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ABSTRACT

In this thesis, Raman spectroscopy is used to characterize the interaction between a plasmon and the
lattice vibration of a solid state material. Two systems have been analyzed: the first is composed
of a metallic nanostrucure and a carbon material (carbon nanotubes and graphene), the second
consists of beryllium-doped gallium arsenide nanowires. In the first system, additionally to the
electromagnetic enhancement, a cooperative process (dynamical back-action) between the localized
surface plasmon-polariton and the lattice vibration can occur. This process leads to a non-linear
response of the Raman signal in dependence on the laser power. In this work the occurrence of
this non-linearity is experimentally observed and compared with the theoretical prediction. In
the second system, the charge-carriers provided by the dopant act as a plasma, interacting with
the electric field related to the longitudinal phonon mode of the crystal lattice. This interaction
causes a change in the position and width of the Raman peak, which can consequently been used
to extrapolate the change carriers concentration and mobility. The appearance of surface phonons,
typical of nanostructures, is also observed and discussed.
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INTRODUCTION

Spontaneous Raman scattering was first experimentally observed in 1928 [1]. Since then, Raman
spectroscopy has progressively developed and consists nowadays of a large variety of techniques
[2, 3, 4, 5, 6]. The main and most interesting characteristic of Raman scattering is that it provides
a so called ”molecular fingerprint”: the difference between the incident and scattered light frequen-
cies corresponds to the frequency of a vibrational mode characteristic of the specific material under
observation. Differently from fluorescence, only one vibronic level is involved in the scattering (at
least for first order Raman scattering, which is commonly obseved). The spectral peak related to
Raman scattering has consequently a lorentzian lineshape, with a width of typically few cm−1. In
the case of composite materials for instance, consisting of several Raman scatterers, the spectrum
of each individual component can often be distinguished because the Raman lines are sufficiently
narrow not to overlap. Also in the presence of a broad background, the Raman peaks are in general
easily recognizable on top of it, having a different and characteristic lineshape with respect to the
background itself. Besides the spectral characterization, the Raman scattering can be sensitive to
changes in energy and damping of the vibrational mode, being strictly related to the vibronic levels
of the scatterer.

In this thesis, the Raman scattering is used to characterize the change in the vibrational prop-
erties of the material under observation, related either to the environmental conditions or to some
other properties of the material itself. In particular, the interaction between a density of charge
and the lattice vibration is investigated. The first system experimentally analyzed and discussed,
is formed by a metallic nanostructure (in the specific case, gold nanorods and a gold nanotip) in
close proximity to a Raman emitter (in the specific case carbon nanotubes and graphene). Such
metallic nanostructures are able to generate a very strong local electromagnetic field, related to
the electron density oscillation on the surface of the nanostrucure itself. The collective electron
oscillation is called ”surface plasmon-polariton” [47]. In the case of quasi zero-dimensional nanos-
tructures, this collective oscillation is called ”localized surface plasmon-polariton”. The strong local
electromagnetic field can lead to a high enhancement of the Raman scattering. This phenomenon
has been widely explored and exploited in the last decades in the framework of Surface Enhanced
Raman Spectroscopy (SERS) and Tip Enhanced Raman Spectroscopy (TERS) [22, 23]. Recently
another enhancement mechanism, named dynamical back-action has been proposed [44, 45], based
on an optomechanical coupling between the surface plasmon-polariton and the Raman emitter. In
the presence of this coupling, the total energy of the system is not given by the sum of the energies
of the two individual systems only, but an additional term due to the coupling appears. Within
a quantum-electrodynamic description, the dynamical back-action can formally be taken into ac-
count, including an interaction term in the Hamiltonian. The key signature of this optomechanical
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coupling is a non-linear dependence of the Raman intensity on the incident laser power. Although
a non-linear Raman response has been observed for a porphyrin molecule at the nanogap between
a silver nanotip and a silver film [30], no comparison between the theoretical prediction and the ex-
perimental observation of this non-linear response is given in literature. It is also an open question,
how this optomechanical coupling can contribute to the well known SERS/TERS signal enhance-
ment [33]. In this first system, the vibrational properties of the Raman scatterer are changed by
the environment, because of the interaction between a localized surface plasmon-polariton and the
vibrational mode of the scatterer itself.

The second system under observation in this thesis are beryllium-doped gallium arsenide nanowires.
Here, the typical width and position of the Raman peak change because of the interaction between
the local electric field related to the lattice vibration and the charge carriers provided by the dop-
ing. Based on this change, the charge carrier concentration and mobility can be extracted from
the Raman peak. Also, the appearance of a surface phonon mode, that is related to the surface
morphology of the nanowires, is observed, in addition to the typical bulk modes. In this second
system, the vibrational properties are changed by the density of charges given by the dopant inside
the material itself.

This thesis is organized as follows: in the first part Raman scattering in solids is introduced, in order
to explain the basic features of the Raman spectrum of the materials analyzed within this work
(graphene, carbon nanotubes and gallium arsenide). In the second part, the experimental techniques
and the utilized setups are presented. The third part is focused on plasmon enhanced spectrocopy
and dynamical back-action, in relation to the experiments on carbon nanotubes and graphene. The
basic concept of plasmonic enhanced spectroscopy are here introduced. For completeness, a classical
formulation of stimulated Raman scattering is given and adapted in order to include the presence
of the electromagnetic field related to the plasmon-polariton. Then the quantum-electrodynamic
description of the coupled system formed by Raman emitter and plasmon-polariton is presented,
where both a solution in the classical limit and a pure quantum solution are given. In the last
chapter of the third part the experiment is described and the relative results are presented and
discussed. The fourth part is focused on doped gallium arsenide nanowires. The specific features
of a typical Raman spectrum of these nanowires are first introduced from a theoretical point of
view. The results are then presented and interpreted according to the theoretical description given
before.
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Part I

Introduction to Raman Scattering
in Solids
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Chapter 1

Raman Scattering in Solids

In a spontaneous Raman scattering event, one incident electric field oscillating at a given frequency,
illuminates a sample. With a certain probability, the incident field can be inelasticly scattered be-
cause of a polarizability change of the sample itself. This change of the polarizability is related to a
vibrational mode. In a ”Stokes” process a vibrational mode is excited. Consequently, the frequency
of the scattered field decreases with respect to the frequency of the incident one. In an ”Anti-
Stokes” process a vibrational mode relaxes, and the frequency of the scattered field increases. In
solids, the vibrational modes are described as phonons: a phonon is a quantum of lattice vibration.
In general, different vibrational modes can exist in a solid depending on the crystal symmetry. In a
phonon creation or annihilation process both energy and linear momentum must be conserved. In
a Raman scattering experiment the excitation wavelength is usually in the visible or near infrared
region. The wavevector is then in the order of 107 m−1. Following from the lattice constant in
solids, at the edge of the Brillouin Zone (BZ) the phonon wavevector is in the order of 109 m−1.
For this reason, in a Raman process driven by visible or infrared light, only phonons in the center
of the BZ can be excited, where the phonon wavevector goes to zero (in some exceptional cases,
large wavevector scattering can be given in the case the linear momentum is not conserved). In
general, some phonon modes have zero frequency for zero wavevector and cannot therefore be ex-
cited if visible light is used (acoustic phonons). Other phonon modes have a finite frequency for
zero wavevector and can therefore be observed in a Raman process driven by visible light (optical
phonons). Throughout this thesis, it will be dealt with optical phonons.

The Raman Scattering in solids is described as a three-steps process [7, 8, 9]. The first step
consists of an electron-photon interaction in which the electron goes from an initial state to a sec-
ond electronic state α, usually from the valence to the conduction band. In the second step, the
electron looses (or gains) energy creating (or absorbing) a phonon and reaches so the electronic
state β from the state α. In the third step, the electron relaxes and a photon is emitted. The
transitions involved in this process need to be summed over all the electronic states within the
conduction and valence band. The transition matrix element of the overall process is the product
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between the transition matrix elements of the single processes [10]:

W =
∑
α,β

2π

h̄

〈
α
∣∣∣Ĥelectron

radiation

∣∣∣ψi〉[
h̄ωL − (Eα − Ei)− iγα

]
〈
β
∣∣∣Ĥelectron

lattice

∣∣∣α〉[
h̄ωm − (Eβ − Eα)− iγm

]
〈
ψf

∣∣∣Ĥelectron
radiation

∣∣∣β〉[
h̄ωS − (Eβ − Ef )− iγβ

] (1.1)

In eq. (1.1) ωL, ωS and ωm are the laser, Stokes (the Anti-Stokes process can be analogously
considered) and phonon frequency respectively; Ĥelectron

radiation and Ĥelectron
lattice are the electron-photon

and the electron-phonon interaction Hamiltonians respectively. Ei is the energy of the initial state,
Eα = Ei+ h̄ωL, Eβ = Eα+ h̄ωm and Ef = Eβ− h̄ωS . In the case of a double process as it is for the
graphene 2D band, another term containing the electron-phonon scattering needs to be included
in eq. (1.1) [11], as it is further discussed in the section about the phonon modes in graphene.
The intensity of the Raman peak is proportional to the square of the transition matrix elements,
I ∼ |W |2 [12, 13] .

Figure 1.1: (a) general scheme for Stokes (left) and Anti-Stokes (right) scattering mechanisms. The
laser frequency is labeled in green. The scattered light corresponding to the Stokes and Anti-Stokes
process are labeled in red and blue respectively. (b) Raman scattering in the conduction and valence
band of a solid, refer to eq. (1.1). The green and red arrows represent the incoming and outgoing
light respectively.

In order to consider the symmetry of the molecular vibration the Raman cross section can also be
expressed though the Raman tensor. To do so the polarization of the medium can be considered as
the sum of the polarization of the units cells, ~P = N~p. The polarization can be expressed though
the polarizability (α) as:

~p = ¯̄α~E (1.2)

~E is the local electric field. Being both ~p and ~E vectorial quantities, ¯̄α must be a second rank tensor.
In presence of a lattice vibration, every element of the tensor ¯̄α can be expanded as a function of
the vibrational coordinate ~xv, as:

αi = αi(0) +
∂αi
∂ ~xv

~xv (1.3)

The first terms in eq. (1.3) does not contribute to the Raman scattering, because such a process

requires a change in the polarizability. The second ones are use to build up the Raman tensor ¯̄R,
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where every element of the tensor is given by:

Ri =
∂αi
∂ ~xv

~xv
| ~xv|

(1.4)

The scattered intensity is then proportional to:

IS ∼
∣∣∣êS ¯̄RêL

∣∣∣2 (1.5)

where êL and êS are the unit vectors giving the polarization of the laser and scattered light re-
spectively. The Raman tensor reflects the symmetry of the phonon vibration. Thank to this, the
selection rules can be taken into consideration. Indeed according to eq. (1.5), the Raman scattering
intensity depends on the polarization of the incident and scattered fields [14, 15]. Once it has been
established which Raman modes are active, eq. (1.2) is usually expressed in the scalar form. The
scalar formulation is used in the following of this thesis.

In the next sections, the discussion is focused on graphene and gallium arsenide, being these two
the materials analysed in the experimental work.

Phonon Modes in Gallium Arsenide

The phonon band structure of gallium arsenide (GaAs) is presented in Figure 1.2. The phonon

Figure 1.2: (a) Phonon dispersion for GaAs in the Zinc Blende phase: there are two optically active
phonon modes at the Γ-point at the center of the Brillouin Zone corresponding to the TO and LO
mode, their energy is 266 cm−1 and 291 cm−1 respectively. (b) phonon dispersion for GaAs in the
Wurzite phase; in this case additional optically active mode are present. Adapted from [16].

dispersion is different for different crystal structures, namely Zinc Blende (ZB) and Wurzite (WZ)
in the case of GaAs. As already explained, acoustic and optical phonons are present. Concerning
the ZB structure, two optical phonon modes are present: transversal (TO) and longitudinal (LO).
They have different energies in the center of the BZ and can therefore be observed as two separated
peaks in a Raman spectrum. The phonon dispersion is more complicated for the WZ structure
and additional modes can be observed in a Raman spectrum [15, 16]. In the TO vibrational mode
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the atomic planes move perpendicularly to the propagation direction, while in the LO vibrational
mode the atomic planes move parallel to the direction of propagation. Consequently, the center of
mass of the unit cell is conserved within a TO mode vibration, while it is not within the LO one.
GaAs is a polar crystal, meaning that the lattice sites are not occupied by neutral atoms but by
ions. The non-conservation of the center of mass within the unit cell, leads to the presence of a
non-zero local field, associated to the LO phonon. In Chapter 8 this aspect is described in more
detail, in terms of the field curl and divergence. As will be discussed in Chapter 8 and 9, in the
case of doped polar semiconductors, the interaction between this local field and the charge carriers
changes the characteristics of the Raman peak.

Phonon Modes in Graphene

The phonon band structure of Graphene is presented in Figure 1.3. In this case, TO and LO phonons
have the same energy at the centre of the BZ (Γ-point). Both of them appear then in the same
Raman peak. For graphene the peak formed by the sum of TO and LO modes is named G band.
A particular property of graphene is that additional Raman active modes are present, deriving

Figure 1.3: Graphene Phonon Dispersion. Adapted from [17, 18].

from scattering away from the center of the BZ. This kind of scattering is generally speaking defect
assisted and the related Raman bands are named D, D’, D + D’, and the 2D. The appearance of
the D, D’ and D + D’ bands depends on the defects concentration [18]. Although it is an overtone
of the D band, the 2D band does not require the presence of defects and appears also in defect-
free graphene. In the following the discussion is focused on the 2D band, being this relevant to the
experimental results presented in the next chapters of this thesis. The 2D band stems from a double
resonant process, in which two phonons are created with opposite momentum, so that the overall
linear momentum in conserved. In the phonon band structure, the accessible energies are not in this
case restricted to the Γ-point but also large momentum energy states are allowed. In particular,
the typical energy of the 2D band (∼ 2700 cm−1) is twice the energy of the phonon at the K-point
of the BZ. In the prospective of the electronic band structure, the electron is scattered from a state
the conduction band, reached after the absorption of a photon, to another state of the Dirac cone
around the K-point. In this first scattering event, the first phonon is created. The electron is then
scattered back, with the creation of the second phonon having opposite linear momentum to the
first one, and allowing so for the overall linear momentum conservation (Figure 1.4). Although a
two-phonon process typically has lower probability, the 2D band scattering in graphene becomes
very strong because of multiple resonances. Although it consist of TO phonons [11], the symmetry
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of the 2D band is different than that of the G band. This is because, given the large momentum
involved in the 2D process, the vibration happens at the K-point of the BZ and not at the Γ-point.
The resulting vibration is a breathing-like mode of the carbon rings on the graphene plane (see
Figure 1.5) [17]. Another particularly interesting an useful property of the 2D band is the fact
that intensity and shape of the related peak changes drastically from single-layer to double layer
graphene. To take into account the change in intensity, the ratio between the G band and the 2D
band is evaluated: for single layer graphene this ratio is between 3 and 4 [18], while is around 1 for
double layer graphene (and graphite in general). Also, the shape of the 2D band changes: while it
is given a single lorentzian curve in single-layer graphene [20], for double-layer graphene the peak is
composed by four lorenztian curves and is then considerably broader [11]. These two characteristics
have been used during the experimental work to verify the presence of graphene at the positions
where the measurement was done.

Figure 1.4: (a) phonon scattering at the Γ-point corresponding to the G band and (b, c) double
scattering, corresponding to the 2D band. The scattering is pictured within the electronic bands,
the characteristic cone band structure of graphene is represented. The green and red arrow represent
the incoming and outgoing light, respectively. Adapted from [17, 18].

Figure 1.5: (a) representation of the lattice vibration for the TO (left) and LO phonons (right) at
the center of the Brilluoin Zone (b) representation of the lattice vibration for the TO phonons at
the K-point of the Brilluoin Zone. Adapted from [17].
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Although some differences between the Raman spectrum of graphene and carbon nanotubes are
present, as for exampled the appearance of the radial breathing mode [21], the just described G and
2D band scattering occurs also for carbon nanotubes with the same characteristic as for single-layer
graphene.
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Experimental Techniques
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Chapter 2

Experimental Setups

In this chapter the experimental techniques are presented. The basic concepts of confocal mi-
croscopy are introduced, referring to the specific experiment performed in this work. Confocal
Raman measurements have been done on gallium arsenide nanowires and gold nanorods deposited
on single-layer graphene. Additionally, Raman experiments on graphene and carbon nanotubes
have been performed using a gold nanotip, which needs to be brought in close proximity of the
sample. This has been realized adding an atomic force microscopy head on the confocal setup.
This experiment is described in an independent section. The white-light scattering and the dark
field microscopy setup used for the characterization of the gold nanorods are also presented in this
chapter.

Confocal and Tip Enhanced Near-Field Optical Microscopy
Setup

Confocal Microscopy

The principle of confocal microscopy is to use a microscope objective to focus a laser beam on a
sample in order to analyze a volume which is not bigger than the dimensions of the focus itself.
The laser used in this experiment produces a Gaussian beam. So the spatial intensity distribution
I(r) can be described by:

I(r) = I0e
− 2r2

w2 (2.1)

with I0 being the intensity in the center of the beam and w being the radius of the transversal
section of the beam. This quantity is defined as the distance from the center at which the intensity
is diminished by a factor 1

e2 . The intensity is maximal in the middle of the beam (r = 0) and decays
with increasing distance. The minimal dimensions of the beam that can be reached are determined
by the diffraction limit. The diffraction limit corresponds to the beam waist, which within the
paraxial approximation is given by:

w0 =
λf

πw
(2.2)

where λ is the wavelength, w is defined as before and f is the focal length, that is the ratio between
the diameter of the input iris and the numerical aperture (NA), which is given by the refractive
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index n and the angle of incidence θ according to NA = n sin θ. After having reached the minimum
dimensions the beam diverges according to the formula:

w(z) = w0

√
(λz)2

(w0π)2
+ 1 (2.3)

The beam is considered to be focused within a spatial region named ”Rayleigh Range”, defined as
the distance from the beam waist at which the area of the transversal section of the beam is twice
larger than in the focal point, that is:

w(zr) = w0

√
2 (2.4)

The focal volume is generally approximated to be cylindrical, the extension of the Rayleigh Range
can be found according to eq. (2.3) and is calculated to be:

zr =
πw2

0

λ
(2.5)

The larger the beam waist, the larger the focal volume. This means that the defocusing is inversely
proportional to the beam waist: for a small section of the beam, the beam itself will be sooner defo-
cused. This treatment holds for the first oscillation mode of the electric field in the laser cavity. To
improve the spatial distribution of the incident field, a pinhole is usually installed. A fundamental
condition for the confocal microscopy is the light not originating from the focal area is not detected.
This is achieved either through the use of a pinhole or of a detector having detection area that is
on the order of the dimension of the focus.

An image of the sample is formed by raster-scanning the focal volume though the sample while
recording the optical response point-by-point. Raster-scanning is typically implemented using
piezoelectric elements. The motion in the xy-plane is achieved through a piezo-scanner shifting
the sample holder in two directions. In this way, the sample can be moved with respect to the
laser focus so that a well determined area much bigger than the beam focus can be analyzed. The
signal following from the laser excitation can be detected in relation with the position on the sur-
face. The result are two dimensional maps where the signal intensity is detected as a function on
the xy-position on the sample. The z-position of the focus is determined manually adjusting the
position of the objective.

For the measurements on the gallium arsenide nanowires (GaAs NWs) on glass, the NWs are
located scanning the laser focus across the sample and detecting the strong photoluminescence
(PL) signal at 874 nm, corresponding to the band-gap of the Zinc Blend crystal structure (1.43
eV). The light is then directed to the spectrometer, where the spectra are measured. This proce-
dure is repeated at different positions on the sample. A typical two-dimensional image obtained
detecting the NWs PL, is presented in Figure 2.1.

The Raman signal is typically linear with the laser intensity (see Chapter 4). As it will be explained
in Chapter 5, the key feature of the dynamical back-action is the deviation from the linearity of
the Raman response in dependence on the laser power. To investigate this phenomenon, the Ra-
man spectra of graphene and carbon nanotubes (CNT) in presence of plasmonic nanostructures
are measured for different laser powers (in the following, it is referred to this procedure as ”power
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Figure 2.1: (a) confocal image of GaAs NWs deposited on glass, recored by detecting the PL signal
at 874 nm. (b) confocal scan of gold nanorods on graphene. See text for further details.

series”). A fundamental part of the setup for this experiment consists of the combination of a
lambda half plate and a Glens-Thompson polarizer. These components, when combined, allow for
the modulation of the intensity of the laser. With the lambda-half plate the polarization of the
laser can be turned. When the laser polarization is aligned parallel to the axis of the polarizer,
the transmitted intensity is maximum. When the polarization is changed, the polarizer effectively
reduces the transmitted intensity, because only a specific field component aligned to the polar-
izer axis is transmitted. During the power series, the lambda-half plate can be rotated by hand.
The laser power is measured with a power-meter (THORLABS) after the pinhole in the excitation
path (see below), after having rotated the lambda-half plate. This power, scaled by the reflec-
tivity of the beam-splitter, is used to calculate the intensity incident on the sample. The beam
waist is estimated tough eq. (2.2) to be around 350 nm. The dimensions of the nanorods are
typically smaller than the beam waist (see Chapter 6). This means, that it is impossible with this
diffraction limited resolution to distinguish how many nanorods are present inside the confocal spot.

In a ”power series”, a series of spectra is measured for every set laser power, typically 10 spec-
tra for each power. On the spectrometer, the signal is measured as counts on the CCD camera
(see below). The Raman intensity is obtained as the integral under the peak after background
subtraction. For the graphene sample, the background cannot be taken on the sample substrate
directly, being all the sample substrate covered with graphene. It then has to be subtracted com-
putationally after the measurement. A power series consists typically of 10 points. To obtain one
as those presented in Chapter 7, around 100 spectra have been measured and evaluated. For the
measurements on the sample where gold nanorods are deposited on graphene, the nanorods are
located on the sample through confocal scans similarly as for the NWs. The gold nanorods appear
as ”hot-spots” on the graphene Raman background. The signal increase is due partially to the field
enhancement and partially to the gold inelastic scattering (see Chapter 3 and 6 for further details).
The confocal set up utilized in this work contains the following elements (refer to Figure 2.2):

• Helium-Neon laser with emission centered at 633 nm (A). Alternatively a Helium-Neon laser
centered at 594 nm has been used.

• Lambda-half plate WPH05M-633 THORLABS (B), used to rotate the laser polarization. For
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the measurements with the nanotip a Liquid Crystal Retarder (LCR) is used in spite of the
lambda-half plate (see next section).

• Glens-Thompson Polarizer (C), used to select the laser field component having the desired
polarization and modulate the intensity. Doing so, it is made sure that the polarization does
not change during the power series and that consequently the laser power is the only changing
parameter.

• Mirror (D).

• Lenses having focal length of 30 mm (E), 80 mm (F), 50 mm (G), 150 mm (H) mounted in
order to expand the beam.

• A 25 µm diameter pinhole (I).

• The microscope equipped with an objective having NA equal to 1.49 and 100x magnification
(J). Alternatively, for the measurements on nanowires a 1.4 NA objective with 60x magni-
fication has been used (both objectives are from NIKON). In the microscope a CHROMA
ZT633rdc beam splitter is mounted (K). Alternatively, also a Melles-Griot 03BTL005 beam
splitter (50:50 at 633 nm)has been used. A lens is mounted in the microscope delivering a
collimated beam at the output of the microscope itself. The sample holder of the microscope
is mounted on a piezo-stage (Physik Instrumente PI P517, 3).

• Filter to exclude the laser wavelength (L), 633 Semrock LP02-633RE.

• Flip-mirror (M) to direct the emitted radiation on a spectrometer.

• Spectrometer (O), Andor Solis Sharmrock 303i, equipped with CCD Camera, Andor iDUS
420-BR-DD, which is used to measure emission spectra.

• A dicroic mirror (P), ChromaR NC113866 590 dcxr, reflecting light at wavelength shorter
than 760 nm, can be used to separate Raman scattering and photolominescence signal of
CNT.

• Mirror (R).

• Lens 75 mm (Q,S) to focus the beam on the active area of the Avalenche Photodiods (APD).

• Avalanche Photodiodes (APD), (V, W), Perkin ElmerR SPCM. Depending on which signal is
detected, appropriate filters are put in front of the APDs. For the G and 2D band, bandpass
filters centered at 700 and 760 nm respectively are used (THROLABS). They both have a
bandwidth of 10 nm. For the detection of the NWs PL, a 810 nm long-pass filter (CHROMA)
is used.
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Figure 2.2: schematic of the confocal setup. The laser is in real color, while the transmitted light
is in false color (the detected wavelengths are in the near-infrared.) On top also the gold nanotip
in a shear force configuration is shown (see next section).

When detecting the signal using the spectrometer, the detection efficiency in dependence of the
wavelength needs to be considered. The wavelength dependent detection efficiency is plotted in
Figure 2.3. Throughout this work, the G band 2D band of graphene and CNT appear at 703 and
760 nm respectively, when a 633 nm excitation laser is used. The ratio between the efficiency at
these two wavelengths is 0.81.

