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Summary

Research on dental implants over the last decades mainly concentrated on the os-

seointegration between bone-to-implant interface; however, studies on the assessment of

soft tissue incorporation around dental implant are still limited. As innovative materials

were developed, each new alternative demands the assessment of its biocompatibility and

performance on both bone and soft tissue integration onto dental implant surfaces. The

understanding of cell-substrate interactions is of high importance for the development

of biocompatible implants, it paves the way for in vivo studies into device functional-

ity, it is important to study how Ti surfaces with different microstructures affect the

behaviour of spreading and attached cells. However, the future of the cells on the mate-

rials cannot be presumed with the evaluation after short-time seeding, the method that

allows long-term study of an cell-to-material interface is closer to the in vivo situation.

The goal of this project is to evaluate the influence of different topographies and rough-

ness of titanium specimens on human gingival fibroblast’s morphology, adhesion, cellular

proliferation with SEM and CLSM and to evaluate by FACS the expression of proteins

involved in cell/surfaces adhesion. In this study, the initial attachment and subsequent

growth behaviour up to 30 days of human fibroblasts on three different commercial Ti

substrates were investigated and compared with confocal microscopic imaging, it could

be shown that the extent of fibroblast’s spreading at various points of time differed on

the implant surfaces tested, the cells responded to Osseotite surfaces in a manner sim-

ilar to or even better than their behavior on Nanotite surfaces. The cells cultured on

Osseotite and Nanotite surfaces are cuboidal in shape and have the dendritic branch-

ing pattern characteristic. In contrast, the cells on the Machined surfaces appear more

flattened. Alamar Blue assay demonstrated the gingival fibroblasts grown on Osseotite

and Nanotite surfaces showed a notable higher proliferation compared to the Machined
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surfaces after two weeks of incubation; however, there is no considerable difference on cell

proliferation between these two groups. The flow cytometry data analysis suggested that

the cells grown on the Osseotite implant material produce a better initial attachment

with a higher α5 and β1 integrins expression than on machined and Nanotite materials.

After 24 days of cell incubation, immunofluorescence labelling analysis showed that more

extended actin stress fibers and higher vinculin expression were on Osseotite compared

to Nanotite samples. Vinculin expression localized mainly within central areas of the cell

grown on the Machined and the Osseotite surfaces; distinct focal contacts localizations

were evident at the cell edges on the Nanotite surface. At day 30, high vinculin expres-

sion and a dense network of actin stress fibers on the human gingival fibroblasts were

observed on all tested substrates; a similar F-actin distribution was found on Osseotite

and Nanotite surfaces.

The present in vitro study for long-term cellular responses on three different titanium

surfaces demonstrated that topographic structures can influence the morphology, prolifer-

ation and adhesion of human gingival fibroblasts. With the limitation of our study, there

is not enough evidence to show that the Nanotite implants is more benificial to the growth

behavior of human gingival fibroblasts, compared with Osseotite surfaces; especially at

the early stage of incubation. our findings may contribute to a better understanding

of the processes involved in the soft tissue integration surrounding dental implants and

hopefully give information for the development of innovative implant materials.



Zusammenfassung

Forschung über Zahnimplantate konzentriert in den letzten Jahrzehnten vor allem auf

die Osseointegration zwischen Knochen-Implantat-Schnittstelle; sind jedoch Studien zur

Beurteilung der Weichgewebe Einbau rund Zahnimplantat noch begrenzt. Als innova-

tive Materialien entwickelt wurden, verlangt jede neue Alternative der Beurteilung ihrer

Biokompatibilität und Leistung sowohl auf Knochen- als auch Weichgewebeintegration

auf Implantatoberflächen. Das Verständnis der Zell-Substrat-Wechselwirkungen ist für

die Entwicklung biokompatibler Implantate großer Bedeutung, den Weg für eine in vivo-

Studie in Gerätefunktionalität ebnet es, ist es wichtig zu untersuchen, wie Ti Oberflächen

mit unterschiedlichen Mikrostrukturen beeinflussen das Verhalten der Verbreitung und

anhaftenden Zellen. Jedoch kann die Zukunft der Zellen auf den Materialien, die nicht

mit der Bewertung nach dem kurzzeitigen Aussäen der Methode, die Langzeit-Studie

einer Zelle-zu-Material-Grenzfläche näher an der in vivo Situation kann angenommen

werden. Das Ziel dieses Projektes ist es, zu bewerten den Einfluss von unterschiedlichen

Topographien und Rauheit der Titanproben auf die menschliche gingivale Fibroblasten-

Morphologie, Adhäsion, Zellproliferation mit SEM und CLSM und FACS bewerten die

Expression von Proteinen in der Zelle beteiligt / Flächen Haftung.

In dieser Studie wurden die anfängliche Befestigung und das anschließende Wachstum

Verhalten bis zu 30 Tage von menschlichen Fibroblasten auf drei verschiedenen kom-

merziellen Ti Substrate untersucht und mit konfokalen mikroskopischen Abbildungs, kon-

nte gezeigt werden, dass das Ausmaß der Fibroblasten der Ausbreitung zu verschiedenen

Zeitpunkten unterschieden sich auf Implantatoberflächen getestet, reagierten die Zellen

an Oberflächen in einer Weise, die ähnlich oder sogar besser als ihr Verhalten auf Nanotite

Oberflächen Osseotite. Die Zellen auf Osseotite und Nanotite Flächen kultiviert werden
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quaderförmige Form auf und haben die dendritischen Verzweigungsmuster charakteris-

tisch. Im Gegensatz dazu sind die Zellen auf den bearbeiteten Oberflächen erscheinen

abgeflacht. Alamar-Blau-Assay zeigten die gingivale Fibroblasten auf Osseotite und Nan-

otite Oberflächen gewachsen zeigten einen bemerkenswerten Anstieg der Proliferationsge-

genüber den bearbeiteten Oberflächen nach zwei Wochen der Inkubation; jedoch gibt es

keinen wesentlichen Unterschied auf die Zellproliferation zwischen diesen beiden Gruppen.

Die Durchflusszytometrie Datenanalyse vorgeschlagen, dass die Zellen auf der Osseotite

Implantatmaterial gewachsen erzeugen eine bessere anfängliche Befestigungs mit höherer

α5 und β1 Integrin-Expression als an bearbeiteten und Nanotite Materialien. Nach 24

Tagen des Zell Inkubation Immunfluoreszenzmarkierungs Analyse zeigte, dass ausgedehn-

tere Aktin-Stressfasern und höhere Vinculin Ausdruck waren Osseotite Vergleich zu Nan-

otite Proben. Vinculin Expression lokalisiert hauptsächlich im zentralen Bereiche der

Zelle an dem bearbeiteten und Osseotite Oberflächen gewachsen; deutliche fokale Kon-

takte Lokalisierungen waren an den Zellrändern auf der Nanotite Oberfläche deutlich. Am

Tag 30 wurden hohe Vinculin Ausdruck und ein dichtes Netz von Aktin-Stressfasern über

die menschlichen gingivalen Fibroblasten auf allen getesteten Substraten beobachtet; eine

ähnliche F-Actin-Verteilung wurde auf Osseotite und Nanotite Oberflächen gefunden.

Die vorliegende in vitro-Studie zur Langzeit-Zellantworten auf drei verschiedenen Ti-

tanoberflächen zeigte, daß topographische Strukturen die Morphologie, Proliferation und

Adhäsion humaner Gingivafibroblasten beeinflussen können. Mit der Einschränkung, der

Studie gab es nicht genügend Beweise zeigen, dass die Implantate Nanotite ist benificial

auf das Wachstumsverhalten menschlicher Gingivafibroblasten, verglichen mit Osseotite

Oberflächen; vor allem in der Frühphase der Inkubation. Unsere Ergebnisse können zu

einem besseren Verständnis der Prozesse in der Weichgewebeintegration rund um Zahn-

implantate Beteiligten beitragen und hoffentlich geben Informationen für die Entwicklung

von innovativen Implantatmaterialien.
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Chapter 1

Introduction

Since the well-accepted concept of “osseointegration” introduced by Br̊anemark et al.

(1969) in the late 1960’s, titanium and its alloys have been extensively used for endosseous

dental implants because of their excellent biocompatibility and superior mechanical prop-

erties.

Basic and clinical research on dental implants in the last two decades have mainly con-

centrated on the bone-to-implant interface, while studies on the assessment of soft tissue

incorporation around dental implant are still limited. This is largely because the direct

bone contact with an implant was thought to be a key factor which contributes to the

success of implant integration. However, in dental implant therapy, the long-term sup-

port for a prosthesis is determined, in part, by the profile and biologic seal formed by

the soft tissue around the implant as it helps to stabilize and maintain the peri-implant

tissues during the healing phase following surgical implant placement.

Research advances in modern dental implantology have led to the development of var-

ious approaches which aim to fabricate improved implant surfaces. The behavior and

attachment of cells on the implant surface determine the success of the implant. The

topography and texture of the titanium surface can in turn influence the behavior of cells

and genetic expression (i.e. cytoskeleton) in the cells. Therefore, it is important to in-

vestigate how the titanium surfaces with different structures may impact the morphology

and attachment of human gingival fibroblasts, which will be meaningful and significant
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for cell-nanostructure relationship studies and novel dental implant surface design.

1.1 Soft tissues around implants

Similar to natural teeth, the soft tissue around the implant includes oral epithelium,

the junctional epithelium and the underlying fibrous connective tissue. However, there are

significant differences between them: it was reported that the epithelium and connective

tissues around the implant present a poorer quality of attachment than that of natural

teeth (Berglundh et al. 1991). In vitro and in vivo animal and human studies manifested

the formation of attachment structures at the implant-epithelium interface (Abrahamsson

et al. 1996, Gould et al. 1984, McKinney et al. 1985). The peri-implant epithelium forms

internal basal lamina and hemidesmosomes, provides epithelial attachment similar to that

in the natural teeth, which enable them to attach onto the implant surface. However,

this attachment structure is limited to the apical region of peri-implant epithelium Atsuta

et al. (2005). While the connective tissues around a dental implant were believed mostly

to be oriented parallel to the implant surface, with no perpendicular insertion to the

implant (Bauman et al. 1993).

In dental implant therapy, a satisfying outcome depends on both bone and soft tissue

integration into the implant. The implant should not only anchor in the neighboring

bone but also be in direct contact with gingival epithelium and connective tissue.

Titanium and its alloys are widely used in dental implant treatment as the replacement

of natural tooth, because they offer good biocompatibility and showed high long-term

success rates. During the surgical procedure, the screw-like implant, is placed into the

jaw bone. After a period of a few months for ridge healing, a strong bond is formed

between the bone and titanium surface, then the dental prosthesis can be connected to



1.1 Soft tissues around implants 3

1.1-a) Tooth-soft tissue interface 1.1-b) Implant-soft tissue interface

Image modified from Rose L.F et al. (2004)

Figure 1.1: Difference between tooth- and implant-soft tissue interfaces
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the abutment. The recent basic criteria for evaluating the success of dental implants

are immobility, absence of peri-implant radiolucency, adequate width of the attached

gingiva and absence of infection (Karthik et al. 2013). Although success rates exceeding

90% were often reported in dental implant treatment over the last few years, there are

still some risk factors associated with implant failure. For example, the formation of

fibrous encapsulation is such a risk. Fibrous encapsulation is in fact a scar formation of

fibrous connective tissue, it may cause the subsequent peri-implant bone loss and lead

to isolation of the implant from surrounding tissue. Fibrous encapsulation has been

found to correlate with the characteristics of the implant material. Other commonly

occurring peri-implant diseases are the inflammatory reactions which take place in the

tissue surrounding the implant, i.e. peri-implantitis or mucositis. It was well documented

in the literature that the bacterial colonization is a main cause in the process of peri-

implant disease. As advances have been made in implant materials and techniques, bulk

of innovative materials were designed to enhance the interaction between implants and the

surrounding environment. These materials have an effect on cellular behavior including

cell proliferation, cell attachment and protein synthesis. An ideal implant material would

facilitate cell growth on its surface, thereby helping to integrate both bone and soft tissue

into the implant.

