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“The diversity of the phenomena of nature is so great, and the 

treasures hidden in the heavens so rich, precisely in order that 

the human mind shall never be lacking in fresh nourishment.”  

 -- Johannes Kepler 
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ZUSAMMENFASSUNG 

Die Landoberfläche und ihre Beschaffenheit beeinflussen maßgeblich Wasser- und 

Energieaustauschprozesse zwischen Boden und Atmosphäre. Häufig stellt die Landoberfläche 

aufgrund ihrer ausgeprägten räumlichen oder zeitlichen Variabilität ein äußerst komplexes 

System dar, wobei ihre Variabilität entscheidend durch die Landnutzung geprägt wird. Daher 

stellen Informationen zur Landnutzung und ihrer dynamischen Veränderung über die Zeit 

wichtige Eingangsgrößen für die skalenübergreifende Modellierung der Interaktionen von 

Landoberfläche, Pflanzen und Atmosphäre dar. Das Projekt „CAOS - “From Catchments as 

Organised Systems to Models based on Dynamic Functional Units” setzt daher einen 

Schwerpunkt auf die Verbesserung der Beschreibung von Eigenschaften der Landoberfläche 

für die Modellierung mesoskaliger Einzugsgebiete. Ziel der vorliegenden Arbeit, die im 

Rahmen des CAOS Projektes umgesetzt wurde, ist die Gewinnung räumlich verteilter 

Landnutzungsinformationen sowie die Beschreibung der Vegetationsdynamik unter 

Verwendung fernerkundlicher Methoden. 

Fernerkundliche Methoden ermöglichen die Analyse großer Gebiete und stellen 

Landnutzungsdaten zu unterschiedlichen Zeitpunkten zur Verfügung. Aufgrund dieser 

Vorteile, wurden sie vielfältig zur Gewinnung von Informationen für Landoberflächenstudien 

eingesetzt. Die meisten dieser Methoden zur Klassifizierung unterschiedlicher Landnutzungen 

basieren auf der Auswertung von Bildern im sichtbaren und nahen Infrarot (VIS/NIR) Bereich 

des Lichtes. Im Gegensatz dazu, wurden die Einsatzmöglichkeiten von Thermalbildern (TIR) 

für die Beschreibung der Landnutzung bislang weniger ausführlich untersucht. Thermalbilder 

geben die Landoberflächentemperatur, die in enger Beziehung zu Wasser- und Energieflüssen 

an der Oberfläche steht, wider. Daher wurden Thermalbilder häufig als Eingangsdaten für die 

Modellierung der Energiebilanz der Erde, Bodenwasserverfügbarkeit sowie Verdunstung 

verwendet. Die Nutzung von thermalen Daten wird zusätzlich durch die immer wachsende 
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Zahl an thermalen Satellitensensoren vorangetrieben. Eines der Ziele dieser Arbeit ist daher, 

den Wert von TIR Daten für die Landnutzungsklassifizierung zu untersuchen. 

Hierfür wurde eine umfassende Analyse der TIR und VIS/NIR Bänder von Landsat-Bildern 

durchgeführt. Im Gegensatz zu anderen Studien, die die Entwicklung von 

Klassifizierungsalgorithmen zum Ziel haben, wurde der Schwerpunkt in dieser Arbeit auf die 

Untersuchung der Charakteristika der Landsat-Bilder gelegt.  Als Klassifizierungsalgorithmus 

wurden daher zwei bewährte Methoden, der „k-fold nearest neighborhood“ Algorithmus sowie 

der etwas komplexere „Random Forest“ Klassifikator, verwendet. Als Bildfeatures wurden 

Kenngrößen, die sich aus zwei bis sieben Bändern zusammensetzen, berechnet und zur 

Auswertung von Einzelbildern sowie Zeitreihen von Bildern herangezogen. Zur 

Quantifizierung der Unsicherheiten der Klassifizierungsergebnisse wurden sowohl 

pixelbasierte als auch polygonbasierte Kreuzvalidierungen („cross validation)“ durchgeführt.  

Es zeigte sich, dass die Berücksichtigung von TIR Informationen sowohl für Einzelbild- als 

auch Zeitreihenanalysen zu einer deutlichen Verbesserung der Klassifizierungsgenauigkeit 

führt. Aufbauend auf den Ergebnissen der pixelbasierten Kreuzvalidierung, führt die 

Integration von TIR Daten zu einer Steigerung der Gesamtgenauigkeit von 5% bzw. 6% für 

Einzelbilder der Landsat 8 Level 2 und Level 3 Daten sowie zu einer Erhöhung der Genauigkeit 

um 0.9% bzw. 3.6% für Zeitreihen von Landsat-Bildern der Levels 1 und 2. Bei Verwendung 

der polygonbasierten Kreuzvalidierung führt die Verwendung von TIR Bildern zu einer 

Verbesserung der Klassifizierung um 5% bzw. 12% für Einzelbilder der Levels 2 und 3. Im 

Unterschied hierzu führen der pixel- und polygonbasierte Validierungsansätze zu 

unterschiedlichen Ergebnisse bei der Analyse von Zeitreihen. Die Unterschiede in der 

Gesamtgenauigkeit liegen bei 4.5% bzw. 10% für Produkte der Levels 1 und 2. Diese 

Diskrepanz ergibt sich vorwiegend aus der Unsicherheit der pixelbasierten Methode, die sich 

durch die Korrelation von benachbarten Pixeln ergibt. Diese entsteht durch Erhöhung der 

Thermalbildauflösung durch „Resampling“. Zusammenfassend kann gesagt werden, dass die 
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zusätzliche Verwendung von TIR Daten, neben VIS/NIR Daten, für die Klassifizierung der 

Landnutzung sinnvoll erscheint. Die Bewertung der Ergebnisse sollte in diesem Falle mithilfe 

einer polygonbasierten Validierungsstrategie durchgeführt werden. 

Neben räumlich verteilten Informationen zur Landnutzung, sind räumlich-zeitliche 

Informationen zur Vegetationsdynamik für das Verständnis der Landschaft und ihrer Prozesse 

notwendig. Diese Informationen zur Vegetation sind sowohl für hydrologische als auch 

atmosphärische oder ökologische Studien unumgänglich. Veränderungen in der Vegetation 

stehen in Beziehung zum lokalen, regionalen, aber auch globalen Klima und beeinflussen 

wichtige klimatologische, meteorologische und hydrologische Prozesse wie die Speicherung 

von Kohlendioxid in der Atmosphäre, Verdunstung und Interzeption von Niederschlag. Der 

„Leaf Area Index“ (LAI) dient als Kenngröße zur Beschreibung der Vegetationseigenschaften 

und wird in einer Vielzahl von Ansätzen zur Modellierung der Vegetationsdynamik verwendet. 

Der MODIS Satellit stellt ein LAI-Produkt mit höher zeitlicher Auflösung zur Verfügung und 

bildet daher eine geeignete Grundlage zur Analyse der Vegetationsdynamik. Diese 

Satelliteninformationen zur Vegetationsdynamik können (nach Nachbearbeitung) als Referenz 

für die Bewertung von Modellergebnissen genutzt werden.  

Die Saisonalität der Photosynthese der Vegetation variiert aufgrund der jährlichen Variabilität 

des Wetters. Während die meisten Modelle nur die Variabilität der Temperatur 

berücksichtigen, fließt diese Klimavariabilität nur in komplexere Vegetationsdynamik-

Modelle ein. Neueste Studien zeigen, dass eine Veränderung des Niederschlags zu einer 

Veränderung der Pflanzenphänologie und des Kohlenstoffaustausches  führen könnte. 

Trotzdem wurde der Zusammenhang zwischen Niederschlag und Phänologie bis heute relativ 

wenig untersucht. In dieser Arbeit wurde ein neues Modell (TPVM - „temperature-

precipitation vegetation dynamic model“) zur Vorhersage der zeitlichen Veränderung des LAI 

mithilfe von Informationen zu Niederschlang und Temperatur entwickelt.  
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Die grundlegende Annahme dieses Modells ist, das Laubbäume im Sommer aktiv, im Winter 

inaktiv sind. Die LAI Zeitreihe wird mithilfe einer logistischen Funktion der Temperatur und 

des Niederschlags ermittelt. Das Potential dieses neuen Modells wurde durch den Vergleich 

mit zwei gängigen temperaturabhängigen Modell, dem „Double Logistic Model (DLM)“ und 

dem „Canopy Structure Dynamic Model (CSDM)“ evaluiert. Als Referenz zur Bestimmung 

der Modellgüte wurden Freilandmessungen herangezogen. Im Vergleich mit dem MODIS LAI 

Produkt und den modellierten LAI Werten der beiden Modelle DLM und CSDM, erreichte das 

hier beschriebene Modell TPVM die höchste Übereinstimmung mit den Feldmessungen. 

Deutlich bessere Ergebnisse im Vergleich zu den beiden anderen Modellen konnten vor allem 

für landwirtschaftliche Flächen  erreicht werden. In einer weitführenden Analyse von 

Feedbacks der Klimavariabilität auf die Pflanzenphänologie konnten die dominante Rolle der 

Temperatur bei Laubwäldern und der kombinierte Einfluss von Temperatur und Niederschlag 

für landwirtschaftliche Flächen gezeigt werden. Aufgrund seiner Evaluierungsergebnisse 

eignet sich das TPVM Modell zur Beschreibung der zeitlichen Entwicklung des LAI und somit 

zur Anwendung in öko-hydrologischen Modellen.  
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SUMMARY 

The land surface is strongly controlling the energy and water fluxes between the above-surface 

and subsurface systems. The complexity of the land surface system exhibits with large spatial 

heterogeneity of the land surface properties or high temporal variability of land surface 

processes. As the essential parts of the land surface system, land cover patterns and dynamic 

changes are strongly required in the land surface modelling across the temporal and spatial 

scales. Therefore, in the joint CAOS project (“From Catchement as Organised Systems to 

Models based on Dynamic Functional Units”), one primary objective is to improve the retrieval 

of land surface characteristics in a meso-scale catchment. Specifically, standing at the point of 

view by using remote sensing techniques, great efforts are made in this thesis to derive the 

spatially distributed land cover information and quantify the vegetation dynamics.  

Remote sensing techniques provide multi-spatial and multi-temporal land cover information, 

which have been successfully applied in a variety of land surface studies. Current land cover 

mapping studies have been focusing on developing the classification methods by using the 

visible or near-infrared data (VIS/NIR). However, very limited studies have considered the 

effectiveness of the thermal infrared (TIR) data.  TIR information has been proved to be tightly 

related to the energy and water fluxes in the land surface system. The land surface temperature 

(LST) is frequently used as an important parameter for the modelling of land surface energy 

balance, or the evaluation of surface moisture and evapotranspiration. Moreover, the 

development of satellite instruments have promoted the availability of TIR data. The valuable 

TIR data captured by the current satellite sensors should be fully exploited. Therefore, one of 

our objectives is to investigate the usefulness of the TIR data in the land cover classification.  

A comprehensive study of the TIR and VIS/NIR bands from the Landsat images was 

conducted. Contrary to previous studies with tremendous efforts on developing the 

classification algorithms, the essential characteristics of the Landsat data are paid more 
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attention in this work. Therefore, the simple k-fold nearest neighborhood algorithm and 

advanced random forest method were selected as the classification algorithms. In the aspect of 

the data features, different variants were derived from the Landsat images ranging from two 

bands to seven bands composition. From the temporal scales, both single-date and multi-

temporal Landsat images were evaluated. Furthermore, the classification results were analyzed 

by the pixel-based and polygon-based cross validation (CV) methods for uncertainty 

assessment.  

The classification results of both single-date and time series of Landsat images showed that the 

inclusion of the thermal information could considerable improve the accuracy of the land cover 

classification. Based on the pixel-based CV method, the combination with the thermal band 

improves the overall accuracy (OA) by 5% and 6% for the single-date Landsat 8 image in Level 

2 and Level 3 category and by about 0.9% to 3.6% for the time series of Landsat images in 

Level 1 and Level 2 category. Additionally based on the polygon-based CV method, the 

improvement of single-date image when including TIR data is clear for the Level 2 and Level 

3 category with 5% and 12% respectively. Whereas, the pixel-based CV and polygon-based 

CV method retrieved slightly distinct results for the time series of Landsat images with the 

difference of OA from 4.5% to 10% for Level 1 and Level 2 category. The discrepancy mainly 

results from the uncertainty of the pixel-based CV method which is affected by the pixel 

correlation problem of the resampled thermal band. Additionally, the polygon-based CV 

method effectively complements the uncertainty assessment in order to reduce the influence of 

the correlated pixels. All in all, for the future studies, the thermal bands are recommended to 

be integrated with the VIS/NIR data for the land cover classification. And when the resampled 

thermal images are used, the polygon-based CV method would be more appropriate for the 

accuracy assessment.  

Besides the spatially distributed land cover information, as well as the spatio-temporal 

information of vegetation dynamics need to be quantified in understanding the landscape. The 
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importance of vegetation canopies could never be neglected when studying the hydrological, 

atmospheric, or ecological systems. Changes in vegetation cover occurring at the spatial or 

temporal scales interact with the local, regional or global climate. The vegetation dynamics 

influence the atmospheric carbon storage or release and crucially affect the fundamental 

hydrological process such as the evapotranspiration and rainfall interception. Leaf area index 

(LAI) serving as the representative proxy of the vegetation attributes have been frequently used 

in vegetation dynamics modelling. Especially, the LAI product provided by the MODIS 

satellite program has the pronounced potential in observing the terrestrial vegetation dynamics 

with high-temporal frequency. The temporal LAI data from satellite products after 

preprocessing could be used as the reference data for the vegetation dynamics modelling.    

The seasonality of photosynthesis of the vegetation canopy varies according to the year-to-year 

weather variability. Considerable vegetation dynamics models take the climate variability into 

account, whereas most of the models are developed solely relying on the temperature 

variability. Current studies have reported that the shifts in precipitation may modify the 

vegetation phenology and C exchange. However, the precipitation interaction with the 

vegetation phenology has rarely been investigated. By integrating the two climate variables, a 

new temperature-precipitation vegetation dynamic model (TPVM) was set up in this work for 

the temporal LAI prediction.  

The fundamental assumption of the new model follows the general characteristic of deciduous 

canopies as summer active and winter dormant in nature. The model derives the time series of 

LAI based on the logistic functions with the cumulative daily temperature and precipitation as 

input. The capability of TPVM was evaluated by comparing with two typical temperature-

dependent models, the Double Logistic Model (DLM) and the Canopy Structure Dynamic 

Model (CSDM). Using the field measured LAI data as reference, TPVM retrieved the best LAI 

values compared to the original MODIS LAI product and the modelled LAI data from DLM 

and CSDM. Besides, TPVM performed comparably well as the DLM for the deciduous forest 
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and surpassed the two models for the agricultural land covers. Further phenological metrics 

analysis about the feedbacks of the climate variability on the vegetation dynamics demonstrate 

that the dominance of the temperature on deciduous forest and the coherent influence of 

temperature and precipitation on the agricultural croplands. Consequently, the simple TPVM 

model is qualified to predict the temporal LAI profiles and could be further incorporated into 

the eco-hydrological models.   
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1 INTRODUCTION 

1.1 Background and Motivation 

1.1.1 Land Surface Process 

The land surface plays an important role within the hydrological, atmospheric, meteorological, 

climatological, and remote sensing communities (Bonan, 1998; Coudert, Ottlé, & Briottet, 

2008; Sabater et al., 2008). In the last decades, various Land Surface Models (LSM), Soil–

Vegetation–Atmosphere-Transfer (SVAT) or Surface Energy Balance (SEB) models have 

been designed to simulate the interactions between plant canopy processes and the 

environment. These models are very useful for the quantification and understanding of energy 

and water fluxes between the different parts of the ecosystem (F. Chen & Dudhia, 2001; P. J. 

Sellers et al., 1996; Piers J. Sellers et al., 1996). In  land surface modelling (Figure 1.1), 

characteristics of land cover govern many eco-hydrological variables, such as the surface 

roughness for energy transfer, albedo for solar absorption, moisture from canopies and soils, 

and mechanisms for water runoff (Dickinson, 1995). Land cover categorization and property 

representation of distinct land cover types such as the leaf area index (LAI) of plants are of 

vital importance for depicting the energy or water balance process. Traditional field 

measurement of the land cover types is very time-consuming and sophisticate modelling of 

vegetation LAI is too complicated to retrieve the effective process parameters for the eco-

hydrological models (Schulz et al., 2008). Therefore, this work aims at improving the land 

cover classification by fully exploiting the thermal infrared (TIR) and visible/near-infrared 

(VIS/NIR) information of the remote sensing data (RS) and developing a simple parsimonious 

vegetation dynamic model based on the meteorological data by utilizing the time series of RS 

data. 
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Figure 1.1 The generalized land surface processes with various land cover types, inspired by the land 

surface model Noah (Chen et al., 1996). 

1.1.2 Land Cover Categorization 

In the land surface system, land cover and land use have different definitions. Land use 

indicates the human activity on the land influenced by various human-related arrangement such 

as the economic or cultural factors (Rozenstein and Karnieli, 2011). Whereas, land cover refers 

to the observed biophysical cover of the terrestrial surface, of which the specific types can be 

identified by using the remotely sensed imagery including vegetation, water courses, bare soil 

or settlement (Gómez et al., 2016). Land cover serves as one of the basic variables in ecological 
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modelling, climate system research, as well as in hydrological process studies (Carlson and 

Traci Arthur, 2000; Herold et al., 2006).  

For example, land cover data provide valuable information to predict the distribution of both 

individual species and species assemblages, or the detailed habitat heterogeneity data for the 

ecosystem (Kerr and Ostrovsky, 2003). Land cover information affects the climate system in a 

various ways and has the direct interaction with the surface solar and longwave radiation and 

the fluxes changes of the atmospheric turbulence or the carbon uptake (Mahmood et al., 2010; 

Pielke et al., 2011). In addition, the land cover information can be used to determine runoff 

coefficients and to characterize infiltration, erosion, and evapotranspiration for distributed 

hydrological models (Dubayah et al., 2000; Hansen and Goetz, 2006; Liang et al., 1999).  In 

the ecological modelling, Moreover, global and small-scale annual changes of land cover types, 

vegetation cover, the degree of imperviousness (Carlson and Traci Arthur, 2000), all have 

major effects on the behavior and response of hydrological systems from the plot, via the hill 

slope to the catchment and basins scale (Houghton et al., 2012; Running et al., 1999). Processes 

altered include the infiltration of rainfall, overland flow and the amount of evapotranspiration 

that are controlled - besides atmospheric conditions – by the physiology of the underlying 

vegetation (Figure 1.1). Especially at the meso-scale, spatial pattern of land (sub)surface 

conditions have shown to strongly effect hydrological response and eco-hydrological system 

behavior (Cihlar et al., 2000). In this sense, reliable categorization of land cover types has 

notable meanings for the land surface process study. 

1.1.3 Vegetation Dynamics Modelling 

Vegetation canopies have a number of prominent functions in the biosphere and affect the 

ecosystem in various spatial and temporal scales (Goward and Prince, 1995). The vegetation 

dynamics are regarded as indicators for evaluating the interactions between the water cycle, 

climate and terrestrial systems (Sitch et al., 2003). Intrinsically coupled with the water cycle, 
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the distribution and productivity of terrestrial vegetation interact strongly with the water 

balance (Churkina et al., 1999; Stephenson, 1990). Many SVAT models explicitly consider the 

role of vegetation in affecting water and energy balance by taking into account its physiological 

properties (Arora, 2002). Researchers summarized three dominant physiological and structural 

characteristics affecting the evapotranspiration that include the leaf area, photosynthetic rate 

and the rooting depth (Eamus, 2003; Zhang et al., 2001). However, most of the eco-

hydrological models usually include the vegetation as a static parameter in spite of the key role 

of vegetation in the water balance. In particularly, as one of the important state variables, many 

eco-hydrological applications (e.g. SVAT, SEB) still use the constant monthly value of one 

specific vegetation type instead of the dynamic LAI values from year to year (Su, 2000). The 

easily-derivable and physically-reasonable vegetation dynamics model in the sense of LAI 

values is strongly required.  

1.1.4 Remote Sensing Techniques 

With low-cost, fast and repeated monitoring of land surface, satellite images have been long 

utilized in the land cover mapping and change detection for more than 40 years (Byrne et al., 

1980). Figure 1.2 lists the historical and planned satellite sensors relating to the vegetation 

dynamics and land cover monitoring (Houborg et al., 2015). Since 1970s, Landsat 1 was 

launched with the Multispectral Scanner System (MSS) sensors onboard and started the 

Landsat legacy at the forefront of space-based Earth observation. Landsat missions have been 

developed from only four spectral bands (green, red, and two NIR bands) in Landsat 1, to seven 

bands (with VIS/NIR and TIR bands) in Landsat 4/5, and to the 11 spectral bands of the 

nowadays Landsat 8 with two instruments of the Operational Land Imager (OLI) and the 

Thermal Infrared Sensor (TIRS) recording in. Following the Landsat mission, a number of 

medium resolution and high spatial resolution satellite sensors have been launched to provide 

large-scale images for the global, continental, or regional scale land cover mapping, as well as 
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ocean or atmosphere studies (Giri et al., 2013). Frequently-used products comprise the 1km 

Advanced Very High Resolution Radiometer (AVHRR) with five spectral bands, 250m-1km 

Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua platforms 

recording in 36 spectral bands, 1km SPOT-VGT with four spectral bands and the 300m -1.2km 

and MEdium Resolution Imaging Spectrometer (MERIS) with 15 VIS/NIR bands on Envisat. 

