
Dissertation zur Erlangung des Doktorgrades
der Fakultät für Chemie und Pharmazie

der Ludwig-Maximilians-Universität München

Decomposing Protein Sequence Space into Domains

Markus Meier

aus

Kösching

2016

Erklärung

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28.
November 2011 von Herrn Dr. Johannes Söding betreut.

Eidesstattliche Versicherung

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet.

München, 9. September 2016

 Markus Meier

Dissertation eingereicht am 27.09.2016

Erstgutachter: Dr. Johannes Söding

Zweitgutachter: Prof. Dr. Julien Gagneur

Mündliche Prüfung am 16.12.2016

Contents

Summary ix

Introduction xi

1 A Diversity-Enriched HMM Database for HHblits 1
1.1 Abstract . 1
1.2 Method . 2
1.3 Memory and Efficiency . 2

1.3.1 Sequence Filter . 2
1.3.2 Compressed Redundant HHsuite Database 2

1.4 Results . 5
1.4.1 Size . 5
1.4.2 Runtime . 6
1.4.3 Diversity in the Clusters . 6
1.4.4 Homology Detection Sensitivity . 9
1.4.5 Alignment Quality . 11
1.4.6 Model Quality . 14

1.5 Discussion and Conclusion . 18

2 Chopping Protein Sequence Space into Domains 21
2.1 Abstract . 21
2.2 Introduction . 22
2.3 Method . 28

2.3.1 Notation . 29
2.3.2 Forward-Backward algorithm for domain start and end probabilities 30
2.3.3 Extension to inserted domains . 33
2.3.4 Consistency iterations . 34
2.3.5 Algorithm for Domain Border Prediction 36
2.3.6 HHblits - Alignment Information Output 37
2.3.7 Training, Testing and Benchmark Set 39

2.4 Optimization and Training . 40
2.4.1 Training of Domain and Linker Lengths 40
2.4.2 Scores for Benchmark and Optimization 41

iv CONTENTS

2.4.3 Parameter Optimization . 46
2.5 Results . 47

2.5.1 Analysis of Good Predictions . 47
2.5.2 Analysis of Bad Predictions . 54
2.5.3 Web server . 63

2.6 Discussion and Conclusion . 65
2.7 Outlook . 66

3 HHsuite 67
3.1 Code Improvement . 67
3.2 Bug-Fixes . 68
3.3 HHsuite Databases Pipelines . 69

3.3.1 Protein Data Bank - pdb70 . 69
3.3.2 Pfam . 70
3.3.3 UniProt - uniprot20 . 70
3.3.4 UniProt - uniprot boost1 . 70

A Supplementary - uniprot boost1 71
A.1 Discretized Column States of the uniprot boost1 for the uniprot20 Database 72

B Supplementary - Pdom 75
B.1 Notation . 76
B.2 Domain Prediction without Insertions . 78

B.2.1 Calculation of peqk(i) and psqk(i) . 78
B.2.2 Calculation of gq(σ, i|σ′, j) := p([σ,i]ν |[σ′,j]ν−1,Aq) 78
B.2.3 Sequence weighting . 85

B.3 Domain Prediction with Inserted Domains 86
B.3.1 Calculation of gq(σ, i|σ′, j) := p([σ, i]ν |[σ′, j]ν−1) 86

B.4 Consistency Iterations . 90
B.4.1 Calculation of gq(σ, i|σ′, j) := p([σ, i]ν |[σ′, j]ν−1,Aq, ps1...K , pe1...K) . . . 90
B.4.2 Sequence weighting during consistency iterations 93

Acknowledgment 101

List of Figures

1 Structure of protein api92 with inserted domain structure xii
2 Growth of the UniRef100 . xii
3 Remote domain architectures for domain prediction xv

1.1 Generation of the uniprot boost1 . 3
1.2 Compression scheme of the uniprot boost1 4
1.3 Runtime benchmark . 6
1.4 Cluster diversity distribution . 8
1.5 Homology detection sensitivity benchmark 10
1.6 Alignment quality benchmark . 12
1.7 Structural model quality benchmark . 15
1.8 Homology modeling benchmark . 17

2.1 ADDA - residue correlation matrix . 23
2.2 EVEREST workflow . 26
2.3 HHblits alignments for domain prediction 27
2.4 Virtual domain start and end for dynamic programming 30
2.5 Dynamic programming algorithm without inserted domains 31
2.6 Illustration of the Forward iteration equation 32
2.7 Dynamic programming algorithm with inserted domains 34
2.8 Transferring information from the previous to the current iteration 35
2.9 Compression of HHblits alignments for Pdom 38
2.10 Float compression . 39
2.11 Domain and linker length distribution . 40
2.12 Domain fragment length distribution . 41
2.13 Domain boundary shift benchmark illustration 42
2.14 Domain coverage benchmark illustration 43
2.15 Optimization score illustration . 44
2.16 Filtered optimization score illustration . 45
2.17 Alignment parameter optimization with the filtered optimization score . . 48
2.18 Number of alignments and fraction of informative alignments 49
2.19 Difficult alignment starts and ends . 50
2.20 Domain boundary shift benchmark . 51

vi LIST OF FIGURES

2.21 Domain coverage benchmark . 52
2.22 SCOP annotation and Pdom prediction for protein Q9KEQ2 56
2.23 Max alignment profile for protein Q9KEQ2 56
2.24 Max alignment profile for protein Q9KEQ2 with lower shift 56
2.25 Max alignment profile for protein Q9TYQ8 57
2.26 Fragmented domain structure 1khba2 . 57
2.27 Fragmented domain structure 1khba1 . 57
2.28 Max alignment profile for protein Q7UHV2 59
2.29 SCOP annotation and Pdom prediction for protein Q82BT2 60
2.30 SCOP annotation and Pdom prediction for protein Q9VC63 60
2.31 Fragmented domain structure d1l7vc . 61
2.32 Fragmented domain structure d1jj7a . 61
2.33 Fragmented domain structure d1ji0a . 61
2.34 Fragmented domain structure d1ji0a by Domain Parser 61
2.35 Cluster VAVPUCEBA of the uniprot20 . 62
2.36 Fragmented domain structure d1gz8a . 63
2.37 Fragmented domain structure d1d5ra2 . 63
2.38 Pdom web server . 65

A.1 Homology detection sensitivity benchmark for the uniprot20 with the dis-
cretized column states of the uniprot boost1 72

List of Tables

1.1 Size of the uniprot boost1 compared to the uniprot20 5
1.2 Mean runtimes . 7
1.3 Alignment quality benchmark . 13
1.4 Alignment quality benchmark split by sequence identity 13
1.5 Homology modeling benchmark with template switches 16

2.1 Examples for good Pdom predictions and their SCOP annotation 53
2.2 SCOP annotation and Pdom prediction for protein Q6N2W5 54
2.3 SCOP annotation and Pdom prediction for protein Q9TYQ8 55
2.4 SCOP annotation and Pdom prediction for protein Q7UHV2 58
2.5 SCOP annotation and Pdom prediction for protein Q7QG29 64

Summary

Domains are the structural subunits of proteins. They are considered to be the basic units of
folding, evolution and function [61]. Understanding the domain structure helps to improve
the functional annotation of proteins [43, 37], tertiary protein structure prediction [20],
protein engineering [29] and protein mutagenesis [45]. Domains are the minimal functional
units of a protein. To elucidate the cellular functions of a protein we need to understand
the molecular functions of its domains.

Protein sequences are annotated by the matches to domains in domain family databases
such as Pfam [26], SCOP [44] or CATH [55]. However, existing domain databases cover
about half of the known sequence space and encompass only a small fraction of all protein
domain families [49] [60]. Here, we developed an algorithm based on a Bayesian statistical
model, called Pdom, with which we can consistently decompose the entire protein sequence
space into its evolutionary units. Pdom predicts domains on the basis of an all-against-all
search of protein Hidden Markov models with HHblits [52]. An alignment of HHblits
indicate the shared homologous region between the query and a template. This shared
homologous region encompasses usually one or multiple domains shared by query and
template. We can infer the domain borders of the query from its alignments to different
templates. For this purpose, we can use the probabilities for the beginning and ending of
an homologous region calculated by HHblits.

HHblits is an iterative protein homology detection tool that is more sensitive, generates
more accurate alignments and is faster than its best competitors, PSI-BLAST [10] and
HMMER3 [39]. HHblits searches with a query Hidden Markov Model (HMM) against a
database of HMMs of multiple sequence alignments. For the clustering of the Uniprot
sequence database to the uniprot20 HMM database, we expect the sequences within a
cluster to cover each other by at least 90%. Therefore, the HMMs of the uniprot20 are
very conservative with few mostly very similar sequences contained in each cluster. For
the domain decomposition with Pdom we wanted to increase the sensitivity of HHblits
to detect more remote homologs. For this purpose, we enriched our database clusters by
jumpstarting HHblits with each cluster alignment in the uniprot20 and adding significant
matches to the cluster alignments. The resulting uniprot boost1 database (boost1 for
one iteration with HHblits) has 14x more sequences per cluster than uniprot20. The
effective number of sequences is raised from 1.18 to 3.78. We developed efficient sparse
compression and alignment handling algorithms that keep memory size nearly the same.
HHblits finds with the uniprot boost1 20% more homologs in three iterations compared

x 0. Summary

to the uniprot20. The alignments of HHblits with the uniprot boost1 have a 11.32% and
17.39% increased per-residue precision and sensitivity, respectively. The structural models
of global alignments with fixed query template pairs against the uniprot boost1 have on
average a 4.9% higher TMscore with the native structure. Especially, the structural models
of queries with a TMscore ≤ 0.3 in the uniprot20 can be improved with the uniprot boost1.
In a simple homology modeling pipeline with free template selection we showed that the
TMscore of models built with the uniprot boost1 is on average 4.9% higher.

In summary, HHblits finds with the diversity-enriched uniprot boost1 database more
homologs and generates more accurate alignments that lead to better structure models
than with the uniprot20. It further widens the gap to HHblits’ competitors HMMER and
PSI-BLAST. We showed that the performance of HHblits with the uniprot boost1 can
be transferred to the downstream application of homology modeling. The uniprot boost1
is capable to become a default database for HHblits and may impact sequence-based
predictions of evolutionarily conserved properties, such as secondary or tertiary structure,
disorder, catalytic sites, post-translational modifications, short linear motifs, or interaction
interface.

Protein domains occur in different proteins with different protein architectures. Pairwise
alignments of a query protein against multiple homologous template proteins reveal with
the different alignment start and end positions the boundaries of protein domains in
the query protein. Some of those alignments encompass a single domain, others might
encompass multiple domains. On the basis of an all-against-all search of HHblits within the
uniprot boost1, we decomposed the protein sequence space into its domains with Pdom.
We compared the predictions of Pdom, ADDA [34] and Pfam to SCOP annotations mapped
onto full length protein sequences. ADDA applies the same fundamental idea as Pdom.
ADDA predicts domains on the basis of an all-against-all search of protein sequences with
BLAST. Pfam uses manually curated seed alignments that incorporate available data from
literature.

On average ADDA covers 32%, Pfam covers 80% and Pdom covers 75% of the reference
domain annotations. ADDA predicts domain start and end sites within 20 residues in 15%
of the reference domain start and end sites. Pfam annotates domain start sites within 20
residues in 67% of the reference domain start sites and annotates domain end sites within
20 residues in 58% of the reference domain end sites. Pdom predicts domain start sites
within 20 residues in 50% of the reference domain start sites and predicts domain end sites
within 20 residues in 45% of the reference domain end sites.

The seed alignments of Pfam have a very high quality due to the manual curation effort.
But those seed alignments are limited to domains analyzed in literature. With our fully
automatic approach in Pdom we are able to find new domains in the protein sequence
space. The clustered database of Pdom’s domain predictions, UniDom, has the potential to
become a fundamental tool for homology-based protein sequence annotation efforts.

Introduction

Already in 1973 Wetlaufer et al. proposed the existence of stable and compact units of
protein structure that could fold on their own [63]. Those structural subunits, in modern
parlance called domains, are considered to be the basic units of folding, evolution and
function [61]. The majority of globular domains are between 40 and 400 residues in size,
with a mean length of about 170 residues [67]. In approximately 5− 20% of multi-domain
proteins one domain can be found to be inserted within or interlaced with another domain
[67] (see figure 1).

Domains are the minimal functional units of a protein. Understanding the domain
structure helps to improve its functional annotation [43, 37], its tertiary structure prediction
[20], protein engineering [29] and mutagenesis [45]. To elucidate the cellular functions of a
protein we need to understand the molecular functions of its domains.

Experimental methods struggle with the analysis of large, multi-domain proteins [16].
Current methods analyze each domain separately [38, 18]. Experimental approaches for
identifying structural domains are mostly based on limited proteolysis, but this requires
significant quantities of proteins, and a large amount of time and effort.

The UniProt Reference Clusters (UniRef) provide clustered sets of protein sequences
from the UniProt and selected UniParc records in order to obtain a complete coverage of
the sequence space at several clustering depths while hiding redundant sequences.

The UniRef100 (UniProt Reference Clusters) protein sequence database consists of
78 201 882 sequences (April, 2016) clustered for 100% pairwise sequence identity. Its size
is rapidly increasing due to technological advances in next-generation sequencing [54, 40]
(see figure 2). A vast majority of those new protein sequences do not have an annotated
function. Protein sequences are usually annotated by the matches to domains in domain
family databases such as Pfam [26], SCOP [44] or CATH [55].

Domain definition on basis on structure, e.g. CATH and SCOP, is limited by the scarce
structure information. The Protein Data Bank (PDB) was established in 1971 with 7
structures. The database has grown to more than 118 000 structures (May 6th, 2016) [68].
However, when filtered for 70% pairwise sequence identity, removing only sequences that
are covered by at least 90%, less than 38 000 protein sequences are left (statistic from our
PDB70 HHsuite database pipeline).

In 1995 Murzin et al. published a structural classification of proteins (SCOP) [44].
Alexei Murzin and his colleagues inspect and compare the structures in the Protein Data
Bank (PDB) [14] to produce an accurate, hierarchical classification of protein domains

xii 0. Introduction

Figure 1: Protein api92 from Yersinia pseudotuberculosis (PDB identifier: 2IJR) with two
CATH domains colored in red and blue; the blue domain is nested in the red domain

0 × 10
+0

2 × 10
+7

4 × 10
+7

6 × 10
+7

8 × 10
+7

20
15

_0
2

20
15

_0
3

20
15

_0
4

20
15

_0
5

20
15

_0
6

20
15

_0
7

20
15

_0
8

20
15

_0
9

20
15

_1
0

20
15

_1
1

20
15

_1
2

20
16

_0
1

20
16

_0
2

20
16

_0
3

annotation

N
u
m

b
e
r

o
f
S

e
q
u
e
n
c
e
s

Swiss−Prot (annotated)

UniRef100 (all)

Figure 2: Number of sequences in the UniRef100 protein sequence database over the last
twelve months

xiii

based on evolution and structure. The SCOP database classifies into four levels:

• Class: Domains with the same composition of secondary structure elements, e.g. all
alpha-helices.

• Fold: Domains with the same major secondary structures in the same arrangement
with the same topological connections.

• Superfamily: Domains whose structures and functions suggest a common evolution-
ary origin.

• Family: Domains with residue identities of ≥ 30% or residue identities ≤ 30%, but
similar functions and structures.

A similar approach is the CATH database published in 1997 by Orengo et al. [55].
CATH chops the PDB into structural domains and sorts in a hierarchical protein domain
classification. The chopping is done by automatic methods supervised by humans. The
CATH hierarchy knows four levels:

• Class: Domains with the same composition of secondary structure elements, e.g.
mainly alpha-helices.

• Architecture: Domains with topologies that share roughly the same spatial arrange-
ment of secondary structures.

• Topology: Domains with the same fold, but not sufficient evidence for a decent from
a common ancestor.

• Homologous Superfamily: Domains with evidence for a common ancestor.

SCOP and CATH share the disadvantage that their domains need a structural reference
in the Protein Data Bank. The latest release of SCOP encompassed 1 962 superfamilies
(SCOP 1.75, June 2009). The latest release of CATH encompassed 2 738 Homologous
Superfamilies (CATH 4.0, March 2013). Both databases provide a classification that
indicates a potential common evolutionary origin. If two domains share the same family in
these classifications they are similar and likely to share the same function.

Another domain database is Pfam [26]. Pfam is built on manually curated seed multiple-
sequence alignments. Each of those multiple-sequence alignments represents a domain
family. Families with similar alignments and families with similar linked structures in the
PDB are grouped to a so called clan. Pfam matches 76.1% of sequences and 54.8% of
residues in the UniProt protein sequence database.

The un-matched part of the Uniprot is referred to as ’dark matter’ of protein space [51]
[49].

In summary, structure data is scarce and is slowly growing compared to sequence data.
Therefore, the bioinformatical challenge of dissecting proteins sequences into structural
domains gets more important. De-novo domain predictors without reference databases such

xiv 0. Introduction

as PDB, Pfam, CASP or SCOP offer the opportunity to discover new domains in the dark
matter of protein space.

There are two groups of de-novo domain predictors from amino-acid sequence: statistical
or machine-learning and 3D model-based methods.

3D model-based methods build an ab-inito 3D model of the protein and parse the
protein domains from the structure (SnapDRAGON [28], RosettaDom [41], OPUS-DOM
[64]). Ab-initio models are built with time-consuming molecular dynamics simulations
given just the protein sequences. These methods are not suitable for large scale analysis of
un-characterized sequences in the protein space.

The statistical and machine-learning methods can be subdivided into two groups:

• comparative sequence analysis: DoBo [25], ADDA [34], EVEREST [50]

• direct boundary prediction: Scooby-Domain [46], KemaDom [19], Armadillo [23]

Most direct boundary prediction methods aim to identify domain boundary regions
such as domain linkers, exploiting their sequence and structural biases [24]. Most of
those predictors apply machine learning techniques like Neural Networks, Support Vector
Machines or Random Forests to decide between domain and linker regions. Linker regions
are usually disordered parts of the protein between domains.

Domains with the same evolutionary origin might be found in different domain archi-
tectures (see figure 3). Therefore, comparative sequence analysis domain predictors can
derive domain definitions of sequence segments generated from starts and ends of pairwise
alignments of an all-against-all search within a protein database. Afterwards the sequence
segments are usually clustered to domain families.

Francois Jacob stated in 1977 that nature is a tinkerer not an inventor to explain
re-occurring domains in different domain architectures. His idea was that nature copied
working domains, slightly modified them and combined them to develop new functions.
Recent research indicates that genes may undergo recombination to produce complex
domain architectures via gene fusion [42], gene fission [42, 47], domain duplication and
domain swapping [47, 15, 22, 35, 12] during evolution.

As of 2016, there are three main competitors for protein homology search and alignment
tools: PSI-BLAST [10], HMMer [39] and HHblits [52]. Remmert et al. showed that HHblits
is more sensitive in detecting remote homologs, is faster and generates more accurate
alignments than PSI-BLAST and HMMer [52]. HHblits searches in several iterations with
a query Hidden Markov profile (HMM) against a database of HMM profiles from multiple
sequence alignments. After each iteration the query HMM is updated with the found
homologs. The commonly used database with HHblits is the uniprot20. It contains the
sequences from the UniProt sequence database clustered for up to 20% pairwise sequence
identity. Only sequences that cover each other by at least 90% are included in one cluster.
This clustering is done by MMseqs [32]. The clusters of the uniprot20 contain on average
five sequences with an effective number of 1.18 sequences. The effective number of sequences,
short NEFF, considers the redundancy within a cluster. A cluster with several hundred but
identical sequences has one effective sequence.

xv

Figure 3: Illustration of domain architectures of different proteins evolutionarily related
by single domains. Protein 1 and 2 are close homologs and will have almost full-length
sequence alignments. With the additional more distantly related homologs of protein 3, 4
and 5 it is possible to chop protein 1 and 2 into their domains.

Chapter 1 introduces the diversity enriched uniprot boost1 HMM database for HHblits.
In order increase the detection sensitivity of more remote homologs and the alignment
quality, we developed the uniprot boost1. We enriched our database clusters by jump-
starting HHblits with each cluster alignment in the uniprot20 and adding significant local
matches from the uniprot20 to the cluster alignments.

Chapter 2 introduces our newly developed domain predictor Pdom that uses the more
sensitive uniprot boost1 HMM database. In a general Bayesian approach we take advantage
of an all-against-all comparison of HMMs with HHblits to chop the complete sequence
space into domains. Instead of fixed alignment start and end points like in PSI-BLAST
we can use the alignment start and end probability at each position calculated for each
alignment in HHblits to get more accurate domain predictions.

Chapter 3 summarizes additional work on the HHsuite and its databases.

Chapter 1

A Diversity-Enriched HMM
Database for HHblits

1.1 Abstract

HHblits is an iterative protein homology detection tool that is more sensitive, generates more
accurate alignments and is faster than PSI-BLAST and HMMer3. HHblits searches with a
query Hidden Markov Model (HMM) against a database of HMMs of multiple sequence
alignments. The HMMs of the uniprot20 database are based on a very conservative clustering
of the UniProt sequence database with few mostly very similar sequences contained in
each cluster. Here, we enrich our database clusters by jumpstarting HHblits with each
cluster alignment in the uniprot20 and adding significant matches to the cluster alignments.
The resulting uniprot boost1 database (boost1 for one iteration with HHblits) has about
14 times more sequences per cluster than uniprot20. The effective number of sequences
was raised from 1.18 to 3.78. We developed efficient sparse compression and alignment
handling algorithms that keep memory size nearly the same. HHblits finds with the
uniprot boost1 about 20% more homologs in three iterations. The alignments of HHblits
with the uniprot boost1 have a 11.32% and 17.39% increased per-residue precision and
sensitivity, respectively. The structural models of global alignments with fixed query
template pairs against the uniprot boost1 have on average a 4.9% higher TMscore with
the native structure. Especially, the structural models of queries with a TMscore ≤ 0.3 in
the uniprot20 can be improved with the uniprot boost1. In a simple homology modeling
pipeline with free template selection we showed that the TMscore of models built with the
uniprot boost1 is on average 4.9% higher.

2 1. A Diversity-Enriched HMM Database for HHblits

1.2 Method

The uniprot20 HHsuite database is the UniProt sequence database [11] clustered by MMseqs
[33]. Sequences that cover each other with at least 80% and a pairwise sequence identity
of at least 20% are clustered together. This leads to very conservative clusters with few
sequences, but well conserved and almost full-length multiple sequence alignments (MSA).
The clusters are functionally pure. Each sequence of the UniProt appeared in only one
cluster of the uniprot20. Here, we searched with each cluster of the uniprot20 through the
uniprot20 for homologous sequences with HHblits in one iteration. The found homologous
sequences were added to the query alignment in a diversity-enriched database (see figure 1.1).
The increase in diversity of these clusters improved the detection sensitivity of remote
homologs.

1.3 Memory and Efficiency

The uniprot20 has 4 866 021 multiple sequence alignments (MSA) with about five sequences
per cluster (release October 2012). Each sequence in the UniProt appears exactly once
in the uniprot20. The raw diversity-enriched database has the same number of MSAs
but about 100 sequences per multiple sequence alignment (without the filter described in
section 1.3.1).

1.3.1 Sequence Filter

We observed that huge multiple sequence alignments in the diversity-enriched database
cause a performance bottleneck in the calculation of the corresponding HMMs during the
runtime of HHblits. Therefore, we removed redundant information in the sequence space by
clustering the sequences in the whole database by 70% sequence identity with MMseqs and
keeping just the representative sequences of the clusters. The filtered diversity-enriched
database contains on average 70 sequences per cluster.

1.3.2 Compressed Redundant HHsuite Database

Each sequence appears on average 14 times in the filtered diversity-enriched database,
therefore the raw MSAs in the a3m format are significantly bigger (224 GB) than the
corresponding uniprot20 MSAs (15 GB). The enormous size makes it difficult to share and
to use on average workstations. In order to reduce the size, we developed a compressed
binary format for HHsuite databases with redundant sequences (see figure 1.2). The idea
is to separate sequence and alignment information. Each sequence in an MSA can be
represented as blocks of matches, insertions or deletions. The MSA can be reconstructed
with this alignment information and the complete protein sequences.

