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Summary

This thesis is based on three projects in which specific aspects of the preparation of
high-dimensional biomedical data play a central role.

The first project is concerned with the question of whether it is necessary to include
data preparation steps in cross-validation procedures in situations where such proce-
dures are followed to estimate the prediction error of biomedical prediction rules. In
practice many data preparation steps are, in most cases, not repeated within cross-
validation on the training datasets, but rather performed beforehand on the entire
dataset. Thereby, the training data and test data are not entirely separated, which,
for some data preparation steps, can lead to a relevant underestimation of the pre-
diction error. However, it is mostly unknown for which of these data preparation
steps there is a danger of severe underestimation of this kind. In this project, first a
general measure is developed to assess the magnitude of this underestimation. Next,
this measure is applied to real datasets in extensive analyses in order to determine
whether it is necessary to include two data preparation steps—normalization and
principal component analysis—in cross-validation procedures.

In the second project an innovative method for batch effect adjustment is developed
using which parts of a dataset that are systematically distorted, can be homogenized.
This new method differs from others in that it removes both differences in terms of
means and variances among the different dataset parts and corresponding differences
in terms of the dependence structures of the variables. Using simulated data and real
data, the performance of the new method is compared to that of popular alternative
methods.

In the third project the possibility of employing batch effect adjustment and nor-
malization to assimilate new data to the training data before prediction in order to
achieve greater prediction accuracy is explored. In applications, the data to which
a prediction rule is intended to be applied most often have, for various reasons, a
slightly different distribution than the data on which the rule was derived. This often
leads to increase in prediction error in practice. Therefore, it is desirable to adjust
the distribution of new observations to that of the training observations prior to pre-
diction. Here, both batch effect adjustment and normalization methods are suitable
in partly modified forms; however, it is not clear which of these methods actually
lead to greater prediction accuracy in practice. Therefore, with the help of a large
number of real datasets, in the third project several of these methods are compared
with respect to the prediction accuracies obtained from their use.





Zusammenfassung

Diese Arbeit basiert auf drei Projekten, in denen bestimmte Aspekte der Vorverar-
beitung hoch-dimensionaler biomedizinischer Daten eine zentrale Rolle spielen.

Das erste Projekt befasst sich mit der Frage nach der Notwendigkeit des Einschlus-
ses von Vorverarbeitungsschritten in Kreuzvalidierungsverfahren, wenn letztere zur
Schätzung des Vorhersagefehlers von biomedizinischen Prädiktionsregeln verwendet
werden. In der Praxis werden viele Vorverarbeitungsschritte zumeist nicht innerhalb
der Kreuzvalidierung auf den Trainingsdatensätzen wiederholt, sondern vorher auf
dem ganzen Datensatz durchgeführt. Für manche Vorverarbeitungsschritte kann die-
ses Vorgehen durch die damit verbundene Aufhebung der vollständigen Trennung von
Trainings- und Testdaten zu einer relevanten Unterschätzung des Vorhersagefehlers
führen. Es ist jedoch weitestgehend unbekannt, für welche Vorverarbeitungsschrit-
te eine derartige Unterschätzung zu befürchten ist. Deshalb wird in dieser Arbeit
zunächst ein allgemeines Maß zur Abschätzung des Ausmaßes dieser Unterschätzung
entwickelt. Dieses Maß wird anschließend in ausführlichen Analysen auf echte Da-
ten angewendet, um die Frage nach der Notwendigkeit des Einschlusses der beiden
Vorverarbeitungsschritte Normalisierung und Hauptkomponentanalyse in Kreuzvali-
dierungsverfahren abschließend zu beantworten.

Im zweiten Projekt wird eine innovative Methode zur sogenannten Batcheffektent-
fernung entwickelt, anhand derer sich systematisch verzerrte Teile eines Datensatzes
homogenisieren lassen. Die Besonderheit der neuen Methode gegenüber existieren-
den Alternativen besteht darin, dass sie sowohl Unterschiede in den Mittelwerten
und Varianzen zwischen den verschiedenen Teilen des Datensatzes beseitigt als auch
entsprechende Unterschiede in der Abhängigkeitsstruktur der Variablen. Die Perfor-
manz der neuen Methode wird anhand simulierter und echter Daten mit populären,
alternativen Methoden verglichen.

Das dritte Projekt befasst sich schließlich mit der Möglichkeit, mit Hilfe von Bat-
cheffektentfernung und Normalisierung vor der Anwendung von Prädiktionsregeln,
die zu prädiktierenden Daten an die Trainingsdaten anzupassen, um eine größere
Vorhersagegenauigkeit zu erzielen. In Anwendungen folgen die Daten auf die eine
Prädiktionsregel angewendet wird, aus diversen Gründen zumeist einer leicht ande-
ren Verteilung als die Daten auf denen sie gelernt wurde. Das führt dazu, dass der
Vorhersagefehler von Prädiktionsregeln in der Praxis häufig erhöht ist. Deshalb ist
es wünschenswert die Verteilung der Daten der zu prädiktierenden Beobachtungen
an die Verteilung der Trainingsdaten anzupassen. Hierzu bieten sich Batcheffektent-
fernungsmethoden und Normalisierungsmethoden in teils abgewandelter Form an.
Allerdings ist unklar, welche solcher Methoden in der Praxis tatsächlich zu einer
größeren Vorhersagenauigkeit führen. Deshalb werden im letzten der drei Projekte
einige dieser Methoden anhand einer großen Zahl echter Datensätze hinsichtlich der
aus ihrer Verwendung jeweils resultierenden Vorhersagegenauigkeiten verglichen.
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1. Introduction

The analysis of modern, high-dimensional, biomedical data usually involves special

preliminary data preparation steps, for example normalization or filtering by variance,

which are performed before addressing the questions of thematic interest. With tra-

ditional medical datasets preprocessing usually is more straightforward and easier to

conduct. Preliminary steps in this field may involve standardizing the variables or im-

puting missing variables. Given the increasingly important role of high-dimensional

biomedical data in medical research, data preparation can be expected to gain atten-

tion in the scientific literature.

This thesis consists of three parts, in each of which, preparation of high-dimensional

biomedical data plays a central role. In the first part the impact of excluding specific

data preparation from cross-validation on the estimated error is analyzed with the aid

of the cross-validation incompleteness impact measure (CVIIM) developed specially

for this purpose. In the second part, a new batch-effect adjustment method for high-

dimensional data is presented, which, in addition to adjusting for location-and-scale

batch effects, adjusts for batch effects evident in the correlation structures within the

batches. In the third part, a compendium of microarray datasets is used to determine

the extent to which, and under which circumstances, cross-study prediction can be

improved with the aid of addon batch effect adjustment and addon normalization.

Background

In the following, several terms which play a crucial role in the thesis are explained.

High-dimensional data

This term describes datasets featuring more variables than observations. High-

throughput datasets are specific types of high-dimensional datasets featuring many—

often many thousands of—biomolecular variables. In this context, each variable often

corresponds to the behavior of a certain gene. Traditional statistical analysis meth-

ods such as linear or logistic regression are not applicable to high-dimensional data.
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However, in the last few decades many methods have been developed that are special-

ized for this data format. Many of these methods were used in the analyses presented

in this thesis.

Data preparation step

In general, this term is used for any analysis step performed before conducting anal-

ysis steps that deliver the final result of the study. However, in this thesis there

is a difference between data preparation steps performed observation by observa-

tion, such as background correction in microarray data, and data preparation steps

which use information across observations. Examples of the latter steps are quantile

normalization of microarray data, batch effect adjustment (see below), and variable

selection. In this thesis only steps of the second kind are considered, which is why in

the following, the term data preparation step refers to this kind of data preparation.

Normalization

Various factors influencing raw high-throughput data lead to differences among obser-

vations. Such differences are due to elements beyond the biological signal of interest.

Therefore, the distributions of the raw values generally are made similar across obser-

vations by employing a normalization method. Due to differences among the various

high-throughput data structures, each data type requires the use of a specific normal-

ization method. An important method is the quantile normalization method (Bolstad

et al.; 2003), which is used in this thesis. After employing this method, the empirical

distributions of the data values are identical across the different observations.

Prediction rule

A central application field of high-throughput data is the prediction of disease states

of patients. To this end, prediction rules are used. A prediction rule is an algorithm

that uses the values of a number of variables in a patient (covariates) to predict the

unknown value of a specific phenotype variable of interest (target variable). Such

prediction rules are obtained, or learned, using the data on a series of patients for

whom the covariate values and the values of the target variable are known. These

data are commonly denoted as training data. The algorithm that is used for learning

the prediction rule is specific to the latter. This thesis is concerned with prediction

rules for high-dimensional data with binary target variables. A prediction rule of this

kind may, for example, be obtained by applying the random forest (RF) algorithm

(Breiman; 2001), which involves constructing a large number of classification trees
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using the training data. The application of the learned prediction rule then involves

applying the classification trees constituting the constructed RF to the data on a

new patient and aggregating the results to obtain a prediction of his/her value of the

target variable.

When applying prediction rules in practice one is confronted with the raw covariate

data on new patients. Therefore, here, as a preliminary step, any data preparation

steps that have been taken while learning the prediction rule have to be taken for

the data on new patients as well. It is impossible to obtain a prediction based on the

patients’ raw covariate data, because the learning algorithm which delivered the final

prediction rule has used the form of the training data obtained after preparation.

Due to the widespread use of data preparation steps, this issue can be expected to

be equally widespread in practice. However, this issue seems widely overlooked in

the scientific literature. In this thesis the following definition of prediction rules is

given: A prediction rule comprises not only the algorithm specific to the method

outputting the predictions based on the preprocessed data, for example the RF, but

also any data preparation steps to be performed before the preprocessed data can be

committed to this algorithm. In accordance with this definition, the algorithm used

for learning such a prediction rule comprises all data preparation steps.

Estimation of the error of a prediction rule

Before applying a prediction rule, it is important to assess how accurately it can

predict the values of the target variable of independent patients. If the error frequency

of a prediction rule is too high, it should not be applied in practice. This is because

doctors and patients would be misinformed too frequently if such a rule were used for

diagnosis. A näıve and very problematic approach to estimate the error frequency

would be the following: Apply the prediction rule to the training data with which

it was learned and calculate the frequency of which the prediction rule delivers an

incorrect prediction for this data. It is well-known that this can lead to a severe

underestimation of the error frequency to be expected for independent data. The

reason for this is that the prediction rule tends to be better adjusted to its training

data than to the independent data for which it is intended. Therefore, as a general

rule the data used to estimate the error frequency, the test data, should be different

from those used to learn the prediction rule. Here it is possible to discern two cases: 1)

The test data are distinct from the training data but originate from the same dataset

as the training data, referred to as internal validation; 2) The test data stem from

an independent dataset, referred to as external validation. As the data to which the

prediction rule is intended to be applied, usually originate from an entirely different
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dataset than that of the training data, external validation results in more realistic

error estimates than internal validation. As data from different datasets other than

from where the training data originate, generally behave more differently than those

from the same datasets, external validation results in higher error estimates (see e.g.

Bernau et al. (2014)).

K-fold cross-validation

The most prominent method for estimating the error frequency to be expected in

internal validation is K-fold cross-validation or short cross-validation (CV). High-

throughput datasets are often quite small; therefore, splitting the dataset into training

data and test data usually leads to at least one of the following two problems: 1) The

test dataset is too small to provide an acceptable accuracy of the error estimate; 2)

The training dataset is too small to ascertain a level of prediction performance similar

to that which results when using the entire dataset as a training dataset. K-fold CV

addresses these issues first by re-performing the error estimation for different splits

of the entire dataset into training data and test data and second by choosing a large

enough amount of training data. Precisely, K-fold CV is conducted as follows: 1)

Split the dataset randomly into K (approximately) equally sized parts, denoted as

folds ; 2) For k ∈ {1, . . . , K}: estimate the error frequency using fold k as test data

and the rest of the dataset as training data; 3) Take the average of the error estimates

from 2). To reduce further the variance of the error estimation, in practice K-fold

CV should be repeated multiple times. Although K-fold CV is less variable than

error estimates obtained when using single splits into training data and test data, its

variance is still high (Efron and Tibshirani; 1997). Ostensibly, no widely accepted

guidelines exist for choosing the number of folds K.

Batch effects

Traditional clinical data most often directly mirror the biological phenomena of in-

terest such as age or sex. By contrast, the data values from microarray-based data

types constitute measurements of the respective biological phenomena such as gene

expression. These measurements are unwantedly influenced by external conditions.

There are numerous external factors that can influence microarray data, such as the

laboratory in which the data are produced, the technician treating the data and

even the time of data generation. As a result, data of observations which have the

same or similar biological characteristics and, thus, should behave similarly, can be

distributed very differently when stemming from different datasets. Such effects gen-
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erally are known as batch effects. The totality of data from a specific source is denoted

as a batch. Batch effects lead to limited comparability of data from different sources,

which can negatively influence analyses being performed using the combined data.

In contrast to microarray-based data types, which require measuring the underlying

biological phenomena, more modern high-throughput data types such as RNA-Seq

data allow direct investigation of the underlying biological phenomena. Nevertheless,

data collection in the case of these modern high-throughput data types is prone to

error and batch effects have been found to be a problem with these data as well

(Hansen and Irizarry; 2012).

In this thesis, the definition of batch effects comprises not only effects caused by

external conditions of the data generation process but also by differences in data

cohorts due to differing study populations, as long as these differences do not affect

the biological phenomena to be studied with the aid of the data.

Batch effect adjustment

Given that batch effects can influence analyses negatively, it is desirable to re-

move such effects beforehand by assimilating the distributions of the data across

the batches. A method with such an aim is called a batch effect adjustment or batch

effect removal method. A number of such methods exist. Some of them are very

simple, for example, zero-mean centering of the variable values in the batches, while

others are more sophisticated, for example, adjusting for location-and-scale differ-

ences across batches as performed by ComBat (Johnson et al.; 2007). Note that

batch effect adjustment is a data preparation step.

Cross-study prediction

As mentioned above, a prediction rule is applied in practice to data stemming from

entirely different sources than those of the training data. This procedure is referred

to as cross-study prediction in this thesis.
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Contents

In this section the three projects presented in the thesis are described in order to

provide an initial overview of the work.

Chapter 2: Measuring the impact of CV incompleteness with

respect to data preparation steps

As stated above, in CV the prediction rule is learned repeatedly using different subsets

of the available dataset. The learning process of obtaining a prediction rule also

comprises the data preparation steps involved according to the definition of prediction

rules given above. Therefore, from a formal standpoint, data preparation should be

re-performed using the training data in each iteration of the CV. Performing data

preparation on the entire dataset before performing error estimation is equivalent to

learning part of the prediction rule using both training data and test data. This can

have negative implications. Above it was stated that the prediction rule is better

adjusted to the data on which it was learned. If these data comprise the test data for

part of the learning process, as done when performing data preparation on the entire

dataset, it can be expected that the test data are better adjusted to the prediction

rule than truly independent data are. Again, this may lead to underestimation of the

error frequency. Chapter 2 is concerned with the latter phenomenon.

In fact, for various reasons, it is common practice to perform certain data prepara-

tion steps, for example, quantile normalization, using the entire dataset before CV.

The extent of underestimation of the error frequency resulting from this, that is, the

impact of such an incomplete CV, differs among data preparation steps. Steps mak-

ing use of the target variable more frequently are associated with a stronger impact

on the estimated error through incomplete CV. However, as will be shown in the

analyses in Chapter 2, there also are steps which use only the covariate values but

nevertheless should not be performed on the entire dataset before error estimation to

warrant against underestimating the error frequency.

The work presented in Chapter 2 resulted from the following three considerations:

1) The impact of incomplete CV depends on the data preparation step under consider-

ation; 2) It is not clear which data preparation steps have to be performed within CV

to prevent a relevant optimistic bias; 3) Someone confronted with a dataset cannot be

expected to decide for his/her specific analysis whether or not he/she should include

a data preparation step in CV. These considerations necessitate the formulation of

empirically based guidelines for individual data preparation steps that state whether

or not these steps generally can be conducted on the entire dataset before CV. When
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formulating such guidelines based on real datasets, it is convenient, if not required,

to use a measure of the impact of incomplete CV. In Chapter 2 such a measure is

provided with the CV incompleteness impact measure (CVIIM ) which depends on

the distribution underlying the dataset used for estimating it. Therefore, in addition

to CVIIM, with the global CVIIM a measure is provided that does not depend on a

specific data distribution. The estimation of this measure requires several datasets.

With the aid of CVIIM and global CVIIM and through using large collections of

real high-throughput datasets, guidelines for the following two commonly used data

preparation steps are developed: normalization and principal component analysis

(PCA). These guidelines state that while normalization can be performed beforehand

on the entire dataset, PCA should be included in CV. Corresponding empirically

based guidelines ostensibly were previously available only for the data preparation

step “supervised variable selection”. In addition to the guidelines for normalization

and PCA, preliminary results obtained for other common data preparation steps are

provided.

Chapter 3: Combining location-and-scale batch effect adjustment

with data cleaning by latent factor adjustment

Due to the wide variety of factors leading to batch effects, the latter are equally

diverse in nature. Therefore a batch effect adjustment method intended to work well

for various datasets should do at least one of the following: 1) address coarse types

of batch effects that are present in all datasets affected by batch effects. Examples

of methods of this kind are mean-centering, standardization, ratio-A, ratio-G (Luo

et al.; 2010), and ComBat; 2) adjust to the specific kind of batch effects of the dataset

being analyzed. An example of a method of this kind is surrogate variable analysis

(SVA) (Leek and Storey; 2007).

Methods of the first kind may miss important characteristics of batch effects present

in the specific dataset being analyzed, for example, sophisticated dependence struc-

tures induced by batch effects. By contrast, methods of the second kind may miss

simple batch effect structures which can easily be addressed, for example, mean-

differences of the variables across batches. In Chapter 3 a method is presented with

FAbatch that addresses coarse features of batch effects and adjusts to sophisticated

batch effect patterns specific to the individual dataset being studied. FAbatch repre-

sents an extension of ComBat, that is, adjustment for location-and-scale differences of

the variables across batches. With FAbatch, in addition to location-and-scale adjust-

ment, the data are adjusted for latent factor influences associated with batch effects

within the individual batches. This has the effect of reducing excess heterogeneity
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within batches, that is, variations in the observations not attributable to the biolog-

ical signal of interest are addressed, which is very similar to the approach followed

by SVA. However, in contrast to FAbatch, SVA was developed for situations where

it is not known which observation belongs to which batch. The primary goal of the

adjustment for latent factor influences performed by SVA is to remove heterogene-

ity resulting from observations belonging to different batches. The adjustment for

latent factor influences performed by FAbatch within batches, by contrast, should

capture sophisticated properties of the batches specific to the dataset being studied.

In the estimation of the latent factor models, it is important that the biological sig-

nal of interest be protected. Otherwise, not only unwanted differences among the

observations attributable to batch effects would be removed, but also would desired

differences attributable to the biological signal. SVA uses a specific procedure for

protecting the biological signal. This procedure can lead to a dangerous exaggeration

of the biological signal, as will be discussed in detail in Chapter 3. By contrast, with

FAbatch the signal exaggeration is mitigated by using predicted class probabilities

instead of the actual classes in the protection of the biological signal.

In Chapter 3, using a large collection of real high-throughput datasets, FAbatch is

extensively compared to commonly used competitors with respect to several metrics.

These metrics measure either the homogeneity of the data across batches after batch

effect adjustment or the performance of analyses performed using the batch effect

adjusted data. Here, FAbatch proves to be equal to the other methods in many

situations and superior in some situations.

Moreover, for illustrative purposes FAbatch and its competitors are applied in a

prediction context. In prediction, batch effect adjustment can be employed to render

data to which the prediction rule is to be applied more similar to the training data. In

this thesis, reference is made to addon batch effect adjustment when applying batch

effect adjustment in this way. Addon batch effect adjustment is properly defined in

Chapter 3 and will be at the center of Chapter 4.

Chapter 4: Improving cross-study prediction through addon batch

effect adjustment or addon normalization

When obtaining prediction rules, it is implicitly assumed that the data to which the

rule is intended to be applied follow the same distribution as that underlying the

training data. However, this assumption is—due to batch effects—not given in many

cases when applying prediction rules in practice. Consequently, the true error of a

prediction rule will be greater than the error estimate obtained through CV. Given

the need for similarity between the data to which a prediction rule is applied and the
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training data, it is a natural goal to transform the new data before prediction in such

a way that they follow the same distribution as the training data. In the following

the term test data will be used for the data to which a prediction rule is applied. Note

that this term also is used for the data used to estimate the error rate of a prediction

rule. However, there is no likelihood of confusion between the two meanings because

the correct meaning of this term will be clear from the respective context.

As noted above, batch effect adjustment can be performed to transform the test

data in order to adjust them to the training data. Many batch effect adjustment

methods can be applied to this end without the need for alteration. Others have to

be adjusted in such a way that the training data are not changed in the process of

considering varying test datasets. However, the latter is not a difficult task using

the general blueprint for determining the addon procedure for a specific batch effect

adjustment method introduced in Chapter 3.

The aim of batch effect adjustment is to assimilate the distributions of the individ-

ual variables across different data subparts. The aim of normalization is quite similar:

to adjust the marginal distributions of the data values across observations. Thus, nor-

malization also can be used in adjusting the test data to the training data. Here, as

with batch effect adjustment, it has to be warranted that the training data are not

altered when transforming the test data. A normalization procedure that fulfills this

is termed addon normalization in the following. The only difference between a nor-

malization procedure and an addon normalization procedure is the following: In an

addon normalization procedure, those parameters involved which are not observation-

specific are estimated using the training data only, sparing out the test data. The

addon normalization procedure for robust multi-array average (RMA) normalization

was developed by Kostka and Spang (2008). Addon procedures can be determined for

any data preparation steps that involve considering information across observations

(see Chapter 2).

From an intuitive point of view, it is clear that both addon batch effect adjust-

ment and addon normalization should lead to better prediction results when the test

data follow a different distribution from that of the training data before adjustment.

However, in Chapter 4 a large study of real data is conducted to investigate the value

of these procedures in a prediction context for the following two main reasons: 1)

Even though an improvement is expected, it is not clear whether there is indeed a

notable gain in prediction performance by applying these procedures in practice; 2)

There are various batch effect adjustment methods and it is not clear whether all of

them lead to an improvement. In this extensive study 25 real microarray datasets are

considered, where “sex” is used as a binary target variable. For each setting studied,

all 25 datasets are considered once as a training dataset and all other 24 datasets as
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test sets.

From the results of this extensive study of real data the following conclusions can

be drawn: 1) There is an improvement both by addon batch effect adjustment and

addon normalization; 2) Addon batch effect adjustment generally is more effective

than addon normalization; 3) There is no advantage of combining addon batch effect

adjustment and addon normalization over using addon batch effect adjustment alone;

4) While addon batch effect adjustment is recommendable in principle, it should be

applied only when the test datasets are not too small and when the distribution of

the target variable is similar in training data and test data; 5) Only those batch effect

adjustment methods that address coarse batch effects seem to be appropriate. Other

kinds of methods impaired performance in the analyses.

Publications and submitted articles

The works described in Chapters 2, 3, and 4 have been published in the journals

BMC Medical Research Methodology, BMC Bioinformatics, and Bioinformatics, re-

spectively:

• Hornung, R., Bernau, C., Truntzer, C., Wilson, R., Stadler, T., and Boulesteix,

A.-L. (2015). A measure of the impact of CV incompleteness on prediction

error estimation with application to PCA and normalization. BMC Medical

Research Methodology, 15, 95.

• Hornung, R., Boulesteix, A.-L., and Causeur, D. (2016). Combining location-

and-scale batch effect adjustment with data cleaning by latent factor adjust-

ment. BMC Bioinformatics, 17, 27.

• Hornung, R., Causeur, D., Bernau, C., and Boulesteix, A.-L. (2016). Improving

cross-study prediction through addon batch effect adjustment or addon normal-

ization. Bioinformatics, doi: 10.1093/bioinformatics/btw650.

Moreover, the R package bapred was developed in the context of the project pre-

sented in Chapter 3. This package allows batch effect adjustment and addon batch

effect adjustment using the new method FAbatch and various other common batch

effect adjustment methods. Further, it provides various metrics for assessing the

success of batch effect adjustment. The package was extended in the context of the

project presented in Chapter 4 by addon quantile normalization and addon RMA

normalization.
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2. Measuring the impact of CV

incompleteness with respect to

data preparation steps

2.1. Background

In supervised statistical learning, it is widely recognized that prediction models should

not be constructed and evaluated using the same dataset. While the training dataset

is used for all steps towards obtaining the prediction rule, the test dataset is used to

evaluate its prediction error and, ideally, should not be at all involved in the training

phase. CV and related procedures involve considering several divisions into training

data and test data and averaging the estimated prediction errors of the respective

prediction rules constructed in each iteration (see also Chapter 1). In this chapter

K-fold CV is used, but all ideas and procedures can be extended to other resampling

techniques used for prediction error estimation.

In the following the term incomplete CV (Simon et al.; 2003) refers to CV proce-

dures in which some analysis steps are performed beforehand using the entire dataset.

With incomplete CV, at each iteration the excluded fold acting as test data may af-

fect the prediction rule derived, since it was used preliminarily for data preparation

which contradicts the principle of test data requiring perfect separation (Daumer

et al.; 2008). In contrast, if all steps leading to the prediction rules are performed in

each CV iteration using only the corresponding training set, the CV procedure is full

CV.

The problems resulting from incomplete CV have been studied extensively with

regard to preliminary variable selection for classification based on high-dimensional

microarray data (Simon et al.; 2003; Ambroise and McLachlan; 2002; Wood et al.;

2007; Zhu et al.; 2008). If performed before splitting the dataset into K folds, super-

vised variable selection often leads to strongly, downwardly biased error estimates.

The now widely adopted procedure to avoid this problem involves conducting anew

the variable selection step in each CV iteration using the training dataset only (Si-
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mon et al.; 2003; Ambroise and McLachlan; 2002), that is, considering it part of the

classifier construction process. Similarly, it has been suggested that parameter tuning

should be performed using the training dataset only (Varma and Simon; 2006; Bernau

et al.; 2013; Boulesteix and Strobl; 2009). However, the bias resulting from incomplete

CV with respect to parameter tuning ostensibly has never been investigated.

Variable selection and parameter tuning are—by far—not the only procedures of-

ten performed in practice before CV. For example, raw data from high-throughput

biological experiments such as microarrays have to be normalized before high-level

analyses such as predictive modeling can be conducted. The selection of features ex-

hibiting considerable variability across the observations is another example of a data

preparation step often performed when analyzing microarray data. Further examples

relevant to any type of data include imputation of missing values, dichotomization,

and non-linear transformations of the features. Preparation steps are not limited to

these few examples. The analysis of increasingly complex biomedical data (including,

e.g., imaging or sequencing data) requires the use of evermore sophisticated prepro-

cessing steps for making raw data analyzable. Note again that the question of the

impact of CV incompleteness is not relevant to those steps which prepare the obser-

vations independently of each other, such as background correction for microarray

data.

Although it is known that incomplete CV is problematic in the case of variable

selection, it is unknown which other preparation steps lead to underestimation of

the prediction error if performed before splitting the dataset into K folds. To date

there seems to be no consensus on whether it is necessary to include all steps in CV:

Some authors postulate that all steps are required to be included (Westerhuis et al.;

2008), which seems to be done rarely, regardless; others only suggest this procedure

for variable selection (Ambroise and McLachlan; 2002) or, generally, for supervised

steps (Hastie et al.; 2009).

Some practical problems which deter researchers from performing full CV include

the computational effort often needed to repeat time-intensive preparation steps, the

fact that some preparation steps such as variable selection are sometimes conducted

“in the lab” before the data are given to the statistician (Zhu et al.; 2006), and the

lack of (user-friendly) implementations of addon procedures allowing the adequate

preparation of the excluded fold when the preparation step has been conducted us-

ing the training folds only (see section 2.2.2 for more details on addon procedures).

Another practical problem occurs in the context of genotype calling in genetic asso-

ciation studies: It is common practice to use not only the entire dataset of interest,

but also additional datasets to improve genotype calling accuracy.

In the context of high-dimensional data, two further important preparation steps
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often performed using the entire dataset are dimension reduction procedures such as

PCA and normalization—for example normalization using the RMA method (Irizarry

et al.; 2003) for microarray gene expression data. It is not clear whether the prediction

error estimate that results is optimistically biased if one applies these two methods

to the entire dataset before splitting the data into K folds. In an effort to answer this

question, a measure is presented in this chapter which enables the quantification of

the impact of incomplete CV with regard to steps of interest, the CV incompleteness

impact measure (CVIIM). It is based on the ratio of the CV prediction error which

results when the preparation steps investigated are applied only once using the entire

dataset to the CV prediction error which results when they are incorporated into

CV. The latter means that, within CV, in addition to performing the investigated

preparation steps on each training dataset anew they are applied to the excluded fold

through addon procedures.

The goal of this chapter is two-fold: (i) to present the new measure CVIIM, which is

intended to be used by methodology researchers or statisticians working on statistical

learning applications to determine whether a particular preparation step should, in

general, be trained in each CV iteration successively or whether it can be performed

safely as a preliminary step on the entire dataset without generating a relevant opti-

mistic bias; and (ii) to apply this new measure to answer this question for two impor-

tant preparation steps, PCA and normalization, in order to provide corresponding

guidelines for these steps.

This chapter is structured as follows: In section 2.2 first the microarray gene ex-

pression datasets used in the empirical studies described below, the concept of addon

procedures, and the two methods, normalization and PCA, are presented. Then

CVIIM is introduced and its use and behavior in the well investigated case of vari-

able selection are briefly illustrated using four datasets. Finally, the designs of the

studies on the impact of CV incompleteness with respect to normalization and PCA

are described. In section 2.3 the results of these studies are presented. In section

2.4 preliminary results obtained for other data preparation steps are presented and

further issues are discussed. In section 2.5 the main conclusions drawn from this

chapter are summarized.

