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Abstract

In this thesis three open problems concerning Hanoi-type graphs are addressed. I prove a
theorem to determine all shortest paths between two arbitrary vertices s and t in the general
Sierpiński graph S n

p with base p ≥ 3 and exponent n ≥ 0 and find an algorithm based on this
theorem which gives us the index of the potential auxiliary subgraph, the distance between s
and t and the best first move(s). Using the isomorphism between S n

3 and the Hanoi graphs Hn
3 ,

this algorithm also determines the shortest paths in Hn
3 . The results are also used in order to

simplify proofs of already known metric properties of S n
p. Additionally, I compute the aver-

age number of input pairs (si, ti) for i ∈ {1, . . . , n} to be read by the algorithm. The theorem
and the algorithm for S n

p are modified for the Sierpiński triangle graphs, which are deeply
connected to the well-known Sierpiński triangle and the Sierpiński graphs, with the result
that the shortest paths in the Sierpiński triangle graphs can be determined for the first time.
The Hanoi graphs Hn

3 are then considered as directed graphs by differentiating the directions
of the disc moves between the pegs of the corresponding Tower of Hanoi. For the problem to
transfer a tower from one peg to another peg there are five different solvable variants. Here,
the variants T H(C+

3 ) and T H(K−3 ) are discussed concerning the infinite sequences of moves
which arise from the solutions as n tends to infinity. The Allouche-Sapir Conjecture says
that these sequences are not d-automatic for any d. I prove this for the T H(C+

3 ) sequence
with the aid of the frequency of a letter and its rationality in automatic sequences. For the
T H(K−3 ) sequence I employ Cobham’s Theorem about multiplicative independence, auto-
matic sequences and ultimate periodicity. I show that this sequence is the image, under a
1-uniform morphism, of an iterative fixed point of a primitive prolongable endomorphism.
F. Durand’s methoda is then used for the decision about the question whether the sequence is
ultimately periodic. The method of I. V. Mitrofanovb, which works with subword schemata,
is applied to the problem as well. Using the theory of recognisable sets, a sufficient condition
for deciding the question about the automaticity of the T H(K−3 ) sequence is deduced.
Finally, a yet not studied distance problem on the so-called Star Tower of Hanoi, which is
based on the star graph S t(4), is considered. Assuming that the Frame-Stewart type strategy is
optimal, a recurrence for the length of the resulting paths is deduced and solved up to n = 12.

a F. Durand, HD0L ω-equivalence and periodicity problems in the primitive case (to the memory of G. Rauzy).
Journal of Uniform Distribution Theory, 7(1):199-215, 2012

b I. V. Mitrofanov, Periodicity of Morphic Words, Journal of Mathematical Sciences, 206(6):679-687, 2015





Zusammenfassung

Ich beweise ein Theorem zur Bestimmung aller kürzesten Wege zwischen zwei beliebigen
Ecken s und t in den allgemeinen Sierpiński-Graphen S n

p mit Basis p ≥ 3 und Exponent
n ≥ 0 und erstelle auf diesem Theorem beruhend einen Algorithmus, der den Index des all-
fälligen Hilfsuntergraphen, den Abstand zwischen s und t und einen besten ersten Schritt
liefert. Unter Verwendung des Isomorphismus zwischen S n

3 und den Hanoi-Graphen Hn
3

bestimmt dieser Algorithmus auch die kürzesten Wege in Hn
3 . Die Ergebnisse werden be-

nutzt, um Beweise bereits bekannter metrischer Eigenschaften der S n
p zu vereinfachen. Zu-

sätzlich berechne ich die durchschnittlich benötigte Anzahl von Eingabepaaren (si, ti) für
i ∈ {1, . . . , n} in den Algorithmus. Das Theorem und der Algorithmus für S n

p werden für
die Klasse der Sierpiński-Dreiecksgraphen, welche in direktem Zusammenhang mit dem be-
rühmten Sierpiński-Dreieck und den Sierpiński-Graphen stehen, modifiziert, sodass erstmals
auch die kürzesten Wege in diesen Graphen bestimmt werden können.
Die Hanoi-Graphen Hn

3 werden dann als gerichtete Graphen betrachtet, indem man die Rich-
tungen der Bewegungen zwischen den Stäben des entsprechenden Turms von Hanoi diffe-
renziert. Für das Problem des Versetzens eines Turms von einem Stab auf einen anderen gibt
es fünf verschiedene lösbare Varianten. Die Varianten T H(C+

3 ) und T H(K−3 ) werden bezüg-
lich der unendlichen Folgen von Bewegungen betrachtet, die sich durch die Lösung für n
gegen Unendlich strebend ergeben. Die Allouche-Sapir-Vermutung besagt, dass für kein d
diese Folgen d-automatisch erzeugt sind. Ich beweise dies für die T H(C+

3 ) Folge mit Hil-
fe der Theorie über die Häufigkeit eines Buchstabens und deren Rationalität in automatisch
erzeugten Folgen. Für die T H(K−3 ) Folge wird Cobhams Theorem über multiplikative Un-
abhängigkeit, automatisch erzeugte Folgen und ultimative Periodizität verwendet. Ich zeige,
dass diese Folge das Bild, unter einem 1-uniformen Morphismus, eines iterativen Fixpunk-
tes eines primitiven verlängerbaren Endomorphismus ist. Die Methode von F. Duranda wird
dann für die Entscheidung über die Frage, ob die Folge ultimativ periodisch ist, verwendet.
Ebenso wird die Methode von I. V. Mitrofanovb, welche mit Teilwortschemata arbeitet, auf
das Problem angewandt. Unter Verwendung der Theorie über erkennbare Mengen wird eine
hinreichende Bedingung für die Frage der Automatizität der T H(K−3 ) Folge hergeleitet.
Zuletzt wird ein bislang nicht untersuchtes Abstandsproblem im sogenannten Stern-Turm-
von-Hanoi betrachtet, welcher auf dem Stern-Graphen S t(4) beruht. Unter der Annahme,
dass die Frame-Stewart-Strategie optimal sei, wird eine Rekursionsvorschrift für die Länge
der so gewonnenen Wege entwickelt und bis n = 12 gelöst.

a F. Durand, HD0L ω-equivalence and periodicity problems in the primitive case (to the memory of G. Rauzy).
Journal of Uniform Distribution Theory, 7(1):199-215, 2012

b I. V. Mitrofanov, Periodicity of Morphic Words, Journal of Mathematical Sciences, 206(6):679-687, 2015





Acknowledgements

It is my pleasure to acknowledge a number of people who contributed towards the successful
completion of my thesis.

First and foremost, my sincerest gratitude goes to my supervisor Prof. Andreas M. Hinz for
all his help, his support and trust during my doctorate years and before, and for giving me
the scientific freedom to develop the ideas that are presented in this thesis. Our conversations
inspired me and were very precious to me. I am thankful to him for providing me the op-
portunity to visit the University of Maribor that helped me to broaden my knowledge and to
meet other researchers. I feel honoured to have worked with him.

I also want to acknowledge my great debt to Jean-Paul Allouche for providing me with sup-
port for the second part of this thesis and for accepting to be my second supervisor and a
member of the doctoral committee. I thank him for encouraging me to apply to the Summer
school “CombinatoireS” which gave me the opportunity to expand my horizons in the field
of combinatorics. It is my honour to have met him and discussed mathematics with him.

Besides my supervisors, I would like to thank my doctoral committee including Prof. Kon-
stantinos Panagiotou and Prof. Daniel Rost.

I owe special thank to Prof. Sandi Klavžar, Prof. Boštjan Brešar, Ciril Petr and the other
members of the Faculty of the Natural Sciences and Mathematics of the University of Maribor
for the fruitful intellectual exchange.

I am deeply grateful to my family, particularly my parents, for their support, humour and help
during completion of my thesis and in my life in general and for their unwavering belief in
me.

Weyarn, August 2016 Caroline Holz auf der Heide





Contents

0 Introduction 1

1 A P2 decision algorithm for Sierpiński graphs with base p ∈ N3 7
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Chapter 0

Introduction

It was in 1883 when François Édouard Anatole Lucas introduced a new puzzle1 motivated by
the following legend which was developed by H. de Parville [22] and translated into English by
W. W. R. Ball ([11, p.228 f]):

“In the great temple at Benares, beneath the dome which marks the centre
of the world, rests a brass plate in which are fixed three diamond needles,
each a cubit high and as thick as the body of a bee. On one of these needles,
at the creation, God placed sixty-four discs of pure gold, the largest disc
resting on the brass plate, and the others getting smaller and smaller up to
the top one. This is the Tower of Bramah. Day and night unceasingly the
priests transfer the discs from one diamond needle to another according to
the fixed and immutable laws of Bramah, which require that the priest on
duty must not move more than one disc at a time and that he must place
this disc on a needle so that there is no smaller disc below it. When the
sixty-four discs shall have been thus transferred from the needle on which
at the creation God placed them to one of the other needles, tower, temple,
and Brahmins alike will crumble into dust, and with a thunderclap the world
will vanish.”

Lucas marketed the game with only eight discs under the pseudonym N. Claus de Siam which is
an anagram of Lucas d’Amiens. As name for his new puzzle he chose “La Tour d’Hanoï” (“The
Tower of Hanoi”), since at this time Hanoi was in the headlines of French newspapers. Between
1883 and 1885 the Sino-French war took place, among others in Tongkin, the northernmost part
of what is now Vietnam. The name Tongkin is the corruption of Ðông Kinh, the name of Hanoi
during the Lê dynasty. Under French influence Hanoi was made the capital of this region. Maybe
Lucas chose the name “The Tower of Hanoi” to promote the selling of his game. Lucas was born
on 4 April 1842 in Amiens, in the north of France. Besides the Tower of Hanoi, he presented many

1According to Lucas, it was published in 1882 by himself, but one cannot find an evidence for this ([33]).
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2 §0 Introduction

other puzzles like the Chinese Rings in his publications about Recreational Mathematics [60]. But
he is also known for results in number theory, for instance the Lucas numbers2 and the proof that
the Mersenne number 2127 − 1 is prime. In 1891, Lucas participated in a banquet of the congress
of the “Association française pour l’avancement des sciences", of which he was an active member.
During this event, a servant dropped a pile of plates and a piece of porcelain flew up and hit the
cheek of Lucas which caused a deep wound. A few days later, on 3 October 1891, he died as a
result of this injury. The tomb can be found on the Montmartre cemetery of Paris ([36]).

Figure 0.1: The tomb of Édouard Lucas on the Montmartre cemetary, Paris:
770cp1857, 23rd division, 8th row, 27 Avenue des Carrieres

c© 2015 C. Holz auf der Heide

Following the legend, the Tower of Hanoi consists of three needles, afterwards called pegs and
numbered with 0, 1, 2 such that T = {0, 1, 2} is the set of pegs, and a number of discs of increasing
size. To transfer one disc, you have to follow the divine rule that you “must place this disc on a
needle so that there is no smaller disc below it”. Lucas also stated the famous recursive solution
of the puzzle for an arbitrary number of discs ([33]). We explain it by an example. Assuming one
can solve the puzzle for four discs, then one can solve it for five discs as well since one transfers
first the upper four discs to the non-goal peg, then the fifth disc to the goal peg and finally the
four discs from the non-goal peg to the goal peg. The recursive solution needs 2n − 1 moves to
transfer a tower of n discs ([33]). For the number of discs in the legend, namely 64, we would need

2The Lucas numbers 2, 1, 3, 4, 7, 11, 18, . . . (OEIS AE000032) use the same recurrence relation as the famous Fibon-
acci numbers (OEIS AE000045) (but starting with 2 and 1) and are closely related to these. Lucas studied both of
them.



§0 Introduction 3

incredible 18 446 744 073 709 551 615 moves. Surprisingly, the minimality proof of the recursive
algorithm was lacking until 1981, when D. Wood [81, Theorem] gave one (cf. [33, pp. 44-45]
for a deeper discussion). R. Olive found an algorithm which gives the moving disc in an optimal
solution, i.e., the solution with the minimum number of moves, of the Tower of Hanoi for the case
that we transfer a tower from one peg to another ([33, pp. 74–75]). The tasks on the tower were
later categorised in three classes of problems, first the case that we transfer a tower from one peg
to another (P0), second the case that we transfer discs from an arbitrary regular state to a selected
peg (P1) and last the case that we transfer discs from an arbitrary regular state to another regular
state (P2). To study the last class, use was made of the Hanoi graphs Hn

3 , first considered by
Scorer et al. [75], for n discs and 3 pegs. Initially, a distance on these graphs was determined for
the second class of problems [34]. It turned out that the diameter of Hn

3 is equal to the distance
between two perfect vertices. For the moves of the largest disc the following result, named the
boxer rule [33], was proved. If on a shortest path between two vertices the largest disc once moves
away from a peg, it will not return to the same peg.
D. Romik [70] then gave an algorithm, based on what has become known as “Romik’s auto-
maton”, to determine the distance in the third class of problems. He used for the proof another
class of graphs, the Sierpiński graphs. This was possible as the Sierpiński graphs S n

3 for 3 pegs
are a variant of the Hanoi graphs Hn

3 , more precisely they are isomorphic ([52], [70]). This variant
of the Hanoi graphs is named after the famous Sierpiński triangle because of their deep connec-
tion which was found by A. M. Hinz and A. Schief ([33, Section 4.3], [42]). These graphs can
be interpreted as state graphs of a variant of the Tower of Hanoi puzzle, the Switching Tower
of Hanoi ([52]). S. Klavžar and U. Milutinović generalised the graphs in [52] to the Sierpiński
graphs S n

p with base p ∈ N and exponent n ∈ N0. Here, we introduce the notation Nk for all
whole numbers k such that Nk is the set of all whole numbers greater than or equal to k. Then
N0 = {0, 1, 2, . . .} and N1 = {1, 2, 3, . . .}, whereby we refer to N1 by N. The general Sierpiński
graphs were studied, inter alia, concerning their metric properties in [68], their distances between
special vertices in [52], [54], and [82] and their average eccentricity in [41]. Some properties of
the S n

3 or Hn
3 , like the boxer rule, and the fact that for every non-extreme vertex of the graph there

is a vertex such there are two shortest paths between them, could be carried over to S n
p.

The book “The Tower of Hanoi —Myths and Maths” [33] by Hinz, Klavžar, Milutinović and
C. Petr, published in 2013, was the first to summarise the known results about the Tower of Hanoi
and related topics. In the last chapter of this book [33, Chapter 9] open problems were stated. One
of these problems was to “design an automaton analogous to Romik’s automaton for a “P2 task”
in S n

p, p ≥ 4”3. Solving this problem is part of this thesis. We prove a new theorem about
the determination of the shortest path(s) for arbitrary vertices s and t in S n

p and design an al-
gorithm which gives us the possible “detour” peg, the minimal distance and the best first move(s).
Most of the results in an alternative representation were published by Hinz and the author of the
present thesis in [37]. An overview on the Sierpiński graphs was given by Hinz, Klavžar and
S. S. Zemljič [40]. This survey paper also covers the Sierpiński triangle graphs known from
L. L. Cristea and B. Steinsky [20], further studied by M. Jakovac [50] and again treated in [43].
The theorem as well as the algorithm for the Sierpiński graphs can be extended to these new
graphs which will be done in the present work.

3 [33, p. 262]



4 §0 Introduction

One further problem listed in the last chapter of the book [33] was the subsequent conjecture about
special variants of the Tower of Hanoi.

Conjecture 0.1 (Allouche-Sapir Conjecture). The two solvable Tower of Hanoi [variants] with
oriented disc moves on three pegs that are not the Classical, the Cyclic, and the Linear Tower of
Hanoi, are not d-automatic for any d.4

Let us describe what this means. The technical details, written in italics, will be explained in the
later chapters. We consider problems of P0 type. There are altogether five solvable variants of
the Tower of Hanoi (TH) with 3 pegs, where one restricts the allowed orientation for disc moves.
These are the Classical (T H(K3)), the Linear (T H(L3)), the Cyclic TH (T H(C3)), T H(C+

3 ), and
T H(K−3 ), respectively. The state graphs of these variants are again variants of the Hanoi graphs,
but with directed edges or arcs. The infinite sequence obtained from the moves of the solution
of the classical case as n goes to infinity was proved to be 2-automatic by J.-P. Allouche and
F. Dress [5]. The Linear TH was mentioned for the first time in [75] by Scorer et al. and studied
in detail in [32] by H. Hering. The 3-automaticity of the infinite sequence corresponding to it was
then shown by Allouche and A. Sapir [7]. Both proofs of automaticity used the algorithm which
was given by Sapir [74] for solving recursively all these variants with the minimum number of
moves. The Cyclic TH appeared in 1981 in [9], where M. D. Atkinson proposed an algorithm to
transfer a perfect tower from peg 0 to peg 1. Other algorithms were given by different authors, for
which we refer to [33, Chapter 8.2]. In 1994, Allouche [2] proved that the Cyclic TH sequence is
not d-automatic for any d ∈ N2. For the T H(C+

3 ) and the T H(K−3 ) sequence it was shown in [7]
that they are morphic. But the question whether they are automatic remained open. The book [8]
gives an overview on automatic sequences. In 1972, A. Cobham [18] proved that the frequency
of a letter in an automatic sequence, if it exists, is rational. Michel [61] showed in 1975 that if
a morphic sequence is primitive, then the frequency of all letters exists. K. Saari [71] then stated
that the frequency of letters exists for every pure binary morphic sequence. Later, in [72], he found
a necessary and sufficient criterion for the existence and the value of the frequency of letters in a
morphic sequence. Furthermore, he gave an if-and-only-if condition that all frequencies do in fact
exist. These results, which were not at the disposal of Allouche and Sapir, can be used to show
that certain sequences are not d-automatic for any d ∈ N as it is successfully done for the T H(C+

3 )
sequence in the present thesis.
For the T H(K−3 ) sequence we will make use of another theorem, known as Cobham’s Theorem [17],
in the way that we want to prove whether the sequence is not ultimately periodic in order to an-
swer the question of automaticity. The idea for this approach was already outlined in [7] and
again discussed during a private communication between Allouche and the author of the present
work [3]. Morphic sequences are known in the theory of L-systems as HD0L sequences. Hence
the problem to decide whether a morphic sequence is ultimately periodic is called the HD0L ul-
timate periodicity problem. The decidability for D0L sequences was shown by J.-J. Pansiot [67]
and T. Harju and M. Linna [31] and for automatic sequences by J. Honkala [45]. Later, Allouche,
N. Rampersad, and J. Shallit [6] presented a simpler proof for automatic sequences. F. Durand
answered the question for primitive HD0L sequences in [25]. An equivalent formulation of the
HD0L ultimate periodicity problem in terms of recognisable sets and abstract numeration systems

4 ibid
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was given by Honkala and M. Rigo in [47]. For this formulation Honkala already showed in [45]
the decidability in the restricted case of usual integer bases, i.e., for d-automatic sequences. Dur-
and succeeded then in giving a positive answer to the general problem in [26]. At around the same
time, I.V. Mitrofanov gave another solution, first put on ArXiv [62]. Later, a simpler proof was
published by him [63]. We will use both proofs, Durand’s as well as Mitrofanov’s, in order to try
to determine whether the T H(K−3 ) sequence is ultimately periodic.

The first extension of the Tower of Hanoi to four pegs was introduced by H. E. Dudeney [23].
He described the problem in a story about the Reve, some pilgrims and a number of cheeses of
varying size. Therefore, this puzzle is known as The Reve’s puzzle. A presumed optimal solution
to transfer a tower from one peg to another peg was given independently by B. M. Frame and
J. S. Stewart [76] in 1941. The claim that the Frame-Stewart algorithm is optimal is known as
the Frame-Stewart Conjecture. It was open until T. Bousch proved in 2014 the optimality of the
algorithm [13]. In The Reve’s puzzle itself the orientations of the disc moves are not restricted.
But according to [30, p. 218] there exist 83 non-isomorphic strong digraphs, which represent the
allowed moves, for variants of the TH with 4 pegs. In 1994, P. K. Stockmeyer [78] introduced
one of these variants and called it the Star Tower of Hanoi (Star TH) because of the structure of
the corresponding directed graph. It turned out that this puzzle is related to the Linear TH in the
way that this is the “Star TH” with three pegs. He gave a presumed optimal algorithm with the
minimising value to transfer a tower from an external peg to another external peg. Chappelon and
Matsuura [15] extended this problem to more than four pegs by adding external pegs and gen-
eralised the algorithm. They showed that realising the presumed optimal algorithm the minimal
number of moves is given by the generalised Frame-Stewart numbers. Stockmeyer conjectured
that his algorithm “makes the smallest number of moves among all procedures that solve the Star
puzzle”, which is as Stockmeyer’s Conjecture also part of the list in [33, Chapter 9]. A further
object of this thesis is to find a presumed optimal algorithm and the number of moves for the
transfer of a tower from the central peg to an external peg for the case of four pegs.

This dissertation comprises three chapters. In Chapter 1 we focus on the P2 decision algorithm
for Sierpiński graphs with base p ∈ N. First, we define the Sierpiński graphs S n

3 with base 3 and
exponent n ∈ N0 and give the isomorphism between the Hanoi graphs Hn

3 and S n
3. The theorem and

the automaton of Romik, which can be adapted for the use for Hn
3 by employing the isomorphism,

is then presented for S n
3. Furthermore, we generalise the Sierpiński graphs to the base p ∈ N and

give some statements concerning them, in particular the definition of the distance function and
that there are at most two shortest paths between any two vertices in S n

p. In the next section we
formulate the main theorem of this chapter about shortest paths between arbitrary vertices in S n

p
and find an algorithm with some conclusions as well as an analysis of the necessary pairs of input
for a decision. Then an application of our algorithm to Sierpiński triangle graphs is given.
Chapter 2 mainly covers the variants of the TH with 3 pegs which are determined by the digraphs
C+

3 and K−3 and the question whether the corresponding sequences are d-automatic for any d ∈ N.
At the beginning, we give a summary of the terminology of finite and infinite words or sequences
used in this work and introduce morphic and automatic sequences. The first approach to disprove
the automaticity consists of the application of [18, Theorem 6] about automaticity and the ration-
ality of the frequency of a letter. For that purpose we define the frequency of a letter and describe
the steps to the theorem which states an if-and-only-if condition for the existence of the frequency
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and gives the value of the frequency if it exists. These steps are portrayed for the T H(C+
3 ) sequence

and culminate in the theorem that this sequence is not d-automatic by showing that the frequencies
for all letters are irrational. The same approach is then used to attack the T H(K−3 ) sequence. But
it turns out that we are unable to determine whether the frequency is rational. Hence we choose in
the following section another approach which makes use of Cobham’s Theorem about the ultimate
periodicity and automatic sequences. We present the results of Durand’s work about the decidab-
ility of the ultimately periodicity problem for morphic and primitive morphic sequences as far as
they are useful for us and apply them to our problem. We find a primitive morphism and a coding
such that the T H(K−3 ) sequence is a primitive morphic sequence and give an algorithm for the
determination of a constant which we need to decide on the ultimate periodicity. In the last sub-
section we introduce subword schemes, explain an algorithm which decides whether a sequence
is ultimately periodic with the aid of subword schemes, and apply the results on our sequence.
Further, we analyse these subword schemes for our sequence and give a sufficient condition for
the d-automaticity of the T H(K−3 ) sequence using the theory of recognisable sets.
In Chapter 3 we investigate the problem of finding a pattern in the number of moves for an in-
creasing number of discs in the Star TH. First, we describe the presumed optimal solution for the
P0 task from an external peg to another external peg by the Frame-Stewart strategy. After that
we analyse the two different approaches of Frame and Stewart for a solution and the sequence of
moves for the problem to transfer a tower from the central peg to an external peg. It will turn out
that both strategies give the same formula for the number of moves. We analyse the number of
moves for different values of splitting and give the first values for the number of moves resulting
from the algorithm with the minimising value of splitting.



Chapter 1

A P2 decision algorithm for Sierpiński graphs
with base p ∈ N3

One very well-known variant of the Tower of Hanoi is the Switching Tower of Hanoi (Switching
TH) with three pegs, labeled with 0, 1, and 2. Assume that we have n discs. Then a state s ∈ T n

is a legal distribution of n discs and written as s = sn . . . s1, where si ∈ T means that the i-th disc
lies on peg si. A state is regular if no larger disc lies on a smaller one. A regular state such that all
discs lie on a single peg is called perfect.

The problem to transfer a perfect tower from one peg to another peg or to go from a perfect state
to a perfect state, respectively, in a minimum number of moves is called the problem of P0 type.
If we want to go from a regular state to a perfect state, the problem is of P1 type. Consequently,
the problem to go from a regular state to another regular state is called a problem of P2 type.

For n ∈ Nwe introduce the notation [n]0 for the set {0, . . . , n−1}, [n] for the set {1, . . . , n}, and [n]2

for the set {2, . . . , n}. The allowed moves to transfer the discs in the Switching TH with n ∈ N0

discs are as follows. Assume we have a regular state in which the d − 1 ∈ [n]0 topmost discs on
peg i are the d − 1 smallest ones. Then we can switch the d-th smallest disc on peg j , i with the
d − 1 discs on i. That d − 1 = 0 is included, means that arbitrary moves of the smallest disc are
allowed.

If we interpret the states as vertices and the moves as edges, we can define a graph G consisting of
V(G) and E(G), where V(G) is the vertex set and E(G) is the edge set. The graph associated with
the Switching TH is the Sierpiński graph S n

3 with base p = 3 and exponent n ∈ N0. Its vertex set
is V(S n

3) = T n. The edges of S n
3 are of the form

{
si jd−1, s jid−1

}
, where i, j ∈ T, i , j, d ∈ [n], and

s ∈ T n−d. Hence the edge set is

E(S n
3) =

{{
s jid−1, si jd−1

} ∣∣∣∣ i, j ∈ T, i , j, d ∈ [n], s ∈ T n−d
}
. (1.1)

The disc d is here the moving single disc in the move as described above with any distribution s
of discs larger than d.

7
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There exists another definition of the edge set using the fact that S n+1
3 contains three subgraphs iS n

3,
which are generated by the shift of the labels of one copy of S n

3 (see Figure 1.1 for n = 0, 1, 2).
Then

E(S 0
3) = ∅,

∀n ∈ N0 : E(S n+1
3 ) =

{
{is, is′}

∣∣∣∣ i ∈ T, {s, s′} ∈ E(S n
3)
}

∪ {{i jn, jin} | i, j ∈ T, i , j} .

(1.2)

1 0 2 1110 12 21 222001 00 02
111 112110101100 102

121 122120 200201 202220222221210211 212
022020021012011010 002000001

1

Figure 1.1: Sierpiński graphs S 1
3, S 2

3, and S 3
3

A comparison of Figures 1.1 and 1.2 imposes the question whether S n
3 and the Hanoi graph Hn

3 are
isomorphic for fixed n ∈ N. We will now clarify this.

1.1 The isomorphism between the Hanoi graphs Hn
3 and the Sier-

piński graphs S n
3

In this section we want to show the existence of an isomorphism between the Sierpiński graphs S n
3

and the Hanoi graphs Hn
3 and some results about Hn

3 which can be transferred to Sierpiński
graphs S n

3 with the aid of the isomorphism. At first we will describe the vertex set V(Hn
3) of

the Hanoi graph with base p = 3 and exponent n ∈ N0 and the edge set E(Hn
3) :

V(Hn
3) = T n,

E(Hn
3) =

{{
si(3 − i − j)d−1, s j(3 − i − j)d−1

} ∣∣∣∣ i, j ∈ T, i , j, d ∈ [n], s ∈ T n−d
} (1.3)

For further reading about the Hanoi graphs we refer to the book [33].
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1 0 2 1112 10 20 222102 00 01
111 112110120122 121

102 100101 211212 210220222221202200 201
011012010020022021 002000001

1

Figure 1.2: Hanoi graphs H1
3 , H2

3 , and H3
3

As we can deduce from Figures 1.1 and 1.2, both types of graphs, namely Hn
3 and S n

3, have the
vertex subset V = {0n, 1n, 2n} in common. These vertices are the only ones with degree two, while
the other vertices in both graphs have degree three. Hence any isomorphism from Hn

3 onto S n
3 has

to map V onto itself. The elements of V are called extreme vertices in S n
3 and perfect vertices in

Hn
3 (see Section 1.3 for an explanation of the different appellations).

We present a proof for the existence of an isomorphism between Hn
3 and S n

3.

Theorem 1.1 ([52, Theorem 2]). For any n ∈ N the graph S n
3 is isomorphic to the graph Hn

3 .

Proof. By induction on n we define isomorphisms θn : S n
3 → Hn

3 . For the base case n = 1 we see
that both graphs are complete graphs on three vertices and θ1 is the identity map. Let n ∈ N2. We
partition the vertex set V(S n

3) into three subsets V0,V1, and V2, where the elements of Vi are the
vertices which begin with i (i ∈ T ). Every Vi is connected with every V j (i , j) by exactly one
edge, namely {i j j j . . . j, jiii . . . i}. Now we obtain a partition of V(Hn

3) into sets W0,W1, and W2.
The elements of Wi are the vertices beginning with i (i ∈ T ). Then for any i and j (i , j) there
is exactly one edge between Wi and W j, namely { jk . . . kk, ik . . . kk} (i , k , j). We consider a
suitable automorphism of Hn−1

3 which maps the ends of the connecting edges onto the correspond-
ing ends of the connecting edges. This automorphism is induced by a permutation of {0, 1, 2}.
Applying the induction hypothesis, we can now map Vi onto Wi using the isomorphism θn−1 and
the above-mentioned automorphism. Taking the maps for all i ∈ T as one map, we get the map θn

from V(S n
3) onto V(Hn

3). �

The isomorphism θ is explicitly given by

∀s ∈ T n ∀d ∈ [n] : θ(s)d = sn 4 . . . 4 sd, (1.4)
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where 4 is a binary operation defined on T. The operation is determined by Table 1.1.

Table 1.1: Cayley table for 4 on T

4 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

We remark that the operation 4 is commutative, since its Cayley table is symmetric along the
diagonal axis. But it is not associative. For example we calculate (14 0)4 0 , 14 (04 0). Hence
we must evaluate expressions like in (1.4) strictly from the right. An automaton which realises the
isomorphism between Hn

3 and S n
3 can be found in [33, p.145] or in [70] (here the evaluation starts

from the left!).

For the sequel we define in Hn
3 for the state s ∈ T n, j ∈ T, and d ∈ [n]

(s4 j)d = sd+1 4 · · · 4 sn 4 j. (1.5)

Note that (s4 j)d is the “first goal” of disc d to make the best first move possible in the optimal
solution to get from state s to the perfect state jn.

Furthermore, we introduce Iverson’s convention which says that [S] = 1, if statement S is true,
and [S] = 0, if S is false.

Then the distance formula from the state s ∈ T n to the perfect state jn ( j ∈ T ), a problem of P1
type, in the Hanoi graph Hn

3 (see [33, Equation (2.8)]) is

dH(s, jn) =

n∑
d=1

[sd , (s4 j)d] · 2d−1, (1.6)

where we denote the distance function by d .

Remark. For a P0 type, i.e., from a perfect state in to another perfect state jn (i, j ∈ T, i , j), we
get dH(in, jn) = 2n − 1.

For i ∈ T let ϕi be the permutation on T which has the single fixed point i. Then i4 j = ϕi( j) for
each j ∈ T. For Formula (1.4) we get

∀s ∈ T n ∀d ∈ [n] : θ(s)d = ϕsn ◦ · · · ◦ ϕsd+1(sd).