1.1.1 Anatomy and histology of the soft tissue around implant

After dental implant insertion, the soft tissue around a dental implant is formed

during the stage of wound healing. Several studies in animals and in humans have in-

vestigated the morphologic characteristics of surrounding tissues of implant. In an ex-

perimental study in beagle dogs (Berglundh et al. 1991), Berglundh and his colleagues

compared the common features in the peri-implant soft tissue with those of the gingi-

val around teeth. This study was performed on 5 beagle dogs by installing two-stage
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implants. After three months of implant placement, abutment connection was carried

out. After another 2 months of healing, daily plaque control was kept for 8 weeks. At

the end of the plaque control programme, clinical examinations were performed to ver-

ify the health conditions of surrounding tissues around implant. The histometric and

morphometric examinations revealed that the epithelium attached the tooth or titanium

surface in a similar way. Both the peri-implant mucosa and gingiva consisted of a well-

keratinized oral epithelium connected with a 2 mm long junctional epithelium and a 1

mm high underlying connective tissue. The most striking observation is the collagen fiber

orientation. Around the implant, collagen fibers were parallel with the abutment surface.

Histological examinations of peri-implant tissues from this study indicated that under the

practice of plaque removal, peri-implant mucosa had formed a comparable protective soft

tissue barrier with the gingiva around the teeth, both of them have a potential to prevent

bacterial infiltration and thus infection, too. Furthermore, in another beagle dogs study,

the soft tissue structures around titanium implant were found to have similar dimen-

sions and composition following 1-stage and 2-stage implant installations Abrahamsson

et al. (1996), Buser et al. (1992) observed the healing pattern of soft tissue around the

non-submerged unloaded titanium implants in beagle dogs. The authors showed similar

soft tissue structures between three different implant surfaces, especially in terms of the

length of direct connective tissue contact to the implant. It was also found that the inte-

grated connective tissue is poor in blood vessels but rich in fibroblasts. This result was

later reinforced by Berglundh et al. (1994), they confirmed the supracrestal connective

tissue lateral to the implant was almost free of vascular supply. In an experimental study

performed by Moon et al. (1999), the zone of peri-implant connective tissue was further

divided into two units: the central unit close to the implant surface is characterized by

its absence of blood vessels but an abundance of fibroblasts, the lateral unit which is con-

tinuous with the central one comprised of relatively fewer fibroblasts, but more collagen

fibres and blood vessels. This outcome suggested that the fibroblasts rich layer plays a
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part in maintaining the biological seal around a dental implant.

1.2 Influence of surface topography on soft tissue in-

tegration

It is generally accepted that the surface topography is crucial for long term success

of dental implants. The effects of surface topography on implant performance including

hard and soft tissue integration have been intensively investigated. In order to reduce

the wound healing time and enhance the host tissue adaption to implant biomaterials,

significant efforts have been made to optimize the titanium surfaces. Modifications of

the implant surface topography can be achieved through a number of techniques: me-

chanical polishing, blasting with particles of various diameters, chemical etching, plasma

spray, ion-sputtering coating, anodization, hydroxyapatite coating and various methods

of coating (A Gupta, M Dhanraj, G Sivagami. 2008). The scale features obtained from

these treatments can range from nanometers (below the cell-size) to milimetres (tissue

size) (Rompen et al. 2006).

In a beagle dog model, Abrahamsson et al. (2002) studied the composition of the soft

tissue barrier to titanium abutments prepared with either a turned (smooth) or acid-

etched (rough) surface. In this study, implants made of c.p titanium were inserted in the

right edentulous mandibular premolar region in five beagle dogs. After three months, two

types of abutments with different roughness were connected. At the end of a 6-month

period, biopsies were obtained, decalcified and prepared for light and electron microscopy.

The results showed that the epithelial and connective tissue components are similar on

the two titanium surfaces. The connective tissue attachment at both types of abutment

was composed of about 30–33% fibroblasts and 63–66% collagen. Zitzmann et al. (2002)
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studied the reactions of the peri-implant mucosa to plaque accumulation on implant abut-

ments designed with either a rough or a smooth surface. They found that the plaque

accumulation was not influenced by the roughness of titanium abutments. Furthermore,

in a baboon trial, Watzak et al. (2006) compared the peri-implant soft tissue dimension

and bone level with different surface modifications after 1.5 years functional loading and

plaque formation. A histomorphometric observation of three types of titanium implants

indicated that there was no significant difference in terms of sulcus depth, the dimension

of the junctional epithelium and the connective tissue contact. Recently, Schwarz et al.

(2013) performed a randomized controlled clinical multicentre study. Titanium implants

with different surface roughness and hydrophilicity were placed in the posterior mandibu-

lar and maxilla of 30 patients. After eight weeks, the histological analysis of peri-implant

soft tissue demonstrated that a modMA (modified hydrophilic) surface has a high poten-

tial to enhance soft tissue adhesion at the transmucosal site of implants. In a minipig

study, Liñares et al. (2013) compared the soft tissue integration to three modified implant

surfaces. It was concluded that the surface modification did not affect the peri-implant

soft tissue dimensions.

However, some studies have showed that roughened implant surfaces might be favor-

able to soft tissue adhesion around implants. The soft tissue attachment around cal-

cium phosphate coated and uncoated implants was evaluated in beagle dogs (Bao Hong

Zhao et al. 2007). After a 3-month healing period, less gingival recession was found

in the tested group. Moreover, collagen fibers of the connective tissue around calcium

phosphate coated implants were found aligned mostly in oblique directions. It can be

speculated that calcium phosphate coating can promote the soft tissue regeneration and

prevent gingival recession. But the exact reason for this result is not quite clear, because

the calcium phosphate coated surface may be assumed to have chemical effects but not

enough roughness to promote collagen fiber orientation. In a study in humans, Glauser

et al. (2005) detected the effect of surface topography modifications on peri-implant bar-
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rier around one-piece mini-implants. In this study, five patients received the one-piece

implant treatment with either an TiO2 layer oxidized, an acid-etched or a machined

surface. Abutment connection was carried out after 8-week healing time. The implants

and surrounding tissue were harvested and processed for histological examination. The

authors found similar peri-implant soft tissue structures in humans with that in animals;

furthermore, less epithelial downgrowth and longer connective tissue were found around

oxidized and acid-etched implants than machined ones.

1.3 Cells frequently investigated in implant surface

research

When dental implants are introduced into host bone, the biocompatibility of the

materials depends not only on surface properties but also on the growth behavior of the

cells on the material surface. The quality of early cell-material interaction will influence

the cell’s capacity to proliferate and differentiate. A successful dental implant therapy

depends on three parts: osseointegration, epithelial seal and connective tissue attach-

ment. Long-term stability of osseointegrated implants relies on the adhesion and growth

of osteoblastic cells at tissue/implant interface (Palumbo 2011). A good sealing between

the peri-implant epithelium and implant surface can avoid the epithelial downgrowth,

prevent bacterial colonization, improve the barrier function of the implant. Promoting

the epithelial cell adhesion on the implant surface is critical to form the epithelial at-

tachment and maintain epithelial soft tissue seal. The interaction of connective tissue

and fibroblasts with the implant surface plays an essential role in establishing a stable

peri-implant supporting structure as well. The connective tissue around dental implants

is characterized by collagen fibers aligned parallel to the vertical axis of the implant body

(Bao Hong Zhao et al. 2007). Since the gingival fibroblasts have the function of producing
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collagen, glycoproteins and extracellular matrix, their initial attachment and response to

implant surface may decide the outcome of implant treatment. Thus, these three types of

cells: osteoblasts, epithelial cells and gingival fibroblasts are the most investigated objects

in designing biofunctional dental materials. Early stage cell reaction of the three different

cell types such as adhesion, morphology and proliferation to the titanium surfaces can

vary according to surface topography.

1.3.1 Cell culture studies for investigating implant-soft tissue

interface

In order to develop highly controlled dental implants for better biological interac-

tion, cell culture models have been developed to investigate the cell behavior on surfaces

with different properties. Smooth, plasma-sprayed and hydroxyapatite-coated titanium

implant materials were coated with either laminin, fibronectin or bovine serum albumin

and used to test the gingival fibroblasts and epithelial cells attachment (Dean et al. 1995).

The fibronectin coating surface showed the capacity of enhancing the gingival fibroblasts

binding by two to three folds, while laminin coating resulted in three to four times the pro-

motion of epithelial cell attachment. In another study, Köunönen et al. (1992) compared

the adhesion, orientation and proliferation of human gingival fibroblasts on electropol-

ished, etched and sandblasted titanium surfaces. The findings have shown that smooth

titanium surfaces supported attachment and growth of gingival fibroblasts thus are suit-

able for soft tissue integration. Similar results were concluded from a study performed by

Eisenbarth et al. (1996). Recently, Liugi Guida and his coworkers evaluated the influence

of the modification of the surface topography at nano-scale level on gingival fibroblasts

response Guida et al. (2013). Primary human gingival fibroblasts were cultured on oxi-

dized or turned surfaces, cell morphology, adhesion, proliferation and collagen synthesis

were analyzed. It was found that an oxidized nanostructured titanium surface offers



1. Introduction 10

better growth behavior of gingival fibroblasts. Another finding in support of this data

was concerning that the fibroblasts (NIH/3T3 murine fibroblasts) reactions were boosted

on an odized-hydrothermally treated titanium with nano-scale level structure (Miura &

Takebe 2012). Nevertheless, there are some studies have shown lower fibroblasts adhesion

and proliferation on nano-scale surfaces than smooth surfaces (Cohen et al. 2007, Miller

et al. 2005). There is a lack of correspondence in relation to optimal nanostructured tita-

nium surfaces. Hence, it was assumed that nanometric titanium surface can control cell

behavior and protein adsorption, and in turn determine the success of dental implants .

1.4 Cell attachment on substrates

The cell attachment on a substrate is directly involved with cell morphology, prolif-

eration, migration and even determines its survival. It is widely understood that surface

characteristics play an important role in cell-material interaction and surrounding tissue

establishment. The process how cells adhere to each other or to a substrate (cell adhesion)

is mediated by a complex mechanism. The sites of cell adhesion to the underlying surface

are focal adhesions. Focal adhesions are multi-protein structures which contain integrins

and act as a mechanical linkage between intracellular actin bundles and extracellular ma-

trix via membrane-bound receptors (Abercrombie & Dunn 1975). It was reported that

focal adhesions are large adhesion contacts which lie at the ends of actin stress fibers in

cells (Petit & Thiery 2000). Focal adhesions are key regulators of cell behavior and have

important functions in cell growth: they can transmit the external force signals to the

adhesion sites and make the cells grow tightly on the materials. Many molecules involved

in mediating signal transduction in response to force stimuli such as Src, FAK, Rho have

been found at focal adhesions (Wozniak et al. 2004). The activation and clustering of

integrins is a crucial event in cell adhesion formation. Through it, more cytoplasmic
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proteins such like vinculin, talin and paxillin, are recruited to the adhesion site (Liu et al.

