3 M NaCl 

in 20 mM HEPES (pH 7.4) solution. Thereafter, the product was filterated by centrifuge 

filter devices (Amicon Ultra 3K) and the G2 content of the conjugate was determined by 

TNBS assay. For G2P1 (Figure 12-C) and G2P3 (Figure 12-D) synthesis, 1.98 μmol of 

peptides in 75 μl of 30% acetonitrile, 70% H2O, 0.1% TFA (trifluoroacetic acid) 
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solution and 0.79 μmol of G2 with PEG-OPSS linker in 3.6 ml of HBS solution were 

mixed and incubated at room temperature. The mixtures were loaded on a 

cation-exchange column with varying salt gradients from 0.6 to 3 M NaCl in 20 mM 

HEPES including 10% acetonitrile (pH 7.4) solution. Thereafter, the product was 

filtered by a centrifuge filter devices (Amicon Ultra 50K and 3K) and the G2 content of 

the conjugate was determined by TNBS assay. The amount of P1 or P3 was calculated 

via the extinction coefficient at 280 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 | Cationic PAMAM dendrimers & surface modified PAMAM dendrimers. A, PAMAM G2 

is a cationic (16 of NH2) generation 2 PAMAM dendrimer. B, PAMAM G5 is a cationic (128 of NH2) 

generation 5 PAMAM dendrimer, C, PAMAM G2P1 is surface modified, adding P1 (CSLRSPPS) with 

PEG linker conjugated on the surface, PAMAM G2 dendrimer. D, PAMAM G2P3 is surface modified, 

adding P3 (CNNSGMRN) with PEG linker conjugated on the surface, PAMAM G2 dendrimer. 
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2.2.9. Cell culture 

For in vitro studies, human microvascular endothelial cells (HMEC), mouse brain 

endothelial cell line (bEnd3), and human embryonic kidney 293 cells (HEK293) were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM). Mouse cardiomyocyte 

(HL-1) were cultured in Claycomb medium, 0.1 mM Norepinephrine. Human umbilical 

vein endothelial cells (HUVEC) were cultured in endothelial medium 200. All cell 

culture medias were supplemented with 10% fetal calf serum (FCS), 1 % 

penicillin-streptomycin solution (100 units/ml penicillin, 100 μg/mL streptomycin), and 

1% L-alanine-L-glutamine (200 mM) at 37°C in 5% CO2. 

2.2.10.  Animals 

dTomato mice care and all experimental procedures were performed in to the Guide for 

the Care and Use of Laboratory Animals published by the NIH (NIH publication no. 

85-23, revised 1996), and were approved by the Bavarian Animal Care and Use 

Committee (AZ 55.2-1-54-2531-130-8 and 35-12). All animal experiments were 

conducted at the Walter Brendel Centre of Experimental Medicine. 

2.2.11.  ROSA mT/mG mice (tdTomato mice) 

The Cre/loxP system has been widely used for site-specific mutagenesis in mice [3, 46]. 

The Cre recombination activity at specific sites, called lox sites, is instrumental for 

temporal and spatial resolution of the recombination event. The ROSA mT/mG mouse 

strain (B6.129(Cg)–Gt(ROSA)26Sortm4 (ACTB-tdTomato,-EGFP)Luo/J, (The Jackson 

Laboratory, www.jax.org) is a double color fluorescent Cre reporter mouse strain that 

expresses cell membrane-targeted red fluorescence, tandem dimer Tomato (mT) in its 

native state prior to Cre recombinase exposure. In contrast, cell membrane-targeted 

green fluorescent protein (mG) is expressed after Cre-mediated activation of mG, and 

excision of mT as shown in Figure 13 A-C. 

 

http://jaxmice.jax.org/strain/007676.html
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Figure 13 | Tomato reporter gene mice, mT/mG mutation mice; Gt(ROSA)26Sor. A, Tomato mice are 

characterized by a mT/mG combined in the ROSA locus as displayed in this map. Mice homozygous for 

this mT/mG mutation are viable and fertile. These mice possess loxP sites on either side of a 

membrane-targeted tdTomato (mT) cassette and express strong red fluorescence in all tissues. Tail or 

whole body epi-fluorescence is sufficient to identify mT/mG homozygotes. When bred to Cre 

recombinase expressing mice, the resulting offspring have the mT cassette deleted in the cre expressing 

tissues, allowing expression of the membrane-targeted EGFP (mG) cassette located just downstream. B, 

The phenotype of tomato mice. C, An example of tomato mice after Cre gene transduction. The Cre gene 

mediated mT expression change to mG compared to the mock transfected heart. (Figure A is adaptied 

from Muzumdar et al., Genesis 2007 [3]). 

2.2.12.  Genotyping of dTomato mice 

Offspring from matings of a heterozygote Gt (ROSA) 26Sor mouse and a heterozygote 

Gt (ROSA) 26Sor mouse were biopsied at weaning age, and total DNA was prepared 

from the mice tail clip (approx 2 mm) by manual DNA isolation, incubated with 100 μl 

of solution A (25 mM NaOH/0.2 mM EDTA) during 60 min 95°C and vortexed briefly 

with 100 μl of solution B (40 mM Tris-HCl). Thereafter, the mixture was centrifuged at 

2000 rpm for 10 min, and 100 μl of supernatant were removed and used as 1 μl per 25 

μl PCR reaction. The total DNA was analyzed by PCR for the presence of the respective 

transgenes. Primers (wild type for 5′- CTC TGC TGC CTC CTG GCT TCT -3′, wild 
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type rev 5′- CGA GGC GGA TCA CAA GCA ATA -3′, and mutant type rev 5′- TCA 

ATG GGC GGG GGT CGT T -3′) were used for the Gt (ROSA) 26Sor allele PCR. The 

direct PCR enrichment was performed using KAPA HiFi DNA polymerase (peqlab, 

Germany) for 35 cycles with the following cycling parameters: 3 minutes at 98°C; 35 

cycles of 15 seconds at 98°C, 30 seconds at 53°C, 30 seconds at 72°C; 30 seconds at 

72°C by an iQ-Cycler. Thereafter, PCR products were separated by DNA gel 

electrophoresis compact XS/S. The resulting PCR products were mutant type (250 bp), 

wild type (330 bp), and heterozygote type (250 bp and 330 bp) in size. 

2.2.13.  Transduction efficiency test in vitro 

Surface modified PAMAM dendrimers coated rAAV transductions were performed 

using HEK293, HL1, bEnd3 and HMEC cell lines with 24hr, 48hr, and 72hr incubation 

time. The PAMAM dendrimer (G2, G2P1, G2P3 or G5) coating doses ranged from 50 

to 800 ng per well, rAAV vector (AAV2-eGFP, AAV2/6-eGFP, AAV2/9-eGFP, 

AAV2/9-Cre, AAV2/9Endo-Cre, as in Figure 14-A & -B) dose were 1.0E+05 virus 

particles per cell or 1.0E+06 virus particles per cell. 

2.2.14.  Transduction efficiency test in vivo 

The dtTomato reporter mouse carries a RFP (red) fluorescing reportergene, which upon 

Cre activity switches to GFP (green). Mice of this strain were injected intravenously 

(i.v.) 2.5E+12 virus particles coated with 45 ng or 90 ng of surface modified dendrimers 

(G2, G2P1, G2P3 or G5) or AAV2/9Endo coated with the same amount of cationic 

surface dendrimers (G2 or G5). Successful pCMV-Cre gene transduction of tdTomato 

mouse organs (heart, liver, lung, kidney, spleen, brain, upper limb, and lower limb) was 

analyzed 21 days after viral injection. In this study experimental groups consist of 

AAV2Cre, AAV2/6Cre, AAV2/9Cre, AAV2/9Endo-Cre [24], AAV2/9Cre/G2, 

AAV2/9Cre/G5, AAV2/9Endo-Cre/G2, AAV2/9Endo-Cre/G5, AAV2/9Cre/G2P1, and 

AAV2/9Cre/G2P3. 
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Figure 14 | Gene transduction by surface modified PAMAM coated AAVs in vitro and in vivo. A, In 

vitro transduction test of PAMAM coated AAV encoding for CMV-eGFP. G2 and G5 coated AAV2, 

AAV2/6, and AAV2/9 were applied to human embryonic kidney 293 cells (HEK 293), human 

microvascular endothelial cells (HMEC), and AT-1 mouse atrial cardiomyocyte tumor lineage cells (HL-1) 

during 24 hr to 72 hr. B, In addition, the AAV2/9 Endo displaying endothelial targeting peptide 1 (P1) 

directly on the capsid was coated with G5 in vitro. C, The surface modified PAMAM coated AAV2/9 

CMV-Cre or AAV2/9Endo CMV-Cre are applied by tail vein injection into tdTomato mice. After 3 weeks, 

the mice tissues (heart, liver, lung, kidney, spleen, brain, upper limb and lower limb) are harvested for 

transduction analysis. 

2.2.15.  Tissue processing 

The tomato mouse organs were removed and fixed for 4 hours by cold 4% PFA in 0.1 M 

PBS, pH7.4. Then fixed mouse tissues were incubated in 25% sucrose solution at 4°C 

overnight followed by O.C.T. compound (Tissue-Tek, Sakura) for 20 min and stored at - 

80°C until sectioned. Frozen whole organs were cut into 5 micron sections using by 

freezing cryotome (Leica, Germany). For each organ, approximately 30 sections were 

analyzed (5 to 10 slides per group). The sections were examined using by laser-scanning 

confocal microscope system LSM 510 (Leica, Germany) as in Figure 15. 
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Figure 15 | Identification of Cre expression in vivo. a, The Cre gene expressed (green) in endothelial 

cell. b-e, Cre positive expression in endothelium of muscular artery. f-i, positive expression of 

cardiomyocyte in near muscular artery area. j-m, Cre negative expression of muscular artery. DAPI; 

nuclear counterstain, GFP; Cre positive expression, RFP; dtomato gene expression, merge; GFP with RFP. 

Scale Bar; 20 µm. 



Materials and Methods 

 36  

2.2.16.  Mouse heart dissociation 

Whole hearts of dTomato mice were washed 3 times in 0.9% NaCl and dissociated into 

single cell suspension by digestion in Collagenase II solution (1mg/ml PBS, Gibco) 

with DNase (50 µg/ml + 3mM MgCl2 3mM), and incubated at 37°C. Detached cells 

were resuspended in PBS/2% FCS and kept on ice with gentle agitation until staining. 

