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Zusammenfassung
Diese Doktorarbeit beschreibt die experimentelle Umsetzung des 3D SU(N) Fermi-
Hubbard Modells und die direkte Messung der Zustandsgleichung mit Hilfe eines
ultrakalten Quantengases von fermionischen Ytterbium-Atomen in einem optischen
Gitter. Ultrakalte, neutrale Atome in optischen Gittern stellen ein gut kontrollierbares
und hochflexibles System dar um Modelle aus der Festkörperphysik, wie z.B. das
Hubbard Modell, zu untersuchen. Insbesondere erlauben Ytterbium-Atome, diese
Modelle mit SU(N) Symmetrie zu realisieren, da bei ihnen der Kernspin nahezu
vollständig von der elektronischen Konfiguration der Atome entkoppelt ist. Als Folge
dieser erweiterten Symmetrie hängen die thermodynamischen Größen von N – der
Anzahl der Spinkomponenten im Quantengas – ab, und man erwartet neuartige
Phasenzustände dieser Systeme bei niedrigen Temperaturen.
Durch Messen der lokalen Eigenschaften eines 173Yb Quantengases, erhalten wir

die Zustandsgleichung des SU(6) und SU(3) Fermi-Hubbard Modells. Die Zustands-
gleichung erlaubt es uns, direkten, modellunabhängigen Zugang zu den thermody-
namischen Größen des Gases im Gitter zu erlangen. Hiermit ist es möglich, durch
Ändern der Wechselwirkungsstärke den Übergang von einer Fermi-Flüssigkeit zu
einem SU(N) Mott-Isolator zu beobachten, sowie die Kompressibilität des Gases
für unterschiedlich starke Wechselwirkungen zu ermitteln. In dem Experiment
beobachten wir eine niedrige spezifische Entropie des SU(6) Gases, niedriger als die
von unkorrelierten Spins, was auf partielle Spinkorrelationen im Quantengas hinweist.
Die Möglichkeit, die Zustandsgleichung solcher Systeme mit hohem Spin direkt zu
bestimmen, sowie die niedrige Entropie die erzielt wurde, stellen einen wichtigen
Schritt für die Realisierung von SU(N) Spin-Hamiltonoperatoren dar, sowie für die
Charakterisierung von neuartigen SU(N) Phasenzuständen.





Abstract
This thesis reports on the experimental realization of the 3D SU(N) Fermi-Hubbard
model and the direct probing of the equation of state with an ultracold quantum gas of
fermionic ytterbium in an optical lattice. Ultracold atoms in optical lattices constitute
a flexible and highly tunable system to investigate Hamiltonians of condensed matter
physics such as the Hubbard model. In particular, ytterbium atoms are ideal
candidates for the realization of the Fermi-Hubbard model with SU(N)-symmetry
due to a high decoupling of the nuclear spin from the electronic configuration. As
a consequence of this enlarged symmetry, thermodynamic properties of the atomic
sample depend on N , the number of spin components in the quantum gas, and novel,
exotic phases are predicted to emerge at low temperatures.

By locally probing a quantum gas of 173Yb in a 3D optical lattice, we determine the
equation of state of the SU(6) and SU(3) Fermi-Hubbard model. The measurement
of the equation of state allows us to obtain direct, model-independent access to the
thermodynamic quantities of the lattice gas. In this way, we can characterize the
crossover from a Fermi liquid to an SU(N) Mott insulator when tuning the interaction
strength, and can probe the compressibility of the quantum gas in different interaction
regimes. Moreover, we find a low specific entropy of the SU(6) gas below that of
uncorrelated spins, indicating the presence of partial spin correlations in the atomic
sample. The ability to access the equation of state of such high spin systems, as well
as the low obtained entropy, represent an important step towards the realization of
SU(N) spin Hamiltonians and the characterization of novel SU(N) phases.
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Chapter 1

Introduction

With the advent of quantum mechanics at the beginning of the 20th century, applica-
tions of quantum-mechanical models in different fields of physics rapidly developed.
Initially used for the description of single particles like atoms or electrons, quantum
mechanics soon became indispensable to explain many-body phenomena in condensed
matter physics on a microscopic level, like superfluidity or superconductivity [1–3].
To predict experimental observations in such systems, simplified models are used that
try to explain the behavior within a minimal framework. Conventional superconduc-
tivity for example could be modeled by Baarden-Cooper-Schrieffer (BCS) theory by
explaining the behavior with a pairing mechanism for electrons [2]. Other effects
such as a vanishing conductivity of certain materials for strong Coulomb repulsion
and for partially filled bands – the group of Mott insulators – could be described
with the highly celebrated Hubbard model [4]. Due to the complexity of solids how-
ever, these simple models are often not able to explain all experimentally observed
effects. Moreover, the many-body aspect in condensed matter systems makes it in
general impossible to solve such models exactly. Because of these difficulties, it is for
example still an ongoing debate if high-temperature superconductivity, which cannot
be described by BCS theory, is captured within the Hubbard model [5–7]. This is
even more remarkable considering the fact that high-temperature superconductors
are studied for more than 30 years [8–11], which illustrates the need for new tools to
study such strongly correlated systems.

Ultracold quantum gases
Ultracold quantum gases are a versatile tool to investigate quantum many-body
phenomena. With the progress in laser cooling and trapping over the past decades,
it became possible to cool atomic gases to quantum degeneracy. A milestone for
reaching the quantum regime was the first creation of a Bose-Einstein condensate

1



Chapter 1 Introduction

(BEC) with ultracold gases, a phase of matter that was predicted by S. N. Bose and
A. Einstein in 1924, but could not be observed before 1995 [12–14].

Shortly after the first condensation of a BEC, degenerate Fermi gases comprising
several thousand atoms, which possess the same quantum statistics as electrons, were
obtained as well in such experiments [15]. These achievements sparked a series of
new developments in the field of atomic physics. The discovery of magnetic Feshbach
resonances allowed for controlling interactions between the atoms, making cold atom
experiments a flexible toolbox to study attractive as well as repulsive interactions
of various strengths [16, 17]. In this way, the BEC-BCS crossover could be realized
with ultracold quantum gases [18–20]. Another breakthrough concerning many-body
physics with quantum gases was the realization of the Hubbard model with optical
lattice potentials, as proposed by Jaksch et al. in 1998 [21]. Such lattices resemble
the periodic structure of crystals and make it possible to enter the strongly correlated
regime with ultracold atomic gases. The metal to Mott transition for fermionic
quantum gases could be experimentally observed for the first time in 2008 [22, 23].

It turns out that the Hubbard model is in general a much more faithful description
of ultracold atoms in optical lattices than it is for electrons in real solids. The
Hubbard model assumes interactions only within a single orbital, an assumption
that is perfectly fulfilled for cold atom experiments. In contrast to this, a large class
of Mott insulators in solids possess electrons in d-orbitals with orbital degeneracy
[24]. Moreover, defects in the crystal structure, as they happen in solids, do not
exist in optical lattice potentials. In this respect, ultracold atom experiments can
be considered quantum simulators, as originally envisioned by R. Feynman [25], for
systems like the Hubbard model. Feynman’s idea was to use a simulator that can
be easily controlled in order to imitate and simulate the physics of another system,
instead of trying to compute the problem mathematically. For this to work, the
experiment should approximate the system as well as possible and allow for tuning
the relevant parameters contained within the simulated model.

Apart from the tunability of such quantum simulators, another important aspect
is the capability to probe these systems easily. Over the past years, the detection
methods of quantum gases improved substantially. Many diagnostic techniques
to study many-body systems were developed such as band-mapping [26], noise
correlations [27, 28] or the ability to detect doublons in an optical lattice [23]. Recent
progress in the detection and cooling techniques now even permits studying many-
body systems directly with microscopes [29, 30]. Such quantum microscopes are
able to resolve single atoms in optical lattices. This flexibility offers the possibility
to probe density-density correlations or magnetic correlations directly in the trap
and allows investigating quantum gases in more detail than ever before. In addition,
more sophisticated lattice geometries were implemented such as super lattices [31],
artificial gauge fields [32] or honeycomb and triangular lattices [33–35], which allow
extending the range of physical systems that can be realized experimentally.
While the first cold atom experiments were realized mostly with alkali elements,
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new systems that possess additional properties are employed in experiments these
days. Ultracold, deeply bound polar molecules [36–40], elements with strong magnetic
dipole moments such as erbium and dysprosium [41, 42], as well as Rydberg atoms
[43, 44] which provide long-range interactions, have been accomplished. Moreover,
degenerate quantum gases of alkaline earth-like elements such as ytterbium have
been cooled and offer unique features.

Alkaline earth-like atoms
In contrast to alkali elements, which possess a single valence electron, alkaline earth-
like elements exhibit a more complex level structure with two valence electrons,
and possess several meta-stable states that can serve as an additional degree of
freedom. These elements offer a variety of bosonic and fermionic isotopes, which
possess different interaction properties. Moreover, some fermionic isotopes feature a
large nuclear spin. The first BEC of ytterbium was created in 2003 by the group of
Y. Takahashi [45]. In the last years, several other alkaline earth-like elements have
been cooled to degeneracy [46–48] and a fermionic Mott insulator was realized with
these elements [49].

The large nuclear spin and the presence of meta-stable states make such ultracold
gases ideal for quantum simulation and for the realization of optical clocks. The
weakly allowed ultra-narrow optical transition from the ground state to the meta-
stable state permits implementing atomic lattice clocks with high precision. In 2015,
such clocks achieved a precision with a relative uncertainty of about 10−18 [50, 51].
This is better than the current primary frequency standard with caesium, which
is used for the definition of the second in the metric system. Therefore, optical
lattice clocks have the potential to replace this standard in the future. The obtained
precision of these clocks allows measuring for example extremely small frequency
deviations in order to detect new physical effects. A change of fundamental physical
constants over time, leading to frequency shifts of the optical transition, could be
detected if the resolution of the clock is high enough to spot these changes [52–54].
Other applications of the long lifetime of the meta-stable states, in combination with
an ultra-narrow laser linewidth, involve using alkaline earth-like elements for a highly
sensitive detection of gravitational waves [55], which were predicted by Einstein’s
general relativity theory and which could only be detected very recently [56].

Quantum simulations
Besides for applications as optical clocks, alkaline earth-like atoms can be employed to
realize certain condensed matter systems as they feature an almost perfect decoupling
of the nuclear spin from the electronic structure in the ground state and in the lowest
meta-stable state. This unique property has a variety of applications in the fields of
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Chapter 1 Introduction

quantum simulation and quantum information and motivated a number of proposals
over the past years [57–61].
The decoupling of the nuclear spin from the electronic configuration has direct

consequences for the interaction between the atoms. Contact interactions are inde-
pendent of the nuclear spin and become SU(N)-symmetric, where N is determined
by the number of nuclear spin components of the isotope. The effects of this enlarged
spin-symmetry are manifold. The SU(N)-symmetric Hubbard model for example
features exotic phases that have not been observed before in solid-state systems.
Alkaline earth-like atoms allow extending these models beyond the conventional
spin-1/2 case in condensed matter physics, and could permit observing new phases
like chiral spin liquids or phases with topological order [62–64]. In the context of
solid-state physics, the SU(4)-symmetric version of the Fermi-Hubbard model has
been theoretically studied for transition-metal oxides where the orbital degeneracy
leads to an effective higher spin system [65]. Simulating such systems is not only
interesting from the theoretical point of view but also has applications in other
fields like quantum chromodynamics (QCD) [66]. There, the SU(3) symmetry is
realized by the flavor of the quarks. Moreover, spin-1 exchange bosons in QCD,
which mediate the forces in this field theory, also belong to the SU(3) symmetry
group. The connection of this field with ultracold atom physics has been realized
and proposals have even been made to simulate lattice gauge theories used for QCD
with alkaline earth-like atoms in optical lattices [67].

In addition to the unique ground state properties, the meta-stable state in alkaline
earth-like atoms can be considered as a second orbital for quantum simulation due to
its long lifetime. This offers additional intriguing possibilities such as the realization
of orbital-dependent optical potentials and allows investigating the Kondo lattice
model or the Kugel-Khomskii model with enlarged spin symmetry [58, 68]. These
systems have been studied in condensed matter physics over the past decades and
describe materials of interacting electrons in different orbitals such as heavy fermion
materials [69, 70] or Mott insulators in transition metal oxides [71]. The generalized
SU(N)-symmetric version of such systems is expected to show an even richer phase
diagram due to its enlarged spin symmetry. In this way ultra-cold atom experiments
with alkaline earth-like atoms can constitute a valuable tool for answering some
interesting open questions about the properties and types of phases for a variety of
single and two-orbital systems, which are studied in condensed matter physics or
even go beyond existing realizations of spin-1/2 systems which are used for describing
interacting electrons.

This thesis
In this thesis we study an ultracold quantum gas of ytterbium in state-dependent
and state-independent optical lattices. In particular, the thermodynamic properties
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of the SU(N) Fermi-Hubbard model (FHM) in a 3D optical lattice are investigated.
The experimental apparatus that was constructed offers the possibility to measure
local quantities of the in-trap density distribution of the gas. With our preparation
and detection methods, we are able vary and detect the spin mixture of the gas as
well as to control the interaction parameters in the optical lattice. This provides full
control over the relevant parameters to probe the metal to Mott crossover for an
SU(N) Fermi gas. Our main results comprise the measurement of the equation of
state and the compressibility of the FHM for an SU(3) and SU(6) Fermi gas and for
various interaction strengths.

The main part of this thesis deals with the production, detection and manipulation
of ultracold quantum gases of ytterbium. A state-dependent lattice setup was
implemented for the simulation of two-orbital Kondo type physics and might become
relevant for extending the single-orbital Hubbard model investigated in this work
to two-orbital systems. Throughout this thesis, the fermionic isotope 173Yb is
considered mostly and we will focus mainly on the ground state of ytterbium. A
detailed description of the interaction measurements, involving the meta-stable 3P0-
state that were done with this apparatus, as well as a detailed description of the
clock laser used to couple the meta-stable state can be found in [72–74].

Outline
The thesis is organized as follows. Chapter 2 gives a summary about the relevant
properties of ytterbium concerning laser cooling and trapping. The available isotopes
and the different scattering lengths are presented. In the context of ultracold quantum
gases in optical lattices, we motivate the SU(N)-symmetric interactions and the
emergence of the orbital-dependent polarizability for the ground- and meta-stable
state.

In chapter 3, the SU(N) Fermi-Hubbard model (FHM) and the two-orbital Kondo
lattice model is introduced. In particular, the equation of state of the FHM in the
Mott regime is given and its dependence on experimentally relevant parameters such
as the temperature is investigated. We illustrate the rich phase diagram of the SU(N)
FHM for higher spin systems that is expected to differ strongly from its spin-1/2
version. At the end of this chapter, we extend the FHM to a two orbital version and
introduce the Kondo lattice Hamiltonian.
In chapter 4, the experimental apparatus and the laser systems that were con-

structed for producing, manipulating and detecting ultracold ytterbium atoms are
presented. We show the vacuum chamber of the setup, where the quantum gas is
trapped and give a short overview of the relevant parameters of the laser systems
involved for cooling ytterbium to quantum degeneracy.

The preparation, detection and characterization of SU(N)-symmetric Fermi gases
is described in chapter 5. In this chapter, we characterize the imaging system used
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for the in-situ detection of the atomic sample. Moreover, the experimentally relevant
parameters of the atomic sample, such as the temperature of the SU(N) Fermi gas
after evaporation, are presented and the and detection of the nuclear spin of the
Fermi gas is explained.
Chapter 6 introduces the experimental realization of the state-independent and

state-dependent lattices that are employed in the experiment. This chapter describes
the optical lattice that is used for precision spectroscopy and for studying Hubbard
physics. Moreover, the measurement of the relative polarizability in a state-dependent
lattice is presented. At the end of this chapter, we will give some brief results of
ytterbium ground-state atoms that are loaded in a state-dependent lattice and which
are optically dressed with the clock transition.

In chapter 7, we present the measurements of the equation of state of the SU(N)
Fermi-Hubbard model. After motivating the experimental sequence used for this
experiment, we explain and characterize the reconstruction of the in-trap cloud
density. After that, the equation of state of the SU(3) and SU(6) Fermi gas, as
well as the measured compressibility for different interaction regimes, are presented.
Moreover, we estimate the three-body loss coefficient for 173Yb ground-state atoms.
At the end of this thesis, in chapter 8, we conclude and give an outlook about

further prospects regarding two-orbital system with tunable interactions, the orbital
Feshbach resonance and the realization and detection of magnetically ordered phases
in high spin systems.

Publications
The main results, obtained throughout this PhD thesis, have been published in the
following journals:

C. Hofrichter, L. Riegger, F. Scazza, M. Höfer, D. R. Fernandes, I. Bloch, and
S. Fölling, “Direct Probing of the Mott Crossover in the SU(N) Fermi-Hubbard
Model”, Physical Review X 6, 021030 (2016)

M. Höfer, L. Riegger, F. Scazza, C. Hofrichter, D. R. Fernandes, M. M. Parish,
J. Levinsen, I. Bloch, and S. Fölling, “Observation of an Orbital Interaction-
Induced Feshbach Resonance in 173Yb”, Physical Review Letters 115, 265302
(2015)

F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch, and S. Fölling,
“Observation of two-orbital spin-exchange interactions with ultracold SU(N)-
symmetric fermions”, Nature Physics 10, 779–784 (2014)
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Chapter 2

Ytterbium - an alkaline earth-like
element

In this chapter, we give an overview about the general properties of ytterbium that
are relevant for producing degenerate quantum gases. Ytterbium, as a rare earth
element, possesses similar electronic properties as elements of the alkaline earth
group. We first introduce the physical and chemical properties of ytterbium like the
abundance of its isotopes. After that, we show the electronic level structure with
the relevant optical transitions that are used in the experiment. We explain the
features of these transitions and the associated states that give ytterbium its unique
properties. After that, we discuss the SU(N)-symmetric interactions that arise for
such elements in the ground state, a feature that will become particularly relevant in
chapter 3 and chapter 7. At the end of this chapter, we show the polarizability of the
ground- and meta-stable state of ytterbium, which is relevant for the implementation
of a state-dependent potential that was realized recently with a second lattice setup.

Alkaline earth elements belong to group-II of the periodic table. This group
comprises the following elements: beryllium (Be), magnesium (Mg), calcium (Ca),
strontium (Sr), barium (Ba), and radium (Ra). Common for these elements is a
noble gas configuration for the inner shells with two outer valence electrons in a filled
s-shell. Because of the filled inner shells, the chemical and electronic properties are
mainly given by the two valence electrons.
In contrast to these elements, ytterbium (Yb) belongs to the group of rare earth

elements with an electronic configuration [Xe]4f146s2. Its name arises from the
place of its discovery close to Ytterby in Sweden by the Swiss chemist Jean Charles
Galissard de Marignac in 1878. Due to the filled f-shell and two electrons in the
s-shell, ytterbium behaves electronically similar to alkaline earth elements. Therefore,
the group of elements with two electrons in the s-shell like ytterbium, mercury or
cadmium and the group of alkaline earth elements are commonly referred to as
alkaline earth-like elements.
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Chapter 2 Ytterbium - an alkaline earth-like element

Isotope Mass (u) Abundance (%) Nuclear spin Statistics
168Yb 167.934 0.12 0 bosonic
170Yb 169.935 2.98 0 bosonic
171Yb 170.936 14.09 1/2 fermionic
172Yb 171.936 21.69 0 bosonic
173Yb 172.938 16.10 5/2 fermionic
174Yb 173.939 32.03 0 bosonic
176Yb 175.943 13.00 0 bosonic

Table 2.1: Natural abundance of the seven stable ytterbium isotopes. Data for the
isotope abundance is taken from [78]. The atomic mass of the different isotopes is
taken from [79].

2.1 Physical and chemical properties
Ytterbium is a soft, shiny metal with a density of 6.90 g/cm3, which oxidizes slowly
in air and dissolves in water. It is a rather heavy element with a proton number
of Z = 70. Ytterbium has a melting point of 894 ◦C and boils above 1196 ◦C
[77]. Because of the high melting point, it requires elevated oven temperatures
of several hundred degrees Celsius compared to alkali elements in order to obtain
sufficiently high fluxes of ytterbium atoms for quantum gas experiments. The required
temperatures to achieve a substantial vapor pressure for trapping atoms are however
still within reach experimentally.
Ytterbium possesses seven stable isotopes as shown in table 2.1. As opposed to

strontium, it offers a relatively high abundance of several bosonic and fermionic
isotopes that can be used in the experiment. Two fermionic isotopes, 171Yb and
173Yb, are present in ytterbium and possess a nuclear spin. In contrast to that, the
bosonic isotopes have no nuclear spin (I = 0). The high abundance of several isotopes
together with favorable scattering lengths for several isotopes (see section 2.4) allows
cooling various combinations of Bose and Fermi mixtures sympathetically as well as
single isotope cooling.

2.2 Electronic structure
Ytterbium, as well as alkaline earth elements, features a helium-like level structure
with a spin-singlet and spin-triplet manifold. Because of the filled s-shell the two
valence electrons can align in parallel and form a spin triplet (S = 1) or align
anti-parallel forming a spin singlet (S = 0). The level structure of ytterbium is
well described by LS-coupling where the total spin of the electrons S and the total
orbital angular momentum L couple together to form the total electronic angular
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Figure 2.1: Illustration of the electronic level structure of ytterbium. The solid
arrows indicate the most relevant optical transitions to excited states (horizontal
lines) with the linewidth Γ. The excited-state lifetimes τ are taken from [80–84].
Dashed lines denote decay channels of the 1P1 state with the decay rate taken from
[85]. Otherwise, decay rates are calculated with the dipole matrix elements from [83].
Figure adapted from [73].
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Chapter 2 Ytterbium - an alkaline earth-like element

momentum J = L + S. A detailed scheme of the level structure for ytterbium with
the most relevant optical transitions is shown in Fig. 2.1.

2.2.1 The ground state
The ground state 1S0 of ytterbium is a spin singlet with no total electronic angular
momentum (J = 0). The nuclear spin I is the only spin present, and the total spin
of the atom is given by F = I. The absence of a total electronic angular momentum
has direct implications on the properties of the ground state. One consequence is a
decoupling of the nuclear spin degree of freedom from the electron shell which gives
rise to SU(N)-symmetric interactions for the fermionic isotopes as we will see in
section 2.3. Another consequence is the lack of any hyperfine structure in the ground
state and an almost complete insensitivity to magnetic fields because of the weak
or zero nuclear magnetic moment for fermionic and bosonic isotopes respectively.
The only magnetic moment of the ground state stems from the nuclear spin. As
the nuclear magneton is about a factor of 1800 lower than the Bohr magneton of
the electron, due to large proton to electron mass ratio, the weak magnetic moment
arising from the nuclear spin is usually negligible experimentally.

Consequently, magnetic trapping as well as Stern-Gerlach separation of spin states
with magnetic field gradients are impractical because of the high magnetic fields that
would be required, or even impossible for isotopes without a nuclear spin. We will
see in chapter 5 how an optical method can be used to separate the nuclear spin
states. At the same time, the magnetic field insensitivity makes it impossible to
use magnetic Feshbach resonances, which are commonly used for alkali elements to
change the interaction strength between the atoms. Nevertheless, this insensitivity
to magnetic fields is also an advantage for high precision spectroscopy, as residual
fields will not cause a frequency shift or broadening of optical transitions.

2.2.2 Optical cooling transitions
Two transitions are usually used to cool ytterbium atoms, a broad optical transition
in the singlet manifold and a narrow optical transition in the triplet manifold. Both
optical transition frequencies have an isotope dependence, which is summarized in
table 2.2.

The broad optical transition with a wavelength of λ = 399 nm connects the ground
state 1S0 with the 1P1-state. This transition is dipole allowed, in the blue visible
spectrum of the light and has a high scattering rate Γ = 2π × 29.1MHz. Due to the
small branching ratio in ytterbium, the 1S0 → 1P1 transition can be regarded as
almost closed as the excited 1P1-state decays mostly to the ground state. A very weak
decay of the 1P1-state to the 5d6s3D1,2 states and from there to the 3P0,1,2 states
has been measured which is however not significant for our applications of Zeeman
slowing and imaging [82, 90]. The branching ratio for the decay to the 5d6s3D1,2
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2.2 Electronic structure

Isotope
1S0 → 1P1

1S0 → 3P1
1S0 → 3P0

(MHz) (MHz) (MHz)
168Yb 1887.40 3655.13 n/a
170Yb 1192.39 2286.35 n/a
171Yb (centroid) 939.52 1825.72 1811.28164
172Yb 533.31 1000.02 n/a
173Yb (centroid) 291.52 555.78 551.53839
174Yb 0 0 0
176Yb −509.31 −954.83 n/a

Table 2.2: Relative isotope shifts with respect to 174Yb for the two cooling transitions
used in the experiment and the clock transition 1S0 → 3P0 . The isotope shifts for
the cooling transition have been obtained from [86] and [87]. The isotope shifts for
the clock transition are taken from [88, 89].

states is about 1 : 107 and approximately two orders lower than in strontium [91, 92].
To close this loss channel, i.e. when trapping atoms in a magneto-optical trap using
this transition, repumper lasers can be employed. Light that is resonant with the
6s6p3P0 → 6s7s3S1 and the 6s6p3P2 → 6s7s3S1 transition allows bringing atoms
back to the cooling cycle that decayed to the meta-stable 3P0,2 states [93]. By using
repumper lasers on these transitions in a magneto-optical trap for 174Yb, a 30 %
increase in total atom number and increased lifetime by a factor of two could be
measured [85].

The second optical transition used for cooling in this experiment is the 1S0 → 3P1
transition with a wavelength λ = 555.8 nm in the green visible spectrum of the light.
This transition connects the singlet manifold with the triplet manifold of the level
structure. As this transition involves an electron spin flip from a state with S = 0 to
a state with S = 1, it is in principle dipole forbidden. However, spin-orbit interaction
admixes this state with the 1P1-state [94]. Therefore, it can decay via a weakly
electric dipole transition and a lifetime of τ = 866 ns. The linewidth of this transition
is relatively narrow with γ = 182 kHz, which makes the transition particular useful
for optical cooling in the magneto-optical trap (MOT). The Doppler temperature
associated with this linewidth is only TD = 4.4µK and allows producing very cold
gases in a MOT [95]. The 1S0 → 3P1 transition can be considered almost closed as
the 3P1 state decays mainly to the ground state. Only a very weak and completely
negligible magnetic dipole decay to the 3P0 state is possible [96].

Hyperfine splittings

In contrast to the ground state and the 3P0 state, which do not possess hyperfine
structure due to the absence of a total electronic angular momentum, the excited 1P1
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Chapter 2 Ytterbium - an alkaline earth-like element
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Figure 2.2: Illustration of the isotope shifts of ytterbium including the hyperfine
splitting of the fermionic isotopes. (a) Level structure of the 1S0 → 1P1 transition.
(b) Level structure of the 1S0 → 3P1 transition. The isotope shifts of the right figure
are scaled down by a factor of three as compared to the left one.
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2.2 Electronic structure

and 3P1-state possess a hyperfine splitting for the fermionic isotopes. The bosonic
isotopes lack a nuclear spin (F = I = 0) and only a single transition without
hyperfine splitting F = 0→ F ′ = 1 is possible for these isotopes.

For the fermionic isotopes 171Yb and 173Yb , the hyperfine splitting of the 1P1 state
is on the order of a few hundred megahertz as shown in Fig. 2.2. This makes them
conveniently accessible for intra-cavity laser diodes, which have only a limited tuning
range. Opposed to that, the hyperfine splitting of 3P1-state is in the order of a few
gigahertz due to parallel aligned spins of the valence electrons. In the latter case,
the hyperfine splitting is as large as the maximum isotope shift of the transition.

2.2.3 Metastable states
A common feature of ytterbium as well as other alkaline earth elements is the
existence of two meta-stable states, the 3P0 state and the 3P2 state.
The 3P0 state in ytterbium has a lifetime of about 20 s, which makes this state

ideal to study multi-orbital physics with ultracold atom experiments. Moreover, this
state has no angular momentum (J = 0) like the ground state, which leads to a
very good decoupling of the nuclear spin from the electronic structure and results in
SU(N)-symmetric interactions.

The clock transition

The 1S0 → 3P0 transition connects the ground state with the lowest meta-stable
state. This transition is dipole forbidden and therefore extremely narrow. In addition
to that, the 3P0-state is insensitive to magnetic fields due to the absence of an
electronic angular momentum. The ultra-narrow linewidth and the magnetic field
insensitivity make this transition ideal for precise measurements of interaction shifts
as well as for optical clocks. Therefore, the 1S0 → 3P0 transition is often referred to
as the clock transition. However, the narrow linewidth also imposes high demands to
the laser linewidth and the stabilization of the laser in order to achieve sufficiently
high Rabi couplings and a high frequency resolution [97–99].
The clock transition has a wavelength of λ = 578.4 nm, which is in the yel-

low visible light spectrum. The absolute transition frequency for 174Yb is ν =
518 294 025 309 217.8(0.9)Hz [88]. An isotope shift of a few gigahertz exists and
has been measured for at least three isotopes as summarized in table 2.2. The clock
transition is actually doubly forbidden due to the selection rule J = 0→ J = 0 and
due to an electron spin flip which is required for the excitation (S = 1 → S = 3).
Only an admixing due to hyperfine coupling with the 1P1 and 3P1 state makes this
transition weakly allowed for fermionic isotopes. This admixing has been calcu-
lated for ytterbium and the associated lifetimes are about 20 s for 171Yb and about
23 s for 173Yb and correspond to natural linewidths of Γ ≈ 2π × 7mHz and and
Γ ≈ 2π × 8mHz respectively [100].
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Chapter 2 Ytterbium - an alkaline earth-like element

Because of the absence of hyperfine structure for the bosonic isotopes, the 3P0
state can only decay for bosonic isotopes via a two-photon process with negligible
probability and the transition is essentially forbidden [81]. In order to make this
transition dipole allowed, a magnetic field has to be applied that can admix the 3P1
state with the 3P0 state [101, 102]. The coupling strength of the clock transition due
to this admixing then becomes directly proportional to the applied magnetic field
strength.

The 3P2 state

The 3P2 state is the second meta-stable state in alkaline earth-like atoms with a
lifetime of about 10 s [81]. This state can decay over different channels. The main
contribution is a decay process to the 3P1 state, which decays to the ground state.
Due to the long lifetime of the 3P2 state, the associated 1S0 → 3P2 transition has a
very narrow natural linewidth of γ ≈ 10mHz at a wavelength of λ = 507.3nm. As
opposed to the 3P0 state, this state possesses hyperfine structure and strong magnetic
field sensitivity due to its total electronic angular momentum (J = 2). The 3P2 state
of ytterbium was used to implement a magnetically tunable Feshbach resonance
between the ground state and the meta-stable state [103]. In addition, the narrow
optical transition was employed for spatially resolved imaging of a BEC [104] as
well as for the preparation of a single layer BEC in an optical lattice in combination
with a quantum gas microscope [105]. In the latter case, a magnetic field gradient
together with the magnetic field sensitivity of the 3P2 state and the very narrow
linewidth was employed to remove atoms from individual layers, thereby preparing a
single layer atomic sample.

2.3 SU(N) symmetric interactions
An important property of alkaline earth-like atoms is the presence of SU(N)-
symmetric interactions in the ground state as well as in the 3P0 state. Here N
denotes the number of nuclear spin components (e.g N = 6 for 173Yb with I = 5/2).
For both states the vanishing angular momentum (J = 0) leads to a decoupling of
the nuclear spin with the electronic state configuration. As the scattering length
is only determined by the electronic configuration of the atoms, the nuclear spin
decoupling leads to SU(N)-symmetric interactions between the atoms. This results in
a number of interesting applications for simulating many-body physics as explained
in chapter 1.
The independence of the scattering length with respect to the nuclear spin-state

mF can be understood by considering the interaction potential of two colliding atoms
in the limit of low temperatures. Let us first study the spin-1/2 case. For the typical
densities reached in the experiments, the gas is so dilute that only binary collisions
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Figure 2.3: Measurement of the spin population in an SU(N) Fermi gas as a function
of hold time (figure adapted from [72]). A Fermi gas of 173Yb (N=6) was prepared
in an optical dipole trap with only two populated spin components. The absence of
spin changing collisions leads to a conservation of the particle number per sin state.

have to be considered. In addition, at low temperatures, the de Broglie wavelength
is much larger than the interaction range and the scattering becomes isotropic and
energy-independent. At sufficiently low temperature, the inter-atomic potential for
spin-1/2 fermions and bosons can be approximated with a pseudo-potential that
reproduces the scattering length of the real potential. The real interaction potential
can then be replaced by an effective contract potential that contains a delta-function
[106]

V (r) = 4πaα,α′~2

m
δ(r). (2.1)

Here m denotes the mass of the colliding atoms and δ(r) defines the delta-function
contact potential. The only free parameter in this equation is aα,α′ which denotes
the scattering length between the ground state (α ∈ |g〉) or the 3P0 excited-state
atoms (α ∈ |e〉). The scattering length is given by the phase shift which the two
colliding atoms acquire during the traversal of the interaction potential and is mostly
determined by the last bound state in that potential. A positive scattering length
corresponds to repulsive interactions while a negative scattering length corresponds
to attractive interactions.

The formula given above can be generalized to fermions with N spin-components
as shown by Yip et al. [107]
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Chapter 2 Ytterbium - an alkaline earth-like element

V (r) =
N−2∑
Ft=0

Ft=even

4πaFtα,α~2

m
δ(r)PFt . (2.2)

Here PFt denotes the projector on states with even total spin Ft = 0, 2, 4..N − 2 of
the atom pair. At low temperatures, only s-wave collisions are possible energetically,
and collisions with higher angular momentum are suppressed due to the centrifugal
barrier of the inter-atomic potential. In this limit, only states with even values
of F can contribute to scattering, as their associated total wave function is anti-
symmetric in this case. In order to describe a Fermi system with N spin components,
N/2 scattering lengths are in general necessary because of the different electronic
configurations of the atom pair.
When two atoms with spin F1 = |F,mF1〉, F2 = |F,mF2〉 and a total spin of the

pair |Ft,mFt = mF1 +mF2〉 = F1 + F2 collide, the interaction Hamiltonian of Eq. 2.2
will in general lead to a coupling of the initial mF states to other states [108, 109].
Due to momentum conservation, the modulus of the spin of the pair Ft, and mFt , its
spin projection is conserved, but not the spin projection of the individual atoms.
In general, for arbitrary scattering lengths, the symmetry of Eq. 2.2 is given by

the special unitary group SU(2). In the special case of F = 3/2, a higher SO(5)
symmetry is realized without any tuning of the scattering lengths [110]. However, for
alkaline earth-like atoms, the nuclear spin is decoupled from the electronic structure.
Therefore, the contract potential and the scattering lengths are the same for all spin
components and Eq. 2.2 acquires a higher SU(N) symmetry. Only collision channels
for which the spin projection mF1 , mF2 for the ingoing particles and mF3 , mF4 for
the outgoing particles are the same, have a non-vanishing matrix element

〈F,mF4|〈F,mF3|V |F,mF1〉|F,mF2〉. (2.3)

Consequently, in contrast to the general case with SU(2) symmetry as given above,
not only the total spin and its spin projection are a conserved quantity, but also
the spin projection mF of each atom is preserved for SU(N)-symmetric interactions.
Spin relaxations to other mF states are therefore forbidden.

The emergent SU(N) symmetry has direct consequences for the properties of the
quantum gas. The absence of spin relaxation allows preparing interacting systems
with a varying number of populated spin components without repopulation of other
mF -states due to collisions. To illustrate this, Fig. 2.3 shows the spin population for
a gas of 173Yb with F = 5/2 (N = 6) as a function of the hold time. The system
was prepared with only two populated mF -states. Even after several seconds no
noticeable repopulation of initially non-populated mF -states takes place. This shows
the absence of significant spin changing collisions on typical timescales that are
relevant in our experiments. Theoretical estimates for the SU(N) symmetry breaking
of alkaline earth-like atoms have been given by Gorshkov et al.[58]. For the ground
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Isotope 168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
168Yb 252.0(34) 117.0(15) 89.2(17) 65.0(19) 38.6(25) 2.5(34)−359.0(30)
170Yb 63.9(21) 36.5(25) −2.1(36) −81.3(68) 518.0(51)−209.5(23)
171Yb −2.8(36) −84.3(68) −578(60) 429(13) 141.6(15)
172Yb −599(64) 418(13) 200.6(23) 106.2(15)
173Yb 199.4(21) 138.8(15) 79.8(19)
174Yb 104.9(15) 54.4(23)
176Yb −24.2(43)

Table 2.3: S-wave scattering length of the atoms in the ground state in units of a0
between the different ytterbium isotopes. Data taken from [113].

state the variation of the scattering length for different nuclear spins is estimated to
be below 10−9. In the excited state, the nuclear spin decoupling is somewhat lower
due to the admixing with other states that possess electronic angular momentum.
However, it is predicted to be still below 10−3. Both values are so small that they
are negligible for most of the experiments.
The implications of the SU(N) symmetry on thermodynamic properties of a

quantum gas are manifold and can for example be observed in a Fermi gas in the
bulk. As a result of SU(N)-symmetric interactions, the compressibility and density
of an interacting Fermi gas will change with the enlarged symmetry [111]. Moreover,
properties like the momentum distribution, the excitation spectrum or collective
modes of the interacting gas will vary with the number of spin components, which has
been experimentally confirmed in one dimension [112]. SU(N)-symmetric interactions
also allow studying many-body physics in periodic potentials with enlarged symmetry
like the SU(N) Fermi-Hubbard model, which we will investigate in chapter 7.

2.4 Scattering properties
In the previous section we introduced the scattering length and motivated the
emergent SU(N)-symmetry in the ground state. Although the scattering length
of the ground state is the same for all spin-components within an isotope, it is
however different between the individual ytterbium isotopes. The isotope-dependent
scattering lengths for the ground state, as shown in table 2.3, have been determined
to high precision in [113] and are relevant to decide for the optimal cooling strategy,
e.g. intra-isotope or sympathetic cooling in a mixture. The diagonal entries in this
table represent the intra-isotope scattering length. 173Yb is the only fermionic isotope
with a favorable intra-isotope scattering length of around 200a0 for which efficient
evaporative colling can be performed without sympathetic cooling. In contrast to
that, 171Yb has almost vanishing attractive interactions (ag,g < 0) and can only
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Isotope 171Yb 173Yb
agg −2.8(36)[113] 199.4(21)[113]
a+
eg n/a 1878(37)[76]
a−eg −25(25)[116] 219.5(29)[72]
aee n/a 306.2(106)[72]

Table 2.4: S-wave scattering lengths in units of a0 between the ground state and the
3P0 meta-stable state for both fermionic ytterbium isotopes.

be cooled sympathetically with a second isotope for example 174Yb. The bosonic
isotopes 168Yb,170Yb and 174Yb also have favorable scattering lengths and have each
been cooled to degeneracy independently [45, 114, 115].

