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"There is plenty of room at the bottom."
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Summary

In biomedical research, various nanoparticles (NPs) are being developed for clinical

applications ranging from diagnostics to therapy, utilizing their unique physicochem-

ical properties as well as their high versatility. For each application it is essential

that the NPs efficiently reach their target site in the body, for example, a specific

cell type or substructure within an organ. Hence, the aim of this thesis was to study

the microdistribution of quantum dots (QDs) in muscle tissue of healthy mice. To

investigate the influence of surface modifications on the tissue distribution, QDs with

either a polyethylene glycol (PEG) or a carboxyl surface coating were applied.

Chapter 2 [Nekolla et al., 2016] demonstrates by means of in vivo real-time fluores-

cence microscopy, particle tracking, and transmission electron microscopy that the

microdistribution of QDs is strongly influenced by their respective surface modification.

Locally injected carboxyl QDs preferentially bind to constituents of the extracellular

matrix, such as collagen fibers and basement membranes. Furthermore, carboxyl

QDs are localized in caveolae of endothelial cells as well as in endothelial junctions,

enabling them to translocate into the vessel lumen. In contrast, PEG QDs show little

interaction with tissue components, but mainly diffuse in the interstitial space. The

data suggest that constituents of the extracellular matrix act as a selective barrier

depending on the QD surface modification.

Chapter 3 [Rehberg, Nekolla et al., 2016] shows that immune cells play a part

in the microdistribution of NPs in the tissue. By intraarterial injection of carboxyl

QDs it was demonstrated that perivascular and tissue-resident macrophages are

interconnected by microtubule-containing tubular membranous structures, so-called

membrane nanotubes (MNTs). Inside these MNTs, carboxyl QDs are exclusively

contained in vesicles, which are transported along the microtubules by molecular

motors.

Taken together, this thesis elucidates the extra-, intra-, and intercellular distribution

of QDs at the microscopic tissue scale. The choice of surface modification critically
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influences the microdistribution, which should be considered for the future design

of NPs that are intended for the use in biomedical applications. Furthermore, it is

important to keep in mind that the distribution of NPs in the tissue takes place via

different routes including the transport via networks of cells interconnected by MNTs.
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Zusammenfassung

In der biomedizinischen Forschung werden diverse Nanopartikel (NP) für klinische

Anwendungen, die von Diagnostik bis Therapie reichen, entwickelt. Dabei werden die

einzigartigen physikalisch-chemischen Eigenschaften sowie die große Vielseitigkeit

der NP genutzt. Für jede Anwendung ist es essentiell, dass die NP im Körper ihr

Ziel erreichen, z.B. einen bestimmten Zelltyp oder eine spezifische Unterstruktur

in einem Organ. Daher war das Ziel dieser Dissertation, die Mikrodistribution von

Quantenpunkten (quantum dots, QDs) in Muskelgewebe von gesunden Mäusen zu

untersuchen. Um den Einfluss der Oberflächenmodifikation auf die Verteilung im

Gewebe zu erforschen, wurden QDs mit Polyethylenglycol (PEG)- oder Carboxyl-

Oberflächengruppen verwendet.

Kapitel 2 [Nekolla et al., 2016] zeigt mit Hilfe von Echtzeit-Fluoreszenzmikroskopie,

Partikel-Tracking und Transmissionselektronenmikroskopie, dass die Mikrodistribu-

tion von QDs stark von der Oberflächenmodifikation beeinflusst wird. Lokal injizierte

Carboxyl-QDs binden an Elemente der Extrazellulärmatrix wie Kollagenfasern und

Basalmembranen. Darüberhinaus befinden sich Carboxyl-QDs in endothelialen Cave-

olae sowie in Zell-Zell-Kontakten zwischen Endothelzellen, was die Translokation

in das Gefäßlumen erlaubt. Im Gegensatz dazu tritt nur wenig Interaktion zwi-

schen PEG-QDs und Gewebekomponenten auf, vielmehr diffundieren PEG-QDs

hauptsächlich im Interstitium. Die Daten deuten darauf hin, dass Bestandteile der

Extrazellulärmatrix je nach QD-Oberflächenmodifikation als selektive Barriere wirken.