Among all these earth observation programs, because of the high-quality multiple VIS/NIR 

and TIR spectral datasets, Landsat and MODIS products freely distributed by NASA  have 

attracted numerous researchers for the land cover mapping (Friedl et al., 2002; Oetter et al., 

2001; Steele et al., 1998), change detection (Maximov, 2003; Muttitanon and Tripathi, 2005; 

Shalaby and Tateishi, 2007), vegetation mapping and seasonal variation analysis (Chandola et 

al., 2010; Feng et al., 2008; Reed et al., 1994; Xie et al., 2008).  
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Figure 1.2 Timelines  of  historical  and  planned  multi-  and  hyperspectral  optical  and  thermal  

satellite  sensors  relevant  for  remote  sensing  of  vegetation  at  medium  to  very  high spatial  

resolution, cited from (Houborg et al., 2015). 

1.2 State of the Art in Land Cover Classification 

1.2.1 Development of Land Cover Classification Methods 

The spatially explicit land cover information recorded by the satellite sensors can be recognized 

through the classification of the RS images. The increasing emergence of the remote sensing 

techniques also accelerated the development of classification methods in the land cover 

mapping. Diverse classification approaches have been proposed including the supervised or 

unsupervised, parametric or nonparametric, and hard or fuzzy classification methods (Lu and 

Weng, 2007). Specifically, the numerous classification algorithms range from the simple 
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unsupervised cluster analysis to the advanced classification algorithms, such as the expert 

systems (Lucas et al., 2007; Zhang and Zhu, 2011), random forest trees (Gislason et al., 2006; 

Rodriguez-Galiano et al., 2012a; Rodriguez-Galiano et al., 2012b), artificial neural networks 

(Bischof et al., 1992; Brown et al., 2008), support vector machines (Huang et al., 2002; Vuolo 

and Atzberger, 2012), or fuzzy sets (Foody, 1996; Pérez-Hoyos et al., 2012).  

However, despite the intensive achievement of classification algorithms in the land cover 

mapping with remotely sensed images, Wilkinson (2005) quantitatively investigated over 500 

classification experiments and reported that the classification performance has shown no 

significant improvement over the 15-year period. He pointed out that one possible reason could 

be that the improvements in the classification algorithms are too small to have any appreciable 

effect on the field. Manandhar et al. (2009) concluded that it is of minor value to further 

continue developing the classification algorithms. Instead, research should be more concerned 

about the essence of the geographic datasets (Stefanov et al., 2001). This includes the 

exploration of the multiple features of RS data using the image transformation methods (e.g. 

principle component analysis (Linders, 2000);  the use of various spatial texture information 

(Clausi, 2002); the integration of RS with geographic information system techniques (GIS), 

data fusion of VIS/NIR bands with radar data or aerial photographs (Ban, 2003; Geneletti and 

Gorte, 2003) or with pan band (Shi et al., 2003); or the combination of multi-temporal data 

(Amorós-López et al., 2013; Claverie et al., 2012; Yuan et al., 2005). In accordance with these 

conclusions, this work pays more attention on investigating the potential of Landsat VIS/NIR 

and TIR datasets within the classification process.  Just two supervised classification methods 

are selected here for the land cover classification, the simple k-fold Nearest Neighborhood (k-

NN) and the advanced Random Forest (RF) algorithm.  
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1.2.2 TIR for Land Cover Classification 

The traditional supervised classification procedure follows the way of choosing the appropriate 

data sources, constructing the suitable classification definition set, image preprocessing, 

selection of representative training samples, feature extraction, performing the classification 

algorithms, post-classification processing, and accuracy assessment (Anderson, 2005; Lu and 

Weng, 2007). An appropriate dataset is significantly important and needs to be determined in 

the first place.  

Most of the previous studies using the single or multi-temporal Landsat images mainly 

investigated the effectiveness of the 30m VIS/NIR bands for land cover classification. For 

example, Byrne et al. (1980) performed the principle component analysis (PCA) on two 

Landsat scenes of four-channel VIS/NIR bands on different dates to monitor the land cover 

change. Guerschman et al. (2003) explored the use of multi-temporal Landsat TM data from 

the same growing season for the classification of land cover types in the south-western portion 

of the Argentine Pampas and investigated about the necessary dates for an accurate 

classification. Several researchers detected the LUCC using the multi-temporal satellite images 

or transformed VIS/NIR band indices for the study areas all over the world (Lambin et al., 

2003; Lunetta et al., 2006; Muttitanon and Tripathi, 2005; Shalaby and Tateishi, 2007; Yuan 

et al., 2005). They either worked to improve or set up new classification algorithms, or 

transform the VIS/NIR bands to the representative spectral components, or combine multi-

temporal Landsat VIS/NIR images. But very limited researches have been conducted in 

evaluating the TIR efficiency in the land cover classification.  

TIR remote sensing provides continuous representation of the land-surface temperatures (LST) 

(Kustas and Anderson, 2009), which are directly linked with the eco-hydrological processes. 

The thermal information characterizing the energy balance at the land surface can be applied 

in a variety of fields, such as the identification of catchment functional units (Müller et al., 
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2014), urban heat islands pattern monitoring (Li et al., 2013), land surface energy fluxes and 

evapotranspiration estimation (Kustas and Anderson, 2009). However, only very few 

researchers have investigated the effectiveness of the Landsat thermal band for improving the 

land cover classification (French et al., 2008; Southworth, 2004). Southworth (2004) 

investigated the Landsat TM thermal band in the land cover analysis of tropical dry forest 

regions and reported that the thermal band contains considerable information for the 

discrimination of land cover classes and the thermal band also outperformed many of the 

individual bands of information. Eisavi et al. (2015) evaluated the multi-temporal Landsat 8 

data for the land cover mapping and demonstrated that the multi-temporal thermal and spectral 

information can be complementary rather than redundant. However, to what extent or how the 

thermal information can be fully exploited in order to further improve the land cover 

classification still needs further investigation and is a focus of this research..  

1.3 Vegetation Dynamics and Remote Sensing Techniques 

1.3.1 Vegetation Dynamics Modelling 

Previous studies have shown that the vegetation dynamics can be simulated in various ways by 

modelling the bidirectional interactions between climate and vegetation. Moreover, the studies 

of vegetation dynamics could be addressed at different spatial scales such as the species 

distribution, shifts or size (deforestation), structural and physiological characteristics, and at 

temporal scales from millennia to decades with the shifts of reproduction age, succession stage, 

and, most importantly, phenology (Thuiller, 2007). For example, the process-based simulation 

of the vegetation dynamics such as the dynamic global vegetation model (DGVM) follows the 

ecophysiological principles by exploring the influencing factors during the past, current and 

future on the distribution of plant functional types at the regional or global scales (Prentice et 

al., 2007; Scheiter et al., 2013). However, such dynamic vegetation models are quite complex 

and have high parametrical requirements. In operational applications the DGVM may be 
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limited by the “data-hungry” phenomenon and need large amount of direct observations for the 

model parameters (Hartig et al., 2012). Therefore, this work aims at developing a simple 

parsimonious vegetation dynamic model for a mesoscale catchment, with spatially-explicit and 

varying seasonal LAI values by integrating the remotely sensed data with the meteorological 

observations.  

1.3.2 Climate Controls on the Vegetation Dynamics  

Before assuming the structure of the vegetation dynamic model, the relationship between the 

vegetation LAI and the climate controls needs to be reviewed. In spatially distributed eco-

hydrological modelling, seasonal and inter-annual vegetation dynamics are considered to be 

directly linked to the phenology patterns of the ecosystem (Evrendilek and Gulbeyaz, 2008). 

Phenology of plants has been altered by climate warming over the past 50 years and may be an 

important mechanism behind ecosystem response to global change in the future (Morisette et 

al., 2008). Moreover, scientists evaluated the climate change in local, regional or global scales 

and conclude that the species ranges of plants, phenology, primary productivity, biomass and 

the vegetation-climate relationships have been significantly altered (Chen et al., 2010; Cleland 

et al., 2007; D'Arrigo et al., 2004; Krishnaswamy et al., 2014; Nemani et al., 2003; Parmesan 

and Yohe, 2003). For example, the spring green-up or autumn senescence time of different 

vegetation types, or the amplitude and length of growing season vary year from year affected 

by the climate change. Correspondingly climate controls can influence the LAI values then 

affect the canopy interception of precipitation and surface energy balance in the distributed 

hydrological models (Bastiaanssen et al., 1998; Cleland et al., 2007; Schwartz et al., 2006; Su, 

2000).   

The temperature control has been intensively studied in the phenology model indicated by the 

cumulative temperature or growing degree days (Leith, 1974). However, very limited studies 

have explicitly investigated the precipitation controls on the LAI variation during the plant 
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growth stages. Grier and Running (1977) proposed that the precipitation input, soil water 

storage and atmospheric evaporative demand appears to be the dominant control of the leaf 

area index (LAI) and net primary production (NPP) in forests of the northern-western United 

States. Richardson et al. (2013) reviewed the studies on the interactions between the climate 

change and phenology in a climate system and provided a valuable qualitative understanding 

for other researchers. He summarized that the shifts in temperature  and  precipitation  driven  

by  climate change  will  likely  cause  shifts  in  the  phenology  of  carbon budgets  in  many  

ecosystems. The magnitude of interactions and feedbacks between temperature-precipitation 

and the vegetation dynamics of LAI values still need to be precisely quantified. In this work, a 

vegetation dynamic model is developed to predict the spatially distributed LAI dynamics in a 

mesoscale catchment by simulating from a phenological perspective using cumulative 

temperature and precipitation data.  

The phenology of vegetation normally refers to the timing of the recurring plant growth stages, 

such as the start time of leaf emergence, the time of maximum leaf areas or the time of leaf 

senescence. Therefore, in this sense, the seasonal variations of LAI could be used as indicators 

of vegetation phenology and could possibly be expressed following the philosophy of the 

phenology model to present the relationship between the LAI and climate controls. Plant 

phenology models generally include three main types: theoretical, statistical and mechanistic 

models. Theoretical models are designed to understand the evolution of leaf lifespan strategies 

rather than the annual variation, e.g. defining the phenology based on the prescribed leaf onset 

and offset dates (Chuine et al., 2003). Statistical phenology models use the simple or complex 

relationship between the timing of phenological events (e.g. the leaf-on, leaf-off) and the 

climatic controls (Emberlin et al., 1997; Schwartz, 1998; Schwartz and Karl, 1990). 

Mechanistic phenology models have a long ongoing development and normally assume the 

cause-effect relationships between the biological process and the driving factors, which 

describe the plant development responses to the temperature with various functions 
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representing the forcing or chilling process (Chuine, 2000; Chuine et al., 1999; Liang and 

Schwartz, 2009; Richardson et al., 2006; Schwartz et al., 2006). However, these models are 

mainly developed based on the field measurements or for one specific vegetation type and are 

limited in the application for larger regions.  

Nowadays, compared to the traditional modelling ways based on the climate controls and the 

time-consuming phenological observation data, satellite data has been more and more applied 

to detect the vegetation phenological change within the grid pixel scale (White et al., 1997). 

Despite the advanced development of phenology models by using the RS data (Baret and 

Vintila, 2003; Schwartz et al., 2002; White and Nemani, 2006), comprehensive investigation 

by integrating satellite products and the meteorological observation still require further efforts 

in retrieving the dynamic vegetation properties for the spatially-distributed eco-hydrological 

model. To this intent, our work takes the MODIS LAI products to investigate the LAI variations 

of different vegetation types using the climate data.    

1.3.3 LAI Prediction Integrating the Meteorological Data and Satellite Data  

LAI is defined as the total one-sided area of leaf tissue per unit ground surface area (Watson, 

1947). As one of the representative characteristics of vegetation dynamics, LAI serves as an 

important component in many climate or hydrological models and closely links to key 

ecological processes such as photosynthesis, transpiration, and evapotranspiration, and can be 

used to estimate net primary productivity (NPP) and other quantities (Jiang et al., 2010). 

Continuous and long-term monitoring of LAI contribute significantly for the vegetation 

dynamics analysis in productivity or climate change study in the ecosystem (Zheng and 

Moskal, 2009). With non-destructive, cheap and large spatial scale observation, RS techniques 

provide repetitive observations of the land surface and can well capture the vegetation status 

from space.  
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The retrieval methods of LAI values from the optical RS data can generally be conducted by 

several methodologies. Frequently used methods include: the empirical relationship between 

LAI and VIs; inversion of physically based canopy radiative transfer models (RTM); the use 

of look-up tables (LUT) or other algorithms such as neural networks. The VIs derived from the 

satellite images mainly depend on the contrast vegetation reflectance characteristics in the solar 

spectrum that with the increase of vegetation LAI, visible reflectance declines and 

simultaneous NIR reflectance increases (Verstraete et al., 1996). The robust feature of plants 

also promotes the fast development of vegetation indices (VIs) application with the satellite 

images. VIs minimize the disturbing influences of soil background or differences in 

atmospheric conditions, or the terrain related illumination differences (Atzberger et al., 2011). 

Satellite-derived VIs can be used as proxies for vegetation parameters such as the fractional 

vegetation cover (fc) and LAI (Glenn et al., 2008). For example, theoretical and field studies 

have shown that the normalized difference vegetation index (NDVI) is near-linearly related to 

photosynthetically active radiation (fPAR) absorbed by the plant canopy and non-linearly 

related to the LAI values (Pettorelli et al., 2005). But the empirical relationship between LAI 

and VIs have difficulties in accounting for the complex vegetation processes and the 

relationship may not be stable for the large area. On the other hand, the RTM can explicitly 

exploit the physical process of radiation interaction within the vegetation but has been limited 

by the expensive computational requirements and optimal inversion solutions (Fang et al., 

2003).  LUT or NN methods are promising and simple to use but not generalized to handle the 

arbitrary directional and spectral combinations (Kimes et al., 2000). Initializing from the 

perspective of the canopy structure dynamics model, the temporal changes of vegetation LAI 

are mainly governed by the plant growth and closely influenced by the environmental factors. 

The generalized expression between the climate factors and the leaf area could be explored for 

the LAI prediction. Therefore, this work takes this vegetation growth feature into account and 

aims to set up a simple parsimonious model using the climate data and primarily simulate the 

LAI results using the satellite LAI products as reference datasets. 
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Considering the choice of the satellite data, MODIS products provide the various land, 

atmosphere or ocean products. Actually, the empirical study between LAI and NDVI started 

since 1981 when AVHRR by National Oceanic and Atmospheric Administration (NOAA) 

started to provide the long-term NDVI data sets at coarse spatial scales (8-16 km resolution). 

But with better quality, NASA scientific teams generate the most abundant VI products using 

the MODIS data in diverse spatial and temporal scales, which offers great opportunity for the 

vegetation dynamics studies in meso-scale catchment. As one of the variables directly-related 

to the eco-hydrological process among the MODIS VIs products, time series of LAI products 

with 500m or 1000m spatial resolution could offer the great potential in the vegetation 

dynamics modelling. The MOD15A2H LAI products are retrieved using the main LUT method 

using 3D radiative transfer equation and a back-up empirical relationship of NDVI and LAI 

data. MOD15A2H LAI products have been improved by using the higher-quality surface 

reflectance input data. However even when considered as “good quality”, the data can still 

hardly avoid the deficiency of noises resulting from the atmospheric conditions or the system 

errors. Therefore, the satellite data must be preprocessed to ensure the constituency of the LAI 

products before application in the vegetation dynamic model. 

1.4 Research Objectives  

As two important variables of the land surface characteristics, the land cover types and 

vegetation dynamics play a predominant role in the in the eco-hydrological processes.  

Remotely sensed images can provide valuable land surface information and could be 

continuously used in the spatial-distributed terrestrial system modelling. Especially the thermal 

information can give a better understanding of the land surface energy distribution which 

closely related to the land cover types. However, only few investigation have been done in this 

area. As one of the main objectives, this research is dedicated to exploit the effectiveness of 

the TIR band from the Landsat images in land cover classification.   
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The second objective is concerned with the improved representation of vegetation dynamics. 

As one of the most important proxy of vegetation dynamics, vegetation LAI values need to be 

accurately predicted. Previous LAI retrieval suffers from the deficiencies of being too simple 

when based on empirical relationship between VIs and LAI, or too complex and computation-

consuming when based on RTM. Therefore, this work aims to develop a simple parsimonious 

vegetation dynamic model to predict the LAI values by integrating the climate data and the 

satellite products.  

1.5 Structure of the Thesis 

The primary idea of this thesis is to improve the RS data utilization in the land surface processes 

by improving the land cover categorization and better prediction of vegetation dynamics. This 

work is conducted in a meso-scale catchment in Luxembourg and is closely embedded in the 

CAOS project (http://www.caos-project.de/). The thesis consists of six main chapters and 

structured as Figure 1.3. Besides the introduction in Chapter 1, Chapter 2 mainly presents the 

preprocessing and analysis of the satellite data. As mentioned in the section above, the satellite 

data usually contain noises due to the atmospheric conditions or sensor view angle differences  

and other system errors. Therefore, no matter for which objective of this work, the satellite data 

should be preprocessed and analyzed before the further application.  
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Figure 1.3 Structure of the thesis 

Chapter 2 contains two main parts: the preprocessing of Landsat images and the smoothing 

methods comparison of MODIS products. For the preprocessing of the Landsat images, the 

research work attempts to investigate the effectiveness of thermal data in land cover 

classification using the single-date Landsat 8 image and time series of Landsat 4/5 images. The 

beforehand land cover change detection could be complementary for the time series of land 
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cover classification using satellite images from different years. Therefore, besides the general 

atmospheric correction and geometric correction for all the Landsat images, the LUCC maps 

for the study periods require to be analyzed: to what extent the changes happen during the past 

decades, which land cover types may have the largest influences. Secondly, for vegetation 

dynamics prediction, MODIS data should be filtered before utilization as the reference data for 

the LAI model. This work compares four smoothing methods for the MODIS VIs data and 

intends to give an overall performance analysis of the different methods before the further 

development of vegetation dynamics modeling. 

Chapter 3 and Chapter 4 engage in the detailed land cover classification research work and 

moreover investigate the different accuracy assessment procedure. In order to test the 

effectiveness of the TIR information, Chapter 3 compares the classification results by using 

VIS/NIR and TIR information from single-date and time series of Landsat images. 

Representative variants of channel combinations are derived in order to demonstrate the 

accuracy differences when adding the thermal band and without the thermal band. When using 

the resampled thermal band images, the sampling way of the cross validation evaluation could 

be easily affected. Thus, the evaluation of the different sampling ways (pixel-based or polygon-

based) needs investigation for the thermal remote sensing. Chapter 4 follows the same 

classification procedure while mainly focus on the sampling differences of the training and 

validation ways in the accuracy assessment.  

Chapter 5 aims at developing a new parsimonious vegetation dynamic model, which can easily 

derive the LAI data with the observed climate data. Following the canopy growth feature that 

the LAI values are strongly related to the climate factors. As representative examples, 

temperature and precipitation exert great influence on the vegetation dynamics. Therefore, the 

proposed model, not solely use the temperature data but also takes the precipitation data into 

account. Before using the MODIS data in the vegetation dynamic modeling, MODIS LAI 

products generally need to be smoothed. The smoothing principle is to filter out the sudden 
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spike points in the time series of LAI data while keep other data points as original as possible. 

The smoothing method with good performance evaluated in Chapter 2 could fulfill this 

requirement. Besides, distinct vegetation types respond differently to the climate change and 

normally could be illustrated by the vegetation dynamics model. Therefore, after the prediction 

of temporal LAI values, uncertainties evaluation with the field measurement and the 

frequently-used phenological metrics could serve as the direct indicators and be capable to 

reveal the responses of vegetation to the temperature or precipitation changes in different years.  

Finally, Chapter 6 provides a synthesis and an overall discussion of the land cover classification 

and vegetation dynamics modelling by the remote sensing techniques. Moreover, Chapter 6 

gives specific suggestions for the future researches.  

 



  2. Preprocessing 

 

 38  

 

2 Satellite Data Preprocessing and Land Cover Change Analysis  

2.1 Introduction 

The quality of satellite data determines their effectiveness in characterizing the land surface 

processes. Remotely sensed data provide valuable sources of information for the land surface 

monitoring or modelling, however the satellite images are often affected by the atmospheric 

effects, cloud contamination or physical system limitations (Hadjimitsis et al., 2004; Hilker et 

al., 2012; Tyagi and Bhosle, 2011).The atmosphere constituents modify the electromagnetic 

radiation by absorption or scattering when the signals travel through the solar spectrum from 

the Earth surface to the sensor (Tyagi and Bhosle, 2011). The haze, dust and the adjacency 

effects can mask the real changes or make similar land cover appear differently for the images 

at different times. Satellite sensors like the Landsat MSS, TM or ETM are able to detect large 

parts of the visible/near infrared spectrums. Song et al. (2001) performed land cover 

classification and change detection using the Landsat TM data by evaluating the various 

atmospheric correction algorithms and concluded that atmospheric correction is not always 

necessary for the single image classification. Whereas, it is mandatary for the multi-temporal 

or multi-sensor images to remove or reduce the atmosphere influence (Lu and Weng, 2007; 

Wang and De Liberty, 2005).   

