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v



vi



Like Attar, Rumi, Razi and Ghazali, One may be mystic, great or wise,

But none can reach his goal without hard work and morning sighs

Dr. Allama Muhammad Iqbal

vii



viii



Dedicated to my parents

Dr. Shahnaz Cheema & Dr. Shabbir Ahmed

for being my inspiration, for teaching me the importance of being human, for their

sacrificial unconditional love & for encouraging me at each step of life,

especially this one

ix



x



Acknowledgements

This doctoral thesis would be devoid of its spirit, if it had not been for the invaluable

academic, educational, psychological and emotional contribution of several people,

whom I would like to thank most sincerely.

However, first and foremost I humbly thank Allah Almighty for his countless

blessings and for bestowing me with the strength and perseverance required for this

endeavor.

Next I wish to express heartfelt gratitude for my joint PhD promoters, Prof. Geert

Verdoolaege and Prof. Hartmut Zohm. Geert has led by example. He was always

available for my questions and gave generously of his time and vast knowledge. It

is hard to overstate my appreciation for him, except that this journey would have

been impossible without him. Prof. Zohm has been an inspiration and I thank him

profoundly for his guidance, enthusiasm and encouragement.

My sincere thanks also goes to Dr.Otto Kardaun for his immense knowledge,

didactic guidance, patience and motivation. He inspired me with his tireless passion

for the field and the stimulating and engaging discussions gave me the impetus to

go further during the grueling work days.

I would like to express my appreciation and gratitude for Prof. Jean-Marie

Noterdaeme and Prof. Guido Van Oost for their support and advice. My special

thanks go to Dr. Gregoire Hornung and Frank Jansens. Gregoire is an amazing

colleague and I have benefited greatly from many of his formal as well as informal

advice. Frank, with his vivaciousness, enabled me to truly appreciate Belgian

warmth and hospitality. Special thanks also goes to Kathleen Van Oost for ever

so meticulously manging the bureaucratic aspects of my PhD. I would also like

to acknowledge my officemates, Patrick Vanraes, and Xiaolong Deng for the many

laughters and the many ups and downs which we faced together. A special mention

and gratitude is again due for Geert, Gregoire, Frank and Kathleen for the many

xi



lunches we shared, the fond memories of which will always remain with me.

It is imperative to thank all colleagues at the Department of Applied Physics,

Ghent University, Max-Planck Institute for Plasma Physics (IPP) and Culham

Center for Fusion Energy (CCFE-JET) as well as all the fellow FUSION-DC PhD

students, for contributing and becoming a unique part of my PhD journey.

I seize this opportunity to also acknowledge and thank my colleagues and

superiors at Lahore College for Women University, Lahore and my teachers and

classmates at University of Engineering and Technology, Lahore for contributing to

my growth, inspiring me and providing me with invaluable experiences.

Finally, I cannot agree more with a wise man who once said: family is not

an important thing, it is everything. I want to humbly thank my late maternal

grandparents, Chahudhry Rehmatullah Cheema and Afzal Begum, who were true

visionaries and who laid the foundation for a series of strong, empowered and

educated women. No words can describe my gratitude for my parents Dr. Shahnaz

Cheema and Dr. Shabbir Ahmed. Mama , Papa, I owe it all to you. Next, I want

to thank my best friend (my jiggy) Yasmin Ansari for understanding me, accepting

me, supporting me and for being my sister, that I never had. I am truly fortunate

to have you in my life.

Moving on to the most special corner of my heart, I want to thank my daughter,

my princess and my little fairy, Fatima Ali, for being my strength and my biggest

motivation. Next, I want to thank my son, Mustafa Ali, who accompanied me in my

womb as I attended conferences, worked on manuscripts and conducted experiments.

Thank you for being our little bundle of joy. And, finally I thank my husband, Ali

Hussain Kazim, for his patience, love, friendship, humor and support. Having you

as my husband, is a constant reminder that Allah is happy with me. Thanks for

everything!

Aqsa Shabbir

En route Ghent to Munich

22 April 2016

xii



Abstracts

English summary

Magnetically confined fusion plasmas provide several data analysis challenges due

to the occurrence of massive data sets, substantial measurement uncertainty,

stochasticity and data dimensionality, and often nonlinear interactions between

measured quantities. Recently, methods from the fields of machine learning

and probability theory—some standard, some more advanced—have come to play

an increasingly important role in analyzing data from fusion experiments. The

capabilities offered by such methods to efficiently extract, possibly in real time,

additional information from the data that is not immediately apparent to human

experts, has attracted attention from an increasing number of researchers. In

addition, innovative methods for real-time data processing can play an important

role in plasma control, in order to ensure safe and reliable operation of the machine.

Pattern recognition is a discipline within the information sciences that

concerns the exploration of structure in (multidimensional) data sets using

computer-based methods and algorithms. In this doctoral work, pattern recognition

techniques are developed and applied to data from tokamak plasmas, in order

to contribute to a systematic analysis of edge-localized modes (ELMs). ELMs

are magnetohydrodynamic (MHD) instabilities occurring in the edge region of

high-confinement (H-mode) fusion plasmas. The type I ELMy H-mode is the

reference scenario for operation of the next-step fusion device ITER. On the one

hand, ELMs have a beneficial effect on plasma operation through their role in

impurity control. On the other hand, ELMs eject energy and particles from the

plasma and, in ITER, large unmitigated ELMs are expected to cause intolerable

heat loads on the plasma-facing components (PFCs).

In interpreting experiments focused on ELM understanding and control, a
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significant challenge lies in handling the measurement uncertainties and the inherent

stochasticity of ELM properties. In this work, we employ probabilistic models

(distributions) for a quantitative data description geared towards an enhanced

systematization of ELM phenomenology. Hence, we start from the point of view

that the fundamental object resulting from the observation of a system is a

probability distribution, with every single measurement providing a sample from

this distribution. We argue that, particularly for richly stochastic phenomena like

ELMs, the probability distribution of physical quantities contain significantly more

information compared to mere averages. Consequently, in exploring the patterns

emerging from the various ELM regimes and relations, we need methods that can

handle the intrinsic probabilistic nature of the data.

The original contributions of this work are twofold. First, several novel pattern

recognition methods in non-Euclidean spaces of probability distribution functions

(PDFs) are developed and validated. The second main contribution lies in the

application of these and other techniques to a systematic analysis of ELMs in

tokamak plasmas.

In regard to the methodological aims of the work, we employ the framework of

information geometry to develop pattern visualization and classification methods in

spaces of probability distributions. In information geometry, a family of probability

distributions is considered as a Riemannian manifold. Every point on the manifold

represents a single PDF and the distribution parameters provide local coordinates on

the manifold. The Fisher information plays the role of a Riemannian metric tensor,

enabling calculation of geodesic curves on the surface. The length of such curves

yields the geodesic distance (GD) on probabilistic manifolds, which is a natural

similarity (distance) measure between PDFs. Equipped with a suitable distance

measure, we extrapolate several distance-based pattern recognition methods to

the manifold setting. This includes k-nearest neighbor (kNN) and conformal

predictor (CP) methods for classification, as well as multidimensional scaling

(MDS) and landmark multidimensional scaling (LMDS) for data visualization

(dimensionality reduction). Furthermore, two new classification schemes are

developed: a distance-to-centroid classifier (D2C) and a principal geodesic classifier

(PGC). D2C classifies on the basis of the minimum GD to the class centroids and

PGC considers the shape of the class on the manifold by determining the minimum
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distance to the principal geodesic of each class. The methods are validated by their

application to the classification and retrieval of colored texture images represented

in the wavelet domain. Both methods prove to be computationally efficient, yield

high accuracy and also clearly exhibit the adequacy of the GD and its superiority

over the Euclidean distance, for comparing PDFs. This also aids in demonstrating

the utility and adaptability of the developed methods to a wide range of applications

other than ELMs, which are the prime focus of analysis in this work.

The second main goal of the work targets ELM analysis at three fronts, using

pattern recognition and probabilistic modeling :

(i) We first concentrate on visualization of ELM characteristics by creating

maps containing projections of multidimensional ELM data, as well as the

corresponding probabilistic models. Such maps can provide physicists and

machine operators with a convenient means and a useful tool for plasma

monitoring and for studying data patterns reflecting key regimes and their

underlying physics. In particular, GD-based MDS is used for representing

the complete distributions of the multidimensional data characterizing the

operational space of ELMs onto two-dimensional maps. Clusters corresponding

to type I and type III ELMs are identified and the maps enable tracking of

trends in plasma parameters across the operational space. It is shown that the

maps can also be used with reasonable accuracy for predicting the values of

the plasma parameters at a certain point in the operational space.

(ii) Our second application concerns fast, standardized and automated

classification of ELM types. ELM types have so far been identified and

characterized on an empirical and phenomenological basis. The presented

classification schemes are aimed at complementing the phenomenological

characterization using standardized methods that are less susceptible to

subjective interpretation, while considerably reducing the effort of ELM

experts in identifying ELM types. To this end, different classification

paradigms (parametric and non-parametric) are explored and put to use.

Discriminant analysis (DA) is used for determining a linear separation

boundary between type I and III ELMs in terms of global plasma parameters,

which can then be used for the prediction of ELM types as well as the
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study of ELM occurrence boundaries and ELM physics. However, DA makes

an assumption about the underlying class distribution and presently cannot

be applied in spaces of probability distributions, leading to a suboptimal

treatment of stochasticity. This is circumvented by the use of GD-based CP

and kNN classifiers. CP provides estimates of its own accuracy and reliability

and kNN is a simple, yet powerful classifier of ELM types. It is shown

that a classification based on the distribution of ELM properties, namely

inter-ELM time intervals and the distribution of global plasma parameters,

is more informative and accurate than the classification based on average

parameter values.

(iii) Finally, the correlation between ELM energy loss (ELM size) and ELM waiting

times (inverse ELM frequency) is studied for individual ELMs in a set of

plasmas from the JET tokamak upgraded with the ITER-like wall (ILW).

Typically, ELM control methods rely on the empirically observed inverse

dependence of average ELM energy loss on average ELM frequency, even

though ELM control is targeted at reducing the size of individual ELMs and

not the average ELM loss. The analysis finds that for individual ELMs the

correlation between ELM energy loss (WELM) and waiting times (∆tELM)

varies from zero to a moderately positive value. A comparison is made with the

results from a set of carbon-wall (CW) JET plasmas and nitrogen-seeded ILW

JET plasmas. It is found that a high correlation between WELM and ∆tELM

comparable to CW plasmas is only found in nitrogen-seeded ILW plasmas.

Furthermore, most of the unseeded JET ILW plasmas have ELMs that are

followed by a second phase referred to as the slow transport event (STE). The

effect of the STEs on the distribution of ELM durations is studied, as well as

their influence on the correlation between WELM and ∆tELM . This analysis has

a clear outcome for the optimization of ELM control methods, while presenting

insights for an improved physics understanding of ELMs.
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Nederlandse samenvatting

In de context van magnetisch opgesloten fusieplasma’s bestaan er verschillende

uitdagingen op het gebied van data-analyse, vanwege de grootte van de datasets,

de aanzienlijke meetonzekerheden, stochasticiteit en dimensionaliteit, en de vaak

niet-lineaire interacties tussen de gemeten grootheden. Methodes uit het domein

van machinaal leren en probabiliteitstheorie—sommige standaard, andere meer

geavanceerd—spelen sinds kort een steeds belangrijkere rol in de analyse van data

van fusie-experimenten. De mogelijkheden die dergelijke methodes bieden om,

eventueel in reële tijd, op een efficiënte manier bijkomende informatie uit de data

te halen, die niet onmiddellijk in het oog springt van menselijke experts, heeft de

aandacht getrokken van een toenemend aantal onderzoekers. Bovendien kunnen

innovatieve methodes voor real-time dataverwerking een belangrijke rol spelen in

plasmacontrole, om veilige en betrouwbare operatie van de machine te verzekeren.

Patroonherkenning is een discipline binnen de informatiewetenschappen

waarin structuur in (meerdimensionale) datasets bestudeerd wordt, gebruik

makend van computergebaseerde methodes en algoritmes. In dit doctoraatswerk

worden patroonherkenningstechnieken ontwikkeld en toegepast op data van

tokamakplasma’s, om zo bij te dragen tot een systematische analyse van

rand-gelocaliseerde modes (edge-localized modes, of ELMs). ELMs zijn

magnetohydrodynamische (MHD) instabiliteiten die voorkomen in de rand van

fusieplasma’s in het hoge-opsluitingsregime (H-mode). De type I-ELMige H-mode is

het referentiescenario voor de operatie van ITER, de fusiemachine van de volgende

generatie. Enerzijds hebben ELMs een gunstig effect op plasmaoperatie door hun

rol in de controle van onzuiverheden. Anderzijds stoten ELMs energie en deeltjes

uit het plasma en de verwachting is dat, in ITER, grote niet-getemperde ELMs een

ontoelaatbaar hoge hittebelasting zullen veroorzaken op de wandcomponenten.

Bij de interpretatie van experimenten die focussen op de studie van ELMs

en ELM-controle, ligt een grote uitdaging in een geschikte behandeling van

meetonzekerheden en de inherente stochasticiteit van de eigenschappen van

ELMs. In dit werk gebruiken we probabilistische modellen (distributies) voor

een kwantitatieve beschrijving van de data met het oog op een verbeterde

systematisering van ELM-fenomenologie. We gaan dus uit van het standpunt dat een
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probabiliteitsdistributie het fundamentele object is dat voortkomt uit de observatie

van een systeem, waarbij elke individuele meting een sample voorstelt van deze

verdeling. We betogen dat de probabiliteitsdistributie van fysische grootheden

significant meer informatie bevat dan louter gemiddeldes, in het bijzonder voor

fenomenen als ELMs met rijke stochastische karakteristieken. Bij de studie van

patronen voortkomend uit de verschillende ELM-regimes en -relaties, hebben we

bijgevolg methodes nodig die kunnen omgaan met de intrinsieke probabilistische

natuur van de data.

De originele bijdragen van dit werk zijn tweeledig. Om te beginnen worden

verscheidene nieuwe patroonherkenningsmethodes ontwikkeld en gevalideerd in

niet-Euclidische ruimtes van probabiliteitsdistributies (probability distribution

functions, of PDFs). Vervolgens worden deze en andere technieken toegepast voor

een systematische analyse van ELMs in tokamakplasma’s.

Met betrekking tot de methodologische doelstellingen van het werk, gebruiken

we het raamwerk van de informatiemeetkunde om methodes te ontwikkelen

voor visualisatie en classificatie in ruimtes van probabiliteitsdistributies. In de

informatiemeetkunde wordt een familie van probabiliteitsdistributies beschouwd

als een Riemanniaanse variëteit. Elk punt op de variëteit stelt één enkele PDF

voor, en de parameters van de distributie dienen als lokale coördinaten op de

variëteit. De Fisher-informatie speelt de rol van een Riemanniaanse metrische

tensor, waarmee geodetische curves berekend kunnen worden op het oppervlak.

De lengte van zulke curves geeft de geodetische afstand (geodesic distance, of GD)

op probabilistische variëteiten, die een natuurlijke maat is van gelijkenis (afstand)

tussen PDFs. Uitgerust met een geschikte afstandsmaat, zetten we verschillende

afstandsgebaseerde patroonherkenningsmethodes om voor toepassing op variëteiten.

Hieronder vallen de methode van de k-dichtste-buren (k-nearest neighbors, of

kNN) en conforme predictors (CP) voor classificatie, alsook multidimensionale

schaling (multidimensional scaling, of MDS) en MDS met oriëntatiepunten voor

het visualiseren van data (dimensionaliteitsreductie). Verder worden twee nieuwe

classificatiemethodes ontwikkeld: afstand-tot-centröıde (distance-to-centroid, of

D2C) en principale geodetische classificatie (principal geodesic classification, of

PGC). D2C classificeert op basis van de minimale geodetische afstand tot de

klassecentröıdes en PGC brengt de vorm van de klasse op de variëteit in rekening
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door de minimale afstand te bepalen tot de principale geodeet van elke klasse. De

methodes worden gevalideerd door toepassing op de classificatie en het opzoeken van

beelden met gekleurde texturen, voorgesteld in het waveletdomein. Beide methodes

blijken computationeel efficiënt, hebben een hoge nauwkeurigheid en geven ook

duidelijk aan dat de GD geschikt is en superieur is aan de Euclidische afstand

om PDFs te vergelijken. Op deze manier wordt ook het nut aangetoond van

de ontwikkelde methodes in een hele reeks toepassingen buiten ELMs, welke het

zwaartepunt vormen van de analyse in dit werk, en de mogelijkheid om de methodes

hiernaar aan te passen.

De tweede hoofddoelstelling van dit werk beoogt de analyse van ELMs op drie

fronten, gebruik makend van patroonherkenning en probabilistische modellering:

(i) We richten ons eerst op de visualisatie van ELM-karakteristieken door kaarten

te creëren die de projectie tonen van meerdimensionale ELM-data, en van

de corresponderende probabilistische modellen. Dergelijke kaarten voorzien

fysici en machineoperatoren van een handige manier en een nuttig instrument

voor het volgen van plasma’s en het bestuderen van patronen in de data

die belangrijke regimes weergeven en hun onderliggende fysica. Meer in het

bijzonder wordt GD-gebaseerde MDS gebruikt om in tweedimensionale kaarten

de complete distributies voor te stellen van meerdimensionale data die de

operationele ruimte karakteriseert van ELMs. Clusters corresponderend met

type I- en type III-ELMs worden gëıdentificeerd en de kaarten laten toe om

trends te volgen in de plasmaparameters doorheen de operationele ruimte.

We tonen aan dat de kaarten ook gebruikt kunnen worden, met redelijke

nauwkeurigheid, om de waarden van de plasmaparameters te voorspellen in

een bepaald punt in de operationele ruimte.

(ii) Onze tweede toepassing betreft snelle, gestandaardiseerde en geautomatiseerde

classificatie van ELM-types. Tot nu toe werden ELM-types gëıdentificeerd

en gekarakteriseerd op een empirische en fenomenologische basis. De

voorgestelde classificatiemethodes zijn erop gericht om de fenomenologische

karakterisering te vervolledigen door middel van gestandaardiseerde methodes

die minder onderworpen zijn aan subjectieve interpretatie, terwijl de

werklast voor ELM-experten gevoelig gereduceerd wordt bij het identificeren
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van ELM-types. Hiertoe worden verschillende classificatieparadigma’s

(parametrisch en niet-parametrisch) getest en ingezet. Discriminantanalyse

(DA) wordt gebruikt om een lineaire grens tussen de type I- en type III-ELMs

vast te leggen in termen van globale plasmaparameters, die vervolgens

gebruikt kan worden om ELM-types te voorspellen en voor de studie van

de operationele regio’s waar ELMs voorkomen en de fysica van ELMs. DA

maakt evenwel een veronderstelling met betrekking tot de onderliggende

klassedistributie en momenteel kan deze methode niet toegepast worden

in ruimtes van probabiliteitsdistributies, met als gevolg een suboptimale

behandeling van stochasticiteit. Dit wordt verholpen door GD-gebaseerde

CP- en kNN-classificatie te gebruiken. CP geeft een schatting van zijn eigen

nauwkeurigheid en betrouwbaarheid en kNN is een eenvoudige maar krachtige

classificatiemethode voor ELM-types. We tonen aan dat classificatie op basis

van de distributie van ELM-eigenschappen, namelijk de inter-ELM-tijd en

globale plasmaparameters, meer informatief en nauwkeuriger is dan classificatie

met behulp van enkel gemiddelde waardes van parameters.

(iii) Ten slotte wordt de correlatie tussen het energieverlies van ELMs

(ELM-grootte) en de ELM-wachttijd (inverse van de ELM-frequentie)

bestudeerd voor individuele ELMs in een set plasma’s van de JET-tokamak

uitgerust met de ITER-achtige wand (ITER-like wall, of ILW).

Controlemethodes voor ELMs berusten typisch op de empirisch geobserveerde

inverse afhankelijkheid tussen het gemiddelde energieverlies en de gemiddelde

frequentie van ELMs, hoewel ELM-controle eigenlijk beoogt de grootte

van individuele ELMs te reduceren en niet het gemiddelde ELM-verlies.

Uit de analyse blijkt dat voor individuele ELMs de correlatie tussen het

energieverlies (WELM) en de wachttijd (∆tELM) varieert tussen nul en matig.

Een vergelijking wordt gemaakt tussen de resultaten in een reeks JET-plasmas

met de koolstofvezelwand (carbon wall, of CW) en JET-ILW-plasma’s met

toegevoegde stikstof. Hieruit blijkt dat een hoge correlatie tussen WELM

en ∆tELM , vergelijkbaar met CW-plasma’s, enkel teruggevonden wordt in

ILW-plasma’s met toegevoegde stikstof. Bovendien worden de ELMs in

de meeste JET-ILW-plasma’s zonder stikstof gevolgd door een tweede fase

genaamd het trage-transport-verschijnsel (slow transport event, of STE). Het
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effect van de STEs op de distributie van de ELM-duur wordt onderzocht,

samen met hun invloed op de correlatie tussen WELM en ∆tELM . De analyse

heeft een duidelijk gevolg voor de optimalisatie van controlemethodes voor

ELMs en zorgen voor bijkomend inzicht in de fysica van ELMs.
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Deutsche Zusammenfassung

Die Analyse von experimentellen Daten magnetisch eingeschlossener Fusionsplasmen

stellt wegen der großen Datenmengen, der hohen Dimensionalität, der

Messunsicherheiten und auch der oft nichtlinearen Beziehungen untereinander eine

große Herausforderung dar. Methoden der Datenanalyse aus den Feldern des

maschinellen Lernens sowie der Wahrscheinlichkeitstheorie spielen daher in letzter

Zeit eine immer größere Rolle bei der Analyse von Daten aus Fusionsexperimenten.

Dabei interessiert vor allem die Möglichkeit, zusätzliche Information welche dem

menschlichen Beobachter verborgen bleiben, systematisch zu extrahieren. Zusätzlich

können innovative Methoden der Echtzeit-Datenverarbeitung eine wichtige Rolle für

Kontrollanwendungen in Fusionsexperimenten spielen.

Mustererkennung ist eine Disziplin der Informationstheorie welche sich mit

der Erforschung von Strukturen in multidimensionalen Datensätzen durch

computergestützte Methoden und Algorithmen beschäftigt. In dieser Doktorarbeit

werden Methoden der Mustererkennung auf Daten von Tokamakexperimenten

für eine systematische Analyse von edge-localized modes (ELMs) angewendet.

ELMs sind magnetohydrodynamische (MHD) Instabilitäten die am Plasmarand

in ‘high-confinement’ (H-mode) Fusionsplasmen auftreten. Die ‘Typ I ELMy

H-mode’ ist das Referenz-Betriebsszenario für das zukünftige ITER Experiment.

ELMs spielen einerseits eine positive Rolle für den Plasmabetrieb da sie zur

Verunreinigungskontrolle beitragen. Andererseits werfen ELMs Teilchen und

Energie aus dem Plasma und könnten daher in ITER die Integrität der ersten Wand

gefährden.

Eine signifikante Herausforderung bei der Interpretation von Experimenten

welche sich mit dem Verständnis und der Kontrolle von ELMs beschäftigen liegt

in der Behandlung der Messunsicherheiten sowie der inhärenten Stochastizität

der ELM Parameter. In der vorliegenden Arbeit werden probabilistische

Modelle (Verteilungen) zur quantitativen Beschreibung der Daten mit dem Ziel

einer verbesserten systematischen Einteilung der ELM-Phänomenologie verwendet.

Dabei wird davon ausgegangen, dass die fundamentale Größe eines Systems

eine Wahrscheinlichkeitsverteilung ist, wobei jede Einzelmessung eine Stichprobe

dieser Verteilung darstellt. Dabei wird angenommen dass, im Besonderen für
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stark stochastische Ereignisse wie ELMs, die Wahrscheinlichkeitsverteilung der

physikalischen Parameter deutlich mehr Information enthält als deren Mittelwerte.

Folglich erfordert die Erforschung der Struktur der unterschiedlichen ELM Regimes

Methoden, welche die intrinsisch stochastische Natur der Daten berücksichtigen

kann.

Diese Arbeit liefert zwei grundsätzlich neue Beiträge: zunächst werden

neuartige Strukturerkennungs-Methoden in nicht-euklidischen Räumen von

Wahrscheinlichkeitsverteilungen entwickelt und validiert. Der zweite grundsätzliche

Beitrag liegt in der Anwendung dieser und anderer Methoden auf eine systematische

Analyse von ELMs in Tokamakplasmen.

Aus methodologischer Sicht wird in dieser Arbeit die Informationsgeometrie

angewendet um Methoden zur Mustererkennung und –klassifizierung in Räumen

von Wahrscheinlichkeitsverteilungen zu entwickeln. In der Informationsgeometrie

wird eine Familie von Wahrscheinlichkeitsverteilungen als eine Riemannsche

Mannigfaltigkeit aufgefasst. Jeder Punkt auf der Mannigfaltigkeit stellt

eine Wahrscheinlichkeitsverteilung dar und die Verteilungsparameter sind lokale

Koordinaten auf der Mannigfaltigkeit. Die Fisher Information spielt dabei

die Rolle des Riemannschen metrischen Tensors und erlaubt es, geodätische

Kurven auf der Fläche zu berechnen. Die Länge einer solchen Kurve ergibt

den geodätischen Abstand auf der Mannigfaltigkeit, welcher ein natürliches

Maßfür den Abstand zwischen Verteilungsfunktionen ist. Mit diesem geeigneten

Abstandsmaßwerden mehrere Mustererkennungsmethoden welche auf dem Abstand

basieren auf die Mannigfaltigkeit angewandt. Diese schließen die ‘k-nearest

neighbor’ (kNN) und ‘conformal predictor’ (CP) Klassifikationsmethoden ein sowie

‘multidimensional scaling’ (MDS) und ‘landmark multidimensional scaling’ (LMDS)

zur Datenvisualisierung mit dem Ziel der Dimensionsreduktion. Desweitern werden

zwei neue Klassifikationsmethoden entwickelt: ein ‘distance-to-centroid classifier’

(D2C) und ein ‘principal geodesic classifier’ (PGC). D2C klassifiziert auf Basis

des minimalen geodätischen Abstands vom Schwerpunkt der Daten und PGC

berücksichtigt die Form der Klasse auf der Mannigfaltigkeit indem der Abstand

zur Hauptgeodätischen jeder Klasse bestimmt wird. Diese Methoden werden durch

Anwendung auf die Klassifizierung und Rekonstruktion von farbigen Texturbildern

in der Waveletdarstellung validiert. Beide Methoden stellen sich als effizient im
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Rechenaufwand heraus und liefern hohe Genauigkeit, wobei der geodätische Abstand

dem euklidischen Abstand deutlich überlegen ist und somit als angemessen für den

Vergleich von Verteilungsfunktionen bestätigt wird. Dies dient auch dem Nachweis

der Eignung der entwickelten Methoden für eine Vielzahl von Anwendungen über

das in dieser Arbeit vorrangig behandelte Feld der ELMs hinaus.

Das zweite Hauptziel der Arbeit ist die Analyse von ELMs mit den Methoden der

Mustererkennung und der wahrscheinlichkeitstheoretischen Modellierung auf drei

Gebieten:

(i) Zunächst wird die Visualisierung von ELM Eigenschaften durch Erstellung

von Abbildungen behandelt welche multidimensionale ELM Daten projizieren.

Solche Abbildungen können für Physiker und Experimentatoren ein nützliches

Werkzeug zur Überwachung der Plasmaentladung darstellen und dienen

darüber hinaus zu Studien von Datenmustern, welche prinzipielle Regimes

und deren zugrundeliegende Physik charakterisieren. Im speziellen wird

die GD-basierte MDS zur Darstellung der gesamten Verteilung der

multidimensionalen Daten, welche das Auftreten von ELMs beschreiben in

zweidimensionalen Abbildungen verwendet. Cluster in welchen ‘Typ I’ und

‘Type III’ ELMs auftreten werden identifiziert und die Abbildung ermöglicht

es, Trends in der Veränderung von Plasmaparametern im Parameterraum zu

erkennen. Es wird gezeigt, dass diese Abbildungen auch dazu verwendet

werden können, die Plasmaparameter für einen bestimmten Punkt im

Betriebsbereich vorherzusagen.

(ii) Eine zweite Anwendung beschäftigt sich mit einer schnellen, standardisierten

Klassifizierung des ELM Typs. ELM Typen wurden bisher auf einer

empirisch-phänomenologischen Basis identifiziert. Die hier vorgestellten

Klassifizierungs-Schemata dienen der Ergänzung der phänomenologischen

Beschreibung durch standardisierte Methoden welche weniger anfällig für

subjektive Wahrnehmung und Interpretation sind und sollen auch den

Aufwand bei der Bestimmung des ELM Typs verringern. Verschiedene

Klassifizierungsmethoden, parametrisch und nicht-parametrisch, werden

untersucht und eingesetzt. Discriminant Analysis (DA) wird für die

Bestimmung einer linearen Grenze zwischen Typ I und Typ III ELMs
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in globalen Plasmaparametern eingesetzt, die dann sowohl zur Vorhersage

des ELM Typs als auch zur Untersuchung der Bereiche, in denen die

unterschiedlichen ELM Typen auftreten, verwendet wird. Dabei basiert die

DA allerdings auf einer Annahme über die zugrunde liegende Verteilung

der Klassen und kann nach derzeitigem Stand nicht auf Räume von

Verteilungsfunktionen angewendet werden, was zu einer unzureichenden

Behandlung der Stochastizität führt. Dies wird durch die Verwendung von

GD-basierter CP und von kNN Klassifikatoren behoben. CP liefert eine

Abschätzung ihrer Genauigkeit und Zuverlässigkeit und kNN ist ein einfacher,

aber leistungsstarker Klassifikator für ELM-Typen. Es wird gezeigt dass

eine Klassifizierung basierend auf der Verteilung der ELM Eigenschaften,

namentlich der inter-ELM Zeitintervalle und der Verteilung der globalen

Plasmaparameter, mehr Information enthält als eine Klassifizierung welche

auf gemittelten Werten basiert.

(iii) Schließlich wird die Korrelation zwischen ELM Energieverlust (ELM Größe)

und ELM Wartezeiten (inverse ELM Frequenz) für individuelle ELMs aus

einer Datenbasis von Plasmaentladungen des JET Tokamaks in der ‘ITER-like

wall’ (ILW) Konfiguration untersucht. ELM Kontrollmethoden basieren

typischerweise auf dem empirisch beobachteten inversen Zusammenhang

zwischen mittlerem ELM-Verlust und mittlerer ELM-Frequenz, obwohl ELM

Kontrolle die Reduktion der Größe individueller ELMs zum Ziel hat.

Die Analyse zeigt, dass für individuelle ELMs die Korrelation zwischen

ELM-Energieverlust (WELM) und Wartezeit (∆tELM) generell niedrig ist.

Dieses Ergebnis wird mit einem Datensatz von JET in der ‘carbon-wall’

(CW) Konfiguration sowie einem Datensatz von Stickstoff-gekühlten ILW JET

Plasmen verglichen. Es zeigt sich, dass eine hohe Korrelation zwischen WELM

und ∆tELM , vergleichbar zu CW Plasmen, nur in Stickstoff-gekühlten ILW

Plasmen auftritt. Darüber hinaus treten in den meisten JET ILW Plasmen

ohne Stickstoffkühlung ELMs auf, welche von einer zweiten Phase, slow

transport event (STE) genannt, begleitet werden. Der Effekt der STEs auf die

Verteilung der ELM Dauer sowie deren Einfluss auf die Korrelation zwischen

WELM und ∆tELM wird untersucht. Diese Untersuchung hat einerseits eine

starke Relevanz für die Optimierung von Methoden zur ELM Kontrolle,

xxv



andererseits trägt sie zum tieferen Einblick in die den ELMs zugrunde liegende

Physik bei.
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Chapter 1

Introduction

1.1 Energy production context

The continual rise in global energy demand, geopolitical instability and heightened

concerns for climate change are unanimously pressing for clean, safe and sustainable

sources of energy. World energy consumption, fueled by expanding global economies

and population growth, is expected to quadruple by 2100 [1]. On the other hand,

world’s energy production is faced with multi-pronged challenges. As shown in

Figure 1.1 fossil fuels (oil, natural gas and coal) in the year 2014 accounted for

a whopping 87% of world’s total energy consumption. Not only do they pose

climate change concerns but they are also subject to volatile geopolitical stability.

At the recent UN climate change conference (COP21/CMP11) held in Paris [2],

representatives from 195 countries, acknowledged the impending dangers of climate

change and resolved to limit global warming to “well-below” 2◦C above pre-industrial

levels. This in turn implies that the world needs to move rapidly towards zero net

carbon emissions.

Renewable energy sources including hydroelectricity account for less than 10%

of the total energy consumption. Despite a consensus that renewable energy

sources are the only long term solution, wind and solar power are limited by two

major constraints: circumstantial availability and low power density. While energy

produced in nuclear power plants using fission reactions does not suffer from these

bottlenecks, the risks associated with a nuclear accident and the long term storage

of radioactive waste, makes this energy source increasingly unpopular. Further, the

2011 Fukushima Daiichi nuclear disaster caused deep public anxiety throughout the
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1.1. ENERGY PRODUCTION CONTEXT

Figure 1.1: World’s primary energy consumption in 2014. Fossil fuels account for 87%
of the total energy consumption.

world and has led many countries to accelerate systematic phase out of nuclear

power production. Given this, nuclear fusion, also based on nuclear reactions but

devoid of certain risks associated with fission, is another promising approach.

Nuclear fusion is the energy source that powers the stars and the sun. The final

goal of scientific research on controlled thermonuclear fusion is to produce energy

by fusion in a power plant on earth. The following advantages make nuclear fusion

a worthwhile pursuit:

• Sustainable: Fusion fuels: deuterium (D) and tritium (T ), are widely

available and nearly inexhaustible. Deuterium has a natural abundance of

approximately one atom in 6400 hydrogen atoms and can be distilled from all

forms of water. Tritium, on the other hand, will be bred during the fusion

reaction in a blanket containing lithium. Available quantities of lithium and

deuterium in nature are sufficient to cover global energy consumption for a

million years [3].

• Clean: Unlike fossil fuels, no greenhouse emissions occur. The major

by-product is helium which is a non-toxic inert gas.

• Safe: Unlike nuclear fission there will be no long-lived radioactive wastes.

Radioactive waste will mainly come from the reactor walls and will have a

lifetime of less than 100 years. Secondly, there is no risk of a Fukushima type

nuclear accident. In the wake of a disturbance, fusion fuel cools down within

seconds, averting the onset of a chain reaction and subsequent reactor melt

down.
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• Abundant : Energy released via nuclear fusion will be four million times more

than a chemical reaction such as the burning of fossil fuels and four times as

much as nuclear fission reactions at equal mass [4].

1.2 Nuclear fusion

Nuclear fusion occurs when two light nuclei collide at sufficiently high energy

required to overcome the repulsive Coulomb forces and become subject to the strong

interaction forces at short distances (10−15m). The resulting nucleus has a lower

total mass than the sum of the two original nuclei and the mass deficit ∆m is

converted into energy through E = ∆mc2 [5]. The most promising reaction for

nuclear fusion on earth is between D and T , isotopes of hydrogen.

2
1D +3

1 T → 4
2He+1 n+ 17.6 MeV. (1.1)

The energy released in the reaction is distributed between the kinetic energy of

the α-particle 4
2He (3.5MeV ) and the neutron n (14.1MeV ). At energies currently

within reach, the D−T reaction has the highest reaction cross-section compared to

other fusion reactions.

It is only at extremely high temperatures that the nuclei possess enough energy

to breach the Coulomb repulsion barrier. The average translational kinetic energy

of a gas molecule at temperature T is 3/2kBT where kB is Boltzmann’s constant.

It follows from this that the Coulomb barrier can be overcome at a temperature

of 3 × 109 K. Fortunately, due to the presence of a significant fraction of particles

in the Maxwellian tail of the velocity distribution and quantum tunneling effects,

the resulting temperature at which D − T fusion can be achieved is about 10 keV .

At such high temperatures the reactants are fully ionized and form a plasma state.

Plasma as one of the four states of matter constitute most of the visible matter in

the universe including Aurora Borealis and fluorescent lights on earth.

In addition to the required temperature, there are two further requirements for

making the fusion reaction in equation (1.1) work: a minimum energy confinement

time (τE) and an adequately high particle number density (n). As seen in Figure 1.2,

in order to sustain an efficient fusion reaction, the requirements on T , n and τE

3



1.2. NUCLEAR FUSION

must be met simultaneously. In order to achieve self sustained cycle of fusion

reactions, known as ignition, the triple product of T , n and τE must satisfy the

Lawson criterion:

nTτE > 5× 1021 m−3keV s. (1.2)

High temperature vital for fusion prevents the use of a solid confinement structure.

This is circumvented by the use of two main approaches: inertial confinement and

magnetic confinement of the fusion plasma. Inertial confinement uses high plasma

density (1031 − 1033 m−3) and short energy confinement time. On the other hand,

magnetic confinement uses low plasma density (1018 − 1020 m−3) with long energy

confinement time. Laser fusion despite being a fantastic technological achievement

is less promising as a base-load energy source. Magnetic confinement fusion, on

the other hand, holds the current world record of producing 16 MW of fusion

power which was achieved at the Joint European Torus (JET) tokamak in 1997.

Very recently, Experimental Advanced Superconducting Tokamak (EAST) in China

successfully produced and contained the plasma at a temperature of close to 50

million degrees Celsius for an impressive 102 s. This was shortly preceded by

Germany’s Wendelstein 7-X which heated the fusion fuel to 80 million degrees

Celsius and contained it for quarter of a second.