Kapitel 3 [Rehberg, Nekolla et al., 2016] legt dar, dass Immunzellen einen Anteil

an der Mikrodistribution von NP im Gewebe haben. Mithilfe von intraarterieller In-

jektion von Carboxyl-QDs wurde gezeigt, dass perivaskuläre und gewebsständige

Makrophagen durch röhrenförmige Membranstrukturen, sog. membrane nanotubes

(MNTs), die Mikrotubuli enthalten, verbunden sind. Carboxyl-QDs befinden sich in

den MNTs ausschließlich in Vesikeln, die mit Hilfe von molekularen Motoren entlang

der Mikrotubuli transportiert werden.
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Zusammengefasst erläutert diese Dissertation die extra-, intra- und interzelluläre

Verteilung von QDs auf der mikroskopischen Gewebeebene. Die Wahl der Ober-

flächenmodifikation hat einen entscheidenden Einfluss auf die Mikrodistribution. Dies

sollte für die zukünftige Entwicklung von NP für biomedizinische Anwendungen be-

dacht werden. Darüberhinaus ist es wichtig zu berücksichtigen, dass NP im Gewebe

auf unterschiedliche Art und Weise verteilt werden. Dazu zählt auch der Transport in

Netzwerken von Zellen, die durch MNTs verbunden sind.
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1 Introduction

1.1 Nanomaterials

1.1.1 Definition

The word “nano” is derived from the Greek word “nanos”, meaning “dwarf”. The name

already indicates that nanomaterials (NMs) are very small objects and, in fact, their

sizes are comparable to those of proteins or small viruses.1 More precisely, NMs are

defined as objects with at least one dimension on the nanometer scale, i.e., in the

1 nm to 100 nm size range.2,3 Thus, not only particles with a sub-100 nm diameter

(i.e., nanoparticles (NPs)), but, for example, also long-stretched carbon nanotubes or

graphene sheets belong to the category of NMs.4

1.1.2 Sources and Applications of Nanomaterials

NMs are generated in many natural processes, for instance, during forest fires or sand

storms.5,6 Further examples for natural NMs are volcanic ash and ocean spray.5,6,7

Moreover, there are diverse anthropogenic NMs that are, for example, contained

in exhausts from combustion engines (contributing to ambient particulate matter

air pollution), smoke from combustion (from cooking and heating as well as power

plants), or cigarette smoke.5,7 Furthermore, the field of nanotechnology enables the

synthesis of NMs with desired compositions, morphologies, and physicochemical

properties. These engineered NMs are utilized in a wide variety of applications,

for instance, in (bio)sensor technology,8 surface coatings,9 photovoltaic devices,8

wastewater treatment,10 cosmetics,11 sunscreen,12 and food packaging.13 In 2015,

engineered NMs were contained in over 1600 consumer products.14
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1.1.3 Biodistribution of Nanomaterials

The described sources and applications indicate that NMs can be incorporated into

the human body, for example, by inhalation, oral, or dermal uptake.7,14 In addition,

in biomedical applications, engineered NMs can also be introduced into the body

by injection or implants.14 From these gates, NMs can potentially translocate into

the circulation and lymphatic system and thus distribute in the whole body.7 The

distribution of a compound of interest in the body is called biodistribution. It can be

determined by dissecting animals and analyzing the amount of compound in different

organs. Alternatively, the distribution of the compound – labeled with a suitable

contrast agent – can be determined using noninvasive imaging methods, such as

magnetic resonance imaging (MRI), molecular imaging (e.g., positron emission

tomography (PET)), or optical imaging.15

The biodistribution of NPs is significantly influenced by the adsorption of biomolecules

on the particle surface occurring upon contact with biological media and leading to the

formation of a so-called “corona”.16 It consists of a stable “hard” corona with strongly

adsorbed molecules and a “soft” corona with a dynamic composition of weakly bound

molecules.16,17 The type of corona depends, amongst others, on particle size and

characteristics like surface chemistry, hydrophobicity, and charge.17 By adsorption of

opsonins (mostly immunoglobulins and complement proteins, but also other serum

proteins, such as C-reactive protein or fibronectin) on the particle surface, NPs can

be recognized by the mononuclear phagocyte system (MPS), a part of the immune

system consisting of phagocytic cells.18,19 As a result, in the circulation the majority

of NPs underlies rapid clearance and is deposited mainly in liver and spleen.18,19 If

the NPs are small enough (less than 8 nm in hydrodynamic diameter), they may be

renally cleared and therefore excreted with the urine.20 Alternatively, degradation or –

if the NPs are not biodegradable – accumulation in the body, mainly in the organs of

the MPS, takes place, which may imply toxic effects.18,20

On the tissue level, compartments such as the endothelium or the extracellular

matrix (ECM) can pose transport barriers for NPs.21 If these barriers are overcome,
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cellular uptake of NPs can take place via different endocytotic pathways including

phagocytosis, clathrin- or caveloae-mediated endocytosis, and macropinocytosis, the

dominant mode of uptake being influenced by composition, size, shape, and surface

characteristics.22 Inside the cell, NPs can accumulate in the endo-lysosomal system

or escape into the cytoplasm and even enter the nucleus, if size allows for it.22