2010). The actin skeleton forms stress fibers, which are associated with actin and myosin

filament, are contractible and responsible for the cell movement. These clustered inte-

grins and bulk of cytoplasmic proteins are vital outside-inside signalling ports and help

the cells bind to other cells and to keep the basic function (Liu et al., 2010b). Based on

these facts, it is significant to observe the cell adhesion on dental implant surfaces with

different chemical and physical properties, since after the placement of implants, the cells

have to adapt a new environment and attach, grow on them.

1.4.1 Important proteins involved in cell adhesion

Integrin

Integrins are a large family of transmembrane proteins which act as major receptors

for cell adhesion and link the extracellular matrix to the cell. Integrins are very important

cell surface receptors in maintaining the cell survival and growth, because the signaling

mediated from integrin/ECM interactions are also integrated with cellular response to

growth factor signaling to regulate cellular functions including cell adhesion, cell mi-

gration, cell proliferation and other processes (Ojaniemi et al. 1997). All integrins are

composed of two different noncovalently associated transmembrane glycoproteins, called

a large α and a small β subunit. Each subunit of integrin αβ heterodimers contains

a extracellular domain, a transmembrane domain and a cytoplasmic tail. The integrin

cytoplasmic tail domain binds with the actin skeleton, that inhibits clustering of subunits

decrease cell adhesion, whereas transmembrane subunits that induce clustering enhance

adhesion and FAK phosphorylation. This phenomenon suggests that the integrin function

requires clustering and avidity change (Wozniak et al. 2004).
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Image modified from Pivodova et al. (2011).

Figure 1.2: The integrin structure
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Hormia et al. (1990) investigated the integrin expression in human gingiva through the

method of immunostaining. The results showed that gingival connective tissue expresses

specifically the fibronectin receptor α5β1, which is the key characteristic that make it

different from skin. Moreover, gingival epithelium has been shown to express a wide

variety of integrins, including integrin subunits α2β1, α3β1, α6β1 and α6β4. The β1

integrin subunit was expressed in an overall cell-membrane localization in basal epithelial

cells. In another study, Oates et al. (2005) examined the expression of integrin for gingival

fibroblasts grew on titanium surfaces and the effect of surface roughness on integrin

expression and cell morphology. Briefly, human gingival fibroblasts were cultured on

three different surfaces: smooth, rough titanium surfaces and plastic surfaces for control

group. The mRNA levels of integrin subunit for every group of cells were assessed by

reverse transcription-polymerase chain reaction (RT-PCR). The expression of the integrin

subunits was assessed at the protein level using flow cytometry and immunofluorescence

analysis. Cell morphology was detected using SEM. The results demonstrated that the

integrin subunits in human gingival fibroblasts expressed on both smooth and rough

titanium surfaces, the roughness of titanium surface may alter the cell shape but have

little effect on integrin expression. The cell morphology are quite different with the

variation of surface roughness.

Vinculin

Vinculin is a 1066 amino acids cytoskeletal protein that has a molecular weight of

117 kDa, it is composed of a head and a tail domains (Veronika I. Zarnitsyna & Zhu

2011). Vinculin is also a important protein which localized on the cytoplasmic side

and associated with cell adhesions and cell-cell junctions. Although it was shown that

vinculin does not bind integrins directly, it is thought to play a dynamic role in focal

adhesion assembly by indirectly connecting talin and α-actinin to the actin cytoskeleton
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and recruiting additional proteins such as paxillin and vinexin (Ziegler et al. 2006).

The function of vinculin is highly regulated by interactions between proteins especially

through conformation changes (Golji & Mofrad 2013). In this study, the authors utilized

different molecular dynamics simulations to investigate the interaction of vinculin and

actin. The results demonstrated that under different level of stress, vinculin would change

its conformation and bind different sites on actin. An experimental study conducted by

Wen et al. (2009) indicated that vinculin can establish a linkage between the adhesion

plaques and the cytoskeleton by synthesizing bundled actin filaments or by remodeling

existing filaments. The importance of vinculin on regulating focal adhesion formation

and turnover was emphasized in a study performed by Humphries et al. (2007). They

demonstrated that vinculin is a major linker protein associated with focal adhesions and

the actin network. It can drive the formation and growth of cell-matrix adhesions by

interacting with talin, this interaction occurs in the domain of vinculin head and leads

to a cluster of activated integrins. While the tail of vinculin regulates the transmission

of mechanical signal. A few publications showed that vinculin links not only to the actin

cytoskeleton directly, but also interacts with the proteins that have the competent to

regulate the actin, which including VASP (Reinhard et al. 1992), Arp 2/3 (Mullins et al.

1998) and vinexin (Kioka 1999). Gallant et al. (2005) have also proved that vinculin

contributes around 30% of the 200-nN adhesive force in cell adhesion strengthening.

Based on these studies, it was shown that vinculin is crucial to the cell-matrix adhesion

regulation.

1.5 Aims of this study

The long-term successful performance of dental implant depends on both the bone

stability and peri-implant mucosa integration. Recently, increasing attentions have been
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addressed to the implant abutment interfaces and the transmucosal region of dental

implant as dental implants require to form a soft tissue barrier to minimize the correlative

complications. The mechanical and biological compatibility derived from surface design

is important in maintaining a health and collagen rich connective tissue with minimal

bacterial penetration. In order to improve the patients’ satisfactions and increase the

predictability of implant therapy, significant efforts have been made in the area of implant

biomaterials development. These technologies have evolved from simple modification of

the oxide surface to nano-scale modification technologies that involve the formation of a

uniform and consistent surface that leads to altered cellular response.

The dual-acid-etched together with a proprietary treatment called Discrete Crystalline

Deposition (DCDTM) to deposit nanometer scale calcium phosphate hydroxide implemen-

tation to titanium surfaces has been reported in earlier studies (Ostman et al. 2010)and

shown to promote bone integration. The present study sought to examine whether this

nanotopographic structures on titanium surfaces could affect human gingival fibroblasts’

behavior and enhance cell adhesion. The aim of this work was the detailed examination

of the interaction between titanium surface and the biological objects, i.e. the adherent

cells. The focus lies in nanostructured (Nanotite) surfaces, as on the one hand the mod-

ified titanium surfaces have been proven as particularly suitable for observation of cell

shape and adhesion; on the other hand, a few studies have already demonstrated that

cells grow on the surfaces with certain roughness adhere better than on smooth ones.

Individual tasks in the work were (a) to study surface modification properties of three

different titanium disks, (b) to compare the morphology and proliferation of gingival

fibroblasts on tested titanium surfaces and (c) to investigate the expression of integrin

and distribution of the adhesion proteins of actin and vinculin in gingival fibroblasts

closely. The method of fluorescence labeling and confocal laser scanning microscope were

especially used in this part of work.
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In this work, the following questions will be answered:

1. What are the differences of cell shape between experimental groups?

2. How was the gingival fibroblasts focal adhesion protein expression distribution on

these three surfaces?

3. Can the surface treatment by depositing nanometer scale calcium phosphate hy-

droxide crystals enhance the cell interaction to titanium surface?



Chapter 2

Materials and Methods

2.1 Titanium alloy disks

The titanium substrates for the cell growth studies are commercially titanium disks of

dental implant quality, which are sterilized and packaged individually (10 mm in diameter

and 1.5 mm in thickness) were fabricated and kindly provided by BIOMET 3i (3i Implant

Innovations, Palm Beach, FL, USA). The diameters of the disks were designed for clinicial

studies and to ensure that the disks would match the diameter of 48-well plates. The

disks were manufactured from Ti-6Al-4V-ELI alloy (Ti- Alloy) (grade II). Three types of

disks were used for this study and each sample was textured on its both sides:

• Ti Alloy-Machined. This surface was prepared by machining (turning) process.

• Ti Alloy-Osseotite. This surface was obtained by dual thermal acid etching (DAE)

procedure with hot hydrochloric and sulphuric acids H2SO4/HCl

• Ti Alloy-Nanotite. This surface was treated with a proprietary treatment called Dis-

crete Crystalline Depositions (DCDTM) to deposit nanometer-scale calcium phos-

phate (CaP) particles (20-80 nm nominal size) by sol gel application over the dual

acid-etched Osseotite surface to obtain the resulting nanometer scale rough surface

called NanoTite.
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2.2 Surface characterization of the titanium samples

2.2.1 SEM Imaging

The surface topography of each titanium surface was characterized using a scanning

electron microscope (SEM). Titanium surfaces were examined using a field emission scan-

ning electron microscope (ZEISS Supra 55vp; Zeiss, ) with the secondary electron detector

(accelerating voltage 10keV, working distance approximately 4 mm). Prior to imaging,

the titanium disks were sputter coated with 30 nm thickness film of gold palladium alloy

in a vacuum evaporator (SC7620 Mini Sputter Coater; Quorum Technologies, Kent, UK)

to ensure high reflectivity of the substrate surface. The magnifications selected were 1000,

5000, 10,000 and 20,000 and the micrographs were recorded at randomly chosen areas on

the titanium surfaces.Three disks were tested for this assessment, each group contained

one disk.

2.2.2 CLSM Imaging

Images of the surfaces were acquired using a laser scanning confocal microscope

(CLSM). The titanium alloy disks were examined with a Leica TCS SP2 (Leica Mi-

crosystem, Mannheim, Germany). Serial optical sections were collected by 20 up to 30

horizontal images throughout the samples, with a 633 nm laser, using a z-step of 0.5 mm

and a 10x objective, a 50x objective.Three disks were tested for this assessment, each

group contained one disk.

To calculate the profile roughness values of the three testing surfaces, CLSM images were

imported into the distribution of ImageJ program Fiji (Schindelin et al. 2012). To make

the image stacks in a format suitable for roughness analysis, the ImageJ plugin “Stack
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Sorter” (http://www.optinav.com/Stack-Sorter.htm) was installed into the plugins folder

to sort the slices of a stack. Furthermore, the plugin “Extended Depth of Field” (Aguet

et al. 2008) was used to generate a height profile image of the surface. Median filter and

FFT filter were used to filter the original height map image, another plugin “SurfCharJ”

(Chinga et al. 2007) was then used to calculate the Ra value based on the filtered image.

2.3 Cell Culture

Human gingival fibroblasts were purchased from American Type Culture Collection

(ATCC, LGC Standard). The fibroblast cell line was originally derived from a gin-

gival biopsy of a 28-year-old Caucasian man. The vial containing the HGF with total

cells 7.9x105/ml was frozen with cryoprotectant medium consistsing of ATCC-formulated

complete growth medium, supplemented with 5% (v/v) DMSO, and was stored in liquid

nitrogen vapor phase. To perform the cell culture procedures, the cryovial was removed

from the liquid nitrogen container and immediately placed on dry ice, thawed by contin-

uously agitation in a water bath (37◦C) according to the manufacturer’s protocol. To re-

move permeable cryo-protective agents, the vial contents were transferred to a centrifuge

tube containing 9.0 ml complete growth medium and spun at 1000rpm for 5 minutes.