Tip Enhanced Near-Field Optical Microscopy (TENOM)

In the last decades, several experimental configurations have been presented, allowing to bring a
metallic nanotip in close proximity of the sample surface. This kind of technique is known as Tip
Enhanced Near-Field Optical Microscopy (TENOM)[6, 22, 23]. In this thesis, a shear-force atomic
force microscopy (AFM) head is used to land the nanotip on the sample surface. The nanotip
is mounted on the AFM-head, which is equipped with a z-piezo for nanotip-sample distance con-
trol. Additionally, two xy-piezo are included in the AFM-head, to position the tip in the laser
focus [24]. Specifically, the nanotip is attached to a quartz tuning-fork, which oscillated in the
parallel direction to the sample surface. For this reason, this configuration is called ”shear-force”
[25, 26]. The tuning-fork oscillation is driven by a voltage-controlled dither-piezo. When close to
the sample surface, the interaction between the nanotip and the surface causes a shift of the effec-
tive resonance frequency of the tuning-fork. The shear-force mode is based on a phase-locked-loop
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Figure 2.3: Detection efficiency of the setup, when the signal is detecting using the spectrometer.

system (easy-PLL plus NanoSurf), which allows for the detection of the change in the resonance
frequency. During the scan, when a change in the resonance frequency is detected, a feedback
controller changes the voltage applied to the z-piezo until the initial frequency corresponding to
the user-defined set-point is retained. In this way, the nanotip-sample distance is kept constant.
The morphology of the sample is recorded from the voltage applied to the z-piezo to restore the
resonance frequency.

When recording the power series, the sample is not scanned, so that the nanotip stays, ideally,
at the same sample position during all the measurement. A problem here is the drift of the xy-
piezo in the head, which makes it difficult to keep the nanotip position constant on the sample.
During this kind of measurement, the table cannot be touched when the nanotip is landed. Be-
cause of this reason, the lambda-half plate is substituted with a Liquid Crystal Retarder LCR-1-VIS
(THORLABS), which can be driven through an external voltage (for the generation of the voltage, a
Wavegenerator 2400 Keithley Instruments is used). The polarization of the incident field can be ro-
tated by different angles changing the amplitude of the voltage applied to the LCR. The laser power
corresponding to the different voltages is known from a previous calibration with power-meter.

White Light Scattering Setup

The plasmon resonance frequency related to a metallic nanostructure depends on the medium sur-
rounding the nanostructure itself (see Chapter 3). For these reason, it is important to record the
plasmonic resonance directly on the sample, in order to have a reliable estimation of the plasmonic
properties. This is done measuring the elastic scattering spectrum of the utilized metallic nanos-
tructures directly on the sample surface. To this aim, a white light source is needed. In this work,
white light generated from a photonic crystal fiber has been used as a first approach. The principle
at the base of photonic fibers is that of broadening a short laser pulse, by a combination of several
non-linear effects. These effect can find place in nonlinear media and designed hollow structures
such as photonic crystals. In this thesis, a Femto WHITE 800 crystal fiber has been used [19].
As input a Ti:Sapphire (Mira, COHERENT) pulsed laser has been used, centered for this experi-
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ment at 800 nm, corresponding to the optimum working wavelength of the photonic fiber. For this
measurement a 800 nm Long-Pass filter (CHROMA) must be used to block the laser radiation.

Dark-Field Setup

Alternatively, the elastic scattering of has been measured with a dark field microscope. The princi-
ple of dark field microscopy, is that the light used for the excitation is not collected in the detection.
This allows to improve the optical contrast. Typical optical dark field images show bright spots
on top an almost dark background (from which the name ”dark field”). See Figure 6.7 for an
example. This is standardly achieved by blocking the central part of the excitation beam before
focusing it on the sample. After focusing, both the excitation beam and the signal coming from the
sample diverge. When diverging, the excitation beam misses the collection lens while the signal,
which is emitted on a solid angle is collected. The dark field microscope used in this work is a
home-built microscope (Olympus BX51 microscope, Princeton Instruments SP2300i Acton Stan-
dard Spectrograph, Princeton Instruments PIXIS 256E CCD detector), belonging to the group of
Prof. Tim Liedl in the Faculty of Physics of the LMU Munich and was operated by Francesca
Nicoli. All measurements were taken using a 100W halogen lamp with an oil condenser (Olympus
U-DCW NA1:4), a MPLFLN-BD 100x/NA 0:9 Olympus objective, and a grating of 300 g/mm
500-nm blaze. Unfortunately, it was impossible to find the same position analyzed on the dark-field
microscope, when measuring on the confocal microscope.

Additionally, Transmission Electron Microscopy (TEM) measurement on gold nanorods have been
performed at the Chemistry Department of the LMU Munich by Dr. Andreas Wisnet and Dr.
Sophia Betzler. The statistical analysis on the gold nanorods aspect ratio and diameter distribu-
tion was done by Dr. Richard Ciesielsky and Harald Budde at the Chemistry Department of
the of LMU Munich. TEM measuremenst on beryllium doped gallium arsenide nanowires by Dr.
Sriram Venkatesan at the Max-Planck-Institut für Ei senforschung Düsseldorf.
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Figure 2.4: TENOM measurement where CNT photoluminescence (a), Raman Scattering (b) and
topography (c) are recorded at the same time. On this lengthscale the here observed CNT would
be indistinguishable.
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Figure 2.5: TENOM measurement of a pentacene thin film. The optical signal (a), composed in
this case by bot Pl and Raman, and the topography (b) show the same spatial resolution about 20
nm. The Pentacene film was prepared at the Faculty of Physics of the LMU Munich by Clemens
Liewald in the group of Prof. Bert Nickel.
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Part III

Plasmon Assisted Raman
Scattering of Carbon Nanotubes

and Graphene
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Introduction

In the last few decades, a variety of plasmon enhanced spectroscopy techniques have been de-
veloped, such as Tip Enhanced Near-Field Optical Microscopy (TENOM), Tip Enhanced Raman
Spectroscopy (TERS), Surface Enhanced Raman Spectroscopy (SERS) and others [6, 22, 23]. These
are all powerful techniques, allowing for a strong signal enhancement and to overcome of the diffrac-
tion limit. In addition, TENOM and TERS always provide the topographic information, deriving
from the scanning of the tip on the sample. Measurements similar to that shown in Figure 2.4 can
provide information, for instance, about the exciton localization in carbon nanotubes (CNT) [27].
This information would be totally hidden in a diffraction limited measurement. Besides purely op-
tical signals, also the photocurrent [28] and electroluminescence [29] of CNTs have been successfully
measured, giving a more detailed characterization of the observed system. Furthermore, recent ad-
vances in combining optical detection with Scanning Tunnel Microscopy (STM) have led to achieve
subnanometer resolution at the nanogap between a silver nanotip and a silver film [30, 31, 32].

In addition to the improvement of the spatial resolution, the Raman signal of a porphyrine molecule
inside the nanogap has been shown to increase non-linearly with the laser power [30]. This last
experimental observation is of high interest [33], because this plasmon-mediated non-linear Raman
response is potentially an important contribution to the TERS/SERS scenario that has not been
explored up to now. Complementary to these developments, new progresses in lithographic tech-
niques have allowed for the successful fabrication of dimers having extremely small distance, down
to few Å [34]. The so achieved experimental accessibility to these extreme electromagnetic field con-
finement conditions, have been combined with the development of quantum plasmonic models, with
the aim to describe non-classical phenomena such as quantum size effects [35, 36], quantum electron
screening [37, 38] electron ”spill-out” [39], atomic description of the field distribution[40, 41]and
quantum electron charge transfer [42, 43]. In this context, two models have been proposed, pre-
dicting a non-linear response in dependence on the laser power for a Raman emitter coupled to
a localized plasmon. The first relays on an optomechanical description of the process [44], while
the second is based on a quantum-electrodynamic description (QED) [45]. The overall framework
proposed in both works consists of a harmonic oscillator (the Raman emitter) coupled to a pho-
tonic cavity (the localized plasmon). Both models predict that the best condition for observing a
non-linear Raman response is achieved when the laser frequency is higher than the frequency of the
plasmonic resonance (this condition is described in the literature as blue-detuning [44, 45]). Also
from experimental works [30, 34, 46] the blue-detuning seems to be the best condition to achieve the
maximum Raman response. On the other hand structures having different plasmonic resonances
have shown the same behavior at the same laser excitation wavelength (therefore in totally different
detuning conditions) [34]. Moreover, the estimation of the rate of the Raman response is usually
done estimating the enhancement factor in dependence on the excitation wavelength [34, 46]. The
best efficiency obtained when exciting at the blue side of the plasmonic resonance, could then be
attributed to the best compromise between enhancement of the exciting and scattered field [46]. For
these reasons, a further understanding of the experimentally observed non-linearity of the Raman
scattering is needed [33].

In the experimental work described in this thesis, the Raman response of the G and 2D band
of graphene coupled to a localized plasmon is systematically measured in dependence on the laser
power. Graphene is chosen as Raman emitter, as the sufficient spectral distance between its two
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main Raman lines (G and 2D band) allows to investigate different regions of the plasmonic reso-
nance. Different excitation wavelength and different plasmonic nanostructures are used with the
aim of testing different detuning conditions. In contrast to previous work [30, 34, 46], a moderate
field enhancement regime is chosen. Correspondingly, isolated metallic nanostructures are taken as
plasmonic systems, instead of a nanogap. With this experimental configuration it can be answered,
if a localized plasmon alone, seen as a resonant system coupled to a Raman emitter, can give rise
to the theoretically predicted non-linear effect, or if other phenomena related to a subwavelength
plasmonic nanocavity need to be invoked. In this sense, the generality of the occurrence of this
non-linear phenomenon can be tested.
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Chapter 3

Plasmon Enhanced Spectroscopy

The different plasmon enhanced spectroscopy techniques mentioned in the introduction are all based
on a local field enhancement given by a metallic nanostructure (generally of gold or silver) having
dimensions much smaller than the wavelength used for the analysis. The nanostructure is put
in the focus of a laser beam and is used to provide a local near-field excitation source to record
a local spectroscopic response of the sample. In addition, the spontaneous rate emission can be
locally enhanced. The enhancement is given from the fact that the incident light drives the free
electrons in the metal along the direction of polarization of the field, giving rise to an accumulation
of charges on the surface of the metal. This surface charge forms oscillations which locally strongly
amplify the field. In this chapter, the concepts of surface plasmon polaritons and localized surface
plasmon polaritons are introduced, as basis for understanding Plasmon Enhanced Spectroscopy,
with particular attention to Plasmon Enhanced Raman Spectroscopy.

Localized Surface Plasmon-Polaritons

By definition, surface plasmons are quanta of surface-charge-density oscillation [47]. The same ter-
minology can be used also for collective oscillation in the electron density at the surface of a metal.
The surface charge oscillations are coupled to electromagnetic waves. This explains the definition
as ”polariton”. Nonetheless, the term plasmon is also often used alone, without specifying the
presence of electromagnetic waves. Surface plasmons have been first observed and discussed for
plane interfaces. In the case of propagation along the interface between a metal and a dielectric,
the electromagnetic field is localized in one dimension, normally to the interface. In the context of
nano-optics, a number of alternative configuration have been proposed, in order to further confine
the electromagnetic field in two or three dimensions [48]. Because of this confinement, it is usually
referred to plasmons in nanostructures as ”localized surface plasmon-polariton”. For the purpose
of this thesis, the three dimensional confinement is of interest, since it will be dealt with metallic
nanotips and nanorods.

In the following, the response to an external electromagnetic field from a metallic nanostructure in
a dielectric medium is considered. The typical dimension of the nanostrucures taken under consid-
eration (few tens of nanometers) is much smaller then the wavelength of light in the visible range.
This allows to look for a solution within the quasi-static approximation [49]: retardation effects

27



can be neglected and it can be assumed that all points of the object respond simultaneously to the
incoming field. In this approximation the electric field can be represented by a potential: ~E = −∇φ
where the potential has to satisfy the Laplace equation ∇2φ = 0. Also, the boundary conditions
between the two different media need to be considered. The Laplace equation can be solved analyt-
ically for spheres. This solution can be used for studying the local plasmon in a nanoparticle, which
is taken in the following as a model. The electromagnetic field outside the nanosphere corresponds
to that generated by a dipole induced by the external field, having polarizability:

α = 4πa3 εm − εd
εm + 2εd

(3.1)

where εm and εd are the metal and the surrounding medium dielectric functions respectively. a is
the radius of the nanosphere. The metal dielectric function can be expressed as:

εm = 1− ω̃2
P

ω (ω + iκ̃)
(3.2)

where ω̃P and κ̃ are respectively the intrinsic metallic plasma frequency and damping. Inserting eq.
(3.2) in (3.1), the spectral response of the localized plasmon field shows a resonant behavior. The
spectral position of the resonant frequency is given by the condition εm + 2εd = 0. Provided that
the incident field has the appropriate frequency, the field around the particle can be much higher
than the incident one. This property of the metallic nanoparticle to increase the incident field, is
what is referred to as local field enhancement. The field enhancement factor, in dependence on the
position around the particle, is defined as:

f(~r) =
| ~Eloc(~r)|
| ~EL(~r)|

(3.3)

~Eloc is the local electric field, and ~EL is the laser electric field. Following from the field distribution
around the nanoparticle, the enhancement factor can be very high in the close proximity of the
metallic surface (≈ 10 nm). It decays quickly for increasing distance.

The plasmon modes of a metallic nanotip are similar to those of a semi-infinity surface plasmon-
polariton for very large tip radii and become more and more similar to those of a nanoparticle for
smaller radius [47]. These are characterized by a much stronger field localization. In the electro-
static approach, considering the metallic nanotip as a perfect conductor, the main effect of field
enhancement at the tip is derived from the lighting rod effect, that gives stronger variations of the
potential for smaller radii. In the optical range, the field is further enhanced by the response of the
localized surface plasmon. These two effects together give what is defined as electromagnetic field
enhancement. The localized plasmon resonance is typically ≈ 1013 Hz broad in the visible range
for a nanoparticle and can be even broader for a nanotip. In a typical Raman experiment, the
excitation wavelength and the frequency of the scattered light lay close enough to be both within
the plasmon resonance spectral range. The scattered field will then be enhanced with a similar
enhancement factor as the incident one. The resulting scattered field will then be enhanced by the
square of the enhancement factor, and correspondingly measured intensity will be enhanced by the
fourth power of the enhancement factor. This exceptional property of plasmon enhanced Raman
scattering is usually referred to in literature as the ”f4-law”[51, 52].
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Beside metallic nanotips, also metallic nanorods are used in this thesis as plasmonic probes. Com-
pared to a nanosphere the nanorod is anisotropic, consisting of a long and a short axis. The
polarizability is going to be different from one axis to the other and depend on the aspect ratio
between the two. Correspondingly there will be two plasmon resonances, characterized by two
different resonance frequencies, each of which corresponds to the electron density oscillation in the
direction of either one axis or the other. To get the full picture, the full vector wave equation need
to be considered [50]. In the easiest picture, a rod can be considered as ellipsoid. In this case, the
two polarizabilities are[49]:

αlong(short) =
4π

3
LlongL

2
short

εm − εd
εd + Plong(short) (εm − εd)

(3.4)

Plong =
1− e2

e2

[
1

2e
ln

(
1 + e

1− e

)
− 1

]
(3.5)

Pshort =
1− Plong

2
(3.6)

where Llong and Lshort are the long and short axis direction respectively and e =
Llong
Lshort

is the
aspect ratio.

When the plasmonic resonance of a nanostructure is measured optically, the quantities which play
a role are the absorption and the scattering cross-sections. The sum of the two gives the extinction
cross-section. Mathematically, they are related to the polarizability of the nanostructure. For a
nanosphere they are given by:

σscattering =
k4

0

6π
|α|2 (3.7)

σabsorption = k0α (3.8)

where k0 is the wavenumber of the incident electric field.
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Chapter 4

Stimulated Raman Scattering

In this chapter the stimulated Raman process and its physical and mathematical description are
introduced. This is useful for the purpose of this thesis, because it allows to illustrate the Raman
emitter as a harmonic oscillator. Indeed, in the case of spontaneous Raman scattering, the Raman
emitter can be described as a damped harmonic oscillator, while in the case of stimulated Raman
scattering it can be described as a driven damped harmonic oscillator. Furthermore, the first
experimental observation of a non-linear Raman process at the nanogap between a silver tip and
a silver film [30] has been explained as process stimulated by the plasmonic field related to the
nanogap itself. In the second section of this chapter, this interpretation is discussed, in the frame
of a more general description of a stimulated process driven by a plasmonic field.

Stimulated Raman Spectroscopy

In a spontaneous Raman process, the change of the polarizability of the Raman scatterer, which
depends on the vibrational coordinate, changes the frequency of the scattered field. This can be
seen expanding the polarizability as (compare with Chapter 1):

α = α0 +
∂α

∂xv
xv (4.1)

where α is the polarizability itself and xv is the vibrational coordinate. If an harmonic time
dependence is assumed for both the laser electric field EL and the vibrational coordinate xv, the
scattered field related to a Stokes scattering process can be expressed as [3] 1 :

ES(t) =
ω2
S

4πε0c2
xv(t)

∂α

∂xv
EL(t) =

ω2
S

4πε0c2
x0

∂α

∂xv
ELe

−i(ωL−ωv)t (4.2)

where x0 is the amplitude of the vibration, EL is the amplitude of the laser electric field, ωL and
ωv are the laser and vibrational frequency respectively. ωS = ωL − ωv is the the frequency of the
scattered field for the Stokes process. For the Anti-Stokes process the frequency of the scattered
field is ωAS = ωL + ωv. In a spontaneous Raman scattering process the vibrational amplitude is

1In eq. (4.2) the spatial and angular dependence of the electric field is ignored for simplicity. The complete
formula can be found in [3].
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independent on the laser field intensity (see below). Correspondingly, the amplitude of the scattered
field increases linearly with the laser field amplitude.

In stimulated Raman scattering (SRS) two laser beams oscillating at different frequencies coin-
cide on the sample [53]. For reasons that are explained in detail below, the difference between
these two frequencies must be equal to the frequency of the vibrational mode. In this condition
the scattered Raman signal is increased, (Stimulated Raman Gain) while the intensity of the pump
is decreased (Stimulated Raman Loss). In a conventional SRS experiment the gain or the loss are
measured [54]. SRS has been used for biological and biomedical imaging having the advantage,
compared to Coherent Anti-Stokes Raman Scattering (CARS), of not exhibiting a non-resonant
background [55]. The vibration related to the vibrational mode can in general be described as that
of a harmonic oscillator, being characterized by a resonance frequency and a damping. An external
electric field, like that associated to a laser for instance, can be thought to apply a force to a Raman
emitter [3, 4]. It is usually referred to this force as the radiation force, or the radiation pressure
[47, 56]. This force is related to the energy of the system, according to:

F = − ∂U
∂xv

(4.3)

as before xv is the vibrational coordinate. The system composed by a Raman emitter and an electric
field is described as a dipole interacting with an external electric field. The dipole is for a Raman
emitter associated to its polarizability. The equation relating the dipole and the polarizability is
usually expressed as the scalar analogous of eq. (1.2) 2:

p = αE (4.4)

The energy U of the system is then:
U = −α|E|2 (4.5)

The polarizability can be expanded as a function of vibrational coordinate, as in eq. (4.1). Following
from eq. (4.3), the force applied on the Raman emitter is then equal to:

F =
∂α

∂xv
|E|2 (4.6)

This force can be inserted in the equation of an harmonic oscillator:

∂2xv
∂t2

= −ω2
vxv − γv

∂xv
∂t

+
∂α

∂xv

|E|2

m
(4.7)

m is the effective mass of the harmonic oscillator. From eq. (4.7) it is clear why the Raman process
is spontaneous in presence of a monocromatic exciting field. In such a case, the radiation force is a
constant and there is no quantity oscillating in time which could drive the oscillation. The situation
is different in the case of SRS. Here, two laser sources are present, which electric field amplitude
and frequencies are labeled as E1,2 and ω1,2, respectively. The total field is now given by the sum
of the two fields and its modulus square has two components oscillating in time, namely:

|E|2 = E∗1E2e
−i(ω1−ω2)t + E1E

∗
2e
−i(ω2−ω1)t (4.8)

2remember that the polarizability depends on the vibrational coordinate xv and consequently on the vibrational
frequency ωv (see eq. 4.1 and 4.2)
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The constant terms of the modulus square of the total field are neglected in eq. (4.8), because
they cannot drive the harmonic oscillator. On the other hand, the components oscillating in time
can in principle efficiently drive a harmonic oscillator. One can set ω̃ = ω1 − ω2, and describe the
time dependence of the amplitude of the harmonic oscillator as xv(t) = x0e

−iω̃t (compare with eq.
4.2). If for instance the first component in eq. (4.8) is inserted in the equation for the harmonic
oscillator, it turns out that the amplitude of the harmonic oscillator depends on the field frequencies
and amplitudes according to:

x0(ω) =
∂α
∂xv

E∗1E2

ω̃2 − ω2
v − iγvω

(4.9)

The oscillation is then in this case not spontaneous, but it is rather driven by the total electric field.
If the Raman shift is measured with respect to E1, the amplitude of the scattered field is (compare
again with eq. 4.2) [3]:

ES ∼ x0
∂α

∂xv
E1 ∼

( ∂α∂xv )2|E1|2E2

ω̃2 − ω2
v − iγvω

(4.10)

From eq. (4.10) follows that the scattered field has a quadratic dependence on the field E1 with
respect to which the Raman signal is measured. It is worth to point out, in relation to the discussion
of the experimental results, that while the spontaneous Raman scattering depends linearly on the
polarizability change ∂α

∂xv
, the stimulated Raman scattering depends on its square. Therefore, for

a larger ∂α
∂xv

(as it is the case for the 2D band with respect to the G band, see Chapter 7), both
spontaneous and stimulated Raman scattering should become stronger. It should also be notices
that, the vibrational damping, γv, is in the real case much smaller than the optical frequencies. It
then turns out, that the stimulated field is non-zero for the condition:

ω̃ = ω1 − ω2 = ωv ⇒ ω2 = ω1 − ωv (4.11)

When this condition is satisfied, the Stokes Raman process is stimulated. The useful condition for
the Anti-Stokes stimulated process ω2 = ω1+ωv can be obtained inserting the other field component
of eq. (4.8) in eq. (4.7). Importantly, this process is wavelength selective, in the sense that if ω2

does not satisfies the afore mentioned condition, the stimulated process is not taking place. Indeed,
if the difference between the two laser frequencies does not match the vibrational frequency, the
stimulated amplitude goes to zero. This wavelength selectivity makes it possible to use as second
beam a broad-band laser pulse, allowing to stimulate the whole Raman spectrum at the same time
without changing the spectral position and the width of the Raman lines. This concept is at the
basis of Femtosecond Stimulated Raman Spectroscopy (Fs-SRS) [57].

Stimulated Raman scattering in the presence of a Plasmonic
Field

In first approximation a plasmonic field can be described as a harmonic electric field oscillating as
its resonance frequency ωP and decaying in time with a damping factor κ. The sum of such a field
with the field of the laser is given by:

E = ELe
iωLt + EP e

iωP t−κt (4.12)
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This electric field can be taken as the total electric field and its squared amplitude can be inserted
in eq. (4.6). This yields:

F =
∂α

∂xv
E∗LEP e

+i(ωL−ωP )−κt (4.13)

This force can be inserted in eq. (4.7). The so formulated harmonic oscillation equation can be

still solved using Fourier Transformation. Writing xv(t) =
∫ +∞
−∞ dωe−iωt and taking the partial

derivatives inside the integral, eq. (4.7) becomes:

x0(ω) =
1

ω2
v − ω2 − iγvω

∂α

∂xv
E∗LEP

∫ +∞

−∞
dωe−iωte+i(ωL−ωP )−κt (4.14)

Considering the Fourier Transformation:∫ +∞

−∞
dωe−iωte+i(ωL−ωP )−κt =

κ2

4[
(ω − ωL − ωP )

2
+ κ2

4

] (4.15)

the amplitude of the oscillation finally becomes:

x0(ω) =
∂α
∂xv

κ2

4 E
∗
LEP

[ω2
v − ω2 − iγvω]

[
(ω − ωL − ωP )2 + κ2

4

] (4.16)

The amplitude of the oscillation is driven by the sum of the two fields as before. The plasmonic
damping factor is typically much larger than the vibrational one (κ >> γv). Therefore, as in a two-
beams stimulated Raman scattering process, the width and the position of the Raman peak remain
those characteristic of the vibrational mode. The driven amplitude on the other hand depends on
the frequency match between laser and plasmon. In particular the amplitude is maximum when
the difference between the laser and plasmonic frequency matches the vibrational frequency. Con-
sequently, the scattered field amplitude will also scale with the same dependence on laser, plasmon
and vibrational frequency. It is important to point out that no difference between the blue and red
detuning is predicted according to this model: the difference between laser and plasmon frequency
is squared and the total response is consequently independent on its sign. This is a fundamental
difference with the model presented in Chapter 5. Again consistently with a two-beams stimulated
Raman process, the scattered field increases quadratically with the laser field and linearly with the
plasmonic field. On the other hand, the plasmonic field is linearly dependent on the laser field. In
this picture then, the scattered Raman field has a cubic dependence on the laser field. In Chapter
7 the experimental results are compared with this model. In relation to that, it is discussed if the
deviation from linearity of the Raman signal in dependence on the laser power can be described
with a quadratic or a cubic function. Also, it is discussed how the experimental occurrence of the
non-linearity depends on the match between the vibrational frequency and the difference between
plasmonic and resonance frequency and how this compares to the theoretical prediction just pre-
sented here.