2.2. Methods

2.2.1. Data material

A wide range of publicly available, high-dimensional, mostly transcriptomic datasets

were used in the real data analyses. See Table 2.1 for an overview.
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Study Label/ Num. of Num. of Prop. smaller Data type ID
acc. number observ. variables class

Normalization E-GEOD-10320 100 22283 0.42 transcription 1

Normalization E-GEOD-47552 74 32321 0.45 transcription 2

Normalization E-GEOD-25639 57 54675 0.46 transcription 3

Normalization E-GEOD-29044 54 54675 0.41 transcription 4

Normalization E-MTAB-57 47 22283 0.47 transcription 5

Normalization E-GEOD-19722 46 54675 0.39 transcription 6

Normalization E-MEXP-3756 40 54675 0.50 transcription 7

Normalization E-GEOD-34465 26 32321 0.35 transcription 8

Normalization E-GEOD-30174 20 54675 0.50 transcription 9

Normalization E-GEOD-39683 20 32321 0.40 transcription 10

Normalization E-GEOD-40744 20 20706 0.50 transcription 11

Normalization E-GEOD-46053 20 54675 0.40 transcription 12

PCA E-GEOD-37582 121 48766 0.39 transcription 13

PCA ProstatecTranscr 102 12625 0.49 transcription 14

PCA GSE20189 100 22277 0.49 transcription 15

PCA E-GEOD-57285 77 27578 0.45 DNA methyl. 16

PCA E-GEOD-48153 71 23232 0.48 proteomic 17

PCA E-GEOD-42826 68 47323 0.24 transcription 18

PCA E-GEOD-31629 62 13737 0.35 transcription 19

PCA E-GEOD-33615 60 45015 0.35 transcription 20

PCA E-GEOD-39046 57 392 0.47 transcription 21

PCA E-GEOD-32393 56 27578 0.41 DNA methyl. 22

PCA E-GEOD-42830 55 47323 0.31 transcription 23

PCA E-GEOD-39345 52 22184 0.38 transcription 24

PCA GSE33205 50 22011 0.50 transcription 25

PCA E-GEOD-36769 50 54675 0.28 transcription 26

PCA E-GEOD-43329 48 887 0.40 transcription 27

PCA E-GEOD-42042 47 27578 0.49 DNA methyl. 28

PCA E-GEOD-25609 41 1145 0.49 transcription 29

PCA GSE37356 36 47231 0.44 transcription 30

PCA E-GEOD-49641 36 33297 0.50 transcription 31

PCA E-GEOD-37965 30 485563 0.50 DNA methyl. 32

Table 2.1.: Overview of the datasets used in the studies on normalization and PCA.
The following information is given: accession number, number of observations, number of
variables, proportion of observations in the smaller class, data type. NCBI GEO accession
numbers have the prefix GSE.
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With the exception of ProstatecTranscr all datasets were downloaded from the

ArrayExpress database (www.ebi.ac.uk/arrayexpress) (Kolesnikov et al.; 2015)

or the NCBI GEO database (www.ncbi.nlm.nih.gov/geo) (Barrett et al.; 2013).

All datasets feature a binary target variable and are of human origin. Details

on the biological background of the datasets may be obtained online with the re-

spective accession numbers available in Table 2.1 and via the R scripts written

for the preparation of the individual datasets for analysis. The latter are avail-

able at http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_

drittmittel/hornung/cviim_suppfiles/index.html and can be used to download

and prepare the individual datasets automatically. The dataset ProstatecTranscr

appeared in Singh et al. (2002) and is available in the form of an Rda-file at the above

link as well. Here, R scripts also are provided for reproducing all analyses presented

in this chapter.

In the search for suitable datasets those which featured a strong class imbalance or

would have been difficult to handle from a computational point of view were excluded.

2.2.2. Addon procedures

In this section a brief overview is given of the concept of addon procedures. When

a data preparation step has been conducted on the training data only, the test data

must be prepared equivalently: To not do so might render the test data nonsensical

with regard to, or even incompatible with, the prediction rule derived from the train-

ing data. A näıve but straightforward procedure in the case of steps which do not

involve the response variable (unsupervised steps) such as normalization (see section

2.2.3) is to prepare the test data completely independently, that is, without using any

information from the preparation of the training data. For the prediction of exter-

nal data such a separate data preparation procedure may be suitable for some steps

when the external data behave very differently from the training data: By separate

processing the data preparation procedure can adjust itself to the peculiarities of the

external data (see e.g. Bin et al. (2014)). However, in many situations this approach

may lead to greater prediction error particularly in the case of small test datasets

due to the larger variance of the output of preparation steps. Test datasets of size

one (corresponding to, for example, patients examined one at a time) are an extreme

case in which this approach is even unfeasible. Moreover, for some preparation steps

such as variable filtering by variance this näıve approach cannot be applied because

it would lead to the selection of different variables in the training datasets and test

datasets and thus make the application of the prediction rule impossible.

Another straightforward approach is to “train” the preparation step on the training

www.ebi.ac.uk/arrayexpress
www.ncbi.nlm.nih.gov/geo
http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/hornung/cviim_suppfiles/index.html
http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/hornung/cviim_suppfiles/index.html
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data and to use the output of the preparation step to prepare the test data. In the

following, this is referred to as an addon procedure. This term originally was intro-

duced in the specific case of normalization for microarray data (Kostka and Spang;

2008) but is employed here for all types of data preparation steps. In this thesis, the

following definition is used: An addon procedure for a data preparation step prepares

an observation in the test data precisely as it would prepare a corresponding obser-

vation in the training data, where, however, the parameter estimates involved have

been obtained exclusively on the training data. This, of course, excludes parameters

specific to the individual observations. These parameters are still estimated using

the data of the corresponding observations. Note that by performing a preliminary

step the following is meant in the context of this chapter: 1) Conduct the preparation

step on the data considered; 2) Store all information necessary for addon preparation

of new observations. Addon procedures are trivial in some cases, for instance, that

for dichotomization according to cutpoints determined from the training data (one

simply uses the training-data-derived cutpoint to dichotomize the test data) or that

of variable selection (selecting precisely those variables in the test data which were

selected based on the training data). However, in other cases, such as normalization

of microarray data or imputation of missing values, this task is more complex.

2.2.3. (Addon) normalization

Normalization of microarray data essentially is the transformation of the data in such

a way as to eliminate or reduce systematic differences among observations unrelated

to biological differences. In this chapter two methods of microarray data normaliza-

tion are considered: 1) RMA and 2) RMA where the quantile-normalization step is

expanded by variance stabilization normalization (VSN) (Huber et al.; 2002) with-

out calibration (RMAglobalVSN) (Huber; 2014). RMA consists of three steps: 1)

background correction, 2) quantile normalization (Bolstad et al.; 2003), and 3) sum-

marization. Background correction and summarization are performed on an array-by-

array basis, which is why no addon strategies are necessary for these procedures. The

quantile normalization step is performed conceptionally as follows: Let xsort,i∗j be the

j-th smallest variable value of array i∗. Then for each array i ∈ {1, . . . , n} the j-th

smallest value is determined and the average x̄sort,j over these n values taken. Finally

xsort,i∗j is replaced by x̄sort,j. By performing this procedure for all variable values, the

empirical distributions of all arrays become equal. When normalizing the test obser-

vations using addon quantile normalization (Kostka and Spang; 2008) the averages of

the j-th smallest values are obtained using the training data only, that is, excluding

the corresponding test observations. As a consequence the scale of the normalized
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test observations is consistent with that of the normalized training observations with-

out the latter having been changed during the procedure. VSN transforms the gene

expression values in such a way that the variance of the differences between values

of different observations is rather constant across the entire intensity range. In the

vignette of the Bioconductor package vsn, Huber (2014) presents a version of VSN

in which no calibration is performed, that is, only a global variance stabilization

transformation is conducted. In contrast to standard VSN this procedure does not

involve any observation-specific parameters, so it is possible to determine an addon

procedure: The global VSN parameters estimated on the training data are used to

transform the test data.

2.2.4. (Addon) principal component analysis

PCA is an unsupervised dimension reduction method commonly used in the con-

text of high-dimensional data analysis. The principal components are calculated

using a singular value decomposition (SVD) of the centered data matrix. The ad-

don procedure is as follows: 1) Center the values of each variable by subtracting

the corresponding variable mean estimated from the training data; 2) Multiply the

matrix resulting from 1) by the PCA loading matrix derived from the training data

to obtain the principal components. The principal components with highest variance

can be viewed as a summary of the data in fewer dimensions and often are used in

practice for graphical representation of the data. In the context of classification using

high-dimensional data, it is common to fit a prediction rule with a prediction method

such as discriminant analysis using principal components as predictors instead of the

original variables (Dai et al.; 2006).

2.2.5. The CV incompleteness impact measure (CVIIM)

In the following, CVIIM, the new measure to determine the extent of bias induced

by incomplete CV with respect to a data preparation step of interest, is presented.

Let s be the available dataset from which a prediction rule is to be derived. s is

assumed to be an i.i.d. sample of size n with observations drawn from the distribution

P , where P is the joint distribution of predictors and a response variable. Note

that the assumption of i.i.d. observations made here is owing to the fact that this

chapter is concerned with CV, that is, dataset internal validation. With external

validation this assumption generally is not appropriate. Further, let efull,K(s) be the

prediction error estimated by fullK-fold CV, that is, all steps leading to the prediction

rule, including data preparation steps, are performed anew at each CV iteration
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based on the training dataset only. Similarly, let eincompl,K(s) be the prediction error

estimated by incomplete K-fold CV, that is, the data preparation step(s) of interest

is/are performed before CV, using the entire dataset. For simplicity of notation, it

is assumed that efull,K(s) and eincompl,K(s) are obtained by averaging over a large

number of CV runs, that is, over a large number of random partitions, and can thus

be treated as deterministic.

For S ∼ P n, the measure CVIIM is defined as:

CVIIMP,n,K :=


1 − E[eincompl,K(S)]

E[efull,K(S)]
if E[eincompl,K(S)] < E[efull,K(S)]

and E[efull,K(S)] > 0

0 otherwise.

(2.1)

Note that CVIIMP,n,K is defined as a theoretical quantity, not calculable, but

possible to estimate from real data. It is estimated simply by replacing the expected

CV errors with their empirical counterparts eincompl,K(s) and efull,K(s):

CVIIMs,n,K :=


1 − eincompl,K(s)

efull,K(s)
if eincompl,K(s) < efull,K(s)

and efull,K(s) > 0

0 otherwise.

(2.2)

Clearly, CVIIMP,n,K ∈ [0, 1]. The same holds for the estimator CVIIMs,n,K . CVIIM

is based on the ratio of the incomplete CV error to the full CV error, which is more

revealing than their difference as a measure of the impact of CV incompleteness.

Indeed, the latter would depend heavily on the value of the error (large error values

leading to large differences), as suggested by the results shown in section 2.4.1 and

by the simulation presented in section 2.4.3 and in Appendix A.1. Truncation at

zero prevents CVIIM from being negative in the unlikely case that the incomplete

CV error is larger than the full CV error. A large value of CVIIM indicates that CV

incompleteness results in a large underestimation of the prediction error.

The discrepancy between eincompl,K(s) and efull,K(s) depends on the extent to which

the specific preliminary step conducted on the entire dataset increases the homogene-

ity of the covariate values across observations and (for supervised preparation steps)

the empirical association between the covariate values and the values of the target

variable.

The interpretation of CVIIMs,n,K and results from real data together with expecta-

tions regarding the impact of specific data preparation steps give rise to the following
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tentative rules of thumb for categorizing the computed values in terms of the impact

of CV incompleteness with regard to the considered step(s): [0, 0.02] ∼ no impact,

]0.02, 0.1] ∼ weak, ]0.1, 0.2] ∼ medium, ]0.2, 0.4] ∼ strong, ]0.4, 1] ∼ very strong.

In the following an artificial example is outlined to demonstrate, step by step,

a possible application of CVIIMP,n,K . The interest lies in measuring the extent of

overoptimism connected with performing the quantile normalization step of RMA

before CV in gene-expression-based classification. Suppose there is a dataset with

gene expression measurements from 32 patients suffering from breast cancer and from

22 disease-free patients. For each patient there are measurements of the expression

of 54675 genes. As a classification method the nearest shrunken centroids (NSC) are

used (Tibshirani et al.; 2002). The error eincompl,5(s), as estimated by incomplete

5-fold CV, is computed by conducting RMA normalization beforehand on the entire

dataset and performing 5-fold CV on the normalized dataset. In this procedure only

the fitting of NSC is repeated in each CV iteration on the training datasets. The

CV is repeated 300 times to obtain more stable results. The full CV error efull,5(s)

is computed by performing a 5-fold CV in which the quantile normalization step of

RMA (as well as the fitting of the NSC) is re-performed in each CV iteration on

the respective training set, with addon normalization of the corresponding test set

through the addon procedure by Kostka and Spang (2008). This procedure is repeated

another 300 times. If eincompl,5(s) = 0.15 and efull,5(s) = 0.1503 were obtained, then

CVIIMs,n,K = 1 − 0.15/0.1503 ∼ 0.002. According to the aforementioned rules of

thumb this would indicate no impact on the estimated error.

This result obtained for a specific dataset and specific classifier, may not be rep-

resentative of all datasets and classifiers in the field of gene-expression-based classi-

fication. It is necessary to study several datasets and several analysis settings rep-

resentative of the considered field in order to formulate recommendations regarding

incomplete CV for a particular step. Alternatively, specific guidelines could be for-

mulated for particular settings and data types within the considered field; however,

this could result in overly complicated guidelines.

For a detailed formal introduction to the concepts presented in this section such

as prediction rules, prediction error, and its estimation via full and incomplete CV,

consult Appendices A.2.1 and A.2.2.

2.2.6. Global CVIIM

Clearly, the value of CVIIMs,n,K depends on the specific dataset. For a general assess-

ment of the bias attributable to a specific step a more global measure summarizing

the results obtained for several datasets is needed: The global CVIIM is defined as
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the quantity resulting when replacing E[eincompl,K(S)] and E[efull,K(S)] in Eq. (2.1)

by quantities very similar to their means over the universe of datasets from the area

of interest (see Boulesteix et al. (2015) for a more formal description of this concept

in another context). Consider the following example: At this time the standard ap-

proach to microarray data analysis is to perform quantile normalization of RMA on

the entire dataset before performing CV. Suppose that the prediction error is, on

average, 0.2 over all datasets from the area of interest, but if full CV were performed

with respect to quantile normalization it would equal 0.201. The global CVIIM in

this scenario would be 1− 0.2/0.201 ∼ 0.005, a negligible overall bias.

To estimate the global CVIIM the plug-in estimator can be used, which functions

by replacing eincompl,K(s) and efull,K(s) in Eq. (2.2) with the averages of their values

obtained for several datasets from the considered area of application:

CVIIMglobals(1),...,s(L);K :=
1 −

1
L

∑L
l=1 eincompl,K(s(l))

1
L

∑L
l=1 efull,K(s(l))

if 1
L

∑L
l=1 eincompl,K(s(l)) <

1
L

∑L
l=1 efull,K(s(l))

and 1
L

∑L
l=1 efull,K(s(l)) > 0

0 otherwise,

(2.3)

where s(1), . . . , s(L) are the datasets used. Note that this estimator is not affected

considerably by individual extreme CVIIM estimates, which can occur in the case of

very small values of E[efull,K(S)]. For a detailed discussion on this phenomenon, see

Appendix A.2.3.

2.2.7. Illustration

To give a preliminary illustration of the application of CVIIM as a proof of concept, it

was applied to supervised variable selection, which was expected to yield high CVIIM

values. The following datasets were used: ProstatecTranscr, GSE33205, GSE20189,

and GSE37356. These also were considered in the PCA study; see Table 2.1.

For each variable a two-sample t-test was conducted to test the equality of the

means of the two groups. The variables with the smallest p-values were selected.

Because the result was expected to depend substantially on the number of selected

variables, the analysis was repeated for different numbers of variables: 5, 10, 20, and

half of the total number p of variables. After selecting 5, 10, and 20 variables, linear
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discriminant analysis (LDA) was used as a classification method. When selecting half

of the variables, LDA could not be applied because the empirical covariance matrices

involved are not well behaved in general when the number of variables is higher than

the number of observations. In this case, diagonal linear discriminant analysis was

used, that is, LDA under the simplifying assumption that within the two classes the

variables are independent; see Hastie et al. (2009).

In all the analyses performed in this chapter, eincompl,K(s) and efull,K(s) were ob-

tained by averaging the results from B = 300 runs of K-fold CV, where K takes the

values 3, 5, and 10 successively.
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Figure 2.1.: CVIIMs,n,K values from variable selection study. The numbers distinguish
the datasets. psel denotes the number of selected variables.

The CVIIMs,n,K values obtained for all settings are displayed in Figure 2.1. In the

plots the error bars represent the 25% and 75% quartiles (computed over the B =

300 iterations) of the iterationwise non-truncated incompleteness measure estimates

(INIMEs) CVIIMs,n,K,b := 1 − eincompl,K(s)b/efull,K(s)b, where the index b indicates

that these errors were obtained for run b (with b = 1, . . . , B). It is important to

bear in mind that the error bars should be used for comparisons between each other

only, since their absolute lengths have no relevant interpretation. Note that due to
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number of sel. K = 3 K = 5 K = 10
variables
5 0.5777 0.5927 0.6126
10 0.5557 0.5617 0.5505
20 0.3971 0.4706 0.4511
p/2 0.2720 0.2702 0.2824

Table 2.2.: Estimates of global CVIIM from variable selection study

the unboundedness of the INIMEs, the error bars—as opposed to the CVIIMs,n,K

values—are not bound by zero.

While CVIIMs,n,K is especially large for small numbers of selected variables, rel-

atively large values also are observed when half of the variables are selected (with

the exception of the dataset with the fewest variables). Although the differences in

CVIIMs,n,K for the selection of 5, 10, and 20 variables are not large, the estimates

of the global CVIIM given in Table 2.2 indicate that the bias induced by incomplete

CV tends to decrease with an increasing number of selected variables.

Dataset 30 stands out through its noticeably larger CVIIMs,n,K values in all plots.

This dataset comprises only 36 observations but 47231 variables (see Table 2.1), which

at least may explain in part the larger values. Extreme values above 0.9, however,

are surprising.

In this illustrative analysis, employing the new measure CVIIM the following con-

clusion previously obtained in the literature could be confirmed: Performing super-

vised variable selection before CV leads to a strong bias of the resulting error estimate.

2.2.8. Study design

The investigation of normalization is based on the first 12 microarray datasets listed

in Table 2.1. Here, the two variants of normalization described in section 2.2.3

were used. Two classification methods were employed successively to derive pre-

diction rules: NSC and LDA performed on partial least squares components (PLS-

LDA)(Boulesteix; 2004). For NSC the shrinkage intensity ∆ was chosen from the

grid {0.05, 0.1, 0.25, 0.5, 1, 1.5} and for PLS-LDA the number of components ncomp

was chosen from the grid {1, 2, . . . , 10}. Parameter choice was done in the following

way. For each considered training dataset, 3-fold internal CV was performed for each

candidate parameter value from the grid. The candidate parameter value yielding

the smallest 3-fold CV error was selected.

The study of PCA is based on the last 20 microarray datasets listed in Table

2.1. The constructed principal components were used as predictors in LDA and RF,

successively. For RF, the crucial parameter mtry, denoting the number of predictors
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considered as candidates in the splits of the trees, was chosen by 3-fold internal CV

from the grid {1, 2, 3, 5, 10}. Since the results can be assumed to depend heavily on

the number of principal components used as predictors, the analyses were repeated

for four numbers: 2, 5, 10, and 15.

2.3. Results

2.3.1. Normalization

Figure 2.2 depicts the CVIIMs,n,K values from the normalization study together with

the estimates of global CVIIM. The latter are given in Table 2.3.
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Figure 2.2.: CVIIMs,n,K values from normalization study. The grey lines connect the
values corresponding to the same datasets. The diamonds depict the estimates of global
CVIIM.
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Normalization Classification K = 3 K = 5 K = 10
method method
RMA NSC 0.0000 0.0000 0.0000

PLS-LDA 0.0030 0.0064 0.0000
RMAglobalVSN NSC 0.0000 < 0.0001 0.0000

PLS-LDA 0.0000 0.0030 0.0000

Table 2.3.: Estimates of global CVIIM from the normalization study

For both normalization approaches the CVIIMs,n,K values are very small for all

datasets and both classifiers. In the majority of cases the measure estimates suggest

no bias resulting from incomplete CV for normalization as defined by the rules of

thumb given on page 21. The global CVIIM estimates seem to confirm that in

general there is no bias. Slightly higher values are obtained for PLS-LDA than for

NSC, but the difference is not noteworthy.

For the individual datasets there is no visible dependence of the measure estimates

on K, although in general a negative dependence is expected; see section 2.4.5 for a

discussion on this topic. The fact that such a decrease with K is not observed for nor-

malization likely can be explained by the small values of the estimates: eincompl,K(s)

and efull,K(s) are very similar here. Therefore, the non-systematic fluctuations across

the different K values are attributable to small—probably random—fluctuations of

eincompl,K(s) and efull,K(s) over K, which could overshadow a potential dependence

on K.

In contrast to section 2.2.7, no iteration-based error bars for the individual CVIIMs,n,K

values are presented here. When depicting the results of a study with a larger number

of datasets, individual error bars make the corresponding plots increasingly unclear.

In this situation it is possible to focus on the distribution of the CVIIMs,n,K values

across datasets; the results for individual datasets are less important. Nevertheless,

extreme individual results should be examined more closely.

Given the small CVIIM estimates it can be concluded that RMA and RMAglob-

alVSN can be performed safely before CV without the danger of inducing a relevant

bias in the resulting error estimate.

2.3.2. Principal Component Analysis

Figure 2.3 and Table 2.4 show the results of the PCA study. Note that the scale

of Figure 2.3 is much larger than that of the corresponding plot for normalization

(Figure 2.2). Globally, the results suggest a weak but existing underestimation of

the true error E[efull,K(S)] when performing PCA before CV. Exceptions are LDA

in those instances where the number of components is greater than five, where zero
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Classification number of K = 3 K = 5 K = 10
method components
LDA 2 0.0974 0.0805 0.0582

5 0.0397 0.0371 0.0354
10 0.0000 0.0000 0.0000
15 0.0000 0.0000 0.0000

RF 2 0.0855 0.0747 0.0659
5 0.0686 0.0558 0.0516
10 0.0907 0.0613 0.0368
15 0.1117 0.0988 0.0794

Table 2.4.: Estimates of global CVIIM from the PCA study

values of the global CVIIM estimates are obtained.

For LDA the impact of incomplete CV seems to diminish with an increasing number

of components in PCA. The global CVIIM estimates generally are larger for RF than

for LDA. While the overall effects of performing PCA before CV seem to be weak,

Figure 2.3 reveals that there are several settings in which the CVIIM estimates suggest

a strong bias, according to the rules of thumb given on page 21, for a non-neglible

number of datasets. Therefore, these results strongly favor the use of full CV over

incomplete CV with respect to PCA.

A closer look at Table 2.4 reveals that, in general, the global CVIIM estimates

decrease with an increasing value of K (for all settings with non-zero values). For

example, this decrease is noticeable for LDA with ncomp = 2 and RF with ncomp =

10. This suggests that the estimates of global CVIIM are overly high in these cases

due to the greater upward bias of efull,K(s) compared to eincompl,K(s) as detailed in

section 2.4.5. The global CVIIM estimates depend on the means of the efull,K(s)

and the eincompl,K(s) values calculated over the included datasets. The decrease with

larger values of K is induced by the mean of the efull,K(s) values becoming more

similar to the mean of the eincompl,K(s) values with increasing value of K. For most

settings there is no substantial decrease in the global CVIIM estimates. This suggests

that the two cases for which the decrease with K was strong are connected to aberrant

results for individual datasets, which was confirmed by inspecting more closely the

individual values obtained for each setting and each dataset.

More precisely, a simple type of sensitivity analysis was performed. First, for each

of the two settings that dataset displaying the largest difference between efull,3(s)

and efull,10(s) was omitted and the global CVIIM values were re-estimated. For the

LDA with ncomp = 2 the results were 0.0812 (K = 3), 0.0681 (K = 5), and 0.0524

(K = 10), and for RF with ncomp = 10 the following values were obtained: 0.0590

(K = 3), 0.0351 (K = 5), and 0.0222 (K = 10). The values are obviously more

similar across the three different K values for both settings than the results obtained
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Figure 2.3.: CVIIMs,n,K values from PCA study. The grey lines connect the values corre-
sponding to the same datasets. The diamonds depict the estimates of global CVIIM.
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when using all 20 datasets; see Table 2.4. This is especially noticeable in the case

of the values for K = 5 and K = 10 in “LDA with ncomp = 2”; nevertheless, there

still are substantial differences. Therefore, as a second step the same procedure was

repeated. However, this time the three datasets with the largest differences between

efull,3(s) and efull,10(s) were omitted. The results were as follows: 0.0676 (K = 3),

0.0575 (K = 5), and 0.0499 (K = 10) for LDA with ncomp = 2, and 0.0067 (K = 3),

0.0000 (K = 5), and 0.0000 (K = 10) for RF with ncomp = 10. For the former setting

the similarity across K values obviously has increased, but the size of the values has

not decreased very much. The (almost) zero values for the second setting are quite

striking given that values as high as 0.0907 for K = 3 were observed when using all

20 datasets. The same analysis also was performed for all other settings (results not

shown): The global CVIIM estimates in these settings tended to be more robust to

the removal of datasets than the ones of the settings presented here. Such results,

especially those obtained for the setting “RF with ncomp = 10”, illustrate that a

large decrease in global CVIIM estimates with an increasing value of K should be

interpreted with caution. In such cases it is recommendable to conduct a sensitivity

analysis of the same kind as the one conducted here.

2.4. Discussion

In the following, first, possible alternative measures of CV incompleteness are exam-

ined and why they are less appropriate than the new measure CVIIM is discussed.

Then, as an outlook some preliminary results obtained for additional data prepa-

ration steps beyond normalization and PCA are presented. Finally, various further

issues related to CVIIM are explored.

2.4.1. Alternative measures of CV incompleteness

An important question with respect to the definition of CVIIM is whether it depends

on E[efull,K(S)]. Such dependence is undesirable because CVIIM should not be a

measure of the error but rather of the impact of CV incompleteness. To examine

this in the context of the PCA study, the upper panel of Figure 2.4 shows a plot of

the CVIIMs,n,K- against the efull,K(s) values, where the different analysis settings

for a given dataset are represented using the same color and number, and the mean

over the values for each dataset is represented with a black point. This plot suggests

no relevant dependence of CVIIMs,n,K on the full CV error efull,K(s). For two of

the smallest errors, extreme CVIIM estimates resulting from random fluctuations in

the error estimates as discussed in Appendix A.2.3 can be observed. However, this
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problem—concerning only two values of 480 error values in total—seems to be neg-

ligible. The lower panel of Figure 2.4 displays the zero-truncated difference between

efull,K(s) and eincompl,K(s) against efull,K(s). This plot clearly suggests a compara-

tively strong dependence of the estimates of this measure on the full CV error, as

also observed in the results obtained in the simulation study presented in Appendix

A.1, and thus provides evidence supporting the use of a ratio-based measure rather

than a difference-based measure. Analogous plots give a very similar picture in the

case of normalization; see Figure 2.5.

An obvious, but less insightful, way of visualizing the impact of CV incompleteness

is simply to plot efull,K(s) and eincompl,K(s) for the individual datasets. Figure 2.6

shows such a plot for the PCA study. Without closer inspection, it appears that in

some cases eincompl,K(s) is considerably smaller than efull,K(s), indicating the strong

bias already suggested by the CVIIMs,n,K values.

However, this visualization has two crucial disadvantages. First, in contrast to

the plot of the CVIIM estimates, it does not show values which allow immediate

interpretation of the extent of overoptimism for the individual datasets. Second, it

draws attention to the different sizes of the errors across individual datasets rather

than highlight the discrepancies between the efull,K(s) and eincompl,K(s) values, which

should be the focus.

2.4.2. Outlook: other preparation steps

Additional analyses were performed for additional data preparation steps, however,

with fewer datasets and fewer analysis settings than in the studies for normalization

and PCA. These preparation steps included optimization of tuning parameters, vari-

able filtering by variance, and imputation of missing values. In the following, the

study designs and detailed results of these analyses are described.

Optimization of tuning parameters An important data preparation step is choos-

ing tuning parameter values. Seven classification methods were considered succes-

sively, each with one tuning parameter of interest optimized from a grid through

internal CV as described in section 2.2.8: the number of iterations mstop in componen-

twise boosting with logistic loss function (LogitBoost) (grid: {50, 100, 200, 500, 1000})
(Bühlmann and Yu; 2003), the number of neighbors in the k-Nearest Neighbors al-

gorithm (kNN) (grid: {1, 2, . . . , 10}), the shrinkage intensity in L1-penalized logistic

regression expressed as the fraction of the coefficient L1-norm compared to the maxi-

mum possible L1-norm (grid: {0.1, 0.2, . . . , 0.9}) (Young-Park and Hastie; 2007), the

shrinkage intensity for the class centroids in NSC (grid: {0.1, 0.25, 0.5, 1, 2, 5}), the
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Figure 2.4.: Dependence on CV errors in PCA study. Upper panel: CVIIMs,n,K values ver-
sus efull,K(s) values for all settings; Lower panel: Zero-truncated differences of efull,K(s)
values and eincompl,K(s) values against efull,K(s) values for all settings. The colors and
numbers distinguish the different datasets. The filled black circles depict the respective
means over the results of all settings obtained for the specific datasets.
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Figure 2.5.: Dependence on CV errors in normalization study. Upper panel: CVIIMs,n,K

values against efull,K(s) values for all settings; Lower panel: Zero-truncated differences
of efull,K(s) values and eincompl,K(s) values against efull,K(s) values for all settings. The
colors and numbers distinguish the datasets. The filled black circles depict the respective
means over the results of all settings obtained for the specific datasets.
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Figure 2.6.: Errors in PCA study. efull,K(s) values (filled triangles) and eincompl,K(s)
values (filled circles) for all datasets and settings from the PCA study

.
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number of components in PLS-LDA (grid: {1, 2, . . . , 10}) (Boulesteix and Strimmer;

2007), the number mtry of variables randomly sampled as candidates at each split in

RF (grid: {1, 5, 10, 50, 100, 500}) (Breiman; 2001), and the cost of constraints viola-

tion in support vector machines (SVMs) with linear kernel (grid: {10−5 · 40k/7 : k =

0, . . . , 7}) (Schölkopf and Smola; 2002).