Subsequently, the cell pellet was resuspended and transferred into a 75 cm2 tissue culture

flask containing 10 ml of complete growth medium and antibiotics (10,000 U/ml peni-

cillin, 10 mg/ml streptomycin, GIBCO, Invitrogen, Karlsruhe). To make the complete

growth medium, a final concentration of 10 % fetal bovine serum (FBS, Gibco, Invitro-

gen) was added to ATCC-formulated Dulbecco’s Modied Eagle’s Medium (DMEM) which

was modified to contain 4 mM L-glutamine, 4500 mg/L glucose, 1 mM sodium pyruvate,

and 1500 mg/L sodium bicarbonate. Cells were incubated in a humidified 95 % air/5

% CO2 incubator, at 37◦C for later subculturing. On the following day, adherence and
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viability of cells were observed under the inverted microscope. Old culture medium was

discarded and fresh culture medium was added. Thereafter the medium was changed

every three days. When cells reached approximately 70 percent of confluence, they were

washed with DPBS, (DPBS, GIBCO Invitrogen, Karlsruhe), and treated with 2ml 0.25%

(w/v) Trypsin-EDTA (ethylene diaminetetraacetic acid), (2.5g/L of Trypsin, 0.38g/L of

EDTA·4Na, Invitrogen) for 3-5 minutes until the cell layer was dispersed, adding growth

medium to stop the trypsin action. Once the cells were fully detached from the flask

surface, the suspension was transferred to a 15ml Falcon tube. Suspensions were cen-

trifuged for 5 mins at 1000 rpm in a centrifuge (Sorvall. Langenselbold). Supernatant

was then aspirated, carefully avoiding the cell pellet. Pellets were resuspended in 3 ml

cell culture medium and were then transferred into new tissue culture asks in a typical

ratio of 1:3. 9 ml cell culture medium was added to each of 3 x T75 cm2 flasks before the

cell suspension was added, 1 ml to each. Cells were used for experiments between the 3rd

and 6th culture passage. Cells were seeded onto the titanium disks in 48-well cell culture

multiwell plates (Greiner bio-one).

Cell counting using a counting chamber

The cell counting measurement was made using a Neubauer Hemocytometer. The

Hemocytometer was rinsed with water, and then ethonal (70%) and wiped clean with

kimwipes. Equal volumes of 0.4% trypan blue solution and well mixed cell suspension

were mixed thoroughly and allowed to stand for 5 minutes. Trypan blue is a vital dye

which can enter dead cells and stain them blue, while viable cells don’t take up trypan

blue, remain unstained. The chamber of the hemocytometer was filled with the well

suspended mixture of cells by capillary action. The total number of cells in the four 1

mm outer squares (Figure 2.1) was counted under a standard microscopy and averaged.

Each counting chamber of the hemocytometer is etched in a total surface area of 9 mm2
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and is divided into nine 1.0 mm squares. A cover slip is supported over the chambers

therefore the volume of each square is 0.0001 ml (length x width x height; i.e. 1 mm x 1

mm x 0.1 mm). Since 1 cm3 is equivalent to 1 ml, the viable cell concentration per ml

will be the average count per square x dilution factor x 104 .

The full grid on a hemocytometer contains nine squares, each of which is 1 mm square. The central
counting area of the hemocytometer contains 25 large squares and each large square has 16 smaller
squares. Viable Cells /ml = Average viable cell count per square x Dilution Factor x 104.

Figure 2.1: The full grid on a hemocytometer

Cryopreservation of cells

In order to store the cultured cells at early passage for future studies, it is impor-

tant to maintain them frozen in liquid nitrogen. The confluent gingival fibroblasts were

trypsinzed for 3-5 minutes, culture medium was added into tissue culture flask to stop the

enzyme treatment. Cell suspension was transferred into 15ml Falcon tube and centrifuged

at 1000rpm (Sorvall. Langenselbold) for 5 min. Cell pellet were then resuspended in cold
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freezing media (10% DMSO, 90% FCS). Cell suspension (1 ml) was placed in a cryogenic

tube, labeled and stored first for 30 min at 4◦C , then for 2 h at -20◦C , and finally

overnight at -80◦C . On next day, cells were placed in a liquid nitrogen container.

2.4 Cell visualization assessment by CLSM

2.4.1 Confocal Laser Scanning Microscopy

The Confocal Laser Scanning Microscopy (CLSM) has the advantage of gaining opti-

cal images with a high resolution and it is widely used in biological research. The CLSM

Leica TCS SP2 (Leica Microsystem, Mannheim, Germany) confocal system is equipped

with three independent laser, allowing excitation of a broad range of spectra with the

wavelength from 488nm to 633nm, including a blue Ar-laser with a wavelength of 488nm

and 514nm, a green Helium/Neon (He/Ne) laser with a wavelength of 543nm and 594nm

and a Red He/Ne laser with a wavelength of 633nm. A dye or fluorochrome that is excited

by one of these wavelengths can be detected with fluoresence or reflection mode.

Calcein-AM

Calcein-AM (Molecular Probes Invitrogen, product information MAN0001771) is a

cell permeant dye that can be used to determine cell viability and morphology. The

aceto-methoxy derivate of calcein (Fig 2.2 calcein) can be transported through the cel-

lular membrane into live cells, once inside the cells, intracellular esterases remove the

acetomethoxy group and the molecule exhibits strong green fluorescence. As dead cells

lack active esterases, only living cells are labeled. Calcein is optimally excited at 488 nm

and has a peak emission of 515 nm.
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Figure 2.2: The chemical structure of calcein

To evaluate the morphology of the cells, human gingival fibroblasts were seeded onto

3 different titanium disks at a cell density of 0.5x104cells/disk in 48-well cell culture

mutiwell plates, cell suspension was applied carefully on each sample and the cells were

allowed to attach for 2 h to the underlying substrate, then 1 ml of culture medium was

also added. Calcein-AM (1 mg solid) was resuspended in 1000ml DMSO to make a 1

mM stock solution, from which 12ml was drawn and mixed into 6ml growth medium to

make a final working concentration of 2 µM/L. Prior to CLSM analysis, the cells were

incubated in 2 µM/L Calcein-AM at 37◦C for 60 min and rinsed with DPBS for 3 times,

were then transferred to a petri dish filled with 5-7ml growth medium. Images were

obtained utilizing an Leica CLSM software, The objective lenses used were: x10 with 0.3

NA, x40 with 0.8 NA water immersion lens. A 488 nm Argon laser line was used for

excitation of Calcein-AM with an 515 nm emission filter. A 633 nm laser line was used

in order to visualize the underlying titanium surfaces.The cell morphology on 3 different

Titanium surfaces were investigated after 1, 3, 7, 11, 18, 24 and 30 days of incubation.

At each time point, each group contained three disks, 63 disks overall were tested for this

assessment.
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2.5 Cell morphology assessment by SEM

Gingival fibroblast morphology and interaction with 3 titanium surfaces were assessed

by scanning electron microscope (SEM). The cells were seeded onto 3 different titanium

disks at a cell density of 0.5x104 cells/well in 48-well cell culture mutiwell plates. Culture

medium was changed every 3-4 days for the duration of experiment. The cells and disks

were removed from culture at 3, 11 and 18 days of incubation to study cell-materials

interactions under SEM.At each time point, each group contained three disks, 27 disks

overall were tested for this assessment.

There are six major steps to prepare a biological SEM specimen: primary fixation, wash-

ing, secondary fixation, rinsing, dehydration, drying. The main goal of fixation is to

keep the structure of the specimen with minimal change from its living state, so it can

resist the effects of subsequent preparing procedures and the exposure to the electron

beam. The primary fixative is Karnovsky‘s fixative (2.5 % glutaraldehyde and 2 % of

paraformaldehyde, in 0.1 M phosphate buffer pH 7.4), which is most widely used fixative

for electron microscope. Formaldehyde and glutaraldehyde are cross-linking agents fixa-

tives, which act by creating covalent chemical bonds between proteins in tissue (Bozzola

2001),herefore, are very effective fixatives for proteins and nucleic acids. After primary

fixation, the specimen were washed in the same buffer as used in the primary fixation

process. Dehydration is the process of removing water from cells. The water is generally

replaced with ethanol or acetone. Usually 25 % ethanol is the first solvent in the dehy-

dration procedure, followed by 50 %, 70 %, 95 % and 100 % ethanol. Cell morphology of

the in vitro culture was visualized with a scanning electron microscope (SEM).

At the end of each culture period, the medium was removed from the wells, cells on

titanium disks were rinsed with 0.1 M phosphate buffered saline (PBS). Samples were

subsequently fixed with 2 % paraformaldehyde (Polysciences, Eppelheim, Germany)/2.5
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% glutaraldehyde (Sigma-Aldrich, Munich, Germany) in 0.1M sodium cacodylate buffer

overnight at 4◦C . Following three rinses in 0.1 M cacodylate buffer, the fixed sample was

then again rinsed three times in 0.1 M cacodylate and dehydrated through an ethanol

series (25 %, 50 %, 70 %, 95 % and 100 % three times). Finally hexamethyldisilazane

(HMDS) was used for complete dehydration of the samples. Samples were immersed in

HMDS in glass vials. After a soak time of 30 minutes, the HMDS was removed, the cover

of specimens was left over night which allows to evaporate HMDS in a fume hood. Dried

samples were then mounted on aluminum stubs, cells on the disks were observed by a

scanning electron microscopy (Quanta 200 FEG, FEI Company, Eindhoven, Netherland).

Images were recorded at 150x, 400x and 800x magnification.

2.6 Cell proliferation using Alamar Blue assay

Alamar Blue (AB) is a water-soluble redox dye which has been used for quantifying

in vitro viability and proliferation of various mammalian cells (Fields & Lancaster 1993).

Due to its stability and safety, it allows for continuous real time and repeated monitoring

of cell proliferation. The assay is based on the ability of viable, metabolically active

cells to reduce resazurin to resorufin (Vega-Avila & Pugsley 2011). When added to cell

cultures, the oxidized form of the AB enters the cytosol and is converted to the reduced

form by mitochondrial enzyme activity by accepting electrons from NADPH, FADH,

FMNH, NADH as well as from numerous cytochromes (Al-Nasiry et al., 2007). The

reduction related to cell growth causes the AB to be converted from the oxidized (non-

fluorescent) blue form to the reduced (fluorescent) red form. This color change can be

monitored by absorbance (λ ex=570 nm and λ em=630 nm).

Briefly, cells were seeded onto titanium disks at 5,000 cells per well with 1 ml growth

medium in 48-well cell culture multiwell plates (Becton Dickinson, , Germany). Cell
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Alamar Blue assay is based on the ability of viable, metabolically active cells to reduce resazurin to
resorufin.

Figure 2.3: Alamar Blue assay

proliferation was tested at 3, 7 and 14 days after incubation. At each specific culture

time point, the growth medium was discarded and washed with PBS twice. Each well was

filled with 0.5 ml AlamarBlue (Invitrogen, Life Technologies, Darmstadt, Germany)/fresh

culture medium at a ratio of 1 : 9 and incubated at 37◦C for 4 hours. As a negative

control, AB was added to the medium without cells. 300µl of the solution from each

well was transferred to a clear bottomed 96-well tissue culture plate (100µl/well). The

absorbance of test and control wells was measured with a standard spectrophotometer

(Thermo Scientific Multiskan GO) at a wavelength of 570 nm and 630 nm. The results

were obtained from three separate experiments.At each time point, each group contained

six disks, 18 disks were tested for this assessment. The remaining AB/culture medium

solution in 48-well cell culture plates was discarded and fresh culture medium was added

for the continuous cell growth. The number of viable cells correlates with the magnitude

of dye reduction and is expressed as percentage of AB reduction Ahmed et al. (1994),

Goegan et al. (1995). The calculation of the percentage reduction of AB (%AB reduction)

is as follows according to the manufacturer’s protocol:

%ABreduction =
(O2 × A1) − (O1 × A2)

(R1 ×N2)
× 100% (2.1)
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In the formula, O1 and O2 are constants representing molar extinction coefficient (E) of

oxidized AlamarBlue (Blue) at 570 nm and 630 nm, respectively ; R1 and R2 are E of

reduced AlamarBlue at 570 nm and 630 nm; A1 and A2 represent the absorbance of test

wells at 570 and 630 nm; N1 and N2 represent the absorbance of the negative control well

(medium plus AlamarBlue but no cells) at 570 nm and 630nm.