Figure 1.2: Lawson criterion for DT fusion. Figure adapted from [6]. The criterion
states that the product of density and confinement time has to be higher than a value that
varies with ion temperature. The lower curve marked “breakeven” refers to the scenario
where fusion energy just balances the input energy. The upper curve labeled ”ignition”
refers to a self-sustaining plasma. The curves have been recomputed using data from [7]
and assuming thermal efficiency of 30%.
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1.3 Magnetic confinement

Charged particles, in the presence of magnetic fields are acted upon by the Lorentz

force which causes them to gyrate in the so-called Larmor orbits. Charged particles

are, however, free to move parallel to the magnetic field. The gyro-frequency for the

traversed helical paths, is given by

ωc =
qB

m
, (1.3)

where, q is the charge of the particle, m is the particle mass and B is the magnetic

field strength. This then corresponds to a gyro-radius of

ρ =
v⊥
ωc
, (1.4)

where, v⊥ is the velocity of the particle perpendicular to the magnetic field. The

magnetic field lines require to be helical for offsetting the drifts due to E × B,

curvature of B and ∇B which would lead to a loss of confinement otherwise.The

two main type of devices for magnetic confinement of fusion plasmas are: stellarators

(such as Wendelstein 7-X) and tokamaks. In stellarators, twisted coils are used for

producing helical magnetic field whereas in tokamaks, a helical magnetic field is

obtained by a combination of two magnetic fields.

This thesis focuses on magnetically confined plasmas in tokamaks.

1.3.1 Tokamak operation

The Tokamak 1 is a fusion reactor concept invented in the 1950s by I.Tamm and

A.Sakharov [8]. In Figure 1.3 the principal components of a tokamak are shown.

Toroidal field coils placed around the plasma generate the toroidal magnetic field. In

addition, a current is driven through the plasma, which generates a poloidal magnetic

field perpendicular to the toroidal field, resulting in helically twisted magnetic field

lines winding around the torus. The current is obtained by using the plasma as

secondary circuit of a transformer, whose primary circuit is formed by the inner

poloidal field coils.

1A Russian acronym for “toroidal chamber with magnetic coils”.
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Figure 1.3: Schematic of a tokamak. The inner poloidal field coils induce a toroidal
plasma current and hence provide the poloidal magnetic field. Coupled with the toroidal
field, this results in a helical magnetic field. Figure reproduced from EUROfusion [9].

Further, the outer poloidal field coils are used for position control and shaping

of the plasma. Additionally, their vertical magnetic field induces a force that

compensates the hoop force due to the plasma kinetic pressure and the j × B

force.

In addition to the magnetic confinement components described in Figure 1.3

there are also several other important parts of a tokamak: the vacuum vessel, the

blanket, divertor, heating systems and diagnostics (magnetic systems, spectroscopic

instruments etc). The JET tokamak, where the bulk of this work has been carried

out, is currently the world’s largest operating tokamak. ASDEX Upgrade (AUG),

where a portion of this work has also been performed, is a medium sized tokamak.

The key engineering parameters for both JET and AUG are given in Table 1.1. The

world’s largest magnetic confinement fusion device International Thermonuclear

Experimental Reactor (ITER) which is currently under construction in southern

France, is also a tokamak device. ITER is intended to bridge the gap between

today’s smaller-scale experimental fusion devices and the demonstration fusion

reactor (DEMO) which is expected to follow ITER. ITER’s goal is to produce a

ten-fold return on energy (Q = 10) and sustain a stable plasma for longer durations.

Engineering parameters for ITER are also given in Table 1.1 to allow an ease of

comparison with AUG and JET.
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Parameter AUG JET ITER
Major radius (Ro) 1.65 (m) 2.96 (m) 6.20 (m)

Minor radius (a) 0.50 (m) 1.25 (m) 2.00 (m)
Plasma volume (V ) 13.0 (m3) 100 (m3) 840 (m3)
Plasma current (Ip) 2.00 (MA) 4.80 (MA) 15.0 (MA)

Toroidal magnetic field (Bt) 3.90 (T ) 3.45 (T ) 11.8 (T )
Plasma heating (Pheat) 27 (MW ) 38 (MW ) 50 (MW )

Table 1.1: Engineering parameters for ASDEX Upgrade (AUG), Joint European Torus
(JET) and the ITER tokamaks.

In order to avoid tritium retention and an erosion of the carbon fiber composite

(CFC) divertor target, ITER will operate with beryllium (Be) in the main wall

chamber and tungsten (W ) in the divertor during its active phase of operation

[10][11]. In order to improve predictions for ITER, carbon plasma facing components

(PFCs) (hereafter carbon wall or CW) at JET were replaced in 2010 by Be in the

main chamber and W in the divertor (hereafter ITER-like wall or ILW) [12]. AUG

has operated with an ITER relevant full W wall since approximately 2007[13].

1.3.2 H-mode and edge-localized modes

The high confinement mode (H-mode) [14][15], first discovered at ASDEX in

1982, is a particular plasma regime characterized by enhanced energy and particle

confinement time. When the heating power exceeds a certain threshold (PLH),

the plasma undergoes a transition from a low confinement (or L-mode) state to

H-mode. As illustrated in Figure 1.4, H-mode is characterized by steep gradients in

temperature and density in the last ∼2 cm of the plasma radius (plasma edge). This

results in an edge transport barrier (ETB) [16] that suppresses energy and particle

transport and increases confinement, in contrast to the L-mode where confinement

is marred by turbulent transport across the magnetic flux surfaces. The region of

the ETB is also called the pedestal, as the core profile appears to be elevated on

top of the ETB. Plasma performance in the core can be improved further when an

internal transport barrier (ITB) is formed [17]. Nevertheless, the plasma is prone to

several instabilities that can degrade the overall confinement. Magnetic islands and

sawteeth are some of the instabilities that can occur in the core of both L and H

mode plasmas. In the edge region, the steep pressure gradient in the ETB gives rise

to a magnetohydrodynamics instability known as edge-localized modes (ELMs) [19]
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1.3. MAGNETIC CONFINEMENT

Figure 1.4: Typical temperature profile observed in L and H mode phases. H-mode lifts
the L-mode temperature profile unto the edge transport barrier (ETB). Internal transport
barriers are beneficial for the core temperature whereas instabilities like sawteeth are
detrimental. Effect of ELMs is also illustrated. The temperature profile collapses as ELMs
expel particles and energy from the plasma. Figure adapted from [18]

[20]. ELMs are short, intense disturbances of the plasma edge which eject energy

and particles from the plasma and can cause high transient heat loads on the PFCs.

The expulsion of edge plasma brings a reduction in the edge pedestal height (shown

in Figure 1.4) which leads to a degradation in energy confinement. Detrimental

effects on the PFCs, such as melting, erosion and evaporation, are expected to scale

with the size of the tokamak. For medium sized tokamaks (a ≈ 0.5m), ELMs are

not found to cause any damage to the PFCs, however, for JET (a ≈ 1.0m) melting

of the Be divertor surfaces has been observed [21]. For ITER (a ≈ 2.0m), power

flux released by large ELMs will cause an intolerable erosion and heat load on the

PFCs [22][23].

Despite this, ELMs are not entirely disadvantageous as the particle exhaust

caused by them contributes to the prevention of impurity accumulation in the

plasma. Further, ELMs also aid in the removal of helium ash (see (1.1)) from

the core which can otherwise suffocate the plasma [24].

H-mode is the reference scenario for ITER’s ten fold power multiplication

(Q ∼ 10) inductive operation [25]. This implies that comprehensive physical

understanding of ELMs and their control and mitigation is crucial for reaping the

benefits of good energy confinement provided by the H-mode. ELM physics and

8
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their control and mitigation are subject of an intense research effort world-wide.

This thesis, in line with this effort, focuses on the analysis of ELMs, however, using

advanced data analysis.

1.4 Advanced data analysis:

Pattern recognition

The last half century witnessed unprecedented advances in the collection,

transmission and storage of data. This simultaneously led to the evolution of a new

generation of different techniques, methods and algorithms to assist researchers,

analysts, decision makers and managers in extracting useful patterns from the

rapidly growing volumes of data. These techniques and tools constitute a domain

which we here refer to as advanced data analysis. Advanced data analysis as

shown in Figure 1.5 has evolved from the interaction and cooperation among

different sub-fields such as machine learning, knowledge discovery in databases

(KDD), statistics and pattern recognition. Advanced data analysis techniques

and in particular the domain of pattern recognition [26] [27] has transformed a

wide variety of industries. Pattern recognition has well-established applications

in speech recognition, bioinformatics, remote sensing, biometric recognition,

multimedia database retrieval, industrial automation and autonomous navigation

[28]. More specifically, Google uses pattern recognition for identifying webspam

and e-commerce and technology companies like Braintree use it for stopping

credit card fraud. Pattern recognition methods are also brought to use at

the Laser Interferometer Gravitational-wave Observatory (LIGO) for identifying

gravitational-wave signals from non-Gaussian noise artifacts [29] [30].

Pattern recognition entails the process of discovering patterns and useful

knowledge from data. Often considered synonymous with machine learning, it seeks

incrementally to understand, adapt and apply these patterns to future cases or data

sets. Pattern recognition holds significant potential for improving engineering and

control as well as enhancing the physical understanding of fusion plasmas which are

faced with many veritable data analysis challenges, such as:

• Large volumes of data are generated in fusion devices. As of 2009 more than
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PATTERN RECOGNITION

Figure 1.5: A schematic depicting the relationships between different sub-fields of
advanced data analysis.

10 GB data can be generated per shot at JET [31]. Further, the growth rate

of the database roughly follows a Moore’s law like doubling every 2 years [32].

Scaling to next step fusion devices indicate that in ITER the volume of data

will be orders of magnitude larger.

• The data is often high dimensional i.e described by many physical variables.

• There are complex nonlinear interactions and dependencies between

parameters which give rise to data redundancy.

• Unlike high energy physics, where the primary task consists of isolating

the products of a specific reaction, fusion plasmas require comprehensive

understanding of all data collected in each single discharge.

• There are significant uncertainties :

– Hot fusion plasmas are not very accessible for measurement therefore

many parameters are derived indirectly by specialized instrumentation

called plasma diagnostics. Thus, measurements obtained in fusion

experiments are usually hampered by considerable random as well as

systematic errors.

– Several important phenomena in fusion plasmas such as disruptions,

turbulence and ELMs are often non-linear and non deterministic. This

implies that they behave in a random and unpredictable way due to the

complex underlying microscopic physics.
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The standard framework to deal with data in the presence of uncertainty is

probability theory. This doctoral work starts from the point of view that

the fundamental object resulting from a measurement is in fact a probability

distribution, with every single measurement providing a sample from this

distribution. The complete distribution describing a measured variable potentially

contains much more useful information than an average or individual measurements

(or collections thereof).

Hence, in this work pattern recognition in spaces of probability distributions is

performed. The Rao geodesic distance (GD) (Chapter 2) is used as a natural and

theoretically well-motivated similarity measure between probability distributions.

1.5 This thesis

This doctoral work is both fundamental and applied. On the one hand pattern

recognition methods in geometric spaces of probability distributions are developed

and validated. On the other hand, they are applied to the analysis of ELMs.

Understanding the underlying physics of ELMs and developing a consistent model

for predicting ELM losses is crucial for the success of ITER and next step fusion

devices.

1.5.1 Outline

This thesis is structured as follows:

A brief introduction to nuclear fusion by magnetic confinement, H-mode regime and

ELMs as well as the motivations for using pattern recognition techniques has been

given in this chapter.

Chapter 2 starts by discussing the essential features of the domain of pattern

recognition. It distinguishes between supervised and unsupervised learning and then

presents the framework for distance based pattern recognition in non-Euclidean

spaces of probability distributions using the mathematical domain of information

geometry [33]. The theory of pattern recognition methods developed and applied in

this work is presented herein.

Chapter 32 presents the experimental results of the application of

2Chapter 3 is the transcripts of published papers
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distance-to-centroid classifier (D2C) and principal geodesic classifier (PGC) to

multivariate texture discrimination. This serves as a validation of the developed

methods and also illustrates the utility and adaptability of the techniques developed

in this work to a wide range of applications other than ELMs.

Chapter 4 completes the introduction on H-mode physics and then provides a

review of ELM phenomenology and control.

Chapter 5 presents the application of the information visualization methods

developed for the visualization of the multi-dimensional and often complex nonlinear

data characterizing the operational space of a tokamak onto a 2-D map. The tools

are then applied for detecting cluster structure corresponding to type I and type

III ELMs in the JET CW dataset and for visualizing the confinement data from

the International Tokamak Physics Activity (ITPA) Global H-mode Confinement

Database (ITPA database).

Chapter 63 and chapter 7 focus on the development of an automatic classification

scheme for ELM types with the aim to distinguish ELM classes in a practical, fast

and standardized way.

To this end, Chapter 6 presents ELM regime classification (regimes with small

ELMs vs type I ELMs) using GD-based conformal predictors based on measurements

of global plasma parameters and their error bars from the ITPA database. The

classifications are accompanied with estimates of their accuracy and reliability.

The estimates of goodness of the predictions increase the knowledge about the

accessibility of the various ELMy regimes, while allowing more reliable decisions

regarding plasma control.

Chapter 7 presents physical characterization of the JET operational space

regarding ELMs by means of discriminant analysis. A parametric classification

system for ELM types is presented and applied to the classification of type I and

type III ELMs in a set of JET CW plasmas. Further, linear discriminant functions

are constructed for determining the boundary between type I and type III ELMy

regimes in terms of global plasma parameters. The functions provide an insight into

the dependence of the boundary on the plasma and machine conditions and identify

the parameters which contribute most to the type I/III boundary. In the second

part, a GD-based k-nearest neighbour (kNN) classification scheme is presented to

3Chapter 6 is the transcript of a published paper
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allow for an effective treatment of the distributions of plasma quantities. A threshold

based ELM detection algorithm is developed for the extraction of inter-ELM time

intervals (also referred to as waiting times). Waiting times are then modeled with

suitable probability distribution functions (PDFs) which are used for GD-based

classification of ELMs in JET CW plasmas and a small dataset of AUG plasmas.

In Chapter 84 the relationship between ELM energy loss and waiting time for

individual ELMs is studied in contrast to examining the average values over a

discharge. The analysis is conducted on a set of unseeded JET ILW plasmas,

N2 seeded ILW plasmas and CW plasmas. Further, the impact of slow transport

events (STEs)[34][35] on the distribution of ELM durations as well as on the

correlation between ELM energy loss and ELM waiting time is examined. Lastly,

regression analysis is conducted for determining the regime, in terms of global plasma

parameters, which will maximize the correlation between ELM energy loss and

waiting time.

Finally, conclusions and an outlook towards future research topics is presented in

Chapter 9.

1.5.2 List of publications

In this section a list is given of the publications acquired during this doctoral work.

Also provided is a list of oral and poster presentations made during the course of

this PhD.
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2016.

• G.Verdoolaege, A.Shabbir and G.Hornung,“Robust analysis of trends in
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Bayesian estimation of turbulent plasma properties from reflectometry,”
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4Chapter 8 is in the format of a transcript which is due for submission
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Chapter 2

Pattern recognition in spaces of

probability distributions

This chapter covers the theoretical foundations and background of pattern

recognition methods which are important for a profound understanding of the

contents of this thesis. The framework of pattern recognition in non-Euclidean

spaces of probability distributions is laid out and followed by a description of pattern

recognition methods which are adapted and developed in this work.

2.1 Fundamentals of pattern recognition

A pattern is essentially a commonality among the multiple instances of an entity.

More formally, S. Watanabe [36] defines a pattern as opposite of chaos and an entity

vaguely defined that could be given a name. Given a pattern, its recognition comes

naturally to human beings. Humans can recognize faces without conscientiously

processing varying illuminations, facial rotations, facial expressions etc. Humans

can with relative ease recognize the sound of a human voice from that of a violin;

the aroma of a rose, from that of garlic and a numeral ‘4’ from a numeral ‘8’.

Humans essentially learn from experience. Pattern recognition is the study of

how machines (such as computer programs) can learn from an observation of the

environment, distinguish patterns of interest from their background, and make sound

and reasonable decisions about the categories of the patterns. Pattern recognition

also includes preprocessing procedures to normalize data, to deal with invariants

and to define proper features and distance measures.
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Figure 2.1: Workflow of supervised learning.

Physical systems are empirically and scientifically investigated by the following

steps [37]:

• Data collection

• Preprocessing

• Model building (learning)

• Prediction or knowledge discovery

Depending on data collection, learning problems can be broadly divided into two

categories: supervised and unsupervised. In the first case, data is observed with the

outcome measurement which is also referred to as the class label. Preprocessing and

model building extracts information from the data for characterizing the underlying

process and is guided by the outcome variable. The workflow of supervised learning

is given in Figure 2.1. In the case of unsupervised learning, illustrated in Figure 2.2,

the observed data does not have an associated outcome variable. Patterns are

usually discovered by grouping the observations in the model building stage and

this aids in the understanding of the underlying physical process that generated

the data. Preprocessed data that is used for building the model (learning) is

known as training data whereas the data that is used for assessing the strength

and predictive capability of the model is called test data. Each preprocessed data

observation is represented by N features or (physical) quantities and is considered

a point in a N dimensional space. As shown in Figure 2.3, supervised learning

18



CHAPTER 2. PATTERN RECOGNITION IN SPACES OF PROBABILITY
DISTRIBUTIONS

Figure 2.2: Workflow of unsupervised learning.

can manifest itself as classification or regression methods whereas unsupervised

learning corresponds to clustering applications. Preprocessing methods include

correlation analysis, dimensionality reduction, feature extraction, feature selection,

normalization and standardization amongst others. In this dissertation, we focus

primarily on supervised learning methods (classification, regression), dimensionality

reduction and correlation analysis.

• Correlation analysis: Correlation measures the statistical relationship

involving dependence between two sets of data or random variables. An

existence of correlation nullifies probabilistic independence and tends to

indicate a predictive relationship that can be exploited in practice. Correlation

analysis is widely used in medicine and social sciences for examining relations

such as those between education and income, unemployment and crime,

maternal age and infant mortality etc.

• Dimensionality reduction: The dimension of the data is the number of variables

that are measured or that characterize each observation. Mathematically,

dimensionality reduction entails finding for a N -dimensional random variable

p = (p1, ...pN) a lower dimensional representation q = (q1, ...qk) with

k ≤ N , that captures the content in the original data, according to some

criterion. Advances in data collection and storage capabilities during the

past decades have led to an exponential growth of high dimensional data in

most sciences including nuclear fusion [31][32]. In most cases, dimensionality
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Figure 2.3: Schematic of pattern recognition.

reduction methods contribute to improving the speed and accuracy of

learning algorithms, economizing data storage requirements and enhancing

the understanding of underlying phenomena of interest by discarding irrelevant

and redundant variables.

• Supervised learning:

– Classification: It is the identification of the category to which a new

observation (or instance) belongs based on the training data containing

observations whose category membership is known. Examples include

assigning a given email into “spam” or “non-spam” folders, assigning

diagnosis to a given patient based on diet and clinical measurements,

prediction of onset of plasma disruption [38] [39] and determination of

ELM type and disruption type in tokamak plasmas [40][41].

– Regression: As a workhorse from statistics, regression analysis assigns a

real valued outcome to a new observation based on the model learned

from the labeled training data. Regression analysis is used extensively in

fusion plasma physics for fitting deterministic relations reflecting physical

dependencies between plasma variables. Further, scaling laws such as

those for energy confinement time and power threshold for the L to H

mode transition have been derived from multi-machine databases [42].
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More recently, advanced regression methods such as symbolic regression

[43] and geodesic least squares regression [44] have been applied in fusion

for circumventing the limitations of ordinary least squares regression.

2.2 Geometric probabilistic framework

As introduced in Chapter 1, measurements in fusion experiments can be affected

by considerable uncertainties, both systematic and stochastic. Probability theory

in the presence of uncertainty and non-deterministic phenomena provides a natural

description of the raw data. Each measurement x is regarded as a sample from

an underlying probability distribution of the measurement characterized by its

probability density function (PDF ), p(x|θ). Measurements described by the

distribution parameters, θ, may contain significantly more information than a

measurement expressed as a value and an associated error bar. In this work, we apply

pattern recognition methods directly in a probabilistic data space i.e. a space of

probability distributions. Since pattern recognition essentially relies on quantitative

assessment of the proximity of data points, use of a well-suited similarity (distance)

measure for quantitatively comparing PDFs is necessitated.

Similarity measures

Similarity measures that satisfy the fundamental definitions of a metric as identified

widely in the mathematical literature [45] are called distance measures while other

non-metric similarity measures are occasionally called divergence. The definition of

a distance measure includes the following requirements:

1. Non-negativity: dist(A,B) ≥ 0

2. Identity of indiscernibles: dist(A,B) = 0 iff A = B

3. Symmetry: dist(A,B) = dist(B,A)

4. Triangle inequality: dist(A,B) ≤ (dist(A,C) + dist(B,C))
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2.2.1 Euclidean distance

In the n-dimensional Euclidean space Rn, the shortest distance between two points

is given by the Euclidean distance which is defined as

dEuc(P,Q) =

√√√√ n∑
i

(Qi − Pi)2 (2.1)

Euclidean geometry is frequently used in various domains as well as in everyday life.

However, it is a poor measure for assessing the similarity of two or more PDFs as it

does not treat the intrinsic nature of probability distributions properly.

Figure 2.4: Illustration of the Euclidean distance between probability distributions.

This is illustrated in Figure 2.4. We consider two Gaussian PDFs P1(x|2, 0.15)

(i.e. µ = 2, σ = 0.15 ) and Q1(x|3, 0.25) in Figure 2.4(a) and two Gaussians

P2(x|2, 0.2) and Q2(x|3, 0.7) in Figure 2.4(b). P2 and Q2 have the same respective

means as P1 and Q1 but larger standard deviations. It can be seen from Figure 2.4

that PDFs P2 and Q2 have a larger overlap and appear more similar in comparison

with P1 and Q1. However, the Euclidean space representation in Figure 2.4(c)

suggests the opposite as the Euclidean (straight line) distance between P2 and Q2 is

larger than the distance between P1 and Q1. This illustrates the inadequacy of the

Euclidean distance in capturing the real similarity and consequently the physical

proximity of PDFs.
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2.2.2 Kullback-Leibler divergence

The Kullback-Leibler divergence (KLD) between continuous distributions P1 and P2

with respective PDFs p1(x) and p2(x) is defined as,

KL(P1, P2) = EP1 [ln L] =

∫ ∞
−∞

p1(x) ln
p1(x)

p2(x)
(2.2)

where L = p1(x)
p2(x)

is the likelihood ratio. Therefore,

KL(P1, P2) = −
∫ ∞
−∞

(p1(x) ln p2(x)) +

∫ ∞
−∞

(p1(x) ln p1(x)) = H(P1, P2)−H(P1),

(2.3)

where H(P1) is the entropy of P1 and H(P1, P2) is the cross-entropy of P1 and P2.

KLD, also known as information gain or relative entropy, is a popular similarity

measure for probability distributions. However, it exhibits certain disadvantages.

Firstly, it falls short of being a genuine distance measure as it does not satisfy

the symmetry condition and the triangle inequality presented in section 2.2 as

fundamental definitions of a distance measure. The triangle inequality, which

the KLD does not obey, is a useful property for reducing the computational

demands in various applications such as image retrieval [46][47]. Secondly, KLD

computation requires calculating a multidimensional integral over the data space.

Therefore, closed form expressions for the KLD are difficult to find and numerical

estimation inevitably increases the computational load significantly. Thirdly, it has

recently been demonstrated that compared with KLD, the Rao geodesic distance

(GD) presented in the next section is a more accurate similarity measure between

probability distributions [48] [49][50].

2.2.3 The Rao geodesic distance

In differential geometry the notion of a geodesic is a generalization of the notion

of a straight line to curved spaces. The term finds its roots in Geodesy which is

the science of measuring the size and shape of the Earth. The mathematical field

of information geometry [33] [51] allows a probability density family (likelihoods,

probabilistic models) to be interpreted as a Riemannian differentiable manifold. A

point on the manifold corresponds to a specific probability density function (PDF)
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within the family and the family parameters provide a coordinate system on the

manifold [48]. Cramér[52] and Rao[53] noted that the Fisher information provides

a metric tensor (Fisher-Rao) on the manifold of probability distributions. The

Fisher-Rao metric is a unique intrinsic metric on such a manifold and is invariant

under some basic probabilistic transformations [54]. For a probability model p(x|θ)

describing a vector x, labeled by an N -dimensional vector θ, the components of the

Fisher information matrix gµν are defined as

gµν(θ) = −E [
∂2

∂θµ∂θν
ln p(x|θ)] , µ, ν = 1...N , (2.4)

where E signifies expectation with respect to the data vector x. The Fisher-Rao

metric paves the way for the calculation of geodesics and the GD between two points

(probability distributions) on the manifold [55]. The geodesics between probability

distributions have a property of length minimization on the manifold and the ensuing

GD is a natural and intrinsic distance measure between probability distributions.

This is amplified further through an illustrative example in the next section.

2.2.3.1 Univariate Gaussian distribution

The univariate Gaussian distribution, parameterized by its mean µ and standard

deviation σ is defined through the following PDF:

f(x|µ, σ2) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2)

]
. (2.5)

The Fisher-Rao metric can be given via the quadratic line element [56]

ds2 =
1

σ2
dµ2 +

2

σ2
dσ2. (2.6)

A closed-form solution exists for the GD between two univariate Gaussian

distributions p1(x|µ1, σ1) and p2(x|µ2, σ2), parametrized by their means µ1 and µ2

and standard deviations σ1 and σ2 and is given as,

GD(p1, p2) =
√

2 ln
1 + δ

1− δ
= 2
√

2 tanh−1 δ , (2.7)

δ =

[
(µ1 − µ2)2 + 2(σ1 − σ2)2

(µ1 − µ2)2 + 2(σ1 + σ2)2

]1/2

.
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Figure 2.5: (a) and (b) respectively illustrate the univariate Gaussian PDFs P1(x|4, 1.2),
Q1(x|16, 1.5) and P2(x|4, 4.0), Q2(x|16, 5.0). P2 and Q2 have the same mean as P1 and
Q1 but a larger standard deviation. In (c), the pseudo-sphere is presented as a model for a
univariate Gaussian manifold. The distributions in (a) and (b) and the geodesics between
them have been mapped on the surface of the pseudosphere in (c). It can be seen that
the distributions P2 and Q2 which have a considerably larger overlap than distributions P1

and Q1 are connected by a visibly shorter geodesic on the manifold in (c). Figure has been
adapted from [44].

Probability distributions
Distance measure P1 and Q1 P2 and Q2 More similar distributions

GD 5.3 2.4 P2 and Q2

Euclidean 12 12.04 P1 and Q1

Table 2.1: GD and Euclidean distance between the Gaussian distributions P1 and Q1

and P2 and Q2 presented in Figure 2.5

In contrast to the frequently used Euclidean distance measure, the GD respects

the intrinsic geometry of the probability distributions. This is illustrated in

Figure 2.5. We consider two Gaussian PDFs P1(x|4, 1.2) (i.e. µ = 4, σ = 1.2) and

Q1(x|16, 1.5) in Figure 2.5(a) and two Gaussian PDFs P2(x|4, 4.0) and Q2(x|16, 5.0)

in Figure 2.5(b). P2 and Q2 have the same respective means as P1 and Q1 but

larger standard deviations. GD between distributions has been computed using

(2.7) and the results have been listed in Table 2.1. Similarly the Euclidean distance

has been computed using (2.4) and the results are presented in Table 2.1. The

results presented in Table 2.1 show that the GD between P2 and Q2 is significantly

higher than the GD between P1 and Q1, suggesting higher proximity between P2 and

Q2. This is in agreement with Figure 2.5 which reveals a significantly higher overlap

between P2 and Q2 in comparison with P1 and Q1. On the other hand, the Euclidean
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distance inaccurately predicts P1 and Q1 as more similar than P2 and Q2 as it does

not treat the intrinsically non-Euclidean nature of probability distributions in an

effective manner.

An explanatory visualization of the two-dimensional surface of univariate

Gaussian PDFs, approximated by the pseudosphere (tractoid) is presented in

Figure 2.5(c) [44]. Each point on the surface is a Gaussian PDF parametrized by

its mean µ and the standard deviation σ. The meridians represent lines of constant

mean, while the latitudes (circles) have a constant standard deviation. Despite

being an imperfect model (invalid for σ < 1) for representing the true geometry of

Gaussian distributions, Figure 2.5(c) nevertheless provides an intuitive visualization

of the geodesics between the points corresponding to the distributions P1 and Q1

and P2 and Q2. It can be readily observed from Figure 2.5(c) that the distance

between P2 and Q2 is indeed shorter than that between P1 and Q1.

2.2.3.2 Multivariate generalized Gaussian distribution

The Multivariate generalized Gaussian distribution(MGGD), also sometimes called

the multivariate exponential power distribution, is a particular case of the

multivariate Kotz-type distribution. MGGDs have been widely used in image

processing applications. The inclusion of Gaussian and Laplacian distributions as

special cases render MGGDs useful for capturing the statistical properties of images

or image features. In particular, the distribution of wavelet coefficients has been

shown to be effectively modeled by the GGDs [57][58]. This characteristic has been

exploited for several applications including content based image retrieval [59], image

denoising [60], texture classification [61] and confinement regime identification and

disruption prediction in fusion plasmas [62]. In this work, with a view to modeling

wavelet detail coefficients (Chapter 3) we consider only zero-mean distributions. As

a first step in defining MGGD, we present the PDF for a univariate zero-mean GGD,

f(x|α, β) =
β

2αΓ[1/β]
exp

[
− (|x|/α)β

]
, (2.8)

where Γ denotes the Gamma function, α is a scale parameter and β(β > 0)

is the shape parameter. As shown in Figure 2.6(b), α resembles the variance

and determines the ‘width’ of the PDF, while β controls the fall-off rate or the
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Figure 2.6: PDF for univariate zero-mean generalized Gaussian distribution. (a). Effect
of the change in shape parameter, β, on the distribution. (b). Effect of the change in scale
parameter α on the distribution.

‘peakedness’ of the distribution. It can be noted from (2.8) and Figure 2.6(a) that

β = 2 results in the Gaussian distribution and β = 1 yields the Laplacian PDF. We

proceed to the multivariate generalized Gaussian distribution, defined in [63] [48]

as:

f(x|Σ, β) =
Γ(m

2
)

π
m
2 Γ(m

2β
)2

m
2β

β

|Σ|1/2
exp

[
− 1

2

[
X(Σ)−1X

]β]
. (2.9)

Here, m is the dimensionality of the probability space and Σ is the dispersion

matrix. The distribution reduces to a multivariate Gaussian case for β = 1 and

to a multivariate Laplace case for β = 0.5.

Expressions for the metric and the geodesic equations on the manifold of

zero-mean MGGDs have been obtained in [55]. For fixed shape parameter β, the

GD between MGGDs denoted by (β,Σ1) and (β,Σ2) is given in [55][48] as:

GD(β,Σ1|β,Σ2) =

[(
3bh −

1

4

)∑
i

(ri2)2 + 2
(
bh −

1

4

)∑
i<j

ri2r
j
2

]1/2

, (2.10)

with ri2 ≡ lnλi2 and λi2, i = 1, ...,m, the m eigenvalues of Σ−1
1 Σ2. In addition, bh is

defined by

bh ≡
1

4

m+ 2β

m+ 2
,

With variable shape parameter the geodesic equations are more difficult to solve and

a closed form for the GD has thus not been obtained. We use a linear approximation
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Figure 2.7: PDF for 3-parameter Weibull distribution. (a). Effect of the change in shape
parameter, β, on the distribution. (b). Effect of the change in scale parameter α on the
distribution. (c). Effect of the change in location parameter γ on the distribution.

to the geodesic coordinate functions, to render the calculations computationally

more feasible, see [55].

2.2.3.3 Weibull distribution

The Weibull distribution has a wide range of applications and has been frequently

used in survival analysis, material sciences, reliability engineering and extreme event

modeling.

The 3-parameter Weibull

The 3-parameter (3P) Weibull PDF is given as

f(x|β, α, γ) =
β

α

(
x− γ
α

)β−1

exp

[
−
(x− γ

α

)β]
, (2.11)

where, f(x) ≥ 0, x ≥ 0 or x = γ, β (scale parameter) > 0, α(shape parameter) > 0

and −∞ < γ (location parameter) <∞. As shown in Figure 2.7(a) varying values

of the shape parameter β has a marked effect on the behavior of the distribution. For

β = 1, the PDF of the 3P Weibull distribution reduces to that of the 2-parameter

(2P) exponential distribution given as:

f(x|α, γ) =
1

α
exp

[
−
(x− γ

α

)]
. (2.12)
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The exponential distribution has the key property of being memoryless. Further, it

can be observed from Figure 2.7(c) that increasing the value of the shape parameter

α while holding β constant has the effect of stretching out the distribution. Lastly,

the effect of the location parameter γ on the PDF is shown in Figure 2.7 (c). It

can be noted that varying γ has the effect of sliding the distribution to the right (if

γ > 0 ) or to the left (if γ < 0).

The 2-parameter Weibull

The 2-parameter (2P) Weibull PDF is obtained by setting γ = 0 in (2.11) and is

given as:

f(x|β, α) =
β

α

(
x

α

)β−1

exp

[
−
(x
α

)β]
. (2.13)

A closed form solution exists for the GD between two 2P Weibull distributions on

a Weibull manifold. For the derivation of the Fisher information metric and the

expression for the GD between 2P Weibull distributions refer to [64].

2.3 Dimensionality reduction

Dimensionality reduction, as already introduced, is the transformation of

high-dimensional data into a meaningful representation of reduced dimensionality.

It is well-aligned with the spirit of Occam’s razor: one should not increase, beyond

what is necessary, the number of entities required to explain anything. Building

on this, ideally, the reduced representation should correspond to the intrinsic

dimensionality[65] of the data which is the minimum number of parameters or

features needed to account for the observed properties of the data.

Dimensionality reduction in addition to offering a number of attractive advantages

is well-motivated for several reasons:

• Curse of dimensionality : This term coined by Bellman in 1961 [66] refers to

the problems arising due to an exponential increase in the volume of the region

of the data space associated with the addition of extra dimensions. A few of

these repercussions are:

– A small increase in dimensionality generally leads to an exponential

increase in the quantity of data required for sustaining the same level
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of performance for classification, regression etc.

– Empty space phenomenon: High-dimensional spaces are inherently

sparse [67]. For instance, for a one-dimensional (1D) standard normal

distribution, 70% of the mass is contained in a sphere of radius one

standard deviation whereas for a 10-dimensional (10D) standard normal

distribution that same (hyper)sphere contains only 0.02% of the mass.

For containing 70% mass, a radius of more than 3 standard deviations

has to be considered. This implies that in high-dimensional distributions

the tails are much more crucial than in 1D ones.

• Original high dimensional data representation may be redundant as:

– Some parameters might be correlated with each other either through

linear combinations or other functional dependences.

– Some parameters will have a variation smaller than the measurement

noise and will thus be irrelevant

• Peaking phenomenon: For a given size of the data set, the classifier accuracy

increases with an increase in the number of parameters (dimensions), peaks

to an optimum value and then starts decreasing, with a further addition of

parameters. S.Ruadys et al. [68] suggested that as the complexity of a classifier

increases, the ratio of data size to dimensionality should also be increased in

order to avoid the peaking phenomenon.

Dimensionality reduction leads to an improvement in the speed and accuracy of

the learning algorithms while yielding more tractable and understandable models.

In [69], a feature selection based on genetic algorithms (dimensionality reduction)

is performed for improving the prediction capability of the Advanced Predictor of

Disruption (APODIS) at JET. The dimensionality reduction not only improves the

success rates of APODIS but also extends the interval before the disruption in which

reliable predictions are achieved. Similarly, in [70] feature selection (dimensionality

reduction) shortlists plasma current (Ip) and mode locked amplitude (ML) along

with either plasma internal inductance (LI) or radiated power (Prad) as parameters

which give the lowest false alarm rate and a prediction model based on these

parameters reduces the computational time for disruption prediction.
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Figure 2.8: Examples of data visualization using dimensionality reduction methods. (a)
Visualization of a graph with the nodes indicting US college football teams and the edges
representing the teams they played against. Figure adapted from [71]. (b) 2D map using
self organising maps indicating safe (blue and red) and disruptive (green) clusters from
229 AUG discharges. For each cluster, the color density is proportional to the number of
samples contained within the clusters. A transition region also appears between the safe
and the disruptive regions. Figure reproduced from [72]. (c) and (d) are 2D projections
from JET disruption data. (c). Disruptive and non-disruptive clusters of data points
are mapped by landmark multidimensional scaling. (d). Density contours for the data
points belonging to disruptive and non-disruptive clusters are drawn. The numbers give a
qualitative measure of the degree of the disruptiveness of the region. A trajectory for pulse
number 78015 is also traced.

While dimensionality reduction facilitates data compression and storage, its use

which is exploited in this thesis is data visualization.