2.4.1 Scattering properties of the meta-stable state
Due to its long lifetime and its applications for quantum-simulation proposals,
the scattering properties of the meta-stable (3P0) state of the fermionic ytterbium
isotopes are of particular interest. Until recently, the scattering length between
the ground state (|g〉) and meta-stable state (|e〉) was not known for 173Yb but has
been determined in [72]. For SU(N)-symmetric interactions the scattering properties
between two atoms will depend only on the orbital configuration which can be a
singlet or triplet. Therefore, interactions between the two electronic orbitals, with
the nuclear spin states denoted as |↓〉 and |↑〉, are described by four elastic scattering
lengths, which are listed for 173Yb and 171Yb in table 2.4. Here ae,e denotes the
scattering length between excited-state atoms, a+

eg denotes the scattering length of
the spin-singlet (orbital-triplet) state

|eg+〉 = 1
2(|eg〉+ |ge〉)⊗ (| ↑↓〉 − | ↓↑〉) (2.4)

and a−eg denotes the scattering length of the spin-triplet (orbital-singlet) state

|eg−〉 = 1
2(|eg〉 − |ge〉)⊗ (| ↑↓〉+ | ↓↑〉). (2.5)

Surprisingly, a very big difference of the scattering lengths a+
eg and a−eg has been

found for 173Yb, which gives rise to a big exchange coupling between the two
corresponding states. As a result of this strong coupling in 173Yb, inter-orbital
exchange interactions could be observed recently in the bulk and also in the lattice
[72, 117]. The reason for the big exchange coupling is a bound state in one of the
collision channels close to the continuum of the entrance channel as explained in the
next section.
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Figure 2.4: Illustration of the two-channel model of a magnetic Feshbach resonance.
(a) A differential Zeeman shift µB between the two channels can be used to bring the
bound state of the closed channel into resonance with the open channel. (b) Bringing
the bound state into resonance with a magnetic field B0 causes the scattering length
to diverge. The scattering length is negative (positive) when the bound state is
above (below) the threshold of the open channel (dashed line).

2.4.2 Feshbach resonances

Feshbach resonances are a convenient tool in cold atom physics to change the
scattering properties between alkali atoms in the vicinity of such a resonance with a
magnetic field [118]. This allows tuning the scattering length a over a wide range
−∞ < a <∞, therefore changing even the sign of the interaction between the atoms.

Magnetic Feshbach resonances

When considering binary collision between two atoms with spin |F,mF1〉 and |F,mF2〉
in a magnetic field, different interaction potentials exist. These potentials depend on
the spin configuration Ftot = F1 + F2 of the atom pair with fixed spin projection
M = mF1 +mF2 . Typically, the atoms collide in the energetically lowest interaction
potential, which is called the open channel. In contrast to that, interaction potentials
with a bigger Zeeman energy are called closed channels, as the atoms do not possess
enough kinetic energy to access these potentials. Each of these channels possesses
several bound states that can be shifted relative to each other with a magnetic
field due to a differential Zeeman shift between the different spin configurations. In
general, the scattering length is determined by the position of the last bound state
within the interaction potential of the open channel. When a bound state of the
closed channel is now shifted with the magnetic field into resonance of the open
channel, a Feshbach resonance appears, as illustrated in Fig. 2.4(a). As shown in
Fig 2.4(b), the scattering length is strongly modified in the vicinity of this resonance
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[119, 120] due to the resonant coupling to the bound state and is given by

as(B) = abg

(
1− w

B −B0

)
. (2.6)

Here abg denotes the background scattering length in the absence of a resonance, B0
is the position of the resonance and w denotes the width of the resonance.
The absence of hyperfine structure of the ground state of alkaline earth-like

elements does not allow using magnetic Feshbach resonances as described above.
Other schemes have therefore been proposed to circumvent the absence of a magnetic
Feshbach resonance for these elements. These schemes rely on a similar coupling of
the interaction channels as explained above, e.g. by off-resonant light, to change the
scattering length.

Optical Feshbach resonance

Instead of using a magnetic field to couple the open channel and the closed channel,
off-resonant light with respect to a photoassociation resonance can be used instead to
couple two potentials. This scheme has been proposed by Fedichev et al. and is called
optical Feshbach resonance (OFR) [121]. OFRs were implemented for alkali elements
but they suffer from photon scattering because of the close detuning to the bound state,
which causes heating of the quantum gas [122]. The detuning from a photoassociation
resonance is limited by the nearby presence of other photoassociation resonances.
Alkaline earth-like atoms provide a narrow inter-combination line that somewhat
mitigates this problem and OFRs has been already demonstrated successfully with
strontium and ytterbium [123–125]. However, OFRs will in general break SU(N)-
symmetric interactions when the ground state is coupled with an excited state that
possesses a total electronic angular momentum j > 0. In addition, many applications
of Feshbach resonances like for evaporative cooling require timescales in the order of
seconds and it remains questionable if the problem of finite photon scattering and
heating can be circumvented completely.

Orbital Feshbach resonance

The presence of a molecular bound state in the |eg+〉 channel of 173Yb with a small
binding energy make this isotope particularity suited to employ an orbital Feshbach
resonance to tune the scattering length between the ground- and excited-state atoms.
Such a scheme has been proposed by Zhang et al. [126] and has recently been
demonstrated independently by Höfer et al. and Pagano et al. using 173Yb [76, 127].

The term orbital resonance stems from the fact that for this resonance the orbital
degree of freedom plays the role of the electronic spin in a magnetic Feshbach
resonance. In the Zeeman basis, the eigenstates are given by |c〉 = (|g ↑, e ↓〉 −
|e ↓, g ↑〉)/

√
2 and |o〉 = (|g ↓, e ↑〉− |e ↑, g ↓〉)/

√
2 and play the role of the open (|o〉)

20



2.4 Scattering properties

1.0 1.4 1.8 2.2

- 0.8

- 0.4

0.0
∆µB

interactomic distance (arb. u.)

en
er

gy
 (a

rb
. u

.)
closed channel

open channel
Eb

|g ,e 〉

|g ,e 〉

Figure 2.5: Illustration of the orbital Feshbach scheme. The solid (dashed) curves
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causes a deformation of the potential at large interatomic distances. A shallow bound
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resonance.

and closed (|c〉) channel. In contrast to that, the interaction potential is diagonal
in the |eg〉± = (|c〉 ∓ |o〉)/

√
2 basis, which was introduced in section 2.4.1. The

magnetic field will therefore mix the nuclear spin singlet and triplet states, creating
a coupling between the open and the closed channel. A small differential Zeeman
shift between the |eg〉± states allows bringing the open channel into resonance with
a bound state of the closed channel, as illustrated in Fig. 2.5. In 173Yb, a molecular
bound state which is close detuned to the entrance channel with a binding energy of
only Eb/h ' 32 kHz at zero magnetic field exists. This bound state, which gives also
rise to the large exchange energy, makes this isotope particularity suited to be used
for the orbital resonance, as the required magnetic fields are still moderate to bring
the state into resonance with the open channel.
When using a regularized pseudo-potential, the scattering length of the open

channel can be described by [126]

aeg =
−(a+

eg + a−eg)/2 + a+
ega
−
eg

√
mδ/~2

(a+
eg + a−eg)/2

√
mδ/~2 − 1

, (2.7)

where δ denotes the differential Zeeman shift between the two states, m denotes the
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Chapter 2 Ytterbium - an alkaline earth-like element

atom mass and a±eg is the corresponding scattering length of the |eg〉± state.
The Feshbach resonance appears when the differential Zeeman shift δ becomes

comparable to the binding energy Eb of the bound state in the |eg+〉 channel. At
resonance the Zeeman shift is then given by

δ = ~2

m/4(a+
eg + a−eg)2 . (2.8)

The coupling between the two states of the orbital Feshbach resonance is actually
universal with respect to the two involved mF states – a feature of the SU(N)-
symmetric interactions in ytterbium. The achieved lifetime for this resonance
is about 400ms at the resonance position B0 = 55(8)G with typical densities
of n ' 5 × 1013 cm−3. Therefore, the lifetime in the vicinity of the Feshbach
resonance is comparable to other alkali elements [128]. Moreover, the width of the
Feshbach resonance is about 27787

62 G wide. The effective range r0, which is inversely
proportional to the width of the resonance, can be compared to the typical length
scale of the system such as the van der Waals radius rvdw. Resonances are classified
as narrow if r0 � rvdw or wide otherwise [118]. By using such a classification, the
orbital Feshbach resonance can be considered as a narrow resonance. Due to the
narrow character of this resonance, the superfluid transition temperature of a Fermi
gas with attractive interactions is expected to be higher than for wide Feshbach
resonances which are usually studied with alkali elements [129].

2.5 Polarizability of electronic states
Optical potentials are an essential tool to study ultracold quantum gases. The
availability of meta-stable states in ytterbium allows implementing for example
state-dependent and independent optical potentials for the ground state and the
lowest meta-stable state, as we will show in chapter 6. In this case, state-dependent
refers to a potential that has different depths for the two electronic orbitals. To
realize such a potential, it is essential to know the polarizability α for the two states,
which depends on the wavelength of the light being used. The polarizability of an
atom can be understood by the interaction of its electronic shell with the oscillating
electric field of the light. The rapidly varying electric field E will induce an oscillating
dipole moment d on the atom. The polarizability relates the induced dipole moment
with respect to the electric field and is defined as

d = α(ω)E (2.9)

with ω denoting the light frequency. The induced dipole moment will interact with
the electric field and produces a time varying energy shift δV = −d ·E. The time
averaged quantity of this energy shift, as denoted by the brackets, 1

2〈δV 〉 is called the
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Figure 2.6: Polarizability of ytterbium displayed in atomic units as a function of
the wavelength. The blue (yellow) curve shows the polarizability of ytterbium in the
ground state (meta-stable 3P0 state). Data taken from [131].

AC Stark shift and defines a conservative potential [130]. We will see in chapter 4,
that the AC Stark shift is directly proportional to light intensity and the real part of
the polarizability, which permits implementing optical traps by the spatially varying
intensity of a laser beam.
In the presence of a resonant optical transition, e.g. the 1S0 → 1P1 transition,

the polarizability of the atom will be enhanced for light frequencies close to such a
resonance. In general, the polarizability of the electronic states will be different for a
given wavelength of the light as the resonance position of such optical transitions
depends on the electronic state. Those wavelengths for which the polarizabilities for
two electronic states are exactly the same are called magic wavelengths and are highly
relevant for precision spectroscopy and optical clocks. For magic wavelengths the
differential light shift between the two states will vanish, which makes for example
optical transitions between the two states independent of the used trap depth and
spatial inhomogeneities. As opposed to that, wavelengths were the polarizability
is opposite in sign for the two states are called anti-magic wavelengths. Another
relevant case for the simulation of two-orbital many-body physics e.g. the Kondo
lattice model is a wavelength were the polarizability for only one of the two states
vanishes.

The exact polarizability of the different states can be calculated by including the
full level structure of the atoms. Such calculations include relativistic many-body
calculations and have to account for all the optical transitions in the electronic shell
of the atom. Such a calculation has been done by Dzuba et al. for ytterbium [131].
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Chapter 2 Ytterbium - an alkaline earth-like element

Fig. 2.6 shows the obtained polarizability for the ground state and the 3P0 state of
ytterbium using the data of Dzuba et al. The blue curve denotes the polarizability
of the ground state. In this curve the broad 1S0 → 1P1 transition at λ = 400 nm
and the 1S0 → 3P1 at λ = 556 nm can be clearly identified due to the divergence
of the polarizability. The yellow curve shows the polarizability of the meta-stable
3P0 state. The polarizability for this curve is mainly determined by the presence
of the 3P0 → 3S1 transition at λ = 649 nm and the 3P0 → 6s6d3D transition at
λ ≈ 444 nm [82].

Outside the optical resonances, three magic wavelengths with equal polarizability
for the two states can be identified at λ1

m = 465.4 nm , λ2
m = 551.5 nm and λ3

m =
759.4 nm. Anti-magic wavelengths with opposite polarizability can be found at
λ1
am = 436 nm , λ2

am = 619.0 nm and λ3
am = 1117 nm. A vanishing polarizability,

outside the optical resonances, for either of the two states appears at λ1
z = 410.8 nm,

λ2
z = 550 nm, λ3

z = 576.8 nm and λ4
z = 984.7 nm.

It should be noted that there will be in general a weak isotope dependence of the
magic and anti-magic wavelength. This frequency shift for the magic wavelength has
been measured between 171 Yb and 174 Yb and is typically in the order of δν ≈ 1GHz
for the different isotopes [132].
The optimal choice of wavelength for the optical lattice should be sufficiently far

detuned from any optical transition to avoid excessive photon scattering and heating,
but might be limited by technical restrictions. In the current implementation of
the state-dependent lattice in our experiment, we chose a wavelength λ = 670 nm,
which is sufficiently far detuned from the resonance at λres = 649 nm. Moreover,
commercial laser systems for that wavelength like laser diodes or solid-state lasers
are available.
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Chapter 3

Single and two-orbital physics in
periodic potentials

This chapter starts with a short introduction on single particle physics that emerges
in periodic potentials. We highlight common concepts known from solid-state physics,
like the band structure, Bloch waves and Wannier states, which become relevant
for the interacting many-body systems later on. In chapter 2, we motivated the
SU(N)-symmetric interactions between ultracold ytterbium atoms in the ground
state that allow us to implement the SU(N) Fermi-Hubbard Hamiltonian (FHM) in
optical lattice potentials. Here, we investigate this Hamiltonian and point out the
impact of the SU(N) symmetry on the thermodynamic properties of this system.
In particular, implications of SU(N)-symmetric interactions for typical observable
parameters in the strongly interacting regime will be demonstrated. After that, we
will give an overview of the different phases of the SU(N) FHM, which are predicted
by theory in the low-temperature regime. At the end of this chapter, we extend the
single-orbital model to a two-orbital version. As a prominent example, the Kondo
lattice model (KLM), which can be realized using the ground state and meta-stable
state in a state-dependent lattice, emerges in a certain limit of the general two-orbital
FHM.

3.1 Quantum mechanics in periodic potentials
We start by describing the physics of non-interacting particles in a periodic potential
such as an optical lattice potential. The presences of a periodic potential will
drastically modify the dispersion relation of the particle compared to the free particle
case. It deviates from the quadratic behavior of a free particle and a band structure
with energy gaps develops. The solution of the Schrödinger equation with a periodic
potential is extensively studied in solid-state textbooks and only a brief summary is
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Figure 3.1: Band structure of the lowest three energy bands, denoted by blue, green
and yellow lines. An energy gap opens, which increases with lattice depth (a)
V = 0Er, (b) V = 1Er, (c) V = 3Er, (d) V = 10Er, (e) V = 20Er.

given here.

3.1.1 Bloch waves
Let us start by considering the Hamiltonian describing a single particle in a periodic
potential, which reads

H = − ~2

2m
∂2

∂x2 + Vlat(x). (3.1)

The periodic potential Vlat(x) has translational symmetry such that Vlat(x + d) =
Vlat(x). For simplicity, we can restrict ourselves to the one-dimensional case along a
single direction of the lattice, as the motion of a particle in a three-dimensional sinu-
soidal simple cubic lattice can be separated along each axis. Due to the translational
symmetry of the Hamiltonian, the Bloch theorem applies. It states that the solution
to the Schrödinger equation is given by Bloch waves that can be written as a product
of a plane wave and a function that has the same periodicity as the potential

φn,q(x) = eiqx/~un,q(x). (3.2)

In this equation, n denotes the band index, q defines the quasi-momentum with
|q| < ~π/d and d = λ/2 is the lattice periodicity. For a given quasi-momentum q,
infinitely many solutions with different band indices n exist.
Using the Bloch waves of Eq. 3.2 for the stationary Schrödinger equation, the

eigenvalue problem can be written as

Hun,q(x) =
− ~2

2m

(
−i ∂
∂x

+ q

~

)2

+ Vlat(x)
un,q(x) = En

q un,q(x). (3.3)
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3.1 Quantum mechanics in periodic potentials

It is possible to expand the potential Vlat(x) and the function un,q(x) in a discrete
Fourier series due to the periodicity

Vlat(x) =
∑
r

Vre2irkx and un,q(x) =
∑
l

cn,ql e2ilkx r, l ∈ Z (3.4)

with k = π
d
. We can substitute Eq. 3.4 into Eq. 3.3. The kinetic energy term then

becomes
~2

2m

(
−i ∂
∂x

+ q

~

)2

un,q(x) =
∑
l

~2(q/~ + 2kl)2

2m cn,ql e2ilkx. (3.5)

Correspondingly, the potential energy term after substitution reads
Vlat(x)un,q(x) =

∑
r,l

Vre2ik(r+l)xun,q(x). (3.6)

For a sinusoidal potential, such as in the experiment, only three Fourier components
are non-zero

Vlat(x) = −Vx cos2(kx) = −Vx4 (e2ikx + e−2ikx + 2). (3.7)

and Eq. 3.3 can be written in matrix form∑
l

Hl,l′ · cn,ql = En
q c

n,q
l′ (3.8)

with En
q being the eigenenergies of the nth band for the quasi-momentum q of the

Hamiltonian

Hl,l′ =


(
q
~k + 2l

)2
Er − Vx/2 for |l − l′| = 0

−Vx/4 for |l − l′| = 1
0 for |l − l′| > 1

. (3.9)

Here, we introduced the recoil energy Er = ~2k2/(2m), which is a convenient energy
scale for the atoms in the optical lattice and used throughout this thesis. The
eigenvalues and eigenvectors for the Hamiltonian in Eq. 3.9 can be easily calculated
numerically, if the Hamiltonian is truncated for large positive and negative Fourier
components l.

Because of the periodicity of the potential, two quasi-momenta q and q′ that differ
by a reciprocal lattice vector q′ = q + 2~k are the same. It is therefore sufficient to
consider only quasi-momenta of the first Brillouin zone q ∈ [−~π/d, ~π/d] for the
description of the band structure.

Fig. 3.1 illustrates the result of a band structure calculation of the first three bands
for various lattice depths. In the case of a vanishing lattice potential, the dispersion
relation is that of a free particle with the momentum folded back to the first Brillouin
zone. In contrast, for increasing lattice potentials, the dispersion relation differs from
the free particle case for higher momenta. A gap opens and a band structure of the
energy spectrum emerges. For deeper lattice potentials, the bands become narrower
and the energy gaps between the bands increase.
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Figure 3.2: Illustration of the probability density of the Wannier function in the
lowest band of a sinusoidal lattice potential (grey curve) for various lattice depths as
function of position: V = 1Er (green line), V = 5Er (yellow line), V = 10Er (red
line) and V = 15Er (purple line).

3.1.2 Wannier basis

Even though the completely delocalized Bloch waves are the correct solution to
the Schrödinger equation of a particle in a periodic potential, it is sometimes more
convenient to describe the physics of the system in a localized basis. This is useful
for the description of localized particles, for example due to interactions. Using a
Fourier transform and considering only the lowest band (n = 1), it is possible to
transform the Bloch waves of Eq. 3.2 and obtain the Wannier states

w(x− xi) = 1√
Nlat

∑
q

eiqxi/~φq(x). (3.10)

The sum in Eq. 3.10 runs over all possible quasi-momenta q and Nlat denotes the
number of lattice sites. Wannier states describe maximally localized particles on a
lattice site xi. However, the construction of the Wannier function as given above is
not unique but the individual phases of the Bloch waves have to be chosen correctly
in order to construct a maximally localized state [133].
The probability distribution of the lowest-band Wannier function for different

lattice depths is illustrated in Fig. 3.2. For low lattice depths, the Wannier function
extends significantly into the potential barrier and becomes narrower and more
localized to a single site for increasing lattice depths.

Using the Wannier basis, the Hamiltonian of equation 3.1 can be written in second
quantization as

H = −
∑
i,j

(
ti,jc

†
icj + h.c

)
(3.11)
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3.2 The SU(N) Fermi-Hubbard model

where c†i , cj are the creation, annihilation operators for a particle on site i and

ti,j =
∫
w∗(x− xi)

(
− ~2

2m∇
2 + Vlat(x)

)
w(x− xj)dx (3.12)

denotes the hopping matrix element between two lattice sites i and j.
As the Wannier functions become more and more localized for increasing lattice

depth, only the tunneling matrix element in Eq. 3.12 between neighboring sites,
denoted by 〈i, j〉, has a significant contribution. By contrast, the overlap integral
between sites that are further away is exponentially suppressed. This limit, called
the tight-binding limit, is usually a good approximation for lattice depths Vx ≥ 3Er.
In the tight-binding (t.b.) limit, the Hamiltonian of Eq. 3.11 simplifies to

H = −t
∑
〈i,j〉

(
c†icj + h.c

)
(3.13)

and the dispersion relation of the lowest band becomes cosinusoidal with E(q) =
−2t cos(qd). In this limit, the bandwidth W in a one-dimensional lattice can be
expressed as W = 4t.

For deep lattice potentials, the particles become more and more localized and the
mobility of the particle as well as the bandwidth decreases. The reduced mobility of
the particle can be explained by an increased effective mass

1
m∗

= 1
~2
∂2E(q)
∂q2

t.b.= 2td2

~2 (3.14)

which is inversely proportional to the band curvature.
The concepts, given above, were derived for the one-dimensional case and can be

easily generalized to three dimensions. A three-dimensional Wannier function can be
readily constructed

w(x− xi) = w(x− xi)w(y − yi)w(z − zi) (3.15)

with xi = (xi, yi, zi). Accordingly, the bandwidth in the tight-binding limit is given by
W = 12t in the three-dimensional case. As shown in the next section, the bandwidth
is one of the two relevant energy scales in the Fermi-Hubbard Hamiltonian and
determines the kinetic energy of the particle.

3.2 The SU(N) Fermi-Hubbard model
We have motivated in chapter 1, that ultracold atoms allow the implementation of
quantum many-body systems as realized in condensed-matter physics. A common
property of the models, used to describe interacting electrons in solids, is the emer-
gence of strong correlations between fermions at low temperatures due to interactions.
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Chapter 3 Single and two-orbital physics in periodic potentials

As a consequence, such models are in general not exactly solvable. To study the
physics contained therein, one has to rely on approximative numerical methods like
Quantum Monte Carlo or density matrix renormalization group (DMRG) in one
dimension [134–136]. On the other hand, this makes ultracold atom experiments,
which realize such physics, a valuable tool for benchmarking measurements against
such numerical calculations.
The FHM contains only two energy scales, a hopping or tunneling parameter

and an on-site interaction energy term. It extends the simple, non-interacting band
theory description of a solid, by including interaction effects. Despite the fact that
it is a minimal description with only two parameters, it is able to describe non-
trivial physical properties such as the metal to Mott insulator transition [24], band
magnetism [137–139] and is also believed to incorporate high-TC superconductivity
[5, 24].
Because of its importance in solid-state physics, the FHM has been extensively

studied over the past decades from both the experimental and the theory side [24,
140, 141]. Despite its simplicity, the FHM can only be solved analytically in one
dimension using the Bethe ansatz [142, 143]. However, most of the studies so far
have been done for the SU(2) FHM, which is relevant for the description of electrons
but much less is known for the generalized SU(N)-symmetric case [62, 64, 144].
In transition-metal oxides, the SU(4)-symmetric version of the FHM is used to

study two-orbital systems [65] but it has also attracted general interest in theoretical
physics in the context of large-N expansion [6, 145].
The Hamiltonian for the extended SU(N) FHM reads

Ĥ = −t
∑
〈i,j〉,σ

(ĉ†i,σ ĉj,σ + H.c.) + U

2
∑
i,σ 6=σ′

n̂i,σn̂i,σ′ +
∑
i,σ

Vin̂iσ. (3.16)

Here, 〈i, j〉 denote neighboring sites, t is the tunneling matrix element between
nearest neighbors, as given in Eq. 3.12 and Vi accounts for a (harmonic) confining
potential. The energy term U describes the interaction energy between two fermions
on the same site and is given by the overlap of the Wannier functions

U = 4π~2as
m

∫ ∞
−∞
|w(x)|4 d3x (3.17)

where as is the scattering length and w(x) denotes the Wannier function as defined
in Eq. 3.10. The operator ĉ†i,σ (ĉiσ) in Eq. 3.16 creates (annihilates) a fermion on
site i with spin index σ = 1..N and n̂iσ = ĉ†iσ ĉiσ are the respective number operators.
For N = 2, this Hamiltonian reduces to the conventional spin-1/2 SU(2) FHM. The
SU(N) symmetry in the Hamiltonian above arises because the tunneling matrix
element and the interaction energy U are independent of the spin index σ because of
the mF -independent scattering lengths as explained in chapter 2.
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3.2 The SU(N) Fermi-Hubbard model

Spin symmetry of the Hamiltonian

The spin permutation operator is defined as

Smn =
∑
i

Smn (i) =
∑
i

ĉ†i,mĉi,n. (3.18)

It satisfies the SU(N) spin algebra [Smn , Spq ] = δmqS
p
n− δnpSmq which can be shown by

using the fermionic anti-commutation relations {ĉi,m, ĉ†j,n} = δi,jδm,n. The symmetries
and conserved quantities of Eq. 3.16 can be proven by showing that the spin
permutation operator commutes with the Hamiltonian

[Smn , H] = 0 ∀m,n = 1..N. (3.19)

As the Hamiltonian of Eq. 3.16 commutes with every generator Smn of the Lie group
that defines the SU(N) spin algebra, is therefore SU(N)-symmetric. Moreover, with

Smm =
∑
i

ĉ†i,mĉi,m = nm (3.20)

being the total particle number with spin index m, the particle number per spin
state is a conserved quantity. Due to this conservation, it is possible to prepare
empty mF -states (Smm = 0) and realize the Fermi-Hubbard Hamiltonian of a lower
spin system. To give an example, let us consider 173Yb. This isotope possesses a
nuclear spin I = 5/2 with six spin components. Using optical pumping techniques, a
system with only two spin components (N = 2) can be prepared, which realizes the
SU(2) FHM in an optical lattice.

3.2.1 Metal to Mott crossover
Depending on the temperature of the system and the interaction strength, the
FHM features different phases as illustrated for repulsive interactions in Fig. 3.3.
The phases of the FHM with attractive interaction are similarly feature-rich. The
attractive side of the FHM features a crossover from a superfluid BCS phase to a
BEC for increasing interaction strength [64, 66, 146, 147]. Interestingly, it can be
shown with the Lieb-Mattis transformation that a mapping between the attractive
and the repulsive side of the SU(2) FHM in a bipartite lattice exists [148, 149].
In the following, we will consider temperatures above magnetic ordering and

only repulsive interactions (U > 0), which is the parameter regime relevant in the
experiment with 173Yb.
The interaction-driven transition from a conducting metal to an insulating Mott

phase for an integer filling fraction can be understood intuitively by the competition
of the two energy terms t and U . It is energetically favorable for non-interacting
fermions to be delocalized over several lattice sites as this reduces the kinetic energy,
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Figure 3.3: Sketch of the phase diagram of the repulsive (U > 0) SU(N) FHM for
half-filling as a function of the interaction strength U/t. For temperatures above
magnetic order, a crossover from a metal phase to a SU(N) Mott insulating regime
exists. At sufficiently low temperatures, SU(N) magnetism appears with exotic
phases – beyond Néel order – depending on N .

given by the first term of Eq. 3.16. However, because of the interaction energy U of
several fermions occupying the same site, it becomes energetically favorable to have
localized fermions with an integer filling of particles per site for sufficiently strong
interactions. This regime is called the Mott regime and is characterized by an energy
gap U and a vanishing compressibility

κ̃ = ∂n

∂µ
. (3.21)

In the equation above, n denotes the density and µ defines the chemical potential.
Due to the competition of the two energy scales, the interaction energy U has to

be compared to the kinetic energy t∗ = 2tz with z being the coordination number
in the lattice. Therefore, we use the ratio U/12t = U/t∗ to describe the interaction
strength of the 3D FHM for different regimes.

Weakly interacting regime

In the weakly interacting case (U � t∗), the kinetic energy dominates over the
interaction energy. In this regime, the Fermi gas is described by a conducting metal
for a partially filled band or by a non-conducting band insulator in the case of
filling one. The band insulator is incompressible, as it would require energy of the
amount of the band gap to place another particle. As opposed to that, the metal
is compressible since there are free states available at the Fermi surface. Hence,
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3.2 The SU(N) Fermi-Hubbard model

increasing the chemical potential will change the density in the metal phase and the
system will show a finite compressibility.

In the absence of interaction, it is convenient to transform the creation operators
to momentum space. For simplicity we consider the kinetic energy part of a 1D
Fermi-Hubbard Hamiltonian without interaction (U = 0) and L spatial sites

H0 = −t
L∑
j=1

∑
σ

(ĉ†j,σ ĉj+1,σ + ĉ†j+1,σ ĉj,σ). (3.22)

The creation operators can be transformed to momentum space by a discrete Fourier
transform

ĉ†q,σ = 1√
L

L∑
j=1

eiqjΦĉ†j,σ q = 0, ..., L− 1 (3.23)

with Φ = 2π/L. Using the Fourier inversion

ĉ†j,σ = 1√
L

L−1∑
q=0

e−iqjΦĉ†q,σ (3.24)

the Hamiltonian can be recast in the following form

H0 = −2t
∑
q

∑
σ

cos(Φq)n̂q,σ (3.25)

with n̂q,σ = ĉ†q,σ ĉq,σ being the number operator in momentum space. Eq. 3.25 denotes
the dispersion relation in the tight binding limit of a particle with quasi-momentum
q, multiplied by the occupation number of the mode |q, σ〉 that can go up to the spin
multiplicity N .

Mott regime

In the strongly interacting case (U � t∗) and for an integer filling fraction, the
fermions are localized and a Mott insulator forms. Adding another particle costs
interaction energy U and therefore the state shows a vanishing compressibility.
Calculations show that the transition between the weakly interacting metal phase
to the strongly interacting Mott regime is actually not a phase transition but a
smooth crossover in the SU(2) FHM [150, 151]. The required temperature for a
first or second order phase transition is below the Néel temperature and therefore
only a crossover exists. This behavior of the SU(2) FHM is in stark contrast to the
superfluid to Mott phase transition in the bosonic case. Calculations however predict
that for higher spin symmetries, e.g. in the case of half-filling for the SU(4) and
SU(6) FHM, a phase transition appears as the required temperature for magnetic
order decreases but the critical transition temperature increases [152]. Depending on
the interaction strength, this phase transition can be of first or second order.
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For sufficiently strong interactions, deep in the Mott regime, tunneling is suppressed
and only virtual tunneling between the sites has to be considered. In this limit, the
Hamiltonian in Eq. 3.16 reduces to a spin model [153, 154]. By using second order
perturbation theory, the FHM can then be transformed to an SU(N) Heisenberg
model, which reads

HHeis = 2t2
U

∑
m,n,〈i,j〉

Smn (i)Snm(j) (3.26)

where Smn denotes the spin operator, that was defined in Eq. 3.18. As shown in
section 3.2.4, the ground state of the SU(N) Heisenberg model features different
exotic phases that will depend on N and the filling fraction per lattice site.
For temperatures above magnetic order, deep in the Mott regime, the kinetic

energy can often be neglected compared to the interaction energy for the description
of the system. By dropping the kinetic energy term in Eq. 3.16, the Hamiltonian
can be diagonalized in the Wannier basis

Hal = U

2
∑
i,σ 6=σ′

n̂i,σn̂i,σ′ +
∑
i,σ

Vin̂i,σ. (3.27)

This limit is referred to as the atomic limit. In the regime where the atomic limit
holds, tunneling is small enough to be negligible for the thermodynamic properties of
the system, but of course still needed to thermalize the system. In the atomic limit,
we can give analytic expressions of thermodynamic properties such as temperature
or entropy of the FHM, because the Hamiltonian can be analytically diagonalized.
By using a second order perturbative tunnel coupling of adjacent lattice sites, these
calculations can be extended towards the regime of small but finite tunneling rates
at temperatures T � t/kB, which is explained in the following section.

3.2.2 Thermodynamic properties in the Mott regime
In the following, we will discuss the thermodynamic properties of the SU(N) FHM
by using the atomic limit and by using a low-tunneling model.

We can describe the system in the grand canonical ensemble, which represents an
ensemble of particles that can exchange particles and energy with a reservoir. In
the grand canonical ensemble, the partition function for a Hamiltonian H with fixed
particle number Np then reads [155]

ZG(µ, T ) = Tr e−βH−µNp =
Np∑
n=0

∑
j

〈n, j| e−βH−µn |n, j〉 (3.28)

where the index j denotes all the possible states for a fixed number of particles of
the Hamiltonian, µ is the chemical potential of the grand canonical ensemble and T
denotes the temperature of the system.
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3.2 The SU(N) Fermi-Hubbard model

In the atomic limit, the partition function factorizes into individual partition
functions for each lattice site and can be written for a single lattice site i as

z0(µ, T, i) =
N∑
n=0

(
N

n

)
e−β(

U
2 n(n−1)−(µ−Vi)n), (3.29)

where the summation over j, denoting the possible spin combinations on a lattice
site for a given particle number, has been carried out already. In the above equation,
N denotes the number of spin components and the binominal coefficient accounts
for the number of different spin combinations on the lattice site.
From Eq. 3.29 it becomes evident that the spatially varying potential Vi can be

regarded as a local change of the effective chemical potential µ. If Vi is varying
slowly compared to the typical length scales of the system, it is justified to introduce
a local chemical potential µl(i) = µ− Vi to describe the physics. This approximation
is called local density approximation (LDA) and will be explained in section 5.3.1.
In LDA, the grand potential becomes

Ω0(µl, T ) = −kBT ln z0(µl, T ). (3.30)

Using the grand potential, all the macroscopic thermodynamic quantities can be
derived. We immediately obtain the average density

〈n0(µl, T )〉 = − 1
d3
∂Ω0(µl, T )

∂µl
= 1
d3z0(µl, T )

N∑
n=0

n

(
N

n

)
e−β(

U
2 n(n−1)−µln), (3.31)

where d3 = (λ/2)3 refers to the lattice unit cell. Accordingly, the entropy per site in
the atomic limit can be calculated

s0(µl, T ) = −∂Ω(µl, T )
∂T

= kB ln(z0(µl, T )) + 1
T
〈ε0(µl, T )〉 (3.32)

with 〈ε0(µl, T )〉 given by

〈ε0(µl, T )〉 = 1
z0(µl, T )

N∑
n=0

(
U

2 n(n− 1)− µln
)(

N

n

)
e−β(

U
2 n(n−1)−µln). (3.33)

To gain an understanding of the arising Mott shell structure with an integer
number of particles per site, it is illustrative to consider the limit of T � U , where
one term is dominating in Eq. 3.29. In this limit, the partition function reduces to

z0 ≈
(
N

n0

)
e−β(

U
2 n0(n0−1)−µln0). (3.34)

In the equation above n0 denotes the particle number per site that will maximize
(minimize) the partition function (the grand potential) for a fixed chemical potential

35



Chapter 3 Single and two-orbital physics in periodic potentials

µl. An integer filling will maximize the partition function for any chemical potential
and a Mott shell structure emerges. Accordingly, the entropy per site for low
temperatures in the atomic limit reduces to

s0(µl, T ) ≈ kB ln
[(

N

n0(µl)

)]
, (3.35)

which defines the entropy per lattice site of the Mott shell with n0 particles, at-
tributable to the remaining spin degree of freedom.

High temperature series expansion

We have seen in the previous section that the atomic limit, despite being a very
rough approximation of the FHM in the strongly interacting regime, allows obtaining
analytical expressions for thermodynamic quantities. The atomic limit is however
not able to capture spin correlations between neighboring sites due to the absence of
tunneling, which is required to build up correlations. These correlations will depend
on the spin statistics and modify the thermodynamic quantities of the system.

Starting from the atomic limit, it is however possible to include a weak tunnel cou-
pling by a perturbative series expansion in t/(kBT ). This so called high-temperature
series expansion (HTSE) will converge for temperatures T > t/kB [156, 157]. In
the Mott regime, where tunneling is usually low, this is a good approximation at
experimentally realizable temperatures. Series of up to 12th order have been obtained
but are usually very cumbersome to calculate [158]. As these expansions include
a weak tunnel coupling term, they are also able to catch nearest neighbor spin
correlations to some extent. The high-temperature series expansion will eventually
fail for temperatures approaching the critical temperature for magnetic ordering,
where long-range correlations over many sites will arise [159].

By using a second order series expansion in t/T , the grand potential in Eq. 3.30
can be extended to include finite hopping

Ω(µl, T ) = Ω0(µl, T ) + ∆Ω (3.36)

∆Ω = β
(
t

z0

)2
zN

1
2

N∑
n1=1

(
N − 1
n1 − 1

)2

x2n1−1y(n1−1)2 (3.37)

− 1
βU

N∑
n1 6=n2

(
N − 1
n1 − 1

)(
N − 1
n2 − 1

)
xn1+n2−1y

1
2n1(n1−1)+ 1

2 (n2−1)(n2−2)

n1 − n2


with x = eβµ,y = e−βU and z being the number of next neighbors in the lattice [160].
This series expansion is valid as long as t < kBT and used in chapter 7 to fit the
density profile of the experimental data.
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Figure 3.4: Density profiles in the Mott regime for different temperatures of (a) an
SU(6) Fermi gas and (b) an SU(3) Fermi gas calculated in the atomic limit. Blue
curve: T/U = 0.05 ; green curve: T/U = 0.1; yellow curve: T/U = 0.15; red curve:
T/U = 0.2

3.2.3 SU(N)-dependence of thermodynamic properties
Let us now examine the dependence of typical thermodynamic properties on the
number of spin components N in the Mott regime. In Fig. 3.5, the density and the
compressibility are shown as a function of the chemical potential for N = {2, 3, 6} in
the atomic limit and with the second order HTSE model. In addition, the density
dependence of a bosonic quantum gas is given as well, to illustrate the influence of
quantum statistics. Both models show a different non-trivial functional dependence
of the density on the number of spin components. Compared to the case of two spin
components, the curves for the density as a function of the chemical potential will
shift towards lower chemical potential for the SU(3) and SU(6) case as illustrated in
Fig. 3.5(a) and Fig. 3.5(b).
This becomes also apparent when studying the compressibility as a function of

chemical potential, as illustrated in Fig. 3.5(c) and Fig. 3.5(d). In the case of the
n = 1 Mott shell, the SU(3) and SU(6) gas show a compressibility minimum for
lower chemical potential compared to the SU(2) gas.