Besides the atmospheric effects, snow or cloud cover, viewing or illumination geometry effects 

can also bring noise to the satellite data. The vegetation index products from MODIS are 

representative examples, even after the Maximum Value Compositing (MVC) within the 

specific time window (Holben, 1986). The noise often shows at the sudden-fall in the time 

series of LAI or NDVI data from MODIS with anomalous low values during the vegetation 

growth stages. The noise in the satellite data should be reduced before further application in 

the land surface eco-hydrological systems. Numerous smoothing methods have been 
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investigated using the remotely sensed data, ranging from the famous MVC (Holben, 1986), 

Best Index Slope Extraction (BISE) (Viovy et al., 1992), modified BISE (mBISE) (Lovell and 

Graetz, 2001),  Asymmetric Gaussian function (AG), Double Logistic function (DL), and 

Savitzky-Golay (SG) filter embedded in the TIMESAT software (Jönsson and Eklundh, 2004), 

curve fitting procedure (Beck et al., 2006; Bradley et al., 2007), or the wavelet transform 

algorithms (Martínez and Gilabert, 2009).  

This chapter presents the preprocessing and smoothing of the satellite data, aiming to find a 

suitable preprocessing way for the Landsat and MODIS data before directly addressing the land 

cover classification and vegetation dynamics modelling. The following sections introduce the 

detailed processing and analysis for Landsat images, and the comparison of four smoothing 

methods for MODIS vegetation products.   

2.2 Study Area 

The Attert catchment as the main test site of German DFG research project CAOS 

(“Catchments as Organized Systems”) is located in the Midwestern part of the Grand Duchy 

of Luxembourg and partially in Belgium (Figure 2.1). The catchment covers a total area of 288 

km2. The main land cover types consist of dense deciduous and coniferous forests, spacious 

pasture and croplands, and a sparse residential area. As shown in Figure 2.1, the catchment has 

very distinct geologies with a large area of marls, schists and small proportions of sandstones. 

Correspondingly, most of the dense deciduous and coniferous forests distribute at the northwest 

part of the schist area and the southeast sandstone areas. The spacious pasture and croplands 

locate at the middle of the marls area and sparse residential areas spread along the alluvium.  
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Figure 2.1 The geology and topography map of Attert Catchment from the CAOS project (CAOS, 

2012); the right-bottom overview map indicates the location of the Attert Catchment across Belgium 

and Luxembourg. 

According to the CORINE land cover map in 2006, the agricultural area takes up 65% and 

forest accounts for about 30% of the catchment. The elevation of the Attert basin ranges from 

238 m to 539 m. With a temperate climate, the mean monthly temperatures reaches a maximum 

of about 18 °C in July and a minimum of 0 °C in January. The high summer evapotranspiration 

from July to September and high flows from December to February is characterized by the 

mean annual precipitation of 850 mm and the mean annual actual evapotranspiration of 570 

mm (1971–2000). Figure 2.2 illustrates the daily mean temperature and cumulative daily sum 

precipitation variations from 2004 to 2011 in a meteorological station in Attert Catchment 

around Hovelange, Luxembourg.  
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Figure 2.2 Mean temperature and cumulative precipitation variations from year 2004 to 2011 of one 

example meteorological station in Attert Catchment around Hovelange, Luxembourg. 

2.3 Preprocessing and Analysis of Landsat Images 

2.3.1 Classification Process 

In the beginning of our research project, we were interested to evaluate the possible impacts of 

land use changes in the catchment on the hydrological responses.  Therefore, one research 

question  concerning the land surface characteristics was, how did the land cover and land use 

change during the past 40 years in the study area. We initially designed our research work to 

have a general overview of the land cover changes for the Attert Catchment. Figure 2.3 gives 

the flowchart of the land cover change detection in the Attert Catchment. The change detection 

procedure includes firstly to collect the Landsat images, then to define the land cover 

classification scheme, to perform the atmospheric correction, to select the training samples, to 

classify the Landsat images, to use the majority filter method to derive contiguous neighboring 

cells, and finally to detect the land cover changes between different years. Here the Level 1 

classification scheme was defined with four main land cover classes: artificial area, agricultural 

area, forest, and water bodies. The Landsat TM images were collected and atmospherically 
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corrected before classification using the maximum likelihood algorithm (ML). The 

atmospheric correction was performed by the MOTRAN algorithm in the ATCOR toolbox in 

ERDAS software (Geosystems, 2013). Afterwards, the training samples were edited by using 

the clustering method based on the referred Google-Earth maps and the observation map in 

2007 provided by the CAOS project. Based on the assumption of normal distributions of the 

input bands, the ML classifier decides whether a pixel belongs to a particular class based on 

the Bayesian probability decision rule. The equation uses the covariance matrix to present the 

variability of classes shown as the Equation 2.1: 

𝐷 = ln(𝑎𝑐) − [0.5 ln(|𝐶𝑜𝑣𝑐|)] − [0.5 (𝑋 − 𝑀𝑐)𝑇(𝐶𝑜𝑣𝑐
−1)(𝑋 − 𝑀𝑐)]                               (2.1) 

Where, D is the weighted distance (likelihood) and c indicates a particular class. X gives the 

measurement vector of the candidate pixel and Mc represents the mean vector of the sample of 

class c. ac is the percent probability that any candidate pixel is a member of class c (defaults to 

1.0). Covc and |Covc| are the covariance matrix of the pixels in the sample of class c and 

determinant of Covc respectively.  𝐶𝑜𝑣𝑐
−1 is  the inverse of Covc (matrix algebra) (Hord, 1982).    
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.  

Figure 2.3 Land cover classification flowchart 

2.3.2 Land Cover Change Mapping 

In this chapter, the land cover change detection uses three Landsat images from the years 1972, 

1990 and 2009. The three images were classified into four land cover types by the ML 

classification method. Besides, the pixels in the classification maps were filtered with the 2.5 

hectares clumping size by the majority filter, therefore the distinct or “sandy” pixels can be 

effectively removed out. The change maps from 1974 to 1990 and from 1990 to 2009 were 

derived based on the three post-classified maps (Figure 2.4). Table 2-1 presents the change 

areas of the different types of land cover changes from 1972 to 1990 and 1990 to 2009. The 

largest change type from 1972 to 1990 and also from 1990 to 2009 is from forest to agriculture. 
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The major changes also include the changes from agriculture to artificial areas and the artificial 

to agriculture. However, the changes from artificial area to agriculture or forest area are 

probably caused by the bare soil which has quite similar spectral characteristics or from the 

classification errors. Actually, among all the land cover changes, even the largest change area 

of 16 km2 is very small. Therefore, we conclude that the changes are too small to be considered 

respectively during the two periods. 

Table 2-1 Land cover change areas from 1972 to 1990 and 1990 to 2009 respectively. 

Change Type 1972-1990 (km2) 1990-2009 (km2) 

Agriculture to Artificial 4.23 0.38 

Forest to Artificial 1.14 0.00 

Artificial to Agriculture 4.47 2.26 

Forest to Agriculture 15.85 2.55 

Agriculture to Forest 0.31 1.71 

Artificial to Forest 0.17 0.00 
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Figure 2.4 Land cover change maps from 1972 to 1990 and from 1990 to 2006 based on Landsat images 

of Level 1 category. 

2.3.3  Change Comparison with CORINE Data 

CORINE provides three-year land cover maps and two land cover change maps in two periods 

from 1990 to 2000 and from 2000 to 2006. CORINE land cover maps were generated by 

computer assisted visual interpretation based on the high resolution satellite images and the in-

situ or ancillary data (EEA, 2012). One main difference between the CORINE products and 

our land cover or LUCC maps lies in the minimum mapping unit (MMU). The MMU of 

CORINE land cover map is 25 hectares and our land cover maps are derived with the MMU of 

2.5 hectares. And as a separate product, land cover change maps from CORINE with the MMU 

of 2.5 hectares are produced directly by means of computer-aided visual image interpretation 

not based on the land cover maps in the different years. In this chapter the MMU of our land 

cover change maps is also 2.5 hectares. Figure 2.5(a) and (b) demonstrate more clearly land 
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cover changes of CORINE from 1990 to 2006 and of Landsat images from 1990 to 2009, 

respectively. It is obvious to see that the main change areas are consistent between CORINE 

and Landsat, but the Landsat provides more small-scale changes. The main change areas are 

located at the east forest and the north artificial area, which is a new mineral extraction site and 

also the middle part of newly developed artificial area. But all in all, no matter based on the 

CORINE or the Landsat images, it can be seen that the Attert Catchment shows very small 

changes during a 10-years period. This also serves as the primary background information for 

our further land cover investigation using thermal remote sensing in this area (see Chapter 3).  

 

Figure 2.5 Land cover change maps of CORINE. 

2.4  Comparison of Four Smoothing Methods for MODIS Data 

Apart from the land cover change analysis of the Attert Catchment, the other focus of this 

chapter is the comparison of different smoothing methods for the MODIS datasets.  As 

described in the introduction, the smoothing of MODIS VI products plays an important role in 

providing continuous and good-quality vegetation dynamic data.  In this work, four smoothing 

methods were selected including the mBISE, AG function, DL function and the adaptive SG 

filter from the TIMESAT software. The main idea is to smooth the MODIS products using the 

four methods, to compare the smoothed data with the high-quality Landsat data, and then 
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finally to evaluate the performance of the four methods by the root mean square error (RMSE), 

mean absolute error (MAE), Person’s correlation coefficient (CC) and the coefficient of 

determination (R2).  

2.4.1  MODIS Data Sources 

In order to fully exploit the effectiveness of the different smoothing methods, diverse products 

from MODIS and Landsat were selected. Table 2-2 gives a brief description of the used satellite 

products.  MOD09GQ provides the daily surface reflectance data of band 1-2 (red, NIR) at 250 

m resolution. The MOD09GQ Level 2 spectral reflectance data has been atmospherically 

corrected and then directly used to calculate the daily NDVI data following Equation 2.2. All 

the 365 images of NDVI data in 2013 were estimated from the MOD09GQ products. Besides, 

the MOD13Q1 NDVI data are provided every 16 day at 250 m spatial resolution and designed 

to offer consistent spatial and temporal comparison of vegetation conditions (Didan, 2015). 

Moreover, the NDVI datasets calculated from the atmospherically corrected Landsat TM/ETM 

reflectance data were used as the reference data for error assessment. We collected all the 

cloud-free Landsat images since 1984 to 2011 of TM and 2000 to 2011 of ETM. In this work, 

the resampled cloud-free and corrected Landsat images are assumed to have higher quality and 

can be used as the average reference data for the MODIS NDVI datasets. Furthermore, 

MOD15A2 LAI product was utilized to evaluate the smoothing methods in this work. 

MOD15A2 data offers the composite level-4 MODIS global LAI product every 8 days at 1 km 

resolution and the accuracy of this version 5 dataset has been assessed over a widely distributed 

set of locations and time periods (DAAC, 2012).  
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Table 2-2 The characteristics of the used satellite data in this work. 

Satellite Data Product Type Spatial 

Resolution 

Temporal 

Resolution 

Used time 

period in this 

work 

MOD09GQ Surface 

reflectance 

250 m daily 2013 

MOD13Q1 NDVI 250 m 16-day 

composite 

2013 

MOD15A2 LAI 1 km 8-day 

composite 

2013 

Landsat 

TM/ETM 

Atmosphericall

y corrected 

reflectance data, 
NDVI  

30 m 16 days revisit 

interval 

TM: 1984- 

2011; 

ETM:2000- 

2011 

2.4.2  Smoothing Methods 

In the past decades, a large amount of noise filtering methods have been developed for the 

satellite data ranging from the early Maximum Value Composite (MVC) technique (Holben, 

1986), to the Fourier analysis (Roerink et al., 2000) and function fitting (Jonsson and Eklundh, 

2002). In this work, our objective is not to propose a new smoothing method but to find a 

suitable and robust method to filter the noise of the MODIS products in order to offer the 

reliable datasets for the further vegetation dynamics modelling. Therefore, four representative 

smoothing methods were utilized in this work and the following section gives a brief 

description of each method. 

The BISE method was proposed based on the predictability of vegetation change which is 

distinct from the high frequency changes (Viovy et al., 1992). The general idea of BISE is that 

the sudden rises or falls in NDVI are a feature of changing cloud conditions or viewing angles 

but are not compatible with the gradual process of plant growth. The BISE algorithm is 
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originally designed for the daily NDVI data and assumes that cloud and poor atmospheric 

conditions will usually depress the NDVI values. Besides that, the NDVI data will increase 

with abnormally high values due to the data transmission errors. Meanwhile, the method 

assumes that the decreases in NDVI relating to changes (possibly sudden decrease) in 

vegetation status will persist for several days. The algorithm searches forward and accepts the 

following point if it has a higher value than the first. If the NDVI value decreases and there is 

no point greater than 20 percent of the difference between the first low value and the previous 

high value during a pre-defined period (also called sliding period), then the decrease can be 

accepted. Otherwise, the low point will be ignored. However, BISE may perform poorly when 

there is a long-term, gradual decrease in NDVI. Therefore, by developing the BISE from daily 

NDVI data to the 10-day composite products, the mBISE algorithm is adjusted to look for the 

spikes of time series of VI data by taking the local gradient of the data within the sliding 

window into account (Lovell and Graetz, 2001). The main advantage of the BISE or mBISE is 

that it will not reduce the potentially valuable data during the sliding period and it can 

effectively alleviate the cloud and viewing conditions influences. In this work, BISE was 

performed for the daily MOD09GQ NDVI data and mBISE was applied for the MOD13Q1 

NDIV and MOD15A2 LAI products. 

Besides the BISE/mBISE method, the other three smoothing methods embedded in the 

TIMESAT software were utilized. TIMESAT is a FORTRAN90 based program and can be 

used to smooth the time series of NDVI data and to extract the seasonality parameters by three 

methods including the AG function, DL function and the adaptive SG filter method. In 

TIMESAT, the time series of NDVI data can be assigned with different weights for quality 

control. Here, to solely evaluate the performance of the smoothing methods, we leave all the 

weights the same as 1. The adaptive SG filter uses the local polynomial function for the fitting 

process, and the AG and DL are fitted with the least-squares methods.  

The basic Gaussian function is formulated as described in Equation 2.2.  
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𝑔(𝑡; 𝑥1, 𝑥2, … , 𝑥5) = {
𝑒𝑥𝑝 [− (

𝑡−𝑥1

𝑥2
)

𝑥3

]     𝑖𝑓 𝑡 >  𝑥1

𝑒𝑥𝑝 [− (
𝑥1−𝑡

𝑥4
)

𝑥5

]     𝑖𝑓 𝑡 <  𝑥1

                                                                 (2.2) 

where, in the Gaussian function, x1 determines the position of the maximum or minimum with 

respect to the time variable t. x2, x3, x4, x5 determine the width and flatness of the right and left 

half function respectively.  

The DL function in TIMESAT uses the function in Equation 2.3. The parameters were used to 

restrict the NDVI shape to be physically reasonable for the plant growth. In the function, x1 and 

x2 represent the inflection position and rate of change during the leaf-on stage, while x3 and x4 

indicate the inflection position and rate of change during the leaf-off stage respectively.  

𝑔(𝑡; 𝑥1, … , 𝑥4) =
1

1+𝑒𝑥𝑝(
𝑥1−𝑡

𝑥2
)

 −  
1

1+𝑒𝑥𝑝(
𝑥3−𝑡

𝑥4
)
                                                                              (2.3) 

The SG filter is proposed to detect the large increase or decrease in an interval with locally 

adapted window iteratively. The basic idea is to replace the disturbed data with the value by a 

polynomial (Press et al., 1996) . Therefore, for each data yi, i = 1, 2, …, N, a quadratic 

polynomial as Equation 2.4 will be fitted to all 2n+1 points in the moving window n and yi will 

be replaced with the polynomial value at position ti.  

𝑓(𝑡) = 𝑐1 + 𝑐2𝑡 + 𝑐3𝑡2                                                                                                              (2.4) 

2.4.3 Smoothing Results and Uncertainties Evaluation 

In this work, we selected 12 representative sites of beech forests in Attert Catchment for the 

performance evaluation. The forest sites distribute all over the catchment with different 

geological characteristics. The locations of the sites are labelled with numbers in Figure 2.6. 

For the 250 m pixels in MOD09GQ and MOD13Q1, the number of selected pixels is 12 while 

for the 1 km resolution MOD15A2 the pixels are aggregated and the number becomes five.  



  2. Preprocessing 

51 

 

Figure 2.6 Location of the representative beech forest sites in the Attert Catchment. 

The filtering results for the daily NDVI data calculated from the MOD09GQ products (Figure 

2.7) demonstrate that the original NDVI data contain large amount of noises. From the 

distribution of the daily MOD09 NDVI data, it seems that the true features of the beech forest 

have been almost disguised by the noises (Figure 2.7). Solely depending on the appearance of 

the smoothing results, the BISE and SG methods provide very fluctuant NDVI data compared 

to the AG and DL functions. While for the 16-day composite MOD13Q1products (Figure 2.8), 

the methods produced more consistent and smoothed NDVI data. Besides that, the noises of 

the LAI data from MOD15A2 products were also nicely filtered (Figure 2.9). Due to the 

resolution differences between MOD15A2 LAI with the MODIS NDVI products, the LAI 

values of the 1 km pixel corresponding to the aggregation of several 250 m pixels may be 

affected by the mixture of different land cover types. From the MOD13Q1 NDVI profiles in 

Figure 2.8, it is clear to see that the pixels labelled as the beech forest in the CORINE land 

cover map have relatively similar and high NDVI values. Whereas, the 1 km MOD15A2 LAI 

values of different pixels vary differently during the year. Solely depending on the visual 

interpretation, the results indicate that the performances of the BISE and SG methods tend to 
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be very sensitive to the abrupt changes of the annual cycle. While in the other hand, the AG 

and DL provided relatively continuous and stable results because of the inherit characteristics 

of these two functions.   

 

Figure 2.7 The 12 pixels smoothing results of MOD09GQ NDVI data in 2013 by the four smoothing 

methods: linearly interpolated BISE method, AG, DL and SG functions. 
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Figure 2.8 The 12 pixels smoothing results of MOD13Q1 NDVI data in 2013 by the four smoothing 

methods: linearly interpolated BISE method, AG, DL and SG functions. 

 

Figure 2.9  The five pixels smoothing results of MOD15A2 LAI data in 2013 by the four smoothing 

methods: linearly interpolated BISE method, AG, DL and SG functions. 
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2.4.4  Uncertainties Evaluation 

Concerning the briefness of the uncertainties evaluation, in this work we only assess the 

performance of the four smoothing methods for the NDVI products. As mentioned above, we 

estimated the NDVI data from the 25 atmospherically corrected Landsat images from 1984 to 

2011 to serve as the reference data for the smoothed NDVI data. Table 2-3 lists all the dates 

and sensor information of the 25 cloud-free Landsat images. Before directly comparing the 

Landsat NDVI data with MODIS NDVI data, two steps should be done. Firstly, the Landsat 

images were resampled from 30 m to 250 m resolution in order to be consistent with the 

MODIS NDVI products. The resampled 250m reference NDVI values were calculated by 

averaging the 30m NDVI values of the corresponding pixels from each Landsat image.  

Secondly, all the resampled Landsat images were ordered according to the Julian day of year 

(DOY) data. To be consistent with the maximum value composite method used in the MODIS 

NDVI data produced for each 16-day interval counting from the first day of each year (e.g. 

001, 017,…, 353), the maximum values of the Landsat images falling into the 16 -day interval 

were kept for comparison. Therefore, in the end, 12 beech sites with resampled 250m Landsat 

NDVI data on 15 different dates were utilized for evaluating the MODIS NDVI products. 

Figure 2.10 displays the comparison between Landsat NDVI with the original MOD09GQ and 

MOD13Q1 NDVI data. It is clear to see that the MOD09GQ NDVI data contain large noises 

and have nearly no correlation with the Landsat NDVI data. MOD13Q1 NDVI data have 

MOD09GQ NDVI data. 

Table 2-3 The cloud-free Landsat TM/ETM images collected as the reference datasets for MODIS. 

Date Year 

Day of 

Year Sensor Date Year 

Day of 

Year Sensor 

2011-03-02 2011 61 ETM 2006-07-02 2006 183 TM 

2004-03-30 2004 90 ETM 1990-07-14 1990 195 TM 

2001-04-11 2001 101 TM 2006-07-18 2006 199 TM 
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1988-04-11 1988 102 TM 2003-08-03 2003 215 ETM 

2011-04-19 2011 109 ETM 1985-08-09 1985 221 TM 

2011-05-05 2011 125 ETM 2003-08-11 2003 223 TM 

1988-05-13 1988 134 TM 1984-08-22 1984 235 TM 

1989-05-16 1989 136 TM 2011-09-02 2011 245 TM 

2004-05-17 2004 138 ETM 2004-09-06 2004 250 ETM 

2010-06-03 2010 154 ETM 2003-09-20 2003 263 ETM 

2009-06-24 2009 175 TM 1987-10-02 1987 275 TM 

2001-06-26 2001 177 ETM 2003-11-07 2003 311 ETM 

2010-06-27 2010 178 TM In Total 25 61-311 Landsat 

 

Figure 2.10 Comparison between Landsat NDVI with MOD09GQ and MOD13Q1NDVI data. 

For the uncertainty evaluation, the filtered NDVI data using the four smoothing methods were 

compared with the Landsat NDVI data in 2013. The scatterplots in Figure 2.11 and Figure 2.12 

reveal the relationship between the Landsat NDVI and the smoothed data from MOD09GQ 

and MOD13Q1 respectively. Moreover, Table 2-4 presents the statistical data calculated 

between the Landsat NDVI and the data from MOD09GQ or MOD13Q1 NDVI data. CC, 

RMSE and MAE were calculated for each dataset. Compared to the original MOD09GQ NDVI 

data, the smoothed data show significantly improved characteristics.  The DL method retrieves 

the highest CC data for MOD09GQ data whereas the BISE method obtains the CC of 0.54 with 
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the lowest RMSE and MAE data of 0.15 and 0.11 respectively, which is about 0.15 lower than 

SG. In respect to the MOD13Q1NDVI products, mBISE method provides the best statistical 

data regardless of the CC, RMSE, MAE or the R2. The CC between the mBISE smoothed 

NDVI and Landsat NDVI is 0.76 and the mean RMSE and MAE are 0.09 and 0.07 respectively. 