2.7 Fluorescence Activated Cell Sorting (FACS) anal-

ysis

Flow cytometry or FACS is a technology that simultaneously measures and then

analyzes multiple physical characteristics of single particles, usually cells, as they flow in

a fluid stream through a beam of light. It measures a particle’s or cell’s: relative size,

granularity or internal complexity and relative fluorescence intensity (BD Biosciences,

Manual Part Number: 11-11032-01).

The cell surface expression of integrins subunit α5β1 on human gingival fibroblasts grown

on the titanium surfaces was estimated by direct immunofluorescence using flow cytomet-

ric techniques.

Briefly, human gingival fibroblasts were placed on titanium surfaces at a density of

5,000/well and cultured up to 14 days and harvested by treatment with trypsin/PBS

for 5 minutes at room temperature. After the cells had been detached from the disks, 2

ml of serum-free medium was added and the cells were pelleted. The cells were resus-

pended in PBS. Sedimented cells were incubated with 20µl of monoclonal anti-integrin

antibodies against β1(CD29), α5(CD49e) (all from BD Biosciences) or for control with

mouse IgG (BD Biosciences) for 30 min at room temperature while being protected from

light. The cells were washed again 3 times with PBS and resuspended in 300µl of the
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washing buffer. Finally, the surface expression of α5β1 was measured on a FACS Calibur

(Becton Dickinson, Heidelberg, Germany) with CELLQUEST software (BD Bioscience).

Nonspecific IgGs of the same isotype were used as a negative control. Results were re-

ported as relative fluorescence intensity, as compared to the negative control. Each group

contained six disks, 18 disks were tested for this assessment. At least 10,000 cells were

analyzed for each group.

2.8 Immunocytochemistry

Immunofluorescence is a method used to localize specific proteins in cells by using

fluorescent-labeled monoclonal antibodies which bind to the epitope of antigens specifi-

cally. Therefore it allows the visualization of the target cellular protein with a fluorescence

microscope.

There are two main types of immunofluorescence techniques: direct immunofluorescence

staining uses a single direct antibody labeled with a fluorophore; indirect immunofloures-

cence uses an unlabelled primary antibody which binds to an antigen, and a dye-labeled

secondary antibody targets the FC end of the primary antibody. Multiple secondary

antibodies bind to a single primary antibody make the signal amplified compare to direct

immunofluorescence.

Multiple immunofluorescence staining can be achieved by using different fluorescent dyes

to label two or more antigens in cells simultaneously. This method in combination with

CLSM is a powerful strategy if exitation and emmision bandwidth of spectra of the

fluorophores do not interfere with each other.

For immunofluorescent labeling of the actin cytoskeleton and the focal adhesion protein

vinculin, the 3 different titanium disks were placed into 48-well Falcon culture plates
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modified according to (Sawant, Kshar et al. 2014).

Figure 2.4: The principle of immunofluorescence

(Becton Dickinson, Heidelberg, Germany) and carefully covered with the gingival fibrob-

lasts at the cell density of 0.5x104 cells/well. The cells were allowed to settle for 2 h in

the incubator at 37◦C , after which 1 ml of complete medium was added. The cells were

incubated for 24 and 30 days.

These cells were subjected to fluorescence staining for vinculin and actin filaments. All

antibodies and blocking solutions were purchased from Invitrogen. After the indicated

time periods, the cells were washed once with 37◦C Phenol Red-free DMEM (with FCS)

and fixed using pre-warmed formaldehyde (4% in Phenol Red-free DMEM, + L-glutamine,

no FCS). The fixed cells were washed three times (5 min each) with PBS and incubated

with 0.1% Triton R© X-100 (Sigma-Aldrich, Munich, Germany) in PBS for 30 min at RT to

permeabilize the cells. Then the cells were treated with the blocking buffer (3% Bovine

serum albumin, BSA, in PBS) for 30 min at RT. Subsequent to the blocking procedure

the cells were incubated with the primary antibody (anti-vinculin, 1:100 in 3% BSA

in PBS) for 1h at RT. To remove the primary antibody, cells were washed three times

with PBS for 5 min at RT and incubated with the secondary antibody Alexa Fluor
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546 donkey anti-mouse IgG (1:200 in 3% BSA in PBS) for 1.5 h at RT. For a nuclear

counterstaining, the cells then were washed three times with PBS for 5 min at RT and

incubated with 10 µM TO-PRO R©-3 solution (Invitrogen) (300µl/well) for 40min at RT.

For labeling F–actin in adherent cells grown on titanium disks, 5µl MFP 488 phalloidin

methanolic stock solution (MoBiTec GmbH, Germany) was diluted in 200µl 3% BSA

in PBS for each disk to be stained after further washing steps with PBS. The cells then

were incubated with phalloidin solution (200µl/well) for 20 min at RT. Phalloidin, a toxin

from the toadstool “Death Cap” (Amanita phalloides) that binds actin (Lengsfeld et al.

1974), and it is conjugated with fluorescence dye MFP 488. Following this, the stained

cells were observed and images of the stained cells were obtained using a confocal laser

scanning microscopy Leica TCS SP2(Leica Microsystem, Mannheim, Germany).

Phalloidin contains an unusual thioether bridge between a cysteine and tryptophan residue that forms
an inner ring structure, it binds to actin filaments much more tightly than to actin monomers, leading to
a decrease in the rate constant for the dissociation of actin subunits from filament ends, which essentially
stabilizes actin filaments through the prevention of filament depolymerization (Cooper 1987).

Figure 2.5: Chemical structure of phalloidin
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2.8.1 Confocal imaging

The fluorescent labeling of the actin cytoskeleton, the focal adhesion protein vinculin

and the nuclear was examined using a Leica TCS SP2 confocal system. It was equipped

with an argon laser (specific wavelengths at 488 nm) to excite MFP 488 phalloidin green

dyes, one helium neon laser (543 nm) to excite Alexa Fluor 546 red dyes and also there is

a third helium neon laser fluorescence channel at 633 nm excitation for nucleus staining

to excite TO-PRO R©-3. The system including a Leica TCS SP2 microscope equipped

with filters for the detection of related dyes. The images were obtained with a zoom

factor of 1.0 and a field resolution of 1024×1024 pixels using the CLSM software (Leica).

The pinhole value which represents the thickness of the optical slide through the cell was

always kept constant for all confocal channels during detection of the identical cell.



Chapter 3

Results

3.1 Surfaces Characterization

SEM and CLSM evaluation revealed marked topographic differences among Ma-

chined, Osseotite and Nanotite surfaces.

3.1.1 SEM Imaging

Figure 3.1-3.4 show representative scanning electron micrographs of Machined, Os-

seotite and Nanotite surfaces. Obvious difference in the fine structure was found among

the three Ti surfaces at low and high magnification of microscopic level.

At low magnification (1000 x), the surface of Machined Ti disks is homogeneous and

smoothest among the three experimental groups, it exhibited parallel grooves resulting

from the machining process; the Osseotite surface exhibited many micropits and it was

rougher in comparison with the Nanotite titanium surface.

At higher magnification (5000 x), the topographical features of the machined surfaces

are similar, there are a few irregularities, which possibly due to mechanical processing

resulted in the plastic deformation; a greater number of micropits structures were shown

on Osseotite surface, which forms the appearance of open pores and are the typical
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3.1-a) Machined Ti
surface

3.1-b) Osseotite Ti
surface

3.1-c) Nanotite Ti
surface

Figure 3.1: Representative SEM images of Machined (A), Osseotite (B) and Nanotite
(C) Ti surfaces. (magnification 1000, FE-SEM Supra 55vp, Carl Zeiss)
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3.2-a) Machined Ti
surface

3.2-b) Osseotite Ti
surface

3.2-c) Nanotite Ti
surface

Figure 3.2: Representative SEM images of Machined (A), Osseotite (B) and Nanotite
(C) Ti surfaces. (magnification 5000, FE-SEM Supra 55vp, Carl Zeiss)
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3.3-a) Machined Ti
surface

3.3-b) Osseotite Ti
surface

3.3-c) Nanotite Ti
surface

Figure 3.3: Representative SEM images of Machined (A), Osseotite (B) and Nanotite
(C) Ti surfaces. (magnification 10000, FE-SEM Supra 55vp, Carl Zeiss)
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3.4-a) Machined Ti
surface

3.4-b) Osseotite Ti
surface

3.4-c) Nanotite Ti
surface

Figure 3.4: Representative SEM images of Machined (A), Osseotite (B) and Nanotite
(C) Ti surfaces. (magnification 20000, FE-SEM Supra 55vp, Carl Zeiss)



3.1 Surfaces Characterization 37

features produced by immersing the titanium surfaces in a mixture of concentrated HCl

and H2SO4; the Nanotite surface showed similar underlayer structures with Osseotite

surface, while even distributed fine particles are deposited densely onto the roughened

surface.

At high magnifications (10000 x and 20000 x), the parallel grooves and the structure

of the plastic deformed layer are obvious on the Machined surface; The Osseotite group

uses an dual acid-etching process to produce irregular pits throughout the surface, it is

mainly characterized by prominent peaks and valleys, some of them with well-defined

contours; there are some micro particles covered on the surface, which may be caused by

the participation of acid treatment. The Nanotite surface adds a thin layer of calcium

phosphate crystals between 20-100 nm in length over the Osseotite surface, (Nanotite

implant brochure BioMET 3i) showed nano scale particles covered on the surface, the

roughness was reduced compared to Osseotite.

CLSM Imaging

The results of CLSM observation are shown in Figure 3.5 and 3.6; the machined

surface reveals a regular planar surface, with parallel grooves caused by the machining

process. The Osseotite disk shows an increase in the surface roughness compared to

Nanotite disk.

After image processing and filtering by FFT, which are shown in Figure 3.7 and 3.8,

the roughness values for Machined, Osseotite and Nanotite surfaces were calculated and

are shown as follows: 11.614; 13.649; 12.530. Therefore, the roughness of three surfaces

increased as follow: Machined < Nanotite < Osseotite.

To determine the average surface roughness (Ra) of three experimental dental implant

surfaces from CLSM images, ImageJ programm was used for image processing. Since the
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3.5-a) Machined Ti surface 3.5-b) Osseotite Ti surface 3.5-c) Nanotite Ti surface

Figure 3.5: Representative CLSM images of Machined (A), Osseotite (B) and Nanotite
(C) Ti surfaces. (magnification 10X,)

3.6-a) Machined Ti surface 3.6-b) Osseotite Ti surface 3.6-c) Nanotite Ti surface

Figure 3.6: Representative CLSM images of Machined (A), Osseotite (B) and Nanotite
(C) Ti surfaces. (magnification 50X,)
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3.7-a) Machined Ti surface 3.7-b) Osseotite Ti surface 3.7-c) Nanotite Ti surface

The height map images of Machined (a), Osseotite (b) and Nanotite (c) Ti surfaces; a significant difference
in the surface roughness was found between Osseotite surface and Nanotite surface.

Figure 3.7: The heightmap images of titanium surfaces

3.8-a) Machined Ti surface 3.8-b) Osseotite Ti surface 3.8-c) Nanotite Ti surface

The Fast Fourier Transform images of Machined (a), Osseotite (b) and Nanotite (c) Ti surfaces; visible
proofs for the patterns of grooves were found on the FFT image of Machined surface since low frequency
components values are close to the centre, while the high-frequency components are far from the centre.
The FFT images of Osseotite and Nanotite titanium surfaces showed no visible surface patterns because
the original images contain no patterns.