In a similar way we can write for Formula (1.5)

∀ j ∈ T ∀s ∈ T n ∀d ∈ [n] : (s4 j)d = ϕsd+1 ◦ · · · ◦ ϕsn( j).

Noting that ϕ−1
k = ϕk, we can deduce that

∀ j ∈ T ∀s ∈ T n ∀d ∈ [n] : sd = (s4 j)d ⇔ θ(s)d = j.
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Together with Formula (1.6) and the definition of the isomorphism θ, we get now for all s ∈ T n

and j ∈ T

dS (θ(s), jn) = dH(s, jn) =

n∑
d=1

[sd , (s4 j)d] · 2d−1 =

n∑
d=1

[θ(s)d , j] · 2d−1.

It follows that the distance dS in S n
3, again from a state s ∈ T n to the perfect state jn ( j ∈ T ), is

∀s ∈ T n ∀ j ∈ T : dS (s, jn) =

n∑
d=1

[sd , j] · 2d−1. (1.7)

We refer to [33] for further reading.

There are some more properties of the Sierpiński graphs S n
3 or Hanoi graphs Hn

3 , respectively. We
define by β(n) the number of 1s in the binary expansion of n. Further, we say that a set M is finite
and has size |M| B m ∈ N0 if there is a bijection from M to [m]. The subsequent results can be
found in [33, Proposition 2.13], [33, Proposition 2.16] and [34, Proposition 5].

Proposition 1.2. a) For any s ∈ T n,

d(s, 0n) + d(s, 1n) + d(s, 2n) = 2 · (2n − 1).

b) Fix a perfect state jn with j ∈ T. Then for µ ∈ [2n]0 :

|{s ∈ T n | d(s, jn) = µ}| = 2β(µ).

We will later see that this proposition can be extended to the so-called general Sierpiński graphs.

1.2 A P2 decision automaton for S n
3 - D. Romik’s Automaton

We want to get a deeper understanding of distances in Sierpiński graphs with base 3. Therefore,
we first take a closer look on Hanoi graphs. In the sequel we will label the largest disc as the disc
with number (n + 1). One main result for Hn+1

3 is the so-called boxer rule.

Lemma 1.3 ([33, Lemma 2.26]). If on a shortest path between two vertices in Hn+1
3 (n ∈ N0) the

largest disc is moved away from a peg, it will never come back to the same peg.

With the boxer rule we get

Lemma 1.4 ([34, Lemma 1]). On a shortest path between two vertices in Hn+1
3 the largest disc

moves at most twice.
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The shortest paths in Hn+1
3 can be categorised into three cases:

A disc (n + 1) moves only once;
C disc (n + 1) moves necessarily twice;
B both strategies are optimal;

as the subsequent theorem shows.

Theorem 1.5 ([34, Theorem 4], [33, Theorem 2.32]). Let s, t ∈ T n+1. Then there exist at most
two shortest paths between s and t. If there are two, the number of the moves of the largest disc
d ∈ [n + 1] for which sd , td, makes the difference. It can be one or two.

How do these two paths look like? Assume we want to go from is to jt (a P2 type problem) in
Hn+1

3 with s, t ∈ T n, i, j ∈ T, and i , j. (In the case that i = j, i.e., that we go from is to it, we can
reduce this problem to a problem in Hn

3 , where we want to go from s to t.) Let k = 3 − i − j. If the
largest disc moves once, the path is is→ ikn → jkn → jt with length

d1(is, jt) B d(s, kn) + 1 + d(t, kn),

otherwise the path is is→ i jn → k jn → kin → jin → jt with length

d2(is, jt) B d(s, jn) + 1 + 2n − 1 + 1 + d(t, in)
= d(s, jn) + 1 + 2n + d(t, in).

It is an interesting question whether for a given vertex is in Hn+1
3 there always exists a vertex such

that we are in case B, i.e., that both paths have equal length.

Lemma 1.6 ([33, Proposition 2.33]). For every vertex is ∈ T n+1 \ {0n+1, 1n+1, 2n+1}, n ∈ N, it can
be found a jt ∈ T n+1 (i , j) such that there are two shortest paths between these vertices in Hn+1

3 .

Remark. In [38, Corollary 3.7], it is stated that the perfect states are the only ones such that for
any other regular state there is a unique shortest path with at most one move of the largest disc.

With these results we can now construct an algorithm which tells us, depending on the given
vertices, whether we are in case A,C, or B. After the evaluation of the algorithm, we know con-
sequently whether we need one or two moves of the largest disc (called LDM) or both strategies
are optimal.

The underlying theorem, as well as the algorithm, is due to D. Romik [70]. At first he states the
theorem for S n

3 together with a “machine” which realises the statements of the theorem. Addition-
ally, he presents a “machine” similar to the one in [33, p.145] for the isomorphism θ between Hn

3
and S n

3. The two “machines” running in parallel even give us the possibility not only to determine
the number of largest disc moves but also to calculate the distance between vertices in Hn

3 . A the-
orem and an algorithm which leads us directly to the decision between A,C, and B can be found
in [33, Section 2.4.3].

But we are mainly interested in the theorem for S n+1
3 , where we have the choice between the paths

is → i jn → jin → jt and is → ikn → kin → k jn → jkn → jt with s, t ∈ T n, i, j ∈ T, i , j, and
k = 3 − i − j. If s = sd−1 . . . s1 ∈ T d−1, we define s′ = sd−2 . . . s1 ∈ T d−2 with d ∈ [n + 1]2.
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Theorem 1.7 ([70, Theorem 1]). Let s = sis, t = s jt ∈ T n+1, n ∈ N, with i , j and
s, t ∈ T b−1, b ∈ [n + 1]. We define the functions with k = 3 − i − j

A
(
s, t

)
= min

{
d
(
s, jb−1

)
+ d

(
t, ib−1

)
, 2b−1 + d

(
s, kb−1

)
+ d

(
t, kb−1

)}
,

B
(
s, t

)
= min

{
d
(
s, jb−1

)
+ d

(
t, ib−1

)
, d

(
s, kb−1

)
+ d

(
t, kb−1

)}
,

C
(
s, t

)
= min

{
2b−1 + d

(
s, jb−1

)
+ d

(
t, ib−1

)
, d

(
s, kb−1

)
+ d

(
t, kb−1

)}
.

Then we have the equations

A
(
s, t

)
=



= (i, j) or
= (k, i) or

d
(
s, jb−2

)
+ d

(
t, ib−2

)
(sb−2, tb−2) = (i, i) or path with one LDM

= ( j, k) or
= ( j, j) or
= ( j, i)

2b−1 + A
(
s′, t′

)
(sb−1, tb−1) = (i, k) or

= (k, j)

2b−1 + B
(
s′, t′

)
(sb−1, tb−1) = (k, k)

B
(
s, t

)
=



d
(
s, jb−1

)
+ d

(
t, ib−1

)
(sb−1, tb−1) = ( j, i) path with one LDM

d
(
s, kb−1

)
+ d

(
t, kb−1

)
(sb−1, tb−1) = (k, k) path with two LDMs

2b−2 + A
(
s′, t′

)
(sb−1, tb−1) = (i, i) or

= ( j, j)

2b−2 + C
(
s′, t′

)
(sb−1, tb−1) = (k, j) or

= (i, k)

2b−2 + B
(
s′, t′

)
(sb−1, tb−1) = (k, i) or

= ( j, k)

2b−1 + B
(
s′, t′

)
(sb−1, tb−1) = (i, j)
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C
(
s, t

)
=



= (k, k) or
= (k, i) or
= (k, j) or

d
(
s, kb−1

)
+ d

(
t, kb−1

)
(sb−1, tb−1) = (i, j) or path with two LDMs

= ( j, k) or
= (i, k)

2b−1 + B
(
s′, t′

)
(sb−1, tb−1) = ( j, i)

2b−1 + C
(
s′, t′

)
(sb−1, tb−1) = ( j, j) or

= (i, i).

These functions stand for the three possibilities "path with one LDM", "both paths are equal",
and "path with two LDMs" at the end of the reading of all pairs.

Using this theorem, we can construct a “machine” or automaton which decides between the strat-
egies with one and with two LDMs (see Figure 1.3). This leads to Algorithm 1.A B C

D E(j, ·), (·, i), (i, j)
(j
, i
) (k, k)

(k
, ·),

(·, k
),
(i
, j
)

(k, k)

(i, i), (j, j)

(i, k), (k, j)

(j, i)

1

Figure 1.3: Romik’s automaton for S n
3

With the algorithm we can now prove an analog to Lemma 1.6 for S n+1
3 .

Corollary 1.8 ([38, Corollary 3.6], [33, Proposition 4.2]). Let T = {i, j, k}. For every vertex
is ∈ T n+1 \ {0n+1, 1n+1, 2n+1}, n ∈ N, it can be found a jt ∈ T n+1 (i , j) such that there
are two shortest paths between these vertices in S n+1

3 .

Proof. Every non-extreme vertex is ∈ T n+1 is of the form i1+n−dks with s ∈ T d−1 and d ∈ [n].
Assuming that we go from is to jt, we want to find out which form the vertex jt must have such
that we stay in state B of the automaton in Figure 1.3. Looking at the figure, we recognise that
for every m ∈ T only the input (m, k4 (i4m)) leads thereto that B is not left anymore. Define the
vertex jt (i , j) as jkn−d+1t with ∀δ ∈ [d − 1] : tδ = k4 (i4 sδ). Now we evaluate the pair (is, jt)
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Algorithm 1 The P2 decision algorithm for S n+1
3

procedure p2S(n, s, t)
parameter n : number of discs minus 1 (n ∈ N)
parameter s : initial configuration (s ∈ T n+1)
parameter t : goal configuration (t ∈ T n+1, sn+1 , tn+1 )
i← sn+1

j← tn+1

start in state A of the automaton
δ← n
while δ > 0 do

apply automaton to pair (sδ, tδ) . algorithm STOPs if automaton
reaches state D or E

δ← δ − 1
end while

end procedure

in the automaton. The first input pair (i, j) determines the automaton as in Figure 1.3. Then the
following n − d pairs (i, k) keep it in state A. With the pair (k, k) we move to state B. Then using
our above analysis and the definition of t we will not leave the state B anymore to the end. �

It is of interest how long the average running time of the automaton is in which it is decided, which
of the possibilities is optimal in the problem of P2 type. We will deduce this using the theory of
Markov chains. For the basic theory we refer to [77]. We number the states A, B,C,D, and E
with 1, 2, 3, 4, and 5. Let us consider the automaton as a Markov chain with states 1, 2, 3, 4, and 5,
where we start in 1 and move from one state to another with a certain probability. The transition
matrix P of the automaton gives these probabilities.

P =
1
9


2 1 0 6 0
2 3 2 1 1
0 1 2 0 6
0 0 0 1 0
0 0 0 0 1

 .
Looking at the states 4 and 5, we see that they are a bit special in the following way. An absorbing
state is a state that, once entered, cannot be left. Then a Markov chain is called absorbing if the
process has absorbing states. Because of the two absorbing states 4 and 5, our Markov chain is
absorbing. The matrix P is of the form

P =

(
Q R
0 I

)
.

Q is the part of the matrix which describes the transition probabilities from some transient state
to another, whereas R gives the transition probabilities from transient to absorbing states. I is the
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identity matrix and 0 stands for the zero matrix. In an absorbing Markov chain, Qn → 0 when
n→ ∞ and I − Q has an inverse

M = (I − Q)−1 =

∞∑
n=0

Qn.

Muv is the expected number of visits which the chain made to state v provided that it has started in
state u.

We get

M =

1
9

 7 −1 0
−2 6 −2
0 −1 7



−1

=


180
133

9
38

9
133

9
19

63
38

9
19

9
133

9
38

180
133

 .
As we start in state 1, we get as expected time we will be in one of the states 1, 2 or 3 the sum of
the first row

180
133

+
9

38
+

9
133

=
63
38
.

It follows the subsequent theorem due to Romik [70]:

Theorem 1.9. The average number of disc pairs evaluated by Romik’s automaton is bounded

above by and converges, as n→ ∞, to
63
38
.

Since in any case we also have to read the pair of largest discs (sn+1, tn+1) in addition, we calculate

altogether 1 +
63
38

=
101
38

as the number of pairs which have to be evaluated in average till the
decision problem is solved. It can also be seen that in any case at least two pairs of input data have
to be checked by the algorithm.

Remark. According to [33, pp.147], we can even reduce the number of input pairs further. We
observe that the input of a pair with j as first component in A of the automaton in Figure 1.3
will always lead to D. In this case we need only half a pair of input, and we have to check in A
1
3
·

1
2

+
2
3
· 1 =

5
6

pairs. In addition, we notice that this is also possible for C with k as first
component. Using the above analysis, we accordingly need only

5
6
·

180
133

+
9

38
+

5
6
·

9
133

=
27
19

pairs of input. Together with the pair of largest discs (sn+1, tn+1), we get
46
19

pairs which have to be
checked in average. Still at least two pairs of input data have to be checked in any case.
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1.3 Sierpiński graphs S n
p with base p ∈ N and exponent n ∈ N0

In the last sections we have used the set T = {0, 1, 2} as the set of pegs. In the following we extend
now the set of pegs to [p]0 to define the general Sierpiński graphs with base p and exponent n.

Definition 1.10. The (general) Sierpiński graphs S n
p with base p ∈ N and exponent n ∈ N0 are

defined by the vertex set V(S n
p) = [p]n

0 and the edge set

E(S 0
p) = ∅,

∀n ∈ N0 : E(S n+1
p ) =

{
{is, is′}

∣∣∣∣ i ∈ [p]0, {s, s′} ∈ E(S n
p)
}

∪ {{i jn, jin} | i, j ∈ [p]0, i , j} .

(1.8)

Hence two vertices s, t ∈ [p]n
0 with s = sn . . . s1 and t = tn . . . t1 are adjacent in S n

p if and only if
there exists a d ∈ [n] such that

a) ∀k ∈ [n] \ [d] : sk = tk,

b) sd , td,

c) ∀k ∈ [d − 1] : sk = td ∧ tk = sd.

If d = 1, Condition c) is void. The same follows for Condition a) in the case d = n. This was
the first definition of Sierpiński graphs by S. Klavžar and U. Milutinović [52]. (Note that in [52]
states are given by s1 . . . sn.)00 01 10 11

11 12 21 2210 2001 0200
23 3222 3321 20 30 3102 030001 101112 13

1

Figure 1.4: The Sierpiński graphs S 2
2 (top left), S 2

3 (bottom left), and S 2
4 (right)

One basic example for Sierpiński graphs is the graph S 1
p for any p ∈ N, which is the complete

graph Kp on p vertices. For any n ∈ N, S n
2 is isomorphic to the path P2n on 2n vertices (for S 2

2 see
Figure 1.4).
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Similar to (1.1) for S n
3, we can define the edge set by

E(S n
p) =

{{
si jd−1, s jid−1

} ∣∣∣∣ i, j ∈ [p]0, i , j, d ∈ [n], s ∈ [p]n−d
0

}
.

It is obvious that the number of vertices, namely |V(S n
p)|, is equal to pn. Following [68], we cal-

culate the number of edges ||S n
p|| = |E(S n

p)|. We see that there are exactly p extreme vertices of
degree p − 1. The pn − p inner vertices have degree p. As a result, we get

||S n
p|| =

1
2

(p(p − 1) + (pn − p)p) =
p
2

(pn − 1) .

Additionally, we can observe for any n ∈ N and any p ∈ N3 that for every pair of vertices in S n
p

there is a path between these two vertices with the property that every vertex of S n
p is visited

exactly once on this path, called a Hamiltonian path.

Lemma 1.11 ([52, Proposition 3]). For any n ∈ N and any p ∈ N3 the graph S n
p is hamiltonian.

The graphs are connected based on Definition 1.8 or on the last lemma. Hence we can define a
distance function, denoted by d, on these graphs with base p ∈ N. This was done for the first time
in [52, Lemma 4] by Klavžar and Milutinović.

Theorem 1.12 ([33, Proposition 4.5.], [52, Lemma 4]). For any j ∈ [p]0 and for any vertex
s = sn . . . s1 of S n

p there is exactly one shortest path between jn and s, and

d ( jn, s) =

n∑
d=1

[sd , j] · 2d−1. (1.9)

It follows that for any i, j ∈ [p]0 (i , j) the distance between the extreme vertices in and jn is
d(in, jn) = 2n − 1.

Proof. We prove the theorem by induction on n. If n = 0, the statement is clearly true. Let n ∈ N0.
For p = 1 it is obvious that the theorem holds. Now let p ∈ N2 and s = sn+1s, s ∈ [p]n

0. We
distinguish two cases, namely sn+1 = j and sn+1 , j. If sn+1 = j, then we can take the shortest path
from jn to s in S n

p and add a j in front of each vertex. It follows that

d( jn+1, s) ≤
n∑

d=1

[sd , j] · 2d−1 =

n+1∑
d=1

[sd , j] · 2d−1.

If sn+1 , j, we find a path from jn+1 to s by going from jn+1 to jsn
n+1 in 2n−1 steps, then moving to

sn+1 jn in one step, and finally from here to sn+1s on a (shortest) path of length ≤
∑n

d=1[sd , j] ·2d−1.
Hence

d( jn+1, s) ≤ (2n − 1) + 1 +
∑n

d=1[sd , j] · 2d−1

≤ 2n+1 − 1 =
∑n+1

d=1[sd , j] · 2d−1.

We prove now that this is the unique shortest path by obtaining that no optimal path can touch a
subgraph kS n

p for sn+1 , k , j. Assume that there is a shorter path with the property that kS n
p is

the first subgraph which is touched by the path.
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Then the path contains the following parts:

• a path from jn+1 to jkn,

• the edge { jkn, k jn},

• a path from k jn to kin, j , i , k, and

• one edge in order to leave the subgraph kS n
p at kin.

If we now employ the induction assumption, we add the length of this path to altogether at least
(2n − 1) + 1 + (2n − 1) + 1 = 2n+1. But we already found a shorter one above such that this path
cannot be the shortest. �

D. Parisse showed some further properties of Sierpiński graphs in [68] which correspond to Pro-
position 1.2 for Sierpiński graphs S n

3.

Proposition 1.13. Let p ∈ N and n ∈ N0.

a) For any s ∈ [p]n
0,

p−1∑
l=0

d(s, ln) = (p − 1) · (2n − 1).

b) Fix an extreme vertex jn. Then for µ ∈ [2n]0 :

|{s ∈ [p]n
0 | d(s, jn) = µ}| = (p − 1)β(µ)

and
2n−1∑
µ=0

(p − 1)β(µ) = pn,

where β(µ) is number of 1s in the binary expansion of µ.

Proof. In [68, Proposition 2.5], [68, Corollary 2.4], and [33, Corollary 4.6], one can find the
proofs for the statements. �

We introduce the combinatorial number. Let k ∈ N0 and n ∈ Nk. Then the combinatorial number
is defined by(

n
k

)
=

n(n − 1) . . . (n − k + 1)
k!

=
n!

k!(n − k)!
.

Let S be a set of size n. We define
(

S
k

)
to be the set of all subsets of size k of S . Formally,(

S
k

)
= {T ⊆ S | |T | = k}. Furthermore, for all k ∈ [n + 1]0 the size

∣∣∣∣(S
k

)∣∣∣∣ =
(

n
k

)
; see [33, p.15].
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Let G be a graph. The eccentricity of a vertex s ∈ V(G), denoted by εG(s), gives the maximal
distance between the vertex s and all the other vertices in V(G). According to [68], this integer
for a vertex s ∈ [p]n

0 in S n
p is given by the maximum of the distances between s and the extreme

vertices jn. The average eccentricity of G is the arithmetic mean of all eccentricities, i.e.,

ε(G) B
1
|G|

∑
s∈V(G)

εG(s).

For n ∈ N0 and p ∈ N, the average eccentricity of S n
p is

ε(S n
p) =

1 − (
2p

p − 1

)−1 2n −
p − 1

p
−

p−2∑
k=0

(−1)p−k p − 1 − k
2p − k

(
p
k

) (
k
p

)n

,

which was shown in [41]. Furthermore, we define that the diameter of G is

diam(G) := max{εG(s) | s ∈ V(G)} = max{d(s, t) | s, t ∈ V(G)}.

It was proved in [68] that for all n ∈ N and p ∈ N2 the diameter of S n
p is equal to 2n − 1 using the

result [52, Lemma 4]. This value 2n − 1 is especially attained by the calculation of the distance
between the extreme vertices. Therefore, we called them extreme. In the case of Hanoi graphs
Hn

p, this is not true for the perfect vertices. R. Korf found out that for p = 4 and n = 15 (but not
for smaller n) the eccentricity of a perfect state and, consequently, the diameter of H15

4 is strictly
larger than the distance between two perfect states. In the calculations of the eccentricities of
perfect states in Hn

4 for n ≤ 22 in [55] and [56], it was shown that Korf’s phenomenon also occurs
for n = 20 to 22.

There exists an analogue to the boxer rule in Lemma 1.3 for the S n+1
p .

Lemma 1.14 ([33, Lemma 4.7]). If on a shortest path between two vertices in S n+1
p (n ∈ N0) the

largest disc is moved away from a peg, it will not return to the same peg.

Proof. We prove this by contradiction. Assume that disc (n + 1) leaves iS n
p and returns there on a

shortest path. Then this shortest path must contain a path i jn → P′ → ikn. Since there is only one
edge between two subgraphs iS n

p and jS n
p, the path P′ is thereby a jin, kin-path with |{k, i, j}| = 3.

This path P′ must contain a jin, jln-path (i , l , j) such that the length of P′ is greater than or
equal to 2n − 1 according to Theorem 1.12. Hence the length of the path i jn → P′ → ikn is greater
than 2n. But by the same theorem we also know that d(i jn, ikn) < 2n. Therefore, this path cannot
be contained in a shortest path. �

In Corollary 1.8 we stated that for every non-extreme vertex of S n
3 there is a vertex such that there

are two shortest paths between them.

For S n
p we can find a similar statement in [82].

Proposition 1.15 ([82, Corollary 3.5]). Let n ∈ N2 and p ∈ N3. Further, let s be any non-extreme
vertex in S n

p. Then there exists a t ∈ [p]n
0 such that there are two shortest s, t-paths.
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As we saw, there is a correspondence of statements between the Hanoi graphs Hn
3 and the general

Sierpiński graphs S n
p. Hinz, Klavžar, and Zemljič even showed that an isomorphic copy of S n

p is
a spanning subgraph5 of Hn

p (i.e., an isomorphic embedding exists,) if and only if p is odd or if
n = 1.

Theorem 1.16 ([39, Theorem 3.1]). Let p, n ∈ N. Then S n
p can be embedded isomorphically

into Hn
p if and only if p is odd or n = 1.

In the following theorem we characterise the distance between two arbitrary vertices more closely.
Let n ∈ N0, f ∈ [p]0, and V f =

{
f s | s ∈ [p]n

0

}
be the set of vertices in S n+1

p consisting of all vertices
beginning with f .

Theorem 1.17 ([52, Theorem 5], [33, Theorem 4.8]). Assume p ∈ N3. Let s = sis, t = s jt ∈ [p]n+1
0

be two vertices with i , j, s, t ∈ [p]d
0 for d ∈ [n] and s ∈ [p]n−d

0 . Then

d(s, t) = min
{
d
(
s, jd

)
+ 1 + d

(
t, id

)
,

d
(
s, kd

)
+ 1 + 2d + d

(
t, kd

)
| k ∈ [p]0 \ {i, j}

}
Proof. By induction on n. If n = 0, we get d = 0 and d(s, t) = 1. We note that it is sufficient to
consider only paths in the subgraph of S n+1

p whose vertices start with s. Hence we can assume that
d = n. Let n ∈ N. Let P be a shortest path among the paths between s and t which have vertices
from Vi ∪ V j. Since P must contain the edge between Vi and V j, namely {i jn, jin}, we obtain by
Theorem 1.12

|P| = d (s, jn) + 1 + d
(
t, in

)
and the uniqueness of the so-called direct path. Now we consider a shortest path P′ between s
and t with vertices only from Vi ∪ Vk ∪ V j, where k ∈ [p]0 \ {i, j} and P′ ∩ Vk , ∅. This path must
contain the edges {ikn, kin} and {k jn, jkn} such that we get again by Theorem 1.12

|P′| = d (s, kn) + 1 + (2n − 1) + 1 + d
(
t, kn

)
.

For fixed k this so-called Vk-path is unique by the same theorem. The length of the direct path
P is obviously strictly less than 2n+1. If we consider a path which contains also vertices from a
subgraph Vl with |{i, j, k, l}| = 4, its length is at least 1 + (2n − 1) + 1 + (2n − 1) + 1 = 2n+1 + 1.
Hence the theorem follows. �

We know even more about shortest paths in S n
p.

Theorem 1.18 ([52, Theorem 6]). There are at most two shortest paths between any two vertices
of S n

p.

5Let G = (V(G), E(G)) be a graph. A graph H = (V(H), E(H)) is called a subgraph of the graph G if V(H) ⊆ V(G)
and E(H) ⊆ E(G). A spanning subgraph of G is a subgraph of G which contains every vertex of G.
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In [54], Klavžar and Zemljič introduced a new kind of vertices, called almost-extreme vertices,
which are either of the form i jn or in j, where i , j. The almost-extreme vertices are obviously
the immediate neighbours of extreme vertices. For these vertices we can calculate the distance to
arbitrary vertices in S n+1

p with base p ∈ N2.

Proposition 1.19 ([54, Proposition 4]). Let m ∈ [n + 1]0, p ∈ N2, i, j ∈ [p]0, i , j, l ∈ [p]0 \ {i},
and s ∈ [p]m

0 . Then

d(in−m js, inl) = d(s, im) + 2m − [ j = l] =

m∑
d=1

[sd , i] · 2d−1 + 2m − [ j = l].

For the almost-extreme vertices s = i jn or in j with {i, j} ∈
(

[p]0
2

)
, p ∈ N3, and n ∈ N we can also

determine the set of vertices to (or from) which two shortest paths lead. We will denote this set of
vertices by Bs.

Proposition 1.20 ([82, Theorem 3.1]). For any almost-extreme vertex s = i jn in S n+1
p , we have

Bs =
{
t jid−1 | d ∈ [n], t ∈ ([p]0 \ {i, j})n−d+1

}
.

Proposition 1.21 ([82, Theorem 3.3]). For any almost-extreme vertex s = in j in S n+1
p , we have

Bs =
{
in−dt jd | d ∈ [n], t ∈ [p]0 \ {i, j}

}
.

A class of almost-extreme vertices are the “special” vertices. We call a vertex s ∈ [p]n+1
0 special

with i, j, k ∈ [p]0 and |{i, j, k}| = 3, if there is a δ ∈ [n+1] such that s = sks with s ∈ ([p]\{ j, k})n+1−δ

and s ∈ [p]δ−1
0 .

Proposition 1.22 ([54, Proposition 7]). Let m ∈ [n], p ∈ N3, i, j, k ∈ [p]0, |{i, j, k}| = 3, and
s ∈ [p]m

0 . Then

d(in−m+1s, in−m jkm) =

{
d(s, km) + 2m + 1, if s is special,

d(s, jm) + 2m − [i = k](2m − 1), otherwise.

1.4 A P2 decision algorithm for Sierpiński graphs S n
p with base

p ∈ N3 and exponent n ∈ N0

We have seen in Section 1.2 that there exists an automaton for the Sierpiński graphs S n
3 or Hanoi

graphs Hn
3 , respectively, with which we can decide whether we need one LDM, two LDMs or

whether both shortest paths are of equal length. The aim of this section is to find a similar auto-
maton for the Sierpiński graphs S n+1

p with base p ∈ N3 and exponent n ∈ N0. Since there is no
decision necessary for the cases p = 1 and p = 2, we omit them in the following. An alternative
representation of the material in this section can be largely found in the author’s article [37] with
A. M. Hinz.
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1.4.1 The underlying principle

From the last section we already know the basic properties of the Sierpiński graphs, which we
keep in mind. In Lemma 1.14 we stated that the largest disc once removed from a peg will never
return there. Furthermore, we know that the diameter of S n+1

p is 2n+1 − 1 and analysed that in S n+1
p

the passage through two “detour” subgraphs take at least 2n+1 + 1 moves.

We recall Theorem 1.17 about distances in S n+1
p and the notation V f =

{
f s | s ∈ [p]n

0

}
for the set of

vertices in S n+1
p consisting of all vertices beginning with f ∈ [p]0 for n ∈ N0.

Theorem 1.23 ([37, Lemma 1.1]). Let s = sis, t = s jt ∈ [p]n+1
0 be two vertices with i, j ∈ [p]0,

i , j, s, t ∈ [p]d
0 for d ∈ [n] and s ∈ [p]n−d

0 . Then

d(s, t) = min
{
dk

(
is, jt

)
| k ∈ [p + 1]0 \ {i, j}

}
.

Thereby the distance dk

(
is, jt

)
:= d

(
s, kd

)
+ 1 + 2d + d

(
t, kd

)
for k ∈ [p]0 gives the number of

moves of the unique Vk-path realised by is → ikd → kid → k jd → jkd → jt. The distance
dp

(
is, jt

)
:= d

(
s, jd

)
+ 1 + d

(
t, id

)
is realised by the path is → i jd → jid → jt. We omitted the

prefix s which remains constant throughout the paths.

We consider the Sierpiński graphs S N+1
p with N ∈ N0 in the following theorem, which is also

stated in [37] in another version. The exponent is changed to N + 1 in order to make later direct
use of Formula (1.9) together with the results which arises from the application of the theorem. If
s = sd−1 . . . s1 ∈ [p]d−1

0 , we define s′ = sd−2 . . . s1 ∈ [p]d−2
0 with d ∈ [N + 1]2.

Theorem 1.24. Let s = sisn−1s, t = s jtn−1t ∈ [p]N+1
0 , N ∈ N0, with i , j and n ∈ [N + 1],

s, t ∈ [p]n−2
0 , and further s ∈ [p]N+1−n

0 . If either sn−1 , i, j or tn−1 , i, j, we set the value sn−1 or
tn−1, respectively, equal to h. If both are not equal to i and j and sn−1 , tn−1, we set sn−1 equal to g
and tn−1 equal to h, otherwise we set both equal to h. We define the functions with k ∈ {g, h}

A′
(
s, t

)
= min

{
d
(
s, jn−2

)
+ d

(
t, in−2

)
, 2n−2 + d

(
s, kn−2

)
+ d

(
t, kn−2

)}
A

(
s, t

)
= min

{
d
(
s, jn−2

)
+ d

(
t, in−2

)
, 2n−2 + d

(
s, kn−2

)
+ d

(
t, kn−2

)}
B

(
s, t

)
= min

{
d
(
s, jn−2

)
+ d

(
t, in−2

)
, d

(
s, kn−2

)
+ d

(
t, kn−2

)}
C

(
s, t

)
= min

{
2n−2 + d

(
s, jn−2

)
+ d

(
t, in−2

)
, d

(
s, kn−2

)
+ d

(
t, kn−2

)}
.