Actually, the smoothing results of the MOD09GQ vary greatly by using the different methods, 

whereas the differences between the smoothed MOD13Q1 results are relatively small. For 

example, SG method provides the lowest CC data for the noisy MOD09GQ data but retrieves 

similar results as the DL method for the composite MOD13Q1 NDVI data. In summary, from 

the overall comparison of both MOD09GQ and MOD13Q1 NDVI data, the mBISE method 

derives the acceptable NDVI data with good quality, which could be very useful for filtering 

the noises of the satellite products before application into the vegetation dynamics modelling. 

However, although the mBISE method obtained the best CC of 0.76, there are still large 

discrepancies between the smoothed MOD13Q1 and resampled Landsat NDVI data. This 

problem may be caused by the resampling procedure when we averaged the Landsat NDVI 

data, which possibly could be improved by more appropriate reference NDVI data.  

Table 2-4 The statistics estimated between the MOD09GQ and MOD13Q1 NDVI data and the Landsat 

NDVI data 

 
MOD09GQ BISE AG DL SG 

CC -0.28 0.54 0.68 0.70 0.44 

RMSE 0.56 0.15 0.28 0.28 0.30 

MAE 0.46 0.11 0.24 0.25 0.25 

 
MOD13Q1 mBISE AG DL SG 

CC 0.65 0.76 0.74 0.72 0.72 

RMSE 0.16 0.09 0.09 0.10 0.11 

MAE 0.11 0.07 0.07 0.08 0.09 
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Figure 2.11 The comparison between Landsat NDVI and the smoothed NDVI datasets of MOD09GQ 

by BISE, AG, DL, and SG respectively. 
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Figure 2.12 The comparison between Landsat NDVI and the smoothed NDVI datasets of MOD13Q1 

by BISE, AG, DL, and SG respectively. 

2.5  Conclusion and Summary 

In this chapter, the Landsat images for land cover classification and MODIS products for the 

vegetation dynamics modelling were preprocessed. The preprocessing of Landsat images took 

the data in 1972, 1990 and 2009 as an example and the atmospheric correction were performed 

for each image. Then, in order to assess the land cover changes of Attert Catchment during the 

past 40 years, the Landsat images were classified into four land cover types and post-processed 

for the land cover change detection. The results reveal that the largest land cover type changes 

between 1972 and 2009 are the changes from forest to agriculture. Moreover, the change areas 

are very small in the separate periods from 1972 to 1990 and from 1990 to 2009. The relatively 
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constant conditions in Attert Catchment serve as the valuable prior knowledge for the further 

investigation.   

Besides that, the preprocessing of the MODIS products demonstrates the superiority of 

BISE/mBISE method in filtering the noises of satellite data. Compared to AG, DL and SG 

methods, BISE/mBISE method retrieves the smoothed vegetation status data in terms of NDVI 

with higher CC and lower RMSE and MAE data evaluated by the Landsat NDVI data. Due to 

lack of the field measured NDVI data and resampling uncertainties of the Landsat NDVI data, 

there are still discrepancies between the resampled Landsat and the MODIS NDVI data. This 

work mainly provided an overview of the performances of different smoothing methods. In 

particular, the mBISE method performs best for the 16-day composite MOD13Q1 NDVI data 

with the advantage of keeping the original good-quality data while omit the anomalous values 

affected by the atmospheric conditions or system errors. Nevertheless, the future work probably 

could be greatly improved when using more suitable resampling method for the Landsat 

images. Moreover, in the following study of vegetation dynamics modelling, the preprocessing 

by the mBISE method could be helpful in deriving more accurate reference data from the 

satellite products.  
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3 The Improvement of Land Cover Classification by Thermal 

Remote Sensing 

This chapter has been published as Sun, L., and K. Schulz, 2015, The Improvement of Land 

Cover Classification by Thermal Remote Sensing: Remote Sensing, v. 7, p. 8368. 

3.1 Abstract 

Land cover classification has been widely investigated in remote sensing for agricultural, 

ecological and hydrological applications. Landsat images with multispectral bands are 

commonly used to study the numerous classification methods in order to improve the 

classification accuracy. Thermal remote sensing provides valuable information to investigate 

the effectiveness of the thermal bands in extracting land cover patterns. k-NN and Random 

Forest algorithms were applied to both the single Landsat 8 image and the time series Landsat 

4/5 images for the Attert catchment in the Grand Duchy of Luxembourg, trained and validated 

by the ground-truth reference data considering the three level classification scheme from 

COoRdination of INformation on the Environment (CORINE) using the 10-fold cross 

validation method. The accuracy assessment showed that compared to the visible and near 

infrared (VIS/NIR) bands, the time series of thermal images alone can produce comparatively 

reliable land cover maps with the best overall accuracy of 98.7% to 99.1% for Level 1 

classification and 93.9% to 96.3% for the Level 2 classification. In addition, the combination 

with the thermal band improves the overall accuracy by 5% and 6% for the single Landsat 8 

image in Level 2 and Level 3 category and provides the best classified results with all seven 

bands for the time series of Landsat TM images.  
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3.2 Introduction 

Land cover is defined as the observed biophysical state of the earth’s surface, and is largely 

described by the presence or absence of various vegetation types(Anderson, 2005). In contrast, 

land use normally refers to the arrangements, activities and inputs people engage in a certain 

land cover type to produce, change or maintain it (Liang, 2008). As previous studies reported, 

land cover information is a fundamental variable for many hydrological and climate studies. 

Land cover characteristics have close links to the human and physical environments, also 

govern and affect many environmental variables (Bounoua et al., 2002), including surface 

roughness, albedo, moisture availability, mechanisms for runoff generation (Dickinson, 1995), 

and water quality (Nilsson et al., 2003). Therefore, accurate land-cover mapping becomes 

essential for modeling and understanding these biogeophysical properties of the land surfaces. 

Remote sensing provides an effective way to depict land cover as it produces a map-like 

representation of the Earth’s surface that is spatially continuous and highly consistent, as well 

as available at a range of spatial and temporal scales (Anderson, 2005). The Landsat satellites 

have monitored Earth's terrestrial surfaces for about 40 years (Sexton et al., 2013), from which 

the long, consistent and free record allows scientists to study the current and also the past land 

surface patterns. Because of that, Landsat data are widely applied in land cover classification 

and monitoring on a regional or global scale. Numerous studies have proved the usefulness of 

Landsat imagery in agricultural land cover classification (Samaniego and Schulz, 2009), forest 

dynamics monitoring (Salovaara et al., 2005), urban land use classification (Lu and Weng, 

2006), other land cover dynamics or land use land cover (LULC) change detection (Gong et 

al., 2012; Sexton et al., 2013; Sobrino and Raissouni, 2000). Other satellite products such as 

the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor 

imagery have also been widely used for regional scale land cover classification (Crocetto and 

Tarantino, 2009; Jianwen and Bagan, 2005; Zhu and Blumberg, 2002) or land cover change 

detection(French et al., 2008; Marçal et al., 2005).   
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In most cases, the LULC classification is based on the multispectral characteristics and/or the 

multi-temporal biological properties of the Earth surface.  In previous studies, numerous efforts 

have been made to improve the classification accuracy by constructing different spectral 

features, developing new methods, or integrating multi-source data for the single or time series 

of images. Lunetta and Balogh (LUNETTA et al., 1999) for example evaluated the 

identification of wetlands with the bands 2 to 5 of the single-date and multi-temporal Landsat 

5 images. The overall accuracy (OA) was 69% of the single-date image compared to 88% from 

the two-date images with a significant increase in the Kappa test statistics. Murai and Omatu 

(Murai and Omatu, 1997) proposed a pattern classification method which integrates the 

advantages of both the neural network and knowledge-based system. The single Landsat 5 TM 

image with the bands 3 to 5 was used and they found that the misclassification can be revised 

more easily because of introducing the geographical knowledge into the system. Maxwell et 

al. (Maxwell et al., 2004) introduced an automated approach to classify four land cover types 

using only the bands 2 and 4 from Landsat MSS with 92.2% OA.  

Langley et al. (Langley et al., 2001) compared the single-date imagery and multi-temporal 

images for land cover classification with the bands 3 to 5 of TM image. They concluded that 

the multi-temporal images have improved the accuracies of some landscapes but the single-

date image may provide a reliable vegetation cover map in semi-arid environments. Saadat et 

al. (Saadat et al., 2011) utilized two single-date Landsat ETM+  image without the thermal 

bands for LULC classification in Iran with OA of 95% and 82% respectively for the late 

summer image and the spring image. He recommended that when the satellite image is limited 

the late summer image would be most suitable for the LULC classification. Guerschman et al. 

(Guerschman et al., 2003) also suggested that, if possible, three images (spring, early summer, 

late summer) be used in the identification of agricultural types. Yuan et al. (Yuan et al., 2005) 

used multi-temporal TM images from 1986 to 2002 to monitor the LULC dynamic with the 

average OA of 94% and proved the potential of multi-temporal Landsat data for accurate and 
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economic land cover change analysis. Besides the different band combinations, the normalized 

difference vegetation index is also commonly used for the LULC change detection with the 

multi-temporal images (Brown et al., 2013; Carrão et al., 2008; Ozdogan and Gutman, 2008; 

Sexton et al., 2013; Wilson and Sader, 2002). For both single-date image and multi-temporal 

images, several studies focus on the algorithm development such as nearest neighbor (NN) 

(Collins et al., 2004) and modified NN (Samaniego et al., 2008; Samaniego and Schulz, 2009), 

random forest classifier (Corcoran et al., 2013; Deng and Wu, 2013; Gislason et al., 2006), 

rule-based classification (Lucas et al., 2007; Rodriguez-Galiano et al., 2012a), which all 

provide accurate land cover classification maps.  

However surprisingly, the thermal information provided by many of the satellite platforms has 

rarely been used for land cover classification (Southworth, 2004). Thermal remote sensing 

allows for the continuous representation of land surface temperature (Li et al., 2013), which is 

widely used for the monitoring of urban climate (Liu and Zhang, 2011), the modeling of the 

hydrological cycle (Su, 2002), vegetation monitoring (Kogan, 2001) and mapping land surface 

energy and water vapor fluxes (Kustas and Anderson, 2009). Although the spatial resolution 

of the thermal band is coarser when compared to the visible bands of the same satellite, the 

thermal information may contain valuable information related to the spatial variations of land 

surface and therefore vegetation properties (Defries et al., 2000; Foody, 1996), which has so 

far not been explored to its full extent.   

The objective of this study therefore is to investigate the value and effectiveness of the thermal 

remote sensing data for improving land cover classification. The test region is the Attert 

catchment in Luxemburg/Belgium providing a landscape with a variety of land cover types, 

mainly including forest, agriculture land, pasture and residential area. Based on the land cover 

change maps from 1990 to 2006 provided by CORINE and the change maps from 1972 to 1990 

and 2006 to 2011 from CAOS project (not present in this paper), the land cover changes in 

quite small extent in 5 to 8 years especially in the early 1990s. In this study, the variation among 
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different land covers is ignored and the land cover types of Level 1 and Level 2 are assumed 

to be constant during the periods from 1984 to 1990 and 2006 to 2011. Two of the most often 

and successfully applied standard methods, the k-NN(Cover and Hart, 1967), as well as the 

Random Forest method (Breiman, 2001), will be applied to Landsat 4/5 and Landsat 8 images. 

Three groups of the single-date Landsat 8 images with different visible and thermal bands 

combination will be classified into three levels of land use land cover categories in order to 

evaluate the effectiveness of the thermal band in single image classification. The combination 

of band 3 and band 4, principal components, 6 bands combination without thermal band, the 

thermal band and 7 bands combination including thermal band from time series Landsat 4/5 

images listed in two groups will be classified into two levels for comparison and performance 

analysis. 10-fold cross validation will be applied for the accuracy assessment with the overall 

accuracy.  

3.3 Data Source 

3.3.1 Satellite Data  

The Landsat Thematic Mapper (TM) sensor was carried onboard of Landsat 4 and 5 from July 

1982 to May 2012 with a 16-day repeat cycle, and began decommissioning in January 2013. 

TM images consist of seven spectral bands (Table 3-1) with a spatial resolution of 30m for 

Bands 1 to 5 and 7. The spatial resolution for Band 6 (thermal infrared) is 120m, but is 

resampled to 30m pixels in the provided L1T products after February 25, 2010. A total of 13 

cloud-free TM images between 1982 and 2012 were collected for the Attert catchment (path 

197, row 25). The newly launched (on February 11, 2013) Landsat 8 Operational Land Imager 

(OLI) and Thermal Infrared Sensor (TIRS) provide nine spectral bands and two thermal bands 

as listed in Table 3-1. All spectral bands are collected at 30m, except for the thermal bands that 

are acquired at 100m resolution and resampled to 30m in the delivered product and the 

panchromatic band 8 providing 15m data. One cloud-free Landsat 8 image was acquired for 
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July 21, 2013 (at the same time the ground-truth field campaign was conducted). The Landsat 

images available for this study have been divided into three groups (Table 3-2). Group 1 (TS1) 

and Group 2 each contain time series of images covering spring, summer and autumn (TS1 

covers the Landsat 4/5 images from 1984 to 1990 and TS2 includes the Landsat 5 images from 

2003 to 2011). Both groups were used to investigate the land cover classification performance 

when based on time series of images. The third group (S1) with only one Landsat 8 image from 

July 21, 2013 was tested to explore the effectiveness of single image land cover classification 

based on thermal data. 

Table 3-1 Spectral Characteristics of the 7 bands from Landsat 4/5 TM image and the 11 bands from 

Landsat 8 image. 

Bands 
Landsat 4/5  Wavelength 

(micrometers) 

Landsat 8 Wavelength 

(micrometers) 

Band 1  0.45-0.52 0.43 - 0.45  (Coastal aerosol) 

Band 2  0.52-0.60 0.45 - 0.51  (Blue) 

Band 3  0.63-0.69 0.53 - 0.59  (Green) 

Band 4  0.76-0.90 0.64 - 0.67  (Red) 

Band 5  1.55-1.75 0.85 - 0.88  (Near Infrared (NIR)) 

Band 6  10.40-12.50 1.57 - 1.65  (SWIR 1) 

Band 7  2.08-2.35 2.11 - 2.29  (SWIR 2) 

Band 8   0.50 - 0.68  (Panchromatic) 

Band 9   1.36 - 1.38  (Cirrus) 

Band 10   10.60 - 11.19  (Thermal Infrared (TIRS) 1) 

Band 11   11.50 - 12.51  (Thermal Infrared (TIRS) 2) 
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Table 3-2 All Landsat images used for the land cover classification including two groups (TS1 and TS2) 

of time series of Landsat 4/5 images from 1984 to 2011 and the single-date Landsat 8 image (S1) in 

July, 2013. 

Group Date Day of Year Sensor Season 

TS1 1984-08-22 235 Landsat 5 Summer 

1985-08-09 221 Landsat 5 Summer 

1987-10-02 275 Landsat 5 Fall 

1988-04-11 102 Landsat 5 Spring 

1988-05-13 134 Landsat 5 Spring 

1989-05-16 136 Landsat 5 Spring 

1990-07-14 195 Landsat 4 Summer 

TS2 2003-08-11 223 Landsat 5 Summer 

2006-07-02 183 Landsat 5 Summer 

2006-07-18 199 Landsat 5 Summer 

2009-06-24 175 Landsat 5 Spring 

2011-04-11 101 Landsat 5 Spring 

2011-09-02 245 Landsat 5 Fall 

S1 2013-07-21 202 Landsat 8 Summer 

3.4 Land Cover Classification Scheme and Reference Data 

In this study, the three-level land cover classification system of CORINE established by 

European Union (EEA, 2012) was utilized to represent the major land cover types (Table 3-3). 

Due to the lack of in situ ground truth data of the agricultural area and crop variations in the 
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same area for the images in the different years, only the Level 1 (4 land cover classes) and 

Level 2 (7 land cover classes) were considered for the time series classification of Landsat 

images. While for the single image classification in 2013, combined with the ground truth data 

all the three levels were classified and tested for the study area.  

Table 3-3 Land use and land cover categories for the three-level classification scheme including the 4 

classes of Level 1,7 classes of Level 2, 14 classes of Level 3 and the brief description of the Level 3 

classes. 

Level 1  Level 2  Level 3  Description of Level 3  

Agricultural land Bare soil  Bare soil  Fallow agricultural land or harvested land 

Cropland  

 

Barley  Arable land for different crops, including 

the non-irrigated arable and permanently 

irrigated land, heterogeneous agricultural 

areas 

Corn  

Wheat  

Triticale  

Rapeseeds  

Oat and other crops  

Grassland 

 

Intensive  

grassland  

Dense grass cover, includes areas with 

hedges 

Extensive 

grassland  

Sparse grass cover, includes areas with 

hedges 

Artificial land  Artificial land Artificial land  Urban fabric, industrial, commercial and 

transport units, mine, dump and 

construction sites, artificial non-

agricultural vegetated areas 

Forest Deciduous forest Deciduous forest  Broad-leaved forest species, predominated 

by beech, oak, including shrub and bush 

understories 

Coniferous forest Coniferous forest  Coniferous forest species, predominated by 

pine, larch, including shrub and bush 

understories 

Mixed forest Mixed forest  Mixed broad-leaved and coniferous forest, 

neither species predominate, including 

shrub and bush understories 

Water bodies Water bodies Water bodies  Water courses and water bodies 
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Figure 3.1The agricultural ground truth area labelled in green during the field campaign in July, 2013 

(left) and all the training and validating pixels in yellow for the 7 classes of the Level 2 category based 

on the historical land cover maps of 2007(right); the background image of Attert Catchment (outlined 

in black) is the composite Landsat 8 image of July, 2013 in RGB combination of band 4, band 3 and 

band 2. 

Training and validating samples were collected from the ground truth data and the reference 

maps (Figure 3.1). Firstly, the available historical land cover maps were collected including 

the finer land cover maps in 2007 provided by the collaborators in the CAOS project, CORINE 

land cover datasets of 1990, 2000 and 2006. Based on these reference maps and visual 

interpretation, areas of interest were created for the Level 1 and Level 2 category (the right 

image in Figure 3.1). Secondly, the various agricultural lands (550 sites) in Level 3 were 

labelled through the fieldwork campaign conducted in the Attert catchment from July 8 to July 

13, 2013 (the left image in Figure 3.1). For the single Landsat 8 image, samples for all the three 

categories were used, whereas due to the impossibility of gaining historical ground truth data, 

only samples for the Level 1 and Level 2 categories were taken into account. The sample 

screening was performed for each land cover type in the ERDAS software and only the pure 
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pixels of the relatively larger site were kept. The principle is to obtain the evenly distributed 

samples over the catchment and to keep the size as similar as possible for both the single-date 

Landsat 8 image and the two time series of images.  

The training set size has a great impact on the classification accuracy and appropriate training 

samples are prerequisites for a successful classification (Foody et al., 2006; Mather and Koch, 

2010). Following the recommendations of Foody [32], van Genderen [45] and Congalton [46], 

the size of the training set should not be fewer than 10-30 observations per spectral band and 

per class. In this paper, the size of the samples for Level 1 and Level 2 category was set greater 

than 300 pixels. However only 40 pixels for the water bodies were selected in this catchment 

because the river courses are normally too small to be distinguished in the Landsat image.  

3.5 Classification Schemes 

3.5.1 Preprocessing 

As reported by Song et al. (Song et al., 2001), atmospheric correction of images might not be 

necessary in case only a single image is used for the classification procedure. However, when 

multi-temporal or multi-sensor data are used, atmospheric correction is mandatory (Lu and 

Weng, 2007). Existing studies have tested the importance of different procedures for obtaining 

the stable and accurate images(Vicente-Serrano et al., 2008). 13 images used for the land cover 

classification were corrected by the MODTRAN 4 algorithm (Berk et al., 1998) embedded in 

the ATCOR3 module (Geosystems, 2013) in ERDAS software (Geosystem, 2013)  to remove 

atmospheric and topographic effects within the resampled 30m ASTER GDEM product of 

METI and NASA (DAAC, 2009). All the corrected images were normally rescaled to the 8-bit 

raster images by the scale factor4 for both the reflectance and temperature data, i.e. a digital 

number value of 20 from the temperature image corresponds to a ground temperature of 5 °C. 
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For the evaluation of the land cover classification based on the single Landsat 8 image (from 

July 21, 2013), three variants of spectral band combinations were considered: i) only the bands 

2-5 from Landsat 8 (Bands4); ii) bands 2-5 plus the 2 thermal bands 10 & 11 (Bands6T); and 

iii) all bands except the panchromatic band (Bands10T).   