2.2.17.  Flow cytometry analysis 

Whole hearts cell-suspensions were stained in ice-cold PBS containing 1% FCS using 

the following surface antibody cocktail. Antibodies against cell-surface markers (human 

CD31, mouse CD45, and mouse CD144) or against internal cell markers (human 

cardiac Troponin I) were incubated for 30 min. Cells were washed, resuspended in 

FACS staining buffer, processed using the Gallios Flow Cytometer, and analyzed using 

FlowJo X software (Beckman Coulter). Endothelial cell (CD31+, CD45-) and 

cardiomyocytes (Troponin I+) sorting gates were set according to unstained control, 

isotype control (rat IgG2a K) and single staining control. 

2.2.18.  Whole-mount preparation of the cremaster muscle 

C57Bl/6 mice were anesthesized and placed on a heating pad to maintain body 

temperature. Intravital microscopy of leukocyte adhesion in the cremaster muscle 

preparation was performed by surgically preparation [54]. Briefly, after incision of the 

scrotum of the C57Bl/6 mouse, cremaster muscle was exteriorized and opened through 

a longitudinal incision. Thereafter, live cremaster images were recorded by intravital 

microscopy. The intravital microscopy was conducted on a BX 51 WI microscope 

(Olympus, Munich, Germany) equipped with a charge-coupled device camera (KAPPA 

CF8 HS) and a saline immersion objective (Olympus MplanFI/RI; 0.8 numerical 

aperture). The post-capillary venules were recorded at least 1 min and up to 3 min. 

Leukocyte adhesion, such as defined as non-moving cells or displacement less than one 
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cell diameter during 60 seconds, was analyzed by number of adherent cells per square 

millimeter. Blood flow velocity was measured by a dual-slit photodiode live measuring 

device (Circusoft Instrumentation, Hockessin, DE) and blood counts were determined 

through Idexx Procyte Dx hematology analyzer (Idexx Europe, Hoofddorp, 

Netherlands). 

2.2.19.  Statistics 

Data are given as mean ± SD. p < 0.05 was considered statistically significant. All data 

were assessed using the Student’s t-test was performed (http://studentsttest.com) or 

ANOVA followed by Student-Newman-Keuls-test for more 3 groups. The gradations 

were used in this analysis to illustrate the magnitude of significance (*: p <0.05, **: p 

<0.005, ***: p <0.0005). 
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3. RESULTS 

3.1. Optimization of Transduction efficiency of AAV/PAMAM 

complexes in vitro 

For the in vitro optimization of AAV vectors using PAMAM dendrimers, complexes of 

AAV2/9-CMV-eGFP/G5 were first characterized in cell culture (Figure 16). A human 

embryonic kidney cell line (HEK 293; Figure 16-A) or human microvascular 

endothelial cells (HMECs; Figure 16-B) were transduced with two doses of 

AAV2/9-CMV-GFP virus particles (1.0E+05 vp/cell or 1.0E+06 vp/cell) either alone or 

coated with 3, 8, 12, or 16 pg/cell of PAMAM G5, a 48 h incubation period at 37°C. 

Cell images were analyzed by fluorescence microscopy (Zeiss) with image J v1.47 

(http://rsb.info.nih.gov/ij/index.html). As shown, optional conditions for transduction (> 

60%) were the 16 pg/cell of PAMAM G5 coating 1.0E+06 vp/cell AAV2/9-CMV-eGFP 

(Figure 16-C & -D). 
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Figure 16 | Transduction efficiency characterization of AAV2/9-CMV-eGFP and AAV2/9- 

CMV-eGFP/PAMAM complexes in vitro. HEK 293 (A & C) or HMEC (B & D) were transduced with 

two doses of AAV2/9-CMV-GFP virus particles, as shown (open bars; 1.0E+05 vp/cell, black bars; 

1.0E+06 vp/cell), either alone or coated with 3, 8, 12, or 16 pg/cell of PAMAM G5. Values represent the 

mean ± SD (n=3). 
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3.2. Transduction efficiency by different serotypes of AAVs 

Transduction efficacies of wildtype AAV2-CMV-eGFP or AAV2/6-CMV-eGFP were 

altered by coating with PAMAM G5 in vitro (Figure 17). HMECs or murine 

cardiomyocytic cell line HL-1 cells were transduced with AAV2-CMV-GFP (Figure 

17-A & -C) or AAV2/6-CMV-GFP (Figure 17-B & -D) virus particles (1.0E+06 vp/cell), 

either alone or coated with 2, 6, or 10 pg/cell of PAMAM G5. Thereafter, transduction 

efficacy was analyzed by fluorescence microscopy and quantified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 | AAV2 and AAV2/6 virus strains were incubated at 37°C/72 h with PAMAM G5. HMECs 

(A & B) or cardiomyocytic HL-1 cells (C & D) were transduced with AAV2-CMV-GFP (A & C) or 

AAV2/6-CMV-GFP (B & D) virus particles (1.0E+06 vp/cell), either alone (open bars) or coated with 2, 

6, or 10 pg/cell of PAMAM G5 (black bars) after a 72 h incubation period at 37°C. Transduction 

efficiency of G5/AAV complexes were analyzed by fluorescence microscopy and quantified. Values 

represent the mean ± SD (n=3). 
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3.3. Transduction efficacies of G2 and G5 PAMAM dendrimers 

Transduction efficacies of G2 PAMAM versus G5 PAMAM coating were characterized 

in vitro (Figure 18) at 37°C/72 h. Human microvascular endothelial cells (HMECs; 

Figure 18-A), or mouse brain endothelial cell line (bEnd.3 cells; Figure 18-B), were 

transduced with AAV2/6-CMV-eGFP virus particles (1.0E+06 vp/cell), either alone or 

after coating with 2, 4, or 6 pg/cell of PAMAM dendrimers (PAMAM G2 or G5). As a 

result, 6 pg/cell of PAMAM G5 with AAV2/6-CMV-eGFP complexes (38.30 ± 4.21 % 

in HMECs, 39.35 ± 6.63 % in bEnd.3 cells) were more efficient than only 

AAV2/6-CMV-eGFP 11.54 ± 7.19 % in HMEC, 2.34 ± 1.35 % in bEnd.3 cells) in vitro. 

As shown, the most efficient condition of PAMAM/AAV -combinations was the 6 

pg/cell of PAMAM dendrimers (PAMAM G2 or G5). 

 

 

 

 

 

 

 

 

Figure 18 | Comparison of G2 vs G5 PAMAM coated AAV2/6-CMV-GFP in endothelial cells at 

37°C/72 h. HMECs (A; n=3) or bEndo.3 cells (B; n=5) were transduced with AAV2/6-CMV-eGFP virus 

particles (1.0E+06 vp/cell), either alone (open bars) or coated with 2, 4, or 6 pg/cell of PAMAM 

dendrimers (G2: gray bars or G5: black bars). Bars present transduced cells/total cells, M; mock, GFP; 

AAV2/6-CMV-eGFP, GFP/G2; PAMAM G2 coated AAV2/6-CMV-eGFP, GFP/G5; PAMAM G5 coated 

AAV2/6-CMV-eGFP. Values represent the mean ± SD. 
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3.4. Biopanning 

In order to improve the efficacy of PAMAM-mediated transduction and achieve a 

retargeting of the AAV vectors towards endothelial cells, we next selected 

endothelium-affine peptides from a M13 phage library (Figure 19-A1). 2x10
11

 plaque 

forming units (pfu) of the CX7C M13KE phage library were incubated with 1 ml of 1% 

BSA/DMEM in each 1x10
7
 cells/plate of the HMEC or HUVEC cells for 120 min at 

room temperature (RT) (Figure 19-A2). The results of phage selection are shown in 

Figure 19. 

According to our prediction, the eluted solutions from the third round (HUVEC; 

5.3x10
6
 ± 3.3x10

6 
pfu, HMEC; 1.9x10

6
 ± 1.5x10

6
 pfu) were binding with higher affinity 

to endothelial cells as compared to outputs from first (HUVEC; 5.1x10
1
 ± 5.0x10

1
 pfu, 

HMEC; 2.6x10
1
 ± 2.5x10

1
 pfu) and second round (HUVEC; 3.5x10

3
 ± 1.5x10

3
 pfu, 

HMEC; 3.3x10
3
 ± 2.5x10

2
 pfu, cf. Figure 19-B & C). 
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Figure 19 | Panning procedure of motif selection for targeting endothelial cells. A, a CX7C M13KE 

phage library 1) was incubated with a HUVEC or a HMEC at 4’C for 120 min 2). The endothelial cell 

bound phages were selected by rigid washing of non-bound phages 3). Bound phages were eluted 4). The 

eluted phages were amplified in E. coli ER2738 5) and subjected to the next round of selection for up to 

3 rounds (3R) 6). B and C, The phage titers of elutions of each round were measured using plaque assays 

in HUVEC (B) or HMEC (C). Cont; original CX7C M13KE phage library, 1R; first round elution, 2R; 

second rounds elution, 3R; third rounds elution, values represent the mean ± SD (n=3). 

3.5. Direct phage PCR and sequencing 

Each of 488 single blue (positive) plaques were selected from eluted phages on the 

LB/IPTG/X-gal plate (the results of 2 rounds and 3 rounds) and amplified in small 

volume with an E. coli ER2738 bacteria suspension (A600 nm OD 0.5) by vigorous 

shaking at 37°C/4.5 h. After purification, 1 µl of selected phage was analyzed by PCR 

with M13 phage PCR primers (forward; 5’- TTA TTC GCA ATT CCT TTA GTG G -3’, 

reverse; 5’- CCC TCA TAG TTA GCG TAA CG -3’).  

3.6. Phage ELISA 

Individual 10 phage clones (4 phage clones screened in HUVEC and 6 phage clones 

screened in HMEC) were tested for binding to target cells by incubation at RT for 120 

min in endothelial cells (HUVEC or HMECs) and removed of non-bound phage clones. 