Data visualization

Data visualization is an integral element of exploratory data analysis and an

important first step in assessing the data before proceeding to specific modeling
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and analysis. It is well known that a 2D embedding of high dimensional data for

discovering meaningful information obscured by intrinsic data complexity is not

entirely lossless. Hence a visualization method needs to select what kind of errors to

make and the choice naturally should depend on the visualization goal. This has led

to large array of data visualization techniques such as principle component analysis

(PCA), generative topographic mapping (GTM) [73], self-organizing map (SOM)

[74], multidimensional scaling (see section 2.3.1), to name a few. Some applications

of data visualization are illustrated in Figure 2.8. Figure 2.8(a), is a 2D visualization

of a graph using the latent variable model [71][75]. The nodes indicate the US college

football teams and the edges depict the team they played against. The visual groups

of teams match the 12 conferences arranged for yearly play. Figure 2.8(b) is a 2D

map indicating the plasma states (safe or disruptive) based on 229 discharges from

AUG from the experimental campaigns performed between July 2002 and April

2005. The mapping obtained via SOM, allows detection of the regions with a high

risk of disruption [72]. In Figure 2.8 (c) and (d), the data acquired in disruptive

shots at JET between campaign C21 and C27 has been used for obtaining visually

informative plots for disruptions. Wavelet decomposition using 4 wavelet scales is

carried out for 4 indicative signals, namely the Ip, ML, electron density ne and

Prad. The distribution of wavelet coefficients is described by a zero-mean Laplace

distribution which allows for a fast calculation of geodesic distances. Figure 2.8(c)

shows the visualization obtained using landmark multidimensional scaling (see

subsection 2.3.2) for disruptive and non-disruptive data points. Non-disruptive

points are obtained from the indicator signals at 2 to 1 s before disruption, whereas

the data points obtained from 210 to 30 ms preceding disruption constitute the

disruptive points. Figure 2.8(d) provides a deeper, quantitative insight into the

distribution of disruptive and non-disruptive plasma states by marking the density

contours for the points in each cluster. The maximum density of points for each

cluster is taken as the reference level 1, and the contours are defined with respect

to the respective maximum level. Finally, a trajectory of discharge number 78015,

a JET pulse that disrupted at 16.32 s due to the onset of a neoclassical tearing

mode, is mapped. Figure 2.8(d) follows the trajectory from about 1.5 ss preceding

the discharge.
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Figure 2.9: Illustration of multi-dimensional scaling (MDS). High dimensional data
points are projected in 2 dimensions, such that d′ij ≈ dij where dijand d′ij are distances
between data points i and j in high dimensions and in 2D respectively.

2.3.1 Multidimensional scaling

Classical multi-dimensional scaling (MDS) is a well-regarded dimensionality

reduction technique used for providing a visual representation of a complex set

of relationships [76][77][78]. It yields a projection in the 2D or 3D Euclidean

plane of high-dimensional data, while ensuring minimal information loss during

dimensionality reduction.

The working principle of MDS is illustrated in Figure 2.9. Let X = 1, 2, ...N be a

set of N (high) dimensional data points where the distance (or dissimilarity) between

the ith and jth data point is dij. As shown in Figure 2.9, for a pair-wise distance

matrix for high dimensional data points in X, MDS finds a lower dimensional

mapping such that d′ij ≈ dij for all data points, where, d′ij is the distance between

ith and jth data points in the lower dimensions. The following steps summarize the

algorithm of classical MDS:

1. Matrix of squared distances (D) is set up: D = [d2].

2. Double centering is applied using the centering matrix J

B = −1

2
JDJ (2.14)

where J = IN −N−1O. IN is the identity matrix of size N and O is an N ×N

matrix of all 1′s.

3. k largest positive eigenvalues λ1...λk of B and the corresponding k eigenvectors

33



2.3. DIMENSIONALITY REDUCTION

e1...ek are extracted.

4. A k-dimensional spatial configuration of the N data points is derived from the

coordinate matrix X = EkΛ
1/2
k , where Ek is the matrix of k eigenvectors and

Λk is the diagonal matrix of k eigenvalues of B, respectively.

2.3.2 Landmark multidimensional scaling

Landmark multidimensional scaling (LMDS) is a computationally efficient

approximation to the classical MDS [79]. Classical MDS has a complexity of

(approximately) O(kN2) where N is the number of data points and k is the

dimension of the embedding. This renders MDS practically unfeasible for very large

datasets and necessitates the adoption of a better approach in place of an eigen

decomposition of the full N ×N matrix derived from the input distance matrix D.

LMDS as a computationally efficient variant of MDS is robust to noise and offers

a correct mapping if the data really has a low-dimensional structure. The following

steps summarize the algorithm of LMDS:

1. A set of n landmark points are randomly selected from the data set.

2. A n×n matrix Dn of distances between pairs of landmark points is computed

for providing as input to step 3 below.

3. Classical MDS as outlined in section 2.3.1 is applied for finding a k×n matrix

L representing an embedding of the n landmark points in k-dimensional space.

4. A distance-based triangulation (DBT) is then used for embedding the

remaining data points in the k-dimensional space. DBT is a procedure

through which a low-dimensional embedding is obtained by an affine linear

transformation of the squared distances between the data and the landmark

points.

It is noteworthy, that since in this doctoral work each data point is in fact a

probability distribution, MDS and LMDS utilize the GDs between PDFs to create

a powerful information visualization tool which is capable of yielding 2D maps for

high-dimensional plasma data (see chapter 5)
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2.4 Classification

2.4.1 Discriminant analysis

Discriminant analysis enables prediction (predictive discriminant analysis) of the

class membership based on a linear or quadratic combination of input variables

(such as plasma parameters). Secondly, it aids in the understanding of data, as a

careful examination of the prediction model (descriptive discriminant analysis) that

results from discriminant analysis can give insight into the relationship between

class membership and the variables used for predicting class membership. It

is a parametric method and assumes that the distribution within each class is

multivariate normal.

Given two classes (k = 1, 2), each class k with nk samples is denoted by a (nk×p)

data matrix where p is the number of plasma parameters. The class specific density

of a sample x belonging to class k = r is denoted as fr(x). Further, πr denotes the

prior probability of sample x belonging to class r, with Σk
r=1πr = 1. The posterior

probability of a sample x belonging to class k = r is obtained by applying Bayes

theorem:

P (r|x) =
fr(x)πr

Σk
s=1fs(x)πs

. (2.15)

The denominator is consistent across all classes; hence it suffices to estimate class

specific densities fr(x) for each of the classes. It follows that we classify x in class

r if fr(x)πr is maximal. Each of the class densities is modeled as a multivariate

normal density:

fr(x) =
1

(2π)p/2
√
|Σr|

exp

(
− 1

2
(x− µr)t(Σr)

−1(x− µr)
)
. (2.16)

The Mahalanobis distance of a sample x to class r is given as

d2
r(x) =

√
(x− µr)t(Σr)−1(x− µr). (2.17)

CASE 1: Homoscedasticity

All classes are considered to be sharing a common covariance matrix. Hence, Σr = Σ

35



2.4. CLASSIFICATION

for all classes r. Taking the logarithm of fr(x)πr, we obtain for each class

log(fr(x)πr) = log fr(x) + log πr. (2.18)

Disregarding the constant term p ln(2π), we obtain

log(fr(x)πr) = −1

2
log(|Σ|)− 1

2
(x− µr)t(Σr)

−1(x− µr) + log(πr).

Removing the terms that are constant for all classes yields the class scores lr(x)

given by

lr(x) = xtΣ−1µr −
1

2
(µr)

tΣ−1µr + log(πr). (2.19)

The score lr(x) is a linear function of x and this approach is called the linear

discriminant analysis (LDA).. The decision boundary between two classes is the

collection of points x for which lr(x) = ls(x). In p dimensions the boundary between

two classes is thus a hyperplane.

The class centers and the common covariance matrix for the classes are estimated

from the training data. The standard estimates are:

µr =
1

nr

∑
ki=r

xi, (2.20)

Σ =
1

n− k

k∑
r=1

∑
ki=r

(xi − µr)(xi − µr)t. (2.21)

Hence, the estimated centers µr for each class are the means of class samples and

the covariance matrix estimate Σ is the pooled covariance matrix of the samples in

all classes. Prior class probabilities also have to be estimated from the data and are

given by:

πr =
nr
n
, (2.22)

where nr is the number of samples of class r and n is the total number of samples

in the data.

CASE 2: Heteroscedasticity

Classes do not share a common covariance matrix. Similarly as before, taking the
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logarithm fr(x)πr and removing constants yields the class scores qr(x) given by

qr(x) = −1

2
log(|Σr|)−

1

2
(x− µr)t(Σr)

−1(x− µr) + log(πr). (2.23)

The score qr(x) is a quadratic function of x. Hence, the decision boundary between

any two classes qr(x) = qs(x) is also quadratic. Therefore, this approach is called

quadratic discriminant analysis (QDA). The covariance matrix for each class is

estimated by the sample covariance matrix of the training samples in that class,

that is

Σr =
1

nr − 1

∑
ki=r

(xi − µr)(xi − µr)t. (2.24)

[80][81]

2.4.2 k-nearest neighbor

The k-nearest neighbor classifier (kNN) [82] is a non-parametric, instance-based

learning algorithm applied for incremental learning. The first formulation of a rule

of the nearest-neighbor type was proposed in 1951 by Fix and Hodges [83], where

they also gave a preliminary analysis of its properties. The underlying principle of

the nearest-neighbor classification is that instances within a dataset will generally

exist in close proximity to other instances that have similar properties. In order to

classify the test/query sample, the nearest-neighbor algorithm finds its closest point

in the d-dimensional training data T = x1, x2, ..., xn of n instances. The “closeness”

or distance to the training data (neighbors) of an unclassified instance is determined

by using a distance metric, such as the Euclidean distance. A survey of different

distance metrics for kNN classification can be found in [84]. This framework can be

extended to the k-nearest-neighbor case, in which k closest points in the training

data are returned by the algorithm. The test sample is then classified by a majority

vote of its neighbors and is assigned to the class most common amongst its k-nearest

neighbors. For this reason, k is usually an odd (to avoid tied votes) positive number.

The high degree of local sensitivity makes kNN highly susceptible to noise in the

training data. Thus, the value of k may strongly influence the performance of the

kNN algorithm. The optimal choice of k is a problem dependent issue, but techniques

like cross-validation can be used to reveal the optimal value of k.
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Figure 2.10: Illustration of k-nearest neighbor in the Euclidean space. (a) Test sample is
assigned class 1, using 1-nearest neighbor classification. (b) Test sample is assigned class
2 based on 3-nearest neighbor classification

k-nearest neighbor (k = 1, 3) classification in the Euclidean space is illustrated in

Figure 2.10(a) and (b) respectively. In Figure 2.10(a), the test sample is assigned to

class 1 as its nearest neighbor belongs to class 1. In Figure 2.10 (b) the test sample

is assigned to class 2 which is the majority class amongst its 3 nearest neighbors. On

similar lines, k-nearest neighbor in spaces of probability distributions is illustrated

in Figure 2.11. We know from differential geometry that a geodesic on a manifold is

an analog of a straight line in the Euclidean space. In Figure 2.11, the test sample (a

probability distribution) is assigned to class 2 as that is the dominant class amongst

the 3 nearest neighbors of the test sample. The nearest neighbors are those instances

from the training data which have the minimum GD with respect to the test sample.

kNN has a number of attractive properties. First, the asymptotic error rate of

the 1-nearest neighbor classifier is never more than twice the Bayes rate as shown

in the work by Cover and Hart [82]. Secondly, due to its non-parametric nature, it

does not depend on knowing the form of the distribution from which the data has

been drawn. Rather the inference can be made directly from the observed data i.e.

there is no model building process. As a result of these characteristics, it has found

application in numerous research fields [27][26].
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Figure 2.11: Illustration of k-nearest neighbor on the manifold M . Test sample
(probability distribution) is assigned class 2, using 3-nearest neighbor classification. The
nearest neighbors are ascertained by computing GDs between the test sample and the
samples in the training data.

2.4.3 Conformal predictor

See, Conformal predictors (section 6.3)

2.4.4 Distance-to-centroid classifier

A distance-to-centroid (D2C) classifier, in principal, assigns a test sample to the

class whose centroid is the closest (i.e. minimum distance) to the test sample. This

is relatively straightforward in a Euclidean space where the centroid is simply the

mean location of all the points, taken along each dimension separately. However,

the manifestation of D2C in the manifold setting (Figure 2.12) is considerably more

challenging.

Figure 2.12: Illustration of distance-to-centroid (D2C) classifier on the manifold M .Test
sample is assigned class 3, as the centroid of class 3 is closest (minimum GD) to the test
sample.
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Figure 2.13: Illustration of the tangent space TxM to the manifold M at the point
x ∈M . Exponential map and logarithmic map for transforming to and from the manifold
on the tangent space are also indicated.

Fréchet mean

The Fréchet mean provides a generalization to the manifold setting of the centroid

of a cluster of points in a Euclidean space. For a set of n points, xi, i = 1, ..., n, the

Fréchet mean µf can be obtained through the following minimization:

µf = argmin
x

n∑
i=1

GD(x, xi) (2.25)

This results in an optimization problem on the manifold which, assuming that a

unique solution exists, can be solved by the gradient descent algorithm on the

manifold [85]. The centroid is iteratively determined by projecting the points xi

on the tangent space at the initial Euclidean approximation of the centroid. The

Euclidean mean in the tangent space is computed and the result is projected back

to the manifold. This is illustrated in Figure 2.13. The transformation to and

from the manifold onto the tangent space is achieved via an exponential map and a

logarithmic map, respectively.

Exponential and logarithmic maps

In general, a d-dimensional Euclidean space Rd can be constructed at each point of

a d-dimensional differentiable manifold M , tangent to M . The tangent space at a

point x ∈ M is denoted by TxM . The exponential and logarithmic maps provide

a local diffeomorphism between a differentiable manifold, M , and its tangent space

centered at a point x ∈ M , TxM . As illustrated in Figure 2.13, the transformation
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from the tangent space to the manifold is called the exponential map and the inverse

transformation is called the logarithmic map.

The steps for D2C classification are elaborated further in subsubsection 3.1.2.3.

2.4.5 Principal geodesic classifier

See principal geodesic classification (subsection 3.2.3).
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Chapter 3

Texture discrimination

3.1 Multivariate texture discrimination based on

geodesics to class centroids on a generalized

Gaussian manifold*

A.Shabbir, G.Verdoolaege and G.Van Oost

Department of Applied Physics, Ghent University,
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Abstract. A texture discrimination scheme is proposed wherein

probability distributions are deployed on a probabilistic manifold

for modeling the wavelet statistics of images. We consider the

Rao geodesic distance (GD) to the class centroid for texture

discrimination in various classification experiments. We compare

the performance of GD to class centroid with the Euclidean distance

in a similar context, both in terms of accuracy and computational

complexity. Also, we compare our proposed classification scheme

with the k-nearest neighbor algorithm. Univariate and multivariate

Gaussian and Laplace distributions, as well as generalized Gaussian

distributions with variable shape parameter are each evaluated as

a statistical model for the wavelet coefficients. The GD to the

*The work presented here in section 3.1, has been published in this form as:
A.Shabbir, G.Verdoolaege and G. Van Oost, ”Multivariate texture discrimination based on
geodesics to class centroids on a generalized Gaussian manifold,”Geometric Science of Information,
ser. Lecture Notes in Computer Science, vol. 8085, pp. 853-860, 2013.
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centroid outperforms the Euclidean distance and yields superior

discrimination compared to the k-nearest neighbor approach.

Keywords: Rao geodesic distance, texture discrimination, wavelet

distributions.

3.1.1 Introduction

Web based browsing and digital image libraries have experienced an unprecedented

growth in the last decade. A variety of texture classification and retrieval techniques

have been developed for tackling the issue of automated discrimination of textured

images and their subsequent retrieval, both online and offline. The major challenge

in this application is the classification and extraction of the desired image with

maximized accuracy and least computational load.

Texture classification is essentially a two-stage process: feature extraction and

similarity measurement. Feature extraction entails the extraction of a minimalist set

of features that accurately depict the image in question. The subsequent similarity

measurement requires the determination of a distance function which gauges the

similarity of images on the basis of their respective feature sets. These two stages

essentially dictate the design and performance of the classification and then the

subsequent retrieval system.

Various popular and widely acknowledged texture discrimination techniques

deploy filtering or wavelet-like approaches for accomplishing texture classification

or retrieval [86] [87]. Essentially, these techniques make use of the enhanced

ease of modeling the information, when it is made available in a transformed

domain. These approaches typically provide acceptable classification performances

from large texture databases and are also endorsed by the physiological studies of

the visual cortex which suggests that the wavelet decomposition is a natural way

of image formation[88]. Moreover, representation by wavelet features enables the

classification schemes to operate directly in the compressed domain as wavelets

are the principal technology in image coding formats like JPEG. These significant

advantages and reasonable success of various wavelet based texture classification

schemes, motivates our choice of wavelet representation of textures for this work.

In this study, we have exploited a parametric probabilistic framework for yielding

a precise and accurate descriptor of images and thus obviating the need of storing
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or transmitting any redundant information. Numerous univariate models have been

proposed for characterizing the wavelet subbands. Despite the ease of modeling

and computation, these approaches do not completely exploit the rich texture

information as they are inadequate for modeling the correlation between color bands.

Multivariate distributions such as Generalized Gaussian [87] [48], Gaussian Scale

Mixture [63] and alpha-stable distributions [6] have, also, lately been utilized with

varying degrees of success, for modeling the spatial and/or color correlations of the

wavelet coefficients.

In this work, we employ a singular probabilistic model for modeling both

the texture and color information, contained in the images. Verdoolaege et al.

[48] established that classification and hence retrieval performance improves if

the information contained in the correlation between color bands is exploited.

Extending on this notion, in our probabilistic framework we utilize a multivariate

probability distribution for joint modeling of the spectral bands while assuming

independence amongst the wavelet subbands corresponding to the same color. In this

work, we initially make use of the univariate Gaussian, Laplacian and generalized

Gaussian distributions as our statistical model, and we then subsequently deploy

the multivariate Gaussian, Laplacian and Generalized Gaussian distributions for

comprehensive modeling of the rich correlation between color bands prevalent in the

textured images.

Once feature extraction has been accomplished through the imposition of a

suitable statistical model on the wavelet detail coefficients of the textured image

which is to be classified or retrieved, determination of a suitable distance or

similarity measure remains the next pursuit. As numerous possibilities exist in

terms of probabilistic models which can be utilized for modeling the wavelet detail

statistics, there is also a wide variety in terms of distance measures that can

be used for evaluating the distance between probability distributions. Euclidean

distance, despite yielding acceptable performances in various textural retrieval

contexts [59], is not a natural similarity measure between probability distributions

[48]. Kullback-Leibler divergence (KLD) despite its popularity for evaluating

similarities is in fact not a true distance measure. The Rao geodesic distance

(GD), derived from the Fisher information, has been used in case of multivariate

probability distributions and has outperformed KLD and Euclidean in many
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contexts [48]. Furthermore, the GD is a natural similarity measure between

probability distributions.

In this paper, we propose a new scheme for texture retrieval based on the

calculation of the geodesic distance between the query image and the centroid of

the texture classes. Furthermore, to provide an ease of reference, we compare

the performance of our proposed scheme with the performance of the k-nearest

neighbor classifier using the Euclidean distance. We also evaluate the outcomes of

our proposed technique when it operates with Euclidean distance as the underlying

distance measure. Initially we work with the grey-level textures generated from the

luminance of the RGB color images and we then move on to full joint modeling of

the wavelet coefficients corresponding to the three colour bands. We also examine

the computational expense of our proposed classification technique. The rest of the

paper is organized as follows: section 3.1.2 summarizes the statistical models, the

Rao geodesic distance and our proposed texture classification scheme. The section

3.1.3 outlines the experimental setup and presents the attained classification results.

Finally, section 3.1.4 concludes the paper.

3.1.2 Statistical modeling and similarity measures

3.1.2.1 (Multivariate) generalized Gaussian distribution

The multivariate generalized Gaussian distribution has been introduced in [81] for

modeling the wavelet detail co-efficients. We present the univariate generalized

Gaussian distribution, before proceeding to the multivariate case. The univariate

generalized Gaussian distribution is given as:

f(x|α, β) =
β

2αΓ[1/β]
exp
[
− (|x|/α)β

]
, (3.1)

where Γ denotes the Gamma function and α and β are, respectively, the scale and

shape parameter controlling the variance and the fall-off rate of the distribution.

β = 2 yields the Gaussian distribution and β = 1, results in the Laplace distribution.

We proceed to the multivariate generalized Gaussian distribution, defined in [48] as:

f(x|Σ, β) =
Γ(m

2
)

π
m
2 Γ(m

2β
)2

m
2β

β

|Σ|1/2
exp

{
− 1

2

[
X ′Σ−1X

]β}
. (3.2)
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Here, m is the dimensionality of the probability space, and is equal to 3 in our

case of colored images. The distribution reduces to a multivariate Gaussian case for

β = 1 and to a multivariate Laplace case for β = 0.5. Γ is the dispersion matrix.

Parameters for multivariate MGGD, Laplace and Gaussian were estimated using

the method of moments, followed by maximum likelihood estimation [48].

3.1.2.2 Geodesic distance

The Rao geodesic distance in the context of information geometry provides an

effective distance measure between probability distributions represented by points

on a probabilistic manifold. Geodesic distances allow for length minimization on

the probabilistic manifold and offer an edge in terms of data visualization that they

enable on the manifold [89]. For fixed shape parameter β i.e. Laplace and Gaussian

case, the geodesic distance between two MGGDs denoted by (β,Σ1) and (β,Σ2) is

given in [48]:

GD(β,Σ1|β,Σ2) =

[(
3bh −

1

4

)∑
i

(ri2)2 + 2
(
bh −

1

4

)∑
i<j

ri2r
j
2

]1/2

, (3.3)

with ri2 ≡ lnλi2 and λi2, i = 1, ...,m, the m eigenvalues of Σ−1
1 Σ2. In addition, bh is

defined by

bh ≡
1

4

m+ 2β

m+ 2
.

With variable shape parameter there is no closed form for the GD and we used a

linear approximation to the geodesic coordinate functions, to render the calculations

computationally more feasible, see [55].

3.1.2.3 Distance-to-centroid classifier

We present a novel classification scheme for data points (i.e. textures in this

application) expressed as probability distributions and laying as points on a

probabilistic manifold. The scheme is outlined as:

– Training data is used for computing the centroid for each class of textured

images. The geodesic centroid is calculated according to an iterative algorithm

described in [90], based on a projection on the tangent space. To realize

this, the (inverse) exponential map was calculated for each of the distribution

47



3.1. MULTIVARIATE TEXTURE DISCRIMINATION BASED ON GEODESICS
TO CLASS CENTROIDS ON A GENERALIZED GAUSSIAN MANIFOLD*

models used in this work.

– Distance is evaluated between the class centroids and each test data object

(query image in this case), which is to be classified.

– Geodesic distance is used as the distance measure, due to its suitability as a

natural distance measure between probability distributions.

– Test data object is assigned the class, whose centroid has the shortest geodesic

distance to the object.

3.1.3 Classification experiments

3.1.3.1 Experimental setup

We carried out our experiments with grey-level and colored textures from a small

dataset of 40 images from the Vistex database [91]. This is the same database that

was used by Verdoolaege et al. [48] and Do et al. [7] for conducting wavelet-based

texture retrieval. This enables a comparison with their results in the similar context.

The database comprises of glimpses of different real-world natural scenes possessing

sufficient homogeneity and having a 512 x 512 image size. Each image was divided

into 16 128 x 128-sized non-overlapping subimages, yielding a database of 640

subimages. Furthermore, each subimage was expressed in the RGB color space.

Grey-level images were generated from the original color images by calculating their

luminance. Moreover, every color (or grey-level) component of each subimage was

individually normalized to zero mean and unit variance resulting in the subimages

from the same original image not generally lying in the same range, rendering the

problem more challenging. Following this, a discrete wavelet transform was applied

on every component with three levels using the Daubechies filters of length eight.

The wavelet detail coefficients of every subband over the three color components (or

the grey-level) were modeled by a (multivariate) Gaussian or Laplace distribution, or

a generalized Gaussian distribution with variable shape parameter. The parameters

of the probability models for all subbands constitute the feature set for a single

subimage.

The classification experiment was implemented in two stages: training and

testing. In the training stage, the class label of each image was assumed to be known,
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which enabled the calculation of a centroid for each class. In the testing phase, the

distance between the test image and the centroid of each class was calculated. The

test image was then assigned the class, whose centroid had the smallest distance

to the test image. Following that, we compared the assigned class label with the

actual class label of the test image. We carried out the experiment repeatedly,

using every subimage as a test image once. We finally calculated the average rate of

successful classification as a performance measure. The experiments were conducted

with the geodesic distance as a distance measure between the test image and the

class centroid, and subsequently using the Euclidean distance. This way the GD

could be compared as a similarity measure between probability distributions to the

Euclidean distance.

In the last stage, the classification was also performed using the k-nearest neighbor

classifier in conjunction with the Euclidean distance, to provide a reference for

comparison of our proposed technique. When working with the k-nearest neighbor

algorithm, we considered one of the 640 subimages to be a test image which is

to be assigned to one of the 40 classes. The class labels of the other subimages

were assumed to be known. Distance between the test image and each of the

remaining images was determined and the test image was assigned to the class

most common among the fifteen nearest neighbors of the test image. Choice of

fifteen nearest neighbors is motivated by the hypothesis that the fifteen nearest

neighbors of the test image should be the fifteen subimages originating from the

same class to which the test image belonged. Following that, we compared the

assigned class label with the actual class label of the test image. Again, we carried

out the experiment repeatedly, using every subimage as a test image once. The

correct classification rate was then assessed by calculating the ratio of the images

that were correctly classified to the total number of images. We conducted the

classification experiments initially on the grey-level equivalent of the 640 colour

images and then we catered the corresponding full RGB colour images considering

the complete correlation structure between the spectral bands. For each of these

instances, as a statistical model for wavelet coefficients, we employed the multivariate

Gaussian, Laplacian and generalized Gaussian, characterised by β = 1, β = 1/2 and

variable β, respectively.
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Classifier Measure Model Gray Images Colour Images

Distance-to-centroid

Geodesic
Gauss 0.04 0.3

Laplace 0.042 0.33
GGD 0.476 1.301

Euclidean
Gauss 0.015 0.043

Laplace 0.015 0.044
GGD 0.034 0.094

k-Nearest Neighbour Euclidean
Gauss 0.241 0.69

Laplace 0.242 0.7
GGD 0.55 1.5

Table 3.1: Time, in ms, necessary for the classification of one textured image (nine
wavelet subbands), using geodesic distance-to-centroid (D2C) classifier and the k-nearest
neighbor (kNN) classifier, characterized by different models.

3.1.3.2 Computational demands

Besides accuracy, computational load of a retrieval or classification technique is

also a crucial yardstick of performance. Computational efficiency has a direct

impact on the required resources and speed, and can be a limiting factor in various

applications. We have measured the time taken by our proposed technique to

classify a query image based on the distance to the class centroids and also the

time taken for the k nearest neighbor algorithm to perform the same feat. The

time taken for computation was measured on the same machine on which all

calculations pertaining to this work were performed. The machine employed for

this work was a Dell Precision T7600 equipped with an Intel Xenon(R) CPU at 2.4

GHz and 16 GB of RAM, running the 64-bit version of the Windows 7 operating

system. The retrieval systems were implemented and run in MATLAB (version

8, R2012b, 64 bit) [92]. The durations are presented in Table 3.1. Classification

conducted with the distance-to-centroid classifier, employing GD as the distance

measure, takes considerably longer than the same classifier working with Euclidean

measure. However, this is a direct consequence of accuracy-versus-speed trade-off,

as the classification accuracy with GD clearly outperforms Euclidean with a large

margin. The most noteworthy observation is the superior performance of our

proposed distance-to-centroid classifier, compared to a k-nearest neighbor classifier,

in terms of computational load. Distance-to-centroid proves to be computationally

attractive, as it essentially reduces the comparisons required to correctly classify one

query image, to the number of centroids, which are equal to the number of classes.
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k-nearest neighbor, ideally, requires N number of comparisons to accomplish the

same task, where N is the number of entries in the database. Laplace and Gaussian

models consume less time for geodesic distances, in contrast to generalized Gaussian,

which is a direct repercussion of the necessity of approximating the GD in the latter

case.

3.1.3.3 Results and discussion

The results of our classification experiments on the Vistex database are presented

in Table Table 3.2, followed by a discussion on significant observations. It can

Classifier Measure Model Grey Images Colour Images

Distance-to-Centroid

Geodesic
Gauss 83.59 97.17

Laplace 84.38 97.81
GGD 87.19 97.19

Euclidean
Gauss 46.1 58.91

Laplace 45.63 58.91
GGD 42.03 50.00

k-nearest neighbor -
Gauss 67.5 78.13

Laplace 65.16 77.03
GGD 55.47 47.97

Table 3.2: Correct classification success rates (%), using different models for three
wavelet scales, using D2C and kNN classifiers.

be observed that when the correlation structure between the spectral bands is

considered (i.e colour images), the classification accuracy is substantially enhanced

in comparison to grey scale modeling. This however, happens at an escalated

computational expense. The most significant result is the high classification

accuracy, achieved with our proposed distance-to-centroid classifier based on

GD, in contrast to the k-nearest neighbor classifier. Superior performance

of distance-to-centroid classifier with GD, as opposed to Euclidean, further

substantiates the worth of the GD as a well suited distance measure for probability

distributions on a manifold. Finally, the GGD yields higher classification accuracy

for grey-scale images with the GD-based distance-to-centroid classifier.

3.1.4 Conclusion and future work

In this paper we have proposed a new technique for classifying textures, when

they are represented in the wavelet domain. We have shown the value of the Rao
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geodesic distance as an efficient distance measure between probability distributions

and hence, as an important aid to effective classification. We have also illustrated

how texture classification can profit by exploiting the information residing in the

rich spectral band correlation structure by joint modeling through multivariate

distributions. Furthermore, we have applied various statistical models and hence

we have showed their respective competences for accomplishing the task.

In the future, we envisage investigating the behavior of our developed technique

and obtained conclusions on other data sets and applications. Furthermore, we plan

to improve our classification technique by incorporating class variance, leading to

the calculation of Mahalanobis distances on tangent spaces. Analyzing the effect of

additive noise on the performance of our classifier is also aspired.
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3.2 Multivariate texture discrimination using a

principal geodesic classifier*

A.Shabbir1,2 and G.Verdoolaege1,3

1Department of Applied Physics, Ghent University, B-9000 Ghent, Belgium
2Max Planck Institute for Plasma Physics, D-85748 Garching, Germany

3Laboratory for Plasma Physics – Royal Military Academy (LPP – ERM/KMS),
B-1000 Brussels, Belgium

Abstract. A new texture discrimination method is presented for classification

and retrieval of colored textures represented in the wavelet domain. The interband

correlation structure is modeled by multivariate probability models which constitute

a Riemannian manifold. The presented method considers the shape of the class on

the manifold by determining the principal geodesic of each class. The method, which

we call principal geodesic classification, then determines the shortest distance from a

test texture to the principal geodesic of each class. We use the Rao geodesic distance

(GD) for calculating distances on the manifold. We compare the performance of the

proposed method with distance-to-centroid and k-nearest neighbor classifiers and of

the GD with the Euclidean distance. The principal geodesic classifier coupled with

the GD yields better results, indicating the usefulness of effectively and concisely

quantifying the variability of the classes in the probabilistic feature space.

Index Terms- Texture classification, principal geodesic analysis, geodesic

distance

3.2.1 Introduction

Several texture discrimination techniques have shown the wavelet representation

to be a well suited domain for characterizing textures [59][48][80]. Hence, wavelet

decomposition is often conducted for the generation of a set of features (signature)

that accurately characterize the texture image. In many discrimination methods,

each wavelet subband is modeled by a probability density function (PDF). The

distribution parameters are estimated, composing the signature of the texture. The

*The work presented here in section 3.2 has been published in this form as:
A.Shabbir and G.Verdoolaege, “Multivariate texture discrimination using a principal geodesic
classifier,” in Proc. IEEE International Conference on Image Processing, pp. 3550-3554, 2015.
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next step entails the use of an appropriate similarity measure for assessing the

similarity of two textures based on their respective signatures.

The Euclidean distance (ED) and the Kullback-Leibler divergence (KLD) between

probability distributions have yielded acceptable performances in various texture

retrieval contexts [59][48]. However, the ED is not a natural similarity measure

between probability distributions and the KLD is in fact not even a true distance

measure. The Rao geodesic distance (GD) derived from the Fisher information has

outperformed KLD and Euclidean in many contexts [48][80]. Therefore, in this work,

the GD between multivariate probability distributions has been used, as it provides

a natural similarity measure between PDFs.

Numerous univariate models, such as the generalized Gaussian [59] and Weibull

[93], have been proposed for characterizing wavelet subbands. However, these models

are inadequate for modeling the correlation between color bands and thus do not

completely capture the rich texture information. In this work, we employ the

multivariate Laplacian and Gaussian probability distributions for joint modeling

of the spectral bands, while assuming independence amongst the wavelet subbands

corresponding to the same color. Texture retrieval techniques frequently compute

the distance between the unlabeled (query) texture image and the nearest texture

in the training set [59][48][94] seldom taking into account the underlying shape

and variability of the class. In this paper, we present a new scheme for texture

discrimination based on the calculation of the minimum geodesic distance between

the unlabeled texture and the principal geodesic (principal direction) for each class.

The principal direction, also called the first ‘principal component’, of the class is the

direction in which the class members exhibit most variance.

For data lying in Euclidean space, principal component analysis (PCA) [95]

provides an efficient parameterization of class variability. It yields the principal

components of the data corresponding to the eigenvectors of the data covariance

matrix. However, in our proposed scheme the texture signatures are parameters

of PDFs and are no longer elements of a Euclidean space but in fact constitute a

Riemannian manifold. Hence, PCA, being a standard linear technique, cannot be

applied to textures. Therefore we employ principal geodesic analysis (PGA) [96] to

each class for determining the direction with the greatest variability on the manifold.

PGA is a generalization of PCA for the manifold setting.
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Further, we compare the performance of our proposed scheme with the

performance of the GD-based k-nearest neighbor (kNN) [48] and distance-to-centroid

classifiers [80] on the manifold. We also evaluate the outcome of the techniques when

they operate with the ED as the underlying distance measure.

The rest of the paper is organized as follows: section 3.2.2 summarizes the

statistical models and the Rao geodesic distance, section 3.2.3 presents our proposed

principal geodesic classifier and section 3.2.4 outlines the experimental setup and

presents the attained classification results. Finally, section 3.2.5 concludes the paper.

3.2.2 Multivariate texture modeling

3.2.2.1 The multivariate Laplace distribution

The multivariate Laplace distribution is a particular case of the multivariate

generalized Gaussian distribution (MGGD) that has been introduced in [48] and

[81] for modeling the wavelet detail coefficients for color images. The MGGD is

defined in [48] as:

f(X|Σ, β) =
Γ(m

2
)

π
m
2 Γ(m

2β
)2

m
2β

β

|Σ|1/2
exp

[
− 1

2

[
X(Σ)−1X

]β]
, (3.4)

where Γ(.) denotes the Gamma function and Σ is the dispersion matrix. β is the

shape parameter and controls the fall-off rate of the distribution. Also, m is the

dimensionality of the probability space, and is equal to 3 in our case of RGB colored

images. The distribution reduces to a multivariate Gaussian case for β = 1 and to

a multivariate Laplace case for β = 0.5. The parameters of the probability models

are estimated via the method of moments followed by an optimization through

maximum likelihood estimation [48].

3.2.2.2 Geodesic distance

The Rao geodesic distance (GD) between two multivariate Laplace or two

multivariate Gaussian distributions denoted by (β,Σ1) and (β,Σ2) is given as:

GD =

[(
3bh −

1

4

)∑
i

(ri2)2 + 2
(
bh −

1

4

)∑
i<j

ri2r
j
2

]1/2

. (3.5)
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Figure 3.1: The principal geodesic on a manifold is an analog of the principal component
direction in the Euclidean space

Here, ri2 ≡ lnλi2 and λi2, i = 1, ...,m, are the m eigenvalues of Σ−1
1 Σ2. Also, bh is

defined by,

bh ≡
1

4

m+ 2β

m+ 2
.

3.2.3 Principal geodesic classification

A geodesic curve on a connected and complete manifold M is locally the shortest

path between points. Essentially, a geodesic is a generalization of a straight line.

Hence, a geodesic curve on the manifold is a natural analog of the first principal

direction yielded by PCA. This is shown in Figure 3.1. PGA is outlined as follows:

• The class mean is computed for each class on the manifold. This entails the

minimization of the sum of squared distance functions f for the class members

y1, ...yN ∈ M

f(y) =
1

2N

M∑
i=1

d(y, yi)
2, (3.6)

This is achieved via a gradient descent algorithm first proposed by Pennec

[97].

• The class members are now projected on the tangent space TµM of the

manifold M at the class mean µ. The transformation to the tangent space

is done through a logarithmic map:

logµ : y ∈M −→ logµ(y) = ~µy, ~µy ∈ TµM. (3.7)

• PCA is conducted on the class members in the tangent space for obtaining the

principal component directions (eigenvectors).
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Figure 3.2: Work-flow of principal geodesic classification

• The eigenvector corresponding to the first principal component is projected

onto the manifold using the exponential map:

expµ : ~µy ∈ TµM −→ expµ( ~µy) = y, y ∈M. (3.8)

This results in a point on the principal geodesic on the manifold.

The work-flow of principal geodesic classification (PGC) is given in Figure 3.2 In the

training phase of the principal geodesic classifier, the principal geodesic is obtained

for each texture class. In the testing phase, the distance of the test texture to

the closest point on the principal geodesic is obtained via optimization (gradient

descent) as shown in Figure 3.3. The test texture is assigned to the class whose

principal geodesic is nearest to the test texture. Computationally, the advantage of

this scheme is that only a few distances need to be evaluated in the gradient descent

algorithm to find the distance to a specific class. This is opposed to e.g. kNN, which

has to calculate distances to each sample in the database.

3.2.4 Classification experiments

3.2.4.1 Experimental setup

We carried out our experiments with 40 colored texture classes from the MIT Vision

Texture (VisTex) database [91]. The database consists of glimpses of different

natural scenes possessing sufficient homogeneity and having a 512 x 512 image
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Figure 3.3: Illustration of classification of a test texture by PGC. The distance of the
test texture to the closest point on the principal geodesic is calculated for each class.

size. From each of these texture images, 16 non-overlapping subimages of size 128

x 128 are created. This leads to a database of 640 subimages. Each subimage

is expressed in the RGB color space. Further, every color component of each

subimage is individually normalized to zero mean and unit variance resulting in

the subimages from the same original image not generally lying in the same range.