For the assessment of the land cover classification based on time series of images (Groups TS1 

and TS2 ), five variants of time series were classified and compared. The five variants include 

time series of the combinations of band 3 and band 4 of Landsat TM images (B3B4), time 

series of three (PC3) principal components of all the VIS/NIR bands in the TM image, time 

series of 6 bands except the thermal band (6bands), time series of only the single thermal bands 

and time series of all the 7bands from the TM images. Band 3 and band 4 of Landsat TM image 

refer to the red and near infrared spectrum, of which the combination (e.g. as NDVI) is useful 

for distinguishing the vegetation, soil, water and land interface. Principal Component Analysis 

(PCA) was applied to the atmospheric corrected images with 6 bands (excluding the thermal 

band 6) for dimension reduction. The effectiveness of PCA for the identification of land cover 

changes has been reported in previous studies (Almeida-Filho and Shimabukuro, 2002; Singh, 

1989). The three components of the 6 Landsat/TM bands are mainly related to the information 

of the land cover and land use, which explains approximately 98% of the data variability of all 

bands. Figure 3.2 shows the general classification procedure of all the time series Landsat 

images.  
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Figure 3.2 Flowchart of the land cover classification and accuracy assessment process: the time series 

images were derived from the Landsat 4/5 TM images by preprocessing including: the Band3 and Band4 

combination (TS B3B4), first three principal components (TS 3PC) of the VIS/NIR bands from TM 

images, six bands combination except the thermal band (TS 6Bands), the thermal band (TS Thermal) 

and all the bands combination (TS 7Bands); then based on the ground truth and reference maps training 

data were selected and used for the k-nearest neighbor and Random Forest algorithms for Level 1 and 

Level 2 classification; 10-fold cross validation was applied to the both classification methods and then 

calculated for the accuracy statistics. 

3.5.2 Classification Algorithms 

In the field of land-cover classification based on satellite images, numerous machine learning 

methods are available and have been investigated and reviewed (Li et al., 2014; Lu and Weng, 

2007). Since the general intercomparison of classification methods was not the  focus of this 
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study, experience from previous investigations was used  (Samaniego et al., 2008; Samaniego 

and Schulz, 2009), and two widely applied methods,  the simplest k-NN and the more complex 

Random Forest algorithms were chosen  for the land-cover classification given their good 

performance. 

The k-NN method is one of the particularly simple classifier in concept, which is easy to apply 

but can be time consuming (Richards and Jia, 2006). Given an object, it examines the training 

samples in the multispectral feature space and chooses the closest class among the pre-specified 

number k of nearest neighbors. k is an integer value specified by the user and is highly data-

dependent. In general a larger k suppresses the effects of noise, but makes the classification 

boundaries less distinct. Normally, k-NN needs a priori definition of a metric in the predictor 

space (Samaniego et al., 2008). There are several studies focusing on finding a reasonable 

distance to improve the performance of the classification algorithm (Collins et al., 2004; 

Samaniego and Schulz, 2009), such as the Manhattan distance, Euclidean distance, Chebychev 

distance, the similarity measures or the Modified Nearest Neighbor which searched for a metric 

in a lower dimensional space for separating a given class (Samaniego et al., 2008). Here, based 

on the previous study (Collins et al., 2004; Samaniego and Schulz, 2009) and comparison of 

the classification performance with different k values and metrics, the optimal number of 

nearest neighbors is defined as 5 and the distance metric is determined by the standard 

Euclidean metric.   

Another ensemble learning algorithm called Random Forest (RF) is also applied in this study. 

RF is an ensemble of classification trees and each tree contributes with a single vote for the 

assignment of the most frequent class to the input data (Breiman, 2001). Breiman (Breiman, 

2001) introduced RF by using bagging or bootstrap aggregating with a random subset of input 

features in the division of every node to make the trees grow from different training data 

subsets. The RF algorithm can handle high dimensional data and uses a large number of trees 

in the ensemble without variable deletion and estimates the importance of variables in the 
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classification (Rodriguez-Galiano et al., 2012b). The RF method has increasingly been applied 

in the land-cover classification given its higher accuracy and more robust capability to noise 

and outliners than other machine learning algorithms (Gislason et al., 2006; Rodriguez-Galiano 

et al., 2012a).  

3.5.3 Validation and Accuracy Assessment 

The k-fold cross validation, also called rotation estimation (Kohavi, 1995), is a model 

validation method for estimating generalization error. In k-fold cross-validation, the training 

set is split into k smaller sets and the classification model is trained using the k-1 of the folds 

as training data, then the resulting model is validated on the remaining part of the data. The 

accuracy of cross-validation is the average of value in the loop. In this study, 10-fold cross 

validation was performed with the samples obtained in the Section 2.3. The water body 

category was not considered in the accuracy assessment due to its small proportion based on 

the recommendation of the minimum of 50 samples for each category validation by Congalton 

(Congalton, 1991). 

Error metrics were calculated to assess the classification accuracy, from which the OA, user’s 

accuracy (UA) and producer’s accuracy (PA) were derived (Congalton and Green, 2009). The 

OA present in this paper is the averaged value from 10-fold validation for each k-NN and 

Random Forest classification. User’s accuracy refers to the fraction of correctly classified 

pixels with regard to all pixels classified as this class in the classified image and is also known 

as the reliability or commission error. Producer’s accuracy means the fraction of correctly 

classified pixels with regard to all pixels of that ground truth class and can also be referred to 

the accuracy or omission error.  
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3.6 Results and Discussion  

3.6.1 Classification Based on a Single Image (S1) 

The land cover classification based on a single image was carried out with the Landsat 8 image 

from July 21, 2013. As detailed in section 3.1, three variants with different bands combination 

were considered and classified into the three land cover levels using the k-NN and Random 

Forest algorithm. The classification results and the accuracy statistics are summarized in Figure 

3.3 and Table 3-4 and Table 3-5. Figure 3.3 (b)-(d) illustrate the land cover maps with the best 

OA among all the variants for each category. The consistent patterns can be visually observed 

in the forest and artificial areas, meanwhile the road in the west part of the catchment is clearly 

distinguished. For level 2 and level 3, the agricultural areas were classified in more detail based 

on the ground truth data. The major cropland and grassland areas have been well recognized 

but misclassification still exist especially between the different crops in Figure 3.3(d) with the 

low accuracy data in Table 3-5.  
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Figure 3.3 Four land cover maps from Landsat 8 of July, 2013: (a) False color composite image in RGB 

combination of bands 5, 4, 3; (b) Level 1 classification image with 4 classes by k-NN based on the 10 

bands combination of the Landsat image; (c)-(d) Level 2 and Level 3 classification images with 7 and 

14 classes by Random Forest based on the 10 bands combination.  
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Table 3-4 The mean value calculated by 10-fold cross validation method for the OA of the three images 

from Landsat 8 in 2013 with different band combination classified by k-NN and Random Forest: Bands4 

represents the image with bands 2 to 5; Bands6T represents the image with bands 2 to 5 and the thermal 

bands 10 and 11; Bands10T indicates the image with all the 10 bands from Landsat 8 except the 

panchromatic band; k-NN5 and RF represents the nearest neighbor method with k =5 and Random 

Forest respectively. 

 Level 1 (%) Level 2 (%) Level 3 (%) 

Image 
classificatio
n accuracy 
in 2013  k-NN5 RF k-NN5 RF k-NN5 RF 

Bands4 OA 97.6 97.6 83.9 84.7 68.7 69.9 

Bands6T 
OA 98.1 98.1 87.0 87.9 74.1 74.7 

Bands10T 
OA 98.3 98.2 91.9 92.3 79.6 80.7 

It is clear that the variant Bands10T always achieved the best OA by making use of the 

available maximum spectral information with 10 bands (Table 3-4). The high overall 

accuracies around 98% for the Level 1 classification indicates that the Bands4 variant has 

sufficient information to classify the Level 1 category. The classification accuracy drops down 

strongly with the 80.7% OA value for Level 3 category, which is much lower than the 

commonly recommended 85% target for planning and management purposes (Anderson, 

1976). However, it is worth noting that the additional information from the short wave infrared 

and the thermal spectrum provide more information and better accuracy especially for the Level 

2 and Level 3 classification, which improve the OA of Bands10T about 5% to 8% for the Level 

2 category and 6% to 12% for the Level 3 category than the Bands6T and Bands4. 
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Table 3-5 The best classification accuracy statistics from the 10-fold validation by Random Forest 

chosen for the data analysis of the single Landsat 8 image with 10 bands combination in 2013. PA refers 

to the Producer’s accuracy, UA refers to the User’s accuracy, -- represents no validation pixel available. 

Table 3-6 Confusion matrix for the Level 3 category of single Landsat 8 image in July, 2013 with 10 

bands combination. The column indicates the referred data points for the 14 classes from field campaign 

and the row represents the classified data by Random Forest. 

 

Level 1 PA UA Level 2 PA UA Level 3 PA UA 

Agriculture 99.3% 98.7% Artificial 94.2% 94.3% Artificial 89.1% 91.8% 

Artificial 89.4% 93.1% Cropland 91.8% 92.0% Bare soil 80.4% 86.5% 

Forest 98.8% 99.3% Grassland 92.5% 91.9% Barley 56.7% 59.7% 

Water -- -- Conifer 98.8% 94.6% Corn 72.3% 64.9% 

   Deciduous 97.3% 95.5% Wheat 62.7% 60.2% 

OA 98.7% 
 

Mixed 
forest 

79.5% 92.1% Triticale 30.4% 47.1% 

   Water -- -- Rapeseeds 47.8% 66% 

   
  

 Oat 48.4% 68.2% 

   
OA 92.7% 

 

Intensive 
Grassland 

93.1% 90.7% 

      Conifer 99.0% 98.1% 

      Deciduous 97.9% 94.9% 

      

Mixed 
forest 

81.9% 92.6% 

      

Extensive 
grassland 

88.2% 90.9% 

      Water -- -- 
      OA 81.2%  
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Table 3-5 lists the UA and PA for all the three classification levels considering the best OA 

value between the k-NN and Random Forest algorithm in the classification procedure. For the 

various land covers among the three levels, forest category is one of the best classified with 

high PA and UA above 95%. For instance, the conifer got highest accuracy in Level 2 and 

Level 3, followed by the deciduous and the mixed forest. At the aquired date of image, the 

cropland including wheat, barley, rapeseeds, corn and other types show various maturity, i.e. a 

few corn fields were newly planted whereas several wheat or barley grew mature enough for 

harvest. Therefore, compared to the classification between cropland and grassland in Level 2, 

serious misclassification existed in Level 3 category among the different crop fields. The 

confusion matrix in Table 3-6 shows the validation data for the 14 classes of Level 3. Because 

of limited reference pixels from the field campaign, the validation pixels of oat did not exceed 

the recommended number of 50. Here it was kept for the comparison need. The matrix provides 

detail information about the mixture of different crops with similar growing characteristics, 

such as barley and wheat, triticale and wheat. All in all, this single-date Landsat 8 image did 

not provide sufficient information for the detailled croplands distinguishment and at least one 

other image at spring or autumn will be needed to supplement the classification. However, such 

an (cloudfree) image was not available for this year.  
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3.6.2 Level 1 Classification Based on Time Series of Images (TS1 and TS2) 

 

Figure 3.4 Level 1 and Level 2 land cover maps classified by the k-NN algorithm with time series of 

thermal images from Landsat 4/5 TM for TS1 and TS2. 

 Besides the evaluation of the single-date Landsat 8 image, the land cover classification with 

the time series of images for the Level 1 and Level 2 categories (Figure 3.4) was carried out 

via 5 different variants of spectral bands combination as described in section 3.1.  

Table 3-7 list the OA for the times series TS1 and TS2 images with regard to the Level 1 land 

cover category by k-NN and Random Forest. The accuracy data are given for both classification 

methods with the image from the earliest time and then successively adding the images up to 

each time step. As expected, the OA improves with the increase of the images for all the 

variants. Taking the full set of images in TS1 into account, the B3B4 provides the lowest OA 
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compared to the results of the 3PC, 6Bands and 7Bands images. The OA from 3PC is very 

close to the data from the 6Bands starting from the image number of 4. The overall accuracies 

of the thermal images classified by k-NN varies greatly in the first three time steps. In 

comparison, the Random Forest demonstrated more stable performance illustrated in Figure 

3.5. When the image number is greater than 5, the thermal bands began to show their superiority 

with higher OA than the B3B4, 3PC and 6Bands combination. Both the thermal and the 7Bands 

images obtained the best OA of 99.1% by the k-NN algorithm.  

The classification results from group TS2 indicate the same tendency that the 3PC and 6Bands 

show higher OA than the data of the B3B4 and the thermal band. In contrast to the results of 

the group TS1, the thermal images of TS2 with the maximum 6 images did not exceed the 

corresponding results of the 3PC and 6Bands. The thermal band (the right plot in Figure 3.5) 

varies when image number is small and the OA increases to the same level as the B3B4 

classification at the image number of 6. From Table 3-7, it is to note that the time series of 

7Bands classification performed by k-NN get the best OA at each time step compared to the 

other group data. The 3PC images provide nearly similar OA data as the 6Bands when the 

image number is greater than 3.The best OA among all the data is 99.2% from the 7Bands 

classification calculated by the k-NN. The best OA of the thermal images is 98.7% by k-NN 

and 98.5% by Random Forest, which is slightly lower than the best OA of 7Bands.  
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Figure 3.5 TS1 and TS2 boxplot of the 10-fold Level 1 classification overall accuracy variation by 

Random Forest for the time series images of the combination of band 3 and band 4 (B3B4), the first 

three principal components (3PC), the combination of 6 bands (6Bands), the thermal bands and the 

combination of 7 bands (7Bands). 

Table 3-7 Overall Accuracy of Level 1 classification by k-NN and Random Forest based on the time 

series images of the combination of band 3 and band 4 (B3B4), the first three principal components 

(3PC), the combination of 6 bands (6Bands), the thermal bands and the combination of 7 bands 

(7Bands). 

Image 

Number 

B3B4 (%) 3PC (%) 6Bands (%) Thermal (%) 7Bands (%) 

k-NN RF k-NN RF k-NN RF k-NN RF k-NN RF 

TS1-1 78.0 88.7 91.9 91.8 95.9 95.8 70.1 91.0 96.9 96.9 

TS1-2 92.3 91.6 95.5 95.3 96.9 96.9 79.1 92.8 97.6 97.9 

TS1-3 95.6 95.3 97.1 96.8 97.4 97.4 88.3 94.8 98.3 98.1 

TS1-4 96.3 96.4 98.0 97.6 98.0 97.8 94.0 95.7 98.5 98.3 

TS1-5 97.2 97.1 98.2 97.8 98.4 98.0 97.6 97.5 98.7 98.7 

TS1-6 97.4 97.2 98.4 98.0 98.3 98.2 98.6 98.1 98.9 98.7 

TS1-7 97.5 97.5 98.6 98.1 98.7 98.3 99.1 98.6 99.1 99.0 

TS2-1 83.7 90.2 95.6 93.5 96.2 95.3 54.8 84.8 97.1 96.9 

TS2-2 96.1 95.7 97.9 97.0 97.9 97.7 85.6 91.5 98.5 98.4 

TS2-3 97.5 97.2 98.4 98.1 98.5 98.2 93.5 95.0 98.9 98.7 

TS2-4 98.2 98.0 98.6 98.2 98.7 98.7 96.5 97.0 99.1 99.1 

TS2-5 98.6 98.3 99.0 98.5 98.9 98.7 97.9 98.0 99.2 99.2 

TS2-6 98.7 98.6 99.0 98.7 99.0 98.8 98.7 98.5 99.2 99.1 
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3.6.3 Level 2 Classification Based on Time Series of Images (TS1 and TS2) 

The boxplot in Figure 3.6 shows the variation of the OA data with regard to the Level 2 land 

cover classification performed by the Random Forest. Similar to the Level 1 classification, the 

k-NN algorithm has larger variations compared to the Random Forest method when only using 

the thermal information with an image number smaller than 4. The OA data by Random Forest 

varies relatively stable for both TS1 and TS2 data. 

The best OA of TS1 Level 2 classification is 96.6% achieved by the time series of 7Bands 

images (Table 3-8). The largest OA from the thermal images is obtained by k-NN as 96.3%, 

which is about 0.9% to 3.6% higher than the accuracies of B3B4, 3PC and 6Bands. Starting 

from 5 images, the time series of 3PC and 6Bands in TS1 obtain OA. The classification results 

using the thermal information by the Random Forest algorithm start to exceed the accuracy of 

time series of B3B4, 3PC and 6Bands with image number 6. The bold data in Table 3-7 and 

Table 3-8 imply the best accuracy data among all the OA at each time step. The best OA of 

96.9% from the Level 2 classification results of TS2 (Table 3-8) comes from the 7Bands image 

classified by the k-NN algorithm, followed by the 6Bands (96.5%), 3PC (96.1%), B3B4 

(94.8%) and the thermal band (93.9%). By contrast to the TS1 Level 2 classification results, 

the time series of thermal images obtain the lowest OA at each time step for the TS2. The best 

value from the thermal band is 93.9% and the OA starts to exceed 85% when the images are 

more than 4. The 3PC and 6Bands also achieve the similar accuracy from the image number of 

4. The TS2 boxplot in Figure 3.6 illustrates that the OA increases with the image number for 

all the time series images, whereas the performance of Level 2 classification based on the TS2 

thermal images is not as good as that of the TS1 thermal images.  
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Figure 3.6 TS1 and TS2 boxplot of the 10-fold Level 2 classification overall accuracy variation by 

Random Forest for time series images of the combination of band 3 and band 4 (B3B4), the first three 

principal components (3PC), the combination of 6 bands (6Bands), the thermal bands and the 

combination of 7 bands (7Bands). 

Table 3-8 Overall Accuracy of Level 2 classification by k-NN and Random Forest based on the time 

series images of the five variants. 

Image 
Number 

B3B4 (%) 3PC (%) 6Bands (%) 

Thermal 
(%) 7Bands (%) 

k-NN RF k-NN RF k-NN RF k-NN RF k-NN RF 

TS1-1 51.0 64.3 74.6 74.6 81.0 80.6 37.0 56.6 82.9 83.6 

TS1-2 76.3 76.1 85.7 84.0 87.1 86.6 52.1 68.0 90.3 89.7 

TS1-3 83.7 83.6 89.8 87.8 90.1 88.8 65.4 77.8 92.5 90.9 

TS1-4 87.7 87.4 92.2 90.3 92.8 90.3 81.0 85.8 94.0 92.3 

TS1-5 89.7 89.2 93.5 90.9 93.7 91.2 89.7 91.3 95.2 93.3 

TS1-6 91.2 90.4 94.5 92.1 94.6 92.0 93.9 93.9 95.9 94.0 

TS1-7 92.7 91.7 95.3 92.8 95.4 93.3 96.3 95.3 96.6 94.9 
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Image 

Number 

B3B4 

(%) 
3PC 

(%) 
6Bands 

(%) 
Thermal 

(%) 
7Bands 

(%) 
Image 

Number 
B3B4 

(%) 

3PC 

(%) 
6Bands 

(%) 

Thermal 

(%) 

 k-NN RF k-NN RF k-NN  k-NN RF k-NN RF 

TS2-1 55.9 65.6 81.4 80.7 84.5 84.3 37.8 56.5 88.4 88.0 

TS2-2 80.9 80.6 91.0 90.5 91.5 91.0 51.4 66.9 94.6 93.8 

TS2-3 89.8 88.9 93.9 93.3 94.6 93.9 65.7 76.5 95.6 95.0 

TS2-4 92.8 91.6 95.2 94.2 95.1 94.7 81.0 84.6 96.4 96.0 

TS2-5 93.8 93.4 95.8 94.6 96.1 95.2 88.0 89.1 96.8 96.2 

TS2-6 94.8 94.2 96.1 95.1 96.5 95.3 93.9 93.3 96.9 96.3 

The results of sections 4.1 to 4.3 can be summarized as follows: For the single image 

classification: i) Bands4 (97.6%), Bands6T (98.1%) and Bands10T (98.3%) achieved similar 

OA value of 98% ± 0.4% for the Level 1 classification; ii) Bands6T and Bands10T including 

the two thermal bands got about 5% and 8% higher OA value than that of the Bands4 for the 

Level 2 classification;  iii) Bands6T and Bands10T obtained 6% and 12% higher accuracy than 

the Bands4 for the Level 3 classification. 

For the Level 1 classification by the time series of images: i) the thermal images provide 

comparatively similar OA for both the TS1 and TS2 Level 1 classification, with the best OA 

of 99.1% for the TS1 and 98.7% for the TS2; ii) When the image number is greater than 5, the 

thermal band shows better OA compared to the B3B4, 3PC and 6Bands for the TS1; iii) the 

7Bands combination achieved the best OA at each time step mostly classified by the k-NN, 

with the OA of 99.1% for the TS1 and 99.2% for the TS2; iv) starting from 4 images, the 3PC 

and 6Bands provided comparable accuracy data.  

For the Level 2 classification by the time series of images: i) the best accuracy data of TS1 and 

TS2 are derived from the 7Bands among all the other images by k-NN with the OA of 96.6% 
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and 96.9% respectively; ii) the thermal images get the largest OA at the image number of 6 

with 96.3% for TS1 at the image number of 7, which is higher than B3B4, 3PC and 6Bands; 

iii) the TS2 obtained the lowest OA at each time step compared to the other variants and the 

best OA of 93.9% at the image number of 6; iv) the same feature also exists in the Level 2 

classification for the 3PC and 6Bands with the similar accuracy data when the image number 

is greater than 4.   

3.7 Conclusions  

The effectiveness of the thermal information/bands  with regard to land cover classification 

using a single Landsat 8 image (including two thermal bands) and time series of Landsat 4/5 

images (including one thermal band) was investigated  for the Attert Catchment in Luxemburg. 

The single image was classified into three levels with 4, 7 and 14 LULC classes respectively 

and the time series of images were classified into the first two levels (level 3 could not be 

analyzed due to the lack of ground truth data during the time frame of available images). The 

k-NN and the Random Forest algorithm were applied and assessed within a 10-fold cross-

validation framework.  