In this last description the plasmonic field has been taken to oscillate at a single frequency corre-
sponding to its resonant one. An alternative description [30] is based on the analogy with Fs-SRS.
In the presence of a plasmon, the plasmonic field is thought to act as the second beam needed in a
SRS as before, but it would not be monochromatic. The plasmonic field is rather imagined to be a
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Figure 4.1: Amplitude of the Raman peak in the plasmon stimulated Raman picture. The amplitude
is plotted in dependence on the frequency for different mismatch between the laser and plasmon
frequency and the vibrational frequency. Both the frequency and the mismatch are given in unit
of the vibrational frequency. The peak position and width do not change for different mismatching
and are always those characteristic of the spontaneous vibration. Only the amplitude depends on
the mismatching and is maximum for the condition ωL − ωP = ωm.

broad-band field, similarly to a fs-pulse. In this picture then, the scattered field should correspond
to that given in eq. (4.10), where the frequency ω2 satisfying the resonance condition is selected
from the broad-band spectrum. It remains an open question anyhow, whether the plasmon can
really act as a broad-band source. It is true that a broad-band background is always associated
to a plasmon enhanced measurement, coming from inelastic electron scattering inside the metallic
nanostructure [58, 59]. On the other hand, as it appears from eq. (4.10) , the second incident field
must be sensibly different from zero. In the afore mentioned work [30] and in the experiments pre-
sented in the following, when the Raman shifted frequency is measured, the field at ω2 is detected
as well together with the whole plasmonic background. The intensity of this field is very far from
being comparable with the intensity of a laser source. The optically detected plasmon background
can then hardly be imagined to be sufficiently strong to give rise to a stimulated Raman scattering
process.
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Chapter 5

Description of the Coupled System

In this section, the system composed by the Raman emitter and the plasmonic nanostructure is
described as a coupled system. In this sense, the vibrational mode and the plasmonic field are
allowed to exchange energy. The total energy is then given by the sum of the vibrational energy,
the electromagnetic energy of the plasmonic field and the interaction energy. This interaction
energy is defined though a coupling factor. The presented description is analogous to that of
an optomechanical system in which, for instance, one of the mirrors of a Fabry-Perot cavity is
mechanically coupled to a spring [61]. In such a system, the radiation pressure acting on the mirror
excites the mechanical oscillation of the spring. This oscillation changes the distance between the
two mirrors, and consequently the resonance frequency of the cavity. In the system considered here,
the vibrational mode and the plasmon, which is described as a resonant system, correspond to the
mechanical oscillator and to the Fabry-Perot cavity respectively. Analogously to the optomechanical
system, the electric field excites the vibrational mode, which in return can modify the electric
field. Under certain conditions, defined throughout this chapter, this leads to a cooperative process
between plasmonic field and Raman emitter which can enhance the Raman response. This process
is generally defined as ”dynamical back-action” [44, 45].

Definition of the Coupling Factor

The coupling factor describes the entity of the interaction between the plasmon electromagnetic
field and the vibrational mode. This interaction happens through the change in the polarizability of
the Raman emitter itself, characteristic of a Raman process. The coupling factor has been derived
either from the quantum-mechanical description of electric field and molecular vibration [45] or from
the resonance frequency shift related to the medium polarizability inside the cavity [44]. For sake
of generality, in this thesis a derivation from the energy conservation is given. The result perfectly
coincides with that derived following the afore mentioned alternative treatments. The polarization
of a Raman emitter in the presence of a local field is [7]: 1

p =
α · E
V

(5.1)

1differently from eq. (4.4), it is here needed to considered the local electric field, and therefore insert the volume
on which the field is extended.
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Correspondingly, the electromagnetic energy of the interaction between the electromagnetic field
and the Raman emitter itself is:

U = −p · E = −α |E|
2

V
(5.2)

The polarizability is expressed in dependence on the vibrational coordinate as in eq. (4.1). As
explained in Chapter 4, if the electromagnetic field oscillates at a frequency ω0, in an inelastic
scattering event this frequency can be changed in a Raman process by the change of the polarizability
of the Raman emitter. As a very general consideration, the frequency can then be taken as a function
of the vibrational coordinate, just as the polarizabity. 2 The energy can then be written as:

U = nP h̄

[
ω0 + xv

∂ω0

∂xv

]
= −

[
α+ xv

∂α

∂xv

]
|E|2

V
(5.3)

As in eq. (5.1), V is the volume on which the electric field is extended. Taken into consideration

that the number of photons at a frequency ω0 is equal to nP = ε0V |E|2
h̄ω0

, one obtains the relation:

∂ω0

∂xv
=

ω0

ε0V

∂α

∂xv
(5.4)

Based on this result, the analogy with a typical optomechanical system becomes clear (compare
with Figure 5.1). In such a system a mirror coupled to a spring is subjected to a radiation force that
mechanically shifts the mirror. The mechanical oscillation of the spring connected to the mirror
is consequently excited. This oscillation is going to change the distance between the two mirrors,
which will cause a change in the resonance frequency of the cavity. The vibrational coordinate xv
is the analogous of the degree of freedom of the spring. The resonance frequency can be expressed
as a function of this degree of freedom, namely [60, 61]:

ω0(xv) = ω(xv=0) + xv
∂ω0

∂xv
(5.5)

This expression for the frequency is exactly the same that has been used in eq. (5.3). The first
partial derivative of the frequency after the mechanical degree of freedom is in optomechanics
expressed as a parameter Gv. From eq. (5.5) follows then the definition:

Gv = − ∂α

∂xv

ω0

ε0V
(5.6)

Gv is nothing but the coupling factor between the electromagnetic field and the vibrational mode.
The interaction between them is mediated by the change in polarizability of the Raman emitter.
The radiation force defined in eq. (4.3), can be expressed though the coupling factor Gv, as:

F = nP h̄Gv (5.7)

The formulation that has been presented in this section has general validity for an electric field,
which more precisely has been described up to now as an electric field inside a cavity, which looses
or gains energy in favor of a vibrational mode. In the following sections, the electric field related
to the plasmon is treated as the field inside a cavity, in the general description of a plasmon as a
resonant system.

2This is equivalent to state, in a very general way, that besides the field oscillating at its characteristic frequency
ω0 (corresponding to the Rayleigh scattering field), another component exists, which oscillation frequency is modified
by the molecular vibration (corresponding either to the Stokes or Anti-Stokes scattering).
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Figure 5.1: (a) schematic representation of an optomechanical system composed by a two-mirrors
Fabry-Perot cavity where one mirror is mechanically coupled to a spring. (b) in analogy with the
optomichanical system, the near-field related to a local plasmon can be pictured as a resonant
system coupled to a vibrational mode characteristic, for instance, of a molecule. Compare with [61]
and [45].

Hamiltonian for the coupled System and Derivation of the
Quantum Langevin Equations

To considered the temporal dynamic of the system, it is necessary to formulate its corresponding
Hamiltonian. The Hamiltonian as presented in this thesis, was first formulated in [62]. In the
following, the local electric field oscillating in time is considered to be the one related to the
plasmon. Its resonance frequency is then labeled correspondingly. In comparison with the notation
used in the previous section, it holds: ω0 ≡ ωP . Considering the definition of the coupling factor
and including the energy of the molecular vibration, the total energy of the system can be written
as:

U = nP h̄ωP + nvh̄ωv + nP h̄xvGv (5.8)

Where nP and nv are the photon and phonon population respectively. In a quantum-mechanical
notation, this corresponds to the Hamiltonian:

Ĥ = h̄ωP â
†â+ h̄ωv b̂

†b̂+ h̄Gvx̂vâ
†â (5.9)

â† and â represent the photon annihilation and creation operators respectively. Similarly b̂† and
b̂ represent the phonon operators. The Hamiltonian in eq. (5.9) describes two coupled harmonic
oscillators. The last term is defined as the interaction Hamiltonian Ĥint = h̄Gvx̂vâ

†â. In the
treated system one harmonic oscillator corresponds to the plasmon while the second corresponds to
the Raman emitter. The operator for the vibrational coordinate x̂v can be written for a harmonic

oscillator through the creation and annihilation operators, according to x̂v = xzpm

(
b̂† + b̂

)
. xzpm

is the amplitude of the zero point motion for a harmonic oscillator of effective mass m, oscillating

at the frequency ωv given by xzpm =
√

h̄
2mωv

. For sake of simplicity in the mathematical treatment,

the coupling is usually expressed through:

gv = xzpmGv (5.10)
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The factor gv is generally named the vacuum optomechanical coupling factor [44]. From the above
definitions, the total Hamiltonian is then written as:

Ĥ = h̄ωP â
†â+ h̄ωv b̂

†b̂+ h̄gv

(
b̂† + b̂

)
â†â (5.11)

It needs now to be considered that the system is overall driven by a laser source. In the total
Hamiltonian we then need to include a term describing the laser, namely:

ĤL = ih̄
√
κexs

(
e−iωLtâ† − eiωLtâ

)
(5.12)

The quantity κexs
2 correspond to the photon flux. The total Hamiltonian is the sum of eq. (5.11)

and (5.12). It is now convenient to change the reference system. By making use of the Backer-
Campbell-Hausdorf formula, the total Hamiltonian can be written as:

Ĥ = h̄ (ωP − ωL) â†â+ h̄ωv b̂
†b̂− h̄gvâ†â

(
b̂† + b̂

)
+ ih̄
√
κexs

(
â† + â

)
(5.13)

The difference between the laser and the plasmon frequency is expressed through: ∆ = ωP −ωL. ∆
indicates the spectral displacement of the laser frequency from the plasmonic one and therefore it is
referred to as the detuning factor. In the following the Hamiltonian as expressed in eq. (5.13) is used
to describe the dynamics of the system. The time-dynamics of the operators is described through
the Heisenberg equation motion. Taking into account the decay in time, the time derivatives of the
photon and the phonon operators are:

∂â

∂t
= i∆â+ igvâ

(
b̂† + b̂

)
− κ

2
â+
√
κexs (5.14)

∂b̂

∂t
= −iωv b̂+ igvâ

†â− γv
2
b̂ (5.15)

These are the Quantum Langevin Equation of the system. They are going to be used in the
following sections to investigate the system dynamics. Before proceeding we note that eq. (5.15)
can be written as the sum of two equations, one for the linear momentum p̂v and one for the position

operator x̂v. This follows from the definition for the phonon operator as: b̂ =
√

mωv
2h̄

[
x̂v + i p̂v

mωv

]
.

The two equations of the system corresponding to eq. (5.15) are then:

∂p̂v
∂t

= −mω2
v −

γv
2
p̂vx̂v + h̄Gvâ†â (5.16)

∂2x̂v
∂t2

= −ω2
vx̂v −

γv
2

∂x̂v
∂t

+
h̄Gv
m

â†â (5.17)
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Solution in the Classical Limit

As a first approach one can look for a solution in the classical limit. The treatment is summarized
in this section, further details can be found in [44]. The classical solution is derived by taking the
expectation values for the operators. Eq. (5.17) becomes:

∂2xv
∂t2

= −ω2
vxv −

γv
2

∂xv
∂t

+
h̄Gv
m
|E|2 (5.18)

The last term in (5.18) is the equivalent of the radiation force as defined in eq. (4.3) and (5.7). The
amplitude of the total field E appearing in the last term of eq. (5.18) is governed by the equation:

∂E

∂t
= i∆E + ixvGvE −

κ

2
E +

√
κexs (5.19)

which corresponds to eq. (5.14) in the classical limit. In the following a solution for eq. (5.19)
is sought. The vibrational amplitude can be supposed to be harmonic and correspondingly is
considered to have to form xv(t) = x0cos(ωvt). It is further assumed that the amplitude of the
vibration is much smaller that the length L on which the field is extended. The dimensionless
parameter ε = x0

L is then used to expand the field as: E(ε) =
∑∞

0 Enε
n. The relevant solutions are

those for the zero and first order, corresponding to:

E0 =

√
κexs[

−i∆ + κ
2

] (5.20)

E1(t) = EASe
iωvt + ESe

−iωvt (5.21)

The the amplitudes of the Anti-Stoked EAS and Stokes ES fields are given by:

EAS =
GvL

2

E0[
ωv −∆− iκ2

] (5.22)

ES = −GvL
2

E0[
ωv + ∆ + iκ2

] (5.23)

The total field is then:
E(t) = E0 + E1(t) (5.24)

This field can be inserted in eq. (5.18) to find a solution for the amplitude of the vibration. It is
worth to note that, after the substitution of the expression for the electric field, eq. (5.18) becomes
the classical equation for a harmonic oscillator driven by a radiation force, perfectly corresponding
to the system described in Chapter 4. If the radiation force applied to the vibrational mode is set to
be constant (compare with Chapter 4), this force should have in this case the form FP = h̄Gv|E0|2.
Eq. (5.18) can be then rewritten as:

∂2xv
∂t2

= −ω̃v2xv −
γ̃v
2

∂xv
∂t

+
h̄Gv
m
|E0|2 (5.25)

where ω̃v and γ̃v are the effective resonance frequency and damping factor respectively, given by:

ω̃v =

√√√√√ω2
v −

h̄G2
v

m

κexs2[
∆2 + κ2

4

] { ωv + ∆

[∆ + ωv]
2

+ κ2

4

− ωv −∆

[∆− ωv]2 + κ2

4

}
(5.26)
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γ̃v = γv +
h̄G2

v

mωv

κexs
2[

∆2 + κ2

4

] { κ
2

[∆− ωv]2 + κ2

4

−
κ
2

[∆ + ωv]
2

+ κ2

4

}
(5.27)

In the following the discussion focuses on the effective damping factor γ̃v and its behavior in
dependence on the detuning factor. For red-detuning (ωL < ωP ), the detuning factor is positive,
which leads to an increase of the effective damping factor. This increase can be interpreted as a loss
of energy for the vibrational mode in favor of the plasmonic field. The most interesting situation
happens for the opposite case, that is the blue-detuning (ωL > ωP ). In this case the detuning factor
is negative, which leads to a decrease of the effective damping factor. Opposite to the previous
case, the energy is now transferred from the plasmon to the vibrational mode. Consequently, the
Raman signal can be strongly enhanced. According to the definition of this process as dynamical
back-action, the effective damping factor is usually written as:

γ̃v = γv + γDBAv (5.28)

The definition of γDBA follows from eq. 5.27. The best enhancement condition is present for
∆ = ωv, for which the effective damping factor is minimum. Interestingly, this condition is the
same as that obtained in the previous chapter when considering a stimulated Raman process given
by the sum of the laser and the plasmon field. The enhancement of the Raman signal can be
considered through the out-of-equilibrium vibrational occupancy following from the blue-detuning
[63]. In presence of dynamical back-action the phonon population is given by:

nDBAv =
nv

1− |γ
DBA
v |
γv

(5.29)

nv is the phonon population in absence of dynamical back-action. It is of interest for the discussion
of the experimental results presented in the following chapters to focus on the Stokes-process. For
this, the cross-section in presence of dynamical back-action is given by:

σDBAS =
nDBAv + 1

nv + 1
σS (5.30)

σS is the Raman cross-section in the absence of dynamical back-action. The scattered Raman power
in a Stokes process can be taken as: PS = σDBAS PL. From eq. (5.30) follows that the Stokes power
is given by the sum of a linear component, which corresponds to the Raman power in absence of
dynamical back-action, and another component having though nDBAv a stronger dependence on the
laser power. From eq. (5.30) and (5.29) it appears that the Raman power diverges for the condition:

|γDBAv |
γv

= 1 (5.31)

If the photon flux is written as κexs
2 = PL

h̄ωL
, the asymptotic power can be found from eq. (5.31)

to be:

PL,threshold =
h̄ωLmγvωv

[
∆2 + κ2

4

]
h̄G2

v

[
(∆ + ωv)

2
+ κ2

4

]
+
[
(∆− ωv)2

+ κ2

4

]
2κ∆ωv

(5.32)

As follows from eq. (5.32), the asymptotic power is diminished for a larger coupling factor. Also,
it increases rapidly for higher plasmonic damping. It then not trivial to reach this regime, because
the damping of common plasmonic nanostructure is very high (∼ 1013Hz).
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Quantum-Electrodynamic Solution of the Langevin Equation

In the following, the Quantum Langevin Equations presented in eq. (5.15) and (5.14) are solved
without mapping them to their classical equivalent [45], as it was done in the previous section.
Before doing so, it is helpful to define the plasmonic electric field as a quantized field with resonance
frequency ωP and an effective volume V expressed through the photon creation and annihilation
operators:

EP = i

√
h̄ωP
2εV

(
â− â†

)
(5.33)

The interaction Hamiltonian and the coupling factor can be found also from this quantum-mechanical
definition of the field. 3 Again, it needs to be considered that the system is driven by a laser. In
this treatment, this is done defining a driving parameter Ω, as:

Ω =
κ

2

√
ε0V

2h̄ωL
|E| (5.34)

In the presence of plasmonic enhancement, the amplitude of the field |E| is that of the laser field
multiplied by the field enhancement factor, |E| = f |EL|. Correspondingly to (5.34), the driving
term in the Hamiltonian is:

ĤL = ih̄Ω
(
â†e−iωLt − âeiωLt

)
(5.35)

For consistency with eq. (5.12) this Hamiltonian has been labeled as ĤL. Nonetheless, there is
a substantial difference between the two formulations. In eq. (5.12) the prefactor contains the
photon flux and the excitation rate. It consists then purely of the laser excitation, not including
any term relative to the plasmon or the associated near-field. The driving paramenter as defined
in eq. (5.34) is related on the contrary to the plasmon electromagnetic field. Indeed it contains
the plasmon decay rate, the effective volume and the field enhancement factor. The system is then
considered in this last formulation to be excited not directly by an external electric field, such as
that of the laser, but by the local plasmonic field.

According to the definition of the driving paramenter, the total Hamiltonian in eq. (5.13) be-
comes:

Ĥ = h̄∆â†â+ h̄ωv b̂
†b̂− h̄gvâ

(
b̂† + b̂

)
+ ih̄Ω

(
â† − â

)
(5.36)

Correspondingly, the Quantum Langevin Equations are formulated like:

∂â

∂t
= i∆â+ igvâ

(
b̂† + b̂

)
− κ

2
â+ Ω (5.37)

∂b̂

∂t
= −iωv b̂+ igvâ

†â− γv
2
b̂ (5.38)

3The coupling factor gv as defined in eq. (5.10) can be derived from this definition for the quantized electro-

magnetic field. The induced Raman dipole operator can be written as p̂R = α̂Ê. The interaction Hamiltonian

is correspondingly: Ĥint = −p̂RÊ = −α̂
∣∣∣Ê∣∣∣2. The Raman polarizability is given by α̂ = α + ∂α

∂xv
x̂v , where

x̂v = xzpm(b̂ + b̂†). Expressing the field as in eq 5.33, one finds Ĥint = −
(
∂α
∂xv

)
h̄ωP
εV

â†âxzpm
(
b̂† + b̂

)
. This

Hamiltonian corresponds to eq. (5.11) after the definition gv = xzpm
(
∂α
∂xv

)
h̄ωP
εV

, equivalent to eq. (5.10).
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These equations can be solved if it is assumed that the coupling between the two oscillators is weak
enough to consider their interaction as a perturbation from the steady state. The steady state
amplitude is: αS = Ω

(κ2 +i∆)
. By the substitution â = αS + â, the Quantum Langevin Equations

become:
∂â

∂t
= i∆â− κ

2
â+ igvαS

(
b̂† + b̂

)
(5.39)

∂b̂

∂t
= −iωv b̂−

γv
2
b̂+ igv

(
â†αS + α∗S â+ |αS |2

)
(5.40)

The same equations can be correspondingly written also for â† and b̂†. It is possible to find an
analytical solution for the system of these four equation setting the detuning to zero and neglecting
the thermal population of the vibrational mode. The system of equations can be written in matrix
form as:

∂

∂t
~A = ¯̄M ~A+ ~D (5.41)

where

~A =


â†

â

b̂†

b̂

 (5.42)

¯̄M =


−κ2 0 −igvα∗S −igvα∗S
0 −κ2 +igvαS +igvαS

+igvαS +igvα
∗
S −

[
γv
2 + iωv

]
0

−igvαS −igvα∗S 0 −
[
γv
2 − iωv

]
 (5.43)

~D =


0
0

−igv|αS |2
+igv|αS |2

 (5.44)

The emission spectrum of the cavity can be calculated as:

S(ω) = ω4

∫ +∞

−∞
dte−iωt〈â†〉ss (5.45)

The suffix ss indicates the steady-state. From the Quantum Regression Theorem, the equation of
motion for the quantity 〈x(t)〉 is the same as that for 〈x(t)x(0)〉. It is therefore useful to multiply
eq. (5.41) with the vector:

~A0 =
[
â0 â0

† b̂0 b̂0
†
]

(5.46)

Doing so, one finds that the two-time correlator 〈â†â0〉ss needed to calculate the emission spectrum
according to eq. (5.45) can be found from the product:

et
¯̄M 〈


â†

â

b̂†

b̂

 â0〉ss (5.47)
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This product can be expressed as a series of expressions with exponential factors given by the
eigenvalues of ¯̄M . Among those, the terms oscillating at frequencies ±ωv are taken, in order to
describe the Stokes and Anti-Stokes scattering. In the experiments described in the following, the
Stokes scattering is measured. For sake of simplicity the further discussion focuses on the results
for the Stokes scattering. The emission spectrum at the Stokes frequency is then found to be:

S(ωS) =
2ω4

S

γv

(
s2Ω2 + s4Ω4

)
(5.48)

In the limit γv << κ, ωv, corresponding to the real condition, the factors s2 and s4 can be written
as:

s2 =

(
4gv

κ|κ− i2ωv|

)2

(5.49)

s4 = s2
2

κ

γv
(5.50)

In this result the contribution of thermally excited vibrations is neglected, on the other hand it can
be considered changing eq. (5.48) in:

S(ωS) =
2ω4

S

γv

[
s2 (1 + nv) Ω2 + s4Ω4

]
(5.51)

where nv corresponds to the Boltzmann occupation for the vibrational level. In analogy with the
previous discussion, it is worth to evaluate the threshold for the incident power from which the non-
linearity should appear. In this case we can take as threshold the power for which the quadratic
term is larger than the linear one. For an estimation of the threshold it is convenient to use the
driving parameter. One finds:

Ω2
threshold =

γv
κ

[
κ2
[
κ2 + 4ω2

]
16g2

v

]
(5.52)

corresponding to the electric field 4 :

|E|2threshold =
h̄ωP γv
κε0V

[
κ2 + 4ω2

16g2
v

]
(5.53)

As before, the threshold for the non-linear process decreases for a higher coupling factor and is
increased for a higher plasmonic damping. The increase of the threshold power with the plasmon
damping factor makes generally speaking the experimental observation of the non-linearity chal-
lenging. Indeed, for real plasmonic system, the plasmon damping is usually very high, between 1013

and 1014 Hz. In this sense, the plasmon is a ”bad cavity” characterized by high losses. The high
losses can on the other hand be compensated by the very small volume (on the nanometer scale)
on which the local field is extended.

Unfortunately, no analytical solution exists for the general case in which the detuning is different

4remember |E| = f |EL| where f is the enhancement factor of the electric field.
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for zero. Nonetheless it is fundamental to analyze the dynamic of the system also in dependence
on the detuning. This can be done looking for a numerical solution of the equation:

∂ρ

∂t
= i[ρ, Ĥ] +

κ

2
Dâ[ρ] +

γv(nv + 1)

2
Db̂ +

γvnv
2

Db̂† (5.54)

where ρ is the density matrix of the system and, for a generic operator ô:

Dô[ρ] = 2ôρô† − ô†ôρ− ρô†ô (5.55)

It is beyond the aim of this thesis to explain the computational method needed to solve eq. (5.55).
A detailed description of this can be found elsewhere [45]. For a comparison with the experimental
work, the results related to the Stokes process are discussed. It turns out, that the emission
intensity due to dynamical back-action changes in relation to the detuning. In particular the emission
intensity is maximum when the laser frequency is higher than the plasmonic resonance frequency
(blue-detuning). It is also interesting to compare the analytical results with the numerical ones.
For a weaker coupling the results obtained with the two different methods are in good agreement.
When the coupling becomes stronger, the analytical results slightly overestimate the intensity of the
scattered field. The strength of the couping is considered through the ratio between the coupling
factor and the plasmon damping factor, named the ”granularity parameter” gv

κ [131].

Figure 5.2: intensity of the Raman peak as a function of the square of the driving parameter for
(a)gv = g0 (b) gv = 10g0 (c) gv = 30g0 (g0 is set equal to 6 · 1013Hz, the plasmon damping is taken
to be 250 larger than g0). The full squares are the results obtain though the linearised Hamiltonian,
the empty ones are those obtained though the full numerical solution. The dashed line shows the
linear trend. (d) intensity of the Raman peak as a function of the laser frequency (given in units
of the plasmon resonance frequency). On the right axis the driving parameter corresponding to
the shown curves is given in meV. The grey line correspond to the plasmon resonance frequency.
Adapted from [45].
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Solution within the Quantum Noise Approach

Besides the treatment which has just been described, based on the solution of the master equation,
an alternative analysis is possible. This analysis is based on the Quantum Noise Approach [64, 65].
Within this approach, the rates of relaxation and excitation of the vibration are considered to be
proportional to the noise spectrum of the cavity. In the coupled system under analysis, the photon
population fluctuation is the analogous of the power spectrum of the cavity noise. Since the noise
fluctuations are considered, it si convenient to formulate the Hamiltonian such that no driving term
appears. This is possible defining the displacements:

α′S =
Ω

κ
2 + i∆′

(5.56)

β′S =
gv
∣∣α′S∣∣2

ωm − iγm2
(5.57)

∆′ = ∆− 2gvRe
{
β′S
}

(5.58)

The fluctuation of the plasmon population is estimated around its equilibrium value, defining F̂ (t) =

â†â−
〈
â†â
〉

. The cavity fluctuation can be simplified as F̂ ≈ α′S(â+â†). In this way, the fluctuation

around the steady-state value is obtained. The fluctuation in the time domain is then given by:
[66]:

S(t) =
〈
F̂ (t) ˆF (0)

〉
=
∣∣α′S∣∣2 ei∆′t−κ2 t (5.59)

From the fluctuations in the time domain, the noise spectrum follows as:

S(ω) =

∫ +∞

−∞
eiωt

〈
F̂ (t)F̂ (0)

〉
dt =

∣∣α′S∣∣2 κ

[∆′ − ω]
2

+ κ2

4

(5.60)

The noise of the radiation pressure force is found from the power spectrum of the noise as:

SF̂ F̂ = h̄GvS(ω) (5.61)

The optomechanical damping is defined from Fermi golden rule as:

γopt =
x2
zpm

h̄2

[
SF̂ F̂ (ωm)− SF̂ F̂ (−ωm)

]
(5.62)

which finally gives:

γopt = g2
v

∣∣α′S∣∣2 κ
{

1

(∆′ − ωm)2 + κ4

4

− 1

(∆′ + ωm)2 + κ2

4

}
(5.63)

This formulation requires γopt, γm << κ [66], these conditions are satisfied for the experimental
system described in the following. In analogy with the photon population, also the phonon popu-
lation fluctuation can be found through the power spectrum noise. The molecular vibration is in
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a displaced thermal state, where the displacement is given by β′S and the incoherent population of
the thermal state is given by:

nincoherentb =
γm

γm + γopt
nthermal +

(∆′ − ωm)2 + κ2

4

4∆′ωm

γopt
γm + γopt

(5.64)

As a result, the intensity of the Stokes emission for an arbitrary detuning is given by [45]:

S(ωS) = ω4
S

g2
vκ |α|

2

(∆′ + ωm)2 + κ2

4

nincoherentb + 1

γopt + γm
(5.65)

In Chapter 7, the experimental results will be interpreted using eq. (5.65).To estimate the scattered
power spectrum the parameter ∆′ needs to be calculated. It is then necessary to find an expression
for the real part of β′S . This can be done substituting eq. (5.56) into (5.57). This leads to the third
order equation:

4g2
[
Re
{
β′S
}]3
− 4∆gv

[
Re
{
β′S
}]2

+

[
κ2

4
+ ∆4

] [
Re
{
β′S
}]
− gvωmΩ2

ω2
m +

γ2
m

4

= 0 (5.66)

For the realistic parameters of the system under analysis in this work, the real part of β′S is however
negligible compared to ∆. It can then be generally considered in the following ∆′ = ∆.