Then we have four cases for d(s, t) depending on the pair (sn−1, tn−1)

d(s, t) =



= (i, j) or
2n−1 + 1 + d

(
s, jn−2

)
+ d

(
t, in−2

)
(sn−1, tn−1) = ( j, ·) or direct path

= (·, i)

2n−1 + 1 + A′
(
s, t

)
(sn−1, tn−1) = (g, h)

2n−1 + 1 + A
(
s, t

)
(sn−1, tn−1) = (i, h) or

= (h, j)

2n−1 + 1 + B
(
s, t

)
(sn−1, tn−1) = (h, h)



24 §1 A P2 decision algorithm for Sierpiński graphs with base p ∈ N3

In the second case we set k = g if only g occurs in (sn−2, tn−2), and k = h if only h occurs in this
pair, and in the third and fourth case always k = h is used. Then we get

A′
(
s, t

)
=



= (i, j) or
= ( j, ·) or

d
(
s, jn−2

)
+ d

(
t, in−2

)
(sn−2, tn−2) = (·, i) or direct path

= (i, l′) or
= (l′, j) or
= (l′,m′)

2n−2 + A′
(
s′, t′

)
(sn−2, tn−2) = (g, h) or

= (h, g)

2n−2 + A
(
s′, t′

)
(sn−2, tn−2) = (u′, k) or

= (k, v′)

2n−2 + B
(
s′, t′

)
(sn−2, tn−2) = (k, k)

A
(
s, t

)
=



= (i, j) or
= ( j, ·) or

d
(
s, jn−2

)
+ d

(
t, in−2

)
(sn−2, tn−2) = (·, i) or direct path

= (l, j) or
= (i, l) or
= (l,m)

2n−2 + A
(
s′, t′

)
(sn−2, tn−2) = all other cases

2n−2 + B
(
s′, t′

)
(sn−2, tn−2) = (k, k)

B
(
s, t

)
=



d
(
s, jn−2

)
+ d

(
t, in−2

)
(sn−2, tn−2) = ( j, i) direct path

d
(
s, kn−2

)
+ d

(
t, kn−2

)
(sn−2, tn−2) = (k, k) Vk-path

2n−3 + A
(
s′, t′

)
(sn−2, tn−2) = (u, i) or

= ( j, v)

2n−3 + C
(
s′, t′

)
(sn−2, tn−2) = (k, v) or

= (u, k)

2n−3 + B
(
s′, t′

)
(sn−2, tn−2) = (k, i) or

= ( j, k)

2n−2 + B
(
s′, t′

)
(sn−2, tn−2) = all other cases
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C
(
s, t

)
=



= (k, ·) or
d
(
s, kn−2

)
+ d

(
t, kn−2

)
(sn−2, tn−2) = (·, k) or Vk-path

= (u, v)

2n−2 + B
(
s′, t′

)
(sn−2, tn−2) = ( j, i)

2n−2 + C
(
s′, t′

)
(sn−2, tn−2) = all other cases

with u ∈ [p]0\{k, j}, u′ ∈ [p]0\{g, h, j}, v ∈ [p]0\{k, i}, v′ ∈ [p]0\{g, h, i}, l, m ∈ [p]0 \ {k, i, j}, and
l′,m′ ∈ [p]0\{g, h, i, j}. These functions stand for the three possibilities "direct path", "both paths",
and "Vk-path" at the end of the input of all pairs.

Proof. It is sufficient to assume s = isn−1 . . . s1 and t = jtn−1 . . . t1. If either sn−1 , i, j or tn−1 , i, j,
we set the value sn−1 or tn−1, respectively, equal to h. If both are not equal to i and j and sn−1 , tn−1,
we set sn−1 equal to g and tn−1 equal to h, otherwise both equal to h.
According to Theorem 1.23, the length of the direct path between s and t is

d
(
sn−1 . . . s1, jn−1

)
+ 1 + d

(
tn−1 . . . t1, in−1

)
,

while the length of the V f -path is

d
(
sn−1 . . . s1, f n−1

)
+ 1 + 2n−1 + d

(
tn−1 . . . t1, f n−1

)
for any f ∈ [p]0 \ {i, j}. We define by

∆ f B2n−1 + d
(
sn−1, . . . s1, f n−1

)
− d

(
sd−1, . . . s1, f d−1

)
+ d

(
tn−1, . . . t1, f n−1

)
− d

(
td−1, . . . t1, f d−1

)
− d

(
sn−1, . . . s1, jn−1

)
+ d

(
sd−1, . . . s1, jd−1

)
− d

(
tn−1, . . . t1, in−1

)
+ d

(
td−1, . . . t1, id−1

)
,

the difference between the V f -path and the direct path down to the position d ∈ [n] for any
f ∈ [p]0 \ {i, j}. We will see that there are five possibilities for ∆ f :

D ∆ f ≥ 2d direct path
A (/A′) ∆ f = 2d−1 I LDM
B ∆ f = 0 I/II LDM(s)
C ∆ f = −2d−1 II LDMs
E ∆ f ≤ −2d V f -path,

which provides us information about the length of the path. Furthermore, it will emerge that the
final decision between A, B, or C cannot be made until all pairs are read. To find the shortest
path(s), we distinguish several cases.
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1. Case: s = iisn−2 . . . s1, t = j jtn−2 . . . t1

We calculate for the length of the direct path

d
(
i . . . s1, jn−1

)
+ 1 + d

(
j . . . t1, in−1

)
=

2n−1 + 1 + d
(
sn−2 . . . s1, jn−2

)
+ d

(
tn−2 . . . t1, in−2

)
and for the length of the V f -path for any f ∈ [p]0 \ {i, j}

d
(
i . . . s1, f n−1

)
+ 1 + 2n−1 + d

(
j . . . t1, f n−1

)
=

2n−1 + 1 + 2n−1 + d
(
sn−2 . . . s1, f n−2

)
+ d

(
tn−2 . . . t1, f n−2

)
.

It follows that the direct path is always the shortest as the length is at most 2n − 1. We notice
that ∆ f = 2d with d = n − 1 and we are in D.

2. Case: s = i jsn−2 . . . s1, t = jtn−1 . . . t1

The length of the direct path is at most (2n−2−1)+1+ (2n−1−1), while the V f -path is at least
2n−2 + 2n−1 + 1 for any f ∈ [p]0 \ {i, j}. So the direct path is again shorter. Additionally, we
remark that we are in D. The case s = isn−1 . . . s1 and t = jitn−2 . . . t1 is treated analogously.

3. Case: s = iisn−2 . . . s1, t = jhtn−2 . . . t1

Let f ∈ [p]0 \ {i, j, h}. Then the length of the V f -path is

d
(
i . . . s1, f n−1

)
+ 1 + 2n−1 + d

(
h . . . t1, f n−1

)
≥ 2n + 1

and cannot be the shortest one. The possible shortest paths are the direct and the Vh-path.

3.1 Subcase: sn−2 = i, tn−2 = j
It follows that we are again in D, since ∆h = 2d with d = n − 2. Therefore, the direct
path is shorter.

3.2 Subcase:

a) sn−2 = j, tn−2 = o (o ∈ [p]0 \ {h})
We arrive at D with ∆h ≥ 2d (d = n − 2).

b) sn−2 = j, tn−2 = h
The length of the direct path is calculated to be

d
(
i j . . . s1, jn−1

)
+ 1 + d

(
hh . . . t1, in−1

)
=

2n−1 + 1 + 2n−3 + d
(
sn−3 . . . s1, jn−3

)
+ d

(
tn−3 . . . t1, in−3

)
,

while the length of the Vh-path is

d
(
i j . . . s1, hn−1

)
+ 1 + 2n−1 + d

(
hh . . . t1, hn−1

)
=

2n−1 + 1 + 2n−2 + 2n−3 + d
(
sn−3 . . . s1, hn−3

)
+ d

(
tn−3 . . . t1, hn−3

)
.
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Therefore, ∆h = 2d with d = n − 2, and we are in D. Then even in the worst case
for the length of the direct path, namely that all following pairs are (h, h), the direct
path is the shortest as it would have only the length 2n−1 + 2n−2 + 2n−3 − 1 compared
to the length of the Vh-path 2n−1 + 2n−2 + 2n−3 + 1.

The case tn−2 = i is treated analogously.

3.3 Subcase:

a) sn−2 = i, tn−2 = h
The difference between both paths is ∆h = 2d−1 with d = n − 2, and we arrive at A.
Now we look at the case A. For the cases (sn−3, tn−3) = (i, h), (h, j), (h, o), (o, h)
with o ∈ [p]0 \ {h} we have ∆h = 2d−1 for d = n − 3, and we stay in A. If
(sn−3, tn−3) = (h, h) we see that the direct path has length 2n−1 + 2n−2 + 2n−3 + 1 +

d
(
sn−4 . . . s1, jn−4

)
+d

(
tn−4 . . . t1, in−4

)
and the Vh-path has length 2n−1 +2n−2 +2n−3 +

1 + d
(
sn−4 . . . s1, hn−4

)
+ d

(
tn−4 . . . t1, hn−4

)
. Hence both paths may be shortest ones

(state B) and we analyse (sn−4, tn−4) as in 3.4 a). In all other cases ∆h = 2d with
d = n − 3, and we are in D.

b) sn−2 = i, tn−2 = u (u ∈ [p]0 \ {h, j})
This is again D as ∆h ≥ 2d with d = n − 2.

The cases (sn−2, tn−2) = (h, j) and (v, j) with v ∈ [p]0 \ {h, i} are treated analogously.

3.4 Subcase:

a) sn−2 = h = tn−2

We are in B, since both paths have equal length. Hence we look at the next pair
(sn−3, tn−3). In the cases (l,m), (i, o), (o, j), (h, i), ( j, h) with l,m ∈ [p]0 \ {h, i, j} and
o ∈ [p]0 \ {h} they still have equal length, and we stay in B. For the cases (h, v) and
(u, h) with u ∈ [p]0 \ {h, j} and v ∈ [p]0 \ {h, i} we see that the length of the Vh-path
is 2n−1 + 2n−2 + 2n−4 + 1 + d

(
sn−4 . . . s1, hn−4

)
+ d

(
tn−4 . . . t1, hn−4

)
and of the direct

path is 2n−1 +2n−2 +2n−3 +1+d
(
sn−4 . . . s1, jn−4

)
+d

(
tn−4 . . . t1, in−4

)
. So ∆h = −2d−1

with d = n − 3, and we go to C. The state C will be analysed in Case 4.3 a). The
cases (u, i) and ( j, v) (u, v as above) are treated as 3.3 a) as ∆h = 2d−1 with d = n−3.
If (sn−3, tn−3) = (h, h), the Vh-path is the shorter one with ∆h = −2d (d = n − 3) and
we arrive at E (see Case 4.4). For the case ( j, i) the direct path is the shortest with
∆h = 2d (d = n − 3) as we will see in Case 4.2 b) and we reach D.

b) sn−2 = o = tn−2 (o ∈ [p]0 \ {h})
At this point ∆h ≥ 2d(d = n − 2) and we are in D.

3.5 Subcase:

a) sn−2 = h, tn−2 = l (l ∈ [p]0 \ {h, i, j})
Here ∆h = 2d−1 with d = n − 2 and this is A as in 3.3 a). The case sn−2 = k and
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tn−2 = h is treated analogously.

b) sn−2 = l, tn−2 = m (l,m ∈ [p]0 \ {h, i, j} and l , m)
We are again in D.

We notice that the same is true for s = ihsn−2 . . . s1 and t = j jtn−2 . . . t1.

4. Case: s = ihsn−2 . . . s1, t = jhtn−2 . . . t1

Let f ∈ [p]0 \ {i, j, h}. We must only look at the length of the direct and the Vh-path, since
the V f -path has length at least 2n + 1 as in Case 3.

4.1 Subcase: sn−2 = i, tn−2 = j
Both paths have equal length (state B), and we can treat the subcase as in 3.4 a).

4.2 Subcase:

a) sn−2 = j, tn−2 = v (v ∈ [p]0 \ {h, i})
It follows that ∆h = 2d−1 with d = n − 3. We arrive at A (see Subcase 3.3 a)).

b) sn−2 = j, tn−2 = i
We get ∆h = 2d with d = n − 2 and state D.

c) sn−2 = j, tn−2 = h
Both paths have equal length (state B). So we go back to 3.4 a).

The cases sn−2 ∈ [p]0 \ {h, j} or sn−2 = h and tn−2 = i are treated analogously.

4.3 Subcase:

a) sn−2 = i, tn−2 = h
The length of the direct path is 2n−1+1+2n−2+d

(
sn−3 . . . s1, jn−3

)
+d

(
tn−3 . . . t1, in−3

)
,

while the Vh-path is 2n−1 + 1 + 2n−3 + d
(
sn−3 . . . s1, hn−3

)
+ d

(
tn−3 . . . t1, hn−3

)
. Thus

∆h = −2d−1 (d = n−2), and we are in C. The Vh-path seems to be the shortest. But if
(sn−3, tn−3) = ( j, i), we are in state B and look at Subcase 3.4a). If we have the pairs
(sn−3, tn−3) = ( j, v) and (u, i) with u ∈ [p]0 \ {h, j} and v ∈ [p]0 \ {h, i}), the Vh-path
seems again to be the shortest one, since ∆h = −2d−1 (d = n − 3), and as before we
have to analyse the next pair. If (sn−3, tn−3) = (h, ·), (·, h), (u, v) (u, v as above) the
Vh-path is the shortest and ∆h ≤ −2d (d = n − 3). We will show this for the case
( j, h), in which the Vh-path has length 2n−1 + 2n−3 + 2n−4 + 1 + d

(
sn−4 . . . s1, hn−4

)
+

d
(
tn−4 . . . t1, hn−4

)
and the direct path is 2n−1 + 2n−2 + 2n−4 + 1 + d

(
sn−4 . . . s1, jn−4

)
+

d
(
tn−4 . . . t1, in−4

)
long. But even in the worst case that all subsequent pairs are ( j, i),

the Vh-path is still shorter. We reach state E.

b) sn−2 = i, tn−2 = l (l ∈ [p]0 \ {h, i, j})
In this subcase ∆h = 0 (state B) and we analyse it as Case 3.4 a).
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The cases sn−2 = h or sn−2 = l and tn−2 = j are treated analogously.

4.4 Subcase: sn−2 = h = tn−2

Here ∆h is equal to −2d with d = n − 2, and we are in state E.

4.5 Subcase:

a) sn−2 = l, tn−2 = m (l,m ∈ [p]0 \ {h, i, j})
Both paths have equal length. Thus we are in B and must analyse (sn−3, tn−3) as in
3.4 a).

b) sn−2 = h, tn−2 = v (v ∈ [p]0 \ {h, i})
∆h is equal to −2d−1 (d = n − 2). We are in state C and must evaluate (sn−3, tn−3) as
in 4.3a).

c) sn−2 = u, tn−2 = h (u ∈ [p]0 \ {h, j})
Again ∆h is equal to −2d−1 (d = n − 2), and we are in state C.

5. Case: s = igsn−2 . . . s1, t = jhtn−2 . . . t1 (g ∈ [p]0 \ {i, j, h})
Let f ∈ [p]0 \ {i, j, g, h}. Then as in the previous two cases we see that the V f -path cannot be
the shortest. Therefore, we only look at the direct, the Vh- and the Vg-path.

5.1 Subcase: sn−2 = i, tn−2 = j
∆h as well as ∆g is equal to 2d (d = n − 2), and we are in D.

5.2 Subcase:

a) sn−2 = j, tn−2 = o′ (o′ ∈ [p]0 \ {g, h})
At this point ∆h or ∆g, respectively, is greater and equal to 2d for d = n−2 (state D).

b) sn−2 = j, tn−2 = g
The direct path has length 2n−1 + 2n−3 + 1 + d

(
sn−3 . . . s1, jn−3

)
+ d

(
tn−3 . . . t1, in−3

)
and the Vg-path 2n−1 +2n−2 +2n−3 +1+d

(
sn−3 . . . s1, gn−3

)
+d

(
tn−3 . . . t1, gn−3

)
, while

the Vh−path has length ≥ 2n + 1. Hence ∆g = 2d (d = n− 2), and we go to D. In the
case with tn−2 = h we get the same only with the Vh-path instead of the Vg-path.

We can treat the cases (sn−2, i), (h, i), and (g, i) (sn−2 ∈ [p]0 \ {h, g}) analogously.

5.3 Subcase:

a) sn−2 = i, tn−2 = h
The Vg-path is longer than 2n + 1. The difference ∆h between the direct and the
Vh-path is 2d−1 (state A), and we proceed as in 3.3 a). The case that sn−2 = i and
tn−2 = g, is treated like Subcase 3.3 a) with g instead of h as ∆g = 2d−1.

b) sn−2 = i, tn−2 = l′ (l′ ∈ [p]0 \ {g, h, i, j})
The direct path is the shortest because of ∆h = 2d and ∆g = 2d for d = n − 2.
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The same applies to the pairs (sn−2, tn−2) = (h, j), (g, j), and (l′, j) (l′ ∈ [p]0\ {g, h, i, j}).

5.4 Subcase: sn−2 = h = tn−2

The Vg-path is once more too long. The other two are of equal length (∆h = 0 and
state B), and we look back to 3.4 a). If sn−2 = g = tn−2, the same is true with g instead
of h.

5.5 Subcase:

a) sn−2 = l′, tn−2 = m′ (l′,m′ ∈ [p]0 \ {g, h, i, j})
Again the direct path is the shortest with ∆h = 2d and ∆g = 2d (d = n−2). We reach
D.

b) sn−2 = h, tn−2 = v′ (v′ ∈ [p]0 \ {g, h, i})
∆h is equal to 2d−1(d = n − 2), and we are in state A. The same follows for sn−2 = g
instead of h.

c) sn−2 = u′, tn−2 = h (u′ ∈ [p]0 \ {g, h, j})
Again ∆h is equal to 2d−1(d = n − 2), and we are in state A. As above we can
substitute h with g.

5.6 Subcase: sn−2 = g, tn−2 = h
The direct path is 2n−1 + 2n−2 + 1 + d

(
sn−3 . . . s1, jn−3

)
+ d

(
tn−3 . . . t1, in−3

)
long. The

Vh-path (resp. Vg-path) has the length 2n−1 + 2n−2 + 2n−3 + 1 + d
(
sn−3 . . . s1, hn−3

)
+

d
(
tn−3 . . . t1, hn−3

)
(with g instead of h). It follows that both ∆h and ∆g are 2d−1 for

d = n − 2. First, the direct path seems to be shorter than the other two paths, but
we have to analyse the next pair (sn−3, tn−3). We call this new state A′ because of its
special property and similarity to the state A. If (sn−3, tn−3) ∈ {(g, h), (h, g)} , we start
anew (state A′) as before and analyse the following pair on the occurrence of g or h.
Otherwise we treat this case analogously to 3.3 a) according to g or h, resp. to Vg-path
or Vh-path. We notice that the same applies to (sn−2, tn−2) = (h, g). �

Using the previous theorem, the question, whether we have to use one (LDM = 1) or two
(LDM = 2) largest disc moves for an optimal solution or if both possibilities lead to an optimal
path (LDM = 0), is decided. The theorem also gives the “detour” peg k for LDM , 1. Hence we
can calculate the distance d(sis, s jt) together with Formula (1.9). We get for LDM < 2

d(is, jt) =
∑n

d=1(1 − [sd = j]) · 2d−1 + 1 +
∑n

d=1(1 − [td = i]) · 2d−1

= 2n+1 − 1 −
∑n

d=1([sd = j] + [td = i]) · 2d−1,
(1.10)

and for LDM = 2
d(is, jt) =

∑n
d=1(1 − [sd = k]) · 2d−1 + 2n + 1 +

∑n
d=1(1 − [td = k]) · 2d−1

= 3 · 2n − 1 −
∑n

d=1([sd = k] + [td = k]) · 2d−1.
(1.11)

Note that for the calculation of the distance all pairs must be read, whereas for the decision only a
possibly smaller number of pairs has to be read. Since we know now the shortest path(s), we can
also determine the best first move(s) to get from sis to s jt with the following lemma.
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Lemma 1.25 ([52, p.103], [37, Lemma 1.2]). With the same assumptions for ss := sis and j as
in Theorem 1.23 the optimal first move from ss to s jid in S n+1

p is from ssb jb−1 to s jsb−1
b , where

b ∈ [d + 1], s = ssd+1 . . . sb+1 ∈ [p]n−b+1
0 , and sb , j , i.e., b = min{δ ∈ [d + 1] | sδ , j}.

The next section makes use of the last results. We will apply them in order to construct an al-
gorithm which gives us the “detour” peg k, the distance, and the best first move(s) for an arbitrary
pair s and t in S N+1

p .

1.4.2 The P2 decision algorithm

We construct an algorithm, the P2 decision algorithm, which gives us the length of the shortest
path(s) between s ∈ V(S N+1

p ) and t ∈ V(S N+1
p ) for p ∈ N3 and the best first move(s). Starting with

the preprocessing algorithm, we filter out the case of s = t and reduce the problem of determining
the optimal path(s) between s = ss and t = st to find it between s and t. Then we use an algorithm
to set g and h following the rules of Theorem 1.24. In Algorithm 4 we find the “detour” peg k and
decide whether we are in the case “direct path”, “both paths” or “Vk-path”. Using the results of
the algorithms, we can go to the postprocessing algorithm, where we calculate the distance and
give the best first move(s). Note that for the case “both paths” there are two different best first
moves.

Algorithm 2 The P2 decision algorithm for S N+1
p

procedure P2S(N, p, s, t)
parameter N : number of discs minus 1 {N ∈ N0}

parameter p : {p ∈ N3}

parameter s : initial configuration {s ∈ [p]N+1
0 }

parameter t : goal configuration {t ∈ [p]N+1
0 }

Pre(N, p, s, t)
Post(s, t, i, j, LDM, k, n)

end procedure

We start with N + 1 discs in the P2 decision algorithm. After the preprocessing, we know n + 1,
which is the maximal position, in which s and t differ. In the Detour peg algorithm, we start with
δ = n. If the algorithm stops in D or in A (when the input data have run out), we set LDM equal
to 1. If we end in E or C, we set LDM = 2. For the case of B as ending state we set LDM = 0. At
the end of this algorithm, we know LDM and the “detour” peg k = � and can use this information
for the postprocessing algorithm. The states D and A stand for the class I task (one move of the
largest disc, LDM = 1), while E and C is the class II task (two moves, LDM = 2). The class I/II
task (equality between one or two moves, LDM = 0) is represented by the state B.
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Algorithm 3 The Preprocessing algorithm for S N+1
p

procedure Pre(N, p, s, t)
parameter N : number of discs minus 1 {N ∈ N0}

parameter p : {p ∈ N3}

parameter s : initial configuration {s ∈ [p]N+1
0 }

parameter t : goal configuration {t ∈ [p]N+1
0 }

d ← N + 1
while d > 0 and sd = td do

d ← d − 1
end while
if d = 0 then

no move
else

n← d − 1
DPS(n, p, s, t)

end if
end procedure

Algorithm 4 Detour peg decision algorithm for S n
p

procedure DPS(n, p, s, t)
parameter n : resulting number of discs after preprocessing minus 1 {n ∈ N0}

parameter p : {p ∈ N3}

parameter s : initial configuration
parameter t : goal configuration
i← sn+1, j← tn+1

� ← p
SETH(n, p, s, t)
start in state S T ART of P2 automaton
δ← n
while δ > 0 do

apply automaton to pair (sδ, tδ) . if automaton returns A and � = p then
if (g = sδ−1 or g = tδ−1) and

(h = sδ−1 or h = tδ−1) then continue
if h = sδ−1 or h = tδ−1 then � ← h
if g = sδ−1 or g = tδ−1 then � ← g

. algorithm STOPs if automaton reaches D or E
δ← δ − 1

end while
end procedure
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START DI STOP
I

I/II

EII STOP
II

A(/A')
B
C

(i, j)(j, ·)(·, i)

(g, h)(i, h)(h, j)

(h, h)

(i, j)
(j, ·)(·,

i)(i, l
)(l, j

)(l,m
)

(j, i)

(⋄, ⋄)

(⋄, ·)(·,
⋄)(u, v)

(⋄, ⋄) (u, i)(j, v)

(⋄, v)(u, ⋄) (j, i)

1
Figure 1.5: Automaton for the P2 decision problem with u ∈ [p]0 \ {�, j}, v ∈ [p]0 \ {�, i},

and l,m ∈ [p]0 \ {{i, j} ∪ K} , where K = {�} if � is already defined and K = {g, h}
otherwise

1.4.3 Some applications

In Section 1.3 we stated some propositions about distances for vertices of a special form in S N+1
p .

In the sequel we will show that several ones can be proved and extended easily with our algorithm.
We recall Proposition 1.19 and even extend the statement.

Proposition 1.26 ([54, Proposition 4], [82, Theorem 3.3], [37, Proposition 2.3]). Let n ∈ [N],
i, j ∈ [p]0, i , j, l ∈ [p]0 \ {i}, and s ∈ [p]n

0. Then for all problems from iNl to iN−n js (or from iN−n js
to iNl) we get LDM < 2 and LDM = 0 if and only if l , j and s = ln.

Proof. After the preprocessing, we can assume that N−n = 0. If n = 1, we end in A or D with pair
(l, s1), except when s1 = l , j, in which case we stop in B. Let now n ∈ N2. If the second input
pair is (i, i) or (i, j), we go directly to D. Otherwise, i.e., for (i, sn) with sn , i, j we set sn = h = �
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Algorithm 5 Set g and h algorithm
procedure seth(n, p, s, t)

parameter n : resulting number of discs after preprocessing minus 1 {n ∈ N0}

parameter p : {p ∈ N3}

parameter s : initial configuration
parameter t : goal configuration
i← sn+1, j← tn+1

g← p, h← p
if sn , i, j then

if tn , i, j and sn , tn then
g← sn, h← tn

else
h← sn

� ← h
end if

else
if tn , i, j then

h← tn

� ← h
end if

end if
end procedure

and move to A. We move to B in the last step with (l, s1) only if sd = h = l for all d ∈ [n]. Hence
we will never end in C or E. We omit the postprocessing, since we do not want to determine the
distance exactly. �

In Proposition 1.22 we made, inter alia, a statement about distances to special vertices.

Proposition 1.27. Let n ∈ [N], i, j, k ∈ [p]0, |{i, j, k}| = 3, and s ∈ [p]n
0 be special. Then

d(iN−n+1s, iN−n jkn) = d(s, kn) + 2n + 1.

Proof. After the preprocessing, the problem is reduced to determining the distance between isks
and jkn with s ∈ ([p]0 \ { j, k})n−δ and s ∈ [p]δ−1

0 for a δ ∈ [n]. The second input pair can be either
(i, k) or (g, k) with g ∈ [p]0 \ {k}. In the first case, we set h = k = � and go to A. Then we stay
in A for the pairs (sd, k) from n − 1 to δ + 1 and move to B with (k, k) and stay there or move to E
or C for the remaining pairs. In the second case, we go to A and must then distinguish two cases.
The first one has (g, k) as third input pair, such that we stay in A until we get a pair (l, k) with
l ∈ [p]0 \ {g, k, j}. Then we set � = k and stay again in A until the input pair (k, k), which let us
move to B, where we again stay or move to E or C for the remaining cases. The second case has
immediately (l, k) with l ∈ [p]0 \ {g, k, j} as input pair. Hence we proceed as above. It follows that
we are either in LDM = 0 or LDM = 2. Hence we calculate the distance to the desired value by
the postprocessing. �
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Algorithm 6 The Postprocessing algorithm for S n+1
p

procedure Post(s, t, i, j, LDM, k, n)
parameter s : initial configuration {s ∈ [p]n+1

0 }

parameter t : goal configuration {t ∈ [p]n+1
0 }

parameter i : initial peg
parameter j : goal peg
parameter LDM : times of Largest Disc Moves {b ∈ {0, 1, 2}}
parameter k : k ∈ [p + 1]0

parameter n : resulting number of discs after preprocessing minus 1{n ∈ N0}

δ← 1
b← LDM
if b = 0 or b = 1 then

while δ < n + 1 and sδ = j do
δ← δ + 1

end while
if δ = n + 1 then

Best First Move from si jn to s jin

else
Best First Move from ssδ jδ−1 to s jsδ−1

δ

end if
distance is d(s, t) = d(sn . . . s1, jn) + 1 + d(tn . . . t1, in)

end if
if b = 0 or b = 2 then

while δ < n + 1 and sδ = k do
δ← δ + 1

end while
if δ = n + 1 then

Best First Move from sikn to skin

else
Best First Move from ssδkδ−1 to sksδ−1

δ

end if
distance is d(s, t) = d(sn . . . s1, kn) + 1 + 2n + d(tn . . . t1, kn)

end if
end procedure

These pairs of vertices are not the only ones which can have two optimal paths. We already
stated in Proposition 1.15 that for all non-extreme vertices there is a vertex such that there are two
optimal paths between them.

Proposition 1.28. Let p ∈ N3. For all non-extreme vertices s ∈ [p]N+1
0 there is a vertex t ∈ [p]N+1

0
such that LDM = 0. Moreover, the vertex t can be chosen in such a way that sN+1 , tN+1, i.e., the
largest disc is N + 1.

Proof. We know that s is non-extreme. Hence it follows that there is some {i, h} ∈
(

[p]0
2

)
, n ∈ [N],
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and s ∈ [p]n−1
0 such that s = iN−n+1hs. Now we choose j ∈ [p]0 \ {i, h} and set t = jhN−n+1t with,

for d ∈ [n − 1],

td = h, if sd = j,
td = i, if sd = h,
td = j otherwise.

Since no preprocessing is necessary, the first pair is (i, j). Then the pair (i, h) occurs N − n times
such that we first move to A with � = h and stay there until the pair (h, h). With this pair we go
to B. The remaining n − 1 input pairs are of the form ( j, h), (h, i) or (l, j) with l ∈ [p]0 \ { j, h}.
Therefore, state B will not be left anymore. �

There are some other properties which can be shown with the aid of the algorithm for the general
Sierpiński graphs S n

p and, consequently, also for the Hanoi graphs Hn
3 . Employing the approach

of Theorem 1.24 on Sierpiński triangle graphs, we can also make a statement about distances for
this class of graphs as we will see in Section 1.5.

1.4.4 The average number of pairs to be read to solve the problem

It is of interest to us how many disc pairs must be read to solve the P2 decision problem for S N+1
p .

As might be expected, this number depends on p.We already analysed this for p = 3 in Section 1.2
with the aid of the theory of Markov chains. In the following section we will divide the state A of
the automaton into A′ for the case |{i, j, g, h}| = 4 and A otherwise as in Theorem 1.24. This helps
us to distinguish easier between these two cases. We assume that s = is and t = jt with i, j ∈ [p]0,
i , j, n ∈ [N], and s, t ∈ [p]n

0.
In order to find the average number of pairs, we want to consider the automaton in Figure 1.5 as
a Markov chain with six states in which the process starts in A′, A, or in B and move from state
to state with a certain probability. We can assume that we start in A′, A, or in B, since we know
that the first two pairs must always be read and have therefore no direct influence on the average
number. The probabilities for the six states A′, A, B,C,D, and E are shown in the transition matrix
of the automaton

P =
1
p2



2 4p − 12 2 0 p2 − 4p + 8 0
0 2p − 4 1 0 p2 − 2p + 3 0
0 2p − 4 p2 − 4p + 6 2p − 4 1 1
0 0 1 2p − 4 0 p2 − 2p + 3
0 0 0 0 p2 0
0 0 0 0 0 p2


.

Because of the two absorbing states in our Markov chain, this Markov chain is again absorbing.
The matrix P is of the form

P =

(
Q R
0 I

)
,
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where Q is again the part of the matrix which describes the transition probabilities from some
transient state to another, R gives the transition probabilities from transient to absorbing states,
and I is the identity matrix. In an absorbing Markov chain, Qn → 0 when n → ∞ and I − Q has
an inverse

M = (I − Q)−1 =

∞∑
n=0

Qn.

Muv is the expected number of visits which the chain made to state v provided that it has started in
state u.