1.3 Memory and Efficiency 3

10 20 30 40 50

UP20|BACMAGEBA|2|604_consensus/40-99

tr|Q80LL6|Q80LL6_NPVAH/40-99

tr|A0EYY6|A0EYY6_9ABAC/21-80

tr|C3TWZ9|C3TWZ9_9ABAC/21-80

tr|D7F5V5|D7F5V5_9ABAC/1-43

tr|Q0N412|Q0N412_9ABAC/21-80

tr|B0FDV9|B0FDV9_9ABAC/22-81

tr|B4MSV4|B4MSV4_DROWI/20-79

tr|J9LGS9|J9LGS9_ACYPI/20-79

tr|Q06VH6|Q06VH6_TNAVC/17-76

tr|H9IXV1|H9IXV1_BOMMO/19-78

tr|G6DIM2|G6DIM2_DANPL/19-78

tr|J9M0X4|J9M0X4_ACYPI/34-93

tr|G6CSS1|G6CSS1_DANPL/1-51

tr|J9LTI6|J9LTI6_ACYPI/22-81

tr|J9LI20|J9LI20_ACYPI/33-92

tr|J9LCB8|J9LCB8_ACYPI/22-81

tr|J9L2U8|J9L2U8_ACYPI/22-81

tr|D3BDR1|D3BDR1_POLPA/19-73

tr|D0NNX0|D0NNX0_PHYIT/19-73

tr|I2FM15|I2FM15_USTH4/18-77

tr|Q55FY4|Q55FY4_DICDI/28-84

tr|F0ZUC3|F0ZUC3_DICPU/28-84

tr|F4QFF3|F4QFF3_DICFS/28-84

tr|D3B1E5|D3B1E5_POLPA/28-84

tr|J9FF29|J9FF29_9SPIT/20-74

tr|D2VFF5|D2VFF5_NAEGR/18-71

tr|J9M8H5|J9M8H5_ACYPI/20-79

tr|A8XZB3|A8XZB3_CAEBR/23-75

tr|D6W6N6|D6W6N6_TRICA/18-70

tr|F4S1B1|F4S1B1_MELLP/20-72

tr|G0N276|G0N276_CAEBE/23-75

tr|O44438|O44438_CAEEL/23-75

tr|H3GY36|H3GY36_PHYRM/22-75

tr|D0NNX1|D0NNX1_PHYIT/22-75

tr|B4MSK5|B4MSK5_DROWI/15-67

tr|B4JJJ7|B4JJJ7_DROGR/15-67

tr|F4Q0D4|F4Q0D4_DICFS/19-73

tr|H6QUC4|H6QUC4_PUCGT/17-75

Y S DQ L L H R R V RQ E I VN Y I I QNWD R F KN F T C N K E L N A Y I T ME E Y Q ADML K P E T F GS MT E L H

Y S DQ L L H R R V RQ E I VN Y I T QNWE R F RN Y T C N K E L N A Y R T ME E Y Q ADML K P E T F GS MT E L H

F NN AN EH L L V R RQ I VD Y V L ANWS E Y NS Y I L QH AS KH Y ND K Y D Y Q I DMMN P K T Y A T Y V E I V

Y ADS S RH V E V RN E I VN Y I L DNWAD Y KS F L L K K P L RN Y L N E E E Y AS EMS Q P I T F A T A T E I K

- - - - - - - - MV RS N V VN F I VDNWS Q Y Q P F L - - - - - - - - - D P KS Y QS HML R P N T F AS Y V E I E

Y N T ED RHQ E I R R R I VN Y V V ANWS R F A Y S T L D K T EQ P Y RS AQQ Y F DDM I K P N T F G T Y T E I V

F RD A E L H L AMRN V V VDH V V KHWAN Y KD F I T S Q T K T S Y T N E A E Y RN Y MT R AN V Y G T F I E L T

F R T QQMA R K V R T E I A T Y V VNNWP T F S I L S HD AMGDN Y I N E T Y Y WS DMS Q P Y T Y GG L C E L V

Y D T QD K AQ E V R K K I V T Y V I NNWED Y S I MS HDS DGNN Y RS S AD Y F T DML K F N T Y GG L C E L V

S T ND K Y H K V I RD R I I L Y I V KNWS E F Q T MT HD KNGDN Y MS P ME Y A L EMKD V KC MGG I A E I V

Y G T Q E RH R E I RN L V VDN I V ANWY R Y KD F I VGD RS Y E I RN A T D Y S R I MS RDG E F AGH A E L H

Y G T Q E RH R E I R I R V V E R V VNNWQ R Y KD F I I GD RS Y S I RD P S D Y RS L MS RDG E Y AGH V E L H

HG T QDN AME V RS L I VGH V VDDWT K F S VMT HN RDGDN Y S T AN E Y Y ADM I KN E T Y GG L C E F I

- - - - - - - - - I RNQ I VHH VS NNWQ R F K Y F T QQ ES S E P Y G T K R L Y F EDMS K P Y T QGS L C E V K

F N T Q E RC Q E I R T T I V A Y VS DNWN T F I NMS Y NS Y GDN F S T A ED Y I RNMGN P T VC GG Y C E L F

Y S T VS H AHN L RS S V VQ Y VC NNWQ R F E L Y S MMP C GN I Y RN I N E Y H AHMS L P T T Y A T P C E I H

Y G T EQMA R E V R K L I VS H V T KNWT E F S I MS HDNS G AN Y MS S A E Y L P GMS Q L Y T Y GG L C E L V

Y N T Q E RC Q E I RN T I VS Y VS DNWNN F I T MS Y NS NGDN F S T A K A Y V R EMAN P T V Y GC Y C E L V

Y G T Q I KH R Y V R E KC I E Y L E KN R E R F E P F AC I ND - - - - - P WE R Y I E L MA KDD T WGG E I E L Q

Y GDQHQH ED V R E K I VS Y L EQH RDD F E P F MED E E - - - - - K F E K Y C A RMR EDG T WGGNQ E L Y

Y GHQ K Y H P R V R R E V V E Y L Q L H P D L I E VML RQH A F S S T RS P A T Y L AS MAN P G Y WGDD A T L S

QD A P N EH R K Y R E A I C K Y I E KN KDMF A P F I DD E E - - - F ES F E E Y I Q EMR ED A T WGGH V E I Q

E ES P NQH R K Y RDN I C K Y I EMN KD I F I P F VD T D E - - - F AS F E E Y V E EMR ED A T WGGH I E I Q

EDN P EQHMK Y RQN I V R F I GS N K EMF A P F I D ED E - - - N E T F E E Y V E EMQ RN AS WGGN V E I Q

EDN P EQHMK Y RQN I I T F I E KN KDMY A P F I DD E E - - - G E T F ED Y I A EMR KN AS WGGN I E I Q

EGN E K L H R K Y RQ E A I E Y I E AN K EMY A P F I EDD - - - - - E T I DQ Y L GDMA KDG T WGGQME L Q

Y G T Q I Y HD R V R KS C I E Y MK EH ES F F KD F I F EMD F NS Y I K - - - - - - F MS K A T S WGS Q L E L E

Y G T EQMA R E V R K L I VS H V T KNC T E F S I MS HN I NGDN Y MS S A E Y L AGMS Q L Y T Y GG L Y E L V

Y GDQ EMHGQ I RQ L C MD Y ML RN RDH F R E F I T EN Y - EN Y I - - E R K R ADH - - - - VHGNH V E L Q

Y GDQ E F H Y Q V RQDC MN Y I VQN RD Y F E P Y V T E - D - - - - - - F D K Y V A R K R I WN VHGNH L E I Q

WQDQNDH RS L R R T V V E Y MR AN P ES F R P Y I T E - - - - - - - GWE T Y L R EMA EDG T WGDH Y T L T

Y GDQ EMHGQ I R E L C MN Y MT T N KDH F EG F I T ED - Y DN Y I - - - - - - MR K R E EN VHGNH V E L Q

Y GDQ EMHGQ I R R L C MD Y MS NN RDH F K E F I T EN - F EN Y I - - - - - - Q R K R E EN VHGNH V E L Q

Y T N E L F HQD I R R R L VD F I E R EQQ L F R P F V ED E E L S D - - - - - - Y C T RMR RDG EWGGH L E L Y

Y NN E L F HQD I R R R L VD F I A R E E T H F Q P F V ED E L VGD - - - - - - Y C S RMQ EDG EWGGH L E L Y

Y D T QML N Y E V R L EC V R F MT L K R R I F AQ - - - - - D V - - S GD F DS Y L HDMT K P K T Y G T ML E L R

Y D T Q L L H Y E V R L EC V R F MT R K R R I F EQ - - - - - H V - - QGD F DS Y L QDMA K P K T Y G T ML E L R

Y G T QD RHG Y V RQ KC VD F L MAH RDS F E P F AC I NN - - - - - P WD K Y I Q EMK KDD T WGG E V E L Q

Y GDQ E KH I Q V RQ EM I K Y I E AN P F E F QD F V EG ED P E P E I R L K K Y L Y - R I KNG AWGD E L S I K

10 20 30 40 50

UP20|BACMAGEBA|2|604_consensus/40-99

tr|B6S2L3|B6S2L3_9ABAC/40-99

tr|Q80LL6|Q80LL6_NPVAH/40-99

Y S DQ L L H R R V RQ E I VN Y I I QNWD R F KN F T C N K E L N A Y I T ME E Y Q ADML K P E T F GS MT E L H

Y S DQ L L H R R V RQ E L VN Y I I QNWD R F KN F T C N K E L N A Y I T A E E Y Q ADML K P E T F GS MT E L H

Y S DQ L L H R R V RQ E I VN Y I T QNWE R F RN Y T C N K E L N A Y R T ME E Y Q ADML K P E T F GS MT E L H

uniprot20 clusters with on average 5 sequences

and 1.18 e ective sequences

uniprot_boost1 clusters with on average 70 sequences

and 3.78 e ective sequences

1 search iteration with HHblits

Figure 1.1: Generation of the uniprot boost1: To each multiple sequence alignment in
the uniprot20 we add homologous sequences found in one search iteration through the
uniprot20 with HHblits. The set of diversity enriched multiple sequence alignments is the
uniprot boost1. Those multiple sequence alignments contain on average 14 times more
sequences with on average 3.78 effective sequences (NEFF).

4 1. A Diversity-Enriched HMM Database for HHblits

Figure 1.2: We used the illustrated compression scheme for each sequence in a multiple
sequence alignment in the uniprot boost1. Each sequence in the MSA has an identifier
that points to an entry in a database with the complete sequence. Therefore, we need
to store the same sequence occurring in multiple MSAs just once. For each sequence we
need to save the position of the first aligned residue. Furthermore, the number and size of
consecutive rows of matches, insertions and deletions of each sequence in the alignment are
needed to reconstruct the alignment.

1.4 Results 5

part uniprot20 uniprot boost1
a3m 15 GB 14 GB
hhm 3.4 GB -
cs219 1.4 GB 1.4 GB
header - 1 GB
sequence - 2.5 GB
total 19.8 GB 18.9 GB

Table 1.1: Size of the different parts of the uniprot20 and uniprot boost1 databases.

1.4 Results

1.4.1 Size

The default uniprot20 consists of three parts:

• The multiple sequence alignments in the a3m format [5]

• The HMM profiles translated into a discretized set of 219 column states (cs219) used
for the prefilter

• The precalculated HMMs for large multiple sequence alignments in the hhm format

The uniprot boost1 database consists of four parts:

• The alignment information of the multiple sequence alignments in the binary ca3m
format

• The HMM profiles translated into a discretized set of 219 column states (cs219) used
for the prefilter

• The protein sequences

• The headers to all proteins with the protein identifier and annotations

The uniprot boost1 and uniprot20 have about the same total size of roughly 20 GB (see
table 1.1). The raw MSAs of the uniprot boost1 in the a3m format encompass 224 GB,
since each protein occurs on average in 14 different MSAs. The database is compressed by
separating the alignment information and the protein sequences (see section 1.3.2), so each
protein sequence is stored just once. Additionally, the binary encoding of the alignment
information is very space-efficient.

6 1. A Diversity-Enriched HMM Database for HHblits

100

1000

10000

1 2 3
iterations

ti
m

e
 i
n
 s

HHblits−uniprot20

HHblits−uniprot_boost1

PSI−BLAST

HMMER

Figure 1.3: Runtime of HMMer and PSI-BLAST on the UniProt sequence database (release
October 2012) and HHblits with the corresponding uniprot20 and uniprot boost1 HMM
databases.

1.4.2 Runtime

We randomly selected 1 644 sequences from the UniProt and measured the runtime of
HMMer and PSI-BLAST through the UniProt sequence database, and of HHblits through
the corresponding uniprot20 and uniprot boost1 databases (release October 2012). The
results are shown in figure 1.3 and in table 1.2). Three iterations through the uniprot boost1
with HHblits are on average 3.7 times slower than three iterations through the uniprot20
with HHblits, 0.37 times slower than three iterations through the UniProt with PSI-BLAST,
but 2.1 times faster than three iterations through the UniProt with HMMer.

1.4.3 Diversity in the Clusters

We calculated the number of effective sequences (NEFF) to determine the amount of
homologous information in a multiple sequence alignment. The NEFF statistic is calculated
as the exponential of the Shannon entropy averaged over all columns of the multiple sequence
alignment [48]. The NEFF is a real value ranging from 1 to 20.

The average NEFF for the uniprot20 is 1.18 and 3.78 for the uniprot boost1.

A NEFF of 1.0 means that there is just one sequence in the cluster or a set of identical
sequences. In the following we call these clusters singletons.

In the uniprot20 3 549 885 of 4 866 021 clusters are singletons. In the uniprot boost1
936 770 clusters are still singletons (see figure 1.4A).

We jump-started HHblits with the singletons in the uniprot boost1 and searched in

1.4 Results 7

#iterations average time in s
hhblits-uniprot boost1 1 185
hhblits-uniprot boost1 2 544
hhblits-uniprot boost1 3 777
hhblits-uniprot20 1 46
hhblits-uniprot20 2 106
hhblits-uniprot20 3 163
HMMer 1 273
HMMer 2 765
HMMer 3 1445
PSI-BLAST 1 141
PSI-BLAST 2 319
PSI-BLAST 3 491

Table 1.2: Mean runtimes for PSI-BLAST and HMMer against the UniProt sequence
database, and HHblits against the corresponding uniprot20 and uniprot boost1 HMM
databases.

one iteration through the uniprot boost1 for homologs, so we get an impression of a
uniprot boost2. In the uniprot boost2 832 483 clusters are still singletons (see figure 1.4B).

Short sequences (< 100 residues) are a 0.65 times less frequent among the singletons
of the uniprot20 compared to the singletons of the uniprot boost1 and 0.95 times less
frequent among the uniprot boost1 singletons compared to the uniprot boost2 singletons
(see figure 1.4C).

8 1. A Diversity-Enriched HMM Database for HHblits

0.00

0.25

0.50

0.75

1.00

4 8 12 16
≤ NEFF

c
u
m

u
l.
 f

re
q
u
e

n
c
y

uniprot20

uniprot_boost1

A

0.00

0.25

0.50

0.75

1.00

3 6 9 12
≤ NEFF

c
u
m

u
l.
 f

re
q
u
e

n
c
y

former uniprot_boost1
singletons in
uniprot_boost2

B

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200 250
≤ length

c
u
m

u
l.
 f

re
q
u

e
n

c
y

uniprot20 singletons

uniprot_boost1 singletons

uniprot_boost2 singletons

C

Figure 1.4: A) distribution of the number of effective sequences (NEFF) in the uniprot20
and the uniprot boost1. In the uniprot20 around 75% of the MSAs have a NEFF of 1.
In the uniprot boost1 this fraction can be reduced to around 20%. B) distribution of
NEFFs in the uniprot boost2 for clusters with one effective sequence in the uniprot boost1.
Around 10% of the clusters in the uniprot boost1 with one effective sequence were enriched
in the uniprot boost2. C) distribution of the lengths of MSAs (number of match states
in the Hidden Markov profile) with a NEFF of 1 in the uniprot20, uniprot boost1 and
uniprot boost2.

1.4 Results 9

1.4.4 Homology Detection Sensitivity

Dataset We filtered the structural domain database SCOP (release 1.75) for a maximum
pairwise sequence identity of 20% and excluded only templates that were covered by at least
90%. We split the domains by fold in a test (80%, 5 287 domains) and an optimization set
(20%, 1 329 domains). The test set is referred to as SCOP20 in the following. We searched
with the homology detection tools PSI-BLAST, HMMER and HHblits for each query of
the SCOP20 through the SCOP20. We can measure the homology detection sensitivity
in a ROCX plot, since we know all potential homologs for each query in the SCOP20 by
means of the SCOP classification (see chapter).

PSI-BLAST - UniProt For each of the SCOP20 sequences we searched in 1, 2 and
3 iterations with PSI-BLAST through the UniProt sequence database merged with the
SCOP20 sequence database. The intermediate profile output of PSI-BLAST seems to be
buggy, since the results were much better with direct searches through the merged sequence
database.

HHblits - uniprot20 We built the HMM benchmark database for HHblits with the
SCOP20 sequences resembling the diversity of the uniprot20. For this purpose, we mapped
the SCOP20 sequences to existing uniprot20 clusters. We chose the cluster with a BLAST
search of the SCOP20 sequence against the consensus sequences of the uniprot20 MSAs.

For each of the SCOP20 sequences we searched with HHblits in 1, 2 and 3 iterations
through uniprot20 merged with the corresponding SCOP20 HMM database.

The intermediate profile output of PSI-BLAST did not work, so we had to search with
HHblits also through the merged database.

HHblits - uniprot boost1 We built the HMM benchmark database for HHblits with
the SCOP20 sequences resembling the diversity of the uniprot boost1. For this purpose, we
mapped the SCOP20 sequences to existing uniprot boost1 clusters. We chose the cluster
with a BLAST search of the SCOP20 sequence against the consensus sequences of the
uniprot boost1 MSAs.

For each of the SCOP20 sequences we searched with HHblits in 1, 2 and 3 iterations
through uniprot boost1 merged with the corresponding SCOP20 HMM database.

The intermediate profile output of PSI-BLAST did not work, so we had to search with
HHblits also through the merged database.

HMMER - UniProt For each of the SCOP20 sequences we searched with jackhmmer
in 1, 2 and 3 iterations through the UniProt sequence database merged with the SCOP20
sequence database.

The intermediate profile output of PSI-BLAST did not work, so we had to search with
jackhmmer also through the merged database.

10 1. A Diversity-Enriched HMM Database for HHblits

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
≤ ROC1 value

fr
a
c
ti
o
n
 o

f
q
u
e
ri

e
s

HHblits − uniprot20

HHblits − uniprot_boost1

HMMer

PSI−BLAST

1 iteration

2 iterations

3 iterations

Figure 1.5: Homology detection sensitivity benchmark in the ROC1 plot comparing PSI-
BLAST and HMMER on the UniProt sequence database and HHblits on the corresponding
uniprot20 and uniprot boost1 databases.

ROCX In order to measure the homology detection sensitivity, we calculated the ROCX
statistic. The Receiver Operating Characteristic up to the Xth false positive hit (ROCX) is
the fraction of true positive hits of all possible true positive hits found until the Xth false
positive hit appears in the sorted list of hits.

We defined true positive hits to share the same superfamily and true negative hits to
disagree with the query in at least the fold. We excluded the self-hit from the statistic
as well as hits within Rossman-like folds (c.2-c.5, c.27 and 28, c.30 and 31) and the four-
to eight-bladed β-propellers (b.66-b.70), which are probably evolutionarily related [58].
HMMER reported just in one of three queries more than one false positive hit even with
very generous settings, so we used the ROC1 statistic.

Result HHblits finds in three iterations through the uniprot boost1 about 20% more
homologs than through the uniprot20 (area under the ROC1 curve; see figure 1.5). The
increase in sensitivity from the second to the third iteration through the uniprot boost1 is
just 1.4%.

HHblits finds in three iterations through the uniprot boost1 about 56% and 28% more
homologs than PSI-BLAST and HMMER, respectively, through the UniProt sequence
database.

1.4 Results 11

1.4.5 Alignment Quality

Dataset We used structural alignments with TMalign [69] as gold standard to measure
the quality of the generated alignments of HHalign and HMMER. We did an all-against-all
comparison of the domain structures in the SCOP20 set within the same superfamily, but
not the same family. We selected the alignment pairs (query and template) with a TM-score
≤ 0.8 and > 0.5 to get a non-trivial set of homologs (35 132 alignment pairs).

The TM-score is a real number between 0.0 and 1.0, with structurally more similar
templates having higher TM-scores [69]. Protein pairs with a TM-score > 0.5 are mostly in
the same fold while those with a TM-score < 0.5 are mainly not in the same fold [65].

HHalign - uniprot20 We built HMMs for the query sequences with HHblits searches in
three iterations through the uniprot20. The template sequences were aligned with HHalign
to the most similar cluster in the uniprot20. We want to estimate the alignment quality
of HHblits independent of the homology detection sensitivity. Therefore, we enforce the
alignments between query and template HMM with HHalign that uses the same alignment
algorithms as HHblits. We used different thresholds for the Maximum ACcuracy alignment
(-mact option; 0.01, 0.1, 0.35, 0.5) to adjust the alignment greediness. A low threshold
generates more global alignments that are very sensitive but less precise.

HHalign - uniprot boost1 We built the HMMs for the query sequences with HHblits
searches in two iterations through the uniprot boost1, since the homology detection sensitiv-
ity benchmark showed that most homologs are already found after the second iteration. The
template sequences were aligned HHalign to the most similar cluster in the uniprot boost1
database. We want to estimate the alignment quality of HHblits independent of the homol-
ogy detection sensitivity. Therefore, we enforce the alignments between query and template
HMM with HHalign that uses the same alignment algorithms as HHblits.

HMMER We built the HMMs for the query sequences with jackhmmer searches in
five iterations (default setting) through the UniProt sequence database. The homology
detection benchmark showed that the prefilter of HMMER hides potential homologs from
the database. We built for each hmmsearch run an individual database that contained just
one template sequence and turned off all acceleration heuristics (option –max), so we could
ensure an alignment by hmmsearch if possible.

Benchmark For each tool we calculated the average per-residue precision and per-residue
sensitivity compared to the structural alignments of TMalign.

sensitivity =
TP

TP + FN
(1.1)

precision =
TP

TP + FP
(1.2)

12 1. A Diversity-Enriched HMM Database for HHblits

mact 0.01
mact 0.1

mact 0.2

mact 0.35

mact 0.5

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6
per−residue precision

p
e
r−

re
s
id

u
e
 s

e
n
s
it
iv

it
y

HMMER

uniprot20

uniprot_boost1

Figure 1.6: Alignment quality benchmark with average per-residue precision and sensitivity
with respect to structural reference alignments by TMalign. We compared alignments
calculated by HMMER and by HHalign on profiles generated with the uniprot20 and with
the uniprot boost1 databases for different mact values (alignment greediness setting).

In this case True-Positive (TP) means aligned residues that are also aligned in the
reference alignment. False-Negative (FN) means not aligned residues that are aligned in
the reference alignment. False-Positive (FP) means aligned residues that are not aligned
in the reference alignment. Sensitivity defines what fraction of the reference alignment is
captured by the calculated alignment. Precision defines what fraction of the calculated
alignment is actually correctly aligned with respect to the reference alignment.

Result The overall alignment quality in the benchmark is low, since we focused on difficult
alignments in this benchmark (see figure 1.6). We observed that the curve for the different
thresholds in the Maximum ACcuracy alignment with the uniprot boost1 lies above the
curve with the uniprot20 in figure 1.6. For the mact of 0.35 (HHalign’s default setting) the
average per-residue sensitivity and precision of the uniprot boost1 alignments improve by
11.32% and 17.39%, respectively, compared to the uniprot20 alignments and by 63.89% and
58.82%, respectively, compared to the HMMER alignments (see table 1.3).

For global alignments (mact 0.01) the per-residue precision and sensitivity of the
uniprot boost1 alignments improve by 8.3% and 7.9%, respectively, compared to the
uniprot20. The improvement is greater for difficult alignments with low sequence identity
(see table 1.4). The sequence identity is taken from the structural reference alignments.

1.4 Results 13

tool database mact precision sensitivity
√

precision · sensitivity
HMMER UniProt 0.36 0.17 0.25
HHalign uniprot boost1 0.01 0.39 0.41 0.40
HHalign uniprot boost1 0.1 0.48 0.37 0.42
HHalign uniprot boost1 0.2 0.55 0.31 0.41
HHalign uniprot boost1 0.35 0.59 0.23 0.36
HHalign uniprot boost1 0.5 0.59 0.17 0.32
HHalign uniprot20 0.01 0.36 0.38 0.37
HHalign uniprot20 0.1 0.41 0.36 0.38
HHalign uniprot20 0.2 0.47 0.33 0.39
HHalign uniprot20 0.35 0.53 0.27 0.38
HHalign uniprot20 0.5 0.58 0.21 0.35

Table 1.3: Average per-residue sensitivity and precision compared to structural reference
alignments.

uniprot boost1 uniprot20
alignment identity # alignments precision sensitivity precision sensitivity
x ≤ 0.1 13618 0.25 0.27 0.22 0.23
0.1 < x ≤ 0.2 20264 0.46 0.49 0.44 0.47
0.2 < x ≤ 0.3 1208 0.64 0.69 0.64 0.68
0.3 < x ≤ 0.4 41 0.78 0.84 0.79 0.84

Table 1.4: Average per-residue sensitivity and precision of the HHalign alignments with a
mact of 0.01 split up by the alignment identity of the structural reference alignments.