Figure 3.8: The Fast Fourier Transform images of titanium surfaces
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Machined implant surface is polished mechanically, characterized by regular scratches

mostly oriented along the machining direction, it has to be separated into roughness and

waviness components. Moreover, two filters were used to filter the resulted heightmap

images. Median filter was selected to reduce some noise on the image, it was considered

better than mean filter or rolling ball. A FFT filter is used to separate the Machined

surface and to show the different components of the surface. The Fourier transform of

an image is symmetric to the centre, the centre of the FFT displays the image uniform

component. From the FFT image of Machined surface, we can observe that low-frequency

components (roughness) values, which are close to the centre, while the high-frequency

components (waviness) are far from the centre. From the FFT images of Osseotite and

Nanotite surface, we can only see the low-frequency components (roughness) values since

they are even.The heightmap images of roughness (left) and waviness (right) component of

Machined surface were shown in Figure 3.9. Thereafter the roughness values for Machined

surface was calculated from the roughness component image.

After image processing and filtering by FFT, the average surface roughness (Ra) values

for Machined, Osseotite and Nanotite surfaces were calculated and shown as follows: 1.16

µm; 1.36 µm; 1.25 µm. Therefore, the roughness of the three different surfaces increased

as follow: Machined <Nanotite <Osseotite.

3.1.2 Confocal examination of cell morphology

The observations of cell morphology on 3 different Titanium surfaces after 1, 3, 7,

11, 18, 24 and 30 days of incubation are shown in Figure 3.10-3.23 . Cells stained with

fluorescein Calcein-AM were photographed with CLSM, the recordings were performed

with 10-fold and 40-fold magnification at a excitation wavelength of 488 nm. The imaging

of the titanium samples was obtained by reflection of the 633 nm laser line. The selected
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3.9-a) Roughness 3.9-b) Waviness

Figure 3.9: The heightmap images of roughness and waviness component of the Machined
surface

images are representative of the all investigated surfaces. Fields were selected randomly;

the only criterion for cell selection was that the cell was not in contact with other cells.

The CLSM pictures showed that: at day 1, the cells on machied surface were long and

start to contact with neighbouring cells; they grew along the the circular pattern of

grooves on the disks; on the Osseotite surfaces, the shape of fibroblasts were irregular, a

few filopodias were produced at the cell edges and towards the neighbouring cells; on the

Nanotite surfaces, the shapes of cells are round or dendritic, they looked relative isolated.

As the culture period increased, the size, number of the cells as well as the number of

filopodias are growing over time. From day 1 to day 7, the fibroblasts on the Nanotite

surfaces were shorter and fewer than the cells on Osseitite surfaces; from day 11, this

difference was not obvious. At day 18, most cells showed a elongated morphology on

all surfaces; although some cells remained round on the surface of Nanotite whilst the

cells on Osseitite were more spread and flat. This trend was kept at day 24. At day 30,

human gingival fibroblasts formed a single monolayer of cells on Machined surfaces; it was

additionally found that after a culture period of 30 days the cells on Osseotite surfaces
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were more spread and formed a higher surface coverage than on Nanotite surfaces.

3.2 SEM imaging of cell morphology

A scanning electron microscope (Quanta 200 FEG SEM) using back scattered elec-

trons, 2KV of voltage was used to acquire images of cells grown on three different titanium

disks at 3, 11 and 18 days.

SEM observations showed that cells were able to adhere to all three different surfaces

at the time points tested. At day 3, it is obvious that more cells were observed on

Machined and Osseotite surfaces compared to Nanotite surfaces. Cells with greater extent

of spreading and more filopodias were detected on Machined discs. After eleven days of

culture, cell density was higher on all the groups. The cells attaching to the Machined

surfaces elongated along the turning patters and produce prominent filopodias. The

fibroblasts on Osseotite and Nanotite were unevenly distributed; most of the cells on

both surfaces showed spindle, round or longer shapes, they are still relative isolated. By

18 days of incubation, the cells on Machined surfaces were on the process of becoming

confluent, they spread quite well and covered a big area of the surface. In case of the

cells cultured on Osseotite and Nanotite surfaces, in generally, they appeared larger, more

spread out and formed cell-cell contacts; the cells showed a similar shape.
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3.10-a) Mathines Ti surface

3.10-b) Osseotite Ti surface

3.10-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) tita-
nium surfaces after 1-day incubation period. (magnification 10X,) The scale bar corresponds to a length
of 300 µm.

Figure 3.10: Cell morphology of gingival fibroblasts after one day incubation A



3. Results 44

3.11-a) Mathines Ti surface

3.11-b) Osseotite Ti surface

3.11-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) tita-
nium surfaces after 1-day incubation period. (magnification 40X,) The scale bar corresponds to a length
of 300 µm.

Figure 3.11: Cell morphology of gingival fibroblasts after one day incubation B
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3.12-a) Mathines Ti surface

3.12-b) Osseotite Ti surface

3.12-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) tita-
nium surfaces after 3-day incubation period. (magnification 10X,) The scale bar corresponds to a length
of 300 µm.

Figure 3.12: Cell morphology of gingival fibroblasts after three days incubation A
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3.13-a) Mathines Ti surface

3.13-b) Osseotite Ti surface

3.13-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) tita-
nium surfaces after 3-day incubation period. (magnification 40X,) The scale bar corresponds to a length
of 300 µm.

Figure 3.13: Cell morphology of gingival fibroblasts after three days incubation B
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3.14-a) Mathines Ti surface

3.14-b) Osseotite Ti surface

3.14-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) tita-
nium surfaces after 7-day incubation period. (magnification 10X,) The scale bar corresponds to a length
of 300 µm.

Figure 3.14: Cell morphology of gingival fibroblasts after seven days incubation A
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3.15-a) Mathines Ti surface

3.15-b) Osseotite Ti surface

3.15-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) tita-
nium surfaces after 7-day incubation period. (magnification 40X,) The scale bar corresponds to a length
of 300 µm.

Figure 3.15: Cell morphology of gingival fibroblasts after seven days incubation B
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3.16-a) Mathines Ti surface

3.16-b) Osseotite Ti surface

3.16-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) ti-
tanium surfaces after 11-day incubation period. (magnification 10X,) The scale bar corresponds to a
length of 300 µm.

Figure 3.16: Cell morphology of gingival fibroblasts after 11 days incubation A
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3.17-a) Mathines Ti surface

3.17-b) Osseotite Ti surface

3.17-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) ti-
tanium surfaces after 11-day incubation period. (magnification 40X,) The scale bar corresponds to a
length of 300 µm.

Figure 3.17: Cell morphology of gingival fibroblasts after 11 days incubation B
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3.18-a) Mathines Ti surface

3.18-b) Osseotite Ti surface

3.18-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) ti-
tanium surfaces after 18-day incubation period. (magnification 10X,) The scale bar corresponds to a
length of 300 µm.

Figure 3.18: Cell morphology of gingival fibroblasts after 18 days incubation A
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3.19-a) Mathines Ti surface

3.19-b) Osseotite Ti surface

3.19-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) ti-
tanium surfaces after 18-day incubation period. (magnification 40X,) The scale bar corresponds to a
length of 300 µm.

Figure 3.19: Cell morphology of gingival fibroblasts after 18 days incubation B
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3.20-a) Mathines Ti surface

3.20-b) Osseotite Ti surface

3.20-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) ti-
tanium surfaces after 24-day incubation period. (magnification 10X,) The scale bar corresponds to a
length of 300 µm.

Figure 3.20: Cell morphology of gingival fibroblasts after 24 days incubation A



3. Results 54

3.21-a) Mathines Ti surface

3.21-b) Osseotite Ti surface

3.21-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) ti-
tanium surfaces after 24-day incubation period. (magnification 40X,) The scale bar corresponds to a
length of 300 µm.

Figure 3.21: Cell morphology of gingival fibroblasts after 24 days incubation B
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3.22-a) Mathines Ti surface

3.22-b) Osseotite Ti surface

3.22-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) ti-
tanium surfaces after 30-day incubation period. (magnification 10X,) The scale bar corresponds to a
length of 300 µm.

Figure 3.22: Cell morphology of gingival fibroblasts after one month incubation A
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3.23-a) Mathines Ti surface

3.23-b) Osseotite Ti surface

3.23-c) Nanotite Ti surface

Cell morphology of human gingival fibroblasts on Maschined (A), Osseotite (B) and Nanotite (C) ti-
tanium surfaces after 30-day incubation period. (magnification 40X,) The scale bar corresponds to a
length of 300 µm.

Figure 3.23: Cell morphology of gingival fibroblasts after one month incubation B



3.2 SEM imaging of cell morphology 57

Cell morphology of human gingival fibroblasts on Machined titanium surfaces after 3-day incubation
period. SEM was used to visualize HGF on the surface at an original magnification 150x (A), bar scale=
500µm; at an original magnification 400x (B), bar scale= 300µm and at an original magnification 800x
(A), bar scale= 100µm.

Figure 3.24: Cell morphology of gingival fibroblasts after three days incubation (SEM)

Cell morphology of human gingival fibroblasts on Osseotite titanium surfaces after 3-day incubation
period. SEM was used to visualize HGF on the surface at an original magnification 150x (A), bar scale=
500µm; at an original magnification 400x (B), bar scale= 300µm and at an original magnification 800x
(A), bar scale= 100µm.

Figure 3.25: Cell morphology of gingival fibroblasts after three days incubation (SEM)
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Cell morphology of human gingival fibroblasts on Nanotite titanium surfaces after 3-day incubation
period. SEM was used to visualize HGF on the surface at an original magnification 150x (A), bar scale=
500µm; at an original magnification 400x (B), bar scale= 300µm and at an original magnification 800x
(A), bar scale= 100µm.

Figure 3.26: Cell morphology of gingival fibroblasts after three days incubation (SEM)

Cell morphology of human gingival fibroblasts on Machined titanium surfaces after 11-day incubation
period. SEM was used to visualize HGF on the surface at an original magnification 150x (A), bar scale=
500µm; at an original magnification 400x (B), bar scale= 300µm and at an original magnification 800x
(A), bar scale= 100µm.

Figure 3.27: Cell morphology of gingival fibroblasts after 11 days incubation (SEM)
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Cell morphology of human gingival fibroblasts on Osseotite titanium surfaces after 11-day incubation
period. SEM was used to visualize HGF on the surface at an original magnification 150x (A), bar scale=
500µm; at an original magnification 400x (B), bar scale= 300µm and at an original magnification 800x
(A), bar scale= 100µm.

Figure 3.28: Cell morphology of gingival fibroblasts after 11 days incubation (SEM)

Cell morphology of human gingival fibroblasts on Nanotite titanium surfaces after 11-day incubation
period. SEM was used to visualize HGF on the surface at an original magnification 150x (A), bar scale=
500µm; at an original magnification 400x (B), bar scale= 300µm and at an original magnification 800x
(A), bar scale= 100µm.

Figure 3.29: Cell morphology of gingival fibroblasts after 11 days incubation (SEM)
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Cell morphology of human gingival fibroblasts on Machined titanium surfaces after 18-day incubation
period. SEM was used to visualize HGF on the surface at an original magnification 150x (A), bar scale=
500µm; at an original magnification 400x (B), bar scale= 300µm and at an original magnification 800x
(A), bar scale= 100µm.

Figure 3.30: Cell morphology of gingival fibroblasts after 18 days incubation (SEM)

Cell morphology of human gingival fibroblasts on Osseotite titanium surfaces after 18-day incubation
period. SEM was used to visualize HGF on the surface at an original magnification 150x (A), bar scale=
500µm; at an original magnification 400x (B), bar scale= 300µm and at an original magnification 800x
(A), bar scale= 100µm.