M = (I − Q)−1 =



(p2−2)
p2 −

4(p−3)
p2 − 2

p2 0

0 (p2−2p+4)
p2 − 1

p2 0

0 −
2(p−2)

p2
2(2p−3)

p2 −
2(p−2)

p2

0 0 − 1
p2

(p2−2p+4)
p2



−1

= p2



1
(p2−2)

2(4p4−25p3+64p2−90p+52)
(2p7−11p6+30p5−38p4−4p3+88p2−128p+64)

1
(2p3−7p2+12p−8)

2(p−2)
(2p5−11p4+34p3−60p2+64p−32)

0 (2p3−7p2+13p−10)
(2p5−11p4+34p3−60p2+64p−32)

1
2(2p3−7p2+12p−8)

(p−2)
(2p5−11p4+34p3−60p2+64p−32)

0 (p−2)
(2p3−7p2+12p−8)

(p2−2p+4)
2(2p3−7p2+12p−8)

(p−2)
(2p3−7p2+12p−8)

0 (p−2)
(2p5−11p4+34p3−60p2+64p−32)

1
2(2p3−7p2+12p−8)

(2p3−7p2+13p−10)
(2p5−11p4+34p3−60p2+64p−32)


(This calculation was done with the computer algebra system Sage 5.10.) If we started in A′, we
get the expected number of times we will be in A′, A, B, or C by the sum of the first row. The
same applies to the states A, B, and C. Thus we get the (4 × 1)-vector r with the sums of the rows.
Since we start at the states A′, A, and B of the automaton in Figure 1.5 with a certain probability,
we must multiply the (1 × 4)-vector t of the a-priori probabilities with the vector r

t · r =
(

(p−2)(p−3)
p2

2p−4
p2

p−2
p2 0

)
·



2p2(p3+p2−10p+9)
(2p5−7p4+8p3+6p2−24p+16)

p2(4p−5)
2(2p3−7p2+12p−8)

p2(p2+2p−4)
2(2p3−7p2+12p−8)

p2(4p−5)
2(2p3−7p2+12p−8)


to get the expected number of times

ANp =
5p5 − 8p4 − 72p3 + 272p2 − 352p + 160

2(2p5 − 7p4 + 8p3 + 6p2 − 24p + 16)
(1.12)

we will be in one of the states A′, A, B, or C depending on p.
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Theorem 1.29. The average number of pairs checked by the P2 decision automaton for S N+1
p after

preprocessing, when the largest disc is n + 1 ∈ [N + 1] is bounded above by and converges, as
n→ ∞, to 2 + ANp.

We have to add two pairs as we always have to evaluate the pairs (sn+1, tn+1) and (sn, tn) in advance.

In the cases p = 3, 4, 5, and 6 we have the values

p = 3 AN3 = 25
38 ,

p = 4 AN4 = 1,

p = 5 AN5 = 6825
5842 ,

p = 6 AN6 = 1300
1037 ,

for example.

We see that for S n+1
3 the number 2 + AN3 = 101

38 is equal to the one we calculated in Section 1.2.

Remark. By taking a closer look on the automaton in Figure 1.5, one can reduce the number of
input pairs further. We notice that the input of j as first component of a pair in A′ as well as in A
is always followed by a move to D. Hence we have to evaluate only half a pair in these cases. In
A′ and A we just need to check p

p2 ·
1
2 +

(p2−p)
p2 · 1 =

(2p2−p)
2p2 pairs, in other words, save p out of 2p2

input data. Looking at the state C, we see that this also applies to the pairs with � as first input in
C. Using these results, we have to check only

ANred
p =

5 p6 − 10 p5 − 69 p4 + 307 p3 − 486 p2 + 336 p − 80
2
(
2 p6 − 7 p5 + 8 p4 + 6 p3 − 24 p2 + 16 p

)
pairs of input. For instance, we get for p = 3 the number ANred

3 = 67/114, for p = 4 the
number ANred

4 = 51/56, for p = 5 the number ANred
5 = 6315/5842, and for p = 6 the number

ANred
6 = 7303/6222. For p = 3, 4, 5, 6 the numbers ANred

p are all strictly less than ANp.

1.5 An algorithm to determine the shortest paths in Sierpiński
triangle graphs S T n

p with base p ∈ N3 and exponent n ∈ N0

The Section 1.4.3 worked with applications of our algorithm on Sierpiński graphs themselves. In
this section we will see that our algorithm can even be applied on another class of graphs, the
Sierpiński triangle graphs. These graphs have their name from the famous Sierpiński triangle (or
gasket), which Wacław Sierpiński designed in 1915. He started from a closed equilateral triangle
and successively removed open middle triangles such that in the step of order n ∈ N0 there are
triangular gaps of n different sizes. We can interpret the corners of the subtriangles as vertices and
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their sides as edges to get the class of Sierpiński triangle graphs S T n
3 with base 3 and exponent n.

Since there is a connection between the Sierpiński triangle and the Sierpiński graphs (cf. [42],
[33, Section 4.3]), it is not surprising that there is one between our new class of graphs and the
Sierpiński graphs S n

p. This relation was used by M. Jakovac in [50] to generalise the Sierpiński
triangle graphs to p ∈ N3 in the following way. Let si jδ and s jiδ with i, j ∈ [p]0, i , j, δ ∈ [n],
and s ∈ [p]n−δ

0 be two vertices of the graph S n+1
p . In S T n

p we identify them in one vertex, named by
s{i, j}. The vertices of the form kn+1 in S n+1

p correspond to the so-called primitive vertices in S T n
p,

written k̂. Since the vertices {i, j} ∈
(

[p]0
2

)
will be important for our further study, we give them a

name, namely corner vertices. Then

Definition 1.30. The Sierpiński triangle graphs are defined by

V(S T n
p) =

{
k̂
∣∣∣∣ k ∈ [p]0

}
∪

{
s{i, j}

∣∣∣ s ∈ [p]n−δ
0 , δ ∈ [n], {i, j} ∈

(
[p]0

2

)}
,

where s{i, j} stands for the contracted edge {si jδ, s jiδ} ∈ E(S n+1
p ).

An explicit description of the adjacency of the vertices can be found in [50, Proposition 2.1] and
[43, Definition 4]. Since S n+1

p can be built from p copies of S n
p, the graph S T n

p consists also of
p copies of S T n−1

p . Each pair of these copies share one vertex, in fact the corresponding corner
vertex, for instance the vertex {i, j} for iS T n−1

p and jS T n−1
p (i , j). There is also a recursive

definition for the class S T n
p similar to the one for S T n

3 ([43]). Starting from S T 0
p � Kp with

V(S T 0
p) = {k̂ | k ∈ [p]0}, we take p copies of S T n

p, characterised by k ∈ [p]0, whereby we change
the labelling of all primitive vertices l̂ except k̂ to {k, l} and add a k to the left of all other vertices.
Then the p copies are linked by identifying equal vertices.

We obtain easily that the primitive vertices have degree p−1 and all others have 2(p−1), and that
the graphs S T n

p are connected.

Accounted for by the connection to Sierpiński graphs, there are several other consequences we
can state.

Proposition 1.31 ([43], [50, Proposition 2.3]). The graphs S T n
p have p

2 (pn + 1) vertices and
p−1

2 · pn+1 edges.

Proof. There are two ways to prove this proposition. We will begin with the easiest way. The
vertex set V(S T n

p) contains, apart from the p primitive vertices k̂, exactly one half of the non-
extreme vertices of S n+1

p . Hence we get

|V(S T n
p)| = p +

1
2

(
|S n+1

p | − p
)

= p +
1
2

(
pn+1 − p

)
=

p
2

(pn + 1).

A more direct way uses the fact that every vertex in S T n
p is of the form sn−δ . . . s1{i, j}. We have p

choices for every sk, k ∈ [n − δ], and
(

p
2

)
choices for the pair {i, j}. Together with the p primitive

vertices, we have

|V(S T n
p)| = p +

n−1∑
k=0

pk ·

(
p
2

)
=

p
2

(pn + 1).
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We determine the number of edges by:

||S T n
p || =

1
2

∑
v∈S T n

p

deg(v)

=
1
2

(
p (p − 1) +

( p
2

(pn + 1) − p
)
· 2(p − 1)

)
=

p − 1
2

pn+1. �

A property which the Sierpiński and the Sierpiński triangle graphs have in common is the hamil-
tonicity of the graphs (see Lemma 1.11).

Theorem 1.32 ([50, Theorem 3.2]). For any n ∈ N1 and p ∈ N3, the graphs S T n
p are hamiltonian.

We want to take a closer look at the distance dn on the graphs S T n
p in the next two statements.

Lemma 1.33 ([43, Proposition 1 for p = 3 and p.9]). For n ∈ N0, ν ∈ [n]0, and u,w ∈ V(S T ν
p)

dn(u,w) = 2n−ν dν(u,w), (1.13)

and the number of shortest paths between u and w in S T n
p is the same as in S T ν

p.

For the distances to the primitive vertices k̂ we get p-independent formulas

Theorem 1.34 ([43, Theorem 1 for p = 3 and p.9]). For k, l ∈ [p]0, there is a unique shortest path
between k̂ and l̂ in S T 0

p, which has length

d0(k̂, l̂) = [k , l]. (1.14)

For ν ∈ N and u = s{i, j} with s ∈ [p]ν−1
0 we have

dν(u, k̂) = dν(s{i, j}, k̂) = 1 + [i , k][ j , k] +

ν−1∑
d=1

[sd , k] · 2d ∈ [2ν], (1.15)

and there are 1 + [i , k][ j , k] shortest paths between u and k̂ in S T ν
p.

Hence diam(S T n
p) = 2n (cf. [20, Proposition 1] for p = 3 and [43]) and

∀u ∈ V(S T n
p) :

p−1∑
k=0

dn(u, k̂) = (p − 1) · 2n

(cf. [20, Proposition 2] for p = 3 and [43]). As in the case of Sierpiński graphs, we ask how many
optimal paths between a vertex and a corner vertex or between two arbitrary vertices, respectively,
exist. According to the recursive definition of S T n

p, we already know that dn ({l,m}, {l′,m′}) = 2n−1
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if {l,m}, {l′,m′} ∈
(

[p]0
2

)
and {l,m} , {l′,m′}. Together with Formulas (1.13), (1.14), and (1.15), we

have now determined the distances in S T n
p for n = 0 and n = 1. We will consider a path in S T n

p
from a vertex u ∈ iS T n−1

p to a vertex w ∈ jS T n−1
p as different from another u,w-path only if we

use other subgraphs kS T n−1
p with i , k , j on the way from the initial vertex to the final vertex. It

will turn out that there are two possible types for shortest u,w-paths, namely the "direct type” and
the “detour type”. However, both types of paths can have equal length. We will see that in general
there exist at most two shortest paths, except in a special case, where even three shortest paths of
equal length, one of the “direct type” and two of the “detour type”, exist.

As in the previous section, we are again interested in an algorithm to determine the shortest paths
in this new class of graphs. As Sierpiński triangle graphs with base p = 3 play sometimes a special
role, we will start with these simpler graphs in the first subsection. In the second one we find a
general algorithm for all p ∈ N3.

1.5.1 A P2 decision algorithm for Sierpiński triangle graphs S T n
3

In this subsection we consider the Sierpiński triangle graphs S T n
3 with base 3 (see Figure 1.6

for S T 3
3 ). From the introduction we already know that there are three primitive vertices 0̂, 1̂, and

2̂ of degree 2, whereas the other vertices have degree 4. With Proposition 1.31 we get

|V(S T n
3 )| =

3
2

(3n + 1) and |E(S T n
3 )| = 3n+1.

Now we want to determine the distance dn in S T n
3 . For these graphs there also exists another

labelling6 which is different from the notation of Jakovac (see [43]). For a better comparison of
the automata for S T n

3 and S T n
p we will maintain the previous notation. We know two statements

about the distances so far. For ν ∈ [n]0 and u,w ∈ V(S T ν
3) the formula

dn(u,w) = 2n−ν dν(u,w) (1.16)

holds. Similarly, we can apply the formula for the distance between a primitive vertex and an
arbitrary vertex. We recall that for k, l ∈ T

d0(k̂, l̂) = [k , l] (1.17)

and for ν ∈ N and u = s{i, j} ∈ S T ν
3 with s ∈ T ν−1

dν(s{i, j}, k̂) = 1 + [i , k][ j , k] +

ν−1∑
d=1

[sd , k] · 2d. (1.18)

Additionally, we know that dn ({l,m}, {l′,m′}) = 2n−1 if {l,m}, {l′,m′} ∈
(

T
2

)
and {l,m} , {l′,m′}.

As explained in the introduction of this section, we have now determined the distances in S T n
3 for

n = 0 and n = 1. Let n ∈ N2. We note that in S T n
3 with i, c ∈ T, {l,m} ∈

(
T
2

)
, ν ∈ [n]2, and s ∈ T ν−2

dn

(
is{l,m}, {c, i}

)
= dn

(
is{l,m}, ĉ

)
− 2n−1. (1.19)

6A labelling is a characterisation of a representative from a class of isomorphic graphs, i.e., a specific graph of that
class.
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1̂ 1{1, 2} {1, 2} 2̂2{1, 2}

0̂

{0, 1} {0, 2}
0{1, 2}

11{1, 2} 12{1, 2} 21{1, 2} 22{1, 2}

1{0, 1} 1{0, 2}

11{0, 1}

10{1, 2}

10{0, 1} 10{0, 2}

22{0, 2}

2{0, 1} 2{0, 2}
20{1, 2}

20{0, 1} 20{0, 2}

01{1, 2} 02{1, 2}

01{0, 1} 02{0, 2}

0{0, 1}
00{1, 2}

0{0, 2}

00{0, 1} 00{0, 2}

11{0, 2}

12{0, 1}

12{0, 2}

21{0, 1}

21{0, 2}

22{0, 1}

01{0, 2}

02{0, 1}

1
Figure 1.6: The Sierpiński triangle graph S T 3

3

Looking at Formula (1.18), this can easily be seen as dn({c, i}, ĉ) = 2n−1. Let { j, k} ∈
(

T\{i}
2

)
. We get

for the distance between an arbitrary vertex and the corner vertex { j, k}

dn(is{l,m}, { j, k}) = min
{
dn(is{l,m}, {i, j}), dn(is{l,m}, {i, k})

}
+ 2n−1

= min
{
dn(is{l,m}, ĵ), dn(is{l,m}, k̂)

}
− 2n−1 + 2n−1

= 2n−ν min
{
dν(is{l,m}, ĵ), dν(is{l,m}, k̂)

}
(1.20)

with i ∈ T, {l,m} ∈
(

T
2

)
, ν ∈ [n]2, and s ∈ T ν−2. Then

dν(is{l,m}, ĵ) = dν(is{l,m}, k̂)

if sd = i for all d ∈ [ν − 2] and {l,m} = { j, k}. The minimum is attained by dν(is{l,m}, ĵ) if either
sd = j for a d ∈ [ν − 2] and sd′ = i for all d′ ∈ [ν − 2] \ [d] or sd = i for all d ∈ [ν − 2] and
{l,m} = {i, j}, whereas it is attained by dν(is{l,m}, k̂) if transposing k and j one of the previous
conditions holds. One can understand this for the case S T 3

3 by looking at Figure 1.6.
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For the task is{l,m} → jt{l′,m′} in S T n
3 with i, j ∈ T, i , j, ν ∈ [n]2, µ ∈ [ν − 1]0, s ∈ T n−µ−2,

t ∈ T ν−µ−2, and {l,m}, {l′,m′} ∈
(

T
2

)
there are two possible types of paths, the path of direct type

and the path of detour type. For the direct type we use the iS T n−1
3 - and the jS T n−1

3 -subgraphs
of S T n

3 . Corresponding to our understanding of difference between paths, the path of detour type
must additionally use the kS T n−1

3 -subgraph (k = 3− i− j). The paths of both types can have equal
length; see for instance the task 10{1, 2} → 20{0, 2} in S T 3

3 in Figure 1.6. Hence in S T n
3 there exist

at most two shortest paths.
Since the S T n

3 arises by contracting the edges of S n+1
3 , the only vertex which two subgraphs iS T n−1

3
and jS T n−1

3 (i, j ∈ T, i , j) have in common is {i, j}. Hence the direct path has length

dn

(
is{l,m}, {i, j}

)
+ dn

(
jt{l′,m′}, {i, j}

)
.

Using dn({i, k}, { j, k}) = 2n−1, the detour path has length

dn

(
is{l,m}, {i, k}

)
+ 2n−1 + dn

(
jt{l′,m′}, { j, k}

)
.

With Formula (1.19) we get for the direct path

dn

(
is{l,m}, ĵ

)
+ dn

(
jt{l′,m′}, î

)
− 2n

and for the detour path

dn

(
is{l,m}, k̂

)
+ dn

(
jt{l′,m′}, k̂

)
− 2n−1.

Now we look at the difference between both paths and analyse this similarly to the case in S n
p

in [37]. With � ∈ {>, <,=} we deduce that

dn

(
is{l,m}, ĵ

)
− dn

(
is{l,m}, k̂

)
+ dn

(
jt{l′,m′}, î

)
− dn

(
jt{l′,m′}, k̂

)
� 2n−1

2µ
[
dn−µ

(
is{l,m}, ĵ

)
− dn−µ

(
is{l,m}, k̂

)]
+ 2n−ν+µ

[
dν−µ

(
jt{l′,m′}, î

)
− dν−µ

(
jt{l′,m′}, k̂

)]
� 2n−1.

This can be summarised to

2µ
[l , j][m , j] − [l , k][m , k] +

n−µ−2∑
d=1

(
[sd , j] − [sd , k]

)
· 2d

 +

2n−ν+µ

[l′ , i][m′ , i] − [l′ , k][m′ , k] +

ν−µ−2∑
d=1

(
[td , i] − [td , k]

)
· 2d

 � 2n−1.

If ν = n and µ = 0, we simplify this to

[l , j][m , j] − [l , k][m , k] + [l′ , i][m′ , i] − [l′ , k][m′ , k]+
n−2∑
d=1

(
[sd = k] − [sd = j] + [td = k] − [td = i]

)︸                                               ︷︷                                               ︸
∈{−2,−1,0,1,2}

·2d � 2n−1.

We can follow the lines of the proofs of Proposition 1.0 and 1.2 (here no use of Proposition 1.1 is
necessary) in [37] or use the proof of Theorem 1.7 in [70] up to the last position ({l,m}, {l′,m′}).
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D

B
E

C

({i, j}, {·, ·}), ({j, k}, {i, j}),

({j, k}, {i, k}), ({i, k}, {i, j}

({i,
j}, {

i, j
})

({i, k}, {j, k})

({j,
k}, {

j, k
}), (

{j, k
}, {i

, k})
,

({i,
k}, {

·, ·})
, ({i

, j},
{j, k

})

({i, k}, {j, k})({j, k}, {i, j}),
({i, j}, {i, k})

({j, k}, {j, k}),
({i, k}, {i, k})({i, j}, {i, j})

1
Figure 1.7: Automaton for S T n

3 in the case that ν = n and µ = 0. For ({i, k}, {i, k}) , ({ j, k}, { j, k}) in
A, for ({i, j}, { j, k}) , ({i, k}, {i, j}) , ({ j, k}, {i, k}) in B and for ({ j, k}, {i, j}) , ({i, j}, {i, k}) in
C, the automaton stops in the respective state.

Reaching the last position, we have to modify the automaton in Figure 1.3 or [37, Fig. 4]. We
obtain the automaton in Figure 1.7.

If ν ∈ [n]2, µ ∈ [ν − 1]0, and i , j, we can adapt the technique of the article [43] to our notation of
the Sierpiński triangle graphs following Jakovac’s.
We define

s̃ = sn−µ−2 . . . s1{l̃, m̃}

with 3 − ((3 − l − m) M i) = l̃ + m̃ and (l̃, m̃) ∈
(

T
2

)
and

t̃ = tν−µ−2 . . . t1t0(s̃n−ν−1 M k) . . . (s̃1 M k){l̃′, m̃′}

with t0 = ((3 − l′ − m′) M j) and 3 − ((3 − l̃ − m̃) M k) = l̃′ + m̃′ with (l̃′, m̃′) ∈
(

T
2

)
.
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D

B
E

C

({i, k}, {·, ·}), ({·, ·}, {j, k}),

({j, k}, {i, k})

({i,
k}, {

j, k
})

({i, j}, {i, j})

({i,
j}, {

·, ·})
, ({·,

·}, {
i, j

}),

({j,
k}, {

i, k
})

({i, j}, {i, j})({j, k}, {j, k}),
({i, k}, {i, k})

({j, k}, {i, j}),
({i, j}, {i, k})({i, k}, {j, k})

1
Figure 1.8: Automaton for S T n

3 in the case that ν ∈ [n]2 and µ ∈ [ν − 1]0

Now we must only change the labels on the automaton in Figure 1.3 for the last position to get the
automaton in Figure 1.8.

1.5.2 A P2 decision algorithm for Sierpiński triangle graphs S T n
p with

base p ∈ N3

After we determined the shortest paths in S T n
3 in the last subsection, we will now take a closer

look on S T n
p with p ∈ N3. We defined the Sierpiński triangle graphs S T n

p for general p in
Definition 1.30. For instance, we get for p = 4 and n = 2 the Sierpiński triangle graph S T 2

4
in Figure 1.9.

In the sequel we consider two arbitrary vertices in S T n
p and determine the distances between them.

The cases n = 0 and n = 1 were already done in the introduction of this section, so let n ∈ N2.
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1̂ 1{1, 2} {1, 2} 2{1, 2} 2̂

1{0, 1}
1{0, 2}

1{1, 3}

1{2, 3}

2{0, 1}

2{0, 2} 2{1, 3}
2{2, 3}

{0, 1}

1{0, 3}

{0, 2}

{1, 3}

2{0, 3}

{2, 3}

3{1, 2}

0{0, 1}

0{1, 2}

0{0, 2} 0{1, 3}

0{2, 3}

3{0, 1}

3{0, 2}

3{1, 3}
3{2, 3}

0̂ 0{0, 3} {0, 3} 3{0, 3} 3̂

1

Figure 1.9: The Sierpiński triangle graph S T 2
4

Let u = is{l,m},w = jt{l′,m′} ∈ V(S T n
p) with i, j ∈ [p]0, i , j, ν ∈ [n]2, µ ∈ [ν − 1]0, s ∈ [p]n−µ−2

0 ,

t ∈ [p]ν−µ−2
0 , and {l,m}, {l′,m′} ∈

(
[p]0

2

)
. Any u,w-path with only one pass through a corner vertex

must lead from u to {i, j} and then to w. Its length is

dn

(
is{l,m}, {i, j}

)
+ dn

(
jt{l′,m′}, {i, j}

)
(1.21)

= 2µ dn−µ

(
is{l,m}, {i, j}

)
+ 2n−ν+µ dν−µ

(
jt{l′,m′}, {i, j}

)
≤ 2n−1 + 2n−1 = 2n.

Another option for a u,w-path is the path through one detour subgraph, i.e., through the corner
vertices {i, k} and { j, k} with k ∈ [p]0 and |{i, j, k}| = 3. Since dn({i, k}, { j, k}) = 2n−1, we see that the
length of this path is

dn

(
is{l,m}, {i, k}

)
+ 2n−1 + dn

(
jt{l′,m′}, { j, k}

)
. (1.22)

Now the question arises: can a path running through more than one detour subgraph be min-
imal? No, it cannot. Already in the case of two subgraphs we need more than 2n moves and,
consequently, this cannot be minimal.
First, we will consider the distances to corner vertices as in Formula (1.19) and (1.20) for S T n

3 .
We get for any c ∈ [p]0 \ {i}

dn

(
is{l,m}, {i, c}

)
= dn

(
is{l,m}, ĉ

)
− 2n−1.
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The distance between a vertex is{l,m} in S T n
p with i ∈ [p]0, {l,m} ∈

(
[p]0

2

)
, ν ∈ [n]2, and s ∈ [p]ν−2

0

and an arbitrary corner vertex {c, c′} ∈
(

[p]0\{i}
2

)
can be determined as:

dn

(
is{l,m}, {c, c′}

)
= min

{
dn

(
is{l,m}, {i, c}

)
+ 2n−1, dn

(
is{l,m}, {i, c′}

)
+ 2n−1

}
= min

{
2n−ν dν

(
is{l,m}, ĉ

)
, 2n−ν dν

(
is{l,m}, ĉ′

)}
= 2n−ν min

{
dν

(
is{l,m}, ĉ

)
, dν

(
is{l,m}, ĉ′

)}
.

The path through {i, k}, c , k , c′ cannot be minimal, since we would have to go through
is{l,m} → {i, k} → {k, c} → {c, c′} and this would need more than 2n moves. The distances
dν

(
is{l,m}, ĉ

)
and dν

(
is{l,m}, ĉ′

)
are equal if sd , c, c′ for all d ∈ [ν − 2] and the special positions

are either {l,m} = {c, c′} or {l,m} = {l′,m′} with {l′,m′} ∈
(

[p]0\{c,c′}
2

)
; as for instance the task 1{1, 2}

to {0, 3} in S T 2
4 in Figure 1.9. The minimum is attained by the first distance if either sd = c for a

d ∈ [ν − 2] and sd′ , c, c′ for all d′ ∈ [ν − 2] \ [d] or sd , c, c′ for all d ∈ [ν − 2] and {l,m} = {l′, c}
with l′ ∈ [p]0 \ {c′}, whereas it is attained by the second one if transposing c and c′ one of the
previous conditions holds.

In the following we look at the distance between two arbitrary vertices in S T n
p. For ν ∈ [n]2,

µ ∈ [ν− 1]0, i, j ∈ [p]0, and i , j, let u = isn−µ−2 . . . s1{l,m} and w = jtν−µ−2 . . . t1{l′,m′} be vertices
of S T n

p with {l,m}, {l′,m′} ∈
(

[p]0
2

)
. As in the last subsection, we analyse the length difference

between the two types of paths similarly to the case of S n
p in [37]. We already determined the

distances in Formulas (1.21) and (1.22). For the difference between the distances of both possible
types of paths between u and w we get with � ∈ {>, <,=} :

[l , j][m , j] − [l , k][m , k] +

n−ν−1∑
d=1

([sd = k] − [sd = j]) · 2d+(
[sn−ν = k] − [sn−ν = j] + [l′ , i][m′ , i] − [l′ , k][m′ , k]

)
· 2n−ν+

n−µ−2∑
d=n−ν+1

([sd = k] − [sd = j] + [tν−n+d = k] − [tν−n+d = i]) · 2d � 2n−1.

With g := sn−µ−2 and h := tν−µ−2 we can deduce that

[l , j][m , j] − [l , k][m , k] +

n−ν−1∑
d=1

([sd = k] − [sd = j]) · 2d+(
[sn−ν = k] − [sn−ν = j] + [l′ , i][m′ , i] − [l′ , k][m′ , k]

)
· 2n−ν+

n−µ−3∑
d=n−ν+1

([sd = k] − [sd = j] + [tν−n+d = k] − [tν−n+d = i]) · 2d

� 2n−µ−2 ·
(
2µ+1 − ([g = k] − [g = j] + [h = k] − [h = i])

)
.

We proceed on the same lines as in [37] with respect to the special positions {l,m} and {l′,m′}. If
ν < n, we can stop after the reading of (sn−ν, {l′,m′}) except in the case where we are in B. Then
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we define for d ∈ [n − ν − 1]

t̃d = i, if sd = j;
= k, if sd = k;
= j, if sd = x, x ∈ [p]0 \ {k, j};

and
˜̃t = i, if {l,m} = { j, u}, u ∈ [p]0 \ {k};

= k, if {l,m} = {k,w}, w ∈ [p]0 \ { j};
= j, in all other cases.

These pairs will be evaluated in a special automaton, namely Automaton 3.

We update the old Automata 0, 1, and 2 of [37] with the new types of pairs and get the new three
Automata 0,1, and 2.

The four Automata 0, 1, 2, and 3 in Figures 1.11, 1.12, 1.13, and 1.10 together can be used in
the same way as in [37] to determine the distances between arbitrary vertices in S T n

p. Apply-
ing our automata, we can carry Algorithm 1 in [37] over to the Sierpiński triangle graphs S T n

p
with base p ∈ N3, where we have to keep in mind that we can stop the evaluation with the pair
(sn−ν, {l′,m′}) except in the case where we are in B and have to apply Automaton 3 in addition.
According to our understanding of difference between paths, we see that there are at most two
different shortest paths between arbitrary vertices with the exception of the following cases. For
i, j, g, h ∈ [p]0 and |{i, j, g, h}| = 4 we consider the tasks from isδ{g, h} to jtδ{g, h} with δ ∈ [n−1]0

and (sd, td) ∈ {(g, h), (h, g)} for all d ∈ [δ] and from i{l,m} to j{l,m} with {l,m} ∈
(

[p]0\{ j,i}
2

)
in S T n

p.
Note that for these cases p must be in N4. Using Algorithm 1 in [37] together with our automata,
we see that we end in state B for both tasks, but with two possible ks, namely k = g or h for the
first case and k = l or m in the second one. Hence we have altogether three shortest paths, one of
the direct type and two of the detour type; see for instance from 1{0, 3} to 2{0, 3} in the graph S T 2

4
in Figure 1.9.

B
D E(j

, i
),
({j
, u
}, i
)

(k, k), ({w
, k}, k)

(·, j)

1

Figure 1.10: Automaton 3
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1
A 0 B

D
(i, k),(k, j),

({w, k}, {i, k}),({j, k}, {v, k}),
({x, x′}, {v, k}),({w, k}, {y, y′}),
(k, {i, k}),(k, {y, y′}),(x, {v, k})

| {g, h, i, j} |= 4

(i, j),(j, ·),(·, i),all other pairs ({·, ·}, {·, ·}),
(x, {i, k}),(·, {i, u}),(j, {·, ·})
(k , k), ({w , k}, {v , k}), (k , {v , k})

1
Figure 1.11: Automaton 0 with u ∈ [p]0 \ {k}, v ∈ [p]0 \ {i},w ∈ [p]0 \ { j}, x, x′ ∈ [p]0 \ {k, j}, and

y, y′ ∈ [p]0 \ {k, i}, where x , x′ and y , y′

1.6 Conclusion and Outlook

In this chapter we proved a theorem which determines all shortest paths between two arbitrary
vertices sis and s jt in the Sierpiński graphs S N+1

p with base p ∈ N3 and exponent N + 1 ∈ N1.
We gave a P2 decision algorithm with four included algorithms and an automaton which we need
in order to determine the distance and the best first move(s). In this decision algorithm we first
filter out the cases where the vertices are equal and omit s, fix the values of the second input pair
in the next step, then run through an automaton in order to find the index of the possible “detour”
subgraph, and determine in the last algorithm the best first move(s) and calculate the distance. We
applied our results on already known metric properties of Sierpiński graphs in order to simplify
their proofs. Moreover, we calculated the average number of pairs which have to be read to get a
decision.
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A 1 B
D

(b, k), (k, a),
({w, k}, {i, k}), ({b, k}, {a, a′}),
({j, k}, {v, k}), ({b, b′}, {a, k}),
(k, {i, k}), (b, {a, k}), (k, {a, a′})

(j, ·), (·, i), (b, a),
({j, k}, {i, k}), ({b, b′}, {a, a′}),
({g, c}, {i, h}), ({h, c′}, {i, g}),
({j, u}, {·, ·}), ({j, k}, α),
({·, ·}, {i, u}), ({b, b′}, α),
({g, h}, {i, a}), ({j, b}, {g, h}),
(j, {·, ·}), (·, {i, a}), (u, {i, k}), (b, {a, a′}),
(g, {h, i}), (h, {g, i})

(k, k), ({w, k}, {v, k}),
({g, h}, {g, h}), (k, {v, k})

1

Figure 1.12: Automaton 1 with u ∈ [p]0 \ {k}, v ∈ [p]0 \ {i},w ∈ [p]0 \ { j}, c ∈ [p]0 \ {h},
c′ ∈ [p]0 \ {g}, a, a′ ∈ [p]0 \ {i, g, h}, and b, b′ ∈ [p]0 \ { j, g, h}, where a , a′

and b , b′. For the input {·, ·} we choose α ∈
(

[p]0
2

)
\ {{v, k}, {g, h}} . Note that we

stay in state 1 for the pairs (g, h), (h, g), ({b, b′}, {g, h}), ({g, h}, {a, a′}), ({b, h}, {a, g}),
({b, g}, {a, h}), (g, {h, a}), (h, {g, a}), and (b, {g, h}).