The same four example datasets were used as in the illustrative application of

CVIIM to supervised variable selection presented in section 2.2.7. Figure 2.7 and

Table 2.5 show the results. None of the methods exhibit large CVIIMs,n,K values.

According to the rules of thumb given on page 21, only one result is classified as a

medium effect, namely tuning of the number of components in PLS-LDA for dataset

GSE33205 and the rest are classified as weak effects.

Researchers applying CV to optimize tuning parameters in the way described here

may be tempted to use as an error estimate of the prediction rule the CV error esti-

mate for the ultimately chosen tuning parameter value obtained during optimization,

that is, the smallest one. The optimistic bias of this estimate has been studied in the

literature (Varma and Simon; 2006; Bernau et al.; 2013; Boulesteix and Strobl; 2009).

Given a large enough number of repetitions of the CV used in the optimization, this

optimistic bias becomes equivalent to the bias resulting from performing the opti-

mization before CV, as studied here. This is because the dependence of the CV error

estimates, that is, those of the optimization process, on the specific training/test set

divisions diminishes with an increasing number of repetitions. As a result, the ad-

ditional distortion of the estimate studied by Varma and Simon (2006) and Bernau

et al. (2013), which was due to the impact of optimally selecting the smallest error

estimate, and the distortion of the incomplete CV estimate studied here, decrease in

the same way.

An effort was made to choose reasonable parameter grids in the above analysis;

however, the results are likely grid-dependent. Moreover, for methods such as RF

involving several important tuning parameters, it would be interesting to investigate

the bias induced by incomplete CV when optimizing two or more tuning parameters

simultaneously.

Variable filtering by variance Here, for each variable the empirical variance was

calculated and half of the variables with the largest variances were selected. Such

procedures are common in the context of gene expression data analysis. The aim of

these procedures is to eliminate genes exhibiting little variation in their profile and

therefore generally are not of interest (Soreq et al.; 2012). Again, diagonal linear

discriminant analysis was used as a classification method and the same four example

datasets were considered as in the case of supervised variable selection and tuning.
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Figure 2.7.: CVIIMs,n,K values from tuning study. The numbers distinguish the datasets.
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number of sel. K = 3 K = 5 K = 10
variables
Boosting 0.0385 0.0415 0.0591
kNN 0.0227 0.0309 0.0465
Lasso 0.0124 0.0134 0.0126
NSC 0.0554 0.0472 0.0501
PLS-LDA 0.0456 0.0343 0.0486
RF 0.0097 0.0014 0.0025
SVM 0.0350 0.0330 0.0417

Table 2.5.: Estimates of global CVIIM from the tuning study

Here, only zero or almost zero values are observed, see Figure 2.8. The global

CVIIM estimates are correspondingly zero or (for K = 3) almost zero. These results

suggest that the selection of a large number of variables in an unsupervised fashion

might be performed outside CV in contrast to supervised variable selection.

14
14 14

25
25 25

15 15 15

30

30

30

−0.04

0.00

0.04

K = 3 K = 5 K = 10

C
V

IIM
s,

n,
K

Figure 2.8.: CVIIMs,n,K values from variable filtering study. The numbers distinguish the
datasets.

Imputation of missing values The k-Nearest Neighbors imputation procedure

(Wong; 2013) was applied. The latter commonly is used for the analysis of high-

dimensional microarray data. Prior to imputation, the variables were centered and

scaled, and the estimated means and standard deviations were stored. After imputing

the values, they were rescaled using the stored standard deviations, and the stored
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means were added to retransform the data to the original level. The result of the

imputation may depend heavily on the number k of nearest neighbors considered.

Therefore, to optimize this parameter on the grid {1, 2, 3, 5, 10, 15} again 3-fold CV

was employed. For correct addon imputation, the means and standard deviations es-

timated from the training data were used and only the training data were examined

when searching for the k nearest neighbors.

First a collection of five example datasets was considered, GenitInfCow, contain-

ing measurements on 51 cows, 36 of which were suffering from a major genital infec-

tion. Each dataset (IDs 33 - 37 in Table 2.1) contains measurements from a specific

week and comprises between 21 and 27 variables. These datasets had been obtained

with great thanks through personal communication with Michael Schmaußer. RF

was used as a classification method here. The second example dataset used was

ProstatecMethyl (ID 38 in Table 2.1), containing 222 variables obtained through

DNA methylation profiling of 70 patients, 29 of whom were suffering from metastatic

prostate cancer. This dataset was obtained with great thanks from Thomas Stadler,

the fifth author of Hornung et al. (2015). NSC was used as a classification method

for this dataset. The shrinkage intensity (for NSC) and mtry (for RF) were chosen

by 3-fold CV.

The results, shown in Figure 2.9, suggest that in this setting it is irrelevant whether

the considered imputation procedure is trained on the entire dataset or based on the

training datasets only. The GenitInfCow datasets contain proportions of missing val-

ues between∼ 8% and∼ 19% with tendentiously lower proportions for more advanced

weeks. This pattern also is reflected by the CVIIMs,n,K values, where increasingly

smaller values are observed for more advanced weeks, with the highest values be-

ing observed for Dataset 33, that with the greatest number of missing values. The

high-dimensional dataset ProstatecMethyl yields CVIIMs,n,K values of zero for all

K values. In this dataset only ∼ 3% of values were missing, which is, although small

compared to the GenitInfCow datasets, a proportion within the range of proportions

likely to occur in practice.

2.4.3. Simulation study

In addition to the real data studies presented above, a simulation study was con-

ducted to investigate general statistical properties of CVIIMs,n,K . Here, super-

vised variable selection was used as a preparation step, which displayed the largest

CVIIMs,n,K values in the real data analyses. The data-driven simulation study uses

the ProstatecTranscr dataset and involves 2000 correlated normally distributed

predictors. The methods and detailed results are presented in the Appendix A.1.
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Figure 2.9.: CVIIMs,n,K values from imputation study. The numbers distinguish the
datasets.

Briefly, in the simulations the variance of CVIIMs,n,K as an estimator of CVIIMP,n,K

was relatively high and decreased with decreasing CVIIMP,n,K values. The bias

was negligible. When displaying the CVIIMs,n,K values graphically in sections 2.2.7

and 2.4.2 error bars were added representing the variability in the (untruncated)

CVIIMP,n,K estimates from individual repetitions of CV. The assumption made there

that this variability measure also reflects the actual variance of CVIIMs,n,K was con-

firmed by the simulation, whereby this similarity in behavior was most pronounced

for K = 3. This indicates that the error bars obtained for the small K values—of all

considered values of K (see section 2.4.5)—are the most appropriate for comparing

the variability in individual CVIIMs,n,K values.

2.4.4. Combination of several steps

In practice, data preparation frequently involves a combination of several preliminary

steps, often performed in a natural order. For example, normalization of microarray

data has to be performed before variable selection. However, there also are cases

with no predefined order. For example, dichotomization can be conducted before or

after variable selection. Given a specific order of the steps, if one step is performed

during CV, for obvious technical reasons one also has to perform all subsequent steps
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during CV. Of course it also is possible to compute CVIIM globally for the entire

combination of steps. In the following an example of such a combination is presented.

The following combination of steps was considered: imputation of missing values,

supervised variable selection, and optimization of tuning parameters. For imputation

the algorithm described in section 2.4.2 was used. For supervised variable selection

the 10 variables with the smallest p-values from Wilcoxon’s two-sample tests were

chosen. As a classification method RF was used with mtry as a tuning parameter.

Here, mtry was optimized from the grid {1, 2, . . . , 5} through internal CV as described

in section 2.2.8.

In addition to efull,K(s) (where all three preparation steps are conducted on the

training datasets and addon procedures are used to prepare the test datasets) and

eincompl,K(s) (where all three steps are conducted on the entire dataset), for each

step the step-specific incomplete CV error (stspincCVerr) was calculated. The value

of this measure is obtained when the considered step is performed using the entire

dataset and the others are performed within CV. StspincCVerr values are calculated

to investigate the contribution of the individual steps to the discrepancy between

efull,K(s) and eincompl,K(s).

In the following the procedures performed to obtain the stspincCVerrs are de-

scribed. For the first step (imputation), the stspincCVerrs simply were computed by

performing the considered step using the entire dataset and then starting the CV

repetitions, that is, all subsequent steps were included in the repeated CV. For steps

not performed when starting data preparation, different actions must be taken to

obtain a stspincCVerr. In fact, each preceding step changes the data. Therefore,

it is not feasible to employ ordinary CV in the process of calculating the stspinc-

CVerrs because it is not possible to perform the considered step only once on the

entire dataset. Instead, to obtain a stspincCVerr value in these cases, the follow-

ing CV-like procedure was applied, using a random partition of the dataset into K

equally sized folds as in ordinary CV. For k ∈ {1, . . . , K} the following steps were

taken: 1) Perform all steps up to the considered step on the k-th training set, each

time adjusting the corresponding test set with the appropriate addon procedure; 2)

Merge the training set and test set and perform the considered step on the resulting

concatenated dataset; 3) Split the result from 2) into the division of training set and

test data again; 4) Perform all remaining data preparation steps on the training set,

again, each time adjusting the test set with the appropriate addon procedure; and

5) Calculate the misclassification error of the prediction rule on the test set. Note

that the only goal of this procedure is to assess the impact of the individual steps

within the combinations. It has no other meaningful application in error estimation

in practice.



40 2. Measuring the impact of CV incompleteness

As in the analyses of single steps, here also B = 300 repetitions of the CV(-like)

procedures were performed. The dataset ProstatecMethyl was used.

The CVIIMs,n,K values are 0.2846, 0.3121, and 0.3442 for K = 3, K = 5, and

K = 10, respectively. When calculating the stspincCVerr values (Figure 2.10) it

is interesting to notice that when performing only supervised variable selection on

the entire dataset the error is virtually identical as when performing all steps on the

entire dataset. Correspondingly, incomplete CV based on each of the other steps alone

yields results almost no different to those from full CV. Therefore in this example the

supervised variable selection is almost completely responsible alone for the difference

between the correct and incorrect CV procedures.

In summary, individual influential steps can play a dominating role within com-

binations of several steps; however, the analysis presented in this section should be

considered an illustration. The results described here cannot be generalized because

they can depend heavily on the specific setting and dataset used.
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Figure 2.10.: efull,K(s) (−−) and eincompl,K(s) values (−−) as well as stspincCVerr values
for imputation (−−), variable selection (−−), and tuning (−−).

2.4.5. Further issues

For producing the results presented in section 2.4.2 a limited number of datasets

were used in the analyses and therefore these results should not be over-interpreted.

In contrast, the results from the normalization and PCA analyses were based on 12

and 20 datasets respectively, and thus are more reliable. As a rule of thumb at least
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10 datasets should be analyzed to evaluate the impact of CV incompleteness for a

particular preparation step. However, the number of datasets to consider depends on

the heterogeneity of the datasets. Generally, variability in the relative performances

of different classification methods across different datasets has been found to be large

in previous studies (Boulesteix et al.; 2015; Boulesteix; 2013). Frequently analogous

observations can be made with respect to the distribution of the CVIIM estimates

over datasets. When studying these distributions, implicit variability inherent in

individual CVIIM estimates also is observable. This variability probably is difficult

to estimate given that the estimator involves a fraction of two CV estimates, the

variance of which is very difficult to estimate (Bengio and Grandvalet; 2004).

In CV the training sets are necessarily smaller than the entire dataset and the CV

error estimate is, thus, an upwardly biased estimator of the error of the prediction

rule fit on the entire dataset. This type of bias also affects the relationship between

E[efull,K(S)] and E[eincompl,K(S)]. Since in E[eincompl,K(S)] the considered analysis

step(s) is/are performed on the entire dataset, the corresponding parameters are

estimated more accurately than in E[efull,K(S)] due to the difference in sample sizes.

This leads to a greater upward bias of efull,K(s) compared to eincompl,K(s) with respect

to the prediction error of the prediction rule fit on the entire dataset. Occasionally,

this can result in increased CVIIMs,n,K values. A strong decrease in the CVIIM

estimates with increasing value of K is an indication of the presence of this problem.

This is because as the value of K increases, the size of the training sets gets closer

to the full sample size, thereby diminishing the additional upward inherent bias of

efull,K(s). For the latter, see Appendix A.2.1. In most of the analyses performed

above no substantial dependence on K was observable. Nevertheless, CVIIM should

be estimated for several values of K as a form of sensitivity analysis, as done in the

analyses presented in this chapter.

For larger datasets the result of any preliminary step is expected to be more stable,

and in fact results become deterministic as the sample size tends to infinity. Therefore,

with larger sample sizes the result of a preliminary step will differ less, depending

on whether it is performed on the entire dataset or correctly, separating training and

test data. Thus CVIIM depends negatively on the sample size. In Figures 2.11,

2.12, and 2.13 for each preparation step investigated the dataset-specific means of

the CVIIM estimates over all respective settings are plotted against the sample sizes

of the datasets. Here, such a dependence is observable: For large datasets (n ∼ 100)

the CVIIM estimates were much smaller in most cases. This also was observed in the

simulation study.

CVIIM in its current form is applicable to binary classification problems only.

However, it can be easily adjusted to many other regression problems by replacing
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Figure 2.11.: Normalization study: Dataset-specific means of the CVIIMs,n,K and
efull,K(s) values plotted against the sample sizes of the datasets. The solid lines are
LOESS curves.

29

19

22

20

26

13

32 21

24

28

18

23

27

17

31

16

15

25

30

14

0.0

0.1

0.2

50 75 100 125

n

M
ea

n 
of

 C
V

IIM
s,

n,
K
 v

al
ue

s

29

19

22

20
26 13

32

21

24

28

18

23

27
1731

16 15

25

30

14

0.0

0.2

0.4

0.6

50 75 100 125

n

M
ea

n 
of

 e
fu

ll,
 K

(s
) v

al
ue

s
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plotted against the sample sizes of the datasets. The solid lines are LOESS curves.
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the misclassification errors in Eq. (2.1) with alternative error measures. The only

requirement is that the loss function associated with the respective error type has

a positive range. Most common loss functions fulfill this requirement, for example,

the quadratic or absolute loss for linear regression, the integrated Brier score for

survival data, the check function in the case of quantile regression, and the negative

log-likelihood as an alternative to the error rate when the response variable is discrete.

Because CV provides dataset-internal error estimation, it estimates the error ex-

pected on observations following the same distribution as the training data. When a

different dataset is used for evaluating the prediction rule as done in external valida-

tion, the error can be expected to be higher (Bernau et al.; 2014) (see also Chapter

4). CV can be used in the process of obtaining an adequate prediction rule when no

external data are available; however, before ultimately applying a prediction rule in

medical practice, it should be validated externally (Simon; 2004; Collins et al.; 2014).

2.5. Conclusions

In conclusion, the results of the empirical study in which the new measure of CV

incompleteness is used suggest that 1) RMA and RMAglobalVSN can be performed

safely as preliminary data preparation steps on the entire dataset since they yielded

very small CVIIM values for all 12 real datasets analyzed, and 2) PCA has to be

performed anew in each CV iteration, that is, re-trained on each training set, to

avoid a potential optimistic bias, since it yielded large CVIIM values in some of

the 20 real datasets analyzed. The latter result indicates that non-supervised data

preparation steps also can lead to over-optimistic error estimation if performed before

CV. Given the widespread use of RMA in microarray analysis, it is reassuring that

the common practice of performing RMA before CV is not harmful.

Due to the complexity of modern biological data, traditional model assessment tools

often are not appropriate or even employable and CV is the method of choice in eval-

uating prediction models. Thus, it is especially important to have reliable guidelines

for its application. Moreover, data preparation is becoming increasingly important,

especially for data generated by high-throughput technologies. The need to evaluate

empirically the impact of CV incompleteness with regard to these data preparation

steps likewise increases. In this chapter, through its application to important data

preparation steps, CVIIM was shown to be a useful tool in this endeavor.



3. Combining location-and-scale

batch effect adjustment with data

cleaning by latent factor

adjustment

3.1. Background

In practical data analysis, groups of observations included in a dataset sometimes

form distinct batches; for example, measured at different times, under different con-

ditions, by different people, or even in different laboratories. Such batch data are

common in the context of high-throughput molecular data analysis, where experi-

mental conditions typically have a high impact on the measurements and only few

patients are considered at a time. Further, different batches may represent different

studies concerned with the same biological question of interest. In this thesis all

systematic differences between batches of data unattributable to the biological signal

of interest are denoted as batch effects regardless of the context. If ignored when

conducting analyses of the combined data, batch effects can lead to distorted and

less precise results.

It is clear that batch effects are more severe when the sources from which the

individual batches originate are more disparate. Batch effects, as explained in the

definition above and as stated in Chapter 1, also may include systematic differences

between batches due to biological differences among the respective populations un-

related to the biological signal of interest. This conception of batch effects is related

to an assumption made about the distribution of the data on recruited patients in

randomized controlled clinical trials (see, e.g., Matthews (2006)). This assumption

is that the distribution of the (metric) outcome variable may be different for the

actual recruited patients than for the patients eligible for the trial, that is, there may

be biological differences, with one important restriction: The difference between the

means in treatment and control group must be the same for recruited patients and
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for eligible patients. Here, the population of recruited patients and the population of

eligible patients can be perceived as two batches (ignoring that the former is a—very

small—subset of the latter) and the difference between the means of the treatment

and control group would correspond to the biological signal.

Throughout this chapter it is assumed that the data of interest are high-dimensional,

that is, there are more variables than observations, and that all measurements are

(quasi-)continuous. Possible present clinical variables are excluded from batch effect

adjustment. Various methods have been developed to correct for batch effects (see

e.g., Lazar et al. (2012) for a general overview and Luo et al. (2010) for an overview

of methods suitable in applications involving prediction). Two of the most commonly

used methods are ComBat (Johnson et al.; 2007), a location-and-scale batch effect

adjustment method and SVA (Leek and Storey; 2007; Parker et al.; 2014), a non-

parametric method in which the batch effects are assumed to be induced by latent

factors. Even though the assumed form of batch effects underlying a location-and-

scale adjustment as done by ComBat is rather simple, this method reduces batch

effects (Chen et al.; 2011) considerably. However, a location-and-scale model often is

too simplistic to account for more complicated batch effects. SVA is, unlike ComBat,

concerned with situations where it is unknown which observations belong to which

batches. The aim of this method is to remove inhomogeneities within the dataset that

distort its correlation structure. These inhomogeneities are assumed to be caused by

latent factors. When the batch variable is known, it is natural to take this important

information into account when correcting for batch effects. Also, it is reasonable here

to make use of the data-cleaning ability of the latent-factor adjustment by applying it

within batches. This has the effect of reducing such inhomogeneities within batches

which are unrelated to the biological signal of interest. By doing so it can be expected

that the homogeneity of the data is further increased across batches as well.

In this chapter, a new method is introduced, denoted as FAbatch, where FA stands

for factor adjustment. The method combines the location-and-scale adjustment (as

performed by ComBat) with data cleaning by latent factor adjustment (as performed

by SVA). Care has to be taken in the latent factor estimation in the context of data

cleaning. Inhomogeneities within the dataset are induced not only by sources of un-

wanted noise but also by the biological signal of interest. If this interference between

batch effects and signal would not be taken into account, removing the corresponding

estimated latent factor loadings would lead to removing a large part of the biolog-

ical signal of interest. An obvious, yet problematic, way of protecting the signal of

interest would be to remove it temporarily before estimating the latent factors by

regressing each of the variables in the dataset on the variable representing the bio-

logical signal. However, this can lead to an artificially increased signal, as outlined in
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section 3.2.2. A solution in the case of a binary variable representing the biological

signal is realized by FAbatch. Here, first, preliminary L2-penalized logistic regression

models are fitted to predict the probabilities of the individual observations to belong

to the first class and to the second class. Second, these predicted probabilities are

used in place of the actual values of the binary variable when protecting the signal

of interest during latent factor estimation (see section 3.2.2 for details). Thus, in its

current form FAbatch is applicable only when the signal variable is binary; however,

extensions to other types of variables are possible (see section 3.4).

As an illustration, Figure 3.1 shows plots of the first two principal components

obtained by PCA on a raw dataset (upper-left) and after running the three differ-

ent batch effect adjustment methods described above. The dataset, composed of

two batches, contains the gene expressions of 20 alcoholics and 19 healthy controls

(downloadable from ArrayExpress (Kolesnikov et al.; 2015), accession number: E-

GEOD-44456). After ComBat adjustment, the centers of gravity of the first principal

components separated into the two batches become very similar (upper-right panel).

However, the shapes of the point clouds corresponding to the two batches do not

change substantially in comparison to the results obtained for the raw data (upper-

left panel) and the two clouds do not fully overlap. After SVA adjustment, as with

ComBat, the two batch centers are similar (lower-left panel), and the forms of the

point clouds change considerably more than those with ComBat. Nevertheless, there

still are regions in the plots with suboptimal overlap between the two clouds. The

two batch centers are not distinguishable in the plot showing the result obtained after

applying FAbatch (lower-right panel). Moreover, there is great overlap between the

two clouds. This illustrative example suggests that the adjustment for batch effects

can be improved by combining location-and-scale adjustment with data cleaning by

factor adjustment.

As stated before, the prediction of phenotypes by means of prediction rules is an

important area of application for high-throughput molecular data. In practice, the

training data used to obtain the prediction rule often stem from a source different from

that of the test data to which the prediction rule is applied. Batch-effect adjustment

can be performed to render the test data more similar to the training data before

applying a prediction rule that previously had been fitted on the training data. This

will be empirically studied in depth in a realistic setting in Chapter 4. Note again

that this kind of batch effect adjustment is not specific to FAbatch, but represents

a general concept denoted as “addon batch effect adjustment”: First, batch effect

adjustment is conducted on the original dataset. Some methods require the values of

the target variable to be known in the dataset under investigation. Second, batch-

effect adjustment for independent batches is performed. To facilitate this, several
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Figure 3.1.: Visualization of batch effect adjustment. First two principal components from
PCA performed on the covariate matrix of a microarray dataset studying alcoholism: raw,
after batch-effect adjustment according to ComBat, SVA using three factors, and FAbatch
using three factors. The first batch is depicted in bold and the numbers distinguish the two
classes “alcoholic” (2) versus “healthy control” (1) . The contour lines represent batch-
wise two-dimensional kernel estimates and the diamonds represent the batch-wise centers
of gravities of the points.
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observations from each batch must be available simultaneously (in general, however

not in the case of frozen SVA (fSVA), see section 3.2.3). This second phase does not

affect the data prepared during the first phase (see section 3.2.3 for details). Such

scenarios are referred to as cross-batch prediction in the rest of this chapter.

The structure of this chapter is as follows: Section 3.2 begins with an overview

of the ComBat method, the SVA method, as well as other batch-effect adjustment

methods. Subsequently, the new method is introduced and shown to be able to be

seen as an extension of ComBat by batchwise adjustment for latent factor influences

with this adjustment being similar to the application of SVA within batches. More-

over, how to adjust for batch effects a posteriori in independent observations for

the purpose of cross-batch prediction is explained. The corresponding procedure is

outlined in general and for the specific batch-effect adjustment methods considered

in this chapter. In the subsequent subsection the design of an extensive comparison

study based on simulations and real data applications is presented. In this study, FA-

batch is compared with commonly used competitors with respect to diverse metrics

measuring the effectiveness of batch-effect adjustment (Lazar et al.; 2012; Lee et al.;

2014). While the main aim here is to study the performance of FAbatch, the results

of this comparison study also can be used to aid researchers in choosing appropriate

batch-effect adjustment methods for their applications. The methods considered are

FAbatch (fabatch), ComBat (combat), SVA (sva), mean-centering (meanc), stan-

dardization (stand), ratio-A (ratioa), and ratio-G (Luo et al.; 2010) (ratiog).

The results of this study are described in section 3.3, which also contains an analysis

of the use of batch-effect adjustment methods in cross-batch prediction. Moreover, it

is argued that SVA can lead to an artificial increase of the biological signal of interest.

The latter is demonstrated using simulated data. In section 3.4 the models behind

FAbatch and other approaches are reviewed, and in section 3.5 important conclusions

drawn from the results presented in this chapter are summarized.

3.2. Methods

3.2.1. Description of existing batch-effect adjustment methods

ComBat

This method assumes the following model for the data observed xijg:

xijg = αg + aT
ijβg + γjg + δjgεijg, εijg ∼ N(0, σ2

g). (3.1)
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Here i is the index for the observation, j the index for the batch, and g the index for

the variable. The term aT
ijβg parametrizes the effect of experimental conditions or, in

general, any factors of interest aij on the measurements of variable g. In the context

of this chapter, aij is a dummy variable representing the binary variable of interest

yij, with aij = 1 if yij = 2 and aij = 0 if yij = 1. The term εijg represents random

noise unaffected by batch effects. The term γjg corresponds to the shift in location of

variable g in the j-th batch; to the unobserved—hypothetical—data x∗ijg unaffected

by batch effects. The term δjg corresponds to the scale shift of the residuals for

variable g in the j-th batch. Note that the restriction to binary target variables,

which is not necessary in general for the application of ComBat, is required for the

application of FAbatch (in its present form).

The unobserved counterpart x∗ijg of xijg not affected by batch effects is assumed to

be

x∗ijg = αg + aT
ijβg + εijg, εijg ∼ N(0, σ2

g). (3.2)

The goal of batch effect correction via ComBat is to estimate these unobserved x∗ijg

values. The following transformation of the observed xijg values would provide the

true x∗ijg values:

√
Var(x∗ijg)

(
xijg − E(xijg)√

Var(xijg)

)
+ E(x∗ijg) (3.3)

= σg

(
xijg − (αg + aT

ijβg + γjg)

δjgσg

)
+ αg + aT

ijβg (3.4)

= αg + aT
ijβg + εijg = x∗ijg. (3.5)

In practice, however, the parameters involved in Eq. (3.4) are unknown and have to

be estimated. In particular, γjg/σg and δjg are estimated using empirical Bayes to

obtain more robust results (see Johnson et al. (2007) for details on the estimation

procedure). Note that in the analyses performed and presented in this chapter the

term aT
ijβg is not included in the adjustment. The first reason for this is that in

section 3.3.2 cross-batch prediction is used—the class values aij are not known in the

test data when performing cross-batch prediction. The second reason is that using

the class values aij with the estimates of βg may lead to an artificially increased

class signal because the estimates of βg depend on the class values aij. This kind of

mechanism is discussed in detail, but in slightly other contexts, in sections 3.2.2 and

3.3.3.
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SVA

The model for the observed data is given by:

xijg = αg + aT
ijβg +

m∑
l=1

bglZijl + εijg, (3.6)

Var(εijg) = σ2
g . (3.7)

Here αg and aT
ijβg are as in the previous subsection and Zij1, . . . , Zijm are random

latent factors with loadings bg1, . . . , bgm.

The unobserved, corresponding, batch-free data are:

x∗ijg = αg + aT
ijβg + εijg, Var(εijg) = σ2

g . (3.8)

Note again that in the SVA model batch membership is assumed to be unknown.

To judge the appropriateness of the SVA algorithm it is important to specify the

model underlying SVA as precisely as possible. From the following two facts it

can be deduced that the distribution of the latent factors can be different for each

observation—in the extreme case. First, the assumed form of the batch-free data in

Eq. (3.8) implies that the distortions between the batches are induced fully by the

latent factors. Second, each observation may come from a different batch with its

own mean structure, covariance structure, and correlation structure.

The SVA batch-effect adjustment is performed by substracting
∑m

l=1 bglZijl from

xijg:

xijg −
m∑
l=1

bglZijl = αg + aT
ijβg + εijg = x∗ijg. (3.9)

The latent factors are estimated as the first m right singular vectors from a SVD. In

section 3.1 it was stressed that inhomogeneities in datasets are due not only to batch

effects, but also to the biological signal of interest, that is, the term aT
ijβg in Eq.

(3.6) and (3.8). Therefore, it was noted that the biological signal of interest has to

be protected during factor estimation in FAbatch. In SVA, to protect the biological

signal, before performing the SVD on the transposed covariate matrix, the variable

values are weighted by the estimated probability that the corresponding variables are

associated with unmeasured confounders but not with the binary variable represent-

ing the biological signal. The factor loadings are estimated by linear models. An

extension of SVA (Leek and Storey; 2007) developed for the purpose of prediction is

the fSVA procedure (Parker et al.; 2014), which will be explained in section 3.2.3.
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Further batch effect adjustment methods considered in comparison studies

In the following, further batch-effect adjustment methods are presented which are

less closely related to FAbatch than ComBat and SVA are, but they will be used in

the analyses presented in this chapter and in Chapter 4.

Mean-centering From each measurement the mean of the values of the correspond-

ing variable in the corresponding batch is substracted:

x̂∗ijg = xijg − µ̂jg, (3.10)

where µ̂jg = (1/nj)
∑

i xijg.

Standardization The values of each variable are centered and scaled for each batch:

x̂∗ijg =
xijg − µ̂jg√

σ̂2
jg

, (3.11)

where µ̂jg as in (3.10) and σ̂2
jg = [1/(nj − 1)]

∑
i(xijg − µ̂jg)

2.