This renders the classification task even more challenging. Following this, a discrete

wavelet transform with one level is applied individually on every component using

Daubechies filter of length eight. The wavelet detail coefficients of every subband

over the three color components are then modeled by a multivariate Gaussian or

Laplacian distribution. These estimated parameters constitute the feature set for

a single subimage. The dimensionality of the complete manifold is given by the

number of independent entries in the dispersion matrices (6 for three-band color

images), multiplied by the number of wavelet subbands.

In the training phase of the principal geodesic classifier, the principal geodesic for

each class is computed assuming that the label for each texture image is known. 640

subimages are each used as a test texture once and their minimum distance to the

principal geodesic of each class is calculated. Texture classification is also carried out

using a distance-to-centroid classifier and kNN, to provide a reference for comparison

with our proposed method. In the training phase of distance-to-centroid classifier,

the centroid for each class is calculated. The test texture is assigned to the class

whose centroid has the minimum distance to the test texture. Likewise, in kNN

the test texture is assigned to the class most common amongst its fifteen nearest
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neighbors. The choice of k =15 is driven by the hypothesis that the 15 nearest

neighbors of the test texture should naturally be the 15 subimages originating from

the same class to which the test texture belonged. Each subimage is treated as a

test texture once, both in the distance-to-centroid classifier and kNN.

The correct classification success rate (%) for each classifier is then evaluated by

calculating the ratio of textures that are correctly classified to the total number of

textures.

The experiments are conducted with the GD as a distance measure and then

also using the Euclidean distance (ED). This enables a comparison of the GD as a

similarity measure between probability distributions to the ED.

3.2.4.2 Results

The results of the classification experiments on the VisTex database are presented

in Table 3.3. The highest classification accuracy is achieved with our proposed

principal geodesic classifier based on the GD, compared to distance-to-centroid and

kNN. This indicates that accommodating the geometrical variability of the textures

in the feature space can potentially lead to a performance improvement. PGA is

essentially a dimensionality reduction procedure on the manifold, expressing each

6-dimensional texture image class by a single principal geodesic. This reduces

the dimensionality of each wavelet subband to 1, yielding effective and concise

image features. As mentioned before, PGC also offers a significant computational

advantage over kNN. In addition, the superior performance of the classifiers with GD

as a distance measure, compared to the Euclidean distance, further substantiates the

superiority of the GD as a well-suited distance measure for probability distributions

on a manifold. Finally, the Laplace distribution appears to be a better model than

the Gaussian, though the differences in classification rates are marginal. On the

other hand, it has been shown empirically in [48] that in retrieval applications the

advantage of a Laplacian distribution can become more important. At this point it

should be noted that, to the best of our knowledge, no analytic expression for the

KLD between multivariate Laplace distributions has been found so far, as opposed

to the GD.
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Classifier Measure Model SR (%)

Principal Geodesic
GD

Gauss 99.06
Laplace 99.22

ED
Gauss 71.25

Laplace 75.00

Distance-to- centroid
GD

Gauss 95.94
Laplace 95.78

ED
Gauss 71.72

Laplace 70.31

k-nearest neighbor
GD

Gauss 94.53
Laplace 95.31

ED
Gauss 69.06

Laplace 69.53

Table 3.3: Correct classification success rates (SR) (%), based on Laplace and Gaussian
models for one wavelet scale, using principal geodesic, distance-to-centroid and k-nearest
neighbor classifiers.

3.2.5 Conclusions

In this work, we have presented a new texture discrimination method and

demonstrated its classification performance on a database of 640 textured images.

The presented principal geodesic classifier performs better than distance-to-centroid

and k-nearest neighbor classifiers, making use of a highly optimized set of features

on a probabilistic manifold. Further, we have shown the superior classification

performance of the GD versus Euclidean distance in all our experiments.

Investigating the performance of our proposed classifier on other data sets and

applications will be a subject of future work.
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Chapter 4

Edge-localized modes in tokamak

plasmas

In this chapter, the general introduction on the high confinement regime (H-mode)

is completed. This is followed by a description of the plasma edge instability that

is ubiquitous in H-mode regimes and is the prime focus of analysis in this thesis:

the edge localized modes (ELMs). ELM phenomenology, physics and their control

schemes are then briefly reviewed.

4.1 The H-mode and edge-localized modes

As already introduced in subsection 1.3.2, auxiliary heated plasmas undergo a

transition from the L-mode to the H-mode which occurs as a bifurcation exhibited

as a sudden increase in particle and stored energy confinement. In Figure 4.1,

a standard H-mode discharge from AUG and a carbon-wall discharge from JET

are shown, with the L-H transition being indicated with a dashed line. It can be

observed that after the L-H transition, the electron temperature (Te) (keV ), density

(ne)(10−19m−2) and stored energy (WMHD) (MJ) increase rapidly. However, the

increase in stored energy in the H-mode is not only due to the increase in heating

power, but also due to a longer energy confinement time (τE) (s). τE is defined as

τE =
W

Pinput
, (4.1)
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Figure 4.1: L-H transition in a standard H-mode AUG discharge #30465 and JET
carbon wall discharge #76480. With increasing input power (PNBI) the electron
temperature Te, density ne and WMHD increase as well. The rate of increase becomes
faster after the L-H transition which is indicated by the dashed line.

and

W =
3

2

∫
p dV, (4.2)

where W (MJ) is the plasma stored energy, and Pinput (MW )is the net input power

(ohmic and auxiliary) that is delivered to the plasma. As shown in Figure 1.4, the

improved confinement of the H-mode is due to the formation of an edge transport

barrier (ETB) just inside the separatix in diverted tokamaks. The transport barrier

is an outcome of a sheared perpendicular rotation profile, driven by a radial electric

field, Er ×B, in the plasma edge, which suppresses the long wavelength turbulence

of the L-mode. This is illustrated in Figure 4.2. The transport barrier created

by the so called Er well gives rise to a steep gradient in the edge pressure profile.

However, the steep plasma pressure gradient and the associated increased current

density at the edge pedestal could exceed a critical threshold value and drive

magnetohydrodynamic (MHD) instabilities called edge localized modes (ELMs).

ELMs are short, repetitive relaxations of the pedestal profiles which lead to

particle and energy loss [98][20][19][99]. The edge pedestal collapses towards a

shallower pressure gradient during the first stage of the ELM cycle namely the ELM

crash. Figure 4.3 shows the evolution of several physical quantities within the ELM
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Figure 4.2: (a) The edge perpendicular rotation profile (Er ×B) in the H-mode and the
L-mode. (b) The edge pressure profile in the H-mode and the L-mode. Figures adapted
from [98]

cycle for a standard H-mode discharge from AUG and a CW discharge from JET.

Historically, the increase in the radiation in the Dα signal in the divertor, as shown

in Figure 4.3(b), has been used as the ELM marker. The increase in Dα indicates

an increase in edge recycling and can be used to give a measurement of the inward

particle flux. However, since the installation of the full W divertor at AUG and

Figure 4.3: Evolution of several physical quantities within the ELM cycle. (a). A
standard H-mode AUG discharge #30465. (b). JET CW discharge #76480. In (a) current
to the outer divertor Idiv, electron density ne(edge) integrated along the edge interferometer
line of sight inside the confined plasma and thermal plasma energy WMHD obtained from
equilibrium reconstruction are shown. In (b) intensity of the Dα radiation alongside
ne(edge) and WMHD are shown. Vertical dashed lines in both (a) and (b) indicate the
ELM crashes.
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the ITER-like wall in JET, the quality of this signal has degraded. A high quality

alternative at AUG, as shown in Figure 4.3(a), is the scrape-off layer (SOL) current

measured via shunt resistances measured through the metallic divertor. Likewise at

JET, with the ILW, the Be II (527nm) fast emission signal in the divertor gives a

better quality ELM signature.

ELM crashes in Figure 4.3 are identified by vertical dashed lines. After these

crashes all quantities recover on a slower time scale towards their pre-ELM values.

This constitutes the second part of the ELM cycle referred to as the build-up phase or

the recovery phase. ELMs can reduce the pedestal energy confinement by ∼10-20%

as well as lead to large transient heat and particle loads on the PFCs. ELM energy

loss (WELM) is typically normalized by the pedestal energy (Wped) when comparing

relative ELM sizes across devices of different size. Under comparable conditions the

relative ELM size, WELM/Wped, is roughly constant for a range of device sizes [100].

Figure 4.4: Dα time trace showing type I ELMs in JET pulse number 61480 (fELM =
33Hz), 72343 (fELM = 33Hz), 67761 (fELM = 67Hz) and 73341(fELM = 29Hz). Figure
adapted from [101].
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4.2 ELM types

The physical mechanisms for the different ELM phenomena are complex and ELMs

are classified from an empirical and phenomenological perspective [99][19][20]. A first

classification was presented by E.Doyle et al. for the DIII-D tokamak [102] wherein

three types of ELMs were identified and numbered according to the chronological

sequence in which they were found. In general, there are three main criteria that

have been used for ELM classification:

• Dependence of ELM repetition frequency on the heating power (the energy

flux through the separatix)

• Occurrence of magnetic precursors, and

• MHD stability analysis, though Zohm [20] shows that the ideal ballooning

stability is not a good criterion for separating the different ELM types.

4.2.1 Type I ELMs

Type I ELMs are characterized by an ELM repetition frequency (fELM) that

increases with the energy flux through the separatix:

dfELM
dPsep

> 0, (4.3)

As shown in Figure 4.4, they typically appear as large, isolated bursts in the

Dα/BeII emissions and are therefore also referred to as ‘large’ or ‘giant’ ELMs.

These ELMs occur in good confinement regimes but result in an expulsion of a large

amount of energy. An international multi-device database assembled by the ITPA

Divertor/SOL Topical Group indicates that relative WELM is strongly correlated

with pedestal collisionality (ν∗ped) [103][104] and large ELMs can lose up to 20% of

the Wped at low values of ν∗ped that are foreseen for ITER. Here ν∗ped is defined as

ν∗ped = Rq95 ε
−3/2(λe,e)

−1 (4.4)

where, λe,e is the mean electron-electron Coulomb collision mean free path length.

For the database in [103], the variation of relative WELM with ν∗ped is shown in
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Figure 4.5: Normalized ELM energy loss WELM/Wped versus pedestal plasma
collisionality (ν∗ped) for a large range of type I ELMy H-mode plasmas in AUG, DIII-D,
JT-60U and JET. Figure reproduced from [103].

Figure 4.5. It can be noted from Figure 4.5 that while ν∗ped is certainly a sorting

parameter for ELM size in type I ELMy H-mode plasmas, there is, nevertheless,

a significant scatter in the ELM size at a fixed ν∗ped. On the one hand, this can

partially be attributed to variations in the other parameters which influence WELM

such as the plasma shape, heating levels, pedestal width etc. On the other hand, it is

noteworthy that ELM size can vary significantly for ELMs within a single discharge.

For type I ELMs at JET, Loarte et al. [107] measured a 15% standard deviation

Figure 4.6: Occurrence of ELM types in edge ne–Te space for (a). DIII-D (b). JET.
Figure reproduced from (a). [105] (b). [106].
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in WELM for individual ELMs under stationary conditions. Webster et al. [108] in

their analysis of ∼10,000 statistically equivalent ELMs from JET (Bt = 2T, Ip =

2MA, PNBI = 12 MW, ΓD2 = 1.4× 1022s−1, δ=0.2) note ∼50% standard deviation

around the average value of WELM .

The onset of type I ELMs generally take the form of a critical edge pressure

corresponding to a hyperbolic curve in the n–T space. Examples from DIII-D [105]

and JET[106] are illustrated in Figure 4.6. It can be noted in Figure 4.6 that ELM

types are well separated in the n–T space.

4.2.2 Type II ELMs

Type-II ELMs [102][20] have been observed only in strongly shaped plasmas (high

elongation and triangularity) and at high collisionality [109] [110]. A simple criterion

such as the dependence of fELM on input power has not been found for type II

ELMs. In contrast to type I ELMs, there is an enhanced magnetic turbulence in

the inter-ELM phase and the large periodic spikes on the Dα are substituted by

small and more irregular oscillations. With the magnitude of ELM bursts lower

than type I ELMs and the frequency higher, type II ELMs exhibit potential for a

steady-state tokamak operation with good confinement accompanied with efficient

impurity exhaust and tolerable loads on the PFCs. However, they appear in a

narrow operational window and it is still unclear whether they will be possible to

achieve in a burning fusion plasma.

4.2.3 Type III ELMs

Type III ELMs are characterized by an ELM repetition frequency (fELM) that

decreases with the energy flux through the separatix:

dfELM
dPsep

< 0. (4.5)

On the Dα time trace, type III ELMs appear as small and frequent bursts. They

typically expel 1-5% of plasma energy (Wplasma) which is significantly lower than

the WELM associated with type I ELMs. However, the overall rather high energy

transport leads to a stronger degradation of the energy confinement of the plasma

compared to other ELM types. They are preceded by a coherent magnetic precursor
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Figure 4.7: Type IV ELMs at MAST obtained after mitigation of Type I ELMs using
RMPs. (a). Dα time trace for target type I ELMs. (b). Dα time trace for type IV ELMs
obtained after application of RMPs. (c). neped − Teped space as a function of ELM types,
constructed from profiles obtained in the last 10% of the ELM cycle. Figures adapted from
[112].

oscillation of toroidal mode number n ≈ 5–10 and poloidal mode numberm ≈ 10−15

[20][111]. In the n-T space, as shown in Figure 4.6, they are seen to occur below a

much lower pedestal pressure and can be divided into two clusters: one at low Teped

and high neped and the other at high Teped and low neped .

4.2.4 Other ELM types

In addition to aforementioned three conventional ELM types, there are still other

different ELM types, such as:

• Type IV ELMs: The low neped and high Teped branch of type III ELMs

(Figure 4.6(a)) is often termed type IV ELMs. Figure 4.7 (c) presents the Dα

time trace for type IV ELMs (fELM ∼ 2000 Hz) at MAST that are obtained

after the application of resonant magnetic perturbations (RMPs) to type I

ELMs such as those shown in Figure 4.7(b) (fELM ∼ 2000 Hz). The n-T

space diagram measured by a Thomson scattering system, shows the change

of pedestal characteristics from a region typically associated with type I ELMs

to one associated with naturally occurring type IV ELMs [112].

• Type V ELMs: Type V ELMs have been observed in high performance

regimes at NSTX (National Spherical Torus Experiment)[113][114]. They are

characterized by a short-lived n = 1 magnetic precursor oscillation rotating
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Figure 4.8: Characteristics of different ELM types in NSTX. (a). ultra soft X-ray (b).
lower divertor Dα emission. Figure adapted from [113].

counter to the plasma current and are observed over a wide range of heating

power in lower single-nulls. The signature of type V ELMs at NSTX is

illustrated in Figure 4.8. To facilitate an ease of comparison, type I ELMs

and a mixed type II/III ELMs signature at NSTX is also shown in Figure 4.8.

• Grassy ELMs: The grassy ELM regime has been found in JT-60U at lower

collisionality in high poloidal beta (βp) plasmas with a high triangularity (δ)

[115][116]. The regime can be extended to lower q95 (q95 < 4), by increasing

δ up to 0.6 [117]. Oyama et al., as shown in Figure 4.9, describe grassy ELMs

as having high frequency periodic spikes with small amplitude in the divertor

Dα signal. They note that grassy ELMs like type I ELMs and in contrast to

type III ELMs, obey a linear relation between fELM and Psep. On JET and

AUG, grassy-like ELMs have been observed in H-mode plasmas with βp > 1.7,

q95 ∼ 7 and δ > 0.4 [110][118] and have some synonymy with type II ELMs.

• Compound ELMs: At the transition from type I to type III ELMs as well as

in steady state type I ELMy H-mode plasmas, a “compound” structure is often

observed in the Dα time trace right after a type I ELM crash. This ELMy

phenomenon at JET is referred to as compound ELMs. As can be noted from

Figure 4.10, the large type I ELM spike in Dα is followed by a short interval

of more frequent ELMs with a lower amplitude. Compound ELMs are most
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Figure 4.9: A typical grassy ELM discharge at JT-60U with Ip= 1.0 MA and Bt = 3.9
T. (a). Dα at outer divertor. (b). Plasma configuration along with the line of sight for the
Dα signal at outer divertor. (c). Magnified view of the Dα signal shown in (a) at t=4.7s.
Figures adapted from [116].

Figure 4.10: Dα time traces for compound ELMs at JET.

likely short periods of L-mode phase or are type III ELMs that follow a type

I ELM, even though the power dependence of fELM is difficult to verify as

compound ELMs occur in a narrow power range and under non-stationary

conditions.

• Dithering cycles: Zohm [20] and Connor [111] enlist dithering cycles as

an edge localized phenomenon. For heating power close to the H-mode

threshold (PLH), dithering cycles are repetitive L-H-L transitions. They

show no magnetic precursor oscillation and exhibit a repetition frequency that

decreases slightly with increasing Psep.
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Figure 4.11: Normalized ELM energy loss (WELM/Wped) versus pedestal plasma
collisionality (ν∗ped) for several ELM types and small/no ELM regimes. Figure reproduced
from [119]

Additionally, several small/no ELM regimes such as EDA (enhanced Dα H-mode)

[120][121], HRS (high recycling steady)[122], QH-mode (quiescent H-mode)[123] and

I-mode [124][125] with good confinement properties have been obtained in Alcator

C-Mod, AUG, DIII-D, JET, JFT-2 M, JT-60U and NSTX. An overview of the

operational space achieved for several regular, small and ELM-less regimes in terms

of the normalized ELM energy loss and edge collisionality is presented in Figure 4.11.

ITER Q ∼ 10 scenario, however, is based on controlled type-I ELMy H-mode regime

and it remains unclear whether these small/ELM less regimes can be accessed on

ITER. Characteristics and extrapolation of small/ELM less regimes, nonetheless,

remains an active area of ongoing research.

4.3 Theory of ELMs

ELMs were identified as an ideal MHD instability soon after their discovery in the

early 1980’s [126]. Since then, considerable theoretical work has been performed,

both analytically and through modeling calculations, for improving their theoretical

understanding. Three types of ideal MHD instabilities can be expected at the ETB

[127]:

• Kink/Peeling modes: The peeling mode is a specific kind of an external kink

mode. It is destabilized by the finite edge current density and is dependent on

the location of the closest rational surface to the plasma edge in the vacuum.
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Figure 4.12: ELM stability diagram, based on ideal MHD instabilities. For type-I ELMs,
the edge instability is both pressure and edge current density driven and close to the corner
of the peeling-ballooning stability. Type II ELM instability is pressure driven and close to
the ballooning limit, while type III ELM instability is current density driven and close to
the peeling limit. Figure reproduced from [128].

Whilst the peeling mode is driven by the torque created by a finite current

density at the plasma edge and no current in the vacuum region, the kink

mode is driven by the derivative of the parallel current density.

In addition to the higher temperatures in the H-mode, the increase in edge

current density is primarily due to the bootstrap current. Figure 4.12 presents

an ELM cycle for the condition where the pressure gradient is low, the

current density is high and the peeling mode is triggered. This could occur

if the current diffusion time is short enough and the peeling boundary is

crossed before the pressure gradient has reached the ballooning stability limit.

Type III ELMs are regarded as peeling modes or alternatively as resistive

peeling-ballooning instabilities. A possible type III ELM cycle, based on the

peeling limit is shown in Figure 4.12.

• Ballooning modes: The ballooning modes are driven by the edge plasma

pressure gradient and arise from the curvature of the tokamak geometry. The

curvature effect is stabilizing on the high field side (HFS) and destabilizing

on the low field side (LFS). The average of these effects is stabilizing for low

pressure gradient but turns destabilizing if the pressure gradient becomes too

high and drives ballooning modes that localize in the LFS region.
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Figure 4.12 presents the situation where the pressure gradient is high, the

current density is low and hence the ballooning mode is triggered. This

scenario could occur if the plasma shaping is strong or there is a high edge

density. This instability could be causing type II ELMs.

• Coupled peeling-ballooning modes: are driven by the steep edge pressure

gradient and consequently a large edge bootstrap current [129] [130] [131]. It

can be observed from Figure 4.12 that the stable window is limited both by

edge current and pressure. Typically, the ballooning limit occurs at higher

n numbers of the order 15-20 whereas the peeling limit is usually connected

with lower n ≤ 5. It can be interpreted that the limitation of pressure is due

to the ballooning limit while the ELM crash itself occurs when peeling and

ballooning modes couple in the upper right corner of the stability diagram.

The coupled peeling-ballooning model is the leading candidate for explaining

the ELM onset as it is very successful in describing a number of experimental

observations related to type I ELMs. However, it can certainly not be considered

complete as it does not rigorously include several physics aspects such as sheared

edge rotation, finite resistivity, two fluid effects etc. This however, does not lie

within the scope of this thesis and will not be treated further.

4.4 ELM control

As described earlier, type-I ELMy H-mode is foreseen as the ITER baseline scenario.

However, ELMs pose a serious concern in ITER because of the high transient heat

and particle flux that can be deposited on the PFCs. At the same time, ELMs

play a key role in regulating particle and impurity transport across the edge barrier

and are thus instrumental in hindering the uncontrolled rise of density and impurity

buildup which is observed in ELM-free H-modes. Therefore, reliable methods for

the control of large type I ELMs are necessitated. Management of large type I ELMs

can be excersized on four fronts:

• Small/ELM-less regimes: Operation in small or ELM-less regimes was

described earlier in subsection 4.2.4. It can be noted that these regimes are in
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general possible over a limited range of plasma parameters. Therefore, other

active methods of ELM control are required.

• Radiative dispersion: Dispersing ELM energy loss by radiation before it

reaches the divertor and PFCs. This is accomplished primarily via impurity

gas seeding. On JET, the injection of Ar and N2 has succeeded in reducing

ELM energy by about 20% on the outer divertor and about 25 % on the inner

divertor target. However, increase in the radiative power fraction above 65%

causes a transition from type I ELMs to type III ELMs, leading to the so

called radiating type III ELMy H-mode.

• ELM triggering: Destabilizing the plasma for triggering an ELM, before

the stability limit is reached. Several techniques have been used for ELM

triggering and include pellet injection [132][119], supersonic molecular beam

injection (SMBI) [133][134], vertical kicks[135] and oscillating applied magnetic

fields[136].

• ELM suppression: Controlling either the pedestal pressure gradient or the

edge current density below the peeling-ballooning ELM stability limit. A

prime example of this scheme is the control of ELMs by resonant magnetic

perturbations (RMPs) [137][138].

ELM triggering provides additional transport by frequently triggering an

instability over a small portion of the pedestal before the larger ELM engulfs the

entire pedestal. A perturbation is introduced in the plasma and ELMs are triggered

at a suitable frequency which is higher than the natural frequency. For this reason,

such techniques are more widely known as ELM pacing. ELM pacing techniques

rely on the observed inverse dependence of ELM size (WELM) on the ELM frequency

(fELM) [139]:

WELM = 0.2

(
Wplasma

fELM × τE

)
, (4.6)

where τE is the energy confinement time in plasmas with a stored energy Wplasma.

However, the observed dependence of the effective ELM energy deposition area

(AELM) on ELM size provides a caveat [140][141]. A broadening of AELM by a

factor of up to 6 has been observed for large WELM (∼ 10% of Wplasma) but is

74



CHAPTER 4. EDGE-LOCALIZED MODES IN TOKAMAK PLASMAS

Figure 4.13: Range of plasma current for ITER’s H-mode operation for which
uncontrolled ELMs are acceptable (from the point of view of divertor PFC erosion) versus
broadening factor ELM energy deposition area with respect to the divertor power flux
footprint between ELMs. Figure reproduced from [142]

found to be much smaller for small WELM . This is likely to reduce the efficacy

of ELM pacing techniques for the reduction of the peak ELM energy flux at the

ITER divertor. However, ELM control via pacing methods finds applicability in

conditions where uncontrolled ELMs would still exceed the limits posed by divertor

erosion. Figure 4.13 presents the results reported in [143][142] where for a large

degree of broadening in AELM (factor of 6), uncontrolled ELMs, in ITER, would

lead to unacceptable divertor erosion for Ip > 9.5MA.

Furthermore, the recent ELM pacing experiments at DIII-D using lithium

granules in contrast to frozen deuterium pellets, report on a reduction of the

peak ELM heat flux at the outer strike point [144]. This result demonstrates the

possibility of ELM pacing by non-fuel pellet injection which also has an added

advantage of de-coupling ELM pacing from plasma fueling.

Finally, ELM pacing techniques will be needed in ITER for preventing an

increase in the core concentration of impurities, in particular W , which will be

produced at the divertor target [135][142]. JET operation with the ILW has

shown that maintaining a sufficiently high fELM is critical for maintaining tolerable

core W concentration [145]. The beneficial effects of a high fELM in limiting the

concentration of high Z ions, has also been shown at AUG [146].
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Chapter 5

Visualization of the operational

space of ELMs

As introduced in chapter 2, information visualization aimed at facilitating human

perception is an important tool for the interpretation of experiments on the basis

of complex multidimensional data characterizing the operational space of fusion

devices. Visualization of the machine operational spaces entails the representation

of multidimensional diagnostic fusion data in a low-dimensional space, usually of

two or three dimensions. This can provide physicists and machine operators with

a convenient means and a useful tool for plasma monitoring and for studying data

patterns (relationships, clusters) reflecting key regimes and their underlying physics.

In this work, two data visualization frameworks: geodesic distance based

multidimensional scaling (GD-based MDS) and geodesic distance based landmark

muldimensional scaling (GD-based LMDS) are developed and applied to the

visualization of the operational space of ELMs and low and high plasma confinement

regimes. It is noteworthy that the developed frameworks are general and can be

applied to the study and analysis of various other plasma phenomena as well.

*The work presented here in chapter 5, has resulted in the following publications:

A.Shabbir, G.Verdoolaege, O.J.W.F.Kardaun, J.-M.Noterdaeme and JET-EFDA Contributors,
“Visualization of the operational space of edge-localized modes through low-dimensional embedding
of probability distributions,” Review of Scientific Instruments, vol.85, issue 11, no.11E819, 2014.

A.Shabbir, G. Verdoolaege, G.Van Oost, J.-M.Noterdaeme, and JET-EFDA Contributors,
“Visualization of tokamak operational spaces through the projection of data probability
distributions,” in Proc. of 40th EPS Conference on Plasma Physics, P2.132, Espoo, Finland,
July, 2013.
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5.1 Visualization using GD-based MDS

GD-based MDS is applied for detecting cluster structure corresponding to type I and

type III ELMs in an assembled dataset of JET plasma discharges. The presented

methodology attempts to incorporate the substantial stochastic uncertainty affecting

the ELM properties by representing the measurements of each discharge by a

probability distribution. Through a probabilistic description of plasma signals,

GD-based MDS aims to utilize the information content residing in the error bars

(measurement error and statistical variation) associated with each measurement

alongside being potentially capable of taking into account higher order statistical

moments.

5.1.1 Plasma parameters describing the operational space

of ELMs

The presented visualization framework is employed here for the visualization of

clusters corresponding to type I and type III ELMs from a series of CW JET plasmas

between the years 2000 and 2009 with MarkGB and MarkGBRS as divertors. In a

second phase, this can also be used for the classification of ELM types. From the

range of discharge numbers [50564, 76871], a selection of 69 JET plasmas pertaining

to type I ELMs, 26 JET plasmas of type III ELMs and 5 JET plasmas [66105–66109]

of the so-called type I high-frequency (HF) ELMs have been made. This constitutes

the JET CW ELMy database (JET ELM DB-I) reported in appendix A.1: JET

ELM-DBI and further used for analysis in chapter 7.

A threshold-based ELM detection algorithm has been developed (see chapter 7)

Figure 5.1: From each plasma discharge with, let us say, N + 1 ELM bursts, N waiting
times are extracted which are then modeled by a suitable probability density function (PDF).
M indicates the total number of discharges analyzed and the PDF used here is the Gaussian
PDF.

78



CHAPTER 5. VISUALIZATION OF THE OPERATIONAL SPACE OF ELMS

and employed for the extraction of inter-ELM time intervals (or waiting times)

(∆tELM) from each plasma discharge using the Dα radiation signal from JET’s

inner divertor. Gaussian probability density functions (PDFs) are then used for

capturing the statistics of inter-ELM time intervals, as shown in Figure 5.1.

In addition, density-averaged input power (〈Pn〉)(keV/s), normalized electron

temperature (〈Tn〉)(keV ), and line-integrated edge electron density (ne) [1019m−2]

have also been included in the dataset. A probability distribution has been used

for modeling the data corresponding to each plasma parameter. For simplicity it

has been assumed that the error bars associated with each of the global plasma

parameters pertain to a statistical uncertainty in the data, specifically that they

represent a single standard deviation. Theoretically, the underlying probability

distribution is Gaussian with mean the measurement itself and standard deviation

the error bar. 〈Pn〉 and 〈Tn〉 are given as follows:

〈Pn〉 =
1

1.602× 103
× Pinput
ne,19,(vol.avg) × V olume

keV/s, (5.1)

where Pinput = Pohmic + PNBI + PICRH(W ), and

kT = 〈Tn〉 =
1

1.602× 103
× 1

3
× Wthermal

ne,19,(vol.avg) × V olume
keV. (5.2)

It is stressed that each plasma parameter is in fact a two dimensional quantity

with the mean and standard deviation of the respective probability distribution

constituting the two dimensions.

5.1.2 Visual maps

2D visual mappings for the operational space pertaining to type I and type III ELMs

are presented in Figure 5.2, Figure 5.3 and Figure 5.4. In these maps, GD-based

MDS is used for projecting the information. In Figure 5.2, inter-ELM time intervals,

modeled with Gaussian PDFs, are projected and the ELM type for each discharge is

indicated. The projection appears to be consistent with the information provided by

the distribution of waiting times as the type I HF ELMs that have frequencies similar

to type III ELMs are mapped in the proximity of type III ELMs. In addition, the

type III ELM discharge 50567, which has a frequency (fELM ≈ 40Hz) more typical
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of type I ELMs, is projected close to the cluster of type I ELMs. Figure 5.3 explicitly

tracks the change in ELM frequency and the consequent change in ELM type as one

navigates through the map. Figure 5.3 is an indicator of the potential of these visual

maps as they allow for tracking of changing values of a certain plasma parameter in

the operational space. Figure 5.4(a) incorporates two additional parameters in the

visual map, i.e. 〈Pn〉 and 〈Tn〉. The striking observation is that as more information

is incorporated in the visualization, type I HF ELMs and type III discharge 50567

now lie with the clusters of type I and type III, respectively. Hence, incorporating

additional global plasma parameters improves the accuracy of the map, with regards

to the ELM type. Figure 5.4(b) incorporates ne as another additional parameter,

and more correct placement of type I HF ELMS and discharge 50567 can also be

observed here. In addition, the line of best separation between type I and type III

ELMs is shown in Figure 5.4(a) and Figure 5.4(b). This can aid in the classification

of ELM behavior when the ELM type is unknown. Projection on this map of a new

discharge, for which the ELM type is unknown, can provide an indication of the

ELM type.

In Figure 5.4(a) and (b) cluster structure amongst the plasma discharges is

identified. Further, the trends in plasma parameters along the clusters are also

indicated. In both Figure 5.4(a) and (b), 〈Pn〉 and 〈Tn〉 increase from the bottom

of the map to the top, as a transition is made from the clusters of type III ELMs to

type I ELMs. Background color gradation indicates the broad trend of the changing

Figure 5.2: Projection of inter-ELM time intervals using GD-based MDS. ELM types
are indicated with Gaussian PDFs.
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Figure 5.3: Projection of inter-ELM time intervals using GD-based MDS. Different
colors indicate ELM frequency ranges.

ELM frequency within the map. Finer structure in ELM frequency change can

be further studied by using less flexible quadratic surfaces given by the regression

analysis below.

Ordinary least squares linear regression using the two dimensions (x1, x2)

provided by GD-based MDS as predictors for plasma parameters, yields appreciably

good results. The results are given in Table 5.1. Each plasma parameter is

successively regarded as the dependent variable. This provides an intuitive insight

into the merit of the mappings, as despite the lack of a direct relationship between

the dimension coordinates and each of the plasma parameters, the mappings prove

to be reasonably reliable predictors of the plasma parameters. Goodness of the

regression models is indicated by root mean square error (RMSE) and R-squared

Model: log y ∼ 1 + x1 + x2 + x1x2 + x2
1 + x2

2

log ne = 1.78 + 0.2x1 − 0.003x2 − 0.04x1x2 + 0.014x2
1 + 0.031x2

2

log Tn = 0.45− 0.04x1 + 0.28x2 + (0)x1x2 + 0.12x2
1 − 0.024x2

2

here, x1 and x2 are standardized co-ordinates of the two
dimensions yielded by GD-based MDS

Dependent variable
(log y)

R2 RMSE

〈Tn〉 0.76 0.14
〈Pn〉 0.74 0.15
ne 0.57 0.22

fELM 0.51 0.67

Table 5.1: Regression for plasma parameters using the dimension coordinates
(standardized) yielded by GD-based MDS as predictors.
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Figure 5.4: Projections obtained using GD-based MDS. (a) A map of the distributions of
ELM waiting times, 〈Pn〉 and 〈Tn〉. (b) A map of the distributions of ELM waiting times,
〈Pn〉, 〈Tn〉, and ne. Clusters are identified and the mean value for each plasma parameter
for the respective cluster is given. The range of the parameter values for discharges in
each cluster is specified within brackets. The line of best separation between the type I and
type III ELMs is also depicted. Furthermore, trends in plasma parameters across the map
are highlighted. Background color gradation indicates the trend in ELM frequency.
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(R2) presented in Table 5.1.

The presented visualization framework is generic, potentially capable of

visualizing multi-machine data in a single map and can be adapted with relative ease

if the plasma parameters are best described by non-Gaussian PDFs such as Weibull

or lognormal. The framework can be used for investigating the influence of plasma

parameters on ELM characteristics such as the effect of changing heating power on

ELM type during a discharge. The developed tool can also potentially contribute

to ELM control and mitigation, through visualization of, e.g., ELM frequency and

size distributions, and by quantifying the influence on these distributions of various

control parameters.

5.2 Visualization using GD-based LMDS

While MDS is a well-developed information visualization tool which yields a 2D

map with minimal distortion of all pairwise distances between data points, it suffers

from a polynomial computational and memory complexity and hence when the

data size increases, it becomes too computationally expensive, for all practical

purposes. As introduced in subsection 2.3.2, this problem is circumvented by LMDS,

a computationally efficient adaptation of MDS which reduces the complexity from

polynomial to linear.

The developed computationally efficient visualization framework of GD-based

LMDS is deployed for the visualization of low and high confinement regimes

from the International Tokamak Physics (ITPA) Global H-mode Confinement

Database (ITPA database)[147]. The database contains more than 10,000 validated

measurements of various plasma and engineering parameters, during discharges in

19 tokamaks.

5.2.1 Visual Maps

Our proposed GD-based LMDS framework regards each measurement as a sample

from a Gaussian probability distribution with the mean the measurement itself and

standard deviation the error bar. The visual map obtained via the application

of GD-based LMDS is presented in Figure 5.5 (b). It can be observed that the

mapping presented in Figure 5.5 (b) is only slightly less accurate when compared
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Figure 5.5: Two-dimensional projections of the ITPA database, indicating L- and
H-mode clusters. (a) Using GD-based MDS. (b) Using GD-based LMDS with 10 landmark
points and (c) Ordinary LMDS (Euclidean distance based) and without accommodating
measurement uncertainty.
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with the mapping obtained with GD-based MDS (Figure 5.5(a)), which is considered

as the reference map. Meanwhile the execution time for obtaining the mapping by

GD-based LMDS is reduced by a factor of 300 when compared to GD-based MDS.

Moreover, in order to further validate the attractive capabilities of our proposed

GD-based LMDS framework, we compare the mapping with the map obtained in

Figure 5.5 (c) through ordinary LMDS. Ordinary LMDS does not accommodate

the measurement uncertainty by probabilistic modeling and operates by taking

as input the matrix of Euclidean distances between measurements. It can be

readily observed that in contrast to the mapping obtained by ordinary LMDS the

mapping obtained by GD-based LMDS is much more informative and has little

overlap between the classes. Application of GD-based LMDS yields a visualization

which exhibits structure and provides a clear indication of the type of confinement

regime.
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Abstract -Characterisation and control of plasma instabilities

known as edge-localised modes (ELMs) is crucial for the operation

of fusion reactors. Recently, machine learning methods have

demonstrated good potential in making useful inferences from

stochastic fusion data sets. However, traditional classification

methods do not offer an inherent estimate of the goodness of their

prediction. In this work, a distance-based conformal predictor

classifier integrated with a geometric-probabilistic framework is

presented. A first benefit of the approach lies in its comprehensive

*The work presented here in chapter 6, has been published in this form as:
A.Shabbir, G.Verdoolaege, J.Vega and A.Murari, “ELM classification by conformal prediction
on an information manifold,” IEEE Transactions on Plasma Science, vol.43, no.12, pp.4190-4199,
2015.
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treatment of highly stochastic fusion data sets, by modeling the

measurements with probability distributions in a metric space.

This enables calculation of a natural distance measure between

probability distributions: the Rao geodesic distance. Secondly, the

predictions are accompanied with estimates of their accuracy and

reliability. The method is applied to the classification of regimes

characterized by different types of edge-localized modes based on

measurements of global parameters and their error bars. This

yields promising success rates and the estimates of goodness of the

predictions increase the confidence of classification by ELM experts,

while allowing more reliable decisions regarding plasma control and

at the same time increasing the robustness of the control system.

Index terms -Conformal predictors, edge-localized modes, geodesic

distance, information manifold.