The bound phage clones were incubated with HRP-conjugated M13 PVIII antibody at 
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4’C for O/N and analyzed by TMB Substrate for absorbance at 450 nm. U1 to U4 phage 

clones were selected after panning from HUVEC, M1 to M6 phage clones were selected 

after panning from HMEC (Figure 20). U4, M1, M4, and M6 phages bound with high 

affinity to both endothelial cell, but M2 and M3 phages bound only in HMEC.  

 

 

 

 

 

 

 

 

Figure 20 | Selected phages target to endothelial cell by Phage ELISA. Individual 10 phage clones 

were incubated with in HUVEC (open bars) or HMEC (black bars) and analyzed absorbance at 450 nm. 

U1 to U4; phage clones were selected from HUVEC, M1 to M6; phage clones were selected from HMEC. 

Values represent the mean ± SD (n=4). 

3.7.  Identification of predominant motifs 

The graphical sequence logo represents predominant motifs of 10 identified amino acid 

phage sequences. The conserved sequence pattern was generated using WebLogo3 

(Figure 21). As shown, the predominant motif was identified with the first 4 site of 

amino acid sequence N (Asn; Asparagine), N, S (Ser; Serine), G (Gly; Glycine), and last 

one amino acid sequence is also N. The unknown sequences, as fifth and sixth amino 

acid sequence, were decided according to phage ELISA results and alignment analysis 

of the 10 peptide sequences using Clustal W program (Figure S1). The final selected 

two novel endothelium target motifs were peptide no.2; CNNVGGWN and peptide no.3; 

CNNSGMRN (Table 4). 
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Figure 21 | Graphical sequence logo representation of predominant motif. The conserved sequence 

pattern was generated using WebLogo3 (http://weblogo.berkeley.edu/). Hydrophilic amino acid (green 

letters); QNSTCGP, hydrophobic amino acid (red letters); AILMFWYV, positive charged amino acid 

(black letters); RHK, negative charged amino acid (blue letters); DE, X of red letter); hydrophobic amino 

acid and X of black letter; positive charged amino acid. 

 

 

 

 

No. Sequence Homologous Identifications Function Accession no. 

1 CSLRSPPS CSLCSPPS Fibroblast growth factor receptor 3 Cell-surface receptor P22607 

2 CNNVGGWN VGGWN Actin-binding protein IPP Organizing the actin cytoskeleton Q9Y573 

3 CNNSGMRN CNNRGM Stabilin-2 ER* for heparin internalization Q8R4U0 

 

Table 4 | Identification of homologous. Peptides were analyzed using the National Center for 

Biotechnology Information BLAST search against the SWISSPROT database, using the option for short 

nearly exact matches, to identify human proteins with homologous sequences. ER*; Endocytosis 

receptor. 
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3.8. Surface modified nano complexes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 | Design of surface modified PAMAM dendrimers coated AAV2/9. Endo-Cre/G5 c) or 

Cre/G5 e) coating an AAV2/9Endo-Cre (Endo-Cre) or AAV2/9Cre (Cre) compexed with G5 PAMAM d), 

and Endo-Cre/G2 f) or Cre/G2 h) coating an Endo-Cre or Cre with G2 PAMAM g). Endothelial cell 

target motifs peptide no.1 (P1) i) or peptide no.3 (P3) l), as CX7 peptides, were identified by AAV 

display library a) or M13 phage display library b). Thereafter, they were synthesized and displayed on the 

surface of G2 PAMAMs. Cre/G2P1 k) or Cre/G2P3 n) contribute an AAV2/9Cre with G2P1 j) or G2P3 

m). 
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In this study, we studied two cationic surfaced PAMAM dendrimers, namely G2 

(-(NH2)16; Figure 22-g) or G5 (-(NH2)128; Figure 22-d), and two surface modified 

PAMAM dendrimers, such as G2-PEG linker-P1 (G2P1) or G2-PEG linker-P3 (G2P3) 

for transduction efficiency of cardiomyocyte and endothelial cells in heart. The two 

PAMAM dendrimers with cationic surface were synthesized by Dendritic Nanotech. Inc, 

Michigan, USA, whereas surface modifications of PAMAM dendrimers were performed 

in our lab in cooperation with Manfred Ogris (Pharmazie, LMU). The two endothelium 

target motifs, pentavalent amino acid peptide no.1 (P1) and peptide no.3 (P3), of surface 

modified PAMAM dendrimers were identified either by AAV display library (K. Varadi 

et al., Gene Therapy 2012 [24]) or by the M13 phage display library (Ph.D. CX7C 

M13KE, New England Biolabs, see Methods section), respectively (Figure 22-b). The 

identified P1 (CSLRSPPS-amind; MW: 845.99) and P3 (CNNSGMRN-amind; MW: 

894.98) were synthesized (Figure 22-I & -l) and conjugated to the G2-PEG linker 

(NHS-PEG-OPSS), such as G2P1 (Figure 22-j) or G2P3 (Figure 22-m). 

The pAAV-CMV-Cre plasmid was used in a model of systemic gene transduction (tail 

vein injection of AAV2/9-CMV-Cre virus (Cre)) in dTomato mice. The mice are 

characterized by stop loxP cassettes before mG sites on either side of a 

membrane-targeted dTomato (mT) cassette and default red fluorescence in all tissues. 

When exposed to Cre recombinase, the mT cassette is deleted and expression of the 

membrane-targeted EGFP (mG) cassette is enabled. The surface modified PAMAM 

dendrimers (G2P1 or G2P3) were coated with pAAV2/9-Cre by incubation at 30 min at 

the room temperature, such as Cre/G2P1 (Figure 22-k) or Cre/G2P3 (Figure 22-n). We 

also used endothelial cell targeting peptide no.1 (SLRSPPS) inserted on the surface of 

A589 of AAV9 capsid, termed Endo-Cre (p5E18-VD-2/9-SLRSPPS-Cre). Endo-Cre/G5 

(Figure 22-c) or Endo-Cre/G2 (Figure 22-f) were complexes of AAV2/9Endo-Cre 

(Endo-Cre) with G5 or G2 PAMAMs. Cre/G5 (Figure 22-e) or Cre/G2 (Figure 22-h) 

were complexes of AAV2/9-Cre with G5 or G2. 
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3.9. Transduction efficiency by peptide-modified G2 in vitro 

Transduction efficiency of unmodified PAMAM dendrimers versus surface modified G2 

PAMAMs were characterized after coating AAV2/6-CMV-eGFP and application in 

endothelial cells in vitro (Figure 23). 

5.0E+05 vp/cell of AAV2/6-CMV-eGFP virus particles (low virus dose) were 

transduced without or with 2 pg/cell of each different surface the modified G2 PAMAM 

dendrimers in HMECs at 37°C/72 h (Figure 23-A), and intensity of GFP expression per 

total RFP area was analyzed (Figure 23-B). The transduction efficiency of 

AAV2/6-CMV-eGFP/G2 (AAV/G2; 6.20 ± 3.13 %), AAV2/6-CMV-eGFP/G5 (AAV/G5; 

7.08 ± 4.29 %), AAV2/6-CMV-eGFP/G2P1 (AAV/G2P1; 10.87 ± 6.31 %), and 

AAV2/6-CMV-eGFP/G2P3 (AAV/G2P3; 15.04 ± 5.77 %) was increased compared 

AAV2/6-CMV-eGFP only (AAV; 3.76 ± 1.29 %) in HMECs. As shown below (figure 

23), G2-PEG-P3 (G2P3) coated AAV2/6-CMV-eGFP virus was highly transduced in 

HMECs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 | Transduction efficiency characterization of peptide modified G2 with 

AAV2/9-CMV-eGFP complexes in endothelial cell. AAV2/6-CMV-eGFP virus particles (5.0E+05 

vp/cell) were transduced with alone or 2 pg/cell of each different surface modified PAMAM dendrimers 

in HMEC at 37°C/72 h. A, Transduced cells signal (green) were indicated by AAV2/6-CMV-eGFP. B, 

Bars present transduced cells/total cells. Values represent the mean ± SD (n=3). 
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3.10. Dose effects of G5 coating to AAV2/9-Cre in dTomato mice 

(in vivo) 

In this study, we focused to arteries (A), (muscular arteries; 250 ± 50 µm, arteriole; 28 ± 

15 µm, and capillaries; 3.3 ± 0.5 µm)[86], of heart or hind limb for several artery 

disease causing (ex, atherosclerosis; a specific type of arteriosclerosis) in vivo model. 

AAV2/9Cre was coated by incubation of 2.0E+12 vp of AAV2/9Cre virus with 45 

µg/mouse or 90 µg/mouse of G5 in 30 min at RT, as Cre/G5-45 or Cre/G5-90. Those 

were administered into the tail vein of dTomato mice (7 ~ 9 month) and the mice were 

sacrificed after injection 3 week (21 days) later (Figure 24).  

In the AAV2/9Cre/G5-90 group, the vector transduced both the cardomyocyte of artery 

(A) area (45.23 ± 7.72 A.U.; Figure 24-A & B) and muscle area (64.98 ± 7.20 A.U.; 

Figure 24-C & D) more efficiently than the AAV2/9Cre group (A area; 20.58 ± 5.84 

A.U., muscle area; 28.78 ± 4.14 A.U.) by intensity (A.U.; arbitrary units) in the 

dTomato heart. The AAV2/9Cre/G5-45 group was significantly higher transduced (A 

area; 28.17 ± 3.14 A.U., muscle area; 45.07 ± 19.70 A.U.) compared to the AAV2/9Cre 

group. Values the mean ± SD (n=1). 
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Figure 24 | Transduction efficacy of G5 in dTomato mice heart. A, Transduction efficacy in the artery. 

GFP; Cre positive expression, RFP; dtomato gene expression, merge; GFP with RFP, enlarge; 3 fold large 

image of white dashed line square box, A; artery (white dashed line), CM; cardiomyocyte, scale bar; 20 

µm. B, Intensity (A.U.; arbitrary units) of GFP expression per total RFP area. C, Gene delivery efficacy 

in the cardiomyocyte of dTomato. GFP; Cre positive expression, scale bar; 20 µm. D, Intensity (A.U.; 

arbitrary units) of GFP expression per total RFP area. Values represent the mean ± SD (n=1). 
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3.11. PAMAM G5 coating of AAV2/9Endo-Cre in vivo 

The cross packaging of AAV2/9Endo-Cre virus was accomplished with 

pAAV-CMV-Cre plasmid and endothelial cell targeting peptide (SLRSPPS) inserted on 

the surface of A589 of AAV9 capsid (p5E18-VD-2/9-SLRSPPS) [24]. 2.0 x 10
12

 vp of 

AAV2/9Endo-Cre virus were coated with 25 µg/mouse or 45 µg/mouse of G5 in 30 min 

at RT, as AAV2/9Endo-Cre/G5-25 or AAV2/9Endo-Cre/G5-45. Those were 

administered into the tail vein of dTomato mice (7 to 9 month) and the mice were 

sacrificed after injection 3 week (21 days) later. The images were analyzed by confocal 

microscopy (LSM 510) with image J v1.47 (Figure 25). 