Ratio-A Each measurement is divided by the arithmetic mean of the values of the

variable in the corresponding batch:

x̂∗ijg =
xijg
µ̂jg

, (3.12)

where µ̂jg is the same as in (3.10).

Ratio-G Each measurement is divided by the geometric mean of the values of the

variable in the corresponding batch:

x̂∗ijg =
xijg

µ̂g,geom

, (3.13)

where µ̂g,geom = nj

√∏nj

i xijg.
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3.2.2. FAbatch

Model

The following model is assumed for the data observed xijg:

xijg = αg + aT
ijβg + γjg +

mj∑
l=1

bjglZijl + δjgεijg, (3.14)

Zij1, . . . , Zijmj
∼ N(0, 1), εijg ∼ N(0, σ2

g),

Here, all parameters involved are the same as those in section 3.2.1. As in the

SVA model, Zijl are random latent factors. In contrast to the SVA model, in the

FAbatch model the distribution of the latent factors is the same for all observations.

However, since the loadings bjgl of the latent factors are batch-specific, they induce

batch effects in the FAbatch model as well. More precisely, they lead to varying

correlation structures in the batches. In the SVA model, by contrast, all batch effects

are induced by the latent factors. Without the summand
∑mj

l=1 bjglZijl model (3.14)

would equal the model underlying the ComBat method (see Eq. (3.1)).

The unobserved data x∗ijg unaffected by batch effects are assumed to have the

following form:

x∗ijg = αg + aT
ijβg + εijg, εijg ∼ N(0, σ2

g). (3.15)

Using estimated probabilities instead of actual classes

As noted in section 3.1, a further peculiarity of FAbatch is that the actual classes are

not used when protecting the biological signal of interest in the estimation algorithm.

Instead, probabilities of the observations to belong to either class are estimated and

these are used in place of the actual classes.

The FAbatch procedure has two major advantages. First, it makes the batch-effect

correction method applicable to prediction problems involving new test observations

with unknown classes. Second, using the actual classes might lead to an artificial

increase in separation between the two classes in the dataset. This is because, as

will be seen in the next subsection, it is necessary to use the estimated class-specific

means for centering the data before conducting factor estimation. Due to sampling

variance, these estimated class-specific means often lie further away from each other

than the true means, in particular for variables for which the true means lie close to

each other. Subtracting the estimated influences of the factors leads to a reduction

of the variance. If the variable values within the classes are centered before factor

estimation is conducted, removing the estimated influences of factors would lead to

a reduction in the variance around the respective estimated class-specific means. In
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those—frequently occurring—cases, in which the estimated class-specific means lie

further from each other than the corresponding true means, this would lead to an

artificial increase in the discriminatory power of the corresponding variable in the

adjusted dataset.

All analyses concerned with the discriminatory power of the covariate variables

with respect to the target variable would be biased if performed on data adjusted

in this way. More precisely, the discriminatory power would be overestimated. This

mechanism is similar conceptually to the over-fitting of prediction rules to the data

on which they were obtained. SVA suffers from a very similar kind of bias also related

to using class information in protecting the biological signal (see section 3.3.3 for a

detailed description of this phenomenon and the results of a small simulation study

performed to assess the impact of this bias on data analysis in practice).

The probabilities of the individual observations to belong to the first and to the

second class that are considered in FAbatch are estimated using models fitted from

data other than the corresponding observations. Using these estimated probabilities

instead of the actual classes attenuates the artificial increase in the class signal de-

scribed above. The idea underlying the protection of the signal of interest is to center

xijg before conducting factor estimation by subtracting the term

E(αg + aT
ijβg + γjg|xij1,, . . . , xijp) =

Pr(yij = 1|xij1,, . . . , xijp) (αg + γjg)+

Pr(yij = 2|xij1,, . . . , xijp) (αg + βg + γjg). (3.16)

Note that this adjustment is performed slightly differently in the FAbatch estimation

algorithm.

Estimation

In the following, the estimation procedure of FAbatch is outlined:

1. Standardize the values xijg per batch:

xijg,S :=
xijg − µ̂jg√

σ̂2
jg

, (3.17)

where µ̂jg = (1/nj)
∑

i xijg and σ̂2
jg = [1/(nj − 1)]

∑
i(xijg − µ̂jg)

2. Here, the

number of observations in batch j is denoted as nj.

2. Using L2-penalized logistic regression, estimate the probability of each obser-
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vation to belong to the second class:

π̂ij := P̂r(yij = 2|xij1,S, . . . , xijp,S). (3.18)

Here, the following CV-related procedure is employed. For batch j ∈ {1, . . . , J}:
1) Fit a L2-penalized logistic regression model using all observations except

those in batch j; 2) Use the model fitted in step 1) to predict the probabilities

πij of the observations from batch j. By using observations for fitting the models

different from those used for predicting the probability overfitting is avoided in

terms of the problems occurring when the actual classes are used as described

in the previous subsection. The reason cross-batch prediction is performed here

for estimating the probabilities instead of ordinary CV is that the resulting

batch-adjusted data can be expected to be more suitable for the application in

cross-batch prediction (see section 3.2.3). Here, to estimate the probabilities in

the test batch a prediction model fitted on other batches has to be used. If the

probabilities in the training data are estimated using ordinary CV, they will

be more optimistic—that is, closer to zero and one, respectively—than those in

the test data. This is because in ordinary CV observations from the same batch

can be in training data and test data. By conducting cross-batch prediction

for the estimation of the πij the situation encountered in cross-batch prediction

applications is mimicked. The only, but important, exception where ordinary

CV is performed to estimate the πij is when the data come from one batch only

(this occurs in the context of cross-batch prediction when the training data

consist of one batch, see also Chapter 4, where the latter occurs in the context

of cross-study prediction).

The shrinkage intensity tuning parameter of the L2-penalized logistic regres-

sion model is optimized with the aid of CV (Hsu et al.; 2010). For computa-

tional efficiency this optimization is not repeated in each iteration of the cross-

batch prediction. Instead, it is performed beforehand on the complete dataset.

Overoptimism resulting from this procedure compared to that resulting from

“nested cross-batch prediction” is assumed to be negligible in the considered

context.

3. Calculate the class adjusted values xijg,S,CA, which should contain considerably

less class signal than xijg,S:

xijg,S,CA := xijg,S − (1− π̂ij)µ̂g,S
(1) − π̂ijµ̂g,S

(2), (3.19)
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where µ̂g,S
(c) = (1/#Lc)

∑
{i∗,j∗}∈Lc

xi∗j∗g,S with Lc = {{i, j} : yij = c, i ∈
{1, . . . , nj}, j ∈ {1, . . . , J}} and c ∈ {1, 2}.

4. Using xijg,S,CA, estimate the latent factors Z∗ijmj
and their loadings b∗jgmj

by

the EM algorithm presented in Rubin and Thayer (1982), again considered by

Friguet et al. (2009) in a specific context for microarray data. For the estimation

of the number of factors see Friguet et al. (2009).

5. Subsequently the estimated factor contributions are removed:

xijg,S,FA := xijg,S − b̂∗jg1Ẑ∗ij1 − · · · − b̂∗jgmj
Ẑ∗ijmj

, (3.20)

where b̂∗jg1, . . . , b̂
∗
jgmj

are the estimated, batch-specific factor loadings and

Ẑ∗ij1, . . . , Ẑ
∗
ijmj

are the estimated latent factors. Note that only the factor con-

tributions as a whole are identifiable, not the individual factors and their coef-

ficients.

6. Finally, in each batch the xijg,S,FA values are transformed to have the global

means and pooled variances estimated before batch effect adjustment:

x̂∗ijg =

xijg,S,FA − µ̂g,S,FA√
σ̂2
g,S,FA

√σ̂2
g + µ̂g, (3.21)

where µ̂g,S,FA =
(

1/
∑
j

nj

)∑
j

∑
i

xijg,S,FA,

σ̂2
g,S,FA =

[
1/
(∑

j

nj − 1
)]

∑
j

∑
i

(xijg,S,FA − µ̂g,S,FA)2,

µ̂g =
(

1/
∑
j

nj

)∑
j

∑
i

xijg

and σ̂2
g =

[
1/
(∑

j

nj − 1
)]∑

j

∑
i

(xijg − µ̂g)
2.

Note that by forcing the empirical variances in the batches to be equal to the

pooled variances estimated before batch effect adjustment the residual variances

σ2
g in (3.14) are overestimated. This is because it is not taken into account

that the variance is reduced by the adjustment for latent factors. However,

unbiasedly estimating σ2
g appears to be difficult due to scaling before estimation

of the latent factor contributions.
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Verification of model assumptions on real data

Due to the flexibility of its model FAbatch should—from a theoretical point of view—

adapt well to real datasets. Nevertheless, it is important to test its validity on real

data because the behavior of high-dimensional biomedical data does not become

apparent through mere theoretical considerations. Therefore, in the following it is

demonstrated that the model underlying FAbatch is indeed suited for real data using

the dataset BreastCancerConcatenation presented in Table 3.1. This dataset was

chosen because the batches involved are independent datasets in themselves and so

the batch effects can be expected to be especially strong. When analyzing other

datasets than BreastCancerConcatenation the same conclusions as for this dataset

could be drawn (results not shown). Because the FAbatch model is an extension of

the ComBat model by the addition of batch-specific latent factor contributions, the

model fit of FAbatch is in the following compared to that of ComBat.

Figures B.1 and B.2 show a plot of the data values for each batch against the

corresponding fitted values of FAbatch and ComBat. While there seem to be no

deviations in the mean for either method, the association between data values and

predictions is a bit stronger for FAbatch, except in the case of batch 4. This stronger

association between fitted values and predictions for FAbatch can be explained by

the fact that the factor contributions absorb part of the variance of the data values.

In the case of batch 4, the estimated number of factors was zero, which explains why

here the association is not stronger for FAbatch than for ComBat. Figures B.3 and

B.4 correspond to the previous two figures, except that here the deviations from the

fitted values instead of the data values are plotted against the corresponding fitted

values. As illustrated, for batches 2, 3, and 5 the variance of these residuals depends

slightly less on the mean for FAbatch than on the mean for ComBat. Batchwise

density estimates of these residuals divided by their standard deviations are shown

in Figures B.5 and B.6 for FAbatch and ComBat, respectively. For both methods

outliers are observed. However, the distributions of the residuals differ between the

two methods. In the case of ComBat the distributions are skewed for part of the

batches, slightly for batches 3 and 5 and more strongly for batch 2. In the case of

FAbatch the distributions are symmetric. A probable reason for the skewness of the

distributions in the case of ComBat is that the residuals still contain the biological

signal, as it is not included in the fixed part of the model.

3.2.3. Addon adjustment of independent batches

As described in section 3.1, an important feature of batch-effect adjustment meth-

ods is that they offer the possibility of making test data more similar to training
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data of the same kind when studying the same biological issue of interest. Here, the

training data and the test data both may consist of different batches. This feature

of batch-effect adjustment can be used for prediction purposes in particular. In the

following, first, an explanation is given of how batch effect adjustment is conception-

ally performed to incorporate independent batches in general. Second, the respective

procedures for the particular methods considered in this chapter are outlined.

General procedure

A batch-effect adjustment method (implicitly or explicitly) assumes a specific model

for the data being observed. One part of the parameters involved in this model is

connected with the data observed within the batches xijg and the other part with

the unobserved batch-effect-free data x∗ijg. While the values of the former kind of

parameters in most cases depend on the individual batches, the values of the latter

kind are the same for all observations, that is, they are batch-unspecific. When

incorporating independent batches after having adjusted the training data, it is of

interest to transform the data in the independent batches in such a way that their

distribution becomes similar to those in the already adjusted training data without

having to change the adjusted training data. This can be achieved by performing the

same kind of transformation on the independent batches with the peculiarity that

for the batch-unspecific parameters involved the estimates obtained for the training

data are used. These procedures are referred to as addon batch effect adjustment

procedures in the following.

Following the above definition, the batch effect adjustment methods which do not

involve batch-unspecific parameters remain unchanged in addon batch effect adjust-

ment. From the batch effect adjustment methods considered in this thesis, this is

the case for mean-centering, standardization, ratio-A and ratio-G. In these methods

the batch effect adjustment is performed batch by batch. The adjustment according

to ComBat, FAbatch, and SVA does, by contrast, involve estimated batch-unspecific

parameters.

ComBat

For ComBat, Luo et al. (2010) present the addon procedure for the situation of having

only one batch in the training data. The addon batch effect adjustment with ComBat

involves applying the standard ComBat adjustment to the validation data without

the term aT
ijβg and with all batch-unspecific parameters αg, σ

2
g and βg estimated

using the training data.

M-ComBat (Stein et al.; 2015) is a similar method applicable in the situation
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of having one batch in the training data. This method can be used to perform a

location-and-scale adjustment of the validation data, that is, in contrast to original

ComBat this method does not involve shrinkage by empirical Bayes. Thus, accord-

ing to the aforementioned definition of addon batch effect adjustment, M-ComBat

represents the addon batch effect adjustment procedure for location-and-scale batch

effect adjustment with one batch in the training data.

FAbatch

Adjustment with FAbatch involves estimates of the same batch-unspecific parameters

as those with ComBat (according to Eq. (3.4)): αg, σ
2
g and βg. However, unlike

in adjustment with ComBat, in FAbatch the term aT
ijβg also is considered. This

is achieved, basically, by estimating E(aij|xij1,, . . . , xijp) and βg using L2-penalized

logistic regression (see section 3.2.2 for details). The addon procedure for FAbatch is

derived straightforwardly from the general definition of addon procedures given above:

The estimation scheme in section 3.2.2 is performed with the peculiarity that for all

occurring batch-unspecific parameters, the estimates obtained in the adjustment of

the training data are used.

SVA

There is a specific procedure for SVA denoted as fSVA (Parker et al.; 2014) for prepar-

ing independent data for prediction. More precisely, Parker et al. (2014) describe two

versions of fSVA: the exact fSVA algorithm and the fast fSVA algorithm. The bgl- and

the βg values are two of the batch-unspecific parameters involved in SVA adjustment.

The βg values are implicitly involved, namely when multiplying the variable values

by the estimated probabilities that the corresponding variable is associated with un-

measured confounders, but not with the binary variable representing the biological

signal. In both fSVA algorithms, when adjusting for batch effects in new observa-

tions the estimates of the bgl values obtained for the training data are used. Also, for

multiplying the variable values of a new observation by the estimated probabilities

that the corresponding variable is associated with unmeasured confounders but not

with the target variable, both algorithms use the estimates obtained for the training

data. The distinguishing feature between the two algorithms is the way estimates of

the factors Zijl for new observations are obtained.

In the first fSVA algorithm, denoted as exact fSVA algorithm in Parker et al. (2014),

the latent factor vector for a new observation is estimated in the following way: 1)

Combine the training data with the values of the new observation and multiply by the

probabilities estimated on the training data; 2) Re-perform the SVD on the combined
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data from 1) and use the right singular vector corresponding to the new observation as

the estimate of its vector of latent factors. This algorithm is not an addon procedure.

In this algorithm, the estimate of the latent factor vector for the test observation

originates from a SVD different from that from which the estimated latent factors

of the training observations originate. Therefore, this new estimated latent factor

behaves, at least to some extent, differently than those of the training data. As

a consequence, when adjusting the new observation, a feature of addon procedures

is not given: The same kind of transformation must be performed for independent

batches. This problem can be assumed to have a lower impact for larger training

datasets. Here, the latent factor model estimated on the training data depends less

on whether or not a single new observation is included in the SVD. A solution to the

problem of differently behaving latent factor estimates in training data and test data

would be the following: To adjust the training data use the estimates of the latent

factors (and their loadings) obtained in the second SVD performed after including the

test observation. However, this again would not correspond to an addon procedure

because the adjusted training data would change each time a new observation is

included, which is not allowed, as stated in the definition of addon procedures given

in section 3.2.3.

The second fSVA algorithm, denoted as fast fSVA algorithm in Parker et al. (2014)

takes a different approach. Here, the SVD is not re-performed entirely on the com-

bination of the training data and the new observation. Instead, basically a SVD is

performed in order to calculate the right singular vector corresponding to the new

observation under the restriction that the left singular vectors and singular values are

fixed to the values of the parameters obtained from the SVA performed on the training

data. Thus in this adjustment, it is taken into account that the left singular vectors

and singular values are batch-unspecific parameters. The resulting estimated latent

factor vector of the new observation behaves in the same way as that of the training

data, because here it originates from the same SVD. This algorithm does correspond

to an addon procedure because the same kind of transformation is performed for

independent batches, or rather independent observations in the SVA model, without

the need to change the training data.

The fSVA algorithms initially seem intuitive. However, when using the estimated

factor loadings (and other information in the case of the fast fSVA algorithm) from

the training data the same sources of heterogeneity must be present in the training

data and test data, which might not be true in case of a test data batch from a

different source. Thus, fSVA is fully applicable only when training data and test

data are similar, as stated by Parker et al. (2014). Nevertheless, in section 3.3.2 it

is applied in cross-batch prediction to obtain indications of whether the prediction
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performance of classifiers might even deteriorate through the use of fSVA when the

training data and test data are very different.

Above, I have presented the addon procedures for the batch effect adjustment

methods considered in this thesis. However, adhering to the general definition of

addon procedures, such algorithms can be derived readily for other methods as well.

3.2.4. Comparison of FAbatch to other methods

A comprehensive evaluation of the ability of FAbatch to adjust for batch effects in

comparison to its competitors was performed, using both simulated datasets and real

datasets. Simulation makes it possible to study the performance subject to basic

settings and to use a large number of datasets. Nevertheless, simulated data never

can capture all properties found in real datasets from the area of the application.

Therefore, in addition, 14 publicly available real datasets were studied, each consisting

of at least two batches.

The value of batch effect adjustment contains various aspects connected with the

adjusted data or with the quality of results of analyses performed using the adjusted

data. Therefore, when comparing batch effect adjustment methods, it is necessary to

consider several criteria, each of which must be concerned with a certain aspect. Seven

metrics were calculated to measure the performance of each batch effect adjustment

method on each simulated dataset and each real dataset.

In the following, first, the seven metrics considered in the comparison study de-

scribed above are outlined. Second, the simulation designs are explained and basic

information on the real datasets is provided. Third, the results of these analyses are

interpreted and presented in section 3.3.1.

Performance metrics

In this section the performance metrics used to assess batch effect adjustment are

described. Several of them are, in their original form, restricted to the case of two

batches only. For datasets with more than two batches they are extended as follows:

1) Calculate the original metric for all possible pairs of batches and 2) calculate the

weighted average of the values in 1) with weights proportional to the sum of the

sample sizes in the two respective batches.

Separation score (sepscore) This metric was derived from the mixture score pre-

sented in Lazar et al. (2012), which was inapplicable here because it depends on the

relative sizes of the two involved batches j and j∗. Generally, the mixture score mea-

sures the degree of mixing between the observations belonging to the two batches
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after batch effect adjustment. By contrast, the separation score measures the de-

gree of separation between the two batches. First, for each observation in j, its k

nearest neighbors are determined in both batches simultaneously with respect to the

euclidean distance. Here, the proportion of nearest neighbors belonging to batch j∗

is calculated. Then, the average, denoted as MSj, is taken of the nj proportions

obtained in this way. This value is the mixture score as presented in Lazar et al.

(2012). To obtain a measure for the separation of the two batches the absolute dif-

ference between MSj and its value expected in the absence of batch effects is taken:

|MSj −nj∗/(nj + nj∗ − 1)|. The separation score is defined as the simple average of

this absolute difference and the corresponding quantity when the roles of j and j∗

are switched. The number of k nearest neighbors considered was set to 10. Smaller

values of the separation score are better.

Average minimal distance to other batch (avedist) A very similar metric for

two batches is the average minimal distance to the other batch after batch effect ad-

justment (see also Lazar et al. (2012)). For each observation in batch j the euclidean

distance to the nearest observation in batch j∗ is calculated. Consecutively, the roles

of j and j∗ are switched and finally the average is computed over all nj +nj∗ minimal

distances. To obtain a metric independent of the scale, the variables are standardized

before the calculation to have a zero mean and uniform variance. Here, smaller values

are better.

Kullback-Leibler divergence between density of within- and between-batch pair-

wise distances (klmetr) This metric, used in Lee et al. (2014) in a similar form is,

again, based on the distances of the observations within and between batches. First,

the distances between all pairs of observations in batch j, denoted as {distj}, and

the distances between all such pairs in batch j∗, denoted as {distj∗}, are calculated.

Then, for each observation in j the distances to all observations in j∗ are calculated,

resulting in nj × nj∗ distances denoted as {distjj∗}. Consecutively, the Kullback-

Leibler divergence is estimated between the densities of {distj} and {distjj∗} and

between the densities of {distj∗} and {distjj∗}, using the k-Nearest Neighbors-based

method by Boltz et al. (2009) with k = 5. Finally, the weighted mean of the values

of these two divergences is calculated, with weights proportional to nj and nj∗ . As

in the case of avedist the variables are standardized before the calculation to make

the metric independent of scale. Smaller values of this metric are better.

Skewness divergence score (skewdiv) This metric presented in Shabalin et al.

(2008) is concerned with the values of the skewness of the observation-wise empirical
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distributions of the data. Because batch effect adjustment should make the distri-

bution of the data similar for all batches, these skewness values should not differ

substantially across batches after a successful batch effect adjustment. The metric is

obtained as follows for two batches j and j∗ after batch effect adjustment: 1) For each

observation in batch j and for each observation in batch j∗ calculate the difference

between the mean and the median of the data as a measure for the skewness of the

distribution of the data values; 2) Determine the area between the two batch-wise

empirical cumulative density functions of the values obtained from 1). The value ob-

tained in 2) can be regarded as a measure for the disparity of the batches with respect

to the skewness of the observation-wise empirical distributions. Again, standardiza-

tion is conducted before the calculation. Smaller values indicate a more successful

batch effect adjustment with respect to the homogeneity of the skewness values.

Proportion of variation induced by class signal estimated by principal variance

component analysis (pvca) Principal variance component analysis (Li et al.; 2009)

allows the estimation of the contributions of several sources of variability. Here, first

PCA is performed on the n × n covariance matrix between the observations. Then,

using a random effects model, the principal components are regressed on arbitrary

factors of variability, such as “batch” and “(phenotype) class”. Ultimately, estimated

proportions of variance induced by each factor, and that of the residual variance are

obtained; for details see Li et al. (2009). The following factors were included into

the model: “batch”, “class” and the interaction of “batch” and “class”. As a metric

the proportion of variance explained by “class” was used. Naturally, higher values of

this metric indicate a better preservation or exposure, respectively, of the biological

signal of interest.

Performance of differential expression analysis (diffexpr) This metric is similar

to the idea presented in Lazar et al. (2012) which involves comparing the list of

genes deemed differentially expressed the strongest when using a batch effect adjusted

dataset to the corresponding list obtained using an independent dataset. Having no

independent data available here, a slightly different approach was taken: 1) Omit

each batch j and perform batch effect adjustment on the remaining batches. Derive

two lists of the 5% of variables deemed differentially expressed the strongest (see next

paragraph for details): one using the batch effect adjusted dataset, where batch j

was omitted, and one using the data from batch j. Calculate the number of variables

appearing in both lists and divide this number by the length of the lists. 2) Calculate

a weighted average of the values obtained in 1) with weights proportional to the

number of observations in the corresponding omitted batches. Note that in the case
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of the simulated datasets it would have been possible to estimate the true discovery

rate instead of calculating the metric described above. However, for the sake of

comparability, the procedure described above was followed for the simulated data as

well.

In the following the procedure performed to estimate the 5% of variables most

differentially expressed is described. The original idea to use the p-values of simple

two-sample t-tests between the two classes was soon discarded. The reason for this

was that this procedure might have favoured batch effect adjustment methods that

produce more normally distributed values of the variables. The p-values of classical

non-parametric tests, such as the Mann-Whitney-Wilcoxon rank sum test also would

have been unsuitable here because here the p-values can adopt a limited number of

possible values only. Therefore, it would have occurred in many cases that more

than 5% of the variables adopt the smallest of possible p-values, making a selection

of 5% of variables with the smallest p-values impossible. As a solution, for each

variable a randomized p-value from the Whitney-Wilcoxon rank sum test was drawn

(see Geyer and Meeden (2005) for details). These randomized p-values can adopt

any possible value between zero and one and therefore were suitable for ordering the

variables according to their degree of differential expression between the two classes.

Ultimately, the 5% of variables that were associated with the smallest p-values were

considered. Higher values of this metric are better.

Mean Pearson’s correlation of the variable values before and after batch ef-

fect adjustment (corbeaf) This metric suggested by Lazar et al. (2012) is not a

measure for the performance of batch effect adjustment. However, it may be used

occasionally to decide between two methods performing similarly: In such cases the

method that least affects the data (i.e., that with smaller corbeaf values) could be

preferred (Lazar et al.; 2012).

Simulation design

Three basic scenarios were considered: 1) Common correlation structure in all batches

(ComCor); 2) Batch-specific correlation structures (BatchCor); 3) Batch- and class-

specific correlation structures (BatchClassCor). For each of these three scenarios the

correlations were induced in two ways (see below for details): 1) simulating from a

latent factor model with normally distributed residuals and 2) drawing from multi-

variate normal distributions with specified correlation matrices. The second scheme

was considered to avoid favoring FAbatch and SVA by restricting the simulation to

factor-based data generation mechanisms. Each simulated dataset consisted of four
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batches with 25 observations each. The number of variables was 1000. For each of the

six (3×2) settings 500 datasets were simulated. The values of the parameters occur-

ring in the simulation models were based on corresponding estimates obtained from

two publicly available microarray datasets: a dataset also used in the real data study,

denoted as AutismTranscr (Table 3.1), and a dataset on colon cancer, denoted as

ColoncbTranscr. The latter is downloadable from ArrayExpress (Kolesnikov et al.;

2015), accession number: E-GEOD-44861.

All six settings can be expressed using the following general model:

xij = α+ aijβ + γj + ε∗ij,

ε∗ij ∼MVN(0,Σj,aij
), (3.22)

with xij = (xij1, . . . , xijp)
T , α = (α1, . . . , αp)

T , aij ∈ {0, 1}, β = (β1, . . . , βp)
T ,

γj = (γj1, . . . , γjp)
T , ε∗ij = (ε∗ij1, . . . , ε

∗
ijp)

T , j ∈ {1, . . . , K} and p = 1000.

The elements of α and γj (j ∈ {1, . . . , K}) were drawn from normal distribu-

tions with means and variances based on corresponding estimates obtained from

ColoncTranscr (for details see the corresponding commented R code at the following

link: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_

drittmittel/hornung/fabatchpaper_suppfiles/index.html). The vector of the

class differences β contained 300 (30%) non-zero values. Half of these were negative

and half positive. The values were drawn from gamma distributions, where the choice

of parameters was, again, based on ColoncTranscr. Here, in the case of the negative

entries of β, the sign of the originally drawn values was changed.

The six settings differed with respect to the specification of Σj,aij
. The differences

are outlined in the following.

http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/hornung/fabatchpaper_suppfiles/index.html
http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/hornung/fabatchpaper_suppfiles/index.html
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Design A: Simulating from latent factor model The residuals of the fixed part of

the model ε∗ij were simulated in the following ways for the corresponding scenarios:

1. ComCor: ε∗ijg :=
5∑

m=1

b0gmZijm + δjgεijg (3.23)

2. BatchCor: ε∗ijg :=
5∑

m=1

b0gmZijm+

5∑
m=1

bjgm
∗
Zijm + δjgεijg (3.24)

3. BatchClassCor: ε∗ijg :=
5∑

m=1

b0gmZijm+

5∑
m=1

b̃aijgmZijm+

5∑
m=1

bjgm
∗
Zijm + δjgεijg, (3.25)

where εijg
iid∼ N(0, σ2

g) and Zijm,
∗
Zijm

iid∼ N(0, 1). b0gm, bjgm and b̃aijgm were drawn

from normal distributions and δ2jg and σ2
g from inverse gamma distributions. Again,

the parameters of the latter distributions were based on corresponding estimates

obtained from ColoncTranscr.

In Eq. (3.23), (3.24), and (3.25) factors Zij1, . . . , Zij5 model the biological corre-

lation between the variables. Factors
∗
Zij1, . . . ,

∗
Zij5 in Eq. (3.24) and (3.25) model

distortions that affect the correlation in the batches. In the ComCor setting all ob-

servations have the same correlation structure—independent of the batch. In the

BatchCor setting the correlation structure is different in each batch due to the batch-

specific loadings of factors
∗
Zij1, . . . ,

∗
Zij5. In the third setting, BatchClassCor, the

correlations differ not only by batch but also according to which of the two classes

the observations are in, that is, there are batch- and class-specific correlations. In

each setting the variances are different in the batches.

Design B: Drawing from multivariate distributions with specified correlation

matrices In Design B, all correlation matrices appearing in the three scenarios

were estimated using real data. First, using the R function cor() an approximate

positive definite correlation matrix was estimated and then the R function nearPD()

from the R package Matrix was applied to the result to calculate the nearest positive

definite correlation matrix. The 1000 genes from the AutismTranscr dataset showing
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themselves to be the most related to the binary outcome according to variable-wise

two-sample t-tests were used. Before estimating the correlation matrices, the data

were further centered by class in each batch to adjust for excess correlations due to

class differences. The variances are the same in all three scenarios. They were set to

be equal to those in the ComCor setting of Design A, that is,
∑5

m=1 b
2
0gm + δ2jgσ

2
g .

The correlation matrices were obtained as follows for the three settings:

1. ComCor: A single correlation matrix was used for all batches and was estimated

from the data of a single batch in AutismTranscr.

2. BatchCor: A separate correlation matrix was used for each batch, each esti-

mated from the data of a batch in AutismTranscr.

3. BatchClassCor: A separate correlation matrix was used for each combination

of batch and class, where each was estimated on a corresponding batch-class

combination in AutismTranscr.