14 1. A Diversity-Enriched HMM Database for HHblits

1.4.6 Model Quality

Models with fixed Query-Template Pairs

The comparison of sequence alignments to structural alignments is a good indicator for the
general performance of a sequence alignment tool. However, it does not consider alternative
similar structural alignments. In the following benchmark we compared the predicted
structure induced by the calculated alignment to the native structure.

Benchmark We used the alignments of the alignment quality benchmark calculated with
a threshold for the Maximum ACcuracy alignment of 0.01 and built the corresponding
structural models with Modeller [62]. We compared the models to their respective native
structure by TM-score [69].

Result We calculated the TM-scores of structural models to the corresponding native
structures. The models were built with Modeller on global (mact 0.01) HHalign alignments
with fixed query-template pairs of the SCOP20 (intra-superfamily, inter-family, TM-score
≤ 0.8 and > 0.5 of the native structures). For the uniprot boost1 the query HMMs were built
with HHblits searches in two iterations through the uniprot boost1 and the corresponding
template HMMs resemble the diversity of the uniprot boost1. For the uniprot20 the query
HMMs were built with HHblits searches in three iterations through the uniprot20 and the
corresponding template HMMs resemble the diversity of the uniprot20.

Queries, whose models on the basis of the uniprot20 and a TM-score of ≤ 0.3, have
significantly better models with the uniprot boost1 (see figure 1.7). The average TM-score
of the uniprot boost1 and uniprot20 models is 0.43 and 0.41 respectively. This is an
improvement of 4.9%.

Homology Modeling Benchmark

In the previous benchmark we analyzed models with fixed query-template alignment pairs.
This did not consider that we might find other templates for queries with the uniprot boost1
compared to the uniprot20. Therefore, we set up a complete but still simple homology
modeling pipeline to take this effect into account.

Data - uniprot20 We filtered the chain sequences in the PDB (release February 2015;
SEQRES section) for maximal 30% pairwise sequence identity. We removed only sequences
with at least 90% coverage to another sequence (24 558 sequences). We built multiple
sequence alignments for PDB chains with homologous sequences found in 3 search iterations
with HHblits through the uniprot20 database. For these multiple sequences we built the
HHsuite database pdb30 uni20.

For each multiple sequence alignment of a PDB chain in the pdb30 uni20 we searched
with HHblits in one iteration through the pdb30 uni20 database for potential homologs. We
used the best homolog (excluding the self-hit) to build a structural model with Modeller.
We compared the structural model to the native structure with the program TMscore.

1.4 Results 15

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8
TMscore − uniprot20

T
M

s
c
o
re

 −
 u

n
ip

ro
t_

b
o
o
s
t1

running mean along diagonal

1 100 300
density

Figure 1.7: We compared the TM-scores of 35 132 structural models built with Modeller
on global (mact 0.01) HHalign alignments with fixed query-template pairs of the SCOP20
(intra-superfamily, inter-family, TM-score ≤ 0.8 and > 0.5 of the native structures). For
the uniprot booost1 the query HMMs were built with HHblits searches in one iteration
through the uniprot boost1 and the corresponding template HMMs resembled the diversity
of the uniprot boost1. For the uniprot20 the query HMMs were built with HHblits searches
in three iterations through the uniprot20 and the corresponding template HMMs resembled
the diversity of the uniprot20.

16 1. A Diversity-Enriched HMM Database for HHblits

queries pdb30 boost1 - TM-score pdb30 uni20 - TM-score
different template 16260 0.59 0.56
same template 8256 0.74 0.72

Table 1.5: Average TM-scores for 24 558 structure models of the pdb30 boost1 and
pdb30 uni20 split up by queries that report a different best-scoring template and those that
report the same best-scoring template in both databases.

Data - uniprot boost1 We filtered the chain sequences in the PDB (release February
2015; SEQRES section) for maximal 30% pairwise sequence identity. We removed only
sequences with at least 90% coverage to another sequence (24 558 sequences). We built
multiple sequence alignments for these PDB chains with homologous sequences found in two
search iterations with HHblits through the uniprot boost1 database, since the homology
detection sensitivity benchmark showed that most homologs are already found after the
second iteration. For these multiple sequences we built the HHsuite database pdb30 boost1.

For each multiple sequence alignment of a PDB chain in the pdb30 boost1 we searched
with HHblits in one iteration through the pdb30 boost1 database for potential homologs.
We used the best homolog (excluding the self-hit) to build a structural model with Modeller.
We compared the structural model to the native structure with the program TMscore.

Result Models of the pdb30 uni20 and TM-score of ≤ 0.25 can be improved by the models
with the pdb30 boost1 (see figure 1.8). The average TM-score on the pdb30 boost1 and
pdb30 uni20 is 0.64 and 0.61, respectively. This leads to an overall improvement of 4.9%.
Templates with a high TM-score ≥ 0.75 in the pdb30 uni20 worsen in the corresponding
TM-score of the pdb30 boost1.

Some queries report a different best-scoring template in the pdb30 uni20 than in the
pdb30 boost1 (see table 1.5). Here we observed the following:

• 66% of the queries report different highest-scoring templates with the pdb30 boost1
compared to the pdb30 uni20.

• The average TM-score for both pdb30 databases is 25% - 35% higher for queries that
report the same template than for queries that report a different template.

• The average TM-score of queries that report the same template can be improved in
the pdb30 boost1 by 2.78%.

• The average TM-score of queries that report a different template can be improved in
the pdb30 boost1 by 5.36%.

1.4 Results 17

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
TMscore − uniprot20

T
M

s
c
o
re

 −
 u

n
ip

ro
t_

b
o
o
s
t1

100 300 1000
density

Figure 1.8: Comparison of 24 558 structure models built in a simple homology modeling
pipeline with the the pdb30 boost1 and the pdb30 uni20 databases. We calculated the
TM-score for all models with respect to their native structure. Both databases are built
on the sequences of the PDB filtered for maximal 30% pairwise sequence identity. The
MSAs for the pdb30 boost1 were built in two search iterations of HHblits through the
uniprot boost1. The MSAs for the pdb30 uni20 were built in three search iterations of
HHblits through the uniprot20.

18 1. A Diversity-Enriched HMM Database for HHblits

1.5 Discussion and Conclusion

We enriched the very conservative clusters of the uniprot20 with homologs found by HHblits
in one search iteration through the uniprot20 to build the diversity-enriched uniprot boost1
database. The clusters of the uniprot boost1 contain about 14 times more sequences. The
effective number of sequences is increased from 1.18 to 3.78. This increase in diversity leads
to several performance improvements for HHblits.

Three iterations through the uniprot boost1 are on average 3.7 times slower and find
about 20% more homologs than three iterations through the uniprot20.

Three search iterations with HHblits through the uniprot boost1 are about 0.37 times
slower and find about 56% more homologs than three search iterations with PSI-BLAST
through the UniProt.

Three search iterations with HHblits through the uniprot boost1 are about 2.1 times
faster and find about 32% more homologs than three search iterations with HMMER
through the UniProt.

For default alignment greediness setting (mact of 0.35) the average per-residue sensitivity
and precision of the uniprot boost1 alignments improve by 11.32% and 17.39%, respectively,
compared to the uniprot20 alignments and by 63.89% and 58.82%, respectively, compared
to the HMMER alignments (see table 1.3). Global alignments (mact 0.01) of sequences with
less than 10% sequence identity are improved by 28% in precision and 5% in sensitivity.

The structure models of global alignments with the uniprot boost1 have a 4.9% higher
TMscore than with the uniprot20. Especially models on the basis of the uniprot20 with a
TMscore of < 0.3 can be improved with the models on the basis of the uniprot boost1.

In a simple pipeline for protein homology modeling detection we showed that we are
able to detect other templates for 66% of the queries with on average 5.4% higher TMscores
with the uniprot boost1 compared to the uniprot20. Models of queries that report the same
template with both databases have a 2.8% higher TMscore due to the improved alignment
quality with the uniprot boost1.

The uniprot boost1 improves especially models on the basis of the uniprot20 that have a
TMscore < 0.25, however models with the uniprot20 that have a TMscore > 0.75 decreased
slightly in the TMscore. In HHpred, our in-group developed homology modeling server [36],
we apply a neural network to select the best template specifically for homology modeling. It
might be useful to train a new neural network to select the best templates from uniprot20
and uniprot boost1 models.

The generation of the uniprot boost1 clusters with HHblits took 150 000 CPU hours on
the Amazon Web Services. A faster but less sensitive approach might be the generation
with iterative MMseqs profile-profile searches.

In summary, HHblits finds with the diversity-enriched uniprot boost1 database more
homologs and generates more accurate alignments that lead to better structure models
than with the uniprot20. It further widens the gap to HHblits’ competitors HMMER and
PSI-BLAST. We showed that the performance of HHblits with the uniprot boost1 can be
transferred to the downstream application of homology modeling. The uniprot boost1 is
capable to become another default database for HHblits and may impact sequence-based

1.5 Discussion and Conclusion 19

predictions of evolutionarily conserved properties, such as secondary or tertiary structure,
disorder, catalytic sites, post-translational modifications, short linear motifs, or interaction
interface. In chapter 2 we will use the uniprot boost1 as a substrate to design an algorithm
to decompose the complete protein sequence space into domains.

Chapter 2

Chopping Protein Sequence Space
into Domains

2.1 Abstract

Domains are the basic structural, functional and evolutionary units of proteins. To elucidate
the cellular functions of a protein we need to understand the molecular functions of its
domains. Protein sequences are annotated by the matches to domains in domain family
databases such as Pfam, SCOP or CATH. However, existing domain databases cover
less than half of the known sequence space and encompass only a small fraction of all
protein domain families. Here, we developed an algorithm based on a Bayesian statistical
model, called Pdom, with which we can consistently decompose the entire protein sequence
space into its evolutionary units. We showed that, for proteins of known structure, this
decomposition agrees very well with the domain definitions based on their structure, function
and evolution. We hope that the resulting database of protein domain families, UniDom,
will become the basis for homology-based protein sequence annotation efforts.

22 2. Chopping Protein Sequence Space into Domains

2.2 Introduction

Domains are the functional subunits of proteins. During evolution they are copied and
reused in different proteins. This leads to domains that appear in different proteins with
different domain compositions (see figure 3). Due to their functions, domains are essential
for the cell and the organism. That is why domains are under evolutionary pressure to
maintain their function. Domain border prediction tools that apply comparative sequence
analysis exploit the observation that the homologous region shared between two proteins
usually starts with a common domain start and ends with a common domain end. By
performing an all-against-all comparison within the protein sequence space, domain border
predictors try to infer the domain boundaries from starts and ends of the generated pairwise
alignments. Those alignments indicate the shared homologous region between two proteins,
usually the shared domains. There are three domain border prediction tools that apply
comparative sequence analysis: DoBo [25], ADDA [34] and EVEREST [50].

ADDA

ADDA [34] performs an all-against-all search with BLAST [10] within a protein sequence
database. For each query sequence a multiple sequence alignment is calculated from the
pairwise alignments of BLAST.

ADDA assumes that most of the templates share a single domain with the query that
is captured by the pairwise alignment. Therefore, two residues i and j of the query are
considered to be in the same domain, if they are frequently aligned together in the different
templates.

A residue correlation matrix is derived from the multiple sequence alignment (see
figure 2.1). For each pair of positions i and j in the query, the residue correlation matrix
counts how often they were aligned simultaneously in the different templates. ADDA splits
the query into putative domains to maximize the counts in the residue correlation matrix
within the resulting domains and to minimize the counts in the residue correlation matrix
between the resulting domains.

Afterwards, ADDA selects iteratively from this set of putative domains on basis of
an objective function that considers the likelihood of alignments to end or start within a
domain and the likelihood of alignments to cover multiple domains.

2.2 Introduction 23

Figure 2.1: ADDA performs an all-against-all search with BLAST within a protein sequence
database. A residue correlation matrix is generated for each query. Each cell in the matrix
contains the counts for the pair of residues i and j in the query how often they were aligned
simultaneously in the different templates. ADDA splits the query into domains. Each
split separates the residue correlation matrix in four quadrants. The splits are chosen to
maximize the counts within the putative domains (upper left and lower right quadrant)
and minimize the counts between the two putative domains (upper right and lower left
quadrant). Each putative domain may be split further into smaller putative domains. The
final set of putative domains is chosen on basis of an objective function that considers the
likelihood of alignments to end or start within a domain and the likelihood of alignments
to cover multiple domains.

24 2. Chopping Protein Sequence Space into Domains

DoBo

DoBo [25] calculates a multiple sequence alignment for the query with a PSI-BLAST search
[10].

Within the multiple sequence alignment DoBo searches for domain boundary signals.
A domain boundary signal is a gap which begins at the N- or C-terminal end of a

sequence in the multiple sequence alignment and extends continuously for at least 45
residues. The location of the domain boundary signal is the first non-gap residue in the
sequence.

DoBo classifies the set of domain boundary signals in:

• False boundary signals occurring in a single domain protein.

• Near boundary signals occurring within 20 residues of any domain boundary in a
multi-domain protein.

• Away boundary signals occurring more than 20 residues away of any domain boundary
in a multi-domain protein.

DoBo uses two Support Vector Machines (SVM) to decide between these three cases.
The first SVM decides between false boundary or true boundary signals. The second SVM
decides for the true boundary signals between near boundary or away boundary signals.

Both SVMs use the same set of features:

• The SVMs consider for each residue in a window of 41 residues centered around the
signal site with the normalized frequencies of the 20 residues plus a gap, the predicted
likelihood of the residue to be part of an alpha-helix, a beta-strand or a loop, and the
predicted likelihood to be buried or to be exposed.

• The SVMs take as features the position of the signal with respect to the N terminal
(residue index divided by 100), the position with respect to the C terminal (protein
length minus residue index divided by 100) and the number of boundary signal sites
within 5 residues.

• Another feature is the length of the sequence divided by 100.

• DoBo calculates the total number of signals generated by all of the sequences in the
multiple sequence alignment within a 11 residue window of the signal site. This local
sum was calculated for each residue in the sequence and then converted to z-scores.
The final feature is the z-score for the signal site.

2.2 Introduction 25

EVEREST

In order to predict domains, EVEREST [50] filters a protein sequence database for redun-
dancy and repeated consecutive sequence segments are removed. EVEREST performs an
all-against-all search within this database with BLAST [10].

The alignment of every query template pair with E-score < 100 from the all-against-all
BLAST search is recalculated with an iterative variant of the Smith-Waterman algorithm [56].
Significantly similar aligned sequence segments together with their sequence similarity
are collected in a segment database. EVEREST’s workflow is illustrated in figure 2.2.

For each pair of template segments on the same query, an overlap similarity is
calculated, that is the length of their intersection divided by the length of their union.
The segments on the same query are clustered into groups according to their overlap
similarity. EVEREST requires each pair of segments within the same group to have an
overlap similarity of ≥ 0.5.

The groups are clustered by their sequence similarity of their segments by average linkage
clustering. EVEREST starts with a single cluster for each group. In multiple iterations the
two most similar clusters are merged until there is just one cluster left. EVEREST keeps
track of each intermediate merged cluster. Those merged clusters are candidate domain
families.

EVEREST applies a boosting algorithm [21] to select appropriate candidate families.
The machine learing approach takes cluster intrinsic features, e.g. size of the cluster,
similarity of the clusters that were merged, variance of the sequence lengths in the cluster
([50] mentions just these example features).

For each selected candidate family a multiple sequence alignment is calculated with
Clustal-W [59]. Each MSA is subsequently transformed to a Hidden Markov model with
HMMER [39].

HMMER searches for each HMM of the selected candidate families through the protein
sequence database. From the aligned sequence segments, a segment database is re-generated.
Segments created by the same HMM have a sequence similarity equal to the sum of
their E-Scores from HMMER. With this new database a new iteration can be started. After
three iterations, overlapping domain families are merged.

26 2. Chopping Protein Sequence Space into Domains

Figure 2.2: EVEREST performs an all-against-all search within a protein sequence database.
From this search a database of the aligned template segments is generated together with
the pairwise sequence similarity between segments. The template segments for a query are
clustered by their overlap similarity, that is the length of their intersection divided by the
length of their union. Those groups of segments are hierarchically merged by the sequence
similarity of their segments. A machine learning approach selects the best candidate domain
families of these merged clusters. For each selected domain family a Hidden Markov model
is calculated. With these HMMs and HMMER a new segment database may be built for a
new iteration or overlapping domain families are merged.

2.2 Introduction 27

Figure 2.3: Identifying domain borders in a query sequence by alignments against all
known sequences. By calculating the probabilities for the alignment start and end of the
homologous region (blue and red distributions) in a large number of sequence alignments,
the precise domain starts and ends in the query sequence can be determined in a Bayesian
approach. The more diverse the found domain architectures of the template, the better the
domain decomposition. More diverse domain architectures are more remotely related and
harder to find with homology detection tools like HHblits.

Pdom

In the following, we will describe the method of our domain predictor Pdom. We calculated
the all-against-all alignments with HHblits within the HMM database uniprot boost1 (see
chapter 1). For each alignment between a query and a template, we get the alignment start
and end probabilities for each pair of residues in the query and template. We can combine
the alignment start and end probabilities of several templates to a domain prediction in a
Bayesian statistical model (see figure 2.3). This approach allows us to consider inserted
domains (see section 2.3.3). Since we calculate domain predictions for every cluster in the
uniprot boost1, we can include the domain prediction of the templates in further iterations
to maximize the consistency between the domain predictions (see section 2.3.4).

28 2. Chopping Protein Sequence Space into Domains

2.3 Method

In chapter 1 we introduced the uniprot boost1 database a large set of 4 866 021 protein
profile Hidden Markov Models (HMM) that encompassed the known protein sequence space
(release October 2012, see chapter 1). We performed an all-against-all search with HHblits
within this database. Let q be the query profile HMM, since we queried the rest of the
database for homologs to this query sequence. The detected homologous database profile
HMMs are called templates t1, . . . , tK .

HHblits returns the following information about the alignment between the query q and
the template tk

1. the probability Pqk that query q and template tk are homologous;

2. the alignment backward probability bqk(i, j) that the alignment starts at position i of
the query q and position j of the template tk;

3. the alignment forward probability fqk(i, j) that the alignment ends at position i of
the query q and position j of the template tk;

4. the alignment posterior probability p(qi � tk,j|Aqk) that position i in the query q and
position j in the template tk are aligned.

This information, abbreviated as Aqk = (Pqk, bqk, fqk, p(qi � tk,j|Aqk)), is calculated by
HHblits.

The goal of the statistical framework presented in the following is to extract from the
all-versus-all pairwise alignments Aqk the domain start posterior probabilities psq(i) and
domain end posterior probabilities peq(i) for all sequences q in the database at each position
i. The domain start posterior probability psq(i) is the likelihood for a domain start in
the query q at position i given the pairwise alignments Aqk. The domain end posterior
probability psq(i) is the likelihood for a domain start in the query q at position i given the
pairwise alignments Aqk.

2.3 Method 29

2.3.1 Notation

q query HMM

t1, . . . , tK template HMM with which q is aligned

Lq, Lk length of query sequence q and template sequence tk
i, j, l indices for positions in q or tk
σ, σ′ labels for domain start s or end e position. Without inserted

domains: σ, σ′ ∈ {s, e}. With inserted domains: σ, σ′ ∈
{s0, e0, s1, e1, . . .} (see section 2.3.3 for explanation of superindices)

Pqk probability that q and tk are homologous, calculated by HHblits

bqk(i, j) alignment backward probability that the alignment starts at position
i of the query q and position j of the template tk, calculated from
the Backward algorithm in HHblits

fqk(i, j) alignment forward probability that the alignment ends at position
i of the query q and position j of the template tk, calculated from
the Forward algorithm in HHblits

p(qi � tk,j|Aqk) alignment posterior probability that position i of query q and posi-
tion j of template tk are aligned, calculated from the Backward/-
Forward algorithm in HHblits

Aq = {Aq1, . . . , AqK} pairwise alignments between q and templates t1, . . . , tK . Aqk sub-
sumes all alignment information, Aqk = (Pqk, bqk, fqk, p(qi�tk,j|Aqk)).

Yq = {y1, . . . , y2D} set of ordered domain start s and end e points in the query. Each
point yν = [σ, i]ν consists of a label σ ∈ {s, e} and of the position
i ∈ {0, . . . , Lq} of the ν’th start or end point. D is the number of
domains.

p([σ, i]| . . .) p([σ, i] ∈ Yq| . . .), probability for [σ, i] to be a domain start/end
point

p([σ, i]ν |[σ′, j]ν−1 . . .) probability for label [σ, i] to directly succeed label [σ′, j]
sqk, eqk start and end positions of common homologous region (not aligned

region) between q and tk; must coincide with domain start/end
positions

q ∼ tk q is homologous to tk; example: p(q ∼ tk|Aqk) = Pqk
Fσ,i Forward probability for domain start (σ = s) or end (σ = e)
Bσ,j Backward probability for domain start (σ = s) or end (σ = e)
pred(σ), succ(σ) set of states that are possible predecessors / successors to σ
pσq (i) probability that a domain starts (σ=s) or ends (σ=e) at position i

in the query

30 2. Chopping Protein Sequence Space into Domains

2.3.2 Forward-Backward algorithm for domain start and end prob-
abilities

The sequence of a protein shall be classified in linker and domain regions. Linker regions
are the unconserved or less conserved residues before and after a domain. Those regions are
usually structurally disordered. Every protein sequence q starts with a linker at position
1, possibly of length 0, and it ends with a linker at position Lq. Therefore, the following
virtual domain end and start points are given,

y0 := [e, 0]

y† := [s, Lq + 1] (2.1)

to fix the boundary conditions of the dynamic programming problem.

Figure 2.4: Domain starts and ends for a query sequence with virtual domain end and start at
position 0 and Lq + 1, respectively.

With the exception of inserted domains, every domain is followed by a linker, and every
linker is followed either by another domain or the end of the sequence (see figure 2.4).

We applied the forward-backward algorithm to compute the posterior probability
p([σ, i] ∈ Yq|Aq) for a domain start σ = s and end σ = e at position i ∈ {1, . . . , Lq}, given
the alignments Aq of the query with the K templates (see figure 2.5). Each path through
the dynamic programming matrix shown in figure 2.5 represents one domain decomposition
of the query protein.