6.1 Introduction

High confinement or H-mode plasmas in tokamaks are usually characterized by

cyclic instabilities near the plasma edge, referred to as edge-localized modes or

ELMs. ELMs result in a sudden exhaust of particles and energy but are nonetheless

advantageous for attaining stationary plasma conditions as they result in impurity

and helium ash expulsion. With ELMs as the basis for distinction, H-mode plasmas

can be roughly categorized into three types: ELM-free H-mode, H-mode with

small ELMs and H-mode with large or type I ELMs. The H-mode with relatively

large low-frequency type I ELMs has become the reference plasma scenario for

ITER, and beyond. Characteristics of ELMs, their control and comprehensive

physical understanding are crucial for ITER and next step fusion devices. On

one hand the beneficial properties of ELMs, in terms of enhanced edge particle

transport are well recognized, on the other hand, there has been concern that

on future large devices giant ELM bursts could damage divertor and first wall

surfaces or disrupt internal transport barriers [42]. This has motivated intensive

research for accomplishing effective ELM control and mitigation. Optimization of

control and mitigation mechanisms and enhancement of the physical understanding

88



CHAPTER 6. ELM REGIME CLASSIFICATION BY CONFORMAL
PREDICTION ON AN INFORMATION MANIFOLD*

necessitates the discrimination of different observed classes of ELMs. In contrast

to the existing mostly phenomenological categorizations of ELM types, this work

is aimed at developing a data-driven methodology for automatic classification and

discrimination of ELMs.

Recently, machine learning and pattern recognition techniques have shown

substantial potential in data-driven studies of fusion plasmas by extracting useful

patterns of interest from fusion data [148] [62] [89] [149]. This yields an important

tool for real-time plasma control, e.g. in ITER, in order to maintain good plasma

equilibrium or control certain types of instabilities. Moreover, a data-driven study

of the primary physical variables that determine the confinement regimes and

instabilities, such as ELMs, can improve substantially the understanding of the

governing physical mechanisms.

The objective of the present work is twofold. First, we wish to contribute to

the discrimination of diverse ELM behavior by presenting an effective methodology

for quantitative distinction between ELM types. Second, for practical purposes

we aim to contribute to the dependability and robustness of control strategies by

providing a discriminator for ELM types equipped with estimates of reliability and

accurateness. We present an automated classification system for ELM types and

apply our method to classify regimes with small and type I ELMs. The system,

currently, makes use of a standard set of global plasma and engineering variables

related to plasma confinement. The focus of the current work is to obtain better

classification rates compared to existing classifiers and thus the obtained success

rates can be further optimized by using more informative plasma and engineering

parameters.

The act of classification is fundamentally related to the occurrence of clustering

structure in the data space, where each cluster of measurement points corresponds

to a certain plasma phenomenon, such as a specific type of ELMs. Hence our method

falls within the domain of pattern recognition methods, with the clusters constituting

a pattern in the data space, reflecting an important aspect of the physics of the

plasma.

The classification system proposed in this paper is integrated with the

probabilistic data representation framework presented earlier by Verdoolaege et al.

[62][89]. The primary motivation for this framework is the substantial uncertainty
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that frequently characterizes the measurements of plasma quantities, which may

contain both a stochastic and systematic component. The main factors contributing

to stochastic uncertainty are hardware noise and plasma fluctuations, since these can

usually not be modelled tractably in a deterministic way. The proposed framework

takes into account the statistical error bars or, more generally, the stochastic features

of the data, by modelling the data with suitable probability distributions. In order

to characterize the data patterns, such as clusters, in the associated probabilistic

space, a similarity measure between probability distributions is required. The

mathematical field of information geometry provides an appropriate similarity

measure between probability density functions (PDFs), which are interpreted as

points on a Riemannian differentiable manifold, or information manifold [33][55][48].

The PDF parameters provide a coordinate system on the manifold and the Rao

geodesic distance (GD) serves as a natural similarity measure between PDFs. The

classifier, which then operates in this information space, is based on conformal

predictors (CPs), first described by Vovk et al.[150] and Saunders et al. [10].

Conformal prediction offers various advantages over the traditional machine learning

methods (MLMs). Most noteworthy, they provide information about their own

accuracy and reliability with the only assumption of randomness of the data samples.

Also known as the iid hypothesis, the randomness assumption implies that all

training samples are independent of each other and are identically distributed

according to the same (but unknown) distribution [151]. Unlike traditional MLMs,

CPs do not enforce a rigid separation between learning and prediction, but learn

dynamically alongside making predictions. Furthermore, they do not require prior

probabilities as the Bayes classifier and also have the ability to detect ambiguities

in the classification task, i.e., when a unique class cannot be assigned to a new

example.

In this paper a computationally efficient nearest-neighbor CP coupled with the

geometric-probabilistic data representation framework is deployed for classification

of H-mode plasma regimes into H-mode with small ELMs and H-mode with type I

ELMs. The proposed technique is compared with a discriminant analysis classifier

and a nearest-neighbor classifier, which are well-established state-of-the-art MLMs.

The presented technique not only yields higher classification accuracy, but also

returns a quantitative estimate of the prediction’s accuracy and reliability, which
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traditional MLMs do not provide. Furthermore, the classification performance is

calculated for both the geodesic distance geometry of the data and the conventional

Euclidean distance. The geodesic distance improves the classification performance,

establishing itself as a natural similarity measure between probability distributions

lying on an information manifold.

The outline of the paper is as follows. In section 6.2 we discuss the modalities

of our proposed geometric-probabilistic framework and the details of the approach.

section 6.3 discusses the application of conformal predictors to ELM identification

in relation to our modeling framework. section 6.4 presents the experimental setup,

visualization and classification results and their analysis. section 6.5 concludes the

paper.

6.2 A geometric-probabilistic pattern recognition

framework

6.2.1 The geometry of probability distributions

The Fisher information can be regarded as a metric tensor (Fisher-Rao metric) on

an information manifold, which is a Riemannian differentiable manifold formed by

a family of PDFs, such as the Gaussian family [62][89]. Once the metric is known,

geodesic equations can be established and solved, allowing for the calculation of

the geodesic (shortest-path) distances on the manifold [55][48]. Given a probability

model p(x|θ) for a vector-valued variable x, labelled by an m dimensional parameter

vecttor θ, the components of the Fisher information matrix gµv are defined through

the relations

gµv(θ) = E
[

∂2

∂θµ∂θv
lnp(x|θ)

]
, (6.1)

µ, v = 1, ...m.

6.2.2 The geometry of the univariate Gaussian distribution

In this paper we model the data using a simple univariate Gaussian model. The

Fisher-Rao metric for the Gaussian distribution, parameterized by its mean µ and
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standard deviation σ, can be given via the quadratic line element [56]:

ds2 =
1

σ2
dµ2 +

2

σ2
dσ2. (6.2)

A closed-form expression exists for the GD, permitting a fast evaluation. Indeed, for

two univariate Gaussian distributions p1(x|µ1, σ1) and p1(x|µ2, σ2), parameterized by

their mean µi and standard deviation σi(i = 1, 2), the GD is given by [56]

GD(p1||p2) =
√

2ln
1 + δ

1− δ
, (6.3)

δ ≡
[

(µ1 − µ2)2 + 2(σ1 − σ2)2

(µ1 − µ2)2 + 2(σ1 + σ2)2

] 1
2

. (6.4)

A convenient Gaussian geometric model is provided by the Poincaré half-plane,

which is represented in Figure 6.1(a). The horizontal axis corresponds to the mean

µ of the Gaussian distribution, while on the positive part of the vertical axis the

standard deviation σ is represented. Every point in this half-plane corresponds to

a unique Gaussian and the geodesics between two points are half-circles as well as

half-lines ending on the horizontal axis, the latter connecting distributions that differ

only in their standard deviation (not drawn). The distance between points along

one of these curves in the Poincaré half-plane is the same as the actual geodesic

distance between the points. The evolution of the distribution along an example

geodesic is shown in Figure 6.1(b).

Finally, in the case of multiple independent Gaussian variables it is easy to prove

that the squared GD between two sets of products of distributions is given by the

sum of the squared GDs between corresponding individual distributions [56].

6.3 Conformal predictors

In classification systems, each observation (or sample) is expressed as an ordered

pair (xi, yi) where xi is a feature vector (i.e. the set of parameters that characterize

the sample i) and yi is the class label of observation i, where the set of labels is

finite and usually small. Given a data set of N samples, a conventional MLM uses

a subset of the data set, which it designates as a training set for determining the

prediction rule. Then follows a testing phase, wherein a subset of the dataset is
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Figure 6.1: (a) Illustration of the Poincaré half-plane with several half-circle geodesics,
one of them between points p1 and p2. (b) Probability densities corresponding to points
p1 and p2 indicated in (a). The densities associated with some intermediate points on the
geodesic between p1 and p2 are also drawn.

used for determining the goodness of the prediction rule. Conformal predictors

obviate the need of a distinct training and testing phase, which is the premise of

classical machine learning methodologies. CPs offer so-called blended learning and

prediction, as they learn and predict at the same time, continuously improving

their performance as they carry out each prediction and discover how accurate the

prediction was. Samples that get classified are added to a hypothetical “bag” of

samples and participate in the classification of the next incoming samples.

CPs estimate the goodness of their prediction by means of two figures of merit:

confidence and credibility. Confidence gauges the reliability of the prediction,

while credibility is an indicator of how representative the training set is for the

new sample that is to be classified. New confidence values are obtained at

each classification, taking into account both the previous samples that have been

classified and all possible labels for the current one. For classifying each incoming

sample, CPs evaluate how different the current sample is from each cluster (class)

within the bag samples by determining a “nonconformity score” for the current

sample with respect to each cluster (class) within the bag samples. In this

work, a nearest-neighbor scheme is used for determining the nonconformity score.

Essentially, the nonconformity score for the current sample is provided by its distance

to its nearest neighbors for both classes, amongst the bag samples. Specifically, the
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nonconformity αi of a given sample i is calculated as

αi =
di−SL
di−DL

, (6.5)

where di−SL is the distance to sample i’s nearest neighbor in the bag with the same

label and di−DL is the distance of sample i’s nearest neighbor in the bag with a

different label.

The nonconformity score for sample i is computed with respect to both classes,

assuming membership of sample i of each of the classes j = 1, 2 in turn. By doing

this for each sample, a ranking can be determined of the nonconformity scores.

Then, for each class j a p-value is is calculated based on this ranking, namely:

pj =
#{i = 1, ...,M |αi ≥ αq}

M
. (6.6)

Here, M is the number of bag samples, i.e. the samples that have already been

classified, and αq is the nonconformity score for the sample that is to be currently

classified. The p-value is essentially the fraction of bag samples that are at least

as different as the current sample. The current sample is assigned to the class

with the largest corresponding p-value. The largest p-value itself is referred to as

the credibility, while the complement of the other p-value is the confidence of the

classification task:

Credibility = max(pj), j = 1, 2 (6.7)

Confidence = 1−min(pj), j = 1, 2 (6.8)

The smaller p-value is essentially the probability of the prediction being in error

and thus the probability of correctness of the current prediction is automatically

quantified by the confidence.

In case where the p-value assigned to each class is the same, CP deems that a

unique class cannot be assigned to the current sample. It refrains from making

any (possibly incorrect) decision and separates the current sample whilst labeling it

ambiguous.

Despite the numerous advantages offered by CPs, the method can become

computationally expensive and thus infeasible in real time, for very large data sets.

This is a direct consequence of the dynamic learning capabilities possessed by CP.
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This limitation is overcome by deploying a computationally efficient variant of CP:

inductive conformal predictors (ICPs) [151]. ICPs offer a compromise between

dynamic learning and computational time, without causing degradation of the

classification performance. ICPs divide the dataset into two sets: the proper training

set and the calibration set. The proper training set, similar to a conventional MLM,

is used for computing the decision rule once, which is dynamically improved as each

sample from the calibration set (a pseudo test set) is classified. In this work, ICPs as

well as a theoretically pure form of CPs known as transductive conformal predictors

(TCPs) are each applied. TCPs in contrast to ICPs require a minimalistic proper

training data set and at the least one sample per class suffices.

As a similarity measure in calculating the nonconformity scores, we first

considered the Euclidean distance between the sample’s feature vector and that

of the bag samples. Then we compared its performance to that of the GD, this time

treating the features as quantities with an error bar, hence Gaussian distributions.

6.4 ELM identification

6.4.1 Physics picture of ELM types

The physical mechanisms of the different observed classes of ELMs are complex.

As a result, no unified first principles theory describing ELMs exists. Type I ELMs

mainly seem to be driven by the steep pressure gradient, whereas small ELMs appear

to be controlled by the absolute value of the edge temperature along with steep

pressure gradient. This suggests that small ELMs are linked to resistive MHD

phenomena whereas type I ELMs are associated with ideal MHD [20][19][152].

Considerable progress has been made in ELM modeling activity [153][154], with

the peeling-ballooning model appearing as the leading candidate for explaining the

trigger for the ELMs. This model builds on the two instability sources near the

plasma edge namely, current and pressure gradients. It outlines a pseudo-triangular

operating diagram for ELMs in the space of the ballooning pressure gradient and

the normalized edge current.

Currently, type I ELMs and small ELMs are primarily distinguished by their

response to increased heating power. The ELM repetition frequency for type I
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ELMs increases with increasing power and decreases for small ELMs.

An alternate way of distinguishing between the two classes is to compare

temperatures and densities at the pedestal top. In [155] it is shown that type I

ELMs are clustered around a hyperbola of constant, high pedestal pressure. This

constant corresponds to the theoretically predicted onset of pressure driven, ideal

MHD ballooning mode instability. Small ELMs appear to occur below a critical

pedestal temperature Te,crit which tends to increase with the toroidal magnetic field.

Further, on the nedge− Tedge diagram [155] they are seen as two clusters: one at low

Te,ped and high nped and the other at high Te,ped and low nped.

A crucial distinction between type I and small ELMs is their effect on plasma

confinement. Type I ELMy H-modes have superior overall plasma confinement but

the ELM size possess serious concerns for future fusion machines. On the contrary,

the size of small ELMs offers no concern for the machine operation but the energy

confinement time is 10-30% below that in type I H-mode [19][152].

In order to predict ELM behavior in next step fusion devices and ensure operation

in the desirable ELMy regimes, development of an automated discrimination scheme

for ELMs is required, constituting the starting point of this work.

6.4.2 ITPA database

In this work for ELM regime identification we employed measurements from

the International Tokamak Physics Activity (ITPA) Global H-mode Confinement

Database (DB3, version 13f), henceforth referred to as the “ITPA database”

[147][156]. The ITPA database contains more than 10,000 validated measurements of

various global plasma and engineering variables at one or several time instants during

discharges in 19 tokamaks. The data have been used extensively for determining

scaling laws for the energy confinement time, mainly as a function of a set of eight

plasma and engineering parameters: plasma current, vacuum toroidal magnetic field,

total power loss from the plasma, central line-averaged electron density, plasma

major radius, plasma minor radius, elongation and effective atomic mass. We have

used the same eight global variables to discriminate between type I and small ELMs.

Specifically, all database entries with a confinement mode labeled HGELM and

HGELMH were considered to belong to the H-mode region with type I ELMs and

all database entries tagged HSELM and HSELMH were regarded as belonging to the
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Machine Total samples Type I ELMs Small ELMs
ASDEX 445 287 158

AUG 583 498 85
CMOD 46 0 46

COMPASS 26 13 13
DIII-D 343 249 94
JET 1780 980 800

JFT-2M 76 0 76
JT60-U 89 35 54
PBXM 80 19 61
PDX 117 48 69
TCV 15 15 0

TFTR 99 5 94
TDEV 10 0 10
START 9 0 9
MAST 12 0 12
NSTX 6 0 6

Table 6.1: Total number of samples from each tokamak in the ITPA database belonging
to the H-mode region with ELMs. The number of samples per class, i.e. small and Type
I ELMs, is also given.

H-mode region with small ELMs. For current work, the database entries have been

normalized to bring all variables in proportion with one another prior to subsequent

operations.

It should be noted that classification of ELM characteristics based on global

non-time-resolved data is a considerable challenge. Indeed, in addition to the

information contained in the global time-averaged values of the plasma parameters,

space-resolved measurements, near the plasma boundary, of the plasma density

and temperature could easily improve the recognition rates. Similarly, estimates

of changes in the thermal and fast particle energy content per ELM burst and

measurements of ELM frequency obtained from time traces of plasma quantities,

such as the Dalpha radiation, can also considerably improve the predictive capacity

of the method. However, in the present work we did not yet take into account

these additional sources of information, although our method is perfectly able to

incorporate and treat these data.

The ITPA database lists typical error estimates of measurements for the various

plasma and engineering variables. This represents very limited information on the

probability distribution underlying each quantity. Nevertheless, effective utilization

of this limited information proves beneficial. In this work it is assumed that the error
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bars pertain to a statistical uncertainty in the data, specifically that they represent

a single standard deviation. According to the principle of maximum entropy, the

underlying probability distribution is Gaussian with mean the measurement itself

and standard deviation the error bar. Also, it is supposed that for stationary plasma

conditions, all variables are statistically independent and so the joint distribution

factorizes. This means that the joint distribution for the eight variables mentioned

above is assumed to be just the product of the individual univariate Gaussian

distributions. Clearly, this is a strong assumption and it is imposed here mainly

for keeping the calculations tractable. It is noteworthy that our formalism has

no difficulties with the heterogeneous sources of the measurements, coming from

different tokamaks and possibly with different error bars for essentially the same

quantities. The reason is that the error estimates are automatically embedded in

the probabilistic data description.

The number of samples from each tokamak belonging to the H-mode class with

ELMs is given in Table 6.1. Further, the numbers of small and type I ELM samples

per machine are also listed.

6.4.3 Visualization

Visualization of high-dimensional data sets through a projection in the

two-dimensional Euclidean plane is a useful tool for enabling plasma physicists to

gain knowledge about the internal structure of the data and relationships in it.

Its goal is to amplify human cognition and provide an intuitive insight into the

possible interactions and relationships in complex and frequently large data sets

[157]. Hence, visualization of the data within the region of the operational space

corresponding to H-mode with ELMs can be very useful because it can potentially

yield enhanced insight in the configuration of the operational space. It can convey

important information regarding the conditions, under which specific plasma regimes

occur, as well as the “distance” of the current plasma conditions from a certain

desired or undesirable regime. Visualization of the operational space is not a

straightforward task as the information is not normally directly available, since

the number of variables labeling the operational space is often greater than two.

Hence the dimensionality of the data space is higher than two, preventing a simple

plot of the data in a two-dimensional diagram. Moreover, in our framework each
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Figure 6.2: 2-D projections using MDS with indicated small and type-I ELM clusters.
(a) ELM data from the entire ITPA database with small ELMs on top. (b) ELM data
from the entire ITPA database with type-I ELMs on top. (c) ELM data from ASDEX. (d)
ELM data from JET. (e) ELM data from DIII-D. (f) ELM data from AUG.

measurement is represented by a Gaussian probability distribution with a mean and

an error bar. This distribution cannot be represented by a point in a Euclidean space

but naturally lies on a curved Riemannian manifold. Therefore, data visualization is

a natural starting point in distinguishing between regions of different ELMs, which

essentially are found in neighboring or overlapping regions of the operational space.

In this work, visualization of the high-dimensional and/or probabilistic

(non-Euclidean) data is obtained by projection of the data onto a two-dimensional

Euclidean plane. To do this, we use metric multidimensional scaling (MDS),

which is a well-regarded information visualization technique [76] and is widely used
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in perceptual mapping. MDS provides a two-dimensional mapping of the ITPA

database, which originally spans eight dimensions (16 in case the standard deviation

of each measurement is counted as an extra parameter). In order to calculate the

distance in the original high-dimensional data space, we use the GD in the case

when the probabilistic representation of the data is taken into account.

A projection using MDS is shown in Figure 6.2 for the entire ITPA database.

Certainly, the visual map is an approximation of the original configuration, but

nevertheless MDS yields a projection of points in the Euclidean space with least

distortion of all pairwise distances; i.e. the mapping is approximately isometric.

Hence, the real value of the projection lies in the relative position of the points with

respect to each other and in contrast to usual scientific visualizations the coordinate

axes are less significant. Further, a visual map from a subset of the data is also

plotted in Figure 6.2. These are ASDEX, AUG, JET and DIII-D, as these machines

are the major contributors to the ELM date in the ITPA database. Visualizations

in Fig. 2 incorporate the measurement uncertainty as MDS uses the GD between

Gaussian product distributions. It can be readily noted from Figure 6.2 that there is

a considerable overlap between the ELM classes, rendering the classification task a

veritable challenge (although it should always be remembered that the visualization

is a projection, inevitably resulting in information loss). Further it can be seen in

Figure 6.2(c) and (d) that the data of ASDEX and JET roughly conform to two

clusters. This distribution is due to different levels of plasma current and toroidal

fields in the machines. Also, it can be observed from visual inspection of Figure 6.2

(f) that the data of AUG is heavily unbalanced with very few samples from the

H-mode region with small ELMs. Despite these constraints imposed by the data

set, our classification scheme is able to attain a relatively good separation between

the two classes.

6.4.4 Classification via conformal prediction

The experiments were performed for 20%, 50% and 70% of the total data being

treated as a proper training set, followed by the dynamic learning for the remaining

data. Proper training data were selected at random from the entire database, while

ensuring the same balance with respect to the class variable as was present in the

original data, i.e. if, say, the original data contained 70% samples from class 1 and
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Initializing
training data (%)

SR (%) ER (%) AM (%) CO (%) CR (%)

0.01 75.98 23.89 0.108 92.3 57.7
20 77.39 22.57 0.034 92.5 55.4
50 78.85 21.06 0.108 92.7 49.6
70 78.58 21.31 0.089 93 45.6

Table 6.2: Average success rates (SR) (%), error rates (ER) (%), ambiguities (AM)
(%), average confidence (CO) (%) and average credibility (CR) (%) for the classification
of ELM types by transductive conformal predictor (TCP) using various sizes of the proper
training data set and with the GD as the similarity measure.

Initializing
training data (%)

SR (%) ER (%) AM (%) CO (%) CR (%)

0.01 72.85 27.04 0.11 90.5 56.8
20 72.8 27.2 0 89.6 55.7
50 72.84 27.16 0 89.6 51.3
70 73.01 26.99 0 89.8 48.1

Table 6.3: Similar to Table 6.2, but with the Euclidean distance as the similarity measure.

30% samples belonged to class 2, then the samples which constitute the training set

also maintain the same ratio with respect to class label. The results are given in

Table 6.2. Transductive conformal prediction is also carried out for reference. This

is shown in Table 6.2 as the entry which uses 0.01% of the total data as the initial

proper training data. The GD is the distance measure of choice used to calculate

the nonconformity scores, for the results presented in Table 6.2. Similar experiments

were conducted using the Euclidean distance, operating on the measurement values

without consideration of the error bars. These results are presented in Table 6.3.

Table 6.2 and Table 6.3 each report the success rate (SR) for classification, which is

the average over the two classes for correct predictions made as a percentage of total

predictions. Similarly, the error rate (ER) is provided, which is the average over the

two classes for the incorrect predictions made as a percentage of total predictions.

Also listed is the ambiguity (AM), i.e. the ratio of the number of samples for which

a prediction could not be made, for the total number of samples in the data set.

The last two columns for each table contain the average values of confidence and

credibility for the predictions made. The SRs achieved with the GD and Euclidean

similarity measures are also illustrated in Figure 6.3.

The most noteworthy outcome is that the GD gives a superior performance in

contrast to the Euclidean distance, both in terms of success rate and the average
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Figure 6.3: SRs (%) for CP.

confidence level of the predictions. This establishes that exploiting the information

content residing in measurement uncertainty is important for identifying ELM types.

Furthermore, the CPU time (in seconds) for the CP classification obeys a linear

law:

t = 1.30n+ 48, (6.9)

where n is the number of samples which constitute the calibration set, i.e. are

dynamically classified. ICPs provide a significant reduction in computational

time, as they effectively reduce the size of the calibration set without introducing

degradation in success rates.

6.4.5 Comparative analysis

In previous works, discriminant analysis has been used for ELM identification

[158]. To allow a homogeneous comparison between CPs and other well-established

MLMs we perform the classification of H-mode with small and type I ELMs using

linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and a

1-nearest-neighbor classifier. 50% of the data is used as training data, thus enabling

a direct comparison with the entry with 50% of the data used as proper training data

in Table 6.2 and Table 6.3. Balance with respect to the class variable is kept intact

in the randomly selected training data. Each experiment is repeated 10 times with

different random training sets and thus each mentioned result is in fact an average

over 10 replications. The average SRs for classification alongside their standard

deviation (STD) are given in Table 6.4 .
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Classifier SR (%) STD (%)
LDA 60.26 0.39
QDA 68.65 0.33

1-NN GD 70.50 0.97
1-NN Euclidean 67.47 0.48

Table 6.4: SR (%) and the corresponding standard deviations (STD) (%) for the
classification of regimes with different ELM types based on linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), 1-nearest neighbor (1-NN) using GD and
1-NN using the Euclidean distance.

It can be readily seen that CPs provide a significantly higher success rate in

contrast to well-established MLMs, in addition to providing an estimate of the

classification accuracy (confidence) and reliability (credibility).

6.4.6 Validation

We further empirically validated the performance of our classification scheme and the

obtained results using N -fold stratified cross-validation. This is an established model

validation technique, since for an optimal choice of N , it reduces the bias in the

prediction output while combating variance and yet being computationally feasible.

The mechanism behind cross-validation is illustrated in Figure 6.4. It operates

by dividing the available data into roughly N equal parts and then iteratively

training and testing the classification scheme using N -1 parts for training and the

remaining one part for testing. Hence each sample in the data set gets eventually

used for training and testing. We performed all our experiments using 10-fold

cross-validation. The obtained results are given in Table 6.5 and Table 6.6. The

success rates are higher for each classification scheme, compared to the results in

the previous section. However, the important observation is that CP consistently

Figure 6.4: Prototype for N -fold cross validation.
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Classifier Distance Measure SR (%) ER (%) AM (%) CO (%) CR (%)

CP (ICP)
GD 80.19 19.69 0.134 94.1 43.5

Euclidean 73.5 26.48 0.027 90.2 48.1

Table 6.5: SR (%), ER (%), AM (%), CO (%) and CR (%) for the classification of ELMy
regimes with 10-fold cross-validation using inductive conformal predictor (ICP) with the
GD and the Euclidean distance as similarity measures.

Classifier SR (%) STD (%)
LDA 59.89 0.92
QDA 68.28 0.81

1-NN GD 78.27 0.88
1-NN Euclidean 72.85 0.67

Table 6.6: SR (%) and the corresponding STD (%) for the classification of ELMy regimes
with 10-fold cross-validation using LDA, QDA, 1-NN using the Euclidean distance and
1-NN using the GD.

performs better than the other techniques. Furthermore, again the GD measure

gives the better performance as compared to the Euclidean distance. Figure 6.5

illustrates the success rates for each classification scheme. The results are shown for

10-fold cross-validation and also for 50% of the total data being used for training

(subsection 6.4.3). Superior performance of CP coupled with GD can be readily

noted.

6.4.7 Performance for individual machines

Finally, we provide success rates for classification of ELM regions for individual

machines. Results are given in Table 6.7 and were obtained using a 10-fold

cross-validated inductive conformal predictor with the geodesic distance. Class-wise

success rates are also given for each machine, where the two classes are H-mode

region with small ELMs, denoted by ‘S’ and H-mode region with type I ELMs,

denoted by ‘Type I’.

For analyzing the results given in Table 6.7, the following characteristics of data

need to be considered:

• Class imbalance: a two-class data set is considered imbalanced (or skewed)

when one of the classes is heavily under-represented in comparison to the

other class.

• Dispersion of data: degree to which the data points within a cluster are
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Figure 6.5: Comparative SRs (%) for different classification schemes. The results are
shown for both tenfold cross validation and random sampling of training data, where 50%
of the total data are selected for training.

dispersed over the feature space.

Class imbalance for each machine is listed in Table 6.8, while the statistics of

dispersion within the class are given in Table 6.9. Dispersion is quantized by

computing the mean distance to the nearest neighbor within the class. The larger

the mean distance to the nearest neighbor, the larger is the spread within the class.

Furthermore, higher is the standard deviation in the distance to the nearest neighbor

for the samples, the lower is the likelihood of occurrence of localized clusters of a

certain class. The distance to nearest neighbor is based on the GD between the

probability distributions.

The data from JET are balanced and also have smallest within-class dispersion

of all the machines. This can also be seen by visual inspection of Figure 6.2(d),

Machine
Class

SR(%)
by class

SR
(%)

ER
(%)

AM
(%)

CO
(%)

CR
(%)

JET
S 76.76

78.32 21.34 0.34 94.1 43.5
Type I 79.88

ASDEX
S 64.23

70.46 28.46 1.14 91.2 44.2
Type I 76.7

AUG
S 69.35

82.86 16.49 0.53 97.3 40.1
Type I 96.37

DIII-D
S 61.1

74.33 25.67 0 93.3 40.6
Type I 87.55

Table 6.7: SR (%), ER (%), AM (%), CO (%) and CR (%) for ELM regime classification
using ITPA data from JET, ASDEX, AUG and DIII-D, based on a 10-fold cross-validated
ICP.
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Machine Class
No. of samples

per class
Ratio of class S
to class Type I

Class balance

JET
S 800

45:55 Balanced
Type I 980

ASDEX
S 158

35:65 Partially unbalanced
Type I 287

AUG
S 85

15:85 Unbalanced
Type I 498

DIII-D
S 94

27:73 Partially unbalanced
Type I 249

Table 6.8: Number of samples from each class for each machine, determining the
respective class balance.

Machine Class
Mean distance

to NN
Standard
deviation

JET
S 1.75 2.33

Type I 1.48 2.02

ASDEX
S 9.13 3.01

Type I 9.83 2.93

AUG
S 12.78 2.79

Type I 13.08 2.27

DIII-D
S 4.56 3.2

Type I 2.69 2.0

Table 6.9: Measure of dispersion within each class for each machine.

where localized clusters of each class can be observed despite the limitations of the

projected space. Hence classification performance for data from JET is high on

the whole and also for each class individually. The data from ASDEX are not just

partially unbalanced but also suffer from large within-class dispersion. This is also

verified by the visual projection in Figure 6.2(c). As a consequence, classification

performance is lower than that of other machines. The data from AUG are highly

unbalanced in the favor of class type I, i.e. H-mode region with type I ELMs. As a

result, the classification performance for class type I is very high and that of class

S, i.e. H-mode region with small ELMs, is considerably lower. However, the high

success rate for class type I outweighs the other effects, making the overall average

success rate for this machine the highest. The success rate for class S for DIII-D

is the lowest amongst all machines. Once again, this can be attributed to a partial

imbalance of the class towards class type I and a higher dispersion within class S as

compared to class type I.
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6.4.8 Practical implications

The most significant contribution of this work is the development of an alternative

methodology for classification of ELM types. It is noteworthy that the relative

performance of the proposed method in contrast to other techniques is more

important than the absolute value of the success rate. This is so because the absolute

success rates are a stronger indicator of the quality of the chosen features and their

discriminatory power for the problem at hand, rather than the goodness of the

classification scheme. Incorporating additional features such as pedestal parameters,

ELM frequency etc. is likely to significantly improve success rates and forms a part

of the authors’ ongoing work. Further, more accurate estimates of error bars and

more precise information regarding the distribution of the uncertainties could be very

useful for optimizing the classification performance. Suitability and advantages of

the developed method have been demonstrated using the ITPA database, despite

the limited information offered by it on the underlying probability distribution of the

predictors. Having established the merits of the technique it can be rightfully argued

that the method can be deployed as one of the layers in an embedded multi-layer

classifier for ELM types.

6.5 Conclusions

We have presented an approach that offers a new perspective to the discrimination

of ELM types, as an addition to the existing predominant phenomenological

categorizations. The presented approach conducts pattern recognition using global

plasma data while consistently taking into account uncertainties: first uncertainty

of the data themselves and then of the classification results. This is important in

order to increase the reliability of classifiers for resolving the underlying physics and

for plasma control decisions.

The proposed distance-based conformal predictor classifier integrated with the

geometric-probabilistic framework provides for an automated classifier for ELM

types with high success rates and a figure of its own merit: confidence and credibility.

Furthermore, it possesses dynamic learning capability and a mechanism for detection

of ambiguities, which is advantageous over incorrect classification. The method is
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generic and can be applied to other problems in nuclear fusion, such as disruption

prediction. In addition, it is exportable to other application domains in signal and

image processing. The method can also potentially help in quantifying the change

in the behavior of ELMs in response to control and mitigation strategies.
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Chapter 7

Classification of ELM types using

distributions of global plasma

parameters and inter-ELM time

intervals

ELMs are a complex phenomena and hitherto, various types of ELMs have been

identified and defined on an empirical and phenomenological basis (chapter 4). In

this chapter, pattern recognition (chapter 2) is used for ELM classification with the

following specific objectives:

• To provide a practical, standardized and automatic classification scheme for

ELM types which can considerably reduce the effort of ELM experts in

identifying ELM types

• To ensure that the ELM classification scheme is fast and has reasonably high

accuracy

• To demonstrate that the distributions of ELM properties contain more

information than the mean values alone

*The work presented here in chapter 7 has resulted in the following publications::

A.Shabbir, G.Hornung, G.Verdoolaege and JET contributors,“A classification scheme for
edge-localized modes based on their probability distributions,” Review of Scientific Instruments,
vol.87, issue 11, no.11D404, 2016.
A.Shabbir, G.Hornung, J.-M.Noterdaeme, G.Verdoolaege and JET contributors,“Physical
characterization of the JET operational space regarding ELMs by means of discriminant analysis,”
status: to be submitted.
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Bt (T )
Ip

(MA)
ne

(1019m−2)
Pinput
(MW )

δavg
ΓD2

(1022s−1)
Type I ELMy plasmas (N = 74)

Range 1.4 - 3.0 1.4-3.0 3.2 - 9.9 7.6 - 22 0.21 - 0.50 0 - 8.9
µ 2.48 2.38 6.51 15.6 0.381 2.01

Median 2.67 2.48 6.38 15.6 0.416 1.17
σ 0.372 0.340 1.65 2.75 0.083 2.13

Type III ELMy plasmas (N = 26)
Range 1.7 - 2.7 1.7-3.2 1.7 - 10.5 5.1 - 22 0.20 - 0.44 0 - 8.4
µ 2.22 2.32 6.57 12.0 0.387 4.13

Median 2.39 2.46 5.78 13.9 0.393 5.57
σ 0.288 0.417 2.41 5.58 0.0646 3.34

Table 7.1: The overall ranges, class means, medians and standard deviations of the
plasma parameters in the data set JET ELM-DB1.

• To attempt to relate the ELM classification with the governing physical

processes

• To explore more than one classification paradigm (parametric and

non-parametric) and compare their usefulness for ELM classification and

understanding of underlying physics.

7.1 Dataset: JET ELM-DBI

From the JET carbon wall plasmas, a selection of 69 type I, 26 type III and 5 type

I high frequency (HF) ELMy discharges has been made to constitute the JET CW

ELMy database (JET ELM-DB1) reported in Appendix A.1: JET ELM-DBI.

This is an extension of the data set used earlier by Webster et al. [159] for

statistical characterization of ELM types. The analysis, in this work, has been

restricted to time intervals in which the plasma conditions are quasi-stationary

with approximately constant heating, gas fueling and central density. Further,

all experiments dealing with ELM control and mitigation techniques have been

excluded. The ranges, class means, medians and standard deviations of the global

plasma parameters pertaining to the two classes i.e. type I ELMy plasmas and type

III ELMy plasmas, are summarized in Table 7.1. The global plasma parameters

considered herein are: vacuum toroidal field at R = 2.96 (Bt) (T ), plasma current

(Ip) (MA), line integrated edge density (ne)(1019m−2), gas fueling(ΓD2)(1022s−1),
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Figure 7.1: Histograms of plasma parameters for the dataset JET ELM-DB1.

input power (Pinput)(MW ) and average triangularity (δavg), where

Pinput = Pohmic + PNBI + PICRH , and (7.1)

δavg =
δlower + δupper

2
. (7.2)

Histograms of plasma parameters for each class are presented in Figure 7.1. From

a visual inspection of Figure 7.1, considerable overlap amongst the two classes can

be readily observed.

7.2 Parametric classification

Discriminant analysis (DA) (see: Discriminant analysis (subsection 2.4.1)) is used

for parametric classification. DA assumes that the data within each class is normally

distributed and is applied here for the classification of type I and type III ELMs

in the JET ELM-DBI dataset using global plasma parameters (Bt, Ip, ne, Pinput,

δavg and ΓD2) as predictors. DA generates a decision surface in terms of the global

plasma parameters which can be used for the classification of new discharges as well

as the study of underlying physics.
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7.2.1 Performance assessment

Typically, the performance of classification schemes is assessed by the hold-out

procedure which involves splitting the data into two disjoint subsets called the

training set and a test set. The training set is used for training the classifier

and the test set is used for estimating the success rate (or alternatively the error

rate) of the classifier. Though computationally simple, this can lead to possible

over-fitting or under-fitting of training data leading to poor prediction performance

(bias) on independent data sets. This is overcome by employing a leave-one-out

cross validation method for performance estimation. For a dataset with N samples,

N experiments are performed where N − 1 samples are used for training and the

remaining sample is used for testing. The leave-one-out cross validated success rate,

which here is quoted as the percentage of samples that are correctly classified, is in

effect, an estimation of the expected performance of the classifier on an unknown

independent dataset. It is a yardstick for assessing the generalization capability of

the classification scheme.

Further, the benchmark that we will use to characterize a classification model as

useful is a 25% improvement over the rate of accuracy achievable by chance alone.

The estimate of by chance accuracy is made by summing the squared percentage of

samples belonging to each class.

By chance accuracy = P (I)2 + P (III)2, (7.3)

where P (I) is the prior probability of type I ELMs and P (III) is the prior probability

of type III ELMs.