After obtaining the correlation matrices, the corresponding covariance matrices

were calculated by multiplying each entry in the correlation matrices with the re-

spective pair of standard deviations.

Datasets

Fourteen high-dimensional datasets with a binary target variable and with at least

two batches were downloaded from the ArrayExpress database (Kolesnikov et al.;

2015) and the NCBI GEO database (Barrett et al.; 2013). In searching for suitable

datasets on ArrayExpress and NCBI GEO, the search term “batch” was entered

and the search hits were surveyed manually. This procedure was chosen in order to

maximize the number of possibly eligible datasets. Exclusion criteria were as follows:

not enough samples, no batch variable, and no possibility to form a suitable binary

target variable. The selection of the datasets was not in any way based on the results

they yielded with the different methods, thus following Rule 4 from Boulesteix (2015):

“do not fish for datasets”.

Three datasets featured too many variables to be manageable from a computa-

tional point of view. Therefore, in these cases, 50,000 variables were randomly se-

lected. When missing values occurred in a dataset the following approach was taken.

First, variables with too many missing values were excluded. Second, the remaining

missing values were imputed by the median of the observed values of the correspond-

ing variable in the corresponding batch. This simplistic imputation procedure can

be justified by the very low numbers of variables with missing values in all datasets.
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Outlier analysis was performed by visually inspecting the principal components of

the PCA applied to the individual datasets and suspicious samples were removed.

Figure 3.2 shows the first two principal components of PCA applied to each of the

datasets used after imputation and outlier removal.

Table 3.1 gives an overview on the datasets. Information on the nature of the

binary target variable for each dataset is given in Appendix B.2. The dataset

BreastCancerConcatenation is a concatenation of five independent breast cancer

datasets. For the remaining 13 datasets the reason for the batch structure could be

ascertained in four cases only. In three of these, batches were the result of hybridiza-

tion and in one case labeling (for details see Appendix B.3).

Details regarding the background of the datasets can be found online on the Array-

Express webpage using the corresponding accession numbers. Moreover, correspond-

ing R scripts written for preparation of the datasets can be obtained from the follow-

ing link: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/

070_drittmittel/hornung/fabatchpaper_suppfiles/index.html. Here, the R

code necessary to reproduce all analyses performed in this chapter also is provided.

3.3. Results

3.3.1. Ability to adjust for batch effects

Figures B.7 to B.13 show the values of the individual metrics obtained for the sim-

ulated data and Figure 3.3 shows the corresponding results obtained for the 14 real

datasets. Tables B.1 to B.7 for the simulated data and Tables 3.2 and 3.3 for the

real data show the means of the metric values separated by method (and simulation

scenario) together with the mean ranks of the methods with respect to the individual

metrics. In most cases, results of the study of the simulated data differ only slightly

between the settings with respect to the ranking of the methods by their performance.

Therefore, only occasionally will the scenarios in the interpretations be differentiated.

In addition, analyses of the simulated data and real data often yield similar results.

Differences will be discussed whenever relevant.

According to the values of the separation score (Figures B.7 and 3.3, Tables B.1

and 3.2) ComBat, FAbatch, and standardization seem to lead to the best mixing of

the observations across the batches. For the real datasets, however, standardization

was only slightly better on average than other methods.

The results with respect to avedist are less clear. For Design A the results of

the simulation indicate that FAbatch and SVA are associated with greater minimal

distances to neighboring batches than are the other methods. However, for Design

http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/hornung/fabatchpaper_suppfiles/index.html
http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/hornung/fabatchpaper_suppfiles/index.html
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Figure 3.2.: Each subplot shows the first two principal components out of PCA performed
on the covariate matrix of one of the datasets used. In each case the colors distinguish
the batches, and the numbers distinguish the two classes “diseased” (2) versus “healthy
control” (1). The contour lines represent batch-wise two-dimensional kernel estimates and
the diamonds represent the batch-wise centers of gravities of the points. The plots are
arranged in ascending order according to the strength of batch effects with respect to the
following criterion: average over the euclidean distances between all possible pairs of points
in the plot from different batches divided by the analoguous mean over all such pairs from
the same batches.
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B this is not clearly observed other than for the setting with common correlations.

Results for the real data also indicate no clear ordering of the methods with respect

to this metric (see in particular the means over the datasets in Table 3.2). The values

of this metric were not appreciably improved by batch effect adjustment in general

on the real datasets.

The values of klmetric, which conceptionally is very similar to the separation

score, allow a very similar conclusion to be drawn as that from the latter metric

(Figures B.9 and 3.3, Tables B.3 and 3.2): ComBat, FAbatch, and standardization

performed the best. While this conclusion could be drawn about both simulated data

and real data, other results of the simulation scenarios and the real data analyses

differed: SVA performed considerably worse for Design A than for Design B and

mean-centering performed better on the simulated data in general.

The estimates of the proportions of the variation explained by the class signals ob-

tained through principal variance component analysis (pvca) are depicted in Figures

B.10 and 3.3 and summarized in Tables B.4 and 3.2. SVA appears to be associated

with the highest proportion of variation induced by the class signal; however, com-

parison to the other methods is unfair here: SVA makes use of the target variable

and therefore is associated with an artificially increased class signal (see section 3.3.3

for details on this mechanism related to overoptimism). FAbatch performed well on

the simulated data but not on the real datasets, where it had the lowest mean value

with the exception of no batch effect adjustment. Figure 3.3 reveals that those three

datasets for which pvca was considerably smaller after batch effect adjustment using

FAbatch were, at the same time, the three datasets with the highest pvca values

before batch effect adjustment. Datasets with high pvca values are datasets where

the biological signal is relatively strong in comparison to the batch effects. The re-

sults suggest that for such datasets, batch effect adjustment with FAbatch might

be counterproductive. The distinguishing feature of FAbatch as opposed to a mere

location-and-scale adjustment as performed by ComBat is that it aims to adjust ad-

ditionally for batch effects not explainable by location or scale shifts. While FAbatch

aims to protect the biological signal in the factor estimation, this signal cannot be

protected entirely here due to the uncertainty in the estimation of the class proba-

bilities. When reducing the total heterogeneity by FAbatch in cases of weak batch

effects, the merit of removing heterogeneity due to batch effects becomes smaller in

comparison to the harm that affects the signal. ComBat performed better than other

methods here on the real data (with the exception of SVA as mentioned before).

For the performance metric related to differential expression analysis diffexpr

(Figures B.11 and 3.3, Tables B.5 and 3.3) the results for FAbatch and SVA dif-

fered substantially between simulated data and real data. In the simulation, these
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Figure 3.3.: Metric values in real datasets. Boxplots of values for all 14 datasets sepa-
rated by method for the following metrics: sepscore, avedist, klmetr, pvca, diffexpr,
skewdiv, and corbeaf. The grey lines connect values corresponding to the same datasets.
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two methods performed best (with the exception of FAbatch for Design B with com-

mon correlation). However, for the real data they performed worst—even worse than

no batch effect adjustment in the mean. For FAbatch those datasets were examined

which yielded substantially worse diffexpr values after batch effect adjustment than

before. As can be seen in Figure 3.3, two of these datasets contain data with high

diffexpr values before batch effect adjustment. This implies that for these datasets

the biological signal is well preserved in the batches—in other words they seem to

be less affected by batch effects. A possible reason FAbatch performs worse for mild

batch effects has been outlined above. The other datasets connected with diffexpr

values worse than “no batch effect adjustment” in the case of FAbatch were those

for which some “outlying” batches were very different from the others—according to

the PCA plots given in Figure 3.2. In this case, pooling the data of the outlying

batch(es) with the other batches and estimating the L2-penalized logistic regression

model can result in a predictor with bad performance. The combined data might be

too heterogeneous for the L2-penalized logistic regression model, which assumes that

all observations follow the same distribution. If the predictions of the class probabil-

ities by the L2-penalized logistic regression rule are bad, the biological signal is less

protected in the latent factor estimation. Therefore, the removal of the estimated

latent factor influences will affect the biological signal more. There were no notewor-

thy differences between the other methods with respect to diffexpr. For the real

datasets none of the methods showed an advantage over no batch effect adjustment.

This indicates that differential expression analysis might not benefit from batch effect

adjustment in general.

For the skewness divergence score skewdiv (Figures B.12 and 3.3, Tables B.6 and

3.3) no clear ranking of the methods is seen in the case of the simulated data. How-

ever, for the real datasets, SVA and FAbatch clearly outperform the other methods

with respect to this metric.

Finally, for both the simulated data and real data, FAbatch and SVA have consid-

erably lower corbeaf values (Figures B.13 and 3.3, Tables B.7 and 3.3), which is not

very surprising considering their high level of complexity.

3.3.2. Application in cross-batch prediction

In this illustrative analysis all batch effect adjustment methods outlined above were

applied in cross-batch prediction together with the corresponding addon procedures

described in section 3.2.3. A real data analysis as well as a simulation were performed.

Luo et al. (2010) conducted a more extensive real data study. They used several

datasets to compare all of the methods considered here, except for fSVA and FAbatch,
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with respect to their performance in cross-batch prediction.

In the present analyis, the dataset IUGRTranscr was used because it features a

relatively strong class signal and at the same time is strongly affected by batch

effects, judging from the PCA plot in Figure 3.2. This dataset contains miRNA

measurements obtained from 67 human placentas using the Illumina Human-6 v2

Expression BeadChip. Of these 67 samples, 27 were obtained from placentas of

embryos suffering from intrauterine growth restriction (IUGR); the remaining 40

samples were obtained from placentas of healthy embryos. The dataset consists of

one batch of 20 samples and another batch of 47 samples. In the first batch 9 (45%)

samples and in the second batch 18 (≈ 38%) samples originate from IUGR embryos.

As a classification algorithm for the dependent variable “IUGR (yes vs. no)” PLS-

LDA was chosen, where the number of components used was tuned on the grid 1, 2,

. . . , 10 employing 3-fold CV.

Just as in the extensive real data study of Luo et al. (2010), Matthews correlation

coefficient (MCC) was used as a performance metric. This measure has an advantage

over the more commonly considered misclassification error rate in that it is indepen-

dent of the class frequencies in the test data. It takes values in [−1, 1], where a MCC

value of 1 would indicate a perfect prediction, a MCC value of 0 would correspond

to a completely random prediction and a MCC value of -1 to a total disagreement

between prediction and reality. The MCC is calculated as follows:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (3.26)

where TP designates the number of true positive predictions, TN the number of true

negatives, FP the number of false positives, and FN the number of false negatives.

Figure 3.4 depicts the MCC values that result from applying the different batch

effect adjustment methods in predicting from one batch to the other and then switch-

ing the training set and test set roles between the two batches. When training on

the first batch, only ComBat, mean-centering, and FAbatch lead to a higher MCC

value than does no batch effect adjustment. The two fSVA algorithms and standard-

ization lead to a substantial deterioration in prediction performance, where the fast

fSVA algorithm is slightly better than the exact fSVA algorithm. When training on

the second batch, the prediction performance without batch effect adjustment corre-

sponds to random guessing as indicated by the MCC value of zero here. Except for

standardization and the exact fSVA algorithm, all methods lead to an improvement

of prediction performance here. The ranking of the methods is almost entirely the

same as that when training on the first batch.

In Figures 3.1 and 3.2 PCA plots were used to visualize batch effects in data after
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Figure 3.4.: Cross-batch prediction—MCC values. MCC values from using the individ-
ual batch effect adjustment methods in cross-batch prediction when training on the first
and second batch. fsva f and fsva e denote the fast and the exact fSVA algorithm,
respectively.

batch effect adjustment and in raw data, respectively. In this section such plots are

utilized for a slightly different purpose: to study the extent to which the test batch is

similar to the training batch after addon batch effect adjustment using the different

batch effect adjustment methods. In each panel of Figure 3.5 the training batch is

depicted in bold. In each case PCA was applied to the following data matrix: the

training batch after batch effect adjustment combined with the test batch after addon

batch effect adjustment using the method indicated in each case. The stronger the

two point clouds overlap, the closer the test batch is to the training batch after addon

batch effect adjustment. Before batch effect adjustment the two batches obviously

are grossly disparate. While the shapes of the point clouds are rather similar, their

locations differ considerably. FAbatch leads to the greatest overlap between the train-

ing and test batches, here. ComBat and standardization are in second place. Note

that despite the decent overlap between training and test batches using standard-
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ization, this method produced poor MCC values in the analysis above. In Chapter

4 it will be seen that, in general, when using PLS-LDA as a classification method,

standardization leads to a poor prediction performance when employed to assimilate

the validation data to the training data. Mean-centering, ratio-A, and ratio-G are

connected with a worse overlap here and the point clouds hardly differ among these

methods. The two fSVA algorithms make the two point clouds even more disparate

than before batch effect adjustment. The poor performance of fSVA observed here

indicates that in this example it seems inappropriate to assume that the same sources

of heterogeneity operate in the two batches—an assumption required for the applica-

tion of fSVA. In section 3.2.3 it was noted that for mean-centering, standardization,

ratio-A, and ratio-G methods no specific addon batch effect adjustment methods are

required because they treat each batch independently of the others. Therefore, for

each of these methods, in the two corresponding subplots of Figure 3.5 the point

clouds are identical, irrespective of which batch is used as the training batch and test

batch.

Note again that the above real data analysis is illustrative only. Simulations give

more accurate results and allow the study of the impact of specific aspects of the

underlying data distribution. In the simulation presented in the following the main

interest lied in demonstrating that FAbatch is best suited in situations with correlated

predictors. Four simulation settings were considered: the three settings of Design B

presented in section 3.2.4 and an additional setting in which no correlation among

the predictors was induced. Design B was chosen instead of Design A in order to

prevent a possible optimistic bias with respect to FAbatch and fSVA, since these

involve adjustment for latent factor influences. The additional fourth setting was

generated by simply setting the correlations in Design B to zero. For each setting

100 datasets were simulated and proceeded as in the analysis of the real dataset

presented above—with two differences. The first difference was that in the simulation

there were
(
4
2

)
× 2 = 12 instead of two combinations of training batches and test

batches per dataset, because the simulated datasets featured four batches instead of

only two. The second difference concerns the evaluation of the results, because the

MCC values could not be calculated in cases where the denominator in Eq. (3.26) was

zero. Therefore for each combination of setting and batch effect adjustment method

the TP , the TN , the FP , and the FN values were separately totaled up over all

prediction iterations in all 100 datasets and the MCC value then was calculated

using the standard formula. Figure 3.6 shows the results. In many respects the

simulation results concur with the results obtained using the real dataset. The most

striking difference is that standardization is best here although it was bad for the real

data analysis. However, the good performance of standardization in the simulation
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Figure 3.5.: Visualization of the assimilation of test batch to training batch after batch
effect adjustment. First two principal components of PCA performed on the following
data matrix: the training batch after batch effect adjustment combined with the test
batch after addon batch effect adjustment. The training batch in each subplot is depicted
in bold and the numbers distinguish the two classes “IUGR yes” (2) versus “IUGR no” (1).
The contour lines represent batch-wise two-dimensional kernel estimates and the diamonds
represent the batch-wise centers of gravities of the points.
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should not be over-interpreted as it is the least performant method in the study

of Luo et al. (2010). Moreover, as noted above, in Chapter 4 it is revealed that

standardization performs poorly when used in combination with PLS-LDA. FAbatch

is the second-best method in all settings except for the setting without correlation

between the predictors. In the latter setting, FAbatch is outperformed by ComBat

and mean-centering. This confirms that FAbatch is best suited in situations with

more correlated variables. Ratio-G performs poorly here—other than in the study by

Luo et al. (2010) and in the real-data analysis above. Both fSVA algorithms perform

poorly here as well.
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Figure 3.6.: MCC values from simulation study. The colors differentiate the methods:
none ( ), fabatch ( ), combat ( ), fsva f ( ), fsva e ( ), meanc ( ), stand ( ), ratiog
( ), ratioa ( ). For better interpretability the results corresponding to the same methods
are connected.

3.3.3. Artificial increase in measured class signal by applying SVA

In section 3.2.2 it was explained in detail why using the actual values of the target

variable in protecting the biological signal during the latent factor estimation of FA-

batch would lead to an artificially increased class signal. SVA uses the values of the

target variable and indeed suffers from the problem of an artificially increased class

signal. In the following, the reason SVA suffers from this problem will be outlined. A

serious problem with the weighting of the variable values by the estimated probabil-

ities that the corresponding variable is associated with unmeasured confounders but
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not with the target variable is the following: These estimated probabilities depend on

the values of the target variable, particularly for smaller datasets. Naturally, due to

the variability in the data, for some variables the two classes are, by chance, mixed to

a much lesser degree. Such variables, for which the observed separation between the

classes is greater than the actual—biologically motivated—separation, are connected

with smaller estimated weights. This means that such variables are affected less by

the removal of the estimated latent factor influences than are variables not connected

with such a randomly increased separation. Phrased differently, the stronger the

apparent—not the actual—signal of a variable is, the less its values are affected by

the adjustment of latent factors. As a result, after applying SVA the classes are

separated to a greater degree than they would be if biological differences among the

classes were the only source of separation—as is required in a meaningful analysis.

This phenomenon is pronounced more strongly in smaller datasets. The reason for

this is that for larger datasets the measured signals of the variables approach the

actual signals, which is why the overoptimism due to working with the apparent

signals instead of the actual signals becomes less pronounced here. Accordingly, in

the example with real data in the previous subsection fSVA performed considerably

worse when using the smaller batch as training data.

Using datasets with artificially increased signals in analyses can lead to over-

optimistic results, which can have serious consequences. For example, when the

result of CV is over-optimistic, this may lead to overestimating the discriminatory

power of a poor prediction rule. Another example is when searching for differen-

tially expressed genes, where an artificially increased class signal could lead to an

abundance of false positive results.

The observed deterioration of the MCC values in the real data example by perform-

ing fSVA when training on the smaller batch, admittedly, also may be due to random

error. To determine whether the effects originating from the mechanism of artificially

increasing the discriminative power of datasets by performing SVA are strong enough

to have actual implications in data analysis, a small simulation study was conducted.

Datasets with 40 observations were generated, each of which featured 1000 variables,

two equally sized batches, standard normally distributed variable values, and a bi-

nary target variable with equal class probabilities. Note that there was no class

signal in these data. Then, to each simulated dataset 5-fold CV repeated twice was

applied to estimate the misclassification error rate of PLS-LDA. Consecutively, SVA

was applied to the data and the misclassification error rates were estimated using the

same procedure. This procedure was repeated for the following numbers of factors

to estimate: 1, 2, and 3. In each case 50 datasets were simulated. The mean of

the misclassification error rates was 0.504 for the raw datasets and 0.431, 0.356, and



82 3. Location-and-scale batch effect adjustment with data cleaning

0.306 after applying SVA with 1, 2, and 3 factors. These results confirm that the

artificial increase in the class signal by performing SVA can be large enough to have

implications in data analysis. Moreover, the problem seems to be more severe for a

higher number of factors estimated. The same analysis also was done with FAbatch,

again using 1, 2, and 3 factors, where the following misclassification error rates were

obtained: 0.505, 0.521, and 0.509, respectively. The results indicate that FAbatch

does not suffer from this problem in the context investigated.

3.4. Discussion

In this chapter, FAbatch, a general batch effect adjustment method, was introduced.

It is applicable in situations where the batch membership is known and accounts for

two kinds of batch effects simultaneously: 1) coarse, easily observable batch effects

expressed as location and scale shifts of the variable values across the different batches;

2) more complicated batch effects, modelled by latent factor influences which affect

the correlations among the variables in the batches. The model behind FAbatch is

an extension of the model underlying ComBat, the latter of which is designed to

address the first kind of batch effects described above. In FAbatch latent factors

are used to model batch effects in the spirit of SVA. In contrast to SVA, however,

FAbatch assumes that the batch membership of the observations is known and that

the latent factor models are batch-specific, that is, that in each batch different sources

of heterogeneity may operate. In section 3.2.1 it was shown that in the SVA model

it is implicitly assumed that the distribution of the vector of latent factors may be

different for each observation. This is a very broad assumption. However, it is unclear

how well SVA can deal with specific datasets originating from such a general model

because the link between the SVD used in the estimation and this model is not

evident. By contrast, the estimation algorithm of FAbatch was motivated explicitly

by its underlying model, which is quite general and reasonable. In cases in which

the data in question are generally uniform with this model, FAbatch should perform

reasonably well. In the form presented here, FAbatch is applicable in the presence

of a binary target variable only. However, it also can be extended to other types of

target variables. For example, when having a metric target variable, ridge regression

could be used instead of L2-penalized logistic regression when protecting the biological

signal of interest in the factor estimation.

In an illustrative analysis the batch effect adjustment methods previously studied

in the main analyses were applied in the important case of cross-batch prediction.

FAbatch—unlike fSVA—performed reasonably well in this example. Moreover, by a
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small simulation study evidence was obtained that the artificial increase in the mea-

sured biological signal of interest faced when performing SVA can have noticeable

negative effects in applications. In FAbatch, this artificial increase is prevented by

employing the following: For each observation the parameters involved in the trans-

formations performed for protecting the biological signal are estimated using training

data, which does not contain the respective observation to be transformed. This idea

also may be applied to protect the biological signal of SVA, that is, when multiplying

the variable values by the estimated probabilities that the corresponding variables

are associated with unmeasured confounders but not with the binary variable repre-

senting the biological signal. More precisely, these probabilities could be estimated

in a CV procedure—taking up, again, the idea used in FAbatch.

It can be dangerous to combine data from several studies to analyze a biological

phenomenon of interest, independent of whether or not batch effect adjustment is

used to assimilate the different datasets. In the context of clinical studies Shenhav

et al. (2015) observed that often the biological signal of interest exists in only one of

the investigated studies. The fact that there is signal in one of the studies considered

can be due to the specific population under investigation in the respective study or

to a particular study design. In such situations there is no signal in the population

considered in the analysis. However, a strong signal in one of the individual studies

can dominate the behavior of the data combined from several studies. Therefore, false

positive results can be easily obtained when analyzing data from combined studies.

All batch effect adjustment methods considered in this chapter, together with the

corresponding addon procedures and all metrics used in the comparisons of the meth-

ods, were implemented in or adopted into the new R package bapred available online

from CRAN (Hornung and Causeur; 2015).

3.5. Conclusions

FAbatch leads to a good mix of observations across the batches, which is reassuring

given the diversity of batch effect structures in real datasets. In the case of very

weak batch effects and in the case of strongly outlying batches, the observed biolog-

ical signal may be slightly altered by FAbatch. In an extensive comparison study of

existing and new batch effect adjustment methods, no method was found to be best

with respect to all metrics. Thus, it is difficult to formulate general recommenda-

tions: The choice of method may depend primarily on the goal of the researcher as

reflected by the choice of the metric. Performing no batch effect correction at all is

not recommended in any case.
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This chapter was concerned mainly with situations in which batch effects are

present in an available dataset. In such situations, batch effect adjustment can be

performed prior to the analysis of interest to mitigate batch effects and, in conse-

quence, to obtain more accurate and/or less biased results. The next chapter is

concerned with a different situation: A specific dataset is used as training data for

a prediction rule that is consecutively applied to varying external test datasets. In

such a situation, batch effect adjustment can be employed differently, namely for ad-

justing the behavior of the test datasets to that of the training dataset by performing

addon batch effect adjustment to improve prediction accuracy. Addon batch effect

adjustment was described in section 3.2.3 and applied in section 3.3.2 in the context

of cross-batch prediction.



4. Improving cross-study prediction

through addon batch effect

adjustment or addon normalization

4.1. Background

As seen in the previous chapters, a wide variety of modern classification methods

can be used to construct prediction rules about the presence of diseases or disease

outcomes of interest on the basis of high-dimensional, molecular data. Not only are

such prediction rules used extensively in this thesis, but they very frequently appear

in the literature. Although, to date, they seldom are applied in daily medical prac-

tice, potentially they could be established as useful tools to assist medical doctors in

their decision making (van’t Veer and Bernards; 2008). In addition to governmental

policies, a major obstacle to broader application of such methods is batch effects,

which lead to lack of comparability of patients’ data needed for prediction, that is,

the test data, to that the prediction rules are constructed on, the training data. High-

dimensional bio-molecular measurements are highly sensitive to external conditions

of the data generation procedure (Scheerer; 2009). Moreover, different datasets used

to study the same biological phenomenon vary in terms of the study population.

Thus, prediction rules can be expected to perform worse or considerably worse in

practice than is suggested by the results of dataset-internal error estimation through

CV (Castaldi et al.; 2011; Bernau et al.; 2014). Apart from the dissimilarity among

datasets used to study the same biological signal of interest due to batch effects,

an important reason for external validation is the following: Often while particular

datasets feature a strong biological signal of interest, other datasets from the field of

application do not (Shenhav et al.; 2015), as explained in section 3.4. Researchers

may be inclined to build prediction rules using datasets that feature a strong bio-

logical signal precisely because of the fact that they do feature a strong signal. A

prediction rule created using such a training dataset admittedly features a small CV

error estimate, but performs poorly when applied to independent datasets in which
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the strong signal found in the training dataset is not present. This poor performance

on independent datasets would, however, go unnoticed without performing external

validation. As stated in Chapter 1, the term cross-study prediction is used to refer

to situations where a prediction rule is learned using data from a study and then is

applied to independent external data from another study.

It is a desirable goal to reduce the error frequency of prediction rules applied

in cross-study settings. Batch effect adjustment methods frequently are used to

make the distributions of different datasets more similar not only within a study but

also across studies. However, it is far less acknowledged that these methods also

can be applied to make test data more similar to the training data in the context

of prediction. In Chapter 3, specifically in section 3.2.3, this addon batch effect

adjustment was discussed in detail.

Independent from addon batch effect adjustment, by normalizing the training data

and test data simultaneously, the severity of batch effects would be greatly reduced.

However, in the context of prediction the prediction rule must not depend on the

test data. This condition would not be fulfilled when normalizing training data and

test data together, because the training data would change each time new test data

arrived. This pitfall is circumvented by addon normalization, which was discussed

in Chapter 2 in a different context: Normalization of the training data is done with-

out considering the test data. When normalizing observations in the test data, for

those parameters of the normalization procedure which do not entirely depend on the

individual samples, estimates obtained from the training data only are used.

In this chapter the potential improvement of cross-study prediction yielded by the

use of addon normalization, addon batch effect adjustment, and the combination of

these two is investigated through their application to 25 raw microarray datasets of

the same chiptype. This large-scale neutral comparison study follows the recommen-

dations made by Boulesteix et al. (2013) and Boulesteix (2013). Beyond the small

illustrative (and often biased) real data studies provided in the great majority of pa-

pers presenting new methods, such neutral comparison studies yield crucial evidence

to guide data analysis practice (Boulesteix; 2013; Gatto et al.; 2016). The large num-

ber of datasets considered in these studies increases the reliability of the conclusions

substantially (Boulesteix et al.; 2015). In the study presented in this chapter, seven

batch effect adjustment methods and the addon normalization procedure for RMA

by Kostka and Spang (2008) are considered. The target variable considered for all

datasets is “sex”. CV delivers error rates close to zero here because the biological

signal present in gene expression for explaining “sex” is very strong. However, the er-

ror rate estimated by cross-study validation will be seen to be much higher, although

from a biological point of view, it should be possible to predict “sex” accurately based
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on microarray gene expression data in cross-study settings as well. This illustrates

that batch effects can deteriorate the accuracy of prediction considerably in this con-

text and that CV does not reflect the true error rate to be expected when applying

a prediction rule to an external dataset in practice.

Note that it is not meaningful to predict “sex” from a clinical point of view. How-

ever, for the purpose of the systematic large-scale study performed here it is important

to analyze a large number of datasets with the same phenotype target variable and

collected using the same chiptype, which was possible only for the target variable

“sex”. Despite the fact that the biological signal present in gene data explaining

“sex” is very strong, “sex” can be seen as a substitute for a meaningful phenotype

target variable. Moreover, “sex” has the advantage of being a clearly defined tar-

get variable. By contrast, for clinically relevant target variables it often is difficult to

find several datasets featuring the same two biological groups, and definitions may be

ambiguous. Keeping in mind that prediction performance is usually better for “sex”

than for most other target variables, in the study presented in this chapter the abso-

lute sizes of the performance measure values will not be examined; deliberate focus

will be on the effect of addon batch effect adjustment and addon normalization.

Modern next generation sequencing (NGS) data is commonly associated with con-

siderably reduced variability compared to microarray data (Bullard et al.; 2010),

which is why batch effects should be weaker for NGS data. Nevertheless, as stated

in Chapter 1, batch effects have been found to pose a problem for NGS data as well

(Hansen and Irizarry; 2012). The question investigated in the study presented here

is, thus, relevant beyond the special case of traditional microarray data.

Unlike in this study, where cross-study prediction is investigated, in the study by

Luo et al. (2010) of addon batch effect adjustment cross-batch prediction within the

same study is considered. In their paper, batches are parts of a common dataset

which are uncomparable for reasons unrelated to the biological signal of interest.

Since their batches originate from the same study, they share certain characteristics,

for example, the laboratory used for data generation or the personnel involved may

be the same for all batches. However, such similarities between training data and

test data generally are not present in cross-study settings when a prediction rule is

made publicly available and applied by other teams around the world. Therefore,

the analysis design used in this study reflects practically relevant situations better.

Moreover, by considering a large number of datasets, more stable results are obtained

than in Luo et al. (2010).

This chapter is structured as follows: In section 4.2 a description of the data ma-

terial is provided and the analyses performed in the cases of cross-study prediction

using addon batch effect adjustment and addon normalization are explained. In sec-
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tion 4.3 important features of the results of the large-scale comparison study are

described. In section 4.4 several of the findings are interpreted and further oppor-

tunities for application of the methodology are proposed. In section 4.5 practically

relevant conclusions from the chapter are drawn.