In the AAV2/9Endo-Cre/G5-45 group, we found a higher transduction of arteries (A) 

(posi; 33.3 %, around; 25.9 %, and nega; 40.7 %) than in the unmodified AAV2/9Cre 

group (posi; 12.5 %, around; 75.0 %, and nega; 12.5 %) or the capsid-modified 

AAV2/9Endo-Cre group (posi; 0.0 %, around; 10.0 %, and nega; 90.0 %). Of note, 

transduction efficacy of AAV2/9Endo-Cre/G5-45 group was reduced in both, the 

arteries area (2.03 ± 4.81 A.U., p-value < 0.0005) (Figure 25-A & C) and the muscle 

area (1.69 ± 2.13 A.U., p-value < 0.0005) (Figure 25-D) compared to the AAV2/9Cre 

group (A area; 59.08 ± 26.15 A.U. muscle area; 154.28 ± 18.13 A.U.). 

The results of AAV2/9Endo-Cre/G5-45 group shown that coating G5 PAMAM can help 

to increase transduction efficacy to targeted cell types according to specific affinities of 

the coated virus type. 
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Figure 25 | Transduction efficacy of AAV2/9Endo-Cre/G5 in dTomato mice heart. A, Transduction 

efficacy in arteries. The white arrows were indicated Cre positive expression (green) of endothelium in 

arteries. GFP; Cre positive expression, RFP; dtomato gene expression, merge; GFP with RFP, enlarge; 3 

fold large image of white dashed line square box, A; arteries (white dashed line), CM; cardiomyocyte, 

Scale Bar; 20 µm. B, demonstration of Cre positive revel (percentage; Cre positive expressed arteries per 

total arteries), as shown in A). posi (black bars), around (gray bars), and nega (strip bars). C, Intensity 

(A.U.; arbitrary units) of GFP expression per total RFP area, as shown in A). Values represent the mean ± 

SD. D, Intensity (A.U.; arbitrary units) of GFP expression per total RFP area in cardiomyocyte. Values 

represent the mean ± SD. 
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3.12. AAV2/9Cre/G2 transduction of dTomato mice in vivo 

The AAV2/9Cre virus particles were coated by incubation with 2.0 x 10
12

 vp of 

AAV2/9Cre virus and 45 µg/mouse of PAMAM dendrimers (G2 or G5) in 30 min at RT, 

as Cre/G2 or Cre/G5. Those vectors were administered into the tail vein of dtomato 

mice and the mice were sacrificed after injection 3 week (21 days) later. The 

transduction efficacy test groups (n=3, per group) were control (PBS), AAV2/9Cre 

alone, AAV2/9Cre/G2 and AAV2/9Cre/G5 in the dTomato heart. The images were 

analyzed by confocal microscopy (LSM 510) with image J v1.47 (Figure 26 & Figure 

S2 - S5). 

AAV2/9Cre/G2 transduced vessels to a similar extent as AAV2/9Cre/G5 (20.42 ± 7.59 % 

vs. 19.74 ± 4.69 %), which was higher than AAV2/9Cre only (9.03 ± 4.76 %). The white 

arrows indicate Cre-positive luminal surface events (= transduced endothelium) of 

arteries. Furthermore, nano-particle coating enhanced parenchymal transduction. e.g., 

AAV2/9Cre/G5 achieved 99.86 ± 39.51 A.U. and AAV2/9Cre/G2 86.30 ± 15.69 A.U. 

compared to the AAV2/9Cre only (39.50 ± 16.00 A.U.) in the dTomato mice mouse 

hearts. 

In summary, nano-particle coating enhances cardiomyocyte transduction in the heart. 

Moreover, G2 PAMAM coating helps to target inner vessel layers, e.g. endothelium, 

more efficiently than G5 PAMAM coating of AAV2/9. 

 

 

 

 

 

 

 

 

 



Results 

 54  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 | Transduction efficacy of AAV2/9Cre/G2 or AAV2/9Cre/G5 in dTomato heart. A, Gene 

delivery efficacy in the arteries. The white arrows were indicated Cre positive expression (green) in 

endothelium of arteries. GFP; Cre positive expression, RFP; dtomato gene expression, merge; GFP with 

RFP, enlarge; 3 fold large image of white dashed line square box, A; arteries (white dashed line), CM; 

cardiomyocyte, Scale Bar; 20 µm. B, Demonstration of Cre positive revel (percentage; Cre positive 

expressed arteries per total arteries), as shown in A. posi (black bars); Cre positive expression in 

endothelium of arteries, around (gray bars); Cre positive expression of cardiomyocyte in near arteries area, 

nega (strip bars); Cre negative expression. C, Gene delivery efficacy in the cardiomyocyte. GFP; Cre 

positive expression. Scale Bar; 20 µm. D, Intensity (A.U.; arbitrary units) of GFP expression per total 

RFP area, as shown in C). Values represent the mean ± SD (n=3). 
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3.13. Specific endothelial transduction of AAV2/9Endo-Cre/G5 

AAV2/9Endo-Cre virus particles, as modified to display peptide no.1 (CSLRSPPS) on 

the surface of AAV2/9 capsid (Varadi K. et al., Gene Therapy 2012 [24]), were coated 

with 45 µg/mouse of PAMAM dendrimers (G2 or G5). Those were administered into 

the tail vein of dTomato mice and the mice were sacrificed after injection 3 week (21 

days) later. Efficacy of gene delivery was compared between control (PBS), AAV2/9Cre, 

AAV2/9Endo-Cre, AAV2/9Endo-Cre/G2 and AAV2/9Endo-Cre/G5. As shown, 

transduction efficiency of endothelium in arteries of Endo-Cre/G5 group (33.73 ± 

7.26 %) was higher than in the Endo-Cre/G2 group (9.40 ± 10.23 %), and Endo-Cre 

alone group (0.0 ± 0.0 %) as well as the Cre group (9.03 ± 4.76). Furthermore, 

cardiomyocyte transduction efficiency of Endo-Cre groups was reduced (2.87 ± 1.27 

A.U.) compared to the Cre group (158.91 ± 18.96 A.U.) when fluorescence intensity 

was analyzed in the dTomato heart. Additionally, cardiomyocyte transduction 

efficiencies of Endo-Cre/G2, and Endo-Cre/G5 groups were also reduced (Endo-Cre/G2; 

0.37 ± 0.23 A.U., Endo-Cre/G5; 0.32 ± 0.27 A.U.) compared to Endo-Cre group, which, 

however, was already much lower than the Cre group. As the results show, G5 PAMAM 

coating improved endothelium transduction to a significant, extent (Figure 27-A). 

However, Endo groups (Endo alone, Endo-Cre/G2, and Endo-Cre/G5) display reduced 

cardiomyocyte transduction in heart. It seems that the Endo-peptide coating induces 

negative selection of the cardiomyocyte compartment, whereas G2 and G5 increase 

targeting of the endothelium. 
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Figure 27 | Transduction efficacy of AAV2/9Endo-Cre /G2 or AAV2/9Endo-Cre /G5 in dTomato 

heart. A, The white arrows indicate Cre positive expression (green) in endothelium of arteries. GFP; 

Cre positive expression, RFP; dtomato gene expression, merge; GFP with RFP, enlarge; 3 fold large 

image of white dashed line square box, A; arteries (white dashed line), CM; cardiomyocyte, scale bar; 

20 µm. B, Demonstration of Cre positive revel (percentage; Cre positive expressed arteries per total 

arteries), as shown in A. posi (black bars); Cre positive expression in endothelium of arteries, around 

(gray bars); Cre positive expression of cardiomyocyte in near arteries area, nega (strip bars); Cre 

negative expression. C, Transduction efficacy in the cardiomyocyte. GFP; Cre positive expression, 

scale bar; 200 µm. D, Intensity (A.U.; arbitrary units) of GFP expression per total RFP area, as shown 

in C). Values represent the mean ± SD (n=3). 
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3.14. Endothelial-targeted transduction of AAV2/9Cre/G2P3 

AAV2/9Cre virus was modified by linking G2 PAMAM dendrimers with the 

endothelial-affine peptides P1 and P3 attached to a PEG linker complex (see Methods 

2.2.8). Those modified virus particles were administered systemically by tail vein 

injection of dTomato mice, and the mice were sacrificed 21 days later. In the dTomato 

mouse heart, transduction efficacy of arteries in the Cre/G2P3 group (43.87 ± 8.70 %) 

were significantly higher than the Cre/G2P1 group (23.39 ± 5.11 %), the Cre/G2 group 

(20.42 ± 7.59 %) as well as the Cre alone group (9.03 ± 4.76 %). 

Furthermore, transduction efficiency of Cre/G2P1 and Cre/G2P3 groups were higher in 

the cardiomyocyte compartment Cre/G2P1 (180.00 ± 49.46 A.U.) and Cre/G2P3 

(169.64 ± 20.37 A.U.) than in the Cre/G2 group (107.64 ± 38.62 A.U.) in the dTomato 

mouse hearts (Figure 28). 