The optomechanical damping γopt defined in eq. (5.63) is the analogous of the dynamical back-
action damping (γDBA) derived in the previous section. In analogy with γDBA, γopt describes the
energy flux from the molecular vibration to the cavity (first term) and from the cavity to the vi-
bration (second term). For blue detuning (∆ < 0) the optomechanical coupling is negative and the
incoherent phonon population increases. The energy is then lost by the plasmon field and gained
by the vibrational mode, leading to an enhancement of the Raman scattering. It must be noticed
here that the second term is eq. (5.64) is not derived for the solution in the classical limit. The
presence of this term makes the dependence of the Stokes emission S(ωS) on the detuning factor
and on the plasmon damping factor more complicated that it was found for the solution in the
previous section. Following from this non trivial dependence, it is not strictly true, that the best
enhancement condition for the Raman response is given by the matching between vibrational fre-
quency and detuning factor, ∆ = −ωv. This point is further discussed in the following of this section.

As can be seen from eq. (5.65) the scattered power diverges for γopt = −γm. For the Raman
scattering intensity to diverge it is then necessary that the optomechanical damping factor becomes
negative. This is possible only in the case of blue-detuning, when the detuning parameter ∆ is
negative. In terms of the pumping parameter the divergence is found for the condition:

Ω2
threshold = −γm

∆2 + κ2

4

κg2
v


[
(∆− ωm)2 + κ2

4

] [
(∆ + ωm)2 + κ2

4

]
4∆ωm

(5.67)

giving for the electric field 5:

|E|2threshold = − 8

κ2

h̄ωP
εV

γm

∆2 + κ2

4

κg2
v


[
(∆− ωm)2 + κ2

4

] [
(∆ + ωm)2 + κ2

4

]
4∆ωm

(5.68)

5again, the field is expressed as |E| = f |EL| where f is the enhancement factor.
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The minus sing in eq. (5.67) and (5.68) is compensated by the fact that ∆ is negative. As already
explained, if ∆ is positive, the divergence cannot be reached and eq, (5.67) and (5.68) are not valid
anyways. For zero-detuning (∆ = 0) the optomechanical damping factor as defined in eq. (5.63)
vanishes. In this limit, the incoherent population becomes:

lim
∆=0

nincoherentb = nthb
κ

γm

4gv
κ2 + 4ωm

|αS |2 (5.69)

From the comparison with eq. (5.49), valid in the limit γm << ωm, κ, eq. (5.69) is equal to:

lim
∆=0

nincoherentb = nthermalb + s2Ω2 κ

γm
(5.70)

The two analytical results are then fully consistent: the expression for the scattered Raman inten-
sity found in the zero-detuning case, is a limit of the expression found through the Quantum Noise
Approach.

As already mentioned, the dependence of S(ωS) on the plasmon damping factor and on the detuning
factor is not as easy as it was found according to the solution in the classical limit. The behavior
of S(ωS) is therefore investigated in the following for different detuning conditions and for different
values of the plasmon damping. The description is focused on the Stokes Raman scattering for
comparison with the experiment presented in Chapter 7. For small plasmon damping (κ ∼ 1011

Hz) the best condition for the enhancement of the Raman scattering is found as for the solution in
the classical limit for ∆ = −ωm. In this case, the detuning plays indeed an extremely critical role,
changing the Raman response about orders of magnitude. This can be understood by inspection
of eq. from (5.63) to (5.65): for the condition κ << ∆, ωm the denominators in eq. (5.63) are
dominated by the difference ∆ − ωm. In the case of blue-detuning, γopt can assume very large
negative values, and can consequently lead to a large increase of the incoherent vibrational popula-
tion nincoherentb (below threshold, before the Raman signal diverges, the optomechanical damping
factor is always smaller than the vibrational damping factor, γopt < γv). Also, for small plasmonic
damping, the prefactor in eq. (5.65) is larger. This situation is represented in Figure 5.4. Note
that, besides the strong dependence on the detuning factor, also in the best enhancement condition
the Raman response due to the dynamical back-action is always linear.

In the real case, the plasmon damping is on the other hand of the same order of magnitude of
the detuning factor and the vibrational frequency, that is κ ∼ ∆ ∼ ωm ∼ 1013 Hz. In such a
situation the difference (∆ − ωm) is less crucial, because the plasmonic damping factor becomes
more relevant at the denominator in eq. (5.63). The Raman scattering intensity changes in this
case less critically together with the detuning factor. Remarkably, when the plasmonic damping
factor becomes comparable with the detuning factor, the best detuning condition for the Raman
enhancement changes compared to the previous case. The signal enhancement is in this case not
maximum when the difference between the detuning factor and the vibrational frequency is zero, as
it is found for smaller damping factors, but the best condition for the signal enhancement is found
for ∆ ≈ 0, 6ωm assuming for instance κ = 7 ·1013Hz (see Figure 5.5 and caption for further details).
As explained before, this is due to a more complicated dependence of S(ωS) on the detuning factor
and the plasmonic damping, than it is found for the solution in the classical limit. It should also
be noticed that for higher plasmonic damping factor, and having all others parameters unchanged
compared to the previous example, the response due to the dynamical back-action deviates from
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linearity. This is because of the increase of the driving parameter Ω with the plasmonic damping
factor (see eq. 5.34). Anyhow, the palsmonic damping factor appears as already pointed out, also
at the denominator of the expression for the Stokes emission intensty S(ωs) and the optomecham-
ical damping γopt (eq. 5.63 and 5.65). For this reason, S(ωS) cannot increase arbitrarily with the
plasmon damping factor. In Figure 5.5 the Raman scattering intensity is calculated for different
values of the plasmonic damping factor κ. Consistently with the previous explanation, a behavior
at maximum is found: the Raman scattering intensity first increases with the plasmonic damping
factor but the decreases when it is further increased (see Figure 5.5 and caption for further details).

A big advantage of eq. (5.65) is that it can be used for arbitrary detuning. In Figure 5.6 the
Raman intensity in dependence on the laser power is calculated for a positive ∆. In this case the
dependence on the power becomes weaker. This is because, in consistence with the previous de-
scription, some energy is lost from the vibrational mode to the cavity, which leads to a decrease of
the phonon population and consequently to a decrease of the scattered intensity. Interestingly, for
high plasmon damping factor, deviation from the linearity is present also for small positive detuning
factor. The signal then decreases for higher positive detuning factors ∆ as explained before.

Before concluding, it should be pointed out that this description (regardless if the solution is found
in the classical limit or if it is purely quantum-mechanical), the polarizability α has been consid-
ered to be independent on the frequency. This approximation is valid for non-resonant Raman.
In Chapter 7, the theoretical prediction presented here is compared with experimental results on
graphene. Strictly speaking, Raman scattering in solids is a resonant process, in the sense that it
involves real electronic levels, as explained in Chapter 1. This point is further taken into account
when comparing the experimental results with the theoretical prediction.
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Figure 5.3: Raman Scattering Intensity as a function of the laser power calculated for different
detuning condition and for κ = 1011 Hz. For the condition ∆ = −ωm the intensity of the Raman
scattering is maximum and roughly three orders of magnitude higher than for other detuning
condition. The vibrational frequency is that of the graphene G band, ωm = 4.71 · 1013 Hz.

Figure 5.4: Raman scattering intensity calculated according to eq. (5.65) as a function of the laser
power calculated for different detuning condition and for κ = 7 · 1013 Hz. All other parameters are
the same as in Figure 5.3. The increase of the plasmon damping factor leads to the non-linearity
through the increase of the driving parameter Ω. Also a larger plasmon damping factor modifies
the best condition for the detuning, which is found in this case to be ∆ ≈ −0, 6ωm.
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Figure 5.5: Raman scattering intensity as a function of the laser power calculated according to
eq. (5.65) for different plasmon damping factors. The Raman scattering intensity has a maximum
behavior in dependence on the plasmon damping factor (see text for explanation).

Figure 5.6: Raman scattering intensity calculated according to eq. (5.65)as a function of the
laser power for different positive detuning factor. The detuning factor ∆ is given in units of the
vibrational frequency ωv. Besides the detuning factor, all parameters are the same as in Figure 5.4
and 5.3. The dashed lines are a guide for the eye. Interestingly, an enhancement of the signal is
still present also for small positive detuning.
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Chapter 6

Materials and Methods

In this chapter, the synthesis of the materials used throughout this work and the relative sample
preparation are described. Also, the methods used for their characterization are presented.

Graphene

CVD-grown graphene samples on glass were fabricated by Jürgen Krauss of Prof. S. Günther’s
group (TU Munich, Germany). For graphene growth, ca. 1 cm2 pieces were cut from as received
Cu-foil (25µm, Alfa Aesar 46986, 99.8%) and loaded into a quartz tube reactor. After evacuating
the reactor system to ∼ 10−3 mbar the Cu-foils were heated up from room temperature to 950◦C in a
hydrogen flow (p(H2)=1 mbar) within 40 min. For oxidative carbon removal the Cu-foil was exposed
to a highly diluted oxygen flow in argon carriers gas p(O2)=1.105·10−3 mbar in p(Ar)=1 mbar. After
60 min the temperature was increased to 1075 ◦C and the gas flow was changed, to (p(H2)=20 mbar,
p(CH4)=0.02 mbar)with addition of CH4 to start the graphene growth, followed by a 2.5 h growth
period. Graphene growth was stopped by quickly pulling the Cu-foils out of the hot zone of the
reactor. For the transfer of the as grown graphene films the Cu-samples were spincoated with
Polymethilmethacrylate (PMMA) solution (6 wt.% in Anisole). After drying the PMMA-protected
graphene film was released from the Cu-support by bubbling transfer. This was done by gradually
dipping the PMMA-graphene-Cu sandwich vertically into NaOH-solution (7 g/L) with a platinum
counterelectrode. During this dipping a current of 20 mA is applied with the Cu-sample as cathode.
The detached graphene PMMA film is cleaned with deionized water and then transfered onto glass
substrates. Finally the PMMA protection layer is removed with hot acetone.

Carbon Nanotubes

Besides Graphene, also single-walled carbon nanotubes (SWCNT) are used in this thesis as Raman
emitter. The structure of a SWCNT can be conceptualized by wrapping the single layer of graphene
called graphene into a seamless cylinder. The way the graphene sheet is wrapped is represented by
a pair of indices (n,m). The integers n and m denote the number of unit vectors along two directions
in the honeycomb crystal lattice of graphene. If m = 0, the nanotubes are called zigzag nanotubes,
and if n = m, the nanotubes are called armchair nanotubes. Otherwise, they are called chiral. The
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SWCNT raw material, used for this work, was fabricated by the chemical vapor deposition (CVD)
method involving a cobalt-molybdenum catalyst (CoMoCat). Thereby, CoMoCat SWCNTs are
enriched with the (6,5) chirality but also contain smaller fractions of (6,4), (8,3) and (9,1) chiralities.
Before the SWCNTs can be deposited on the glass substrate, the raw material needs to be dispersed.
Because of its hydrophobic nature, SWCNTs are not soluble in aqueous solutions. In addition,
strong van-der-Waals forces between the SWCNT’s unpolar sidewalls lead to the clustering of
SWCNTs. Single dispersed SWCNT can be obtained through a treatment with surfactants (surface
active agents) and sonication in an aqueous solution. During the dispersion process the surfactant
molecules enclose the SWCNT in a micelle structure. Thereby their hydrophobic hydrocarbon
chain is oriented towards the SWCNT, while their hydrophilic head group associates with the
aqueous solute. Sonication leads to the crushing of SWCNT agglomerates into smaller bundles
and isolated SWCNTs. The aqueous solution containing the SWCNT can be deposited on glass
substrate by spin-coating or drop-casting. One always has to keep in mind that the surfactant is
deposited on the glass surface together with the SWCNT. This can lead to an inhomogeneity of the
photoluminescence or Raman signal along the SWCNT itself in a TERS measurement [27]. In the
last decades the optical and structural properties of SWCNT have been widely investigated and
discussed, further information can be found in literature [8, 9, 21].

Gold Nanorods

Gold nanorods were synthesized in the group of Prof. Sebastian Mackowski with the contri-
bution of Dr. Dawid Piatkowski (Nikolaus Copernikus University, Torun, Poland), where also
the absorbance spectra in water have been measured. For the synthesis of the precursor, HAuCl4
(25 mL, 0.05 M), Cetyltrimethylammonium bromide (CTAB) solution (4.7 mL, 0.1 M) and NaBH4

(0.3 mL, 0.01 M) are stirred for 3 min. NaBH4 thereby acts as a reduction agent for HauCl4 while
CTAB stabilizes the resulting Au seeds as a ligand in solution. Slightly different synthesis condi-
tions (temperature, surfactant concentration) allows to tune the aspect ratio of the rods. In this
way, two kinds of nanorods have been prepared, having different aspect ratios and correspondingly
different resonances in the visible range. The nanorods are deposited on the glass substrate on top
of the graphene though drop casting. Doing so, both the rods and the CTAB are present on the
sample surface. The nanorods were characterized though transmission electron microscopy (TEM)
operated by Dr. Sophia Betzler and Dr. Andreas Winset at the Chemistry Department of
the LMU Munich. The statistical analysis on the aspect ratio and length distribution was done by
Dr. Harald Budde and Dr. Richard Ciesielski at the Chemistry Department of the LMU
Munich. The dark field measurements were performed by Francesca Nicoli from Prof. Tim
Liedl group at the Physic Faculty of the LMU Munich.

The discussion is first focused on the ”long nanorods”, having aspect ratio around 3. They present
one plasmonic resonance in the green (∼ 540 nm) and one in the near-infrared (∼ 770 nm), see
also Figure 6.1. The two resonances correspond to the electron density oscillation on the direction
of the two different axis, as explained in Chapter 3. These two resonances can be observed from
the absorption spectrum (Figure 5.6a). The dimension of the rods has been investigated through
TEM. The length of the rods is not homogeneous, but a certain length distribution is present. Also,
a fraction of very short nanorods (aspect ratio between 1 and 1.5) is present as subproduct from
the synthesis (see Figure 6.2). The presence of this subproduct can explain the broadness of the
absorption peak in the green part of the spectrum presented in Figure 5.6a: small aspect ratio
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nanorods are indeed expected to have the resonance related to the long axis close to that related
to the short one. On the other hand, the width of the absorption peak in the near-infrared region,
related to the electron density oscillation on the long axis, reflects the length distribution of the
long axis itself. The absorption spectrum presented in Figure 5.6a was measured in water after the
preparation of the nanorods.

ωP (Hz) λP (nm) κ (Hz)

Green Resonance 5.55 · 1014 540 3.70 · 1013

Infrared Resonance 3.893 · 1014 770 5.7839 · 1013

Figure 6.1: (a) absorbance spectrum of the 3 aspect ratio nanorods in water solution; (b) absorption
spectrum measured with with light after deposition on the glass substrate, having a single layer
graphene on top. The resonance in the green region is multiplied by two for better comparison. In
the table the plasmonic parameters extracted from the white light spectrum are shown: ωP is the
plasmonic resonance frequency (given also as a wavelength, labeled as λP ) and κ is the plasmon
damping factor. The red line shows the fitting curve for the infrared resonance, from which the
plasmon parameters are extracted. At 800 nm the spectrum is cut by the laser filter (see Chapter
2).

Figure 6.2: TEM analysis of the ”long nanorods”. (a) long axis length distribution; (b) aspect ratio
distribution; (c) and (d) TEM images of representative nanorods. In (d) some small aspect ratio
particles are observed; they are a subproduct of the chemical synthesis also appearing in (b).
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As appears from eq. (3.1), the position of the plasmonic resonance depends on the refractive index
of the surrounding medium. Ideally the nanorods are always surrounded by a single layer of CTAB.
Such a single layer should be very thin, around 1-2 nm. The near-field related to the plasmon
extends in space also beyond the CTAB single layer and the resonance frequency should then be
dependent also on the refrective index of the external environment. Once the rods are deposited on
glass, the external medium is composed partly by glass and partly by air. The effective reflective
index might then change enough to sensibly shift the plasmonic resonance, with respect to that
measured in water solution. Moreover, the plasmonic resonance can change drastically in the case
of nanorods aggregation, because of coupling effects between plasmonic nanostructures. A precise
determination of the plasmonic parameters, such as plasmonic resonance frequency and plasmonic
damping factor is fundamental for a correct comparison between theory and experimental results.
For these reasons, the plasmonic resonance needs to be estimated directly on the sample, in order
to reveal any possible difference between the plasmonic parameters in dependence on the different
environmental conditions.

In the case of the sample prepared with the long nanorods, the plasmonic resonance has been
estimated with white light produced sending a broad-band laser pulse though a fiber (see Chapter
2). The spectrum has been measured first on a sample position where no gold nanorods where
located, and then on a position where the nanorods are present. The nanorods are located on the
sample through confocal scans (see Chapter 2). The spectrum given by the nanorods absorption is
found as [128]:

S =
I − Ibackground
Ibackground

(6.1)

where I is the spectrum measured where the nanorods are present, and Ibackground is the spectrum
measured at a position where no nanorods had been located. It should be pointed out that, in this
case, spectra measured on different position on the sample where gold nanorods had been located,
gave the same spectral response. A typical spectrum is shown in Figure 6.1b. This spectrum re-
sembles the one obtained in water solution. The peak in the green region has a maximum around
530 nm, where the resonance related to the short axis polarizability is expected. Also a shoulder
on the red side of the peak is present. This shoulder can be attributed to the nanorods present as
subproduct of the chemical synthesis. The main peak due to plasmon resonance related to the long
axis is centered around 770 nm, slightly shifted from that in water solution where the maximum is
around 750 nm. The plasmon resonance frequency and the plasmon damping factor are extracted
from this spectrum, and are used in the following of this thesis to compare the experimental results
with theory. Even if the two measurements are performed in very different experimental conditions,
for the same refractive index of the surrounding medium the two spectra should be the same. In-
deed, also in the case in which the spectrum is measured on glass, a particle much smaller than the
excitation wavelength should not render a pure scattering response, but its spectrum is dominated
by the extinction properties of the particle [128]. In Figure 6.3, numerical method calculations for
nanorods are presented, where both extinction and scattering cross section have been simulated for
different surrounding media. The spectrum of the plasmonic resonance should change drastically
changing the effective refractive index, as can be seen from Figure 6.3. The effective refractive index
must then be very similar for the measurement in water and on the glass slide. This could not be
the case, if a single nanorod surrounded by a single layer of CTAB would lay on glass. On the other
hand, the refractive index of CTAB (∼ 1.4) is similar to that of glass. One possibility is then that
the nanorods are embedded in a thicker layer of CTAB. This could also explain the small shift ob-
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Figure 6.3: Extinction and scattering cross section simulation for 3 gold aspect ratio nanorods in
air (a) and water (b). Extinction and scattering cross section simulation for 2 gold aspect ratio
nanorods in air (c) and water (d). The simulation was carried out according to [68, 69, 70] with
the help of Dr. Alberto Comin, Chemistry Department of LMU Munich.

served for the resonance curve measured with white light. If the nanorods are embedded is CTAB,
it is hard to imagine that the nanorods can be single. Further hints that the deposited nanorods
are not single, are given by the shape of the absorption spectrum. First, a shoulder appears, similar
to that observed in the absorbance spectrum in water, which can correspondingly be attributed to
the small aspect ratio nanorods. Second, and more importantly, the scattering spectrum does not
change when measured on different sample positions. If the nanorods were single, every nanorod
would give a slightly different spectrum, in dependence on its length. For all this reasons, it can
be concluded that the nanorods are not isolated on the sample, but at every position a sufficiently
high number of rods is present, to allow for the statistic ensemble measurement in water solution
to be reproduced. On the other hand, the resonance appears always to be that of an ensemble of
single separated nanorods. No change in the resonance which could be attributed to the coupling
between two nanorods has been observed. This means that even if clustered, the nanorods are
separated enough for every nanorod to behave as a single one. This is likely given by the presence
of CTAB, which acts as a spacer between the nanorods. Concerning the plamonic properties then,
it is still fair to treat every nanorod as single and consider only the coupling between each nanorod
and graphene, in the framework described in Chapter 5.

The ”short nanorods” have aspect ratio around 2. The abosorption spectrum in water shows
two resonances in the visible range, the first is around 530 nm (the rods have the same diameter
as the long ones, only the aspect ratio is different) and the second around 630 nm. As before, the
absorption spectrum was measured in water (Figure 6.6) and the distribution of the dimension is
analyzed though TEM. From the absorption spectrum, both plasmonic resonances are observable.
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Also, no satellite peak appears. Correspondingly, no subproduct from the chemical synthesis is
found in the TEM analysis. For this sample, it was possible to perform a dark field microscope
analysis. The dark field images revealed a very inhomogeneous distribution of the nanorods on the
sample surface, which are extremely concentrated at some positions on the sample while totally
absent in others. Nonetheless the sample position where the nanorods concentration is reasonably
good to perform a measurement, are easily recognizable both at the dark field and the confocal
microscope (see Figure 6.7). Concerning this sample, two observation are important to be made.
First, the plasmonic resonance measured for different sample positions is different. The sum of
all the measured spectra gives a curve having very similar width compared to that of the peak
measured in absorbance (see Figure 6.5). Second, compared to the spectrum measured in water,
the maximum of the plasmonic resonance is shifted (see Figure 6.5 and 6.6 for further details).
This means that the plasmon experiences an effective refractive index which is significantly smaller
that that of water. This fact fits good to the picture described before, in which a single nanorod
surrounded by a single layer of CTAB lays on the glass surface. Following from both observations,
it is fair to assume that is this case the nanorods under observation are possibly single. It should
also be pointed out, that in this case, the resonance in the green region of the spectrum was not
observed for any of the nanorods, although it is well observable in the absorption spectrum. This
resonance is weaker than the one in the red region of the spectrum. If the measured rods are single,
it is likely that the scattering due to this plasmonic resonance is too weak to be detected.

Figure 6.4: TEM analysis of the ”short nanorods”. (a) long axis length distribution; (b) aspect
ratio distribution; (c) and (d) TEM images of representative nanorods.

Figure 6.5: Dark field analysis of the ”short nanorods”. (a) resonance spectra measured for different
positions on the sample; (b) sum of all the spectra. The resulting curve is centered at ∼ 594nm
and is ∼ 8 · 1013Hz broad.
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Although the presence a single rod removes the uncertainty about the number of hot-spots which
are being observed within the same measurement, a difficulty rises, related to the inhomogeneity
of the palsmonic resonance. Indeed, there is unfortunately no easy way to find the same sample
position on the two different setups. When measuring the power dependence then, it is difficult
to guess which are the exact plasmonic properties of the nanorod under observation. This point is
further discussed in the next chapter.

ωP (Hz) 5, 04 · 1014

λP (nm) 594
κ (Hz) 8 · 1013

Figure 6.6: comparison of the spectrum of the plasmon resonance in water (red line) and after
the deposition of the nanorods on the graphene sample on glass substrate (black line). The main
resonance appearing in the spectrum in water is centered at 630 nm and has a width of ∼ 1014 Hz.
The black curve is the same as in Fugure 6.3, obtained by the sum of the plasmonic resonances
measured at different positions. It shows a width of ∼ 8 · 1013 Hz. In the table the plasmonic
parameters extracted from the sum of different resonances measured at the dark field microscope
(black line in the figure): ωP is the plasmonic resonance frequency (given also as a wavelength,
labeled as λP ) and κ is the plasmon damping factor.