1.1.4 Nanotoxicology

Ambient particulate matter air pollution is known to correlate with cardiovascular

diseases, respiratory illnesses, and cancer.23,24 It is suggested that in particular

the nanosized component contributes to the adverse health effects of airborne

particulate matter – the reason being the increased surface area per mass unit

(see section 1.1.5.1).23,25,26 The scientific field which investigates negative health

effects of (engineered) NMs is called nanotoxicology.7 NM-induced toxic effects in

the human organism mainly arise from oxidative stress. It is caused either directly by

activating cells (e.g., macrophages) to produce reactive oxygen species or indirectly

by introducing chemicals, such as soluble metals or radicals, which are adsorbed on

the particle surface.25,26 Oxidative stress is associated amongst others with changes

in the cytoskeleton, unregulated signaling, release of proinflammatory mediators,

and DNA damage.5,23,25 Possible consequences are inflammation, cytotoxicity, and

carcinogenesis.25,27 Diseases associated with the uptake of ambient nanoparticulate

matter include asthma, allergic, cardiovascular, neurologic, and autoimmune diseases

as well as cancer.5,25,26 Regarding engineered NMs, particle size, composition, shape,

surface functionalization, charge, and concentration are important factors influencing

biodistribution and potential toxic effects.27 Thus, the characteristic “nanoscale”

does not automatically imply toxicity. Examples for engineered NMs with positive

health effects are antibacterial silver NPs or inorganic NPs, which can be intrinsic

antioxidants.28,29 Moreover, various nontoxic NPs are used in and developed for

biomedical applications.2,30
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1.1.5 Biomedical Applications of Nanoparticles

Nanotechnology does not only play a role in industrial applications, but is also

employed in biomedicine. Engineered NMs qualify for a broad spectrum of clinical

applications ranging from diagnostics to therapy due to their special physicochemical

properties, the possibility of custom-made production, and high versatility.2,31,32 In

the following, the focus is on NPs, as they are the main type of NMs developed for

biomedical applications.

1.1.5.1 Nanoparticle Design for Biomedical Applications

Inorganic NPs developed for biomedical applications can, for example, be composed

of metals, metal oxides, semiconductors or silica, whereas organic nanoconstructs

typically consist of polymers, dendrimers, lipids, or DNA (see Figure 1).4,33 In addition,

different (organic or inorganic) materials can be combined to generate composite

NPs, an example being quantum dots (QDs) encapsulated in a gelatin shell.21 In

clinical trials, mostly liposomal and polymeric NPs have been used up to now.34

Physical properties of engineered NPs involve aspect ratio and shape (e.g., spherical,

cubic, or rod-shaped), as well as features like porosity or rigidity.4,12 Importantly, also

the surface chemistry, which influences surface charge and hydrophobicity, can be

engineered. For instance, surface functionalities like amine or carboxyl groups can

be attached.4 Besides, the NPs can be functionalized by attaching various targeting

ligands, such as small molecules, peptides, or antibodies, to the particle surface.4,35

An essential feature of NPs is the high ratio of surface area to volume, which increases

drastically with decreasing particle size.2,3 To illustrate, when a cube with 1 cm edge

length is divided into single cubes with 10 nm edge length, their total surface area is

a million times larger than that of their bulk counterpart with 1 cm edge length. The

increased surface area can render NPs very reactive, because a large amount of

molecules, such as proteins or nucleic acids, can bind to the particle surface.23

Overall, properties like increased surface area per unit of mass and effects like

quantum confinement (see section 1.1.6) lead to unique chemical, mechanical,

optical and electronic features of NPs.3
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Figure 1: Characteristics of NPs engineered for biomedical applications. Various

NPs can be designed by manipulating size, composition, and physical properties.

Moreover, diverse chemical surface groups and/or targeting ligands can be attached

for functionalization. Reproduced from Ref. 4 with permission from The Royal Society

of Chemistry.