Romik provided in his paper [70] in addition to his decision automaton for S n
3 an automaton

(cf. [70, Fig. 3.2]) which computes the distance for arbitrary vertices in S n
3 directly by running

through the automaton. This could be a development of the here stated automaton for the gen-
eral S N+1

p by adding additional counters for the distance and the variable N. Our algorithm can
be useful in the further study of the metric structure of the Hanoi graphs, since according to The-
orem 1.16 S N+1

p is embedded as a spanning subgraph into HN+1
p for odd p or for N = 1. At the

moment the Hanoi graph H15
4 is analysed concerning its diameter diam(H15

4 ) on the SuperMUC
which is the high-end supercomputer at the Leibniz-Rechenzentrum (Leibniz Supercomputing
Centre) in Garching near Munich. The project is named HLRB Project pr87mo ([44]).
In the last subsection we modified the P2 decision algorithm for Sierpiński triangle graphs. We de-
termined for the first time all shortest paths in this new class of graphs. One interesting use of this
could be the further analysis of the Sierpiński triangle graphs concerning their metric properties
like the eccentricity and the average eccentricity.
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(x, i), (j, y),
({j, u}, {i, k}), ({j, u}, {y, y′}),
({j, k}, {i, u}), ({x, x′}, {i, u}),
(j, {i, k}), (j, {y, y′}), (x, {i, u})

(x, k), (k, y),
({w, k}, {i, k}), ({j, k}, {v, k}),
({w, k}, {y, y′}), ({x, x′}, {v, k}),
(k, {i, k}), (x, {v, k}), (k, {y, y′})

(j, i), ({j, u}, {i, ū}), (j, {i, u})

1Figure 1.13: Automaton 2 with u, u′, ū ∈ [p]0 \ {k}, v ∈ [p]0 \ {i}, w ∈ [p]0 \ { j}, x, x′ ∈ [p]0 \ {k, j},
and y, y′ ∈ [p]0 \ {k, i}, where x , x′, y , y′, and u , u′.





Chapter 2

Variations on the Tower of Hanoi with 3 pegs

There are many variations known on the classical Tower of Hanoi with three pegs. One can modify
the colours of the discs and the rules for the moves (see [33, Chapter 6] for further reading) or just
restrict the allowed moves regarding their orientations. The new versions with excluded moves
can be described by digraphs D = (V(D), A(D)) whose vertices v ∈ V(D) are the pegs and whose
arcs (i, j) ∈ A(D) mean that a disc may move from peg i to peg j. The variant of the Tower of
Hanoi where the oriented disc moves are defined by the digraph D will be named T H(D).

Remark. In several articles these digraphs D are called Hanoi graphs; see for instance [10], [58],
and [57]. But we will use the term Hanoi graph as defined in the book [33].

A T H(D) is solvable if for any choice of source and goal peg and for every number of discs there
exists a sequence of legal moves to transfer the tower of discs from the source peg to the goal peg.

We know from [33, Theorem 8.4] that for every digraph D = (V(D), A(D)) with at least three
vertices the T H(D) is solvable if and only if D is strongly connected, i.e., if for any pair of distinct
vertices v,w ∈ V(D) there exists a directed path from v to w and a directed path from w to v. For
three pegs we have five strongly connected digraphs which are not isomorphic (see [74]). These
digraphs are depicted in Figure 2.1.

In the upper row of Figure 2.1 we see from left to right the digraph C3 of the Cyclic TH, L3 of the
Linear TH, and C+

3 of the T H(C+
3 ). Underneath them we have the digraph K−3 of the T H(K−3 ) and

the (di)graph K3 of the well-known T H(K3), whose state graph is the classical Hanoi graph Hn
3 .

The state graphs of the other variants arise from the Hn
3 by transforming the Hn

3 into directed
graphs considering the allowed moves between the pegs in the different cases. In Figure 2.2 the
directed graphs for T H(C+

3 ) and T H(K−3 ) are shown.

In the sequel we focus on problems of P0 type (i.e., to go from a perfect state to a perfect state)
on the above-mentioned towers and the minimal number of moves for their solution. For solving
the problems there exists one algorithm for all these variants which is due to A. Sapir [74]. For
some variants there already existed algorithms before. For the classical T H(K3) an algorithm was

53



54 §2 Variations on the Tower of Hanoi with 3 pegs

b b

b

0 1
2 C3

a

bc

b b b
0 1 2

L3

a

ā
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Figure 2.1: The strongly connected digraphs on three vertices
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Figure 2.2: The directed state graphs of T H(C+
3 ) and T H(K−3 ) for n = 3

given by Lucas’s nephew Raoul Olive. Hence this algorithm is named Olive’s algorithm in the
literature (see [33, pp. 74–75]). The Linear TH (or three-in-a-row Hanoi) appeared first in 1944 in
[75, p. 99]. H. Hering took then a closer look at this variant in [32]. An algorithm for the optimal
solution can be found in [33, pp. 242–244]). In 1981, M. D. Atkinson described the Cyclic TH
and also presented an algorithm for its solution in [9]. With Algorithm 7 all these variants can be
uniquely solved with a minimum number of moves, as stated in the following theorem.
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Algorithm 7 The Sapir Algorithm
procedure SAP(D, n, i, j)

parameter D : strongly connected digraph with V(D) = T
parameter n : number of discs {n ∈ N0}

parameter i : source peg {i ∈ T }
parameter j : goal peg { j ∈ T }
if n ≥ 1 and i , j then

k ← 3 − i − j
if there is an arc from i to j then

S AP(D, n − 1, i, k)
move disc n from i to j
S AP(D, n − 1, k, j)

else
S AP(D, n − 1, i, j)
move disc n from i to k
S AP(D, n − 1, j, i)
move disc n from k to j
S AP(D, n − 1, i, j)

end if
end if

end procedure

Theorem 2.1. For every strongly connected digraph D with three vertices / pegs the T H(D) can
be uniquely solved by Algorithm 7 with the minimum number of moves.

Proof. A proof of this theorem can be found in [33, p. 245f] or [74, Theorem 1] or for the
Cyclic TH in [9]. �

The Sapir Algorithm 7 gives rise to an infinite sequence of moves for each T H(D), with D as in
Figure 2.1, which is obtained as the limit of the finite sequences of moves for n discs as n goes
to infinity. More details on these sequences will be given in the later sections. The sequences are
defined on the basic alphabet {a, b, c, ā, b̄, c̄} excluding the forbidden moves in each special case.
We illustrate the labelling in Figure 2.1. Now our special interest lies in the sequences for T H(K−3 )
and T H(C+

3 ). From J.-P. Allouche [7] we know that both are morphic sequences. We want to
investigate whether they are automatic.
For the other three variants this is already known. Allouche and F. Dress showed in [5] that the
T H(K3) sequence is 2-automatic. Additionally, they gave an automaton with which we can find
the n-th move in T H(K3) with n as binary number (evaluating from right to left and n ∈ N).
Allouche and Sapir [7] proved using Algorithm 7 that the Linear TH sequence is 3-automatic. In
contrast, the Cyclic TH sequence is not d-automatic for any d, as it was shown in [2] by Allouche.
In [7], Allouche and Sapir conjectured that the only Hanoi sequences with restricted moves which
are d-automatic for some d are the T H(K3) sequence and the Linear TH sequence. This was
formulated as a conjecture in [33, Chapter 9] (cf. Chapter 0).
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2.1 Words, morphisms, and sequences

We will outline the most important definitions and theorems for our further considerations, espe-
cially concerning morphic and automatic sequences. For the statements concerning matrix ana-
lysis one may look into some standard source for the theory, as for instance [48].

Let Σ be a finite set of letters. We call Σ an alphabet. Further, let n ∈ N0. Then a finite word s is
a map from [n]0 to Σ and is written as s = s0s1 . . . sn−1. In the case of n = 0 the word is the empty
word, denoted by ε. The set Σ∗ is the set of finite words on Σ.

Example 2.2. Let Σ = {0, 1}. Then Σ∗ = {ε, 0, 1, 00, 01, 11, 10, 000, 001, . . .}.

If s ∈ Σ∗, then its length |s| is the value n of the corresponding map between [n]0 and Σ, i.e., the
number of letters in s. Note that |ε | = 0. Assume the letter a is an element of Σ, then the number
of its occurrences in s is denoted by |s|a. The set Σ is a subset of Σ∗ in the sense that a letter a ∈ Σ

can be identified with a word of length 1.

Let s, t ∈ Σ∗. The operation st is the concatenation of s and t which is the consecutive writing of
the words s and t. In general, the concatenation is not commutative, whereas it is associative as
r(st) = (rs)t for all finite words r, s, and t. This operation together with the set Σ∗ is a monoid7,
where the empty word is the identity element.
We say that s′ , ε is a prefix of s if there exists an s′′ ∈ Σ∗ such that s = s′s′′. The word s′ , ε is a
strict prefix of s if s′′ , ε. We say that a word s is a subword or (factor) of a word w if there exist
words r and t such that w = rst.
Similarly to the definition of a finite word, an infinite word can be viewed as a map from N0 to Σ.
In our text we will use the term sequence for an infinite word. Let s = s0s1s2 . . . be a sequence.
For i ∈ N0 we set s[i] = si and for i ∈ N0 and j ≥ i we define s[i... j] = sisi+1 . . . s j.

Example 2.3. As an example we give the Prouhet-Thue-Morse sequence

t = 0110100110010110 . . . .

The i-th element t[i] = ti of t is equal to 0, if the number of 1s in the binary expansion of i is even,
and equal to 1, if it is odd; see for instance [1].

A basic tool in working with alphabets and words is the morphism (or homomorphism). Let ∆ be
another alphabet. A morphism is a map ψ : Σ∗ → ∆∗ which satisfies ψ(st) = ψ(s)ψ(t) for all
words s, t ∈ Σ∗. If Σ = ∆, we call the map an endomorphism and can iterate the application of ψ.
Then ψ0(a) = a and ψn(a) = ψ(ψn−1(a)) for all a ∈ Σ and n ∈ N.

Morphisms can have several properties. A morphism ψ : Σ∗ → ∆∗ is k-uniform for k ∈ N if
|ψ(a)| = k for all a ∈ Σ. A 1-uniform morphism is a coding.

7A monoid S is a set that is closed under an associative binary operation and has an identity element i ∈ S such that,
for all a ∈ S , ia = a = ai; see for instance [49].
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Example 2.4. The Prouhet-Thue-Morse sequence t of Example 2.3 is generated by the 2-uniform
morphism ψ : {0, 1}∗ → {0, 1}∗ which is given by

0 → 01,
1 → 10.

For a proof we refer to [1, Proposition 3].

If ψ(a) , ε for all a ∈ Σ, then ψ is non-erasing. If ψ(a) = ε for all a ∈ Σ, then we say that ψ is
trivial.

One very important type of morphisms is the primitive endomorphism because of its special prop-
erty. An endomorphism ψ : Σ∗ → Σ∗ is primitive if there exists an n ∈ N such that for all
a, b ∈ Σ the letter a occurs in ψn(b). The name is connected with the primitivity of the so-called
incidence matrix of ψ.
Let Σ = {a1, a2, . . . am}, ∆ = {b1, b2, . . . bn}, and ψ : Σ∗ → ∆∗. The incidence matrix (or transition
matrix or substitution matrix) M(ψ) of the morphism ψ is

M(ψ) = (mi, j) i∈[n]
j∈[m]

where mi, j = |ψ(a j)|bi , i.e., mi, j is the number of occurrences of bi in ψ(a j). For n = m we define
that M0 = I and for all k ∈ N : Mk+1 = Mk · M. An (n × n)-matrix M = (mi, j)i, j∈[n] is non-negative,
denoted by M ≥ 0, if mi, j ≥ 0 for every i, j ∈ [n], and is positive, written M > 0, if mi, j > 0 for
every i, j ∈ [n]. A non-negative matrix M is primitive if there exists a k ∈ N such that all entries
of Mk are positive. We see that an endomorphism is primitive if and only if its incidence matrix is
primitive.

A non-negative matrix is reducible if there exists a permutation matrix8 P such that

P−1MP =

(
A1 R
0 A2

)
or M = P

(
A1 R
0 A2

)
P−1 (2.1)

where A1, A2 are square matrices, and 0,R are rectangular matrices such that the dimensions
match. If a non-negative matrix is not reducible, we say that it is irreducible.

Lemma 2.5. Every primitive matrix is irreducible.

Proof. This statement is a direct consequence of [8, Proposition 8.3.4 (e)], which says: Let
M = (mi, j)i, j∈[n] be a non-negative (n × n)-matrix. The matrix M is irreducible if and only if for
each i, j there exists a k = k(i, j) such that mk

i, j is positive (and there is such a k with k ∈ [n]). �

Lemma 2.6 ([48, Theorem 8.5.6]). Let P be a primitive (n × n)-matrix. Then there exists an
s ≤ (n − 1) nn such that Ps > 0.

8Let n ∈ N. An (n × n)-matrix P is a permutation matrix if exactly one entry in each row and column is equal to 1
and all other entries are 0.
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In order to explain what morphic and automatic sequences are, we return to endomorphisms. Let
ψ : Σ∗ → Σ∗ be an endomorphism. If there exist a letter a ∈ Σ and a word s ∈ Σ∗ such that
ψ(a) = as and ψn(s) , ε for each n ∈ N, we say that the endomorphism ψ is prolongable on a ∈ Σ.
Then we see that ψn+1(a) = ψn(ψ(a)) = ψn(as) = ψn(a)ψn(s), and as a consequence that ψn(a) is
a strict prefix of ψn+1(a) for all n ∈ N. Hence limn→∞ ψ

n(a) exists and is infinite. This limit is
denoted by

ψ∞(a) := lim
n→∞

ψn(a) = asψ(s)ψ2(s)ψ3(s) . . .

which is a fixed point of (the extension by continuity of) the endomorphism ψ (to infinite se-
quences), i.e., ψ(ψ∞(a)) = ψ∞(a). Often we will refer to such a sequence as an (iterative) fixed
point of a morphism.

Definition 2.7. If a sequence s is an iterative fixed point of an endomorphism ψ, more precisely
s = ψ∞(a), it is pure morphic. If there exists a coding τ : Σ∗ → ∆∗ and s = τ(ψ∞(a)), we call the
sequence morphic.

Example 2.8. Recall Examples 2.3 and 2.4. Then t = ψ∞(0) (cf. [1, Proposition 3]).

Example 2.9. Recall the Cyclic TH sequence mentioned above. Its alphabet is {a, b, c}. This
sequence is the image, under the coding τ : { f , g, h, u, v,w}∗ → {a, b, c}∗, of the fixed point of the
endomorphism ψ on { f , g, h, u, v,w}∗ where

τ( f ) = a = τ(w), τ(g) = b = τ(u), τ(h) = c = τ(v),

and

ψ( f ) = f v f , ψ(g) = gwg,
ψ(h) = huh, ψ(u) = f g,
ψ(v) = gh, ψ(w) = h f .

The proof can be found in [5, Section 5] and [7, Theorem 1]. Obviously, it is a morphic sequence.

We keep in mind that a (pure) morphic sequence can be an iterative fixed point of two different
morphisms which are not powers of the same morphism.

The following type of endomorphisms plays an important role in our investigation.

Definition 2.10. Let d ∈ N2. A sequence s is d-automatic if it is the image, under a coding, of an
iterative fixed point of a d-uniform morphism.

Example 2.11. As examples we will take a closer look on the T H(K3) sequence, or (classical)
Hanoi sequence, and the Linear TH sequence. The first one is defined on the basic alphabet
{a, b, c, ā, b̄, c̄}. Its prefixes of length 2N − 1 give the minimal sequence of moves in the classical
Hanoi game to transfer N discs from peg 0 to peg 1 if N is odd and from peg 0 to peg 2 if N
is even. The sequence is the iterative fixed point of the 2-uniform morphism, given on the basic
alphabet by

a→ ac̄, ā→ ac,
b→ cb̄, b̄→ cb,
c→ bā, c̄→ ba.
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The second one, sometimes also called the three-in-a-row Hanoi sequence, on {a, b, ā, b̄} is the
iterative fixed point of the 3-uniform morphism

a→ aba, ā→ abā,
b→ b̄āb, b̄→ b̄āb̄.

We obtain that both sequences are automatic. The classical Hanoi sequence is 2-automatic and the
Linear TH sequence is 3-automatic. These results can also be found in [7] and especially for the
classical case in [4] and [5]. For the T H(K3) sequence Hinz even showed that the basic alphabet
can be reduced to a 5-letter alphabet. Grouping the elements of the sequence by triples, we see
that only the five triples ac̄b, acb̄, ācb, acb, and ācb̄ occur. Starting with the T H(K3) sequence,
this is used to construct a square-free9 sequence on an alphabet consisting of these different triples
([35, Theorem 2]).

Example 2.12. In Example 2.9 we looked at the Cyclic TH sequence. In [2], it was proved by
Allouche that for any d ∈ N2 this sequence is not d-automatic.

There are many alternative definitions of d-automatic sequences. One of them explains why they
are called automatic. We can say that a sequence is d-automatic if it can be generated by a
deterministic finite automaton with output on the input alphabet [d]0, called a d-DFAO; see for
instance [8, Definition 5.1.1]. Another definition works with formal power series and is mentioned
in the literature as Cristol’s Theorem ([8, Theorem 12.2.5]). We use our definition, which is
equivalent to the other ones for d ∈ N2 by a theorem of Cobham ([8, Theorem 6.3.2]) as it the
most useful one for our purpose. For more details on automatic sequences we refer to the book [8]
by Allouche and J. Shallit.

Remark. Usually, automatic sequences are defined only for d ∈ N2. But we can extend the concept
for d = 1. A sequence is 1-automatic if it is generated by an 1-DFAO with Σ = {1} (or Σ = {|}).
Thereby the n-th term of the sequence depends on the unary notation for n, e.g., (1)n (or |n). More
details can be found in [8, Section 5.7].

2.2 An approach to disprove the automaticity of the T H(C+
3 ) and

the T H(K−3 ) sequences based on the frequency of a letter

In this approach to decide about the automaticity of our sequences we will use the frequency of a
letter. Consider a sequence s = s0s1s2 . . . over a finite alphabet Σ, where sk ∈ Σ (k ∈ N0). Let s be

a prefix of s and |s| its length. Then the frequency of the letter a ∈ Σ in s is defined by
|s|a
|s| . The

frequency Freqa(s) of the letter a ∈ Σ in the sequence s is defined as the limit

Freqa(s) = lim
n→∞

|s[0...n−1]|a

n
, if it exists.

9A square is a word of the form tt, where t is a subword of the word. If s is a sequence which contains no non-empty
subword of this form, it is called square-free.
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The following theorem says that, assuming the automaticity of a sequence, the frequency of a
letter, if it exists, is a rational number.

Theorem 2.13. Let s = (sn)n∈N0 be an automatic sequence. If the frequency of a letter exists, then
it is a rational number.

Proof. See [8, Theorem 8.4.5] or [18, Theorem 6]. �

If we could prove in each case that the frequency of a letter in our sequences is not rational, we
could conclude that the sequences themselves cannot be automatic.

Example 2.14. The non-automaticity of the Cyclic TH sequence was proved in [2], where use has
been made of Theorem 2.13 as well. Unfortunately, the frequencies of the three letters a, b, and
c are all rational. Since Theorem 2.13 is no if-and-only-if statement, this is not sufficient to state
the automaticity of this sequence.
But Allouche found a factor, namely aba, of the sequence with irrational frequency whence he
could deduce the non-automaticity (cf. [2, Proposition 3.5]).

One very helpful theorem to determine the rationality could be [8, Theorem 8.4.7]. It says that, if
we have a primitive morphic sequence, then the frequencies of all letters exist and are non-zero.
Furthermore, the vector of frequencies of the letters occurring in the sequence is the positive nor-
malised vector associated with the so-called Perron-Frobenius eigenvalue of the corresponding
incidence matrix. Consequently, we can calculate the frequencies and prove the rationality. How-
ever, we cannot employ this theorem on our cases, since the conditions of the theorem ask for a
primitive morphic sequence. We do not know so far whether the T H(C+

3 ) and T H(K−3 ) sequences
are primitive.
In Sections 2.2.2 and 2.2.3 we will see that our morphisms to generate the sequences are not
primitive which does, however, not mean that no primitive ones exist. For the T H(K−3 ) sequence
we later show in Theorem 2.42 that it is a morphic sequence with respect to a primitive pro-
longable morphism. Unfortunately, we then still cannot use the theorem (see the remark after
Theorem 2.42).

Note that most of the calculations in the following sections are done with the computer algebra
system (CAS) Sage 5.10.

2.2.1 Necessary tools

In this section we introduce some definitions and the theorems and lemmata which we need par-
ticularly for our approach.

The following is part of the so-called Perron-Frobenius Theory (see [8]). We define the Perron-
Frobenius eigenvalue. Here, | · | stands for the absolute value.
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Theorem 2.15 ([8, Theorem 8.3.11]). Let M be a non-negative (m ×m)-matrix. Then there exists
a λr ∈ R

+
0 such that:

a) λr is an eigenvalue of M, and every eigenvalue λ of M satisfies |λ| ≤ λr.

b) There exists a non-negative eigenvector corresponding to the eigenvalue λr.

c) There exists a positive integer h such that every eigenvalue λ of M with |λ| = λr fulfills λh = λh
r .

The number λr is called the Perron-Frobenius eigenvalue.

We note that, for a given morphic sequence s, the number λr is not unique, since, if λr is the
Perron-Frobenius eigenvalue of M(ψ), then λn

r is the Perron-Frobenius eigenvalue of M(ψn), but ψ
as well as ψn generates the same sequence s.

Let M be an irreducible matrix that has precisely h eigenvalues (counted with multiplicities) whose
absolute values equal the Perron-Frobenius eigenvalue. Then we call the integer h the index of M.

Theorem 2.16 ([8, Theorem 8.3.10]). Let M be a non-negative (m × m)-matrix.

a) If M is irreducible, and if λr is its Perron-Frobenius eigenvalue and its index equals h, then the
h eigenvalues of M whose absolute values equal λr are the numbers λre2ilπ/h, where l ∈ [h]0.
All these eigenvalues are simple roots of the characteristic polynomial of M.

b) The matrix M is primitive if and only if it is irreducible and its index is equal to 1.

It remains to define a dominating Jordan block and a simple generator. Recall that two matrices A
and B are similar, denoted by A ∼ B, if there exists an invertible matrix P such that A = P−1BP.
We know that every (m × m)-matrix M is similar to a matrix in Jordan form. This means

M ∼ J =


J1 0 · · · 0 0
0 J2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Jk−1 0
0 0 · · · 0 Jk


,

where Ji are Jordan blocks. These Jordan blocks are of the form

Ji =



λi 1 0 · · · 0

0 λi 1 · · ·
...

...
. . .

. . .
. . . 0

...
...

. . .
. . . 1

0 · · · · · · 0 λi


(2.2)

with dimension mi × mi and, where λi is a complex number.
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Let M be a non-negative square matrix similar to J and again λr the Perron-Frobenius eigenvalue
of M. Then a Jordan block Ji is called a dominating Jordan block of J if

• λi = λr, and

• for all j ∈ [k],

λ j = λr ⇒ mi ≥ m j.

The dominating Jordan block of a non-negative square matrix is well-defined, since the Jordan
blocks are unique. Note that the matrix in Jordan form itself is not unique.

Let ψ : Σ∗ → Σ∗ be an endomorphism which is prolongable on a ∈ Σ and τ : Σ∗ → ∆∗ a
coding. We denote by M(ψ) the incidence matrix of ψ, which is non-negative, and by λr(ψ) the
corresponding Perron-Frobenius eigenvalue.

Definition 2.17. The morphism ψ is a simple generator of the sequence τ(ψ∞(a)) if

(G1) the set of letters occurring in ψ(a) is Σ,

(G2) if λ is an eigenvalue of M(ψ) and the absolute value of λ equals λr(ψ), then λ equals the
Perron-Frobenius eigenvalue.

The following theorem deals with morphic sequences and the existence of a simple generator for
them. The proof of the theorem also describes how to construct a simple generator of a morphic
sequence by modifying the initial map.

Theorem 2.18 ([72, Lemma 2]). Any morphic sequence has a simple generator.

Proof. Let s = τ(ψ∞(a)) be a morphic sequence with the endomorphism ψ : Σ∗ → Σ∗ and the
coding τ : Σ∗ → ∆∗, where Σ and ∆ are again finite alphabets and a ∈ Σ. We define Σ ⊆ Σ to be
the set of letters which occur in ψ∞(a). This implies ψ

(
Σ
)
⊂ Σ

∗
, and we restrict ψ to Σ

∗
. As s is

a morphic sequence, ψ is prolongable on a and, therefore, there exists an integer l ∈ N such that
all letters of Σ already occur in ψl(a). By iteration of Equation (2.1), the incidence matrix M(ψ) is
similar to a matrix with the following structure

M(ψ) ∼


A1,1 B1,2 . . . B1,n

0 A2,2 . . . B2,n
...

...
. . .

...
0 0 . . . An,n

 .
Each entry Ai,i on the diagonal is either an irreducible square matrix or a zero square matrix,
Bi, j are rectangular matrices such that the dimensions match, and the entries below the diagonal
are all 0. If M(ψ) itself is irreducible, we see that n = 1 and M(ψ) = A1,1. Let hi be the index of Ai,i

for i ∈ [n]. If Ai,i is a zero matrix, we let hi = 1. Then we set h = lcm (h1, . . . , hn). It follows from
Theorem 2.16 that all eigenvalues λ of M(ψ) with |λ| = λr(ψ) satisfy the equation λh = λr(ψ)h.
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Now we have the tools to create a simple generator. The morphism ψ′ : Σ
∗
→ Σ

∗
is determined

by the condition ψ′(o) = ψhl(o) for all letters o ∈ Σ and is now shown to be the wanted one.

We check if ψ′ fulfills the conditions (G1) and (G2). It is apparent that s = τ(ψ′∞(a)). The
condition (G1) is satisfied, since ψl(a) is a prefix of ψ′(a) = ψhl(a) and thus all the letters of Σ occur
in ψ′(a).Now we have a look at (G2). Suppose λ is an eigenvalue of M(ψ′). Since M(ψ′) = M(ψ)hl,
we get as a consequence

det(M(ψ′) − λI) = det(M(ψ) − x1I) · · · det(M(ψ) − xhlI),

where the xis are the hl-th roots of λ. Hence λ is an eigenvalue of M(ψ′) if and only if some of its
hl-th roots, here xi, is an eigenvalue of M(ψ). Using this observation in the case when λ = λr(ψ′),
we obtain λr(ψ′) = λr(ψ)hl. Now we assume that λ , λr(ψ′) and |λ| = λr(ψ′). As λ = xhl

i and
xh

i = λr(ψ)h, we get λ = λr(ψ)hl = λr(ψ′), which is a contradiction. Thus ψ′ satisfies (G2) and
altogether we can conclude that ψ′ is a simple generator. �

From now on we assume that s = τ(ψ∞(a)) is a morphic sequence where ψ : Σ∗ → Σ∗ is a simple
generator and τ : Σ∗ → ∆∗ is a coding. Further, we note that the Perron-Frobenius eigenvalue
λr(ψ) of the incidence matrix of a prolongable morphism ψ is always at least 1. Otherwise, i.e.,
if 0 ≤ λr(ψ) < 1, M(ψn) would tend to 0 as n → ∞. This is a contradiction as ψ is prolongable.
Recall that ψ is prolongable on a ∈ Σ if ψ(a) = as for some s ∈ Σ∗ such that ψn(s) , ε for
all n ∈ N.

In our further text a limit matrix is always obtained in the following way. Let A = (ai, j)i, j∈[m] be a
square matrix. Then

lim
n→∞

An = B = (bi, j)i, j∈[m], where bi, j = lim
n→∞

an
i, j for every i, j ∈ [m].

So we define the limit elementwise.

The following lemma is the first step to determine the frequency of a letter. Recall the common
notation that for two functions f , g : R → R, x0 ∈ R and x → x0 we denote f (x) = O(g(x)) if
there exist a C > 0 and a δ > 0 such that

| f (x)| ≤ C · |g(x)| for all x with |x − x0| < δ.

Lemma 2.19 ([72, Lemma 3]). Let j+1 be the size of the dominating Jordan block in J(ψ), where
J(ψ) is the Jordan form of M(ψ). Then the limit matrix

E(ψ) := lim
n→∞

M(ψ)n

n jλr(ψ)n (2.3)

exists, and has the following properties:

• The rank of E(ψ) equals the number of occurrences of the dominating Jordan block in J(ψ).
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• For all o, p ∈ Σ and n ∈ N0

|ψn(o)|p = ep,on jλn
r + O(n j−1λn

r ),

where ep,o is the entry of E(ψ) at position (p, o).

• The column Ea = (ep,a)p∈Σ is non-zero.

Proof. We will prove the existence of E(ψ) and the first property of the limit matrix, for the other
statements see [8, Theorem 8.3.14 a)] and [72, Lemma 3]. Set λr(ψ) = r and denote by t the
number of occurrences of the dominating Jordan block in J(ψ) = (J1, . . . , Jl). The matrices Ji are
Jordan blocks of the form (2.2). We can see that for all n ∈ N0

Jn
i =


λn

i

(
n
1

)
λn−1

i . . .
(

n
mi−1

)
λn−mi+1

i

0 λn
i . . .

(
n

mi−2

)
λn−mi+2

i
...

...
. . .

...
0 0 . . . λn

i

.
Note also that(

n
j

)
rn− j =

1
j!r j︸︷︷︸
>0

n jrn + O(n j−1rn).

We know that ψ is a simple generator. Therefore, the equality |λi| = r implies λi = r and if either
λi , r or p < j, then it must follow that(

n
p

)
λ

n−p
i = O(n j−1rn).

Altogether we get the existence of the limit

D := lim
n→∞

(J(ψ))n

n jrn .

Each occurrence of the dominating Jordan block contributes exactly one positive entry, namely
1

j!r j , in D, while all the other entries are 0. The matrix D has rank t as all these positive entries lie
in different rows and columns. Let Q be a matrix with inverse Q−1 such that M(ψ) = QJ(ψ)Q−1.
By (M(ψ))n = Q(J(ψ))nQ−1 we can conclude that

lim
n→∞

(M(ψ))n

n jrn = QDQ−1. (2.4)

This matrix is non-negative, since the limit of a sequence of non-negative matrices is non-negative.
We set E(ψ) = (ep,o)p,o∈Σ as this limit matrix. The rank of E(ψ) equals that of D, namely t, since
E(ψ) is obviously similar to D. �
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From the last lemma we deduce the following corollary. We let Mb = (mp,b)p∈∆ denote the column
of the matrix M = (mp,o)p∈∆

o∈Σ
that corresponds to b ∈ Σ.