Moreover, our results show that Cre/G2P3 virus particles transduced endothelium at 

higher rates than all other transduction groups (43.87 ± 8.70 % of the arteries in the 

heart). However, it is difficult to derive microcirculatory endothelial transduction 

efficacies from these morphological studies in mid-size arteries. To independently study 

general endothelial transduction, we conducted FACS analysis of dTomato mouse hearts 

digested 3 weeks after transduction and gated for the endothelial marker PECAM-1 

(Figure 29). Taken together, combining AAV2/9 with nano-coating (PAMAM G2) and 

endothelial targeting peptide P3 dramatically increases vessel transduction of murine 

dTomato hearts. The comparison to P1 (SLRSPPS, cf. Varadi K et al.) indicates a 

tendency towards a stronger effect of P3, without statistical significance (Figure 27). 
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Figure 28 | Transduction efficacy of AAV2/9Cre/G2P1 or AAV2/9Cre/G2P3 in dTomato mice. A, 

Transduction efficacy in the cardiac artery. The white arrows were indicated Cre positive expression 

(green) in endothelium of cardiac artery. GFP; Cre positive expression, RFP; dtomato gene expression, 

merge; GFP with RFP, enlarge; 3 fold large image of white dashed line square box, A; arteries (white 

dashed line), CM; cardiomyocyte, scale bar; 200 µm. B, Demonstration of Cre positive revel 

(percentage; Cre positive expressed arteries per total arteries), as shown in A. posi (black bars); Cre 

positive expression in endothelium of arteries, around (gray bars); Cre positive expression of 

cardiomyocyte in near arteries area, nega (strip bars); Cre negative expression. Values represent the 

mean ± SD (n=3). C, Transduction efficacy in the cardiomyocyte. GFP; Cre positive expression, scale 

bar; 200 µm. D, Intensity (A.U.; arbitrary units) of GFP expression per total RFP area, as shown in C). 

Values represent the mean ± SD (n=3). 
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Figure 29 | Whole heart analysis of dTomato mice by FACS. Mouse whole heart dissociated and 

stained for endothelial cell (PerCP conjugated CD31) after 21 days i.v. injection. Isotype control staining 

was performed with IgG2a K PerCP. GFP+ cells per total endothelial cells (CD31+), as shown main 

groups (PBS, Cre, Cre/G2, Cre/G2P1 or Cre/G2P3). Values represent the mean ± SD (n=3). 

3.15. Functional evidene for endothelial transduction by 

AAV2/9-S1FG/G2P3: an in vivo adhesion assay 

In order to prove that Cre/C2P3 is capable of endothelial transduction, we selected a 

transgene which exerts its function only when represented on the luminal surface of the 

endothelial layer. The fusion protein S1FG is an artificial adhesion molecule based on 

the SDF-1 (CXCL12) and the mucin backbone taken from fractalkine (CX3CL1). A 

GPI-anchor was included to link the fusion protein (Figure 30-A) [55]. We compared 

mice systemically treated with endothelial-targeted Cre/G2P2 with wildtype Cre and 

saline injection (control). As a read out, non-stimulated adhesion of PMN on the 

endothelium (cremaster muscle area) was quantified by intravital microscopy 21 days 

after virus injection. The cremaster venules images were processed by intravital 

microscopy, a BX 51 WI microscope (Olympus, Munich, Germany) equipped with a 

charge-coupled device camera (KAPPA CF8 HS) [54], and analyzed by image J v1.47. 

In this model, the number of adherent neutrophil was more than 5-fold increased in the 

S1FG/G2P3 group compared with non-coated group S1FG-AAV group and control 

group, Figure 30-B & C. 
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Figure 30 | Functionality of the S1FG fusion protein by intravital microscopy. A, A fusion protein 

S1FG combined of SDF-1 1), the mucin domain of CX3CL1 2), and the GPI-anchor 3) [55]. B, S1FG 

enhances adhesion of neutrophil (black dot) in cremaster muscle venules (red box). C, Adhesion of 

neutrophil showed a significant increase with G2P3 coated AAV2/9-S1FG manner. Values represent the 

mean ± SD (n=4; ns: not significant, ***: P<0.0005, ANOVA t test).  
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4. DISCUSSION 

In the last 15 years, various research groups studied endothelial targeted gene delivery 

systems by using screening systems. Several approaches engineered AAV2 vectors by 

expressing phage display peptide libraries on the envelope surface and selecting 

peptides. Whereas Stuart Nicklin and colleagues focused on human endothelial cells in 

vitro (Nicklin SA et al., Mol Ther 2001 [49]), Lorraine Work from the same group 

accomplished improved transduction of lung endothelia in vivo (Work LM et al., Mol 

Ther 2006 [50]), Yong Hong Chen and coworkers improved brain endothelial 

transduction and cerebral disease symptoms (cf. Chen YH et al., Nat Med 2009 [47]) 

and Oliver Müller et al. focused on coronary endothelium (Müller-OJ, Kleinschmidt, 

Trepel-M et al., Nat Biotech 2003 [51]) by displaying peptides on the surface of the 

AAV2 envelope. However, direct proof of virus expression on endothelial cells in vivo 

was not obtained in these earlier studies. 

Since AAV serotype 9 was discovered meanwhile, demonstrating efficient transduction 

of the heart (Zincarelli Carmela et al., Mol Ther 2008 [83]), we focused on this novel 

envelope, however, leaving the genetic elements of AAV2 in place for biosafety (AAV2 

being viewed as not human-pathogenic). 

In the current study, we utilized a novel AAV2/9 virus strain to target primary human 

coronary artery endothelial cells by combining AAV display peptide libraries studies 

with nanoparticle (PAMAM dendrimer) coating and peptide linkage to the dendrimers 

for the first time. 

4.1. Nanoparticle coating 

First, we assessed the role of the chosen biodegradable cationic nanoparticles 

(polyaminoamide = PAMAM dendrimers), consisting of a diaminobutane as core and 

branched polyethylenimine of second or fifth generation (termed G2 or G5). We found 

that coating the AAV2/9 virus capsid with PAMAMs increased transduction of 
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cardiomyocytic and endothelial cell lines alike in vitro (Fig. 17). This increased 

transduction efficacy was found for both, the smaller G2 and the larger, wider branched 

G5 PAMAMs in vitro (Fig.18) and comprised AAV2/6 and AAV2/9 virus pseudostrains. 

Moreover, cardiomyocyte and endothelial cell transduction was improved in vivo (Fig. 

26). Surprisingly, the liver did not display unequivocal results, showing enhanced 

transduction after G2 than G5 coated AAV2/9 transduction. 

Taken together, this observation is in accordance with results from the tumor field, that 

PAMAM dendrimers facilitate entry into cells which otherwise escape drug therapy, 

with either antibody or siRNA or pharmacological agents (lit. Wang C et al., Sci Rep 

2015 [61]; Ionov M et al., Int J Pharm 2015 [62]; Khatri S et al., J Pharm Bioallied Sci 

2014 [63]). However, it should be noted that these biodegradable organic nanoparticles 

contain biotoxicity, as observed in a topical skin application model recently (Winnicka 

K et al., Drug Des Devel Ther 2015 [64]) or in vitro cell culture systems (e.g. Movellan 

J et al., Macromol Biosci 2015 [65]). These observations may explain why a higher rate 

of dTomato mice was lost during the 21d follow up after transduction when G2 

PAMAM nanoparticles were applied (data not shown). However, this study was 

intended as a proof of principle study, with the concern of biosafety lying still ahead. 

4.2. Negative selection by surface-displayed endothelial-targeting 

peptides 

Previously, Varadi K et al. (Varadi K et al., Gene Therapy 2012 [24]) studied peptide 

modification of the AAV2/9 virus envelope in vitro and reported a ca. 200 times higher 

transfection efficacy with expression of the SLRSPPS peptide 

(Ser-Leu-Arg-Ser-Pro-Pro-Ser) than the native envelope in vitro. However, when used 

in vivo, this virus-peptide combination (termed EndoCre in our study, cooperation OJ. 

Müller, Heidelberg) did not transduce endothelial cells of the coronary (Fig. 27 & 29) or 

peripheral microcirculation (Fig. S7) beyond the rate of AAV2/9 wildtype transduction. 

Thus, a positive selection towards the endothelial cell compartment was not provided by 
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the SLRSPPS peptide expressed directly on the surface of an AAV2/9 virus envelope. 

This result confirms the ambiguous results previous attempts to achieve AAV-based 

microvascular endothelial transduction by direct capsid modification (Nicklin et al., 

Work et al., Müller et al.) and points to a difference between micro- and macrovessel 

transduction (e.g. umbilical veins, cf. Varadi K et al., Gene Therapy 2012 [24]) provided 

by the same vector. 

On the other hand, modification of the virus envelope by surface expression of the 

SLRSPPS peptide (=EndoCre) sufficed to disrupt cardiomyocyte transduction efficacy 

of the AAV2/9. The cardiomyocyte compartment was shielded from the 

SLRSPPS-modified envelope of the vector (cf. Fig. 27 C, D), pointing to a negative 

selection provided by this capsid modification. This finding confirms the fact that 

envelope structure is decisive for the myotropism of the AAV9 serotype, whose 

envelope is used in the AAV2/9 pseudotype virus. 

4.3. Peptide selection for endothelial targeting 

Since other peptides displayed limited efficacy in vivo, we decided to perform our own 

selection of an endothelial affine peptide. We chose to select for transduction of human 

endothelial cells (umbilical vein-derived = HUVECs and microvascular = HMECs). An 

own phage display selection experiment using the M13 CX7C (C; cystein, X; random 

7-mer aa) phage display library system (Fig. 19 - 21), followed by 3 rounds of 

biopanning in an endothelial cell culture (cf. Methods, 2.2.4. panning) yielded 10 

peptides. After comparison of both, HUVEC and HMEC transduction as well as 

homology screening (Fig.21, Table 4), Peptide 3 (CNNSGMRN) was selected. For 

comparability reasons, we used the SLRSPPS peptide from O. Müller (Heidelberg) as a 

control peptide. 
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Figure 31 | Schematic representation of cellular uptake by AAV/PAMAM complexes. a, AAV/G2 

PAMAM or AAV/surface modified-G2 PAMAM complexes. b, Cell membrane targeting by a complexes. 

c, The cellular uptake in endothelial cell [56]. G2: generation 2 PAMAM, G5: generation 5 PAMAM, 

AAV: adeno associated virus. 



Discussion 

  65 

4.4. Positive selection by PAMAM-linked endothelial targeting 

peptides 

In a next step, targeting of endothelial cells was successfully performed with achieved 

with the endothelial cell binding peptide P3 (Asn-Asn-Ser-Gly-Met-Arg-Asn: 

NNSGMRN), covalently coupled to the G2 PAMAM via a 2 kDa PEG linker (Fig. 31). 