1.1.5.2 Nanoparticle-based Diagnostics

In biomedical diagnostics, magnetic NPs qualify for the use in MRI, with particle

size and composition influencing the contrast.36 For example, superparamagnetic

iron oxide NPs, so-called SPION, which can be equipped with targeting ligands

and drugs, have been utilized as MRI contrast agents.37,38 Gold NPs can serve as

contrast agents in x-ray imaging and computed tomography, as they feature high x-ray

attenuation, the potential to attach targeting ligands, and nontoxicity.39 Moreover,

radiolabeled NPs can be utilized in molecular imaging.40 Besides, fluorescent NPs,

such as QDs or NPs with a fluorescent label, can be used in optical imaging.41 In

addition, NPs are developed for multimodal imaging, including hybrid PET/MRI or

MRI/ultrasound imaging.42,43
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1.1.5.3 Nanoparticle-based Therapy

In nanotechnology-based therapy, NPs are designed to serve as nanosized drug

carriers.32 Most clinical trials involving drug nanocarriers focus on cancer therapy, i.e.,

they are loaded with a chemotherapeutic agent.30,44,45 However, nanomedicine also

tackles diseases like myocardial infarction, Alzheimer’s disease, acute lung injury,

rheumatoid arthritis, and diabetes.34,46

NPs acting as drug nanocarriers provide advantages such as reduced systemic toxic-

ity and protection from enzymatic degradation of the encapsulated drug.47 Moreover,

a prolonged drug circulation time and reduced renal clearance can be achieved.34,45

Furthermore, the delivery of drugs with low solubility in water can be facilitated by

encapsulating them in NPs.34 The accumulation of NPs at the site of disease can be

achieved by different targeting strategies. Tumor tissue can be passively targeted

by utilizing the enhanced permeability and retention effect, which is marked by an

enlarged accumulation of NPs within tumor tissues because of a leaky vasculature

as well as augmented retention due to poor lymphatic drainage.30 Active targeting

can be accomplished by attaching targeting ligands to the NP surface. For instance,

folic acid can be used to specifically target folate receptors that are overexpressed in

many tumors and transferrin can be utilized to deliver drugs across the blood-brain

barrier.30,45 The attached ligands can also enhance intracellular drug delivery, for

example, by receptor-mediated endocytosis, and thus even overcome multidrug

resistance.35

In addition to the possibility of targeting, NPs offer another important advantage:

they can be rendered “smart” in order to respond to internal or external stimuli.

Internal stimuli utilize the fact that pathological sites are often marked by an in-

creased redox potential, an elevated expression of specific enzymes (e.g., matrix-

metalloproteinases), and a more acidic pH.30,35 On the other hand, smart NPs can

be designed to response to external stimuli, such as light irradiation (e.g., for light-

triggered drug delivery) or ultrasound, in which the NPs act as ultrasound-responsive

nanocarriers (e.g., lipid nanobubbles).37,48 In addition, a magnetic field can be used
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to accumulate magnetically sensitive NPs in the target area.35 Temperature can act

as internal stimulus, utilizing hyperthermia in inflamed or tumor tissues, or an external

heat source can be applied to activate thermo-responsive NPs, e.g., for drug and/or

gene delivery.48

Due to their versatility, NPs can be designed to simultaneously or sequentially act

as imaging agents and drug delivery vehicles. Thus, they can be employed in

theranostics to serve as combined diagnostic and therapeutic tools.47,49

1.1.5.4 Drawbacks and Future Perspectives

The vast extent and variety of nanomedical research shows that NPs hold great

promise for the use in biomedicine. Nevertheless, a major drawback of NPs is that

opsonization (see section 1.1.3) allows the cells of the MPS to remove the majority

of NPs from the bloodstream before they can act as diagnostic or therapeutic tool.18

However, opsonization and thus recognition by the cells of the MPS can be reduced

by coating the particle surface with hydrophilic polymers. The most widely used

polymer is polyethylene glycol (PEG), which prevents binding interactions by exerting

steric hindrance.18,50 In this regard, already the first nanomedical product on the

market – liposomal doxorubicin – was PEGylated.51

Apart from potential clearance, intravascularly applied NPs have to overcome further

biological barriers in order to reach their target cells. They have to cross the endothe-

lium, permeate the interstitial space, and enter the cell as well as (if necessary) the

cell nucleus.21,22 For other routes of administration, additional transport barriers, such

as the skin or the mucosa of the lung or intestine, have to be penetrated first.21 How-

ever, several strategies have been developed to overcome these hurdles.21 Moreover,

the situation can be different under pathophysiological conditions. For example, in

tumor or inflamed tissue endothelial gaps widen and thus facilitate extravasation of

NPs from the vascular system.21

Regarding nanotoxicological aspects, future developments should focus on biocom-

patible and biodegradable nanoconstructs based on natural (e.g., gelatin or hyaluronic
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acid) or synthetic (e.g., polylactic acid) polymers.45,48

1.1.6 Quantum Dots

QDs are highly fluorescent nanocrystals made of semiconducting materials.31 With

sizes in the range of a few nanometers, they provide optical and electrical properties

that are not found in their respective bulk materials. The charge carriers are strongly

confined in all three spatial dimensions (quantum confinement effect) so that energy

levels are no longer continuous, but discrete and directly depend on QD size (see