In the case of half filling (n = N/2), because of the particle-hole symmetry, a general
relation between the chemical potential and N , the number of spin components, can
be given via µ = U/2(N − 1). For the chemical potential that corresponds to half
filling, the minimum in the compressibility is found exactly at µ = U/2(N − 1). For
the SU(3) gas, there is no half filling that corresponds to an integer particle number
per site. In this case, a shift of the minimum of the compressibility is observed from
µ = 0.5U (and µ = 1.5U) towards lower (higher) chemical potentials as illustrated
in Fig. 3.5(c).
When comparing the second-order HTSE model to the atomic limit, the major

differences between the two models are in the metal part between the Mott shells.
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Figure 3.5: SU(N)-dependence of density and compressibility as a function of chemical
potential in the Mott regime (T/U = 0.1) for a spin-balanced SU(6) (blue), SU(3)
(green) and SU(2) (yellow) Fermi gas. (a) Density in the atomic limit. The black
dashed line shows the density profile for a bosonic Mott insulator to illustrate the role
of spin statistics. (b) Density obtained with the HTSE model including a finite tunnel
coupling (U/t∗ = 1.7). (c) Compressibility in the atomic limit (d) Compressibility
with finite tunneling (U/t∗ = 1.7) obtained with the HTSE model.
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Figure 3.6: Compressibility of an SU(N) Fermi gas plotted as a function of density
for T/U = 0.1. The black dashed line shows the compressibility in the atomic limit,
which is independent of the number of spin components, for an SU(N) Fermi gas.
Blue, green and yellow curves show the calculated compressibility using the HTSE
model for an SU(6), SU(3) and SU(2) Fermi gas respectively with U/t∗ = 1.7.

Introducing a finite tunnel coupling reduces the size of the Mott plateaus and
increases the size of the metal part, as illustrated in Fig. 3.5c and Fig. 3.5d. The
compressibility in the HTSE model is lower in the metal part with finite tunneling,
while it is only slightly higher in the Mott regime compared to the atomic limit.
Interestingly, when plotting the compressibility as a function of density, the curves
for different N will collapse on each other in the atomic limit, whereas the HTSE
model predicts differences for N mainly in the metallic region of the system (see Fig.
3.6).

Regarding the entropy, we also observe differences between the two models in
the different regions. The entropy is slightly higher in the Mott region with finite
tunneling, as it reduces the excitation gap. In the metallic part, the entropy however
is significantly reduced by tunneling compared to the atomic limit. This can be
understood by an increased bandwidth due to tunneling, which reduces the density
of states in the low energy spectrum.

Pomeranchuk cooling

A consequence of the enlarged spin symmetry is the N -dependence of the Pomer-
anchuk cooling effect, which can already be observed at experimentally achievable
temperatures. This effect was originally proposed for 3He in 1950. 3He has the
property that the entropy below a temperature of 0.3K is higher in the solid than in
the liquid phase. The idea by Pomeranchuk was to solidify Helium under pressure at
temperatures below 0.3K and therefore cool the gas when it is compressed without
heat input [3].

A similar effect arises during the transition of a Fermi gas from a conducting metal
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Figure 3.7: Entropy per site for an SU(6) (blue), SU(3) (green) and SU(2) (yellow)
Fermi gas in the Mott regime at T/U = 0.1. The dashed lines show the atomic limit,
while the solid lines depict the result obtained with the HTSE model (a) Entropy
per site as a function of chemical potential (b) Entropy per site as of function of the
filling.
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Figure 3.8: Illustration of the Pomeranchuk cooling effect in the strongly interacting
regime for an SU(6) (blue), SU(3) (green) and SU(2) (yellow) Fermi gas. The figure
shows the resulting temperature in the lattice as a function of the initial temperature
of a non-interacting SU(N) Fermi gas. The calculation was done in the atomic limit
for adiabatic loading (constant entropy), with a total particle number Np = 22000
and a mean harmonic confinement of the dipole trap ω̄ = 213Hz.

40



3.2 The SU(N) Fermi-Hubbard model

with weak interactions to a non-conducting Mott insulator [49]. When the Fermi
gas enters the Mott regime, the system becomes incompressible and local density
fluctuations are suppressed. Deep in the Mott regime, we can therefore describe the
Mott insulator with the atomic limit model by considering single isolated sites if we
can neglect spin correlations. A large amount of entropy can get absorbed by the
isolated spins, leading to a reduction in temperature similar to the Pomeranchuk
cooling in 3He. In this regime, the entropy per particle of the FHM with n particles
per site is given by Eq. 3.35 for temperatures above magnetic order. As a consequence,
an SU(6) gas can store more entropy per particle than an SU(2) gas for a fixed
temperature. By fixing the total entropy and particle number of the system, the
SU(6) gas will be colder that its SU(2) counterpart, which explains the stronger
Pomeranchuk cooling effect for large N .
The hand-waving argument given above can be reproduced in the atomic limit

model. Fig. 3.8 shows the temperature for various N as a function of the initial
reduced temperature T/TF in an optical dipole trap. The calculation assumes
adiabatic loading (constant entropy) for obtaining the final temperature in the
lattice. As we will see in chapter 5, the reduced temperature T/TF of the Fermi
gas is a measure for the entropy per particle. For a fixed initial temperature, the
Pomeranchuk cooling effect in the lattice as a function of the spin dimension of the
quantum gas becomes apparent as illustrated in Fig. 3.8. Fixing T/TF for different
numbers of spin components N is actually a realistic scenario when cooling the
quantum gas to degeneracy via evaporative cooling in the experiment. At very low
temperatures, more and more states below the Fermi energy are already populated
and scattering into free states below the Fermi energy becomes suppressed. Therefore,
efficient evaporative cooling will stop at similar reduced temperatures for the different
SU(N)-symmetric Fermi gases.

3.2.4 SU(N) magnetism
In the last two paragraphs, we showed that the density and the thermodynamic
observables in the Mott regime depend on the number of spin components in the
system. Moreover, due to Pomeranchuk cooling, the Mott insulator will show different
temperatures for fixed entropy depending on the number of spin components. These
SU(N)-dependent effects already happen at experimentally realizable temperatures.
However, the most striking difference to the SU(2) FHM appears in the low temper-
ature regime at temperatures below magnetic ordering. These temperatures so far
cannot be reached experimentally. Very little is known yet about the properties below
the critical temperature Tc for magnetic ordering. As the singlet state will consist of
N particles, magnetic order will be in general more complex than antiferromagnetic
ordering for the SU(2) case. The observed phase of the system will depend on various
parameters such as the filling, the spin-balance, the number of spin components, the
dimension of the system and the coupling strength. Some predictions have been
given for 1D and 2D systems.
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(a) (b)

Figure 3.9: Predicted phases for an SU(3) and SU(N > 6) Fermi gas at half-filling on
a square lattice for weak to intermediate coupling strength of the 2D FHM [64]. (a)
SU(3) flavor density wave (denoted by colored spheres) with two flavors occupying
the same lattice site, while the third flavor occupies a different sub-lattice (b) For
N > 6, a staggered flux phase containing an alternating spin current (arrows) on a
2× 2-plaquette is predicted.

Magnetism in the weak coupling regime

In the weak to intermediate coupling limit, the 2D SU(N) Hubbard model can show
different ordered phases. A flavor density wave is predicted for N < 6 that will
break translational invariance of the lattice and SU(N) symmetry as illustrated in
Fig. 3.9(a) [64, 161]. This flavor density wave can be seen as a generalized type of
Néel-ordered state for systems possessing a spin greater than one-half. The enhanced
lattice period of each flavor can be detected experimentally by Bragg scattering that
addresses the individual flavors separately and which can reveal the structure factor.
For N > 6, the ground state is believed to be a staggered flux phase as depicted in
Fig. 3.9(b) and may possess a spin current that is alternating between the different
plaquettes. This phase does not break SU(N) symmetry but it breaks translational
invariance and time-reversal symmetry of the FHM.

Magnetism in the strong coupling regime

In the strong coupling limit the system is well described by an SU(N) Heisenberg
model for integer fillings. Similar to the case of weak to intermediate coupling
strength, the Heisenberg model predicts a feature rich phase diagram. In one
dimension, the SU(N) Heisenberg model describes SU(N) spin chains [154, 165, 166].
Considering 2D square lattices, different N -dependent phases are theoretically

predicted, as shown in Fig. 3.10. In this figure, the vertical axis shows the filling on
a single site denoted by m, while the number of sites to form a singlet is plotted on
the horizontal axis and given by k. The total number of spins can then be expressed
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Figure 3.10: Illustration of the phase diagram of the SU(N) Heisenberg model on
a square lattice. To form a singlet in an SU(N) system, N particles are needed.
The vertical axis states the number of particles per site, while the horizontal axis
states the number of sites needed to form a singlet. Filled regions indicate fillings for
which predictions of a ground state have been given. The dashed line indicates the
border that separates the region of the Heisenberg model that can be experimentally
accessed with 173Yb (left side) from higher SU(N) Heisenberg models (right side).
For k = 3, 4 and m = 2 a valence bond solid is predicted [162]. Magnetically ordered
states were found for m = 3, 4 and k = 1 [163, 164]. Using the large N -expansion,
the valence cluster states and the chiral spin liquid were derived [63].

43



Chapter 3 Single and two-orbital physics in periodic potentials

as N = m · k. The region to the left of the dashed line in Fig. 3.10 marks the
experimentally accessible regime for 173Yb with N = 6. In the case of one atom
per site (m = 1), magnetically ordered states are predicted up to N = 4 [163,
164], with the antiferromagnetically ordered Néel state for SU(2) being the most
established ground state. For a higher fillings (k = 3, 4) a nonmagnetic valence bond
solid (VBS), breaking lattice symmetry, is predicted for SU(6) and SU(8) systems
[162]. Calculations using the large-N expansion indicate that the ground state for
higher fillings (k > 5) is an Abelian chiral spin liquid (ACSL) [63]. This state
breaks time reversal and parity symmetry and supports excitations with fractional
quantum number and statistics. The ACSL phase is actually the spin-system analog
to a fractional quantum Hall state for k ≥ 5. At lower fillings (k < 5), the large
N -expansion predicts a valence cluster state (VCS) that is nonmagnetic and breaks
lattice symmetry in addition [63]. It is however unclear down to which filling the
ACSL and VCS will extend in the illustrated phase diagram. Some calculations
predict that it might even hold down to the experimentally very relevant case of
m = 1 (k = N) in a honeycomb lattice configuration [167]. However, the type of
magnetic order in SU(N>2) systems still remains to be verified.

3.3 Two-orbital physics
The single-orbital Fermi-Hubbard Hamiltonian of the previous section, describing
interacting ground state fermions in an optical lattice, can be expanded by a second
electronic orbital. When omitting the trapping potential, the Hamiltonian of the
two-orbital FHM in the Wannier basis, and for the lowest energy band of the lattice,
reads [58]

Ĥ =−
∑
〈i,j〉,α,σ

tα(ĉ†i,α,σ ĉj,α,σ + H.c.) +
∑

i,α,σ 6=σ′

Uα,α
2 n̂i,α,σn̂i,α,σ′ (3.38)

+ Vex
∑
i,σ,σ′

ĉ†j,g,σ′ ĉ
†
j,e,σ ĉj,g,σ ĉj,e,σ′ + V

∑
i,σ,σ′

n̂j,g,σn̂j,e,σ′ . (3.39)

The parameter tα describes a state-dependent tunneling matrix element, c†i,α,m (ci,α,m)
denote the fermionic creation (annihilation) operator on site i for the electronic state
α ∈ {|g〉 , |e〉} with spin σ. The on-site interaction energies are given by

Uα,α = 4π~2aα,α
m

∫ ∞
−∞
|wα(x)|4 d3x

U±e,g =
4π~2a±e,g

m

∫ ∞
−∞
|wg(x)|2 |we(x)|2 d3x

V = (U+
e,g + U−e,g)/2

Vex = (U+
e,g − U−e,g)/2,
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where aα,α (a±e,g) denotes the scattering length within (between) the orbitals. For
doubly occupied lattice sites with two different electronic states, the two-particle
wave function can be either symmetric or antisymmetric in the electronic orbital.
The symmetric orbital configuration has a spin-singlet configuration |s〉

|eg〉+ = (|eg〉+ |ge〉)⊗ |s〉 (3.40)

with an on-site interaction energy denoted by U+
e,g. The anti-symmetric orbital

configuration possesses a spin-triplet configuration |t〉

|eg〉− = (|eg〉 − |ge〉)⊗ |t〉 (3.41)

with an interaction energy U−e,g. It should be noted that, because of the different
interaction potentials for the two orbital configurations that determine the scattering
lengths a±e,g, the energies V and Vex in the two-orbital Fermi-Hubbard Hamiltonian
will in general be different.

The Hamiltonian presented above has a symmetry of U(1)× SU(N), where the
additional symmetry of the unitary group U(1) arises because of the elasticity of
collisions between the two electronic orbitals. Because of the second orbital and the
various interaction energies in the Hamiltonian, the phases for this model are even
more feature rich than the phase diagram of the single-orbital SU(N) FHM. Limiting
cases of vanishing tunnel matrix element for one or both of the two electronic states
are often studied to gain insight into the physics of such systems. In the strongly
interacting limit Uα,α′ � tg and Uα,α′ � te this Hamiltonian reduces to a spin
Hamiltonian. In the case of one atom per site, the generalized SU(N)-symmetric
version of the Kugel-Khomskii model is realized. Another often-studied model that
can be implemented in an ultracold ytterbium experiment with a state-dependent
potential is the Kondo lattice model.

3.3.1 Kondo physics
The Kondo lattice model (KLM) originated as an extension from the Kondo impurity
model, which describes the interaction of conducting electrons with a single impurity.
The Kondo impurity model was historically studied to understand the resistivity
minimum as a function of temperature for certain metals with magnetic impurities
[168]. In contrast to the resistivity dropping with decreasing temperature for normal
non-superconducting metals, it was found by Kondo that the resistivity would
increase again by ∝ −Vex log(T ) at low temperatures due to the magnetic impurity
interacting with the conducting electrons.
In 1977, Doniach extended this idea and proposed the KLM [169] to explain the

behavior of heavy fermion (HF) materials. These materials show a huge linear heat
capacity at low temperatures and usually a quadratic dependence of the resistivity
as a function of temperature in the low temperature limit [170, 171]. Some HF
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Vex

tg

Figure 3.11: Scheme of the lattice potential and the interaction between two species
in the Kondo lattice model. A mobile species (blue) can tunnel in a shallow lattice
between neighboring sites, while the localized magnetic impurities (green) are frozen
out in a deep lattice. The mobile species interacts with the immobile species via the
spin-exchange interaction Vex.

materials are unconventional superconductors at low temperatures [172, 173], e.g.
possess a pairing mechanism of the electrons that leads to superconductivity which
is not described by BCS theory [174].
The KLM arises from the two-orbital FHM described by Eq. 3.39 in the limiting

case for te = 0 with a filling ne = 1 of one atom per site in one orbital. In addition, this
model assumes a vanishing on-site interaction Ug,g of the atoms in the other orbital.
Under these assumptions the two-orbital Fermi-Hubbard Hamiltonian reduces to the
Kondo lattice Hamiltonian

HKl = −tg
∑
〈i,j〉,σ

ĉ†i,g,σ ĉj,g,σ − 2Vex
∑
j,σ,σ′

ĉ†j,g,σ ĉ
†
j,e,σ′ ĉj,g,σ′ ĉj,e,σ. (3.42)

The KLM describes the interaction between a mobile species, e.g. electrons in a
conducting band, with an immobile species in a second flat band as illustrated in
Fig. 3.11. The immobile species acts as localized spins that interact with the mobile
species in the conducting band via the Heisenberg exchange interaction. Similar to
the single orbital FHM, the particle-particle correlations that arise due to tunneling
make this model equally hard to solve as the FHM. Depending on the interaction
parameter v = −2Vex/tg, the Kondo lattice model exhibits different phases.

In the strong coupling limit (|v| � 1) the mobile species will bind to the localized
spins and both species will form a singlet or triplet depending on the sign of Vex. This
effect is called Kondo screening and leads to heavy fermion properties in the case of
anti-ferromagnetic coupling (Vex < 0). The energy scale for Kondo screening is the
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Figure 3.12: (a) 1D Doniach phase diagram of the Kondo lattice model with
anti-ferromagnetic coupling as a function of the interaction parameter Vex/tg [58].
For strong interactions, below the Kondo temperature TK (solid black line) with
TK > TRKKY , a Fermi liquid with heavy fermion properties is expected. For weak
interactions, RKKY-interaction dominates at temperatures TRKKY > TK (dashed
black line) and mediates magnetic order between the isolated, localized spins. A
quantum critical point (QCP) connects both regimes at zero temperature. (b)
Ground state of the 2D Kondo lattice model with anti-ferromagnetic coupling as
a function of the filling ng [175]. For low interaction strengths, ferromagnetic or
anti-ferromagnetic magnetic order arises, depending on the filling ng. For high
interaction strengths and fillings below one, the system is in a paramagnetic phase
possessing heavy fermion properties. At filling one, the system is isolating at strong
couplings and forms a Kondo insulator.
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Figure 3.13: Schematic of the band hybridization and the Kondo insulator that
emerges for strong couplings. (a) The dashed lines denote the non-hybridized bands
of the immobile spins (red) and the mobile species (blue). Due to the strong coupling
between the two species the band structure hybridizes (purple line), giving rise to a
higher effective mass for the mobile species. The thick purple line indicates the filling
of the band up to the Fermi energy. (b) Emergence of the Kondo insulator. The
hybridized band is filled completely and separated by an energy gap ∆ (grey shaded
region) from the upper band causing the system to be isolating at filling ng = 1.

same as for the single Kondo impurity model and is given by the Kondo temperature
which scales as TK ∝ tge−tg/|Vex| [176]. In this regime, the heavy fermion properties
can be understood in a mean field picture by the hybridization of both bands. For
strong anti-ferromagnetic couplings, a Kondo singlet forms and the immobile spins
have to be included into the Fermi sea of the mobile species. This hybridization
will lead effectively to a reduced bandwidth of the hybridized band compared to the
conduction band without coupling, as illustrated in Fig. 3.13(a). The associated
effective mass of the hybridized band will therefore increase and the system behaves
like heavy fermions. For strong couplings, an avoided crossing between the two bands
exists with a band gap ∆ ' tgv. Moreover, because of the hybridization, the lowest
band will be filled completely for ng = 1 (one ground-state particle per site) and
form the Kondo insulator as shown in Fig. 3.13(b).

In the weak coupling limit (v � 1), the mobile species mediates spin order between
the localized particles, which is known as Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [177–179]. The critical temperature given for this type of magnetic
ordering is TRKKY ∝ V 2

ex/tg and scales as V 2
ex due to scattering of the mobile species

in second order via the exchange interaction with the immobile spins. The Doniach
phase diagram of the KLM with the scaling of the Kondo temperature TK and the
RKKY temperature TRKKY for different couplings is illustrated in Fig. 3.12(a).

The type of magnetic order that the KLM will exhibit can be either ferromagnetic
or anti-ferromagnetic. The RKKY interaction that mediates magnetic order competes
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with the formation of a paramagnetic phase with heavy fermion properties, which
gives rise to a rich phase diagram. In 2D, the phases of the KLM are expected to
range from ferromagnetic ordering to anti-ferromagnetic ordering for weak couplings
and the KLM is expected to possess a paramagnetic, heavy Fermi liquid phase at
strong couplings as illustrated in Fig. 3.12(b). The types of phases will depend on
the sign of the coupling v, the dimension of the system and the filling ng.

Kondo-type physics with ytterbium in a state-dependent lattice

Ytterbium is particularly suited for the study of the KLM. The meta-stable states
with typical lifetimes of several seconds are ideal for the realization of the second
orbital in the KLM. Moreover, by choosing an appropriate wavelength for the state-
dependent optical lattice, the two states can have very different lattice depths to
realize the condition of an immobile species and a conducting species. In addition,
the SU(N) symmetric interactions of the quantum gases are essential to study Kondo
physics with enhanced symmetry but are also necessary to avoid spin-changing
collisions when studying the SU(2) KLM. For 173Yb a large, ferromagnetic exchange
interaction Vex = h · (22 ± 1) kHz was found for a lattice depth V = 43Er [72],
which should allow to access the strong coupling regime of the KLM. Proposals
exist to use a confinement-induced resonance in one or two dimensions, which allows
changing the sign of the coupling as well as the coupling strength in order to study
antiferromagnetic and ferromagnetic exchange interactions [180].

The hybridization of both bands in the strong coupling limit of the KLM is similar
to the band hybridization that emerges between the 1S0 and the 3P0 state for strong
Rabi couplings (Ω � 4tg) when the ground state is optically dressed in a state-
dependent lattice (see section 6.2.2). In the case of optical dressing, the strong Rabi
coupling leads to a complete mixing of both bands and increases the effective mass
of the ground-state atoms. Similar to the heavy Fermi properties in the KLM, this
enhanced mass can be probed by measuring the center of mass oscillation of the
atomic sample (see Eq. 6.8).
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Chapter 4

Experimental setup

In this chapter, we present the experimental apparatus and the laser setup used for
the production and the investigation of ultracold degenerate ytterbium quantum
gases. The ultracold quantum gas is created by all-optical cooling in the main
chamber of the apparatus. The employed cooling techniques are similar to the
ones used for alkali elements and became standard techniques for reaching quantum
degeneracy over the past years. A detailed description e.g. of evaporative cooling or
magneto-optical trapping can be found for example in [181].

The cooling of ytterbium atoms is performed in three stages. The atoms are first
evaporated in an oven in order to generate an atomic beam, which is directed into a
Zeeman slower. Afterwards, the slowed atoms are captured by a magneto-optical
trap (MOT) in the main chamber of the experiment. The magneto-optical trap is
loaded for several seconds before we transfer the atomic sample in an optical dipole
trap. Evaporative cooling is then used to reach quantum degeneracy.
In the following paragraphs, we first describe the different sections of the experi-

mental apparatus that are responsible for the different stages of cooling. A more
detailed description of the apparatus can be found in the following reference [73].
Moreover, we depict the beam configuration in the main chamber and present the
in-situ imaging system and the high power coils, which were installed as a recent
upgrade to the setup. In addition, we give a brief overview of the laser setups that
are used for the cooling and the imaging of ytterbium atoms.

4.1 Vacuum chamber
Figure. 4.1 illustrates the experimental apparatus with the different cooling sections.
This setup can be divided into three different sections, an oven section, a Zeeman
slower section and the main chamber where we perform all the experiments. The
apparatus is placed on an optical table and is surrounded by three optical breadboards,
which host the optics.
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4.1 Vacuum chamber

Oven section

In the first stage of the experiment, a beam of ytterbium atoms is produced by
sublimation in an oven. This oven consists of three segments, which are separately
heated to generate a temperature gradient between the different segments. The first
segment of the oven contains the ytterbium reservoir, which consists of about 50 g
ytterbium metal pieces. In the last segment of the oven, small nozzles with 200µm
diameter and a length of 1 cm are installed in order to produce a collimated atomic
beam. An uncollimated atomic beam would reduce the operation time of the oven
and would lead to unnecessary deposition of ytterbium material in the experiment
chamber. The nozzles produce a small acceptance angle and therefore only atoms
witch a motion directed towards the Zeeman slower section can leave the oven. The
oven segment containing the nozzles is operated at the highest temperature of the
three segments. The temperature gradient between the sections ensures that atoms
that are deposited next to the nozzles or walls, and are not able to leave the oven,
are recycled by creating a net flux back to the colder section which contains the
ytterbium reservoir.

To achieve a sufficiently high flux of about 2× 1014 atoms/s during operation, the
three oven sections are heated by power supplies with resistive heaters to 400 ◦C,
420 ◦C and 440 ◦C respectively. Several thermocouples monitor the temperature of
the oven sections and three PID controllers regulate the different sections to the set
temperature. In order to enhance the lifetime of the oven, the standby temperature
of the three segments is set 100 ◦C lower.

A mechanical shutter, which can be operated through a vacuum feedthrough with
a stepper motor, ensures that the atom beam is blocked after the loading sequence
of the magneto-optical trap. We obtain a long vacuum lifetime of the atoms of about
90 s when the atomic shutter is closed. This lifetime is reduced to about 30 s when
the shutter is permanently open due to the flux of the atomic beam.

Zeeman slower section

A differential pumping tube connects the oven section of the vacuum chamber with
the Zeeman slower section. The vacuum pressure in the oven section is about
P = 5× 10−9 mbar due to the high temperature of the oven segment and the atom
flux. The differential pumping, which has an inner diameter of D = 8mm and
length of L = 116mm, acts as an aperture for the particles and produces a pressure
gradient between the oven section and the main vacuum chamber where we conduct
the experiments. In this way, we achieve a vacuum pressure P ' 1× 10−11 mbar in
the main chamber which is sufficiently low to conduct cold atom experiments.
Because of the high temperatures of about 400 ◦C to produce a sufficiently high

atom flux, the atoms will leave the oven section with a velocity v ≈ 290m/s. This
velocity is too high in order to capture the atoms directly with the magneto-optical
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Figure 4.2: Half-section view of the main chamber where the experiments are
performed. A pair of coils at the top and bottom of the chamber allows producing
magnetic fields in Helmholtz and anti-Helmholtz configuration e.g. for optical
pumping or magneto-optical trapping. The high-resolution objective is mounted
above the top CF100 viewport of the chamber for in-situ imaging of the atomic
sample.

trap. Therefore, a Zeeman slower stage, starting directly behind the oven section,
is used to slow down the atomic beam. A detailed description about the Zeeman
slower design can be found in the following thesis [73].

The basic operation principle of a Zeeman slower is the velocity dependent Doppler
effect in combination with the Zeeman shift in a magnetic field that will bring atoms
within a certain velocity class into resonance with counter propagating light [182].
While the atoms propagate through the slower, the absorbed light will exert a net
force opposite to the direction of movement and will slow down the atoms. In
addition a spatially varying magnetic field throughout the slower compensates the
reduced Doppler shift when the atoms are slowed down to keep the light resonant.
The slower in our experiment is 30 cm long and operates on the stretched state
(F,mF = ±F → F ′ = F + 1,mF ′ = mF ± 1) of the broad 1S0 → 1P1 transition.
Typical optical powers for the slower vary between 40− 50mW. The slower consists
of several magnetic solenoid coil sections, which produce an increasing magnetic
field towards the main chamber. The maximum magnetic field at the exit of the
slower is 450G for 173Yb, which corresponds to a detuning of −650MHz from the
F = 5/2→ F ′ = 7/2 hyperfine transition. For this detuning, the maximum capture
velocity is about vc ' 260m/s and the exit velocity at the end of the slower is
vf ' 8m/s, which is well within the capture range of our green magneto-optical trap.

Main chamber

The main chamber of the experimental apparatus, where all the experiments are
performed with ytterbium quantum gases, is situated after the Zeeman slower section.
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Figure 4.3: Illustration of the optical beam configuration used for cooling, trapping
and manipulating ytterbium atoms in the main chamber. The blue beams illustrate
the imaging paths, the red beams depict the beam path for the various lattice arms
and the crossed dipole trap and the green beams illustrate the beam configuration of
the magneto-optical trap, (a) top view of the main chamber (b) view from the side
of the chamber.

All the relevant beams used for cooling, trapping and imaging are intersecting in
this chamber. Figure 4.3 illustrates the optical beam configuration used in the
experiment.

The main chamber has an octagon shape with six CF40 viewports at the side and
two CF100 viewports at the top and bottom of the chamber. For better optical
access to the atoms, the top and bottom windows are recessed in the viewports as
illustrated in figure 4.2. Moreover, the bottom window has a small tilt with respect
to the top one in order to avoid possible and unwanted reflections of optical beams
from the two windows. An ion-pump as well as a titanium sublimation pump are
installed in the tower next to the main chamber in order to achieve sufficient pumping
for reaching a low pressure. The obtained vacuum pressure in the main chamber of
P ' 1× 10−11 mbar is low enough to avoid excessive vacuum losses and we obtain
vacuum lifetimes of about 90 s.

4.1.1 Imaging objective
As an upgrade to the experiment, we installed a high-resolution imaging objective.1
The objective consists of a quadruplet lens system, as illustrated in Fig. 4.4(a), and
has an effective focal length of 67mm. The first lens of the quadruplet has a diameter
of D = 37.1mm, which yields a numerical aperture of NA = 0.27 and we obtain a

1designed by Lens Optics

55



Chapter 4 Experimental setup

CCD

O
b

jective

Atoms

f = 350

f = 400 f = 75 399 nm

BK7 glass

CaF2 glass

SF2 glass

400 500 600 700 800 900 1000 1100

tr
an

sm
is

si
on

0.0

0.2

0.4

0.6

0.8

1.0

wavelength (nm)

(a) (b)
MOT beams

Dichroic 

beam
splitter

Figure 4.4: (a) Illustration of the imaging beam path including the beam path for
the imaging light and the MOT beams. The objective consists of four lenses and
realizes with the lens behind a telescope. The image is further magnified before the
camera by a second telescope system. (b) Optical transmission of the quadruplet
lens system of the objective, measured by the manufacturer, as a function of the
wavelength.

resolution of this imaging system of about 1.2µm (see section 5.1.1). The quadruplet
lens system is designed to transmit the laser light used for imaging, magneto-
optical cooling and the lattices. Therefore, the lenses were manufactured with an
anti-reflection coating for four different wavelengths λ1 = 399 nm, λ1 = 556 nm,
λ1 = 799 nm and λ1 = 1112 nm to achieve a high transmission (see Fig. 4.4(b)).
The imaging objective is placed above the main chamber of the apparatus as

illustrated in figure 4.2. A pair of translation stages allows positioning the objective
precisely to focus on the atoms. A second lens2 behind the objective and an additional
16 : 3 telescope yield a total magnification M = 28 for the imaging system. The
pictures of the atomic sample obtained with this objective are recorded by a water
cooled, low noise CCD camera, which is optimized for the blue light of our imaging
wavelength.3

4.1.2 High-power coil
Our main magnetic coils are placed over the top viewport and below the bottom
viewport of the main chamber at a distance of 63mm between each other. These
coils are glued with a 50µm heat conducting but electrically insulating glue layer4

to a copper mount, which is water-cooled, as illustrated in picture 4.5. The coils
2f = 350mm
3Andor iXon
4Atom adhesives AA-Supertherm 195
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Figure 4.5: High power coil assembly before integration into the setup. The coil is
mounted on a copper carrier that is water-cooled. The mount additionally includes
a coil for compensation of the vertical component of the magnetic earth field and in
addition a lift coil to create an independent magnetic bias field.

consist of N = 43 windings of flat copper wire (W ×H = 15 × 0.47mm) and are
capable of carrying a current of about 200A over a few seconds. The maximum
achievable magnetic field with our power supplies is Bmax ' 1200G. Moreover, a set
of earth field compensation coils and lift coil is installed on the same mount that
carries the high power coils. These coils can be used to cancel the vertical magnetic
field component of the earth field and allow shifting the vertical position of the
compressed MOT when loading atoms to the optical dipole trap.

The main coils are connected to a set of MOSFET switches, which make it possible
to operate the coil pair in Helmholtz or anti-Helmholtz configuration. This allows us
to use the coils for the creation of a magnetic field for the MOT as well as for state
preparation and spectroscopy where a homogeneous magnetic field is required. The
coils can be operated with two power supplies. One power supply is optimized for
stable operation at low currents, as needed for the magneto-optical trap or for the
creation bias fields. The second power supply can produce currents up to 220A in
order to create strong magnetic fields as used for spectroscopy. In order to avoid
excessive heating of the coils and the nearby main chamber, a safety circuit limits
the duration of the current from the big power supply to about 2 s. In addition a pair
of thermocouples monitor the temperature of the copper mounts and will engage our
main safety circuit if the temperature is exceeding a certain temperature threshold.
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4.2 Laser systems
This section gives a brief overview of the laser systems that are used for slowing,
magneto-optical trapping and imaging of ytterbium atoms. Since the employed
optical transitions are in the visible spectrum of the light, the light is created by
frequency doubling of infrared light with nonlinear optical crystals.

4.2.1 Blue laser setup
The blue light for the 1S0 → 1P1 transition is produced by intra-cavity frequency
doubling. An external cavity diode laser (ECDL) running at a wavelength of
λ = 798 nm generates an optical output power of about 60mW. In a second stage,
the light from the ECDL is amplified by a tapered amplifier and we obtain a typical
optical power of 1W. After amplification, the light is frequency doubled by a BiBO
crystal in a bow-tie cavity which is angle phase matched [183]. To achieve optimal
phase matching the crystal is heated with a PID controlled electric heater to 44.5◦C.
The bow-tie cavity is stabilized to the ECDL, which in turn is stabilized with a
beat-lock to a second, lower-power ECDL that emits light directly at the wavelength
λ = 399 nm. This second ECDL is locked via FM spectroscopy in an ytterbium
vapor cell to the 1S0 → 1P1 transition frequency of ytterbium [184] and serves as
the frequency reference for the main laser system.
After frequency doubling we achieve an optical power of about 250mW which

is used for the different imaging arms and the Zeeman slower in the experimental
setup. Two acousto-optic modulators shift the frequency in the imaging arm by
about +480MHz and compensate partially the detuning of the Zeeman slower. Due
to the flexible beat-lock mechanism, the frequency detuning of the main ECDL
can additionally be varied within the experiment sequence to bring the laser into
resonance with the 1S0 → 1P1 transition for imaging the atomic sample.

4.2.2 Green laser setup
The green laser setup is used to produce light for driving the 1S0 → 3P1 transition.
We use this light for our magneto-optical trap, for optical pumping, the optical
Stern-Gerlach beam and for photoassociation.
A commercial fiber laser5 running at a wavelength λ = 1112 nm produces the

infrared light for this setup. The fiber laser has a linewidth of 65 kHz, possesses a
piezo with a tuning-range of 13GHz and produces an optical power of about 2W.
The infrared light is frequency doubled with a periodically poled crystal, which is
stabilized to 26.3 ◦C in a bow-tie cavity. By using such a configuration, we obtain
an optical output power of 1W at the wavelength λ = 555.8 nm, corresponding to a

5 Menlo laser systems Orange One-2
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conversion efficiency of about 50%. The frequency doubled, green light is split to
six fiber-coupled ports for each beam of the magneto-optical trap. An additional
path splits of a part of the total power of about 100mW for the light of the optical
Stern-Gerlach beam. This light is frequency shifted by +850MHz with an AOM in
double passage configuration.

The laser is stabilized by the Pound–Drever–Hall technique to a high finesse cavity,
with a finesse of about 1 × 104 at the wavelength λ = 1112 nm [185]. The same
cavity is also used to stabilize the yellow clock laser and possesses a finesse of about
1 × 105 at a wavelength of λ = 578.4 nm. To isolate the cavity maximally from
acoustic noise and temperature fluctuations, it is placed in a vacuum cell. The high
reflective mirrors of the cavity are optically contacted to an ultra-low expansion
(ULE) glass substrate, which ensures minimal thermal expansion upon temperature
changes. Further details about the cavity design, the stabilization of the clock laser
and the mounting can be found in references [73, 186].

4.3 Optical traps
4.3.1 Magneto-optical trap
We use a magneto-optical trap to capture the atoms after the Zeeman slower stage.
A MOT uses the dissipative forces of close detuned light with respect to an optical
transition in combination with a quadrupole magnetic field to capture and cool atoms
[187, 188]. In this way, temperatures close to or even below the Doppler temperature
can be reached. The temperature of the atoms in the MOT depends on the light
intensity I and the detuning ∆ of the light. According to Doppler cooling theory,
this temperature is given by

T = ~Γ2

8kB∆

(
1 + I

Isat
+ 4∆2

Γ2

)
, (4.1)

where Isat = πhcΓ/(3λ3) denotes the saturation intensity for the wavelength λ of the
cooling transition and Γ denotes the scattering rate. It should be noted however that
deviations to the formula given above have been observed for higher intensities with
alkaline earth-like atoms [189, 190]. Using Eq. 4.1, the lowest temperature of the
atomic sample is obtained for ∆ = Γ/2 and I → 0. For these parameters the Doppler
temperature TD = ~Γ

2kB is reached, which is only 4.4µK for the intercombination line
1S0 → 3P1 in ytterbium. The narrow intercombination line for alkaline earth-like
atoms with the associated low Doppler temperature is therefore ideal to be used for
magneto-optical trapping to achieve cold atomic gases before evaporative cooling.

For the fermionic isotopes in ytterbium, which possess a nuclear spin, sub-Doppler
cooling has also been reported [189]. Such sub-Doppler cooling schemes rely on a
substructure of the atomic state, like the presence of a nuclear spin in the case of
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Figure 4.6: Side view of the main chamber with one transverse coil visible in front
of the chamber. The picture shows the green fluorescence of the ytterbium atoms
that are trapped in the MOT during the loading sequence.

fermionic isotopes, and a pumping mechanism between these sublevels to overcome
the limit of the Doppler temperature [191–193].

In our experiment, six optical beams with a waist of about 7mm are used to create
a 3D MOT. The capture velocity of the MOT can be estimated by realizing that the
maximum radiation force is given by Fmax = ~kΓ/2, where k = 2π/λ denotes the
wavevector of the cooling transition. For a beam diameter D ≈ 14mm of the MOT
beams this leads to a capture velocity of

vc =
√
D~kΓ
m

≈ 8 m/s, (4.2)

which is comparable to the exit velocity of the atoms after the Zeeman slower.
If the linewidth of the cooling transition is very narrow, such as in strontium

where Γ = 2π × 7.4 kHz, the dissipative light forces of the MOT are so weak that
gravitation becomes relevant. In this case a gravitational sagging of the atoms in the
MOT is observed, which leads to an overall higher absorption of photons from the
bottom MOT beam. In such a scenario, it has to be considered that the atoms in
the MOT will get partially polarized [194, 195]. This effect is however less relevant
for ytterbium due to the larger linewidth as opposed to strontium. Moreover, when
loading the atoms from the MOT to the dipole trap, the magnetic field is rapidly
turned off leading to a fast depolarization of the atomic sample in the dipole trap.
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sequence detuning (Γ) peak int. (I0/Isat) mag. gradient (G/cm)
MOT loading −5 ≈ 560 2

MOT compression −1 ≈ .1 20

Table 4.1: Detuning, peak intensity and magnetic field gradient used for the loading
MOT and the compressed MOT in the experiment.

MOT loading sequence

Our experiment sequence starts by slowing the atoms with the Zeeman slower while
loading the MOT for about 8 s. During loading, the peak intensity of the MOT
beams is about I0 ≈ 560Isat. The typical detuning of the MOT during the loading
sequence is −5Γ with a magnetic field gradient of 2G/cm, as shown in table 4.1.
The magnetic field gradient in this configuration of the MOT is mainly given by the
Zeeman slower compensation coils. The low magnetic field gradient maximizes the
capture volume of the MOT and accounts for the diverging atomic beam after the
Zeeman slower.