After combining our own selected P3 with PAMAMs using the PEG-linker, we found 

for the first time a positive selection effect on endothelial targeting in vivo in coronary 

microvessels (Fig. 27 & 28). A similar, though slightly less efficient transduction was 

found, when SLRSPPS (=P1) was linked to PAMAMs, which then were fused to the 

AAV2/9 envelope. 

It is noteworthy that most of the difference obtained between the EndoCre vector 

(expressing P1 on the surface of the virus envelope) and the AAV/G2P1 vector 

(displaying P1 on the G2 PAMAM) mainly was the localization of the P1 peptide. Thus, 

we could demonstrate with the same targeting peptide, that presentation on the tip of a 

positively charged nanoparticle is superior to the presentation on the virus envelope. 

Further studies are required to assess whether the positive charge is the main targeting 

virtue of the nano-particle or whether other (molecular) mechanisms are involved in 

increasing the transduction efficacy of endothelial cells. 

Of note, PAMAM surface modified vectors (Cre/G2P1 and Cre/G2P3) did not lose their 

ability to efficiently transduce cardiomyocytes. This observation stands in contrast to 

the weak cardiomyocyte transduction of EndoCre vectors and points to a two step 

model of virus transduction: whereas the AAV2/9 coat itself suffices for high 

cardiomyocyte affinity, direct virus coat modification with P1 (=EndoCre) disrupt this 

behavior (negative selection). However, the repulsion of vectors from cardiomyocytes 

in itself does not increase endothelial transduction. For this process, positive selection 

towards endothelial cells is needed, e.g. by a combination of nano-particles with 

endothelial targeted peptides (e.g. Cre/G2P3 or Cre/G2P1). In future work remodeling 



Discussion 

  66 

surface of the nano-particles may optimize our approach, such as a half side displayed 

cationic PAMAM dendron is coupled with another half side displaying the 

endothelial-targeting peptides (P1 or P3). 

4.5. Endothelial targeting: Functional proof of transduction 

In previous study, the claim of endothelial transduction was derived from in vitro results 

and occasional fluorescence microscopy imaging. Rigid ex vivo tracing of transduced 

endothelial cells as well as functional in vivo bioassays were scarce. 

In order to improve accuracy of the claim of endothelial retargeting of an AAV, we 

developed two test systems: first, a FACS passed assessment of a 

transduction-dependent recombination event (Cre-based switch from red to green 

fluorescence) in CD31-positive cells digested from whole hearts of AAV-Cre transduced 

tomato mice (cf. Fig. 29). In this test system, we confirmed our fluorescence-imaging 

result in that the combination of G2 PAMAMs and P3 is efficiently transducing 

coronary microvascular endothelial cells to a higher extent than G2/P1. 

Second, we used a novel and unique test system. The basis of this system is an artificial 

adhesion molecule which – by virtue of its function, recruiting circulating CXCR4 

expressing cells, e.g. neutrophils – requires presentation on the luminal surface of an 

endothelial cell. The artificial adhesion molecule (S1FG) consists of a fusion protein 

coupling SDF-1/CXCL12 to the mucin backbone domain of fractalkine/CXCL12 and a 

GPI-membrane anchor. This artificial adhesion molecule has been shown to mediate 

adhesion of cells expressing CXCR4, the receptor for the SDF-1 ligand (Stachel G et al., 

Stem cells 2013 [55]). It consists of an SDF-1 chemokine head fused to the mucin 

domain from fractalkine/CXCL12, which can provide leukocyte recruitment, and a 

GPI-membrane anchor allowing for firm attachment to the cell membrane, without an 

intracellular signaling domain (Stachel G et al., Stem cells 2013 [55]). 

SDF-1 is well known to mediate neutrophil recruitment via its receptor, CXCR4 

(Strydom N et al., Journal of Innate Immunity 2013 [66]; Liehn EA et al., J Am Coll 
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Cardiol 2011 [67]). We capitalized on the neutrophil-attracting function of this 

chemokine head by displaying it on an artificial adhesion molecule, which can only 

exert its purpose when displayed at the luminal site of the endothelium, but not when 

expressed on the myocytes, as usually accomplished by the unmodified AAV2/9. We 

followed this process by in vivo microscopy in the cremaster-muscle (cooperation M. 

Sperandio, WBEx LMU). According to our prediction of a significant increase of 

endothelial transduction of the AAV2/9-G2P3 compared to the unmodified AAV2/9 

pseudotype, neutrophil adhesion to the endothelium of cremaster arterioles was 

increased by 5.62 fold (Fig. 30). This proof of principle indicates that indeed we were 

able to display a functionally active adhesion molecule towards the blood flow, and 

thereby induced firm adhesion of circulating neutrophils. This proof of principle by far 

exceeds previous experimental approaches, usually histologies of reporter gene 

expression in anatomical positions suitable with the endothelial lining (White SJ et al., 

Circ 2004 [48]; Varadi K et al., Gene Ther 2012 [24]). Given notorious difficulties to 

properly identify endothelial cells without further markers from histological sections, 

functional testing of unequivocal endothelial properties might be viewed as a more rigid 

form of proof in this regard. 

In summary, we report retargeting of the myotropism of AAV2/9 by displaying 

endothelial-affine targeting peptides on G2-dendrimers which were fused to the AAV2/9 

capsid. G2-P3 fusion to AAV2/9 increased the endothelial transduction rate and 

provided a 5.6 fold increase of the functionally relevant endothelial expression of S1FG, 

an artificial adhesion molecule effective only when displayed on the luminal surface of 

the endothelial lining. 
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4.6. Endothelial targeting motif of P3 (CNNSGMRN) 

Having established a functional role of the newly found peptide CNNSGMRN, we 

further analyzed the potential molecular mechanism of its endothelial affinity. We found 

a distinct homology to Stabilin-2. 

The Stabilin-2 (as named STAB-2 or endothelial protein) is a high molecular-mass 

multifunctional transmembrane receptor protein which contains four repeat units (RU), 

each containing epidermal growth factor (EGF)-like domains (cell/matrix interactions), 

integrin-binding fasciclin 1(FAS1) domains (protein/protein interactions) and X-link 

domain (hyaluronic acid binding) in extracellular region. In more detail, four 

laminin-type EGF-like domains, seven fasciclin-like adhesion domains, three B-(X7)-B 

hyaluronan-binding domains, fifteen EGF-like domains, one X-link domain, and one 

transmembrane region located on the end of C-terminal (cf. Oliver Politz et al., 

Biochem J 2002 [68]; Kai Schledzewski et al., JCI 2011 [75]). The endothelial targeting 

peptide P3 (CNNSGMRN) is almost entirely homolog (5 of 6 AA) to the sequence 

located on the 4
th

 of RU laminin EGF-like domains of mouse Stabilin-2 (GenBank: 

AAL91684.2), as shown in Fig -32. 

Laminin is a major protein of the extracellular membranes that mediate cell adhesion 

and differentiation. Furthermore, Laminin EGF-like (known as a LE) domains are 

structural elements of membrane-bound proteins or proteins known to be secreted. They 

contain repeats of each laminin subunit and the 3D structure of this domain is similar in 

EGF-like module. The LE domain has been shown to bind with a high affinity to 

nidogen (a component of the basement membrane). 
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Figure 32 | Domain structure of mStabilin-2. (Modified from Oliver Politz et al., Biochem J 2002 [68]; 

Seung-Yoon Park et al., Mol Cell Biol 2008 [70]). 

 

The mSTAB-2 is primarily expressed at high level in the sinusoidal endothelial cells of 

lymph node, liver, spleen, and low level in the heart. Comparison of the full length 

human protein sequences with mouse STAB-2 gave an identity of 71-79%, as human 

STAB-2 (cf. Oliver Politz et al., Biochem J 2002 [68]; Kai Schledzewski et al., JCI 2011 

[75]). It exerts functions in angiogenesis, receptor scavenging, lymphocyte homing, 

phagocytosis and cell adhesion (cf. MY Jung et al., Journal of Leukocyte Biology 2007 

[69]). The protein interacts with the integrin αMβ2 or αvβ5 which mediate lymphocyte 

adhesion to the liver sinusoidal endothelium or engulfment of phosphatidylserine 

(abbreviated Ptd-L-Ser or PS) exposed erythrocytes (cf. Sandra J. Stoll et al., PLOS 

ONE 2013 [71]; Kim S et al., Mol Cell Biol 2012 [72]; Sung-Jin Lee et al., BLOOD 

2011 [74]). It binds to and mediates endocytosis of hyaluronic acid (Megan S. Rost et 

al., PLOS ONE 2013 [73]; Kai Schledzewski et al., JCI 2011 [75]), and binding to PS 

receptor enhances the engulfment of apoptotic cells and critical anti-imflammatory 

fuctions of macrophages (Park SY et al., Mol Cell Biol 2008 [70]; Kim S et al., Mol 

Cell Biol 2012 [72]). Additionally, it acts as a scavenger receptor for dermatan sulfate 

(DS), non-glycosaminoglycan (GAG), acetylated low-density lipoprotein (AcLDL), 

chondroitin sulfate (CS), pro-collagen propeptides and advanced glycation end products 
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(AGE), and heparin (Hep). The protein was shown to exer several functions in 

application studies, such as Stabilin-2/HARE mediates systemic clearance of multiple 

glycosaminoglycans (GAGs) from the vascular and lymphatic circulations. Furthermore, 

the HA-NPs (HA/nanoparticle complex) study showed the atherosclerotic area via the 

active targeting procedure. It has been expecting to high potential as the carrier for 

diagnosis and therapy of atherosclerosis (cf. Lee GY et al., Biomaterials 2015 [76]). 

Additionally, the endothelial cell target P3 has homologs located on other proteins, such 

as neuromedin-B receptor (NMBR), transcription factor AP-2-beta (AP2B), TP53-target 

gene 5 protein (T53G5), and huntingtin-interacting protein M (HYPM), as shown in 

Table 5. 

 

Name Term 5’- aa sequence -3’ Length SP ID 

Peptide no.3 P3 1 CNNSGMRN 8 8 
 

Stabilin-2 STAB-2 1978 CNNRGM.. 1983 2559 Q8R4U0 

Neuromedin-B receptor NMBR 71 ..NSAMRN 76 390 O54799 

Transcription factor AP-2-beta AP2B 186 .NNSGM.. 190 459 Q61313 

TP53-target gene 5 protein T53G5 135 ...SGMRN 139 290 Q9Y2B4 

Huntingtin-interacting protein M HYPM 74 .NNGSMRN 80 117 O75409 

 

Table 5 | Other homologous sequence with P3. The under lines are indicate that unmatched aa 

sequences of endothelial target peptide no.3 compare with other candidate. SP ID; Swiss-Prot ID. 