Figure 6.7: Dark-field image of a large area on the sample. The colored points correspond to
nanorods, the white ones are residual CTAB crystals or PMMA. In panel (a) the positions are
labeled, where the spectra have been measured. In (b) a region is shown where a high density of
rods is present, probably corresponding to the edge of the drop.
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Chapter 7

Results and Discussion

In this chapter the experimental results are presented and compared with the theory developed in
Chapter 4 and 5. First, the results obtained with a Tip Enhanced Raman Spectroscopy (TERS)
experiment are presented: in this experiment, the Raman response in dependence on the laser power
was measured for single-walled carbon nanotubes and graphene deposited on glass, in the presence
and in the absence of a gold nanotip. Second, the Raman response of graphene on a glass substrate
measured in the presence of gold nanorods deposited on top, is presented. Both kinds of nanorods
described in Chapter 6 are used, in order to investigate how the Raman response depends on the
plasmonic properties of the nanostructure.

Tip Assisted Measurements

Carbon Nanotubes

The first experiment presented in this thesis has been performed on single-walled carbon nanotubes
(labeled in the following simply as CNT) deposited on a glass substrate by drop casting. The
Raman response in dependence on the laser power is measured in the presence and in the absence
of a gold nanotip. The aim of the experiment is to detect the Raman signal stemming from the
near-field volume and investigate its dependence on the laser power. For this experiment, a 633
nm laser is used for excitation; correspondingly the G and 2D band will appear at 703 and 760 nm
respectively (compare with Chapter 1).

As a first experimental approach, the Raman signal is detected on an Avalanche Photodiode (APD)
with appropriate filtering, while a gold nanotip and laser focus are scanned on the sample (see Chap-
ter 2). Despite the light filtering, also the confocal signal and the background from the laser and
from the inelastic scattering coming from the gold nanotip, are inevitably detected. As already
pointed out in Chapter 2, this measurement has the advantage that also the topography of the
surface is obtained. From the correlation between topography and optically detected signal, and
extracting the near-field peak from the spatial profile of the optical image [67], it is possible to
distinguish the near-field signal from the confocal signal and the background. To investigate the
power dependence, the scans are repeated for different powers. For every scan the near-field signal
is extracted from the spatial profile as explained before. The Raman near-field signal can in this
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way be plotted in dependence on the laser power.

Figure 7.1: (a) power dependence of the Raman response; the signal is integrated under the near-
field peak taken by the spatial profiles as that shown in (d), after repeating the scan for different
laser powers. The average is taken over the different profiles coming from the same scan. (b)
near-field optical and (c) topography image. In (d) the spatial profile of the near-field signal is
shown after backgorund subtraction. The intensity is calculated as the integral under this kind of
profiles. In (e) the special profile of the near-field signal before background subtraction is shown; the
background contains the inelastic scattering backgrouns coming from the nanotip and the confocal
background. In (f) a spacial profile of the topography is shown. In this measurement the G band
signal was detected at 703 nm with appropriate laser filtering, under 633 nm laser excitation.

Figure 7.2: Two scans with the nanotip measured consecutively. The 633 nm laser is used for
excitation. The G band scattering is detected at 703 nm with appropriate filtering. In the fist (a)
the laser power is set at 1 mW, in the second (b) at 2 mW. At the second scan, the CNT signal is
almost completely lost.
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This plot is shown in Figure 7.1. Every point of the power series corresponds to the mean value of
ca. 15 profiles extracted from one scan performed with a certain laser intensity. The Raman signal
in dependence on the laser power shows here a linear trend. As can be noticed from Figure 7.1, the
laser power was in the measurement considerably attenuated. It is necessary in this experiment to
explore the widest possible power range, in order to possibly reach the incident intensity needed to
observe a non-linear increase. It is challenging, in this experimental configuration, to come close to
the full power of the laser, because of photo-bleaching of the CNT. The measurement in this exper-
imental configuration is very long, because the scanning speed needs to be slow when measuring
with the nanotip and the nanotip and laser need to be scanned on the CNT repetitively for several
times. The overall amount of power deposited on the single CNT is then considerably high. The
bleaching of the CNTs then occurs before high intensities can possibly be reached. The occurrence
of bleaching is shown in Figure 7.2.

An alternative experimental configuration, consists of measuring the signal having landed the nan-
otip, without scanning the nanotip itself. Avoiding scanning, considerably reduces the time needed
to perform the measurement. It allows then to reach a higher power regime, making the photo-
bleaching less critical. On the other hand, without scanning, the information about the spatial
distribution of the signal is lost. It is then impossible to distinguish the signal from the back-
ground, when detecting with the APD. This difficulty can be overcome detecting the signal with
the spectrometer instead of with the APD. From the spectrum, the Raman peak can be distin-
guished from the background. Also, using the spectrometer, within the same measurement both
Raman bands of the CNTs can be detected. Nonetheless, it is impossible from the spectrum to dis-
criminate between the near-field and the confocal signal. When analyzing the trend of the Raman
signal then, a linear contribution coming from the confocal volume always needs to be taken into
consideration. The results obtained in this configuration are presented in Figure 7.3. A deviation
from the linear behavior appears in this case for both the G and 2D band. A control experiment
at the same position made in the absence of the nanotip, gives a linear trend as expected for spon-
taneous Raman scattering. It can therefore be concluded that the non-linearity is effectively given
by the presence of the nanotip and the related localized plasmon. This measurements then show,
that it is effectively possible to observe in the Raman response a deviation from the linear behavior
in presence of a localized plasmon. It should also be pointed out here, that this experiment is not
performed in the presence of a nano-cavity as that reported in literature [30], but in presence of a
localized plasmon only.

On the other hand, even if a deviation from linearity appears, the trend of the Raman response is
not fully clear in this measurement. A difficulty related to this experimental configuration and to
the absence of the topographic information, is that the position of the tip with respect to the CNT is
not determinable. During the experiment, the nanotip probably drifts and the tip-sample distance
changes. This is what very likely makes the trend so unclear. Generally speaking, the increase in
the signal could simply be given by the approaching of the tip to the CNT. This scenario is nonethe-
less unlikely, because the centering of the tip is optimized before starting the measurement. But in
principle, being the centering procedure anyhow not perfect, nothing prevents the tip to come even
closer to the sample after the measurement has been stared. As explained in Chapter 2, the drifting
happens most likely for the xy-piezo of the AFM head. The tip-sample distance is indeed controlled
in the z-direction because the feedback-loop is switched on during all the measurement. On the
contrary, being the topographic signature absent in this case, there is no possibility to control the
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Figure 7.3: Power dependent Raman response for a single CNT in the absence of the nanotip for the
G (a) and 2D (b) band, and for a single CNT in the presence of the nanotip for the G (c) and 2D
(d) band. The red line in (a) and (b) is a linear fit through the experimental points, the red dashed
line in (c) and (d) is a guide to the eye (the experimental points are hard to fit unambiguously).
The presence of a single CNT is verified through a scan similar to that presented in Figure 7.1.

tip position in the x-y direction. For this reason, the tip-sample distance is likely to change only
within the sample plane, but not in the normal direction. In this sense, the drifting is critical for
a zero- or one-dimensional sample, but it would be less critical for an extended two-dimensional
one: as long as the tip is inside the laser focus (which is realistic within the time needed for the
measurement even in presence of drifting), there will always be a ”hot-spot” delivering a near-field
signal. In this perspective, it is convenient to switch to a two-dimensional sample, like graphene.
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Graphene

Graphene is a two-dimensional material. In this sense, it would not render a characteristic to-
pographic signature in an AFM scan. Such a sample is then suited for the second experimental
configuration of the two used in the experiment on CNT, described in the previous section. The
same measurements as described for the second CNT experiment are then performed also on single-
layer graphene deposited on glass (see Chapter 6 for the sample preparation). Again, a 633 nm
laser is used for excitation. The G and 2D band appear then at 703 and 760 nm respectively. For
comparison with the measurement performed with nanordods presented in the following section, a
spectrum recorded after landing the nanotip on the sample and one having retracted the nanotip
are presented in Figure 7.4. When the tip is landed, the typical inelastic scattering background
related to metallic nanostructures appears [58].

Figure 7.4: graphene spectrum recorded with tip retracted (a) and tip landed (b). When the
nanotip is landed, the inelastic scattering background from the nanotip is present.

vibrational frequency ωv vibrational damping factor γv
G BAND 4.71 · 1013 Hz 5.4814 · 1011 Hz
2D BAND 7.91 · 1013 Hz 9.9245 · 1011 Hz

Table 7.1: Vibrational frequency and damping factor for the G and 2D band of graphene, estimated
from confocal spectra.

The power series recorded in the presence and in the absence of the nanotip are shown in Fig-
ure 7.5. For every spectrum the background is subtracted and the intensity is taken as the integral
underneath the Raman peak (the intensity measured in counts is integrated on the wavelength
interval corresponding to the Raman peak). For every laser power, 10 spectra are measured. Every
point of a power series as that shown in Figure 7.5 corresponds to the mean value of the intensity
obtained averaging the values coming from the 10 spectra measured with the same laser power.

In this experiment, in the presence of the nanotip a deviation from linearity can clearly be ob-
served for the G band. The deviation from the linearity is very weak but not totally absent also for
the 2D band (see Figure 7.5 and Figure 7.6 for further details). As expected from the discussion in
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Chapter 4, in the absence of the nanotip the Raman response is linear with the laser power. Like
in the experiment with the CNT, it can be seen that the non-linearity is given by the presence of
a nanotip and the related localized plasmon. As pointed out for the experiment on the CNTs, this
measurement is not done using a nano-cavity as reported in the literature [30] but in the presence
of a single plasmonic nanostructure (the nanotip), giving a weaker field enhancement compared to
the nano-cavity. A big advantage of the nanotip measurement is that exactly the same position
can be measured in the presence and in the absence of the nanotip. This allows to use the trend
of the Raman signal in dependence on the laser power obtained from the confocal measurement,
for the quantitative evaluation of the near-field measurements. As explained for the CNTs exper-
iment, the spectrum measured in the presence of the nanotip contains both the near-field and the
confocal signal, which cannot be spectrally resolved. Compared to the situation of the CNT, the
confocal signal is even stronger for graphene, which is an extended material. For the evaluation of
the near-field signal, the confocal signal needs, in principle, to be subtracted. The advantage of the
measurement with the tip consists then of the fact, that the confocal signal measured previously
at the same position, can be assumed to be of the same entity of the confocal signal measured in
the near-field measurement. Unfortunately the number of points experimentally obtained is not
sufficient to directly subtract the confocal experimental points from the near-field ones.
The points obtained by this direct subtraction simply show no trend. On the other hand, one
can include in the fit for the near-field measurement the linear function extrapolated for the trend
of the confocal measurement. Doing so, the confocal background can be equivalently taken into
account. In the following, the experimental data are compared with the different models presented
in Chapter 4 and 5. The comparison between theory and experiment must always take the linear
confocal background into account.

In literature [30] the power dependence of the Raman response has been investigated for single
molecules or for CNT, generally speaking not for two-dimensional extended samples. For this rea-
son, the experimental data have been fit with a power function without taking into account the
confocal background which was, in those cases, absent or negligible. In this work, for fitting the
experimental data, a power function must be summed to a line, to consider the signal coming from
the extended two-dimensional material. The following formula is used for fitting the experimental
data:

SRaman(PL) = A+B · PL + C · PNL (7.1)

The signal is labeled as SRaman(PL), where PL is the laser power. The slope (B) in eq. (7.1)
is a fixed parameter taken from the linear fit, obtained from the confocal power series measure-
ment. The results from this fit are presented in Figure 7.7. In general, the error on the exponent
of the power function is very high, probably due to the small number of points deviating from
the linearity. Anyhow, the exponent of the power function appears to be higher than two. In
a stimulated Raman picture like that described in Chapter 4, an exponent of three could be ex-
plained following from the fact that the plasmonic field is linearly proportional to the laser field,
as explained in Chapter 4. Besides the uncertainty about the exponent of the power function, in
this picture is hard to explain the origin of the stimulating field, as already pointed out in Chapter 4.

For these reasons, the experimental data are compared with the quantum-electrodynamic (QED)
description developed though Chapter 5. In particular, the comparison is made with the result
obtained for the Quantum Noise Approach, which allows for an analysis for arbitrary detuning.
A general difficulty related to the interpretation of the results with the nanotip according to this

66



CONFOCAL G band 2D band
intercept −3, 2± 0, 8 −18± 4

slope 23, 4± 0, 7 377± 9

NEAR-FIELD G band 2D band
intercept 11± 4 12± 20

linear coefficient 2± 20 345± 47
quadratic coefficient 15± 6 47± 20

Figure 7.5: FIRST NANOTIP: LINEAR-QUADRATIC FIT. Power dependent Raman re-
sponse for graphene only on glass substrate for the G (a) and 2D (b) band, and for graphene in
the presence of the nanotip for the G (c) and 2D (d) band. The red line in (a) and (b) is a linear
fit through the experimental points, the red line in (c) and (d) is a fit with a linear and quadratic
contribution. The fit parameters are presented in the table. For a correct background subtraction
the intercept should be zero within the experimental error. The intensity is obtained as the integral
under the Raman peak in the spectrum and is here given in counts (see Chapter 2).

model, is that the plasmonic parameters of the nanotip are unknown. In general, the resonance
of the tip is spectrally broad in the visible range [48], possibly extending also to the infrared. As
discussed in Chapter 5, a correct estimation of the plasmonic parameters is crucial, because the
occurrence of the non-linearity depends not only on the plasmon resonance frequency, but also
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Figure 7.6: Comparison between a linear and a linear-quadratic fit for the 2D band of graphene in
presence of the nanotip. The fitting parameters for the quadratic fit are the same as those presented
in Figure 7.5. For the linear fit, the intercept and the slope are −31± 9 and 453± 12, respectively.
Note, that the fitting line should have zero intercept within the experimental error. This is verified
if the background has been subtracted correctly. Between the two fits, the quadratic one is slightly
better, a zero intercept within the experimental error. The blue dashed line is a linear fit though
the first five points, to show the deviation from the linear trend.

on the plasmonic damping. Nonetheless a comparison between the experimental results and the
theoretical prediction is given in the following, trying to make a reasonable guess for the plasmonic
parameters.
As noted before, the experimentally measured intensity contains two contributions, resulting one
from near-field the and the other from the confocal signal (the near-field is in the following considered
to stem from the dynamical back-action ). Because eq. (5.65) does not provide a quantitative
prediction of the signal intensity, the relative weight of the two contributions cannot be predicted
as well. For this reason a weighting coefficient (C) is introduced in eq. (7.2), in order to scale the
dynamical back-action response to the confocal one (which weight is given by the slope B). The
trend of the Raman response in dependence on the laser power, is then simulated with the formula:

SRaman(PL) = A+B · PL + C · S(ωS , PL) (7.2)

PL is the laser power, S(ωS , PL) is the emission intensity as defined in eq. (5.65), which depends
on the laser power PL though the driving coefficient Ω. As before, the parameter B is the slope
determined from the linear fit for the confocal measurement. C is the weighting coefficient to be
determined. For simplicity in determining the weighting coefficient, the constants in eq. (5.65)

are dropped, and the noise spectrum intensity is taken as: S(ωS , PL) ∼ nincoherentb

γopt+γm
. Consistently

with the previous discussion, the plasmonic resonance frequency of the nanotip is set to be around
780 nm. Considering that the laser wavelength is at 633 nm, the resulting detuning factor is
∆ = −8.9254 · 1013 Hz. The plasmonic damping factor is taken to be 2, 5 · 1014 Hz. The near-field
volume is usually taken as half a sphere having the nanotip radius, estimated to be 10 nm [67].
The field enhancement factor, contained in the optomechanical damping γopt and the incoherent
phonon population nincoherentb , through the driving parameter Ω (see eq. 5.34 5.63 and 5.64) is left
as free parameter.

The simulation is made first for the G band. For the estimation of the coupling factor gv, it is
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G band 2D band
intercept (A) 4, 5± 0, 8 8± 5

slope (fixed, B) 23, 4 377
power coefficient (C) 1± 1 13± 9

exponent (N) 5± 2 3± 1

Figure 7.7: FIRST NANOTIP: POWER FUNCTION. Experimental data for the G (a) and
2D band (b) fit through eq. (7.1). The fitting parameters are presented in the table, the letters
in parenthesis correspond to the variables as defined in 7.1. The slope is taken as fixed parameter
and set according to that obtained for the fit of the data from the confocal measurement (compare
with Table 7.5).

necessary to know the value of the polarizability change ∂α
∂xv

. In literature [10], it is referred to
this quantity as the absolute value for the Raman tensor, consistently with eq. (1.5). On the other
hand, the two definitions are equivalent, as it can be seen from eq. (1.4). For consistency with
the terminology used in Chapter 4 and 5, the quantity ∂α

∂xv
is used in the following discussion, and

named polarizability change. For the G band, the value for the polarizability change has recently

be estimated to be
(
∂α
∂xv

)
= 92 Å2 [10]. 1 It is important to note, that this value has been obtained

per unit cell and normalized by the phonon effective mass (taken as the carbon mass for simplicity),
which then needs to be considered explicitly. In this way, the coupling factor gv is calculated to
be, for a single unit cell, gv = 3.9842 · 1010 Hz. From the simulation of the experimental data,
a weighting factor of 2.5 · 1014 and an enhancement factor of 6.8 are found. This value for the
field enhancement factor is absolutely reasonable for the experimental configuration used in this
experiment [67, 48]. The absolute value of the Raman tensor for the 2D band, has not been ex-
perimentally determined in the literature. For an estimate of entity of the dynamical back-action
for G band Raman vibrational mode with respect to the 2D band, the polarizability change of the
2D band is calculated here from that of the G band. From eq. (4.2), the ratio between the Stokes

1The absolute value of the Raman tensor in A2 can be converted to its value in SI units, according to
(
∂α
∂xv

)
[SI] =

4πε0 · 10−20
(
∂α
∂xv

)
[Å2].
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scattering fields corresponding to the G and the 2D bands is:

E(ωG)

E(ω2D)
=

ω2
G

ω2
2D

xv,G

(
∂α
∂xv

)
G

xv,2D

(
∂α
∂xv

)
2D

(7.3)

The vibrational amplitude can be taken to be the zero-point motion amplitude as before. Doing so
eq. (7.3) becomes:

E(ωG)

E(ω2D)
=
ω

3/2
G

ω
3/2
2D

(
∂α
∂xv

)
G(

∂α
∂xv

)
2D

(7.4)

Using the ratio of the field intensities, instead of the ratio between the field amplitudes, one finds:(
∂α

∂xv

)
2D

=

(
∂α

∂xv

)
G

√
ω3
G

ω3
2D

I2D
IG

(7.5)

From the confocal spectra, similar to that shown in Figure 7.4, a ratio of 3.8 is obtained between
the intensities of the 2D and G band. In this estimation, the detection efficiency at 703 and 760 nm
has been considered (see Chapater 2). Using for the ratio between the 2D and G band intensities

the value of 3.8, one finds from eq. (7.5)
(
∂α
∂xv

)
2D

= 2.105
(
∂α
∂xv

)
G

. The coupling factor for the 2D

band is correspondingly calculated to be, gv = 6.7391 · 1010 Hz. For the trend of the experimental
data of the 2D band, a field enhancement factor of 6.3 is found. In principle this value should be
the same as that found for the G band (6.8), since this enhancement factor is that of the incident
field. Nonetheless, considering the limited amount of points in the power series, the values are
consistent with each other within the experimental uncertainty. To correctly simulate the exper-
imental data, the weighting coefficient needs for the 2D band to be set to 3.5 · 1014. The ration
between the weighting coefficient for the G and the 2D band is 0.78. This value is very similar
to the ratio between the detection sensitivity at the two respective wavelengths 0.81 (see Chapter 2).

In the following it is commented on the weaker deviation from the linearity, which is observed
for the 2D band in comparison with the G band. In Figure 7.8 the intensity stemming from the
dynamical back-action estimated for the two Raman bands, is shown. The curves presented in
Figure 7.8 consist of the last term in eq. (7.2), weighted for the coefficient C used to reproduce the
spectra (see Figure 7.5). As it can be seen, the intensity related to the 2D band is stronger than
that related to the G band. However, because the confocal signal of the 2D band is substantially
stronger as well, the resulting deviation from the linear trend is much smaller that that of the G
band. A quantitative comparison is given in the table in Figure 7.9: here the signal intensity due to
the dynamical back-action is calculated in percentage to the total detected signal for different values
of the laser power. For the 2D band, besides for the highest laser power, the signal percentage due
to the dynamical back-action is below 10%. For this reason, it is experimentally hard to observe a
deviation from the linearity. For the G band, already for lower powers, the signal percentage due to
dynamical back-action is sensibly higher (from around 10 up to 34 %). A deviation from the linear
trend is for this reason experimentally easier to see for the G band than for the 2D band.
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detuning factor (∆) −8.9254 · 1013 Hz
near-field volume 2.094410−24 m−3

plasmon resonance frequency 3.84 · 1014 Hz
(wavelength) (780 nm)

plasmon damping factor 2.5 · 1014 Hz

G band field enhancement factor (f) 6.8
coupling factor (gv) 3.9842 · 1010 Hz

weighting coefficient (C) 2.75 · 1014

2D band field enhancement factor (f) 6.3
coupling factor (gv) 6.7391 · 1010 Hz

weighting coefficient (C) 3.5 · 1014

Figure 7.8: FIRST NANOTIP: QUANTUM NOISE APPROACH. Simulation of the ex-
perimental data using eq. (7.2) for the G (a) and 2D band (b). The fitting parameters are reported
in the table. For the simulation of the confocal background, see the parameters reported in Figure
7.5.

It is important for a successful and correct comparison between the model and the experimental
results, that the smaller deviation from the linearity observed for the 2D band is attributable to the
stronger confocal background, and not to the fact that the dynamical back-action itself is weaker
for the 2D band compared to the G band.

In the comparison of the contribution given by the dynamical back-action for the G and the 2D
band, it important to discuss also the role of the different parameters involved. The polarizability
change for the 2D band, as estimated before, is roughly twice larger than for the G band. A larger
polarizability change leads to a larger coupling factor gv. The coupling factor depends also, on the
other hand, on the vibrational frequency ωv (see eq. 5.10). In particular, it is inversely proportional
to the square root of ωv, which is for the 2D band roughly twice larger than for the G band. In
Figure 7.9b the Raman response is simulated using the polarizability change estimated for the 2D
band and a smaller vibrational frequency. For a smaller frequency, the increase of the coupling
factor, would lead to a substantial increase of the Raman response. Another parameter limiting
the increase of the Raman response of the 2D band, with respect the the G band, is the phonon
damping factor. As discussed in Chapter 5, the divergence of the Raman response is expected for
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Laser Power [mW] 0.4 0.5 0.64 0.73 0.82 1.3 1.66 2
G BAND (%) 9.189 13.305 13.460 14.371 12.671 24.429 26.847 34.706
2D BAND (%) 0.57 0.600 0.615 0.790 0.900 1.992 5.603 15.641

Figure 7.9: (a) emission intensity due to dynamical back-action for the G (black line) and the 2D
band (red line). Both curves are scaled by the respective weighting coefficient as in Figure 7.5.
The two curves represent then the last term in eq. (7.2). In (b) the trend is simulated using the
Raman tensor and the vibrational frequency intrinsic of the 2D band and different phonon damping
factors taken as fraction of the G band phonon damping factor. For γv = γv(G) the signal would
diverge for smaller input power, the curve for γv = 2γv(G) restores the values of panel (a). The
divergence appears sooner, because it is given by the condition γv = −γopt (see Chapter 5). In panel
(c) the Raman tensor and the phonon damping of the 2D band are used to simulate the trend for
different vibrational frequencies, as before given in fraction of the G band vibrational frequency. In
this case no divergence is reached, but the signal increases for smaller frequencies. This is because
the coupling factor gv is inversely proportional to the square root of the vibrational frequency (see
Chapter 5). Again for ω = ω(G) the red curve in panel (a) is restored. In the table the contribution
of the dynamical back-action signal to the total signal is given in percentage, for increasing power.
As it can be seen, this contribution is smaller for the 2D band than for the G band.

the condition γopt = −γv. A higher phonon damping factor then, shifts the divergence to higher
laser powers. Consequently, the deviation from the linear trend is going to be observed for higher
powers. This can be seen also by inspection of eq. (5.67). In Figure 7.9c the Raman response is
simulated for different phonon damping factor using the polarizability change estimated for the 2D
band. As expected, a smaller damping factor leads to a deviation from the linearity for smaller
laser powers. In conclusion, although a larger absolute value of the Raman tensor could increase
drastically the response due to the dynamical back-action, for the 2D band this increase is partially
compensated by a larger vibrational frequency, which reduces the coupling factor gv, and a larger
phonon damping factor, which requires higher laser power to observe a deviation from the linear
trend.
Interestingly, quantitatively similar results are found also using another nanotip. The analysis of
the experimental data is repeated as for the first nanotip and presented in Figures 7.10, 7.11 and
7.12.

To conclude, in this section the appearance of a non-linear response of the Raman scattering for
graphene in presence of a localized plasmon given by a gold nanotip has been shown. The non-linear
trend has been compared with the different models that have been developed in the theoretical part.
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This measurement configuration based on the use of the gold nanotip, has the advantage of allow-
ing for a direct comparison between the confocal and the near-field response measured at the same
position. On the other hand, the plasmonic properties of the gold nanotip, essential for a correct
interpretation of the experimental data, are hardly determinable with precision. In the following,
the results obtained depositing gold nanorods on graphene are presented. Compared to the ex-
periment with the nanotip, the plasmonic properties of tha nanorods are known, at least on the
ensemble level.