Figure 3.31: Cell morphology of gingival fibroblasts after 18 days incubation (SEM)
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Cell morphology of human gingival fibroblasts on Nanotite titanium surfaces after 18-day incubation
period. SEM was used to visualize HGF on the surface at an original magnification 150x (A), bar scale=
500µm; at an original magnification 400x (B), bar scale= 300µm and at an original magnification 800x
(A), bar scale= 100µm.

Figure 3.32: Cell morphology of gingival fibroblasts after 18 days incubation (SEM)

3.3 Cell proliferation

In order to measure the cell proliferation, the AlamarBlue assay was performed by

determining the cellular metabolism activity indirectly. AlamarBlue is a non-cytotoxic

assay; the oxidised form of the AlamarBlue reagent is incubated with the cells and then

converted to its reduced form resorufin by mitochondrial enzymes (Nociari et al. 1998).

The extent of Alamar Blue reduction is directly proportional to metabolic activity of the

cells. Each titanium substrate was seeded with 5,000 cells (human gingival fibroblasts),

the proliferation was investigated at 3, 7 and 14 days. To make the results more re-

producible, a total of three independent experiments were performed and averaged. An

online alamarBlue R© colorimetric calculator (provided by the AbD Serotec, USA) was

used for measuring percent reduction and the result was shown in the table

From Figure 3.33, the Almar Blue assay confirmed the metabolic activity of fibroblasts

on all surfaces tested. Enhanced cell attachment and cell metabolism were observed up to
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Cell proliferation assay by Alamar Blue measurement. The amount of Alamar Blue reduction is propor-
tional to metabolic activity of the cells.

Figure 3.33: Cell proliferation assay by Alamar Blue measurement
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14 days from the initial day of seeding on three group substrates. On first day, the results

indicated similar levels of proliferation for the cells on both the Machined and Osseotite

Ti surfaces, while lower cell number was detected on the Nanotite surfaces. At day 7,

the metabolic activity of fibroblasts on Machined and Ossotite surfaces was significantly

higher than that on the Nanotite surfaces. The maximal AlamarBlue reduction was

indicated on machined surfaces. At day 14, the gingival fibroblasts grown on Osseotite

and Nanotite surfaces showed a notable higher proliferation compared to the Machined

surfaces; however, there is no considerable difference on cell proliferation between these

two groups.

3.4 FACS analysis for integrin

Flow cytometry was performed to compare the expression of integrins subunit α5

(CD49e), β1 (CD29) on human gingival fibroblasts on three tested groups at day 14 after

culture.

Figure 3.34 and 3.35 showed the fluorescence intensities of α5 and β1 integrins expressed

on human gingival fibroblasts on three tested groups at day 14 after incubation. We

found that human gingival fibroblasts expressed α5β1 integrins on all disks. Because

the fluorescence intensity increases logarithmically, the median was chosen here for the

analysis of flow cytometry data as it is the mid-point of the population and less influ-

enced by skew and outliers. On Osseotite specimens, the greatest increase in fluorescence

intensities of α5 and β1 integrins expression was observed. In comparison with Machined

surfaces, we found a significant enhancement in fluorescence intensities of α5 and β1

integrins expression on Nanotite surfaces.
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Histogram and statistic data of flow cytometric analysis for the α5 integrin subunits on human gingival
fibroblasts on Machined, Osseotite and Nanotite titanium surfaces after 14-day incubation period.

Figure 3.34: Flow cytometric analysis for the α5 integrin subunits
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Histogram and statistic data of flow cytometric analysis for the β1 integrin subunits on human gingival
fibroblasts on Machined, Osseotite and Nanotite titanium surfaces after 14-day incubation period.

Figure 3.35: Flow cytometric analysis for the β1 integrin subunits
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3.5 Analysis of actin cytoskeleton and vinculin

Immunofluorescence images (Fig 3.36-3.41) showed the actin cytoskeleton and vin-

culin distribution after 24 and 30 days of culture on three different titanium surfaces. The

expressions of focal adhesion related proteins (actin and vinculin) confirmed the favorable

effect of all tested surfaces.

After a 24-day incubation, the cells spread well on all surfaces. On the Machined surface,

the cells are very flat and big, they form long and straight actin stress fibers parallel

to the grooves; more extended actin stress fibers without a preferential direction and

higher vinculin expression were reported on Osseotite compared to Nanotite samples. On

the Machined and the Osseotite surfaces, vinculin expression was found commonly within

central areas of the cell; On the Nanotite surface, distinct focal contacts localizations were

evident at the cell edges. At day 30, high vinculin expression and a dense network of actin

stress fibers on the human gingival fibroblasts were observed on all tested substrates. The

F-actin distribution was similar on Osseotite and Nanotite surfaces.

Fluorescence micrographs of actin stress fibers (A), vinculin focal contacts (B) and overlay (C) of HGF
on Machined titanium surfaces after 24 days of culture.

Figure 3.36: Fluorescence micrographs on Machined Ti surface after 24 days incubation
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Fluorescence micrographs of actin stress fibers (A), vinculin focal contacts (B) and overlay (C) of HGF
on Osseotite titanium surfaces after 24 days of culture.

Figure 3.37: Fluorescence micrographs on Osseotite Ti surface after 24 days incubation

Fluorescence micrographs of actin stress fibers (A), vinculin focal contacts (B) and overlay (C) of HGF
on Nanotite titanium surfaces after 24 days of culture.

Figure 3.38: Fluorescence micrographs on Nanotite Ti surface after 24 days incubation
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Fluorescence micrographs of actin stress fibers (A), vinculin focal contacts (B) and overlay (C) of HGF
on Machined titanium surfaces after 30 days of culture.

Figure 3.39: Fluorescence micrographs on Machined Ti surface after 30 days incubation

Fluorescence micrographs of actin stress fibers (A), vinculin focal contacts (B) and overlay (C) of HGF
on Osseotite titanium surfaces after 30 days of culture.

Figure 3.40: Fluorescence micrographs on Osseotite Ti surface after 30 days incubation
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Fluorescence micrographs of actin stress fibers (A), vinculin focal contacts (B) and overlay (C) of HGF
on Nanotite titanium surfaces after 30 days of culture.

Figure 3.41: Fluorescence micrographs on Nanotite Ti surface after 30 days incubation
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Discussion

The surface properties of dental implant play a critical role in the tissue responses

and can predict its ultimate longevity. Since rapid progress was made in the field of

nanotechnology, new materials were developed aim to enhance the overall performance

in dental implant treatment. Even though some dental implants have been in use in

clinics for some time, the biological responses to these implant materials are inadequately

documented. The aim of this study was to provide some information in the reaction

between a nanostructured implant surface and soft tissue interface, which provides better

understanding for improving next generation of dental implants.

The basic goal of this work, to show how human gingival fibroblasts interact with three

different titanium surfaces and to depict the cell morphology and the distribution of fo-

cal adhesions on titanium disks through electron microscopic methods. Three types of

titanium surfaces were presented to an in vitro cell culture and compared. Further, the

surface topographic features of three different titanium disks were compared by using

techniques including SEM and CLSM. However, in cell focal adhesion investigation, due

to the small labeling density of fluorescence-labeled vinculin molecules, it was difficult

to make a quantitative analysis and comparision between different groups. But it was

possible to represent the localization of focal adhesions with the utilization of immunoflu-

orescence. Furthermore, the expression of α5β1 integrins on human gingival fibroblasts

on three tested groups was compared at 14 day after incubation.
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4.1 Characterization of Osseotite and Nanotite sur-

faces

In this study, the dual acid-etching and nanometer scale CaP coated titanium sur-

faces: Osseotite and Nanotite were investigated. Both of them are manufactured by 3i

(Palm Beach Gardens, FL) and used as implant & abutment materials. Osseotite im-

plant is desirable as a dental implant material since it was proved to have the capacity to

speed up the bone healing process and form a tight bone contact (Lazzara et al. 1999).

A number of clinical studies have been made to confirm the long-term performance of

Osseotite implant (Gaucher et al. 2001, Sullivan et al. 2001, Testori et al. 2002). In order

to improve the bone/implant interface and get rapid osseointegration, many efforts have

been made in biomedical applications. Coating the titanium surface with hydroxyapatite

(HA) is a technique in this field. There are various coating methods for calcium phos-

phate; among them, Plasma spraying and sputtering are two major techniques. Recently,

a patented coating technique (Berckmans et al. n.d.), named Discrete Crystalline Deposi-

tion (DCDTM), which used nanometer-scale, ultra small particles of Crystalline Calcium

Phosphate (CaP) to suspend in the solution, these particles are then results in discrete

crystal deposits of 20-100 nanometers on the Osseotite implant surface (Nanotite implant

brochure BioMET 3i). Many reports indicate that the shear strength of CaP coatings

obtained by current coating methods is not enough for their attachment to titanium al-

loys (Whitehead et al. 1993, Yang et al. 2008) and implant failures have been reported.

While the DCD method can get better attachment to implant surfaces than traditional

HA coatings, thus lead an improvement on the rate and extent of osseointegration.

According to the manufacture, a dual thermo-etching is performed to produce the Os-

seotite surfaces (Beaty 1997); that is, the titanium surface was successively immersed in

a 15% HF bath to remove the native titanium oxide layer and then etched in a mixture
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of H2SO4/HCl acids (ratio of 6:1), and heated at 60–80◦C for 3–10 min to create the sur-

face texture. We can find from the SEM images that the Osseotite surfaces were mainly

characterized by micro sharp pits, which were obtained by dual acid etching process and

these strucures are noticeable when they are viewed at high magnification (20000 x).

Etching with strong acids such as HCl, H2SO4, HF and HNO3 is a common method to

produce a rough titanium surface. The concentration of the acid, the etching temperature

condition and the treatment time may decide the shape of pits; the surface roughness

increased as the etching time is prolonged (Zareidoost et al. 2012). For example: pickling

with HF/H2SO4 results in wide and rounded pits on titanium surfaces, while etching

with HCl or HCl/H2SO4 obtained relatively sharp pits (Szmukler-Moncler et al. 2004).

The results showed that such treatment removes the grooves produced by the polishing

process and created a new surface texture with randomly distributed micro sharp pits,

making the surface area enlarged. The Nanotite surface was produced by adding a thin

layer of calcium phosphate crystals between 20-100 nm in length over the textured sur-

face, SEM pictures showed that small nano particles were mostly evenly covered on the

surface, the treatment results in a topographic surface alteration on a nano scale, the

roughness of the surface was prominently reduced compared to Osseotite.

4.2 Cell morphology, attachment and proliferation

The cellular reaction is influenced by the surface properties. They include the sur-

face roughness, surface chemical composition, surface wettability and surface topography.