Corollary 2.20 ([72, Corollary 1]). Again, j+1 is the size of the dominating Jordan block in J(ψ).
Define W(τ, ψ) := M(τ)E(ψ), where M(τ) is the incidence matrix of the coding τ and E(ψ) is the
matrix from (2.3). Then

• For all o ∈ Σ, p ∈ ∆ and n ∈ N0,

|τ(ψn(o))|p = wp,on jλn
r + O(n j−1λn

r ),

where wp,o is the entry of W(τ, ψ) at position (p, o).

• The column Wa is non-zero.

The following theorem guarantees the existence of the frequency of a letter.

Theorem 2.21. Let s = τ(ψ∞(a)) be a morphic sequence, where a ∈ Σ, ψ : Σ∗ → Σ∗ is a simple
generator and τ : Σ∗ → ∆∗ is a coding. We will denote the matrix M(τ)E(ψ) by W(τ, ψ).
The frequency of the letter q ∈ ∆ in s exists if and only if

wq,b∑
p∈∆ wp,b

=
wq,a∑

p∈∆ wp,a
(2.5)

for all non-zero columns Wb of W(τ, ψ). If it exists, the frequency of q ∈ ∆ is the value in (2.5).

Proof. See [72, Theorem 2]. �

The next corollary arises from the last theorem and gives a necessary and sufficient condition for
the existence of the frequencies of all letters in morphic sequences.

Corollary 2.22 ([72, Corollary 2]). Under the hypotheses of Theorem 2.21, the frequencies exist
for all letters in τ(ψ∞(a)) if and only if the rank of the matrix W(τ, ψ) equals one.

Proof. The frequencies of all letters exist if and only if (2.5) holds for every q ∈ ∆ and for all
letters b ∈ Σ for which Wb is non-zero. We infer that this applies if and only if

Wb =

∑
p∈∆ wp,b∑
p∈∆ wp,a

Wa

for all non-zero columns Wb. (In [72], this is stated differently.) Since Wa is non-zero, this is
equivalent to the condition that the rank of W(τ, ψ) is one and the proof is done. �

This completes the collection of the general tools we will need, and we can now proceed with our
special sequences.
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2.2.2 The T H(C+
3 ) sequence

The permitted moves in T H(C+
3 ) are the elements of ∆C+ := {a, b, c, ā}. In [7], it is described that

the T H(C+
3 ) sequence w is obtained as the image, under the coding κT , of the iterative fixed point

of the morphism ηT . Here the superscript T stands for temporary, since we will modify them
below. Let ΣT

C+ be the set {x, r, z, t, u, s, a, b, c, ā, b̄}. The map ηT : ΣT,∗
C+
→ ΣT,∗

C+
is defined by

ηT (x) = rbasa, ηT (r) = rbaubr, ηT (z) = tāu,
ηT (t) = zbrb, ηT (u) = saczc, ηT (s) = sactas,
ηT (a) = a, ηT (b) = b, ηT (c) = c,
ηT (ā) = ā, ηT (b̄) = b̄,

and the coding κT : ΣT,∗
C+
→ ∆T,∗

C+
is given by

κT (x) = a, κT (r) = a, κT (z) = ā,
κT (t) = b, κT (u) = c, κT (s) = c,
κT (a) = a, κT (b) = b, κT (c) = c,
κT (ā) = ā, κT (b̄) = b̄

with ∆T
C+ := {a, b, c, ā, b̄}. We see that the letter b̄ is not an element of ∆C+ so that we delete it in

ΣT
C+ and ∆T

C+. Referring to the proof of the next theorem, we will make another emendation. The
new morphism is called η and the new coding κ with the sets ∆C+ and ΣC+.

Theorem 2.23. Let the map η : Σ∗C+ → Σ∗C+ be defined by

η(x) = rbasa, η(r) = rbaubr, η(z) = tāu,
η(t) = zbrb, η(u) = sacz, η(s) = sactas,
η(a) = a, η(b) = b, η(c) = c,
η(ā) = ā

and the coding κ : Σ∗C+ → ∆∗C+ be defined by

κ(x) = a, κ(r) = a, κ(z) = ā,
κ(t) = b, κ(u) = c, κ(s) = c,
κ(a) = a, κ(b) = b, κ(c) = c,
κ(ā) = ā

with ΣC+ := {x, r, z, t, u, s, a, b, c, ā} and ∆C+ := {a, b, c, ā}. Then the T H(C+
3 ) sequence w is the

image, under the coding κ, of the iterative fixed point of the morphism η. In fact, w = κ(η∞(r)).

Proof. We define the following words on ∆C+ given by The Sapir Algorithm 7:

• Xn is the word to transfer n discs from peg 0 to peg 1,

• Yn is the word to transfer n discs from peg 0 to peg 2,
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• Zn is the word to transfer n discs from peg 1 to peg 0,

• Tn is the word to transfer n discs from peg 1 to peg 2,

• Un is the word to transfer n discs from peg 2 to peg 0,

• Vn is the word to transfer n discs from peg 2 to peg 1

with X1 = a, Y1 = ab, Z1 = ā, T1 = b, U1 = c, and V1 = ca as initial conditions. Using again
Algorithm 7, we obtain:

Xn+1 = YnaVn

Yn+1 = YnaUnbYn

Zn+1 = TnāUn

Tn+1 = ZnbYn

Un+1 = VncZn

Vn+1 = VncTnaVn.

We easily see that Yn ends in b for any n ∈ N and Vn ends in a for any n ∈ N. Thus we define Rn

by Yn = Rnb with R1 = a and S n by Vn = S na with S 1 = c. The relations above are then:

Xn+1 = RnbaS na
Rn+1 = RnbaUnbRn

Zn+1 = TnāUn

Tn+1 = ZnbRnb
Un+1 = S nacZn

S n+1 = S nacTnaS n.

Hence there exist infinite sequences X∞, Z∞, and S∞ consisting of elements of ∆C+ such that

limn→∞ Xn = X∞ = limn→∞ Rn

limn→∞ Zn = Z∞ = limn→∞ Tn

limn→∞Un = S∞ = limn→∞ S n.

Using the morphism η and the coding κ,we get by induction that κ(ηn−1(o)) = On for all elements o
of {x, r, z, t, u, s} and the corresponding capital letters O from {X,R,Z,T,U, S }. Then the sequence
is w = κ(η∞(r)) = X∞ = R∞. �

We can verify the correctness of these maps by following the moves of κ(η2(o)), where o is an
element of {x, y, z, t, u, v}, in the directed state graph of T H(C+

3 ) in Figure 2.2.

By analysing the occurrences of each letter ai ∈ ΣC+ in each η(a j) with i, j ∈ [10], we set the
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incidence matrix M(η)

M(η) =



0 0 0 0 0 0
1 2 0 1 0 0
0 0 0 1 1 0
0 0 1 0 0 1

0 1 1 0 0 0 0
1 0 0 0 1 2
2 1 0 0 1 2 1
1 2 0 2 0 0 1
0 0 0 0 1 1 1

0 0 1 0 0 0 0 1



.

Its characteristic polynomial is calculated to be y(y − 1)7(y2 − y − 4). Therefore, the eigenvalues
are λ1 = 0 with multiplicity 1, λ2,3,4,5,6,7,8 = 1 with multiplicity 7 and the two roots λ9 and λ10 of
(y2 − y− 4), namely 1±

√
17

2 , as simple ones. The maximum of the absolute values of all eigenvalues
of M(η) is λ10 = 1+

√
17

2 , which is also the Perron-Frobenius eigenvalue of M(η) with the non-
negative eigenvector

v10 =
(
0 1 5−

√
17

2
−3+

√
17

2
−3+

√
17

2 1 5+
√

17
4 2 1 −3+

√
17

4

)
In addition, it should be mentioned that the matrix is reducible and hence not primitive (see Sec-
tion 2.3.1 and Lemma 2.5).

With the aid of the subsequent lemma of [48, Corollary 8.5.8] or [80, pp. 647-648] the reader can
also check for primitivity.

Lemma 2.24. The non-negative (n × n)-matrix M is primitive if and only if Mn2−2n+2 > 0.

In the next theorem we specify the simple generator. We denote by ΣC+ ⊂ ΣC+ the set of the letters
occurring in η∞(r). Then ΣC+ = {r, z, t, u, s, a, b, c, ā} as x does not occur in η∞(r).

Theorem 2.25. The morphism f : Σ
∗

C+ → Σ
∗

C+ with f (o) = η3(o) for all o ∈ ΣC+ is the simple
generator of the T H(C+

3 ) sequence w.

Proof. The incidence matrix M(η) for η : Σ
∗

C+ → Σ
∗

C+ is similar to

2 0 0 1 0 1 2 0 0
0 0 1 1 0 0 0 0 1
1 1 0 0 0 0 2 0 0
0 1 0 0 1 1 0 1 0
0 0 1 0 2 2 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


= PM(η)P−1



§2 Variations on the Tower of Hanoi with 3 pegs 69

by

P =
1

16



16 0 0 0 0 0 0 0 0
−9 18 −11 −11 −9 16 0 −16 32
−17 −14 −3 −3 −17 0 16 16 16
−4 −8 4 4 −4 0 0 16 0
1 −2 3 3 1 0 0 16 −16

16 16 0 0 16 16 −16 −48 16
−6 −4 6 −2 −6 −8 8 16 −8
−12 −24 −4 12 4 −32 16 64 −32

8 32 8 8 8 16 −16 −48 16


.

The submatrices A2,2 = A3,3 = A4,4 = A5,5 =
(
1
)

of PM(η)P−1, named as in the proof of The-
orem 2.18, are irreducible, as is

A1,1 =


2 0 0 1 0
0 0 1 1 0
1 1 0 0 0
0 1 0 0 1
0 0 1 0 2

 .

The square matrix A1,1 is even primitive as we calculate A4
1,1 > 0.

The integer h from the proof of Theorem 2.18, which is the least common multiple of all indices
of the Ai,is, is 1, since the characteristic polynomial of A1,1 is (y−1)3(y2−y−4) and thus h1 = 1.We
define the morphism f : Σ

∗

C+ → Σ
∗

C+ from the condition f (r) = ηhl(r) = ηl(r). To find l, we apply η
on r until every letter of ΣC+ occurs in the result. We get l = 3 and, consequently, f = η3(r). Thus
(G1) is satisfied. We determine the mapping rules of the letters under f .

We find that

f (r) = η3(r) = rbaubrbasaczbrbaubrbasactasactāu
brbaubrbasaczbrbaubr,

f (z) = η3(z) = tāubrbaubrbāsactasactāu,
f (t) = η3(t) = zbrbāsaczbrbaubrbasaczbrbaubrb,
f (u) = η3(u) = sactasaczbrbasactasaczbrbāsacz,
f (s) = η3(s) = sactasaczbrbasactasactāubrbaubr

basactasaczbrbasactas,
f (a) = η3(a) = a, f (c) = η3(c) = c,
f (b) = η3(b) = b, f (ā) = η3(ā) = ā.

Since η is a morphism, f is also a morphism.
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As incidence matrix of f we get

M( f ) =



8 2 5 2 4
2 0 3 3 2
2 3 0 2 5

5 3 2 0 2 0
4 2 2 5 8

12 4 5 8 15 1
14 4 10 4 8 1
4 2 2 5 7 1

1 3 1 1 1 0 1



.

The characteristic polynomial equals (t − 1)7(t2 − 13t − 64). This gives nine eigenvalues, namely
λ1,2,3,4,5,6,7 = 1 with multiplicity 7 and λ8 = 13−5

√
17

2 and λ9 = 13+5
√

17
2 both with multiplicity one.

The eigenvalue with the maximal absolute value is the Perron-Frobenius eigenvalue, here λ9, with
the non-negative eigenvector

v9 =
(
1 5−

√
17

2
−3+

√
17

2
−3+

√
17

2 1 5+
√

17
4 2 1 −3+

√
17

4

)
.

All other eigenvalues of M( f ) have absolute values which are not equal to λ9. Hence (G2) is
fulfilled. �

The Jordan block corresponding to λ9 occurs only once in the Jordan form of M( f ), since

Q−1M( f )Q =



λ8

1 1
0 1

1 1

0 1 0
1

1

0 1
λ9



,

where Q is an invertible matrix. The Jordan blocks are J1 = (λ8), J4 = J5 = J6 = (1), J7 = (λ9),
and

J2 = J3 =

(
1 1
0 1

)
.

This clearly implies j = 0, since j + 1 is the size of the dominating Jordan block J6. We calculate
the matrix Q, which is the one which has the eigenvectors of λ8 and λ9 as first and last column,
respectively, such that
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Q =



1 3 1 0 0 1 0 0 1
a 0 0 0 1 0 0 0 e
b −3 0 0 0 −1 0 0 f
b 3 0 0 1 1 0 0 f
1 −3 −1 0 −1 −1 0 0 1
c −3 0 −3 0 0 1 0 g
2 6 0 0 0 0 0 1 2
1 −3 0 0 0 0 0 0 1
d 0 0 3 0 0 0 0 h


,

where the roman letters in Q stand for

a =
√

17+5
2 , e = −

√
17−5
2 ,

b = −
√

17+3
2 , f =

√
17−3
2 ,

c = −
√

17−5
4 , g =

√
17+5
4 ,

d = −
√

17+3
4 , h =

√
17−3
4 .

With the last results we compute the matrix E( f ) from Lemma 2.19. The limit

E( f ) = lim
n→∞

(M( f ))n

λn
9

= lim
n→∞

Q
(

J( f )
λ9

)
︸ ︷︷ ︸

=:B

n

Q−1

exists with

Bn =
1
λn

9



λn
8

1n
(

n
1

)
1n−1

0 1n

1n
(

n
1

)
1n−1 0

0 1n

1n

1n

0 1n

λn
9



.

This yields E( f ) = Q

0
1

 Q−1, where the (1)-matrix has dimension 1 × 1 and lies on the

diagonal. The incidence matrix of the coding κ is given by

M(κ) =


1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 1 1 0 0 1 0
0 1 0 0 0 0 0 0 1

 .
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From what has already been proved, we calculate the (4 × 9)-matrix

W(κ, f ) = M(κ)E( f ). (2.6)

With (2.6) we obtain

Theorem 2.26. The frequency of the letter a in w exists and has the value

Freqa(w) =
17 + 9

√
17

68
.

Proof. Recall that f is prolongable on the letter r of ΣC+. We calculate

F := wa,r∑
p∈∆C+

wp,r
=

g+1
e+2f+g+h+5

=
1
4

(√
17+9

)
√

17

= 17+9
√

17
68

(2.7)

as the candidate for the frequency of a ∈ ∆C+, according to Theorem 2.21. By the same theorem,
it remains to prove that

wa,k∑
p∈∆C+

wp,k
=

wa,r∑
p∈∆C+

wp,r

for all non-zero columns Wk of W(κ, f ). We have

wa,k∑
p∈∆C+

wp,k
=

g+1
σ

for all k ∈ {z, t, u, s} and σ := e + 2f + g + h + 5. All these numbers are equal to F of (2.7) so that
Freqa(w) = F. �

By virtue of Corollary 2.22, the frequencies of all letters in ∆C+ actually exist, since the rank of
W(κ, f ) equals one. A trivial calculation with Sage shows that

Freqb(w) = f+2
σ

=
√

17+1
2
√

17
=
√

17+17
34 ,

Freqc(w) = f+2
σ

=
√

17+17
34 ,

Freqā(w) = e+h
σ

= −
√

17+7
4
√

17
= 7

√
17−17
68 .

All these frequencies of letters in ∆C+ are not rational. From Theorem 2.13 we know that if a
sequence is d-automatic for any d, then, assuming its existence, the frequency of a letter in this
sequence has to be rational . Hence we proved now that

Theorem 2.27. For any d ∈ N2 the T H(C+
3 ) sequence w is not d-automatic.
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2.2.3 The T H(K−3 ) sequence

With a view to Figure 2.1, we get the allowed moves in T H(K−3 ). These moves can be summarised
in the set ∆K− := {a, b, c, ā, b̄}. By definition, a sequence is morphic if it can be obtained as the
image, under a coding, of an iterative fixed point of a morphism. For the T H(K−3 ) sequence u a
morphism φ : {x, y, z, d, e, f , a, b, c, ā, b̄} → {x, y, z, d, e, f , a, b, c, ā, b̄} is defined by

φ(x) = yba f , φ(y) = ybaeby, φ(z) = dāe,
φ(d) = zbyb, φ(e) = f cz, φ( f ) = eb̄x,
φ(a) = a, φ(b) = b, φ(c) = c,
φ(ā) = ā, φ(b̄) = b̄,

and the corresponding coding, under the map

τ : {x, y, z, d, e, f , a, b, c, ā, b̄} → ∆K−,

is given by

τ(x) = a, τ(y) = a, τ(z) = ā,
τ(d) = b, τ(e) = c, τ( f ) = b̄,
τ(a) = a, τ(b) = b, τ(c) = c,
τ(ā) = ā, τ(b̄) = b̄.

The finite alphabet {x, y, z, d, e, f , a, b, c, ā, b̄} is called ΣK−.

Theorem 2.28 ([7, Theorem 2]). The T H(K−3 ) sequence u is the image, under the coding τ, of the
iterative fixed point of the morphism φ, in particular u = τ(φ∞(y)).

Proof. We define the following words on ∆K− given by The Sapir Algorithm 7:

• Xn is the word to transfer n discs from peg 0 to peg 1,

• S n is the word to transfer n discs from peg 0 to peg 2,

• Zn is the word to transfer n discs from peg 1 to peg 0,

• Dn is the word to transfer n discs from peg 1 to peg 2,

• En is the word to transfer n discs from peg 2 to peg 0,

• Fn is the word to transfer n discs from peg 2 to peg 1

with X1 = a, S 1 = ab, Z1 = ā, D1 = b, E1 = c, and F1 = b̄ as initial conditions. Using again
Algorithm 7, we obtain:

Xn+1 = S naFn

S n+1 = S naEnbS n

Zn+1 = DnāEn

Dn+1 = ZnbS n

En+1 = FncZn

Fn+1 = Enb̄Xn.
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We easily see that S n ends in b for any n ∈ N. Thus we define Yn by S n = Ynb with Y1 = a.
The relations above are then:

Xn+1 = YnbaFn

Yn+1 = YnbaEnbYn

Zn+1 = DnāEn

Dn+1 = ZnbYnb
En+1 = FncZn

Fn+1 = Enb̄Xn.

Hence there exist infinite sequences X∞, Z∞, and E∞ consisting of elements of ∆K− such that

limn→∞ Xn = X∞ = limn→∞ S n = limn→∞ Yn

limn→∞ Zn = Z∞ = limn→∞ Dn

limn→∞ En = E∞ = limn→∞ Fn.

Using the morphism φ and the coding τ, we get by induction that τ(φn−1(o)) = On for all elements
o of {x, y, z, d, e, f } and corresponding capital letters O in {X,Y,Z,D, E, F}. Then the sequence is
u = τ(φ∞(y)) = X∞. �

Again, we can verify the correctness of these maps by following the moves of τ(φ2(o)), where the
letter o is an element of {x, s, z, d, e, f } in the directed state graph of T H(K−3 ) in Figure 2.2.

For the incidence matrix of φ we get

M(φ) =



0 0 0 0 0 1
1 2 0 1 0 0
0 0 0 1 1 0

0 0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 0 1 0
1 1 0 0 0 0 1
1 2 0 2 0 0 1
0 0 0 0 1 0 1

0 0 1 0 0 0 0 1
0 0 0 0 0 1 1



. (2.8)

Its characteristic polynomial is given by (t + 1)(t − 1)7(t3 − t2 − 4t + 2). Hence the eigenvalues
are λ1 = −1 with multiplicity 1, λ2,3,4,5,6,7,8 = 1 with multiplicity 7 and the three roots λ9, λ10, λ11

(ordered by ascending absolute value) of (t3 − t2 − 4t + 2) as simple ones. The maximum of the
absolute values of all eigenvalues of M(φ) is the maximal root λ11 of (t3 − t2 − 4t + 2). This root is
therefore also the Perron-Frobenius eigenvalue of M(φ).

Note that this matrix is again reducible and not primitive (see Section 2.3.1 and Lemma 2.24).
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The following theorem specifies the simple generator for u. The set ΣK− is the set of letters which
occur in η∞(y). Here, ΣK− is equal to ΣK−.

Theorem 2.29. The morphism g : Σ ∗K− → Σ ∗K− with g(o) = φ3(o) for all o ∈ ΣK− is a simple
generator for the T H(K−3 ) sequence u.

Proof. The matrix M(φ) can be transformed in the following way

M(φ) ∼



0 1 0 0 0 1 1 1 0 0 0
0 2 0 0 1 0 1 2 0 0 0
0 0 0 1 1 0 0 0 0 1 0
0 1 1 0 0 0 0 2 0 0 0
0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 1

1
1

0 1
1

1



,

since M(φ) is similar to its transpose.

We show briefly that every square matrix A is similar to its transpose. Let J(A) be the matrix in
Jordan form of A. Thus Q−1AQ = J(A) for an invertible matrix Q and

J(A)T = QT AT (Q−1)T = QT AT (QT )−1.

It follows that J(A)T is similar to AT . Using the transitive property of similarity, it is sufficient
to prove that J(A)T is similar to J(A). Because of the block decomposition of J(A), we have
only to show that any Jordan block J(A)i is similar to its transpose. This can be seen easily. In
fact, if P is the permutation matrix with a line of 1s from top right to bottom left, then we get
PJ(A)iP−1 = (J(A)i)T .

The submatrices A2,2 = A3,3 = A4,4 = A5,5 = A6,6 =
(
1
)

are irreducible and so is

A1,1 =



0 1 0 0 0 1
0 2 0 0 1 0
0 0 0 1 1 0
0 1 1 0 0 0
0 0 1 0 0 1
1 0 0 0 1 0


,

since A6
1,1 > 0. The characteristic polynomial of A1,1 is (t + 1)(t − 1)2(t3 − t2 − 4t + 2). It fol-

lows that the index of A1,1 equals 1. Therefore, the integer h from the proof of Theorem 2.18 is
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h = lcm (1, 1, . . . , 1) = 1. Now we are able to find a morphism g : Σ ∗K− → Σ ∗K− with the condition
g(y) = φhl(y) = φl(y). But what is l ∈ N? Every letter of ΣK− has to occur in φl(y). By an easy
calculation, we see that l = 3 and, consequently, g = φ3(y). We determine the new mapping rules
under g for every letter of ΣK−

g(y) = φ3(y) = ybaebyba f czbybaebybaeb̄xcdāe
bybaebyba f czbybaeby,

g(x) = φ3(x) = ybaebyba f czbybaebyba f czb̄yba f ,
g(z) = φ3(z) = dāebybaebybāeb̄xcdāe,
g(d) = φ3(d) = zbybā f czbybaebyba f czbybaebyb,
g(e) = φ3(e) = f czb̄yba f czbybā f cz,
g( f ) = φ3( f ) = eb̄xcdāeb̄ybaebybaeb̄x,
g(a) = φ3(a) = a, g(ā) = φ3(ā) = ā,
g(b) = φ3(b) = b, g(b̄) = φ3(b̄) = b̄,
g(c) = φ3(c) = c.

It is obvious that g is a morphism and that (G1) is satisfied.

We must again specify an incidence matrix, but this time for the simple generator g. It is

M(g) =



0 1 1 0 0 2
5 8 2 5 2 2
2 2 0 3 3 0

0 1 2 0 0 1 0
2 6 4 2 0 4
3 2 0 2 3 0
5 7 1 3 1 2 1
8 14 4 10 3 3 1
2 3 1 2 3 1 1

0 1 3 1 1 1 0 1
1 1 1 0 1 3 1



.

As the characteristic polynomial of M(g) we get

t11 − 13t10 − 20t9 + 352t8 − 1014t7 + 1190t6

−224t5 − 960t4 + 1133t3 − 561t2 + 124t − 8
= (t − 1)7(t + 1)(t3 − 7t2 − 76t + 8).

We immediately see that 1 and −1 are the eigenvalues with multiplicity 7 and 1, respectively, but
these are not all. We further detect the three roots of t3 − 7t2 − 76t + 8 = at3 + bx2 + ct + d by
Cardano’s method ([19]). From

p = − b2

3a2 + c
a = −277

3
q = d

a −
bc
3a2 + 2b3

27a3 = −5258
27
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we calculate the discriminant D =
p3

27 +
q2

4 = −531196
27 < 0. Hence there are three real roots and we

are in the “casus irreducibilis”. With [19, p.78 ff.] the roots are

t1 = 2
√

277
9 cos

(
1
3 arccos

(
47322
14958

√
9

277 −
2π
3

))
+ 7

3 ,

t2 = 2
√

277
9 cos

(
1
3 arccos

(
47322
14958

√
9

277 − 22π
3

))
+ 7

3 ,

t3 = 2
√

277
9 cos

(
1
3 arccos

(
47322
14958

√
9

277

))
+ 7

3 ,

It follows that t3 is the Perron-Frobenius eigenvalue of M(g). The condition (G2) is fulfilled as t3

itself is the only eigenvalue of M(g) whose absolute value equals t3. �

We are interested in finding the Jordan matrix decomposition of M(g). There exists an invertible
square matrix Q such that M(g) = QJ(g)Q−1, where

J(g) =



t1

−1

t2 0
1 1
0 1

1 1
0 1

1

0 1
1

t3


is the matrix in Jordan form. We have nine Jordan blocks, namely

J1 = (t1), J2 = (−1), J3 = (t2), J4 = J5 =

(
1 1
0 1

)
, J6 = J7 = J8 = (1), and J9 = (t3).

It is easily seen that the dominating Jordan block of M(g) is J9, which implies j + 1 = 1 as its size.
By the definition of E(g) in Lemma 2.19, this yields

E(g) = lim
n→∞

(M(g))n

tn
3

= lim
n→∞

Q
(

J(g)
t3

)
︸ ︷︷ ︸

=:B

n

Q−1 = lim
n→∞

QBnQ−1.
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The task is to find Bn in order to evaluate the limit. Bn is given by

Bn =
1
tn
3



tn
1

(−1)n

tn
2 0

1n
(

n
1

)
1n−1

0 1n

1n
(

n
1

)
1n−1

0 1n

1n

1n

0 1n

1n

tn
3



.

We thus get

E(g) = Q
(
lim
n→∞

Bn
)

Q−1 = Q

0
1

 Q−1,

where the (1)-matrix has dimension 1 × 1 and lies on the diagonal.

The invertible matrix Q has the form Q = [v1 . . . v2 . . . v3] where vi are the eigenvectors of ti

(i = 1, 2, 3). We calculate Q with the algebra system Sage and see that

Q =



1 1 1 0 1 0 0 0 0 0 1
a 0 h 0 0 0 1 0 0 0 o
b 1 i 0 −1 0 −1 0 0 0 p
1 −1 1 0 −1 0 −1 0 0 0 1
c 0 j 0 0 0 0 0 0 0 q
b −1 i 0 1 0 0 0 0 0 p
d −1

2 k 3 0 3 0 1 0 0 r
e 1

2 l −3 0 0 0 0 1 0 s
f 0 m 0 0 0 0 0 0 1 t
g −1

2 n −3 0 −3 0 0 0 0 u
g 1

2 n 3 0 0 0 0 0 0 u



. (2.9)

The first column is v1, the third one v2 and the last one v3. Note that the roman letters in this
matrix are not related to the elements of ΣK−. By now, there is only one part missing to construct
the matrix W(τ, g) of Corollary 2.20 and consequently the frequency of a letter of ΣK−, namely to
find the incidence matrix of the coding τ. We see that

M(τ) =


1 1 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1

 .
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We are now in a position to determine W(τ, g). By definition, the matrix W(τ, g) is equal to the
(5 × 11)-matrix M(τ)E(g). From this we get

Theorem 2.30. The frequency of the letter a ∈ ∆K− in u exists and is equal to

Freqa(u) =
(o + r + 1)

(o + 2p + q + r + s + t + 2u + 2)
,

where the roman letters are the numbers as defined in the matrix Q in (2.9).

Proof. Recall that g is prolongable on the letter y of ΣK−. As candidate for the frequency of the
letter a ∈ ∆K− we obtain

G := wa,y∑
p∈∆K− wp,y

=
(o+r+1)

(o+2p+q+r+s+t+2u+2) (2.10)

according to Theorem 2.21. We see that

wa,y∑
p∈∆K− wp,y

=
wa,k∑

p∈∆K− wp,k

for all non-zero columns Wk of W(τ, φ). Finally, we conclude that the frequency of the letter
a ∈ ∆K− in τ(g∞(y)) exists and is equal to G. �

It remains to see whether the number G is rational or not. In the case of rationality we could
conclude that the sequence u is possibly d-automatic for some d, while in the opposite case it
cannot be d-automatic for any d. Unfortunately, we cannot determine whether the expression
(2.10) is irrational because of its complexity. Hence we will try another approach to disprove the
automaticity of this sequence in the next section.

2.3 A new approach to disprove the automaticity of the T H(K−3 )
sequence

As in the previous section, we define the set of allowed moves in T H(K−3 ) as ∆K− := {a, b, c, ā, b̄}.
Then the T H(K−3 ) sequence u is the image, under the coding

τ : {x, y, z, d, e, f , a, b, c, ā, b̄} → {a, b, c, ā, b̄}

given by

τ(x) = a, τ(y) = a, τ(z) = ā,
τ(d) = b, τ(e) = c, τ( f ) = b̄,
τ(a) = a, τ(b) = b, τ(c) = c,
τ(ā) = ā, τ(b̄) = b̄,
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of the fixed point of the morphism φ : Σ∗K− → Σ∗k− defined by

φ(x) = yba f , φ(y) = ybaeby, φ(z) = dāe,
φ(d) = zbyb, φ(e) = f cz, φ( f ) = eb̄x,
φ(a) = a, φ(b) = b, φ(c) = c,
φ(ā) = ā, φ(b̄) = b̄.

The set ΣK− := {x, y, z, d, e, f , a, b, c, ā, b̄} is a finite alphabet. Then our sequence is u = τ(φ∞(y)).

The new approach to decide whether the sequence u is automatic or not is the use of Cobham’s
Theorem [17], which makes a statement about the ultimate periodicity of sequences under certain
conditions. The idea of the application of this theorem was already outlined in [7] and again dis-
cussed during a private communication between Allouche and the author of the present thesis [3].
For the formulation of that theorem we need some preparations. Let x and y be finite words. Then
we call an infinite sequence s of the form xy∞,where y , ε and y∞ = yyy . . . , ultimately periodic10.
If x is the empty word, the sequence is called periodic.

One calls two integers p, q ∈ N1 multiplicatively independent if no positive integers α and β exist
such that pα = qβ.Otherwise p and q are multiplicatively dependent. The next lemma characterises
this property.

Lemma 2.31 ([8, Theorem 2.5.7]). Let p, q ∈ N2. The following statements are equivalent:

a) p and q are multiplicatively dependent.

b) logp q is rational.

c) logq p is rational.

d) There exist an integer n ∈ N2 and two integers x, y ∈ N such that p = nx and q = ny.

Theorem 2.32 (Cobham’s Theorem, [17]). Let p and q be multiplicatively independent integers
and let s be a sequence which is both p- and q-automatic. Then s is ultimately periodic.

Next, we show that if the sequence u is not ultimately periodic, then we can conclude that u is not
d-automatic for any d ∈ N2.