After loading, the MOT is compressed by decreasing the detuning to −1Γ and by
simultaneously changing the magnetic field gradient to 20G/cm. This increases the
atomic density and is ideal for transferring the atoms into the dipole trap, which
covers only a fraction of the MOT volume. In parallel with changing the magnetic
field gradient, the intensity of the MOT beams is ramped down to 0.1 I/Isat. This
reduces the temperature of the atoms to about 10− 20µK. Fig. 4.7(a) depicts the
ramp sequence of the magnetic field, the intensity and the detuning of the MOT
when loading the dipole trap. For the compression, the intensity and detuning of the
MOT are chosen as a compromise between lowest temperature and highest density
in order to maximize the atom number loaded into the optical dipole trap before
evaporation. After compression of the MOT, we achieve typical atom numbers of
N ' 5 × 107 for 173Yb. The density profile of the compressed MOT during the
transfer of the atoms to the optical dipole trap is shown in Fig. 4.7(b). The core of
the compressed MOT in this picture is optically dense. The horizontal deformation of
the density profile is caused by the horizontal dipole trap beam, which is intersecting
the compressed MOT at the upper half of the cloud. To match the cloud position
of the compressed MOT in the vertical direction to our optical dipole trap beam
position, we use the lift coil that is installed on the carrier of the high power coils in
order to create a vertical bias field to change the equilibrium position of the MOT.

4.3.2 Optical dipole trap
We perform all-optical evaporation of the ytterbium atoms in a far detuned optical
dipole trap to reach quantum degeneracy of the atomic gas. The spatially varying
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Figure 4.7: Ramping sequence during dipole trap loading of the magnetic field
gradient, the light intensity and the detuning of the MOT. After switching on the
dipole trap potential, the magnetic field gradient is increased and the light intensity
of the MOT is reduced in order to cool and compress the MOT for optimal dipole
trap loading. The ramping sequence was optimized for maximum transfer of atoms.

intensity of off-resonant optical beams can be used to create conservative trapping
potentials for neutral atoms. In general, the resulting optical potential created by a
laser beam is given by the light intensity dependent AC-Stark shift

Udip = − 1
2ε0c

Re[α(ω)]I(r). (4.3)

Here U denotes the trapping potential, corresponding to the AC-Stark shift, I(r)
refers to the spatially varying light intensity of the optical beam, c denotes the speed
of light and ε0 defines the electric constant. The polarizability of the atom, which
was introduced in section 2.5, is denoted in this formula by α.

The polarizability can be calculated by a semiclassical, approximate model. In
this approximation, the atom is treated quantum mechanically as a two-level system
interacting with the classical electric field. The dipole trap potential can then be
expressed as

Udip = −3πc2

2ω3
0

(
Γ

ω0 − ω
+ Γ
ω0 + ω

)
I(r) (4.4)

where ω0 denotes the light frequency of the resonant transition in the two-level
approximation, Γ denotes the radiative decay rate of the transition and ω refers
to the frequency of the dipole trap light [130]. For our experimental dipole trap
parameters, in the case of far detuned trapping light in the infrared, the detuning
∆ = ω0 − ω is essentially given by the detuning of the dipole trap light to the strong
1S0 → 1P1 transition at λ0 = 399 nm.
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By using the same approximation, a compact form of the photon scattering rate
can be given in the case of a semi-classical approximation of the polarizability

Γsc = − 3πc2

2~ω3
0

(
ω

ω0

)3
(

Γ
ω0 − ω

+ Γ
ω0 + ω

)2

I(r). (4.5)

The scattering of photons causes heating of the atoms and scales with 1/∆2. In
contrast to that, the trapping potentials Udip is proportional to 1/∆. Due to this
different scaling behavior, it is therefore favorable to choose the detuning of the trap
as large as technically possible in order to reduce heating effects while still obtaining
sufficiently deep traps for the available light power in the experiment.

Crossed optical dipole trap

In our experiment, the dipole trap potential is realized by two crossed laser beams at a
wavelength of λ = 1064 nm. For this wavelength, high power lasers are commercially
available and the detuning is sufficiently large to the 1S0 → 1P1 transition at
λ = 399 nm. In the experiment we are using a 25W Nd:YAG laser6 to produce the
optical power of the dipole trap beams. The laser power is split for the two arms of
the dipole trap and coupled to a high power fiber with a large mode field diameter7.
At the experiment table, the light of each fiber is outcoupled and shaped by

telescopes to the corresponding beam size that will produce the wanted waists at
the atom position. The elliptic, horizontal beam has a waist of wh = 153µm in the
horizontal, and wv = 20µm in the vertical direction. The maximum power in the
horizontal beam path, limited by Brillouin scattering in the fiber, is about P ' 11W .
The vertical dipole trap beam has a spherical beam shape with a waist of w = 86µm
and a maximum power of about P ' 10W . The two dipole trap beams are focused
into the main chamber and do intersect at the position of the compressed MOT. Both
beams are power stabilized by acusto-optic modulators (AOM) with a frequency
difference of 160MHz in order to avoid interference effects. At the same time, the
power can be controlled with the AOM in order to perform the evaporation.
The crossed setup offers the advantage that the atoms can be evaporated in the

vertical direction, along the direction of gravitation, by lowering the horizontal dipole
trap. At the same time, the vertical dipole trap beam can confine the atoms strongly
in the other two directions. This results in a high collision rate and fast and efficient
evaporation. Table 4.8 summarizes the dipole trap confinement and trap depth for
the case after MOT loading and the case after evaporation when the horizontal beam
power was reduced.
Initially, when trapping the atoms of the compressed MOT, most of the optical

power (P=11W ) is in the horizontal dipole trap arm while the vertical dipole trap arm
6Innolight Mephisto
7NKT Photonics LMA-PM-15
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Dipole trap power trap depth conf. freq.
hor. DT / vert. DT (W) (µK) νx/νy/νz (Hz)

loading 11/1.3 82 20/103/1432
after evaporation 0.4/6 0.31 22/27/215

Table 4.2: Confinement frequencies, optical power and trap depth of the crossed
optical dipole trap before evaporation and after evaporation.

has a power of P ' 1W . As the trapping against the gravitational force is realized
by the horizontal dipole trap this ensures the deepest trap depth and therefore the
highest number of trapped atoms from the compressed MOT. Moreover, the power
between the two dipole trap arms can be varied with a motorized rotating waveplate
in order to rebalance light power from the horizontal dipole trap arm to the vertical
one. This allows increasing the confinement of the atomic sample with the vertical
dipole trap beam during evaporative cooling.
After loading atoms from the compressed MOT to the optical dipole trap, the

evaporation sequence starts. The sequence consists of a 1 s hold time in the trap,
in order to damp out a possible sloshing after MOT loading and to let the gas
thermalize, followed by a ramp down of the horizontal dipole potential. During the
ramp down for about 14 s, the horizontal dipole trap power is exponentially reduced
in order to decrease the trapping potential. A cut of the dipole trap potential before
and after evaporation is shown in Fig. 4.8. Predominantly, atoms with a kinetic
energy higher than the average energy of the atomic sample will leave the trap
along the direction of gravity where the potential barrier is lowest. At the same
time, elastic collisions thermalize the sample. This process is called evaporative
cooling and results in a reduction of the initial temperature of the atomic gas. In
this way, evaporative cooling increases the phase space density and allows entering
the degenerate regime of quantum gases where the de Broglie wavelength becomes
comparable to the inter-particle distance [196].
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Figure 4.8: Cut through the crossed dipole trap potential along the z-direction
(left column) and the y-direction (right column). (a) Dipole trap potential at the
beginning of the evaporation with P = 11W in the horizontal dipole trap arm and
P = 1W in the vertical dipole trap arm (b) Dipole trap potential at the end of
evaporation with P = 0.4W in the horizontal dipole trap arm and P = 6W in the
vertical dipole trap arm. The black error indicates the evaporation channel along
the direction of gravity.
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Chapter 5

Preparation and characterization of
SU(N) Fermi gases

The enlarged spin symmetry in 173Yb requires the ability to detect and manipulate the
number of nuclear spin states of the atoms. This is achieved with optical techniques
and permits preparing various kinds of spin mixtures. For the isotope 173Yb this
allows us to prepare Fermi gases with a varying number of spin states from a single
spin component up to six spin components and their individual populations.
In this chapter we will give a brief overview of the preparation, detection and

characterization of the SU(N) Fermi gas. Our experimental apparatus allows probing
the in-situ density distribution with high resolution and the measurement of the
momentum distribution of the atomic sample in time-of-flight. For the in-situ
measurements, we use a strongly saturated absorption beam to probe the sample.
The resolution of the objective is high enough to access local quantities of the gas,
a feature that will become important in chapter 7. Moreover, we will show in this
chapter how we detect and count the different nuclear spin states. At the end of this
chapter we will present the equation of state of a non-interacting Fermi gas which is
used for the characterization of the temperature and the entropy of the SU(3) and
SU(6) Fermi gas in the trap.

5.1 Measuring the momentum and density
distributions

We use resonant imaging light on the 1S0 → 1P1 (F = 5/2→ F ′ = 7/2) transition
to image the atoms using the absorption imaging technique. The absorption of the
atomic sample can be either measured in-situ to probe the density distribution in
the trapping potential or after time-of-flight expansion of the atoms from the trap.
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Chapter 5 Preparation and characterization of SU(N) Fermi gases

5.1.1 In-situ imaging
In-situ imaging allows studying local quantities of trapped quantum gases. With high
enough resolution, different phases can be detected. The imaging system described
here is based on a high-resolution objective with an optical resolution of about
1.2µm that is able to measure locally resolved quantities of the atomic sample as
demonstrated in chapter 7. The resolution of the objective does not allow to image
individual atoms in the lattice but is high enough to probe spatially varying phases
of the atomic sample that extend over a much larger scale of several micrometers.
Recently quantum microscopes were realized with an even higher resolution [29,

30, 197]. These microscopes are able to resolve single atoms in an optical lattice. The
imaging in this case is usually done in fluorescence for several hundred milliseconds
to about a second. At the same time, the atoms must be cooled for example by
Raman sideband cooling during the imaging sequence in order to confine them locally
to a single lattice site. This procedure of cooling and imaging is technically very
demanding and the requirements on the objective to achieve the required resolution
are a lot higher than in our case. Only very recently single site resolved fermions
with alkali elements were achieved by using such a technique [198–200].

Due to the high optical density, we decided to image the atoms with a strongly
saturated absorption beam that is able to penetrate the dense atomic sample.
Moreover, as the interatomic distance of the atoms in the lattice is comparable to
the optical wavelength, collective effects during the excitation of the atoms with the
imaging light can arise that will lead to a detuning of the imaging transition due
to dipolar interactions [201]. This effect can be mitigated by choosing the imaging
intensity high enough that the optical transition is power broadened and the detuning
effects become negligible.

Saturated absorption imaging

Absorption imaging is a standard technique to image the atoms. The atoms are
illuminated by a laser beam that is resonant with a closed optical transition and
partially absorb the light. The resulting shadow in the beam is then detected with a
CCD camera. The CCD array measures the number of photoelectrons for each pixel,
which is directly related to the impinging light intensity I(x, y) on the CCD camera.

The attenuation of the imaging light intensity I can be described by

dI(x, y, z)
dz

= −σn(x, y, z)I (5.1)

σ = σ0

1 + I(x, y, z)/Isat
, (5.2)

where Isat = ~ω3Γ/12πc2 denotes the saturation intensity of the imaging light, ω
denotes the light frequency and Γ the natural linewidth of the imaging transition.
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Figure 5.1: Strongly saturated absorption imaging of an atom cloud. (Left) Uncor-
rected optical density of the cloud, using Eq. 5.3 for different light intensities. (Right)
Corrected optical density, using Eq. 5.5, taking the strong saturation of the imaging
transition into account. A value of α ' 3.05 and β ' 0.0028 was found for a 5µs
pulse duration, which kept the optical density independent of the impinging light
intensity.

The optical cross section σ is light intensity dependent and proportional to the
resonant optical cross section σ0 = 3λ2/(2π) of a two-level system.

In the case of unsaturated absorption imaging, I � Isat, the optical cross section
in Eq. 5.2 is constant and integrating Eq. 5.1 immediately yields the Lambert-Beer
law

ñ(x, y) =
∫ ∞
−∞

n(x, y, z)dz = − 1
σ0

ln
(
If (x, y)
Ii(x, y)

)
= − 1

σ0
OD, (5.3)

where Ii(x, y),If (x, y) denotes the light intensity before and after absorption of the
atomic sample and OD = ln

(
If (x,y)
Ii(x,y)

)
defines the optical density of the cloud. It

should be noted that the above definitions of Isat and σ are strictly valid only in a
two-level system. In our case, the approximation of a two-level system does not hold
because different mF -states in the ground state are populated and we decided to do
nuclear spin-insensitive imaging.
Due to the typical high densities when imaging the cloud in-situ, we rely on a

strongly saturated imaging beam with I � Isat. An advantage of this method
compared to unsaturated absorption imaging is the fact that the atomic sample
does not become optically dense for the limited dynamic range of the CCD camera
because enough photons are penetrating the cloud. Other techniques, like phase
contrast imaging that do not rely on direct absorption of photons, also exist for
imaging optically dense systems but require a phase plate to create a homodyne-like
interference pattern on the camera [202, 203]. Phase contrast imaging is actually
a standard technique in optical-microscopy to image living cells that are almost
transparent to imaging light [204–206].

In the case of strongly saturated absorption imaging, the absorption described by
Eq. 5.1 will yield a modified Lambert-Beer law due to the light-intensity-dependent
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cross section [207]

ñ(x, y) = − 1
σ∗

ln
(
If (x, y)
Ii(x, y)

)
+ Ii(x, y)− If (x, y)

σ∗I∗sat
(5.4)

= −α ln
(
cf (x, y)
ci(x, y)

)
+ β(ci(x, y)− cf (x, y)). (5.5)

where ci(x, y) (cf (x, y)) denotes the accumulated counts per pixel on the CCD sensor
of the camera without (with) absorption of the light from the atomic sample for
a given imaging pulse duration. The first term describes the normal unsaturated
absorption, while the second term accounts for the intensity dependent optical cross
section. Similar to the unsaturated case, we define the optical density of the atomic
sample as

OD = ln
(
cf (x, y)
ci(x, y)

)
+ β

α
(ci(x, y)− cf (x, y)). (5.6)

The density is measured by taking two images, one without atoms and one picture
with the light impinging on the atoms, which allows us to measure the intensity Ii(x, y)
and If(x, y). In the equation above, I∗sat and σ∗ describe the effective saturation
intensity and cross section. Effects like imperfections in the beam polarization, optical
pumping effects during imaging together with different Clebsch-Gordan coefficients
of the mF -states and residual magnetic fields will modify the saturation intensity
and the optical cross section of an ideal two-level system. Therefore, in the case
of saturated absorption imaging the correct values α and β have to be determined.
This is done by varying the light intensity and finding the correct ratio α/β that will
keep the shape of the atomic cloud and the measured density of the atomic sample
independent of the light intensity used, as shown in Fig. 5.1. For the calibration of the
absolute optical cross section, we then rely on the method described in section 7.2.
In order to achieve a sufficiently high imaging resolution two effects should be

considered. The pulse duration of the imaging pulse should not be too long in order
to avoid blurring of the image due to the motion of the atoms. The atomic motion is
diffusive in the image plane during the pulse duration due to the random direction of
scattered photons. As opposed to that, we expect a ballistic expansion perpendicular
to the image plane, along the image beam direction. The diffusive motion allows us
to image the atomic sample long enough to obtain a strong absorption signal and
retain the imaging resolution of the objective. In the experiment we decided to use a
maximum image pulse duration of 5µ s with an intensity of about I = 10− 15Isat.
For this pulse duration, the atomic sample will move about 6µm along the imaging
beam direction. This distance can be compared to the depth of field (DOF) of the
imaging system, which determines the maximum distance that an object can be
displaced from the object plane while still being imaged sharply. For a microscope,

70



5.1 Measuring the momentum and density distributions

the DOF can be expressed as

dDOF = dwave + dgeom = n

(
λ

NA2 + c

M · NA

)
(5.7)

where λ denotes the imaging wavelength,n is the refractive index, NA is the numerical
aperture of the imaging system, M is the magnification of the imaging and c denotes
the pixel size of the CCD camera. The first term accounts for the axial imaging
resolution, which is determined by wave optics, and describes the limited resolution
due to the diffraction limit of the imaging system. The second term accounts for
the blurring of the image when the object is displaced from the focus plane using
geometrical optics [208]. For the parameters of our imaging system with NA = 0.27,
c = 13µm and M = 28 (see section about calibrating the imaging system), we obtain
dDOF = 7.2µm which is comparable to the distance that the atomic sample will
move along the beam direction during the imaging pulse. Therefore, a blurring of
the image due to atoms moving through the focus should not be a major problem.
When considering the movement of the atoms within the image plane, which is

diffusive, we expect a movement of only 400 nm during the pulse duration, which is
small compared to our optical resolution.
While the motion of the atoms during the imaging pulse is one aspect, it should

also be noted that the acceleration of the atoms due to the absorption of photons will
create a Doppler shift that might bring the atomic sample out of resonance from the
imaging transition. This would lead effectively to an underestimation of the measured
density. Care has to be taken therefore that the number of absorbed photons is
still low enough to avoid a strong Doppler shift with respect to the linewidth of the
imaging transition. The maximum number of scatted photons before the Doppler
velocity is reached can be estimated by ndop = Γm/(~k2), where Γ is the linewidth,
m the atom mass and k the wavevector of the imaging light. For the chosen imaging
pulse time of 5µs we expect a scattering of 500 photons for the imaging linewidth
Γ = 2π × 29.1MHz, which is small compared to ndop = 2000 photons that can be
scattered before Doppler velocity is reached.

Calibrating the imaging system

In order to determine the image magnification of the imaging system we use an in-situ
density modulation pattern with known periodicity. For this, we load a degenerate
quantum gas into a bichromatic lattice, where one lattice is running at wavelength
λ ' 759 nm and the other lattice at a wavelength λ ' 670 nm. The resulting
modulation of the combined potential of the two lattices has a periodicity of 2.84µm.
By fitting the expected modulation pattern of the bichromatic lattice to the measured
density modulation, as shown in Fig. 5.2, we can determine the corresponding size of
a camera pixel in the object plane and the overall image magnification.
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Figure 5.2: Density modulation pattern used for calibrating our imaging system.
(a) In-situ density modulation created by loading the atoms into a bichromatic
lattice running at λ1 = 670 nm and λ1 = 759 nm. (b) Optical density, averaged
over the y-direction of the atomic sample and fitted modulation pattern (solid line).
The fit yields a distance of 6 pixel for the modulation, corresponding to an image
magnification of 0.47µm/px.

Determining the imaging resolution

To determine the actual resolution of the imaging system we use a method described
in [209] to measure the image response function with a thermal atomic gas. The
image response function M2(k) in 2D gas is related to the density fluctuation
δñ(k) ≡ ñ(k)−〈ñ(k)〉, where 〈ñ(k)〉 denotes the mean column density in momentum
space with k = 2π

L
(lx, ly), L is the linear image size and lx,ly are integers. The density

fluctuations can be expressed as

〈|δñ(k)|2〉 = NpS(k)M2(k). (5.8)

Here Np denotes the total atom number and S(k) is the static structure factor of the
gas. The structure factor describes the correlations between the atoms and contains
the statistical information of the quantum gas [210, 211].

For a thermal gas, there are no correlations between the atoms and the structure
factor becomes momentum-independent and one. If the vertical extension of the
cloud is smaller than the focus depth, we can use Eq. 5.8 to characterize the imaging
system. The image response function including spherical aberration and astigmatism
can be modeled in order to quantify aberrations and the resolution.
When the imaging light passes through the objective, the phase as well as the

amplitude are distorted by imperfections of the optics. This can be described by an
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Figure 5.3: (a) Measured image response function of a thermal gas obtained by taking
350 images and taking the average of the squared modulus of the density fluctuations
of each image from the average density of all images. (b) Simulated image response
function used to characterize the imaging system with modeled spherical aberrations
and astigmatism.

exit pupil function p(r, θ) with

p(r, θ) = U(r/a, θ) expiΘ(r/a,θ) (5.9)
U(ρ, θ) = H(1− ρ)e−ρ2/τ2 (5.10)
Θ(ρ, θ) = S0ρ

4 + αρ2 cos(2θ − 2φ) + βρ2, (5.11)

where r, θ are cylindrical coordinates. U(ρ = r/a, θ) determines the transmittance
through the objective with an aperture a, τ determines the finite incidence angle
of the transmitted light and Θ models the wavefront aberration. For the wavefront
aberrations of the objective, only a few parameters are important. Spherical aber-
rations are modeled with the parameter S0, φ accounts for astigmatism caused for
example by the optical axis being misaligned and β accounts for defocusing when
the atoms move through the focus during the imaging pulse.

Fig. 5.3(a) shows the measured image response function obtained by averaging 350
images of a thermal gas of 173Yb in the dipole trap. The vertical extension of the gas
is calculated to be about 3µm for the used trap configuration in this measurement.
To match the measured image response function we use Eq. 5.9 to model a pupil
function with aberrations. The parameters for the aberrations of this model were
determined manually. Fig. 5.3(b) shows the modeled image response function and
the corresponding point spread function (PSF) is shown in Fig. 5.4(a). The point
spread function can be compared to the one of a diffraction-limited imaging system to
estimate the imaging resolution. For a diffraction-limited system, the PSF is given by
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Figure 5.4: (a) Point spread function (PSF) of the image response function shown in
5.3(b) (b) Cut along the x-axis (blue points) and y-axis (green points) of the point
spread function. The dashed line denotes the PSF of a diffraction-limited system
with an imaging resolution of 1.2µm.

PSF (ρ) = J1(ρ)/ρ with J1 being the Bessel function of first kind, ρ = 3.8317r/r0 and
r0 denoting the imaging resolution. A common definition for the optical resolution
r0 is to define the first zero of the Bessel function as the imaging resolution, which
is the Rayleigh criterion. The dashed line in Fig. 5.4(b) illustrates the PSF of a
diffraction-limited imaging system with an optical resolution of r0 = 1.2µm, which
is approximating the PSF of the imaging system with aberrations quite well.

5.1.2 Time-of-flight imaging
As opposed to in-situ imaging, time-of-flight (TOF) imaging allows measuring the
momentum distribution of the atomic sample. When all the trapping potentials
are switched off instantaneously, the cloud will expand and fall under the influence
of gravity. After a sufficiently long expansion time, when the width of the cloud
is large compared to its initial size, the cloud width will directly reflect the initial
in-trap momentum distribution of the atoms, if interactions between the atoms can
be neglected. For shorter expansion times however, the initial could width has to
be taken into account. When using TOF imaging, the density of the atomic sample
after expansion is usually sufficiently low for long expansion times and a high optical
density of the atomic sample is therefore not a major concern as opposed to in-situ
imaging.

We use time-of flight imaging in our experiment for counting the spin population
of the Fermi gas after applying the optical Stern-Gerlach method to separate the
spin states as well as for measuring the momentum distribution of the atomic sample.
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Figure 5.5: Momentum distribution of an expanding BEC with time-of-flight imaging
(a) Momentum distribution of a BEC of 174Yb in the optical dipole trap. The aspect
ratio of the cloud corresponds to the momentum distribution given by the inverse
Thomas-Fermi radii in the trap. (b) Momentum distribution of a superfluid in a 3D
optical lattice. The interference peaks have a spacing of 2~klat but the horizontal
lattice is imaged under an angle of 45◦.

Prominent examples for time-of-flight imaging include the study of the momentum
distribution of a Bose Einstein condensate, which expands anisotropically from an
anisotropic trap as shown in Fig. 5.5(b). Moreover, in lattice experiments with
bosonic quantum gases, this method reveals the characteristic superfluid to Mott
transition, which is accompanied by the disappearance of characteristic interference
peaks. In the superfluid state the atoms are delocalized and occupy mainly the
quasi-momentum state q = 0. In this regime, the momentum distribution will show
interference peaks with a spacing of 2~klat as illustrated in Fig. 5.5(b). As opposed
to that, in the Mott insulating state, the atoms are effectively localized and occupy
several momentum states. The Mott insulator for Bose gases is therefore accompanied
by a loss of the phase coherence between the atoms at different lattice sites and the
momentum distribution after TOF expansion will not show any sharp feature but a
broad peak [212–214].

5.2 Nuclear spin detection and manipulation
5.2.1 Spin-selective detection
In order to image different spin state populations of the atoms, e.g. after optical
pumping, a method to separate the spin components is needed. For alkali elements,
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this is usually realized by a Stern-Gerlach experiment, which splits the different spin
components in a magnetic gradient field. The idea is to use the mF -selective force to
separate the atoms spatially during time-of-flight in a magnetic gradient field and
count the different spin-state populations when imaging.

Optical Stern-Gerlach method

Due to the absence of a total electronic angular momentum in the ground state of
ytterbium, the magnetic Stern-Gerlach scheme is not applicable, as the required
magnetic field gradient for separating the nuclear spin states is impractical. Therefore,
we use an optical Stern-Gerlach (OSG) scheme in our experiment to achieve the
required splitting of the nuclear spin components. To implement the OSG method,
a circularly polarized beam is used that is close detuned to an optical transition
[215, 216]. The intensity gradient of the beam will cause a dipole force that is
mF -dependent due to the different line strengths of the optical transition [130].
Fig. 5.6(b) shows the relative strengths of the nuclear spin-dependent forces.

This calculation was done for a 800MHz blue detuned OSG beam relative to the
1S0 → 3P1(F = 5/2→ F = 7/2) hyperfine transition. Due to the varying Clebsch-
Gordon coefficients, the circular polarized light causes a mF -dependent force, which
depends on the intensity gradient and detuning of the beam. For the mF -dependent
OSG force not only the F = 5/2→ F = 7/2 transition but also contributions from
other hyperfine transitions have to be considered for the individual mF -states. As
the detuning of the OSG beam is small compared to the hyperfine splitting, the
nuclear spin states will be red-detuned for some hyperfine transitions. This results
for example in a small negative net force for the mF = −5/2 state as opposed to the
other states because the contributions of the red-detuned hyperfine transitions will
dominate in this case.
In the experiment, the OSG force is realized by a beam with a waist of 75 µm

and an 800MHz blue detuning from the 1S0 → 3P1(F = 5/2→ F = 7/2) transition.
The optical power of this beam is about 40mW. As shown in Fig. 5.6(a), the center
of the OSG beam is slightly displaced from the position of the atoms in the trap
to the top along the vertical direction. This is necessary to push the atoms down,
along the gravitation direction, during time-of-flight. In order to separate the atoms,
the beam is activated during the release of the atoms from the trap. The OSG
beam will create a mF -dependent force that will additionally accelerate the atoms
during the expansion. The longest pulse duration is about 4ms after which the
atoms will not experience a OSG force anymore as they have left the beam by that
time. The additional momentum, caused by the nuclear spin dependent force, will
lead to a spatial separation of the different spin components after an expansion time
of about 15ms. Fig. 5.6(c) shows an SU(6) Fermi gas after time-of-flight expansion
with the optical Stern-Gerlach method. All the six spin components of the Fermi
gas can be resolved spatially. The actual curvature of the cloud arises due to the
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Figure 5.6: Optical Stern-Gerlach (OSG) method to separate the nuclear spin
components. (a) Illustration of the OSG beam configuration that is used in the
experiment to split the mF -states. A blue detuned beam is employed for the OSG
pulse, which is aligned slightly on the top of the atoms to create a nuclear spin
dependent force along the vertical direction. (b) Relative ratios of the mF -selective
forces with respect to the mF = 5/2 state for the specific detuning used in the
experiment. (c) Absorption image of the atomic sample after free expansion. The
picture shows the optical density of the cloud after an OSG pulse of 3 ms and 12
ms time-of-flight expansion. The separation of the six different mF -states in 173Yb
becomes visible. The curvature of the different rings is caused by the finite OSG
beam size that creates a radial force.
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finite beam size as the OSG beam is pushing the atoms radially away from the
center of the beam. We decided for a blue detuned OSG beam with respect to the
1S0 → 3P1(F = 5/2→ F = 7/2) transition as this configuration offers an advantage
over a red detuned beam. The finite size of the atom cloud is compressed with a
blue detuned OSG beam compared to the free expansion of the atoms, as atoms that
are closer to the OSG beam center are accelerated more than those atoms that are
further away. This leads to a compression of the cloud width of the atoms in the
same mF -state after time-of-flight expansion.

5.2.2 State preparation
To produce various kinds of spin mixtures of 173Yb we use optical pumping techniques.
The atoms can either be pumped between neighboring mF - states or individual mF -
states can be depleted selectively by spilling those atoms out of the trap. The idea of
the latter method is to remove certain nuclear spin components in a shallow optical
trap by scattering a few photons and allow the Fermi gas to thermalize afterwards.
This method offers the advantage that the spin balancing can be better controlled
than with optical pumping under the assumption that the initial SU(6) Fermi gas
which is loaded from the magneto-optical trap is sufficiently spin-balanced.

Optical pumping

Our optical pumping scheme relies on the possibility to split the mF -states of the
3P1 excited state. The splitting of the 1S0 → 3P1 transition in a magnetic field is
only determined by the splitting of the 3P1 state and amounts to 596.6 kHz/(G mF)
for 173Yb on the stretched hyperfine transition F = 5/2 → F ′ = 7/2. We use the
magnetic coils and the light beams of the magneto-optical trap (MOT) to perform
the pumping. By switching the coils into Helmholtz configuration we create a
homogeneous magnetic field of about B ' 18G which splits the mF -states by several
MHz. The narrow natural linewidth γ = 182 kHz of the 1S0 → 3P1 transition makes
it possible to selectively address the optical transitions of the different mF -states with
polarized light. The optical pumping with this scheme is performed after loading the
atoms from the magneto-optical trap to the dipole trap, right at the beginning of
the evaporation process.
Fig. 5.7 shows the mF -selective addressing and pumping with the 1S0 → 3P1

intercombination line. Depending on the laser detuning, individual mF -states can be
pumped to neighboring states by using circular polarized light. A variable sequence
of pumping pulses, in addition to the mF -dependent selectivity, gives full control
for preparing any kind of spin mixture. As an example, Fig. 5.8 illustrates three
different pumping schemes used in the experiment to achieve spin-balanced two and
three-component Fermi gases.
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Figure 5.7: Optical pumping on the 1S0(F = 5/2)→ 3P1(F = 7/2) transition with
σ− light. A magnetic field of B = 18G is used to split the different mF -states to
pump selectively. The figure shows the relative decrease/increase in the atom number
for each mF -state as a function of the laser detuning when pumping individual
mF -states to neighboring states.
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Figure 5.8: Upper row: Illustration of different optical pumping sequences on the
1S0 → 3P1 transition. The schemes show different ways for producing balanced
spin-mixtures with two and three nuclear spin components for 173Yb. (a) SU(2)
gas with mF = ±5/2 (b) SU(2) gas with mF = 5/2 & 3/2 (c) SU(3) gas with
mF = ±5/2, −1/2 Bottom row: Separation of the spin mixtures with the optical
Stern-Gerlach method for the different pumping sequences.
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Figure 5.9: Illustration of an optical scheme for the preparation of a three-component
Fermi mixture. (a) A combination of σ± and π-light is used to remove the three
central mF -states for the creation of an SU(3) Fermi gas. A magnetic field is applied
for mF -selective addressing. By driving the corresponding optical transitions for the
individual mF states a few scattered photons are enough to push out the atoms from
a shallow trap (b) Scan of the residual population after creating a three-component
Fermi gas. The error bars denote the standard deviation of the plotted fraction.
The plotted residual fraction is only an upper estimate due to possible off-resonant
addressing of other mF -states during the spectroscopy.

The preparation schemes for producing the different spin mixtures assume a spin
balanced SU(6) gas. The initial spin balancing of the Fermi gas is ensured by the
diabatic magnetic field switching of the magneto-optical trap when transferring
the atoms to the optical dipole trap. This switching of the coils will project each
nuclear spin state into a superposition of spin states that will eventually dephase
due to inhomogeneities for example in the magnetic field. In this way, a possible
spin imbalance of the atoms in the magneto-optical trap will get scrambled during
evaporation in the optical dipole trap.

Push beam

Spin balanced mixtures, especially three-component ones, can be created by removing
atoms in certain nuclear spin states from the trap after evaporation. In this scheme,
the splitting of the mF states is also realized by a magnetic field. With this method
a three-component spin mixture can be produced by using a combination of σ± and
π-light which will deplete three adjacentmF -states (e.gmF = ±5/2 andmF = −3/2).
If the trapping potential is sufficiently shallow, only a few scattered photons are
enough to spill out the atoms from the trap in an mF -selective way, as depicted in
Fig. 5.9. The preparation of the spin mixture is performed after evaporation, when
the optical dipole trap has a depth of about kB × 300 nK corresponding to a trap
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depth of V = 2Er at a wavelength λ = 556 nm. Therefore, two scattered photons
are on average enough to spill out an atom from the trap. The Fermi gas is then
allowed to thermalize and cool for about 10 seconds. This method is used for the
state preparation of the SU(3) gas in the measurement, which is studied in chapter 7.

5.3 Thermometry of Fermi gases
To quantify temperature and entropy of the SU(N) Fermi gas after preparing
the spin mixture and after all optical cooling, we measure the in-trap density
profile of the atomic sample. The density profile of the atomic sample allows us to
perform thermometry. Therefore, we will derive the particle number and entropy of
harmonically trapped and homogeneous Fermi gases as a function of temperature
and chemical potential. The results derived for the homogeneous Fermi gas will
become relevant in chapter 7 to fit the equations of state of the Fermi-Hubbard
model in the weakly interacting regime.
In the case of negligible interactions, the atomic sample is well described by an

ideal Fermi gas. For an ideal Fermi gas, the average occupation of the eigenstates
with energy εi of the Hamiltonian is given by the Fermi-Dirac distribution

F (εi) = 1
e(εi−µ)/kBT + 1 , (5.12)

where T determines the temperature of the Fermi gas and µ denotes the chemical
potential, which controls the atom number. This formula holds for a single-component
Fermi gas but can be generalized to N spin components by a factor N in front of
F (ε). At zero temperature, the lowest energy eigenstates are all occupied up to the
Fermi energy EF and the Fermi-Dirac distribution becomes a step function with

F (εi) =
{

1 for εi ≤ EF
0 for εi > EF .

(5.13)

The Fermi temperature is given by TF = (EF−ε0)/kB with ε0 being the lowest energy
of the eigenstates. Often, the fugacity z = eµ/(kBT ) is introduced to characterize the
degeneracy of the quantum gas.

Harmonically trapped Fermi gas

When the kinetic energy of the atoms is bigger than the distance of the energy levels
εi, it is convenient to consider a continuous energy spectrum with a density of states
to calculate thermodynamic quantities. For a Fermi gas trapped in a 3D harmonic
potential

V (x, y, z) = 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (5.14)
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Figure 5.10: Thermodynamic quantities as a function of temperature of a spin-
polarized Fermi gas for Np = 30000 atoms and ω̄ = 2π × 49.5Hz. (a) fugacity (b)
chemical potential (blue curve) and the approximate solution using Eq. 5.19 (green
dashed curve) (c) entropy per particle (blue curve). The yellow dashed curve shows
the Sommerfeld expansion S/(NpkB) = π2T/TF and the green dashed curve shows
the series expansion by using Eq. 5.21.

the density of states with energy ε is given by

g3D = ε2

2~3ω̄3 = Aε2 (5.15)

with ω̄ = (ωx ωy ωz)1/3 being the mean trap frequency.
We can use the density of states in order to give the grand potential for an ideal

Fermi gas [155]
Ω = kBT

∫ ∞
0

dε g3D ln(1− F (ε)). (5.16)

The integral can then be simplified by partial integration to

Ω = −A3

∫ ∞
0

dε ε3F (ε) = 2A(kBT )4Li4
(
−e

µ
kBT

)
, (5.17)

where Li denotes the polylogarithmic function. By using the grand potential, a
relation between the atom number Np and the chemical potential of the gas is
obtained

Np = −∂Ω
∂µ

=
∫ ∞

0
dε g3D(ε)F (ε) = −2A(kBT )3Li3

(
−e

µ
kBT

)
(5.18)

≈ A

3
(
π2(kBT )2µ+ µ3

)
. (5.19)

With Eq. 5.17, it is possible to calculate the entropy of the Fermi gas

S = −∂Ω
∂T

= 2A(kBT )3
[
µLi3

(
−e

µ
kBT

)
− 4kBTLi4

(
−e

µ
kBT

)]
(5.20)

≈ 7
45Ak

4
Bπ

4T 3 + 1
3Ak

2
Bπ

2Tµ2. (5.21)
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In Eq. 5.19 and Eq. 5.21 the polylogarithm Lis(−z) was expanded in a series, which
is a good approximation for fugacities z � 1 [217]. We can use this series expansion
with µ ≈ (3N/A)1/3 to lowest order and TF = µ(T = 0)/kB = 1/kB(3N/A)1/3 to
give an approximation for the entropy S

S ≈ kBNpπ
2 T

TF
+O(T 3), (5.22)

which is the Sommerfeld expansion. To lowest order, the entropy of an ideal Fermi
gas is directly proportional to the reduced temperature T/TF . By substituting the
expression for TF into Eq. 5.18 we also obtain a relation of the fugacity with the
reduced temperature that describes the degeneracy of the gas

Li3(−z) = − 1
6(T/TF )3 . (5.23)

Homogeneous Fermi gas

Although the Fermi gas is evaporated in a harmonic trap, it is sometimes useful to
study the case of a homogeneous Fermi gas in a box potential. This is for example
relevant when using local density approximation, where the spatially varying potential
is divided into several boxes, each of constant atomic density, that possess different
chemical potentials. The density of states in a three-dimensional box potential with
volume V is given by

gbox = 2π(2m)3/2V

h3

√
ε (5.24)

where m denotes the mass of the particle. By following the same ansatz as in Eq. 5.16,
we obtain for the density of a homogeneous (single component) Fermi gas

Np = −
(
mkBT

2π~2

)3/2

V Li3/2
(
−eµ/kBT

)
(5.25)

and for the entropy

S =
√

2(πkBm)3T
[
2µLi3/2

(
−eµ/kBT

)
− 5kBTLi5/2

(
−eµ/kBT

)]
/h3. (5.26)

We will use Eq. 5.25 in section 7.3 for the fit of the equation of state in the weakly
interacting regime of the Fermi-Hubbard model.