We define the domain forward probabilities Fσ,i as the sum of the probabilities of
all paths {y0 . . . yν} starting at y0 = [e, 0] and ending at yν = [σ, i] in the matrix, with
σ ∈ {s, e}:

Fσ,i :=
∑

all paths y1...yν−1

p(y1 . . . yν−1, yν =[σ, i]| y0,Aq) = p([σ, i]| y0,Aq) (2.2)

where y1 . . . yν is a valid path with ordered domain starts and domain ends at positions
i0 < i1 < . . . < iν . Analogously, we define the backward probabilities Bσ,j as the sum of
probabilities of all paths {yν . . . y†} starting at yν = [σ, i] and ending at y† = [s,Lq+1]:

Bσ,i :=
∑

all paths yν+1...y2D

p(yν+1 . . . y2D+1| yν =[σ, i],Aq) = p(y†| yν =[σ, i],Aq) (2.3)

The domain posterior probabilities p([σ, i] ∈ Yq|Aq) for a domain start or end at position
i ∈ {1, . . . , Lq} can be written as:

2.3 Method 31

Figure 2.5: Dynamic programming algorithm that does not take into account inserted domains.
Each path through the matrix represents a domain decomposition of the query protein. By
dynamic programming, the optimal path and the posterior probabilities for domain starts s and
ends e at any position i can be found.

p([σ, i]| y0, y†,Aq) =
p([σ, i], y†| y0,Aq)
p(y†| y0,Aq)

. (2.4)

The denominator is Fs,Lq+1 = Be,0. The numerator can be split into two terms:

p([σ, i], y†, | y0,Aq) =
∑

all paths {y1...y2D} through [σ,i]

p(y1 . . . y2D+1| y0,Aq)

=
∑

all paths {y1...y2D} : yν=[σ,i]

p(y1 . . . yν−1, yν =[σ, i]| y0,Aq) p(yν+1 . . . y2D+1| yν =[σ, i],Aq)

= Fσ,iBσ,i (2.5)

Therefore, the posterior probability is

pσq (i) = p([σ, i]|y0, y†,Aq) =
Fσ,iBσ,i

Fs,Lq+1

(2.6)

The initialization is given by equation (2.1). The iteration equation for the domain
start positions of the forward matrix is:

Fs,i =
∑

all paths y1...yν−1

p(y1 . . . yν−1, yν = [s, i]|y0,Aq)

=
i∑

j=0

∑
all paths y1...yν−2

p(y1 . . . yν−2, yν−1 = [e, j]|y0,Aq) p(yν = [s, i]|yν−1 = [e, j],Aq)

=
i∑

j=0

Fe,j gq(s, i|e, j) (2.7)

32 2. Chopping Protein Sequence Space into Domains

Figure 2.6: Illustration of the Forward iteration equation (2.7). We can calculate the
Forward probability Fs,i for a domain start at position i by summing up the joint probability
of all preceding positions j to be a domain end Fe,j and the transition probability gq(s, i|e, j)
for adjacent domain end at position j and domain start at position i.

where we used the following abbreviation:

gq(σ, i|σ′, j) := p(yν =[σ, i]|yν−1 =[σ′, j],Aq) (2.8)

The iteration equation for the domain end positions of the forward matrix is analogous
to the previous equation. In summary, we get

Fs,i =
i−1∑
j=0

Fe,j gq(s, i|e, j)

Fe,i =
i−1∑
j=0

Fs,j gq(e, i|s, j) (2.9)

The backward iteration equations are derived in the same way:

Bs,i =
∑

all paths yν+1...y2D

p(yν+1 . . . y2D+1|yν = [s, i],Aq)

=

Lq+1∑
j=i+1

∑
all paths yν+2...y2D

p(yν+1 = [e, j], yν+2 . . . y2D+1|yν = [s, i],Aq)

=

Lq+1∑
j=i+1

∑
all paths yν+2...y2D

p(yν+2 . . . y2D+1|yν+1 = [e, j],Aq) p(yν+1 = [e, j]|yν = [s, i],Aq)

=

Lq+1∑
j=i

Be,j gq(e, j|s, i) (2.10)

2.3 Method 33

and analogously for Be,i. In summary, the backward iteration equations are

Bs,i =

Lq+1∑
j=i+1

Be,j gq(e, j|s, i)

Be,i =

Lq+1∑
j=i+1

Bs,j gq(s, j|e, i) (2.11)

The derivation of gq(σ, i|σ′, j) is shown in section B.2.2.

2.3.3 Extension to inserted domains

In about 5 − 20% of multi-domain proteins at least one domain is inserted within or
interlaced with another domain [67]. We introduced start and stop states sλ, eλ for each
level of nesting λ = 0, 1, 2, . . . to model those cases of inserted domains (see figure 2.7).

Forward-Backward algorithm for inserted domain boundary prediction

Equations (2.2)-(2.6) for the definition of the forward, backward and posterior domain proba-
bilities are unmodified, except that they now apply to states σ, σ′ ∈ {s0, e0, s1, e1, s2, e2, . . .}.
The iteration equations for forward and backward probabilities are generalized:

Fσ,0 = I(σ=e0)

Bσ,Lq+1 = I(σ=s0)

Fσ,i =
∑

σ′∈pred(σ)

i−1∑
j=0

Fσ′,j gq(σ, i|σ′, j)

Bσ,i =
∑

σ′∈succ(σ)

Lq+1∑
j=i+1

Bσ′,j gq(σ
′, j|σ, i) (2.12)

where the definition of gq(σ
′, j|σ, i,) in equation (2.8) is the same as before but applies to

σ, σ′ ∈ {s0, e0, s1, e1, s2, e2, . . .}. pred(σ) and succ(σ) are the sets of possible predecessor
and successor states of σ, respectively, as shown in figure 2.7b. Example given, pred(s0) =
{e0}, pred(e0) = {s0, e1}.

In equation (2.6) the state s is changed to s0:

pσq (i) = p([σ, i]|y0, y†,Aq) =
Fσ,iBσ,i

Fs0,Lq+1

. (2.13)

We derive gq(σ, i|σ′, j) for inserted domains in section B.3.

34 2. Chopping Protein Sequence Space into Domains

Figure 2.7: Dynamic programming algorithm that takes possible inserted domains into account.
(a) Each path through the matrix represents a domain decomposition of the query protein. Into a
domain between states s0 and e0, a domain can be inserted whose start and end positions are
labeled with s1 and e1. (b) Within inserted domains, further domains can be inserted in a nested
fashion. Domain starts are labeled s0, s1, s2, . . ., domain ends are labeled e0, e1, e2, The upper
indices denote the level of nested insertions. The probability for a domain insertion is pins, the
probability for an inserted domain to be followed by another inserted domain on the same nesting
level is prep.

2.3.4 Consistency iterations

Our goal is to iteratively improve the consistency between predictions for all pairs of
sequences by using the information on domain starts and ends in template tk from the
previous iteration to improve the prediction of domain starts and ends of query q. The first
iteration corresponds to what has been described so far. After a few consistency-increasing
iterations, the domain start and end probability profiles should converge.

Updating the query-template alignments

In the first iteration of the algorithm, predictions were based on the alignment start and
end probabilities , pσqk (equations (B.1), (B.2)). In subsequent iterations, we use the domain
start and end posterior probabilities pσk ,

pσk(i) := p([σ, i] ∈ Ytk | y0, y†,Atk) (2.14)

derived in the previous iteration, in order to improve the alignment start and end probability
estimates p′σqk. In the following, we assume that the alignment forward and backward
probabilities fqk(i, j) and bqk(i, j) are approximately independent of the domain start and
end posterior probabilities pσk(i), since these integrate information gathered over many

2.3 Method 35

A C B

A'

B'

{

{

equation 2.14

equation 2.16

,

,

,

,

Figure 2.8: The simple update of the alignment start probabilities bqk(i, j) with the predicted

domain start probabilities p
bsc
k (j) of the previous iteration leads to improved alignment

start profiles ps
′

qk(i) (see section 2.3.4). Combining the alignment probability p(qi � tk,j|Aqk)
and the predicted domain boundaries p

bsc
k (j) of the previous iteration in the calculation

of r
bσc
qk (i) leads to new domain start signals after domains in the query not shared with

the template tk (see section 2.3.4). The same procedure can be applied analogously to the
alignment and domain end probabilities.

alignments:

psqk
′(i) ≈

∑Lk
j=1 bqk(i, j) p

s
k(j)∑Lq

i′=1

∑Lk
j=1 bqk(i

′, j) psk(j)

peqk
′(i) ≈

∑Lk
j=1 fqk(i, j) p

e
k(j)∑Lq

i′=1

∑Lk
j=1 fqk(i

′, j) pek(j)
(2.15)

We transfer the information about domain starts and ends from the templates onto the
query.

Transferring information about domain boundaries within alignments

The previous modification to subsequent iterations is not sufficient to attain full consistency
between the domain decomposition of all queries in the database. Consider a query sequence

36 2. Chopping Protein Sequence Space into Domains

with three domains, A, C and B and a template with homologous domains A′ and B′

aligned to it. Suppose the template has reliably predicted domain boundaries between A′

and B′. Both sequences have domains A and B in common, improving the estimate of the
alignment start and end positions will not improve the prediction of the domain end of A
and the domain start of B in the query, even though the alignment would allow to predict
these boundaries in the query from their positions in the template (see figure 2.8).

We transfer the information about domain starts and ends from the templates onto the
query by using the alignment posterior probability p(qi � tk,j|Aqk) that position i of q and
position j of tk are aligned:

r
bσc
qk (i) = p(sqk ≤ i ≤ eqk ∧ [σ, i] ∈ Yq|Aqk, pbσck) =

Lq∑
j=1

p(qi � tk,j|Aqk) pbσck (j) (2.16)

We define bσc by bsλc := s and beλc := e, where s and e signify any of the start or end
states, respectively. We further define r∗qk as the probability that the alignment Aqk includes
column i of q:

r∗qk(i) = p(sqk ≤ i ≤ eqk|Aqk) =

Lq∑
j=1

p(qi∼ tk,j|Aqk) (2.17)

For the consistency iterations we use almost the same procedure to compute the next
iteration of psq(i), including the forward-backward algorithm. But instead of computing
gq(σ, i|σ′, j) as defined in equation (2.8), we needed to calculate

gq(σ, i|σ′, j) = p([σ, i]ν |[σ′, j]ν−1,Aq, ps1...K
′, pe1...K)′ , (2.18)

which differs from equation (2.8) only by conditioning also on the domain start and end
posterior probability densities psk(j) and pek(j) from the previous iteration (equation (2.14)).
The information in psk(j) and pek(j) is included by psqk

′(i), peqk
′(i), rsqk(i), r

e
qk(i), and r∗qk(i).

We derived gq(σ, i|σ′, j) for the consistency iteration in section B.4.

2.3.5 Algorithm for Domain Border Prediction

We calculate a domain decomposition with the following algorithm. For this purpose, we
calculate the mean posterior domain probability for each σ and position i in a window of
i± δ:

p∗([σ, i] ∈ Yq|Aq) =
i+δ∑
j=i−δ

p([σ, i] ∈ Yq|Aq)
(

1.0− |i− j|
δ

)
We determine for each position i and each σ the most likely precursor border [j, σ′] in

the matrix v([σ, i]):

v([σ, i]) = max
j<i

σ′∈pred(σ)

F (σ′, j)g(i, σ|j, σ′) p([σ, i] ∈ Yq|Aq)
p∗([σ, i] ∈ Yq|Aq)

2.3 Method 37

For each entry we save the most likely precursor [j, σ′]. Beginning from i = Lq + 1 and
and σ = s0 we trace back the most likely path through the matrix v([σ, i]), that ends in
σ = e0 and i = 0.

2.3.6 HHblits - Alignment Information Output

HHblits builds high-quality MSAs starting from single sequences or from MSAs. It trans-
forms the input into a query HMM and iteratively searches through a database of HMMs
by adding significantly similar sequences to the query HMM for the next search iteration.
HHblits scans a discretized representation of the database Hidden Markov profiles, the
column state sequences, with a fast prefilter. HMMs whose column state sequences pass
the prefilter are aligned to the query HMM using the fast Viterbi HMM-HMM alignment
algorithm. HHblits realigns all high scoring Viterbi alignments in a second stage using the
more accurate, but slower Maximum ACcuracy (MAC) algorithm.

During the Maximum Accuracy algorithm the backward and forward algorithms are
applied. These algorithms calculate the alignment start and end probabilities, respectively.
The alignment posterior probability for position i in the query q and position j in the
template tk is calculated from the alignment start and end probabilities.

Alignment Matrix Compression

The alignment start, alignment end and alignment posterior probabilities together with the
probability that query q and template tk are homologs are used by Pdom. For our final goal
to split the whole known sequence space into domains we developed a compressed binary
format to output these matrices with HHblits (see figure 2.9).

Floats are usually saved in 32 bits. The last bit is for the sign, the following eight bits
are for the exponent and the remaining 23 bits are for the mantissa. This representation is
defined in the Standard for Floating-Point Arithmetic by the Institute of Electrical and
Electronics Engineers (IEEE 754).

The float value can be calculated from its bits in the following way:

(−1)sign · 2exponent−127 · fraction (2.19)

exponent =
7∑
i=0

b23+i2
i (2.20)

mantissa = 1 +
22∑
i=0

b22−i2
−i−1 (2.21)

For our binary representation of probabilities, we do not need the full scope of 32 bits
and can reduce the representation to eight bits, the usual size of a char (see figure 2.10).
The compressed float representation can display a minimal float value of 3.0517578 · 10−5

and a maximal float value of 1.9375 with a precision of 1.907349 · 10−6.

38 2. Chopping Protein Sequence Space into Domains
<
q
u
e
r
y
_
n
a
m
e
>
\
0
<
q
u
e
r
y

l
e
n
g
t
h
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

#
f
i
r
s
t

a
l
i

<
t
e
m
p
l
a
t
e

n
a
m
e
>
\
0
<
t
e
m
p
l
a
t
e

l
e
n
g
t
h
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>
<
a
l
i

p
r
o
b
|
c
h
a
r
>
<
a
l
i

s
i
m
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

#
a
l
i

s
t
a
r
t

p
r
o
b
a
b
i
l
i
t
e
s

<
q
u
e
r
y
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

<
t
e
m
p
l
a
t
e
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>
<
p
r
o
b
|
c
h
a
r
>
.
.
.
<
p
r
o
b
|
c
h
a
r
>
\
0

.
.
.

<
q
u
e
r
y
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

<
t
e
m
p
l
a
t
e
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>
<
p
r
o
b
|
c
h
a
r
>
.
.
.
<
p
r
o
b
|
c
h
a
r
>
\
0

<
0
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

#
a
l
i

e
n
d

p
r
o
b
a
b
i
l
i
t
i
e
s

<
q
u
e
r
y
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

<
t
e
m
p
l
a
t
e
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>
<
p
r
o
b
|
c
h
a
r
>
.
.
.
<
p
r
o
b
|
c
h
a
r
>
\
0

.
.
.

<
q
u
e
r
y
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

<
t
e
m
p
l
a
t
e
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>
<
p
r
o
b
|
c
h
a
r
>
.
.
.
<
p
r
o
b
|
c
h
a
r
>
\
0

<
0
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

#
a
l
i

p
o
s
t
e
r
i
o
r

p
r
o
b
a
b
i
l
i
t
i
e
s

<
q
u
e
r
y
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

<
t
e
m
p
l
a
t
e
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>
<
p
r
o
b
|
c
h
a
r
>
.
.
.
<
p
r
o
b
|
c
h
a
r
>
\
0

.
.
.

<
q
u
e
r
y
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

<
t
e
m
p
l
a
t
e
_
p
o
s
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>
<
p
r
o
b
|
c
h
a
r
>
.
.
.
<
p
r
o
b
|
c
h
a
r
>
\
0

<
0
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

#
s
e
c
o
n
d

a
l
i

<
t
e
m
p
l
a
t
e

n
a
m
e
>
\
0
<
t
e
m
p
l
a
t
e

l
e
n
g
t
h
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>
<
a
l
i

p
r
o
b
|
c
h
a
r
>
<
a
l
i

s
i
m
|
u
n
s
i
g
n
e
d

s
h
o
r
t

i
n
t
>

#
a
l
i
g
n
m
e
n
t

s
t
a
r
t

p
r
o
b
a
b
i
l
i
t
e
s

.
.
.

F
igu

re
2.9:

C
om

p
ression

of
align

m
en

ts
for

P
d
om

in
H

H
b
lits;

T
h
e

ou
tp

u
t

in
clu

d
es

th
e

n
am

e
of

th
e

q
u
ery,

th
e

len
gth

of
th

e
q
u
ery

an
d

for
each

tem
p
late

th
e

tem
p
late

n
am

e,
th

e
len

gth
of

th
e

tem
p
late,

th
e

p
rob

ab
ility

th
at

q
u
ery

an
d

tem
p
late

are
h
om

ologou
s,

th
e

sim
ilarity

b
etw

een
q
u
ery

an
d

tem
p
late

an
d

th
e

th
ree

m
atrices

for
align

m
en

t
start

p
rob

ab
ilities,

align
m

en
t

en
d

p
rob

ab
ilities

an
d

align
m

en
t

p
osterior

p
rob

ab
ilities.

T
h
e

m
atrices

are
p
rin

ted
for

each
q
u
ery

p
osition

in
lin

es
of

con
secu

tive
tem

p
late

p
osition

s
w

ith
p
rob

ab
ilities

ab
ove

0.01.

2.3 Method 39

Figure 2.10: Floats are usually saved in 32 bits. The last bit is for the sign, the following
eight bits are for the exponent and the remaining 23 bits are for the mantissa. For our
binary representation of probabilities, we do not need the full precision of 32 bits and can
reduce the representation to eight bits, the usual size of a char. Therefore, we use only the
bits indicated by e and m.

2.3.7 Training, Testing and Benchmark Set

We filtered the SCOP (release 1.75) to a maximum 25% pairwise sequence identity and
filtered only pairs with at least 90% coverage. We mapped the filtered SCOP sequences to
UniRef50 sequences with SWIPE, a fast Smith-Waterman alignment implementation [53].
We included only domain annotations with an e-value < 10−5, and only proteins that have
annotations in releases of Pfam and ADDA, so we can compare Pdom to those domain
predictors. The selected domains were filtered for a maximal overlap of ten residues. We
split up the proteins by their SCOP domain folds into a training, testing and benchmark
set.

The final benchmark set consists of 914 proteins with 1379 domain annotations. The
final test set for parameter optimization of Pdom consists of 240 proteins with 393 domain
annotations.

Pfam

We used the domain annotation of Pfam-A (version 27.0) [26].

ADDA

We used the latest domain predictions of ADDA (October 2012,
http://genserv.anat.ox.ac.uk/downloads/adda/) [34].

http://genserv.anat.ox.ac.uk/downloads/adda/

40 2. Chopping Protein Sequence Space into Domains

0.000

0.002

0.004

0.006

0 300 600 900
length

fr
e
q
u
e
n
c
y

fit

observation

A

0.00

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200
length

fr
e
q
u
e
n
c
y

estimation

B

Figure 2.11: (A) Training with fit of the domain length distribution; (B) Estimation of the
linker length distribution

2.4 Optimization and Training

2.4.1 Training of Domain and Linker Lengths

The algorithm requires prior knowledge about the linker length distribution, the domain
length distribution and the length distributions for domain fragments separated by domain
insertions (see section B.2.2). The algorithm assumes different distributions for the different
nesting levels λ. There are not enough examples for higher nesting levels in SCOP, therefore
we assumed the same distributions for those higher nesting levels.

We trained the domain length and the length of domain fragments split by domain
insertions from SCOP annotations (SCOPe version 2.05 [27]; filtered to a maximum of 95%
pairwise sequence identity). We fitted the distribution

f(x, a, c, d) =

{
z−1 x−a

c−a if x ≤ c

z−1e−d(x−c) if x > c

with:

z−1 =
1− e−d

0.5(c− a− 1) + 1

to these trained statistics with the L-BFGS-B algorithm [17] (see figure 2.11A and
figure 2.12).

SCOP separates proteins in the PDB completely into domains without linker regions.
Therefore, we assumed a reasonable distribution for the linker lengths (see figure 2.11B).

2.4 Optimization and Training 41

0.0000

0.0025

0.0050

0.0075

0 300 600 900
length

fr
e
q
u
e
n
c
y

fit

observation

A

0.000

0.005

0.010

0.015

0 300 600 900
length

fr
e
q
u
e
n
c
y

fit

observation

B

Figure 2.12: Training with fit of the left (A) and right (B) domain fragment length
distributions. Those fragments are caused by insertions.

2.4.2 Scores for Benchmark and Optimization

Domain Boundary Shift For each annotated domain start in the benchmark set we
pick the closest predicted domain start. The distance between annotated and predicted
domain start is called shift. The predictions are more accurate the lower the shift. The
same is done for domain ends.

Domain starts close to the N-terminus and domain ends close to the C-terminus are
easier to predict. Therefore, we limited the benchmark to annotated domain borders at
least 40 residues away from the N-/C-terminal site of the protein. However, this score does
not penalize too short domain predictions (see figure 2.13).

Domain Coverage For each annotated domain in the reference set we calculate the
coverage with each predicted domain. For each annotation we pick the best-covering
prediction. Each prediction may be used only once. This statistic does not penalize too
long domain predictions for proteins sparsely covered by reference domain annotations (see
figure 2.14).

Optimization Score We developed an optimization score that captures how well the
domain prediction matches the annotation. For each reference domain of the query we
pick the best covering predicted domain. No predicted domain can be used twice to cover
two reference domains. For each predicted domain of the query we pick the best covering
reference domain. No annotated reference domain can be used twice to cover two predicted
domains. The final score is the mean coverage of all references and predictions. The score
is designed to penalize too short and too long domain predictions (see figure 2.15).

42 2. Chopping Protein Sequence Space into Domains

Figure 2.13: For each domain start in the reference set we calculate the distance to the
closest predicted domain border in this domain boundary shift benchmark.

2.4 Optimization and Training 43

Figure 2.14: For each annotated domain in the reference set we calculate the coverage with
each predicted domain. For each annotation we choose one prediction that covered the
annotation best. Each prediction may be used only once.

44 2. Chopping Protein Sequence Space into Domains

Figure 2.15: The illustrated score picks for each reference domain of the query the best
covering predicted domain. No predicted domain may be used to cover two reference
domains. The same is done the other way around. The final score is the mean coverage of
all references and predictions.

2.4 Optimization and Training 45

Figure 2.16: The score shown in figure 2.15 assumes that all reference domains for the
query are known. Therefore, we introduced a filtered score that fixes this disadvantage. We
include only the coverage of predictions in the statistic that could theoretically be covered
by an annotation above a threshold of 10%.

46 2. Chopping Protein Sequence Space into Domains

The score assumes a perfect reference annotation, in which every domain of every protein
is accurately annotated. Therefore, we introduce a filtered score that fixes this disadvantage.
We include only the coverage of predictions in the mean coverage that can be covered by
an annotation above a threshold of 10% (see figure 2.16).

This score penalizes too long predictions and too short predictions, therefore it is suitable
for optimization.

2.4.3 Parameter Optimization

Alignment Parameters of HHblits The alignment parameters of HHblits were opti-
mized to generate accurate final alignments, but the intermediate alignment start and end
distributions used by Pdom were never directly optimized.

We focused on the following three parameters of HHblits:

• shift: profile-profile score offset

• gapf: gap open penalty for deletes

• gapg: gap open penalty for inserts

For our optimization we assumed the same setting for the gap open penalty for deletes
and inserts.

Template Weighting Parameter α The different alignments that lead to a domain
prediction might contain redundant information. Therefore, we weight the contribution of
each alignment to the Bayes factor (see equation (B.4)). The weighting wσqk is regulated
by the parameter α (see section B.2.3). An α of zero means that all templates contribute
equally in the Bayes factor. Higher values of α decrease the contribution of templates with
similar alignment information. α might depend on the alignment parameters, therefore we
optimized them together.

Results We performed a grid search for optimal parameter settings. For each pair of
parameters we calculated the corresponding alignments of our optimization set with HHblits
and calculated the domain predictions with Pdom.

For all tested parameter combinations of gap and shift an α of 0.0 performs best. There
are two parameter combinations with similar high scores gap 0.6 with shift −1.0 and gap
0.0 with shift −1.0 (see figure 2.17). For gap 0.0 we have more alignments than for gap 0.6
(see figure 2.18A).

A statistical model can be disturbed by noise. In the case of Pdom, noise are alignments
that do not start or end at actual domain boundaries. With the change in the default
parameters of HHblits we might get more of them. We defined informative alignments
to have a sum of alignment start probabilities ±20 residues around an annotated domain
start > 0.2 or a sum of alignment end probabilities ±20 residues around an annotated
domain end > 0.2. So we have at least a small signal for an annotated domain boundary in

2.5 Results 47

the informative alignment. We calculated the fraction of informative alignments for our
domain prediction with respect to the optimization reference for all alignment parameter
combinations (see figure 2.18B). The fraction of informative alignments is higher for gap
0.6 with shift −1.0 than for gap 0.0 with shift −1.0.

More remote domain architectures help us to infer domain boundaries. Alignments of
proteins with more remote domain architectures are more difficult, since the homologous
region of the query and template might be several residues away from the N-terminal and
C-terminal protein site. We calculated the mean sum of alignment start probabilities in a
window of ±20 residues around annotated domain starts at least 40 residues away from
the query’s N-terminal site and a greater portion of the alignment start probabilities at
least 40 residues away from the template’s N-terminal site (see figure 2.19A). We did the
corresponding statistic for difficult alignment ends (see figure 2.19B).

The parameter combination of gap 0.6 with shift −1.0 performed for difficult alignment
starts and ends moderately well, whereas the parameter combination of gap 0.0 with shift
−1.0 performed for difficult alignment ends well but for difficult alignment starts badly.

Therefore, we decided to use a shift of −1.0, a gap penalty of 0.6 and an alpha of 0.0.
By default, HHblits uses a gap of 0.6 with a shift of −0.03.

2.5 Results

Domain Boundary Shift ADDA predicts domain start and end sites within 20 residues
in 15% of the reference domain start and end sites (see figure 2.20). Pfam annotates domain
start sites within 20 residues in 67% of the reference domain start sites and annotates
domain end sites within 20 residues in 58% of the reference domain end sites.

The first iteration of Pdom predicts domain start sites within 20 residues in 50% of
the reference domain start sites and annotates domain end sites within 20 residues in 37%
of the reference domain end sites. After the second iteration predicted domain starts are
within 20 residues in 50% of the reference domain start sites and predicted domain ends
are within 20 residues in 45% of the reference domain end sites.

Domain Coverage The mean coverage of domains in the benchmark by predictions of
ADDA was 32%, 80% by Pfam, 74% and 75% by Pdom after the first iteration and after
the second iteration, respectively (see figure 2.21).