Figure 2).52 An incoming photon with an energy higher than the band gap excites an

electron from the valence band into the conduction band, creating an electron-hole-

pair or exciton, which produces a photon upon electron-hole recombination.53 The

wavelength of the emitted photon depends on the size of the QD, as for smaller QDs

the stronger charge carrier confinement leads to a larger band gap.53 The optically

active core (e.g., CdS, PbSe, or InAs) is typically passivated with a shell (typically

ZnS) to protect the core from oxidation, enhance quantum yield, and decrease

leakage of heavy metals from the core.54,55

QDs are utilized as fluorescent imaging tools, as they feature high brightness and

photostability making them superior to traditional fluorophores.54 Wide absorption

spectra and narrow emission spectra (full-width at half-maximum ca. 25–40 nm) allow

for multiplexing, in which QDs with different colors can be simultaneously excited and

detected.53,55 As explained above, the emission wavelengths of QDs are size-tunable,

ranging from the ultraviolet to the infrared.53 Near infrared-emitting QDs are especially

suited for imaging living tissues.55

Biomedical applications of QDs involve super-resolution microscopy, single-particle

tracking/ single-molecule tracking (e.g., QD-tagged molecular motors), drug delivery

(e.g., conjugation of a drug to the QD surface), gene delivery, and multimodal

imaging (magnetic QDs for fluorescence detection and MRI).53,57 Moreover, QD-

based immunoassays (utilizing QD-labeled antibodies) and QD-based fluorescence

resonance energy transfer (FRET) have been reported.52 Apart from biomedical
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Figure 2: Characteristics of QDs. A) Schematic sketch and transmission electron

micrograph of a core-shell QD. B) Semiconductor QDs possess discrete energy levels

– in contrast to the bulk semiconductor with conduction band (CB) and valence band

(VB). With increasing QD size, the band gap energy (Eg) decreases. Abs.: absorption,

Em.: emission. C) With increasing QD size, the smaller band gap leads to longer

photoluminescence (PL) wavelengths. Dia.: diameter. Adapted with permission from

Ref. 56. Copyright 2011 American Chemical Society.

applications, QDs are, for example, used in photovoltaic cells and light emitting

devices.5

QD cores often contain heavy metals such as cadmium, raising the question of toxicity.

In general, QD toxicity depends on dose, size, composition, charge, and surface

chemistry.31,54 As these factors vary widely, toxicity has to be assessed individually.

In any case, low concentration and high stability can reduce toxicity significantly.53

Thus, potential toxicity should not prevent the use of QDs as they are outstanding

fluorescence imaging tools for in vitro and in vivo biomedical applications. However,

QD-based applications probably will not be allowed for medical use in humans. As

an alternative to heavy metal-based QDs, biocompatible QDs, for example, based on

silicon, are being developed.58
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1.2 Previous Work

The growing use of engineered NPs as well as increasing air pollution by (nano-

sized) particulate matter demands knowledge about interactions between NPs and

biological systems. As stated above, it is known that various NPs can translocate

into the bloodstream.7 On the other hand, NPs may be deliberately injected into

the circulation in biomedical applications. From this platform, NPs are able to reach

various tissues and organs. Apart from that, the (micro)vasculature is essential for

numerous regulatory, immunologic, and metabolic functions. Hence, it is crucial to

investigate how NPs interact with blood vessel walls, if they are taken up by the

endothelium, and if they are able to overcome the blood-tissue barrier. Moreover, in

the context of possible adverse health effects of NPs, the potential to elicit an immune

response needs to be studied.

Therefore, the fate and effects of NPs in vivo were investigated by our group. Com-

mercially available core-shell QDs were used as fluorescent model NPs. To study the

influence of surface modifications on the particle behavior, QDs with carboxyl, amino

(PEG), or PEG surface groups were applied. These QDs have been designed for the

use in in vivo imaging applications, e.g., PEG QDs can be used as vascular labels as

they exhibit a blood half-life time of several hours. Besides, these QDs have been

already employed to assess the influence of surface modifications on cellular uptake

mechanisms and cytotoxic effects.59,60,61,62

The distribution of QDs was studied in the microvasculature of the mouse cremaster

muscle. It was demonstrated that under physiological conditions, surface modi-

fication strongly influences the localization of QDs in postcapillary venules, their

uptake by perivascular macrophages, and their ability to initiate an inflammatory

response.63 More precisely, carboxyl QDs were found in caveolae of endothelial

cells and were rapidly taken up by perivascular macrophages, where they localized

in the endo-lysosomal compartment and the cytoplasm.63 In contrast, PEG QDs

were rarely found in the cytoplasm of perivascular macrophages, but were found

to be attached to amorphous lipid-containing material in between endothelial cells.
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Amino (PEG) QDs were rarely seen both in perivascular cells and endothelial cells.