5.3.1 Local probing of trapped Fermi gases
With the thermodynamic relations derived in the previous section, we can perform
thermometry of the trapped Fermi gas. The reduced temperature T/TF is an
important observable for the characterization of the gas, as it characterizes its
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degeneracy. As shown in Eq. 5.22, thermodynamic quantities like the specific entropy
directly scale with the reduced temperature to first order. The temperature of the gas
is obtained by a Fermi fit to the density distribution. Due to special scaling relations
in the case of a harmonically trapped gas, we will see that it is not important whether
the fit is performed after expansion from the trap or in-situ.
The density profile of the Fermi gas can be obtained by using local density

approximation (LDA), which is a good description for the typical large systems of
several thousand atoms as realized in experiments [218]. In LDA, the heterogeneous
system is described by a locally homogeneous system. This is realized by replacing
the chemical potential µ with µ = µ0−V (x, y, z) where V (x, y, z) defines the trapping
potential and µ0 is the chemical potential at the center of the trap. LDA is justified
when the relevant energy scale is much larger than the single-particle oscillator energy,
e.g. µ0 � ~ωx,y,z. When treating the trapped Fermi gas in LDA, we can use Eq. 5.25
to obtain

n(x, y, z, T ) = −
(
mkBT

2π~2

)3/2

Li3/2
(
−e

1
kBT

(µ0− 1
2m(ω2

xx
2+ω2

yy
2+ω2

zz
2))
)

(5.27)

where we substituted µ with µ = µ0 − V (x, y, z).
In the case of a harmonically trapped Fermi gas, a scaling relation of the density

with time t after expansion exists [219]

n(x, y, z, t) = 1
γx(t)γy(t)γz(t)

n(x/γx(t), y/γy(t), z/γz(t)) (5.28)

with γi(t) =
√

1 + ω2
i t

2. This scaling relation, together with Eq. 5.27, yields for the
measured column density ñ(x, y) 1

ñ(x, y) =
∫ ∞
−∞

dz n(x, y, z, t) = K1Li2
(
−e

1
kBT

(µ0−( x
2

2σ2
x

+ y2

2σ2
y

))
)

(5.30)

= ALi2

−ze− (x−x0)2

2σ′2x
− (y−y0)2

2σ′2y

 /Li2 (−z) (5.31)

K1 = −N
2π/(2πkBT )3ωxωyωzσxσy

(5.32)

σi = γi(t)
ωi

√
kBT

m
(5.33)

1which can be proven by using the following relation:∫ ∞
−∞

dz Lin(−eµ/(kBT )e−z
2
) =
√
πLin+1/2(−eµ/(kBT )) (5.29)
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Figure 5.11: Left side: Optical density of a degenerate Fermi gas of 173Yb imaged
in-situ in the trap. Right side: Azimuthally averaged density profile (blue curve). The
green curves show a cut of the Fermi fit to the density profile of the SU(6) and SU(3)
gas respectively, while the red curves show a cut of the best fit of a Gaussian. For both
Fermi gases, the discrepancy to the non-degenerate Gaussian density distribution is
visible. (a) SU(6) Fermi gas with Np ≈ 26000 and T/TF = 0.07. (b) SU(3) Fermi
gas with Np ≈ 24000 and T/TF = 0.12.

where we additionally introduced the number of spin-components N for a non-
interacting Fermi gas. We can use Eq. 5.31 to fit the fugacity and therefore measure
the reduced temperature using Eq. 5.23. In the classical, non-degenerate case (z � 1)
Eq. 5.31 will approach a Gaussian distribution.
Fig. 5.11 shows a Fermi fit to the in-situ density distribution of the SU(6) and

SU(3) Fermi gas. The SU(6) gas was evaporated in the optical dipole trap for 25
seconds. We prepared the three-component spin mixture at the end of evaporation
by the method described in section 5.2.2. In both cases, the gas has reached quantum
degeneracy and deviations from a Gaussian density distribution, which would describe
a thermal gas, are visible. For the SU(6) gas the achieved temperature at the end
of evaporation is so low that the measured temperature might already be limited
by the precision of the Fermi fit. The Fermi fits allow quantifying the degree of
quantum degeneracy of the Fermi gas and allow obtaining the entropy per particle.
This becomes for example useful when studying the lattice loading dynamics in
a round-trip experiment as shown in section 7.3. Sufficiently low temperatures
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together with adiabatic loading of the atoms into the lattice are necessary to enter
the insulating Mott regime in the optical lattice.

Interactions

Interactions of a two-component Fermi gas can be described by Landau Fermi-liquid
theory [220, 221]. This theory accounts for interactions by describing the Fermi
liquid by quasi-particle excitations that have a one-to-one correspondence to the
excited states of a non-interacting Fermi gas. This theory can be extended to N spin
components to describe an SU(N) Fermi liquid beyond a mean-field approach [111].
The corrections of the thermodynamic quantities such as the compressibility, the spin
susceptibility or the mass of the particles with respect to a non-interacting Fermi
gas, scale with kFa, where kF =

√
2mEF/~ denotes the Fermi wavevector, m the

atom mass, EF the Fermi energy and a the scattering length. The compressibility
κ = ∂n/∂µ of an SU(N) Fermi liquid with respect to a non-interacting SU(N) Fermi
gas is given by

κ0 − κ
κ

= (N − 1)2kFa
π

(
1 + 2kFa

15π (22− 4 ln 2)
)

(5.34)

where κ0 denotes the compressibility of the non-interacting gas. This correction scales
with the number of spin components as N − 1 and reduces the compressibility for
repulsive interaction with respect to the non-interacting case. The scaling behavior
with the number of spin components can be understood by the number of possible
interactions channels of an SU(N) Fermi gas.

We can consider a trapped and interacting Fermi gas in LDA with a locally varying
chemical potential that corresponds to a local Fermi wavevector kF (r). The Fermi
wavevector will increase towards the center of the trap due to a larger chemical
potential and the corrections due to interactions become stronger in the trap center.
For repulsive interactions, the reduced compressibility as given by Eq.5.34 with
respect to a non-interacting Fermi gas will therefore lead to a lower density in the
trap center compared to a non-interacting Fermi gas. Moreover, these corrections
are more pronounced for an SU(6) Fermi gas than for example for an SU(3) gas.
The correction of the compressibility and density can be estimated by realizing

that the Fermi energy for Np particles is given by EF = ω̄
2π (6Np/N)1/3. For typical

atom numbers Np ≈ 35000 we expect only weak corrections of the compressibility
and the density in the dipole trap as kFa ≤ 0.08. This is confirmed by the good
match of the non-interacting Fermi fit to the in-trap density distribution of the
gas. However, in a shallow lattice where the on-site interaction can be described
in mean-field approximation by an effective scattering length a that can be much
larger than the bare scattering length, the effects of interactions become relevant.
Deviations of the density distribution from the non-interacting case can indeed be
observed in a shallow lattice for higher fillings, as demonstrated in section 7.3.
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Chapter 6

Ultracold ytterbium atoms in optical
lattices

In this chapter, we will discuss the implementation of periodic potentials with optical
lattices. Such lattice potentials allow us to implement condensed matter systems
with ultracold atoms. A degenerate Fermi gas of ytterbium in an optical lattice will,
for example, faithfully realize the SU(N) Fermi-Hubbard model. We show in this
chapter how optical lattices are experimentally realized in our setup by superimposing
three pairs of mutually orthogonal waves with linear polarization. We also discuss
the calibration of the lattice as well as the detection of single and double occupancy
by probing the density distribution in-situ.

The presence of meta-stable states in ytterbium makes this element especially suited
to implement state-dependent optical potentials. We will review the magic lattice
setup used in this experiment and discuss a state-dependent lattice configuration
that can be employed to implement Kondo physics with two electronic orbitals. The
polarizability and the lifetime of the meta-stable state in the state-dependent lattice
will be characterized. At the end of this chapter, we will briefly present some results
in a state-dependent lattice by using the clock transition to dress the electronic
ground state and the lowest meta-stable state.

6.1 Optical lattice potentials
The optical lattices potentials that are used in our experiment are produced by
retro-reflecting a laser beam with linear polarization. By superimposing an ingoing
circular beam with the retro-reflected beam, a standing wave with intensity

I(x, y, z) = I0e
−2 y

2+z2

w2
x cos2(kx) (6.1)
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Figure 6.1: Illustration of an optical lattice potential in the x-y plane resulting from
the superposition of three retro-reflected Gaussian beams. The harmonic confinement
in this illustration is exaggerated with respect to the lattice depth for better visibility.

forms. This intensity modulation, according to Eq. 4.3, produces a light-intensity
dependent AC Stark shift that creates a periodic potential, which confines the atoms.
The lattice in our experiment consists of three mutually orthogonal, retro-reflected
beams with linear polarization that are focused on the atoms. This produces a 3D
lattice with simple cubic symmetry. The lattice potential, created by the beams, can
be expressed as

V (x, y, z) = Vxe
−2 y

2+z2

w2
x cos2(kx) + Vye

−2x
2+z2

w2
y cos2(ky) + Vze

−2x
2+y2

w2
z cos2(kz)

' Vx cos2(kx) + Vy cos2(ky) + Vz cos2(kz) + 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2),
(6.2)

with k = 2π
λ

denoting the wavevector of the lattice light and wx,y,z defines the waist
of the Gaussian beam. In the second line of Eq. 6.2, the Gaussian potential was
approximated by a harmonic potential with

ωx =
√
ω2
x,lat − ω2

x,ac , (6.3)

where

ωx,lat =

√√√√ 1
m

(
4Vy
w2
y

+ 4Vz
w2
z

)
(6.4)

denotes the harmonic confinement produced by the lattice beam. The harmonic
approximation of the Gaussian beams is usually justified as the beam waists are
much bigger than the extension of the atom cloud in the lattice and hence only the
harmonic part of the potential has to be considered.
As the intensity of the optical beam and therefore the AC Stark shift decreases

away from the beam center, there is a second contribution to the harmonic potential,
which produces a small anti-confinement given by

ωx,ac = h

mλ

√√√√ 1
w2
y

(
Vy
Er

)1/2
+ 1
w2
z

(
Vz
Er

)1/2
(6.5)
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Figure 6.2: Lattice calibration to determine the harmonic confinement and lattice
depth. (a) Atom cloud width (in-situ) as a function of the parametric heating
frequency of the lattice arm. The resonance frequency at 35.7kHz corresponds to a
lattice depth of 30Er. (b) Oscillation of the atom cloud width after a fast quench of
the trap potential. The measured breathing frequency equals two times the harmonic
confinement of the trapping potential. Due to interactions in the SU(6) Fermi gas, a
damping of the oscillation in the lattice can be observed. The damping is modeled
by an exponential e−t/τ with τ = 190ms.

with Er = (~k)2/(2m) denoting the recoil energy and m denoting the atom mass.
By permuting the respective indices in Eq. 6.5, the other two harmonic confinements
frequencies ωx,y are obtained correspondingly.

6.1.1 Lattice calibration
For most of the experiments that are performed in an optical lattice, precise knowledge
about the depth of the lattice and the overall harmonic confinement is essential.
This becomes especially relevant in chapter 7, where the spatially varying harmonic
potential allows us to use the local density approximation in order to give the
equations of state of the gas.

One technique to determine the lattice depth is parametric heating. The intensity
of the lattice light and hence the lattice depth can be modulated sinusoidally with
an acousto-optic modulator. When the modulation frequency is resonant with a
transition between two bands of the same parity, for example νmod = (E3(q)−E1(q))/h,
the atoms are resonantly excited [222]. This excitation produces heating and therefore
a measurable increase in the width of the atomic sample. By comparing the excitation
frequency with the band structure calculation (see Fig. 3.1), the lattice depth can
be inferred. This calibration method works best for deep lattices, as in this case, the
energy bands are sufficiently flat for all quasi-momenta q and the excitation becomes
quasi-momentum independent.
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Fig. 6.2(a) shows the parametric heating of the atomic sample by modulating one
lattice arm. In this measurement, the width of the cloud was measured in-situ and
the modulation frequency of the lattice light was swept. The obtained resonance
between the lowest band and the second excited band at νmod = 35.7 kHz corresponds
in this configuration to a lattice depth of about V = 30Er. The main uncertainty for
the lattice depth calibration using this method stems from the width of the obtained
resonance.
In addition to the measurement of the lattice depth, the harmonic confinement

of the overall trapping potential can be probed. To characterize the harmonic
confinement, created for example by the lattice beams and the optical dipole trap, it
is possible to excite a breathing mode of the atomic sample by suddenly changing
the trapping potential. After a quench of the potential, the atom cloud will start
oscillating in width along the direction of the harmonic confinement that was changed
abruptly. Fig. 6.2(b) shows the oscillation of the cloud width after a potential quench
with a fitted breathing frequency ωbr = 2π × 33Hz. This breathing frequency is
directly proportional to the harmonic confinement ωbr = 2ω. The observed damping
in the oscillations of the SU(6) Fermi gas, as shown in Fig. 6.2(b), is caused by
interactions. Collisions between the atoms will lead to a momentum change and
produce a dephasing of the common mode oscillation of the atomic sample.

6.1.2 Probing double occupancies
Occupancies of several atoms per lattice site can be detected using photoassociation
(PA). Two free atoms can form a bound pair by absorbing a photon when the light is
resonant with a bound state of the electronically excited molecule. Due to the short
lifetime of the excited molecule, the molecule will eventually decay and the released
energy will cause a loss of the atom pair from the trap [223, 224]. This allows us to
detect higher occupancies of lattice sites via the measured atom loss.

For 173Yb we use a photoassociation resonance on the 1S0 → 3P1 intercombination
line, which is 329MHz red detuned to the single particle excitation. Fig. 6.3 shows
the photoassociation spectroscopy of a two-component Fermi gas in a 35Er deep
lattice which was carried out with a 10ms PA pulse at an intensity I = 0.2 mW/cm2.
The high intensity of the PA pulse and the presence of various other resonances that
are close detuned to this transition will eventually associate atom pairs possessing
any combination of mF -states after several milliseconds pulse duration.
Photoassociation provides a useful tool to quantify and adjust the filling in the

lattice. The photoassociation pulse will lead to a parity projection of the occupation
number on a lattice site to either zero or one. An even number of atoms per site
is projected to zero while an odd occupation number is projected to one remaining
particle. To freeze out the density of the atomic sample during the PA pulse, the
lattice is ramped up to 35Er (t = h× 0.5Hz) before applying the pulse.

Neglecting fillings of more than two atoms per lattice site, the atomic density after
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Figure 6.3: Photoassociation spectroscopy with the narrow intercombination line for
173Yb in a 3D optical lattice. When the light is resonant with a bound-state of the
electronically excited molecules, two free atoms can form a short-lived bound pair.
The decay of these molecules is observed as a measurable atom loss on resonance.

the PA pulse directly reflects the density distribution of singlets, while the density
distribution of doubles is given by the difference signal with and without PA pulse.
Fig. 6.4 shows the optical density of the atomic sample in the lattice before and

after PA for various fillings at an interaction strength U/(12t) = 11. Characteristic
for the strongly interacting regime is a suppression of higher occupancies for low
fillings due to the high on-site interaction energy. When the filling in the lattice
becomes high enough the number of double occupancies eventually increases as
shown in Fig. 6.4(b). This will happen in the trap center first, where the filling is
highest. Upon increasing the atom number, the region of the trap that contains
double occupancies will grow. As shown in Fig. 6.4(c), this leads to a characteristic
hole in the density distribution of the atomic sample after photoassociation.

6.2 State-dependent and independent lattices
A special property of ytterbium is the presence of a long-lived, meta-stable state
that can be addressed with the clock transition. The associated narrow linewidth of
this transition can be used for the realization of optical lattice clocks with alkaline
earth-like atoms [50, 51, 132, 225], for precision spectroscopy to study for example
interaction properties between the two electronic orbitals [72, 226], but also for state
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Figure 6.4: Single and double occupancy in a 3D optical lattice at an interaction
strength U/(12t) = 11 for various atom numbers Np. The single occupancy is
measured with PA. The double occupancy is determined by the difference of the PA
measurement with respect to a reference measurement that yields the total density.
Each image is averaged over 10 repetitions of the experiment (a) Np ≈ 5500 (b)
Np ≈ 12000 (c) Np ≈ 35000. The right column shows the corresponding cut of the
optical density along the x-direction averaged in a window of 7.5µm. For low and
intermediate atom numbers a suppression of double occupancies is detectable, while
for high atom numbers double occupancy emerges predominantly in the center of
the trap.
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preparation e.g. for the implementation of two-orbital many-body systems. In order
to not reduce the resolution of the narrow optical transition for precision spectroscopy,
the optical lattice must run at a specific wavelength – the magic wavelength λm – as
only there the AC Stark shifts of the ground state |g〉 and the excited state |e〉 are
identical [227, 228]. Therefore, at magic wavelength, any shift or broadening due to
inhomogeneities of the lattice potential, like the spatially varying confinement, will
be canceled between the two states.
While is necessary to run the optical lattice close to the magic wavelength when

doing precision spectroscopy, the realization of two-orbital models like the Kondo
lattice model requires a state-dependent lattice witch different polarizabilities for
the ground- and meta-stable state. This will result in different lattice depths for the
atoms in either of the two states and makes it possible to localize one species as needed
for implementing the Kondo lattice Hamiltonian. To realize such a state-dependent
lattice a laser system running at a wavelength of λ ' 670 nm was installed and the
relative polarizability between the two orbitals is characterized in section 6.2.2.

In the experiment, we are currently using two different laser setups for the horizontal
lattice arms. A Ti:Saph laser that is optimized to run at wavelengths close to the
magic wavelength of the clock transition [229]. This setup is used to perform most
of the spectroscopic measurements including the results presented in chapter 7. The
state-dependent lattice is produced by another Ti:Saph laser that is optimized for
λ ' 670 nm.

6.2.1 The magic wavelength lattice and the clock transition
The frequency tunability of the Ti:Saph laser, used for the generation of the state-
independent lattice, allows us to run this laser precisely at magic wavelength λm '
759.4nm. As the lattice light is red detuned, with respect to the strong 1P1 transition
in ytterbium, the atoms are trapped in the intensity maxima of the resulting standing
wave. The lattice beam configuration is illustrated in Fig. 4.3. The vertical lattice
(L3) is produced by a Gaussian beam with a waist wL3 = 127µm. The two horizontal
lattice arms (L1 and L2) are created by retro-reflected elliptic beams with waists
wz = 40µm and wx,y = 160µm. The elliptic beams were chosen to adapt to the
oblate geometry of the optical dipole trap and to maximize the light intensity and
hence the lattice depth for experimentally available laser powers. Moreover, the
elliptic shape of the dipole trap and lattice beams might simplify the loading of a
single vertical plane of the lattice when using a bichromatic lattice setup for the
vertical lattice arm. Details about the bichromatic vertical lattice setup can be found
in [230].
The Ti:Saph laser that is used for the generation of the magic lattice light is

capable of producing an output power of about P ' 6W, which is distributed among
the three lattice arms. The experimentally achievable output power together with
the lattice beam waists permits lattice depths up to Vx,y,z = 40Er. This is enough
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Figure 6.5: Frequency shift of the clock transition around the magic wavelength
of the lattice. (a) Measured frequency shift of the clock transition by incoherent
spectroscopy for three different lattice wavelengths. (b) Differential frequency shift
per lattice depth as a function of the lattice light frequency.

for entering the Mott insulating regime of an ytterbium Fermi gas but also sufficient
to perform spectroscopy with the clock transition in the Lamb-Dicke regime.1

Determining the magic wavelength

Running the lattice at magic wavelength is relevant for the study of the interaction
properties between atoms in the two orbitals. The scattering properties between
the states can be inferred by measuring for example the frequency shift of the clock
transition [72]. Precise knowledge of the scattering lengths between the orbitals
is important for optical lattice clocks where interactions between the atoms will
lead to a so-called cold collisional shift that will limit the resolution of the clock
[231–233]. Moreover, knowledge of the interaction properties is a prerequisite for the
realization of two-orbital models. A detailed description of the clock laser used in
our experiment and, specifically, the measurements of the interaction shifts of 173Yb
in the magic lattice, can be found in [73].
Precisely at the magic wavelength of the lattice light, the differential AC Stark

shift between the ground state and the 3P0 state will vanish. At this wavelength, the
excitation with the clock laser becomes independent of the spatially varying lattice
intensity. The magic wavelength can therefore be found by measuring light intensity
dependent AC Stark shift as a function of the lattice depth as shown in Fig. 6.5. The
measured shift ∆νd allows us to determine the slope ∆νd(ν). By linear regression,
we determine the zero crossing ν = νmagic, which corresponds to a magic wavelength
λm ≈ 759.30(4) nm of the lattice light as shown in Fig. 6.5b.

1In the Lamb-Dicke regime the coupling to the state becomes quasi-momentum independent. This
is equivalent to saying that there will be no Doppler broadening for the transition due to the
recoil energy of the absorbed photon.
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Figure 6.6: Orbital excitation in a state-dependent lattice with different polariz-
abilities for the two states. (a) Excitation scheme with a π-pulse on the 1S0 →
3P0 transition. Due to the deeper lattice potential for the excited state, the clock
transition will be shifted by ∆ with respect to the ground state. (b) Measured
frequency shift ∆ of the clock transition in a Vg = 10Er state-dependent lattice
running at wavelength λ = 670 nm. The plot shows the ground-state fraction of a
spin-polarized atomic sample after an excitation with a coherent pulse for different
detunings of the yellow clock laser. The blue (green) curve shows the transition
frequency in a magic (state-dependent) lattice. The pulse duration of the clock laser
was chosen to be a π-pulse for the magic lattice configuration.

6.2.2 A state-dependent lattice for two-orbital physics
As shown in chapter 2, the different polarizabilities between the ground state and the
3P0 state make ytterbium an ideal element for the realization of far detuned state-
dependent lattices. State-dependent optical potentials for different spin components
have been realized for alkali elements, like rubidium, with laser light close detuned
to the D1- and D2-transition of the F = 1 and F = 2 ground states [234–237].
However, the close detuning of the lattice light to one of the optical transitions causes
significant heating due to photon scattering and limits the lifetime of the atoms
in the lattice. A recent implementation is circumventing this problem by using a
modulated magnetic field gradient to change the amplitude and sign of the tunneling
matrix element of a two-component Fermi gas in order to create a state-dependent
potential which breaks SU(2) symmetry of the system [238]. In contrast to such
implementations, state-dependent potentials, preserving SU(N) symmetry, can easily
be implemented for the lowest electronic orbitals with alkaline earth-like atoms. As
the meta-stable states in ytterbium possess optical transitions very much different
from those of the ground state, it is possible to choose a lattice wavelength, still far
detuned to any optical transition, with different polarizabilities for the two orbitals,
as shown in Fig. 2.6. This avoids the problem of excessive heating due to photon
scattering of the lattice light.

95



Chapter 6 Ultracold ytterbium atoms in optical lattices

Here we are characterizing the relative polarizability between the ground state and
the meta-stable state in a state-dependent lattice running at wavelength λ = 670 nm.
This wavelength offers a higher polarizability for the |e〉 atoms than for the |g〉 atoms.
Consequently, it becomes possible to localize the species in the meta-stable state,
while the species in the ground state is allowed to tunnel. As an additional benefit,
the localization of the |e〉 atoms avoids inelastic collisions between them.

Relative polarizability between the two orbitals

The relative polarizability between the two orbitals determines the individual lattice
depths of the two species. A deep lattice, which localizes one species, is necessary for
implementing the Kondo lattice model with ultracold ytterbium atoms. Fig. 6.6(b)
shows the excitation scheme used for the measurement of the relative polarizability
between the two orbitals. When the atoms are excited to the meta-stable state, we
measure a frequency shift of the clock transition, caused by the differential AC Stark
shift between the states.
For deep lattices, the lattice potential for the individual lattice sites can be well

approximated by a harmonic potential for the energetically lowest states. In addition
to the AC Stark shift of the lattice potential, we have to account for an additional
shift, which goes into the opposite direction due the different ground-state energies
1
2hνe,g of the harmonic oscillator. Moreover, under realistic conditions, the retro-
reflected lattice beam will not create a full modulation of the lattice potential. As a
consequence, there will be an additional AC Stark shift caused by a part of the laser
light which is not contributing to the modulated lattice potential. When accounting
for all these effects, the total frequency shift of the clock transition can be expressed
as

∆f = Ve − Vg
h

+ (be − bg)−
1
2(νe − νg) = (γ − 1)

(
Vg
h

+ bg

)
− 1

2νg(
√
γ − 1) (6.6)

here ∆f denotes the measured frequency shift in Hertz with respect to the clock tran-
sition in the magic lattice, Vg,e are the respective lattice depths in the state-dependent
potential for the ground and meta-stable state and νg,e denote the respective har-
monic oscillator frequencies. The frequency shift due to the AC Stark shift that is
caused by imperfect alignment of the retro-reflected beam is denoted as bg,e. This
shift was measured separately without the lattice beam being retro-reflected. The
factor γ = αe

αe
in Eq. 6.6 states the relative polarizability of the excited state with

respect to the ground state and therefore determines the relative lattice depth Ve/Vg
(see Eq. 4.3).

In Fig. 6.6 we present the measured AC Stark shift for a 10Er deep lattice, where
the lattice depth is given for the species in the ground state. First, the clock transition
in the magic lattice is probed with a π-pulse to measure the transition frequency
without AC Stark shift. As explained in the previous section, this frequency is
independent of the lattice depth.

96



6.2 State-dependent and independent lattices

0 2 4 6 8 10

time [s]

0

5000

10000

15000

20000

ex
ci

te
d

-s
ta

te
 p

op
.

Figure 6.7: Lifetime measurement of a spin-polarized Fermi gas of |e〉 atoms in the
state-dependent lattice. The figure shows the decay of the atoms in the excited state
due to photon scattering, finite vacuum lifetime and inelastic (p-wave) collisions. The
black dashed line denotes the fit of an exponential decay describing single particle
losses with a lifetime τ1/e ' 3.5 s. The blue line shows a fit that also includes two
particle losses, which scale with the density squared, in addition to single particles
losses. For this fit, the lifetime of the exponential describing single particle losses is
τ1/e ' 25 s, which is compatible with our vacuum lifetime.

The atoms are then excited with the same pulse length in a state-dependent lattice
to the 3P0-state and the frequency shift ∆f is probed. The finite size of the lattice
beam causes a broadening of the clock transition due to the spatially varying AC
Stark shift. As a consequence, the detuning of the optical transition is varying
spatially and the pulse excitation is not 100% efficient anymore, in contrast to the
π-pulse excitation in the magic lattice.

To determine the relative polarizability between the two orbitals, we calibrate the
lattice depth for the ground state via parametric heating in order to determine Vg
and νg (see section 6.1.1). Eq. 6.6 then yields a polarizability ratio γ = 3.41+0.21

−0.19 for
the measurement shown in Fig.6.6. The main error for the value γ stems from the
uncertainty of the lattice depth. The value of the relative polarizability between the
orbitals is in good agreement with the theoretically predicted value γtheo = 3.43 from
the calculated polarizabilities in [131].

Lifetime in the state-dependent lattice

The lifetime of the excited-state atoms in the state-dependent lattice is an important
parameter for the realization of multi-orbital models. For example, photon scattering
due to a resonant background of the lattice light with the optical transition at
λ = 650 nm could cause heating of the atoms in the 3P0-state and would limit the
lifetime of the excited state in the lattice.
Fig. 6.7 shows the lifetime measurement of a spin-polarized Fermi gas in a state-
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dependent lattice. For the measurement, a π-pulse was used to excite the atoms in a
10Er deep lattice. A possible remaining ground-state population was removed by a
cleaning pulse on the 1P1 imaging transition. A second π-pulse, with a variable delay,
was then applied to bring the remaining atoms in the 3P0-state back to the ground
state for imaging. The fit shown in Fig. 6.7 corresponds to a lifetime τ1/e ' 3.5s.
The scattering rate of the lattice light is expected to be Γsc ' 0.01Hz and and the
vacuum lifetime is in the order of τvac ' 30s. Both time scales are much longer than
the observed lifetime. An explanation for the discrepancy could be inelastic p-wave
collisions between excited-state atoms due to the high density in the optical lattice,
similar to the effect observed for 171Yb [232]. Such inelastic collisions would scale with
the squared density of the atomic sample. Indeed, the decay is modeled very well by
a fit function that includes inelastic two-body decays in addition to an exponential,
which describes single particle loss, as illustrated in Fig. 6.7. Nevertheless, the
achieved lifetime of several seconds should be enough for typical lattice experiments
with sequences not longer than a few hundred milliseconds at maximum lattice depth.

Enhanced atom mass in a state-dependent lattice

The state-dependent 670 nm lattice can be used together with the meta-stable state
to realize heavy particle physics. By choosing the detuning of the clock transition
in a way that it is resonant between the Bloch bands of the ground-state (|g〉) and
the excited-state (|e〉) atoms, for the same quasi-momentum q, we coherently couple
the two electronic states and mix the two energy bands for a given quasi-momentum
depending on the detuning of the laser and the coupling strength. Due to the
different polarizability of the two states, the lattice depths are very different. The
coherent coupling of the clock transition mixes the lowest Bloch bands for |g〉 and
|e〉 and changes the curvature of each band at the quasi-momentum q. This causes
an enhanced effective mass for the |g〉 atoms (see Eq. 3.14).
This effect is very similar to the hybridization of the two energy bands in the

Kondo lattice model (KLM) which arises due to the exchange coupling and causes
the heavy fermion properties for an anti-ferromagnetic coupling [70, 169, 175]. In
this case, the exchange energy of the KLM is replaced by the Rabi frequency due
to the optical coupling. The Rabi coupling described here is therefore independent
of the Fermi or Bose statistics. For a small momentum spread in the lattice, we
therefore decided to use bosonic 174Yb for this measurement.
When dressing the two Bloch bands, the Hamiltonian for the corresponding

atom-light interaction in the lattice, given in the basis of |g〉, |e〉, reads

HD =
(
Eg(q) Ω/2
Ω/2 Ee(q)− δ

)
. (6.7)

Here, we set ~ = 1, Ω is the Rabi frequency of the clock transition, and Eg(q), Ee(q)
denote the dispersion relations of the band structure for |g〉 and |e〉 respectively,
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Figure 6.8: Optical dressing in a state-dependent lattice (a) Scheme for optical
dressing and sloshing to probe the effective mass. The sloshing in the state-dependent
lattice (blue) is initiated by displacing the atoms with an optical dipole trap beam
(green). The clock transition (yellow) is then driven to couple both electronic states.
(b) Lattice configuration used for this experiment. The laser light driving the clock
transition is directed along the deep magic lattice (purple) to be in the Lamb-Dicke
regime for the electronic excitation. (c) By coupling the Bloch bands for the ground
(blue) and excited state (red) with the clock transition (yellow) for a fixed quasi-
momentum, the Bloch bands mix locally and increase the effective mass of the
atoms.
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which are shown for different Rabi couplings in Fig. 6.9. Depending on the detuning
δ, we can mix the two bands for different quasi-momenta and create an avoided
crossing accompanied by an effective mass change close to that point. The energy
range of the band mixing and the enhancement of the effective mass will depend on
the Rabi coupling (see Fig. 6.10). If the Rabi coupling is sufficiently high (Ω� Jg),
the two energy bands are mixed for all quasi-momenta and the bandwidth for |g〉
and |e〉 becomes the average of the two energy bands without optical coupling.
The effect of the enhanced mass can be measured in a sloshing experiment as

illustrated in Fig. 6.8 because the sloshing frequency scales with the mass like

ωsl = ωh

√
m

mΩ
(6.8)

where ωh is the harmonic confinement of the trap, mΩ denotes the effective mass and
m is the bare mass of the atom. Fig. 6.11 shows the sloshing in a state-dependent
lattice with and without optical coupling for bosonic 174Yb. In contrast to the
fermionic isotopes, a strong magnetic field needs to be applied to drive the clock
transition with sufficiently high Rabi frequencies. Due to the absence of hyperfine
interaction for the bosonic isotopes of ytterbium which possess no nuclear spin, the
magnetic field is required to admix dipole-allowed states such as the 3P1-state to the
3P0-state in order to create a finite coupling of the clock transition [101]. For the
measurements presented here, we used a magnetic field of 1000G, which is produced
by our main coils.

The sloshing is performed in a 3D lattice. One lattice arm in this lattice configura-
tion consists of the state-dependent lattice running at a wavelength λ = 670 nm with
a lattice depth V = 2Er for the ground-state atoms. The other two lattice arms are
running close to the magic wavelength with a depth Vz = 25Er and Vy = 20Er. The
laser light, driving the clock transition, is directed along the direction of the deep
magic lattice, which provides the Lamb-Dicke regime for the electronic excitation.

The displacement from the equilibrium position is performed along the direction of
the state-dependent lattice by displacing the atoms in the trap with the gradient of
the vertical optical dipole trap beam. After a sudden switch-off of the optical dipole
trap, the sloshing of the atoms is initialized. We then switch on the optical coupling
adiabatically in order to mix the two energy bands of the electronic states. The
Rabi coupling for this run was chosen to be Ω = 500Hz= 1.33Jg/~ for a detuning
which addresses the quasi-momenta around q = 0. Upon coupling the two electronic
states, we observe a lower sloshing frequency due the enhanced mass, as shown in
Fig. 6.11, in contrast to the uncoupled scenario. We measure a sloshing frequency
ωdres.sl = 2π × (28.8± 1.8)Hz for the dressed case and ωno dres.sl = 2π × (35.7± 0.5)Hz
for the case without coupling. The decrease of the sloshing frequency is consistent
with the increase of the effective mass mΩ = 1.42mΩ=0 which is expected for the
Rabi coupling used in this experiment and for the polarizability of the excited state
that was determined in the previous section.
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Figure 6.9: Band structure for the ground state (blue) and the excited state (red)
in a state-dependent lattice for different Rabi couplings Ω. Here, the detuning of
the laser is already subtracted by shifting the Bloch bands with respect to each
other. The detuning of the Rabi coupling was chosen to be in resonance with the
excited state close to the quasi-momentum q = 0 (crossing of the red and blue line
in Fig.(a)). Depending on the detuning, the light coupling causes a local, quasi-
momentum-dependent mixing of the two bands (indicated by the line color) where
the resonance condition is fulfilled. In the limit of Ω � Jg both bands are fully
mixed for all quasi-momenta with the bandwidth being the average of the uncoupled
ground and excited-state bandwidth. (a) Ω = 0Jg (b) Ω = 0.1Jg (c) Ω = 1Jg (d)
Ω = 2Jg.
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Figure 6.10: Effective massmΩ normalized to the bare massmΩ=0 at quasi-momentum
q = 0. The plot shows the mass ratio as a function of the coupling strength Ω for
the detuning of the Rabi coupling that is shown in Fig. 6.9.
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Figure 6.11: Sloshing in a state-dependent lattice. The two bands are coupled by the
clock transition with a Rabi coupling Ω = 1.33Jg and zero detuning (|g, q = 0〉 →
|e, q = 0〉). A sloshing motion is produced by exciting the atoms from the equilibrium
position with a small trap displacement and observing the frequency of the center-of-
mass oscillation which is related to the effective mass (see Eq. 6.8).
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Chapter 7

Equation of state of the SU(N)
Fermi-Hubbard model

In the last part of this thesis, we take advantage of our imaging system to locally
probe an ytterbium Fermi gas in an optical lattice with simple cubic symmetry.
Optical lattices provide a faithful realization of the Fermi-Hubbard model (FHM)
and allow changing the interaction parameter of this model in a controlled way. Due
to an almost perfect decoupling of the nuclear spin from the electronic configuration
in ytterbium, as explained in chapter 2, the interactions between the atoms become
SU(N)-symmetric. This allows us to investigate the SU(N) Fermi-Hubbard model
with ultracold ytterbium atoms. The enlarged spin symmetry for ytterbium leads
to different thermodynamic properties of the atomic sample compared to the FHM
describing spin-1/2 particles, as we explained in section 3.2. Especially in the low
temperature regime, novel phases with magnetic order are predicted that reach beyond
the Néel order observed for spin-1/2 particles. Although fermionic quantum gases in
optical lattices have been studied with ultracold atoms for the two spin component
case [22, 23, 239], the presented results constitute the first in-situ measurement of
the SU(N) FHM.
In this chapter, we first present the experimental sequence used for our mea-

surements – specifically the ramping sequence of the lattice – and we calculate the
overall harmonic confinements of the trapping potential, which play a central role
for obtaining the equation of state (EoS) with local density approximation (LDA).
Afterwards, we introduce the reconstruction procedure of the density that is used to
measure the EoS for the quantum gas in the lattice. By using LDA and probing the
density of the gas in a spatially varying trapping potential – given by the harmonic
confinement of this potential – we probe the EoS of the SU(N) FHM for various
interaction regimes and for different numbers of spin components N = {3, 6}. In this
way, we can give model-free access to the thermodynamic properties of the FHM
with enlarged spin symmetry. Moreover, we characterize in this chapter the crossover
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Figure 7.1: Scaling of the interaction energy U and the tunnel matrix element t of
the Fermi-Hubbard model in a 3D lattice for different lattice depths. (a) On-site
interaction energy U . (b) Hopping rate t/h . (c) Ratio of interaction energy to
kinetic energy U/12t in the 3D lattice configuration.

for both quantum gases from a weakly interacting metal to the insulating Mott phase
as a function of the interaction by using the local compressibility of the system. At
the end of this chapter, we discuss the specific entropy reached in this experiment
for both gases and give an estimate for the three-body loss coefficient for 173Yb that
we observed at very high densities. The specific entropy reached for the SU(6) gas
is below that of uncorrelated spins but above long-range Néel order, which makes
this system a promising starting point for observing exotic, highly spin-symmetric
magnetically ordered quantum phases, as introduced in chapter 3.

The main part of the experimental data in this chapter has been published in
Ref. [75].
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Figure 7.2: Lattice loading sequence as a function of time for a final lattice depth of
11Er. (a) Trapping potentials in units of Er as a function of time for the horizontal
lattice arms (blue), vertical lattice arm (green), vertical dipole trap beam (red) and
horizontal dipole trap beam (black) (b) Absolute harmonic confinement frequencies
as a function of time for fx, along the x-direction (green curve) and fy along the
y-direction (blue curve). (c) Ratio of trapping frequencies, corresponding to the
aspect ratio of the atomic sample, as a function of time for fy/fx (blue curve), fy/fz
(green curve) and fx/fz (red curve).
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Figure 7.3: Confinement frequencies for different final lattice depths used in the
measurements. (a) Absolute confinement frequencies fx (green curve) and fy (blue
curve) for the final lattice geometry at the end of the ramp. (b) Ratio of confinement
frequencies fy/fx (blue curve), fy/fz (green curve) and fx/fz (red curve) in the final
lattice geometry.
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7.1 Experimental sequence
We will first give a short explanation of the lattice loading sequence, which will
become relevant later on for the measurement of the equation of state. After forced
evaporation in the optical dipole trap for about 20 seconds, we obtain a six-component
degenerate Fermi gas of 173Yb with T/TF ≤ 0.1. The SU(3) gas is prepared by
removing three out of six spin components with an optically resonant push beam
from the optical dipole trap at the end of evaporation, as described in chapter 5.
We then proceed by loading the Fermi gas into a three dimensional cubic lattice
running at a wavelength λ = 759.3 nm. The lattice potential is formed by three pairs
of counter-propagating waves. The actual beam configuration of the 3D lattice and
the crossed optical dipole trap corresponds to the one that is illustrated in Fig. 4.3.
During the whole experiment sequence, the horizontal dipole trap is kept on to

hold the atoms against the gravitational force. In order to compensate the increasing
harmonic confinement when ramping up the lattice, the vertical dipole trap is
ramped down simultaneously. Fig. 7.2 shows the lattice loading sequence used for
this measurement. In a first step, the lattice is ramped up to 3Er (1Er = h · 2 kHz)
in 120ms, which avoids band excitations, in order to transfer the atoms into the
lowest band of the optical lattice. In a second ramp, the final lattice depth is varied
between 3−15Er in 150ms. The ramp times were optimized for best adiabatic lattice
loading with a round-trip experiment as explained in section 7.3.2 and represent an
optimum between most adiabatic loading and other technical heating effects that
will increase for slower ramps. For the lattice depth calibration, we followed the
procedure described in section 6.1.1.