CONFOCAL G band 2D band
intercept 10± 4 −2± 15

slope 100± 7 559± 21

NEAR-FIELD G band 2D band
intercept 34± 25 51± 17

linear coefficient 90± 40 409± 43
quadratic coefficient 9± 12 95± 26

Figure 7.10: SECOND NANOTIP: LINEAR-QUADRATIC FIT. Power dependent Raman
response for graphene only on glass substrate for the G (a) and 2D (b) band, and for a graphene
in presence of the nanotip for the G (c) and 2D (d) band. The red line in (a) and (b) is a linear fit
though the experimental points, the red line in (c) and (d) is a quadratic fit. The fit parameters are
presented in the table. For a correct background subtraction the intercept should be zero within
the experimental error. The intensity is obtained as the integral under the Raman peak in the
spectrum and is correspondingly given is counts per wavelength (see Chapter 2).
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G band 2D band
intercept (A) 6± 5 −2± 16

slope (fixed, B) 100 559
power coefficient (C) 26± 13 5± 4

exponent (N) 2± 1 5.1± 0.9

Figure 7.11: SECOND NANOTIP: POWER FUNCTION. Experimental data for the G (a)
and 2D band (b) fit through eq. (7.1). The fitting parameters are presented in the table, the letters
in parenthesis correspond to the variables as defined in 7.1. The slope is taken as fix parameter
and set according to than obtained for the fit of the data from the confocal measurement (compare
with Table 7.10).

G band enhancement factor (f) 4.8
coupling factor (gv) 3.9842 · 1010 Hz

weighting coefficient (C) 8.5 · 1014

2D band enhancement factor (f) 4.8
coupling factor (gv) 6.7391 · 1010 Hz

weighting coefficient (C) 1.35 · 1015

Figure 7.12: SECOND NANOTIP: QUANTUM NOISE APPROACH. Simulation of the
experimental data using eq. (7.2) for the G (a) and 2d band (b). The fitting parameters are
reported in the table. The plasomn parameters are the same as in Figure 7.8. For the simulation of
the confocal background, see the parameters reported in Figure 7.10. In (c) the emission intensity
due to dynamical back-action is shown for the G (black line) and the 2D band (red line). The units
are expressed after weighting in counts for wavelength for a comparison with the experimental data
(see Figure 7.10 and Chapter 2).
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Gold Nanorods Assisted Measurements

In this section, the results obtained after the deposition of gold nanorods on single flake graphene
are presented. For the experiment, two sets of nanorods are used: both of them present a resonance
around 530 nm in the green, while one set of nanorods presents the second resonance around 770
nm and the other set around 630 nm (measured in water). The resonance frequencies follow from
the nanorod aspect ratio as explained in Chapter 6. Compared to the experiment with the nanotip,
the advantage of using the nanorods is that the plasmonic properties are now determined, at least
on the ensemble level. On the other hand, as will be discussed through the whole section, it is
crucial to estimate the properties of the specific nanorod involved in the dynamical back-action,
which is not trivial. A drawback in comparison with the experiment with the nanotip is that the
confocal signal cannot be detected at the position where the nanorods are laying, as has easily been
done in a tip-assisted measurement, where the nanotip was simply retracted.

”Long Nanorods” (Aspect Ratio around 3)

The results obtained from the nanorods having aspect ratio around 3 are shown first. For these
measurements, similarly to the experiment with the nanotip, a HeNe laser at 633 nm is used as
excitation source. The Raman lines will than be as before at 703 (G band) and 770 nm (2D
band). This situation is particularly interesting, because the 2D band spectrally corresponds to
the maximum of the plasmonic resonance (see extinction spectra in Chapter 6). According to the

Figure 7.13: (a) graphene Raman spectrum measured in the presence of the nanorods; also the
inelastic scattering background stemming from the gold nanostructure is observable. (b) graphene
Raman spectrum on the same sample where no nanorods were located; the inelastic background
from gold is in this case absent.

stimulated Raman picture, where the second exciting field should be given by the plasmon, this
condition should be the most favorable to observe a non-linear response. Indeed for a matching
between the laser and plasmonic frequency, the driven amplitude of the Raman mode should be
maximum (see Chapter 4). Within the QED description, on the other hand, this frequency matching
does not necessarily correspond to the best condition for observing a non-linearity. As discussed in
Chapter 5, a sufficiently large damping factor (as that of these nanorods is: ∼ 5.7839 · 1013 Hz, see
Chapter 6), can substantially change the dependence of the dynamical back-action efficiency on the
detuning factor (see Figure 5.4 in the Chapter 5).
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G band intercept 3± 4
linear coefficient 27± 7

quadratic coefficient 55± 8

2D abnd intercept −7± 1
slope 637± 6

G band intercept 53± 4
slope ±1

2D band intercept −5± 1
slope 618± 8

Figure 7.14: FIRST NANOROD: LINEAR-QUADRATIC FIT. (a) experimental data for
the G band, presented with a fit through a second order polynomial function (red line), also the
fitting linear function through the first five points is shown (blue dashed line). (b) experimental
data for the 2D band, with a linear fit. The parameters for the second order fit for the G band and
the linear fit for the 2D band are presented in the upper table. The parameters for the linear fit
though the first five points are presented in the lower table.

As explained in Chapter 2 and 6, the rods are located on the sample though confocal measurements.
The presence of gold is verified by the observation of the typical inelastic gold background (see
Figure 7.13), similar to that observed in the nanotip experiment. The power series are obtained
by recording the spectra for different laser power, as it was done in the nanotip experiment. As
already discussed, the confocal and near-field signal are recorded within the same spectrum and
cannot spectrally be distinguished. Differently from the measurement with the nanotip, it is in
this case not possible to measure the confocal signal where the near-field one has been measured
previously, because the nanorods lay on the graphene. A control measurement (not shown) has
been done at a position where only bare graphene was present, showing a linear trend for both
bands. Nonetheless two measurement taken at different positions can hardly be quantitatively
compared. For this reason, the slope of the linear background is estimated from the first points
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G band 2D band
intercept (A) 0, 2± 0, 4 −3± 3

slope (fixed, B) 54 618
power coefficient (C) 25± 4 2, 7± 0, 7

exponent (N) 3, 5± 0, 4 1, 06± 0, 04

Figure 7.15: FIRST NANOROD: POWER FUNCTION. Fit with a power function according
to eq. (7.1) for the G band (a) and the 2D band (b). The fitting parameters are presented in the
table.

of the series. Doing so, it is assumed that the contribution given by the dynamical back-action
is negligible compared to the confocal background for low laser power (for a verification of this
assumption, see Figure 7.9). The experimental results are shown in Figure 7.14. In this case, a
strong non-linearity for the G band is observed, while the 2D band shows a linear trend. To extract
the contribution of the confocal background, a linear fit through the first five points is done, and
also presented in Figure 7.14. For the 2D band, the slope extracted though the first five points is
very similar to that extracted for the complete trend.
For a comparison with the stimulated Raman model discussed in Chapter 4, the experimental data
are fit with a power function, summed to a linear function according to eq. (7.1). The slope for the
linear function is taken from the fit though the first points presented in Figure 7.14. The resulting
fits for the G and the 2D bans are presented in Figure 7.15. For the G band the fit is successful
and the exponent results to be around three, which would be consistent with the stimulated Raman
model. On the contrary, for the 2D band the exponential function resulting from the fit would have
exponent equal to one. The fitting function is then the equivalent of the sum of two linear functions.
As pointed out before, in the framework of a stimulated Raman process where the second field is
provided by the plasmon, it is strange that a non-linearity is observed for the G band while it is not
for the 2D band. The matching between the plasmon frequency and the phonon frequency should
provide the best condition for the 2D band.

The experimental results are quantitatively compared also with the theoretical result from the
QED description, using eq. (7.2). This comparison is presented in Figure 7.16. An advantage in
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this case, compared to simulation which was performed for the results obtained with the nanotip,
is that the plasmon parameters are known, at least on the ensemble level. This allows for a more
precise determination of the detuning factor and for the plasmon damping factor, which are cru-
cial for the simulation. On the other hand, it should be kept in mind, as it has been discussed
in Chapter 6, that very likely several nanorods are present within the confocal spot during the
same measurement. It should also be remembered that the dimension of the nanorods are not
uniform among the nanorods batch, and they can significantly change from one rod to the other,
such that the plasmonic properties can also correspondingly change. This fact actually does not
allow to completely remove the uncertainty about the plasmonic parameters. To completely remove
the uncertainty about the plasmonic parameters to be used in the simulation, in the case several
nanorods are present inside the laser focus, the information about the specific nanorod giving rise to
the dynamical back-action should be accessible (it could be, for example, the nanorod closer to the
graphene layer, that giving the larger field enhancement or that which orientation on the sample sur-
face matches the laser field polarization direction). This aspect is further discussed in the following.

detuning factor (∆) −8.426 · 1013 Hz
near-field volume 3.238710−24 m−3

plasmon resonance frequency 3.8933 · 1014 Hz
(wavelength) (770 nm)

plasmon damping factor 5.7839 · 1013 Hz

G band enhancement factor (f) 10
coupling factor (gv) 1.635 · 1010 Hz

weighting coefficient (C) 4.1 · 1014

2D band enhancement factor (f) 10
coupling factor (gv) 2.3124 · 1010 Hz

weighting coefficient (C) 5.4 · 1014

Figure 7.16: FIRST NANOROD: QUANTUM NOISE APPROACH. (a) simulation of the
experimental data according to eq. (7.2) (red line) for the G (a) and the 2D band (b); also the line
used to simulate the confocal background is presented (blue dashed line). The red dashed vertical
line shows the asymptote for the 2D band. The parameters for the confocal background are taken
from Figure 7.14.
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To simulate the confocal background, the fitting parameters for the linear function fitting the
first five points of the series are taken, as explained before (see Figure 7.14). The near-field volume
is taken to be half a sphere around the rod apex. In this case two apexes are present and not only
one, so the resulting near-field volume is larger than it was for the nanotip. 2 As for the inter-
pretation of the results with the nanotip, a value for the weighting factor has to be set arbitrary.
This value and the field enhancement factor are the free parameters in the simulation. From the
experimental data of the G band, an enhancement factor of 10 and a weighting factor of 3.9·1015 are
found. When the same parameters are used to try to reproduce the trend of the 2D band, the sig-
nal intensity as predicted by the Quantum Noise Approach, diverges. Compared with the G band,
the divergence is caused by a larger coupling factor for the 2D band and a better match between
the detuning factor (∆ = −8.426 · 1013 Hz) and the vibrational frequency (ωv = 7.914 · 1013 Hz).
Compared with the experiment with the nanotip, the divergence appears for smaller powers be-
cause of a smaller plasmon damping factor (compare with eq. 5.67). That the signal diverges for
a finite input power is of course unphysical. Despite the moderate field confinement, a pumping
factor sufficiently high to observe this divergence is reached in this experiment because of the high
number of graphene unit cells involved in the process. In this regime, the result obtained by the
Quantum Noise Approach looses accuracy. To compare the theory with the experimental results in
this regime, a numerical calculation as that mentioned in Chapter 5 would bee needed. Indeed, the
analytical result overestimate the Raman response for increasing power when the coupling factor
increases in comparison with the plasmon damping factor [45], which is equivalent to say, when
threshold for the pumping coefficient is decreased (see Figure 5.2). It is worth to note, however,
that even close before divergence, the predicted deviation from the linearity for the 2D band is very
weak, when the signal intensity due to dynamical back-action is summed to a the confocal signal.
Again, this can be attributed to the strong confocal background. Presumably, a numerical calcu-
lation would predict a very small deviation from the linear trend on top of the confocal background.

Interestingly, the same situation is found also when the power series are recorded on another sample
position, where different nanorods are present. The results are very similar also from a quantitative
point of view (see Figure 7.18, 7.19 and 7.20).

The role of the plasmon resonance frequency is briefly discussed in the following, in relation to
the experimental data. As already pointed out, the plasmon damping factor is in this case sensi-
bly smaller than that assumed for the nanotip. This makes the matching between the vibrational
frequency and the detuning factor more critical. In this sense, the signal contribution due to
the dynamical back-action can change drastically for small changes in the plasmon resonance fre-
quency. This situation is illustrated in Figure 7.17. If the plasmon resonance is shifted to 750 nm
(∆ = −7.388 · 1013 Hz), the divergence appears even for smaller values of the power (compare with
Figure 5.5 and the discussion in Chapter 5). If it is shifted to 790 nm (∆ = −9.412 · 1013 Hz)
not only the divergence disappears, but even the deviation from the linear behavior is barely ob-
servable. All these values for the plasmon resonance are well included within the width of the
absorption spectrum, due to the dimension distribution of the nanorods. The predicted deviation
from the linearity changes of course also for the G band, when changing the plasmon resonance,
but the change is less drastic (no divergence is observed, see Figure 7.17). This is due to the larger
difference between the detuning factor and the vibrational frequency, in addition a slightly smaller

2For and estimate of the near-field volume and the near-field distribution it is referred to [129].
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coupling factor for the G band. This is an example of why the plasmonic parameters need to be
know with high precision: especially when the detuning factor and the vibrational frequency are
close to each other, a small change in the plasmon resonance frequency can drastically change the
signal contribution due to dynamical back-action.

Figure 7.17: FIRST NANOROD: ROLE OF THE DETUNING. Raman response calculated
according to eq. (7.2) for the G (a) and 2D band (b) for different plasmon resonance frequencies and
correspondingly for different detuning factors. The blue, red and green line correspond to a detuning
factor of −7.388 · 1013 Hz (corresponding to a plasmon resonance λP = 750 nm), −7.914 · 1013 Hz
(λP = 770 nm) and 9.412·1013 Hz (λP = 790 nm) respectively. The experimental data are presented
as well for comparison. See text for explanation.

In conclusion, a strong non-linearity for G band has been observed after the deposition of gold
nanorods on a single layer graphene. The appearance of this non-linearity can be well explained
through QED model for the dynamical back-action. The signal contribution predicted through
the Quantum Noise Approach is strong enough to explain the deviation from the linearity, which
is experimentally observed. On the other hand, this non-linearity is not experimentally observed
for 2D band. According to the stimulated Raman model developed in Chapter 4, the matching
between the plasmonic resonance and the phonon frequency (as it is the case in this experiment
for the 2D band) should be the best condition for observing non-linearity. Also, the stimulated
and spontaneous Raman response depend both strongly on the Raman activity. Consequently, for
the same fields amplitude, a stronger spontaneous Raman response should also correspond to a
stronger stimulated Raman response. For these reasons, according to this model, the non-linearity
should be stronger for the 2D band than for tht G band. This prediction do not correspond to the
experimental observation. The appearance of the non-linearity for the G band can be explained
through the Quantum Noise Approach, within the QED description. For the 2D band, the same
model predict a divergence of the Raman response for finite input power. An infinite signal response
for a finite input power has no physical meaning. That the Quantum Noise Approach predicts a
divergence of the Raman response, is due to the fact that the pumping coefficient Ω approaches
its threshold value (see eq. 5.67), because of a sufficiently high coupling factor gv with respect to
the plasmon damping factor. In this regime the Quantum Noise Approach looses accuracy and a
simulation based on the numerical solution of eq. (5.54) would be appropriate. It should also be
considered that in this regime the dependence of the Raman response on the plasmonic resonance
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is extremely critical. In this sense, the plasmonic properties of the specific metallic nanostructure
involved in the coupling with the vibrational mode is essential.

G band intercept 25± 8
linear coefficient 9± 42

quadratic coefficient 40± 27

2D band intercept −2± 3
slope 638± 10

G band intercept 46± 30
slope 20± 7

2D band intercept 3± 7
slope 640± 43

Figure 7.18: SECOND NANOROD: QUADRATIC-LINEAR FIT. (a) experimental data
for the G band, presented with a quadratic fit (red line), also the linear function fit through the
first five points is shown (blue dashed line). (b) experimental data for the 2D band, with a linear
fit function. In the upper table the parameters for the second order polynomial fit are presented:
in the lower table the parameters for the linear fit through the first five points are presented.
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G band 2D band
intercept (A) 20± 3 3± 3

slope (fixed, B) 46 640
power coefficient (C) 6± 5 15± 10

exponent (N) 5± 2 4± 3

Figure 7.19: SECOND NANOROD: POWER FUNCTION. Fit using a power function ac-
cording to eq. (7.1) for the G band (a) and the 2D band (b). The fitting parameters are presented
in the table. The slope is taken from the confocal fit in Figure 7.18.

G band enhancement factor (f) 11
coupling factor (gv) 1.635 · 1010 Hz

weighting coefficient (C) 2.46 · 1014

2D band enhancement factor (f) 11
coupling factor (gv) 2.3124 · 1010 Hz

weighting coefficient (C) 2.05 · 1014

Figure 7.20: SECOND NANOROD: QUANTUM NOISE APPROACH. (a) simulation of
the experimental data according to eq. (7.2) (red line) for the G (a) and the 2D band (b); also the
line used to simulate the confocal background is presented (blue dashed line). The red dashed line
shows the asymptote for the 2D band. The parameters for the confocal background are taken from
Figure 7.14. The plasmon paramenters are the same as in Figure 7.16.
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”Short Nanorods” (Aspect Ratio around 2)

In this section, the measurements done on the nanorods having aspect ratio around two are pre-
sented. As for the other nanorods, the gold nanostructures are deposited in single-layer graphene.
The plasmon resonance frequency after deposition on the substrate is centered at 594 nm (see
Chapter 6 for further details). For these measurements, two laser sources have been used, one at
633 nm and one at 594 nm (both of them provided by HeNe lasers). When using a 594 nm laser,
the G and the 2D band of graphene appear at 655 nm and 705 nm respectively.

The aim of these measurements is that of comparing two different detuning conditions. This can be
done, repeating the measurements using two different laser sources. To make sure that the detuning
is the only changing parameter, the measurements need to be repeated on the same sample position
and using the same laser polarization. Indeed, since the nanorods orientation on the sample is un-
known, moving from one nanorod to another, the orientation of the laser polarization with respect
to the nanorod axis could change. Changing the laser polarization relatively to the nanorod axis
can in principle change the near-field distribution and consequently the enhancement factor and
the near-field volume. A change in the Raman response in dependence on the laser power could
the attributed not to a different detuning but to a change of these parameters. This ambiguity
can be removed repeating the measurement on the same sample position and using the same laser
polarization (for more details on the experimental procedure, see Chapter 2). Compared to the
measurements presented in the previous section, in this case the laser power must be limited to
around 1.1 mW. This power corresponds to the maximum power effectively reaching the sample,
which can be achieved with the 594 nm laser. The results obtained after repeating the measure-
ments on a certain sample position are shown in Figure 7.21. In general, a non-linear behavior is
observed for all bands for both laser wavelengths. For the G band, there is no substantial difference
in the non-linearity when changing laser wavelength, while the non-linearity is sensibly stronger for
the 2D band, when the 633 nm laser is used.

The fit with eq. (7.1) gives for both the G and 2D band the same value for the exponent within
the experimental uncertainty. The fitting parameters are given in Figure 7.22. The slope is taken
as fix parameter from the linear fit shown in Figure 7.21. The values for the exponent for the
different bands under different laser excitation are in between 2 and 3. These values are compati-
ble with the power dependence predicted from the stimulated Raman model presented in Chapter 4.

The presence of single nanorods is in principle an advantage because it can potentially simplify
the characterization of the system under observation; on the other hand the specific system (in
this case, the specific nanorod on this specific sample position) need to be characterized with high
precision. As already explained is Chapter 6, it has unfortunately been impossible to recognize
the same sample position when switching from the dark-field to the confocal setup. The specific
characteristic of the nanorods in correspondence of which the power series is recorded is then un-
known and must be estimated, based on ensemble measurements and on measurements on other
single nanorods on the same sample. In this sense, the potential advantage of using nanorods, with
respect to the nanotip experiment, is partially lost. For these nanorods, the average plasmonic
resonance after deposition on the sample is 594 nm. As a starting point, it makes sense to try to
fit the experimental results supposing a positive detuning factor. It has been shown in Chapter
5 that also a slightly positive detuning factor can lead to a increase of the Raman signal beyond
the linearity, if the plasmon damping factor is large enough. Nonetheless, this deviation is less
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strong than in the case of blue-detuning. For this reason, in order to reproduce the experimentally
observed trend, a large field enhancement factor must be assumed. Such a large enhancement factor
(besides being unrealistic for single nanorods) would increase the slope of the dynamical back-action
component very much, which makes it impossible to correctly reproduce the the experimental data.
The simulation of the experimental according to eq. (7.2) is presented in Figure 7.23. For the
simulation of the confocal background, the fitting parameters shown in Figure 7.21 are used. As
already explained, the experimental data must be simulated supposing a negative detuning fac-
tor.The plasmonic resonance is then supposed to be centered at 635 nm (4.721 · 1013 Hz). This
value is at the very edge of the distribution shown in Figure 6.6. Such a plasmon frequency which
gives, for the red laser, a detuning factor equal to −1.4916 · 1012 Hz. With this detuning factor,
the experimental data in Figure 7.23 can be reproduced assuming an enhancement factor of 11.
The plasmon damping factor is taken as the average of the damping found for the single scattering
curves (3.876 · 1013). The near-field volume is taken as the same as for the other nanorods (remem-
ber that the radius of the apex is the same for both nanorods samples). In Figure 7.23, the same
parameters as those used for the simulation of the results obtained with the 633 nm laser, are used
to reproduce the results found under excitation with the 594 nm laser. The only parameter which is
allowed to change in this simulation is the enhancement factor, which can be different for different
wavelengths. Compared to the case under 633 nm laser excitation, the detuning factor is now much
closer to the phonon frequency of the G band. For this reason, the experimental data are simulated
with a smaller enhancement factor, equal to 5. Similar parameters successfully reproduce also the
non-linearity observed for the 2D band.

These results show that a non-linearity can actually be observed for both the G and the 2D band.
They also show that the non-linear response is dependent on the laser wavelength. Indeed, although
no big change in the non-linear response is observed for the G band when changing the excitation
wavelength, the strength of the non-linear response changes for the 2D band when the 633 nm
laser is used, compared to the 594 nm laser. The experimental data can be successfully simulated
with power function according to eq. (7.1), the resulting exponent are found to be between 2 and
3. Also the prediction of the Quantum Noise Approach can successfully be used to reproduce the
experimental data. Given the worse match between the detuning and the vibrational frequency,
compared to the situation described for the ”long nanorods”, the driving parameter is far from
its threshold value. This makes the simulation according to the Quantum Noise Approach more
reliable. A conclusive explanation is however hard to be drawn for this experiment, because of the
uncertainty about some fundamental parameters and because of a not straightforwardly charac-
terizable sample. In principle, two nanorods having two different plasmonic resonances could be
present at this position, causing one a non-linear response under red and the other under orange
excitation.
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633 nm EXCITATION intercept linear coefficient quadratic coefficient ratio
G Band −38± 40 2397± 184 1073± 169 0, 45± 0, 08
2D Band −16± 28 5810± 198 1916± 222 0, 423± 0, 08

594 nm EXCITATION intercept linear coefficient quadratic coefficient ratio
G Band 22± 43 3330± 356 1382± 496 0, 33± 0, 04
2D Band −127± 140 11981± 724 2870± 800 0, 23± 0, 07

633 nm EXCITATION intercept slope
G Band −74± 28 2845± 187
2D Band −73± 53 6511± 297

594 nm EXCITATION intercept slope
G Band −35± 27 3967± 165
2D Band −136± 7 12399± 51

Figure 7.21: LINEAR-QUADRATIC FIT. Power series using the 633 laser for the G (a) and
2D (b) band and using the 594 nm laser for the G (c) and 2D band (d). The red lines show the
second order polynomial fit, the corresponding parameters are presented in the first table. The
blue dashed lines show the linear fit though the first five points, the corresponding parameters are
presented in the second table. In the last column of the table, the ration between the linear and
quadratic coefficient is given, used to estimate the strength of the non-linearity.
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633 nm EXCITATION intercept (A) slope (fixed, B) power coefficient (C) exponent (N)
G Band −75± 8 2845 612± 65 3, 4± 0, 9
2D Band −17± 60 6511 1915± 754 2, 0± 0, 6

594 nm EXCITATION intercept (A) slope (fixed, B) power coefficient (C) exponent (N)
G Band −40± 18 3967 828± 198 3, 0± 0, 8
2D Band −160± 40 12399 2463± 258 2, 1± 0, 4

Figure 7.22: POWER FUNCTION. Fit of the experimental power series presented in Figure
7.21 according to eq. (7.1), (red line). The blue dashed line represents a linear fit through the first
five points. The fit parameters are presented in the table.
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633 nm LASER detuning factor (∆) −1.4916 · 1012 Hz
near-field volume 3.238710−24 m−3

plasmonic damping factor 3.876 · 1013 Hz
G band coupling factor (gv) 1.6147e+ 10 · 1010 Hz

weighting coefficient (C) 61.05 · 1015

enhancement factor (f) 11
2D band coupling factor (gv) 2.7312 · 1010 Hz

weighting coefficient (C) 1.05 · 1016

enhancement factor (f) 11

594 nm LASER detuning factor (∆) −3.2586 · 1013 Hz
near-field volume 3.238710−24 m−3

G band coupling factor (gv) 1.2465 · 1010 Hz
enhancement factor (f) 5
weighting coefficient (C) 4.05 · 1016

2D band coupling factor (gv) 2.7088 · 1010 Hz
enhancement factor (f) 5
weighting coefficient (C) 6.05 · 1017

Figure 7.23: QUANTUM NOISE APPROACH. The experimental data presented in Figure
7.21 and 7.22 are simulated according to 7.2, (red line). The blue dashed line represents a linear
fit through the first five points, see Figure 7.21. The parameters are presented in the table. The
plasmonic damping factor is taken in this case to be the average of the plasmonic damping factor
for the single scattering curves in Figure 6.5.
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Heating Effect

In general, a metallic nanostructure under laser excitation can lead to a local strong increase of the
temperature in its surrounding, due to the high ohmic losses inside the nanostructure itself. The
Raman scattering, depending on the thermal occupation of the vibronic level, can become stronger
for increasing temperature. In principle, the non-linearity observed for the Raman signal could be
simply due to the increase of the temperature given by the nanostructure itself. This effect is less
likely for the experiment with the nanotip, because the tip is not in contact with the sample, but
it could in principle contribute to the non-linearity in the experiment for the nanorods: a higher
incident intensity leads to a larger temperature increase and so to a stronger Raman scattering
efficiency. In the following, the increase in the Raman signal is modeled though a pure increase of
the temperature to answer the question, if the increase in the Raman scattering could be explained
with an increase of the temperature. As example, the results shown in Figure 7.14 are considered.
To this aim, the Stokes Raman scattering cross-section is expressed as (the complete expression can
by found, fo instance in [7]):

σS ∼
(

1 + nth
)

(7.6)

where nth is the temperature dependent Bose-Einstein population:

nth =

[
e
hωm
kBT − 1

]−1

(7.7)

The Raman scattering power is modeled as:

PS ∼ σS · PL = k ·
(

1 + nth
)
PL + q (7.8)

Figure 7.24: (a) the non-linear trend observed for the G band in presence of nanorods deposited on
graphene under 633 nm excitation is reproduced according to eq. (7.8), the temperature needed to
reproduce the experimental data is labeled correspondingly. The temperature is unrealistic being
far above the melting temperature of bulk gold. (b) the intensity for the 2D band is calculated
for the same temperature values used for the G band. Such a temperature, would lead to a strong
deviation from the linearity also for the 2D band, which is not experimentally observed.
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In eq.(7.8) the parameters k and q are taken again from the linear fit in Figure 7.14 and the
temperature T is taken as free parameter to reproduce the signal increase. To reproduce the
experimental trend, a temperature up to 5000 K needs to be assumed, which is far beyond the
melting temperature of bulk gold. Also, an increase in the temperature should also lead to an
increase of the scattering from the 2D band, although the higher vibrational frequency makes so
that the increase is slower. In any case, the non-linearity observed in the experiments cannot be
attributed to an increase in temperature.
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Conclusions

The spontaneous Raman scattering intensity is intrinsically linear in dependence on the laser power.
In this thesis, however, a non-linear Raman response from graphene and carbon nanotubes has been
observed in the presence of different plasmonic nanostructures. This non-linearity has been observed
for both the G and 2D band. Its occurrence has been observed to change in dependence on several
parameters, such as the difference between the laser and plasmon resonance frequency and the
plasmonic damping factor. The results presented in this chapter have been compared with two dif-
ferent models, one based on stimulated Raman scattering (see Chapter 4) and the other developed
according to the Quantum Noise Approach, within a quantum-electrodynamic (QED) description
of a coupled system composed by the plasmon and the Raman emitter (see Chapter 5).