4.2. Methods

4.2.1. Data material

All datasets were obtained from ArrayExpress (Kolesnikov et al.; 2015). As a pre-

liminary step datasets meeting the following criteria were sought: availability of a

variable denoted as “sex” in the phenotypic data, availability of the raw data (neces-

sary for (addon) normalization), number of samples between 30 to 500, human origin

of the samples, and samples of microarray chip type Affymetrix HGU GeneChip HG-

U133PLUS2. From the corresponding search results initially the 39 most recently

published datasets meeting these criteria were considered. Subsequently, for each

dataset an investigation was made into whether there were repeated measurements

and if so, one sample per patient was chosen randomly. Following this, any datasets

containing duplicates from other datasets were excluded. Moreover, datasets featur-

ing fewer than 20 observations after removal of repeated measurements were excluded.

After excluding further datasets seen to contain repeated measurements, ultimately

25 datasets for use in the analysis were obtained. Table 4.1 provides basic information

on these datasets after removal of repeated measurements.

4.2.2. (Addon) Batch effect adjustment and (addon) quantile

normalization

The seven batch effect adjustment methods investigated were the same as those

considered in Chapter 3: ComBat, fSVA, mean-centering, standardization, ratio-A,

ratio-G, and FAbatch. Both variants of fSVA presented in Parker et al. (2014) were

considered: the exact fSVA algorithm and the fast fSVA algorithm (see also section

3.2.3). See Chapter 3 for a detailed discussion about addon batch effect adjustment.

In the analysis presented in this chapter, all methods were used in exactly the same

ways as in Chapter 3.

RMA normalization (Irizarry et al.; 2003) together with the addon quantile normal-

ization procedure by Kostka and Spang (2008), which also was considered in Chapter

2, was used (see section 2.2.3 for a description).
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Accession number Number of Proportion of Year of
observations female patients publication

E-GEOD-19722 46 0.33 2014

E-GEOD-28654 112 0.41 2015

E-GEOD-29623 65 0.38 2014

E-GEOD-39084 70 0.50 2014

E-GEOD-45216 31 0.19 2014

E-GEOD-45670 38 0.16 2014

E-GEOD-46474 40 0.35 2014

E-GEOD-48278 57 0.51 2015

E-GEOD-48350 58 0.52 2014

E-GEOD-48780 49 0.84 2014

E-GEOD-49243 73 0.48 2014

E-GEOD-50774 21 0.38 2014

E-GEOD-53224 53 0.60 2015

E-GEOD-53890 41 0.51 2014

E-GEOD-54543 30 0.27 2015

E-GEOD-54837 226 0.35 2014

E-GEOD-58697 124 0.64 2015

E-GEOD-59312 79 0.33 2014

E-GEOD-60028 24 0.67 2014

E-GEOD-61804 325 0.45 2014

E-GEOD-63626 63 0.62 2014

E-GEOD-64415 209 0.47 2015

E-GEOD-64857 81 0.42 2015

E-GEOD-67851 31 0.42 2015

E-GEOD-68720 97 0.44 2015

Table 4.1.: Overview of datasets used in the empirical study.
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4.2.3. Cross-study validation

Bernau et al. (2014) recommend cross-study validation to obtain estimates of the error

expected when applying prediction rules to external data. This procedure requires I

datasets that study the same biological phenomenon. The prediction rule of interest

is learned iteratively on each of the I datasets and its error evaluated on every other

dataset. This results in I(I − 1) error estimates which are more realistic than CV

error estimates as far as the application of prediction to external data in practice is

concerned.

This procedure was slightly altered to fit the purposes of the study at hand. Instead

of an error estimator a performance metric was considered, namely the MCC men-

tioned in section 3.3.2. The absolute size of the latter is interpretable analogously to

that of the well known Bravais-Pearson correlation coefficient used with metric data.

For this reason, it was favoured over the more common misclassification error rate.

In the calculations, female patients and male patients are considered “positives” and

“negatives”, respectively. Again, as in section 3.3.2 the MCC values according to

formula (3.26) would not have been calculable in cases where the denominator in the

calculation of the MCC value was zero. Therefore, first, for each of the I training

sets the TP , the TN , the FP , and the FN values were totaled up over the I − 1

test set evaluations. Second, formula (3.26) was applied to the totaled TP , TN , FP ,

and FN values. Here, in some cases formula (3.26) was not applicable because the

denominator was zero also in case of the totaled TP , TN , FP , and FN values. In

each of these cases, the corresponding prediction rule either classified all observations

as negative or all observations as positive so that TP + FP or TN + FN was zero.

Such prediction rules, which simply assign all observations to one class, are no more

effective than random guessing. Therefore, a MCC value of zero was assigned in these

rare cases where either TP + FP or TN + FN was zero. The MCC values calcu-

lated using the totaled TP , TN , FP , and FN values are denoted as MCCrule. This

measure reflects the mean cross-study prediction performance of a specific prediction

rule evaluated on test datasets from the setting under consideration.

4.2.4. Study design

Five parameters were varied in the analyses:

• normalization type: addon normalization (addon), separate normalization

(separate)

• batch effect adjustment method: No batch effect adjustment (none), ComBat

(combat), mean-centering (meanc), standardization (stand), ratio-G (ratiog),
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ratio-A (ratioa), fast fSVA (fsva f), exact fSVA (fsva e), FAbatch (fabatch)

• Training set size: original size of dataset, but with a maximum of 70 observa-

tions (trainlarge), 20 observations (trainsmall)

• Test set size: original size of dataset, but with a maximum of 70 observations

(testlarge), 20 observations (testsmall), 5 observations (testverysmall)

• Classification method: PLS-LDA (PLS-LDA), PLS-LDA using the 2000 variables

with the smallest p-values from two-sample t-tests (PLS-LDAvarsel), Logit-

Boost (Boosting), Boosting using the 2000 variables with the smallest p-values

from two-sample t-tests (Boostingvarsel), NSC (NSC), RF (RF), kNN using the

2000 variables with the smallest p-values from two-sample t-tests (kNNvarsel)

After applying (addon) RMA normalization and (addon) batch effect adjustment

to each training and test dataset pair, the data were used to build and apply the

respective classifier. For kNN initial variable selection was performed because unlike

the other classification methods used in the analysis, kNN classification does not

weigh the variables by importance; its performance thus depends very much on the

quality of the variables included (Pohjalainen et al.; 2015). All possible combinations

of the values of these parameters were considered, leading to a total of 756 settings

(2 × 9 × 2 × 3 × 7). In cases where subsetting was necessary, random samples were

drawn from the datasets. Here, except in the case of testverysmall, it was ensured

that the smaller class was represented by at least five observations. Because all

possible pairs of training datasets and test datasets were considered, for each setting

there were 25 MCCrule values, each corresponding to a specific training dataset.

The R code written to produce and evaluate the results is available at the following

link: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_

drittmittel/hornung/icsv_suppfiles/index.html.

4.3. Results

Figures C.1 to C.7 show boxplots of theMCCrule values for each classification method,

separated by batch effect adjustment method, normalization type, training dataset

size, and test dataset size. In the following, unless otherwise stated, the description

of the results of the study is based on these plots.

http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/hornung/icsv_suppfiles/index.html
http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/hornung/icsv_suppfiles/index.html
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Figure 4.1.: MCCrule values for the 25 datasets for each setting without addon batch effect
adjustment. The red and the cyan boxplots indicate the results when using addon and
separate normalization, respectively.

4.3.1. Addon quantile normalization

In most of the settings without addon batch effect adjustment, addon normalization

improved performance and in no setting did it lead to a decline in classification per-

formance (see Figure 4.1). While addon batch effect adjustment, if applicable, usually

is more effective than addon normalization, in some situations it impairs performance

(see further down). Because performance was not impaired by addon normalization

in any of the settings studied, the following generally should be done: Addon nor-

malization should be performed whenever test observations are unavailable in groups

and addon batch effect adjustment is, thus, impossible, and it should be performed

when addon batch effect adjustment tends not to improve results (see further down).

While both approaches improve performance, there is no advantage to using addon

batch effect adjustment in combination with addon normalization over using addon

batch effect adjustment alone. Instead, in some cases the performance deteriorates

slightly by additional addon normalization (see also section 4.4). Therefore, in the

following, the results obtained for the combination of addon normalization and ad-

don batch effect adjustment will not be examined; only the results obtained for either

addon normalization or addon batch effect adjustment will be explored. Note that
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addon quantile normalization is, however, not necessary in the case of rank-based

classifiers, that is, classifiers which exclusively use the orderings of the variable values

of the individual observations. The top scoring pairs classifier (Geman et al.; 2004;

Tan et al.; 2005) is an example of such a method that has been found to perform

comparably well to standard classification methods for high-dimensional molecular

data (Geman et al.; 2008).

4.3.2. Addon batch effect adjustment

Influence of training set and test set size

As expected, the MCCrule values tended to be smaller for the setting with smaller

training datasets. A striking observation is that RF delivered useful predictions in the

setting with larger training datasets only. Sonka et al. (2014) previously noted that

RFs do not generalize well when using small datasets as training data. While the size

of the training dataset does influence the cross-study prediction performance, it has

almost no influence on the benefit yielded by addon normalization and addon batch

effect adjustment. For the sake of clarity, the descriptions in the following will focus

on the setting with large training datasets only.

Figure 4.2 shows the median MCCrule values for all settings with large training

datasets and separate normalization. Generally, there were hardly any differences

in the results for addon batch effect adjustment when using a large dataset and

when using a small test dataset. However, when using a very small test dataset

(five observations), the MCCrule values tended to become considerably smaller. This

frequently led to a small deterioration from addon batch effect adjustment. Therefore,

as a general rule, for addon batch effect adjustment to be effective very small test

datasets should be avoided.

Specific classification methods

Given a test dataset comprising several observations, whether or not batch effect ad-

justment considerably improved results depended on the classification method used.

For most classification methods an improvement through certain addon batch effect

adjustment methods is observed (see the next subsection for details), the exceptions

being Boosting (Figure C.3), Boostingvarsel (Figure C.4), and RF (Figure C.6).

In the case of RF the boxplots corresponding to combat, meanc, stand, ratiog, and

ratioa have a very similar form. These methods all assimilate the means between the

training data and the test data. Upon closer inspection of the results, the small 25%

quartiles of the MCCrule values displayed in the boxplots (Figure C.6) were found
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Figure 4.2.: Medians of the MCCrule values over the 25 datasets for each setting with a
large training dataset and separate normalization. The red lines, green lines, and blue lines
indicate the results obtained when using a large, a small, and a very small test dataset,
respectively.
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to be attributable to the results of two training datasets, namely E-GEOD-46474 and

E-GEOD-54543 (see Table 4.1). Here, the prediction accuracy was quite strong without

addon batch effect adjustment. However, by applying the methods mentioned above,

the results worsened to a substantially greater degree than was the case for other

datasets for which deterioration was observed. These two problematic datasets were

seen to be imbalanced with the frequencies of the smaller classes being 35% and 26.7%.

For six of the remaining 23 datasets the frequency of the smaller class was below

35%. Five of these were associated with very small MCCrule values not only with,

but also without, addon batch effect adjustment. The fact that the performance was

poor already without addon batch effect adjustment for the majority of imbalanced

datasets explains why a substantial decline in performance through addon batch effect

adjustment was observed for the two datasets mentioned but not for all imbalanced

datasets. It is not surprising that RF performed poorly for many of the imbalanced

datasets. RF is well known to predict overly frequently the class that is more frequent

in the training dataset (see e.g. Janitza et al. (2013)). The deterioration in prediction

performance through addon batch effect adjustment for the two datasets mentioned

above is not directly due to the fact that in these cases the class frequencies are

imbalanced in the training data. Instead, the reason is that the class frequencies in the

test data tend to be very different from the class frequencies in the training data if the

latter are imbalanced. The mechanism by which RF in particular suffers by differing

class frequencies between training data and test data when used in combination

with batch effect adjustment methods involving assimilation of the means between

training data and test data will be explained in section 4.4.2. When excluding the

two datasets for which substantial deterioration was observed, the boxplots showed a

relatively strong improvement in the prediction accuracy of RF by addon batch effect

adjustment (results not shown).

Both Boosting and Boostingvarsel performed very well without addon batch

effect adjustment. Here, the MCCrule values were very high and had almost zero

variance apart from a few outliers (Figure 4.1; see the discussion section for an ex-

planation why boosting may be especially suitable in cross-study prediction). Upon

closer inspection of the results the small variance of the MCCrule values observed for

boosting without batch effect adjustment could be explained as follows: There were

two to three datasets which performed poorly as training datasets and test datasets,

while the other datasets exhibited an almost perfect performance. This had the effect

that the MCCrule values for the good training datasets were very similar because in

these cases the totaled values used to calculate the MCCrule values were almost the

same: The corresponding prediction rules classified the observations from the good

test datasets almost perfectly and those from the bad test datasets equally as badly.
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The outliers in the lower domain mentioned above show the results obtained when

using the bad datasets as training datasets. In conclusion, other than when con-

sidering the problematic datasets as training datasets or as test datasets, boosting

without addon batch effect adjustment delivered almost perfect predictions. This

explains why none of the batch effect adjustment methods led to an improvement

here. For combat, ratiog, and ratioa there was substantial deterioration by batch

effect adjustment for several training datasets, which seems surprising given that

these methods performed well in other settings of the study (see next subsection).

However, the training datasets for which substantial deterioration was observed for

these methods were seen to feature, unexceptionally, the greatest degrees of class

imbalance. Thus it can be concluded that boosting, as RF, can suffer from differing

class distributions between training data and test data when used in combination

with addon batch effect adjustment. Another factor that could contribute to the

worse results for addon batch effect adjustment observed here is the variability that

is associated with batch effect adjustment. This variability may be responsible for

some differences in the predictions compared to when no addon batch effect adjust-

ment is used. Such changes necessarily lead to errors when the predictions are almost

perfect, as was the case for boosting.

Apart from the level of class imbalance in the training datasets, another factor

that might influence the degree of improvement obtained through addon batch effect

adjustment is the level of heterogeneity of the observations in the training data. To

study whether the degree of heterogeneity in the training data is indeed a relevant

factor, it was proceeded as follows. First, PCA was applied to each of the 25 datasets

and in each case the first two principal components plotted against each other. Us-

ing these plots the datasets that featured a considerable level of heterogeneity were

identified. Second, the results of the study obtained when using these heterogeneous

datasets as training datasets were compared to the corresponding results obtained

using the remaining datasets for training. Here, there were no clear indications that

prediction rules obtained using heterogeneous training datasets may benefit less from

addon batch effect adjustment.

For boosting, pre-selection of influencing variables performed with Boostingvarsel

did not further improve results (Figure 4.1). By contrast, PLS-LDA seems to be

improved by initial supervised variable selection, which also was found by Li et al.

(2007).
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Performance of individual batch effect adjustment methods

As seen above, the settings in which addon batch effect adjustment was not valuable

were marked down. In those settings where it did improve performance there were

several well performing methods with no clear ranking among them (Figure 4.2). Four

methods always were among the best here: combat, meanc, ratiog, and ratioa.

While stand also was frequently among the best methods, it was inferior in the

cases of PLS-LDA, PLS-LDAvarsel, and kNNvarsel. Thus, the value of this method

depends heavily on the classifier used, which is why it cannot be recommended. In

contrast to the findings of Luo et al. (2010) in the present study ratioa and ratiog

were not found to be preferable over the other well performing methods. fsva f,

fsva e, and fabatch did not improve performance in any of the settings and, more

importantly, these methods often were harmful and therefore should not be used for

cross-study prediction. Note again that as explained in section 3.2.3 fSVA relies on

similarity between training data and test data, an assumption most often not given

in cross-study prediction. Results of the present study indicate that fSVA can impair

performance when the assumption of similarity cannot be made.

The results of the illustrative real-data cross-batch prediction analysis presented in

section 3.3.2 differed in the following ways: fabatch was among the best methods;

ratiog and ratioa were not. Apart from the fact that in cross-batch prediction the

training datasets and test datasets are more similar than in cross-study prediction,

the differing results are likely due to the fact that in the illustrative cross-batch

prediction analysis only a single dataset was used. In the cross-batch prediction

simulation performed and reported on in section 3.3.2 FAbatch was, again, among

the best methods. However, the simulation design used there was based on two real

datasets. Therefore, the simulation results may as well depend in part on the behavior

of these datasets used in designing the simulation.

4.4. Discussion

4.4.1. Reasons for no benefit from combining the two approaches

Used separately, addon normalization and addon batch effect adjustment both im-

proved the performance of cross-study prediction under the conditions outlined in the

previous section. However, there was no additional gain in prediction performance

by using addon batch effect adjustment in combination with addon normalization in

comparison to using addon batch effect adjustment alone. Two explanations for this

could be the following: 1) The assimilation of the distribution of the test data to that
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of the training data by addon batch effect adjustment is not substantially improved by

a preceding addon normalization. Generally, addon batch effect adjustment leads to

a stronger assimilation of the distribution of the test data to that of the training data

than addon normalization. The reason for this is that addon batch effect adjustment

explicitly assimilates the distributions of the individual variables in the test data to

those in the training data. By contrast, addon normalization merely assimilates the

marginal distributions of the values belonging to the individual observations. The

latter is, however, implicitly performed by addon batch effect adjustment as well;

2) the variability connected with the adjustment is increased by combining the two

procedures.

4.4.2. Random forest: impaired performance in the presence of

differing class frequencies between training data and test

data

When the classes were imbalanced in the training data, the performance of RF was

impaired to the same extent by all addon batch effect adjustment methods, which in-

volve an assimilation of the variable means between training data and test data. This

was attributed to the fact that if classes are imbalanced in the training data, there

tends to be a difference in class frequencies between the test data and the training

data. In the context of conventional batch effect adjustment, Nygaard and Rødland

(2016) noted that mean-centering reduces class differences when the classes are un-

evenly represented in the different batches. While all classifiers can be expected

to suffer to some extent from variable mean adjustment, if there is a difference in

class frequencies between training data and test data, this is probably particularly

problematic for RFs. In the following the mechanism responsible for this will be de-

scribed. The classification trees constituting a RF iteratively divide the observations

into subgroups of decreasing sizes. More precisely, in each iteration the subgroups

are split into two smaller subgroups based on a threshold of an individual variable.

That threshold among all possible thresholds of the variables (in the randomly chosen

subset) is used that leads to the strongest separation of the two classes through the

two resulting subgroups according to a specific criterion. As a result, the splits are

performed in each case using the variable (from the candidates) that has the great-

est discriminatory power. The stronger the discriminatory power of a variable, the

greater it suffers from an adjustment of the means between training data and test

data if the class frequencies of the two are different. Here, the mean adjustment leads

to the split point in the test data, which actually is the best, meaning that which

separates the two classes in the test observations best, being strongly shifted away
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from the best split point in the training data. The best split points in the test data

are always shifted into the direction of the same class, namely that which is more

frequent in the training data than in the test data. Thus, when splitting the test

observations according to the split points found in the training data, many of the

test observations belonging to the class less frequent in the training data are placed

into the wrong subnodes. These wrong decisions accumulate as the test observations

reach lower layers of the classification trees. In the extreme case, the RF ultimately

classifies all test observations as the class which is more frequent in the training data

than in the test data. For the two problematic training datasets mentioned above, it

was investigated whether this phenomenon can be observed in the case of ComBat.

Here, indeed ComBat led to classifying almost all test observations as the class over-

represented in the training data. This was not the case without addon batch effect

adjustment.

4.4.3. Boosting as a (potentially) robust method to avoid

overfitting in the context of cross-study prediction

As seen in section 4.3.2 Boosting without batch effect adjustment almost perfectly

predicted the class values across datasets. It has been noted in the literature that

boosting is quite resistant to overfitting, that is, to an over-adjustment to the training

dataset, in classification settings in particular (Bühlmann and Hothorn; 2007). While

LogitBoost can be prone to overfitting, this can be efficiently inhibited by stopping

the boosting iterations early (Bühlmann and Yu; 2008), as performed in this study.

Conventionally the term overfitting refers to the phenomenon that a classifier is

overly adjusted to the specific observations in the training data. This can have

the effect that the classifier features an increased error frequency when applied to

independent test observations following the same distribution as the training data. In

the context of cross-study prediction, however, independent test observations follow

a distribution different from that of the training data, which is due to batch effects,

as already mentioned. Therefore, a different kind of overfitting has to be considered

here. A classifier may be overly adjusted not only to the specific observations in the

training data, but also to the distribution of the training data. Such a classifier, which

is adjusted too much to the particular behavior of the training data, may feature a

poor generalizability to different, albeit similar, data distributions. A classifier of this

kind would have a low level of CV error but a high level of cross-study prediction error.

By contrast a classifier which does not overfit the training data distribution could

have quite a high level of CV error but a low level of cross-study prediction error.

Accordingly, Bernau et al. (2014) found only a weak positive correlation between CV
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and cross-study validation error in their study.

The strong performance of boosting with early stopping suggests that this method

may be resistant not only to overfitting the training observations, but also to over-

fitting the distribution of the training observations. Early stopping of the boosting

iterations has the effect that only strong, coarse properties of the relationship be-

tween covariates and response in the training data are taken into account. These

properties can be expected not to be induced by batch effects but to be common to

all datasets on the biological phenomenon of interest. As the number of boosting

iterations increases, the classifier is increasingly well adjusted to the training data

distribution. This, together with the fact that boosting is more prone to overfitting

for other prediction settings than classification could explain why the CoxBoost al-

gorithm was less suitable for cross-study prediction in the study by Bernau et al.

(2014) than LogitBoost was here. Similar to the number of iterations in boosting,

other classification methods also feature tuning parameters which control the degree

to which the algorithm adjusts itself to the training observations and consequently

also to the distribution of the training data. Examples include the shrinkage param-

eter ∆ of NSC and the penalization parameter λ in L1- and L2-penalized logistic

regression. Further research could focus on the influence of such parameters on the

cross-study prediction performance of these methods. The number of iterations in

boosting could be especially useful in this context. First, this parameter has been seen

to influence the performance considerably (see e.g. Seibold et al. (2016)). Second, in

each iteration the influence of only one variable is updated, which is why boosting is

not heavily dependent on the specific correlation structure of the dataset. Instead,

new variables are consecutively taken into the model based on their importance with

respect to explaining the target variable, and the iterations are stopped as soon as

the model is deemed complex enough.

4.4.4. Further possibilities for application

ComBat holds a special place among the four well performing batch effect adjustment

methods because of the peculiarity that the training data are not altered in any way

by the adjustment. As a consequence, ComBat addon adjustment could be employed

to improve the prediction performance of already existing prediction rules provided

the following requirements are met: The training data used to learn the prediction

rule must be available and the observations to predict must be available in groups of

sufficient sizes.

In the analysis performed in this study quantile normalization was considered as

part of RMA for Affymetrix data. However, quantile normalization also is used for
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many other biomolecular data types (Okoniewski and Miller; 2008; Schmid et al.;

2010; Bullard et al.; 2010; Staaf et al.; 2008; ’t Hoen et al.; 2008). Therefore, addon

quantile normalization can be used for data types other than Affymetrix data to

improve the cross-study performance of prediction rules obtained from these data

types. Note that quantile normalization can be used with normalized data as well.

This is important in view of clinical settings, in which raw data are not available on

a standard basis.

4.5. Conclusions

Assimilating the test data to the training data before applying prediction rules ob-

tained from gene expression data can improve the accuracy of prediction consider-

ably. In this endeavor, both addon normalization and addon batch effect adjustment

are in principle recommendable, but not the combination of these two approaches.

Nevertheless, there are two requirements for the application of addon batch effect

adjustment: 1) the test observations are available in groups of sufficient sizes; 2)

the class frequencies must not differ strongly between training data and test data.

If these requirements are met, addon batch effect adjustment with an appropriate

method is preferable to addon normalization. The following addon batch effect ad-

justment methods are recommended and perform comparably well: combat, meanc,

ratiog, and ratioa. All methods for assimilating training data and test data ap-

plied in the study are available in the R package bapred, version 1.0 (Hornung and

Causeur; 2016), available from CRAN.
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This thesis addressed specific aspects of preparation of high-dimensional biomedical

data from a statistical point of view. Such focus on data preparation seems relatively

unusual in (bio-)statistical research, which usually is immediately concerned with

methodology for high-level analyses, which directly tackle specific questions of interest

in the field of application. In the following, the most important conclusions drawn in

Chapters 2 to 4 will be summarized, additional points within the context of this thesis

not covered in the chapters will be discussed, and suggestions for future research on

the topics explored in the thesis will be made.

Chapter 2 was concerned with investigating the reduction of the error estimated by

CV procedures through performing data preparation steps before CV instead of in-

cluding them in CV. Accordingly, the new CVIIM measure was defined as the relative

reduction in the expected error obtained by CV by performing a data preparation

step under consideration before CV. As the extent of underestimation by incomplete

CV is not the same for each dataset, CVIIM depends on the underlying data distri-

bution. With the global CVIIM a measure was introduced, which in contrast, does

not depend on the underlying data distribution, but rather only on the specific data

preparation step and potentially on the specific design of the analysis used in con-

structing the prediction rule. However, naturally it is dangerous to rely on global

CVIIM alone, because without considering CVIIM for individual datasets, important

situations where incomplete CV does lead to a relevant underestimation of the error

of prediction rules can be overlooked. The plug-in estimator of CVIIM features a

negligible bias but a relatively large variance, which is smaller for smaller CVIIM

values.

With the aid of CVIIM and large collections of real biomolecular datasets, the fol-

lowing conclusions could be drawn in Chapter 2: RMA and RMAglobalVSN can be

performed before CV using the entire dataset, but PCA should be included into CV

through its addon procedure. If PCA is performed on the entire dataset before CV,

there is a risk of severe underestimation of the misclassification error. More precisely,

there is a risk of underestimating the misclassification error expected when applying

the corresponding prediction rule to test data following the same distribution as the

training data using the addon procedure for PCA. Preliminary results were obtained
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for the following steps: CV-based optimization of tuning parameters, variable filter-

ing by variance, and k-Nearest Neighbors imputation. These results are considered

preliminary because only a limited number of datasets were used to obtain them. To

draw valid conclusions from real data analyses about whether excluding specific steps

from CV can be warranted, larger collections of datasets are required, which might

deter researchers from studying the impact of a step under consideration. However,

depending on the step of interest it may be meaningful to use simulated data instead

of real datasets because simulated data may reduce the effort associated with studies

in which the impact of data preparation steps concerning CV incompleteness is eval-

uated. Here, it would be important to set up several reasonably realistic simulation

settings in order to ensure that common situations leading to large CVIIM values for

the step under investigation are not overlooked. Data preparation steps for which

the simulation approach would not be appropriate are, for example, normalization,

because raw microarray data are difficult to simulate (see Nykter et al. (2006) for a

sophisticated simulation procedure for this data type) and imputation, because the

missing data mechanism is unknown in applications.

Throughout the thesis it was assumed that the prediction rule must remain fixed

when new test data arrive. Under this presumption it is not possible to include the

test data when performing unsupervised data preparation steps, that is, steps that

do not take the target variable into account. However, for unsupervised steps that

tend to feature high CVIIM values, the eincompl,K(s) values by definition tend to be

much lower than the efull,K(s) values, which is why the prediction error would be

greatly reduced by including the test data before performing the respective steps.

In general, unsupervised data preparation steps originally were not intended to be

used in combination with addon procedures for the purpose of including new test

observations. For some of these steps, the estimates of the parameters necessary for

addon preparation may depend too much on the specific set of observations in the

training data, which is why they may not be well suited for independent observations.

This would explain high CVIIM values for this category of steps. Depending on the

gain in prediction performance to be expected by performing a specific step under

the inclusion of the test data, it might be worthwhile sometimes to refrain from the

requirement of fixing the prediction rule.

A possible explanation why, in the specific case of PCA, large CVIIM values fre-

quently were obtained is given in the following. With PCA, a separate loading of

each variable is estimated for each component. Therefore, from a statistical point of

view, many parameters have to be estimated for each component in the case of high-

dimensional datasets. In their entirety, the estimates of these parameters depend

heavily on the training dataset used. This is similar to the overfitting of statistical
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models for explaining a target variable in the presence of high-dimensional covari-

ate data, occurring, for example when using penalization parameters that are too

small in penalized regression approaches. As a consequence of considering such a

multitude of parameters for each component, the factor loadings in their entirety

are suited much better for an observation that is added to the training data before

performing PCA, in particular for heterogeneous data. This would explain why, for

several datasets, high CVIIM values were obtained, but for the majority of datasets

only small values were obtained.

Note that also in the case of fSVA a multitude of parameters have to be estimated.

This fact, as well as the fact that the training datasets and test datasets behave quite

differently, may contribute to the poor performance of fSVA observed in cross study-

prediction. In a potential, sparse version of SVA, a smaller number of parameters

would have to be estimated. Therefore, the cross-batch prediction performance might

be improved by such a modification to the method.

In all analyses of the impact of CV incompleteness with respect to specific steps

and in the definition of CVIIM, the target variable was binary. The impact of CV

incompleteness may be stronger for metric target variables. In general, the infor-

mation contained in a metric variable is more detailed than that in a binary target

variable. Therefore, a prediction rule for a metric variable generally could be better

adjusted to the training data than a respective prediction rule for a binary variable.

Consequently, a prediction rule for a metric target variable could be more sensitive

to the impact of CV incompleteness, which would lead to higher CVIIM values than

in the case of a comparable prediction rule for a binary target variable. However,

this is merely a presumption that was not in any way empirically investigated.

As stated in Chapter 4 batch effects are weaker for modern NGS data. Because

modern biomolecular measurements are becoming increasingly accurate and studies

increasingly homogeneous through improved coordination in the information age,

batch effects will become less important in the future. Therefore, from a technical

point of view, in more and more applications it may become less crucial to validate

prediction rules externally before using them in practice. As a consequence, in many

cases only CV error estimates might be reported instead of error estimates obtained

using external data.

When relying on CV alone for error estimation, it is especially important that

this procedure be conducted in such a way that it is not connected with a relevant

optimistic bias. Here, it will be valuable to perform empirical studies using CVIIM

to ensure that no data preparation steps, which lead to a strong underestimation of

the prediction error, are performed on the entire dataset before CV.