Due to the absence of a magnetic Feshbach resonance in alkaline earth-like atoms
that can be used to vary the interaction energy U between the atoms in the ground
state, we change the lattice depth in order to tune the interaction. Increasing the
lattice depth will exponentially suppress the hopping rate t/h while the on-site
interaction U will moderately increase as shown in Fig. 7.1(a) and Fig. 7.1(b). This
allows us to tune the interaction strength by almost two orders of magnitude for
the experimentally relevant lattice depths in our measurements (see Fig. 7.1(c)). It
should be noted that, due to the exponential suppression of the tunneling, adiabaticity
will finally break down for the chosen ramp times for lattice depths deeper than
V = 15Er as the tunneling time approaches the lattice ramp duration.
The vertical dipole trap beam is used to vary the harmonic confinement in the

lattice. We chose the ramp of the vertical dipole trap in a way that the ratios of
the trap frequencies stay approximately constant during the loading sequence as
illustrated in Fig. 7.2(c). This ratio corresponds directly to the aspect ratio of the
cloud. A constant trap frequency ratio will reduce mass redistribution in the atomic
sample during the ramp, which becomes particularly relevant when the interaction
strength is high enough to enter the Mott regime. In this regime, the overall mass
transport of the atoms is reduced due to the onset of an incompressible Mott phase
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and a high mass redistribution during the ramp can lead to non-adiabatic lattice
loading and heating of the Fermi gas. Moreover, the confinement of the vertical
dipole trap is varied depending on the final lattice depth to preserve the x− y aspect
ratio of the atomic sample in the lattice for the different interaction regimes, which
we measure in individual runs. Fig. 7.3 depicts the change of the trap frequencies and
their ratios for different interaction strengths. The trap frequencies were measured
individually for each beam with a sloshing experiment for three different trap depths.
These results were then used for the calculation of the harmonic confinement of the
overall trapping potential that includes the 3D optical lattice and the crossed optical
dipole trap. It should be noted that the vertical trap frequency (ωz = 2π × 183Hz)
is only determined by the horizontal dipole trap beam. Therefore, the ratio of the
horizontal trap frequencies with respect to the vertical trap frequency is changing
for the different interaction regimes.

7.2 Obtaining the equation of state

The equation of state of a system is a relation that describes the thermodynamic
properties of the system for a given set of state variables like temperature, chemical
potential and number of spin components. Due to this property, obtaining the EoS
of a system is useful to characterize different phases and to benchmark numerical
simulations against measurements. This is particularly interesting for the FHM,
which cannot be solved analytically in dimensions higher than one and therefore
access to the EoS can only be obtained via approximate numerical simulations. In
this respect, ultracold atoms in optical lattices can serve as a quantum simulator as
the EoS of such systems can be measured.

By local probing of a trapped Fermi gas, the thermodynamic properties of interact-
ing fermions in the bulk in the unitary limit1 have been measured [240]. Moreover,
bosonic Mott insulators have been probed via local measurements of the density [29,
30, 241] and recently the compressibility of the SU(2) FHM was studied [239]. All
the results were obtained for fermionic systems with two spin components but so far
a measurement of the EoS of the FHM with higher spin symmetry was not achieved.
In this section, we describe how the EoS of the system can be measured in a 3D

system and characterize the precision of the reconstruction procedure. Moreover, we
show how the imaging cross section is calibrated.

1in the unitary regime, 1
kF a

approaches zero with kF denoting the Fermi wavevector and a is the
scattering length between the atoms. In this limit the thermodynamic properties of the gas
becomes universal, meaning independent of the details of the interaction potential.
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Chapter 7 Equation of state of the SU(N) Fermi-Hubbard model

7.2.1 Inverse Abel transformation
In our experiment, we can only measure the heterogeneous, optically integrated
column density ñ(x, y) directly. Due to the high optical densities in the 3D lattice,
strongly saturated absorption imaging, as described in chapter 5, is used to image
the cloud.

Determining local thermodynamic quantities directly from the integrated column
density is not trivial for a 3D density distribution as the imaging process yields
only the integrated signal over several lattice planes and therefore signatures of the
different phases are washed out. The EoS describing the system is however obtained
by determining the 3D density n(µ, T, V,N) of the gas as we showed already in
section 3.2.2. Consequently, a reconstruction of the 3D density from the integrated
column density is necessary. For an atomic sample with cylindrical symmetry, it is
possible to reconstruct the density via the inverse Abel transform

n(r, y) = − ωz
πωx

∫ ∞
r

∂ñ(x′, y)/∂x′√
x′2 − r2

dx′. (7.1)

Here, r =
√
x2 + ω2

z

ω2
x
z2 denotes the distance to the symmetry axis and ñ(x, y) is the

measured column density. The factor ωz/ωx accounts for the correct aspect ratio of
the gas in the trapping potential and maps the ellipsoidal density distribution to
a cylindrically symmetric problem where the symmetry assumption of the inverse
Abel transformation holds.

After the density is reconstructed, we map the trapped, heterogeneous gas to a
locally homogeneous gas by using local density approximation (LDA) as explained in
section 5.3.1. In the grand canonical ensemble the chemical potential µ is therefore
replaced with µ = µ0 − V (x). In this formula, µ0 denotes the chemical potential in
the center of the trap and V (x) = 1

2m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) is a position-dependent
energy offset due to the harmonic trapping potential. In LDA, the chemical potential
will change with the spatially varying trapping potential and allows us to measure
the EoS n[µ = µ0 − V (x)] for different chemical potentials with a single realization
of the experiment.

In order to rule out artifacts of the Abel inversion we simulated the exact trapping
geometry of the system. Fig. 7.4(a) shows a cut through the central plane of a
simulated density profile for an SU(6) Fermi gas in the atomic limit. The simulated
trap geometry accounts for our Gaussian beam profiles. The temperature of the
Fermi gas in the simulation was chosen to be T/U = 0.1, which is similar to the
experimentally obtained temperatures in the SU(6) gas. By integrating the density,
we obtain the column density used for testing the Abel inversion. The inverse
Abel transformation of the data is performed with the Gaussian basis set expansion
method (BASEX) [242]. Apart from the singularity at the symmetry axis, the
density profile of the input data is perfectly reconstructed when accounting for the
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7.2 Obtaining the equation of state

Figure 7.4: Reconstruction of the density profile with the inverse Abel transformation.
(a) Simulated central plane density of an SU(6) Fermi gas in the atomic limit with
a temperature T = 0.1U and for a lattice depth V = 11Er. The simulated trap
geometry corresponds to the one in the experiment and accounts for the Gaussian
beam profiles of the trapping potentials. (b) Density profile obtained from the
simulated column density via the inverse Abel transformation.

- 5000 - 4000 - 3000 - 2000 - 1000 0
0.0

0.5

1.0

1.5

2.0

µ (px2)

nd
3

Figure 7.5: Fitted temperature to the reconstructed density shown in Fig. 7.4(b).
The fit of HTSE model yields a temperature of T/U = 0.102 ± 0.001 in good
agreement to the simulated temperature of the input data (T/U = 0.1).
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correct trap aspect ratio as illustrated in Fig. 7.4(b). By azimuthally averaging the
obtained density profile, we can compare quantitatively to the original profile and
find a very good match of the fitted temperature of the low tunneling model to the
simulated data. The fit yields a temperature T = 0.102± 0.001U , as illustrated in
Fig. 7.5, which is in good agreement with the simulated temperature of T = 0.1U .
This demonstrates that the reconstruction process with the Abel inversion for the
experimentally relevant parameter regime does not produce a loss of information and
the assumption of a harmonic trapping potential of our Gaussian beams is justified
for the particular trap geometry that is used in the experiment.

7.2.2 Local pressure method
While Abel inversion is one method to reconstruct the density of the atomic sample
in order to obtain the EoS, another method exists which allows determining the
pressure of the system [243]. This method was for example employed to study the
equation of state of an interacting Fermi gas of 6Li in the unitary limit [240].

The pressure P of the gas is obtained by integrating the measured column density
ñ(x, y) along one direction P ∝

∫
ñ(x, y)dy. This can be proven, starting with the

Gibbs-Duhem identity
dP = SdT + ndµ. (7.2)

Setting dT = 0, µ = µ0 − 1/2m∑
i ω

2
i=x,y,zx

2
i and realizing that dµ = −mωyωz

2π dydz
when the coordinate x is fixed, one obtains

P (x, 0, 0) =
∫
n(µ)dµ = −mωyωz2π

∫
n(x, y, z)dydz

= mωyωz
2π

∫
ñ(x, y)dy.

(7.3)

The density can then be expressed as

n(x, 0, 0) =
(

∂P

∂µ(x)

)
T

= − 1
2π

ωyωz
ω2
xx

d

dx

∫ ∞
−∞

ñ(x, y)dy. (7.4)

This formula of the density is equivalent to the one obtained by the inverse Abel
transformation as demonstrated in Appendix A. Fig. 7.6 shows the pressure obtained
by integrating the data set that is illustrated in Fig. 7.4 and correspondingly the
obtained density profile. One advantage of this method compared to Abel inversion
is that the pressure can be obtained directly by integration. However, another
derivation of the noisy experimental data is required to obtain the density of the
system. In certain cases, e.g. to study the metal to Mott insulator crossover of
the Fermi-Hubbard model, the density and its derivative, the compressibility of the
system, are important observables and it can be more useful to retrieve the density
directly with Abel inversion.
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Figure 7.6: (a) Pressure of the SU(6) Fermi gas obtained by integrating the 2D
density along the y-direction. (b) Density of the Fermi gas as a function of the
chemical potential obtained by building the first derivative of the pressure. The
black line denotes the original input data.

7.2.3 Calibration of the imaging cross section
In order to reconstruct the 3D density with the Abel inversion correctly, we have
to determine precisely the imagining cross section σ, which enters in the measured
column density as we showed in section 5.1.1. When imaging the atomic sample
in a nuclear spin insensitive way at a weak magnetic field, the effective imaging
cross section in ytterbium with several mF states can be very different to the one
of an ideal two-level system. This can be understood by the different transition
strengths of the imaging transition for the mF states, which are given by the Clebsch-
Gordan coefficients. In the case of imaging with with σ+-light for example, the line
strength of the |F = 5/2,mF = 5/2〉 → |F ′ = 7/2,m′F = 7/2〉 transition is 21 times
stronger than the |F = 5/2,mF = −5/2〉 → |F ′ = 7/2,mF ′ = 3/2〉 transition. The
absorption and emission of photons during the short imaging pulse will optically
pump the atoms between the different mF states. Consequently, different mF states
can have distinct contributions to the overall number of absorbed photons in the
imaging beam. Such an effect, as well as residual magnetic fields which will scramble
the polarization of the imaging light, can influence the measured optical cross section
of the atomic sample.

To determine the cross section, we can compare the atom number that is expected
from the measured optical density, to the expected atom number of the Fermi gas
fit with known trapping potential and measured temperature. This approach yields
σ = (0.222± 0.034)σ0, where σ0 = 3

2πλ
2 denotes the optical cross section for an ideal

two-level system. The main error in this method stems from the uncertainties of
the harmonic confinements that enter into the Fermi gas fit to determine the atom
number. A second approach involves using the fitted amplitude of the Mott plateau
with the HTSE model to obtain the optical cross section. This method is quite
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Figure 7.7: Density profile of an SU(6) Fermi gas in the lattice. Three experimental
realizations were averaged for the depicted profiles. (a) Integrated column density
of the atomic sample (bottom) and 3D density after Abel inversion (top) for an
interaction strength U/t∗ = 6.4 (V = 13Er). (b) Averaged density profiles of an
SU(6) gas in an optical lattice with harmonic confinement. The different curves show
the 3D density as a function of the radial distance for various interaction regimes
U/t∗. Figure taken from [75].

precise and yields σ = (0.257± 0.013)σ0 for the SU(6) gas. The error of this method
stems only from the fit uncertainty of the amplitude. Therefore, the fit from the
HTSE model to the Mott plateau of the SU(6) gas is used for the calibration of the
optical cross section. The obtained densities are then expressed in units of the unit
cell 1/d3, where d = λlat/2 denotes the spacing of the optical lattice, which fixes the
Mott plateau of the SU(6) gas to nd3 = 1. An independent fit of the HTSE model to
the Mott plateau of the SU(3) gas yields nd3 = 0.94± 0.02 and therefore a somewhat
lower value than the calibration with the SU(6) data. A possible explanation for the
observed discrepancy might be different contributions of populated mF -states to the
overall imaging cross section due to the strongly varying Clebsch-Gordan coefficients
between the mF -states.

7.3 Thermodynamics of the SU(N) Fermi-Hubbard
model

To analyze the data, we use the BASEX method to perform Abel inversion and recon-
struct the density distribution in the optical lattice. The inverse Abel transformation
is commonly used where a reconstruction of a projected image is required, like in the
field of photoion and photoelectron imaging to study molecular dynamics [244, 245].
However, the derivative in Eq. 7.1 will lead to noise amplification on the experimental
data due to the singularity towards the symmetry axis. It is therefore impractical to
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use Eq. 7.1 directly on real data with significant amounts of noise. Consequently,
sophisticated algorithms like the Fourier Hankel method or the BASEX method
have been developed to perform a high fidelity Abel inversion of the projection while
still being robust to noise and preserving as much information as possible [242, 246].
Especially in the cloud center of the absorption image, where the column density is
highest, the number of transmitted photons can be low and the signal to noise ratio
is reduced. This noise is actually amplified by the inverse Abel transformation and
leads to an unstable behavior of the transformation close the symmetry axis of the
cloud (r = 0) [242]. For the analysis of experimental data, we therefore consider only
azimuthally integrated data with a radius r > 7µm in the analysis. These points
have typically a standard error of the mean below 2 %. The obtained data is then
azimuthally averaged in a window of ±4.8µm around the y-axis of the cloud (see
Fig. 7.7(a) for the coordinate system).

The averaged, reconstructed density profile of an SU(6) gas is shown in Fig. 7.7(b)
for different interaction regimes. As the measurements are carried out in a 3D optical
lattice, we denote the kinetic energy of the particles as t∗ = 12t, with t being the
tunnel matrix element in the FHM. For the plotted profiles with interactions above
U/t∗ = 0.4, the presence of a plateau with constant density becomes visible. With
the known harmonic confinement of the trapping potential, we can use LDA to give
the EoS n(µ) of the density for the various interaction regimes.
Let us first consider the case of weak interaction in the FHM for which U < t∗.

In this regime, the kinetic energy dominates over the interaction energy and we
expect a normal metal with delocalized atoms. When probing the EoS n(µ) for that
interaction strength, we observe a smooth decrease of the density from the center
towards the edge of trap indicating a compressible metallic state for all chemical
potentials (see Fig. 7.8(a)). In the presence of a weak lattice, the system can be
modeled by Fermi liquid theory. In particular, in the wing of the cloud, the density
is low enough that interactions between fermions will become negligible. Therefore,
we fit in the weakly interacting regime the EoS

n(µ, T ) = −N
(
mkBT

2π~2

)3/2

Li3/2
(
−eµ/kBT

)
(7.5)

of a non-interacting Fermi gas to the wing of the cloud in order to obtain µ0 and kBT
for this regime. In this formula, N denotes the number of spin components in the gas.
In the limit of negligible interactions, the role of N to the EoS is trivial as it appears
in Eq. 7.5 as a prefactor. The fit to the data includes only points with low density for
which nd3 < 0.5. At low densities, we observe a good agreement of the data to the fit
but see deviations from the Fermi fit towards higher densities. Theses deviations can
be explained by interactions. In order to correctly describe the measured EoS even
in this regime, a more sophisticated model, which incorporates interactions in a weak
lattice, would be needed. However, the behavior can be understood qualitatively
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Figure 7.8: EoS of the SU(6)- (blue circles) and the SU(3)- (red diamonds) Fermi gas
in a lattice. The density is plotted as a function of the chemical potential for different
interaction strengths: (a) U/t∗ = 0.128 (b) U/t∗ = 0.89 and (c) U/t∗ = 3.6. The
solid curves show the fits to the EoS of the non-interacting Fermi gas. For this fit
only data points nd3 < 0.5 are included. The dashed lines are the fits of the second
order, low-tunneling model (HTSE model) for the SU(6) (blue) and SU(3)(red) gas.
Error bars denote the s.e.m. of the binned data.
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with SU(N) Fermi liquid theory. When comparing the fits to the measured EoS,
one notices a bigger deviation of the fit to SU(6) data at high densities compared
to the SU(3) case. This can be understood by the fact that the number of possible
interaction channels in the quantum gas scales with N − 1 due to Pauli blocking
as explained in section 5.3.1. For the same chemical potential, the SU(6) gas is
therefore expected to show stronger deviations from the non-interacting Fermi gas
fit than the SU(3) gas.

In the strongly interacting regime, where U > t∗, the interaction energy dominates
over the kinetic energy term in the FHM. In this regime, we distinguish a metallic
outer layer 0 < nd3 < 1 and a metallic core nd3 > 1, separated by a Mott shell with
a density of nd3 = 1 as shown in Fig. 7.8(c). Both the SU(6) gas and the SU(3) gas
show a plateau in the density distribution, a clear signature for an incompressible
Mott insulator that has formed in the strongly interacting regime. For this interaction
strength, the low tunneling model, introduced in section 3.2.2, is used to fit the
EoS, which accounts for a weak tunnel coupling in the lattice (see Eq. 3.37). The
model is used to fit the chemical potential µ0 and the temperature to the EoS.2 For
an interaction strength U/t∗ = 3.6, we determine a temperature of T/U = 0.13 for
the SU(6) gas and T/U = 0.18 for the SU(3) gas. The difference in temperature
between the SU(6) and the SU(3) gas arises mainly due to the Pomeranchuk cooling
effect. The Pomeranchuk cooling effect scales with the number of spin components
and is therefore expected to be stronger for the SU(6) gas, which explains the lower
temperatures in the Mott regime (see sec. 3.2.3).

We demonstrated in section 3.2.2 that the EoS in the strongly interacting regime
is dependent on the number of spin components N in a non-trivial way. The N -
dependence in the EoS arises due to the different quantum statistics, e.g. the number
of spin components, which enter in the partition function, as already explained. To
emphasize the influence of the number of spin components, we fit the low-tunneling
HTSE model that describes a two-component Fermi gas to the SU(6) data with
temperature T and µ0 as free fit parameters. Fig. 7.9 illustrates the best fit of the
two models to the experimental data. A stronger discrepancy of the SU(2) model to
the data compared to the SU(6) model can be observed, which cannot be explained
by a temperature or chemical potential µ0 of the model. This comparison indeed
highlights the importance of the number of spin components to the EoS already at
temperatures above magnetic order.

We now consider intermediate interaction strengths. In the intermediate interaction
regime, with U ≈ t∗, both the kinetic energy and the interaction energy are equally
strong. Therefore, no negligible parameter in the Fermi-Hubbard model exists that
allows for an approximate solution of the EoS. The HTSE model in this regime will

2The HTSE model has a high sensitivity to the trap confinement compared to the precision of the
independent trap calibrations. We therefore allow a variation of the confinement parameter in
the model within the bounds given by our calibration
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Figure 7.9: Dependence of the EoS on the number of spin components N . The
dashed lines are the fits of the low-tunneling model (HTSE model) for N = 6 (blue
dashed line) and N = 2 (green dashed line) to the measured SU(6) Fermi gas in the
lattice (blue circles). The temperature and the central chemical potential µ0 are free
fit parameters in both models. Error bars denote the s.e.m. of the binned data.

not apply anymore as the tunneling energy can be higher or equal to kBT . For these
interaction strengths, the system is in a strongly correlated many-body state and no
exact prediction of the EoS is available yet. As shown in Fig.7.8(b), the EoS differs
clearly from the two previous cases that we discussed so far and the density levels off
for higher chemical potentials in contrast to the weakly interacting case. However, a
model-free access to the EoS of the system allows us to determine thermodynamic
properties such as the compressibility even in this regime.

7.3.1 Local compressibility

The possibility to probe local quantities with our imaging system allows extracting
the local compressibility of the Fermi gas for different interaction strengths. As a
vanishing compressibility is a characteristic property of the Mott insulator in the
FHM, the local compressibility is useful for quantifying different phases in the system.
We determine the compressibility κ̃ = ∂n

∂µ
by linear regression of the density n(µ).

The compressibilities for the three different interaction regimes are illustrated in
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Figure 7.10: Compressibility as a function of density of the SU(6) (blue) and SU(3)
(red diamonds) Fermi gas in a lattice. (a) Compressibility in the weakly interacting
regime U/t∗ = 0.128 (b) intermediate regime U/t∗ = 0.89 (c) Mott regime U/t∗ = 3.6.
The dashed lines are obtained by deriving the fitted low-tunneling model plotted
in Fig. 7.8. For determining the minimum compressibility κ̃min of the system,
an interval around unit filling is used (gray shaded area). Error bars denote the
confidence interval of the linear regression.
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Figure 7.11: Minimum compressibility κ̃min/κ̃0 as a function of interaction strength
of an SU(6)- (blue circles) and SU(3)- (red diamonds) spin-symmetric Fermi gases
in a lattice. The minimum of the compressibility is determined for the shaded
region depicted in Fig. 7.10. Error bars denote the confidence intervals of the linear
regression used to obtain κ̃.

Fig. 7.10 as a function of density. In these plots, the compressibility is rescaled by

κ̃0 = 3m
4π~2d

(
6

Γ(5/2)

)3/2

, (7.6)

where Γ denotes the Gamma function and d is the lattice spacing. The parameter κ0
defines the compressibility of a non-interacting SU(6) Fermi gas at zero temperature
and density n = 1/d3. By plotting the compressibility as function of the density
for the different interaction regimes, the compressibility is obtained in a model
independent way that does not rely on fitting the central chemical potential µ0.
In the weakly interacting regime, we measure a compressible metal as shown in

Fig. 7.10(a). For low densities, the gas is so dilute that it can be described by an
ideal classical gas. In this limit, the compressibility is directly proportional to the
density and independent to the number of spin components N . However, at higher
densities we observe an N -dependence of the compressibility for the same reason
that was given when describing the EoS.

For intermediate interaction strength, with U/t∗ ' 0.13, we measure the onset of
a Mott shell which builds up at a filling around nd3 = 1 as illustrated in Fig 7.10(b).
Interactions become more dominant than in the weakly interacting regime and reduce
the compressibility. At the same time, the compressibility at a density of nd3 = 0.5
is increasing with respect to the weakly interacting case.
Let us now consider the strongly interacting case, which is shown in Fig. 7.10(c).
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In this limit, the Mott shell has fully developed and we observe a Mott phase
with an almost vanishing compressibility at nd3 = 1. The small but nonvanishing
compressibility of the Mott insulator can be attributed to the finite temperature in
the system. At a density of nd3 = 0.5, the compressibility is highest and we measure
a compressible metallic region for this density.
The distinct feature of an almost vanishing compressibility for a filling of one

particle per site can be used to probe the emergence of the Mott shell as function of
interaction strength. For this we extract the minimum compressibility in a range
nd3 ∈ [0.85, 1, 15] for various interaction regimes. We observe a gradual reduction of
the compressibility when increasing the interaction strength up to U/t∗ ≈ 2 as shown
in Fig. 7.11. For higher values, the minimum compressibility is not changing anymore,
as the Mott insulator has already formed completely. The appearance of the SU(3)
Mott insulator with respect to the interaction strength is compatible with a dynamic
mean field calculation for an SU(3) gas. This calculation predicts the emergence of
the Mott plateau between U/t∗ = 1.22 and U/t∗ = 1.43 [247]. However, it should be
noted that these calculations were performed for temperatures T = 0.05t, whereas
the temperature in the experiment are around T ≈ 4t in the Mott regime. Due to
the higher temperature, a smoothing of the crossover between a compressible metal
and the incompressible Mott phase is expected. For the appearance of the SU(6)
Mott insulator, with a filling of one particle per site in a 3D lattice, no theoretical
prediction to our knowledge was done yet in order to compare to our data.

7.3.2 Entropy
In a second experiment, we characterize the adiabaticity of the lattice loading and
estimate the entropy per particle in the lattice. For this, we measure the entropy per
particle before lattice loading and compare it to a round-trip experiment. The round
trip consists of loading the atoms into the lattice and then back to the optical dipole
trap. In the optical dipole trap, the entropy per particle of a non-interacting Fermi
gas can be determined via the reduced temperature T/TF as we saw in section 5.3.1,
where TF denotes the Fermi temperature of the gas. The round-trip experiment
allows studying the entropy increase due to the lattice loading and yields an upper
and a lower bound for the specific entropy in the lattice.

Fig. 7.12 shows the average entropy per particle of the SU(6) and SU(3) gas before
lattice loading and after the round-trip experiment for various interaction strengths.
The entropy in the lattice is below the measured value after the round trip but above
or equal to the entropy measured before lattice loading. For low lattice depths, we
observe a constant entropy increase when loading the atoms into the lattice. At
U ≈ t∗, we measure an additional increase in entropy coinciding with the appearance
of the incompressible Mott phase. This effect exists also for slower ramp speeds and
is more pronounced for the SU(6) gas. It is presumably caused by a reduced mass
flow upon entering the Mott regime. In addition to the observed entropy increase,
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Figure 7.12: Entropy per particle s of the SU(6) and SU(3)-symmetric gas before
and after the lattice round-trip sequence for various interaction strengths. The blue
and red line show the entropy of the SU(6) and SU(3) gas respectively, measured in
the bulk before loading the Fermi gas into the lattice. Blue points (SU(6) gas) and
red diamonds (SU(3) gas) denote the entropy measurements after the round trip,
when loading the atoms into the lattice and back to the bulk. The entropy of the gas
in the lattice is constrained to the region between the entropy after the round trip
and the bulk measurement before lattice loading. The entropy of the SU(6) gas in
the lattice with our system parameters and fully random spin orientations possesses
an entropy per particle close to s/kB = ln 6 (black line). Error bars and colored
shaded regions are the s.e.m. of the temperature measurements.

we measure a specific entropy of the SU(6) gas that is at or below the maximum spin
entropy per particle, sspin = kB ln(6), even after a full round trip, which includes the
second reversed ramp. For the atom number used in our experiment we expect an
entropy per particle of s = kB ln(6) in the lattice for an SU(6) gas with random spin
orientation between sites. Therefore, as a maximum spin entropy implies random spin
orientations between sites, this indicates that partial, short-range spin correlations
between neighboring lattice sites must be present in the SU(6) case.

The entropy per particle measured in the round-trip experiment can be compared
to the corresponding entropy that is obtained from the fitted temperature of the
HTSE model. In the limit of its validity, the HTSE model yields a higher entropy for
the SU(6) gas in the lattice (sH/kB ' 2.4) compared to the round-trip experiment
although the model fits the density profile for the gas quite well. An explanation
for the observed behavior could be that the suppression of mass flow close to the
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Mott regime prevents the formation of sharp Mott shell edges, yielding a higher
fitted temperature and therefore a higher entropy when the density distribution
freezes out. Similar effects, e.g. a reduced mass transport after expansion from a
lattice potential of a fermionic band-insulating state, have been reported already at
modest interactions for a two-component Fermi gas [248]. Nevertheless, the measured
entropy after the round trip indicates that this non-adiabatic process would have to
be mostly reversible in order to explain the fact that the entropy after the round
trip is below the one obtained from the HTSE model fit in the lattice.
The discrepancy between the entropy obtained from the round-trip experiment

and the HTSE model exists only for the SU(6) gas. As explained when discussing
the equations of state in the section above, the temperature of the SU(3) gas in
the lattice is higher due to the weaker Pomeranchuk cooling effect. Because of this
effect, the corresponding entropy per particle of the SU(3) gas is above the spin
entropy kB ln(3). Due to the higher temperature in the lattice, we observe therefore
a wider metallic region and the entropy estimate with the HTSE model for this
temperature yields sH/kB ' 1.9, which in this case is compatible with the measured
entropy per particle in the round-trip experiment. In addition, the observed entropy
increase in the round-trip experiment is smaller for the SU(3) gas and approximately
0.35kB compared to 0.6kB in the SU(6) case. A possible explanation for the different
behavior of the two gases is a reduced mass transport accompanied by a freezing of
the density distribution, which becomes only relevant at low temperatures such as in
the SU(6) case. However, the origin of this effect remains to be understood.

7.3.3 Three-body losses
During the course of the measurements, we observed an atom loss occurring at very
high densities in the lattice. We attribute this loss to three-body recombinations.
To our knowledge, the three-body recombination rate has not been determined for
173 Yb ground-state atoms. A knowledge of this rate is actually useful for estimating
the experimental feasibility of implementing e.g. Heisenberg spin Hamiltonians or
SU(N) Hubbard models with fillings higher than two [63, 151, 162].

At fillings above nd3 = 2 we observe a fast, lattice-depth-dependent decay of atoms
in the central region of the lattice, in addition to a slow decay of atoms due to the
vacuum lifetime and lattice heating. The observed atom loss is illustrated in Fig. 7.13
for a 15Er deep lattice. The atom loss is modeled with the following rate equation

n0(t) = γvn1(t) + γ3n3(t)
n1(t) = −γvn1(t) + 2γvn2(t)
n2(t) = −2γvn2(t) + 3γvn3(t)
n3(t) = −3γvn3(t)− 3γ3n3(t), (7.6)
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Figure 7.13: Atom loss in a 15Er deep optical lattice at high densities. The plot
shows the mean optical density in the center of the cloud in a region of 5 × 5µm.
The dashed curve is a double exponential fit given by Eq. 7.7 with τ3 = 340ms,
τv = 31 s and nd/n3 = 3.84.

where n0,1,2,3 are the densities for empty, single, doubly and triply occupied lattice
sites and γv,3 denotes the loss rate due to the finite vacuum lifetime and three-particle
recombination respectively. Under the assumption that the three-body loss rate is
much higher than the vacuum loss rate, γv � γ3, the solution to the rate equation
can be modeled by a double exponential decay to good approximation.

We therefore determine the loss rate by fitting a double exponential decay to the
central density of the cloud

n(t) = nd ∗ e−t/τv + n3 ∗ e−t(3/τv+1/τ3). (7.7)
In this equation, nd = n1 + n2 denotes the density of singly and doubly occupied
lattice sites, n3 denotes the density of triply occupied sites, τv = 1/γv is the decay
due to the finite vacuum lifetime and technical heating and τ3 = 1/γ3 denotes the
three-body loss timescale. For the lattice depth V = 15Er we extract a loss rate
γ3 = 2.4(3)Hz and a slow vacuum decay γv ≈ 32mHz. The three-body loss rate is
expected to scale with the lattice depth as

γ3 = β3

∫
d3xw(x)6, (7.8)

where w(x) is the lattice-depth-dependent Wannier function and β3 the three-body
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Figure 7.14: Particle decay rate γ3 = 1/τ3 measured for different lattice depths
as a function of the three-particle Wannier overlap. The dashed line shows the
linear regression through the data points yielding a three-body loss coefficient
β3 = 2.1± 0.2× 10−29 cm6/s.

loss coefficient. Fig. 7.14 illustrates the measured loss rate for three different lattice
depths as a function of the lattice depth dependent Wannier overlap

∫
d3xw(x)6.

A linear regression yields a three-body loss coefficient β3 = 2.1± 0.2× 10−29 cm6/s.
This value is similar to the loss coefficient that was measured for alkali atoms [249],
e.g. for 87Rb a value of β3 ≈ 1.8± 0.5× 10−29 cm6/s was found [250].

In the limit of a weakly bound molecular state in the interatomic potential, which
is characterized by a large positive scattering length for two-particle collisions, a
scaling relation of the three-body loss coefficient with the scattering length can be
given [251]

βtheo3 = 3.9~a4

m
. (7.9)

Here m denotes the atom mass and a the scattering length of the atom pair. This
theoretical scaling with a4 has also been confirmed experimentally in a measurement
with 133Cs where a Feshbach resonance was used to tune the scattering length [252].

Equation 7.9 holds in the case of a weakly bound diatomic molecular state with
binding energy ε0 where the size of the formed molecule l is larger than the character-
istic interaction radius Re of the colliding atom pair, l � Re. The scattering length
in this limit can then be expressed by a = ~/√mε0 ∼ l. For large scattering lengths
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the effective potential for three-body collisions turns out to be independent from
the exact shape of the interaction potential at low energies E � ε0. The interaction
radius can be estimated by the Van der Waals radius Re = (mC6/~2)1/4/2. For 173Yb
this coefficient is C6 = 1929(29) a0 [253] and we obtain Re ' 79 a0, which is smaller
than the scattering length a = 200 a0 and justifies the use of Eq. 7.9. By using this
equation, we obtain βtheo3 = 1.8× 10−29 cm6/s, which is in quite good agreement with
the experiment value.
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Conclusion and outlook

In this thesis, we reported on the experimental study of the equation of state (EoS)
of the 3D SU(N) Fermi-Hubbard model for different interaction regimes. The
SU(N)-symmetric interactions of the ground state and the lowest meta-stable state
in ytterbium allow probing many-body physics with enlarged spin symmetry. These
models extend the conventional spin-1/2 case, which is usually studied in condensed
matter physics and are expected to show novel types of exotic phases in the low
temperature regime.
We demonstrated that fermionic ytterbium atoms in an optical lattice offer a

highly tunable and versatile system for the realization of the SU(N) Fermi-Hubbard
model. Owing to the optical resolution of the imaging system, we were able to
measure local observables of the Fermi gas. In this way, the presence of Mott shells
in a high spin system could be directly revealed for sufficiently strong interactions.
Using the inverse Abel transformation, we obtained the density of the atomic sample
in a 3D lattice, which allowed us to acquire model-free access to the equation of
state of the gas. The equation of state and the local compressibility of the system
were presented for different interaction regimes by tuning the interaction strength in
the optical lattice. This constitutes the first measurement of the EoS of an SU(N)
Fermi gas and the obtained results reach beyond currently available models. The
behavior in the weakly interacting regime could be understood qualitatively by
comparing the system with Fermi liquid theory. In the strongly interacting regime,
we compared the measured EoS to a low tunneling model and found direct evidence
of an enhanced Pomeranchuk cooling effect that depends on the number of spin
components. Moreover, by using the local compressibility of the gas, we investigated
the emergence of Mott shells for an SU(3) and SU(6) gas as a function of interaction
and obtained good agreement with a theoretical prediction of the Mott crossover
in the case of SU(3). In addition, the lattice loading process of the SU(N) Fermi
gas was studied. We found a measurable increase in entropy upon entering the Mott
insulating regime for the SU(6) gas, which we attribute to a suppression of mass
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flow when reaching the strongly interacting regime. The origin of this effect remains
to be understood. Nevertheless, we achieved a very low specific entropy below the
maximum spin entropy of the SU(6) Fermi gas, which might enable the observation
of spin-correlated phases of the SU(N) Fermi-Hubbard model in the low temperature
regime.

Outlook
Ytterbium atoms in optical lattices provide a versatile tool to investigate single and
two-orbital models with enlarged symmetry. The reported results and the low entropy
that was achieved in the SU(6) gas may pave the way towards studying SU(N) spin
Hamiltonians for different fillings and with varying number of spin components. This
would allow to map out the phase diagram of the SU(N) Heisenberg model and would
facilitate to probe spin chains in one dimension or spin Hamiltonians on square and
cubic lattices [154, 162, 164, 254]. By extending the setup to prepare an ytterbium
quantum gas in a single 2D layer, it would be possible to probe the equation of
state without Abel inversion and investigate 2D Fermi-Hubbard physics. The large
degeneracy of the ground state of such highly spin-symmetric systems is expected to
lead to novel phases that range from states with complex magnetic long-range order
– beyond Néel order – to chiral spin liquids [255]. These phases could potentially
be probed with nuclear spin-dependent Bragg scattering or by noise correlations in
time-of-flight [27, 28, 256]. In addition, lattice modulation spectroscopy might reveal
nearest neighbor correlations already at intermediate temperatures above magnetic
long-range order [257, 258]. Such short-range correlations are already expected for
the low entropies, obtained for the SU(6) gas in the optical lattice.
In addition, the second orbital in ytterbium can be employed to extend these

studies to two-orbital systems. For this, a state-selective lattice is ideal to implement
the Kondo lattice Hamiltonian [58]. A large exchange coupling that was measured
for 173Yb [72] in addition to a favorable ratio of the elastic to inelastic scattering
lengths can be used to access the regime of strong coupling in order to probe the
Kondo insulator. The large coupling that was measured is favorable in this respect,
as the overlap between the two orbitals can be reduced in a bichromatic lattice
configuration to lower the coupling strength [230]. Moreover, a confinement-induced
resonance in one dimension could be employed to change the magnitude as well
as the sign of the coupling [180]. The ability to realize the Kondo lattice model
(KLM) would allow investigating heavy Fermion properties as well as magnetic order
with ultracold atoms that possess SU(N) symmetry. For weak couplings, the type
of magnetic order, which is mediated by RKKY interaction, is expected to range
from ferromagnetic to antiferromagnetic order and will depend on various system
parameters such as the dimension, as explained in section 3.3. In this way, a better
understanding of the phases and the phase transitions contained within this model
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could be gained by exploiting state-dependent lattices and realizing a KLM quantum
simulator. For this, the ability to probe the thermodynamic properties of the atomic
sample as presented in this thesis will constitute a very useful tool to identify the
different phases that are predicted by theory.
Furthermore, a recently measured orbital Feshbach resonance in 173Yb allows

studying two-orbital Fermi liquids for various interactions [76, 127]. This extends
the range of systems that can be investigated as it overcomes the limitation of
a fixed interaction strength between the two orbitals in alkaline earth-like atoms.
This resonance features a two-gap Fermi superfluid for attractive interactions and is
expected to possess a higher transition temperature for the superfluid compared to
conventional wide magnetic Feshbach resonances that are used for alkali elements
[126, 129]. Therefore, the equation of state of this superfluid is expected to differ
from alkali systems and could possibly be measured with the same technique that
permitted to address the EoS of the FHM that was presented in this thesis.
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Appendix A

Retrieving the inverse Abel
transformation from the pressure

In the case of a harmonic confinement potential, we can assume radial symmetry of
the column density

ñ(x, y) =
∫ ∞
−∞

n(x, y, z)dz. (A.1)

Therefore, it is possible to parametrize the column density with r

r2 = x2 +
ω2
y

ω2
x

y2 (A.2)

∂r

x
= x

r
(A.3)

y = ωx
ωy

√
r2 − x2 (A.4)

dy = ωxrdr

ωy
√
r2 − x2

(A.5)

The result of Eq. 7.4 derived from the pressure of the system can be rewritten

n(x) = − ωyωz
ω2
x2πx

∫ ∞
−∞

∂ñ(x, y)
∂x

dy (A.6)

= −ωyωz
ω2
xπx

∫ ∞
0

∂ñ(x, y)
∂x

dy (A.7)

= −ωyωz
ω2
xπx

∫ ∞
0

∂ñ(r)
∂r

∂r

∂x
dy. (A.8)

129



Appendix A Retrieving the inverse Abel transformation from the pressure

By substituting Eq. A.4 and Eq. A.5 into Eq. A.8, we obtain

n(x) = −ωyωz
ω2
xπx

∫ ∞
0

∂ñ(r)
∂r

∂r

∂x
dy (A.9)

= − ωz
πωx

∫ ∞
x

∂ñ(r)
∂r

dr√
r2 − x2

. (A.10)

Eq. A.10 is the inverse Abel formula as given in Eq. 7.1 for ρ = x and y = 0 that
accounts with the correct rescaling ωz/ωx for the trap aspect ratio.