 

Neuromedin-B receptor (NMBR) is a G protein-linked receptor (GPLR) which 

endogenous ligand is neuromedin B, such as a subfamily of mammalian bombesin-like 

peptides (cf. Corjay MH et al., J Biol Chem 1991 [77]; Sainz E et al., J Biol Chem 1998 

[82]). The NMBR binds NMB and regulates cell growth, blood pressure, 

exocrine/endocrine secretions, and glucose level. The receptor has highly affinity with 

mitogen and growth factor for normal and neoplastic lung. 

Transcription factor AP-2 beta (TFAP2B) is an activating enhancer binding protein 2 

beta) gene provides instructions for making a protein. A transcription factor is a protein 

that binds to specific regions of DNA and helps control the activity of particular genes. 

Transcription factor AP-2β is involved in development in the neural crest. Neural crest 
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cells migrate to form portions of the nervous system, glands that produce hormones, 

pigment cells, smooth muscle and other tissues in the heart, and many tissues in the face 

and skull. Transcription factor AP-2β also appears to play an important role in the 

development of the limbs. (Feng Zhao et al., Am J Hum Genet 2001 [78]; Shiro Maeda 

et al., J Hum Genet 2005 [79]). 

The p53 regulates growth arrest, tumor suppressor, and apoptosis mediated genes in 

response to stress signals. It is influencing programmed cell cycle, differentiation, death 

control mechanisms. TP53-target gene 5 protein (TP53TG5) also known as 

TP53-inducible gene 5 protein modulates p53 signaling pathways. This protein is highly 

expressed in brain, small intestine and heart (Isaka S et al., Genes Chromosomes Cancer 

2000 [84]). 

The hallmark neuropathology of Huntington’s disease (HD) is expansion of a 

polyglutamine segment in huntingtin. Huntingtin interacting protein M, as named 

HYPM, shown to interact with huntingtin. This protein contains a polyglutamine tract in 

Huntington’s disease. (Peter W. faver et al., Hum Mol Genet 1998 [80]). 

It remains to be determined whether P3 exerts its functions due to a Stabilin-2 like 

function, whereas due to location, time of expression, and type of distribution, other 

homologies like NMBR, TFAP2ß, TP53TG5 or HYPM appear as less likely candidates 

for functional homology. 

In summary, we report retargeting of the myotropism of AAV2/9 by displaying 

endothelial-affine targeting peptides on G2 or G5 PAMAM dendrimers which were 

fused to the AAV2/9 capsid. G2-P3 fusion to AAV2/9 increased the endothelial 

transduction rate and provided a more than 5-fold increase of the functionally relevant 

endothelial expression of S1FG, an artificial adhesion molecule effective only when 

displayed on the luminal surface of the endothelial lining. Thus, in this study we could 

demonstrate efficient expression of AAV-transduced genes of interest in vitro and in 

vivo. This finding could be of importance for further use of the AAV vector platform in 

a variety of experimental models and patient diseases, to provide for example vessel 
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growth (in ischemia) or vessel degradation (in tumor vessels) as well as vessel 

regulation (in endothelial dysfunction and vasospasm). 
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5. SUMMARY 

The identification of cell type specific binding ligands and improved transduction 

efficacy of vector systems (viral or non-viral) are needed for endothelial directed gene 

therapy. Adeno-associated viral (AAV) vectors are widely used for a long lasting 

efficacy and low immunogenicity. However, application of this vector in vascular 

biology is hampered by low transduction rates for vascular and particularly endothelial 

cells. Here, we attempted to enhance endothelium specificity of AAV based cardiac 

gene therapy via surface modification of the vector coat. Two principles were combined: 

first, a 7-mer endothelium targeting peptide, termed P3, was identified in biopanning 

with a CX7C phage library. Secondly, nanoparticles (generation 2 and 5 PAMAM 

dendrimers) were coated on the virus envelope surface. Combination of both approaches 

in an AAV2/9 G2P3 vector enhanced transduction in cardiac and skeletal muscle 

endothelial cells. Moreover, AAV2/9 G2P3 encoding for an artificial adhesion molecule 

(S1FG, cf. Stachel et al., Stem cells 2013) was efficient in recruiting circulating 

leukocytes in a cremaster intra vital microscopy model, whereas an unmodified 

AAV2/9 encoding for the same transgene did not yield this effect. These results appear 

as a proof of principle of AAV targeting towards endothelial cells and may have a broad 

range of applications in biotechnology and nanotechnology. 
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6. FIGUERS AND TABLES 

Figure.1 | Transmission electron microscopy image of AAV2 and Ad5. 

Figure.2 | Three-dimensional structure of AAV capsid and variable regions. 

Figure.3 | Cell entry and trafficking of AAV. 

Figure.4 | In vivo distribution of wild-type rAAV and rAAV mutant (R484E/R585E) in 

mouse tissues. 

Figure.5 | Schematic representation of polyamidoamine (PAMAM) dendrimers.  

Figure.6 | Factors affecting nanoparticle cellular uptake.  

Figure.7 | Schematic representation of cellular uptake of PAMAM dendrimer. 

Figure.8 | Structure of bacteriopahge.  

Figure.9 | Procedural of biopanning by phage-display library. 

Figure.10 | Design of gene delivery system by surface modified AAVs by different type of 

PAMAM dendrimers.  

Figure.11 | Construction of gene delivery viral vector and modifications by PAMAM with or 

without peptide linkage. 

Figure.12 | Cationic PAMAM dendrimers & surface modified PAMAM dendrimers. 

Figure.13 | Tomato reporter gene mice, mT/mG mutation mice; Gt(ROSA)26Sor. 

Figure.14 | Gene transduction by surface modified PAMAM coated AAVs in vitro and in 

vivo. 

Figure.15 | Identification of Cre expression in vivo. 

Figure.16 | Transduction efficiency characterization of AAV2/9-CMV-eGFP and 

AAV2/9-CMV-eGFP/PAMAM complexes in vitro. 

Figure.17 | AAV2 and AAV2/6 virus strains were incubated at 37°C/72 h with PAMAM 

G5. 

Figure.18 | Comparison of G2 vs G5 PAMAM coated AAV2/6-CMV-GFP in endothelial 

cells at 37°C/72 h. 

Figure.19 | Panning procedure of motif selection for targeting endothelial cells. 
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Figure.20 | Selected phages target to endothelial cell by Phage ELISA. 

Figure.21 | Graphical sequence logo representation of predominant motif. 

Figure.22 | Design of surface modified PAMAM dendrimers coated AAV2/9. 

Figure.23 | Transduction efficiency characterization of surface modified G2 with 

AAV2/9-CMV-eGFP complexes in endothelial cell. 

Figure.24 | Transduction efficacy of G5 in dTomato mice heart. 

Figure.25 | Transduction efficacy of AAV2/9Endo-Cre/G5 in dTomato mice heart. 

Figure.26 | Transduction efficacy of AAV2/9Cre/G2 or AAV2/9Cre/G5 in dTomato 

heart. 

Figure.27 | Transduction efficacy of AAV2/9Endo-Cre/G2 or AAV2/9Endo-Cre/G5 in 

dTomato mice heart. 

Figure.28 | Transduction efficacy of AAV2/9Cre/G2P1 or AAV2/9Cre/G2P3 in dTomato 

mice. 

Figure.29 | Whole heart analysis of dTomato mice by FACS. 

Figure.30 | Functionality of the S1FG fusion protein by intravital microscopy. 

Figure.31 | Schematic representation of cellular uptake by AAV/PAMAM complexes. 

Figure.32 | Domain structure of mStabilin-2. 
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Table.5 | Other homologous sequence with P3. 
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Fig S1 | Alignment analysis of peptide sequences. 

Fig S2 | AAV2/9Cre/G2 or AAV2/9Cre/G5 in elastic artery of dTomato mice. 

Fig S3 | AAV2/9Cre/G2 or AAV2/9Cre/G5 in hind limb of dTomato mice.  

Fig S4 | AAV2/9Cre/G2 or AAV2/9Cre/G5 in liver of dTomato mice.  

Fig S5 | AAV2/9Cre/G2 or AAV2/9Cre/G5 in kidney of dTomato mice.  

Fig S6 | AAV2/9Endo-Cre/G5 in elastic artery of dTomato mice.  

Fig S7 | AAV2/9Endo-Cre/G5 in hind limb of dTomato mice.  

Fig S8 | AAV2/9Endo-Cre/G2 or AAV2/9Endo-Cre/G5 in liver of dTomato mice. 

Fig S9 | AAV2/9Endo-Cre/G2 or AAV2/9Endo-Cre/G5 in kidney of dTomato mice. 

Fig S10 | AAV2/9Cre/G2P1 or AAV2/9Cre/G2P3 in elastic artery of dTomato mice. 

Fig S11 | AAV2/9Cre/G2P1 or AAV2/9Cre/G2P3 in hind limb of dTomato mice. 

Fig S12 | AAV2/9Cre/G2P1 or AAV2/9Cre/G2P3 in liver of dTomato mice. 

Fig S13 | AAV2/9Cre/G2P1 or AAV2/9Cre/G2P3 in kidney of dTomato mice. 

Fig S14 | AAV2/9Cre/G2P1 or AAV2/9Cre/G2P3 in brain of dTomato mice. 