Another consequence of a decrease in batch effects would be that addon procedures
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for data preparation steps play a more important role. This is because the application

of addon procedures made necessary by performing corresponding data preparation

steps in the construction of prediction rules, in general, requires the test data to follow

the same distribution as the training data. Given the expected increase in importance

of addon procedures, it is worthwhile to derive and implement the addon procedures

for several important data preparation steps. Availability of these procedures would

allow researchers to integrate the data preparation steps used in their analyses into

their prediction rules and present the latter, for example, in the form of a Shiny-based

user interface available online. Here, users of the prediction rules could simply upload

the raw data of new patients and automatically obtain predictions. These practical

aspects of integrating data preparation steps into prediction rules are discussed in an

upcoming paper that I am co-authoring (Boulesteix et al.; in prep).

The new FAbatch method introduced in Chapter 3 extends location-and-scale ad-

justment of the batches as performed with ComBat by adjustment for latent factor

influences within batches. Figure 3.5 on page 79 shows that FAbatch—in contrast to

fSVA—performs well in assimilating the distribution of the test data to that of the

training data. However, while FAbatch performed quite well in cross-batch prediction,

it impaired performance for cross-study prediction. It is not certain why this is the

case. A crucial point is that in the latent factor estimation with FAbatch the biologi-

cal signal is not entirely protected, neither in the training data nor in the test data. It

could be worthwhile to compare FAbatch thoroughly with a mere location-and-scale

adjustment of the batches and to inspect more closely those test dataset observations

that are correctly predicted with location-and-scale adjustment but falsely with FA-

batch. Thereby specific properties of test observations that are difficult to classify

when using FAbatch could be revealed and FAbatch could be adjusted accordingly

to improve its performance with respect to classifying these observations.

In protecting the biological signal in the training data, with FAbatch rather than

with fSVA the actual classes are not used; instead, class probabilities are estimated

through CV. The reasons for this are the following: 1) If the actual classes were used,

the biological signal would be exaggerated in the training data; 2) In the adjustment

of the test data, the actual classes cannot be used because they are unknown; and

3) Using the actual classes in the training data, but not in the test data, would not

correspond to an addon batch effect adjustment procedure as defined in section 3.2.3.

An advantage of using the actual classes in the training data would be that there

would be no risk of the biological signal in the training data being diminished by the

adjustment for latent factors. However, as noted above, if the actual classes are used,

the signal is exaggerated. One might investigate whether the latter disadvantage of

using the actual classes in the training data is outweighed by the former advantage in
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the sense that a better cross-study prediction performance might be achieved when

using the actual classes. This is contradicted, however, by the fact that FAbatch

performed poorly in the real data analysis presented in Chapter 4 even though in

this analysis the biological signal was very strong and the respective estimated class

probabilities in the training datasets were consecutively close to zero and one.

The large real data study performed and reported on in Chapter 4 revealed that un-

der some conditions, cross-study prediction can, indeed, be improved through certain

addon batch effect adjustment procedures and addon normalization but not through

the combination of these two approaches. It is questionable as to whether a batch

effect adjustment method can be developed which performs considerably better in

cross-study prediction than the four best-performing methods discussed in Chapter

4—combat, meanc, ratiog, and ratioa. A new, considerably better batch effect ad-

justment method may not be possible, because although the approaches underlying

these best-performing methods are reasonably different, their median performances

are surprisingly similar. On the other hand, there is nonetheless room for improve-

ment.

For stand performance depended heavily on the classification method used: When

using PLS-LDA, PLS-LDAvarsel, and kNNvarsel this method performed considerably

worse than for the other classifiers, where it was among the best methods. An impor-

tant reason for the poor performance of PLS-LDA, PLS-LDAvarsel, and kNNvarsel

when used in combination with standardization could be that they probably favor

variables with a high level of variance when predicting new observations. Highly vari-

able genes are known to be frequently associated with phenotypes (Li et al.; 2010;

Alemu et al.; 2014), thus these are good candidates for differentially expressed genes,

in particular with respect to a generic target variable such as “sex”, which was consid-

ered in the analysis in Chapter 4. The euclidean distances between observations that

are considered in the kNN algorithm are dominated by variables with high variances,

which is why such variables influence the choice of the k nearest neighbors more than

variables with low variance. Due to regression towards the mean, variables with a

high level of empirical variance in the training data are likely to have a lower level

of empirical variance in the test data. This in turn has the effect that the estimated

loadings used to construct the PLS components in PLS-LDA are overly large for the

values in the test data in the case of highly variable genes. Consequently, these genes

play a more dominant role when predicting the values of the components in the test

data than do genes with small variances.

In Chapter 4 it was seen that if in cross-study prediction the class frequencies in

the test data differ substantially from those in the training data, addon batch effect

adjustment can impair the performance substantially. In these cases the variable
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values in the test data are shifted too far into the direction of the class that is more

frequent in the training data than in the test data. In practice, the training data often

are more balanced than the test data are. This is because, in general, the incidence of

the disease under consideration is higher in the study from which the prediction rules

are constructed than in the population to which they are intended to be applied. In

many situations in practice the approximate percentage of individuals affected by a

specific disease is known. This information could be used in the assimilation of the

test data to the training data. For example, for adjusting the variable means in the

test data to that of the training data, the following could be done: 1) Center the

variable values in the test data to have zero means; 2) Instead of adding the variable

means of the training data to the values resulting from 1) add to these values for each

variable the weighted mean of the two class-specific variable means of the training

data with weights proportional to the proportions of individuals of the respective

classes in the population from which the test data originates. This would prevent the

variable values in the test data from being shifted too far in the direction of the class

more frequent in the training data than in the test data.

Not only was there no single best performing addon batch effect adjustment method

in the case of cross-study prediction, also in the more general comparisons of the

batch effect adjustment methods discussed in Chapter 3, there was no method that

was best in terms of all aspects investigated. This suggests that an omnipotent batch

effect adjustment method performing well in all respects may not exist. FAbatch was

particularly effective for mixing together observations from different batches, but

failed to preserve the biological signal of interest when there were extremely outlying

batches and when the batch effects were very weak compared to the biological signal.

Although none of the batch effect adjustment methods studied was omnipotent,

the methods differ with respect to different aspects of measuring the performance of

batch effect adjustment. Therefore, it could be fruitful to develop methods targeted

to individual analysis goals. For example, focus could be on developing a batch effect

adjustment method that is particularly efficient with respect to the identification of

influential variables in multiple testing.

A potential method in this context could be based on the ComBat algorithm. Al-

though, just as the other methods considered, ComBat lead to no improvement in the

diffexpr values for the real datasets it was best with respect to pvca here (see Figure

3.3). This suggests that ComBat is particularly effective with regard to preserving

the biological signal of interest. Although the aim of standardization just as that of

ComBat is to assimilate the means and variances of the variables across batches, the

pvca values for standardization were smaller than those obtained in the case of Com-

Bat. This suggests that the reason for the good performance of ComBat observed
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here, lies in the empirical Bayes-based shrinkage this method performs. More pre-

cisely, with ComBat the empirical means and variances within batches are not made

exactly equal to, but only shrunken towards, the overall means and variances (see

Johnson et al. (2007) for details). As a consequence, larger deviations in the batches

in terms of means and variances, which might not be explainable entirely by batch

effects but might be due to biologically relevant differences among the batches, are

only partially removed. This mechanism is probably responsible for the better preser-

vation of the biological signal with ComBat than with the other methods. The degree

of shrinkage performed by ComBat is determined by the empirical Bayes procedure.

However, it might be possible to choose a degree of shrinkage that is particularly

effective for the application of multiple testing, for example one that leads to a very

small false discovery rate.

An interesting aspect related to prediction, but not to data preparation, that was

touched upon in section 4.4.3 is the potential improvement in cross-study prediction

by choosing different values of important tuning parameters of conventional classifi-

cation methods. In classic settings, where it is assumed that the test data follow the

same distribution as the training data, the purpose of tuning parameters is to inhibit

an overly strong or even a perfect adaption of the respective model to the specific ob-

servations constituting the training data. Naturally, tuning also fulfills this function

in cross-study prediction—in some cases the corresponding models would not even

be estimable without the constraints imposed by the tuning parameters.

In addition to inhibiting over-adaptation to the observations in the training data,

tuning may be suitable in cross-study prediction settings for inhibiting an over-

adaptation of the model to the distribution of the training data, not only to the

specific observations in the training data. The value of a tuning parameter optimal

for cross-study prediction can be expected to lead to a simpler prediction rule. This

is because a prediction rule optimal in the context of cross-study prediction should

generalize well to independent datasets, which tend to share only coarse properties

with the training data.

In the following an illustration is given of the discrepancy between conventional

tuning and tuning for cross-study prediction by means of a fictional example. Predic-

tion rule A obtained using the NSC algorithm on a specific dataset features optimal

generalizability to observations from the same source when the shrinkage parameter

∆ takes the value 1. When performing shrinkage using the tuning parameter value

of 1, 100 genes are influential in the resulting prediction rule A. The prediction rule

B obtained when using a large shrinkage parameter value, namely ∆ = 3, features

optimal generalizability to sources outside of the training data in the mean. For

prediction rule B the shrinkage leads to only 10 influential genes. Although this
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number of genes is smaller, the influence of the genes is robust in the sense that it

is so strong that it exists in any data from studies of the biological phenomenon of

interest—despite batch effects.

Conventionally, tuning parameters are optimized using CV, which is suitable when

the test data follow the same distribution as the training data but not in the case

of cross-study prediction settings. While it certainly is desirable to choose proper

values of the tuning parameters for cross-study prediction scenarios, it is unclear how

this can be performed. If in addition to the training dataset there are several other

datasets available featuring the same covariates and target variable, the respective

tuning parameter could be optimized simply by minimizing the prediction error rate

obtained for the other datasets. While this procedure certainly would be optimal, it

is hardly ever practicable for a prediction problem at hand, because in practice the

required independent datasets are almost never available.

In many situations there is one independent test dataset from a different source

available. When such an independent dataset is at hand, the following would be

possible: All parameters of the corresponding model are estimated using the training

data with the exception of the tuning parameter, for which, using grid search, the

value that minimizes the prediction error rate obtained for the independent test

dataset is chosen. The goal of this procedure is to obtain a prediction rule that is

general enough to apply well to sources different from that of the training data.

Note that when the independent test dataset is used both for tuning and for es-

timating the prediction error rate, the resulting error rate estimate underestimates

the error rate to be expected in the case of new observations. The reason for the

overoptimism of this estimate is that the value of the optimized tuning parameter

is overly strongly adapted to the independent test dataset used for error estimation.

Nevertheless, the degree of this overoptimism might be small enough to be negligible

in practice. Otherwise, such overoptimism could be prevented by considering a sec-

ond independent dataset and using this only to estimate the prediction error of the

prediction rule, optimizing the tuning parameter using the first independent dataset.

However, in practical situations it is probably rare that two independent datasets

are available. If it becomes apparent that the approach of tuning using external

data described above works considerably better than the conventional approach, the

following would be possible to obtain a conservative error estimate: Perform conven-

tional tuning using the training dataset, apply the resulting prediction rule to the

test dataset and use the error rate obtained there as an error estimate. Note that

although conventional tuning would be performed for error estimation here, the final

prediction rule nevertheless would be obtained using tuning with external data.

A drawback of the approach of using a different dataset for tuning might be that
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the tuning parameter value optimized using the independent dataset might not be

appropriate for other independent datasets from the application field under consid-

eration. Extensive studies would be necessary to refute that this risk is substantial.

Another way to obtain tuning parameter values suitable for cross-study prediction

could be to provide empirically motivated rules of thumb for the choice of these pa-

rameters, for example “use two times the optimized value of ∆ in NSC if weak batch

effects are expected and three times this value if strong batch effects are expected”.

In addition to the examples mentioned in section 4.4.3, another interesting tuning

parameter could be the terminal node size of the classification trees constituting a

RF, where larger terminal node sizes would correspond to a weaker adaptation of the

classifier to the training data distribution. RFs generally are known to be able to

capture complex dependence patterns present in the data; consequently, they could

be prone to overfitting the training data distribution. Basically, the individual clas-

sification trees constituting a RF feature a high level of variability, but a small bias

with respect to rendering the actual dependence structure of the target variable on

the covariates. The high variability inherent in the individual classification trees is

remedied in the final classifications by aggregating the individual trees, where the

advantage of the small bias of the individual trees with respect to the true depen-

dence structure is still retained. The ability of RFs potentially to reveal important

aspects of the actual dependence structure underlying specific datasets makes them

very appealing for complex modern biomolecular data. The working group “Compu-

tational Molecular Medicine” at the Department of Medical Informatics, Biometry

and Epidemiology, University of Munich, to which I belong to, has conducted and

will continue to conduct research on extensions of the RF methodology.

In the FAbatch estimation algorithm, the shrinkage parameter of the L2-penalized

logistic regression models was optimized using CV. The cross-batch and cross-study

prediction performance of FAbatch might be improved by a tuning procedure of the

shrinkage parameter that takes into account that the estimations of the class proba-

bilities are made across batches or datasets. More precisely, the following procedure

might be considered: using grid search choose the tuning parameter value that delivers

the smallest error of the CV-related procedure used to estimate the class probabili-

ties. See again the second step of the FAbatch estimation algorithm (section 3.2.2)

for a description of this CV-related procedure. However, this procedure requires more

than one batch to be present in the training data.

The idea of using external data in the construction of prediction rules has been

realized by Xiao et al. (2014), who introduce a modification of RF in which the

individual trees are weighted based on their performance of predicting the external

data. This approach makes even more use of the test data than the approach of tuning



112 5. Conclusions and outlook

using external data described above, because the influence of variables relevant in the

training data only and not in the test data is directly reduced and the influence of

variables relevant in both training data and test data increases. By contrast, the

aim of prediction with tuning using external data is to retain only variables whose

influence is strong enough to be both relevant in training data and test data. Here

it is assumed that variables with strong influences also are relevant to datasets other

than the training data, while weaker influences correspond to artifacts specific to the

training data. However, there also may be variables which, due to confounding with

clinical covariates, exhibit a strong apparent relationship to the target variable in

the training data that cannot be generalized to other datasets. Nevertheless, since it

uses more information from the external dataset, the approach by Xiao et al. (2014)

might result in a prediction rule that is overly adjusted to the specific external dataset

used to be valuable in cross-study prediction. Variables relevant in the training data,

but not in the specific test dataset at hand, might be relevant for other external

data. Conversely, variables that are relevant in the test data at hand might be less

influential for other external data. Prediction with tuning using external data, by

contrast, requires less information from the specific external dataset used and thus

might generalize better to other external datasets.

In the empirical study on cross-study prediction, all 25 publicly available datasets

used had been collected using the traditional microarray data chip type HG-

U133PLUS2. As previously stated, batch effects are stronger when using such tradi-

tional microarrays than when using more modern biomolecular data types. It cannot

be precluded that addon batch effect adjustment is not beneficial or even slightly

harmful when considering prediction rules based on other data types. Batch effect

adjustment is, by necessity, connected with some variability, because the parameters

involved are unknown and have to be estimated. In the case of very weak batch

effects, there may not be much benefit from addon batch effect adjustment. Here,

the variability connected with estimating the parameters involved in batch effect ad-

justment might lead to a small deterioration in prediction performance. With the aid

of a real data analysis, whether this problem exists in actual applications to modern

biomolecular data types can be studied. For this purpose, one could use the same

analysis design as that presented in Chapter 4, replacing the datasets used there by

datasets of a more modern type, for example by RNA-Seq datasets. Note that in

section 3.3.2 it was reported that addon batch effect adjustment had been successfully

applied to a dataset of a more modern data type in cross-batch prediction, namely

miRNA measurements, using the Illumina Human-6 v2 Expression BeadChip. Nev-

ertheless, the analysis outlined in section 3.3.2 can be regarded as illustrative only,

since only a single dataset was considered there.
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Just as batch effect adjustment is connected with variability, so is normalization;

this is because in normalization the parameters involved have to be estimated from

the data as well. Frozen RMA (McCall et al.; 2010) is an extension of RMA in which

for normalizing the data at hand, the parameters involved are estimated using large

amounts of data from publicly available databases. Frozen RMA performs addon

quantile normalization, where the training of the quantile normalization is performed

on the publicly available data. Frozen RMA has the advantage over RMA with addon

normalization that no parameters have to be estimated using the data investigated,

which is why this procedure is more robust. On the other hand, RMA with addon

normalization has the advantage of being sensitive to the specific behavior of the

training dataset.

The performance of prediction rules obtained when using frozen RMA as the nor-

malization method has been compared to that of prediction rules obtained when us-

ing separate RMA normalization. Frozen RMA achieved slightly better results (see

Parker and Leek (2012) for details); however, the batch effects in the two datasets

considered in the study by Parker and Leek were only mild. It still might be inter-

esting to compare frozen RMA and RMA with addon quantile normalization with

respect to their performance in cross-study prediction in an extensive real data study

comparable to that outlined in Chapter 4. Nevertheless large differences are not

expected between these two approaches in case of the practically more interesting

setting with large training datasets because here the result of RMA on the training

datasets should be quite stable.

In all three main projects conducted in the context of this thesis, large collections

of real datasets were used to evaluate the behavior of statistical methods in actual ap-

plications. For two analyses, in addition to studying real datasets, simulations were

performed, namely for the large comparison study of the batch effect adjustment

methods (sections 3.2.4 and 3.3.1) and for the comparison study of these methods in

the context of cross-batch prediction (section 3.3.2). Although in most cases conclu-

sions drawn from the simulation also were observable in the real data analysis, there

sometimes were critical differences, for example with respect to the performance

of standardization in cross-batch prediction. This illustrates that, as discussed in

Boulesteix et al. (2015), it can be dangerous to rely completely on simulations. It is

likely that in many papers in which empirical results based on simulations only are

presented, false conclusions are drawn. Therefore, it seems like a valid strategy to

study real datasets as well as simulated datasets to avoid drawing misleading con-

clusions from simulated data. Note, however, that in order to base conclusions on

real data alone, a sufficiently large number of datasets are needed (see e.g. Boulesteix

et al. (2015)).
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A.1. Simulation study for the example of supervised

variable selection

As described in section 2.4.3, a simulation study was conducted to investigate basic

statistical properties of CVIIMs,n,K .

Simulation design

To make the simulation design representative of high-dimensional biomedical data,

the transcriptomic dataset ProstatecTranscr was employed to estimate realistic

parameters to be used in the data-generating process. Datasets of sizes n = 50 and

n = 100 were generated with p = 2000 continuous variables and a binary target

variable with balanced class frequencies.

Two settings were considered for the mean and covariance structure MeanCov for

the classes:

1. Scenario with strong signal:

2000 correlated variables were generated, 200 of which were informative, and

had class-specific means and covariances. First, 2000 of the 12625 variables of

ProstatecTranscr were selected, namely those yielding the smallest p-values

from two-sample t-tests between the observations from the two classes. From

these again the 200 variables corresponding to the smallest p-values were se-

lected: they were taken as the informative variables, and the remaining 1800

as the non-informative. For each informative variable the difference was cal-

culated between the mean of the observations belonging to class 2 and that of

the observations belonging to class 1, resulting in the vector δ̂ of length 200.

Furthermore the empirical covariance matrix of the informative variables was

calculated separately for classes 1 and 2, denoted as Σ̂class1 and as Σ̂class2, re-

spectively. In the simulation, the vector of the informative variables was drawn

from N(0200, Σ̂class1) for observations from class 1 and from N(δ̂, Σ̂class2) for
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observations from class 2. Theoretically it would be possible to draw the val-

ues of all 1800 non-informative variables at once from a multivariate normal

distribution with a covariance matrix estimated from the data. However, this

is computationally intractable. Therefore, the 1800 non-informative variables

were split into blocks of 200 variables, and for each of these blocks the empirical

covariance matrix Σ̂0j , j = 1, . . . , 9, was calculated. In the simulation a vector

from N(0200, Σ̂0j) was drawn for j = 1, . . . , 9 and subsequently these vectors

were combined. Thus, the covariance matrix of the non-informative variables

is block-diagonal with a block size of 200.

2. Scenario with weak signal:

This scenario is conceptually equivalent to the previous one but is different

in the following ways: Only 100 variables are informative, the entries in the

mean vector δ̂ for class 2 from scenario 1, corresponding to the 100 informative

variables, were multiplied by 0.7 and the block sizes for the non-informative

variables were reduced from 200 to 100.

For the supervised variable selection two numbers of selected variables psel were

considered: psel = 10 and psel = 1000. The variables yielding the smallest p-

values from two-sample t-tests between the observations from the two classes were

selected. Linear discriminant analysis was the classification method employed with

psel = 10 variables and diagonal linear discriminant analysis was the classification

method employed with psel = 1000. Again, the following commonly used splitting

ratios between the sizes of the training sets and test sets were considered: 2:1 (3-fold

CV), 4:1 (5-fold CV) and 9:1 (10-fold CV). Again, K in the following denotes the

number of folds in the CV.

The simulation was performed for each possible combination of MeanCov, n, psel

and K, leading to 24 simulation settings in total. For each setting 2000 datasets

were simulated and for each the estimate CVIIMs,n,K was calculated. As with the

real-data analyses presented in Chapter 2 the full and incomplete CV was repeated

300 times for each simulated dataset.

For approximating the true measure CVIIMP,n,K both E[efull,K(S)] and

E[eincompl,K(S)] were approximated based on 105 simulated datasets of size n. Each

dataset was randomly split into a training set of size ntrain := dn(K − 1)/Ke and

a test set of size n − ntrain. In the b-th iteration (b = 1, . . . , 105) the approxima-

tion was done as follows: For E[efull,K(S)] the variable selection and the training of

the classifier were performed on the training set only and the resulting classifier was

subsequently applied to the test set to calculate the error rate. The same procedure

was followed for E[eincompl,K(S)] with the exception that the variable selection was
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performed on the entire dataset. By averaging over the 105 simulated datasets, close

approximations of the true values of E[efull,K(S)] and E[eincompl,K(S)] are expected.

Results

Figure A.1 shows boxplots of the CVIIMs,n,K values for all simulation settings. The

bias with respect to the true measure values CVIIMP,n,K is negligible in all settings.

However, the variance around the true values is relatively large in many of the set-

tings. Note that when computing CVIIM over multiple datasets, as one would in an

extensive real-data analysis, the variability within the given distribution (as examined

in this simulation study) and the variability across the datasets are measured.

The dependence of CVIIMP,n,K on the individual simulation parameters can be

assessed better by examining Figure A.2. The number of observations n has a negative

effect on CVIIM in all cases. An important and slightly surprising observation is that

the results suggest no or only a slight dependence on the number of folds K. Higher

values of CVIIM are observed when selecting 1000 variables, but this should not

be over-interpreted since it may result from the specific simulation design. In the

supervised variable selection analyses on real datasets performed in Chapter 2 this

observation was not made. The influence of the mean-covariance structure MeanCov

depends on psel (see Figure A.1). For psel = 10 smaller CVIIMs,n,K values are

observed in the scenario with weak effects than in the scenario with strong effects;

for psel = 1000 it is the reverse. This might be explained by the fact that in the

scenario with weak effects there are only 100 informative variables. When selecting

1000 variables more noise variables are selected, impacting E[efull,K(S)]—causing the

error to be larger—much more than E[eincompl,K(S)].

The dependence of the variance of CVIIMs,n,K on the simulation parameters and

on CVIIMP,n,K is visualized in Figure A.3. Unsurprisingly, the variance decreases

with increasing n and increases with the number of folds K. The latter can be

explained as follows: CVIIMs,n,K involves the fraction of two CV estimators which,

with increasing K, become increasingly dataset-dependent—due to the training sets

sharing more observations with the entire dataset—and therefore more variable. In

the scenario with the stronger effects generally larger variances are observed. When

selecting only psel = 10 variables, the variances are much higher than for psel = 1000.

For the scenario with psel = 10 a strong dependence of the variance on the true

value of the measure can be observed, with smaller measure values leading to smaller

variances. This dependence cannot be seen as clearly in the case of psel = 1000: A

possible explanation is that the measure values are generally higher in this setting,

obscuring the dependence at the relatively smaller CVIIM values.
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The left panel of Figure A.4 suggests a dependence of CVIIMP,n,K on the true

error E[efull,K(S)], meaning that the use of the ratio of the errors in the calculation

of CVIIM as opposed to their difference might not be sufficient to eliminate such

an undesirable dependence. However this observed dependence may be explained

by two observations regarding the simulation design. First, CVIIMP,n,K as well as

E[efull,K(S)] is larger for the smaller sample size n = 50, corresponding to the upper

part of each ellipse. This negative dependence on n is natural (see section 2.4.5).

Second, the upper-right ellipse, being responsible for much of the observed positive

dependence of CVIIMP,n,K on E[efull,K(S)], contains all scenarios with both weak

effects and psel = 1000. As stated above, it can be suspected that the higher number

of noisy variables selected in the case of psel = 1000 is responsible for the increase

in E[efull,K(S)] and CVIIMP,n,K . The plot in the right panel of Figure A.4 suggests

a much stronger dependence of max( E[efull,K(S)]−E[eincompl,K(S)], 0 ) on the true

error. Here the values corresponding to the weak signal also are larger for psel = 10

and in the case of psel = 1000 the difference between the weak signals and strong

signals is much bigger than for CVIIMP,n,K .

In sections 2.2.7 and 2.4.2 an attempt is made to reflect the variance of

CVIIMs,n,K through the use of the 25%- and 75%-quantiles of CVIIMs,n,K,b =

1− eincompl,K(s)b/efull,K(s)b, where index b indicates that these errors were obtained

for run b (with b = 1, . . . , B). Using the simulation results it is possible to investigate

whether the variability in the CVIIMs,n,K,b values is indeed a meaningful surrogate

for the variance of CVIIMs,n,K . As a measure for the variability in the CVIIMs,n,K,b

values, for each simulated dataset the empirical variance of the CVIIMs,n,K,b values

(b = 1, . . . , 300) can be calculated and defined as the observed variability. In Figure

A.5 the values of the observed variability are plotted against the (approximated) true

variance. Plots on the log-scale also are provided to enable comparisons of the small

boxplots. In all plots the variance of the observed variability gets larger with a larger

true variance. Moreover, the results clearly indicate that the size of the observed

variability also is influenced strongly and positively by the size of the true variance.

This dependence seems to be strongest for K = 3 and weakest for K = 10. This

observed diminished relationship between observed variability and actual variance

with increasing value of K becomes clearer when considering a fundamental short-

coming of the observed variability, which inhibits an even stronger relationship to the

actual variance. The observed variability does not account for the fact that the error

estimates in the B (incomplete) CV repetitions are dependent. For smaller training

set sizes the individual CV estimates in efull,K(s) and in eincompl,K(s) are less similar,

that is, less dependent. In these cases the observed variability thus better reflects

the true variance. In contrast, in the case of larger training set sizes, the greater
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dependence makes the behavior of the actual variance more different from that of the

observed variability. These results suggest that the error bars obtained for the small

K values are most appropriate for comparing the variability in individual CVIIMs,n,K

values.
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Figure A.1.: Estimated CVIIMs,n,K values from all simulation iterations (means depicted
with broken blue lines) and true CVIIMP,n,K values (depicted with solid red lines)
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Figure A.3.: (Approximated) true variances of CVIIMs,n,K for parameter settings, grouped
according to n, K, MeanCov, and psel, and scatterplot of the variance of CVIIMs,n,K

versus the true CVIIMP,n,K values. The true variances are approximated by the empirical
variances over the 2000 simulation iterations. The points corresponding to the setting with
psel = 10 and psel = 1000 are depicted as red circles and cyan plus signs, respectively
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Figure A.5.: (Log-) values of the observed variability plotted against the actual (log-)
variance of CVIIMs,n,K for different values of K. The boxplots corresponding to the
setting with psel = 10 and psel = 1000 are red and cyan, respectively
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.A.2. Methodological background

A.2.1. Prediction rules, prediction errors, and their estimation

Let X ⊂ Rp denote the predictor space and Y = {1, 2} the space of the response

variable. Note that this notation also allows for categorical covariates, for example,

X = {0, 1}p ⊂ Rp in the case of dummy-coded categorical predictors. Let S =

{(X1, Y1), . . . , (Xn, Yn)} be an i.i.d. random sample with observations drawn from

distribution P . Most importantly, here x ∈ X denotes the “raw” data, meaning that

these predictors may be subject to data preparation steps (possibly modifying their

number or scale of measurement) before being used as predictors in classification.

A classification function g : X 7→ Y , x 7→ g(x) takes the vector x as an argu-

ment and returns a prediction ŷ of the value y of the response variable. For example,

in a classification task where, based on microarray samples, patients are classified

as having cancer or not having cancer using the NSC approach, the corresponding

function g would take the pre-normalized expression values as an argument, perform

normalization, and classify the sample using a certain value of the shrinkage param-

eter. These steps are assumed to be performed in an ideal way, where all occurring

parameters are estimated or optimized using a hypothetical dataset with sample size

tending to infinity.

In practice g is estimated from the available data. Therefore ĝS : X 7→ Y ,

x 7→ ĝS(x) is defined as the classification function estimated from S. In the

example outlined above, this means that the parameters involved in the normalization

procedure and the averages and variances involved in the nearest shrunken centroids

classifier are estimated from S and that the shrinkage parameter also is chosen based

on S. The estimated classification function ĝS then can be used to predict y for a

new observation.

Note that, as outlined in section 2.2.2, depending on the procedures involved in the

estimation, it may not be straightforward to construct such a function ĝS that can

be applied to predict independent data. However, from here on, it will be assumed

that the necessary addon procedures (see section 2.2.2) are available and, thus, that

the function ĝS can be constructed.