130



Bibliography

[1] V. L. Ginzburg and L. D. Landau, “On the Theory of superconductivity”, Zh.
Eksp. Teor. Fiz. 20, 1064–1082 (1950) (See page: 1).

[2] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of Superconductivity”,
Physical Review 108, 1175–1204 (1957) (See page: 1).

[3] D. M. Lee, “The extraordinary phases of liquid 3He”, Reviews of Modern
Physics 69, 645–666 (1997) (See pages: 1, 39).

[4] J. Hubbard, “Electron Correlations in Narrow Energy Bands”, Proceedings
of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 276, 238–257 (1963) (See page: 1).

[5] P. W. Anderson, “The Resonating Valence Bond State in La2CuO4 and
Superconductivity”, 235, 1196–1198 (1987) (See pages: 1, 30).

[6] I. Affleck and J. B. Marston, “Large- n limit of the Heisenberg-Hubbard
model: Implications for high-Tc superconductors”, Physical Review B 37,
3774–3777 (1988) (See pages: 1, 30).

[7] V. Z. Kresin and S. A. Wolf, “Colloquium : Electron-lattice interaction and
its impact on high Tc superconductivity”, Reviews of Modern Physics 81,
481–501 (2009) (See page: 1).

[8] A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, “High-temperature super-
conductivity in the BaPb1-xBixO3 systems”, Solid State Communications 17,
27–28 (1975) (See page: 1).

[9] J. G. Bednorz and K. A. Müller, “Possible highTc superconductivity in the
Ba–La–Cu–O system”, Zeitschrift für Physik B Condensed Matter 64, 189–193
(1986) (See page: 1).

[10] P. A. Lee, N. Nagaosa, and X.-G. Wen, “Doping a Mott insulator: Physics of
high-temperature superconductivity”, Reviews of Modern Physics 78, 17–85
(2006) (See page: 1).

131

http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/RevModPhys.69.645
http://dx.doi.org/10.1103/RevModPhys.69.645
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1126/science.235.4793.1196
http://dx.doi.org/10.1103/PhysRevB.37.3774
http://dx.doi.org/10.1103/PhysRevB.37.3774
http://dx.doi.org/10.1103/RevModPhys.81.481
http://dx.doi.org/10.1103/RevModPhys.81.481
http://dx.doi.org/10.1016/0038-1098(75)90327-0
http://dx.doi.org/10.1016/0038-1098(75)90327-0
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17


Bibliography

[11] W. Wu, J. Cheng, K. Matsubayashi, P. Kong, F. Lin, C. Jin, N. Wang, Y.
Uwatoko, and J. Luo, “Superconductivity in the vicinity of antiferromagnetic
order in CrAs”, Nature Communications 5, 5508 (2014) (See page: 1).

[12] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.
Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic
Vapor”, 269, 198–201 (1995) (See page: 2).

[13] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,
D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of
Sodium Atoms”, Physical Review Letters 75, 3969–3973 (1995) (See page: 2).

[14] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, “Evidence of
Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions”,
Physical Review Letters 75, 1687–1690 (1995) (See page: 2).

[15] B. DeMarco and D. S. Jin, “Onset of Fermi Degeneracy in a Trapped Atomic
Gas”, 285, 1703–1706 (1999) (See page: 2).

[16] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn,
and W. Ketterle, “Observation of Feshbach resonances in a Bose–Einstein
condensate”, 392, 151–154 (1998) (See page: 2).

[17] T. Bourdel, J. Cubizolles, L. Khaykovich, K. M. F. Magalhães, S. J. J. M. F.
Kokkelmans, G. V. Shlyapnikov, and C. Salomon, “Measurement of the
Interaction Energy near a Feshbach Resonance in a 6Li Fermi Gas”, Physical
Review Letters 91, 020402 (2003) (See page: 2).

[18] K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas,
“Observation of a Strongly Interacting Degenerate Fermi Gas of Atoms”, (2002)
10.1126/science.1079107 (See page: 2).

[19] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, “Creation of ultracold
molecules from a Fermi gas of atoms”, 424, 47–50 (2003) (See page: 2).

[20] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. H. Denschlag,
and R. Grimm, “Pure Gas of Optically Trapped Molecules Created from
Fermionic Atoms”, Physical Review Letters 91, 240402 (2003) (See page: 2).

[21] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold Bosonic
Atoms in Optical Lattices”, Physical Review Letters 81, 3108–3111 (1998)
(See page: 2).

[22] U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch, T. A. Costi, R. W.
Helmes, D. Rasch, and A. Rosch, “Metallic and Insulating Phases of Repul-
sively Interacting Fermions in a 3D Optical Lattice”, 322, 1520–1525 (2008)
(See pages: 2, 103).

132

http://dx.doi.org/10.1038/ncomms6508
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1103/PhysRevLett.75.1687
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1103/PhysRevLett.91.020402
http://dx.doi.org/10.1103/PhysRevLett.91.020402
http://dx.doi.org/10.1126/science.1079107
http://dx.doi.org/10.1126/science.1079107
http://dx.doi.org/10.1038/nature01738
http://dx.doi.org/10.1103/PhysRevLett.91.240402
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1126/science.1165449


Bibliography

[23] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T. Esslinger, “A Mott
insulator of fermionic atoms in an optical lattice”, 455, 204–207 (2008) (See
pages: 2, 103).

[24] M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions”, Reviews
of Modern Physics 70, 1039–1263 (1998) (See pages: 2, 30).

[25] R. P. Feynman, “Simulating physics with computers”, International Journal
of Theoretical Physics 21, 467–488 (1982) (See page: 2).

[26] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, and T. Esslinger, “Exploring
Phase Coherence in a 2D Lattice of Bose-Einstein Condensates”, Physical
Review Letters 87, 160405 (2001) (See page: 2).

[27] S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and I. Bloch,
“Spatial quantum noise interferometry in expanding ultracold atom clouds”,
434, 481–484 (2005) (See pages: 2, 126).

[28] T. Rom, T. Best, D. van Oosten, U. Schneider, S. Fölling, B. Paredes, and I.
Bloch, “Free fermion antibunching in a degenerate atomic Fermi gas released
from an optical lattice”, 444, 733–736 (2006) (See pages: 2, 126).

[29] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr,
“Single-atom-resolved fluorescence imaging of an atomic Mott insulator”, 467,
68–72 (2010) (See pages: 2, 68, 107).

[30] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L.
Pollet, and M. Greiner, “Probing the Superfluid–to–Mott Insulator Transition
at the Single-Atom Level”, 329, 547–550 (2010) (See pages: 2, 68, 107).

[31] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller,
and I. Bloch, “Direct observation of second-order atom tunnelling”, 448,
1029–1032 (2007) (See page: 2).

[32] J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Öhberg, “Colloquium : Artificial
gauge potentials for neutral atoms”, Reviews of Modern Physics 83, 1523–1543
(2011) (See page: 2).

[33] P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke,
C. Becker, P. Windpassinger, M. Lewenstein, and K. Sengstock, “Multi-
component quantum gases in spin-dependent hexagonal lattices”, Nature
Physics 7, 434–440 (2011) (See page: 2).

[34] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, “Creating,
moving and merging Dirac points with a Fermi gas in a tunable honeycomb
lattice”, 483, 302–305 (2012) (See page: 2).

133

http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1038/nature03500
http://dx.doi.org/10.1038/nature05319
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1038/nature06112
http://dx.doi.org/10.1038/nature06112
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1038/nphys1916
http://dx.doi.org/10.1038/nphys1916
http://dx.doi.org/10.1038/nature10871


Bibliography

[35] J. Struck, C. Ölschläger, R. L. Targat, P. Soltan-Panahi, A. Eckardt, M.
Lewenstein, P. Windpassinger, and K. Sengstock, “Quantum Simulation of
Frustrated Classical Magnetism in Triangular Optical Lattices”, 333, 996–999
(2011) (See page: 2).

[36] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J.
Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A High Phase-
Space-Density Gas of Polar Molecules”, 322, 231–235 (2008) (See page: 3).

[37] J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa,
O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum Gas of Deeply Bound
Ground State Molecules”, 321, 1062–1066 (2008) (See page: 3).

[38] F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, “Ultracold
Triplet Molecules in the Rovibrational Ground State”, Physical Review Letters
101, 133005 (2008) (See page: 3).

[39] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, “The physics
of dipolar bosonic quantum gases”, Reports on Progress in Physics 72, 126401
(2009) (See page: 3).

[40] L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules:
science, technology and applications”, New Journal of Physics 11, 055049
(2009) (See page: 3).

[41] M. Lu, N. Q. Burdick, and B. L. Lev, “Quantum Degenerate Dipolar Fermi
Gas”, Physical Review Letters 108, 215301 (2012) (See page: 3).

[42] K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, and F. Ferlaino, “Reaching
Fermi Degeneracy via Universal Dipolar Scattering”, Physical Review Letters
112, 010404 (2014) (See page: 3).

[43] M. Weidemüller, “Rydberg atoms: There can be only one”, Nature Physics 5,
91–92 (2009) (See page: 3).

[44] M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with
Rydberg atoms”, Reviews of Modern Physics 82, 2313–2363 (2010) (See
page: 3).

[45] Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T.
Yabuzaki, and Y. Takahashi, “Spin-Singlet Bose-Einstein Condensation of
Two-Electron Atoms”, Physical Review Letters 91, 040404 (2003) (See
pages: 3, 18).

[46] S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr, “Bose-Einstein Conden-
sation of Alkaline Earth Atoms: 40Ca”, Physical Review Letters 103, 130401
(2009) (See page: 3).

134

http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1126/science.1207239
http://dx.doi.org/10.1126/science.1163861
http://dx.doi.org/10.1126/science.1159909
http://dx.doi.org/10.1103/PhysRevLett.101.133005
http://dx.doi.org/10.1103/PhysRevLett.101.133005
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1103/PhysRevLett.108.215301
http://dx.doi.org/10.1103/PhysRevLett.112.010404
http://dx.doi.org/10.1103/PhysRevLett.112.010404
http://dx.doi.org/10.1038/nphys1193
http://dx.doi.org/10.1038/nphys1193
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/PhysRevLett.91.040404
http://dx.doi.org/10.1103/PhysRevLett.103.130401
http://dx.doi.org/10.1103/PhysRevLett.103.130401


Bibliography

[47] S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, “Bose-Einstein
Condensation of Strontium”, Physical Review Letters 103, 200401 (2009)
(See page: 3).

[48] Y. N. M. de Escobar, P. G. Mickelson, M. Yan, B. J. DeSalvo, S. B. Nagel,
and T. C. Killian, “Bose-Einstein Condensation of 84Sr”, Physical Review
Letters 103, 200402 (2009) (See page: 3).

[49] S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi, “An SU(6) Mott insulator
of an atomic Fermi gas realized by large-spin Pomeranchuk cooling”, Nature
Physics 8, 825–830 (2012) (See pages: 3, 41).

[50] N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K.
Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An Atomic Clock with
10–18 Instability”, 341, 1215–1218 (2013) (See pages: 3, 91).

[51] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof,
X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with
accuracy and stability at the 10-18 level”, 506, 71–75 (2014) (See pages: 3,
91).

[52] S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti,
J. Grünert, C. Vian, F. Pereira dos Santos, P. Rosenbusch, P. Lemonde,
G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon,
“Advances in atomic fountains”, Comptes Rendus Physique, Fundamental
metrology 5, 829–843 (2004) (See page: 3).

[53] M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, T. Udem, T. W.
Hänsch, M. Abgrall, J. Grünert, I. Maksimovic, S. Bize, H. Marion, F. P. D.
Santos, P. Lemonde, G. Santarelli, P. Laurent, A. Clairon, C. Salomon, M.
Haas, U. D. Jentschura, and C. H. Keitel, “New Limits on the Drift of
Fundamental Constants from Laboratory Measurements”, Physical Review
Letters 92, 230802 (2004) (See page: 3).

[54] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini,
W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams,
W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C.
Bergquist, “Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks;
Metrology at the 17th Decimal Place”, 319, 1808–1812 (2008) (See page: 3).

[55] P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “New Method
for Gravitational Wave Detection with Atomic Sensors”, Physical Review
Letters 110, 171102 (2013) (See page: 3).

[56] LIGO Scientific Collaboration and Virgo Collaboration et al., “Observation
of Gravitational Waves from a Binary Black Hole Merger”, Physical Review
Letters 116, 061102 (2016) (See page: 3).

135

http://dx.doi.org/10.1103/PhysRevLett.103.200401
http://dx.doi.org/10.1103/PhysRevLett.103.200402
http://dx.doi.org/10.1103/PhysRevLett.103.200402
http://dx.doi.org/10.1038/nphys2430
http://dx.doi.org/10.1038/nphys2430
http://dx.doi.org/10.1126/science.1240420
http://dx.doi.org/10.1038/nature12941
http://dx.doi.org/10.1016/j.crhy.2004.09.003
http://dx.doi.org/10.1016/j.crhy.2004.09.003
http://dx.doi.org/10.1103/PhysRevLett.92.230802
http://dx.doi.org/10.1103/PhysRevLett.92.230802
http://dx.doi.org/10.1126/science.1154622
http://dx.doi.org/10.1103/PhysRevLett.110.171102
http://dx.doi.org/10.1103/PhysRevLett.110.171102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102


Bibliography

[57] A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and
M. D. Lukin, “Alkaline-Earth-Metal Atoms as Few-Qubit Quantum Registers”,
Physical Review Letters 102, 110503 (2009) (See page: 4).

[58] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller,
E. Demler, M. D. Lukin, and A. M. Rey, “Two-orbital SU(N) magnetism
with ultracold alkaline-earth atoms”, Nature Physics 6, 289–295 (2010) (See
pages: 4, 16, 44, 47, 126).

[59] A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, “Quantum Computing with
Alkaline-Earth-Metal Atoms”, Physical Review Letters 101, 170504 (2008)
(See page: 4).

[60] N. R. Cooper, “Optical Flux Lattices for Ultracold Atomic Gases”, Physical
Review Letters 106, 175301 (2011) (See page: 4).

[61] M. Knap, A. Shashi, Y. Nishida, A. Imambekov, D. A. Abanin, and E. Demler,
“Time-Dependent Impurity in Ultracold Fermions: Orthogonality Catastrophe
and Beyond”, Physical Review X 2, 041020 (2012) (See page: 4).

[62] M. Hermele, V. Gurarie, and A. M. Rey, “Mott Insulators of Ultracold
Fermionic Alkaline Earth Atoms: Underconstrained Magnetism and Chiral
Spin Liquid”, Physical Review Letters 103, 135301 (2009) (See pages: 4, 30).

[63] M. Hermele and V. Gurarie, “Topological liquids and valence cluster states
in two-dimensional SU(N) magnets”, Physical Review B 84, 174441 (2011)
(See pages: 4, 43, 44, 121).

[64] C. Honerkamp and W. Hofstetter, “Ultracold Fermions and the SU(N)
Hubbard Model”, Physical Review Letters 92, 170403 (2004) (See pages: 4,
30, 31, 42).

[65] Y. Tokura and N. Nagaosa, “Orbital Physics in Transition-Metal Oxides”,
288, 462–468 (2000) (See pages: 4, 30).

[66] Á. Rapp, G. Zaránd, C. Honerkamp, and W. Hofstetter, “Color Superfluidity
and “Baryon” Formation in Ultracold Fermions”, Physical Review Letters 98,
160405 (2007) (See pages: 4, 31).

[67] D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, U.-J. Wiese, and
P. Zoller, “Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian
Lattice Gauge Theories”, Physical Review Letters 110, 125303 (2013) (See
page: 4).

[68] M. Foss-Feig, M. Hermele, and A. M. Rey, “Probing the Kondo lattice model
with alkaline-earth-metal atoms”, Physical Review A 81, 051603 (2010) (See
page: 4).

[69] P. Gegenwart, Q. Si, and F. Steglich, “Quantum criticality in heavy-fermion
metals”, Nature Physics 4, 186–197 (2008) (See page: 4).

136

http://dx.doi.org/10.1103/PhysRevLett.102.110503
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1103/PhysRevLett.101.170504
http://dx.doi.org/10.1103/PhysRevLett.106.175301
http://dx.doi.org/10.1103/PhysRevLett.106.175301
http://dx.doi.org/10.1103/PhysRevX.2.041020
http://dx.doi.org/10.1103/PhysRevLett.103.135301
http://dx.doi.org/10.1103/PhysRevB.84.174441
http://dx.doi.org/10.1103/PhysRevLett.92.170403
http://dx.doi.org/10.1126/science.288.5465.462
http://dx.doi.org/10.1103/PhysRevLett.98.160405
http://dx.doi.org/10.1103/PhysRevLett.98.160405
http://dx.doi.org/10.1103/PhysRevLett.110.125303
http://dx.doi.org/10.1103/PhysRevA.81.051603
http://dx.doi.org/10.1038/nphys892


Bibliography

[70] S. Sykora and K. W. Becker, “Heavy fermion properties of the Kondo Lattice
model”, Scientific Reports 3 (2013) 10.1038/srep02691 (See pages: 4, 98).

[71] K. I. Kugel’ and D. I. Khomskii, “The Jahn-Teller effect and magnetism:
transition metal compounds”, Soviet Physics Uspekhi 25, 231 (1982) (See
page: 4).

[72] F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch, and S. Fölling,
“Observation of two-orbital spin-exchange interactions with ultracold SU(N)-
symmetric fermions”, Nature Physics 10, 779–784 (2014) (See pages: 5, 6, 15,
18, 49, 91, 94, 126).

[73] F. Scazza, “Probing SU(N)-symmetric orbital interactions with ytterbium
Fermi gases in optical lattices”, PhD thesis (Ludwig-Maximilians-Universität
München, Feb. 23, 2015) (See pages: 5, 9, 51, 54, 59, 94).

[74] M. Spießl, “Aufbau und Charakterisierung eines Verdopplungsresonators
für den Ytterbium-Uhrenübergang”, Bachelor’s thesis (Ludwig-Maximilians-
Universität, München, 2011) (See page: 5).

[75] C. Hofrichter, L. Riegger, F. Scazza, M. Höfer, D. R. Fernandes, I. Bloch,
and S. Fölling, “Direct Probing of the Mott Crossover in the SU(N) Fermi-
Hubbard Model”, Physical Review X 6, 021030 (2016) (See pages: 6, 104,
112).

[76] M. Höfer, L. Riegger, F. Scazza, C. Hofrichter, D. R. Fernandes, M. M. Parish,
J. Levinsen, I. Bloch, and S. Fölling, “Observation of an Orbital Interaction-
Induced Feshbach Resonance in 173Yb”, Physical Review Letters 115, 265302
(2015) (See pages: 6, 18, 20, 127).

[77] D. R. Lide, “The Elements”, in CRC Handbook of Chemistry and Physics,
81st Edition (CRC Press, June 6, 2000) (See page: 8).

[78] J. R. de Laeter and N. Bukilic, “The isotopic composition and atomic weight
of ytterbium”, International Journal of Mass Spectrometry 252, 222–227
(2006) (See page: 8).

[79] J. E. Sansonetti and W. C. Martin, “Handbook of Basic Atomic Spectroscopic
Data”, Journal of Physical and Chemical Reference Data 34, 1559–2259 (2005)
(See page: 8).

[80] Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Taka-
hashi, “Photoassociation Spectroscopy of Laser-Cooled Ytterbium Atoms”,
Physical Review Letters 93, 123202 (2004) (See page: 9).

[81] S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2
states in divalent atoms”, Physical Review A 69, 042506 (2004) (See pages: 9,
14).

137

http://dx.doi.org/10.1038/srep02691
http://dx.doi.org/10.1038/srep02691
http://stacks.iop.org/0038-5670/25/i=4/a=R03
http://dx.doi.org/10.1038/nphys3061
http://dx.doi.org/10.1103/PhysRevX.6.021030
http://dx.doi.org/10.1103/PhysRevLett.115.265302
http://dx.doi.org/10.1103/PhysRevLett.115.265302
https://www.crcpress.com/CRC-Handbook-of-Chemistry-and-Physics-81st-Edition/Lide/9780849304811
https://www.crcpress.com/CRC-Handbook-of-Chemistry-and-Physics-81st-Edition/Lide/9780849304811
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijms.2006.03.011
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijms.2006.03.011
http://dx.doi.org/10.1063/1.1800011
http://dx.doi.org/10.1103/PhysRevLett.93.123202
http://dx.doi.org/10.1103/PhysRevA.69.042506


Bibliography

[82] K. Beloy, J. A. Sherman, N. D. Lemke, N. Hinkley, C. W. Oates, and A. D.
Ludlow, “Determination of the 5d6s 3D1 state lifetime and blackbody-radiation
clock shift in Yb”, Physical Review A 86, 051404 (2012) (See pages: 9, 10,
24).

[83] S. G. Porsev, Y. G. Rakhlina, and M. G. Kozlov, “Electric-dipole amplitudes,
lifetimes, and polarizabilities of the low-lying levels of atomic ytterbium”,
Physical Review A 60, 2781–2785 (1999) (See page: 9).

[84] M. Baumann, M. Geisler, H. Liening, and H. Lindel, “Lifetime- and quantum-
beat measurements in the excited 4f14 6s6d D-states in the Yb I-spectrum
using stepwise laser excitation”, Optics Communications 38, 259–261 (1981)
(See page: 9).

[85] J. W. Cho, H.-g. Lee, S. Lee, J. Ahn, W.-K. Lee, D.-H. Yu, S. K. Lee, and
C. Y. Park, “Optical repumping of triplet-P states enhances magneto-optical
trapping of ytterbium atoms”, Physical Review A 85, 035401 (2012) (See
pages: 9, 11).

[86] D. Das, S. Barthwal, A. Banerjee, and V. Natarajan, “Absolute frequency
measurements in Yb with 0.08 ppb uncertainty: Isotope shifts and hyperfine
structure in the 399-nm 1S0 →1 P1 line”, Physical Review A 72, 032506
(2005) (See page: 11).

[87] K. Pandey, A. K. Singh, P. V. K. Kumar, M. V. Suryanarayana, and V.
Natarajan, “Isotope shifts and hyperfine structure in the 555.8-nm 1S0 → 3P 1
line of Yb”, Physical Review A 80, 022518 (2009) (See page: 11).

[88] N. Poli, Z. W. Barber, N. D. Lemke, C. W. Oates, L. S. Ma, J. E. Stalnaker,
T. M. Fortier, S. A. Diddams, L. Hollberg, J. C. Bergquist, A. Brusch, S.
Jefferts, T. Heavner, and T. Parker, “Frequency evaluation of the doubly
forbidden 1S0 →3 P0 transition in bosonic 174Yb”, Physical Review A 77,
050501 (2008) (See pages: 11, 13).

[89] C. W. Hoyt, Z. W. Barber, C. W. Oates, T. M. Fortier, S. A. Diddams, and L.
Hollberg, “Observation and Absolute Frequency Measurements of the 1S0-3P0
Optical Clock Transition in Neutral Ytterbium”, Physical Review Letters 95,
083003 (2005) (See page: 11).

[90] C. J. Bowers, D. Budker, E. D. Commins, D. DeMille, S. J. Freedman, A.-T.
Nguyen, S.-Q. Shang, and M. Zolotorev, “Experimental investigation of
excited-state lifetimes in atomic ytterbium”, Physical Review A 53, 3103–
3109 (1996) (See page: 10).

[91] N. Poli, R. E. Drullinger, G. Ferrari, J. Léonard, F. Sorrentino, and G. M. Tino,
“Cooling and trapping of ultracold strontium isotopic mixtures”, Physical
Review A 71, 061403 (2005) (See page: 11).

138

http://dx.doi.org/10.1103/PhysRevA.86.051404
http://dx.doi.org/10.1103/PhysRevA.60.2781
http://dx.doi.org/10.1016/0030-4018(81)90394-1
http://dx.doi.org/10.1103/PhysRevA.85.035401
http://dx.doi.org/10.1103/PhysRevA.72.032506
http://dx.doi.org/10.1103/PhysRevA.72.032506
http://dx.doi.org/10.1103/PhysRevA.80.022518
http://dx.doi.org/10.1103/PhysRevA.77.050501
http://dx.doi.org/10.1103/PhysRevA.77.050501
http://dx.doi.org/10.1103/PhysRevLett.95.083003
http://dx.doi.org/10.1103/PhysRevLett.95.083003
http://dx.doi.org/10.1103/PhysRevA.53.3103
http://dx.doi.org/10.1103/PhysRevA.53.3103
http://dx.doi.org/10.1103/PhysRevA.71.061403
http://dx.doi.org/10.1103/PhysRevA.71.061403


Bibliography

[92] K. Honda, Y. Takahashi, T. Kuwamoto, M. Fujimoto, K. Toyoda, K. Ishikawa,
and T. Yabuzaki, “Magneto-optical trapping of Yb atoms and a limit on the
branching ratio of the 1P1 state”, Physical Review A 59, R934–R937 (1999)
(See page: 11).

[93] P. G. Mickelson, Y. N. M. d. Escobar, P. Anzel, B. J. DeSalvo, S. B. Nagel,
A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of
laser-cooled Sr atoms using the (5s5p) 3 P 2 –(5s4d) 3 D 2 transition”, Journal
of Physics B: Atomic, Molecular and Optical Physics 42, 235001 (2009) (See
page: 11).

[94] E. Luc-Koenig, “Relativistic effects on transition probabilities 3P1 → 1S0 for
group II elements”, Journal of Physics B: Atomic and Molecular Physics 7,
1052 (1974) (See page: 11).

[95] T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical
trapping of Yb atoms using an intercombination transition”, Physical Review
A 60, R745–R748 (1999) (See page: 11).

[96] J. Migdalek and W. E. Baylis, “Relativistic transition probabilities and
lifetimes of low-lying levels in ytterbium”, Journal of Physics B: Atomic,
Molecular and Optical Physics 24, L99 (1991) (See page: 11).

[97] H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz
linewidth”, Optics Letters 31, 736 (2006) (See page: 13).

[98] A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman,
M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical
cavity for diode laser stabilization at 1×10−15”, Optics Letters 32, 641 (2007)
(See page: 13).

[99] J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Sub-
hertz linewidth diode lasers by stabilization to vibrationally and thermally
compensated ultralow-expansion glass Fabry-Pérot cavities”, Physical Review
A 77, 053809 (2008) (See page: 13).

[100] S. G. Porsev, A. Derevianko, and E. N. Fortson, “Possibility of an optical
clock using the 61S0 → 63P o

0 transition in 171,173Yb atoms held in an optical
lattice”, Physical Review A 69, 021403 (2004) (See page: 13).

[101] A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W. Barber,
and L. Hollberg, “Magnetic Field-Induced Spectroscopy of Forbidden Opti-
cal Transitions with Application to Lattice-Based Optical Atomic Clocks”,
Physical Review Letters 96, 083001 (2006) (See pages: 14, 100).

[102] Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and
V. I. Yudin, “Direct Excitation of the Forbidden Clock Transition in Neutral
174Yb Atoms Confined to an Optical Lattice”, Physical Review Letters 96,
083002 (2006) (See page: 14).

139

http://dx.doi.org/10.1103/PhysRevA.59.R934
http://dx.doi.org/10.1088/0953-4075/42/23/235001
http://dx.doi.org/10.1088/0953-4075/42/23/235001
http://dx.doi.org/10.1088/0022-3700/7/9/016
http://dx.doi.org/10.1088/0022-3700/7/9/016
http://dx.doi.org/10.1103/PhysRevA.60.R745
http://dx.doi.org/10.1103/PhysRevA.60.R745
http://dx.doi.org/10.1088/0953-4075/24/4/001
http://dx.doi.org/10.1088/0953-4075/24/4/001
http://dx.doi.org/10.1364/OL.31.000736
http://dx.doi.org/10.1364/OL.32.000641
http://dx.doi.org/10.1103/PhysRevA.77.053809
http://dx.doi.org/10.1103/PhysRevA.77.053809
http://dx.doi.org/10.1103/PhysRevA.69.021403
http://dx.doi.org/10.1103/PhysRevLett.96.083001
http://dx.doi.org/10.1103/PhysRevLett.96.083002
http://dx.doi.org/10.1103/PhysRevLett.96.083002


Bibliography

[103] S. Kato, S. Sugawa, K. Shibata, R. Yamamoto, and Y. Takahashi, “Control
of Resonant Interaction between Electronic Ground and Excited States”,
Physical Review Letters 110, 173201 (2013) (See page: 14).

[104] K. Shibata, R. Yamamoto, Y. Seki, and Y. Takahashi, “Optical spectral
imaging of a single layer of a quantum gas with an ultranarrow optical
transition”, Physical Review A 89, 031601 (2014) (See page: 14).

[105] R. Yamamoto, J. Kobayashi, T. Kuno, K. Kato, and Y. Takahashi, “An
ytterbium quantum gas microscope with narrow-line laser cooling”, New
Journal of Physics 18, 023016 (2016) (See page: 14).

[106] T. D. Lee, K. Huang, and C. N. Yang, “Eigenvalues and Eigenfunctions of a
Bose System of Hard Spheres and Its Low-Temperature Properties”, Physical
Review 106, 1135–1145 (1957) (See page: 15).

[107] S.-K. Yip and T.-L. Ho, “Zero sound modes of dilute Fermi gases with arbitrary
spin”, Physical Review A 59, 4653–4656 (1999) (See page: 15).

[108] N. Bornemann, P. Hyllus, and L. Santos, “Resonant Spin-Changing Collisions
in Spinor Fermi Gases”, Physical Review Letters 100, 205302 (2008) (See
page: 16).

[109] J. S. Krauser, J. Heinze, N. Fläschner, S. Götze, O. Jürgensen, D.-S. Lühmann,
C. Becker, and K. Sengstock, “Coherent multi-flavour spin dynamics in a
fermionic quantum gas”, Nature Physics 8, 813–818 (2012) (See page: 16).

[110] C. Wu, J.-p. Hu, and S.-c. Zhang, “Exact SO(5) Symmetry in the Spin-3/2
Fermionic System”, Physical Review Letters 91, 186402 (2003) (See page: 16).

[111] S.-K. Yip, B.-L. Huang, and J.-S. Kao, “Theory of SU(N) Fermi liquids”,
Physical Review A 89, 043610 (2014) (See pages: 17, 86).

[112] G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F. Schäfer, H. Hu, X.-J.
Liu, J. Catani, C. Sias, M. Inguscio, and L. Fallani, “A one-dimensional liquid
of fermions with tunable spin”, Nature Physics 10, 198–201 (2014) (See
page: 17).

[113] M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi, R. Ciuryło, P. Naidon,
and P. S. Julienne, “Two-color photoassociation spectroscopy of ytterbium
atoms and the precise determinations of s-wave scattering lengths”, Physical
Review A 77, 012719 (2008) (See pages: 17, 18).

[114] T. Fukuhara, S. Sugawa, and Y. Takahashi, “Bose-Einstein condensation of
an ytterbium isotope”, Physical Review A 76, 051604 (2007) (See page: 18).

[115] S. Sugawa, R. Yamazaki, S. Taie, and Y. Takahashi, “Bose-Einstein condensate
in gases of rare atomic species”, Physical Review A 84, 011610 (2011) (See
page: 18).

140

http://dx.doi.org/10.1103/PhysRevLett.110.173201
http://dx.doi.org/10.1103/PhysRevA.89.031601
http://dx.doi.org/10.1088/1367-2630/18/2/023016
http://dx.doi.org/10.1088/1367-2630/18/2/023016
http://dx.doi.org/10.1103/PhysRev.106.1135
http://dx.doi.org/10.1103/PhysRev.106.1135
http://dx.doi.org/10.1103/PhysRevA.59.4653
http://dx.doi.org/10.1103/PhysRevLett.100.205302
http://dx.doi.org/10.1038/nphys2409
http://dx.doi.org/10.1103/PhysRevLett.91.186402
http://dx.doi.org/10.1103/PhysRevA.89.043610
http://dx.doi.org/10.1038/nphys2878
http://dx.doi.org/10.1103/PhysRevA.77.012719
http://dx.doi.org/10.1103/PhysRevA.77.012719
http://dx.doi.org/10.1103/PhysRevA.76.051604
http://dx.doi.org/10.1103/PhysRevA.84.011610


Bibliography

[116] N. D. Lemke, J. von Stecher, J. A. Sherman, A. M. Rey, C. W. Oates, and
A. D. Ludlow, “p-Wave Cold Collisions in an Optical Lattice Clock”, Physical
Review Letters 107, 103902 (2011) (See page: 18).

[117] G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani
de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani,
M. Inguscio, and L. Fallani, “Direct Observation of Coherent Interorbital
Spin-Exchange Dynamics”, Physical Review Letters 113, 120402 (2014) (See
page: 18).

[118] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in
ultracold gases”, Reviews of Modern Physics 82, 1225–1286 (2010) (See
pages: 19, 22).

[119] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, “Threshold and resonance
phenomena in ultracold ground-state collisions”, Physical Review A 47, 4114–
4122 (1993) (See page: 20).

[120] A. J. Moerdijk and B. J. Verhaar, “Prospects for Bose-Einstein Condensation
in Atomic 7Li and 23Na”, Physical Review Letters 73, 518–521 (1994) (See
page: 20).

[121] P. O. Fedichev, Y. Kagan, G. V. Shlyapnikov, and J. T. M. Walraven, “Influ-
ence of Nearly Resonant Light on the Scattering Length in Low-Temperature
Atomic Gases”, Physical Review Letters 77, 2913–2916 (1996) (See page: 20).

[122] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, and
J. H. Denschlag, “Tuning the Scattering Length with an Optically Induced
Feshbach Resonance”, Physical Review Letters 93, 123001 (2004) (See
page: 20).

[123] K. Enomoto, K. Kasa, M. Kitagawa, and Y. Takahashi, “Optical Feshbach
Resonance Using the Intercombination Transition”, Physical Review Letters
101, 203201 (2008) (See page: 20).

[124] S. Blatt, T. L. Nicholson, B. J. Bloom, J. R. Williams, J. W. Thomsen, P. S.
Julienne, and J. Ye, “Measurement of Optical Feshbach Resonances in an
Ideal Gas”, Physical Review Letters 107, 073202 (2011) (See page: 20).

[125] M. Yan, B. J. DeSalvo, B. Ramachandhran, H. Pu, and T. C. Killian, “Control-
ling Condensate Collapse and Expansion with an Optical Feshbach Resonance”,
Physical Review Letters 110, 123201 (2013) (See page: 20).

[126] R. Zhang, Y. Cheng, H. Zhai, and P. Zhang, “Orbital Feshbach Resonance
in Alkali-Earth Atoms”, Physical Review Letters 115, 135301 (2015) (See
pages: 20, 21, 127).

141

http://dx.doi.org/10.1103/PhysRevLett.107.103902
http://dx.doi.org/10.1103/PhysRevLett.107.103902
http://dx.doi.org/10.1103/PhysRevLett.113.120402
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/PhysRevA.47.4114
http://dx.doi.org/10.1103/PhysRevA.47.4114
http://dx.doi.org/10.1103/PhysRevLett.73.518
http://dx.doi.org/10.1103/PhysRevLett.77.2913
http://dx.doi.org/10.1103/PhysRevLett.93.123001
http://dx.doi.org/10.1103/PhysRevLett.101.203201
http://dx.doi.org/10.1103/PhysRevLett.101.203201
http://dx.doi.org/10.1103/PhysRevLett.107.073202
http://dx.doi.org/10.1103/PhysRevLett.110.123201
http://dx.doi.org/10.1103/PhysRevLett.115.135301


Bibliography

[127] G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J. Catani, M. Inguscio,
and L. Fallani, “Strongly Interacting Gas of Two-Electron Fermions at an
Orbital Feshbach Resonance”, Physical Review Letters 115, 265301 (2015)
(See pages: 20, 127).

[128] C. A. Regal, M. Greiner, and D. S. Jin, “Lifetime of Molecule-Atom Mixtures
near a Feshbach Resonance in 40K”, Physical Review Letters 92, 083201
(2004) (See page: 22).

[129] J. Xu, R. Zhang, Y. Cheng, P. Zhang, R. Qi, and H. Zhai, “Orbital Feshbach
Resonance: A "wide"narrow resonance for Higher Transition Temperature
Fermi Superfluid”, (2016) (See pages: 22, 127).

[130] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical Dipole Traps
for Neutral Atoms”, in Advances In Atomic, Molecular, and Optical Physics,
Vol. 42, edited by B. B. H. Walther (Academic Press, 2000), pp. 95–170 (See
pages: 23, 62, 76).

[131] V. A. Dzuba and A. Derevianko, “Dynamic polarizabilities and related
properties of clock states of the ytterbium atom”, Journal of Physics B:
Atomic, Molecular and Optical Physics 43, 074011 (2010) (See pages: 23, 97).

[132] N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y.
Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2
Optical Lattice Clock”, Physical Review Letters 103, 063001 (2009) (See
pages: 24, 91).

[133] W. Kohn, “Analytic Properties of Bloch Waves and Wannier Functions”,
Physical Review 115, 809–821 (1959) (See page: 28).

[134] H. Yokoyama and H. Shiba, “Variational Monte-Carlo Studies of Hubbard
Model. I”, Journal of the Physical Society of Japan 56, 1490–1506 (1987)
(See page: 30).

[135] C. J. Halboth and W. Metzner, “Renormalization-group analysis of the two-
dimensional Hubbard model”, Physical Review B 61, 7364–7377 (2000) (See
page: 30).

[136] M. Hinczewski and A. N. Berker, “Two superconducting phases in the d=3
Hubbard model”, The European Physical Journal B - Condensed Matter and
Complex Systems 48, 1–17 (2005) (See page: 30).

[137] P. W. Anderson, “Theory of magnetic exchange interactions: exchange in
insulators and semiconductors”, Solid state physics 14, 99–214 (1963) (See
page: 30).

[138] Y. Nagaoka, “Ferromagnetism in a Narrow, Almost Half-Filled s Band”,
Physical Review 147, 392–405 (1966) (See page: 30).