The correspondence between the results and the stimulated Raman scattering model is generally
poor. After this model, the non-linear response is expected to be maximum when the difference
between the laser and the plasmon frequency is equal to the frequency of the vibrational mode.
Interestingly, also the solution in the classical limit for the QED description, leads to a qualitatively
similar result. This prediction has not been confirmed, for instance, in the experiment with the
3 aspect ratio nanorods (”long nanorods”), having a plasmonic resonance around 770 nm. Using
a 633 nm laser, the 2D band appears at 760 nm, in correspondence of the plasmonic resonance.
The difference between the laser and plasmon resonance frequency then matches in this case the
vibrational frequency, which should be the best condition to observe the non-linearity according
to the stimulated Raman model. Nonetheless, the 2D band showed a linear Raman response also
in presence of a strong non-linearity of the G band (see Figure 7.14), for which the best match-
ing condition is not verified. For a quantitative comparison, the trend given by the power series
has been fit using the sum between a line and an exponential function. For the G band, this fit
gives an exponent of 3.5 ± 0.4, while for the 2D band of 1.06 ± 0.4. For the 2D band then, no
non-linear component can be identified: the results from the fit is the sum of two linear functions.
It is important to point out that in the stimulated Raman picture the higher confocal background
of the 2D band cannot explain the non-observation of a deviation from the linear trend on top of
the linear background itself. Indeed the spontaneous and the stimulated Raman scattering have
respectively a linear and quadratic dependence on the polarizability change, ∂α

∂xv
. Therefore, the

stronger spontaneous Raman response of the 2D band, should be connected to a stronger stimulated
response (see Chapter 4). A similar fitting procedure has been used also in literature, although
the data can be well fit also with a parabola [30]. Indeed in a conventional stimulated Raman
picture the Raman scattering intensity is expected to have a quadratic dependence on the inten-
sity of the pump. On the other hand, if the vibrational mode is supposed to be stimulated by
the sum of laser and plasmon fields, the Raman scattering intensity should then depend not on
the second but on the third power of the laser intensity (see Chapter 4). More generally, other
ambiguities are present in this model. In this last description of the stimulated Raman process, the
plasmon field has been assumed to be monochromatic and to oscillate at the plasmon resonance
frequency. However, the plasmonic field is usually considered to oscillate at the driving frequency
(the frequency of the laser). To overcome this ambiguity, the plasmon field has been described as
a broad band field [30], able to stimulate the Raman response similarly to a broad band fs-pulse
in Femtosecond Stimulated Raman Spectroscopy (Fs-SRS). This intuition can be justified consid-
ering the broad spectral background related to inelastic scattering in plasmonc nanostructures [58].
On the other hand this spectral region is measured in the experiment, and the intensity of this
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spectral background is far from being comparable with the laser intensity. It is then hard to think
that this background can provide a field component strong enough to stimulated the Raman process.

Because of all these difficulties arising in the stimulated Raman picture, the experimental results
have been compared also with a model based on a full quantum-electrodynamic (QED) description.
The problem as formulated within the QED description can be solved either in the classical limit
[44], taking the expectation values of the operators, or with a pure quantum-mechanical procedure
[45]. Although the pure quantum solution is qualitatively similar to the one found in the classical
limit, in the pure quantum solution an additional term in the phonon population appears (see eq.
5.64). Related to that, the condition for the best detuning changes in this description and results
to be dependent not only on the matching between laser and plasmon frequency, but also on the
plasmonic damping factor (see Figure 5.5). For this reason, the pure quantum solution has been
compared in Chapter 7 with the experimental results, with the aim of correctly taking into account
the influence of the plasmonic properties on the dynamical back-action. In particular, to be able to
compare the results for arbitrary detuning, the solution according to the Quantum Noise Approach
has been used. This analytical result can successfully describe the experimental data in the regime
in which the coupling factor is sufficiently smaller in comparison with the plasmon damping factor.
For an increasing coupling factor, this solution leads to a divergence of the Raman response for a
finite input power. In this regime then, this analytical result looses validity and a numerical solu-
tion would need to be used. In the case a nanotip is used as plasmonic nanostructure, the plasmon
damping factor can be assumed to be high enough, so that the solution in the Quantum Noise Ap-
proach can be fairly used. In this case this theoretical prediction reproduces well the experimental
results: the trend of both bands can be successfully reproduced summing the confocal background
to the emission intensity due to the dynamical back-action. A weaker or absent deviation from
the linearity for the 2D band can be attributed in this case to the stronger confocal background.
An advantage of using a nanotip, is that it is relatively easy to discriminate the confocal from the
near-field response, in the sense that the same measurement can be repeated at the same position
retracting and landing the nanotip. The disadvantage is, on the other hand, that the plasmon
parameters of the nanotip are not easily determinable.

Compared to the nanotip, the plasmonic damping is smaller for gold nanorods. For this reason,
and because of a good match between the detuning coefficient and the vibrational frequency, the
regime in which the result from the Quantum Noise Approach predicts a divergence of the Raman
response, is reached in the case of the ”long nanorods” for the 2D band. For a correct reproduction
of the experimental results then, a numerical simulation would in this case be appropriate. In the
other cases, where this regime is not reached, the analytical solution describes well the experimental
trend. A potential advantage of using nanorods (or generally speaking plasmonic nanostructures
different from a nanotip) is that the the plasmonic parameters are relatively easily determinable.
Anyhow, these parameters depend on the aspect ratio of the nanorod. In a chemically synthesized
nanorods batch the dimensions are not exactly the same from one nanorod to the other, but a
length distribution is present (see Chapter 6). This requires the characterization of the specific
nanorod under observation, which can be experimentally challenging. In this sense, the uncertainty
about the plasmonic parameters has not been completely removed in this experiment, even using
gold nanorods as plasmonic probes, because it has not been experimentally possible to access the
properties of the specific nanorods involved in the coupling with the vibrational mode. Also, the
presence of more nanorods at the sample position probed during the optical measurement can make
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the interpretation of the results very ambiguous.

Beside a precise determination of the plasmonic parameters, also the vibrational properties of
the material under observation need to be precisely known. In the case of graphene, the polar-
izability change ∂α

∂xv
(which is also named as the absolute value of the Raman tensor) has been

experimentally determined for the G band [10]. This values has been used in this chapter to repro-
duce the experimental data. The polarizability change for the 2D band has been estimated from
that of the G band, using the ratio between the intensities of the two Raman bands. Alternatively,
this value could be estimated through a calibration measurement (as it has been done with the
G band). Besides the polarizability change ∂α

∂xv
, also other quantities relative to the phonon need

to be known. First of all, as already mentioned, the effective mass of the phonon mode must be
considered explicitly. In this work, the carbon mass has been taken as the effective mass of both
phonon modes, but in principle the effective mass of the two modes can be different because of the
different symmetry of the vibrational modes. Another difference between the two phonon modes is
that the G band results from a vibration at the center of the Brillouin Zone, having wave-vector
close to zero and almost infinite wavelength. The vibration relative to the 2D band is not at the
center of the Brillouin Zone, and has consequently shorter wavelength. Also, as already pointed out,
the symmetry of the two vibrational mode is different. This could lead to the fact that the coherent
length on which the contribution from the different lattice cells can be summed, can be very differ-
ent for one vibrational mode compared to the other. On the contrary, in the simulation presented
here, polarizability change ∂α

∂xv
has been multiplied by the number of all the primitive cells inside

the near-field volume, without taking into consideration the possible different coherence length.
It should also be pointed out, that the QED description presented here is valid for non-resonant
Raman scattering. The Raman scattering in graphene is resonant in the sense that is involves real
electronic states. Related to that, other differences exist between G and 2D band modes: while the
first involves three steps (photon-electron, electron-phonon and photon-electron interaction), the
second involves four (photon-electron, electron-phonon, electron-phonon and photon-electron inter-
action; see Chapter 1). Graphene has been taken as sample material for several of its advantages,
such that of being a strong Raman scatterer and of having its two main Raman modes spectrally
separated enough for allowing to investigate different spectral regions within the typical width of a
plasmonic resonance spectrum. On the other hand, a single molecule would probably be easier to
compare with the QED description, being most of the issues listed before simpler to handle for a
single molecule than for a extended crystalline sample.

Finally, in a future perspective, an improvement in the sample preparation might be necessary,
in order to make sure that a single plasmonic nanostructure is present in the confocal region and
to allow for the complete characterization of the nanostructure itself. This can be achieved, for
example, with a lithographically patterned sample . A further improvement might be given using
a zero-dimensional Raman scatterer, which would allow to remove the uncertainty about the linear
component in the power series, stemming from the confocal background. Such a probe could consist
of a molecule in close proximity of a metallic nanostructure, or at the junction of a dimer [130].
In both cases, the more precise design of the plasmonic nanostructure would also help to achieve
a more precise determination of some fundamental parameters, such as near-field volume and field
enhancement factor (besides of course plasmonic resonance frequency and damping factor). Fur-
thermore, a precise enough fabrication procedure could allow to tune, for instance, the distance
between nanostrucure and molecule, or between the two nanostructures composing the dimer, ex-
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ploring different coupling regime and field confinements. With the moderate field enhancement
chosen in the experiments described in this thesis, it has been shown that the plasmon itself acting
as a resonance system is sufficient to form the coupled system described in Chapter 5 and that
no sub-wavelength nanocavity is needed, as that used in [30]. This does not imply, however, that
the investigation of strong field enhancement configuration would not be interesting. It actually
becomes of high interest to combine the stronger dependence of the Raman scattering on the laser
power with a nanostrucure designed to have a high enhancement factor. This might potentially be
very useful to improve the sensitivity for single molecule detection achieved with surface enhanced
Raman scattering.
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Part IV

Raman Scattering in
Beryllium-doped Gallium Arsenide

Nanowires
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Introduction

Semiconducting nanowires (NWs) are promising building blocks for future electronic devices, with
potential applications in energy harvesting systems [71, 72, 73, 74]. The successful implementation
of the NWs in electronic devices requires efficient control of growth and reliable transport behaviour.
Considerable progress has been made in the fabrication of high quality NWs and in understanding
their growth mechanisms [75, 76, 77, 78]. On the other hand, the achievable limit for the effective
dopant concentration, and the resulting charge-carrier concentration and mobility need to be deter-
mined with higher accuracy. Gallium arsenide (GaAs) NWs are of particular interest, because they
can be directly grown on Si as well as GaAs substrates and because the band gap of GaAs (1.43 eV)
is at the maximum of the single junction Shockley-Queisser limit [79, 80]. Beryllium (Be) is one of
the common p-type dopants for III-V semiconductors and particularly known for its high diffusion
rates in GaAs [81]. Be-doping has been reported for GaAsN [82], InGaAs [83] and GaN [84]. An
efficient and reliable procedure to determine the charge-carrier density and mobility in NWs is
important for guiding the development of optimized fabrication techniques. While the product of
the charge-carrier concentration and mobility can, in principle, be derived from 4-point electrical
measurements [81, 85], the choice of the metal used for the contacts can influence the result[85].
It is therefore of particular interest to develop a reliable contactless measurement technique in or-
der to characterize charge transport. Contactless techniques also have the advantage of requiring
comparatively straightforward sample preparation, since no contact deposition step is needed. The
charge-carrier concentration and mobility of undoped GaAs NWs have been determined through
optical pump terahertz-spectroscopy (OPTS)[86, 87]. OPTS is a contactless technique that is well-
suited for the inspection of high mobility charge carriers (for instance electrons, which mobility can
be as high as 1000 cm2/Vs in undoped GaAs NWs [86, 87]). On the other hand, Be acts as a p-type
dopant in GaAs [88], giving rise to holes with mobility orders of magnitude lower [90]. Alterna-
tively, Raman spectroscopy has been used to prove dopant incorporation [89] and also to estimate
the charge-carrier concentration and mobility in Si-doped GaAs NWs [90]. Additionally, resonant
Raman spectroscopy has been used to identify the sites occupied by Be when it is incorporated as
a dopant in the GaAs lattice [91].

The reliability of semiconducting NWs is strictly related also to characterization and control of their
defects. The defects might indeed act as scattering regions and thus influence the electronic prop-
erties, possibly leading to a reduction in mobility and localization of the charge carriers [115, 116].
It is crucial to understand the local structure and the nature of the defects in the nanowire to
control properties at nanoscales. Stacking faults and twins are the most common defects observed
in NWs[110, 112]. Raman spectroscopy can be useful also for the characterization of the surface
morphology. In fact, in addition to the bulk transverse optical (TO) and longitudinal optical (LO)
modes, a surface optical (SO) phonon mode can exist at the interface between the nanostructure
and the medium. The SO mode is dominated by oscillations from the atoms located at the surface of
the wire. The appearance of SO phonon modes has been predicted theoretically and then observed
in different nanostructure and most extensively in nanowires [102, 117, 118, 119, 120, 121, 122].
These modes can be in general observed for structures having a sufficiently high surface to volume
ratio. SO phonons are observable as an additional peak in the Raman spectrum. Interestingly to
the purpose of characterizing the surface morphology, the frequency of the SO mode depend on
the surface propagation constant of the phonon along the NW axis. Assuming that the amplitude
of the lattice vibration is damped in presence of defects, the surface propagation constant gives
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information about the average distance between surface defects. In the following, Raman measure-
ments are combined with Transmission Electron Microscopy (TEM) analysis in order to verify the
correlation between the SO mode frequency and the mean distance between surface defects in the
NWs. Indeed, beside presenting different electronic transport properties, the NWs present also a
very different defects concentration, given by the different synthesis conditions needed to achieve
the different doping concentrations [80].

The nanowires used in this work have been synthesized in the group of Prof. Peter Krogstrup
of the University of Copenhagen, Denmark. The TEM measurements and the relative analysis
have been done by Dr. Sriram Venkatesan of the group of Prof. Gerhard Dehm at the
Max-Planck-Institut für Eisenforschung in Düsseldorf, Germany. A fundamental contribution to
this work was given by Prof. Christina Scheu at the Max-Planck-Institut für Eisenforschung in
Düsseldorf, Germany and by Jason Röhr, at the Imperial College London, United Kingdom.
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Chapter 8

Specific Features appearing in the
Raman Spectra of polar doped
semiconducting Nanowires

In this chapter the basic concepts needed to interpret the features appearing in the Raman spectra
of Beryllium-doped Gallium Arsenide nanowires are briefly reviewed. In particular, the coupled
plasma-phonon model is presented, according to which the changes in the Raman spectrum due
to the interaction between the charge carriers (provided by the dopant) and the local electric field
(connected to the longitudinal optical lattice vibration) can be predicted. Additionally, the theory
related to the appearance surface optical phonons and phonon confinement is discussed, being those
relevant to the correct description of Raman spectra measured in this work.

Coupled-Plasma-Phonon Model

As explained in Chapter 1, the Raman spectrum of GaAs consists of two peaks, one related to
the transversal optical phonons (TO) and the second related to the longitudinal optical phonons
(LO). For the TO mode, the vibration of the lattice planes is perpendicular to the propagation
direction. Related to that, the center of mass is conserved. For the LO phonon mode, the vibration
of the atomic planes is parallel to the propagation direction, and the center of mass inside the
unit cell is not conserved. Because the lattice sites are not occupied by neutral atoms but by ions,
the non-conservation of the center of mass, leads to a locally non-zero local field. This aspect
is discussed in the next session in terms of the field and atomic displacement divergence, within
the discussion about surface phonons. In a doped polar semiconductor this field interacts with the
charge carriers, given by the doping. These charge carriers can be treated like a plasma. Throughout
this thesis, the Raman process has been generally formulated as a change in the polarizability α,
which relates the polarization and the electric field as P ∼ αE. Analogously, the polarization can be
expressed, in scalar form, as P = χE, where χ is defined as the susceptibility. Correspondingly the
Raman scattering process can then be formulated as a change in the susceptibility. In polar doped
semiconducting materials, there are three contributions to the change in the susceptibility [94, 93].
The first is related to the modulation of the periodic crystal potential dy the ions displacement in
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the crystal lattice (∂χ∂u ); the second contribution is given by the interaction of the charge carriers

with the local field related to the LO mode ( ∂χ∂~eL ). The third contribution is given by the charge
carriers themselves, which contribute to the total polarization of the medium, and is expressed as

∂χ

∂e
=

e2

4πε0m∗ω2
S

1

V

∫
ei
~k~rd3~r (8.1)

Where e is the elementary charge, V is the crystal volume, ε0 is the vacuum permittivity, ωS is the
scattered frequency and m∗ is the effective mass of the charge carriers. The total polarization is
expressed in scalar form in the Fourier space as P (~k) = P0 +NePe, where Ne is the charge-carrier
concentration. It consists of one component related to the displacement, (P0), and one related to
polarization due to the charge carriers, (Pe):

P0(~k) = e∗
1

V

∫
~u(~r)ei

~k~rd3~r (8.2a)

Pe(~k) =
e

ik

1

V

∫
ei
~k~rd3~r (8.2b)

where e∗ is the partial unbalanced charge related to the displacement ~u(~r). The total polarization
produces a longitudinal macroscopic electric field, expressed in Fourier space as:

EL(~k) = −P (~k)

ε0ε∞
(8.3)

where ε∞ is the high frequency limit for the dielectric constant. The total change in the susceptibility
can then be expressed as a function of the polarization:

∂χ =
V

e∗

(
∂χ

∂u

)
P0 −

1

ε0ε∞

(
∂χ

∂~eL

)
(P0 +NePe) + iNP

∂χ

∂e
Pe (8.4)

The calculation for the Raman cross-section as a function of the susceptibility change can be carried
out through the fluctuation-dissipation theorem [94]. Also, the interaction between the phonon and
plasma subsystems can be taken into account in the random-phase approximation by linear response
to the total effective electrical fields [93, 92]. The following expression can then be derived for the
intensity of the Raman peak related to the phonon-plasma coupling [93, 94]:

I = I0(n+ 1) · (A+B) · Im
{
− 1

ε(ω)

}
(8.5)

In eq. (8.5), I0 is a constant factor independent on the frequency, and n is the Bose-Einstein
distribution. The prefactors A and B are given by:

A = 1 + 2Cω2
TO

ω2
LOΓ

(
ω2
TO − ω2

)
− γω2

(
ω2 + Γ2

)
ω2
PΓ
[(
ω2
TO − ω2

)2
+ ω2γ2

]
+ γω2

(
ω2
LO − ω2

TO

)
(ω2 − Γ2)

(8.6)

B = C2 ω4
TO

ω2
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TO

ω2
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[
Γ
(
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TO
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+ γ
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ω2
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)]
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]
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ω2
LO − ω2

TO

)
(ω2 − Γ2)

(8.7)
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In eq. (8.6) and (8.7), C is the Faust-Henry coefficient, which determines the ratio of scattering by
LO and TO phonons. It is defined as:

C =

[
ω2
LO

ω2
TO
− 1
]
∂χ
∂u

e∗ε∞
Vcell

∂χ

∂ẼL

(8.8)

At 633 nm, it is equal to -0.37 [106]. The dielectric constant ε(ω) in eq. (8.5) is expressed as the
sum of the susceptibilities of the phonon and plasma subsystems:

ε(ω) = ε∞ + χphonon + χplasma = ε∞

[
1 +

ω2
LO − ω2

TO

ω2
TO − ω2 − iγω

− ω2
P

ω(ω + iΓ)

]
(8.9)

In eq. (8.6), eq. (8.7) and eq. (8.9), ωP is the plasma frequency, Γ is the plasma damping factor,
γ is the phonon damping factor, ε∞ is the high frequency dielectric constant for GaAs and ωTO
and ωLO are TO and LO mode frequencies, respectively, for the undoped material. The plasma
frequency and the plasma damping factor are correlated to the charge-carrier concentration and
mobility, respectively, according to the following expressions:

ωP =

√
e2NP
m∗ε0ε∞

(8.10)

Γ =
e

µm∗
(8.11)

In eq. (8.10), ε0 is the vacuum permittivity, e is the electron charge, and m∗ is the effective hole
mass, estimated for GaAs as 0.38m0 (m0 being the rest electron mass) [93, 90]. NP is the charge
carrier concentration. In eq. (8.11), µ is the hole mobility. The plasma-phonon coupling leads to
the appearance of two modes in the case of high mobility charge carriers [94]. In the case of low
mobility charge carriers one mode is totally damped and only one mode appears with frequency
very close to the LO-frequency for the undoped material [92, 93]. In this specific case, the Be doping
gives rise to holes, which are in GaAs low mobility change carriers. In spite of two separated peaks
then, a single peak is expected.

In Chapter 9, the appearance of the CPP related peak is experimentally observed and its appear-
ance is discussed in order to extract form its shape and position the charge-carrier concentration
and mobility. The CCP model as presented in this section has already been used exactly with the
aim of extracting charge carrier concentration and mobility for Si-doped GaAs NWs [90], obtaining
quantitatively similar results to that presented in Chapter 9. A more precise determination could
in principle by done using not the classical expression for the plasma dielectric function as in eq.
(8.9), but using the Lindhard dielectric function. Nonetheless the CPP model as formulated here
is valid, since for small values of the wavevector, the Lindhard dielectric constant and the classical
result as expressed in eq. (8.9) coincide [7]. Similar experimental data as those presented here have
been analyzed using for ε(ω) the Linhard-Mermin dielectric function [126, 127].
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Surface Optical Phonon Modes

In nanostructures an additional phonon mode can exist at the interface between the nanostructure
itself and the surrounding medium. The appearance of this mode can be mathematically predicted
[117]. In the presence of an electric field, like that correlated to electromagnetic radiation, the ions
occupying the lattice sites are going to be displaced. If the displacement is considered to be given
by a macroscopic field ~E with local field correction 4π

3
~P , and considering a short-range restoring

force, the displacement ~u(~r, t) follows the equation:

m̃
∂2

∂t2
~u(~r, t) = −m̃ω2

0~u(~r, t) + e

[
~E +

4π

3
~P

]
(8.12)

where m̃ is the effective mass related to the lattice vibration. Writing the polarization as: ~P (~r) =
Ncelle~u(~r) and assuming a harmonic time dependence for the displacement, one finds:

~u(~r) =
e ~E(~r)

m̃(ω2
0 − ω2)− e2 4π

3 Ncell
(8.13)

Where Ncell is the number of unit cells. The electrostatic potential can be written as:

φ(~r) = −
∫
∇

 ~P (~r′)∣∣∣~r − ~r′∣∣∣d3~r′

 = −eNcell
∫
∇

 ~u(~r′)∣∣∣~r − ~r′∣∣∣d3~r′

 (8.14)

Writing the electric field as ~E(~r) = −~∇φ(~r) and combining all equations, one finds:

m̃(ω2
0 − ω2)~u(~r)− e2Ncell

4π

3
~u(~r) = −eNcell

∫
∇

 ~u(~r′)∣∣∣~r − ~r′∣∣∣d3~r′

 (8.15)

Making divergence and curl of this last equation, it is found:(
ω2 − ω2

0 −
8π

3

)
∇~u(~r) = 0 (8.16a)

(
ω2 − ω2

0 +
4π

3

)
∇× ~u(~r) = 0 (8.16b)

There are three solutions to this system of equations. The first with∇~u(~r) = 0 and ω2 = ω2
0− 4π

3 cor-
responds to the transversal optical phonon modes. The second with ∇×~u(~r) = 0 and ω2 = ω2

0 + 8π
3

corresponds to the longitudinal optical phonon modes. The condition ∇~u(~r) = 0 is the equivalent
of stating that the center of mass does not change. Following from eq. (8.13), the field divergence
is also equal to zero. From this, no local charge and consequently no local field are related to the
TO vibrational mode. In the case of the LO vibrational mode, the center of mass changes, which
is consistent with the condition ∇~u(~r) 6= 0. As a consequence also the field divergence is different
from zero, and the local charge is consequently non-zero as well (see eq. 8.2a, where the partial
unbalanced charge e∗ was inserted in relation to the displacement ~u(~r)). Consequently there is a
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local field associated to the LO mode. With respect to the discussion in the previous section, the
susceptibility change with the atomic displacement ∂χ

∂u and with the local field ∂χ
∂~eL

are related to
the divergence of the displacement and of the local field.