Prior probability of type I ELMs 74/10 = 0.74
Prior probability of type III ELMs 26/100 = 0.26

By chance accuracy according to (7.3) 61.5%

25% increase over by chance accuracy
Accuracy ≥ 76.9% or

Error < 23.1%

7.2.2 Classification performance

The discriminant analysis of the data set is performed in two stages. The first one

is identifying the predictive capability of each plasma parameter and selecting the
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Bt (T )
Ip

(MA)
ne

(1019m−2)
Pinput
(MW )

δavg
ΓD2

(1022s−1)
Discriminant

value
2.35 2.34 6.45 13.7 0.384 2.99

Resubstitution
success (%)

73.0 74.0 74.0 82.0 74.0 82.0

Leave-one-out
cross-validated

success (%)
73.0 74.0 74.0 82.0 74.0 81.0

Table 7.2: Predictive capability of single plasma paramters using linear discriminant
analysis.

parameters that are significantly relevant for ELM classification. The second one

is deriving a specific discriminant function for demarcating the boundary between

type I and type III ELMs in terms of global plasma parameters.

Linear discriminant analysis (LDA) (see: Discriminant analysis(subsection 2.4.1))

is performed on the discharges in JET ELM-DBI represented by each plasma

parameter individually. Table 7.2 lists the resubstitution and leave-one-out cross

validated success rates (%). Resubstitution success is the success rate (%) obtained

on the training data and is in most cases an optimistic estimate. Leave-one-out

cross validated success rate, as outlined earlier, makes the best use of the data

for providing a realistic and a robust estimate of classification performance. For

the results presented in Table 7.2 the estimated covariance matrices coincide

with the variances of the two classes and the discriminant function is reduced

to a discriminating value (DV). This DV, derived under the assumption of equal

variances, is applied for classification. DV is given as:

DV =
1

2
(µclass 1 + µclass 2). (7.4)

Under the assumption of unequal variances, the analysis produces success rates

similar to those presented in Table 7.2 (differences are ∼ 1%). Further, Table 7.2

reveals that the parameters Pinput and ΓD2 yield the highest success rates and hence

may play the main role in the classification between the two classes.

Discriminant analysis is then performed on the linear and quadratic combinations

of the plasma parameters, in order to further improve the success rate. The average

and class-wise resubstitution success and leave-one-out cross validated success are

given in Table 7.3. It can be noted that a linear combination of Pinput and ΓD2
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Figure 7.2: The solid line and curve indicate the linear (LDA) and the quadratic (QDA)
discriminant function respectively for type I and type III ELMs from JET ELM-DBI.
Vertical and horizontal dashed lines mark the discriminating values for Pinput and ΓD2,
respectively.

improves the average leave-one-out cross validated success rate to 91.0% from (81.0

- 82.0)% yielded by each of them individually. On the other hand, a quadratic

combination of Pinput and ΓD2 increases the average success rate to 89.0%. This is

further illustrated in Figure 7.2. It can be readily observed that the vertical and

horizontal dashed lines discriminate the two classes poorly, whereas the solid lines,

which are a function of Pinput and ΓD2 , better separate the two classes. A second

important observation which can be made from the inspection of Figure 7.2 is that

the hyperplane best separating the two classes has multiple solutions based on the

minimization of classification error. Further, it can be noted that for 10.4 MW ≤

Pinput ≤ 16.5 MW the difference between the quadratic and linear boundary is small

(∆ΓD2 ≤ 1.0s−1). However, for Pinput > 16.5 MW , this difference is substantial.

Figure 7.3, presents the decrease in error rate (%) with the addition of other

plasma parameters. An addition of the remaining 4 plasma parameters, Bt, Ip,

ne and δavg to Pinput and ΓD2 reduces the average error rate to 8% (alternatively,

average success rate improves to 92% ) for the linear combination of parameters

and to 6% for the quadratic case. While the addition of ΓD2 to Pinput had reduced

the error rate by a factor of ∼2, the addition of the remaining 4 parameters only
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Resubstitution Leave-one-out CV
Plasma success (%) success (%)

parameters I III Avg I III Avg

Pinput, ΓD2

LDA 93.2 84.6 91.0 94.6 80.8 91.0
QDA 94.6 76.9 90.0 90.5 84.6 89.0

Pinput, ΓD2 , Ip
LDA 93.2 84.6 91.0 94.6 76.9 90.0
QDA 94.6 80.8 91.0 91.9 80.8 89.0

Pinput, ΓD2 , δavg
LDA 93.2 84.6 91.0 94.6 80.8 91.0
QDA 94.6 80.8 91.0 91.9 73.1 87.0

Pinput, ΓD2 , ne
LDA 93.2 80.8 90.0 93.2 76.9 89.0
QDA 94.6 73.1 89.0 90.5 80.8 88.0

Pinput, ΓD2 , Bt
LDA 93.2 73.1 88.0 90.5 80.8 88.0
QDA 96.0 88.5 94.0 93.2 84.6 91.0

Pinput, ΓD2 , δavg, Ip
LDA 93.2 84.6 91.0 94.6 80.8 91.0
QDA 94.6 88.5 93.0 96.0 80.8 92.0

Pinput, ΓD2 , δavg, ne
LDA 91.9 88.5 91.0 91.9 30.8 14.0
QDA 93.2 80.8 90.0 90.5 76.9 87.0

Pinput, ΓD2 , δavg, Bt
LDA 94.6 76.9 90.0 91.9 84.6 90.0
QDA 97.3 96.2 97.0 97.3 73.1 91.0

Pinput, ΓD2 , δavg, LDA 97.3 84.6 94.0 94.6 84.6 92.0
Bt, Ip QDA 96.0 92.3 95.0 94.6 88.5 93.0

Pinput, ΓD2 , δavg, LDA 93.2 84.6 91.0 93.2 80.8 90.0
Ip, ne QDA 93.2 88.5 92.0 91.9 80.8 89.0

Pinput, ΓD2 , δavg, LDA 94.6 80.8 91.0 90.5 80.8 88.0
Bt, ne QDA 97.3 0.00 98.0 97.3 76.9 92.0

Pinput, ΓD2 , ne, LDA 97.3 84.6 94.0 94.6 84.6 92.0
Bt, Ip QDA 97.3 88.5 95.0 94.6 92.3 94.0

Pinput, ΓD2 , δavg, LDA 96.0 92.3 95.0 94.6 84.6 92.0
Bt, Ip, ne QDA 96.0 96.2 96.0 96.0 88.5 94.0

Table 7.3: Average and class-wise resubstitution success (%) and leave-one-out cross
validated success (%) for a linear and quadratic combination of plasma parameters obtained
by LDA and QDA, respectively.

lowers it further by 1% for LDA and 5% for QDA. It is noteworthy that the error

rate for type III ELMs reduces by ∼ 4% for both LDA and QDA whereas the error

rate for type I ELMs remains unchanged for LDA and lowers by ∼ 5% for QDA.

However, this reduction in error rates comes at the expense of an increased model

complexity. An increase in the number of parameters in the discriminant function

increases model complexity which in turn leads to higher variance (bias-variance

tradeoff) as well as a less tractable model.

It can be noted from Table 7.3 and Figure 7.3 that from the various models

analyzed, the linear combination of Pinput, ΓD2 , Bt, Ip along with either ne or δavg,

can be considered as the best models as they yield high average and class wise success
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Figure 7.3: Leave-one-out cross validated error rate versus the number of combined
plasma parameters using (a). LDA, (b). QDA

rates with the least number of parameters. These two models are highlighted in

Table 7.3 and Figure 7.3. The quadratic combination of Pinput, ΓD2 , Bt, Ip and ne

gives the highest success rate amongst all analyzed models. However, the quadratic

model is significantly more complex, less intuitive and less tractable, than the linear

counterpart. However, if the primary goal is correct classification of a new discharge,

then this quadratic model can be slightly advantageous compared to the linear ones.

7.2.3 Separation hyperplane for type I and type III ELMs

The mathematical form for the linear discriminant functions derived for the

classification of type I and III ELMs is presented in Table 7.4. The classification

success rates for these linear separating hyperplanes (boundary) are provided in

Table 7.3. For each of the three discriminant functions, L1, L2 and L3 given in

Table 7.4, if the left hand side of the expression is less than the constant on the

Linear discriminant functions Wilks’ Λ
L1 Pinput − 1.41ΓD2 = 7.47 0.60
L2 Pinput− 1.25ΓD2 + 7.06Bt− 8.81Ip + 0.70ne = 8.75 0.53
L3 Pinput−0.765ΓD2+12.4Bt−10.7Ip−26.1δavg = 3.96 0.47

Table 7.4: Linear separation hyperplanes (boundary) for type I/III ELMs, in terms of
global plasma parameters. The corresponding classification success rates (%) are provided
in Table 7.3. Wilks’ Λ indicates the goodness of fit of each discriminant function.

.
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Predictors L1 L2 L3
Pinput 0.53 0.47 0.41
ΓD2 -0.46 0.38 -0.36
Bt - 0.33 0.30
Ip - 0.078 0.070
ne - -0.014 -
δavg - - -0.030

Table 7.5: Correlation between plasma parameters (predictors) and the discriminant
functions L1, L2 and L3.

right hand side, type III ELMs are expected (or obtained). Vice versa, if the left

hand side of the discriminant function is more than the constant on the right hand

side, type I ELMs are expected.

Assessing model fit

The goodness of fit of the estimated discriminant functions to the hyperplane

separating type I and III ELMs is assessed using a statistic called Wilks’ lambda (Λ)

[160]. The Wilks’ Λ estimates for L1, L2 and L3 are given in Table 7.4. Theoretically,

the closer Wilk’s Λ is to 0, the better is the model fit. However, for practical purposes

a value of Wilk’s Λ less than or equal to 0.63 implies a reasonably good fit.

Assessing the contribution of individual parameters

Table 7.5 presents the estimates of the correlations between each plasma parameter

in the model and the discriminant functions. These estimates allow us to see how

closely a parameter is related to each discriminant function and provide an indication

of the importance of each parameters unique contribution to the discriminant

function. The results in Table 7.5 suggest that Pinput, ΓD2 and Bt contribute the

most to the hyperplanes separating type I and III ELMs.

Illustration of the use of discriminant function

Given L2:

Pinput − 1.25ΓD2 + 7.06Bt − 8.81Ip + 0.70ne = 8.75

If Bt = 2T , Ip = 2MA, ne = 6.0 × 1019m−2 and Pinput = 15MW , a gas fuelling

rate of 5.56× 1022s−1 and above will result in type III ELMs. However, if Pinput is
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increased to 20 MW , a a gas fuelling rate of 9.56 × 1022s−1 and above will lead to

type III ELMs. This behavior is well-aligned with known physics.

7.3 Non-parametric classification

Parametric classification using discriminant analysis offers various advantages.

However, its potential is challenged by two inherent assumptions: data within classes

is assumed to be normally distributed and in case of LDA, the classes are considered

to be sharing a common covariance matrix. Furthermore, it has been shown that

working with distributions of plasma parameters and ELM properties has significant

benefits over working with mean values alone. Discriminant analysis operates on the

mean values of the parameters and does not accommodate for the uncertainty on

the parameters.

Hence, parametric classification using k-nearest neighbors (kNN) classifier is

performed next on JET ELM-DBI dataset. In the first stage, kNN classifies

ELMs using the distributions of global plasma parameters which allows for a direct

comparison with the results obtained with DA. In the second stage, non-parametric

classification is performed on the basis of the distributions of inter-ELM time

intervals (∆tELM), also interchangeably referred to as the waiting times. It will

be shown that this provides an appreciable improvement over the classification of

ELMs using the average ELM frequency (fELM).

7.3.1 Using global plasma parameters

Table 7.6 presents the leave-one-out cross-validated success rates (%) for 1-nearest

neighbour (1-NN) classification of type I and type III ELMs from JET ELM-DBI

using the distributions of the aforementioned global plasma parameters, i.e. Bt, Ip,

ne, Pinput, δavg and ΓD2 , as predictors. As in chapter 5, we assume that the error

bars associated with each plasma parameter pertain to a statistical uncertainty in

the data, specifically that it represents a single standard deviation. According to the

principle of maximum entropy the underlying probability distribution is Gaussian

with the measurement and its error bar constituting the mean (µ) and the standard

deviation (σ), respectively [161].

It can be noted from Table 7.6 that for each set of predictors, the GD-based
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Plasma
Distance

Leave-one-out CV success (%)

parameters measure I III Avg

Pinput, ΓD2

µ Eucl. 85.1 46.2 75.0
µ, σ GD 86.5 73.1 83.0

Pinput, ΓD2 , Bt µ Eucl 89.2 69.2 84.0
Ip, ne µ, σ GD 93.2 80.8 90.0

Pinput, ΓD2 , Bt µ Eucl 89.2 69.2 84.0
Ip, δavg µ, σ GD 95.9 84.6 93.0

Pinput, ΓD2 , Bt µ Eucl 89.2 69.2 84.0
Ip, ne, δavg µ, σ GD 95.9 84.6 93.0

Table 7.6: Leave-one-out cross-validated (CV) classification success rates (%) for the
classification of type I and type III ELMs from JET ELM-DBI using global plasma
parameters as predictors and 1-nearest neighbour (1-NN) classifier. Euclidean distance
based 1-NN is used for classifying on the basis of the mean (µ) values of plasma parameters
and both Euclidean distance based 1-NN and GD-based 1NN are used for classifying on
the basis of distributions (µ, σ) of plasma parameters.

classification using the distributions of the plasma parameters performs significantly

better than the classification based on the mean values of the parameters. A

comparison with the success rates provided in Table 7.3 reveals that both DA and

kNN classify with reasonably high accuracy and their classification performance is

comparable. This renders the choice of a classifier application dependent. kNN as a

completely non-parametric approach makes no assumptions about the shape of the

decision boundary and is expected to outperform LDA when the decision boundary

is highly non-linear. On the other hand, kNN does not provide an interpretable

model.

7.3.2 Using inter-ELM time intervals

7.3.2.1 Extraction of ELM temporal characteristics

JET plasmas typically contain more than a hundred ELMs in the stationary phase of

the discharge. Most ELMs are not indexed and thus a thorough statistical analysis

of their properties is far from easy. A robust ELM detection algorithm is developed

for the extraction of inter-ELM time intervals. The algorithm can also be used for

estimating other temporal characteristics such as ELM durations, ELM crash time

as well as the synchronization of ELMs for ELM energy loss estimation (Chapter 8).

ELM detection algorithms typically examine the radiation associated with ELMs,

using a threshold or a combination of thresholds to signal the start and end of an
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Type of discharges ELM signature used for analysis

JET CW
Dα emissions at the inner divertor

(p/scm2sr)

JET ILW
Be II 527nm photon flux at the inner

divertor (p/scm2sr)

AUG (full W wall)
Scrape-off layer current measured via shunt

resistances at the outer divertor (kA)

Table 7.7: Type of discharge and the corresponding ELM signature signal used for
analysis and as input to the ELM detection algorithm.

Figure 7.4: Dalpha signal (ELM signature) for a type I and a type III ELMy discharge
from JET ELM-DBI. The analysis time interval delimited by t1 and t2 is marked by dashed
lines.

ELM [159][162]. In those respects, our detection algorithm is the same and performs

a series of sequential operations on the given input.

STEP 1: The algorithm requires as input, an ELM signature signal and a pre-set

analysis time interval which pertains to quasi stationary plasma conditions.

Corresponding to the three categories of discharges, i.e. JET-CW plasmas,

JET-ILW plasmas and AUG (full W wall) plasmas, Table 7.7 lists the ELM

signature signals which are used as input to the ELM detection algorithm. For

each discharge in the database, the time at which the time series analysis starts

(t1) and ends (t2) is manually affixed. As an illustration, the Dα signal for two

discharges from JET ELM-DBI is presented in Figure 7.4. The analysis time

interval [t1, t2] is indicated by dashed lines.
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Figure 7.5: Application of LOWESS smoothing to the ELM signature signal. (a)-(b).
Dα signal for discharge #76474 (Type I ELMs) and #74415 (Type III ELMs). (c)-(d).
Dα signal after smoothing with s = 10. (e)-(f). Dα signal after smoothing with s = 1.
(g)-(h). Dα signal after smoothing with s = 100.

STEP 2: The ELM signature signal is smoothed using locally weighted least squares

smoothing (LOWESS) [163]. LOWESS smooths the ELM signature time series

via local regression using weighted linear least squares fitting to the data

points in the smoothing window. LOWESS smoothing, applied to a type

I ELMy discharge and a type III ELMy discharge from JET ELM-DB1, is

illustrated in Figure 7.5 (a)-(d). The width of the smoothing window (s)
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Figure 7.6: ELM identification via peak detection.

(also called span) specifies the number of closest neighbors of each data

point that constitute the moving smoothing window. By trial and error,

s has been set to 10 (Figure 7.5(c)-(d)) such that the smoothing stage

facilitates subsequent processing, improves signal to noise ratio and reduces

high frequency inter-ELM fluctuations. Figure 7.5 (e)-(h) illustrates the effect

of choosing a large and a very small value of s. It can be seen that choosing

s = 1 is ineffective as the smoothing effect is almost negligible. In contrast,

choosing s = 100 leads to a loss of information as it causes an over-smoothing.

STEP 3: ELMs are identified by detecting peaks in the ELM signature signal.

Peaks are detected by using the zero-derivative method as the first derivative

of a peak has a downward going zero-crossing at the peak maximum. ELM

identification is illustrated in Figure 7.6.

STEP 4: ELM start (tELMstart) and stop times (tELMend
) are determined. ELM is

considered to end when the the amplitude of the ELM signature signal falls to

∼20-40% of the ELM peak value. The corresponding time is noted as tELMend
.

Similarly, the time instance before the ELM peak time at which the amplitude

of the ELM signature signal is ∼20-40% of the peak amplitude, is noted as

tELMstart .

OUTPUT: For each ELM i, in a discharge with N ELMs, tELMstart , tELMpeak
and

tELMend
are obtained. The waiting time (∆tELM) is computed as:

∆tELM = tELMendi+1
− tELMstarti

. (7.5)
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Figure 7.7: Maximum-likelihood parameter estimates for (a). Gaussian distribution fit,
(b). 2-parameter (2P) Weibull distribution fit to the ELM waiting times (∆tELMs) from
JET ELM-DBI.

7.3.2.2 Maximum-likelihood parameter estimation

Gaussian and 2-parameter (2P) Weibull distributions are used for modeling the N

waiting times extracted from each discharge. Webster et al. [159] has recently shown

that based on experimentally motivated assumptions, the 3-parameter (3P) Weibull

distribution is a good model for capturing the waiting time statistics. However, the

GD between 3P Weibull distributions does not have an analytical solution. Hence,

for ensuring that the developed classification system is computationally efficient and

as a first approximation, the 2P Weibull distribution is used herein.

Both Gaussian and 2P Weibull distributions have free parameters that require

estimation. To this end, we consider the likelihood function for the probability of

the data given the model being considered (M) and parameters (θ),with

L(θ) = P ({∆tELM}|M, θ), (7.6)

where, P ({∆tELM}|M, θ) is the probability of observing the set of waiting times

{∆tELMN
}, given the assumption of a distribution M (where M is Gaussian or 2P

Weibull), with parameters θ. The parameters that maximize L(θ) are the maximum

likelihood (ML) estimates of the distribution parameters.

ML estimates of the parameters of a Gaussian distribution (µ, σ) and the

parameters of a 2P Weibull distribution (β, α) fit to the waiting times extracted
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from the discharges in JET ELM-DBI are shown in Figure 7.7.

An examination of Figure 7.7, provides various insights. Figure 7.7(a) suggests

that there is a positive linear correlation between mean and the standard deviation

of the waiting times. This implies that type I ELMs, which typically have a higher

mean waiting time, tend to have a wider distribution (i.e higher standard deviation)

than type III ELMs. Furthermore, both the mean waiting time and its standard

deviation appear to be discriminators of ELM type, especially for the discharges

which lie at the boundary between type I and type III ELMs. For example, type I

HF ELMs have mean waiting times which are smaller than typical type I ELMs but

are more similar to type III ELMs. However they tend to have a smaller standard

deviation than the standard deviation of type III ELMs with similar mean waiting

times.

Figure 7.7(b) indicates that β and α are also both discriminators for ELM type.

Type I ELMs typically have a higher value for α than type III ELMs. Also, the

information in β appears useful for correctly classifying type I HF ELMs, since they

have a higher value of β than the type III ELMs with similar values of α.

7.3.2.3 Classification performance

Table 7.8 presents the classification success rates (%) for k-nearest neighbor

classification of ELM types from JET ELM-DBI using the distribution of ELM

waiting times as a predictor. The following key observations can be made on the

results outlined in Table 7.8:

• ELM classification using GD-based kNN with the Gaussian distribution

parameters (µ, σ) as predictors (k=1), and the 2P Weibull distribution

parameters (β, α) as predictors (k=3), yields the highest class wise and average

success rates.

• The improvement in success rates when the distribution (µ, σ) of the waiting

times is used as a predictor, over the success rate obtained with only the mean

waiting time, confirms that the complete distribution of the waiting times

contain more information than the mean values alone.

• With Gaussian distribution parameters (µ, σ) as predictors, GD-based kNN

yields higher success rates than Euclidean distance based kNN. This reconfirms
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Predictors
Distance

k
Leave-one-out CV success (%)

measure I III Avg
µ Eucl 1 95.9 84.6 93.0

(µ, σ) Eucl 1 95.9 84.6 93.0
(µ, σ) GD 1 97.3 96.2 97.0
(β, α) Eucl 1 94.6 80.8 91.0
(β, α) GD 1 97.3 92.3 96.0

µ Eucl 3 95.9 88.5 94.0
(µ, σ) Eucl 3 95.9 88.5 94.0
(µ, σ) GD 3 94.6 96.2 95.0
(β, α) Eucl 3 94.6 92.3 94.0
(β, α) GD 3 97.3 96.2 97.0

µ Eucl 5 91.9 84.6 90.0
(µ, σ) Eucl 5 91.9 84.6 90.0
(µ, σ) GD 5 95.9 92.3 95.0
(β, α) Eucl 5 87.8 88.5 88.0
(β, α) GD 5 94.6 92.3 94.0

Table 7.8: Class wise and average classification success rates (%) for type I and III
ELMs from JET ELM-DBI using mean value and distributions of ELM waiting times as
predictors together with a kNN classifier.

that GD is a natural and a well suited similarity measure for comparing

probability distributions. Likewise, with 2P Weibull distribution parameters

(β, α) as predictors, GD exhibits a considerably superior performance over the

Euclidean distance.

In order to further elucidate the capacity of the classification scheme, the region in

the Gaussian parameter space overlapped by type I and type III ELMs is identified

and indicated in Figure 7.8 with a dashed rectangle. The overlapping region spans

an ELM frequency (fELM) range of 60−135 Hz. It can be seen from Table 7.9 that

the GD-based 1-nearest neighbour (1-NN) classifier using the distribution of waiting

times correctly classifies all 11 plasmas lying in the overlapping region. Whereas, the

1-NN classifier using only mean waiting times as predictors, incorrectly classifies 3 of

the plasmas hailing from the overlap region. This helps to illustrate that complete

distributions of ELM properties encompass more information which, if effectively

exploited, can result in an improvement in the system performance.

The distribution of waiting times has rendered itself as a very important sorting

quantity for ELM types. However, a further addition of the distribution of other

ELM properties (such as ELM energy loss (WELM) or ELM durations (τELM)) to
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the set of predictors can possibly further improve the performance.

Figure 7.8: Maximum-likelihood parameter estimates for a Gaussian distribution fit to
the ELM waiting times (∆tELMs) from JET ELM-DBI. The region of the parameter space
overlapped by type I and type III ELMs is indicated by a dashed rectangle.

Shot number ELM type

Predictors and
distance measure
µ (µ, σ)

(Eucl) (GD)
56740 type I X X
67761 type I × X
66109 type I HF X X
66108 type I HF X X
66107 type I HF X X
66106 type I HF × X
66105 type I HF X X
70136 type III X X
74661 type III X X
74519 type III X X
74429 type III × X

Table 7.9: Class label (ELM type) predicted by GD-based 1-NN and Euclidean distance
based 1-NN classifier for the discharges belonging to the overlap region in the Gaussian
parameter space, indicated in Figure 7.8. The second column specifies the actual ELM
type and the third and fourth column indicate if the ELM type is correctly (check mark)
or incorrectly (cross mark) predicted.
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Figure 7.9: Maximum-likelihood parameter estimates for (a). Gaussian, (b). 2P-Weibull
distribution fit to the ELM waiting times (∆tELMs) from AUG ELM-DBI.

7.3.2.4 AUG ELM-DBI: Classification performance

From the full-W wall experiments at AUG, a selection of 20 type I and 10 type

III/mixed ELMy discharges has been made to constitute the AUG CW ELMy

database (AUG ELM-DB1) reported in Appendix A.1: AUG ELM-DBI.

The analysis has been restricted to time intervals in which the plasma conditions

are quasi-stationary with approximately constant heating, gas fueling and central

density. Further, all experiments dealing with ELM control and mitigation

techniques have been excluded. For each discharge, inter-ELM time intervals are

extracted using the ELM detection algorithm presented in the previous section.

Maximum-likelihood estimates of Gaussian and 2P-Weibull distribution fits to the

waiting times from AUG ELM-DBI are presented in Figure 7.9. As in the previous

section, an examination of Figure 7.9 (a) reveals that both the mean (µ) and the

standard deviation (σ) of the Gaussian distribution fit appear to contribute to the

discrimination between type I and type III/small ELMs.

Table 7.10 presents the classification success rates (%) for kNN classification of

ELM types from AUG ELM-DBI. In consistence with the results obtained with JET

ELM-DBI, GD based classification using complete distribution of the waiting times

yields the highest classification accuracy.
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Predictors
Distance Leave-one-out CV success (%)
measure I III Avg

µ Eucl 90.0 80.0 86.7
(µ, σ) Eucl 90.0 80.0 86.7
(µ, σ) GD 100 90.0 96.7
(β, α) Eucl 90.0 80.0 86.7
(β, α) GD 100 90.0 96.7

Table 7.10: Class wise and average classification success rates (%) for type I and III
ELMs from AUG ELM-DBI using mean value and distributions of ELM waiting times as
predictors and 1-NN classifier.

7.4 Conclusions

In this chapter, a DA based parametric classification scheme and a kNN based

non-parametric classification scheme have been presented and applied for the

classification of ELMs from a database of JET plasmas and a small database of

AUG plasmas. Each classification paradigm offers unique advantages and indeed

the choice of a suitable ELM classifier is application dependent.

While DA requires more theoretical work before it can be applied on the

probabilistic manifolds, classification using GD-based kNN clearly show that the

complete distributions of global plasma parameters and ELM waiting times contain

more useful information than the average parameter value. The presented schemes

are fast and have been demonstrated to be capable of correctly predicting the ELM

behavior even in those cases where the ELM type is not immediately clear.

CP classifier which offers certain well defined benefits has demonstrated its

potential as a non-parametric classifier in chapter 6, where it has been applied for

the classification of type I and small ELM from an international database. Herein,

as ELM properties have been extracted from an assembled database from JET

and AUG, non-parametric classification is performed by the simpler kNN classifier.

Indeed, the CP classifier can be applied next for reaping the advantages that it

offers.
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Abstract Several important ELM control techniques are in large part motivated

by the empirically observed inverse relationship between average ELM energy loss

and ELM frequency in a plasma. However, to ensure a reliable effect on the energy

released by the ELMs, it is important that this relation is verified for individual ELM

events. Therefore, in this work the relation between ELM energy loss (WELM) and

waiting time (∆tELM) is investigated for individual ELMs in a set of ITER-like wall

plasmas in JET. A comparison is made with the results from a set of carbon-wall

and nitrogen-seeded ITER-like wall JET plasmas. It is found that the correlation

1See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy
Conference 2014, Saint Petersburg, Russia.

*The work presented here in chapter 8 is a preprint of a manuscript currently under review.
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betweenWELM and ∆tELM for individual ELMs varies from strongly positive to zero.

Furthermore, most of the unseeded JET ILW plasmas have ELMs that are followed

by a second collapse phase referred to as the slow transport event (STE). The

effect of the STEs on the distribution of ELM durations is studied, as well as their

influence on the correlation between WELM and ∆tELM . A high correlation between

WELM and ∆tELM , comparable to CW plasmas is only found in nitrogen-seeded

ILW plasmas. Finally, a regression analysis is performed using plasma engineering

parameters as predictors for determining the region of the plasma operational space

with a high correlation between WELM and ∆tELM .

8.1 Introduction

Standard high confinement (H-mode) regimes in tokamaks are characterized by the

existence of an edge transport barrier (ETB) in a narrow edge region inside the

separatrix. Steep pressure gradients in the ETB lead to magnetohydrodynamic

(MHD) instabilities called the edge-localized modes (ELMs) [164][3]. ELMs are

intense, short duration, repetitive events that cause a partial collapse of the ETB

and result in sudden expulsion of energy and particles from the plasma edge. On the

one hand, ELMs pose a serious concern as they can cause high transient heat loads

on the plasma-facing components (PFCs). On the other hand, they are crucial for

regulating the core concentration of impurities, in particular, tungsten (W) which

is produced by plasma-wall interactions at the divertor target.

Given the importance of ELMs for the successful operation of next-step fusion

devices, a large array of ELM control and mitigation techniques have emerged

[119][165]. Typically, ELM losses are influenced either by a complete suppression of

the ELMs in regimes where an alternate mechanism replaces the energy and particle

transport, or by increasing the ELM frequency (fELM) over its natural value (ELM

pacing), so that the ELM losses become smaller. The effectiveness of the latter

method in reducing the peak ELM energy flux (qmax) at the ITER divertor may

be dampened in the wake of the experimentally observed linear dependence of the

effective ELM energy deposition area (AELM) on ELM size (WELM) [140][166][141].

However, Loarte et al. [142] notes, that while the broadening of AELM certainly

expands the operational regime of uncontrolled ELMs, for conditions in which the
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uncontrolled ELMs would exceed the limits posed by divertor erosion, ELM control

will be necessary at ITER. Secondly, the processes that lead to the broadening of

AELM at the divertor will also have a similar effect on the scrape-off layer (SOL).

This will inevitably result in an increase in the energy deposited on ITER’s main

wall which will consist of Beryllium (Be) PFCs. Be in contrast to the divertor

material W, has a much lower erosion threshold which makes it highly likely that

for some conditions the erosion limit of the first wall could constrain uncontrolled

ELM operation.

Further, the recent ELM pacing experiments at DIII-D using lithium granules

in contrast to frozen deuterium pellets, report on a reduction of the qmax at the

outer strike point [144]. This result not only suggests the possibility of reducing

qmax at ITER by non-fuel pellet injection but also presents an added advantage of

de-coupling ELM pacing from plasma fueling.

Furthermore, in addition to the protection of PFCs, ELM control requirements at

ITER have been recently revised to include W impurity control [135][142]. Excessive

W concentration in the core can lead to severe central radiation losses which can

affect the H-mode performance and in extreme cases result in a radiative collapse

[167]. Experimental observation at JET [145] and AUG [168] have shown that a

sufficiently high fELM will be required in ITER for maintaining an appropriate W

concentration in the plasma.

ELM pacing [169][170], a leading candidate for controlling (WELM) in ITER,

relies on the observed inverse dependence of WELM on fELM . For type I ELMs,

using a multi-machine database and a wide range of plasma parameters averaged

over multiple ELM events it has been empirically found that [139],

W̄ELM = 0.2Wplasma

(
∆̄tELM
τE

)
. (8.1)

Here, τE is the energy confinement time in plasmas with a stored energy Wplasma and

∆̄tELM is the average period of the ELM cycle (∆̄tELM = 1/fELM). ELM control

methods exploit a similar inverse dependence between fELM and energy loss by

increasing the fELM significantly beyond the natural frequency, leading to smaller

ELM energy losses.

As ELM events are repetitive and not periodic, ∆̄tELM is customarily estimated
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as

∆̄tELM =
1

N

N∑
i=1

∆tELMi
. (8.2)

Here ∆tELMi
is the time since the previous ELM and is also frequently referred

to as the waiting time of ELM i. In this work, in contrast to analyzing the

relation of the averages, the relation between ∆tELMi
and WELM for individual

ELMs is investigated in a set of JET plasmas with PFCs made of carbon fiber

composites (hereafter carbon-wall or CW) and ITER material combination (Be and

W) (hereafter ITER-like wall or ILW). In an earlier investigation, Webster et al.

[108] observed that the inverse dependence between WELM and fELM is not obeyed

by individual ELMs for ∆tELM greater than 20ms. However, their analysis was

restricted to a set of 2 T, 2 MA ILW plasmas from the JET tokamak. In this work,

the analyzed plasmas are selected to cover a wide range of plasma parameters in JET.

The aim is to show that an inversely linear relation similar to (8.1) is obeyed in some

plasmas, but not all. The correlation between ∆tELM and WELM is seen to vary in

CW discharges and it is usually low in ILW plasmas, except when nitrogen is seeded

into the plasma. This is further investigated by examining the relation between

ELM durations (τELM) and WELM , as well as the correlation between energies of

consecutive ELMs. This includes a comparative analysis between ILW and CW

plasmas. A weak or no relation between waiting times and ELM energies could

adversely affect the potential of ELM control methods. Therefore, the present work

also aims to emphasize the importance of considering the probability distribution of

stochastic plasma quantities (in this case ∆tELM and WELM), as it contains more

information compared to a mere average.

Finally, with the aim to locate regions of the machine operational space where

ELM control would have a reliable effect on ELM energies, a regression analysis is

performed of the correlation between ∆tELM and WELM on several global plasma

parameters.

The structure of the paper is as follows. In section 8.2, we describe the dataset

as well as the estimation of the ELM characteristics ∆tELM , WELM and τELM . We

also present the statistical tools that are used to assess the strength of the relation

between the various parameters of interest. In section 8.3, first the relation between

the average quantities is investigated, followed by a similar analysis on the same
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CW ILW
ILW with
N2 seeding

No. of discharges 20 32 6
Toroidal field Bt(T ) 1.6 - 3.0 1.3 - 2.7 2.65 - 2.7

Plasma current Ip(MA) 1.5 - 3.0 1.3 - 2.5 2.5
Line-integrated edge

density ne(1019m−2)
3.2 - 9.9 1.9 - 7.4 5.4 - 7.4

Input power =
Pohmic + PNBI Pinput(MW )

8.1 - 22 6.9 - 19 16 - 19

Main gas (D2) flow rate
ΓD2(1022s−1)

0.0 - 7.5 0.52 - 4.0 1.3 - 3.7

(N2) flow rate
ΓN2(1022s−1)

- - 0.76 - 2.8

Average triangularity δavg 0.27 - 0.43 0.27 - 0.41 0.27 - 0.39
Edge safety factor q95 2.8 - 3.6 3.1 - 6.1 3.4
Beta normalized βN 1.6 - 2.4 0.92 -2.0 1.2 - 1.7

Table 8.1: Range of some key global plasma parameters for the JET ILW, JET CW and
the six N2-seeded JET ILW plasmas from JET ELM-DBII.

quantities for individual ELMs in a specific discharge. We then study the picture

that emerges when all individual ELMs from our database are analyzed together.

This is followed by regression analysis of the correlation between waiting times and

energy losses, as a function of machine parameters in section 8.4. Finally, in section

8.5 we analyze WELM of consecutive ELMs before concluding the work in section

8.6.

8.2 Database and methods for correlation

analysis

8.2.1 Plasma scenario

For this investigation, an intermediate-size database of 20 CW and 32 ILW JET

plasmas has been compiled. We call this database “JET ELMy database (DBII)”,

henceforth referred as JET ELM-DBII. The database is presented in appendix A.3.

The dataset has been selected with a view on encompassing a relatively wide range

of plasma and engineering parameters. Each selected discharge has a steady period

of H-mode with regular type I ELMs and the analysis has been restricted to time

intervals where plasma conditions are quasi-stationary. To ensure quasi-stationarity,

133



8.2. DATABASE AND METHODS FOR CORRELATION ANALYSIS

it has been regarded essential that in the analyzed time interval the plasmas have

approximately constant gas fueling, input power, edge density and βN . The size of

the current database has somewhat been restricted by the necessary level of manual

intervention for extracting data and in part due to the required availability of signals

with a sufficient temporal resolution. However, the current size of the database is

adequate for the analysis carried out in this work.

With the replacement of CW in JET by the ILW in 2010, it has been observed that

the first wall material appears to have had an effect on both the plasma confinement

and pedestal properties [171][172]. Up until now, the JET-ILW standard baseline

scenario has not routinely achieved a confinement factor of H98 = 1 both in low

and high-triangularity scenarios. The degraded confinement in JET ILW plasmas

is a result of a lower pedestal pressure mainly due to a pedestal temperature

approximately 20-30 percent lower than in JET CW. Pedestal density on the

other hand is comparable among JET CW and JET ILW plasmas. In JET ILW

a pedestal pressure comparable to baseline JET CW has only been achieved in

high-triangularity experiments with nitrogen (N2) seeding [172][35]. In the current

work, 6 ILW plasmas with N2 seeding are also included in the dataset, making the

total number of analyzed ILW plasmas 38. The range of a number of important

engineering parameters in the database is given in table 8.1.