142

http://dx.doi.org/10.1103/PhysRevLett.115.265301
http://dx.doi.org/10.1103/PhysRevLett.92.083201
http://dx.doi.org/10.1103/PhysRevLett.92.083201
http://arxiv.org/abs/1602.06513
http://www.sciencedirect.com/science/article/pii/S1049250X0860186X
http://dx.doi.org/10.1088/0953-4075/43/7/074011
http://dx.doi.org/10.1088/0953-4075/43/7/074011
http://dx.doi.org/10.1103/PhysRevLett.103.063001
http://dx.doi.org/10.1103/PhysRev.115.809
http://dx.doi.org/10.1143/JPSJ.56.1490
http://dx.doi.org/10.1103/PhysRevB.61.7364
http://dx.doi.org/10.1140/epjb/e2005-00376-y
http://dx.doi.org/10.1140/epjb/e2005-00376-y
http://dx.doi.org/10.1103/PhysRev.147.392


Bibliography

[139] T. Obermeier, T. Pruschke, and J. Keller, “Ferromagnetism in the large-U
Hubbard model”, Physical Review B 56, R8479–R8482 (1997) (See page: 30).

[140] G. Senatore and N. H. March, “Recent progress in the field of electron
correlation”, Reviews of Modern Physics 66, 445–479 (1994) (See page: 30).

[141] T. Esslinger, “Fermi-Hubbard Physics with Atoms in an Optical Lattice”,
Annual Review of Condensed Matter Physics 1, 129–152 (2010) (See page: 30).

[142] E. H. Lieb and F. Y. Wu, “Absence of Mott Transition in an Exact Solution
of the Short-Range, One-Band Model in One Dimension”, Physical Review
Letters 20, 1445–1448 (1968) (See page: 30).

[143] F. H. L. Essler, V. E. Korepin, and K. Schoutens, “Complete solution of the
one-dimensional Hubbard model”, Physical Review Letters 67, 3848–3851
(1991) (See page: 30).

[144] R. W. Cherng, G. Refael, and E. Demler, “Superfluidity and Magnetism in
Multicomponent Ultracold Fermions”, Physical Review Letters 99, 130406
(2007) (See page: 30).

[145] N. Read and S. Sachdev, “Some features of the phase diagram of the square
lattice SU(N) antiferromagnet”, Nuclear Physics B 316, 609–640 (1989) (See
page: 30).

[146] R. Micnas, J. Ranninger, and S. Robaszkiewicz, “Superconductivity in narrow-
band systems with local nonretarded attractive interactions”, Reviews of
Modern Physics 62, 113–171 (1990) (See page: 31).

[147] M. Iskin and C. A. R. S. de Melo, “Superfluid and Insulating Phases of
Fermion Mixtures in Optical Lattices”, Physical Review Letters 99, 080403
(2007) (See page: 31).

[148] A. Moreo and D. J. Scalapino, “Cold Attractive Spin Polarized Fermi Lattice
Gases and the Doped Positive U Hubbard Model”, Physical Review Letters
98, 216402 (2007) (See page: 31).

[149] A. F. Ho, M. A. Cazalilla, and T. Giamarchi, “Quantum simulation of the
Hubbard model: The attractive route”, Physical Review A 79, 033620 (2009)
(See page: 31).

[150] R. Staudt, M. Dzierzawa, and A. Muramatsu, “Phase diagram of the three-
dimensional Hubbard model at half filling”, The European Physical Journal B
- Condensed Matter and Complex Systems 17, 411–415 (2000) (See page: 33).

[151] N. Blümer and E. V. Gorelik, “Mott transitions in the half-filled SU(2M)
symmetric Hubbard model”, Physical Review B 87, 085115 (2013) (See
pages: 33, 121).

[152] H. Yanatori and A. Koga, “Finite Temperature Phase Transitions in the
SU(N) Hubbard model”, (2016) (See page: 33).

143

http://dx.doi.org/10.1103/PhysRevB.56.R8479
http://dx.doi.org/10.1103/RevModPhys.66.445
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
http://dx.doi.org/10.1103/PhysRevLett.20.1445
http://dx.doi.org/10.1103/PhysRevLett.20.1445
http://dx.doi.org/10.1103/PhysRevLett.67.3848
http://dx.doi.org/10.1103/PhysRevLett.67.3848
http://dx.doi.org/10.1103/PhysRevLett.99.130406
http://dx.doi.org/10.1103/PhysRevLett.99.130406
http://dx.doi.org/10.1016/0550-3213(89)90061-8
http://dx.doi.org/10.1103/RevModPhys.62.113
http://dx.doi.org/10.1103/RevModPhys.62.113
http://dx.doi.org/10.1103/PhysRevLett.99.080403
http://dx.doi.org/10.1103/PhysRevLett.99.080403
http://dx.doi.org/10.1103/PhysRevLett.98.216402
http://dx.doi.org/10.1103/PhysRevLett.98.216402
http://dx.doi.org/10.1103/PhysRevA.79.033620
http://dx.doi.org/10.1007/s100510070120
http://dx.doi.org/10.1007/s100510070120
http://dx.doi.org/10.1103/PhysRevB.87.085115
http://arxiv.org/abs/1603.02647


Bibliography

[153] H. Song and M. Hermele, “Mott insulators of ultracold fermionic alkaline
earth atoms in three dimensions”, Physical Review B 87, 144423 (2013) (See
page: 34).

[154] S. R. Manmana, K. R. A. Hazzard, G. Chen, A. E. Feiguin, and A. M. Rey,
“SU(N) magnetism in chains of ultracold alkaline-earth-metal atoms: mott
transitions and quantum correlations”, Physical Review A 84, 043601 (2011)
(See pages: 34, 42, 126).

[155] K. Huang, Statistical mechanics (Wiley, 1987), 516 pp. (See pages: 34, 82).
[156] D. F. B. ten Haaf and J. M. J. van Leeuwen, “High-temperature series

expansions for the Hubbard model”, Physical Review B 46, 6313–6327 (1992)
(See page: 36).

[157] J. A. Henderson, J. Oitmaa, and M. C. B. Ashley, “High-temperature expan-
sion for the single-band Hubbard model”, Physical Review B 46, 6328–6337
(1992) (See page: 36).

[158] J. Oitmaa, C. Hamer, and W. Zheng, Series expansion methods for strongly
interacting lattice models (Cambridge University Press, 2006) (See page: 36).

[159] S. Fuchs, E. Gull, L. Pollet, E. Burovski, E. Kozik, T. Pruschke, and M.
Troyer, “Thermodynamics of the 3D Hubbard Model on Approaching the
Néel Transition”, Physical Review Letters 106, 030401 (2011) (See page: 36).

[160] K. R. A. Hazzard, V. Gurarie, M. Hermele, and A. M. Rey, “High-temperature
properties of fermionic alkaline-earth-metal atoms in optical lattices”, Physical
Review A 85, 041604 (2012) (See page: 36).

[161] Z. Cai, H.-H. Hung, L. Wang, and C. Wu, “Quantum magnetic properties of
the SU(2N) Hubbard model in the square lattice: A quantum Monte Carlo
study”, Physical Review B 88, 125108 (2013) (See page: 42).

[162] F. F. Assaad, “Phase diagram of the half-filled two-dimensional SU(N)
Hubbard-Heisenberg model: A quantum Monte Carlo study”, Physical Review
B 71, 075103 (2005) (See pages: 43, 44, 121, 126).

[163] T. A. Tóth, A. M. Läuchli, F. Mila, and K. Penc, “Three-Sublattice Ordering
of the SU(3) Heisenberg Model of Three-Flavor Fermions on the Square and
Cubic Lattices”, Physical Review Letters 105, 265301 (2010) (See pages: 43,
44).

[164] P. Corboz, A. M. Läuchli, K. Penc, M. Troyer, and F. Mila, “Simultaneous
Dimerization and SU(4) Symmetry Breaking of 4-Color Fermions on the
Square Lattice”, Physical Review Letters 107, 215301 (2011) (See pages: 43,
44, 126).

144

http://dx.doi.org/10.1103/PhysRevB.87.144423
http://dx.doi.org/10.1103/PhysRevA.84.043601
http://dx.doi.org/10.1103/PhysRevB.46.6313
http://dx.doi.org/10.1103/PhysRevB.46.6328
http://dx.doi.org/10.1103/PhysRevB.46.6328
http://dx.doi.org/10.1103/PhysRevLett.106.030401
http://dx.doi.org/10.1103/PhysRevA.85.041604
http://dx.doi.org/10.1103/PhysRevA.85.041604
http://dx.doi.org/10.1103/PhysRevB.88.125108
http://dx.doi.org/10.1103/PhysRevB.71.075103
http://dx.doi.org/10.1103/PhysRevB.71.075103
http://dx.doi.org/10.1103/PhysRevLett.105.265301
http://dx.doi.org/10.1103/PhysRevLett.107.215301


Bibliography

[165] S. Capponi, P. Lecheminant, and K. Totsuka, “Phases of one-dimensional
SU(N) cold atomic Fermi gases –from molecular Luttinger liquids to topological
phases”, (2015) (See page: 42).

[166] L. Messio and F. Mila, “Entropy Dependence of Correlations in One-Dimensional
SU(N) Antiferromagnets”, Physical Review Letters 109, 205306 (2012) (See
page: 42).

[167] G. Szirmai, E. Szirmai, A. Zamora, and M. Lewenstein, “Gauge fields emerging
from time-reversal symmetry breaking for spin-5/2 fermions in a honeycomb
lattice”, Physical Review A 84, 011611 (2011) (See page: 44).

[168] M. P. Sarachik, E. Corenzwit, and L. D. Longinotti, “Resistivity of Mo-Nb
and Mo-Re Alloys Containing 1% Fe”, Physical Review 135, A1041–A1045
(1964) (See page: 45).

[169] S. Doniach, “The Kondo lattice and weak antiferromagnetism”, Physica B+C
91, 231–234 (1977) (See pages: 45, 98).

[170] K. Andres, J. E. Graebner, and H. R. Ott, “4f -Virtual-Bound-State Formation
in CeAl3 at Low Temperatures”, Physical Review Letters 35, 1779–1782 (1975)
(See page: 45).

[171] J. D. Thompson, J. M. Lawrence, and Z. Fisk, “Scaling in heavy-fermion
systems”, Journal of Low Temperature Physics 95, 59–74 (1994) (See
page: 45).

[172] F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H.
Schäfer, “Superconductivity in the Presence of Strong Pauli Paramagnetism:
CeCu2Si2”, Physical Review Letters 43, 1892–1896 (1979) (See page: 46).

[173] C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D.
Thompson, Z. Fisk, and P. Monthoux, “Heavy-fermion superconductivity in
CeCoIn 5 at 2.3 K”, Journal of Physics: Condensed Matter 13, L337 (2001)
(See page: 46).

[174] B. D. White, J. D. Thompson, and M. B. Maple, “Unconventional supercon-
ductivity in heavy-fermion compounds”, Physica C: Superconductivity and
its Applications, Superconducting Materials: Conventional, Unconventional
and Undetermined 514, 246–278 (2015) (See page: 46).

[175] C. Lacroix and M. Cyrot, “Phase diagram of the Kondo lattice”, Physical
Review B 20, 1969–1976 (1979) (See pages: 47, 98).

[176] H. Tsunetsugu, M. Sigrist, and K. Ueda, “The ground-state phase diagram of
the one-dimensional Kondo lattice model”, Reviews of Modern Physics 69,
809–864 (1997) (See page: 48).

145

http://arxiv.org/abs/1509.04597
http://dx.doi.org/10.1103/PhysRevLett.109.205306
http://dx.doi.org/10.1103/PhysRevA.84.011611
http://dx.doi.org/10.1103/PhysRev.135.A1041
http://dx.doi.org/10.1103/PhysRev.135.A1041
http://dx.doi.org/10.1016/0378-4363(77)90190-5
http://dx.doi.org/10.1016/0378-4363(77)90190-5
http://dx.doi.org/10.1103/PhysRevLett.35.1779
http://dx.doi.org/10.1007/BF00754923
http://dx.doi.org/10.1103/PhysRevLett.43.1892
http://dx.doi.org/10.1088/0953-8984/13/17/103
http://dx.doi.org/10.1016/j.physc.2015.02.044
http://dx.doi.org/10.1016/j.physc.2015.02.044
http://dx.doi.org/10.1016/j.physc.2015.02.044
http://dx.doi.org/10.1103/PhysRevB.20.1969
http://dx.doi.org/10.1103/PhysRevB.20.1969
http://dx.doi.org/10.1103/RevModPhys.69.809
http://dx.doi.org/10.1103/RevModPhys.69.809


Bibliography

[177] M. A. Ruderman and C. Kittel, “Indirect Exchange Coupling of Nuclear
Magnetic Moments by Conduction Electrons”, Physical Review 96, 99–102
(1954) (See page: 48).

[178] T. Kasuya, “A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s
Model”, Progress of Theoretical Physics 16, 45–57 (1956) (See page: 48).

[179] K. Yosida, “Magnetic Properties of Cu-Mn Alloys”, Physical Review 106,
893–898 (1957) (See page: 48).

[180] R. Zhang, D. Zhang, Y. Cheng, W. Chen, P. Zhang, and H. Zhai, “Kondo effect
in alkaline-earth-metal atomic gases with confinement-induced resonances”,
Physical Review A 93, 043601 (2016) (See pages: 49, 126).

[181] H. J. Metcalf and P. van Straten, Laser cooling and trapping (Springer, Berlin,
2002) (See page: 51).

[182] H. J. Metcalf and P. van Straten, “Deceleration of an Atomic Beam”, in Laser
Cooling and Trapping (Springer, Berlin, 2002) (See page: 54).

[183] B. E. A. Saleh and M. C. Teich, “Nonlinear optics”, in Fundamentals of
Photonics (John Wiley & Sons, 2007) (See page: 58).

[184] M. Tabachnyk, “Aufbau eines Referenzlasers für den 399nm 1S0 → 1P1 Über-
gang von Ytterbium.”, Bachelor’s thesis (Ludwig-Maximilians-Universität,
München, 2012) (See page: 58).

[185] E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabi-
lization”, American Journal of Physics 69, 79–87 (2001) (See page: 59).

[186] P. Ketterer, “A stable laser setup for the 578 nm clock transition of Ytter-
bium”, Master’s thesis (Ludwig-Maximilians-Universität, München, 2012)
(See page: 59).

[187] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of
Neutral Sodium Atoms with Radiation Pressure”, Physical Review Letters
59, 2631–2634 (1987) (See page: 59).

[188] H. J. Metcalf and P. van Straten, “Optical Traps for Neutral Atoms”, in
Laser Cooling and Trapping (Springer, Berlin, 2002) (See page: 59).

[189] R. Maruyama, R. H. Wynar, M. V. Romalis, A. Andalkar, M. D. Swallows,
C. E. Pearson, and E. N. Fortson, “Investigation of sub-Doppler cooling in an
ytterbium magneto-optical trap”, Physical Review A 68, 011403 (2003) (See
page: 59).

[190] X. Xu, T. H. Loftus, M. J. Smith, J. L. Hall, A. Gallagher, and J. Ye,
“Dynamics in a two-level atom magneto-optical trap”, Physical Review A 66,
011401 (2002) (See page: 59).

146

http://dx.doi.org/10.1103/PhysRev.96.99
http://dx.doi.org/10.1103/PhysRev.96.99
http://dx.doi.org/10.1143/PTP.16.45
http://dx.doi.org/10.1103/PhysRev.106.893
http://dx.doi.org/10.1103/PhysRev.106.893
http://dx.doi.org/10.1103/PhysRevA.93.043601
http://dx.doi.org/10.1119/1.1286663
http://dx.doi.org/10.1103/PhysRevLett.59.2631
http://dx.doi.org/10.1103/PhysRevLett.59.2631
http://dx.doi.org/10.1103/PhysRevA.68.011403
http://dx.doi.org/10.1103/PhysRevA.66.011401
http://dx.doi.org/10.1103/PhysRevA.66.011401


Bibliography

[191] P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu, “Optical molasses and multilevel
atoms: theory”, Journal of the Optical Society of America B 6, 2058 (1989)
(See page: 60).

[192] J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit
by polarization gradients: simple theoretical models”, Journal of the Optical
Society of America B 6, 2023 (1989) (See page: 60).

[193] C. N. Cohen-Tannoudji and W. D. Phillips, “New mechanisms for laser
cooling”, Physics Today 43, 33–40 (1990) (See page: 60).

[194] S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser Cooling to
Quantum Degeneracy”, Physical Review Letters 110, 263003 (2013) (See
page: 60).

[195] S. Stellmer, R. Grimm, and F. Schreck, “Production of quantum-degenerate
strontium gases”, Physical Review A 87, 013611 (2013) (See page: 60).

[196] H. J. Metcalf and P. van Straten, “Evaporative cooling”, in Laser Cooling
and Trapping (Springer, Berlin, 2002) (See page: 64).

[197] K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-
dimensional array”, Nature Physics 3, 556–560 (2007) (See page: 68).

[198] E. Haller, J. Hudson, A. Kelly, D. A. Cotta, B. Peaudecerf, G. D. Bruce, and
S. Kuhr, “Single-atom imaging of fermions in a quantum-gas microscope”,
Nature Physics 11, 738–742 (2015) (See page: 68).

[199] D. Greif, M. F. Parsons, A. Mazurenko, C. S. Chiu, S. Blatt, F. Huber, G. Ji,
and M. Greiner, “Site-resolved imaging of a fermionic Mott insulator”, (2015)
(See page: 68).

[200] L. W. Cheuk, M. A. Nichols, M. Okan, T. Gersdorf, V. V. Ramasesh, W. S.
Bakr, T. Lompe, and M. W. Zwierlein, “Quantum-Gas Microscope for
Fermionic Atoms”, Physical Review Letters 114, 193001 (2015) (See page: 68).

[201] O. Morice, Y. Castin, and J. Dalibard, “Refractive index of a dilute Bose
gas”, Physical Review A 51, 3896–3901 (1995) (See page: 68).

[202] C. C. Bradley, C. A. Sackett, and R. G. Hulet, “Bose-Einstein Condensation
of Lithium: Observation of Limited Condensate Number”, Physical Review
Letters 78, 985–989 (1997) (See page: 69).

[203] M. R. Andrews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend,
S. Inouye, and W. Ketterle, “Propagation of Sound in a Bose-Einstein Con-
densate”, Physical Review Letters 79, 553–556 (1997) (See page: 69).

[204] F. Zernike, “Phase contrast, a new method for the microscopic observation of
transparent objects part II”, 9, 974–986 (1942) (See page: 69).

147

http://dx.doi.org/10.1364/JOSAB.6.002058
http://dx.doi.org/10.1364/JOSAB.6.002023
http://dx.doi.org/10.1364/JOSAB.6.002023
http://dx.doi.org/10.1063/1.881239
http://dx.doi.org/10.1103/PhysRevLett.110.263003
http://dx.doi.org/10.1103/PhysRevA.87.013611
http://dx.doi.org/10.1038/nphys645
http://dx.doi.org/10.1038/nphys3403
http://arxiv.org/abs/1511.06366
http://dx.doi.org/10.1103/PhysRevLett.114.193001
http://dx.doi.org/10.1103/PhysRevA.51.3896
http://dx.doi.org/10.1103/PhysRevLett.78.985
http://dx.doi.org/10.1103/PhysRevLett.78.985
http://dx.doi.org/10.1103/PhysRevLett.79.553
http://dx.doi.org/10.1016/S0031-8914(42)80079-8


Bibliography

[205] F. Zernike, “Phase contrast, a new method for the microscopic observation of
transparent objects”, 9, 686–698 (1942) (See page: 69).

[206] F. Zernike, “How I Discovered Phase Contrast”, 121, 345–349 (1955) (See
page: 69).

[207] G. Reinaudi, T. Lahaye, Z. Wang, and D. Guéry-Odelin, “Strong saturation
absorption imaging of dense clouds of ultracold atoms”, Optics Letters 32,
3143 (2007) (See page: 70).

[208] C. Jeff, Depth of Field in Depth, (2004) http://www.largeformatphotography.
info/articles/DoFinDepth.pdf (visited on 03/30/2016) (See page: 71).

[209] C.-L. Hung, X. Zhang, L.-C. Ha, S.-K. Tung, N. Gemelke, and C. Chin,
“Extracting density–density correlations from in situ images of atomic quantum
gases”, New Journal of Physics 13, 075019 (2011) (See page: 72).

[210] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Clarendon
Press, Apr. 3, 2003), 392 pp. (See page: 72).

[211] M. Inguscio, W. Ketterle, and C. Salomon, Ultra-cold Fermi Gases (IOS
Press, Apr. 18, 2008), 933 pp. (See page: 72).

[212] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum
phase transition from a superfluid to a Mott insulator in a gas of ultracold
atoms”, 415, 39–44 (2002) (See page: 75).

[213] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger, “Transition from
a Strongly Interacting 1D Superfluid to a Mott Insulator”, Physical Review
Letters 92, 130403 (2004) (See page: 75).

[214] F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, and I. Bloch,
“Interference pattern and visibility of a Mott insulator”, Physical Review A
72, 053606 (2005) (See page: 75).

[215] S. Stellmer, R. Grimm, and F. Schreck, “Detection and manipulation of
nuclear spin states in fermionic strontium”, Physical Review A 84, 043611
(2011) (See page: 76).

[216] S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto, R. Murakami, and
Y. Takahashi, “Realization of a SU(2)× SU(6) System of Fermions in a Cold
Atomic Gas”, Physical Review Letters 105, 190401 (2010) (See page: 76).

[217] L. D. Carr, G. V. Shlyapnikov, and Y. Castin, “Achieving a BCS Transition
in an Atomic Fermi Gas”, Physical Review Letters 92, 150404 (2004) (See
page: 83).

[218] S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of ultracold atomic
Fermi gases”, Reviews of Modern Physics 80, 1215–1274 (2008) (See page: 84).

148

http://dx.doi.org/10.1016/S0031-8914(42)80035-X
http://dx.doi.org/10.1126/science.121.3141.345
http://dx.doi.org/10.1364/OL.32.003143
http://dx.doi.org/10.1364/OL.32.003143
http://www.largeformatphotography.info/articles/DoFinDepth.pdf
http://www.largeformatphotography.info/articles/DoFinDepth.pdf
http://dx.doi.org/10.1088/1367-2630/13/7/075019
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevA.72.053606
http://dx.doi.org/10.1103/PhysRevA.72.053606
http://dx.doi.org/10.1103/PhysRevA.84.043611
http://dx.doi.org/10.1103/PhysRevA.84.043611
http://dx.doi.org/10.1103/PhysRevLett.105.190401
http://dx.doi.org/10.1103/PhysRevLett.92.150404
http://dx.doi.org/10.1103/RevModPhys.80.1215


Bibliography

[219] G. M. Bruun and C. W. Clark, “Ideal gases in time-dependent traps”, Physical
Review A 61, 061601 (2000) (See page: 84).

[220] L. D. Landau, “The Theory of a Fermi Liquid”, Journal of Experimental and
Theoretical Physics 3, 920 (1956) (See page: 86).

[221] L. D. Landau, “Oscillations in a Fermi Liquid”, Journal of Experimental and
Theoretical Physics 5, 101 (1957) (See page: 86).

[222] R. Jáuregui, N. Poli, G. Roati, and G. Modugno, “Anharmonic parametric
excitation in optical lattices”, Physical Review A 64, 033403 (2001) (See
page: 89).

[223] K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoasso-
ciation spectroscopy: Long-range molecules and atomic scattering”, Reviews
of Modern Physics 78, 483–535 (2006) (See page: 90).

[224] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and
theory in cold and ultracold collisions”, Reviews of Modern Physics 71, 1–85
(1999) (See page: 90).

[225] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic
clocks”, Reviews of Modern Physics 87, 637–701 (2015) (See page: 91).

[226] X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S. Safronova, P. Zoller,
A. M. Rey, and J. Ye, “Spectroscopic observation of SU(N)-symmetric inter-
actions in Sr orbital magnetism”, 345, 1467–1473 (2014) (See page: 91).

[227] J. Ye, H. J. Kimble, and H. Katori, “Quantum State Engineering and Precision
Metrology Using State-Insensitive Light Traps”, 320, 1734–1738 (2008) (See
page: 93).

[228] H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, “Ultrastable
Optical Clock with Neutral Atoms in an Engineered Light Shift Trap”, Physical
Review Letters 91, 173005 (2003) (See page: 93).

[229] Z. W. Barber, J. E. Stalnaker, N. D. Lemke, N. Poli, C. W. Oates, T. M.
Fortier, S. A. Diddams, L. Hollberg, C. W. Hoyt, A. V. Taichenachev, and
V. I. Yudin, “Optical Lattice Induced Light Shifts in an Yb Atomic Clock”,
Physical Review Letters 100, 103002 (2008) (See page: 93).

[230] C. Schweizer, “A bi-chromatic optical lattice setup for Kondo-lattice physics
with ultracold ytterbium atoms”, Master’s thesis (Ludwig-Maximilians-
Universität, München, 2013) (See pages: 93, 126).

[231] G. K. Campbell, M. M. Boyd, J. W. Thomsen, M. J. Martin, S. Blatt, M. D.
Swallows, T. L. Nicholson, T. Fortier, C. W. Oates, S. A. Diddams, N. D.
Lemke, P. Naidon, P. Julienne, J. Ye, and A. D. Ludlow, “Probing Interactions
Between Ultracold Fermions”, 324, 360–363 (2009) (See page: 94).

149

http://dx.doi.org/10.1103/PhysRevA.61.061601
http://dx.doi.org/10.1103/PhysRevA.61.061601
http://dx.doi.org/10.1103/PhysRevA.64.033403
http://dx.doi.org/10.1103/RevModPhys.78.483
http://dx.doi.org/10.1103/RevModPhys.78.483
http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/RevModPhys.87.637
http://dx.doi.org/10.1126/science.1254978
http://dx.doi.org/10.1126/science.1148259
http://dx.doi.org/10.1103/PhysRevLett.91.173005
http://dx.doi.org/10.1103/PhysRevLett.91.173005
http://dx.doi.org/10.1103/PhysRevLett.100.103002
http://dx.doi.org/10.1126/science.1169724


Bibliography

[232] A. D. Ludlow, N. D. Lemke, J. A. Sherman, C. W. Oates, G. Quéméner,
J. von Stecher, and A. M. Rey, “Cold-collision-shift cancellation and inelastic
scattering in a Yb optical lattice clock”, Physical Review A 84, 052724 (2011)
(See pages: 94, 98).

[233] A. M. Rey, A. V. Gorshkov, and C. Rubbo, “Many-Body Treatment of the
Collisional Frequency Shift in Fermionic Atoms”, Physical Review Letters
103, 260402 (2009) (See page: 94).

[234] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch,
“Controlled collisions for multi-particle entanglement of optically trapped
atoms”, 425, 937–940 (2003) (See page: 95).

[235] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch,
“Coherent Transport of Neutral Atoms in Spin-Dependent Optical Lattice
Potentials”, Physical Review Letters 91, 010407 (2003) (See page: 95).

[236] D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entan-
glement of Atoms via Cold Controlled Collisions”, Physical Review Letters
82, 1975–1978 (1999) (See page: 95).

[237] D. L. Haycock, P. M. Alsing, I. H. Deutsch, J. Grondalski, and P. S. Jessen,
“Mesoscopic Quantum Coherence in an Optical Lattice”, Physical Review
Letters 85, 3365–3368 (2000) (See page: 95).

[238] G. Jotzu, M. Messer, F. Görg, D. Greif, R. Desbuquois, and T. Esslinger, “Cre-
ating State-Dependent Lattices for Ultracold Fermions by Magnetic Gradient
Modulation”, Physical Review Letters 115, 073002 (2015) (See page: 95).

[239] P. M. Duarte, R. A. Hart, T.-L. Yang, X. Liu, T. Paiva, E. Khatami, R. T.
Scalettar, N. Trivedi, and R. G. Hulet, “Compressibility of a Fermionic Mott
Insulator of Ultracold Atoms”, Physical Review Letters 114, 070403 (2015)
(See pages: 103, 107).

[240] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and C. Salomon, “Exploring
the thermodynamics of a universal Fermi gas”, 463, 1057–1060 (2010) (See
pages: 107, 110).

[241] N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, “In situ observation of
incompressible Mott-insulating domains in ultracold atomic gases”, 460, 995–
998 (2009) (See page: 107).

[242] V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruc-
tion of Abel-transformable images: The Gaussian basis-set expansion Abel
transform method”, Review of Scientific Instruments 73, 2634–2642 (2002)
(See pages: 108, 113).

150

http://dx.doi.org/10.1103/PhysRevA.84.052724
http://dx.doi.org/10.1103/PhysRevLett.103.260402
http://dx.doi.org/10.1103/PhysRevLett.103.260402
http://dx.doi.org/10.1038/nature02008
http://dx.doi.org/10.1103/PhysRevLett.91.010407
http://dx.doi.org/10.1103/PhysRevLett.82.1975
http://dx.doi.org/10.1103/PhysRevLett.82.1975
http://dx.doi.org/10.1103/PhysRevLett.85.3365
http://dx.doi.org/10.1103/PhysRevLett.85.3365
http://dx.doi.org/10.1103/PhysRevLett.115.073002
http://dx.doi.org/10.1103/PhysRevLett.114.070403
http://dx.doi.org/10.1038/nature08814
http://dx.doi.org/10.1038/nature08244
http://dx.doi.org/10.1038/nature08244
http://dx.doi.org/10.1063/1.1482156


Bibliography

[243] T.-L. Ho and Q. Zhou, “Obtaining the phase diagram and thermodynamic
quantities of bulk systems from the densities of trapped gases”, Nature Physics
6, 131–134 (2010) (See page: 110).

[244] A. J. R. Heck, R. N. Zare, and D. W. Chandler, “Photofragment imaging
of methane”, The Journal of Chemical Physics 104, 4019–4030 (1996) (See
page: 112).

[245] S. J. Cavanagh, S. T. Gibson, M. N. Gale, C. J. Dedman, E. H. Roberts,
and B. R. Lewis, “High-resolution velocity-map-imaging photoelectron spec-
troscopy of the O− photodetachment fine-structure transitions”, Physical
Review A 76, 052708 (2007) (See page: 112).

[246] L. Montgomery Smith, D. R. Keefer, and S. I. Sudharsanan, “Abel inver-
sion using transform techniques”, Journal of Quantitative Spectroscopy and
Radiative Transfer 39, 367–373 (1988) (See page: 113).

[247] E. V. Gorelik and N. Blümer, “Mott transitions in ternary flavor mixtures of
ultracold fermions on optical lattices”, Physical Review A 80, 051602 (2009)
(See page: 119).

[248] U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will, S. Braun, T. Best,
I. Bloch, E. Demler, S. Mandt, D. Rasch, and A. Rosch, “Fermionic transport
and out-of-equilibrium dynamics in a homogeneous Hubbard model with
ultracold atoms”, Nature Physics 8, 213–218 (2012) (See page: 121).

[249] B. D. Esry, C. H. Greene, and J. P. Burke, “Recombination of Three Atoms
in the Ultracold Limit”, Physical Review Letters 83, 1751–1754 (1999) (See
page: 123).

[250] J. Söding, D. Guéry-Odelin, P. Desbiolles, F. Chevy, H. Inamori, and J.
Dalibard, “Three-body decay of a rubidium Bose–Einstein condensate”,
Applied Physics B 69, 257–261 (2014) (See page: 123).

[251] P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov, “Three-Body
Recombination of Ultracold Atoms to a Weakly Bound s Level”, Physical
Review Letters 77, 2921–2924 (1996) (See page: 123).

[252] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, “Three-Body
Recombination at Large Scattering Lengths in an Ultracold Atomic Gas”,
Physical Review Letters 91, 123201 (2003) (See page: 123).

[253] M. S. Safronova, S. G. Porsev, and C. W. Clark, “Ytterbium in Quantum
Gases and Atomic Clocks: van der Waals Interactions and Blackbody Shifts”,
Physical Review Letters 109, 230802 (2012) (See page: 124).

[254] B. Bauer, P. Corboz, A. M. Läuchli, L. Messio, K. Penc, M. Troyer, and F.
Mila, “Three-sublattice order in the SU(3) Heisenberg model on the square
and triangular lattice”, Physical Review B 85, 125116 (2012) (See page: 126).

151

http://dx.doi.org/10.1038/nphys1477
http://dx.doi.org/10.1038/nphys1477
http://dx.doi.org/10.1063/1.471214
http://dx.doi.org/10.1103/PhysRevA.76.052708
http://dx.doi.org/10.1103/PhysRevA.76.052708
http://dx.doi.org/10.1016/0022-4073(88)90101-X
http://dx.doi.org/10.1016/0022-4073(88)90101-X
http://dx.doi.org/10.1103/PhysRevA.80.051602
http://dx.doi.org/10.1038/nphys2205
http://dx.doi.org/10.1103/PhysRevLett.83.1751
http://dx.doi.org/10.1007/s003400050805
http://dx.doi.org/10.1103/PhysRevLett.77.2921
http://dx.doi.org/10.1103/PhysRevLett.77.2921
http://dx.doi.org/10.1103/PhysRevLett.91.123201
http://dx.doi.org/10.1103/PhysRevLett.109.230802
http://dx.doi.org/10.1103/PhysRevB.85.125116


Bibliography

[255] M. A. Cazalilla and A. M. Rey, “Ultracold Fermi gases with emergent SU(N)
symmetry”, Reports on Progress in Physics 77, 124401 (2014) (See page: 126).

[256] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E. Khatami, R. T.
Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, “Observation of antifer-
romagnetic correlations in the Hubbard model with ultracold atoms”, 519,
211–214 (2015) (See page: 126).

[257] R. Sensarma, D. Pekker, M. D. Lukin, and E. Demler, “Modulation Spec-
troscopy and Dynamics of Double Occupancies in a Fermionic Mott Insulator”,
Physical Review Letters 103, 035303 (2009) (See page: 126).

[258] A. Tokuno and T. Giamarchi, “Finite-temperature dynamical properties of
SU(N) fermionic Hubbard models in the spin-incoherent regime”, Physical
Review A 86, 053614 (2012) (See page: 126).

152

http://dx.doi.org/10.1088/0034-4885/77/12/124401
http://dx.doi.org/10.1038/nature14223
http://dx.doi.org/10.1038/nature14223
http://dx.doi.org/10.1103/PhysRevLett.103.035303
http://dx.doi.org/10.1103/PhysRevA.86.053614
http://dx.doi.org/10.1103/PhysRevA.86.053614


Danksagung

Zuerst möchte ich mich bei meinem Doktorvater Prof. Immanuel Bloch für die
Möglichkeit bedanken, in einem spannenden und neuen Gebiet, sowie in einer er-
folgreichen Gruppe mit hervorragenden Forschungsbedingungen promovieren zu
dürfen. Besonders beeindruckend war Immanuels Motivation und Begeisterung
für die Forschung in der Quantenphysik, insbesondere wenn es darum ging neue
Möglichkeiten zu diskutieren, die das Experiment verbessern konnten. Mein weiterer
Dank gebührt Simon Fölling, für die Entscheidung, mit einem neuartigen Element
ultrakalte Quantengase zu erzeugen und das Ytterbium Experiment in einem, vor
über 5 Jahren, leeren Labor zu starten. Simons umfassende Physikkenntnisse waren
sehr lehr- und hilfreich bei den Problemlösungen im täglichen Laboralltag.
Während der vergangenen Jahre waren außerdem viele Leute im Labor an der

erfolgreichen Arbeit beteiligt. Besonders möchte ich mich bei meinen Laborkollegen
Francesco Scazza, Moritz Höfer, Luis Riegger, Torsten Bähr, Pieter De Groot, Philip
Ketterer, Diogo Rio Fernandes sowie den zahlreichen Praktikanten und Werkstuden-
ten bedanken. Ohne ihr großes Engagement hätte sich das Ytterbium Experiment
nicht zu dem entwickelt, was es heute ist. Wir verbrachten zusammen viel Zeit im La-
bor mit teilweise frustrierenden aber auch erfolgreichen Momenten. Auch außerhalb
der Arbeit hatten wir schöne Erlebnisse bei den gemeinsamen Freizeitaktivitäten wie
Skifahren und Klettern, welche sich hoffentlich auch in Zukunft fortsetzen werden.

Mein weiterer Dank geht an das Boson Team Michael Lohse, Christian Schweizer,
Marcos Atala und Monika Aidelsburger, für die interessanten und konstruktiven
Diskussionen über Physik und Technik in entspannter Atmosphäre bei Kaffee und
Kuchen.
Ich bedanke mich auch bei allen Mitgliedern der Forschungsgruppe für die tolle

und anspornende Atmosphäre und die gemeinsam verbrachte Zeit auf Konferenzen
wie Ringberg, Bad Honnef, Venedig oder Berlin.

Ein großer Dank gebührt auch Jürgen Aust, Thomas Großhauser und der LMU
Werkstatt für ihre hervorragende Arbeit. Ohne ihre Hilfe wäre die Konstruktion und
der Aufbau des Ytterbium Experiments nicht möglich gewesen.

Danke auch an Bodo Hecker für seine große Hilfe beim Design oder auch Bugfixing
von elektronischen Geräten.

153



Bibliography

Ganz herzlich möchte ich mich auch bei ldiko Kecskesi, Marianne Kargl und
Kristina Schuldt bedanken, die mit ihrer stets freundlichen und hilfsbereiten Art bei
organisatorischen Abläufen, mir hilfreich zur Seite standen.

Zu guter Letzt möchte ich mich bei meinen Eltern für die großartige Unterstützung
in all den Jahren bedanken.

154


	Introduction
	Ytterbium - an alkaline earth-like element
	Physical and chemical properties
	Electronic structure
	The ground state
	Optical cooling transitions
	Metastable states

	SU(N) symmetric interactions
	Scattering properties
	Scattering properties of the meta-stable state
	Feshbach resonances

	Polarizability of electronic states

	Single and two-orbital physics in periodic potentials
	Quantum mechanics in periodic potentials
	Bloch waves
	Wannier basis

	The SU(N) Fermi-Hubbard model
	Metal to Mott crossover
	Thermodynamic properties in the Mott regime
	SU(N)-dependence of thermodynamic properties
	SU(N) magnetism

	Two-orbital physics
	Kondo physics


	Experimental setup
	Vacuum chamber
	Imaging objective
	High-power coil

	Laser systems
	Blue laser setup
	Green laser setup

	Optical traps
	Magneto-optical trap
	Optical dipole trap


	Preparation and characterization of SU(N) Fermi gases
	Measuring the momentum and density distributions
	In-situ imaging
	Time-of-flight imaging

	Nuclear spin detection and manipulation
	Spin-selective detection
	State preparation

	Thermometry of Fermi gases
	Local probing of trapped Fermi gases


	Ultracold ytterbium atoms in optical lattices
	Optical lattice potentials
	Lattice calibration
	Probing double occupancies

	State-dependent and independent lattices
	The magic wavelength lattice and the clock transition
	A state-dependent lattice for two-orbital physics


	Equation of state of the SU(N) Fermi-Hubbard model
	Experimental sequence
	Obtaining the equation of state
	Inverse Abel transformation
	Local pressure method
	Calibration of the imaging cross section

	Thermodynamics of the SU(N) Fermi-Hubbard model
	Local compressibility
	Entropy
	Three-body losses


	Conclusion and outlook
	Retrieving the inverse Abel transformation from the pressure
	Bibliography