2.5.1 Analysis of Good Predictions

In table 2.1 we show several examples of good predictions generated by Pdom after the
second iteration.

Q6N2W5 encompasses two SCOP domains according to our mapping (see table 2.2).
The prediction of Pdom after the second iteration covers the SCOP domains almost perfectly.
However, the predicted domain Q6N2W5 5 includes the long linker between the two SCOP

48 2. Chopping Protein Sequence Space into Domains

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.9

−0.7

−0.6

−0.4

−0.3

−0.2

−0.1

−0.03

0

0.00 0.25 0.50 0.75 1.00
gap

s
h
if
t

0.1

0.2

0.3

optimization
score

Figure 2.17: The filtered optimization score for domain predictions for different alignment
parameter settings of HHblits. The parameter combinations of gap penalty 0.6 with shift
−1.0 and gap penalty 0.0 with shift −1.0 performed similarly well. HHblits uses by default
the gap penalty 0.6 and shift −0.03.

2.5 Results 49

−2
−1.8
−1.6
−1.4
−1.2

−1
−0.9
−0.7
−0.6
−0.4
−0.3
−0.2
−0.1

−0.03
0

0.00 0.25 0.50 0.75 1.00
gap

s
h
if
t

0
50000

100000

150000

number alignments

A

−2
−1.8
−1.6
−1.4
−1.2

−1
−0.9
−0.7
−0.6
−0.4
−0.3
−0.2
−0.1

−0.03
0

0.00 0.25 0.50 0.75 1.00
gap

s
h
if
t

0.4 0.5 0.6 0.7 0.8

fraction contributing alis

B

Figure 2.18: For different alignment parameters of HHblits the number of alignments (A)
and the fraction of contributing alignments (B). A statistical model can be disturbed by
noise. In the case of Pdom noise are alignments that do not start or end at actual domain
boundaries. They do not contribute to the prediction. We identified two optimal parameter
combinations with respect to the optimization score (see figure 2.17). With respect to the
ratio of contributing alignments the gap penalty of 0.6 with shift −1.0 performs better than
the gap penalty of 0.0 with shift −1.0.

50 2. Chopping Protein Sequence Space into Domains

−2
−1.8
−1.6
−1.4
−1.2

−1
−0.9
−0.7
−0.6
−0.4
−0.3
−0.2
−0.1

−0.03
0

0.00 0.25 0.50 0.75 1.00
gap

s
h
if
t

0.0 0.2 0.4 0.6

difficult alignment starts

A

−2
−1.8
−1.6
−1.4
−1.2

−1
−0.9
−0.7
−0.6
−0.4
−0.3
−0.2
−0.1

−0.03
0

0.00 0.25 0.50 0.75 1.00
gap

s
h
if
t

0.0 0.2 0.4 0.6 0.8

difficult alignment ends

B

Figure 2.19: More remote domain architectures help us to infer domain boundaries. Align-
ments of proteins with more remote domain architectures are more difficult, since the
homologous region of the query and template might be far off the for alignments trivial
N-terminal and C-terminal protein site. For different alignment parameters of HHblits we
calculated in (A) the mean of the summed alignment start probabilities at least 40 residues
away from the N-terminal site and ±20 residues around an annotated domain start at
least 40 residues away from the query’s N-terminal site. In (B) we calculated the mean
of the summed alignment end probabilities at least 40 residues away from the template’s
C-terminus and ±20 residues around an annotated domain end at least 40 residues away
from the query’s C-terminus. We identified two optimal parameter combinations with
respect to the optimization score (see figure 2.17). With respect to the alignment quality
of proteins with more remote domain architectures the gap penalty 0.6 with shift −1.0
performs better than the gap penalty 0.0 with shift −1.0.

2.5 Results 51

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
≤ |shift|

fr
e
q
u
e
n
c
y

0.000.020.040.060.08

−20 −10 0 10 20
shiftfr

e
q
u
e
n
c
y

0.000.010.020.030.040.05

−20 −10 0 10 20
shiftfr

e
q
u
e
n

c
y

Figure 2.20: Domain boundary shift benchmark for benchmark domains with starts and
ends at least 40 residues away from the corresponding protein’s C- and N-terminus for the
domain predictors ADDA, Pfam and Pdom.

52 2. Chopping Protein Sequence Space into Domains

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
> coverage

fr
a
c
ti
o
n
 o

f
d
o
m

a
in

s

ADDA

Pdom

Pdom 2it

Pfam

Figure 2.21: Coverage benchmark for the domain predictors ADDA, Pfam and Pdom.
Despite the manually ensured quality of Pfam the automatic predictions of Pdom are quite
close in this benchmark.

2.5 Results 53

protein domain source family borders
Q9HJM0 d1f0ya2 SCOP c.2.1.6 3-216
Q9HJM0 d1f0ya1 SCOP a.100.1.3 219-314
Q9HJM0 Q9HJM0 1 Pdom 2nd iteration 1-220
Q9HJM0 Q9HJM0 2 Pdom 2nd iteration 221-314
Q7D0H0 d1ixca1 SCOP a.4.5.37 4-76
Q7D0H0 d1i6aa SCOP c.94.1.1 93-289
Q7D0H0 Q7D0H0 1 Pdom 2nd iteration 4-75
Q7D0H0 Q7D0H0 2 Pdom 2nd iteration 78-295
Q8KEN1 d1mb3a SCOP c.23.1.1 6-123
Q8KEN1 d1gxqa SCOP a.4.6.1 131-226
Q8KEN1 Q8KEN1 1 Pdom 2nd iteration 5-114
Q8KEN1 Q8KEN1 2 Pdom 2nd iteration 133-227
Q7NMA6 d1mb3a SCOP c.23.1.1 14-129
Q7NMA6 d1gxqa SCOP a.4.6.1 143-234
Q7NMA6 Q7NMA6 1 Pdom 2nd iteration 13-119
Q7NMA6 Q7NMA6 2 Pdom 2nd iteration 139-234
Q8TJN6 d1vmea2 SCOP d.157.1.3 38-256
Q8TJN6 d1e5da1 SCOP c.23.5.1 260-403
Q8TJN6 Q8TJN6 1 Pdom 2nd iteration 1-258
Q8TJN6 Q8TJN6 2 Pdom 2nd iteration 259-404

Table 2.1: Examples for good Pdom predictions and their SCOP annotation

54 2. Chopping Protein Sequence Space into Domains

SCOP
protein domain family borders
Q6N2W5 d1bxda d.122.1.3 476-580
Q6N2W5 d1a2oa1 c.23.1.1 645-745

Pdom 2nd iteration
Q6N2W5 Q6N2W5 1 1-254
Q6N2W5 Q6N2W5 2 255-362
Q6N2W5 Q6N2W5 3 363-470
Q6N2W5 Q6N2W5 4 471-582
Q6N2W5 Q6N2W5 5 587-751
Q6N2W5 Q6N2W5 6 754-1021
Pdom 2nd iteration with uniform linker length distribution
Q6N2W5 Q6N2W5 1 207-314
Q6N2W5 Q6N2W5 2 471-581
Q6N2W5 Q6N2W5 3 643-751
Q6N2W5 Q6N2W5 4 914-1021

Table 2.2: SCOP annotation and Pdom prediction for protein Q6N2W5

domains. This behavior could not be explained by the alignments. Therefore, it seems
to be a problem with the linker length distribution. We assumed a uniform linker length
distribution In a simple test and generated a much better prediction by Pdom (see table 2.2).
The linker length distribution is an estimation at the moment (see section 2.4.1). We will
train the linker length distribution from the linker lengths of the prediction after the second
iteration. For this purpose, an initial relaxed linker length distribution should be applied,
so linkers can be introduced but not enforced.

2.5.2 Analysis of Bad Predictions

Bad Predictions in the 1st Iteration of Pdom

Q9KEQ2 encompasses two SCOP domain annotations (see table 2.22). Pdom predicted
one domain partially overlapping both SCOP domains. No calculated alignment included a
complete domain (see figure 2.23). For a higher shift (−0.03) there is more noise for the
domain start and end probabilities, but there are also full length domain alignments (see
figure 2.24). During the parameter optimization for HHblits (shift and gap penalty) we
improved the overall prediction accuracy with Pdom, however for some queries we decreased
the accuracy.

In this case, the resulting alignment starts and ends indicate fragments of complete
domains. Queries that are only aligned with domain fragments cannot be handled during
the runtime of Pdom. If we want to avoid those cases, we have to do it before Pdom. If
they are detectable, those queries could be recalculated with different parameter settings for
HHblits. Perhaps, we can select optimal parameters for the query with a machine learning

2.5 Results 55

SCOP
protein domain family borders
Q9TYQ8 d1khba2 c.109.1.1 45-303
Q9TYQ8 d1khba1 c.91.1.1 304-620

Pdom 1st iteration
Q9TYQ8 Q9TYQ8 1 54-171
Q9TYQ8 Q9TYQ8 2 172-290
Q9TYQ8 Q9TYQ8 3 310-384
Q9TYQ8 Q9TYQ8 4 385-449
Q9TYQ8 Q9TYQ8 5 450-526
Q9TYQ8 Q9TYQ8 6 531-613

Table 2.3: SCOP annotation and Pdom prediction for protein Q9TYQ8

approach like a neural network depending on features of the multiple sequence alignment of
the query.

Q9TYQ8 encompasses two SCOP domain annotations (see table 2.3). Both SCOP
domains were derived from the protein 1khb in the PDB. Pdom predicts six domains. Those
splits have no structural foundation (see figure 2.26 and figure 2.27). In this case, noisy
alignment start and end signals (see figure 2.25) led to wrong domain predictions.

For the prediction of the domains of one query we include the alignments to different
templates. Those alignments may contain conflicting information. It might be beneficial to
introduce some kind of outlier detection in Pdom to prohibit alignments that encompass
truncated domains to disturb the prediction. This outlier detection is a challenging
task, since it could be difficult to decide between single domain alignments compared to
multi-domain alignments and truncated domain alignments compared to single domain
alignments.

56 2. Chopping Protein Sequence Space into Domains

SCOP
protein domain family borders
Q9KEQ2 d1xc3a1 c.55.1.10 4-121
Q9KEQ2 d1z05a2 c.55.1.10 129-292

Pdom 1st iteration
Q9KEQ2 Q9KEQ2 1 59-244

Figure 2.22: SCOP annotation and Pdom prediction for protein Q9KEQ2

0.4
0.3
0.2
0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 100 200 300
query position i

p
ro

b
a
b
ili

ty

max ali start prob

max ali end prob

Query: Q9KEQ2

Figure 2.23: Maximum alignment start and end profile over all templates with annotated
SCOP domain start and end positions (dashed lines) of protein Q9KEQ2.

0.5
0.4
0.3
0.2
0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 100 200 300
query position i

p
ro

b
a
b
ili

ty

max ali start prob

max ali end prob

Query: Q9KEQ2 − shift: −0.03

Figure 2.24: Maximum alignment start and end profile over all templates with annotated
SCOP domain start and end positions (dashed lines) of protein Q9KEQ2 with lower
alignment shift 0.03.

2.5 Results 57

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 200 400 600
query position i

p
ro

b
a

b
ili

ty

max ali start prob

max ali end prob

Query: Q9TYQ8

Figure 2.25: Maximum alignment start and end profile over all templates with annotated
SCOP domain start and end positions (dashed lines) for protein Q9TYQ8.

Figure 2.26: Split of domain 1khba2 accord-
ing to the domain prediction of Pdom in the
1st iteration for the protein Q9TYQ8

Figure 2.27: Split of domain 1khba1 accord-
ing to the domain prediction of Pdom in the
1st iteration for the protein Q9TYQ8

58 2. Chopping Protein Sequence Space into Domains

SCOP
protein domain family borders
Q7UHV2 d1umqa a.4.1.12 154-204
Q7UHV2 d1dbwa c.23.1.1 32-144

Pdom 1st iteration
Q7UHV2 Q7UHV2 1 75-133
Q7UHV2 Q7UHV2 2 141-221

Pdom 2nd iteration
Q7UHV2 Q7UHV2 1 75-138

Table 2.4: SCOP annotation and Pdom prediction for protein Q7UHV2

Bad Cases in the 2nd Iteration of Pdom

Q7UHV2 has two domains according to the SCOP mapping (see table 2.4).
After the first iteration Pdom predicts both domains quite accurately. After the second

iteration the prediction of the second domain is completely missing.
The maximum alignment start and end profile over all templates for this query show

that there is no alignment encompassing the second domain (see figure 2.28). We use r∗qk in
the consistency iterations to hide query positions that are not covered by alignments (see
section 2.3.4). r∗qk prohibits the inference of the second domain. The suppression by r∗qk is
in those cases too strong.

Q82BT2 and Q9VC63 each encompass two instances of domains from the SCOP family
c.37.1.12. After the first iteration of Pdom those domains were completely covered. In the
second iteration of Pdom those domains were split. We mapped the splits of the domains
to the corresponding structures (see figures 2.31, 2.32, 2.33 and 2.34).

For one of those structures there is a domain prediction at the PDB by Domain Parser
that suggests an inserted domain in the region where our splits occur [66]. We did not find
evidence for this inserted domain in the alignments, that means there was no alignment
starting and ending at the suggested inserted domain borders.

All alignments, except of one, have alignment start and end probability peaks at the
annotated domain start and end sites or outside the annotated domain. Therefore, there
was no domain boundary predicted within the annotated domain after the first iteration
of Pdom. After the second iteration there were several peaks in the distributions of r

bσc
qk

(see section section 2.3.4) around the position of the single wrong alignment start. Those
peaks were transferred from homologous domains that found the same or similar truncated
templates, even if they did not predict a domain border at those positions. Through the
accumulated wrong signal from different templates the annotated domains were split after
the second iteration of Pdom. The sequences of those multiple sequence alignments were
similar in sequence, but differ in length at the N-terminal site (e.g. cluster VAVPUCEBA,
see figure 2.35). According to the annotation at the GenBank [13] those sequences were
not complete.

2.5 Results 59

0.2

0.1

0

0.1

0.2

0 50 100 150 200
query position i

p
ro

b
a

b
ili

ty

max ali start prob

max ali end prob

Query: Q7UHV2

Figure 2.28: Maximum alignment start and end profile over all templates with annotated
SCOP domain start and end positions (dashed lines)

The clusters of truncated sequences can impact the predictions of Pdom in the consistency
iterations. Therefore, it is useful to build a uniprot20 excluding truncated sequences for
Pdom. As of August 2016, about 10% of the sequences in the UniProt are truncated. From
this database a new diversity-enriched database may be recalculated. This requires that
the annotation of segmented sequences in the UniProt is complete. For the clustering of
the uniprot20 we require the sequences within a cluster to cover each other by at least 90%.
Truncated sequences can be clustered to their complete homologs using an asymmetrical
condition that the longer sequence covers the shorter sequence by at least 90%.

Q7QG29 encompasses three SCOP domains. The prediction for the first domain was
split into two parts in both iterations of Pdom. We transferred the split on the structure of
d1gz8a (see figure 2.36). CATH split the SCOP domain d1gz8a on the structure 1gz8
in the PDB. The additional domain border of CATH was close to ours. We analyzed the
alignments that caused the additional domain border. The three causing templates were
probably not truncated. Therefore, the prediction of Pdom might be accurate and the
SCOP annotation could be wrong. SCOP classifies domains if they see structural subunits
reoccurring in different structures with different domain architectures. Therefore, if two
domains appear always together in the scarce structural data of the PDB, they will be
classified as one domain in SCOP.

The predicted split of domain d1nz6a in the second iteration of Pdom was caused by
the templates HEWKELABA. Most sequences in this multiple sequence alignment were
annotated in the UniProt to be truncated.

60 2. Chopping Protein Sequence Space into Domains

SCOP
protein domain family borders
Q82BT2 d1l7vc c.37.1.12 45-228
Q82BT2 d1jj7a c.37.1.12 313-525

Pdom 1st iteration
Q82BT2 Q82BT2 1 1-311
Q82BT2 Q82BT2 2 312-521

Pdom 2nd iteration
Q82BT2 Q82BT2 1 1-151
Q82BT2 Q82BT2 2 152-247
Q82BT2 Q82BT2 3 294-410
Q82BT2 Q82BT2 4 411-521

Figure 2.29: SCOP annotation and Pdom prediction for protein Q82BT2

SCOP
protein domain family borders
Q9VC63 d1oxxk2 c.37.1.12 513-712
Q9VC63 d1ji0a c.37.1.12 1154-1301

Pdom 1st iteration
Q9VC63 Q9VC63 1 1-278
Q9VC63 Q9VC63 2 279-386
Q9VC63 Q9VC63 3 387-494
Q9VC63 Q9VC63 4 495-720
Q9VC63 Q9VC63 5 726-920
Q9VC63 Q9VC63 6 921-1028
Q9VC63 Q9VC63 7 1029-1136
Q9VC63 Q9VC63 8 1137-1365

Pdom 2nd iteration
Q9VC63 Q9VC63 1 1-278
Q9VC63 Q9VC63 2 279-386
Q9VC63 Q9VC63 3 387-494
Q9VC63 Q9VC63 4 495-623
Q9VC63 Q9VC63 5 624-711
Q9VC63 Q9VC63 6 713-920
Q9VC63 Q9VC63 7 921-1028
Q9VC63 Q9VC63 8 1029-1136
Q9VC63 Q9VC63 9 1137-1251
Q9VC63 Q9VC63 10 1252-1365

Figure 2.30: SCOP annotation and Pdom prediction for protein Q9VC63

2.5 Results 61

Figure 2.31: Split of domain d1l7vc accord-
ing to the domain prediction of Pdom in the
2nd iteration for the protein Q82BT2

Figure 2.32: Split of domain d1jj7a accord-
ing to the domain prediction of Pdom in the
2nd iteration for the protein Q82BT2

Figure 2.33: Split of domain d1ji0a accord-
ing to the domain prediction of Pdom in the
2nd iteration for the protein Q9VC63

Figure 2.34: Split of domain d1ji0a accord-
ing to DomainParser

62 2. Chopping Protein Sequence Space into Domains

#
U
P
2
0
|
V
A
V
P
U
C
E
B
A
|
1
1
|
4
3
8

M
i
c
r
o
c
i
n

C
A
B
C

t
r
a
n
s
p
o
r
t
e
r

A
T
P
-
b
i
n
d
i
n
g

p
r
o
t
e
i
n

>
t
r
|
C
9
N
V
9
1
|
C
9
N
V
9
1
_
9
V
I
B
R

A
B
C

t
r
a
n
s
p
o
r
t
e
r

A
T
P
-
b
i
n
d
i
n
g

p
r
o
t
e
i
n

-
-
-
-
-
M
A
E
A
I
M
C
H
R
P
V
S
R
S
Q
A
K
Q
K
V
L
E
L
F
N
L
V
H
L
P
N
P
E
Q
A
Y
T
K
Y
P
H
E
F
S
G
G
Q
L
Q
R
I
M
I
A
M
A
L
I
N
E
P
D
I
L
I
A
D
E
P
T
T
A
L
D
V
T
V
Q
A
E
V
L
N
L
I
.
.
.

>
t
r
|
Q
7
0
I
N
2
|
Q
7
0
I
N
2
_
9
P
S
E
D

A
T
P

b
i
n
d
i
n
g

p
r
o
t
e
i
n

-
-
-
-
-
-
-
-
-
-
-
-
m
t
V
H
G
V
A
R
H
D
A
G
L
R
A
V
A
L
L
H
Q
V
G
L
K
D
P
E
Q
L
L
G
R
Y
P
H
E
L
S
G
G
M
C
Q
R
V
L
I
A
I
A
L
A
N
D
P
P
L
L
I
A
D
E
P
T
S
A
L
D
V
S
V
Q
R
Q
I
L
D
.
.
.

>
t
r
|
F
3
D
B
L
3
|
F
3
D
B
L
3
_
9
P
S
E
D

P
e
p
t
i
d
e

A
B
C

t
r
a
n
s
p
o
r
t
e
r

A
T
P
-
b
i
n
d
i
n
g

p
r
o
t
e
i
n

S
V
A
R
Q
I
G
E
T
L
L
L
H
R
G
I
S
G
R
E
A
Q
K
R
I
V
E
L
L
E
M
V
G
I
Q
Q
P
E
K
R
L
K
A
Y
P
H
E
L
S
G
G
Q
R
Q
R
V
M
I
A
M
A
L
A
C
E
P
E
L
L
V
A
D
E
P
T
T
A
L
D
V
T
V
Q
R
K
I
L
L
L
L
.
.
.

>
t
r
|
E
3
F
4
4
7
|
E
3
F
4
4
7
_
K
E
T
V
Y

A
B
C

p
e
p
t
i
d
e

t
r
a
n
s
p
o
r
t
e
r
,

f
u
s
e
d

A
T
P
a
s
e

d
o
m
a
i
n
s

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M
V
E
L
L
H
Q
V
G
I
R
D
P
E
S
R
L
G
A
Y
P
H
Q
L
S
G
G
Q
R
Q
R
V
M
I
A
M
A
L
S
N
D
P
K
L
L
I
A
D
E
P
T
T
A
L
D
V
T
I
Q
A
Q
I
L
E
L
L
.
.
.

>
t
r
|
D
7
H
Z
G
1
|
D
7
H
Z
G
1
_
P
S
E
S
S

P
e
p
t
i
d
e

A
B
C

t
r
a
n
s
p
o
r
t
e
r
,

A
T
P
-
b
i
n
d
i
n
g

p
r
o
t
e
i
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M
E
M
V
G
I
Q
Q
P
E
K
R
L
K
A
Y
P
H
E
L
S
G
G
Q
R
Q
R
V
M
I
A
M
A
L
A
C
E
P
E
L
L
V
A
D
E
P
T
T
A
L
D
V
T
V
Q
R
K
I
L
L
L
L
.
.
.

>
t
r
|
F
3
D
J
5
1
|
F
3
D
J
5
1
_
9
P
S
E
D

A
B
C

t
r
a
n
s
p
o
r
t
e
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M
I
A
I
A
L
A
G
N
P
R
L
I
I
A
D
E
P
T
S
A
L
D
V
T
V
Q
R
K
I
L
D
H
L
.
.
.

>
t
r
|
G
5
L
B
N
0
|
G
5
L
B
N
0
_
S
A
L
E
T

D
i
p
e
p
t
i
d
e

t
r
a
n
s
p
o
r
t

A
T
P
-
b
i
n
d
i
n
g

p
r
o
t
e
i
n

D
p
p
F

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M
C
X
X
R
Q
R
V
M
I
A
M
A
L
L
T
R
P
E
L
L
I
A
D
E
P
T
T
A
L
D
V
S
V
Q
A
Q
I
L
S
L
L
.
.
.

>
t
r
|
G
5
F
Y
Y
4
|
G
5
F
Y
Y
4
_
9
P
S
E
D

P
u
t
a
t
i
v
e

u
n
c
h
a
r
a
c
t
e
r
i
z
e
d

p
r
o
t
e
i
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M
L
I
A
D
E
P
T
T
A
L
D
V
T
V
Q
K
R
L
L
E
L
L
.
.
.

>
t
r
|
D
4
D
T
U
5
|
D
4
D
T
U
5
_
N
E
I
E
G

P
u
t
a
t
i
v
e

u
n
c
h
a
r
a
c
t
e
r
i
z
e
d

p
r
o
t
e
i
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M
I
A
M
A
V
A
A
E
P
E
L
L
I
A
D
E
P
T
T
A
L
D
V
A
V
Q
A
Q
I
L
D
L
L
.
.
.

>
t
r
|
F
3
E
1
W
1
|
F
3
E
1
W
1
_
9
P
S
E
D

M
i
c
r
o
c
i
n

C
A
B
C

t
r
a
n
s
p
o
r
t
e
r

A
T
P
-
b
i
n
d
i
n
g

p
r
o
t
e
i
n

Y
e
j
F

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M
A
D
E
P
T
T
A
L
D
V
T
V
Q
L
K
I
L
E
L
L
.
.
.

>
t
r
|
F
3
H
W
5
4
|
F
3
H
W
5
4
_
P
S
E
S
F

M
i
c
r
o
c
i
n

C
A
B
C

t
r
a
n
s
p
o
r
t
e
r

A
T
P
-
b
i
n
d
i
n
g

p
r
o
t
e
i
n

Y
e
j
F

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P
T
T
A
L
D
V
T
V
Q
L
K
I
L
E
L
L
.
.
.