Fig S15 | FACS in whole heart of dTomato mice. 
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7. APPENDIX  

7.1. Abbreviations 

A.U. 
 

astronomical unit 

Aa 
 

amino acid 

AAV 
 

adeno-associated virus 

ACE  
 

angiotensin-converting enzyme 

Ad 
 

Adenovirus 

APC  
 

antigen presenting cell 

ATP 
 

adenosine triphosphate 

bEnd.3 
 

mouse brain endothelial cell line 

BL  
 

Burkitt’s lymphoma 

bp  
 

base pair 

CAR 
 

coxsackie and adenovirus receptor 

cDNA  
 

complementary deoxyribonucleic acid 

CO2  
 

Carbondioxide 

DAB  
 

3,3’- Diaminobenzidine 

DAPI  
 

4, 6-diamidino-2-phenylindole 

DC  
 

dendritic cells 

dd  
 

double distilled 

DMEM  
 

Dulbecco’s Modified Eagle Medium 

DMSO  
 

Dimethylsulfoxide 

DNA  
 

deoxyribonucleic acid 

DTT 
 

Dithiothreitol 

E.coli  
 

Escherichia coli 

e.g. 
 

lat. Exempli gratia (“for example”) 

EDTA  
 

ethylenediaminetetraacetic acid 
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ELISA  
 

enzyme-linked immunosorbent assay 

FACS  
 

fluorescence-activated cell sorting 

FCS  
 

fetal calf serum 

FGFR 
 

fibroblast growth factor receptor 

FITC  
 

fluorescein isothiocyanate 

g  
 

Gram 

g.p. 
 

genomic particles 

G2 
 

generation 2 PAMAM dendrimer 

G2P1 
 

generation 2 PAMAM -PEG linker -Peptide no.1 

G2P3 
 

generation 2 PAMAM -PEG linker -Peptide no.3 

G5 
 

generation 5 PAMAM dendrimer 

GER  
 

Germany 

GFP  
 

green fluorescence protein 

Gp 
 

Glycoprotein 

h  
 

hour(s) 

H&E  
 

hematoxyline and eosin 

H2O  
 

Water 

HEK 293 
 

human embryonic kidney cell line 

HGFR 
 

hepatocyte growth factor receptor 

HL-1 
 

mouse cardiomyocyte cell line 

HMECs 
 

human microvascular endothelial cells 

HRP  
 

horseradish peroxidase 

HSPG 
 

heparan sulphate proteoglycan 

i.e. 
 

lat. id est (“that is”) 

Ig  
 

Immunoglobulin 

IL  
 

Interleukin 

IM  
 

infectious mononucleosis 

IPTG 
 

isopropyl-1-thio-β-D-galactoside 
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ITR 
 

inverted terminal repeat 

Kb 
 

kilo bases 

KCl  
 

potassium chloride 

kDa  
 

kilo dalton 

l  
 

Liter 

LB  
 

Luria Bertani 

LCL  
 

lymphoblastoid cell line 

LDL(R) 
 

low-density lipoprotein (receptor) 

LMP  
 

latent membrane protein 

M  
 

Molar 

MA  
 

muscular arteries 

mg  
 

milligram (1.0E-03 gram) 

MgCl2  
 

magnesium chloride 

MgSO4  
 

magnesium sulfate 

MHC  
 

major histocompatibility complex 

min  
 

minute(s) 

ml  
 

Milliliter 

MLV 
 

murine leukemia virus 

mm  
 

Millimeter 

mM  
 

Millimolar 

mRNA  
 

messenger ribonucleic acid 

Na2HPO4  
 

disodium hydrogen phosphate 

NaCl  
 

sodium chloride 

NaH2PO4  
 

sodium dihydrogen phosphate 

ng  
 

nanogram (1.0E-09 gram) 

nm  
 

Nanometer 

NPC 
 

nuclear pore complex 

nt  
 

Nucleotide 
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ºC  
 

degree centigrade 

OD  
 

optical density 

ORF  
 

open reading frame 

p.i. 
 

post infection 

p.t. 
 

post transduction 

PAMAM 
 

poly-amidoamine 

PBS  
 

phosphate buffered saline 

PCR  
 

polymerase chain reaction 

PE  
 

Phycoerythrin 

PEG  
 

Polyethylenglycol 

PEG linker 
 

NHS -PEG -OPSS linker  

PEI 
 

Polyethylenimine 

PFA 
 

Paraformaldehyde 

Pfu 
 

plaque forming units 

pg  
 

pictogram (1.0E-12 gram) 

PHA  
 

Phytohemaglutinin 

PI  
 

propidium iodide 

qPCR 
 

quantitative PCR 

rAAV 
 

recombinant adeno-associated viral vector 

RNA  
 

ribonucleic acid 

rpm  
 

rotations per minute 

RT  
 

room temperature 

RT-PCR  
 

reverse transcription-polymerase chain reaction 

scFv 
 

single-chain fragment of variable region 

SDS  
 

sodium dodecyl sulfate 

SMA  
 

alpha smooth muscle actin 

SOB  
 

super optimal broth 

SOT  
 

solid organ transplantation 
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TAE  
 

Tris acetate EDTA buffer 

TBS  
 

Tris buffered saline 

TBST  
 

Tris buffered saline tween-20 

TE  
 

Tris-EDTA 

TEMED 
 

N,N,N,N-tetramethylethlenediamine 

TFA 
 

trifluoroacetic acid 

TMB 
 

3,3’,5,5’-tetramethylbenzidine 

TNF-α  
 

tumor necrosis factor-alpha 

TR 
 

terminal repeat 

Tris 
 

tris(hydroxymethyl) aminomethane 

Tween-20  
 

polyoxyethylene sorbitane monolaurate 

U  
 

unit  

VCA  
 

viral capsid antigen  

Vp 
 

viral particle 

VP 
 

viral protein 

X-gal  
 

5-Bromo-4-Chloro-3-Indoyl-b-D-galactopyranosid 

μg  
 

microgram (1.0E-06 gram) 

μl  
 

Microliter 

μM  
 

Micromolar 
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7.2. Supporting informations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1 | Alignment analysis of peptide sequences. Alignment analysis program is Clustal W 

program. For Fig 21. 
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Figure S2 | AAV2/9Cre /G2 or AAV2/9Cre /G5 in elastic artery of dTomato mice. The elastic artery of 

heart. The white arrows indicate Cre positive expression (green) endothelium in the tunica intima of artery. 

The white dashed lines are a area of Ad (adventitia of artery), M (media of artery), or L (lumen of artery). 

Scale Bar; 20 µm. For Fig 26.  
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Figure S3 | AAV2/9Cre /G2 or AAV2/9Cre /G5 in hind limb of dTomato mice. The artery (left), nerve 

(meddle), and myocyte (right) of the hind limb (merge images). The white arrows indicate Cre positive 

expression (GFP; green) in capillary. A (artery), N (nerve), M (myocyte) or C (capillary). Scale Bar; 20 

µm. For Fig 26.  
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Figure S4 | AAV2/9Cre /G2 or AAV2/9Cre /G5 in liver of dTomato mice. The liver of dTomato mice 

(merge images). A (artery). Scale Bar; 200 µm. For Fig 26.  
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Figure S5 | AAV2/9Cre /G2 or AAV2/9Cre /G5 in kidney of dTomato mice. The papillae (left), 

glomerulus (meddle), and renal artery (right) of the kidney (merge images). The white arrows indicate 

Cre positive expression (GFP; green) in glomerulus or renal artery. P (papillae), RP (renal pyramid), G 

(glomerulus) or RA (renal artery). Scale Bar; 100 µm. For Fig 26.  
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Figure S6 | AAV2/9Endo-Cre /G5 in elastic artery of dTomato mice. The elastic artery of heart. The 

white arrows indicate Cre positive expression (green) in the tunica intima of artery. The white dashed 

lines were indicate a area of Ad (adventitia of artery), M (media of artery), or L (lumen of artery). Scale 

Bar; 20 µm. For Fig 27. 

 

 

 

 

 

 

 

Figure S7 | AAV2/9Endo-Cre /G5 in hind limb of dTomato mice. The artery (left), nerve (meddle), and 

myocyte (right) of the hind limb. The white arrows were indicated Cre positive expression (GFP; green) 

in capillary. A (artery), N (nerve), M (myocyte) or C (capillary). Scale Bar; 20 µm. For Fig 27.  
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Figure S8 | AAV2/9Endo-Cre /G2 or AAV2/9Endo-Cre /G5 in liver of dTomato mice. The liver of 

dTomato mice (merge images). A (artery). Scale Bar; 200 µm. For Fig 27.  
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Figure S9 | AAV2/9Endo-Cre /G2 or AAV2/9Endo-Cre /G5 in kidney of dTomato mice. The papillae 

(left), glomerulus (meddle), and renal artery (right) of the kidney (merge images). The white arrows 

indicate Cre positive expression (GFP; green) in glomerulus or renal artery. P (papillae), RP (renal 

pyramid), G (glomerulus) or RA (renal artery). Scale Bar; 100 µm. For Fig 27.  
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Figure S10 | AAV2/9Cre /G2P1 or AAV2/9Cre /G2P3 in elastic artery of dTomato mice. The elastic 

artery of heart. The white arrows were indicated Cre positive expression (green) in the tunica intima of 

aortic artery. The white dashed lines were indicate a area of Ad (adventitia of artery), M (media of artery), 

or L (lumen of artery). Scale Bar; 20 µm. For Fig 28. 

 

 

 

 

 

 

 

 

 

 

Figure S11 | AAV2/9Cre /G2P1 or AAV2/9Cre /G2P3 in hind limb of dTomato mice. The artery (left), 

nerve (meddle), and myocyte (right) of the hind limb. The white arrows were indicated Cre positive 

expression (GFP; green) in capillary. A (artery), N (nerve), M (myocyte) or C (capillary). Scale Bar; 20 

µm. For Fig 28. 
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Figure S12 | AAV2/9Cre /G2P1 or AAV2/9Cre /G2P3 in liver of dTomato mice. The liver of dTomato 

mice (merge images). A (artery). Scale Bar; 200 µm. For Fig 28.  

 

 

 

 

 

 

 

 

Figure S13 | AAV2/9Cre /G2P1 or AAV2/9Cre /G2P3 in kidney of dTomato mice. The papillae (left), 

glomerulus (meddle), and renal artery (right) of the kidney (merge images). The white arrows indicate 

Cre positive expression (GFP; green) in glomerulus or renal artery. P (papillae), RP (renal pyramid), G 

(glomerulus) or RA (renal artery). Scale Bar; 100 µm. For Fig 28.  
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Figure S14 | AAV2/9Cre /G2P1 or AAV2/9Cre /G2P3 in brain of dTomato mice. The brain of 

dTomato mice (merge images). Scale Bar; 200 µm. For Fig 28.  
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Figure S15 | FACS in whole heart of dTomato mice. For Fig 29. 
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