Why can we conclude this? [7, Proposition 1] tells us that the Perron-Frobenius eigenvalue of the
incidence matrix M(φ) of the T H(K−3 ) sequence and any integer d ∈ N are multiplicatively inde-
pendent. We prove this statement more extensively in the next lemma with the aid of Lemma 2.31
and an algebraic argument (for the theory about field extensions; see for instance [29]).

Lemma 2.33. Let λr (∈ N1) be the maximal root of the polynomial (t3 − t2 − 4t + 2). Then for any

d ∈ N the real number logd λr =
ln λr

ln d
is irrational.

10Recall the remark in Section 2.1. A sequence is 1-automatic if and only if it is ultimately periodic (see [8, Theorem
5.7.1]).
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Proof. We assume that logd λr = n
m with positive integers m, n. Then d

n
m = λr, which implies

dn = λm
r . Since dn is an integer, it is sufficient to show that for any m ∈ N the numbers λm

r are not
integers. For this purpose we use the following argument. Suppose α := λm

r is an integer. We can
easily see that λr is algebraic over Q. Now let I be the set of all polynomials P over Q such that
P(λr) = 0. I is an ideal of Q[T ], where Q[T ] is the polynomial ring over Q. As Q is a field, Q[T ]
is a principal ideal domain and, therefore, I consists of all polynomial multiples over Q of some
m(t) ∈ Q[T ]. Since (t3− t2−4t + 2) has no rational root, it is irreducible over Q, and it follows that
m(t) = t3 − t2 − 4t + 2. Then, since λr is also a root of (tm −α) and (tm −α) ∈ Q[T ], the polynomial
(t3−t2−4t+2) divides (tm−α), i.e., there exists a polynomial Q(t) = am−3tm−3+. . .+a1t+a0 ∈ Q[T ]
such that

(t3 − t2 − 4t + 2)Q(t) = tm − α. (2.11)

If ai = ri/si for ri, si ∈ Z with i ∈ [m − 2]0 and if we let s = lcm(s0, . . . , sm−3), then we can write
Q(t) = s−1Q′(t) where Q′(t) ∈ Z[T ]. Hence we can assume that Q(t) is a polynomial with integer
coefficients. We reduce Equation (2.11) modulo 2

t2(t − 1)Q(t) ≡ tm − α mod 2.

Then, if we set t mod 2 = 0, the integer α mod 2 = 0. However, if we set t mod 2 = 1, the
integer α mod 2 = 1, which is a contradiction. �

Assuming that u is not ultimately periodic, it would follow with the previous lemma that for any
d ∈ N the sequence u is not d-automatic. Hence it remains to prove whether the sequence is not
ultimately periodic. The decidability of the question whether an infinite sequence is ultimately
periodic, called the HD0L11 ultimate periodicity problem, has been an open problem for a long
time.

As described in the introduction, first steps were done for special types of sequences. F. Dur-
and [25] solved the problem in the case that the morphism is primitive in 2012. Shortly thereafter,
he proved the decidability of the whole problem [26].

At around the same time, I. V. Mitrofanov presented two other proofs of the decidability of the
HD0L ultimate periodicity problem. The first proof was published as a preprint [62] and according
to Mitrofanov it is based on the paper [51]. In the sequel we will make use of the second proof
in [63].

In the first subsection we will employ the proof in F. Durand’s paper [26] and continue after the
appearance of difficulties in the exact calculation with the one of I. V. Mitrofanov [63] in the
second subsection.

11A D0L system is a triple G = (A, ψ, a) where A is a finite alphabet, ψ : A∗ → A∗ is an endomorphism and a is a word
in A∗. An HD0L system is a 5-tuple G = (A, B, ψ, τ, a) where (A, ψ, a) is a D0L system, B is a finite alphabet and
τ : A∗ → B∗ is a morphism. If τ(ψn(a)) converges (for the usual product topology on AN) as n tends to infinity,
we call the limit a HD0L sequence. For further reading about HD0L sequences we refer to [25].
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2.3.1 F. Durand’s method about the ultimate periodicity of (primitive) sequences

We formulate the problem explicitly: given two finite alphabets A and B, a morphism ψ : A∗ → A∗,
a word a ∈ A∗, and a morphism τ : A∗ → B∗, is the sequence τ(ψ∞(a)) ultimately periodic?

From the last section we know that M(φ) is not primitive and, accordingly, φ is not primitive
either. Hence we apply the results of the article [26]. Our procedure is to display statements
of [26] successively, immediately deducing the derivable results for our sequence.

We will state the first proposition, which is based on [26, Corollary 3.3] or [27, Proposition 5].

The alphabet A, over which ψ is defined, can be partitioned such that a power of the incidence
matrix M(ψ) has a special form which is described in the subsequent proposition.

Proposition 2.34. Let P = (pi, j)i, j∈A be a matrix with non-negative coefficients. Then there exist
three positive integers r, s, and t, where s ≤ t − 1, and a partition

{
A j : j ∈ [t]

}
of A such that

Pr =



A1 A2 . . . As As+1 As+2 . . . At

P1 0 . . . 0 0 0 . . . 0
P2,1 P2 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
Ps,1 Ps,2 . . . Ps 0 0 . . . 0

Ps+1,1 Ps+1,2 . . . Ps+1,s Ps+1 0 . . . 0
Ps+2,1 Ps+2,2 . . . Ps+2,s 0 Ps+2 . . . 0
...

...
. . .

...
...

...
. . .

...
Pt,1 Pt,2 . . . Pt,s 0 0 . . . Pt



A1

A2
...
As

As+1

As+2
...
At

and the submatrices P j, corresponding to the subsets A j of A, have only positive entries or are the
zero matrix.

With Lemma 2.24 and [59, Sections 4.4 and 4.5] about the irreducible components of non-negative
matrices and the cyclic structures of irreducible matrices, the partition and r can be computed
algorithmically.

We demonstrate the procedure as applied in our context. Recall M(φ) of (2.8). There is a multidi-
graph G(φ) associated with M(φ) whose vertex set is ΣK− and edge set consists of M(φ)IJ distinct
arcs with initial vertex I and terminal vertex J. We say that I ∼ J if there exists a path in G(φ) from
I to J. Then I communicates with J if I ∼ J and J ∼ I. This is an equivalence relation. (The proof
is left to the reader.) The communicating classes partition the set ΣK− as these are the maximal
sets of vertices such that each one communicates with all the others in the class.

By drawing the associated graph, we get six communicating classes A1 = {x, y, z, d, e, f } and
A2, A3, A4, A5, A6 with one element of ∆K− each.

If we read these classes again as vertices and draw an arc from class Ai to class A j if and only if
Ai , A j and there is an arc in G(φ) with some element in Ai as initial vertex and some element in
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A j as terminal vertex, we get a graph H. Note that H is a digraph. This graph of communicating
classes has only one sink, i.e., a vertex Av such that no arc leaves Av. By removing this sink, we
can order the classes such that there can be a path in H from Ai to A j only if j > i. When we
arrange the vertices in the corresponding order, we get the block triangular form

M(φ) =



M1 0 0 0 0 0
∗ M2 0 0 0 0
∗ ∗ M3 0 0 0
∗ ∗ ∗ M4 0 0
∗ ∗ ∗ ∗ M5 0
∗ ∗ ∗ ∗ ∗ M6


=



0 0 0 0 0 1
1 2 0 1 0 0
0 0 0 1 1 0

0 0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 0 1 0
1 1 0 0 0 0 1
1 2 0 2 0 0 1
0 0 0 0 1 0 1

0 0 1 0 0 0 0 1
0 0 0 0 0 1 1



,

where ∗ are submatrices. We denote by Gi the subgraph of G with vertex set Ai and whose arcs
are those of G whose initial and terminal vertices are in Ai. These graphs Gi associated with
the matrices Mi are called the irreducible components of G(φ). They are irreducible as they are
respectively strongly connected.

Remark. A matrix A is irreducible if and only if the multidigraph G(A) associated with A is
strongly connected, i.e., if for any pair of distinct vertices a and b there exists a directed path
from a to b and a directed path from b to a. We give only a sketch of the proof. Assume that A is
reducible, then there exists a permutation matrix P such that

A = P
(
A1 R
0 A2

)
P−1 = PĀP−1.

The multidigraph associated with Ā cannot be strongly connected, since the vertices corresponding
to the lower left part of Ā are not connected. As the graphs G(A) and G(Ā) are isomorphic, G(A)
is not strongly connected. Now suppose that G(A) is not strongly connected, i.e., there exist non-
empty sets S and S ′ such that no directed path from one vertex of S to one of S ′ exists. Relabel
the vertices of G(A) as elements of S and S ′ and permute the matrix A in the same manner to get
Ā. The new graph is G(Ā). As there are no directed paths from one vertex in S to one in S ′, we
deduce that Ā must have a block of zeros in the lower left corner. Hence Ā is reducible. Since A
and Ā are permutationally similar, we see that A is irreducible.

We will see that each irreducible matrix has a characteristic period p.
Let A be a non-negative matrix. The set of vertices in the graph associated with A is equal to
the set of states of A. The period per(I) of a state I is, by definition, the greatest common divisor
of all those integers m ∈ N for which (Am)II > 0. In the case that no such integer exists, we set
per(I) = ∞. The period per(A) of a matrix A is the greatest common divisor of all finite numbers
per(I), or is∞ if per(I) = ∞ for all I. We call a matrix A aperiodic if per(A) = 1.
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Lemma 2.35 ([59, Lemma 4.5.3]). Let A be an irreducible matrix. Then all states have the same
period. Moreover, per(A) is the period of any of its states.

Thus the matrix M1 is irreducible as well as aperiodic. By the subsequent lemma, we conclude
that M1 is primitive.

Lemma 2.36 ([59, Theorem 4.5.8]). Let A be a non-negative matrix. The following are equivalent:

a) A is primitive.

b) A is irreducible and aperiodic.

c) An > 0 for all sufficiently large n.

With r = 6, s = 1, and t = 6 the new matrix, which has the required form of Proposition 2.34, is

M(φ)6 =



13 14 2 12 11 2
54 94 39 54 28 39
16 39 24 16 4 23

12 14 2 13 11 2 0
50 68 18 50 36 18
16 39 23 16 4 24
50 83 30 47 24 33 1
101 176 72 104 52 69 0 1
28 53 25 28 15 25 0 0 1
16 24 11 19 19 8 0 0 0 1
19 24 8 16 15 11 0 0 0 0 1



.

The next corollaries are consequences of Proposition 2.34.

Corollary 2.37 ([26, Corollary 3.4]). Let ψ : A∗ → A∗ be an endomorphism, whose incidence
matrix has the form of Pr in Proposition 2.34. Then for all b ∈ A and all i ∈ N the letters having
an occurrence in ψ|A|

i
(b) or ψ|A|

i+1
(b) are the same.

We call a letter a ∈ A growing (with respect to ψ) if limn→∞ |ψ
n(a)| = ∞. A morphism ψ is growing

if all letters of A are growing. We define that a morphism is erasing if there exists a letter a ∈ A
such that ψ(a) is the empty word.

Corollary 2.38 ([26, Corollary 3.5]). The problem whether an endomorphism has non-growing
letters is decidable.

Proof. Let ψ be an endomorphism. We use the notation of Proposition 2.34. We write A(zero) (resp.
A(one)) for the set of all letters a ∈ A j where P j is the zero matrix (resp. the matrix (1)). The letters
belonging to A \

(
A(zero) ∪ A(one)

)
are growing according to the definition of an incidence matrix
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and the concept of growing.
Let a ∈ A j ∩ A(one) for some j. From the proof of Corollary 2.37 (i.e., [26, Corollary 3.4]), we
conclude that a is non-growing if and only if all letters occurring in ψr|A|(a), except a, are erasing
w.r.t. ψr|A|. We call the set of such non-growing letters Ā.
Let a ∈ Ai ∩ A(zero) for some i. The letter a is non-growing if and only if all letters occurring in
ψr|A|(a), except a, are erasing w.r.t. ψr|A| or belong to Ā. With Proposition 2.34 and Corollary 2.37,
we are able to decide whether a letter is erasing w.r.t. ψr|A|. �

In our case, the sets are Σ
(zero)
K− = ∅ and Σ

(one)
K− = {a, b, c, ā, b̄}. The letters of ΣK− \Σ

(one)
K− are therefore

growing. By calculating M(φ)r|ΣK− | = M(φ)66, it is easy to check that the letters a, b, c, ā, and b̄ are
non-growing. Consequently, φ is non-growing.

In what follows, we assume that the sequence s = τ(ψ∞(a)) fulfills these four conditions:

(C1) ψ is non-erasing,

(C2) the incidence matrix M(ψ) of ψ has the form M(ψ)r in Proposition 2.34,

(C3) for all b ∈ A and all i ∈ N the sets of letters having an occurrence in ψi(b) or ψi+1(b) are the
same,

(C4) the set of letters occurring in ψ∞(a) is A.

Obviously, the sequence u satisfies the first and the last condition. For the second statement, we
have to take a power of φ, here r = 6. Since we additionally require (C3), we consider φ|ΣK− | instead
of φ, here φ|ΣK− | = φ11. Note that this is possible without changing u or φ∞(y) as φ is a prolongable
morphism.

With the following theorem we decide whether we can redefine our sequence as a morphic se-
quence w.r.t. a growing prolongable endomorphism.

Theorem 2.39 ([26, Lemma 3.15], [66, Théorème 4.1]). The prolongable endomorphism ψ satis-
fies exactly one of the following statements:

a) There exists a growing letter b ∈ A, occurring in ψ∞(a), with the property that ψ(b) = αbβ (or
βbα) with α ∈ A∗ and β ∈ B∗ \ {ε}, where B is the set of non-growing letters.

b) The length of subwords of ψ∞(a) consisting of non-growing letters is bounded.

In the second case, the sequence ψ∞(a) can be defined algorithmically as a morphic sequence
w.r.t. a growing prolongable endomorphism. Moreover, it is decidable which statement ψ satisfies.

We check that the first statement is not fulfilled by φ11 with the aid of trivial calculations, whence
we are in b). Let B be the set of non-growing letters and C = A \ A(one) the set of growing letters.
The second part in the proof of our Theorem 2.39 in [66] gives us an approach for an algorithm
with which we can construct the new morphism. First, we describe the general case.
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We know that the length of words occurring in S = ψ∞(a) and consisting of elements in B is
bounded. Let ψ∞(a) = c0b0c1 . . . with c0, c1 ∈ C and b0 ∈ B∗. For the elements of the alphabet Y
we take the symbols [cbc′], where cbc′ is a factor of S with b ∈ B∗ and c, c′ ∈ C. Since the
subwords of S are of bounded length, Y is finite. We define the morphism ψ′ : Y∗ → Y∗ by

ψ′([cbc′]) = [z1b1z2][z2b2z3] . . . [znbnzn+1], (2.12)

where ψ(cb) = b0z1b1z2 . . . bn−1znb′n, the image ψ(c′) begins with b′′n zn+1, and bn = b′nb′′n with
b j ∈ B∗, z j ∈ C. The morphism ψ′ is growing as the growth order12 of the factor [cbc′] w.r.t. ψ′ is
the same as the one of c w.r.t. ψ. Given the map h from Y∗ to A∗ defined by [cbc′] 7→ cb, we see
that ψi(c0) is a prefix of h(ψ′i([c0b0c1])) for i ∈ N1, and S = h(ψ′∞([c0b0c1])).

In our case, the sequence φ∞(y) starts with ybae, where y and e are elements of C = {x, y, z, d, e, f }
and ba ∈ B∗ = {a, b, c, ā, b̄}∗. Our next step is the definition of the alphabet Y and the proof that
the elements of Y are the only ones in φ∞(y) of the form [cbc′] with c, c′ ∈ C and b ∈ B∗.

Theorem 2.40. The set of factors in φ∞(y) of the form [cbc′] with c, c′ ∈ C and b ∈ B∗ is

Y =
{
[ybae], [eby], [yba f ], [ f cz], [zby], [eb̄x], [xcd], [dāe],
[ybāe], [ybā f ], [zb̄y], [eb̄y]

}
.

Proof. By definition of φ,

[ybae], [eby], [yba f ], [ f cz], [zby], [eb̄x], and [dāe]

are clearly elements of Y. The other elements of Y are factors in φ∞(y) as they are images under φ.
We show this, for instance, for [ybāe]. This factor ybāe can be the image under φ of dā f or ybā f .
Since in turn no image of φ ends in d, the first case is excluded. In the second case, we have dāe
and ybāe as possible images. The latter factor is excluded, since we started with this factor, and
the other is φ(z) = dāe. The elements of Y are the only ones of the form [cbc′] with c, c′ ∈ C and
b ∈ B∗ as the other possibilities are excluded. As an example, we prove this for the factors with
f a as a prefix. They must be images of factors starting with xa, but these are in turn images of
the factors with prefix f a. Hence all factors with f a as a prefix are excluded. This completes the
proof, the detailed verification for the other elements of Y being left to the reader. �

Obviously, the set Y is finite. The application of (2.12) gives the new morphism φ′ : Y∗ → Y∗

defined by

φ′([ybae]) = [ybae][eby][yba f ], φ′([eby]) = [ f cz][zby],
φ′([yba f ]) = [ybae][eby][ybae], φ′([ f cz]) = [eb̄x][xcd],
φ′([zby]) = [dāe][eby], φ′([eb̄x]) = [ f cz][zb̄y],
φ′([xcd]) = [yba f ][ f cz], φ′([dāe]) = [zby][ybā f ],
φ′([ybāe]) = [ybae][eby][ybā f ], φ′([ybā f ]) = [ybae]][eby][ybāe],
φ′([zb̄y]) = [dāe][eb̄y], φ′([eb̄y]) = [ f cz][zb̄y].

12If |ψn(a)| for a ∈ A grows as nαaβn
a =: goa, we call goa the growth order of a for an integer αa ≥ 0 and a number

βa ≥ 1. For more details see [73].
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Then h(φ′∞([ybae]) = φ∞(y) with h : Y∗ → Σ∗K−, [cbc′] 7→ cb, and the T H(K−3 ) sequence u is
τ(h(φ′∞([ybae])). Corresponding to the new map φ′, we define a new morphism τ′ : Y∗ → ∆∗K−
under the condition that τ′(φ′∞([ybae]) = τ(φ∞(y)). As mapping rules we get

τ′([ybae]) = aba, τ′([eby]) = cb,
τ′([yba f ]) = aba, τ′([ f cz]) = b̄c,
τ′([zby]) = āb, τ′([eb̄x]) = cb̄,
τ′([xcd]) = ac, τ′([dāe]) = bā,
τ′([ybāe]) = abā, τ′([ybā f ]) = abā,
τ′([zb̄y]) = āb̄, τ′([eb̄y]) = cb̄.

With the order of the elements of Y as in Theorem 2.40 the incidence matrix of φ′ is

M(φ′) =



1 0 2 0 0 0 0 0 1 1 0 0
1 0 1 0 1 0 0 0 1 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0



.

By analysing the graph G(φ′), we get the irreducibility of M(φ′) and by Lemma 2.35 the aperiod-
icity. Additionally, M(φ′)8 > 0. We can again apply Proposition 2.34 and get r = 8, s = 1, and
t = 0. Since the matrix is now primitive, we can employ the statements for the primitive case in
Durand’s paper [25] in the sequel.

By the above, we know that τ′ is not a coding. Therefore, τ′(φ′∞([ybae])) is not a morphic se-
quence yet. But there exists a theorem which says that, if a sequence is an image, under a
morphism, of a fixed point of a primitive morphism, it is a morphic sequence w.r.t. a primitive
prolongable endomorphism. This result can be found in [14, Théorème 4], [24, Proposition 3.1],
[25, Proposition 17], [46], and [65, Théorème 1.1].

Theorem 2.41. Let ψ : A∗ → A∗ be a primitive morphism which generates the sequence S = ψ∞(a)
for some a ∈ A and let τ : A∗ → B∗ be a morphism such that s = τ(S ) where A and B are two finite
alphabets. Then s is a morphic sequence with respect to a primitive prolongable endomorphism.

Proof. We set m = |A|. Then Lemma 2.6 says that there exists an l ≤ (m−1)m such that every letter
of A has an occurrence in all images of ψl. Consequently, no letter is erasing under the morphism
σ = τψl and s = σ(S ).
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Define D = {(a, n) | a ∈ A, n ∈ [|σ(a)|]0} and the morphism ρ : A∗ → D∗ by

ρ(a) = (a, 0) . . . (a, |σ(a)| − 1).

There exists an integer ω (≤ maxa∈A |σ(a)|) with |ψω(a)| ≥ |σ(a)| for all a ∈ A. We will denote by
µ the endomorphism on D∗ given by

µ ((a, n)) = ρ
(
ψω(a)[n]

)
if n ∈ [|σ(a)| − 1]0,

µ((a, |σ(a)| − 1)) = ρ
(
ψω(a)[|σ(a)|−1,|ψω(a)|−1]

)
, otherwise.

We get for all a ∈ A

µ(ρ(a)) = µ((a, 0) . . . (a, |σ(a)| − 1))
= ρ

(
ψω(a)[0]

)
. . . ρ

(
ψω(a)[|ψω(a)|−1]

)
= ρ(ψω(a)).

It follows that µ(ρ(S )) = ρ(ψω(S )) = ρ(S ). Hence ρ(S ) is a fixed point of µ starting with some
letter (a0, 0) and µρ = ρψω.
Let χ : D∗ → B∗ be the coding defined by χ((a, n)) = σ(a)[n] for all (a, n) ∈ D. By the above, we
get for all a ∈ A

χ(ρ(a)) = χ((a, 0) . . . (a, |σ(a)| − 1)) = σ(a).

Consequently, χ(ρ(S )) = σ(S ). From µρ = ρψω we deduce that for all ν ∈ N the identity
µνρ = ρψνω is fulfilled. Since we assumed that ψ is primitive, we can infer the primitivity
of µ. �

Coming back to our sequence u, we summarise what we already know. All images of φ′8 have an
occurrence of all letters of Y, because of the primitivity of M(φ′), and M(φ′)8 > 0. The morphism
τ′ is not a coding. Hence all assumptions of Theorem 2.41 are satisfied, and we can employ it in
our case.
Set σ = τ′φ′8 and

D =
{
([ybae], 0), . . . , ([ybae], 3461), ([eby], 0), . . . , ([eby], 1183),

([yba f ], 0), . . . , ([yba f ], 3461), ([ f cz], 0), . . . , ([ f cz], 1394),

([zby], 0), . . . , ([zby], 1394), ([eb̄x], 0), . . . , ([eb̄x], 1183),

([xcd], 0), . . . , ([xcd], 2067), ([dāe], 0), . . . , ([dāe], 2067),

([ybāe], 0), . . . , ([ybāe], 3461), ([ybā f ], 0), . . . , ([ybā f ], 3461),

([zb̄y], 0), . . . , ([zb̄y], 1394), ([eb̄y], 0), . . . , ([eb̄y], 1183)
}
.

We calculated the length of σ ([w]) for each [w] ∈ Y with the aid of the following matrix multi-
plication. The incidence matrix of the coding τ′ is

2 0 2 0 0 0 1 0 1 1 0 0
1 1 1 0 1 0 0 1 1 1 0 0
0 1 0 1 0 1 1 0 0 0 0 1
0 0 0 0 1 0 0 1 1 1 1 0
0 0 0 1 0 1 0 0 0 0 1 1


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and for the endomorphism φ′8 it is

283 109 282 100 100 109 182 178 282 282 100 109
282 110 282 100 100 109 178 182 282 282 100 109
164 36 165 80 76 36 84 84 164 164 76 36
211 40 211 110 109 40 102 102 211 211 109 40
164 36 164 76 81 36 84 84 164 164 80 36
82 47 82 20 20 47 63 62 82 82 20 47
82 47 82 20 20 47 63 62 82 82 20 47
82 47 82 20 20 47 62 63 82 82 20 47
16 15 16 2 2 15 14 18 17 16 2 15
47 4 47 29 33 4 18 18 47 48 33 4
47 4 47 33 29 4 18 18 47 47 30 4
16 15 16 2 2 16 17 14 16 16 2 16



,

with the result that the incidence matrix of σ is

M(σ) = M(τ′)M(φ′)8

=


1039 356 1039 411 407 356 627 622 1038 1038 407 356
1038 357 1038 407 412 356 622 627 1038 1038 411 356
673 259 673 252 251 259 423 422 673 673 251 259
356 106 356 160 165 106 196 201 357 357 165 106
356 106 356 165 160 107 200 196 356 356 161 107

 .

By ρ([w]) = ([w], 0) . . . ([w], |σ([w])| − 1) we define a map from Y∗ to D∗.

The integer ω = 9 satisfies the conditions posed in the proof of Theorem 2.41. It is smaller than
max[w]∈Y |σ([w])| and |φ′9([w])| = |σ([w])| for all [w] ∈ Y. The morphism µ : D∗ → D∗ is defined
by

µ(([w], n)) = ρ(φ′9([w])[n]) if n ∈ [|σ([w])| − 1]0,
µ(([w], |σ([w])| − 1)) = ρ(φ′9([w])[|σ([w])|−1]) otherwise.

For the alphabet D we also need a new coding χ : D∗ → ∆∗K−, where the image χ(([w], n)) with
([w], n) ∈ D is the nth letter of σ([w]).
It is clear that χ(ρ(U))) = σ(U), where U = φ′∞([ybae]) is the sequence which is generated by φ′.
We have thus proved the following theorem.

Theorem 2.42. The T H(K−3 ) sequence u is the image, under a coding, of a fixed point of a prim-
itive prolongable endomorphism.

Remark. This causes the question whether we can now use [8, Theorem 8.4.7]. We know that
|D| = 25721. Consequently, the incidence matrices of µ and χ are very big and the necessary
calculations in the application of the theorem would be very complex.

We know that µ is primitive, i.e., there exists an integer k such that M(µ)k > 0, and χ is a coding.
Hence we are in a position to use the following theorem and continue as in its proof.
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Theorem 2.43. With the assumptions that the incidence matrix of µ has strictly positive entries
and that the morphism χ is a coding, it is decidable whether the infinite sequence u is ultimately
periodic.

This theorem and the proof can be found in a more general form in [25, Theorem 26]. Following
the proof of [25, Theorem 26], we have to determine the constant K as a limit for our further
calculation. For any endomorphism ψ : A∗ → A∗ we define ||ψ|| = maxa∈A |ψ(a)|.

Definition 2.44. For this subsection we say that occurrence in s of a word u is every integer i such
that s[i,i+|u|−1] = u. Let us denote by Rψ the maximal difference between two successive occurrences
of a word of length 2 in any fixed point of the primitive prolongable morphism ψ.

As a consequence of Lemma 2.6, this number is bounded by 2||ψ||(m−1)mm
with m = |A|.

Lemma 2.45 ([25, Lemma 7]). Set Qψ = max
{

max
k∈[((m−1)mm+2)]0

||ψk||

mina∈A |ψk(a)|
, ||ψ||

}
for a primitive

prolongable endomorphism ψ defined on A with m = |A|. Then for each such ψ and all n :

||ψn|| ≤ Qψ min
a∈A
|ψn(a)|.

With Kψ = QψRψ||ψ|| (see [25, Theorem 8]), we have according to [25, Section 5]

K = (4K3
ψ)||ψ||K

2
ψ+1(Kψ + 1)K2

ψ (2.13)

if the incidence matrix of ψ has strictly positive entries.

For our sequence u with the primitive prolongable endomorphism µ over D and the coding χ
we get M := ||µ|| = 3462 as the maximal length of the function values over all elements of D.
We present an algorithm for the calculation of Qµ with m = |D| = 25721. Since moreover
mina∈D |µ(a)| = 1184, we have as a first possible candidate for the constant Qµ the quotient
3462/1184 = 1731/592. For the real implementation of Algorithm 8 it would be useful to mi-
grate to calculations with integers instead of the here used fractions.

The number L = (m − 1)mm + 1 is very large, since (m − 1)m900 + 1 is already about 4.67 · 103973.
Additionally, the incidence matrix M(µ) is a (25721 × 25721)-matrix. Hence the calculation will
be very complex. For this reason we will try another approach for checking whether the sequence
is ultimately periodic.

2.3.2 Ultimate periodicity and subword schemes using I. V. Mitrofanov’s method

We will now make use of the proof of the decidability of the HD0L ultimate periodicity problem
of I. V. Mitrofanov in [63]. The general idea is similar to Durand’s one. At first he proves
the decidability for the primitive case and in the second step he reduces the general case to the
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Algorithm 8 The calculation of Qµ

procedure CALC(m,M,M(µ), L)
parameter m : number of elements in alphabet D
parameter M : maximal length of the function values over all elements of D
parameter M(µ) : incidence matrix of µ
parameter L : the value L = ((m − 1)mm + 1)
k ← 1
Ae ← M(µ)
div← 3465/1184
Q← 0
while k ≤ L do

Ae ← Ae ∗ M(µ)
add all entries of every column of Ae

max← maximal value of the sums over the columns
min← minimal value of the sums over the columns
d ← max /min
if d > div and d > M then

div← d
k ← k + 1

else
k ← k + 1

end if
end while
if div = 3465/1184 then

Q← M
else

Q← div
end if

end procedure

primitive one. We can immediately go to the primitive case because of our work in the previous
subsection.

We have already converted our original prolongable endomorphism φ and coding τ into the prim-
itive prolongable endomorphism µ and the coding χ. But we will go back one step to the primitive
morphism φ′ and the morphism τ′ defined on the alphabet Y.

The problem which is solved in the sequel: Given two finite alphabets A and B, a primitive
morphism ψ : A∗ → A∗ which is prolongable on the letter a ∈ A, and a non-erasing morphism
τ : A∗ → B∗. Is the word τ(ψ∞(a)) periodic?

Remark. According to [64, Proposition 3], a sequence generated by a primitive growing endo-
morphism ψ and a morphism τ is uniformly recurrent (see below for a definition). If this sequence
is ultimately periodic, then it is periodic. This result is [24, Lemma 2.7]. Hence in our case there
is no difference between “ultimately periodic” and “periodic”.
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We give some basic definitions. Recall that a word t is called a subword of s if s = s0ts1 for
some words s0 and s1. It is called a beginning or an ending of s if s0 or s1 is empty, respectively.
For what follows, we will also need the definition of a subword scheme. We think of two words
s0 = abcc and s1 = cbbc. They are located in s2 = cbbcabccbbc as t0 = aba and t1 = abc are
located in t2 = abcababc. There are two occurrences of s1, one at the beginning and one at the end
of s2. The subword s0 occurs only once in the middle and overlaps with the second occurrence of
s1. The prior statements are also true if we substitute s0, s1, and s2 with t0, t1, and t2. In this way
(s2; s0, s1) and (t2; t0, t1) have the same subword scheme.

Definition 2.46. Let s be a finite word with length n. A node of s is one of n + 1 positions: the
beginning of s (the beginning node), the end of s (the ending node) or one of the n − 1 positions
between two neighbouring letters (an ordinary node).

Any pair of nodes fixes a subword in s. Note that it can also be the empty word.

From all nodes of a subword we can filter out the interesting ones.

Definition 2.47. Suppose S = (s0, s1, . . . , sn) and T = (t0, t1, . . . , tm) are two ordered13 sets of
finite words defined on the same alphabet. For any s j ∈ S , we call the following nodes interesting
nodes:

• the beginning node,

• the ending node,

• every node that is a beginning or an ending of any occurrence of a word of T.

Definition 2.48. A subword scheme S(S ,T ) for S and T consists of the ordered pair:

1. the ordered set of n numbers z0, z1, . . . zn−1, where z j is the number of interesting nodes in
S j,

2. a table of size n × m.