F
igu

re
2.35:

D
u

b
iou

s
clu

ster
V

A
V

P
U

C
E

B
A

of
th

e
u

n
ip

rot20
H

H
su

ite
d

atab
ase;

T
h

e
seq

u
en

ces
are

p
rob

ab
ly

tru
n

cated
at

th
e

N
-term

in
u
s;

F
3D

B
L

3
(C

A
A

56798.1;
G

en
eB

an
k
)

is
an

n
otated

as
in

com
p
lete

2.5 Results 63

Figure 2.36: Split of domain d1gz8a accord-
ing to the domain prediction of Pdom in the
2nd iteration for the protein Q7QG29; The
yellow residue indicates the domain split by
CATH

Figure 2.37: Split of domain d1d5ra2 accord-
ing to the domain prediction of Pdom in the
2nd iteration for the protein Q7QG29

The predicted split of domain d1d5ra2 in the second iteration of Pdom was caused
by the templates XATCUWABA and DORLEHABA. The sequence H2P0X7 was aligned
over the complete length of cluster XATCUWABA and is annotated to be a fragment.
DORLEHABA consists of sequences annotated to be truncated. Therefore, this split might
also be caused by truncated clusters . However, the split on the structure of d1d5ra2 might
show a C-terminal decorator (blue structure in figure 2.37).

Truncated sequence clusters can obscure the domain prediction with Pdom especially
during the consistency iterations. This problem can be handled as as described in the
previous paragraph (Q82BT2 and Q9VC63).

2.5.3 Web server

We developed a django web server [2] for Pdom with the final goal to offer users a
comprehensive atlas of our predicted domains (see http://141.5.103.163/). At the
moment users can investigate the predicted domains of the benchmark set and the underlying
HHblits alignments (see figure 2.38). In the future we want to offer the option to search
with queries through our domain atlas or to predict domains from scratch for single queries.

The web server uses MySQL [6] as the back-end database. It distributes jobs with Celery
[1]. The job management is organized with a Redis database [7]. The server is hosted in
the cloud of the Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen [3].

http://141.5.103.163/

64 2. Chopping Protein Sequence Space into Domains

SCOP
Q7QG29 d1gz8a d.144.1.7 42-263
Q7QG29 d1d5ra2 c.45.1.1 462-631
Q7QG29 d1nz6a a.2.3.1 1188-1277

Pdom 1st iteration
Q7QG29 Q7QG29 1 36-147
Q7QG29 Q7QG29 2 148-257
Q7QG29 Q7QG29 3 270-461
Q7QG29 Q7QG29 4 462-648
Q7QG29 Q7QG29 5 649-759
Q7QG29 Q7QG29 6 760-867
Q7QG29 Q7QG29 7 868-975
Q7QG29 Q7QG29 8 976-1083
Q7QG29 Q7QG29 9 1084-1192
Q7QG29 Q7QG29 10 1193-1287

Pdom 2nd iteration
Q7QG29 Q7QG29 1 36-147
Q7QG29 Q7QG29 2 148-259
Q7QG29 Q7QG29 3 260-461
Q7QG29 Q7QG29 4 462-584
Q7QG29 Q7QG29 5 585-629
Q7QG29 Q7QG29 6 631-724
Q7QG29 Q7QG29 7 725-771
Q7QG29 Q7QG29 8 777-911
Q7QG29 Q7QG29 9 912-1019
Q7QG29 Q7QG29 10 1020-1127
Q7QG29 Q7QG29 11 1128-1235
Q7QG29 Q7QG29 12 1236-1279

Table 2.5: SCOP annotation and Pdom prediction for protein Q7QG29

2.6 Discussion and Conclusion 65

Figure 2.38: The illustration of the predicted domains for protein O00560 in the Pdom
webserver

2.6 Discussion and Conclusion

There are three automatic predictors for protein domain boundaries that relied on all-
against-all alignments, namely ADDA, DoBo and EVEREST. DoBo was only available
as a webtool that is not designed for the complete decomposition of the protein sequence
space. EVEREST reconciles its domains to known protein families from SCOP and Pfam,
therefore we cannot benchmark EVEREST as a de-novo domain predictor. ADDA was
used by Pfam to build the automatically generated Pfam-B database. ADDA used BLAST
to build the all-against-all alignments. With the release of Pfam 29.0 the maintenance of
the Pfam-B was stopped.

Pfam-A encompasses multiple sequence alignments of manually curated seed alignments.
Those alignments are built on the basis of evolutionary, structural and functional knowledge.

Our automatic Bayesian domain predictor Pdom worked on the basis of the all-against-
all alignments by HHblits within the clustered UniProt. The only prior knowledge we used
was the domain and linker length distributions from annotated domains in SCOP.

ADDA predicted domain start and end sites within 20 residues in 15% of the reference
domain start and end sites in our benchmark set. In PfamA the annotated domain start
sites were within 20 residues in 67% of the reference domain start sites, the annotated
domain end sites were within 20 residues in 58% for the reference domain end sites. The first
iteration of Pdom predicted domain start and end sites within 20 residues of the reference
domain start and end sites in 50% and 37%, respectively. In the second iteration of Pdom
the predicted domain start and end sites were within 20 residues of the reference domain
start and end sites in 50% and 45%, respectively.

The mean coverage of domains in the benchmark was 32% by predictions of ADDA,
80% by annotations of Pfam, 74% and 75% by predictions of Pdom in the first iteration
and in the second iteration, respectively.

We showed that our predictions corresponded very well to the structural domain

66 2. Chopping Protein Sequence Space into Domains

definition of SCOP. The predictions of Pdom might be sufficiently accurate to predict
domains for the analysis of yet undiscovered domains.

We observed several challenges in the domain decomposition by Pdom. There were
presumably incompletely sequenced or falsely predicted protein sequences that clustered to
incomplete multiple sequence alignments in the uniprot20 HHsuite database. The late start
or early stop of those clusters leads to truncated alignments. If the truncation lied within
a domain, we might infer wrong domain start and end sites. That had a huge impact for
further iterations by Pdom. In the second iteration the wrong signal over all homologs
accumulate and cause a wrong domain decomposition in all homologs. Therefore, it is
necessary to filter the database for reliable clusters. However, we observed that for the
different suggested filters there were still enough truncated clusters to cause problems in
the second iteration of Pdom.

2.7 Outlook

A challenge for Pdom are incomplete sequences in the database that lead to alignments
that start or end inside a domain. These wrong alignment starts and stops cause truncated
domain predictions in the consistency iterations. There are several ways to handle them:

• Apply filters for clusters in the database for remove clusters dominated by truncated
or invalid sequences.

• Add truncated sequences to clusters of full length sequences during the clustering of
the uniprot20 HMM database

• Rebuild uniprot20 and the corresponding uniprot boost1 only with sequences from the
UniProt without sequence caution labels (example given: segments, wrong initiation
site, wrong termination site)

A hierarchy of domain families based on a clustering can improve our detection of
dubious clusters and offers new use cases for the resulting domain database:

• Cluster domains to domain families and hyper-families

• Merge possible domain fragments in the cluster analysis

For the publication of Pdom, we have to compare Pdom additionally against DoBo and
EVEREST. Our competitors DoBo, ADDA and EVERST are not able to handle inserted
domains properly, so we should find some reliable show cases for this feature.

Furthermore, we can improve the prediction of Pdom by including additional information:

• Integration of disorder prediction

• Integration of secondary structures in HHblits alignments and Pdom predictions

Chapter 3

HHsuite

The software package HHsuite offers several tools for protein homology detection and
alignments, notably HHblits and HHsearch. HHblits searches iteratively through a database
of profile Hidden Markov models (HMM) while updating the query HMM with homologous
hits. A prefilter selects hits for the computationally more expensive Viterbi alignment
algorithm. High scoring hits of the Viterbi algorithm are realigned with the Maximum
Accuracy algorithm. HHblits is usually used with an all-encompassing protein database like
the UniProt. HHblits is more sensitive, generates more accurate alignments and is faster
than its best competitors, PSI-BLAST and HMMER3. In contrast, HHsearch searches
(non-iteratively) through a database without applying a prefilter, and is accordingly more
sensitive than HHblits, hence it is frequently used in the template selection for homology
modeling of protein structures with protein domain databases or structure databases like
SCOP, CATH or the PDB. For the reasons outlined above, the HHsuite has become essential
in computational biology. I maintained the software and the building pipelines for the
required HMM databases for selected, common protein databases.

3.1 Code Improvement

Different students with different goals without an overall concept contributed to HHsuite.
The resulting code was stable, but inconsistent spaghetti code with intermediate hotfixes
and many occurrences of the same or similar code fragments at different positions.

For the generation of the uniprot boost1 and for the necessary calculations of Pdom,
we wanted to run HHblits in parallel over many queries. Therefore, I decided to do a
re-factoring for this purpose and fix additional flaws:

• Removed global variables

• Replaced pthreads with openMP in the parallelization over templates

• Included option to search through multiple databases in HHblits and HHsearch in
one call

68 3. HHsuite

• Introduced consistent database format for HHblits and HHsearch

• Transformed HHblits, HHsearch and HHalign to classes with inheritance

• Cleaned up compilation calls in Makefiles

• Changed from Makefiles to cmake

• Introduced output logger in HHsuite

• Improved performance in the Hidden Markov profile and amino acid transition
calculation

• Added feature to exclude template residues from the alignment in HHalign

• Parallelized over several queries with openMP in hhblits omp

The code of the HHsuite is now openly available at GitHub [4], so we will be able
to provide bug fixes swiftly. The project is set up under Travis CI [8] for continuous
integration.

Ffindex is a tool written by Andreas Hauser. It allows to build from single files a
database. This database consists of two files: the ffindex-file and the ffdata-file. The ffdata-
file contains the single files concatenated and separated by a null byte. The ffindex-file
contains an index for each single file where it starts in the ffdata-file and its length in bytes.
The ffdata-file is usually opened with mmap. Mmap is a tool in most Unix distributions that
allows to load a file or parts of a file in the virtual memory. The kernel can pre-load parts
of the file depending on the usage of the accessing program. Therefore, the file handling is
accelerated especially if the file access is sorted so that there is no forward and backward
jumping in the ffdata-file.

ffindex apply and ffindex apply mpi are binaries that take entries from an ffindex
database [30], pipe them on the standard input stream to a script or another binary and
catch the resulting standard output stream to a new ffindex database. It was necessary to
adjust the logging in the scripts and the binaries in HHsuite to print log messages only on
the standard error stream and to be able to read the input from the standard input stream.

The calculation of the column state sequences for the HHsuite databases with many
cstranslate calls by ffindex apply mpi was too slow. Therefore, cstranslate can now process
multiple sequence alignments in an ffindex database in parallel with openMP.

3.2 Bug-Fixes

We fixed several bugs in the HHsuite since the publication in 2012:

• Segmentation faults in the hash class of HHsuite with new compiler versions (gcc
4.8.1)

3.3 HHsuite Databases Pipelines 69

• Wrongly initialized sparse encoding of the Viterbi backtrace matrix

• Wrong calculation of consensus sequences with unknown residue X

• Wrong treatment of the ANY state in the alignment filter

• Memory leaks in HHblits, HHsearch and HHalign

• Incomplete initialization of alignment matrices in Align.pm for too long sequences

• Size of Viterbi matrix was not correctly re-allocated for large sequences

Since 2014, I took also care of user requests for the HHsuite. hast du fr

3.3 HHsuite Databases Pipelines

For the HHsuite, especially for HHsearch, we offer several well known protein databases
also as HMM databases. We developed for each of these databases an automatic pipeline
that keeps the corresponding database up to date. Until 2014 the automatic pipelines were
maintained by the administrator of the toolkit webserver in Tübingen. Due to changes in
the infrastructure and the HHsuite database format, those pipelines were rewritten from
scratch.

Each HHsuite database consists of multiple sequence alignments, pre-calculated Hidden
Markov profiles for multiple sequence alignments with many sequences generated by hhmake
and column state sequences for each multiple sequence alignment generated by cstranslate
(see section A.1).

3.3.1 Protein Data Bank - pdb70

The pdb70 contains multiple sequence alignments for a representative set of proteins in the
Protein Data Bank [14]. It is widely used for homology modeling by HHpred [36] and other
prediction servers. The sequences are taken from the SEQRES section in the PDB files
and are filtered for maximum 70% pairwise sequence identity. Only sequences that cover
each other by at least 90% are filtered. This filtering is done with all-against-all BLAST [9]
searches. The pdb70 is updated every Wednesday morning, where new sequences are added
and the 1000 oldest entries are re-calculated with the newest uniprot20 database.

In 2014 the default PDB archive format changed to a new format, mmCIF, to avoid the
limits of the old punch card format. In 2015 we started to adjust our scripts (pdb2fasta.pl,
hhmakemodel.pl, addss.pl) for this new format. The responsible master student, Harald
Vöhringer, was supervised by me. Those scripts will be used in the future in our automatic
pipeline. Additionally, the student changed the filtering of the PDB from BLAST to
MMseqs [33].

70 3. HHsuite

3.3.2 Pfam

Pfam [26] consists of manually curated multiple sequence alignments that represent domain
families. In the automatic pipeline we check every week for a new release of Pfam and
build for every seed alignment a multiple sequence alignment in three iterations against the
newest uniprot20 database. On those multiple sequence alignments we build an HHsuite
database.

3.3.3 UniProt - uniprot20

The UniProt [11] is a comprehensive protein sequence database. Until 2012, we used
kClust [31] for the clustering of this database to build our uniprot20 HHblits database.
Beginning with 2012, the Ph.D. student Maria Hauser started the development of MMseqs,
a faster, more robust and modular all-against-all sequence-sequence search tool. MMseqs
was published in 2015. The master student Lars von den Driesch developed during his
master thesis a pipeline for MMseqs to generate the needed clustering for the uniprot20. I
implemented the pipeline for the generation of the multiple sequence alignments from this
clustering and the following steps to build an HHsuite database.

After the building of the uniprot20, we can evaluate its performance in almost automatic
pipelines that evaluate the homology detection sensitivity in the ROCX benchmark and
the alignment quality with HHblits.

3.3.4 UniProt - uniprot boost1

Given the uniprot20, we developed a pipeline to generate the corresponding uniprot boost1
database. The estimated runtime on the newly clustered uniprot20 database with about
107 clusters is 195 · 103 CPU hours. So far we have not calculated this database again, but
worked instead on a faster build pipeline with iterative profile-profile searches with MMseqs.

Appendix A

Supplementary - uniprot boost1

72 A. Supplementary - uniprot boost1

A.1 Discretized Column States of the uniprot boost1

for the uniprot20 Database

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
≤ ROC5 value

fr
a
c
ti
o
n
 o

f
q
u
e
ri

e
s

uniprot20

uniprot20 with
 uniprot_boost1 prefilter

uniprot20 with
 uniprot_boost1 prefilter
 and discretized alignments

uniprot_boost1

1+1 iterations

2+1 iterations

3+1 iterations

Figure A.1: ROC5 plot to measure the the homology detection sensitivity of HHblits with
the uniprot20, the uniprot boost1, the uniprot20 with the discretized column states of the
uniprot boost1 for the prefilter and the uniprot20 with the discretized column states of the
uniprot boost1 for the prefilter and the column scores.

HHblits is an iterative protein homology detection tool that is more sensitive, generates
more accurate alignments and is faster than PSI-BLAST and HMMer3. HHblits searches
with a query Hidden Markov Model (HMM) against a database of HMMs of multiple sequence
alignments. The HMMs of the uniprot20 database are based on a very conservative clustering
of the UniProt sequence database with few, mostly very similar sequences contained in each
cluster. In chapter 1, we enriched our database clusters by jumpstarting HHblits with each
cluster alignment in the uniprot20 and adding significant matches to the cluster alignments.
The resulting uniprot boost1 database is much more diverse with about 14 times more
sequences per cluster and the effective number of sequences was raised from 1.18 to 3.78.

In three iterations through the uniprot boost1, we find about 20% more homologs than
with the uniprot20. However, three iterations through the uniprot boost1 are on average
3.7 times slower. Therefore, our aim was to improve the faster uniprot20 database with
results from the uniprot boost1.

A.1 Discretized Column States of the uniprot boost1 for the uniprot20
Database 73

A database for HHblits consists of three parts:

• The multiple sequence alignments in the a3m format [5]

• The HMM profiles translated into a discretized set of 219 column states (cs219) used
for the prefilter

• The precalculated HMMs for large multiple sequence alignments in the hhm format
[5]

Every cluster in the uniprot20 database was used as a seed alignment for a cluster in
the uniprot boost1 database. Therefore, every cluster in the uniprot20 has a corresponding
cluster in the uniprot boost1 and we can exchange the cs219 sequences of the uniprot20
database with the cs219 sequences of the uniprot boost1. This should improve the sensitivity
of the prefilter, since cs219 sequences of the uniprot boost1 should capture the information
of the much more diverse clusters in the uniprot boost1.

Additionally, we implemented the feature to use the profile of the discretized column
states for the calculation of the column score in HHblits’ Viterbi and Maximum Accuracy
alignment algorithms:

The column score between position i of the query Hidden Markov profile q and position
j of the template Hidden Markov profile t is the scalar product of the profiles of amino
acid frequencies at those positions:

score(i, j) =
20∑
a=1

q(i, a) · t(j, a) (A.1)

In contrast to the setup in section 1.4.4, we searched with HHblits in one, two and three
iterations through the database followed by a single search iteration through the reference
SCOP HMM database.

We measured the performance of the following setups in the ROC5 plot (see figure A.1):

• HHblits searches through the uniprot boost1

• HHblits searches through the uniprot20

• HHblits searches through the uniprot20 with the discretized column states of the
uniprot boost1 for the pre-filter

• HHblits searches through the uniprot20 with the discretized column states of the
uniprot boost1 for the pre-filter, the Viterbi alignment and the Maximum Accuracy
alignment

74 A. Supplementary - uniprot boost1

The homology detection sensitivity of HHblits with the uniprot20 can be improved
with the discretized column states of the uniprot boost1. We expected that they increase
the sensitivity of the pre-filter. But more astonishingly, they already capture enough
information of the uniprot boost1 Hidden Markov profiles to be used for the calculation of
the Viterbi and Maximum Accuracy alignments in HHblits.

The column scores of the query profile to the 219 discretized column states could be
pre-calculated, so the overall runtime of HHblits was decreased. In the meanwhile, Martin
Steinegger re-implemented the Viterbi algorithm with faster SIMD instructions. This
implementation was no longer compatible to the scoring against the discretized column
state sequences of the database HMMs. Therefore, this feature is not included in HHblits
3.0.

Appendix B

Supplementary - Pdom

76 B. Supplementary - Pdom

B.1 Notation

q query HMM

t1, . . . , tK template HMM with which q is aligned

Lq, Lk length of query sequence q and template sequence tk
i, j, l indices for positions in q or tk
σ, σ′ labels for domain start s or end e position. Without inserted

domains: σ, σ′ ∈ {s, e}. With inserted domains: σ, σ′ ∈
{s0, e0, s1, e1, . . .}

Pqk probability that q and tk are homologous, calculated by HHblits

bqk(i, j) alignment backward probability that the alignment starts at position
i of the query q and position j of the template tk, calculated from
the Backward algorithm in HHblits

fqk(i, j) alignment forward probability that the alignment ends at position
i of the query q and position j of the template tk, calculated from
the Forward algorithm in HHblits

p(qi � tk,j|Aqk) alignment posterior probability that position i of query q and posi-
tion j of template tk are aligned, calculated from the Backward/-
Forward algorithm in HHblits

psqk(i) probability of alignment between q and tk to start at position
i ∈ {1, . . . , Lq}, computed with the Backward algorithm in hhblits

peqk(i) probability of alignment between q and tk to end at position i ∈
{1, . . . , Lq}, computed with the Forward algorithm in hhblits

Aq = {Aq1, . . . , AqK} pairwise alignments between q and tk. Aqk subsumes all alignment
information, Aqk = (Pqk, bqk, fqk, p(qi � tk,j|Aqk)).

wσqk weight of pσqk, where σ ∈ {s, e}
pe0|s0(i−j) probability for length of domain at level 0 = i− j+ 1 (pdom(i−j+1))

(input)
ps0|e0(i−j) probability of linker length = i− j − 1 (plink(i−j−1) (input)
ps1|e1(i− j) probability for length of inserted domain = i− j + 1
ps1|s0(i− j) length distributions of N-terminal parts of split domains
pe0|e1(i− j) length distributions of C-terminal parts of split domains
Lmin minimum length of a domain
Yq = {y1, . . . , y2D} set of ordered domain start s and end e points in the query. Each

point yν = [σ, i]ν consists of a label σ ∈ {s, e} and of the position
i ∈ {0, . . . , Lq} of the ν’th point. D is the number of domains.

B.1 Notation 77

p([σ, i]| . . .) p([σ, i] ∈ Yq| . . .), probability for [σ, i] to be a domain start/end
point

p([σ, i]ν |[σ′, j]ν−1 . . .) probability for label [σ, i] succeeding label [σ′, j]
sqk, eqk start and end positions of common homologous region (not aligned

region) between q and tk; must coincide with domain start/end
positions

q ∼ tk q is homologous to tk; example: p(q ∼ tk|Aqk) = Pqk
Fσ,i Forward probability for domain start (σ = s) or end (σ = e)
Bσ,j Backward probability for domain start (σ = s) or end (σ = e)
pins Probability for a domain insertion
prep Probability for an inserted domain following a previous inserted

domain
pred(σ), succ(σ) Set of states that are possible predecessors / successors to σ
pσq (i) = p([σ, i]| y0, y†, ...), probability that a domain starts (σ=s) or ends

(σ=e) at position i in the query

78 B. Supplementary - Pdom

B.2 Domain Prediction without Insertions

B.2.1 Calculation of peqk(i) and psqk(i)

The probability peqk(i) that the alignment between query q and template tk ends at position
i in q is obtained from the Forward-Backward algorithm implemented in HHblits [57, 52].
Let us call the forward probability in HHblits fqk(i, j), which can be understood as the
probability for the alignment to end at position i in query q and position j in template tk.
Then the probability for the alignment to end at query position i is:

peqk(i) =

∑Lk
j=1 fqk(i, j)∑Lq

i′=1

∑Lk
j=1 fqk(i

′, j)
(B.1)

Lk is the number of residues in tk.
The backward probability in HHblits bqk(i, j) can be understood as the probability for

the alignment to start at position i in query q and position j in template tk. Analogously,
the probability for the alignment to start at query position i is

psqk(i) =

∑Lk
j=1 bqk(i, j)∑Lq

i′=1

∑Lk
j=1 bqk(i

′, j)
(B.2)

B.2.2 Calculation of gq(σ, i|σ′, j) := p([σ,i]ν|[σ′,j]ν−1,Aq)
In the following we will abbreviate yν = [σ, i] by [σ,i]ν , yν 6= [σ, i] by ¬[σ,i]ν and yν−1 = [σ, j]
by [σ′,j]ν−1 and so on. The function gq(σ, i|σ′, j) = p([σ,i]ν |[σ′,j]ν−1,Aq) gives the probability
of observing a start or end site σ at i, given that the preceding end or start site is [σ′, j]
and given the alignments Aq = {Aq1, . . . , AqK}.

We get with Bayes’ theorem:

gq(σ, i|σ′, j) =
p(Aq|[σ,i]ν , [σ′,j]ν−1) p([σ,i]ν |[σ′,j]ν−1)

numerator + p(Aq|¬[σ,i]ν , [σ′,j]ν−1) p(¬[σ,i]ν |[σ′,j]ν−1)

gq(σ, i|σ′, j) =

[
1 +

p(Aq|¬[σ,i]ν , [σ
′,j]ν−1) p(¬[σ,i]ν |[σ′,j]ν−1)

p(Aq|[σ,i]ν , [σ′,j]ν−1) p([σ,i]ν |[σ′,j]ν−1))

]−1
(B.3)

We approximate the odds ratio for the K alignments by a product of odds ratios with
different weight factors wσqk. These correct for redundancy between alignments and are
calculated as discussed in section B.2.3:

gq(σ, i|σ′, j) =

[
1 +

p(¬[σ,i]ν |[σ′,j]ν−1)
p([σ,i]ν |[σ′,j]ν−1)

K∏
k=1

(
p(Aqk|¬[σ,i]ν , [σ

′,j]ν−1)

p(Aqk|[σ,i]ν |[σ′,j]ν−1)

)wσqk]−1
(B.4)

The first factor can be calculated from the probability distributions for linker length and
domain length, since it does not depend on any alignment. For σ = s and σ′ = e we obtain

p([e, i]ν |[s, j]ν−1) = p(σν =e|σν−1 =s) p(iν = i|σν =e, [s, j]ν−1)

= pdom(i− j + 1) (B.5)

B.2 Domain Prediction without Insertions 79

Similarly to the previous equation, we get

p([s, i]ν |[e, j]ν−1) = p(σν =s|σν−1 =e) p(iν = i|σν =s, [e, j]ν−1)

= plink(i− j − 1) (B.6)

p(σν =e|σν−1 =s) = 1 and p(σν =s|σν−1 =e) = 1, since a domain start is always followed
by a domain end and a domain end is always followed by a domain start in the simple case
without inserted domains.