The third solution is found for both displacement divergence and curl equal to zero and corre-
sponds to the surface optical phonon modes. Form eq. (8.13), it follows that the curl and the
divergence must be zero for the field as well. The combinations of these two conditions implies:
∇2φ(~r) = 0. The problem reduces then to the solution of Poisson’s equation. For simplicity the
NW can be approximated to a cylinder, so that Poisson’s Equation can be solved in cylindrical
coordinates.

Factorizing the potential as: φ(r, θ, z) = R(r)Θ(θ)Ω(z), the solutions for the functions are:

∂2

∂z2
Ω(z) = −q2Ω(z) (8.17a)

∂2

∂θ2
Θ(θ) = ±n2Θ(θ) (8.17b)

r

R(r)

∂

∂r

[
r
∂R(r)

∂r

]
+ q2r2 ± n2 = 0 (8.17c)

The equation for R(r) can be written as a function of the variable x = qr as:

1

x

∂

∂x

[
x
∂R(x)

∂x

]
+R(x)

(
1± n2

x2

)
(8.18)

This last equation corresponds to Bessel’s Equation of the first kind. The potential must be regular
at the middle of the NW (r = 0) and at infinite (r = +∞). Taking the first order solution for
n = 0, the potential inside and outside the NW is:

φinside = I0(x)Θ(θ)Ω(z) (8.19a)

φoutside = K0(x)Θ(θ)Ω(z) (8.19b)

where I and K are Bessel’s functions. Setting the boundary conditions for the electric field at the
interface between NW and the surrounding medium, fives for the dielectric function of the NW:

ε(ω) = −εm
I0(qr)K1(qr)

I1(qr)K0(qr)
(8.20)

which by comparison with the expression for the frequency dependent dielectric function

ε(ω) = ε∞ +
ω2
TO(εS − ε∞)

ω2
TO − ω2

(8.21)

gives for the SO phonon frequency:

ωSO = ωTO
εS − εmfq
ε∞ − εmfq

(8.22)
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where:

fq = −I0(qr)K1(qr)

I1(qr)K0(qr)
(8.23)

From eq. (8.22) follows that the frequency of the So phonons depends on the product between the
radius of the NW r and the quantity q. q is defined from eq. (8.17a) and is the spatial propagation
constant, related to the spatial period of the oscillation in the axis direction by q = 2π

L . L gives
then the distance between the poles of SO phonon amplitude oscillation along the NW axis. If the
defects cause the damping of the amplitude, this period should correspond to the average distance
between the surface defects. This intuition is verified though Chapter 9.

Before concluding, it is worth to points out, why this mode is a surface mode. The displace-
ment is, following from eq. 8.13, proportional to the electric field, and consequently proportional to
the gradient of the potential. The component of the displacement along the radial direction is the
product between the Bessel function I1(x) and a harmonic function. The displacement is then close
to zero in the middle of the wire and maximum at the NW surface. It then decays symmetrically
(following the Bessel function K1(x)) from the NW surface into the surrounding medium. The
oscillation involves then mostly the surface lattice sited, while it is comparatively negligible for the
other lattice sites closer to the NW middle region.

Phonon Confinement

When the dimensions of a nanostructure are comparable with the phonon wavelength, the phonon
cannot be approximated to propagate in and infinite space, but it will be spatially confined. The
Raman peak position and shape depend in this condition on the confinement dimension itself. The
phonon wavefunction for an infinite crystal ψ(~r) is then weighted by a confinement function:

ψ̃(~r) = w(~r)ψ(~r) (8.24)

If the weighting function is taken to be a Gaussian, and if again the NW is approximated to be a
cylinder, the Raman intensity can be calculated as [104]:

I =

∫
BZ

e

[
q2D2

16π2

]
dq3[

ω − ω(q)
]2

+ γ2

4

(8.25)

where the integral is extended to the first Brilluoin Zone. D is the confinement dimension, q is the
phonon wavevector, γ is the phonon damping and ω(q) is the frequency given by the dispersion
relation. The dispersion relation is usually taken as that of a bi-atomc chain [102, 107], and is then
give by [7]:

ω(q) = C

√
mGa +mAs +

√
m2
Ga +m2

As + 2mGamAs cos(qa)

mGamAs
(8.26)

where a is the distance between adjacent planes, mGa and mAs are the Gallium and Arsenide
atomic masses and C is the force constant between the lattice atoms. It can be found setting ω(q)
equal to ωTO or ωLO for q = 0. It should be pointed out that the choice of a Gaussian shape for
the confinement is arbitrary and the expression of the confinement through other functions leads
to equivalent results [103].
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For a NW the differential dq3 can be substituted with 2πqdq. Doing so, only the confinement
on the radial direction is considered while the wire is taken as infinite on its axis. Using this model
the characteristic confinement dimension for GaAs-NW has been recently set to 23 nm [102]. Cal-
culated Raman spectra for different wires diameters are shown in Figure 8.1. For this calculation
the central frequency of the TO-mode has been taken. On the other hand, it is possible that the
confinement is not on the radial direction but on direction of the axis (this would be the case, for
instance, in the confinement were given by two defects along the NW axis, as it was discussed in
the previous section for the damping of SO phonons). In this case, eq. (8.25) is simplified to a
single integral. Calculated Raman spectra for this confinement situation are shown in Figure 8.2.

Figure 8.1: Raman spectra from a NW for different confinement dimensions (D)on the wire radius.

Figure 8.2: Raman spectra from a NW for different confinement dimensions (D) on the wire axis.

105





Chapter 9

Beryllium-doped GaAs Nanowires

In this chapter experimental results on Beryllium-doped Gallium Arsenide nanowires are presented.
First, the structural characterization of the nanowires, done by Transmission Electron Microscopy,
is shown. Second, the Raman measurement on the nanowires are presented. Form those, the charge
carrier concentration and mobility are extracted, according to the CPP model. Additionally, the
appearance of surface phonons is correlated to the structure as derived in the first part from
transmission electron microscopy measurement.

Introduction

Au free self-catalyst GaAs nanowires can be grown using molecular beam epitaxy (MBE). This
method allows to tailor and control the crystal structure and defect density [108, 109]. In III-V
binary semiconductor, the bulk GaAs in cubic zinc blende (ZB) structure is the thermodynamically
stable phase with a closed pack ABCABC stacking sequence of along the [111] direction, see [110].
However, when grown as NW, depending on the growth conditions like partial pressures, tempera-
ture and catalyst droplet size, segments of hexagonal wurtzite (WZ) arrangement with their ABAB
stacking sequence along the [0001] direction can co-exist, see [111]. Reports also show the possibility
to grow pure WZ GaAs NW by tuning the growth conditions [112]. The difference in their Gibbs
free energies between these two crystallographic structures is small, hence the energetic barrier for
nucleation of a crystal is in the same order of magnitude resulting in a polytypism [113]. The
NWs are fabricated on (111) Si substrates using a self-catalyzed vapour-liquid-solid (VLS) growth
method in a Varian Gen-II molecular beam epitaxy (MBE) system. Details about the synthesis and
the diffusion mechanism of the dopant inside the NW can be found in literature [81]. The nominal
Be concentrations are 1 · 1018 cm−3 (sample A), 1.5 · 1019 cm−3 (sample B), 3.5 · 1019 cm−3 (sample
C), 4.6 · 1019 cm−3 (sample D), as listed in Table 9.1.

TEM observations show that all the wires crystallize in the cubic ZB structure and grow along
[111] (see Figure 9.1) with a rare fraction (1 unit) of thin WZ segments found in 1 out of 10 in
the NWs of sample B. To have a WZ structure in ZB segments, two consecutive twins planes (i.e a
twin plane for every alternating monolayer) or two stacking faults are required to alter the stacking
sequence from ABCABC to ABCA|C|A (where CACA forms the WZ structure) along the growth
direction.
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Figure 9.1: High resolution TEM images showing (a) twin free segment and (b) paired twin segment
of a wire from sample type B and their corresponding fast Fourier transformation is shown as inset.
The inset in the right corner of figure (b) shows the zig zag feature at the surface due to the presence
of a paired twin.

Figure 9.2: Bright field TEM overview images of the sample types A, B and C (correspondingly
labeled) showing different twin densities.
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However, rotational twins observed in the NWs are entirely of single twin in nature. In addition to
single twins, paired twins were most commonly observed. The term paired twin is used, when a twin
follows in the vicinity (few monolayers apart) of the random single twin as described in literature
[114]. The general feature in sample B and C is that a small region in the beginning and at the
end of the NW is more heavily twinned than the major portion of the NW. The NWs belonging
to sample A presents a much larger defects concentration, being the spacing between consecutive
twins only 10-50 nm. From TEM images the average thickness and length of the nanowires were
deduced. The nanowires in sample type A are 200± 15 nm thick and 6.5± 0.5µm long; for sample
B the values are 120± 5 nm and 9± 2µm and for sample C 135± 15 nm and 5.5± 0.4µm. All the
NWs have constant width with slight or almost no tapering, as it can been seen in Figure 9.2.

Charge Carrier Concentration and Mobility Determination

In this section, the Raman measurements on beryllium-doped gallium arsenide NWs, having differ-
ent dopant concentration are presented. The experimentally measured peaks are reproduced using
eq. (8.5). Doing so, the charge-carrier concentration and mobility can be extracted from the shape
and position of the Raman peak. For this estimation, also the peak related to SO phonons needs
to be correctly taken into account.

A typical Raman spectrum from a NW belonging to sample B (nominal concentration 1.5·1019 cm−3)
is presented in Figure 9.6. To model such a spectrum, it is necessary to take the sum of three
peaks. The first peak corresponds to the TO phonon mode at 268 cm−1 and can be simulated with
a Lorentzian lineshape function. The second peak is centered at an energy close to that of the LO
phonon mode at 291 cm−1. This peak, is that related to the CPP. The exact peak position depends
on the charge-carrier concentration, as discussed in Chapter 8. The third peak appears in Figure
9.6 around 283 cm−1. This peak can also be modeled by a Lorentzian lineshape function and is
related to the surface optical phonon mode (SO), as is explained in detail below. No peak corre-
sponding to the typical WZ Raman mode is observed, which is supported by the lack of observable
WZ segments in TEM images on the NWs.

Based on the Raman spectra, the the charge-carrier concentrations and mobilities are determined
for four different samples of NWs having different nominal Be concentration (samples A, B, C and
D). The experimental results are compared to the theoretical predictions in Figure 9.3 and summa-

N∗ (1018 cm−3) ωP (cm−1) N (1018 cm−3) ΓP (cm−1) µ (cm2/V s)

Sample A 1 98± 2 0.5± 0.2 1970± 150 12± 1
Sample B 15 315± 5 4.55± 0.18 1820± 120 14± 1
Sample C 35 320± 3 4.7± 0.8 1870± 80 13± 1
Sample D 46 327± 2 4.9± 0.8 2200± 20 11± 1

Table 9.1: nominal dopant concentration N∗, plasma frequency ωP , effective charge carrier concen-
tration N , plasma damping factor ΓP , and mobility µ estimated by simulating the Raman Spectra
from four samples (A, B, C, D), each with different nominal doping concentration.

rized in Table 9.1.
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Figure 9.3: (a) simulation of the CPPM peak calculated for different plasma frequencies. (b)
experimental spectra (points) are simulated (lines) according to (4) using different values for the
plasma frequency. The intensity is normalized for every peak to the intensity of the TO mode. The
theoretical trend shown in the right panel is also visible in the experimental spectra: for higher
plasma frequency the CPPM peak is broadened and the maximum of the peak is red-shifted. For
the simulation of these spectra it is sufficient to change the plasma frequency while the plasma
damping factor does not change substantially as explained in the text.

As predicted by the theoretical treatment, the position and shape of the CPPM mode change
for different doping concentrations (Figure 9.3a). Therefore, different values for the plasma fre-
quency are needed to correctly reproduce the spectra (Figure 9.3b). The appearance of a single
peak is characteristic of low-mobility charge carriers (holes), while for high-mobility charge carriers
(electrons), the appearance of two peaks is expected[93, 94]. This experimental observation is con-
sistent with the fact that Be is a p-type dopant in GaAs, as has been determined by Hall electrical
measurements [88]. The SO phonon peak appears clearly in some spectra (see, for example, the or-
ange line in Figure 9.3), while it is not evident in others. Whether or not the peak can be observed,
depends on the NW surface morphology, as it will be discussed in the next section. The peak from
the sample at lower charge-carrier concentration (sample A, blue points in Figure 9.3) is not repro-
duced by the CPPM as well as for the other samples. Rather than attributing this to shortcomings
in the CPP model, this could be best attributed to phonon confinement [102, 103, 104, 105]. As
already mentioned, the NWs belonging to this sample have very high twin-defects concentration
with typical spacings between consecutive twins from 10 to 50 nm. This distance is small enough to
lead to a confinement of the phonon in the axial direction of the NW. To the best author knowledge,
there is no model available, that takes into account both phonon confinement and phonon-plasma
coupling at the same time.

It should be noticed that all the spectra can be simulated with a plasma damping factor of approx-
imately 1900 cm−1, corresponding to a charge-carrier mobility of around 13 cm2/Vs. That the
mobility does not change together with the charge-carrier concentration has been reported before
[90] and explained as a saturation of the mobility that is expected to be observed at smaller values
than for the bulk.

As it can be seen from Table 9.1, the charge-carriers concentration does not increase arbitrary
with the nominal dopant concentration, but it saturates around 5 · 1018 cm−3, see Figure 9.4. For
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Figure 9.4: estimated charge carrier concentration in dependence of the nominal dopant concentra-
tion. The values are the same as those reported in Table 9.1.

sample A (lowest nominal concentration, see Table 9.1), the charge-carrier concentration as de-
termined from the Raman spectra, is around 50% of the nominal dopant concentration, while for
sample D (highest nominal concentration, see Table 9.1), the charge-carrier concentration is around
only 9% of the nominal dopant concentration. This can be attributed to the different positions
occupied by Be atoms within the GaAs lattice at different concentrations. Be diffuses in the GaAs
lattice very efficiently [81] , substituting Ga atoms in the lattice (substitutional Be), serving as a
p-type dopant [82, 84]. As the concentration of Be increases, the number of available Ga lattice sites
decreases. At higher concentrations, Be can either form a Be-Be or Be-Ga complex or occupy the
interstitial position inside the As-tetrahedron (interstitial Be) [82]. Be-Be and Be-Ga complexes
have been observed in heavily Be-doped GaAs through resonant Raman scattering [91]. In the
case of a complex formation, Be does not contribute to hole conduction [82]. When occupying the
interstitial position inside the tetrahedron, Be should act as an n-type dopant. Consequently, the
formation of both the Be-Be and Be-Ga complexes and of interstitial Be do not contribute to the
p-type conductivity of the system. As a result, the effective dopant concentration saturates around
5 · 1018 cm−3.

Surface Phonons and Characterization of the Surface Confor-
mation

In this section, the attention is focused on the appearance of the SO-phonons related peak and to
its relation to the surface defects concentration. The surface propagation constant derived from the
frequency of the SO mode (eq. 8.22), is compared with the defects distance extracted from TEM
analysis. Raman spectra were measured for samples A, B and C (see Table 9.1), having different
characteristic defects concentration. The aim of this comparison is to study the appearance of the
SO-phonon modes for different defect density.

For a comparison between the analysis on the Raman and the TEM data, the dominating con-
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Figure 9.5: Typical Raman spectrum of the sample type A showing the TO mode and CPP related
peak. (a) The experimental spectrum was simulated without including a SO phonon peak. (b)
Shows a spectrum with a SO phonon peak included in the simulation centred at 273.5 cm−1.

tribution to the Raman signal stems is consider to stem from the mid-section of the NW. First
because it represents the largest part of the wire itself. Second, and more importantly, because the
terminating parts have much higher defect concentrations, which prevents the observation of SO
phonons (see the discussion below). For these reasons the attention is focus on the structure of
the middle section of the NW. The length of the twin free segments (as seen in Figure 9.1) were
measured. The paired twin forms a zig-zag pattern which causes a perturbation on the surface of
the NW (see inset of Figure 9.1b). For statistical purposes the paired twin (i.e a twin lamella) was
considered as a single defect. Single twins and paired twins are equivalently considered. The dis-
tance used to estimate the average distance between defects can be then measured as the distance
between single-single, double-double or single-double twins. The twin distances were measured us-
ing the line intercept method from the TEM images.

In this section the samples A, B and C are taken into consideration, because they present a different
and exemplar defect concentrations. In the following discussion, the samples are ordered from the
less defective (sample C) to the more defective (sample A). For sample C, small fractions of twin
defects were observed and the average distance between them were measured to be 1.6 ± 0.5µm.
NWs belonging to sample B reveal the presence of higher number of twins compared to the wires in
sample type C. The average distance between them were measured to be 600± 100 nm. The NWs
belonging to sample A, are heavily twinned and substantially smaller average twin spacing of 10-50
nm can be observed.

A typical Raman spectrum for the NWs of sample C with a low defect density is given in Fig-
ure 9.5. The peaks at a frequency of 268 cm−1 and at a frequency of 288 cm−1 correspond to
the TO phonon mode and CPP model respectively. The spectra have been simulated with and
without including the SO phonon peak as shown in Figure 9.5. As it can be seen from Figure 9.5,
including the SO phonon peak centered at 273.5 cm−1 allows for a better simulation of the middle
part of the spectrum where the SO peak is visible as a shoulder of the CPP peak. According to eq.
(8.22), such a frequency would correspond to a spatial period of 1620 nm. The spatial period L is
calculated from the surface propagation constant q, as L = 2π

q . The surface propagation constant
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is estimated from the SO frequency extracted from the Raman spectrum, according to eq. (8.22).
For this etimation, a radius of 67.5 nm is considered, corresponding to the half of the lateral dimen-
sion of these NWs. In estimating the SO frequency it is critical to correctly consider the dielectric
constant of the surrounding medium. In backscattering geometry an angle of 138◦ can be collected
(corresponding to a numerical aperture of 1.4). The lateral section of the NW is hexagonal and
it can be imagined that just one surface lays on the glass, corresponding to an angle of 60◦. So a
fraction of 0.565 of the collected light comes from the air-wire interface while a fraction of 0.435
comes from the glass-wire interface. For the calculation therefore an effective dielectric constant
is used, estimated as: εeff = 0.565εair + 0.435εglass. Repeated optical measurements on different
wires belonging to this sample gave an average SO frequency of 274.1± 0.9 cm−1, corresponding to
a decay length of 1.47± 0.47µm which is in close agreement to the average distance of 1.6± 0.5µm
measured between consecutive twins from TEM images.

A typical experimental Raman spectrum for the sample type B is given in the Figure 9.6. In
Figure 9.6a the spectrum where no SO phonon peak is included in the simulation to fit the exper-
imental data shows that the CPP peak reproduces the slope on the right but does not reproduce
the middle part of the spectrum. In Figure 9.6b the CPP parameters are modified in order to shift
the CPP peak to a lower frequency. It is evident that, shifting the maximum of the peak to smaller
energies, the slope of the peak cannot be reproduced anymore. In order to correctly simulate the
spectrum as shown in Figure 9.6c, one needs to include a third peak that is attributable to SO
phonons, being the CPP related peaks alone not sufficient to correctly reproduce the shape of the
second peak. From the simulation of several spectra similar to that in Figure 9.6, the SO-frequency
was extracted for different NWs as done for sample type C. A mean value of 284.3 ± 0.4 cm−1

is found for the SO frequency, which corresponds to a mean value of 446 ± 35 nm for the spatial
period. The spatial period is obtained in this case using a radius of 60 nm, estimating the dielectric
constant ε as before. As in the case of low twin density NWs, the phonon decay length measured
from the Raman spectra agrees well with the range of the average distance of 600±100 nm between
twins observed from our TEM data.

The NWs belonging to sample A on the other hand have a high concentration of twins (about
10-50 nm twin spacing). For this sample, the SO phonon peak is not observable. The absence of
the SO phonon peak in this sample can be attributed to the high density of defects and their SO
phonon propagation translates to a very small decay length. In this case, the SO phonon frequency
shifts to the CPP mode frequency (see Figure 9.7) and thus cannot be distinguished.

The calculated SO phonon frequency as a function of the spatial period of the surface oscilla-
tion is derived from eq. (8.22) is shown in Figure 9.7. The SO phonon frequency varies from the
LO phonon frequency to the TO phonon frequency (upper and lower dashed line respectively). The
circles indicate the values for the SO phonon frequency corresponding to the estimated propaga-
tion constants in the different sample types. The three lines are calculated taking into account for
the different lateral dimension of the NWs. The blue circle corresponds to the sample A where
spatial period for the oscillation in the axis direction of around 20 nm was estimated, the related
SO phonon frequency would be around 288 cm−1, too close to the CPPM frequency to be observed
as independent peak. The green circle corresponds to the sample B, where a spatial period of
446 ± 35 nm nm leads to an observable SO phonon peak around 283 cm−1. The magenta circle
corresponds to the sample type C, where a spatial period of 1.47± 0.47µm was estimated. In this
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case the SO phonon frequency observed around 273.5 cm−1 is very close to the TO phonon peak.
Nonetheless, a SO phonon related peak is still observable as a shoulder of the TO phonon peak.

Figure 9.6: Raman spectrum showing TO, SO and CPPM peaks obtained from the sample type B.
(a) and (b) show, besides the experimental data the simulated spectra obtained without including
the SO phonon peak. (c) shows the simulated spectrum where the third peak is attributed to the
SO phonons is included, in order to correctly reproduce the experimental spectrum. See text for
further explanation.

Figure 9.7: SO frequency calculated in dependence on the spatial period of the surface oscillation
along the axis direction. The calculation is repeated considering the different diameters for the
different NWs. The circles represent a characteristic value for the SO-frequency. The lower and
upper dashed black line represents the TO and LO frequency, respectively
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Conclusions

For doped NWs, the effective dopant concentration and the resulting charge-carrier concentration
are key quantities for possible technological applications. However these quantities are difficult
to be accurately determined. In this work, we investigated the structural and electrical transport
properties of Be-doped GaAs NWs. To determine the charge-carrier concentration, Raman spec-
troscopy was applied as a contactless technique, which also allows for an independent estimation
of the charge-carrier mobility. By repeating the experiment for four different NWs samples, having
different nominal Be concentration, it was found that the resulting charge-carrier density does not
scale linearly with the nominal dopant concentration but rather saturates around 5 · 1018 cm−3 .
This behaviour can be attributed to the filling of free Ga sites and the formation of Be-Be and
Be-Ga complexes at higher Be concentration.

Also the characterization of the surfacestructure can be performed by Raman spectroscopy. The
spatial period of the SO phonons oscillation along the NW axis was correlated with the distance be-
tween the twin defects measured by TEM. The SO surface propagation constant for the NWs from
the sample with lower defect density and moderate defect density were found to be 1.47± 0.47µm
and 446 ± 35 nm, respectively. These values are in good agreement with the average distance be-
tween the tein defects of about 1.6± 0.5µm and 600± 100 nm as revealed by TEM. On the other
hand, for the sample where no SO-phonon peak was measured in the Raman spectra, a defect spac-
ing of 10-50 nm was found by TEM analysis. Such a short surface propagation constant prevents
the observation of a separate SO-phonon peak, consistently with the theory.
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SUMMARY

In this thesis, Raman spectroscopy has been used to characterize the interaction between a charge
density and the lattice vibration of a solid state material. Two systems have been analyzed: the first
composed of a metallic nanostructure and a carbon material (carbon nanotubes and graphene); the
second consisting of beryllium-doped gallium arsenide nanowires, where the charge-carriers pro-
vided by the dopant act as a plasma, interacting with the local field related to the longitudinal
phonon mode of the crystal lattice.

For the first system it has been experimentally shown that the interaction between the localized
surface plasmon-polariton related to the metallic nanostructure and the lattice vibration, leads to a
non-linearity of the Raman response in dependence on the laser power. The occurrence of this non-
linearity has been compared with a theoretical model, developed within a quantum-electrodynamic
description of the coupled system. This theoretical prediction and the experimental results are in
good agreement. It has been shown, that the appearance of the non-linearity depends on several
parameters, like the matching between the laser and plasmon resonance frequency, the plasmon
damping factor and the vibrational properties of the Raman scatterer. The comparison between
the experimental results and the prediction deriving from a stimulated Raman picture is less suc-
cessful. For a fully satisfying comparison between theory and experiment however, the plasmonic
properties related to the metallic nanostructure need to be determined with high precision.

For the second system, the interaction between the charge carriers and the local field related to the
lattice vibration of the longitudinal optical phonon mode leads to a change in width and position of
the corresponding peak in the Raman spectrum. Thank to this change, the charge-carrier concen-
tration and mobility can be estimated. This estimation follows from the coupled-plasma-phonon
model. Together with the coupling of plasma and longitudinal phonons, also the appearance of
surface phonons has been observed. The frequency of the surface optical phonons has been corre-
lated with the mean defect distance along the nanowire radius, extracted from electron transmission
microscopy measurements.
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