Firstly, the accuracy results from three variants of the single-date Landsat 8 image indicate that 

adding the thermal bands has clearly improved the accuracy of the Level 2 and Level 3 

classification. The three variants achieved similar high OA of 98% ± 0.4% for the Level 1 

classification. For the Level 2 and Level 3, Bands10T performed well with the best accuracy 

data, followed by the Bands6T and Bands4, which is 6% and 12% higher for the Level 3 

classification. The OA from Bands6T including the two thermal bands are 3% and 6% higher 

respectively for the Level 2 and Level 3 category than the data of Bands4 without thermal 

bands. The results indicate that for the single Landsat 8 image classification, adding the thermal 

band to the VIR/NIR bands could improve the accuracy by 3% to 6% for Level 2 and Level 3 

classification. As thermal bands are routinely available from different sensor platforms, their 
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incorporation as input into the classification should also be done on a routine base, thereby 

significantly increasing classification accuracy.   

Secondly, the results from time series of thermal images also demonstrate that the inclusion of 

thermal band significantly improves the  LULC classification, compared to using standard 

VIS/NIR bands. The classification based on time series of thermal images provided comparably 

high OA when compared to the B3B4, 3PC, 6Bands and 7Bands images. TS1 thermal images 

obatined the best OA of 99.1%  for Level 1 classification and 96.3% for the Level 2 

classification. The  time series of  TS2 thermal images achieved the OA of 98.2% for the Level 

1 and 93.9% for the Level 2. It is interesting to observe that the time series of thermal images 

could provide OA that are as good or even better than using the visible and near-infrared bands 

in the land cover classification, especially when the combination number of images used is 

higher than 5.  

Time series of TS2 thermal images also achieved comparatively high accuracy at the image 

number of 6, although the value is not higher than other images. Based on our results, a time-

series of at least 5 or 6 thermal images is recommended as being almost optimal for situations 

that are similar to our study area. If the images from different years are obtained in the area 

with varying land cover and land use, the classification catalog and the selection of training set 

should be paid more attention with more land cover catalogs or taking the land cover change 

as the new class to ensure the consistence of the images in different years. In this study, the 

cloud free Landsat images were received mainly in the spring and summer time. They 

demonstrate the temperature discrepancies between various types of land cover especially for 

the agriculture areas, which is very effective for the Level 2 classification with the high OA 

from 93.9% to 96.3%. For the classification with the time series of images in the same year, at 

least two images from spring or summer time are recommended as the complementary sources.  
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Our study is not aiming at replacing the existed profound classification ways, but trying to add 

the thermal bands to improve the land cover classification based on the single image or the 

time series of images. The incorporation of thermal information improved the land cover 

classification indicated by better OA and Kappa statistics. But also, thermal information alone 

provides similar or even better results when compared to the other time series of visible and 

near- infrared bands combination and/or principal components. Therefore, in case of failures 

or non-availability of VIS/NIR band data (as has been the case e.g. for the ASTER NIR bands), 

the thermal information could serve as a good substitute input in land cover classification 

experiments.  

So far, the study area is limited to the Attert catchment in Luxembourg and the detailed land 

cover catalog is only classified to Level 2 (7 classes) when using time series of images, due to 

the lack of images in the same year for the agricultural area and therefore missing ground truth 

information. Because of the complicated atmosphere conditions, the preprocessing of the time 

series images probably could further benefit from other novel correction procedures, such as 

the relative radiometric normalization(Vicente-Serrano et al., 2008). Further investigation of 

the time series of thermal remote sensing will be extended to the more specific classification 

for higher level with more specific land covers (such as Level 3 CORINE classes and/or 

application in agricultural and hydrological land cover types). The thermal bands in Landsat 

satellites have the limitation of a coarser spatial resolution when compared to the VIS/NIR 

bands, but the developed data fusion methods (such as e.g. wavelet fusion method (Bagan et 

al., 2003) or the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) (Feng 

et al., 2006; Zhu et al., 2010)). Other thermal sensors with wider spectral range such as ASTER 

or the sensor installed on the drone with finer spatial resolution and hyperspectral data (Segl et 

al., 2003) should also be explored to aggregate the information for the regional land cover 

classification, but this is subject of ongoing and future research.  

 



    4. Accuracy Assessment 

89 

4 Accuracy Assessment of Land Cover Maps Using the Polygon-

based Cross Validation Method 

This chapter has been edited and published as Sun, L., and K. Schulz, 2015, Response to 

Johnson B.A. Scale Issues Related to the Accuracy Assessment of Land Use/Land Cover 

Maps Produced Using Multi-Resolution Data: Comments on “The Improvement of Land 

Cover Classification by Thermal Remote Sensing”. Remote Sens. 2015, 7, 8368–8390: 

Remote Sensing, v. 7, p. 13440. 

 

4.1 Abstract  

As a complement to the pixel-based cross validation (CV) method, a polygon-based CV 

method is utilized in this section to classify different levels of land cover categories using a 

single-date Landsat 8 image and time series of Landsat TM images. Also, different variants of 

band combinations, with and without the thermal bands, were considered. The results 

demonstrate that the inclusion of thermal information into the classification process will 

improve the classification performance, as was already shown in the Chapter 3. However, it is 

also demonstrated that the polygon-based CV method produced lower overall accuracy values 

when compared to the pixel-based CV method. This confirms the argument made by Johnson 

that a correlation of calibration and validation data due to random sampling of multi-scale data 

will overestimate the performance of the classifier, and independent polygon-based CV 

methods have to be applied instead. 

4.2 Introduction 

In Chapter 3,  we made use of single-date Landsat 8 and time series of Landsat 4/5 images to 

investigate the potential of  thermal information for an improved land cover classification in 
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the Attert Catchment in the Grand Duchy of Luxembourg (Sun and Schulz, 2015). The 

classification results were assessed by a 10-fold pixel based cross-validation (CV) method 

where pixel were randomly selected and the overall accuracy (OA) taken as an evaluation 

measure. We found that the inclusion of thermal bands can improve the accuracy of the land 

cover classification when added to the multispectral bands. Based on the accuracy assessment, 

it demonstrated that the time series of thermal images alone produced similar classification 

results when compared to all other VIS/NIR and TIR band combinations. 

Whereas, a flaw was found in the pixel-based CV method. Johnson pointed out that the high 

accuracy data produced by the thermal images were likely caused by the overestimation of the 

pixel-based CV method (Johnson, 2015). In this case, additional evaluation method would be 

very helpful for the evaluation of land cover maps. Therefore, in this study,. we proposed the 

new CV method based on the region-of-interest (ROI) / polygon level, aiming to investigate 

for the effectiveness of avoiding the spatial autocorrelation between training and validation 

pixels given multi-resolution data.  

It is well-known that various arguments and numerous data fusion methods exist around the 

accuracy assessment of the multi-scale remotely sensed images (Congalton, 1991; Congalton 

and Green, 2009; Foody, 2002) (Colditz et al., 2006; Zhu et al., 2010). With more focus on the 

evaluation of the thermal bands compared to the other multispectral variables, the accuracy 

assessment problems should be noted when the land cover classification is related to the scale 

issues of the resampled thermal images were neglected.  

In the following sections, we briefly introduce the new assessment procedure and present the 

classification results for both the single-date and time series of image applications and compare 

the accuracy data with the pixel-based CV method. The data sources and classification methods 

are the same as described in Chapter 3.   
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4.3 Polygon-based Cross Validation Method 

The polygon-based CV method assumes the polygons as the indpendant sample unit, and 

samples the training and validataion polygons based on the 10-fold CV method. Here, the 

training and validation samples were collected using the area of interest tool of the drawing 

toolbox in the ERDAS software; the polygons here are the same as in the Chapter 3. However, 

in order to make sure the pixels from the polygon as pure as possible, here the pixels were kept 

only when their central points are inside the polygon; the polygons were then refined. This 

leads to the slightly smaller sample sizes compared to Chapter 3. As we are not aiming at 

evaluating the effects of the training size on the classification accuracy, here the comparison 

between the pixel-based CV method and the polygon-based CV method was conducted using 

the same size of samples (pixels with central point inside the polygon). 

For all land cover categories (except for water bodies) more than 10 polygons of ground truth 

data exists and there is little difference among the size of each polygon. For the 10-fold 

polygon-based cross validation, all polygons were split into 10 smaller sets and reorganized 

into 10 groups of data. The classification model was trained using pixels from nine groups of 

polygons (training data); the resulting model is then validated on the remaining group  

(validation data), and this procedure is repeated 10-times so that each group is used for 

validation once. In this way the correlation of multi-resolutions calibration and validation is 

avoided.   

4.4 Results and Discussion 

In this section, the accuracy statistics for a land cover classification applying both the original 

pixel based CV method and the polygon-based CV method are compared. Input data (a single-

date Landsat 8 image on 21 July 2013, as well as time series of images from Landsat 4/5) and 

classification methods (Random Forest and the k-NN algorithms) are utilized. 
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4.4.1 Three-Level Classification Based on the Single-date Landsat 8 Image (S1) 

In a first part, three variants of spectral band combinations of the single Landsat 8 image are 

used as input data and include: i) Bands4, only considering bands 2 to 5 in the VIS/NIR spectral 

region, without thermal bands; ii) Bands6T, as Bands4, but adding the two thermal bands 10 

and 11, and (iii) Bands10T, including all bands, except the panchromatic band.  

Table 4-1 summarizes the accuracy evaluation results for both the polygon-based and the pixel-

based CV methods. The OA values for the classification of Level 1 land cover category 

obtained by the polygon-based CV are almost identical to the pixel-based evaluation for the 

three variants (97% to 98%). The OA values of Level 2 and Level 3 categories decreased about 

5% and 9%, respectively, when switching to the polygon-based CV method. However, the 

increase in performance when adding the thermal bands into the classification is still 

pronounced and our conclusions drawn in the original paper still hold.  
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Table 4-1 The mean values of overall accuracy (OA) calculated by a polygon-based 10-fold CV method 

for the three variants from Landsat 8 in 2013 classified by k-NN and Random Forest: Bands4, only 

considering bands 2 to 5 in the VIS/NIR spectral region without thermal bands; Bands6T, as Bands4, 

but adding the two thermal bands 10 and 11, and  Bands10T, including all bands, except the 

panchromatic band (see (Sun and Schulz, 2015) for a detailed channel/band description); k-NN5 and 

RF represents the nearest neighbor method with k = 5 and Random Forest, respectively. 

 Image classification accuracy in 2013        Level 1 (%)         Level 2 (%)         Level 3 (%) 

Assessed by Polygon-based CV k-NN5 RF k-NN5 RF k-NN5 RF 

Bands4  97.0 97.5 83.3 82.5 67.5 67.7 

Bands6T 96.5 96.7 88.7 88.8 79.1 79.2 

Bands10T 96.9 97.6 88.0 87.5 80.8 78.0 

Assessed by Pixel-based CV k-NN5 RF k-NN5 RF k-NN5 RF 

Bands4 98.4 98.5 86.2 87.2 76.5 78.2 

Bands6T 98.2 98.4 92.1 92.9 87.7 88.1 

Bands10T 98.7 98.6 93.5 93.5 89.3 89.2 

4.4.2 Two-Level Classification Based on Time Series of Images (TS1 and TS2) 

The second part of the analysis focus on the differences between polygon-based and pixel-

based CV methods when using time series of Landsat 4/5 images as input in the land cover 

classification system. The time series of images consist of two groups: TS1, including 7 images 

between 1984 and 1990, and TS2, including 6 images from 2006 to 2011. Five variants of the 

times series were analyzed including the following different band combinations: B3B4, the 

combinations of band 3 and band 4 of Landsat TM; PC3, the first three principal components 

of all VIS/NIR bands; 6Bands, all bands except the thermal band; Thermal only the single 

thermal band; and 7Bands, the combination of all 7 Landsat 4/5 bands.  

The best OA value from the polygon-based CV method (Table 4-3Table 4-1) is almost the 

same as the results from the  pixel-based CV(Table 4-2). For simplification, we here only list 
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the OA values of the polygon-based CV for Level 1 and Level 2 land cover categories 

classification. Table 4-3 shows OA values of the polygon-based CV for the classification of 

Level 1 land cover categories, whereby images within each group (TS1, TS2) are added 

subsequently as input. The classification performance increases with increasing numbers of 

images for all variants, a behavior that is already shown in Chapter 3  using a random pixel-

based CV. Also, the 7Bands variant including the thermal band still achieved the best overall 

performance, especially for smaller number of images included. Using the full set of available 

images all variants performed almost equally well, with OA values of 96-98.5%. When only 

using the thermal band, classification performance is reduced by 4.5 % compared to the pixel-

based CV method, nicely demonstrating the overestimation of performance when correlation 

of multi-resolution calibration and validation data are existent.  

Table 4-2 Overall Accuracy of Level 1 classification assessed by the pixel-based CV method using five 

variants of time series of images. 

Image Number 
B3B4 (%) 3PC (%) 6Bands (%) Thermal (%) 7Bands (%) 

k-NN RF k-NN RF k-NN RF k-NN RF k-NN RF 

TS1-1 89.1 89.8 93.0 93.2 97.0 96.9 91.2 91.8 97.6 97.4 

TS1-2 93.9 93.6 96.3 96.3 97.5 97.8 92.9 93.6 98.5 98.6 

TS1-3 96.8 96.8 97.9 97.7 98.1 98.1 94.9 95.2 98.8 98.6 

TS1-4 97.4 97.4 98.5 98.3 98.7 98.5 95.9 96.1 99.0 98.7 

TS1-5 98.1 98.0 98.7 98.2 98.9 98.6 98.3 98.0 99.2 99.1 

TS1-6 98.3 98.0 99.0 98.5 99.1 98.7 98.8 98.4 99.2 99.1 

TS1-7 98.5 98.4 99.2 98.6 99.3 98.8 99.4 98.8 99.5 99.4 

TS2-1 93.2 93.0 96.7 96.6 97.4 97.5 85.0 86.4 97.9 97.8 

TS2-2 97.5 97.3 98.7 98.6 98.9 98.5 91.8 92.6 99.2 99.0 

TS2-3 98.5 98.4 99.2 98.9 99.1 99.0 95.6 95.6 99.3 99.3 

TS2-4 98.9 98.8 99.3 99.0 99.2 99.1 98.0 97.9 99.5 99.5 

TS2-5 99.4 99.2 99.6 99.2 99.5 99.3 98.4 98.5 99.6 99.5 

TS2-6 99.4 99.3 99.6 99.3 99.6 99.4 99.1 98.9 99.7 99.5 
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Table 4-3 Overall Accuracy of Level 1 classification assessed by the polygon-based CV method using 

five variants of time series of images. 

Image Number 
B3B4 (%) 3PC (%) 6Bands (%) Thermal (%) 7Bands (%) 

k-NN RF k-NN RF k-NN RF k-NN RF k-NN RF 

TS1-1 86.6 87.7 91.6 91.2 86.6 87.7 87.8 90.5 96.2 95.5 

TS1-2 91.9 90.9 94.8 94.4 95.6 96.2 88.4 88.8 96.5 97.0 

TS1-3 94.2 94.9 95.9 95.8 96.4 96.1 88.4 90.9 96.8 96.3 

TS1-4 95.6 96.2 96.8 96.7 96.4 97.1 88.7 87.0 96.8 96.7 

TS1-5 96.1 96.2 96.8 96.2 97.3 97.0 91.7 91.3 96.8 97.3 

TS1-6 96.1 95.9 97.2 96.3 96.8 97.4 91.7 89.3 96.9 97.1 

TS1-7 96.0 96.6 97.4 97.2 97.7 97.6 93.2 94.6 97.7 97.0 

TS2-1 91.4 91.5 95.6 94.2 95.8 95.5 80.0 86.0 95.9 95.1 

TS2-2 95.1 95.9 97.2 96.9 97.5 97.0 84.5 89.3 97.8 97.0 

TS2-3 97.1 97.2 98.0 97.6 98.4 97.8 92.6 92.7 98.3 98.2 

TS2-4 97.0 97.8 97.8 97.9 97.8 98.2 95.0 92.6 98.7 98.0 

TS2-5 98.1 97.9 98.7 98.3 98.0 99.0 94.2 94.4 98.3 98.3 

TS2-6 98.5 98.2 98.6 98.1 98.6 98.4 95.4 95.4 98.3 98.4 

The differences between the pixel-based based and a polygon-based 10-fold CV method are 

summarized in Figure 4.1.  Here, OA values of all five variants from TS1 are summarized in a 

single box-plot for each time-step in the left image of Figure 4.1. It is clearly seen that on 

average the polygon-based CV method produced significant lower OA for both time series 

(TS1, TS2), again supporting the issue raised by Johnson’s comment. Two variants of 6Bands 

and 7Bands were selected to show the detailed variation for the two methods in the right image 

of Figure 4.1. Besides the lower OA in comparison to the pixel-based CV method, the polygon-

based CV still produced higher average OA for the 7Bands compared to the 6Bands without 

thermal band (the right image in Figure 4.1).  
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Figure 4.1 The distribution of OA values for the Level 1 land cover category classification using times 

series TS, the polygon-based and pixel-based 10-fold cross validation methods and the Random Forest 

methods. Left: all variants (Table 4-3 and Table 4-2) are summarized in a single box-plot; Right: OA 

comparison of selected variants of 6 bands without thermal band and 7 bands with thermal band. 

 

Figure 4.2 The distribution of OA values for the Level 2 land cover category classification using times 

series TS2, the polygon-based and pixel-based 10-fold cross validation methods and the Random Forest 

methods. (Left): all variants (Table 3) are summarized in a single box-plot; (Right): OA comparison of 

selected variants of 6Bands without thermal band and 7Bands with thermal band. 
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Table 4-4 Overall Accuracy of Level 2 classification assessed by the pixel-based CV method using five 

variants of time series of images. 

Image Number 
B3B4 (%) 3PC (%) 6Bands (%) Thermal (%) 7Bands (%) 

k-NN RF k-NN RF k-NN RF k-NN RF k-NN RF 

TS1-1 64.1 65.7 77.4 77.3 83.3 83.5 53.2 57.9 85.1 85.0 

TS1-2 79.2 78.7 87.6 86.2 89.5 88.1 66.8 70.4 92.0 90.9 

TS1-3 85.7 85.9 91.2 89.3 91.3 90.1 78.2 80.2 93.4 92.6 

TS1-4 89.4 89.7 93.2 91.7 93.9 92.4 86.1 87.7 95.3 93.6 

TS1-5 91.5 91.5 94.4 92.2 94.8 92.5 92.1 92.5 96.1 93.9 

TS1-6 92.4 92.4 95.5 93.6 95.7 93.9 94.9 94.6 96.7 95.0 

TS1-7 94.3 93.2 96.1 93.7 96.7 94.5 96.8 95.6 97.5 95.7 

TS2-1 70.9 70.7 87.3 87.2 89.1 88.8 48.5 55.3 90.6 89.8 

TS2-2 87.4 86.6 94.1 93.8 95.2 94.5 67.6 71.2 96.1 95.2 

TS2-3 92.6 92.2 96.0 95.4 96.4 95.3 79.2 80.6 96.9 96.5 

TS2-4 95.0 94.7 97.1 96.0 96.9 96.3 87.0 87.9 97.5 97.2 

TS2-5 95.9 95.7 97.5 96.3 97.5 96.5 92.9 93.2 98.1 97.4 

TS2-6 96.4 95.9 97.3 96.4 97.5 96.8 95.8 94.7 98.2 97.4 

Repeating this analysis for the classification of Level 2 land cover categories, the differences 

in the performance measure (OA) between both CV methods is even more pronounced. Table 

4-5 provide the accuracy data from the two CV methods for the Level 2 classification results. 

The average OA values are in general lower, as we analyze more specific land cover categories.  

The best OA for TS1 and TS2 are 86.6% and 93.3% when including the full set of images. The 

7Bands variant including the thermal band still achieved the best OA value of 86.6% for TS1, 

which is 10.9% lower than 97.5% from the pixel-based CV method. The best OA of TS2 from 

polygon-based CV method is about 5% lower than the corresponding value for the pixel-based 

CV method. Again, the Thermal variant including only the single thermal band, showed only 

a relatively weak performance with OA values of 72% and 74.5% for the both time series, 

compared to 96.8% 95.8% for the pixel-based CV method. Figure 4.2 summarizes the 
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differences between the pixel-based and the polygon-based CV methods in the left image and 

displays the variation of the selected 6Bands and 7Bands variants.  

Table 4-5 Overall Accuracy of Level 2 classification assessed by the polygon-based CV method using 

five variants of time series of images. 

Image Number 
B3B4 (%) 3PC (%) 6Bands (%) Thermal (%) 7Bands (%) 

k-NN RF k-NN RF k-NN RF k-NN RF k-NN RF 

TS1-1 63.3 62.0 73.3 72.2 79.4 80.3 39.2 51.6 79.7 79.4 

TS1-2 72.6 73.3 78.7 77.9 81.5 82.0 50.4 52.9 80.4 81.8 

TS1-3 77.9 76.9 79.3 81.9 83.4 82.8 55.4 57.9 81.9 83.3 

TS1-4 80.8 81.5 85.0 85.5 86.1 84.2 62.2 60.7 81.7 83.2 

TS1-5 82.7 83.7 84.1 84.5 84.6 86.1 66.3 66.3 83.3 85.2 

TS1-6 83.2 83.4 86.0 85.9 85.2 84.7 66.8 68.8 85.1 86.2 

TS1-7 82.9 83.0 84.4 85.0 85.1 86.3 69.9 72.0 85.4 86.6 

TS2-1 68.8 69.6 83.7 82.4 85.7 86.0 42.0 48.7 83.6 84.5 

TS2-2 79.4 80.3 88.4 89.8 90.1 90.9 57.3 58.5 90.6 89.8 

TS2-3 86.8 86.2 89.9 92.4 88.7 91.0 60.9 63.9 91.2 91.0 

TS2-4 87.8 89.6 90.6 91.6 91.8 91.5 65.7 64.9 92.7 91.6 

TS2-5 87.7 90.1 92.0 92.6 91.1 92.3 70.3 71.5 92.2 93.0 

TS2-6 89.1 91.3 92.1 92.3 90.2 91.9 74.5 70.4 92.0 93.3 

4.5 Conclusions  

In this Chapter, a polygon-based CV method  was applied to evaluate a land cover classification 

for three different levels of land cover categories. The classification was based on i) a single-

date Landsat 8 image, and ii) time series of Landsat 4/5 images. The performance of 

classification results using the polygon-based CV were compared to a pixel-based CV method 

as applied in the Chapter 3.  
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For the single-date Landsat 8 image, the polygon-based method achieved almost similar 

accuracy values when compared to the pixel-based method, for all three-levels of land cover 

categories and for both classification methods used. When using time series of images, five 

different variants of band combinations with and without thermal information have been 

considered.  