The probability Pqk that query q and template tK are homologous

The Bayes factor for each alignment in equation (B.4) is rewritten by applying Bayes’
theorem on both numerator and denominator,

p(Aqk|¬[σ,i]ν , [σ
′,j]ν−1)

p(Aqk|[σ,i]ν , [σ′,j]ν−1)
=

p(¬[σ,i]ν |[σ′,j]ν−1, Aqk)(((((
(((p(Aqk|[σ′,j]ν−1) p([σ,i]ν |[σ′,j]ν−1)

p([σ,i]ν |[σ′,j]ν−1, Aqk)(((((
(((p(Aqk|[σ′,j]ν−1) p(¬[σ,i]ν |[σ′,j]ν−1)

=
p([σ,i]ν |[σ′,j]ν−1)
p(¬[σ,i]ν |[σ′,j]ν−1)

p(¬[σ,i]ν |[σ′,j]ν−1, Aqk)
p([σ,i]ν |[σ′,j]ν−1, Aqk)

(B.7)

We transform the denominator in the second odds ratio by summing over two states,
query and template are homologous q ∼ tK and query and template are not homologous
q 6∼ tK . In the latter case the alignment does not contribute any information about the
connection between i and j:

p([σ,i]ν |[σ′,j]ν−1, Aqk)
= p([σ,i]ν |q∼ tk, [σ′,j]ν−1, Aqk)p(q∼ tk|Aqk) + p([σ,i]ν |q 6∼ tk, [σ′,j]ν−1, Aqk)p(q 6∼ tk|Aqk)
= p([σ,i]ν |[σ′,j]ν−1, psqk, peqk)Pqk + p([σ,i]ν |[σ′,j]ν−1)(1− Pqk) (B.8)

The numerator in the second odds term in equation (B.7) is in fact just 1 minus the
denominator. Therefore, the Bayes factor in equation (B.7) becomes

p(Aqk|¬[σ,i]ν , [σ
′,j]ν−1)

p(Aqk|[σ,i]ν , [σ′,j]ν−1)
(B.9)

=
p([σ,i]ν |[σ′,j]ν−1)

1− p([σ,i]ν |[σ′,j]ν−1)
×

(
1

p([σ,i]ν |[σ′,j]ν−1, psqk, peqk)Pqk + p([σ,i]ν |[σ′,j]ν−1)(1− Pqk)
− 1

)
We abbreviate the odds ratio

Rqk(σ, i|σ′, j) =
p([σ,i]ν |[σ′,j]ν−1, psqk, peqk)

p([σ,i]ν |[σ′,j]ν−1)
(B.10)

This allows us to write equation (B.9) as

p(Aqk|¬[σ,i]ν , [σ
′,j]ν−1)

p(Aqk|[σ,i]ν , [σ′,j]ν−1)
=

(Rqk(σ, i|σ′, j)Pqk + 1− Pqk)−1 − p([σ,i]ν |[σ′,j]ν−1)
1− p([σ,i]ν |[σ′,j]ν−1)

(B.11)

80 B. Supplementary - Pdom

Substituting equation (B.11) into (B.4) yields

gq(σ, i|σ′, j) =[
1 +

1− p([σ,i]ν |[σ′,j]ν−1)
p([σ,i]ν |[σ′,j]ν−1)

K∏
k=1

(
(Rqk(σ, i|σ′, j)Pqk + 1− Pqk)−1 − p([σ,i]ν |[σ′,j]ν−1)

1− p([σ,i]ν |[σ′,j]ν−1)

)wσqk]−1
(B.12)

Calculation of Rqk(σ, i|σ′, j)

We rewrite the numerator of Rqk(σ, i|σ′, j) in equation (B.10) as,

p([σ,i]ν |[σ′,j]ν−1, psqk, peqk) =
p([σ,i]ν , [σ

′,j]ν−1|psqk, peqk)
p([σ′,j]ν−1|psqk, peqk)

(B.13)

Calculation of p([σ,i]ν , [σ
′,j]ν−1|psqk, peqk)

We use the information of psqk, p
e
qk in p([σ,i]ν , [σ

′,j]ν−1|psqk, peqk) by summing over all possible
pairs of start positions l = sqk and end positions m = eqk of the homologous region between
q and tk:

p([σ,i]ν , [σ
′,j]ν−1|psqk, peqk) =

Lq∑
l=1

Lq∑
m=l

p([σ,i]ν , [σ
′,j]ν−1|l=sqk,m=eqk) p(l=sqk,m=eqk|psqk, peqk)

(B.14)

In the first probability inside the sum, [σ,i]ν and [σ′,j]ν−1 depend on psqk, p
e
qk only through

l=sqk,m=eqk. We can therefore drop the conditioning on psqk, p
e
qk. The double sum can be

split into three partial sums,
∑

(1),
∑

(2),
∑

(3), characterized by the following relations:

(1) l < m ≤ j < i

(2) l ≤ j < i ≤ m

(3) j < i ≤ l < m

Those three cases are all-encompassing, since j is a direct predecessor of i and therefore l
and m cannot lie between j and i.

In the following we use the approximations:

p(l=sqk|psqk) ≈ psqk(l)

p(m=eqk|peqk) ≈ peqk(m)

Additionally, we use the approximation:

p(l=sqk,m=eqk|psqk, peqk) ≈ p(l=sqk|psqk) p(m=eqk|peqk)

B.2 Domain Prediction without Insertions 81

Calculation of p([σ,i]ν , [σ
′,j]ν−1|psqk, peqk) for l < m ≤ j < i

In the first partial sum, it follows from l < m ≤ j < i that [σ,i]ν depends only on [σ′,j]ν−1
and [σ′,j]ν−1 depends only on m=eqk, therefore

∑
(1)

=

j∑
m=1

m∑
l=1

p([σ,i]ν , [σ
′,j]ν−1|����l=sqk,m=eqk) p(l=sqk,m=eqk|psqk, peqk)

=

j∑
m=1

m∑
l=1

p([σ,i]ν |[σ′,j]ν−1) p([σ′,j]ν−1|m=eqk) p(l=sqk,m=eqk|psqk, peqk)

= p([σ,i]ν |[σ′,j]ν−1)
j∑

m=1

p([σ′,j]ν−1|m=eqk)
m∑
l=1

p(l=sqk,m=eqk|psqk, peqk)

= p([σ,i]ν |[σ′,j]ν−1)
j∑

m=1

p([σ′,j]ν−1|m=eqk) p
e
qk(m)

= p([σ,i]ν |[σ′,j]ν−1)
j∑

m=1

p([σ′, j]|[e,m]) peqk(m) (B.15)

Calculation of p([σ,i]ν , [σ
′,j]ν−1|psqk, peqk) for l ≤ j < i ≤ m

In the second partial sum, it follows from l ≤ j < i ≤ m that [σ,i]ν depends on l=sqk only
through [σ′,j]ν−1, and [σ′,j]ν−1 depends on m=eqk only through [σ,i]ν , and therefore

∑
(2)

=

j∑
l=1

Lq∑
m=i

p([σ,i]ν , [σ
′,j]ν−1|����l=sqk,m=eqk) p(l=sqk,m=eqk|psqk, peqk)

=

j∑
l=1

Lq∑
m=i

p([σ,i]ν |[σ′,j]ν−1,m=eqk) p([σ
′,j]ν−1|l=sqk,m=eqk) p(l=sqk,m=eqk|psqk, peqk)

≈
j∑
l=1

Lq∑
m=i

p([σ′,j]ν−1|l=sqk,m=eqk) p
s
qk(l) p([σ,i]ν |[σ′,j]ν−1,m=eqk) p

e
qk(m) (B.16)

We apply Bayes’ theorem to exchange m = eqk and [σ′, j] in the first probability in
equation (B.16),

p([σ′,j]ν−1|l=sqk,m=eqk) =
p(m=eqk|[σ′, j],����l=sqk) p([σ

′, j]|l=sqk)

p(m=eqk|l=sqk)
(B.17)

We drop the conditioning on l=sqk in the first probability of the numerator, since m=eqk
depends on l=sqk only through [σ′,j]ν−1. Similarly, we apply Bayes’ theorem to exchange
[σ,i]ν and m=eqk in the third probability in equation (B.16),

p([σ,i]ν |[σ′,j]ν−1,m=eqk) =
p(m=eqk|[σ,i]ν ,�����[σ′,j]ν−1) p([σ,i]ν |[σ′,j]ν−1)

p(m=eqk|[σ′,j]ν−1)
(B.18)

82 B. Supplementary - Pdom

We drop the conditioning on [σ′,j]ν−1 in the first probability of the numerator, since m=eqk
depends on [σ′,j]ν−1 only through [σ,i]ν . When inserting equations (B.17) and (B.18) into
equation (B.16), the terms p(m=eqk|[σ′,j]ν−1) in the numerator of equation (B.17) and the
denominator of (B.18) cancel out, yielding

∑
(2)

= p([σ,i]ν |[σ′,j]ν−1)
j∑
l=1

p([σ′, j]|l=sqk) p
s
qk(l)

Lq∑
m=i

p(m=eqk|[σ,i]ν)
p(m=eqk|l=sqk)

peqk(m) (B.19)

Calculation of p([σ,i]ν , [σ
′,j]ν−1|psqk, peqk) for j < i ≤ l < m

In the third partial sum, it follows from j < i ≤ l < m that [σ,i]ν and [σ′,j]ν−1 are
independent of m=eqk given l=sqk, and therefore

∑
(3)

=

Lq∑
l=i

Lq∑
m=l

p([σ,i]ν , [σ
′,j]ν−1|l=sqk,���

�m=eqk) p(l=sqk,m=eqk|psqk, peqk)

=

Lq∑
l=i

p([σ,i]ν , [σ
′,j]ν−1|l=sqk)

Lq∑
m=l

p(l=sqk,m=eqk|psqk, peqk)

=

Lq∑
l=i

p([σ,i]ν , [σ
′,j]ν−1|l=sqk) p

s
qk(l)

=

Lq∑
l=i

p(l=sqk|[σ,i]ν ,�����[σ′,j]ν−1) p([σ,i]ν |[σ′,j]ν−1)
p([σ′,j]ν−1)

p(l=sqk)
psqk(l)

= p([σ,i]ν |[σ′,j]ν−1)�
���

�p([σ′, j])

���
�p([σ, i])

Lq∑
l=i

p([σ, i]|l=sqk) p
s
qk(l) (B.20)

We assume approximately the same priors for domain start and end sites, so the ratio
before the sum cancels out.

B.2 Domain Prediction without Insertions 83

Calculation of p([σ′,j]ν−1|psqk, peqk) for l < m ≤ j

In the first partial sum, it follows from l < m ≤ j that [σ′,j]ν−1 depends on l= sqk only
through m=eqk, and therefore

∑
(1′)

=

j∑
m=1

m∑
l=1

p([σ′, j]|����l=sqk,m=eqk) p(l=sqk,m=eqk|psqk, peqk)

=

j∑
m=1

p([σ′, j]|m=eqk)
m∑
l=1

p(l=sqk,m=eqk|psqk, peqk)

=

j∑
m=1

p([σ′, j]|m=eqk) p
e
qk(m)

(B.21)

Calculation of p([σ′,j]ν−1|psqk, peqk) for l ≤ j ≤ m

In the second partial sum, it follows from l ≤ j ≤ m that m=eqk depends on l=sqk only
through [σ′,j]ν−1, and therefore

∑
(2′)

=

j∑
l=1

Lq∑
m=j

p([σ′, j]|l=sqk,m=eqk) p(l=sqk,m=eqk|psqk, peqk)

=

j∑
l=1

Lq∑
m=j

p(m=eqk|[σ′, j],����l=sqk) p([σ
′, j]|l=sqk)

p(m=eqk|l=sqk)
p(l=sqk,m=eqk|psqk, peqk)

≈
j∑
l=1

Lq∑
m=j

p(m=eqk|[σ′, j]) p([σ′, j]|l=sqk)

p(m=eqk|l=sqk)
psqk(l) p

e
qk(m)

=

j∑
l=1

p([σ′, j]|l=sqk) p
s
qk(l)

Lq∑
m=j

p(m=eqk|[σ′, j])
p(m=eqk|l=sqk)

peqk(m)

(B.22)

84 B. Supplementary - Pdom

Calculation of p([σ′,j]ν−1|psqk, peqk) for j ≤ l < m

In the third partial sum, it follows from j ≤ l < m that [σ′, j] is independent of m= eqk
given l=sqk, and therefore

∑
(3′)

=

Lq∑
l=j

Lq∑
m=l

p([σ′, j]|l=sqk,���
�m=eqk) p(l=sqk,m=eqk|psqk, peqk)

=

Lq∑
l=j

p([σ′, j]|l=sqk)

Lq∑
m=l

p(l=sqk,m=eqk|psqk, peqk)

=

Lq∑
l=j

p([σ′, j]|l=sqk) p
s
qk(l)

(B.23)

Calculation of fσ|σ′(i− j) := p([σ, i]|[σ′, j]) by dynamic programming

Note that fσ,σ′(i− j) := p([σ, i]|[σ′, j]) depends only on the difference of the position indices,
i − j. For i ≥ 0, the function fσ|σ′(i) = p([σ, i]|[σ′, 0]) can be calculated by dynamic
programming by summing over all possible states [σ′′, j]ν−1 that precede the last state
[σ, i]ν ,

fσ|σ′(0) = I(σ=σ′)

fσ|σ′(i) =
∑

σ′′∈pred(σ)

i−1∑
j=0

fσ′′|σ′(j) pσ|σ′′(i− j) (B.24)

pred(σ) is the set of possible predecessor states of σ. As long as we do not consider inserted
domains, we have pred(s) = {e} and pred(e) = {s}.

We calculate p([σ′, j]|[σ, i]) for j ≤ i by Bayes’ theorem:

fσ′|σ(j − i) := p([σ′, j]|[σ, i]) = p([σ, i]|[σ′, j])
�
�
�
��p([σ′, j])

p([σ, i])
= fσ|σ′(i− j) (B.25)

We assume approximately the same priors for domain start and end sites, so the ratio
before the sum cancels out.

Calculation of Rqk(σ, i|σ′, j) - final

Putting equations (B.10), (B.13), (B.15), (B.19)-(B.23) together, we obtain

Rqk(σ, i|σ′, j) =
1

p([σ,i]ν |[σ′,j]ν−1)

∑
(1) +

∑
(2) +

∑
(3)∑

(1′) +
∑

(2′) +
∑

(3′)

B.2 Domain Prediction without Insertions 85

B.2.3 Sequence weighting

We can estimate weights to account for redundancy among the alignments the following
way:

wsqk =

[
K∑
k′=1

Lq∑
i=1

√
psqk(i) p

s
qk′(i)

]−1
(B.26)

psqk(i) are normalized vectors. This expression is a sum of K scalar products of normal
vectors. Each scalar product is between 0 and 1. Since the term for k′ = k is equal to 1, we
know that 1 ≤ w−1qk ≤ K and therefore

1

K
≤ wqk ≤ 1 (B.27)

Without redundancy wqk = 1 and with complete redundancy wqk = 1/K.
We can generalize the above weights in the following way:

wsqk =

 K∑
k′=1

∑Lq
i=1 p

s
qk(i)

αw psqk
′(i)αw√∑

i p
s
qk(i)

2αw

√∑
i p

s
qk
′(i)2αw

−1 (B.28)

Again, we have the desired limits in the case of full and no redundancy, with 1/K ≤
wqk ≤ 1. For αw = 0.5 we get the previous formula. For smaller αw, the weights tend to
get smaller. αw can be optimized.

86 B. Supplementary - Pdom

B.3 Domain Prediction with Inserted Domains

B.3.1 Calculation of gq(σ, i|σ′, j) := p([σ, i]ν|[σ′, j]ν−1)

The calculation proceeds as in section B.2.2. We generalize equations (B.5) and (B.6),

p([σ, i]ν |[σ′, j]ν−1) = p([σ, ·]ν |[σ′, ·]ν−1) p([·, i]ν |[σ, ·]ν , [σ′, j]ν−1) (B.29)

which can be abbreviated by defining

gq(σ, i|σ′, j) := p([σ, i]ν |[σ′, j]ν−1) = p(σν |σ′ν−1) pσ|σ′(i− j) (B.30)

The transition probabilities p(σν |σ′ν−1) can be taken from figure 2.7b:

p(s0|e0) = 1

p(e0|s0) = 1

p(sλ+1|eλ+1) = prep

p(eλ|sλ) = 1− pins
p(sλ+1|sλ) = pins

p(eλ|eλ+1) = 1− prep

Calculation of Rqk(σ, i|σ′, j)

To calculate Rqk(σ, i|σ′, j) for any σ, σ′ ∈ {s0, e0, s1, e1, s2, e2, . . .}, we proceed as in section
B.2.2.

As in equations (B.13) and (B.26), we calculate R as

Rqk(σ, i|σ′, j) =
p([σ,i]ν , [σ

′,j]ν−1|psqk, peqk)
p([σ′,j]ν−1|psqk, peqk)

=
1

p([σ,i]ν |[σ′,j]ν−1)

∑
(1) +

∑
(2) +

∑
(3)∑

(1′) +
∑

(2′) +
∑

(3′)

l=sqk refers to any of the start states sλ and m=eqk to any of the end states eλ in the
six sums (B.15), (B.19), (B.20), (B.21), (B.22) and (B.23). In the following, we describe
the changes to the six partial sums.

B.3 Domain Prediction with Inserted Domains 87

∑
(1)

= p([σ,i]ν |[σ′,j]ν−1)
j∑

m=1

p([σ′,j]ν−1|m=eqk) p
e
qk(m)

∑
(2)

= p([σ,i]ν |[σ′,j]ν−1)
j∑
l=1

p([σ′, j]|l=sqk) p
s
qk(l)

Lq∑
m=i

p(m=eqk|[σ, i])
p(m=eqk|l=sqk)

peqk(m)

∑
(3)

= p([σ,i]ν |[σ′,j]ν−1)
p([σ′, j])

p([σ, i])

Lq∑
l=i

p([σ, i]|l=sqk) p
s
qk(l)

∑
(1′)

=

j∑
m=1

p([σ′, j]|m=eqk) p
e
qk(m)

∑
(2′)

=

j∑
l=1

p([σ′, j]|l=sqk) p
s
qk(l)

Lq∑
m=j

p(m=eqk|[σ′, j])
p(m=eqk|l=sqk)

peqk(m)

∑
(3′)

=

Lq∑
l=j

p([σ′, j]|l=sqk) p
s
qk(l) (B.31)

We transform the fraction

p(m=eqk|[σ, i])
p(m=eqk|l=sqk)

in
∑

(2) and
∑

(2′), defining the union event [e,m] = ([e0,m] ∨ [e1,m] ∨ . . .):

p(m=eqk|[σ, i])
p(m=eqk|l=sqk)

≈ ((((
(((

((
p(m=eqk|[e,m]) p([e,m]|[σ, i])∑∞

λ=0((((
(((

(((
p(m=eqk|[eλ,m]) p([eλ,m]|[sλ, l]) p([sλ, l]|l=sqk)

=

∑∞
λ=0 p([e

λ,m]|[σ, i])∑∞
λ=0 p([e

λ,m]|[sλ, l]) p([sλ, l]|l=sqk)
(B.32)

Estimation of p([eλ,m]|m=eqk)

p([eλ,m]|m=eqk) can be estimated by deriving the steady-state populations p(σ) from the
state diagram in figure 2.7b. Note that p(eλ) = p(sλ) =: xλ because for each domain start
there exists exactly one domain end. At equilibrium, the flux into eλ must equal the flux
out of it, hence

pinsxλ−1 + prepxλ = (1− pins)xλ + pinsxλ (B.33)

Solving for xλ gives

xλ =
pins

1− prep
xλ−1 =

(
pins

1− prep

)λ
x0 = aλx0 (B.34)

88 B. Supplementary - Pdom

with

a :=
pins

1− prep
(B.35)

(m=eqk) implies [eλ,m] for a λ ≥ 0. Therefore, normalization over the eλ states yields

p([eλ,m]|m=eqk) = aλ(1− a) (B.36)

Calculation of fσ|σ′(i− j) := p([σ, i]|[σ′, j])

The calculation of fσ|σ′(i − j) can be done for the new states exactly as formulated in
equation (B.24).

Calculation of fσ|e(i−m) := p([σ, i]|m=eqk) and fσ|s(i− l) := p([σ, i]|l=sqk)

p([σ, i]|m=eqk) can be calculated as follows:

fσ|e(i−m) :=p([σ, i]|m=eqk) (B.37)

=
∞∑
λ=0

p([σ, i], [eλ,m]|m=eqk)

=
∞∑
λ=0

p([σ, i]|[eλ,m]) p([eλ,m]|m=eqk)

=
∞∑
λ=0

fσ|eλ(i−m) p([eλ,m]|m=eqk) (B.38)

With equation (B.36):

fσ|e(i−m) := p([σ, i]|m=eqk) = (1− a)
∞∑
λ=0

fσ|eλ(i−m) aλ (B.39)

Analogously:

fσ|s(i− l) := p([σ, i]|l=sqk) = (1− a)
∞∑
λ=0

fσ|sλ(i− l) aλ (B.40)

B.3 Domain Prediction with Inserted Domains 89

Calculation of fe|σ(m− i) :=
∑∞

λ=0 p([e
λ,m]|[σ, i])

and fe|s(m− l) :=
∑∞

λ=0 p([e
λ,m]|[sλ, l]) p([sλ, l]|l=sqk))

For the nominator and denominator in equation (B.32) we get:

fe|σ(m− i) :=
∞∑
λ=0

p([eλ,m]|[σ, i]) =
∞∑
λ=0

feλ|σ(m− i)

fe|s(m− l) :=
∞∑
λ=0

p([eλ,m]|[sλ, l]) p([sλ, l]|l=sqk)) = (1− a)
∞∑
λ=0

feλ|sλ(m− l) aλ

(B.41)

Calculation of p([σ′,j])
p([σ,i])

The ratio of priors in equation (B.31) does not cancel out anymore when taking inserted
domains into account. The steady state population is proportional to aλ(1− a) for insertion
level λ. Therefore,

p([σ′, j])

p([σ, i])
=
aλ
′
(1− a)

aλ(1− a)
= aλ

′−λ (B.42)

λ and λ′ are the insertion levels of the states [σ, i] and [σ′, j], respectively.

90 B. Supplementary - Pdom

B.4 Consistency Iterations

B.4.1 Calculation of gq(σ, i|σ′, j) := p([σ, i]ν|[σ′, j]ν−1,Aq, ps1...K , pe1...K)

For the consistency iterations we use almost the same procedure to compute the next
iteration of pσq (i), including the forward-backward algorithm. But instead of comput-
ing gq(σ, i|σ′, j) as defined in equation (B.30), we now need to compute gq(σ, i|σ′, j) :=
p([σ, i]ν |[σ′, j]ν−1,Aq, ps1...K , pe1...K)

which differs from equation (B.30) only by conditioning also on the the domain start
and end probability densities psk(j) and pek(j) from the previous iteration (see equation
(2.6)). In the following, the information in psk(j), and pek(j) is included through psqk

′(i),
peqk
′(i), rsqk(i), r

e
qk(i) and r∗qk(i).

Calculation of Rqk(σ, i|σ′, j)

With the conditioning on psk(j) and pek(j) equation (B.10) becomes:

Rqk(σ, i|σ′, j) =
p([σ,i]ν |[σ′,j]ν−1, psqk, peqk, psk, pek, Aqk)

p([σ,i]ν |[σ′,j]ν−1)
(B.43)

The numerator becomes:

p([σ,i]ν |[σ′,j]ν−1, psqk, peqk, psk, pek, Aqk) =
p([σ,i]ν , [σ

′,j]ν−1|psqk, peqk, psk, pek, Aqk)
p([σ′,j]ν−1|psqk, peqk, psk, pek, Aqk)

(B.44)

In the following we use the approximations:

p(l=sqk|psqk) ≈ psqk
′(l)

p(m=eqk|peqk) ≈ peqk
′(m)

Calculation of p([σ,i]ν |[σ′,j]ν−1, psqk, peqk, psk, pek, Aqk) for l < m ≤ j < i

The first partial sum (equation (B.15)) becomes∑
(1)

p([σ,i]ν |[σ′,j]ν−1, psk, pek, Aqk)
=

j∑
m=1

p([σ′, j]|[e,m],���
���psk, p

e
k, Aqk) p(m=eqk|peqk, pek, Aqk)

(B.45)

To simplify this expression, note

• p([σ′, j]|[e,m], psk, p
e
k, Aqk) = p([σ′, j]|[e,m]), since from m ≤ j it follows that the

alignment which ends at m does not overlap j.