The elements of the table are sets of ordered pairs of positive integers. In the i-th row and j-th
column you find all occurrences of t j in si denoted by pairs, where the first element is the beginning
of an occurrence and the second element is the end of the same occurrence. The interesting nodes
in s j are numbered from 1 to z j.

The theory of subword schemes is connected with the determination of sequences by morphisms
and codings. At first we define the set of generating words of a sequence.

Definition 2.49. An ordered set G of subwords of length one or two of ψ∞(a) is called the set of
generating words.

13Hereafter, by “ordered" is meant that we keep the original arbitrary order of the elements of the sets unchanged.



§2 Variations on the Tower of Hanoi with 3 pegs 93

We fix an arbitrary order on G. Then

T r := {τ(ψr(g)) | g ∈ G} ,

where the elements of each T r are arranged according to the order in G.

Now we use this for our sequence.

Theorem 2.50. The set G of generating words of φ′∞([ybae]) is

Y ∪
{
[ybae][eby], [eby][yba f ], [ f cz][zby], [eby][ybae],

[eb̄x][xcd], [dāe][eby], [ f cz][zb̄y], [yba f ][ f cz], [zby][ybā f ],

[eby][ybā f ], [eby][ybāe], [dāe][eb̄y]
}

∪
{
[ybae][eb̄x], [zby][ybae], [xcd][dāe], [ybāe][eb̄x],

[ybā f ][ f cz], [zb̄y][ybae], [eb̄y][ybae]
}
.

Proof. It is obvious that G contains the set Y. The second subset is contained because of the
mapping rules of φ′. We get the elements of the last remaining subset by an analysis similar to
that in the proof of Theorem 2.40. Note that here the form is only restricted by the maximal word
length of two. �

We employ our new knowledge on the construction of subword schemes. With the aid of the
computer algebra system Sage, we can determine the set T 2 in order to construct S(T 2,T 1). Since
|G| = 31, we will get a table of size 31 × 31. For instance, we look for the interesting nodes of
τ(φ′2([ybae])) = abacbabab̄cābabacbaba ∈ T 2 with respect to

T 1 =
{
abacbaba, b̄cāb, abacbaba, cb̄ac, bācb, b̄cāb̄, abab̄c, ābabā,
abacbabā, abacbabā, bācb̄, b̄xāb̄, . . .

}
.

We see that

τ(φ′2([ybae])) = 1abacb2aba3b̄c4āb5abacbaba6,

where the subscripts give the interesting nodes. Hence we have six interesting nodes and the first
entry in the vector of the subword scheme is 6. By this analysis, we also get the entries of the first
row of the table (see Tables 2.1 and 2.2).

The subword scheme S(T 2,T 1) consists of the vector

(6, 3, 6, 3, 3, 3, 3, 3, 6, 6, 3, 3, 8, 8, 7, 8, 5, 7, 7, 10, 8, 8, 8, 5, 8, 8, 5, 8, 8, 8, 8)

and the table consisting of Tables 2.1 and 2.2 (read them consecutively).

The size of a subword scheme is the largest number of pairs in a cell of its table. In our case, it is
equal to 2.
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For the further procedure, we need the following lemma which makes a statement concerning
subword schemes of increasing order.

Lemma 2.51 ([63, Theorem 3.8]). Given a prolongable endomorphism and a coding, we can
algorithmically determine a number d such that from n1 + d < m1, n2 + d < m2 and from
S(T m1 ,T n1) = S(T m2 ,T n2) it follows that S(T m1+1,T n1+1) = S(T m2+1,T n2+1).

Two subword schemes are equal if the tables coincide. The necessary lemmas for an algorithm to
determine the subword schemes can be found in [63].

Lemma 2.52. There exists a number K, called the uniform recurrence constant, such that, if s1

and s2 are subwords of τ(ψ∞(a)) and |s2| > K|s1|, then s1 is a subword of s2.

This property of τ(ψ∞(a)) is called linear repetition (see [21]) and is linked to the linear recurrence.
We say a sequence s is uniformly recurrent if, for every subword s, there exists an integer t such
that every subword of length t of s contains s. In [27] and [28], a sequence is then considered to
be linearly recurrent for the constant K if it is uniformly recurrent and the difference between two
successive occurrences of any word s1 is bounded by K|s1|.

If a sequence is linearly recurrent for K, it is also linearly repetitive for K as we show in the sequel.
Let n be a positive integer and s2 a subword of τ(ψ∞(a)) of length greater than Kn. Let s1 be a
subword of length n. The difference between two successive occurrences of s1 is less than Kn.
Consequently, s2 has at least one occurrence of s1.

Lemma 2.53 ([27, Proposition 19]). Let s = ψ∞(a) where ψ is a primitive growing endomorphism
prolongable on a. Then s is linearly recurrent for the constant K = QψRψ||ψ||, where Rψ is the
number from Definition 2.44 and Qψ is the constant from Lemma 2.45.

Lemma 2.54. There exist real numbers L1 < L2 and λ ∈ N2 such that, for any r and ai, the
following is satisfied:

L1λ
r < |τ(ψr(ai))| < L2λ

r.

To specify the numbers L1, L2, and λ, we use the three lemmas below.

Let M be a square matrix. The spectrum of M, denoted by Spec(M), is the set of its eigenvalues.
The spectral radius of M is the real number

ρ(M) = max{|λ| | λ ∈ Spec(M)}.

Lemma 2.55 ([27, Lemma 15],[48, Corollary 8.1.33]). Let M = (mi, j)i, j∈[n] be a non-negative
(n × n)-matrix. If M has a positive eigenvector v, then for all r ∈ N and all i ∈ [n] we have(

mink∈[n] vk

maxk∈[n] vk

)
ρ(M)r ≤

n∑
j=1

mr
i j ≤

(
maxk∈[n] vk

mink∈[n] vk

)
ρ(M)r, (2.14)

where ρ(M) is the spectral radius of M.
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Definition 2.56. Let ψ : A∗ → A∗ be a non-erasing endomorphism. For all a ∈ A, if there exists a
pair (d(a), λ(a)) satisfying

lim
n→∞

|ψn(a)|
c(a)nd(a)λ(a)n = 1

for some constant c(a), then the pair (d(a), λ(a)) is the growth type of a w.r.t. ψ.

Lemma 2.57 ([16, Proposition 34]). Let ψ : A∗ → A∗ be a morphism prolongable on the letter a
and M(ψ) its incidence matrix. If all letters of A occur in ψ∞(a), then λ(a) = ρ(M(ψ)).

Lemma 2.58 ([27, Lemma 17]). Let ψ be an endomorphism and λ ∈ N2 such that all letters
of A have growth type (0, λ). Then there exists a computable constant Pψ such that, for all r, the
following holds:(

1
Pψ

)
λr ≤ min

j

∑
i

mr
i j ≤ max

j

∑
i

mr
i j ≤ Pψλ

r. (2.15)

Additionally, we observe that with M(ψ)r = (mi, j)i, j∈A

|ψr(a)| =
∑
b∈A

|ψr(a)|b =
∑
b∈A

mb,a.

If the endomorphism ψ is primitive, we can determine the values L1, L2, and λ with the help of
Theorem 2.15, Lemma 2.55, Lemma 2.57, and Lemma 2.58 keeping in mind that τ is a coding.

Let us find an explicit N such that

2L2Kλd

L1
< N (2.16)

where L1, L2,K, λ, and d are the numbers from the above lemmas.

By Algorithm 9, we can figure out whether a sequence generated by a primitive prolongable
endomorphism and a coding is periodic.

If the algorithm yields the periodicity of the sequence, we additionally know the period length
which is less than or equal to maxt∈T n0+i |t|, where i is the number which led to the stop of the
algorithm. A proof of the correctness of the algorithm was given by Mitrofanov (see [63]). As
we can build only a finite number of different schemes with size < N, one of the conditions in
Algorithm 9, namely either that two subword schemes coincide or that the size of the subword
scheme is greater than N, will be true at some step. Therefore, we get a unique decision about the
periodicity by this algorithm.

If the sequence is non-periodic, we can conclude that the T H(K−3 ) sequence is not d-automatic
for any d. If the sequence is periodic, we obtain that the T H(K−3 ) sequence is d-automatic for
all d ∈ N2 by another theorem. This theorem is proved using the theory of d-recognisable sets.
At first we will give some basic definitions and results. For further reading we refer to [69], [12],
and [8].
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Algorithm 9 The decision whether the sequence τ(ψ∞(a)) is periodic
procedure DecPer(τ(ψ∞(a)),N, d)

parameter τ(ψ∞(a)) : sequence
parameter N : number from (2.16)
parameter d : number from Lemma 2.51
Choose an arbitrary n0

Build S(T n0+1+d,T n0+1)
i← 2
break← false
while break is false do

Build S(T n0+i+d,T n0+i)
if S(T n0+i+d,T n0+i) coincides with any previous scheme then

τ(ψ∞(a)) is non-periodic
break← true

else if size of S(T n0+i+d,T n0+i) > N then
τ(ψ∞(a)) is periodic
break← true

else
i← i + 1

end if
end while

end procedure

Definition 2.59. a) Let A be an alphabet. A subset L of A∗ is a language.

b) A deterministic finite automatonA, called DFA, is defined to be a 5-tupleA = (Q,Σ, δ, qo, E),
where Q is a finite set of states, Σ is the finite input alphabet, δ : Q × Σ → Q is the transition
function, q0 ∈ Q is the initial state, and E ⊆ Q is the set of accepting states.

c) A regular language L is a language accepted by some DFAA, i.e.,

L = L(A) = {w ∈ Σ∗ | δ(q0,w) ∈ E} 14.

d) A set X ⊆ N of integers is d-recognisable, if the language

repd(X) = {repd(n) | n ∈ X}

is regular, where repd(n) is the base-d expansion of n.

Definition 2.60. a) The characteristic sequence s of a set X ⊆ N is defined by sn = [n ∈ X].

b) A set X ⊆ N is ultimately periodic if its characteristic sequence is ultimately periodic.
14We extend the domain of δ to Q × Σ∗ in this way that we define δ(q, ε) = q for all q ∈ Q, and δ(q, sa) = δ(δ(q, s), a)

for all q ∈ Q, s ∈ Σ∗, and a ∈ Σ.
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A connection between the d-recognisable sets and the d-automatic sequences is given by the sub-
sequent lemma.

Lemma 2.61 ([69, Proposition 1.37]). Let d ∈ N2. A set X ⊆ N is d-recognisable if and only if its
characteristic sequence is d-automatic.

Example 2.62. A well-known example of a 2-recognisable set is the Prouhet-Thue-Morse set

{n ∈ N | rep2(n) contains an odd number of 1s}.

Its characteristic sequence is the Prouhet-Thue-Morse sequence

t = 0110100110010110 . . . .

According to Examples 2.3 and 2.4, the Prouhet-Thue-Morse sequence is 2-automatic. One can
find more details concerning this sequence in [1].

We make use of the following proposition to state the theorem about ultimately periodic se-
quences.

Proposition 2.63 ([12, Proposition 1.5.3]). Let d ∈ N2. Any ultimately periodic set X ⊆ N is
d-recognisable.

Remark. We can also formulate Cobham’s Theorem 2.32 in the field of recognisable sets. Let p
and q be multiplicatively independent integers and let X ⊆ N be both p- and q-recognisable. Then
X is ultimately periodic.

With the proposition we can now deduce our theorem.

Theorem 2.64. Any ultimately periodic sequence is d-automatic for all d ∈ N2.

An alternative proof of this theorem was given in [8, Theorem 5.4.2].
By the decision between periodicity and non-periodicity, we can deduce either the non-automaticity
of the sequence u for any d ∈ N2 or the automaticity for all d ∈ N2.

2.4 Conclusion and Outlook

In this chapter we disproved the automaticity of the T H(C+
3 ) sequence w. We used a theorem of

Cobham which says that in an automatic sequence the frequency of a letter is rational, if it exists.
By showing that the frequencies of all letters exist and are irrational, we could conclude that, for
any d, w is not d-automatic. This confirms the Allouche-Sapir Conjecture concerning the T H(C+

3 )
sequence.
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Since we could not ascertain whether the frequency of a letter in the T H(K−3 ) sequence u is ir-
rational, we chose a new approach where we made use of another theorem of Cobham. It says
that, if one has two multiplicatively independent numbers k and l and a sequence is both k- and
l-automatic, then the sequence is ultimately periodic. By disproving the ultimate periodicity, we
would be able to conclude that the sequence is not automatic. For this purpose, we had so far
two proofs on hand which show the decidability of the question on the ultimate periodicity, one
of F. Durand and one of I. V. Mitrofanov. First, we proved that u is the image, under a coding, of
an iterative fixed point of a primitive prolongable endomorphism. According to Durand, we can
then decide about the ultimate periodicity of this sequence. But it turned out that the necessary
calculations are very complex.
For Mitrofanov’s proof we needed the set of generating words and the subword schemes of the
sequence. We determined this set and a subword scheme. Hereafter, an algorithm for the decision
about the periodicity was given. We formulated a sufficient condition for the automaticity of the
T H(K−3 ) sequence. But for the final decision about the periodicity a few numbers remained to as-
certain. In both approaches, first, one will have to calculate the numbers Rν from Definition 2.44
and Qν from Lemma 2.45 with the aid of Algorithm 8. Depending on the method, one will have
then to determine Kν and K of (2.13) to apply Theorem 2.43 or L1, L2, and λ as we saw in this sec-
tion to find N and proceed with Algorithm 9. Since the calculations are going to be very complex,
as it was already predicted for the general case in [26, Chapter 1.3], one will have to make use of
the capabilities of high performance computing. But these efforts are worth it, since the proof of
ultimate periodicity provides a unique decision whether u is d-automatic or not.



Chapter 3

The Star Tower of Hanoi: a variant of the
Tower of Hanoi with 4 pegs

In the previous chapter we considered variants of the Hanoi graphs which were directed graphs.
Now we take a closer look at directed graphs to specify then a special form of them. Recall that a
directed graph (or digraph) with vertex set V and arc set A is a graph in which all arcs are directed.
In a digraph the in-degree of a vertex v ∈ V is the number of arcs with v as terminal vertex.
Similarly, the out-degree of a vertex v ∈ V is given by the number of arcs which leave the vertex v.
Then we define

Definition 3.1. A (directed) star S t(p) depending on p ∈ N is a directed graph with vertex set
V = [p]0 and arc set A = {(0, i), (i, 0) : i ∈ [p − 1]}.

It is easily seen that every (directed) star has p − 1 vertices with [in-degree, out-degree] = [1, 1]
and one vertex, namely the center, with [p−1, p−1]. A (directed) star is, of course, also a simple,
undirected graph. This structure can be used to find new variants of the Tower of Hanoi. The
number p stands here for the p pegs, where the vertex 0 or peg 0 is always the central peg. One of
the simplest examples for these variants is the Linear TH, here called the T H(S t(3)), on three pegs,
which we already know from the previous chapter. The version with four pegs, namely T H(S t(4)),
is of special interest, since it is similar to the unrestricted The Reve’s puzzle.
In 1994, Paul K. Stockmeyer introduced in [78] this new variant. According to the underlying
directed star S t(4) on four pegs, it consists of three pegs, labeled 1, 2, and 3, arranged in an
equilateral triangle, and one peg, labeled 0, in the center. The only allowed moves are between the
central peg and the external ones. The move from 0 to 1 is called ā and in the opposite direction a,
b goes from 0 to 2 and b̄ back and c goes from 0 to 3 and c̄ back (see Figure 3.1). We will shortly
see why we chose this labelling.
In the book [33] we can find this puzzle as well. Both sources looked at the problem to transfer
a perfect tower from an external peg to another external peg. They determined the minimum
number of moves for this question among the algorithms which apply the Frame-Stewart-type
strategy. The Frame-Stewart-type strategy is based on the two different algorithms to solve the

101
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The Reve’s puzzle by B. M. Stewart and J. S. Frame. For the The Reve’s puzzle, it turned out that
the presumed minimum numbers of moves arising from the respective algorithms are the same
for both strategies ([33, Proposition 5.3]). The same was shown for n ∈ N and p ∈ N3, i.e.,
for the Multi-Peg Tower of Hanoi, in [53]. Hence we call it the Frame-Stewart-type strategy. In
the editorial note by O. Dunkel to [76], it was pointed out that the proof that these algorithms
are optimal was still lacking. This problem was known in the literature as the Frame-Stewart
Conjecture.

b

b

b

b

2 0 3
1

ā a

b

b̄ c

c̄

1

Figure 3.1: The directed star S t(4) on four pegs

We come back to our puzzle. To analyse the solution, use was made of the already known optimal
algorithms for the Linear TH on three pegs in [33, Chapter 8.3]. We chose the above labelling
of the moves in the Star TH in view of the similarity to the Linear TH, for instance if we omit
peg 3 and the corresponding moves. The algorithm to solve the Star TH problem with n discs for
the case “external peg to another external peg” is described in the sequel. To this end, let n ∈ N,
m ∈ [n] and k ∈ [3].

1. Recursively move the smallest n − m discs from the source peg to the non-goal peg k;

2. Avoiding peg k, move the largest m discs from the source peg to the goal peg;

3. Recursively move the smallest n − m discs from peg k to the goal peg.

If n = 0, we fix m = 0. Obviously, the second part is solved by the same algorithm as the
Linear TH, where we want to move the discs from the non-central peg to the other non-central
peg. In [33, Chapter 8], this algorithm is called Linear-02(m). Algorithm 10, as well as the later
algorithm for the Linear TH, arises from the application of The Sapir Algorithm 7 in Chapter 2 on
the digraph of the Linear TH.

We know by [33, Section 8.1] and [78, Section 3] that we need 3m−1 moves to transfer the perfect
tower in the Linear TH with Linear-02(m). Hence, we set for the Star TH

S t0
12 = 0; ∀n ∈ N : S tn

12 = min
{
2S tn−m

12 + 3m − 1 | m ∈ [n]
}

(3.1)
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Algorithm 10 Linear: from the non-central peg to the other non-central peg
procedure Linear-02(n)

parameter n : number of discs {n ∈ N0}

if n , 0 then
transfer n − 1 smallest discs from the non-central source peg to non-central goal peg
move disc n from non-central source peg to central peg
transfer n − 1 smallest discs from non-central goal peg to non-central source peg
move disc n from central peg to non-central goal peg
transfer n − 1 smallest discs from non-central source peg to non-central goal peg

end if
end procedure

For abbreviation, we wrote S tn instead of S tn(4). For n = 1, 2 we calculate that m = 1 is optimal,
but for n = 3, 4, 5 and 6 we get m = 2 and finally m = 3 or more for n ≥ 7 . In the next theorem
we specify this in general.

Theorem 3.2 ([78, Theorem 2], [33, Theorem 8.8]). The value

m =

⌊
ln(a(3)

n )
ln(3)

⌋
+ 1,

where a(3)
n is n-th element of the 3-smooth sequence15, is the unique value that defines S tn

12 in (3.1).
In the resulting algorithm, for every i ∈ [n], there is a disc which makes exactly 2a(3)

i moves, i.e.,
altogether

S tn
12 = 2

n∑
i=1

a(3)
i

for the minimum number of moves using the Frame-Stewart-type strategy.

This method followed the lines of B. M. Stewart. But there is another possible approach. We can
look at the halfway situation before the only move of the largest disc as well. This procedure is
due to J. S. Frame. If we try to apply Frame’s idea, we would get a new algorithm with n ∈ N,
m ∈ [n]0 and k ∈ [3] :

1. Move the smallest n − m − 1 discs from the source peg to the non-goal k;

2. Avoiding peg k, move m discs from the source peg to the goal peg;

3. Move the largest disc from the source peg to the central peg;

4. Avoiding peg k, move m discs from the goal peg to the source peg;

15The 3-smooth sequence
(
a(3)

n

)
n∈N

consists of the 3-smooth numbers 2 j · 3k, j, k ∈ N0 ordered increasingly:
a(3) = (1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27 . . .)
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5. Move the largest disc from the central peg to the goal peg;

6. Avoiding peg k, move m discs from the source peg to the goal peg;

7. Move the smallest n − m − 1 discs from peg k to the goal peg.

For n = 0 we set m = 0 and use only the third and the fifth step. But this does not really follow
Frame as we have two moves of the largest disc. Here, it is not possible to move the largest disc
in one move from the source peg to the (non-central) goal peg. Indeed, only Stewart’s approach is
applicable, as we already stated in Theorem 3.2.

But what happens if it is our aim to transfer the perfect tower with n ∈ N discs from the central
peg 0 to an external peg or in the opposite direction? First, we use Stewart’s approach. Let n ∈ N,
m ∈ [n] and again k ∈ [3]. Then this algorithm solves the problem 0n → 1n/2n/3n :

1. Recursively move the smallest n − m discs from the central peg 0 to a non-goal peg k;

2. Avoiding peg k, move the m largest discs from central peg 0 to the goal peg;

3. Recursively move the smallest n − m discs from peg k to the goal peg

or in the opposite direction 1n/2n/3n → 0n :

1. Recursively move the smallest n − m discs from the source peg to a non-goal peg k;

2. Avoiding peg k, move the largest m discs from the source peg to the central (goal) peg;

3. Recursively move the smallest n − m discs from peg k to the central (goal) peg.

For the case n = 0 we fix m = 0.

Algorithm 11 Linear: from source peg to central peg or from central peg to goal peg
procedure Linear-01(n)

parameter n : number of discs {n ∈ N0}

if n , 0 then
transfer n − 1 smallest discs from source peg to non-central, non-goal peg
move disc n from source peg to goal peg
transfer n − 1 smallest discs from non-central, non-goal peg to goal peg

end if
end procedure

The second part of both is solved by the algorithm Linear-01(m), which needs 1
2 (3m − 1) moves,

since every disc d ∈ [n] \ [n − m] moves 3n−d times in the solution.
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Being interested in the minimum number of moves for the “central peg to external peg” problem,
we set

S t0
01 = 0; ∀n ∈ N : S tn

01 = min

S tn−m
01 +

1
2

(3m − 1) + S tn−m
12︸︷︷︸

=2
∑n−m

i=1 a(3)
i

| m ∈ [n]

 . (3.2)

Again, we can calculate the first few values of m. We see that

m = 1 for n = 1, 2
m = 2 for n = 3, 4, 5
m = 3 for n = 5, 6, 7, 8, 9
m ≥ 4 for n = 10, 11, 12, . . . .

It is conspicuous that we have two options for n = 5. Now we are able to find the sequences of
disc moves for the first first few values of n, as it is done in Tables 3.1 and 3.2. It will turn out
that for n = 5, 8 and 12 we have two different sequences of disc moves whereby the total number
of moves are equal for both possibilities. This phenomenon will presumably occur for greater n
again and again, since it arises from the recursive structure of the calculation of the total number
of moves with Formula (3.2).

We can also summarise the total number of moves for the first values of n in a sequence:

S t01 = (1, 4, 7, 14, 23, 32, 47, 68, 93, 120, 153, 198, . . .) (3.3)

Further elements of this sequence can be found again by Formula (3.2) and the comparison of the
total number of moves for different m. Here, too, we can make use of the recursive structure of the
calculations in Tables 3.1 and 3.2.

After rewriting the expression S tn
01 the number is equal to S tn

10, which is the recursion for the
minimum number of moves for the “external peg to central peg” problem, since

S tn
01 = min

{
S tm′

01 +
1
2

(
3n−m′ − 1

)
+ S tm′

12 | m
′ ∈ [n]0

}
and

S tn
10 = min

{
S tm′

12 +
1
2

(
3n−m′ − 1

)
+ S tm′

10 | m
′ ∈ [n]0

}
.

Now we have to look at Frame’s approach and the questions whether it is applicable in this case
and if there is a difference to the number of moves resulting from Stewart’s way. First, we find the
algorithms for the two directions and see that the largest disc moves only once. Corresponding
to the above recursions, we call the recursion for the presumed minimum number of moves using
Frame S tn+1

01 and S tn+1
10 .
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disc d nom disc d nom
n=1,m=1: 1 1
n=2,m=1: 1 3

2 1
n=3,m=2: 1 3

2 3
3 1

n=4,m=2: 1 7
2 3
3 3
4 1

n=5,m=2: 1 7 m=3: 1 7
2 9 2 3
3 3 3 9
4 3 4 3
5 1 5 1

n=6,m=3: 1 7
2 9
3 3
4 9
5 3
6 1

n=7,m=3: 1 15
2 7
3 9
4 3
5 9
6 3
7 1

n=8,m=3: for n-m=5:
m’=2: 1 15 m’=3: 1 15

2 21 2 15
3 7 3 13
4 9 4 9
5 3 5 3
6 9 6 9
7 3 7 3
8 1 8 1

disc d nom
n=9,m=3: 1 23

2 17
3 15
4 13
5 9
6 3
7 9
8 3
9 1

n=10,m=4: 1 23
2 17
3 15
4 13
5 9
6 3
7 27
8 9
9 3

10 1
n=11,m=4: 1 31

2 15
3 21
4 7
5 27
6 9
7 3
8 27
9 9

10 3
11 1

Table 3.1: Calculations of the number of moves (nom) of each disc for n = 1, . . . , 11 for the
minimising value m
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disc d nom disc d nom
n=12,m=4: for n-m=8:
m’=2: 1 31 m’=3: 1 31

2 45 2 39
3 15 3 21
4 21 4 21
5 7 5 7
6 27 6 27
7 9 7 9
8 3 8 3
9 27 9 27
10 9 10 9
11 3 11 3
12 1 12 1

Table 3.2: Calculations of the number of moves (nom) of each disc for n = 12 for the minimising
value m

Again, let n ∈ N0 and k ∈ [3]. If we go from 0n+1 → 1n+1/2n+1/3n+1 , we use the following
algorithm with m′ ∈ [n + 1]0 and k′ ∈ [3] \ {k} :

1. Move m′ discs from the central peg to the non-goal peg k;

2. Avoiding peg k, move n − m′ discs from the central peg to the non-goal peg k′;

3. Move the largest disc from the central to the goal peg;

4. Avoiding peg k, move n − m′ discs from the non-goal peg k′ to the goal peg;

5. Move m′ discs from peg k to the goal peg

Fo the case that we want to go from 1n+1/2n+1/3n+1 → 0n+1, we apply this algorithm, again with
m′ ∈ [n + 1]0 and k′ ∈ [3] \ {k} :

1. Move m′ discs from the source peg to the non-goal, non-central peg k;

2. Avoiding peg k, move n − m′ discs from the source peg to the non-goal peg k′;

3. Move the largest disc from the source peg to the central peg;

4. Avoiding peg k, move n − m′ discs from peg k′ to the central peg;

5. Move m′ discs from peg k to the central peg.
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We simplify the formulas of S tn+1
01 and S tn+1

10 to compare them with the numbers S tn+1
01 and S tn+1

10 .

S tn+1
01 = min

{
S tm′

01 +
1
2

(
3n−m′+1 − 1

)
+ S tm′

12 | m
′ ∈ [n + 1]0

}
S tn+1

10 = min
{

S tm′
12 +

1
2

(
3n−m′+1 − 1

)
+ S tm′

10 | m
′ ∈ [n + 1]0

}
.

The corresponding numbers in Frame’s version are

S tn+1
01 = min

{
S tm′

01 +
1
2

(
3n−m′ − 1

)
+ 1 +

(
3n−m′ − 1

)
+ S tm′

12 | m
′ ∈ [n + 1]0

}
= min

{
S tm′

01 +
1
2

(
3n−m′+1 − 1

)
+ S tm′

12 | m
′ ∈ [n + 1]0

}
and

S tn+1
10 = min

{
S tm′

12 +
(
3n−m′ − 1

)
+ 1 +

1
2

(
3n−m′ − 1

)
+ S tm′

10 | m
′ ∈ [n + 1]0

}
= min

{
S tm′

12 +
1
2

(
3n−m′+1 − 1

)
+ S tm′

10 | m
′ ∈ [n + 1]0

}
.

By comparing the numbers, we obtain that the respective recursions for Stewart’s and Frame’s
strategy coincide. We conclude that it is enough to look at Stewart’s version for all transfers of a
perfect tower from the central peg to an arbitrary external peg in the Star TH. Hence we can also
use the common term Frame-Stewart-type strategy.

The question whether the Frame-Stewart-type strategy is optimal for the problems to transfer a
perfect tower from an external peg to another external peg or from the central peg to an arbitrary
external peg is still open. One very helpful step could be the proof the Frame-Stewart Conjecture
for four pegs, which was found by T. Bousch [13] in 2014. Stockmeyer [79] has already done
exhaustive computer searches on the “external peg to external peg” problem and the “central peg
to external peg” problem in the Star TH with four pegs. For the first problem, he got for the total
required number of moves

2, 6, 12, 20, 32, 48, 66, 90, 122, 158, 206, 260, 324, 396, 492, and 600 for n = 1, 2, . . . , 16.

These are exactly the values of S tn
12 in Theorem 3.2 for n = 1, . . . , 16. For the second problem, he

calculated

1, 4, 7, 14, 23, 32, 47, 68, 93, 120, 153, 198, 255, 318, and 399 for n = 1, 2, . . . , 15.

The beginning of this sequence corresponds to the sequence of (3.3), which we calculated here
using the Frame-Stewart-type strategy. With the aid of the OEIS (The on-line encyclopedia of
integer sequences) and by generating more data, one could probably find a system in the sequence
of numbers for which we have two different sequences of disc moves or for which we have two
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different possible ms (For instance, the phenomenon of n = 5 occurs again at n = 8, 12, 15). But
the main interest beside these sequences is to search for a regularity in the sequence of ms for
the presumed minimal number of moves S tn

01, as it was found for the sequence of values m for
the presumed minimal number of moves S tn

12 in the use of the 3-smooth sequence
(
a(3)

n

)
n∈N

(OEIS
A003586) by Stockmeyer.
Obviously, this puzzle can be extended to p ∈ N3 by considering the directed star S t(p). We apply
again the Frame-Stewart-type strategy on the “external peg to external peg” problem and get as
algorithm for n ∈ N, m ∈ [n], and k ∈ [p − 1]:

1) Recursively move the smallest n − m discs from the source peg to the non-goal peg k,

2) Avoiding peg k, move the largest m discs from the source peg to the goal peg,

3) Recursively move the smallest n − m discs from peg k to the goal peg.

If n = 0, we set m = 0. The first and the third step must be solved in the Star TH with p pegs
for the “external peg to external peg” problem, whereas the second one in the Star TH with only
(p − 1) pegs. Stockmeyer [79] found out that for a very large number of discs for k ∈ N there
are

(
k+p−5

p−4

)
=

(
k+p−5

k−1

)
discs that each make exactly 2k · 3 j moves for all j ∈ N0. Considering the

“central peg to external peg” problem, we get as algorithm for n ∈ N, m ∈ [n], and k ∈ [p − 1]:

1) Recursively move the smallest n − m discs from the central peg to the non-goal peg k,

2) Avoiding peg k, move the largest m discs from the central peg to the goal peg,

3) Recursively move the smallest n − m discs from peg k to the goal peg.

Again, if n = 0, we fix m = 0. Here we have twice the Star TH with p pegs for the “central peg to
external peg” problem or the “external peg to external peg” problem, respectively, and once with
(p − 1) pegs for the “central peg to external peg” problem. For a further analysis one could look
again at Frame and his approach in [76]. But it would turn out that his induction proof is here
not applicable as we do not know enough about the Star TH for the “external peg to external peg”
problem yet. The problem for p pegs requires further research. One aim would be to find the
minimum number of moves or at least a similar statement for the disc moves as for the “external
peg to external peg” problem.
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