The accuracy of the Level 1 classification decreased but to a very acceptable and still useful 

level when compared to the commonly recommended standard of 85% (Anderson, 1976) (the 

best OA of Thermal is 94.6% and the best OA of 7Bands is 98.4%). The most obvious decline 

in performance is observed in the classification results for the Level 2 category, of which the 

best OA among the five variants is 93.3% and only 74.5 % when using only the thermal bands.  

Consistent with our former findings, the inclusion of the thermal bands still improved the land 

cover classification in comparison to only using the VIS/NIR bands, also when assessing the 

classification results with a polygon type of CV approach. This has also been shown by other 

researcher, Eisavi et al. (Eisavi et al., 2015) applied the random forest classifier to the multi-

temporal spectral and thermal features in land cover classification and found that the 

contribution of multi-temporal thermal information led to a considerable increase in the 

accuracy data. When using time series of thermal images to classify land cover at the Level 2 

category, the performance and OA values were significantly lower for the polygon based CV 

when compared to the pixel-based evaluation for all band combinations considered. Again, the 

inclusion of thermal information improved the classification results on various levels. 

In summary, a clear effect of correlation in the samples for calibration and validation due to 

multi-resolution data could be observed here. Classification accuracy (OA) was highly 

overestimated when ignoring correlation effects in the selection of calibration and validation 

data using time series of images as input. We therefore strongly recommend for the polygon-

based CV method when using the resampled thermal images, or random sampling design could 
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possibly be helpful to avoid the correlation between the pixels. Nevertheless, the different 

choice of the CV method could improve the accuracy to a certain level. Even based on different 

evaluation method, the thermal data still proved its effectiveness, which is constistent with the 

conclusions in Chapter 3 that the inclusion of thermal data into the classification process, can 

significantly improve the classification results. 
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5 Vegetation Dynamics Modelling of Temporal LAI Prediction 

by Integrating the Climate Variables and MODIS LAI Data in 

a Mesoscale Catchment  

This chapter is the revised version after the first round review of the paper submitted in 

Remote Sensing as Sun, L., and K. Schulz, 2015, Vegetation Dynamics Modelling of 

Temporal LAI Prediction by Integrating the Climate Variables and MODIS LAI Data in a 

Mesoscale Catchment. 

5.1 Abstract 

The distribution patterns and functions of vegetation dynamics are strongly required in the eco-

hydrological models. The leaf area index (LAI) products derived from the remotely sensed data 

are particularly relevant for vegetation dynamics modelling. In the present study, we proposed 

a new LAI prediction model (Temperature Precipitation Vegetation Model, TPVM) by 

integrating two climate variables with the cumulative temperature and precipitation data. 

Taking the filtered Moderate Resolution Imaging Spectroradiometer (MODIS) LAI products 

as the optimization observation data, together with the Canopy Structure Dynamic Model 

(CSDM) and the Double Logistic Model (DLM), we applied the TPVM in the meso-scale 

Attert Catchment, Luxembourg. Featured phenological metrics from TPVM were also analysed 

for the interaction of climate and vegetation dynamics. The prediction results of seven land 

cover types indicated that the DLM and TPVM generally provided more realistic and accurate 

LAI data, whereas the TPVM performed superiorly for the agricultural land cover types 

compared to the other two models solely depending on the temperature data. Evaluated with 

the field measurements, TPVM got the best Person’s correlation coefficient (CC) of 0.78. 

Further investigation of the applicability of TPVM in a larger-scale domain would be strongly 

recommended. 
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5.2 Introduction 

Vegetation dynamics have been long studied for their functions in the terrestrial ecosystems, 

including land cover and land use change assessment, land surface process research, 

hydrological or climate change modelling and prediction (Schwartz et al., 2002; Sitch et al., 

2003; White et al., 1997).Vegetation dynamics can reflect many climatic factors, including the 

temperature, precipitation, length of sun time, humidity and water use (de Beurs and Henebry, 

2004; Peñuelas et al., 2004; Zhang et al., 2005). Leaf Area Index (LAI) is a dimensionless 

canopy indicator, which was defined by Watson (Watson, 1947) as the total one-sided area of 

leaf tissue per unit ground surface area. It is a key measure for evapotranspiration and 

photosynthesis models by reflecting the radiation absorption and turbulent transfers between 

vegetation and the atmosphere (Tesemma et al., 2014). Moreover, the LAI of vegetation serves 

as an important state parameter in the eco-hydrological models, such as the Soil-Vegetation-

Atmosphere Transfer (SVAT), Surface Energy Balance (SEB), and Global Climate Models 

(GCM) (Glenn et al., 2008). The water interception amount and vegetation storage capacity 

were found to be directly related with the LAI depending on the vegetation type and the 

phenological stage (Xiao et al., 1998). The changing LAI modifies the surface water and energy 

budget which in turn affect the biochemical and hydrological cycles (Running and Coughlan, 

1988). Therefore, accurate estimation of continuous LAI for the various land cover types has 

pronounced significance in the land surface modelling.  

The seasonal dynamics of LAI respond differently to the climate changes depending on the 

land cover types. The seasonality can also be referred to the vegetation phenology (Leith, 

1974), which can provide valuable information on the interaction between climate change and 

the ecosystems to temporal scales (González-Sanpedro et al., 2008; Liang and Schwartz, 2009; 

Schwartz and Karl, 1990) (intraseasonal and interannual) and are closely linked with the 

climate variability and the hydrological processs in a varying spatial scales (AghaKouchak et 

al., 2015; Atzberger et al., 2013; Hwang et al., 2011). The key factors affecting the vegetation 
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phenology are similar as the above-mentioned vegetation dynamics influences, including the 

air temperature, soil temperature, and water availability (Chuine et al., 2003; Forrest and 

Miller-Rushing, 2010; Kramer et al., 1999; Thuiller, 2007).  

The traditional in situ observation of phenological events include the national phenological 

networks, GLOBE student observations (http://www.globe.gov/globe-data) and phenological 

gardens, which can provide relatively detailed and realistic timing data of the phenological 

events. However, the ground based observations cannot avoid the shortcoming of the expensive 

cost, the highly time consuming and operating bias. With the advances of the computer science 

and the concern of the global warming, more efforts have been made for the phenological 

models development. For the past decades, these efforts range from examining the controls of 

environmental factors, biological processes, and intrinsic traits (Migliavacca et al., 2008; 

Schwartz et al., 2006) on phenology, modelling techniques (Chuine et al., 2000a; Kathuroju et 

al., 2007; Palacios-Orueta et al., 2012), to ecosystem-level and evolutionary consequences of 

phenological changes (Chuine et al., 2004; Cleland et al., 2007).  

In 1735, Reaumur proposed the most important assumption in the plant phenology modelling 

(Chuine et al., 2003): differences between years and locations in the date of phenological events 

could be explained by differences in daily temperatures from an arbitrary date to the date of 

the phenological event considered. Schwartz et al.(Schwartz et al., 2002) employed a 

regression model to test the significance and estimate the magnitude of changes in the 

relationship between thickness-maximum temperatures relative to first leaf date. Chuine et al. 

(Chuine et al., 1999) proposed several phenological models in the ecosystem research such as 

the Spring Warming Model, SeqSpar Model, SparSar Model). The onset models which assume 

that budburst occurs when a critical state of forcing temperature is reached, the state of forcing 

being the sum of the daily rate of forcing, which is solely a function of temperature. Chuine 

(Chuine et al., 2000b) also pointed out that the empirical and bioclimatic models should be 

species specific and calibrated at local scales.  



    5. Vegetaiton Dynamics Modelling 

104 

Since 1980s, remote sensing techniques with low-cost and good temporal availability has been 

frequently used for the repetitive vegetation dynamics monitoring and plant phenology 

modelling (Justice et al., 1985; Koetz et al., 2005; Reed et al., 1994). Measured by the remote 

sensors, the characteristics of vegetation dynamics are usually represented by the vegetative 

indicators (VIs). The most frequently used indices include the normalized difference vegetation 

index (NDVI), enhanced vegetation index (EVI), the fraction of absorbed photosynthetically 

active radiation (FPAR) and leaf area index (LAI). These VI variables are normally served as 

the proxies for the canopy state variables estimation to describe the status of the plant growth 

(Sakamoto et al., 2005).  

Time series of VIs from the satellite images can help the researchers in studying the 

phenological events across different scales (Beck et al., 2006; Fisher et al., 2006; White et al., 

1997; Zhang et al., 2006). Due to the contamination by cloud or snow cover as well as 

instability in the data processing algorithms, the remotely sensed VI products mainly contain 

significant discontinuities (Kandasamy et al., 2013; Weiss et al., 2007), which need to be 

smoothed before application in the modelling process. White et al. (White et al., 1997) utilized 

the Best Index Slope Extraction (BISE) to smooth the daily Advanced Very High-Resolution 

Radiometer (AVHRR) NDVI data and to detect the phenological events with the predictive 

phenology models using the commonly available meteorological and climatological data. They 

concluded that the models could potentially be applied in large-scale biogeochemical models 

and monitoring vegetation response to interannual climatic variability. Schwartz et al. 

(Schwartz et al., 2002) compared the start of season (SOS) dates from the AVHRR data using 

different models and affirmed that the integrated satellite SOS with other regional phenology 

models offers considerable capability at the continental-scale monitoring of the spring onset. 

Zhang et al. (Zhang et al., 2003) proposed a series of piecewise logistic functions to fit the 

satellite-derived VI data and demonstrated the successful model application with Moderate 

Resolution Imaging Spectroradiometer (MODIS) data in vegetation phenology monitoring 
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over the United States. Moreover, other well-known functions include the Savitzky-Golay 

filter, asymmetric Gaussian, double logistic functions (DL) (Jonsson and Eklundh, 2002), 

curve-fit methodology (Fisher et al., 2006), as well as the a simple semi-mechanistic canopy 

structure dynamic model (CSDM) (Koetz et al., 2005). 

In addition to the modelling method, the climate controls such as the temperature have been 

long studied by researchers (Kramer et al., 1999; Riha et al., 1996). However very limited 

studies have considered the precipitation in the vegetation dynamic modelling. Riha et al. (Riha 

et al., 1996) reported that the air temperature and precipitation are the major driving variables 

for crop simulation models and these models implicitly respond to the changes in both average 

temperature and precipitation. Kramer et al. (Kramer et al., 1999) recommended that the 

seasonality of climatic drivers affecting the phenological aspects of trees should be developed 

and carefully tested in the phenological models. 

Therefore despite the tremendous development of the vegetation dynamics modelling in remote 

sensing area, efforts are still urgently needed to provide more reliable vegetation dynamics for 

the eco-hydrological models. Embedded in the German DFG research project CAOS 

(“Catchments as Organised Systems”) (CAOS, 2012; Zehe et al., 2014), a key research 

question is to better understand how the different forms of spatial organization affect the 

storage and release of water and energy. Unlike most dynamics modelling based on the day of 

year as input but with more focus on the effects of climatic factors on the vegetation growth, 

this study aims at developing a simple vegetation dynamic model, which integrates the 

commonly-used climate variables to describe the growing status of different land cover types. 

Double logistic model (DLM) and CSDM models were also implemented using the cumulative 

temperature data for comparison in this study. Developed from the logistic functions, a new 

temperature-precipitation vegetation dynamics model (TPVM) was proposed for the Attert 

Catchment in accordance with the MODIS data. Four phenological metrics were derived from 

the time series of modelled LAI data and were analyzed for the seasonal patterns. 
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5.3 Data Sources 

5.3.1 MODIS LAI Product 

In MOD15A2H, the LAI of broadleaf canopy is defined as the one-sided green leaf area per 

unit ground area in broadleaf canopies and as one-half the total needle surface area per unit 

ground area in coniferous canopy. The MOD15A2H version 6 Level 4 LAI product is provided 

by the Land Processes Distributed Active Archive Center (LP DAAC) managed by the NASA 

Earth Science Data and Information System (ESDIS) project (R. Myneni, 2015a). The 8-day 

composite dataset together with the quality criteria (QC) layer are retrieved from the Terra 

MODIS platform with 500m pixel size.  

The processing algorithm of the MOD15A2H LAI product includes a main Look-up-Table 

(LUT)and a back-up algorithm. The LUT is generated from the spectral information content of 

MODIS red and near-infrared surface reflectance by utilizing the 3D radiative transfer equation 

(Knyazikhin et al., 1998). The back-up algorithm that uses empirical relationships between 

NDVI and canopy LAI and FPAR. When the LUT method fails, the back-up method is utilized. 

Then, according to the data quality, the algorithm chooses the “best” pixel available from all 

the acquisitions of the Terra sensor from within the 8-day period (R. Myneni, 2015b). 

Horn and Schulz (Horn and Schulz, 2010) analyzed and compared the MODIS LAI products 

with different quality criteria from both Terra and Aqua platform. They suggest that QC 

filtering should not be applied for the times series of MODIS LAI products and it would be 

better to take all pixels from the subset into account to achieve error nullification (Horn and 

Schulz, 2010). Following the recommendation, we kept all the pixel values from the MODIS 

products to maximize the useful retrievals in this study. However, due to the noise in the data, 

data filtering must be done before the modelling. The modified best index slope extraction 

(mBISE) method was utilized for the MOD15A2H data in this study. Lovell and Graetz (Lovell 
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and Graetz, 2001) modified the best index slope extraction (BISE) method by taking into 

account the local gradient of the data in the sliding window, which works effectively for the 

10-composite NDVI data. Here, we set the sliding window for the MOD15A2H data as 24 days 

(3 images of 8-day interval from MOD15A2H) and the threshold for spurious spike as 0.1. 

Linearly interpolate the filtered data points from the mBISE method into continuous LAI 

datasets, which are considered as the observation data for optimization process in the 

modelling.  

5.3.2 Climate Data 

The gridded LAI pixel values for the meso-scale catchment can serve as valuable input sources 

for the hydrological and eco-climatic process modelling. In the model framework, we aim at 

providing the daily gridded LAI data with 500m spatial resolution. The input variables of the 

model include the same extent of cumulated daily mean temperature and daily sum 

precipitation datasets. The temperature and precipitation datasets were obtained from the 

metrological stations located at the Attert Catchment. The 2m air temperature data were 

interpolated from four meteorological stations and the precipitation were interpolated from six 

meteorological stations. Due to the few number of the available meteorological stations, here 

we used the simple Thiessen Polygons to interpolate the climate data into the 500m grid dataset 

in daily accumulative format for each year from 2003 to 2013. Figure 5.1displays the modelling 

procedure. The locations of the meteorological stations can be referred to Figure 5.2. 
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Figure 5.1 The vegetation dynamics modelling procedure include the data preprocessing of climate 

variable, then implementation of the three vegetation dynamic models, and the uncertainty assessment 

comparing with the field measured LAI. 

5.3.3 Land Cover Maps 

The reference land cover map in 2006 was downloaded from the COoRdination of INformation 

on the Environment (CORINE). CORINE 2006 was created with the joint efforts of about 38 

countries in Europe and was published by the European Environment Agency. In this paper, 

Level-3 of the CORINE map was used for the vegetation dynamics modelling. In the Attert 

catchment, nine types of land cover exist according to the CORINE 2006, which include broad-

leaved forest (BLF), complex cultivation patterns (CCP), coniferous forest (CF), discontinuous 

urban fabric, land principally occupied by agriculture with significant areas of natural 

vegetation (hereafter named as natural vegetation, NV), very small area of mineral extraction 

sites, mixed forest (MF), non-irrigated arable land (NIA) and the pastures (PAS). The artificial 

areas including the discontinuous urban fabric and mineral extraction sites were ignored in the 

modelling. Figure 5.2 presents the distribution map of Attert Catchment land cover types. 
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Figure 5.2 (a) DEM data with the measured LAI points in Attert Catchment; (b) CORINE Land cover 

map overlaid by the blue boxes of MODIS pixels corresponding to the field measurements. 

5.3.4 Field LAI Measurement 

The ground truth LAI measurements were conducted for two main land cover types, forest and 

agricultural areas. All the field measurements were conducted using the LAI-2200 Plant 

Canopy Analyzer from LI-COR Company and analyzed using the FV-2200 software (Inc., 

2010). The LAI-2200 equipment calculates the LAI values as well as the apparent clumping 

factor, mean tilt angle, and other LAI statistics directly from light measurements made with a 

“fish-eye” optical sensor. Above and below measurements are made to calculate canopy light 

interception. The measurement can be further calculated in the FV-2200 software for the row 

crops. The forest plots were mainly measured with 90° view cap at the sunset in two periods 

including the summer (foliated in August 2012, May 2014 and September 2014) and the winter 

(defoliated in March 2014). Two LAI-2200 devices were used for measuring the above and 

below readings of the forest separately. The above reading were automatically measured 

outside the forest with clear view and the below reading were measured inside the forest with 
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90°. The measurement plots were 20m x 20m and one below reading was measured every 4m, 

resulting in a total of 36 measurements for one plot. Afterwards, the mean LAI value was 

calculated for each plot. For the agricultural area, the measurements were mainly conducted 

with a 180° view cap in cloudy conditions or sunny conditions with an umbrella to avoid the 

direct sunlight. In the row crop area, one above and four below readings were measured for 

one row and normally at least four to six rows were measured in one plot. The distribution of 

the measurement clusters and the corresponding MOD15A2H pixels can found in Figure 5.2. 

The agricultural lands were measured in 22-26 July, 2013 and mainly consist of corn, wheat, 

barley, grassland, rapeseeds, triticale and small areas of oat. Besides, grassland and corn were 

measured for three times (on 23 July, 11 August and 09 September, 2013 respectively). In this 

study, in situ LAI measurements are used for comparison with the LAI values derived from the 

model. Due to spatial resolution mismatch between the plot measurement and the 500m grid 

of the MODIS data, the measured LAI values were averaged for each corresponding pixel as 

in the MOD15A2H map. Therefore, 46 plots of forest were aggregated to 22 pixels and 195 

plots of agricultural areas were averaged to 42 pixels. Afterwards, all the LAI measurements 

were directly compared with modelled LAI data on the same date. Due to the lack of climate 

observation data in 2014 and the relatively stable state of deciduous trees during fully leaf-off 

or leaf-on stages, we took the modelled data in 2013 to compare with the field LAI 

measurement in 2014.  

5.4 Methodology   

5.4.1 Model Development 

In the local phenological model, the cumulative thermal summation has been successfully 

applied in monitoring the onset of greenness or budburst (Chuine et al., 2000a; Chuine et al., 

2000b). The net effect of the vegetation growth and senescence can be depicted by the 

mathematical functions as the temporal profiles of the LAI dynamics (Koetz et al., 2005). The 
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phenological phases of the plants, such as the budburst, leaf development, flowering and leaf 

senescence differ according to the climate conditions and the vegetation types. The general 

structure of the phenological sigmoid model suppose that the probability of the emergence of 

a single leaf in day of year (DOY) is normally distributed, therefore the total amount of green 

cover through time is an accumulation, which is similar to the logistic growth curve (Zhang et 

al., 2003). In this sense, the annual leaf area of deciduous vegetation normally shows an 

exponential rise when the climate factors are satisfied and then reaches to the maximum during 

summer time. After the maturity period, the growth rate is modulated and dominated by the 

senescence. Then the leaf area declines until all the leaves fall down to the end. Whereas, the 

LAI of coniferous vegetation changes far less over the year. 

A novel TPVM model is proposed in this study by integrating the observed daily mean air 

temperature and daily sum precipitation data (Equation 1). In TPVM, we assume that the 

annual course of the LAI is collaboratively affected by the temperature and precipitation, not 

solely by the temperature. Therefore, when the temperature and precipitation data cumulate to 

a certain level, the plant leaves start to emerge or disappear. The other two models of CSDM 

and DLM were also conducted for comparison. Instead of using DOY as input variables as 

most of the studies (Fisher et al., 2006), the cumulative temperature data were implemented in 

the DLM (Equation 2). In addition, the semi-mechanistic CSDM model defines the canopy 

growth and senescence using the cumulative air temperature data shown as Equation 3. The 

slight difference of the CSDM in this study with the original model is that we add an initial 

background parameter c to consist with the proposed TPVM.  