It is important to assess the prediction error of ĝS, which is defined as

ε[ĝS] := E(X,Y )∼P [L(ĝS(X), Y )] =

∫
X×Y

L(ĝS(x), y) dP (x, y), (A.1)

where L(·, ·) is an appropriate loss function, for example, the indicator loss yielding

the misclassification error rate, as used in Chapter 2. The error defined in Eq. (A.1) is
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commonly termed conditional because it refers to the specific sample S. The average

error across all samples following P n is referred to as the unconditional error and

denoted by ε(n) := ES∼Pn [ ε[ĝS] ].

Let s = {(x1, y1), . . . , (xn, yn)} denote a realization of the random sample S. If a

large independent sample were available, ε[ĝs] could be estimated directly by com-

paring the true values of the response variable in these data to the predictions made

by ĝs. Having only s available, a näıve approach would be to estimate ε[ĝs] using s

itself as test data. This approach yields the apparent error or resubstitution error,

which is known to be downwardly biased (i.e., too optimistic) as an estimator of ε[ĝs]

since estimation of the classification function and error estimation are conducted on

the same data. Resampling-based error estimation can be performed to address this

issue. The sample s is split iteratively into non-overlapping training datasets and

test datasets. In each iteration function g is estimated based on the training set, and

the error of this estimated function is assessed based on the test set. In the following

K-fold CV, the most widely used of these resampling-based approaches, is treated.

Given a random partition of the dataset s into K approximately equally sized folds

s1, . . . , sK , the K-fold CV error estimate is given as

1

K

K∑
k=1

1

#sk

∑
j ∈ {i : (xi,yi) ∈ sk}

L(ĝs\sk(xj), yj), (A.2)

where # represents the cardinality, s \ sk is the training set in iteration k and sk is

the test set. Since this estimate depends heavily on the considered random partition

of the sample s into K folds, it is recommended to repeat this procedure B > 1 times

and average the error estimates across the B repetitions. With sb1, . . . , sbK denoting

the folds considered in the b-th repetition, the repeated K-fold CV error estimate is

given as

eK(s) =
1

B

B∑
b=1

1

K

K∑
k=1

1

#sbk

∑
j ∈ {i : (xi,yi) ∈ sbk}

L(ĝs\sbk(xj), yj). (A.3)

If, for simplicity, it is assumed that the sb1, . . . , sbK (b = 1, . . . , B) are equally sized

with size ntrain,K := #s \ sbk for b ∈ {1, . . . , B} and k ∈ {1, . . . , K}, it easily can

be seen that eK(s) is an unbiased estimator of ε(ntrain,K) and therefore an upwardly

biased estimator of ε(n). This bias is called the inherent bias of CV in Varma and

Simon (2006). Note that the notation eK(s) does not reflect the fact that the repeated

K-fold CV error estimate depends on the random partitions in the B iterations. For

purposes here, B is assumed to be large enough that this dependence can be ignored.
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A.2.2. Incomplete opposed to full CV

With the issue of incomplete CV in mind, the following notation is introduced

ĝa2
a1

: X 7→ Y x 7→ ĝa2
a1

(x) a1 ⊆ a2 ⊆ s (A.4)

to denote an estimated classification function estimated based in part on a sample

a2 and in part on a possibly smaller subsample a1 (i.e., one or several steps may

be performed on a bigger sample). Returning to the example of microarray-based

classification, it is common practice to run the normalization procedure, and often

also the parameter tuning, based on the entire dataset s but to perform the training

of the classifier within CV, that is, based only on the training set s \ sbk in each

iteration k of each repetition b. In this scenario a2 would be the entire dataset s and

in each CV iteration a1 would be the training set s \ sbk.

With a1 = s \ sbk and a2 = s for b = 1, . . . , B and k = 1, . . . , K, we obtain

the incomplete CV error estimate, which is downwardly biased as an estimator of

ε(ntrain,K):

eincompl,K(s) :=
1

B

B∑
b=1

1

K

K∑
k=1

1

#sbk

∑
j ∈ {i : (xi,yi) ∈ sbk}

L(ĝss\sbk(xj), yj), (A.5)

where the index “incompl” indicates that the entire sample s is used for

at least part of the data analysis steps required for the estimation of g,

and that the resulting CV procedure is, thus, incomplete. The estima-

tor eincompl,K(s) is unbiased as an estimator of the average incomplete error

εincompl(ntrain,K ;n) := ES∼Pn [L(ĝSStrain,K
(Xntrain,K+1), Yntrain,K+1)], with Strain,K =

{(X1, Y1), . . . , (Xntrain,K
, Yntrain,K

)} and (Xntrain,K+1, Yntrain,K+1) playing the role of

an arbitrary test set observation in S. Here, exchangeability of the random observa-

tions in S is assumed.

Furthermore, since by definition ĝ
s\sbk
s\sbk = ĝs\sbk , the usual repeated K-fold error

estimate from Eq. (A.3) is obtained if a1 = a2 = s \ sbk is set for k = 1, . . . , K, and

b = 1, . . . , B. This estimator is denoted by efull,K(s):

efull,K(s) := eK(s) =
1

B

B∑
b=1

1

K

K∑
k=1

1

#sbk

∑
j ∈ {i : (xi,yi) ∈ sbk}

L(ĝ
s\sbk
s\sbk (xj), yj), (A.6)

where index “full” underlines that all steps of prediction rule construction are con-

ducted within the CV procedure, that is, using the training sets only.

For easier interpretation, in Chapter 2 and in other sections of this Appendix
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E[efull,K(S)] is written for ε(ntrain,K) and E[eincompl,K(S)] for εincompl(ntrain,K ;n).

A.2.3. Behavior of CVIIMs,n,K for small εfull(ntrain,K) values

For very small values of εfull(ntrain,K), extreme CVIIM estimates can occur (either

zero or very high values). For very small values of efull,K(s), the CVIIM estimate

is highly sensitive to relatively small differences between eincompl,K(s) and efull,K(s),

which may be due at least partly to random fluctuations. For example, suppose

that efull,K(s) = 0.01 and eincompl,K(s) = 0.001, then there would be CVIIMs,n,K =

0.9. Note, however, that such extremely large results are expected to be rare due

to a mechanism related to regression toward the mean: Considering the high level

of variance of CV estimates, in many cases very small values of efull,K(s) are an

underestimation of εfull(ntrain,K). In this case it is unlikely that εincompl(ntrain,K ;n)

is considerably more affected by underestimation. Thus, in such a situation it is

unlikely that eincompl,K(s) is much smaller than efull,K(s). Instead, the incomplete

CV error estimator eincompl,K(s) is more likely to be closer to its mean than efull,K(s),

thereby preventing an overly large CVIIM estimate.





B. Appendices to Chapter 3

B.1. Plots used in verification of model assumptions
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Figure B.1.: Data values against corresponding fitted values resulting from the FAbatch
method. The contour lines represent two-dimensional kernel density estimates. The broken
lines mark the bisectors and the red lines are LOESS estimates of the associations. The
grey dots in each case are random subsets of size 1000 of all values.
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Figure B.2.: Data values against corresponding fitted values resulting from the ComBat
method. The contour lines represent two-dimensional kernel density estimates. The broken
lines mark the bisectors and the red lines are LOESS estimates of the associations. The
grey dots in each case are random subsets of size 1000 of all values.



B.1 Plots used in verification of model assumptions 129

● ●●
●

●
●

●

●

●

●

● ●
●● ●● ●

●
●

●

●
●●

●
●●

●
● ●●

●●

● ●● ●● ●●

●

●●
●
●

●

●
●●

●
●●

●

●

●
●● ●

●

● ●●
●●

● ●

●
●

●●●● ●●● ●●
●

●

●

●
●

●
●

● ●
●

● ●● ●
●● ●● ●

●
●

●
●

● ●●
●

●

●
●

●
● ●

● ●
● ●● ●

●●
●

●●

●
●

● ●

●

●● ● ●●
●

●

● ●
●

●
●

●
●

●
●

●

●
● ●

●
●

●●● ●
●● ●

●●
● ● ●

●

●

●
●

●● ●
●

●● ●
●

●

●
●●

●

●
● ●

●
●

●

●

●

●

●
●

● ●●
● ●●

●
●

●

●
●

●
● ●●● ●

●

● ●
●

●
●

●
●

●

●
●

●
● ●

●

●
●

●

●

●●
●

●●
●

●

●●
●

●●

●

●
● ●●● ●

●
● ●

●
●

●

●●
●

●
● ●

●
●

●
● ●● ●●

●

●
●

● ●●
●
● ●

●
●

●●

●
●● ●

●
●

●
●

●

●
●●●

●
●● ●

●

● ●●
●

●

● ●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●
●● ●

●
●

● ●● ●
●●●

●
●●● ●●

●
●

●●
●

●●
● ●

●
●
●

●● ●
● ●

●
● ●● ●● ●●

●

●
●

●
●● ●

●

●
●

●
●●●●

●
●

●
●●

●
●

●
●

●● ●

●
●

●

●
●

●

●
●●● ●● ● ●

●●
● ●● ●

●

●● ●●●
● ●● ●

● ●
●

● ●● ●●
●

●
●

● ●●
●

●

●
●

● ●●●
●● ● ● ●

● ●●●
●● ●

●
●

●
● ●

●
●

●
●

●●
●

●●●
●

●

● ●
●

●
● ●●

●
●●●●●

●
●● ●

●●
●●

●
●

●
● ●●●

●
●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●● ●● ● ● ●
●

●

● ●

●

●
●

● ●●●
●
● ●●

●
● ● ● ●

● ●● ●●
● ●

●

●

●
●

●●●
●● ●

●
●
●
●

●

●

●●
● ●●

●
●

●●
●

●
●

●●

●
●

●
●● ●●

●

●
●● ●

●
●

●

●
● ●

●

●●

●
●

●

● ●
●

●
●●

●

●

●●
●

●

●

●

●●

●

●
●
● ●

●

●
● ●●

●

● ●● ●●
●

●●

●●
●

●
●●

● ● ●● ●●

●

●
● ●

●

●
●

●●●
●

●●●● ● ●
●

● ●
●

●●

●

●●
●

●
● ●

●

●
● ●

●
●

●
●●

● ●
●

●●●

●

●
●

●

●●
● ●●● ●

●

●
●

●
●

●●
●

●
● ●

●

●
●

●

●

●

●
●

●
●

●●
●

●
●

●
●

●

● ●●●

●

●
●

●

●
●

●
●

● ●
●

●

●
●

●
●

●

●

● ●● ●

●

● ●
●

●●●

●

●
●●●●● ●

●

●● ●
● ●

●
●● ●

●

●● ●● ●●

●

●
● ●●●● ●

● ●
●●

●●
● ●●

●
●

●● ●
●● ●

●
●

●
●

● ●●●
●

● ●

●

● ● ●
●● ●

●
●●

●
● ●

●

● ●
●

●

●

●
●

●
● ●●

●
●

●●● ●
●

●

●
●

●
● ●

●●
●●

●●
●

●

●

●

●

●
●

●
● ●

● ●● ●
●

●
●

●● ●●
● ●● ●● ●

● ●
●

●

●

●

●

●
●

● ●●
●

●

●

●●
● ● ●●

●● ●●

●
●●

●
● ●● ●

●

● ●
●

●● ● ●●
●

●
●

●
●

●

●
●

●
●

●

●

●

● ●●●
●

●

● ●●
● ●● ●

●

●●

●

●● ●

●

●
●●●

●
●

●
●

●
● ●

●●
●

●
●

●

●
●

●
●

●
●● ●●●

●

●

●

●●
●

●
●

●
●

●

●

●
●●●

●

●

●
●

●

● ●●

●

●
●

●

●● ●●
●

●
● ●

●

●●
●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●
●

●
● ●●●

●

●●

●

●

●

●
●

●● ●
●

●

●
●●● ● ●●●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●● ●

●●

●●
●

●
●

●
●

● ●
●

●

●
●

●●
●● ●

●
●

●
●

●

● ●

●

●●
●●

●
● ●

●

●

●

● ● ●
●

●● ●

●●
●

●

●

●
●

●●

●

●

●

●●

●

●
●

●● ●
●

●
●
●●

●

●●

●

●
●

●
●

●

●●

●

● ●
●

●
●●

●

●

●
●

●

● ●
●●

● ● ●

●
●

●

●

● ●●

●

●

●
●

●●●
●

●●
● ●

●● ●
●

●●● ●
● ●
●

●
●●

●
●

●

●
●

●

●● ●●
●

●
● ●
●● ●

●
●●

●
● ● ●●

●●

●
●

●
●

●●
●

●
●

●
●●● ●●●

●

●

●

●
●● ●● ● ●

●

●

●

●
●

●

●

●
●

●
●

●●
● ●● ●

●
● ● ●

●
●● ●

● ●●●● ● ●
●●

●

●
●

●
●

●

● ●

●

●● ●
●

●
●

●● ●● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●●
●

●

●

●

●

●●

●●

●
●

●●●
●

●
●

●

●

●●● ● ●●
●

●
●

●

●
●

●
● ●

●
●

●
●

●

●

● ●● ●●

●

●●●
●

●
●● ●

●

●
● ●

●

●
●●●

●
●

●●
●

●
●

●
●

●
● ●

●

● ●
●

●

●
●●

●
●●

● ●●

●
●

●●
●

● ●

●

● ●● ●
●

●
●

●●
●

●● ●
●

● ●●

●

●

●

●

●

●
●

●
● ●

● ●

●

●
●
●

●
●

●●
●

●
●

●

●

● ●●●
●● ●

●
●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

● ●

●
●

●●

●

●
●

●

●

●●● ●●●● ● ●●●
●

●
●

● ●

●

●
●

●

●

●

●
●● ●● ●

●
●

●

●

● ●

●

●
●

●

●
●●

●

●

●
●●

● ●●
●

●

●●

●

● ●

●

●●●

●

●
●

●

●

● ●●● ● ●
●

●

●

●

●
● ●

●
● ● ● ●

●● ●

●

● ●●

●

●

●
●

●
●

●

●

●

●●●

●

● ●
●●

● ●●

●●
●

●●

●

●

●

●●●
●

●
●

●●●●
●

●●●
●

●
●

● ●

●

● ●
●

●
●

●
●

●
●

●●● ● ●●●

●

●

●

● ●● ●
●

●

●
●

●
●

●

● ●●● ●●
●

●

●

●● ●
●

●
●

●
●● ●● ●●●

●● ●●●
●

● ●
●

● ● ●
●

● ●

●●

●
●●●

●
●

●

●
●

●

●● ●
●

●

●
●

●●

●
● ● ●

● ●
●

● ●
●

●

●

●
●●

●

●

●

● ●

●

●
●

●
●

●●●

●
●

●●
●

●
●

●
●

●

●●

●●

●

● ● ●●● ●
●

●●●●

●

●
●●

●
●

●

●

●
●

●
●

●

●

●●
●●●

●

●
●

●
●

●
● ●

●

●
●

●● ●

●●

●

●●
● ●

●● ●
●

●
●

●

● ●

●

●● ●

●

●●

●

●●● ● ●
●●

●●
●

●●

●●●

●
●

●
●●

●
●●

●
●

●
●●

●
●●

●

●●●● ●
●

●
●

●

●

● ● ●

●
● ●

●

●●
●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●●
●

●
●

●

●
●

●●
●●

●
●

●

●
●● ●

● ●
●

● ●
●

●
●●

●
●●

●

●●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●●

●

●

●●

● ●

●

● ●

●

●

●

●
●

●

●

● ●

●

● ●
● ●

●
●

●

●

●

●
● ●

● ●
●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

● ●

●
●

●

●

●

● ●

●
● ●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●●

●

●

●

●

●

●

●●

● ●

●
●

●

●●
●

●
●

● ●●●
●

●

●
●

●

●

●

●

●

● ●

● ●
●

●
●

●

●
●

●
●

● ●●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●●
●

●
● ●● ●

●

●●
●

●
●

● ●
●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●
●

●

● ●
●●
●

●
●

●●

●

●

●●

●
● ●●

● ●

●

●●
●

●●
●●

●

●●

●
●

●

● ●
●

●●

● ●

●
●

●

●

●

●
● ●● ●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●

●

●
●

●●
●

●●

●

●●

●

●

●

●
●

● ●

●

●

●
●

●●

●●

●

●

●

●

●
●

●
●●

●

●

●
●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●● ●
●

●

●

● ●
●

●

●
●

●

●
●

●● ●
●

●
● ●●

●
●

●
● ●

●

●
● ●

● ●●

●● ●

● ●●●
●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
● ●
●

●

●

●

●
●

●●

●

●

●●

●● ●●

●

● ●
● ●

●

●

●
●

●

●

●●●

●●

●

●
●

●

●
●

● ●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●● ●●
●●● ●

●

●

●

●●● ●

●

●

●●

●

●

●
●●

●

●

●

●
●●

●●
●

●

●

●● ●● ●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●
●

●●

●

●● ● ●
●

● ● ●●
● ●

●●
●

●
●

●

●

●
●●

●

● ●

●
●

● ●
● ●

●
●●

●
●●●

●

●
●

●
●●
● ●●

●

● ●

●● ●●
●

●
●●

●

●
●● ●●

●●

●
●● ●

●
●●●

●

●●

●● ●

●

●
●

● ●
●

●
●●

●

●

●

●

●● ●
●

● ●

●
● ●●

●
● ●

●●
●

● ●●

●

●
●●

●●
●

●
●

●
● ●

●● ●●

●

●●● ●●
●

● ●●
●

●
●

●
●

●

●

● ●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●●

● ● ●●
●

●
●

●
●

●
●

● ●
●

●

●

●

●

●
●

●

●
● ●
●

●
● ●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●
● ●

●●

●
●

●
●

●
●

●

●

●
●

●
●●●

●

●
●

●●

●

●●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●

● ●

●

●
●

●● ●

●●

●
●

●

●

●

●

●

●
●

●● ●●
●

●

●

●●
●

●●
●

● ●
●

● ●●

●

●

●

●●●
●

●

●
● ●● ●

●

●

●● ●●●
●

●
●

●

●●
●

●●●

●

●

●

●
●

●
● ●
●
●

●
● ●

●●
● ●●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●
●●● ●

●

●

●

●

●

●

●●

● ●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●● ●

● ●

●

●
●

●

●
●

●●

● ●

● ●
●

●

●

●●

●●

●●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●
●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

● ●●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

● ●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

● ●

●
●

●

● ●

●
●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●●
●

●
●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●
●

●●

●

● ● ●

●

●

● ●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

● ●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●●

●

●
●●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●● ●

●●

●

●

●

●
●

●

●●

●

● ●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

● ●
●

●●

●

●
●

●

●
●

●
●

●

●

●

●
● ●

● ● ●

●

●● ●

● ●

●

●

●

●

●

●●

●
●

●
●
●

● ●
●

●●
●

●

● ●

●
●

●

●

●

●
●

●

●● ●
●

●

●

●

●●
●

●
●

●
●

●
●●

●
● ●●

●● ●
●

●●
●

● ●
●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●
●

●

●

● ●

●
●

●

●●
●

●

●●

●

●

●
●

●

●
●

●
●

●●
●

●
●

●

●

●

● ●●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

● ●
●

●

●

●

●● ●
●

●

●

●

●

●

●●●

●

●●●

●

●

●
● ●●
●

●

●

●

●●
●

●
● ●

●
●
●

●
●

●
●

●● ● ●●

●
●●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

● ●● ●●

●
●

●

●

●

● ●

●●

●

●

● ●
●

●

● ●

●

●
●

●
●

●
●

●
●

●●

●

● ●●

●

● ●

●
●

●

●

●

●
● ●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●
●●

●

●

● ●

●
●

●

● ●

● ●●
●

●
●

●

●

●

●
●

● ●●

●

●
●

●
●

●
●●

●●
●

●
●

●

●●

●
●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
● ●

●
●● ●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●
●● ●

●

●

●
●

●●●
●

●

●
●

●

●

●
●

● ●
●●

●
●

●
● ●● ●

●
● ●

●

●

●

●
●

●

●

●

● ●●●

●

●

●

●

●
●

●
●

●●●
●

●
● ●●●

●

● ● ●
● ●

●●
● ●

●

●
●

●
●

●
●

● ●
● ● ●

●
● ●

●

● ●

●

●

●

● ●
●

●●
● ●

●

●

●

●

●
●

●

●

● ●●

●
●

●
●

●

●
●

●

●

●●

● ●●

●

●
●

●

●
●●●

●

●●

●

●

●

●

●
● ● ●

●

●

●

●

●●

●
●●

●

●●●
●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

● ●
●●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●●
● ●

●● ●●

●

●●●
●● ●

●●
● ●●

●●

●●

●●

●
●

●

●

●
●

●●
●

●●
●

●
●

●
● ●

●
●● ●
●

●

●
●●●

● ●
●

●
●

●
●

●

●

●●

● ● ●

●
●

●

● ● ●

●●

●

●
●

●

● ●●●●
● ● ●

●
●● ● ●●

●
●●

●

●

●
● ●●

●

●●

●
●

●●● ● ●

●

●
●

●
● ●

●

●

●
●

● ●

●
●

●
●

● ●

● ●
●●

●

● ●

● ●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●●
● ●

●
●● ●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●● ●

●

●

●●●

●
●

● ●●●

●

●
●

●● ●
● ●

●

●

●
●

●● ●
● ●

●●
●

●

●

●

●

●●
●

●●
●●

●

●
● ● ● ●●

●

●

●

●
●

●

●

●

●●
●

●
●●

●
● ● ●

●●
● ●●

●
●

●
●

●

●

● ●
●

●

● ●
●

●

● ●● ●

●●

●

● ●

●

●●
●

●
●

●●

●
●

● ●
●

●●

●

●

●

●
● ●

●●

●

●● ●
●

●
●●●

●

●●
●● ●

●
●

●

●

●
●

●

●
●●●

●

●

●
●

●

●

●

●

● ● ●●
●

●
●

●

●
●●

●
●

●●

●

●●● ●
●

●
●

●

●
●

●●●
●●

●

●
●

●●
●

●
●

●

●●

●

●

batch 1 batch 2

batch 3 batch 4

batch 5

−4

−2

0

2

4

−4

−2

0

2

4

−4

−2

0

2

4

0 5 10 15
fitted values (given factors)

re
si

du
al

s

Figure B.3.: Deviations from fitted values resulting from the FAbatch method against
corresponding fitted values. The contour lines represent two-dimensional kernel density
estimates. The broken lines mark the horizontal zero lines and the red lines are LOESS
estimates of the associations. The grey dots in each case are random subsets of size 1000
of all values.
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Figure B.4.: Deviations from fitted values resulting from the ComBat method against
corresponding fitted values. The contour lines represent two-dimensional kernel density
estimates. The broken lines mark the horizontal lines and the red lines are LOESS esti-
mates of the associations. The grey dots in each case are random subsets of size 1000 of
all values.
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Figure B.5.: Density estimates of the deviations from the fitted values divided by their
standard deviations for the FAbatch method. The broken lines mark the vertical zero lines.
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Figure B.6.: Density estimates of the deviations from the fitted values divided by their
standard deviations for the ComBat method. The broken lines mark the vertical zero lines.
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B.2. Target variables of datasets used in comparison

study

ColonGastricEsophagealcSNPArray: “gastric cancer” (y = 2) versus “healthy”

(y = 1)

AgeDichotomTranscr: “older than the median age of patients” (y = 2) versus

“younger than or the same age as the median age of patients” (y = 1)

EthnicityMethyl: “Caucasian, from Utah and of European ancestry” (y = 2) versus

“Yorubian, from Ibadan Nigeria” (y = 1)

BipolardisorderMethyl: “bipolar disorder” (y = 2) versus “healthy” (y = 1)

PostpartumDepressionMethyl: “depression post partum” (y = 2) versus “healthy”

(y = 1)

AutismTranscr: “autistic” (y = 2) versus “healthy” (y = 1)

BreastcTranscr: “breast cancer” (y = 2) versus “healthy” (y = 1)

BreastCancerConcatenation: “breast cancer” (y = 2) versus “healthy” (y = 1)

IUGRTranscr: “intrauterine growth restriction” (y = 2) versus “healthy” (y = 1)

IBSTranscr: “constipation-predominant/diarrhoea-predominant irritable bowel syn-

drome” (y = 2) versus “healthy” (y = 1)

SarcoidosisTranscr: “sarcoidosis” (y = 2) versus “healthy” (y = 1)

pSSTranscr: “Sjogren’s/sicca syndrome” (y = 2) versus “healthy” (y = 1)

AlcoholismTranscr: “chronic alcoholic” (y = 2) versus “healthy” (y = 1)

WestNileVirusTranscr: “severe West Nile virus infection” (y = 2) versus “asymp-

tomatic West Nile virus infection” (y = 1)
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B.3. Reasons for batch effect structures of datasets

used in comparison study

EthnicityMethyl: “To limit the potential bias due to experimental batches, samples

were randomized by population identity and hybridized in three batches.” (Moen

et al.; 2013)

BreastcTranscr: “To minimize possible processing and chip lot effects, samples were

assigned to processing batches of seven to nine pairs, and batches had similar dis-

tributions of age, race, and date of enrollment. For array hybridization, each batch

was assigned to one of two different chip lots (’A’ and ’B’) in a manner designed to

ensure a balance of these same characteristics. [. . . ] Laboratory personnel were blind

to case control status and other phenotype information.” (Godfrey et al.; 2013)

BreastCancerConcatenation: Concatenation of five independent datasets.

IUGRTranscr: Citation from the description on the ArrayExpress website: “[. . . ]

were collected during the years of 2004-2008 and hybridized in two batches to mi-

croarrays. Samples were randomized across arrays to control for array and batch

variability.” (ArrayExpress website)

AlcoholismTranscr: The batch variable in the sdrf.txt file is designated as “labeling

batch”, from which it was deduced that the batch structure is due to labeling for this

dataset.
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B.4. Boxplots of the metric values for simulated

datasets for each method and simulation scenario
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Figure B.7.: Values of metric sepscore for all simulated datasets separated by simulation
scenario and by method.
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Figure B.8.: Values of metric avedist for all simulated datasets separated by simulation
scenario and by method.
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Figure B.9.: Values of metric klmetr for all simulated datasets separated by simulation
scenario and by method.
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Figure B.10.: Values of metric pvca for all simulated datasets separated by simulation
scenario and by method.
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Figure B.11.: Values of metric diffexpr for all simulated datasets separated by simulation
scenario and by method.
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Figure B.12.: Values of metric skewdiv for all simulated datasets separated by simulation
scenario and by method.
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Figure B.13.: Values of metric corbeaf for all simulated datasets separated by simulation
scenario and by method.
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B.5. Tables showing the means of the metric values

and of the corresponding ranks in simulated

datasets by method and by scenario
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C.1. Plots of the MCCrule values
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Figure C.1.: MCCrule values for each setting and batch effect adjustment method when
using PLS-LDA as the classification method. The red and the cyan boxplots show the
results when using addon and separate normalization, respectively.
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Figure C.2.: MCCrule values for each setting and batch effect adjustment method when
using PLS-LDAvarsel as the classification method. The red and the cyan boxplots show
the results when using addon and separate normalization, respectively.
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Figure C.3.: MCCrule values for each setting and batch effect adjustment method when
using Boosting as the classification method. The red and the cyan boxplots show the
results when using addon and separate normalization, respectively.
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Figure C.4.: MCCrule values for each setting and batch effect adjustment method when
using Boostingvarsel as the classification method. The red and the cyan boxplots show
the results when using addon and separate normalization, respectively.
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Figure C.5.: MCCrule values for each setting and batch effect adjustment method when
using NSC as the classification method. The red and the cyan boxplots show the results
when using addon and separate normalization, respectively.
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Figure C.6.: MCCrule values for each setting and batch effect adjustment method when
using RF as the classification method. The red and the cyan boxplots show the results
when using addon and separate normalization, respectively.
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Figure C.7.: MCCrule values for each setting and batch effect adjustment method when
using kNNvarsel as the classification method. The red and the cyan boxplots show the
results when using addon and separate normalization, respectively.
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Bolstad, B. M., Irizarry, R. A., Åstrand, M. and Speed, T. P. (2003). A comparison
of normalization methods for high density oligonucleotide array data based on
variance and bias, Bioinformatics 19: 185–193.

Boltz, S., Debreuve, E. and Barlaud, M. (2009). High-dimensional statistical measure
for region-of-interest tracking, Transactions in Image Processing 18: 1266–1283.

Boulesteix, A.-L. (2004). PLS dimension reduction for classification with microarray
data, Statistical Applications in Genetics and Molecular Biology 3: 33.

Boulesteix, A.-L. (2013). On representative and illustrative comparisons with real
data in bioinformatics: response to the letter to the editor by Smith et al., Bioin-
formatics 29: 2664–2666.

Boulesteix, A.-L. (2015). Ten simple rules for reducing overoptimistic report-
ing in methodological computational research, PLoS Computational Biology
11: e1004191.



158 Bibliography

Boulesteix, A.-L., Hable, R., Lauer, S. and Eugster, M. J. A. (2015). A statistical
framework for hypothesis testing in real data comparison studies, The American
Statistician 69: 201–212.

Boulesteix, A.-L., Janitza, S., Hornung, R., Probst, P., Busen, H., Bischl, B. and
Hapfelmeier, A. (in prep). Applicability of prediction rules presented in the litera-
ture: a survey on random forest and logistic regression, Technical report, Depart-
ment of Statistics, LMU.

Boulesteix, A.-L., Lauer, S. and Eugster, M. J. (2013). A plea for neutral comparison
studies in computational sciences, PLoS ONE 8: e61562.

Boulesteix, A.-L. and Strimmer, K. (2007). Partial least squares: A versatile tool for
the analysis of high-dimensional genomic data, Briefings in Bioinformatics 8: 32–
44.

Boulesteix, A.-L. and Strobl, C. (2009). Optimal classifier selection and negative bias
in error rate estimation: an empirical study on high-dimensional prediction, BMC
Medical Research Methodology 85: 9.

Breiman, L. (2001). Random forests, Machine Learning 45: 5–32.
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