8.2.2 ELM detection and energy loss estimation

A robust threshold-based algorithm has been developed for estimating ELM

temporal properties, that is ∆tELM and τELM . The algorithm examines Balmer

alpha radiation from Deuterium (Dα) for the CW plasmas and Beryllium II (527

nm) radiation for ILW plasmas at JET’s inner divertor. The algorithm uses the

sharp spikes in Dα/Be II radiation for detecting ELMs. This is preceded by a

smoothing process of the time traces and is followed by a threshold-based detection

of ELM start and end times. The estimation of ∆tELM and τELM is illustrated

in figure 8.1. The ELM energy loss has been estimated from the high-resolution

time-resolved measurement of the equilibrium stored energy (WMHD). WMHD is

calculated by plasma boundary and pressure reconstruction, assuming constant

pressure on magnetic surfaces. The WMHD time trace is synchronized to individual

ELMs and WELM is estimated as the maximum loss in energy in a small time window
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around an ELM event. This is illustrated in figure 8.2. The time window (delimited

by ta and tb) is chosen dynamically, with ta taken as 3/4 of the time till the next

ELM and tb taken as 1/3 of the time since the last ELM. Dynamic selection of the

time window compensates for the varying timescales of ELM energy loss between

JET CW and JET ILW plasmas [34]. Furthermore, in order to offset inaccuracy

arising due to eddy currents in the vacuum vessel and small radial plasma motion

following an ELM, a time interval of 3 ms has been allowed after an ELM in which

the data is not used for energy loss estimation.

Figure 8.1: Illustration of the extraction of ELM waiting times (∆tELM ) and ELM
durations (τELM ) from a time trace of Dα radiation at JET’s inner divertor.

Figure 8.2: Illustration of ELM energy loss (WELM ) estimation from the equilibrium
stored energy (WMHD), synchronized to the time trace of Dα radiation at JET’s inner
divertor.
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Figure 8.3: Temporal signature of pure ELMs and ELMs followed by a slow transport
event (STE) in three typical JET ILW plasmas. The N2-seeded plasmas, like CW plasmas,
have narrower ELMs and no slow transport events.

8.2.3 ELM duration and slow transport events

JET ITER-like wall ELMs are sometimes followed by an extended collapse phase,

called the slow transport event (STE) [34]. These STEs are analogous to the second

phase of ELM collapse observed at ASDEX Upgrade (AUG) [35]. The typical

temporal signature of an STE is shown in figure 8.3. ELMs accompanied by an STE

have longer time scales of temperature and density collapse and result in higher total

energy loss of the plasma than the losses produced by ELMs alone. We first studied

the variation of the energy released by an ELM, averaged over all ELM events in a

single discharge, in terms of the fraction of STEs. The latter is defined as

fSTE =
N(ELM+STE)

NELM +N(ELM+STE)

, (8.3)

where N(ELM+STE) is the number of ELMs accompanied by a slow transport event

and NELM is the number of ELMs that are not followed by an STE phase, hereafter

referred to as “pure” ELMs. The ELM energy loss averaged over a single discharge,

during stationary conditions, is denoted as W̄ELM and we also consider its ratio w.r.t.

W̄tot, i.e. the total stored equilibrium energy in the plasma, also averaged over the

entire stationary phase of each discharge that has been investigated. The variation

of W̄ELM and W̄ELM/W̄tot with the fraction of STEs (fSTE) for all plasma pulses is

plotted in figure 8.4. In this work, we have divided JET ILW plasmas (N discharges)

into three broad categories: those with a high fraction of STEs (fSTE ≥ 50%, N = 4),

medium fraction of STEs (10% ≤ fSTE < 50%, N = 24) and those with very few

or no STEs (fSTE < 10%, N = 4). From figure 8.4, a clear (linear) increase can be
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Figure 8.4: Variation of the mean ELM energy loss (W̄ELM ) and mean relative ELM
energy loss (W̄ELM/W̄tot) with the fraction of slow transport events (fSTE) in JET ILW
plasmas.

noticed of W̄ELM with the fraction of STEs in a plasma. A very similar conclusion is

true for the relative energy loss W̄ELM/W̄tot, which shows that an increased energy

loss is due to a higher fraction of STEs. This is in accordance with recent studies

wherein it was seen that the STEs carry a significant proportion of the energy of

the total ELM event [34]. STEs are absent in the JET CW database analyzed in

this work. Furthermore, they disappear in N2-seeded ILW JET plasmas [34], as

does the second part of the ELM collapse in AUG plasmas [35]. JET ILW ELMs,

compared to JET CW plasmas have larger ELM durations (τELM). This too, in a

large part, is due to the existence of STEs in ILW plasmas. The average duration

τ̄ELM of all ELM events during a period of stationary plasma conditions, for the

plasmas analyzed in this work, are listed in table 8.2. N2-seeded ILW plasmas and

ILW plasmas with low fSTE have τ̄ELM similar to CW plasmas. ILW plasmas with

high fSTE exhibit τ̄ELM about three times larger than the τ̄ELM of CW plasmas.

Table 8.2: Typical ELM durations (mean (τ̄ELM ) and standard deviation (std(τELM )))
for unseeded JET ILW plasmas (varying degrees of slow transport events), N2-seeded JET
ILW plasmas and JET CW plasmas.

τ̄ELM(ms) std(τELM)(ms)
ILW
fSTE ≥ 50% 7.1 3.8

10% ≤ fSTE < 50% 3.4 2.2
fSTE < 10% 2.7 0.8
N2-seeded 2.5 0.8

CW 2.6 1.2
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Figure 8.5: Distribution of ELM durations for various subsets of JET plasmas
investigated in this work. In each panel, the vertical axis shows the number of ELM
events. (a) Unseeded ILW plasmas with a high fSTE, (b) N2-seeded ILW plasmas, (c) CW
plasmas, (d) Pure ELMs from high fSTE unseeded ILW plasmas, (e) ELMs followed by
STEs from high fSTE unseeded ILW plasmas.

An investigation into the distribution of τELM yields that the non-seeded JET ILW

plasmas (high fSTE) have a distribution of τELM which is distinctly different from

N2-seeded JET ILW plasmas and JET CW plasmas. The latter two cases exhibit

similar distributions for τELM . Figure 8.5 (a)-(c) present the distribution of τELM for

non-seeded JET ILW plasmas (high fSTE), N2-seeded JET ILW plasmas and JET

CW plasmas. The distribution of τELM for non-seeded JET ILW plasmas (high

fSTE) is bimodal (two local maxima). The bimodal distribution arises as a mixture

of two underlying unimodal distributions emerging from collapses due to pure ELMs

and collapses followed by STEs. We performed a manual separation of pure ELM

events from the cases with STEs, and the corresponding unimodal distributions

are shown in figure 8.5(d) and (e), respectively. The pure ELMs have a duration

τELM that is typically less than about 5 ms, while the ELMs with STEs can last

up to 14 ms. The distribution of τELM for pure ELMs in high fSTE ILW plasmas
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(figure 8.5(d)) appear similar to the distribution of τELM for N2-seeded JET ILW

plasmas (figure 8.5(b)) and JET CW plasmas (figure 8.5(c)). These distributions

are visibly non-Gaussian with a strong positive skew and we verified that a similar

degree of skewness also exists in the distribution of ELM durations from individual

discharges. From the physical point of view it means that, in our data set, pure ELMs

with durations longer than 4 - 5 ms are relatively rare, compared to the prevailing

duration of about 2.5 ms. From the statistical point of view, characterization of

skewed distributions necessitates additional metrics such as median and mode. The

means and standard deviations alongside medians, and skewness estimates for each

distribution are summarized in table 8.3. Here, the skewness was estimated not from

Table 8.3: Summary (mean (τ̄ELM ), standard deviation (std(τELM )), median (τ̃ELM )
and skewness) for the distributions of ELM durations extracted from the JET discharges
investigated in this work.

JET plasmas τ̄ELM std(τELM) τ̃ELM Skewness
(ms) (ms) (ms)

ILW plasmas Pure ELMs 3.2 0.87 3.0 0.23
fSTE ≥ 50% ELMs + STEs 9.6 2.5 9.8 0.08

N2-seeded ILW plasmas 2.5 0.81 2.3 0.25
CW plasmas 2.6 1.2 2.3 0.25

the third-order moment of the distribution (which typically requires a lot of data

points), but by dividing the difference between mean and median with standard

deviation. For gaining an interesting insight into skewness estimation, the reader

may refer to [173]. Contrary to pure ELM events, the distribution of τELM for

ELMs followed by STEs in high fSTE JET ILW plasmas (figure 8.5(e)) follows a

more symmetric distribution.

8.2.4 Tools for relation analysis

For analyzing the relation between ELM waiting times and energy losses, as a first

step we use scatter graphs to get a qualitative impression. Furthermore, in order

to quantify the strength of linear relation between ∆tELM and WELM for individual

ELMs within single discharges, the regular Pearson’s product moment correlation

coefficient (ρ) is estimated [174] [175]. For two sets of data or random variables X
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and Y , this correlation coefficient is defined as,

ρX,Y =
cov(X, Y )

σXσY
, (8.4)

where cov stands for the covariance between the variables, while σX and σY are their

standard deviations. ρX,Y takes values in the range [−1, 1]; a value of 1 means that

X and Y are perfectly linearly correlated, a value of 0 that there is no correlation,

while a value of −1 that they are perfectly anti-correlated.

Further statistical inference that we will perform based on ρ includes estimation

of confidence intervals, testing the significance of correlations and regressing against

a set of global engineering parameters. This is complicated by the in general

non-Gaussian distribution of a correlation coefficient. Therefore estimates r of

ρ are converted to a z-value, which is known to follow an approximately normal

distribution:

z ≡ 1

2
ln

(1 + r)

(1− r)
= tanh−1(r). (8.5)

The mean of the distribution is the z-value itself, while the standard deviation

does not depend on r and can be approximated by σz = 1/
√
n− 1, where n is

the number of data points. In addition, we use an alternative measure of relation,

in order to capture any possible nonlinear relation between the variables under

investigation. This is Spearman’s rank correlation coefficient rs, which measures

monotonic dependence between X and Y :

rs = 1− 6
∑n

i=1(Xi − Yi)2

n(n2 − 1)
, (8.6)

where Xi denotes the rank of the value Xi in the ordered series of values of the

variable X. rs is a nonparametric measure of dependence and is much less sensitive

to outliers. Similar to r, rs is in the interval [-1,1] and rs = 0 implies no monotonic

dependence.

Finally, partial correlation is also used when treating ELMs from different plasmas

at the same time. Partial correlation measures the degree of association between

two random variables while correcting for the effect of another variable, or several

other variables, on this relation. The partial correlation of X and Y , adjusted for
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Figure 8.6: Scatter graphs between W̄ELM and ∆̄tELM for (a) JET ILW plasmas, (b)
JET CW plasmas. Estimates for the Pearson correlation coefficient (r) are indicated,
together with the 95% confidence interval.

Figure 8.7: Scatter graphs between mean and standard deviation of (a) ∆tELM and (b)
WELM , for the JET ILW plasmas.

Z is:

ρXY Z =
ρXY − ρXZρY Z√

(1− ρ2
XZ)(1− ρ2

Y Z)
. (8.7)

Partial correlation can also be computed for Spearman’s rank correlation coefficient.

8.3 Analysis of the relation between ELM

properties

The relation between WELM and ∆tELM , averaged over all ELMs in a single

discharge, is shown in figure 8.6(a) and (b) for ILW and CW plasmas, respectively.

In agreement with the findings in [139], there is a strongly positive correlation
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Figure 8.8: Scatter graphs between W̄ELM and ∆̄tELM , including the error bars specified
by a single standard deviation, for (a) JET ILW plasmas, (b) JET CW plasmas.

Figure 8.9: Scatter graphs between W̄ELM and τ̄ELM for (a) JET ILW plasmas, (b) JET
CW plasmas. Estimates for the Pearson correlation coefficient (r) are indicated, together
with the 95% confidence interval. CW plasmas, in contrast to ILW plasmas, fail to reject
the null hypothesis of no correlation at 5% significance level.

between WELM and ∆tELM for ILW plasmas as well as for CW plasmas. However,

ELM control is targeted at influencing the energy loss of individual ELMs. Thus,

basing the mitigation strategy on the relation between the average properties of

different plasmas can possibly be an oversimplification. Furthermore, the relation

presented in [139] does not take into account the uncertainty on WELM and ∆tELM .

Nevertheless, it can be observed from figure 8.7 that the standard deviation of WELM

and ∆tELM is substantial and increases roughly linearly with the mean value. A

straightforward extrapolation based on figure 8.7(b) would suggest 7 - 10 MJ of

standard deviation around an absolute WELM of 20 - 30 MJ at ITER.

In general, the probability distributions of ELM properties contain comprehensive
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Figure 8.10: Estimates of linear correlation between WELM and ∆tELM for individual
ELMs in JET ILW plasmas. 95% confidence intervals are also indicated. Discharges
indexed 33 to 38 are N2-seeded plasmas.

information about their variability [157][89][176] and therefore studying their

statistical correlation properties will yield a better insight into the strength of any

existing relations. Figure 8.8 is essentially a reproduction of figure 8.6, with the

addition of the error bars indicating a single standard deviation. The strongly linear

relations depicted in figure 8.6 appear to be less clear with the inclusion of standard

deviations in figure 8.8. Hence, as will be shown below, the effect of the spread in

WELM and ∆tELM within each plasma is better quantified by studying the relation

between WELM and ∆tELM for individual ELMs in a discharge. Furthermore, the

relation between WELM and τELM for ILW and CW plasmas is shown in figure 8.9.

The correlation is clearly different in the two cases: ILW plasmas exhibit a strongly

positive correlation, whereas CW plasmas, failing to reject the null hypothesis of

zero correlation at 5 percent significance level, effectively show no correlation.

8.3.1 Properties of individual ELMs

After studying the ELM properties averaged over a window of stationary plasma

conditions, we now concentrate on relations between the properties of the individual

ELMs. Estimates of the correlation between WELM and ∆tELM (r∆tELM−WELM
),

along with 95% confidence intervals are presented in figure 8.10 and figure 8.11 for

individual ELMs in JET ILW and JET CW plasmas, respectively. Despite W̄ELM

and ∆̄tELM conforming to the expected inverse dependence between WELM and
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Figure 8.11: Estimates of linear correlation between WELM and τELM for individual
ELMs in JET CW plasmas. 95% confidence intervals are also indicated.

Figure 8.12: Variation of linear correlation between WELM and ∆tELM
(r(∆tELM )−WELM )) for individual ELMs in JET ILW plasmas. (a) With the fraction of
slow transport events (fSTE) and (b) with the linear correlation between WELM and τELM
(r(τELM−WELM )) for individual ELMs in JET ILW plasmas.

fELM , the correlation between WELM and ∆tELM for individual ELMs varies from

being strongly correlated for certain plasmas to being uncorrelated for others. This

is observed in both CW as well as ILW plasmas. Compared to ILW discharges,

CW plasmas on the whole have higher correlation between WELM and ∆tELM for

individual ELMs, with 12 out of the 20 (60%) analyzed plasmas exhibiting high

correlation (r > 0.40) and 4 out of the 20 (20%) analyzed plasmas demonstrating

no correlation (r ≤ 0.20). On the other hand, out of the 38 ILW plasmas, only the

6 (16%) N2-seeded plasmas exhibit high correlation (r > 0.40), whereas 19 (50%)

plasmas show no correlation and 13 (34%) have a medium correlation.

The underlying processes causing WELM and ∆tELM to exhibit varying degrees of
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Figure 8.13: Scatter plot between WELM and ∆tELM , WELM and τELM and W(nth)ELM

and W(n+1)ELM for JET pulse #82806 (unseeded JET ILW plasma (STEs > 50%)),
#83179 (N2-seeded JET ILW plasma) and #76479 (JET CW plasma). Estimates of r
for each scatter plot are also specified. r estimates that fail to reject the hypothesis of no
correlation at 5% significance level are indicated in color red. Also given are time traces of
Be II radiation from the inner divertor (ILW plasmas), Dα from the inner divertor (CW
plasma) and the equilibrium stored energy (WMHD).

correlation could be one or several of the following. The size of WELM is controlled

by the pedestal parameters, i.e. the density and temperature inside the pedestal

before the ELM crash [103][107]. A multi-machine study performed on ASDEX,

DIII-D, JT60U and JET CW has established that the relative ELM energy losses

scale with the inverse of pedestal collisionality [103]. Other key parameters that

have an important effect on WELM are the pedestal width [130], plasma rotation

[177] and the plasma shape [178]. On the other hand, ∆tELM is a consequence of
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the various timescales involved in the recovery of the pedestal to its pre-ELM state

following the ELM crash. The pedestal recovery time can be potentially modified

by enhanced losses in the inter-ELM period, either by increased bulk radiation or by

an increased level of density and magnetic fluctuations. WELM , being determined

primarily by the pre-ELM pedestal plasma parameters, is likely to remain unaffected

by the inter-ELM processes that can potentially modify ∆tELM . Furthermore,

the peeling-ballooning model, which is a leading candidate for explaining ELM

onset, fails to explain the phase of saturated gradients without ELMs [179]. In

medium-sized tokamaks at low edge temperature, the bootstrap current seems to

be fully developed for a relatively long time interval before an ELM crash. It is

reasonable to assume that, after the pedestal has recovered, an additional increase

in ∆tELM will not lead to an additional increase in WELM . Finally, figure 8.12

suggests that, in the case of the ILW plasmas, the correlation between WELM and

∆tELM for individual ELMs varies inversely with fSTE. Hence, the presence of

the STEs appears to be at least partly responsible for the observed reduction in

correlation between ELM waiting times and energies in ILW plasmas.

Furthermore, we note that for ILW plasmas there is a weakly inverse relation

between the correlation among WELM and ∆tELM and the correlation among τELM

and WELM . It can be seen from figure 8.12 that plasmas with high fSTE exhibit

no correlation between WELM and ∆tELM and consequently a very high correlation

between τELM and WELM . As an illustration, scatter plots between WELM and

∆tELM and WELM and τELM for three representation plasmas are given in figure

8.13. On the one hand, non-seeded JET-ILW plasma #82806 with fSTE ≥ 0.5

exhibits a very high correlation between WELM and τELM and no correlation between

WELM and ∆tELM . On the other hand, N2-seeded JET-ILW plasma #83179, similar

to JET-CW plasma #76479, demonstrates a high correlation between WELM and

∆tELM and no correlation between WELM and τELM .

8.3.2 Collective properties of individual ELMs in all

analyzed plasmas

Next, the collective properties of all ELM events in our JET ILW database are

investigated. A scatter diagram between WELM and ∆tELM for all ELMs (excluding
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N2-seeded plasmas) is shown in figure 8.14(a). Table 8.4 lists the estimates for r

and rs corresponding to the scatter diagram presented in figure 8.14(a). Partial

correlations between WELM and ∆tELM , while controlling for Bt, Ip, Pinput, ne,

ΓD2 and δavg, are presented as well. In this case partial correlation is a more

realistic measure for assessing the relation between WELM and ∆tELM , since it

takes into account the widely varying global plasma conditions across the data set.

It is noteworthy that adjusting for the varied plasma conditions brings a significant

reduction in the correlation. Moreover, values of rs are comparable with r, which

confirms the robustness of r estimates.

Furthermore, in order to account for any variation of the standard deviation of

the data (heteroscedasticity), which is especially clear in figure 8.14(a) (see also

figure 8.7), a scatter diagram between the logarithm of WELM and ∆tELM for all

ELMs in the analyzed ILW plasmas (excluding N2-seeded plasmas) is shown in

figure 8.14(b). Also, on figure 8.14(b), the least-squares line of best fit is indicated

and the corresponding regression coefficients are given in table 8.5. The observed

linearity in the log-log space is indicative of a power law relation between WELM

and ∆tELM . This implies that the rate of change of WELM and ∆tELM decreases

gradually up to a point beyond which the two quantities become almost independent.

This is reaffirmed by the inspection of figure 8.14(a) where there appears to be a

saturation of WELM for ∆tELM greater than 25-30 ms. This is also in agreement

with an earlier observation of statistical independence between WELM with ∆tELM

beyond ∆tELM = 20ms, made by Webster et al. [108] for individual ELMs from

a set of 2T , 2MA JET ILW plasmas. The point beyond which WELM becomes

independent of ∆tELM is likely to be limited by the pedestal recovery time and the

total energy stored in the plasma. In the plasmas considered in this work, though

the plasma thermal energy for pure ELMs appears to increase until the next ELM,

it is largely recovered to its pre-ELM value in 25(±8)ms. This suggests a scenario

in which the edge pedestal is largely restored in ≈ 25ms, leading to a significant

reduction in the correlation between WELM for ∆tELM beyond ∆tELM ≈ 25ms. On

the other hand, for ELMs followed by STEs, the plasma thermal energy recovers to

its pre-ELM+STE value in 90(±10)ms. Furthermore, it can be estimated that for

ILW ELMs a reduction of ∆tELM from 25-30 ms (beyond which WELM and ∆tELM

are very weakly correlated) to 10 ms reduces WELM by ≈ 60%. On the other hand,
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a reduction of ∆tELM from 50-60 ms to 25-30 ms, reduces WELM by ≈ 40%. This

suggests that if ELMs are consistently paced at 10 ms, WELM can be reduced by

≈ 60− 70%.

Figure 8.14: Scatter graph between (a) WELM and ∆tELM , (b) Logarithm of WELM

and ∆tELM for all ELMs in JET ILW plasmas. The least-squares line of best fit to the
logarithm of WELM and ∆tELM is also shown.

Table 8.4: Estimates of regular and partial correlations, based on Pearson (r) and
Spearman (rs) coefficients, between WELM and ∆tELM for all ELMs in the JET ILW
plasmas. The partial correlations control for Bt, Ip, Pinput, ne, ΓD2 and δavg.

r rs
Regular 0.58 0.65
Partial 0.21 0.26

Table 8.5: Estimated coefficients and standard errors for the least-squares line of best fit
shown in figure 8.14(b). The model is ln(WELM ) = β0 + β1ln∆tELM .

β0 β1 SEβ0 SEβ1
14.7 0.895 0.071 0.019

8.4 Global dependence of correlation between

ELM energy losses and waiting times

Since the success of ELM mitigation depends considerably on a high correlation

between WELM and ∆tELM , we now aim to locate the regions of plasma operational
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Figure 8.15: Scatter plots of correlation between WELM and ∆tELM (r(∆tELM−WELM ))
and plasma engineering parameters Bt, Ip, Pinput, ne, ΓD2 and δavg for JET ILW plasmas.

Figure 8.16: Scatter plots of correlation between WELM and ∆tELM (r(∆tELM−WELM ))
and plasma engineering parameters Bt, Ip, Pinput, ne, ΓD2 and δavg for JET CW plasmas.

space where the corresponding correlation coefficient r(∆tELM−WELM ) is large. One

approach for studying the dependence of r(∆tELM−WELM ) on plasma parameters would

be to rely on single parameter scans. In the case of the present work, there are not

enough dedicated experiments available to allow such a study. Nevertheless, as a

preliminary step, in figure 8.15 and figure 8.16 scatter plots between the plasma

engineering parameters Bt, Ip, Pinput, ne, ΓD2 , δavg and the correlation coefficient

r(∆tELM−WELM ) are provided. It can be observed that individually none of the plasma

149



8.4. GLOBAL DEPENDENCE OF CORRELATION BETWEEN ELM
ENERGY LOSSES AND WAITING TIMES

Table 8.6: Least-squares multilinear regression fits (including a cut-off term C) for
correlation between WELM and ∆tELM using global plasma parameters as predictors. The
coefficient estimate alongside 95% confidence intervals are presented, together with the
root-mean-square error (RMSE) and the coefficient of determination (R2).

CW ILW
Model 1 Model 2

C 1.67 [0.43 2.92] -0.457 [-1.1 0.15] 0.029 [-0.56 0.62]
Bt(T ) -0.982 [-2.4 0.41] 0.0483 [-0.30 0.39] 0.162 [-0.14 0.46]
Ip(MA) 1.62 [-0.66 3.9] 0.559 [-0.43 1.5] 0.0791 [-0.69 0.85]

Pinput(MW ) -0.0229 [-0.089 0.043] 0.0119 [-0.036 0.060] 0.0080 [-0.038 0.054]
ne(1019m−2) 0.165 [-0.11 0.44] -0.0259 [-0.24 0.19] -0.0486 [-0.25 0.15]
ΓD2(1022s−1) -0.113 [-0.26 0.039] -0.114 [-0.24 0.012] -0.0422 [-0.17 0.084]

δavg -8.54 [-12 -5.4] -0.313 [-2.2 1.5] -0.618 [-2.3 1.1]
fSTE —- -1.19 [-1.7 -0.65] —-

ΓN2(1022s−1) —- —- 0.269 [0.16 0.38]

RMSE(%) 23.4 18.3 17.4
R2 0.83 0.64 0.67

engineering parameters discriminate well between plasmas with a high, medium or

zero r(∆tELM−WELM ). As a next step, regression analysis is used for quantifying the

effect of plasma parameters on r(∆tELM−WELM ). As discussed in section 8.2.4, the

sampling distribution of r is not normal, therefore r is transformed to the quantity

z in (8.5). Standard multilinear regression using least squares is then performed for

yielding the regression coefficients given in table 8.6.

The regression model for CW plasmas is constructed using Bt, Ip,Pinput,ne, ΓD2

and δavg as predictor variables. For ILW plasmas, however, fSTE is included as an

additional predictor variable, as it has been shown in section 8.3.1 that fSTE has

an appreciable influence on r(∆tELM−WELM ). In addition, since fSTE is not strictly

an engineering quantity, a second model (model 2) for ILW plasmas is constructed

using ΓN2 as an additional parameter in place of fSTE. The quality of the fitted

regression model is quantified with the root-mean-square error (RMSE(%)), which is

an indicator of the deviation of the measurements from the model, and the coefficient

of determination (R2 ∈ [0, 1]), which measures the degree to which the predictor

variables and the regression model explain the observed variation of the response

variable. Based on the values of RMSE and R2, each model is fairly appropriate to

describe the variation of the correlation.

Across both model 1 and model 2 that are constructed for ILW plasmas, fSTE or

alternatively ΓN2 appear to be the most important determinant of r(∆tELM−WELM ).
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Table 8.7: Number of ILW plasmas (including N2-seeded plasmas) and CW plasmas
with correlation between energy loss of successive ELMs r > 0.3, 0.1 < r ≤ 0.3 and
−0.3 < r ≤ 0.1. The number of plasmas with r significantly different from zero are also
indicated at two significance levels α.

Plasmas −0.3 < r ≤ 0.1 0.1 < r ≤ 0.3 r > 0.3 r 6= 0 r 6= 0
(α = 5%) (α = 1%)

ILW 20 15 3 4 2
CW 16 4 0 3 0

This is expected since it has earlier been noted in section 8.3.1 that it is only with

N2 seeding that high values of r(∆tELM−WELM ) comparable with CW plasmas are

obtained. In unseeded ILW plasmas the correlation fluctuates at most to a weakly

positive correlation from a state of no correlation. Secondary to fSTE/ΓN2 , δavg

and ΓD2 are the more important determinants of r(∆tELM−WELM ). This is consistent

with the model for CW plasmas as therein δavg followed by ΓD2 appear as the most

important of the considered plasma engineering parameters. It is important to note

that in addition to the global time-averaged plasma engineering parameters, the

regression models could substantially benefit if the complete distributions of the

predictor parameters would be considered.

8.5 Relation between energy loss of successive

ELMs

Finally, the relationship between energy losses of consecutive ELMs is investigated.

As can be noted from table 8.7, only 10 - 15 percent of the analyzed JET-ILW

(including N2-seeded plasmas) and JET-CW plasmas exhibit a weak non-zero

correlation. Also, the values of rs are in agreement with estimates of r. WELM

of consecutive ELMs is largely uncorrelated. This implies that an ELM with a

large WELM is equally likely to be followed by an ELM with a large or small WELM .

Further, this observation is consistent across unseeded JET-ILW plasmas, N2-seeded

JET-ILW plasmas and JET-CW plasmas. This can also be observed in the scatter

plots of WELM of nth ELM and WELM of (n+ 1)th ELM in figure 8.13. For each of

the three representative plasmas, #82806, #83179 and #76479, WELM of successive

ELMs is uncorrelated.
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8.6 Conclusions

This work examines the relation between WELM and ∆tELM for individual ELMs

in a set of non-seeded JET-ILW plasmas and compares the results with a set of

N2-seeded JET-ILW plasmas and JET-CW plasmas. It is found that the empirically

established inverse relation between average fELM and W̄ELM is not ubiquitously

obeyed by individual ELMs. The linear correlation betweenWELM and ∆tELM varies

from being strongly correlated for certain plasmas to being completely uncorrelated

for others. CW plasmas, in general, exhibit higher correlation between WELM and

∆tELM than ILW plasmas and it is only in N2-seeded ILW plasmas that a high

correlation comparable to certain CW plasmas is observed.

Furthermore, ELMs in non-seeded JET ILW plasmas are often followed by a

slow transport event resulting in a bi-modal distribution of ELM durations. The

two modes correspond to two distinct underlying phenomena: pure ELMs and

ELMs followed by a slow transport event. Slow transport events are not present

in JET-CW plasmas and they disappear in N2-seeded JET-ILW plasmas, giving

rise to a unimodal asymmetric distribution of ELM durations. The average ELM

energy loss in a plasma scales linearly with the proportion of ELMs followed by slow

transport events in a plasma, whereas the linear correlation between WELM and

∆tELM varies inversely with the fraction of slow transport events.

A collective analysis of all the ELMs from the unseeded JET-ILW ELMs

plasmas revealed that the variation between WELM and ∆tELM obeys a power

law relationship. WELM appears to saturate for ∆tELM ≈ 25 − 30ms which is

roughly the time taken for the plasma thermal energy to return to its pre-ELM

value. This suggests a scenario where the linear correlation between WELM and

∆tELM significantly reduces as the edge pedestal recovers to its pre-ELM value.

Moreover, least squares linear regression has been employed for determining

the region of the plasma operating regime where the correlation between WELM

and ∆tELM is maximized. A regression model is constructed using plasma and

engineering parameters for both JET-ILW and JET-CW plasmas. While the models

will certainly benefit from more informative predictors, they nevertheless indicate

the more important parameters from the plasma parameters used as predictors.

For the JET-ILW plasmas, ΓN2 followed by δavg and ΓD2 contribute most to the
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correlation between WELM and ∆tELM . Similarly, for JET-CW plasmas δavg and

ΓD2 appear to be the most important determinants of correlation.

Lastly it is acknowledged that WELM and ∆tELM are stochastic quantities and a

precise analysis of these quantities needs to effectively incorporate the uncertainty

on these quantities. It has also been shown that the standard deviation of WELM

and ∆tELM increases linearly with the mean value. Analyzing WELM and ∆tELM

for individual ELMs subtly allows for the standard deviation in WELM and ∆tELM

to be accommodated and indeed reveals additional information. It is emphasized

that analyzing complete probability distributions of WELM , ∆tELM , τELM and other

plasma parameters will yield a more comprehensive picture and will thus form the

basis of future investigations.
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Chapter 9

Conclusions and outlook

In this thesis, we have developed pattern recognition methods in non-Euclidean

spaces of probability distributions and applied them with a view on contributing to

the systematic analysis of edge-localized modes (ELMs). The first part of this work

concerns methodology development for rendering pattern recognition (advanced

data analysis) methods which are apt for handling the challenges posed by nuclear

fusion plasmas i.e. substantial measurement uncertainties and non-deterministic

phenomena. In the second part, the analysis pins on ELMs, whose control and

physics understanding is highly significant for the next step fusion devices. In this

work, it has been consistently demonstrated that treating complete distributions

of plasma parameters in contrast to average values is more informative and

comprehensive.

We will now present the general conclusions and a summary of the contributions

that have been made. Afterwards, we give an outlook towards possible improvements

to and continuation of the current work.

9.1 Conclusions

9.1.1 Pattern recognition methods in spaces of probability

distributions

It is recognized that in fusion plasmas, physical quantities are characterized

by substantial measurement uncertainty and stochasticity. In the presence of

uncertainty, probability theory provides a natural description of the raw data.
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We start from the view point that the fundamental object resulting from the

measurement process is a probability distribution, with every single measurement

providing a sample from this distribution. Since patterns are in fact geometric

constructs (clusters, discriminant surfaces), we need geometric concepts, in

particular distance between probability distribution functions (PDFs), to carry

out pattern recognition on probabilistic manifolds. To do this, we have employed

the mathematical framework of information geometry which, based on the Fisher

information, enables computation of a geodesic distance (GD) between PDFs.

Following this, we formulate several pattern classification and dimensionality

reduction (visualization) methods in spaces of probability distributions (probabilistic

manifolds). This includes extrapolation to the manifold setting of the k-nearest

neighbour (kNN) and conformal predictor (CP) classifiers and multidimensional

scaling (MDS) and landmark multidimensional scaling (LMDS) data visualization

methods. Further two new classification schemes namely distance-to-centroid (D2C)

and principal geodesic classifier (PGC) are developed.

The latter two methods have not yet been applied to fusion data. Nevertheless,

they have been validated by their application to the classification and retrieval

of colored texture images represented in the wavelet domain. It is shown that

texture classification benefits significantly by effective utilization of the information

residing in the rich spectral band correlation structure by joint modeling through

multivariate distributions. Both D2C and PGC yield high classification accuracy at

low computational complexity and benchmark GD as a well-suited distance measure

between probability distributions.

9.1.2 Visualization of tokamak operational space

GD-based MDS results in an information visualization tool which can be used for

representing the complete distributions of the multidimensional data characterizing

the operational space of fusion devices onto two-dimensional (2D) maps. It is

applied here for mapping the operational space of ELMs from carbon-wall (CW) JET

plasmas onto 2D maps. The maps enable tracking of trends in plasma parameters

across the operational space. In addition, they can also be used with reasonable

accuracy for the prediction of the plasma parameters, including ELM types, at a

certain location in the operational space. Furthermore, a computationally efficient
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version of GD-based MDS is presented in the form of GD-based LMDS. It is shown

that GD-based LMDS can be used to generate 2D or 3D maps at a very fast rate

albeit with a slight compromise of accuracy.

9.1.3 Classification of ELM types

As outlined in chapter 4, various types of ELMs have been identified on an empirical

and phenomenological basis. Herein, automated classification schemes for ELM

types are developed with the aim of reducing the effort of ELM experts in identifying

ELM types by providing fast and standardized ELM classification. To this end, a

number of classification methodologies have been explored and put to use.

Firstly, a GD-based CP classifier is presented and applied for the classification

of type I and small ELMs from the (ITPA) Global H-mode Confinement Database.

The strength of the CP classifier lies in its ability to start with an almost empty

training set. This minimizes the requirement of a training data set with correctly

labeled ELM types and can be a specially useful property in the early phases of ITER

operation. Further, CPs provide an estimate of the reliability and accuracy of their

prediction and also identify the cases for which a decision could not be made reliably

by categorizing them as ‘ambiguous’. This offers an advantage over a spurious

classification. Finally, despite the ITPA database providing limited information on

the underlying probability distribution of the plasma parameters, it is well illustrated

that a GD classification based on complete distribution of parameters is much more

informative and correct than the classification based on mean parameter values or

the Euclidean distance.

Next, discriminant analysis (DA) is used for parametric classification of type I

and type III ELMs from a set of CW JET plasmas. Linear separation hyperplanes

between type I and III ELMs are derived in terms of a set of global plasma

parameters. This provides a simple predictive criterion related to physical knowledge

which can be used for prediction as well as the study of ELM occurrence boundaries

and ELM physics.

Since DA makes an assumption about the underlying class distribution and

presently cannot be applied on the probabilistic manifold, hence, k-nearest neighbour

(kNN) classifier is considered next. It is shown that kNN is a simple yet powerful

classifier of ELM types. For the set of CW JET plasmas considered in this work
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and using the global plasma parameters as predictors, GD-based kNN yields a

classification accuracy which is comparable with DA. However, kNN is likely to

outperform DA when the underlying class distribution is non-Gaussian. In the next

step, a robust ELM detection algorithm, also developed in this doctoral work, is

used for the extraction of inter-ELM time intervals (or waiting times) (∆tELM).

kNN is employed for the classification of ELM types using distributions of ∆tELM .

It is clearly shown, that the distributions of ∆tELM encompass more information

than a single average value of ELM frequency (inverse mean ELM waiting time). It

naturally follows that GD-based kNN using distributions of ∆tELM , yields superior

classification performance in comparison with mean ∆tELM and the Euclidean

distance measure.

9.1.4 Correlation analysis for ELM energy loss and waiting

time

ELM control methods, in particular ELM pacing techniques, rely on the empirically

observed inverse dependence of average ELM energy loss (averaged over a discharge)

on average ELM frequency. However, the aim of ELM control is to reduce the size

of individual ELMs and not the average loss. In this work, the correlation between

ELM energy loss (WELM) and ∆tELM is studied for individual ELMs in a set of

ITER-like wall (ILW) JET plasmas. It is noted that while the average WELM and

∆tELM conform to the empirically observed inverse dependence, for individual ELMs

the correlation varies from zero to a moderately positive value. CW JET plasmas,

in general, exhibit higher correlation between WELM and ∆tELM than the ILW JET

plasmas and it is seen that a correlation as high as that seen in CW plasmas is

only observed in N2-seeded ILW JET plasmas. It is shown that WELM and ∆tELM

exhibit a linear correlation until the pedestal has recovered to its pre-ELM value,

beyond which WELM and ∆tELM apper to be roughly independent of each other.

Most unseeded JET ILW plasmas have ELMs that are followed by a second

collapse phase referred to as the slow transport event (STE). The influence of STEs

on the distribution of ELM durations (τELM) is studied and it is seen that the

correlation betweenWELM and ∆tELM has a weakly inverse relation with the fraction

of slow transport events (fSTS).
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Lastly, a regression analysis is performed for determining a region in the space

of global plasma parameters where the correlation between WELM and ∆tELM is

maximized.

This analysis aims at presenting insights for an improved physics understanding of

ELMs and an optimization of ELM control methods. Further, the value of studying

the variation of the complete distribution of ∆tELM with the distribution of WELM

is highlighted and stressed.

9.2 Outlook

The work described in this thesis highlights the potential of advanced data analysis

techniques, in particular pattern recognition methods, for enhancing the physics

understanding and improving engineering and control of fusion plasmas. We here

present an overview of the major findings in this work that can be improved, or

which suggest further directions of the research.