Initial cell attachment to the dental implant surface is one of the most important steps

determining the biocompatibility of biomaterials. In this study, we have chosen human

gingival fibroblast as a model to investigate the in vitro cellular response to the three

different titanium surfaces, because they are the major celluar constituent of of the peri-
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implant fibrous connective tissue. After biomaterials are inserted into the host bone,

human gingival fibroblasts contact the surface of implants in a relatively short time. In

vitro cell culture experiment, the cell morphology varied according to the titanium surface

topography and seeding time. As we observed from the CLSM images: on the first day

after seeding, on the polished surfaces with lowest roughness, fibroblasts were flat, evenly

spread and start to contact with each other; they appeared to grow following the orienta-

tion parallel to the grinding lines; on the Osseotite surfaces, the roughest surface among

the three groups, the shape of fibroblasts were irregular, the cells started to form bridges

with the adjacent cells and the filopodia could also be seen; on the Nanotite surfaces with

intermediate surface roughness, the shape of cells are round or dendritic, they did not

spread well and are relative isolated. Significant increase in cell number and attchment

were detected in all tested surfaces over the incubation time. On each titanium surfaces,

the shape and the size of the gingival fibroblasts varied during the different culture time,

it is postulated that the cells were at the different stages of their cell cycle. At the end

of culture (day 30), the cell number increased on all the implant materials, moreover,

the cells grow on Osseotite surfaces formed a higher surface coverage than on Nanotite

samples. It was demonstrated that the human gingival fibroblasts attached, spread and

proliferated on all these three titanium surfaces with the greatest extension on Machined

surfaces and smallest extension on Nanotite surfaces. These results indicated that sur-

face characteristics can influence the cell grow behavior, such as attachment, spread and

proliferation, especially in the early phase of cell-material interaction.

With regard to surface roughness, several studies have reported that the gingival fibrob-

lasts attached and spread more readily on smooth Ti surfaces compared on rough Ti

surfaces Furuhashi et al. (2012), Mustafa et al. (1998). An in vitro investigation per-

formed by Köunönen et al. (1992) on titanium implants have also demonstrated that

the fibroblasts attach better on electropolished surfaces than on the sandblasted and

acid-etched surfaces. Our finding is in part in agreement with their reported results; Fur-
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thermore, we suggest that Osseotite surface is more favorable to the initial attachment of

gingival fibroblasts than Nanotite surface with greater adhesion cell numbers; it is shown

that a surface with a certain roughness can facilitate the cell adhesion since the Nan-

otite surface has a smaller roughness than Osseotite surfaces. This is consistent with a

recent study, which suggests that fibrosis at the dental implant surface may be prevented

by using abutment materials with an appropriate surface roughness (Kim et al. 2015).

The interaction of cells with the titanium substratum is a very complex process which is

determined by many factors. Based on our findings, the surface wettability and surface

chemistry may also be considered contributing factors in the cell-material interaction in

the current cases. In a previous study, the static contact angle of the three different

titanium surfaces were measured using Sessile Drop method, the authors found that the

machined surface and Osseotite surface were hydrophilic whereas the surface with nano-

CaP (Nanotite) were hydrophobic (Prabhu 2007). Several studies have revealed that

implant surfaces with higher wettability have positive influences on the connective tis-

sue healing with better cell attachment and decreased inflammatory responses (An et al.

2012, Kloss et al. 2011). The data on growth behavior of HGFs cultured on experimental

surfaces showed a significant difference at early culture stage, and this observation seems

to indicate that reduced hydrophilicity may have a negative effect on gingival fibroblasts

response to the Nanotite surfaces. Moreover, the Nanotite surface is designed to alter

the chemical composition by coating nano particles of calcium phosphate, which also

play a possible role in cell attachment and spreading. In fact, an in vitro investigation

by Guy et al. (1993) suggested that fibroblast attachment was greater to titanium than

non-porous or porous hydroxyapatite.

The electron microscopic images revealed the initial cell attchment and behavior as well.

The cells attached quickly on all surfaces after three days of seeding, the cells on Machined

surfaces were more flat, spread well and adapt to the underlying substrate; a reduced

amount of cell-cell contacts were detected on Nanotite surfaces compared to the other
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surfaces, this result is in agreement with the results from CLSM investigations. However,

during the dehydration procedure, the morphology of cells could be altered, which made

the resluts are not completely alike to those from CLSM images. Furthermore, may be

due to the limitation of culture time (18 days), no significant difference on cell shape was

seen between Osseotite and Nanotite surfaces.

Cell proliferation is also an important factor in biocompatibility of dental implants as it

is necessary to provide enough cells to interact with the titanium surface. The results

of the Alamar Blue assay presented a feature of weakest cell proliferation on Nanotite

surfaces after a culture period of 3 and 7 days, the same relationship can be obtained

from the results of CLSM images. However, at day 14, there were more fibroblasts

grown on Osseotite and Nanotite surfaces compared to the Machined surfaces. This

result may reflect the tendency of the fibroblasts grow on Machined surfaces to form

flattened monolayers and reached the confluence thus stop growing, with less cells grown

on them. Recently, A study conducted by Ramaglia et al. (2015) also confirmed that the

etched surface promoted a higher cell proliferation and improved the biological behavior

of HGFs.

4.3 FACS and Immunofluorescence analysis

In the present study, the fluoresence intensity was measured using flow cytometry

to evaluate the expression levels of integrin α5β1. The flow cytometry data analysis

showed that, after two weeks of incubation, the expression of integrins subunit α5β1 in

human gingival fibroblasts on Osseotite surfaces was significantly enhanced compared to

Machined and Nanotite surfaces. An integrin α5β1 is the fibronectin receptor and mediate

cell adhesion thus stronger adhesion strength was shown on Osseotite surfaces. From the

data presented here, we propose that gingival fibroblasts have the capacity to adhere to
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Osseotite surfaces with increased expression of focal adhesion protein integrin α5β1, while

nanotopographic structure on titanium material failed to show obvious improvement on

fibroblast cellular attachment. Moreover, the in vitro investigation by Ramaglia et al.

(2015) suggested that HGF attachment and differentiation was promoted on Osseotite

surfaces than on Machined ones. Their data is partly in consistent with our results.

The cytoskeletal protein vinculin is associated with the interaction between cell-cell and

cell-matrix. It frequently links the integrin receptors to the contractile actin cytoskele-

ton. As shown by immunofluorescence staining results, although it is merely by visual

observation, after 24 days of incubation, fibroblasts clearly showed strong adhesion on all

titanium surfaces. It appeared that vinculin expression was higher on Machined and Os-

seotite surfaces, when compared with Nanotite groups. At day 30, this difference became

smaller, the vinculin and the F-actin distribution was similar on Osseotite and Nanotite

surfaces.

However, the up-regulation of the integrin was not fully consistent with the distribution

of actin and vinculin on three different surfaces. The possible reasons might be: the

complexity of signal transduction to the actin cytoskeleton, involving cell-cell contact

and integrin-mediated matrix production and could not fully explained by the current

investigation. A study conducted by Abrahamsson et al. (2013) also suggested Nanotite

dental implants does not improve the early soft tissue integration, which corroborate the

data presented in our current experiment.
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Conclusions

In conclusion, the present in vitro study for long-term cellular responses on three

different titanium surfaces demonstrated that topographic structures can influence the

morphology, proliferation and adhesion of human gingival fibroblasts. The results of

current study suggested that :

1. In general, after extended culture periods (30 days), the human gingival fibroblasts

responded to Osseotite surfaces in a manner similar to or even better than their

behavior on Nanotite surfaces. The morphology of the fibroblasts on Osseotite

and Nanotite surfaces demonstrated that they are cuboidal in shape and have the

dendritic branching pattern characteristic.The cells on Osseotite surfaces were more

spread and formed even a higher surface coverage than on Nanotite surfaces. In

contrast, the cells on the Machined surfaces appear more flattened.

2. After two weeks of culture, the gingival fibroblasts grown on Osseotite and Nanotite

surfaces showed a notable higher proliferation compared to the Machined surfaces;

however, there is no considerable difference on cell proliferation between these two

groups.

3. After a 14-day incubation, the flow cytometry data analysis suggested that the cells

grown on the Osseotite implant material produce a better initial attachment with

a higher α5 and β1 integrins expression than on machined and Nanotite materials.
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4. After 24 days of cell incubation, immunofluorescence labelling analysis showed that

more extended actin stress fibers and higher vinculin expression were on Osseotite

compared to Nanotite samples. Vinculin expression localized mainly within central

areas of the cell grown on the Machined and the Osseotite surfaces; distinct focal

contacts localizations were evident at the cell edges on the Nanotite surface. At

day 30, high vinculin expression and a dense network of actin stress fibers on the

human gingival fibroblasts were observed on all tested substrates; a similar F-actin

distribution was found on Osseotite and Nanotite surfaces.

In conclusion, the data of our present study indicate that in vitro all the three different

experimental surfaces show significant interactions with HGFs; however, there is not

enough evidence to show that the Nanotite implants is more benificial to the growth

behavior of human gingival fibroblasts, compared with Osseotite surfaces; especially at

the early stage of incubation.

These celluar effects play a key role in maintaining a biological barrier at the interface

between the implant material surface and surrounding connective tissue, our findings

may contribute to a better understanding of the processes involved in the soft tissue

integration surrounding dental implants.
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Liñares, Antonio, Domken, Olivier, Dard, Michel, & Blanco, Juan. 2013.

Peri-implant soft tissues around implants with a modified neck surface. Part 1. Clinical

and histometric outcomes: a pilot study in minipigs. Journal of Clinical Periodontology,

40(4), 412–420. 00002.

McKinney, Ralph V., Steflik, David E., & Koth, David L. 1985. Evidence for

a Junctional Epithelial Attachment to Ceramic Dental Implants. Journal of Periodon-

tology, 56(10), 579–591. 00114.

Miller, D.C., Vance, R.J., Thapa, A., Webster, T.J., & Haberstroh,

K.M. 2005. Comparison of fibroblast and vascular cell adhesion to nano-structured

poly(lactic-co-glycolic acid) films. Applied Bionics and Biomechanics, 2(1), 1–7. 00011.

Miura, Shingo, & Takebe, Jun. 2012. Biological behavior of fibroblast-like cells

cultured on anodized-hydrothermally treated titanium with a nanotopographic surface

structure. Journal of Prosthodontic Research, 56(3), 178–186. 00009.

Moon, I. S., Berglundh, T., Abrahamsson, I., Linder, E., & Lindhe, J. 1999.

The barrier between the keratinized mucosa and the dental implant. An experimental

study in the dog. Journal of Clinical Periodontology, 26(10), 658–663. 00000.

Mullins, R. D., Heuser, J. A., & Pollard, T. D. 1998. The interaction of Arp2/3

complex with actin: nucleation, high affinity pointed end capping, and formation of



BIBLIOGRAPHY 86

branching networks of filaments. Proceedings of the National Academy of Sciences of

the United States of America, 95(11), 6181–6186. 00986.

Mustafa, Kamal, Lopez, Blanca Silva, Hultenby, Kjeil, Wennerberg, Ann,

& Arvidson, Kristina. 1998. Attachment and proliferation of human oral fibroblasts

to titanium surfaces blasted with TiO2 particles. A scanning electron microscopic and

histomorphometric analysis. Clinical Oral Implants Research, 9(3), 195–207. 00099.

Nociari, M. M., Shalev, A., Benias, P., & Russo, C. 1998. A novel one-step,

highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. Journal of

Immunological Methods, 213(2), 157–167. 00305.

Oates, Thomas W., Maller, Steven C., West, Jason, & Steffensen, Bjorn.

2005. Human gingival fibroblast integrin subunit expression on titanium implant sur-

faces. Journal of Periodontology, 76(10), 1743–1750. 00022.

Ojaniemi, M., Martin, S. S., Dolfi, F., Olefsky, J. M., & Vuori, K. 1997. The

proto-oncogene product p120(cbl) links c-Src and phosphatidylinositol 3’-kinase to the

integrin signaling pathway. The Journal of Biological Chemistry, 272(6), 3780–3787.

00000.

Ostman, Pär-Olov, Hupalo, Markijan, del Castillo, Robert, Emery,

Robert W., Cocchetto, Roberto, Vincenzi, Giampaolo, Wagenberg,

Barry, Vanassche, Bruno, Valentin, Andreas, Clausen, Gerard, Hogan,
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