In addition, only carboxyl QD enhanced leukocyte recruitment, which was found to

be mediated by mast cell degranulation.63 Moreover, it was shown that carboxyl QDs

do not only accumulate in organs of the MPS (mostly liver and spleen), but also

associate with the capillary endothelium of skeletal and heart muscle tissue and

thus are cleared from the circulation and deposited in the tissue.64 In contrast, for

PEG QDs an association with the capillary endothelium was absent.64 In studies

under pathophysiological conditions (ischemia-reperfusion), amino QDs, but not

carboxyl QDs, were strongly associated with vessel walls of postcapillary venules

and increased ischemia-reperfusion-induced leukocyte recruitment.65 Taken together,

these studies provide evidence that the behavior of NPs in vivo is strongly influenced

both by surface modification and the physiological condition of the tissue.

1.3 Objectives of this Thesis

The studies summarized in the previous section characterized the interactions of QDs

with microvessel walls and elucidated the influence of surface modification on particle

behavior and the ability to elicit leukocyte recruitment. Moreover, it was observed

that shortly after intraarterial administration, carboxyl QDs are not only taken up by

perivascular macrophages, but also appear in tissue-resident cells located far away

from vessels. However, the mechanism behind this phenomenon remained unclear.

In addition, when conducting NP-based diagnosis or therapy, not only interaction with

the vessel plays a role, but it is essential that the NPs overcome the blood-tissue

border and move through the tissue to efficiently reach their target, for example, a

specific cell type. Hence, it is crucial to understand the spatiotemporal dynamics

of NPs at the microscopic tissue level and how the behavior may be influenced by

surface modifications. Furthermore, not only for nanomedical applications, but also

for nanotoxicological studies, information about the microdistribution is required to

predict position and concentration of NPs within tissues.
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To address this question, in this thesis the local distribution of NPs was investigated

at the microscopic tissue level. Core-shell QDs (see sections 1.1.6 and 1.2) were

used as fluorescent model NPs. To study the influence of surface modifications on

the distribution, QDs with either a carboxyl or a PEG coating were applied. Chapter 2

[Nekolla et al., 2016] focuses on the interaction of QDs with tissue constituents. More

precisely, the aim was to characterize the dynamics of QDs in the interstitial space

and their interaction with tissue compartments such as the ECM. Moreover, a goal

was to investigate the extra- and intracellular distribution of QDs at the blood-tissue

interface after interstitial injection. On the other hand, chapter 3 [Rehberg, Nekolla

et al., 2016] complements the results from chapter 2 by investigating the tissue

distribution of QDs after intraarterial administration and illuminates the appearance of

carboxyl QDs in cells far away from the nearest vessel. The aim was to characterize

the involved cells and the underlying transport mechanism.

1.4 Materials and Methods

Qdot 655 ITK carboxyl quantum dots and Qtracker 655 non-targeted (PEG) quantum

dots with a 655 nm fluorescence peak emission as well as Qdot 525 ITK carboxyl

quantum dots with a 525 nm fluorescence peak emission were purchased from

Life Technologies (Carlsbad, CA, United States). The QDs consist of a CdSe core

encapsulated by a ZnS shell and an additional polymer coating with carboxyl or PEG

surface groups, respectively. The PEG coating itself consists of short oligomers with

a molecular weight of 1–3 kDa. The core-shell dimensions of the elongated 655-QDs

are 10 nm × 12 nm and the spherical 525-QDs have a core-shell diameter of 3–4 nm

(measured with TEM; Life Technologies, personal communication). The coated QDs

are 18 nm (655-QDs) or 12 nm (525-QDs) in diameter, respectively (determined by

size exclusion chromatography; Life Technologies, personal communication). Car-

boxyl QDs are negatively charged in PBS (with or without serum), whereas PEG QDs

exhibit a near neutral surface charge.64



1 Introduction 13

The mouse cremaster muscle of healthy mice was employed as a model system for

skeletal muscle tissue. Prior to microscopy, the muscle was surgically prepared and

mounted on the pedestal of a microscopy stage. QDs were locally microinjected with

micrometer precision by using a microinjection system equipped with a microma-

nipulator or systemically administered via intra-arterial or intrascrotal injection. To

visualize the dynamic distribution of QDs and their interaction with tissue structures, in

vivo real-time reflected light oblique transillumination and epifluorescence microscopy

were applied.66 QD-containing vesicles were imaged with video microscopy and

manually tracked to determine vesicle kinetics.