The assembled data sets from JET and AUG, as well as the two international

databases (ITPA database and VisTex texture database) treated in this thesis

provide a reasonable basis for the analysis conducted in the work. However, an

expansion of the current datasets with well diagnosed parameters and representative

plasma discharges can further improve the robustness of analysis. A natural

extension would then be an application (possibly in real-time) of the methods and

analysis presented in this work for physics studies and plasma control at the current

fusion devices.

It is important to emphasize that the methods developed in this work are generic

and can be applied with relative ease to other phenomena in fusion plasmas such as

plasma disruptions or turbulence studies. Further, as illustrated with the application

of D2C and PGC classifiers to color texture discrimination, the methods can also

be exported to and be useful in fields other than nuclear fusion.

Application of DA for ELM classification provides an exploratory step in

developing recognition algorithms related to physical knowledge and well established

empirical behaviour. However, DA at present cannot be applied in the spaces of

probability distributions. This bars the use of DA classification from incorporating

uncertainties in an optimal manner. Development of DA and other parametric
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methods such as logistic regression, on the probabilistic manifolds is likely to be of

value in a variety of domains including nuclear fusion.

Many extensions can also be suggested to the classification schemes presented

and applied for ELM classification. The feature space can be expanded to

include distributions of other plasma parameters and/or ELM properties, such

as ELM energy losses and durations. However, in order to avoid the peaking

phenomenon described in chapter 2, this must be accompanied with an increase

in the number of analyzed plasma discharges. Secondly, the current classification

schemes are perfectly capable in the current form of providing a machine independent

classification of ELM types. However, this requires that the feature set be adjusted

to include dimensionless plasma parameters or that the parameters be normalized

with respect to the machine size or volume. Thirdly, the scope of the classification

schemes can be expanded and they can be applied for the classification of other

ELM types.

Lastly, in the light of the observation that the correlation between WELM

and ∆tELM fluctuates from zero to a moderately high value, a re-visit of the

empirically observed relationship between average WELM and ∆tELM using complete

distributions of WELM and ∆tELM can be fruitful.
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Appendix A

Databases

A.1 JET ELM-DBI

The given database, JET ELM-DBI, has been used in chapter 7 for the classification

of ELM types.

In the following tables of data, the first column is the JET pulse number, t1 and

t2 give the time at which the time series analysis of the relevant quantities started

and ended respectively. Other parameters are as defined in chapter 7.

Table A.1: JET ELM-DBI database: shot numbers, time interval for analysis and values
of global plasma parameters.

Shot
t1

(s)

t2

(s)

Bt

(T )

Ip

(MA)

Pinput

(MW )

ne

(1019m−2)

ΓD2

(1022s−1)
δavg

Type I ELMs

1. 50564 62.0 67.0 1.91 1.87 8.21 3.20 0.00 0.211

2. 52149 59.0 62.0 2.68 2.50 13.9 8.46 0.87 0.424

3. 52508 59.5 63.0 2.63 2.42 17.3 5.70 0.00 0.437

4. 52511 59.8 62.8 2.63 2.41 17.0 6.95 3.98 0.426

5. 52513 59.5 62.8 2.63 2.41 17.1 6.53 4.53 0.419

6. 52516 59.8 62.8 2.43 2.31 15.6 6.59 4.41 0.424

7. 52517 59.8 62.8 2.43 2.31 15.9 7.85 4.34 0.424

8. 52518 59.8 62.8 2.43 2.31 13.0 8.16 4.33 0.416

9. 52519 60.7 63.7 2.43 2.31 16.0 7.84 4.45 0.416

Continued on next page
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Shot
t1

(s)

t2

(s)

Bt

(T )

Ip

(MA)

Pinput

(MW )

ne

(1019m−2)

ΓD2

(1022s−1)
δavg

10. 52521 60.7 63.7 2.43 2.31 16.0 7.83 4.34 0.429

11. 53142 59.0 63.8 2.42 2.30 15.0 7.54 4.27 0.411

12. 56128 59.0 62.5 2.67 2.49 12.7 9.32 2.70 0.445

13. 56143 59.0 62.0 2.67 2.50 12.7 7.64 2.82 0.423

14. 56144 59.5 63.3 2.67 2.50 13.3 7.43 2.85 0.425

15. 56739 62.5 67.0 1.41 1.41 7.57 3.79 1.36 0.255

16. 56740 63.5 67.0 1.41 1.41 11.0 3.71 1.18 0.270

17. 57861 59.0 63.3 2.68 2.50 14.9 6.43 2.85 0.411

18. 57863 59.0 63.3 2.68 2.50 14.2 9.11 2.82 0.459

19. 57865 59.0 63.3 2.68 2.50 15.9 9.32 2.87 0.463

20. 57866 59.0 63.3 2.68 2.50 15.5 8.86 2.82 0.460

21. 57870 59.0 63.3 2.68 2.50 15.3 8.20 2.21 0.456

22. 57871 59.0 63.3 2.68 2.50 15.6 7.72 1.19 0.456

23. 57872 59.0 63.3 2.68 2.50 13.9 9.11 0.74 0.461

24. 57877 59.8 62.8 2.68 2.50 13.2 7.95 3.57 0.417

25. 57885 59.0 62.8 2.68 2.50 15.3 7.68 4.20 0.408

26. 57886 59.0 62.5 2.68 2.50 15.1 7.94 3.59 0.417

27. 57888 59.0 62.8 2.68 2.50 16.5 8.10 4.69 0.415

28. 57896 59.5 63.0 2.68 2.50 16.9 6.16 0.69 0.418

29. 59354 60.0 63.5 2.68 2.50 16.5 6.34 0.69 0.416

30. 60584 54.5 58.4 2.15 2.75 19.2 6.58 3.09 0.234

31. 60709 60.0 63.8 2.67 2.50 14.7 7.41 4.62 0.412

32. 61471 59.0 63.5 2.68 2.51 17.1 5.93 0.80 0.417

33. 61472 59.0 63.5 2.68 2.51 17.3 5.85 0.80 0.419

34. 61478 56.7 59.7 2.50 2.99 16.3 9.51 8.91 0.218

35. 61479 59.5 63.5 2.68 2.51 17.5 5.84 0.80 0.421

36. 61480 60.0 63.0 2.68 2.50 17.6 8.52 7.65 0.418

Continued on next page
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Shot
t1

(s)

t2

(s)

Bt

(T )

Ip

(MA)

Pinput

(MW )

ne

(1019m−2)

ΓD2

(1022s−1)
δavg

37. 62216 60.0 63.0 2.42 2.01 12.6 4.60 1.08 0.261

38. 62220 57.0 61.0 3.04 3.00 19.8 6.18 0.56 0.260

39. 62221 57.0 61.0 3.04 3.00 19.8 6.56 2.48 0.257

40. 62222 57.5 60.5 3.04 3.00 19.9 7.17 5.19 0.252

41. 62224 57.5 61.0 3.04 3.00 18.5 7.53 6.46 0.250

42. 66111 58.0 63.0 2.67 2.48 16.7 6.97 0.82 0.488

43. 66115 58.0 63.0 2.67 2.48 16.9 8.51 0.82 0.488

44. 66116 59.0 63.0 2.67 2.48 16.7 7.88 0.37 0.484

45. 67761 59.5 63.0 2.67 2.49 16.8 6.54 0.00 0.447

46. 69373 63.5 66.5 1.69 1.99 15.8 5.01 0.67 0.418

47. 69900 55.5 59.3 2.79 2.99 22.1 9.86 7.54 0.396

48. 70050 56.0 59.7 2.91 2.98 20.8 8.80 4.24 0.405

49. 72339 59.0 63.0 2.67 2.48 13.9 5.75 1.19 0.400

50. 72343 58.5 63.3 2.67 2.48 14.6 6.51 2.70 0.405

51. 72345 60.0 63.0 2.66 2.48 14.4 5.89 0.00 0.434

52. 73087 59.5 63.3 2.66 2.48 15.2 6.26 2.64 0.396

53. 73335 59.0 63.0 2.66 2.48 14.7 6.34 0.00 0.433

54. 73341 59.0 63.0 2.66 2.48 15.7 5.96 1.50 0.400

55. 73345 59.5 63.0 2.66 2.48 14.2 5.31 1.16 0.402

56. 73346 59.0 63.0 2.66 2.48 15.0 5.50 2.20 0.400

57. 75722 65.0 69.5 1.58 1.51 8.18 3.18 0.08 0.291

58. 75727 64.0 69.0 1.99 1.97 12.8 4.39 0.00 0.275

59. 75731 64.5 67.5 1.99 1.98 12.9 3.88 0.00 0.278

60. 75732 64.5 67.5 1.99 1.98 12.9 3.69 0.00 0.285

61. 76473 58.5 61.5 1.99 1.98 15.4 4.88 0.08 0.280

62. 76474 58.0 61.5 1.99 1.98 15.6 4.00 0.07 0.275

63. 76475 58.5 61.5 1.99 1.98 15.6 3.74 0.07 0.272
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Shot
t1

(s)

t2

(s)

Bt

(T )

Ip

(MA)

Pinput

(MW )

ne

(1019m−2)

ΓD2

(1022s−1)
δavg

64. 76476 58.5 61.5 1.99 1.98 14.7 5.19 0.08 0.279

65. 76478 58.5 61.5 1.99 1.98 15.6 4.99 0.08 0.279

66. 76479 58.0 62.0 1.99 1.98 15.8 5.19 0.26 0.278

67. 76480 58.0 61.3 1.99 1.98 19.7 5.28 0.08 0.280

68. 76481 58.0 61.5 1.99 1.98 11.3 4.69 0.08 0.276

69. 76483 58.0 61.5 1.99 1.98 20.1 5.37 0.00 0.281

Type I high frequency (HF) ELMs

70. 66109 59.0 63.0 2.67 2.49 18.7 5.77 0.00 0.495

71. 66108 59.0 62.5 2.67 2.49 18.2 5.36 0.00 0.486

72. 66107 59.0 63.0 2.67 2.49 19.2 6.06 0.20 0.491

73. 66106 59.0 63.0 2.67 2.49 18.0 5.95 0.00 0.482

74. 66105 59.0 63.0 2.67 2.49 18.0 6.12 0.00 0.488

Type III ELMs

75. 68608 62.0 67.0 2.39 1.97 5.38 4.33 0.39 0.428

76. 68610 60.5 66.0 2.39 1.97 5.14 4.63 0.57 0.426

77. 68612 60.5 66.0 2.39 1.98 5.68 4.82 0.56 0.430

78. 68613 60.5 66.0 2.39 1.98 5.75 4.81 0.56 0.431

79. 68614 60.5 66.0 2.39 1.98 5.72 4.79 0.57 0.430

80. 68615 60.5 66.0 2.39 1.98 5.99 4.89 0.55 0.432

81. 68618 60.5 66.0 2.39 1.98 5.92 4.91 0.55 0.432

82. 68619 60.5 66.0 2.39 1.98 5.87 4.92 0.57 0.431

83. 74410 56.0 60.5 2.03 2.46 13.2 8.20 6.71 0.378

84. 74411 56.0 60.5 2.03 2.46 15.0 8.91 6.71 0.386

85. 74412 56.0 60.5 2.03 2.46 14.0 7.95 6.75 0.382

86. 74415 56.0 60.5 2.03 2.47 15.0 8.90 5.66 0.386

87. 74417 57.0 60.5 2.03 2.46 13.8 7.70 3.57 0.385

88. 74427 56.0 60.5 2.03 2.46 15.0 7.99 6.74 0.389
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Shot
t1

(s)

t2

(s)

Bt

(T )

Ip

(MA)

Pinput

(MW )

ne

(1019m−2)

ΓD2

(1022s−1)
δavg

89. 74428 57.0 60.5 2.03 2.46 15.0 7.31 6.31 0.388

90. 70136 61.0 63.0 1.74 2.28 5.11 1.65 0.09 0.214

91. 68748 48.3 51.3 1.69 1.69 21.9 4.89 5.49 0.416

92. 68743 48.7 51.1 1.69 1.69 17.7 5.57 8.43 0.417

93. 74661 54.5 57.5 2.37 2.61 8.56 2.78 0.00 0.253

94. 50567 62.0 66.0 1.91 1.86 7.73 6.00 6.38 0.197

95. 56131 58.5 61.5 2.67 2.48 14.1 9.80 8.08 0.440

96. 73080 61.0 63.0 2.66 2.47 18.9 5.44 0.87 0.418

97. 74519 57.1 59.1 2.63 3.24 19.4 10.50 6.90 0.394

98. 74429 57.5 59.0 2.43 2.96 17.9 9.56 8.16 0.390

99. 74431 57.6 58.6 2.43 2.97 18.2 9.81 8.23 0.393

100. 74513 57.0 59.0 2.43 2.99 17.8 9.75 8.02 0.388

Table A.2: JET ELM-DBI database: shot numbers, time interval for analysis and
parameter estimates for Gaussian distribution and 2P-Weibull distribution fits to the ELM
waiting times (∆tELM ).

Shot t1 (s) t2 (s)

∆tELM

Gaussian 2P Weibull

µ

(10−2 s)

σ

(10−2 s)

α

(10−2 s)
β

Type I ELMs

1 50564 62.0 67.0 4.39 0.805 4.72 5.67

2 52149 59.0 62.0 4.16 0.459 4.36 9.78

3 52508 59.5 63.0 5.77 3.15 6.50 1.89

4 52511 59.8 62.8 2.68 0.615 2.90 5.45

5 52513 59.5 62.8 2.16 0.477 2.35 5.08

6 52516 59.8 62.8 2.12 0.599 2.34 3.67

7 52517 59.8 62.8 4.09 1.10 4.51 4.07
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Shot t1 (s) t2 (s)

∆tELM

Gaussian 2P Weibull

µ

(10−2 s)

σ

(10−2 s)
α β

8 52518 59.8 62.8 6.46 1.40 7.02 5.08

9 52519 60.7 63.7 5.02 1.22 5.50 4.28

10 52521 60.7 63.7 4.68 1.28 5.13 3.97

11 53142 59.0 63.8 2.35 0.676 2.60 3.54

12 56128 59.0 62.5 3.56 0.543 3.80 6.64

13 56143 59.0 62.0 4.06 0.751 4.38 5.36

14 56144 59.5 63.3 3.29 0.696 3.58 4.57

15 56739 62.5 67.0 4.35 0.735 4.67 6.07

16 56740 63.5 67.0 1.66 0.322 1.79 4.79

17 57861 59.0 63.3 2.66 0.373 2.81 8.38

18 57863 59.0 63.3 4.10 0.925 4.47 4.37

19 57865 59.0 63.3 4.15 1.17 4.58 3.70

20 57866 59.0 63.3 3.16 0.887 3.50 3.71

21 57870 59.0 63.3 2.62 0.669 2.87 4.62

22 57871 59.0 63.3 2.76 0.767 3.02 4.47

23 57872 59.0 63.3 6.18 0.798 6.55 7.31

24 57877 59.8 62.8 5.27 0.918 5.64 6.56

25 57885 59.0 62.8 3.99 1.18 4.41 3.63

26 57886 59.0 62.5 4.55 0.687 4.86 6.20

27 57888 59.0 62.8 3.80 1.32 4.23 2.69

28 57896 59.5 63.0 3.13 0.832 3.44 3.57

29 59354 60.0 63.5 3.87 1.22 4.30 3.10

30 60584 54.5 58.4 5.24 1.40 5.77 3.94

31 60709 60.0 63.8 3.02 0.590 3.26 5.79

32 61471 59.0 63.5 2.07 0.346 2.22 6.45
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Shot t1 (s) t2 (s)

∆tELM

Gaussian 2P Weibull

µ

(10−2 s)

σ

(10−2 s)
α β

33 61472 59.0 63.5 2.14 0.405 2.31 5.65

34 61478 56.7 59.7 2.34 1.08 2.64 2.28

35 61479 59.5 63.5 2.18 0.437 2.35 6.02

36 61480 60.0 63.0 2.79 1.78 3.09 1.53

37 62216 60.0 63.0 3.03 1.14 3.41 2.92

38 62220 57.0 61.0 5.89 1.47 6.44 3.95

39 62221 57.0 61.0 4.27 0.840 4.62 5.11

40 62222 57.5 60.5 3.02 1.70 3.39 1.82

41 62224 57.5 61.0 2.74 1.55 3.05 1.73

42 66111 58.0 63.0 2.86 0.716 3.07 4.81

43 66115 58.0 63.0 2.67 0.872 2.91 3.39

44 66116 59.0 63.0 1.95 0.245 2.05 9.51

45 67761 59.5 63.0 1.34 0.131 1.40 11.6

46 69373 63.5 66.5 3.51 0.886 3.86 4.04

47 69900 55.5 59.3 3.07 2.31 3.32 1.30

48 70050 56.0 59.7 2.97 1.27 3.35 2.55

49 72339 59.0 63.0 3.65 0.461 3.86 8.66

50 72343 58.5 63.3 2.87 0.334 3.02 9.10

51 72345 60.0 63.0 2.27 0.423 2.44 6.27

52 73087 59.5 63.3 2.85 0.609 3.08 4.91

53 73335 59.0 63.0 2.50 0.590 2.73 4.31

54 73341 59.0 63.0 3.17 0.466 3.37 6.39

55 73345 59.5 63.0 3.14 0.549 3.35 6.95

56 73346 59.0 63.0 2.75 0.435 2.93 6.77

57 75722 65.0 69.5 1.77 0.735 1.99 2.42
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Shot t1 (s) t2 (s)

∆tELM

Gaussian 2P Weibull

µ

(10−2 s)

σ

(10−2 s)
α β

58 75727 64.0 69.0 5.78 1.29 6.24 5.30

59 75731 64.5 67.5 4.41 1.27 4.89 3.91

60 75732 64.5 67.5 3.91 1.24 4.35 3.43

61 76473 58.5 61.5 3.62 0.695 3.89 5.74

62 76474 58.0 61.5 3.67 0.755 3.95 6.08

63 76475 58.5 61.5 3.62 1.25 4.03 3.41

64 76476 58.5 61.5 3.66 1.53 4.11 2.64

65 76478 58.5 61.5 3.48 1.12 3.86 3.66

66 76479 58.0 62.0 2.86 1.24 3.20 2.44

67 76480 58.0 61.3 2.51 1.13 2.82 2.37

68 76481 58.0 61.5 4.57 1.25 5.01 4.09

69 76483 58.0 61.5 2.45 1.28 2.74 1.94

Type I high frequency (HF) ELMs

70 66109 59.0 63.0 0.762 0.225 0.844 3.39

71 66108 59.0 62.5 0.753 0.257 0.839 2.89

72 66107 59.0 63.0 0.755 0.165 0.822 4.08

73 66106 59.0 63.0 1.10 0.300 1.21 3.58

74 66105 59.0 63.0 0.759 0.181 0.828 3.46

Type III ELMs

75 68608 62.0 67.0 0.371 0.402 0.379 1.05

76 68610 60.5 66.0 0.447 0.418 0.482 1.23

77 68612 60.5 66.0 0.638 0.682 0.676 1.15

78 68613 60.5 66.0 0.606 0.487 0.665 1.35

79 68614 60.5 66.0 0.673 0.597 0.745 1.37

80 68615 60.5 66.0 0.660 0.537 0.730 1.39

Continued on next page

170



APPENDIX A. DATABASES

Continued from previous page

Shot t1 (s) t2 (s)

∆tELM

Gaussian 2P Weibull

µ

(10−2 s)

σ

(10−2 s)
α β

81 68618 60.5 66.0 0.666 0.533 0.740 1.42

82 68619 60.5 66.0 0.653 0.650 0.717 1.31

83 74410 56.0 60.5 0.371 0.218 0.419 1.81

84 74411 56.0 60.5 0.279 0.283 0.309 1.35

85 74412 56.0 60.5 0.213 0.287 0.211 0.98

86 74415 56.0 60.5 0.196 0.121 0.220 1.68

87 74417 57.0 60.5 0.189 0.192 0.203 1.23

88 74427 56.0 60.5 0.218 0.160 0.244 1.51

89 74428 57.0 60.5 0.214 0.181 0.232 1.27

90 70136 61.0 63.0 1.46 0.707 1.66 2.21

91 68748 48.3 51.3 0.695 0.587 0.761 1.32

92 68743 48.7 51.1 0.534 0.518 0.596 1.42

93 74661 54.5 57.5 1.23 0.749 1.36 1.58

94 50567 62.0 66.0 2.23 1.37 2.47 1.55

95 56131 58.5 61.5 0.361 0.181 0.408 2.11

96 73080 61.0 63.0 0.402 0.408 0.433 1.21

97 74519 57.1 59.1 0.776 1.00 0.800 1.06

98 74429 57.5 59.0 0.793 0.633 0.872 1.36

99 74431 57.6 58.6 0.197 0.158 0.216 1.35

100 74513 57.0 59.0 0.280 0.168 0.316 1.80
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A.2 AUG ELM-DBI

Table A.3: AUG ELM-DBI database: shot numbers, time interval for analysis and
parameter estimates for Gaussian distribution and 2P-Weibull distribution fits to the ELM
waiting times (∆tELM )

Shot t1 (s) t2 (s)

∆tELM

Gaussian 2P Weibull

µ

(10−2 s)

σ

(10−2 s)

α

(10−2 s)
β

Type I ELMs

1 29209 2.00 4.00 2.29 0.537 2.50 4.49

2 29212 2.00 4.00 1.60 0.400 1.75 3.85

3 29197 2.10 3.60 1.79 0.661 2.01 2.97

4 29526 3.00 5.00 4.20 0.154 4.71 2.84

5 30410 5.10 5.80 1.49 0.491 1.66 3.48

6 30465 5.00 5.80 1.51 0.522 1.69 3.20

7 30479 5.00 5.80 1.36 0.636 1.54 2.30

8 30525 5.10 5.80 1.46 0.404 1.61 4.27

9 30564 2.20 4.00 0.809 0.351 0.91 2.47

10 30587 5.10 5.80 1.44 0.701 1.63 2.24

11 30658 2.00 2.80 1.24 0.208 1.33 5.75

12 30658 3.70 4.70 1.22 0.448 1.35 3.00

13 29191 2.00 4.00 1.54 0.534 1.68 2.83

14 29192 2.00 4.00 1.46 0.523 1.62 2.89

15 29208 2.00 4.00 1.65 0.413 1.80 4.25

16 29211 2.50 4.00 1.54 0.361 1.68 4.39

17 29904 2.50 3.50 0.765 0.367 0.87 2.19

18 29904 4.00 5.00 0.798 0.306 0.90 2.71

19 31447 3.50 5.00 0.893 0.317 1.00 3.16

20 31137 2.20 3.20 3.02 1.07 3.31 2.80
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Shot t1 (s) t2 (s)

∆tELM

Gaussian 2P Weibull

µ

(10−2 s)

σ

(10−2 s)
α β

Type III/Mixed ELMs

21 30410 2.00 4.50 0.530 0.205 0.60 2.72

22 31170 2.00 3.50 0.436 0.0906 0.47 5.00

23 30465 2.00 4.00 0.592 0.257 0.67 2.39

24 30479 2.00 4.00 0.599 0.250 0.68 2.48

25 30521 2.00 4.00 0.499 0.181 0.56 2.88

26 30525 2.00 4.00 0.569 0.239 0.64 2.45

27 30587 3.00 5.00 0.665 0.437 0.75 1.68

28 30628 2.00 4.00 0.503 0.201 0.57 2.59

29 31447 2.00 3.00 0.737 0.449 0.83 1.74

30 31499 2.00 5.00 0.762 0.478 0.86 1.72
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A.3 JET ELM-DBII

The given database, JET ELM-DBII, has been used in chapter 8 for the correlation

analysis of energy losses, waiting times and durations for type I ELMs in JET.

In the following tables of data, the first column is the JET pulse number, t1 and

t2 give the time at which the time series analysis of the relevant quantities started

and ended respectively. Other parameters are as defined in chapter 8.

Table A.4: JET ELM-DBII database: shot numbers, time interval for analysis and values
of global plasma parameters.

Shot
t1

(s)

t2

(s)

Bt

(T )

Ip

(MA)

Pinput

(MW )

ne

(1019m−2)

ΓD2

(1022s−1)
δavg

JET-ILW plasmas

1. 83630 48.5 51.5 2.00 2.00 12.5 4.62 1.18 0.275

2. 83630 52.0 54.0 2.00 2.00 10.9 5.03 1.15 0.276

3. 83631 51.5 53.2 2.00 2.00 12.2 4.9 1.16 0.277

4. 83632 50.0 53.0 2.00 2.00 12.5 4.69 1.17 0.275

5. 83633 48.5 51.5 2.00 2.00 12.5 4.70 1.19 0.275

6. 83634 50.0 53.0 2.00 2.00 12.4 5.01 1.18 0.278

7. 83635 49.0 52.0 2.00 2.00 12.5 4.82 1.18 0.276

8. 83637 50.0 53.0 2.00 2.00 12.7 5.01 1.16 0.278

9. 83640 50.0 53.0 2.00 2.00 12.5 4.76 1.17 0.276

10. 83641 50.0 53.0 2.00 2.00 12.5 4.79 1.17 0.276

11. 83642 49.0 53.5 2.00 2.00 12.5 4.78 1.18 0.275

12. 83337 55.0 56.8 1.60 1.60 13.5 3.24 0.690 0.290

13. 82806 54.0 57.0 2.65 2.50 16.5 6.03 2.88 0.371

14. 82537 54.0 56.0 2.65 2.50 16.50 5.95 3.47 0.376

15. 82781 54.0 56.0 2.60 2.50 17.8 4.49 1.17 0.273

16. 83177 53.0 56.0 2.70 2.50 16.2 5.66 1.41 0.267

17. 82755 56.2 57.2 2.65 2.50 15.2 6.17 2.92 0.371

18. 82536 54.0 56.0 2.60 2.50 16.9 6.48 3.95 0.374

19. 82540 54.0 56.0 2.65 2.50 15.8 5.59 1.91 0.377
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Shot
t1

(s)

t2

(s)

Bt

(T )

Ip

(MA)

Pinput

(MW )

ne

(1019m−2)

ΓD2

(1022s−1)
δavg

20. 82541 54.0 56.0 2.65 2.50 16.7 5.24 1.55 0.381

21. 82546 54.0 56.5 2.60 2.50 15.4 6.26 3.01 0.374

22. 82550 54.0 57.0 2.60 2.50 15.1 6.07 1.92 0.374

23. 82900 58.3 60.3 2.41 1.30 8.36 1.97 0.532 0.287

24. 82900 60.7 62.7 2.41 1.30 13.5 1.87 0.520 0.300

25. 82898 60.5 62.5 2.41 1.60 13.3 2.51 0.627 0.294

26. 83548 54.0 55.5 1.56 1.40 13.3 2.89 0.905 0.412

27. 83537 54.8 56.0 2.36 1.50 15.3 2.55 1.02 0.399

28. 83339 55.5 57.0 1.30 1.30 14.5 2.40 0.564 0.299

29. 82549 54.0 56.0 2.65 2.50 15.4 6.20 3.12 0.374

30. 82550 54.0 57.0 2.65 2.50 15.1 6.07 1.92 0.374

31. 82636 57.7 59.7 1.70 1.60 8.43 3.71 0.669 0.284

32. 82635 57.9 59.9 1.30 1.30 6.92 2.97 0.569 0.287

JET-ILW plasmas, N2 seeded

33. 82812 54.0 57.0 2.65 2.50 19.1 7.01 2.69 0.391

34. 82813 54.0 57.0 2.65 2.50 16.9 6.52 1.27 0.388

35. 83179 53.0 55.0 2.70 2.50 16.7 5.43 1.36 0.272

36. 83180 53.0 55.0 2.70 2.50 17.5 5.36 1.26 0.271

37. 82811 54.0 57.0 2.65 2.50 17.0 6.46 3.66 0.382

38. 82810 54.0 57.0 2.65 2.50 17.0 7.39 2.66 0.388

JET-CW plasmas

1. 76475 58.5 61.5 2.00 2.00 15.5 3.74 0.0745 0.272

2. 69900 55.5 59.3 2.80 3.00 21.7 9.86 7.54 0.396

3. 70050 56.0 59.7 2.90 3.00 20.7 8.80 4.24 0.405

4. 76478 58.5 61.5 2.00 2.00 15.3 4.99 0.0774 0.279

5. 72343 58.5 60.5 2.70 2.50 14.5 6.58 2.76 0.405

6. 72345 60.0 63.0 2.70 2.50 14.3 5.89 0.00 0.434
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Shot
t1

(s)

t2

(s)

Bt

(T )

Ip

(MA)

Pinput

(MW )

ne

(1019m−2)

ΓD2

(1022s−1)
δavg

7. 73335 59.0 63.0 2.70 2.50 14.5 6.34 0.00 0.433

8. 73341 59.0 63.0 2.70 2.50 15.5 5.96 1.50 0.400

9. 76481 58.0 61.5 2.00 2.00 11.0 4.69 0.0778 0.276

10. 75722 65.0 69.5 1.60 1.50 8.11 3.18 0.0820 0.291

11. 75727 64.0 69.0 2.00 2.00 12.6 4.39 0.00 0.275

12. 76473 58.5 61.5 2.00 2.00 15.2 4.88 0.0779 0.280

13. 76474 58.0 61.5 2.00 2.00 15.3 4.00 0.0750 0.275

14. 69373 63.5 66.5 1.70 2.00 15.5 5.01 0.675 0.418

15. 76476 58.5 61.5 2.00 2.00 14.3 5.19 0.0771 0.279

16. 72339 59.0 63.0 2.70 2.50 13.7 5.75 1.19 0.400

17. 76479 58.0 62.0 2.00 2.00 15.5 5.19 0.256 0.278

18. 76480 58.0 61.3 2.00 2.00 19.6 5.28 0.0785 0.280

19. 73345 59.5 63.0 2.70 2.50 14.1 5.31 1.16 0.400

20. 76483 58.0 61.5 2.00 2.00 19.7 5.37 0.00 0.281
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Table A.5: JET ELM-DBII database: shot numbers, time interval for analysis, mean and
coefficient of variation for ELM waiting time, energy loss and duration for each plasma.

Shot t1 t2
∆tELM WELM τELM

µ

(10−2 s)
σ/µ

µ

(105 J)
σ/µ

µ

(10−2 s)
σ/µ

JET-ILW plasmas

1 83630 48.5 51.5 4.46 0.510 2.30 0.682 0.595 0.777

2 83630 52.0 54.0 4.42 0.411 1.27 0.179 0.310 0.207

3 83631 51.5 53.2 3.31 0.374 1.21 0.179 0.307 0.290

4 83632 50.0 53.0 2.72 0.444 1.10 0.209 0.335 0.464

5 83633 48.5 51.5 3.00 0.421 1.18 0.236 0.311 0.269

6 83634 50.0 53.0 3.36 0.390 1.10 0.243 0.265 0.204

7 83635 49.0 52.0 3.22 0.341 1.23 0.168 0.283 0.218

8 83637 50.0 53.0 3.11 0.325 1.12 0.170 0.252 0.208

9 83640 50.0 53.0 2.88 0.399 1.11 0.209 0.293 0.244

10 83641 50.0 53.0 2.98 0.398 1.16 0.182 0.300 0.255

11 83642 49.0 53.5 3.10 0.403 1.16 0.204 0.298 0.246

12 83337 55.0 56.8 2.03 0.416 0.639 0.337 0.259 0.210

13 82806 54.0 57.0 5.53 0.317 3.12 0.455 0.826 0.513

14 82537 54.0 56.0 3.07 0.377 1.23 0.186 0.312 0.273

15 82781 54.0 56.0 3.43 0.387 2.47 0.316 0.520 0.399

16 83177 53.0 56.0 4.22 0.398 1.85 0.294 0.351 0.394

17 82755 56.2 57.2 4.37 0.319 2.02 0.618 0.548 0.85

18 82536 54.0 56.0 3.33 0.387 1.81 0.641 0.549 0.686

19 82540 54.0 56.0 6.23 0.349 3.13 0.388 0.770 0.506

20 82541 54.0 56.0 5.80 0.321 3.23 0.383 0.794 0.492

21 82546 54.0 56.5 4.08 0.396 2.05 0.594 0.608 0.662

22 82550 54.0 57.0 5.17 0.426 2.49 0.538 0.626 0.586

23 82900 58.3 60.3 1.62 0.432 0.320 0.544 0.321 0.316

24 82900 60.7 62.7 0.962 0.322 0.256 0.543 0.302 0.204
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Shot t1 t2
∆tELM WELM τELM

µ

(10−2 s)
σ/µ

µ

(105 J)
σ/µ

µ

(10−2 s)
σ/µ

25 82898 60.5 62.5 2.12 0.312 0.679 0.511 0.278 0.267

26 83548 54.0 55.5 2.28 0.302 0.824 0.521 0.265 0.304

27 83537 54.8 56.0 1.08 0.337 0.378 0.505 0.257 0.151

28 83339 55.5 57.0 0.925 0.239 0.278 0.331 0.206 0.206

29 82549 54.0 56.0 4.45 0.335 2.09 0.551 0.487 0.619

30 82550 54.0 57.0 5.12 0.444 2.43 0.562 0.564 0.661

31 82636 57.7 59.7 4.21 0.216 0.734 0.244 0.222 0.185

32 82635 57.9 59.9 2.72 0.244 0.395 0.308 0.218 0.249

JET-ILW plasmas, N2 seeded

33 82812 54.0 57.0 4.87 0.364 1.64 0.236 0.264 0.217

34 82813 54.0 57.0 5.37 0.520 1.80 0.291 0.256 0.226

35 83179 53.0 55.0 3.58 0.400 1.25 0.310 0.281 0.207

36 83180 53.0 55.0 3.40 0.431 1.37 0.455 0.352 0.277

37 82811 54.0 57.0 2.48 0.639 0.760 0.422 0.196 0.262

38 82810 54.0 57.0 6.82 0.505 1.72 0.332 0.232 0.219

JET-CW plasmas

1 76475 58.5 61.5 3.62 0.346 2.33 0.220 0.186 0.499

2 69900 55.5 59.3 3.65 0.658 2.01 0.505 0.381 0.382

3 70050 56.0 59.7 2.97 0.427 1.85 0.378 0.263 0.473

4 76478 58.5 61.5 3.48 0.321 2.73 0.166 0.222 0.224

5 72343 58.5 60.5 3.06 0.111 1.07 0.182 0.225 0.141

6 72345 60.0 63.0 2.27 0.186 1.05 0.345 0.339 0.607

7 73335 59.0 63.0 2.50 0.236 1.19 0.312 0.259 0.618

8 73341 59.0 63.0 3.17 0.147 1.31 0.243 0.289 0.234

9 76481 58.0 61.5 4.57 0.274 2.58 0.163 0.162 0.205

10 75722 65.0 69.5 1.77 0.416 0.395 0.329 0.252 0.175
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Shot t1 t2
∆tELM WELM τELM

µ

(10−2 s)
σ/µ

µ

(105 J)
σ/µ

µ

(10−2 s)
σ/µ

11 75727 64.0 69.0 5.78 0.224 3.18 0.122 0.210 0.324

12 76473 58.5 61.5 3.62 0.192 2.81 0.102 0.245 0.199

13 76474 58.0 61.5 3.67 0.206 2.57 0.135 0.250 0.288

14 69373 63.5 66.5 3.51 0.252 1.89 0.295 0.269 0.293

15 76476 58.5 61.5 3.66 0.417 2.70 0.251 0.269 0.229

16 72339 59.0 63.0 3.65 0.126 1.62 0.263 0.196 0.192

17 76479 58.0 62.0 2.86 0.432 2.14 0.265 0.245 0.447

18 76480 58.0 61.3 2.51 0.449 2.56 0.256 0.315 0.443

19 73345 59.5 63.0 3.14 0.175 1.27 0.324 0.245 0.615

20 76483 58.0 61.5 2.65 0.508 2.49 0.259 0.203 0.303

JET acronym
for experiment

Experiment
No. of
pulses

JET ILW plasmas
Ex 3.2.2 ELM Physics 7
Ex 1.2.5 Pulses prior to LTS retrieval 11
Ex 1.3.2 Fueling and seeding studies 13

TFE2 EX 3.2.2 ELM physics, energy and heat loads scalings 2
Ex 2.1.5 Baseline scenario 5

JET CW plasmas
—- Development of high delta configuration 3
—- High current, high delta operations 2

S1 2.4.1 Configuration development for low and high delta 3
TFE 2.4.1 ELM power balance 2

E 2.4.1 Characterization of regular ELMs, first wall load 9

Table A.6: List of experiments to which the analyzed shots belong to. The left column
reports the acronym for JET experiments.

179



A.3. JET ELM-DBII

180



Appendix B

Frequently used parameters

AELM ELM energy deposition area

a Plasma minor radius

B Magnetic field, has both toroidal (Bt) and poloidal (Bp) components

βp Poloidal beta

ΓD2 Deuterium gas fueling rate

ΓN2 Nitrogen gas fueling rate

∆tELM Inter-ELM time interval or waiting time

δ Plasma triangularity

E Electric field

fELM ELM repetition frequency

Idiv Scrape-off-layer current measured via shunt resistances through the divertor

Ip Plasma current

λe,e Mean electron-electron Coulomb collision mean free path length

µ◦ Vacuum permeability

ne Electron density

q95 Value of safety factor at 95% of normalized flux (close to plasma edge)

R◦ Plasma major radius

τE Energy confinement time i.e. ratio of stored energy to input power

τELM ELM duration

Te,i Electron/Ion temperature (keV )

ν∗ Normalized collision frequency, also referred to as “collisionality”
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ν∗ped Pedestal collisionality

PICRH Ion cyclotron resonance heating power

PNBI Neutral beam injected heating power

Pohmic Ohmic heating power

Psep Energy flux through the separatix

qmax Peak ELM energy flux

V Plasma volume

Wplasma Plasma stored energy

WELM ELM energy loss

WMHD Plasma stored energy (kinetics)

Wped Pedestal energy
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