• p(m=eqk|peqk, pek, Aqk) = p(m=eqk|peqk ′), since the information from the domain end
probabilities of tk is transferred to the domain end probabilities of the query q by
replacing peqk with peqk

′ defined in equation (2.15)

B.4 Consistency Iterations 91

Equation (B.15) therefore becomes

∑
(1)

p([σ,i]ν |[σ′,j]ν−1, psk, pek, Aqk)
=

j∑
m=1

p([σ′, j]|[e,m]) peqk
′(m) (B.46)

Calculation of p([σ,i]ν |[σ′,j]ν−1, psqk, peqk, psk, pek, Aqk) for l ≤ j < i ≤ m

We modify the second partial sum (equation (B.15)) in a similar way by conditioning on
psk, p

e
k, Aqk and simplifying the resulting expressions:

∑
(2)

p([σ,i]ν |[σ′,j]ν−1, psk, pek, Aqk)
=

j∑
l=1

p([σ′, j]|l=sqk, p
s
k, p

e
k, Aqk) p(l=sqk|psqk, psk, pek, Aqk)

×
Lq∑
m=i

p(m=eqk|[σ,i]ν , psk, pek, Aqk)
p(m=eqk|l=sqk, psk, p

e
k, Aqk)

p(m=eqk|peqk, psk, pek, Aqk)

= p([σ,i]ν |[σ′,j]ν−1, psk, pek, Aqk)
j∑
l=1

p([σ′, j]|l=sqk, r
bσc
qk) psqk

′(l)

×
Lq∑
m=i

p(m=eqk|[σ,i]ν , reqk)
p(m=eqk|l=sqk, reqk)

peqk
′(m) (B.47)

In the second step we used the fact that l ≤ j < i ≤ m and hence i and j both overlap
with the alignment Aqk.

Using the definition of fσ|σ′(i|j, rqk), the second partial sum can be written∑
(2)

p([σ,i]ν |[σ′,j]ν−1, psk, pek, Aqk)
=

j∑
l=1

fσ′|s(j|l, rqk) p(l=sqk|psqk
′)

Lq∑
m=i

fe|σ(m|i, rqk)
fe|s(m|l, rqk)

p(m=eqk|peqk
′)

(B.48)

Calculation of p([σ,i]ν |[σ′,j]ν−1, psqk, peqk, psk, pek, Aqk) for j < i ≤ l < m

In the third partial sum the alignment does not overlap with i and j. We obtain

∑
(3)

p([σ,i]ν |[σ′,j]ν−1, psk, pek, Aqk)
= qλ

′−λ
Lq∑
l=i

p([σ, i]|l=sqk) p
s
qk
′(l)

(B.49)

92 B. Supplementary - Pdom

Calculation of p([σ′,j]ν−1|psqk, peqk, psk, pek, Aqk)

The partial sums in the denominator (see equation (B.44)) can be derived with similar
modifications:

∑
(1′)

=

j∑
m=1

p([σ′, j]|m=eqk) p
e
qk
′(m) (B.50)

∑
(2′)

=

j∑
l=1

p([σ′, j]|l=sqk, rqk) p
s
qk
′(l)

Lq∑
m=j

p(m=eqk|[σ′, j], rqk)
p(m=eqk|l=sqk, rqk)

peqk
′(m) (B.51)

∑
(3′)

=

Lq∑
l=j

p([σ′, j]|l=sqk) p
s
qk
′(l) (B.52)

Calculation of fσ|σ′(i|j, rqk) := p([σ, i]|[σ′, j], rbσcqk)

The generalized version of the fσ|σ′(i− l)

fσ|σ′(i|j, rqk) := p([σ, i]|[σ′, j], rbσcqk) (B.53)

can be computed iteratively:

fσ|σ′(i|i, rqk) = I(σ=σ′)

fσ|σ′(i|j, rqk) =
∑

σ′′∈pred(σ)

∑
l=max{i−Lmax,0}

p([σ,i]ν |[σ′′,j]ν−1, rbσcqk) fσ′′|σ′(l|j, rqk) (B.54)

Calculation of p([σ,i]ν |[σ′,j]ν−1, rbσcqk)

We make the modeling assumption that p([σ,i]ν |[σ′,j]ν−1, rbσcqk) ∝ p([σ,i]ν |[σ′,j]ν−1)rbσcqk (i).
Since this probability must sum to 1 over all i ∈ {i : j < i ≤ LQ + 1} and all σ ∈ succ(σ′),
we obtain

p([σ,i]ν |[σ′,j]ν−1, rbσcqk) ≈
p([σ,i]ν |[σ′,j]ν−1) rbσcqk (i)∑

σ′′∈succ(σ′)
∑Lq+1

i′=j+1 p([σ
′′, i′]ν |[σ′,j]ν−1) rbσ

′′c
qk (i′)

(B.55)

Calculation of p([σ,i]ν |[σ′,j]ν−1, psk, pek, Aqk)

We can expand p([σ,i]ν |[σ′,j]ν−1, psk, pek, Aqk) by the sum rule for the case in which the
alignment Aqk covers i, that is to say sqk≤ i≤eqk, and the case in which it does not cover i:

B.4 Consistency Iterations 93

p([σ,i]ν |[σ′,j]ν−1, psk, pek, Aqk)
= p([σ,i]ν |sqk≤ i≤eqk, [σ′,j]ν−1, psk, pek, Aqk) p(sqk≤ i≤eqk|Aqk)

+ p([σ,i]ν |¬(sqk≤ i≤eqk), [σ′,j]ν−1, psk, pek, Aqk) (1− p(sqk≤ i≤eqk|Aqk))
= p([σ,i]ν |[σ′,j]ν−1, rbσcqk) r∗qk(i) + p([σ,i]ν |[σ′,j]ν−1)(1− r∗qk(i)) (B.56)

Calculation of Rqk(σ, i|σ′, j) - final

Rqk(σ, i|σ′, j) = Sqk(σ, i|σ′, j)
∑

(1) +
∑

(2) +
∑

(3)∑
(1′) +

∑
(2′) +

∑
(3′)

(B.57)

with equation (B.56):

Sqk(σ, i|σ′, j) :=
p([σ,i]ν |[σ′,j]ν−1,psk,pek,Aqk)

p([σ,i]ν |[σ′,j]ν−1,)
=
p([σ,i]ν |[σ′,j]ν−1, rbσcqk)

p([σ,i]ν |[σ′,j]ν−1)
r∗qk(i) + 1− r∗qk(i)

(B.58)

B.4.2 Sequence weighting during consistency iterations

Analogous to section B.2.3, the redundancy within the set of profiles rσq,1...K can be corrected
by weights

w′σqk =

[
K∑
k′=1

∑Lq
i=1(r

σ
qk r

σ
qk′)

1
2

(
∑

i r
σ
qk)

1
2 (
∑

i r
σ
qk′)

1
2

]−1
(B.59)

Contrary to the case in section B.2.3, the normalization is necessary, since the rσqk are not

normalized over i. Again, 1 ≤ (w′σqk)
−1 ≤ K and therefore 1

K
≤ w′σqk ≤ 1. We can again

generalize this using the parameter αw as before:

w′σqk =

[
K∑
k′=1

∑Lq
i=1(r

σ
qk r

σ
qk′)

αw

(
∑

i(r
σ
qk)

2αw)
1
2 (
∑

i(r
σ
qk′)

2αw)
1
2

]−1
. (B.60)

w′σqk replaces wσqk in the calculation of gq(σ, i|σ′, j) for the consistency iterations.

Bibliography

[1] Celery. http://www.celeryproject.org/.

[2] Django. https://www.djangoproject.com/.

[3] Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen.
https://www.gwdg.de/.

[4] HHsuite at GitHub. https://github.com/soedinglab/hh-suite.

[5] HHsuite userguide. https://github.com/soedinglab/hh-suite/blob/master/hhsuite-
userguide.pdf.

[6] MySQL. https://www.mysql.de/.

[7] Redis. http://redis.io/.

[8] Travis CI. https://travis-ci.org/.

[9] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215:403–410, 1990.

[10] S F Altschul, T L Madden, A A Schäffer, J Zhang, Z Zhang, W Miller, and D J
Lipman. Gapped BLAST and PS I-BLAST: a new generation of protein database
search programs. Nucleic Acids Research, 25(17):3389–3402, 1997.

[11] Alex Bateman, Maria Jesus Martin, Claire O’Donovan, Michele Magrane, Rolf Apweiler,
Emanuele Alpi, Ricardo Antunes, Joanna Arganiska, Benoit Bely, Mark Bingley,
Carlos Bonilla, Ramona Britto, Borisas Bursteinas, Gayatri Chavali, Elena Cibrian-
Uhalte, Alan Da Silva, Maurizio De Giorgi, Tunca Dogan, Francesco Fazzini, Paul
Gane, Leyla Garcia Castro, Penelope Garmiri, Emma Hatton-Ellis, Reija Hieta,
Rachael Huntley, Duncan Legge, Wudong Liu, Jie Luo, Alistair Macdougall, Prudence
Mutowo, Andrew Nightingale, Sandra Orchard, Klemens Pichler, Diego Poggioli,
Sangya Pundir, Luis Pureza, Guoying Qi, Steven Rosanoff, Rabie Saidi, Tony Sawford,
Aleksandra Shypitsyna, Edward Turner, Vladimir Volynkin, Tony Wardell, Xavier
Watkins, Hermann Zellner, Andrew Cowley, Luis Figueira, Weizhong Li, Hamish
McWilliam, Rodrigo Lopez, Ioannis Xenarios, Lydie Bougueleret, Alan Bridge, Sylvain
Poux, Nicole Redaschi, Lucila Aimo, Ghislaine Argoud-Puy, Andrea Auchincloss,

96 BIBLIOGRAPHY

Kristian Axelsen, Parit Bansal, Delphine Baratin, Marie Claude Blatter, Brigitte
Boeckmann, Jerven Bolleman, Emmanuel Boutet, Lionel Breuza, Cristina Casal-
Casas, Edouard De Castro, Elisabeth Coudert, Beatrice Cuche, Mikael Doche, Dolnide
Dornevil, Severine Duvaud, Anne Estreicher, Livia Famiglietti, Marc Feuermann,
Elisabeth Gasteiger, Sebastien Gehant, Vivienne Gerritsen, Arnaud Gos, Nadine
Gruaz-Gumowski, Ursula Hinz, Chantal Hulo, Florence Jungo, Guillaume Keller,
Vicente Lara, Philippe Lemercier, Damien Lieberherr, Thierry Lombardot, Xavier
Martin, Patrick Masson, Anne Morgat, Teresa Neto, Nevila Nouspikel, Salvo Paesano,
Ivo Pedruzzi, Sandrine Pilbout, Monica Pozzato, Manuela Pruess, Catherine Rivoire,
Bernd Roechert, Michel Schneider, Christian Sigrist, Karin Sonesson, Sylvie Staehli,
Andre Stutz, Shyamala Sundaram, Michael Tognolli, Laure Verbregue, Anne Lise
Veuthey, Cathy H. Wu, Cecilia N. Arighi, Leslie Arminski, Chuming Chen, Yongxing
Chen, John S. Garavelli, Hongzhan Huang, Kati Laiho, Peter McGarvey, Darren A.
Natale, Baris E. Suzek, C. R. Vinayaka, Qinghua Wang, Yuqi Wang, Lai Su Yeh,
Meher Shruti Yerramalla, and Jian Zhang. UniProt: A hub for protein information.
Nucleic Acids Research, 43(D1):204–212, 2015.

[12] M J Bennett, M P Schlunegger, and D Eisenberg. 3D domain swapping: a mechanism
for oligomer assembly. Protein Science, 4(12):2455–2468, 1995.

[13] Dennis A Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, David J
Lipman, James Ostell, and Eric W Sayers. GenBank. Nucleic Acids Research, 41(D1):36–
42, 2013.

[14] H M Berman, J Westbrook, Z Feng, G Gilliland, T N Bhat, H Weissig, I N Shindyalov,
and P E Bourne. The Protein Data Bank. Nucleic Acids Research, 28(1):235–242,
2000.

[15] Peer Bork. Shuffled domains in extracellular proteins. FEBS Lett., 286(1-2):47–54,
1991.

[16] S E Brenner. Target selection for structural genomics. Nature structural & molecular
biology, 7:967–969, 2000.

[17] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A Limited Memory Al-
gorithm for Bound Constrained Optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208, 1995.

[18] I. D. Campbell and A. Kristina Downing. Building protein structure and function
from modular units. Trends in Biotechnology, 12(5):168–172, 1994.

[19] Lusheng Chen, Wei Wang, Shaoping Ling, Caiyan Jia, and Fei Wang. KemaDom: A
web server for domain prediction using kernel machine with local context. Nucleic
Acids Research, 34(Web Server issue):158–163, 2006.

BIBLIOGRAPHY 97

[20] Dylan Chivian, David E. Kim, Lars Malmstrom, Philip Bradley, Timothy Robertson,
Paul Murphy, Charles E M Strauss, Richard Bonneau, Carol A. Rohl, and David Baker.
Automated Prediction of CASP-5 Structures Using the Robetta Server. Proteins:
Structure, Function and Genetics, 53:524–533, 2003.

[21] O Dekel, S Shalev-Shwartz, and Y Singer. Smooth epsilon-insensitive regression by
loss symmetrization. Journal of Machine Learning Research, 6:711–741, 2005.

[22] RF Doolittle. The multiplicity of domains in proteins. Annual review of biochemistry,
64:287–314, 1995.

[23] Michel Dumontier, Rong Yao, Howard J. Feldman, and Christopher W V Hogue.
Armadillo: Domain boundary prediction by amino acid composition. Journal of
Molecular Biology, 350(5):1061–1073, 2005.

[24] Teppei Ebina, Hiroyuki Toh, and Yutaka Kuroda. Loop-length-dependent SVM
prediction of domain linkers for high-throughput structural proteomics. Biopolymers,
92(1):1–8, 2009.

[25] Jesse Eickholt, Xin Deng, and Jianlin Cheng. DoBo: Protein domain boundary predic-
tion by integrating evolutionary signals and machine learning. BMC bioinformatics,
12(1), 2011.

[26] Robert D Finn, Jaina Mistry, John Tate, Penny Coggill, Andreas Heger, Joanne E
Pollington, O Luke Gavin, Prasad Gunasekaran, Goran Ceric, Kristoffer Forslund,
Liisa Holm, Erik L L Sonnhammer, Sean R Eddy, and Alex Bateman. The Pfam
protein families database. Nucleic Acids Research, 2010.

[27] Naomi K. Fox, Steven E. Brenner, and John Marc Chandonia. SCOPe: Structural
Classification of Proteins - Extended, integrating SCOP and ASTRAL data and
classification of new structures. Nucleic Acids Research, 42(D1):304–309, 2014.

[28] Richard a George and Jaap Heringa. SnapDRAGON: a method to delineate protein
structural domains from sequence data. Journal of Molecular Biology, 316:839–851,
2002.

[29] R. Guerois and L. Serrano. Protein design based on folding models. Current Opinion
in Structural Biology, 11(1):101–106, 2001.

[30] Andreas Hauser. ffindex at GitHub. https://github.com/soedinglab/ffindex soedinglab.

[31] M Hauser, C E Mayer, and J Söding. kClust: fast and sensitive clustering of large
protein sequence databases. BMC Bioinformatics, 14:248, 2013.

[32] Maria Hauser. MMseqs : ultra fast and sensitive clustering and search of large protein
sequence databases. PhD thesis, 2014.

98 BIBLIOGRAPHY

[33] Maria Hauser, Martin Steinegger, and Johannes Söding. MMseqs software suite for
fast and deep clustering and searching of large protein sequence sets. Bioinformatics,
32(9):1323–1330, 2016.

[34] Andreas Heger and Liisa Holm. Exhaustive Enumeration of Protein Domain Families.
Journal of Molecular Biology, 328(3):749–767, 2003.

[35] Jaap Heringa and William R. Taylor. Three-dimensional domain duplication, swapping
and stealing. Current Opinion in Structural Biology, 7(3):416–421, 1997.

[36] Andrea Hildebrand, Michael Remmert, Andreas Biegert, and Johannes Söding. Fast and
accurate automatic structure prediction with HHpred. Proteins: Structure, Function
and Bioinformatics, 77(SUPPL. 9):128–132, 2009.

[37] Timothy A. Holland, Stella Veretnik, Ilya N. Shindyalov, and Philip E. Bourne.
Partitioning Protein Structures into Domains: Why Is it so Difficult? Journal of
Molecular Biology, 361(3):562–590, 2006.

[38] Takayuki Hondoh, Atsushi Kato, Shigeyuki Yokoyama, and Yutaka Kuroda. Computer-
aided NMR assay for detecting natively folded structural domains. Protein Science,
15(4):871–883, 2006.

[39] L Steven Johnson, Sean R Eddy, and Elon Portugaly. Hidden Markov model speed
heuristic and iterative HMM search procedure. BMC bioinformatics, 11:431, 2010.

[40] Scott D. Kahn. On the Future of Genomic Data. Science, 331(6018):728 –729, 2011.

[41] David E. Kim, Dylan Chivian, Lars Malmstrom, and David Baker. Automated
prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM.
Proteins: Structure, Function and Vioinformatics, 61(S7):193–200, 2005.

[42] Sarah K Kummerfeld and Sarah A. Teichmann. Relative rates of gene fusion and
fission in multi-domain proteins. Trends in Genetics, 21(1):25–30, 2005.

[43] Jinfeng Liu and Burkhard Rost. Domains, motifs and clusters in the protein universe.
Current Opinion in Chemical Biology, 7:5–11, 2003.

[44] Alexey G. Murzin, Steven E. Brenner, Tim Hubbard, and Cyrus Chothia. SCOP: A
structural classification of proteins database for the investigation of sequences and
structures. Journal of Molecular Biology, 247:536–540, 1995.

[45] Peter K. Nielsen and Yoshihiko Yamada. Identification of Cell-binding Sites on the
Laminin a5 N-terminal Domain by Site-directed Mutagenesis. Journal of Biological
Chemistry, 276(14):10906–10912, 2001.

[46] Chin I. Pang, Kuang Lin, Merridee A. Wouters, Jaap Heringa, and Richard A. George.
Identifying foldable regions in protein sequence from the hydrophobic signal. Nucleic
Acids Research, 36(2):578–588, 2008.

BIBLIOGRAPHY 99

[47] Sophie Pasek, Jean Loup Risler, and Pierre Brézellec. Gene fusion/fission is a major
contributor to evolution of multi-domain bacterial proteins. Bioinformatics, 22(12):1418–
1423, 2006.

[48] Jian Peng and Jinbo Xu. Low-homology protein threading. Bioinformatics, 26(12):294–
300, 2010.

[49] N. Perdigao, J. Heinrich, C. Stolte, K. S. Sabir, M. J. Buckley, B. Tabor, B. Signal, B. S.
Gloss, C. J. Hammang, B. Rost, A. Schafferhans, and S. I. O’Donoghue. Unexpected
features of the dark proteome. Proceedings of the National Academy of Sciences,
112(52):15898–15903, 2015.

[50] Elon Portugaly, Amir Harel, Nathan Linial, and Michal Linial. EVEREST: automatic
identification and classification of protein domains in all protein sequences. BMC
bioinformatics, 7(1), 2006.

[51] Bhanu Rekapalli, Kristin Wuichet, Gregory D Peterson, and Igor B Zhulin. Dynamics
of domain coverage of the protein sequence universe. BMC genomics, 13(1):634, 2012.

[52] Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes Söding. HHblits:
lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature
Methods, 9(2):173–175, 2011.

[53] Torbjørn Rognes. Faster Smith-Waterman database searches with inter-sequence SIMD
parallelisation. BMC bioinformatics, 12(1), 2011.

[54] Jay Shendure and Hanlee Ji. Next-generation DNA sequencing. Nature Biotechnology,
26(10):1135–1145, 2008.

[55] I. Sillitoe, T. E. Lewis, A. Cuff, S. Das, P. Ashford, N. L. Dawson, N. Furnham, R. A.
Laskowski, D. Lee, J. G. Lees, S. Lehtinen, R. A. Studer, J. Thornton, and C. A.
Orengo. CATH: comprehensive structural and functional annotations for genome
sequences. Nucleic Acids Research, 43(D1):376–381, 2015.

[56] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195–197, 1981.

[57] Johannes Söding. Protein homology detection by HMM-HMM comparison. Bioinfor-
matics, 21(7):951–960, 2005.

[58] Johannes Söding and Michael Remmert. Protein sequence comparison and fold recogni-
tion: Progress and good-practice benchmarking. Current Opinion in Structural Biology,
21(3):404–411, 2011.

[59] Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson. CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Research,
22(22):4673–4680, 1994.

100 BIBLIOGRAPHY

[60] D Vitkup, E Melamud, J Moult, and C Sander. Completeness in structural genomics.
Nature Structural & Molecular Biology, 8(6):559–566, 2001.

[61] Christine Vogel, Sarah A. Teichmann, and Jose Pereira-Leal. The relationship between
domain duplication and recombination. Journal of Molecular Biology, 346(1):355–365,
2005.

[62] Benjamin Webb and Andrej Sali. Comparative Protein Structure Modeling Using
MODELLER. 2014.

[63] Donald B. Wetlaufer. Nucleation, rapid folding, and globular intrachain regions in
proteins. Proceedings of the National Academy of Sciences of the United States of
America, 70(3):697–701, 1973.

[64] Yinghao Wu, Athanasios D Dousis, Mingzhi Chen, Jialin Li, and Jainpeng Ma. OPUS-
Dom: Applying the Folding-Based Method VECFOLD to Determine Protein Domain
Boundaries. Journal of Molecular Biology, 385(4):1314–1329, 2009.

[65] Jinrui Xu and Yang Zhang. How significant is a protein structure similarity with
TM-score = 0.5? Bioinformatics, 26(7):889–895, 2010.

[66] Y Xu, D Xu, and H N Gabow. Protein domain decomposition using a graph-theoretic
approach. Bioinformatics, 16(12):1091–1104, 2000.

[67] Corin A Yeats and Christine A Orengo. Evolution of Protein Domains. Encyclopedia
of Life Sciences, 2007.

[68] Christine Zardecki, Shuchismita Dutta, David S. Goodsell, Maria Voigt, and Stephen K.
Burley. RCSB Protein Data Bank: A Resource for Chemical, Biochemical, and Struc-
tural Explorations of Large and Small Biomolecules. Journal of Chemical Education,
93:569–575, 2016.

[69] Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein
structure template quality. Proteins: Structure, Function and Genetics, 57(4):702–710,
2004.

Acknowledgment

I would like to express my special appreciation and thanks to my advisor Dr. Johannes
Söding, you have been a tremendous mentor for me. I would like to thank you for encouraging
my research and for allowing me to grow as a research scientist. Your advice on research
has been invaluable. A special thanks to my family. Words can not express how grateful I
am to my mother, my father and my sisters for all the sacrifices that you have made on my
behalf.

	Summary
	Introduction
	A Diversity-Enriched HMM Database for HHblits
	Abstract
	Method
	Memory and Efficiency
	Sequence Filter
	Compressed Redundant HHsuite Database

	Results
	Size
	Runtime
	Diversity in the Clusters
	Homology Detection Sensitivity
	Alignment Quality
	Model Quality

	Discussion and Conclusion

	Chopping Protein Sequence Space into Domains
	Abstract
	Introduction
	Method
	Notation
	Forward-Backward algorithm for domain start and end probabilities
	Extension to inserted domains
	Consistency iterations
	Algorithm for Domain Border Prediction
	HHblits - Alignment Information Output
	Training, Testing and Benchmark Set

	Optimization and Training
	Training of Domain and Linker Lengths
	Scores for Benchmark and Optimization
	Parameter Optimization

	Results
	Analysis of Good Predictions
	Analysis of Bad Predictions
	Web server

	Discussion and Conclusion
	Outlook

	HHsuite
	Code Improvement
	Bug-Fixes
	HHsuite Databases Pipelines
	Protein Data Bank - pdb70
	Pfam
	UniProt - uniprot20
	UniProt - uniprot_boost1

	Supplementary - uniprot_boost1
	Discretized Column States of the uniprot_boost1 for the uniprot20 Database

	Supplementary - Pdom
	Notation
	Domain Prediction without Insertions
	Calculation of peqk(i) and psqk(i)
	Calculation of gq(,i| ',j) := p([,i]| [',j]-1, Aq)
	Sequence weighting

	Domain Prediction with Inserted Domains
	Calculation of gq(,i|',j) := p([,i]| [',j]-1)

	Consistency Iterations
	Calculation of gq(,i|',j) := p([,i]| [',j]-1, Aq, ps1…K,pe1…K)
	Sequence weighting during consistency iterations

	Acknowledgment