Following in vivo experiments, the tissue was (immuno)stained to localize QDs in

cells and at tissue structures using confocal microscopy. Additionally, transmission

electron microscopy (TEM) was employed to reveal the ultrastructural localization of

QDs in the tissue.

For quantitative analysis of extracellular QD dynamics, multiple particle tracking of

microinjected QDs was performed. In multiple particle tracking, the microscopic

motion of a multitude of particles is imaged using fast video microscopy and subse-

quently tracked using an automated tracking algorithm. From the resulting trajectories,

parameters such as mean squared displacement can be computed to characterize

the mode of motion.

In addition to the in vivo experiments, the dynamics of QDs were investigated in

corresponding in vitro studies. QDs were microinjected into two structurally different

model hydrogels: porous Matrigel (resembling endothelial basement membranes

(BMs))67 and fibrillar collagen I, the most abundant type of collagens in humans.68

Subsequently, the distribution was monitored over two hours using time-lapse mi-

croscopy. In addition, QD-containing hydrogels were fluorescently stained to analyze

colocalization with QDs using confocal microscopy.
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1.5 Results

Chapter 2 [Nekolla et al., 2016] focuses on the extra- and intracellular spatiotemporal

microdistribution of carboxyl QDs and compares it to the behavior of PEG QDs. As

observed by in vivo fluorescence microscopy, PEG QDs show little interaction with

tissue constituents, but mainly diffuse in the interstitial space. In contrast, carboxyl

QDs bind to tissue components quickly after microinjection. More specifically, TEM

revealed that carboxyl QDs bind to collagen fibers, fasciae of muscle fibers, as well

as BMs, a type of ECM lining the basolateral side of blood vessel walls. In addition,

carboxyl QDs are able to translocate into the vessel lumen, as they can be found

in caveolae of endothelial cells and in endothelial junctions. Carboxyl QDs even

appear in the so-called lateral border recycling compartment, a specialized membrane

reservoir of the endothelium.69 Matched in vitro experiments with hydrogels confirmed

the in vivo QD distribution. While PEG QDs diffuse in the hydrogels, carboxyl QDs

immediately bind to collagen I fibers or the Matrigel constituents laminin and collagen

IV, respectively. The results indicate that components of the ECM constitute a

selective barrier depending on QD surface modification.

Chapter 3 [Rehberg, Nekolla et al., 2016] concentrates on the intercellular distribution

of QDs and shows that immune cells play a part in the microdistribution of NPs in the

tissue. Previously, our group observed that shortly after intraarterial administration,

carboxyl QDs are not only taken up by perivascular macrophages, but also appear in

tissue-resident cells located far away from vessels. Expanding this study, we found

that perivascular and tissue-resident macrophages are interconnected by a network

of so-called membrane nanotubes (MNTs) and that carboxyl QDs are shuttled via

these intercellular “bridges”. TEM elucidated that inside MNTs carboxyl QDs are

localized in endosomal vesicles that colocalize with microtubules. In addition, video

microscopy revealed fast bidirectional vesicle movement arguing for transport along

microtubules by molecular motors. Interestingly, this phenomenon cannot only be

observed after systemic administration, but also after local interstitial microinjection

of carboxyl QDs.
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1.6 Discussion and Outlook

Recently, Amin et al. predicted that surface modification soon will revolutionize

the therapeutic applications of NPs, as their surface properties strongly influence

their overall behavior.70 Accordingly, the knowledge acquired in this thesis suggests

guidelines for the future design of smart NPs. When biomedically administered NPs

shall take effect in a large region, a surface functionalization with PEG is advisable

to ensure a high mobility. In contrast, when it is desired that the locally injected

NPs form a depot for slow and continuous drug release, carboxyl surface groups

enable the NPs to bind to tissue constituents and remain at the site of injection. In

addition, carboxylation may be used to target BMs or the endothelium. As shown in

chapter 3 [Rehberg, Nekolla et al., 2016], for intravascularly administered carboxyl

QDs, transport over tissue barriers (i.e., blood vessel walls), efficient cellular uptake

by macrophages, and intercellular distribution between macrophages takes place.

Thus, carboxylated nanosized drug carriers may be used to quickly transport drugs

from the blood to cells located deeper in the tissue. Moreover, a combination of

carboxyl groups and long, cleavable PEG chains is imaginable: the PEG groups

guarantee for a long circulation time and can be cleaved at the target site to expose

the carboxyl groups so that the NPs can be efficiently taken up by cells or bind to

tissue constituents. In this line, further research is necessary to be able to create

smart NPs that meet the requirements of the respective application regarding the

distribution in the body and especially in the target tissue.

The PEG and carboxyl QDs used in this thesis are commercially available. Unfortu-

nately, no amino QDs are provided by Life Technologies, but only amino (PEG) QDs.

Microinjected into collagen gels, these amino (PEG) QDs rapidly diffuse from the

site of injection, thus acting similarly to PEG QDs. Also in the immunofluorescent

staining of hydrogels, amino (PEG) QDs do not bind to collagen I or the Matrigel

constituents collagen IV and laminin, respectively, but are widely washed out during

the staining process. Thus, the amino (PEG) QDs essentially behave like PEG QDs.

Unfortunately, no definite conclusion can be drawn, whether this behavior depends on
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the PEG coating or on the presence of the amino groups. Nevertheless, as surface

modification critically influences the interaction between NPs and biomolecules,63,71,72

future research studying the microdistribution of NPs with cationic surface groups

is encouraged. In this context, it would be especially interesting if cationic QDs are

subject to transport in MNTs.

As previously published by our group, the behavior and effects of intravascularly

injected QDs are not only critically influenced by surface modification, but also by the

underlying tissue condition.65 Accordingly, it would be interesting to study the local

distribution of microinjected QDs under pathophysiological conditions, for example,

their binding to constituents of the ECM. In inflamed tissue, the ECM is strongly

remodeled by the action of diverse matrix metalloproteinases and certain cytokines,

such as tumor necrosis factor or interferon-γ.73 Similarly, in tumor tissue the amount

and composition of the ECM changes drastically (including the overproduction of

different types of collagens), leading to disorganization and loss of essential functions

of the ECM.74 Thus, especially in terms of future biomedical applications, the impact

of surface chemistry on NP distribution in inflamed or tumor tissues needs to be

addressed. In addition, as the physical properties of the ECM strongly influence cell

function, it would be interesting to study if the binding of carboxyl QDs to constituents

of the ECM influences cellular behavior in vivo.74 Besides, it would be worthwhile

investigating potential changes in the assembly of the MNT network of cells under

pathophysiological conditions, as this could influence the intercellular transport of

NMs.

This thesis investigates the distribution of NPs not only after intravascular admin-

istration, but also after local injection into the tissue. With local microinjection, the

microdistribution of NPs in the tissue can be directly observed. More precisely, the

dynamics of NPs in or their interaction with tissue compartments, such as muscle

fibers, microvessels, or connective tissue, can be studied. Also in the context of

NP-based therapy, local injection can be considered as a type of administration. That

way, tissue barriers, including the vascular endothelium and tissue interstitium, can
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be circumvented. As an example, to treat inflamed tissue, a localized and continuous

release of an anti-inflammatory drug would be preferential. In this context, micro-

and nanosized drug delivery vehicles have been developed to locally treat arthritis.

The nanocarriers offer sustained release and reduced side effects in comparison

to systemic administration of the drugs.75 Similarly, Hosseini et al. developed nano-

sized liposomes as carriers for prednisolone, and intramuscular injection resulted

in a longer-lasting anti-inflammatory effect of the liposomes compared to free pred-

nisolone in rats.76

The results of this thesis reveal that the type of administration partly influences the

microdistribution of QDs. Carboxyl QDs are taken up by perivascular and tissue-

resident macrophages and are transported between these cells in MNTs, no matter if

they are intraarterially or intrascrotally administered or locally microinjected. Addi-

tionally, after interstitial microinjection, carboxyl QDs adhere to tissue constituents,

such as collagen fibers, muscle fasciae, or BMs. The direction of transcytosis (a

mechanism that mediates the bidirectional exchange of macromolecules between

blood vessel lumen and interstitial space) is influenced by the type of administra-

tion.77 QDs microinjected into the interstitial space are transported into the vessel

lumen, whereas after intraarterial injection, transcytosis of QDs to the abluminal

side of the vessel takes place.63 In this regard, in chapter 3 [Rehberg, Nekolla et

al., 2016] it was shown that perivascular macrophages form distinct contact sites at

postcapillary venules, however, there was no proof of a direct cellular access to the

vessel lumen. Another possibility is that carboxyl QDs are shuttled to the contact

sites by transcytosis and subsequently taken up by perivascular macrophages.

In conclusion, this thesis illuminates the extra-, intra-, and intercellular distribution of

QDs at the microscopic tissue scale. The microdistribution is critically influenced by

the surface modification of the particles, which should be taken into consideration for

the future design of NPs that are developed for the use in biomedical applications

ranging from diagnostics to therapy. Furthermore, it is important to keep in mind that

the tissue distribution of NPs takes place via different routes including the transport

via networks of cells interconnected by MNTs.
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