The newly proposed TPVM can be derived by Equation 5.1: 

𝐿𝐴𝐼(𝑇, 𝑃) = 𝐿𝐴𝐼𝐴𝑚𝑝 (
1
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The DLM model follows the structure in TIMESAT (Jönsson and Eklundh, 2004) by Equation 

5.2: 

𝐿𝐴𝐼(𝑇) = 𝐿𝐴𝐼𝐴𝑚𝑝 ∗ (
1

1+𝑒
(

𝑇𝑖−𝑇
𝑟𝑖

)
−

1

1+𝑒
(

𝑇𝑠−𝑇
𝑟𝑠

)
) + 𝑐                                                               (5.2) 

The CSDM model can be calculated by Equation 5.3:  

 𝐿𝐴𝐼(𝑇) = 𝐿𝐴𝐼𝐴𝑚𝑝 [
1

1+𝑒−𝑏(𝑇−𝑇𝑖)
− 𝑒−𝑎((𝑇−𝑇𝑠)] + 𝑐                                                              (5.3) 

where, variable T is defined as the accumulated daily mean air temperature above 0°C, P 

represents the cumulative daily sum precipitation. b is the relative growth rate at the inflexion 

point expressed as the cumulative temperature Ti and a is the relative growth rate at the 

senescence point Ts. ri, rs are the rate of change at the flexion points during leaf-on and leaf-

off period respectively. LAIAmp indicates the amplitude of maximal leaf area, and c is the 

initial background LAI value. 

5.4.2 Optimization 

Dynamically dimensioned search (DDS) proposed by Bryan A. Tolson (Tolson and 

Shoemaker, 2007) was adopted as the global optimization method in this study for the CSDM, 

DLM and TPVM models. The simple stochastic DDS algorithm is designed for finding the 

good global solutions based on heuristic global search algorithm. The only stopping criteria is 

the user-specified maximum evaluation limit. DDS searches globally from the beginning and 

becomes a more local search when iteration number approaches the defined maximum number 

of evaluations. In the DDS algorithm, the calibrating model parameters serve as the decision 

variables and the varying dimension is the changing number of the model parameter values. 

The number of dimensions in the neighborhood is dynamically and probabilistically reduced 

to a new search neighborhood and then the global search is adjusted to the local. The algorithm 
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randomly selects the dimensions for perturbations and generates the candidate solutions by 

perturbing the current solutions within the magnitudes randomly sampled from the standard 

normal distribution. The scalar neighborhood size perturbation parameter (r) in DDS is set to 

0.2 in this study as recommended by the author (Tolson and Shoemaker, 2007). The DDS 

algorithm converges to the region of the global optimum instead of the precise global optimum. 

In this study, we firstly tested the maximum evaluation number of DDS evaluations for the 

TPVM model and then chose the parameter set with the minimum objective value from all the 

evaluation results as the optimal solution. More details about the DDS algorithm can be referred 

to the literature (Tolson and Shoemaker, 2007).  

5.4.3 Objective Function and Error Measures 

Root mean squared error (RMSE) and mean absolute error (MAE) were calculated for the 

model assessment, as followed in Equation 5.4 and Equation 5.5. The objective function in 

Equation 5.6 combines the RMSE with a weighted parameter wi to be minimized in the 

optimization procedure. The weighted method follows the idea in TIMESAT in order to 

simulate the results better fitting to the upper envelope of the times series of satellite data. The 

discontinuities of MODIS product may suffer from the contamination of clouds or failure of 

algorithm derivation (Kandasamy et al., 2013; Tian et al., 2002), which need to be filtered out 

firstly in the preprocessing of MODIS LAI data. The data points which suddenly decline during 

the growth stage, in other words, if the data points fall far below the predicted LAI are assumed 

to be less important. Besides larger weights are assigned to the points at the start and end time, 

as well as the higher values during the maturity period. In this study, we optimize the objective 

function with weight factors in two steps. Firstly, the weight parameter wi was set equally as 1 

for each data point. Run the DDS for the objective function with the user-specified evaluation 

times. Secondly, calculate the predicted LAI data with the optimal parameters from the first 

step and compare the prediction with the remotely observed LAI. If the remotely observed LAI 
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is below the predicted LAI, the weight parameter value will be adjusted to higher value, which 

can be defined by the user with consideration of reality. With the new weight value, optimize 

the model again with DDS and the optimal parameter set will be the returned as the best 

solution. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑓𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛

2

                                                                                                          (5.4) 
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Where, n is the size of the dataset, fi and yi are the predicted and the observed LAI at the point 

i of the dataset, respectively. wi is the weighted parameter. And Objlai is the objective function 

for the DDS optimization. 

5.5 Model Results and Evaluation 

The models were tested in two different ways: LAI prediction based on individual pixels and 

based on averaged block mean values (BMV). The models and optimization procedures run 

similarly, except that the pixel-wise processing uses all the individual pixels in the Attert 

Catchment separately, whereas BMV method splits the whole catchment into several subareas 

and calculate the mean values of each block based on the land cover category. Here, we set the 

block number as six according to the maximum number and location of meteorological stations. 

BMV is designed to eliminate the large variances between the pixels of the same land cover 

type and to present the overall LAI characteristics of the seven land cover types for each block. 

The returned optimal parameters from the BMV can also provide useful starting parameter sets 

when process the catchment in the pixel-wise way. In the following sections, the temporal and 
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spatial pattern analysis between the original MODIS and the modelled LAI data, and the 

comparison with field measurements make use of the modelling results from the pixel-wise 

analysis. Whereas, the test of maximum evaluation number of DDS as well as the variance 

evaluation between the modelled results and the original MODIS data were conducted based 

on the BMV.  

5.5.1 Maximum Evaluation Number Determination of DDS 

As introduced in Section 3, the original MODIS data needs to be preprocessed, therefore firstly 

we should filter the MODIS LAI products with the mBISE method. Then implement the 

cumulative temperature and precipitation data into the CSDM, DLM and TPVM models and 

optimize the results by DDS method. As the important criteria in DDS, the suitable maximum 

evaluation number should be determined beforehand. This section gives an example of BLF in 

block 1 based on BMV. The only inputs when optimizing the model using DDS are the 

parameter range set and the maximum evaluation number. In order to find the optimal 

evaluation number in balancing the error metrics and the time cost, we tried to predict the LAI 

values of BLF using the TPVM model and calculated the RMSE and MAE data between the 

predicted LAI and the original MODIS data. The tested evaluation number ranges from 10 to 

10000 with an increment of 90 for each step. For each maximum evaluation number test, the 

model runs ten times and Figure 5.3 displays the RMSE and MAE variation ranges. The blue 

points and error bars represent the mean values and variations, respectively. From Figure 5.3 

(a) and Figure 5.3 (b), we can see that the RMSE and MAE decrease dramatically with the 

increase of the maximum evaluation number and shows stable variance ranges starting with a 

maximum evaluation number around 2000. Therefore, in this study, we set our evaluation 

number as 2500 for all the DDS runs.  
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Figure 5.3 RMSE variances calculated from the modelled LAI of TPVM and MODIS LAI data for 

different evaluation numbers ranging from 10 to 10000. 

5.5.2 Model Results 

5.5.2.1 Temporal Pattern Analysis 

Considering the majority of representative land cover types, we selected four main land cover 

types for  the following evaluation, including the BLF, CCP, NIA and PAS. Figure 5.4 shows 

the modelling results of selected pixels for each land cover type. The red points indicate the 

meaningful points identified by the mBISE from the grey lines from the original MOD15A2H 

data. The cyan, green and red lines represent the modelling results of CSDM, DLM and TPVM 

respectively. 

As shown in the Figure 5.4, MODIS data fluctuates frequently with several sudden falls in the 

time slices, resulting in confusion for the vegetation dynamics interpretation. It is clear to see 

that the mBISE method effectively labels the reasonable LAI points in the time series curves. 

The sudden decrease of data due to the atmospheric conditions or bidirectional reflectance 

distribution function effects (Atkinson et al., 2012) were avoided in most of the cases and the 

high value data with more significance over the growth season were well kept. This pre-

processing step provided more continuous datasets compared to the original MODIS data and 

helped significantly in the following modelling process. The modelled LAI datasets are 
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generally produced with reasonable trajectories and effectively omitted the anomalous extreme 

values.  

Especially for the BLF land cover, accompanied with the increase of cumulative temperature, 

the deciduous trees grow up with no leaf-on to the fast emergence of leaves during the green-

up season. The three models retrieve very similar patterns at the start of the green-up season 

and then come to slight differences in the maximum amplitude of LAI among the three models 

during the maturity period. Besides, the model results also outline the small differences of leaf-

off status during the senescence season in 2003, 2004, and 2013. The good performance of 

TPVM proves its good capability in predicting the continuous LAI for the BLF land cover type 

by combining both the temperature and precipitation data. The similarity of the modelling 

results of the three models probably reveal the dominance role of temperature on the BLF.  

Dynamic patterns of the agricultural land cover types are more complicated than BLF. CCP 

and NIA in Attert Catchment generally are cultivated with wheat, barley or corn for one or two 

seasons. PAS includes the dense, predominantly graminoid grass cover for grazing. Some PAS 

fodder areas could be mechanically harvested several times during the growing season and this 

makes the PAS more fluctuating than the arable lands. Correspondingly, the identified points 

of CCP, NIA and PAS by mBISE contain several spurious spike points. The three models 

provide compatible LAI patterns for the NIA except that TPVM goes closer to the upper 

envelope. The LAI values of CCP and PAS were retrieved with higher variabilities among the 

three models and the obvious distinction existed in the wide curves during maturity time from 

CSDM. When including the precipitation data in TPVM, the modelled LAI values of NIA and 

PAS tend to respond more closely to the original MODIS data than the results of CSDM and 

DLM only using the temperature data. Considering the selected pixel of CCP in the present 

study, all of the three models underestimate the right half part of the leaf-off seasons from 2003 

to 2013. The phenomenon may result from the data limitation of in situ cultivation seasons, as 

well as the mixture of small parcels of diverse annual crops, pasture or permanent crops. 
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Specification of season numbers for CCP or finer classified remotely sensed images with higher 

spatial resolution probably could improve the modelling results. 

 

Figure 5.4 The time series of LAI data from 2003 to 2013 for four land covers (BLF, CCP, NIA, PAS) 

were from the original MOD15A2H (grey lines), mBISE (red points), CSDM (cyan lines), DLM (green 

lines) and TPVM (red lines) respectively. 

5.5.2.2 Spatial Pattern Analysis 

As mentioned in Section 3, pixel-wise modelling with the three models were implemented for 

each pixel from 2003 to 2013. Figure 5.5 presents the time series of LAI data for the Attert 
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Catchment on 23 July, 2013 from the original MOD15A2H, CSDM, DLM, TPVM 

respectively. The MODIS LAI data indicated large amounts of low values in the agricultural 

areas and small proportions of the forest area in the south of Attert Catchment. Based on our 

field observation, such large amount of low values in the forest and agricultural areas from 

MODIS data were unreasonable. Consistent with the pixel examples in the above analysis, the 

three models performed quite well for BLF but produced large variabilities in the agricultural 

areas. CSDM retrieved similar overall LAI patterns as the MODIS data, with large part of lower 

LAI values in the agricultural areas. Besides, a few pixels in the agricultural and forest area 

from TPVM got relatively lower values compared with the DLM. In general, DLM and TPVM 

obtained comparable manner for the whole catchment. This high uncertainty of the original 

MODIS data was significantly reduced by the DLM and TPVM.   
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Figure 5.5 The LAI images of Attert Catchment on 28 July, 2013 were respectively derived from (a) 

MOD15A2H; (b) CSDM; (c) DLM; (d) TPVM. 

5.5.3 Uncertainty Assessment 

5.5.3.1 Error Metrics Evaluation 

In this section, based on the idea of BMV method, the MODIS LAI values were firstly averaged 

for the seven land cover types in each block and then were used as the original observation data 

for error evaluation. RMSE and MAE data were calculated between the three modelled results 

and the MODIS LAI data based on BMV. Figure 5.6 provides the RMSE and MAE ranges of 

the seven land cover types in the six blocks. Moreover, Table 5-1 lists the mean RMSE and 

mean MAE of all the blocks. Considering all the land cover types, DLM and TPVM provide 
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slightly lower RMSE and MAE data compared to the results of CSDM. The average RMSE 

and MAE of DLM and TPVM is about 0.1 lower than the data of CSDM. This is more obvious 

for the CCP and NIA with overall lower RMSE and MAE than other land cover types. Whereas, 

CF always got the worst error data, this may be caused by two reasons. Firstly, the MODIS 

LAI products are weakly sensitive to the dense canopies such as the needle-leaved coniferous 

forest because of the reflectance saturation effect. When the LAI is larger than 4, the saturation 

frequency increases dramatically, that is to say with increasing LAI value, the accuracy of the 

retrieval decreases (Y. Knyazikhin, 1999). Secondly, the characteristic of coniferous forest 

determines that their LAI values do not change too much over the year, therefore the logistic 

model may not be the perfect option for the dynamics modelling. All in all, for most of the land 

cover types, only comparing the derivation of RMSE and MAE, TPVM incorporating the 

temperature and precipitation data reconstructed the continuous LAI values with similar or 

even lower variances compared to the other two models only using the temperature data.  

 

Figure 5.6 The variance data calculated between the MODIS LAI and the modelled LAI data using the 

three models (CSDM, DLM, TPVM) from an example block: (a) RME for the seven land cover types; 

(b) MAE for the seven land cover types. 
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Table 5-1 The averaged RMSE and MAE data calculated between the MODIS LAI and the modelled 

LAI data using the three models (CSDM, DLM, TPVM). 

Land 

Cover  

RMSE MAE  

CSDM DLM TPVM CSDM DLM TPVM 

BLF 1.31 1.25 1.29 0.94 0.89 0.92 

CCP 1.07 1.01 1.01 0.81 0.76 0.76 

CF 1.44 1.33 1.31 1.06 0.95 0.94 

MF 1.34 1.22 1.24 0.97 0.87 0.88 

NIA 1.01 0.92 0.89 0.77 0.70 0.67 

NV 1.15 1.09 1.06 0.87 0.83 0.79 

PAS 1.25 1.13 1.17 0.96 0.85 0.88 

5.5.3.2 Comparison with Field Measurement 

As mentioned in Section 5.3.4, the measured LAI in the plot size (20m×20m) were aggregated 

to the pixel size of MOD15A2H (500m×500m). The LAI values of all the plots located in the 

pixel were averaged as the reference data for each corresponding pixel. Besides, 15 plots were 

measured in continuous time scales, and the aggregation was implemented for each measured 

date. In total, 42 pixels of the agricultural area and 22 pixels of the forest were utilized for 

comparison with the model results.  

Figure 5.7 illustrates the comparison between the measured LAI and the original MOD15A2H 

LAI, and the predicted LAI from the three models. The original MOD15A2H product contains 

huge uncertainties comparing with the measured LAI and their Person’s correlation coefficient 

(CC) is only 0.14 with RMSE of 2.19 and MAE of 1.69. The modelled results were improved 

significantly. The CC varies from 0.69 to 0.73 for the CSDM and DLM, and TPVM derives 

the best CC of 0.78 with the lowest RMSE of 0.99 and MAE of 0.84.  
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Figure 5.7 Comparison scatterplots between the measured LAI and the LAI data from MOD15A2H, 

CSDM, DLM and TPVM, respectively. The dark line indicates the 1:1 line and the two grey lines 

represent the lines with intercept of 1 and -1. The colored points represent the different land covers 

according to the legend. 

The heterogeneous features of the mixed crops, the combination with the bare soil may increase 

the discrepancy between the measured LAI and the remotely sensed LAI or the modelled LAI. 

Therefore, when the measurement plots could not totally occupy the MODIS pixel, their 

averaged LAI value may still have difficulties in representing all the features of the 

corresponding pixel. In July 2013, the corn fields were cultivated for about one month. 

Whereas, most of the wheat, barley and rapeseeds maturated readily for harvest. The forage 

grasslands were cultivated and harvested in turn during the time series of LAI measurements. 

Aside from those uncertainties, based on the scatterplots the modelled LAI of forest pixels in 

summer time fit very well with the measured LAI. DLM and TPVM achieved almost identical 

forest LAI in summer. Nevertheless, for most of the croplands, TPVM performed superior than 
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DLM and CSDM with more compatible data to the measured results. This could be easily 

explained by the reality that temperature predominantly affected the BLF but together with the 

precipitation exert significant influence on the agricultural land covers. 

5.5.4 Phenological Metrics and Climate Controls Evaluation 

With the increasing awareness of the phenology importance in the study of climate change, 

plant phenology combined with remotely sensed data have been frequently studied in the land 

surface modelling. Plant phenology interacts with the climate and varies with the climate zone, 

vegetation type and inter-annual variability of the start and end of the growing season 

(Richardson et al., 2013). The phenology metrics derived from the satellite data could serve as 

an indicator of climate change on the terrestrial ecosystems (Menzel and Fabian, 1999). 

According to the report of Reed (Reed et al., 1994) and the USGS description of remote sensing 

phenology metrics (USGS, 2013), in the present study, the start of season time (SOST), the end 

of season time (EOST), the time of maximum LAI value (MAXT), length of growing season 

(LOGS) were derived for the climate consequences evaluation. SOST and EOST indicate the 

start and end of measurable photosynthesis in the vegetation canopy, which normally are 

described as the day of year (DOY) having a consistent upward or downward trend in time 

series of LAI. Here, we calculated the SOST and EOST as the half-maximum-mid-point 

between minimum and maximum LAI. Therefore, based on the SOST and EOST, LOGS can 

be attained as the number of days during the growing season. MAXT represents the time of 

maximum photosynthesis in the canopy.   

Representative pixels of BLF, CCP and NIA from Attert Catchment were chosen for the 

phenology analysis. Figure 5.8 delineates the phenological metrics in DOY of BLF and CCP 

from 2003 to 2013. Figure 5.8 (a-b) display the growing seasons of BLF and CCP in different 

colours ranked by the yearly total temperature from 2003 to 2013. The green points on each 

line represent the time when the leaves reach the maximum value during the maturity period. 
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The red line of BLF in Figure 5.8 (a) demonstrates that the highest cumulative temperature of 

3978 °C in 2007 was accompanied with the early beginning of the growing season at DOY of 

73. The differences of LOGS between BLF and CCP can also be clearly seen, with mean 

number of days of 175 and 186. This phenomenon further proves that the warming weather can 

advance the start of season in the spring especially for temperate deciduous forest. Moreover, 

the unusual warming weather can also speed up the maturity and shorten the growing season. 

For example, in 2003, known as the European heat wave year, LOGS was the shortest 

compared to other years. The accelerating effect became more obvious for the CCP with the 

LOGS of 122 compared to the 11-year mean LOGS of 135. Figure 5.8(c-d) demonstrate the 

influences of inter-annual temperature variabilities on the LAI values of BLF and CCP. The 

green, dark-green and red dash lines respectively were subdivided as the range of SOST, 

MAXT and EOST within the 11 years. Uniformly, the forest area exhibited more stable 

manners than the agricultural sites. 
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Figure 5.8 The growing season plots including the phenological metrics (SOST, MAXT, EOST) were 

derived from TPVM for two land covers: (a) broad-leaved forest (BLF); (b) complex cultivation 

patterns (CCP); (c) and (d) represent the LAI dynamics in terms of day of year (DOY) from 2003 to 

2013 for BLF and CCP, respectively. 

Regarding the relationship of temperature and precipitation changes on the SOST, MAXT and 

EOST, three exemplary pixels from BLF and NIA were plotted in Figure 5.9. SOST and EOST 

of BLF correlate tightly with the yearly cumulative temperature data, confirming that the higher 

temperature bringing the earlier SOST and EOST data for BLF. Although the temperature 

greatly influenced the NIA, CCP and PAS, there is no such clear relationship shown for the 

BLF. In the other aspect, the precipitation data accelerates the SOST and MAXT of the NIA 

land cover shown in Figure 5.9(c-d). The MAXT and SOST data calculated from TPVM for 

NIA verified that the crop growing would be delayed when no enough precipitation was 

available in the non-irrigated agricultural areas. Vice versa, the growth of crops could also be 

promoted in a certain degree with the increase of the total precipitation data. Moreover, the 

grey shaded area demonstrate that the higher standard derivation of SOST, MAXT and 
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precipitation from NIA compared to the BLF land cover. The large variabilities of NIA areas 

probably could partly explain this uncertainty, such as the various cultivated crops or multiple 

growth seasons, which influence the modelled LAI results and consequently modify the 

precision of the phenological metrics. 

 

Figure 5.9 Climate variables relationship with the phenological metrics from 2003 to 2013 were plotted 

respectively: (a) the relationship of SOST from BLF by TPVM and yearly cumulative temperature; (b) 

the relationship of EOST from BLF by TPVM and yearly cumulative temperature; (c) the relationship 

of SOST from NIA by TPVM and yearly cumulative precipitation; (d) the relationship of MAXT from 

NIA by TPVM and yearly cumulative precipitation. 

5.6 Conclusions  

By integrating the climate data and remotely sensed data, a new vegetation dynamics model 

TPVM was proposed in this study. TPVM takes the observed cumulative daily mean 

temperature and cumulative daily sum precipitation data as input variables, and optimizes the 
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results by DDS to the filtered MODIS LAI dataset. Besides TPVM, CSDM and DLM models 

with the single input of cumulative temperature data were also implemented for comparison. 

TPVM derives comparable continuous LAI predictions for the deciduous forest area and 

superior data for the agricultural areas compared to the models solely depending on the 

temperature data. 

The preprocessing of MODIS data by mBISE method produced more continuous datasets by 

eliminating the spurious spikes, which significantly improved the data quality of original 

MODIS product. Besides that, the weighted scheme also provided great assistance in the LAI 

prediction through the optimization procedure. Comparing the three models based on the BMV 

data, both, the temporal and spatial pattern evaluations demonstrate that the three models work 

quite well for the BLF forest, but have large discrepancies over the agricultural areas. The 

variances of RMSE and MAE for the seven land covers prove that most of the TPVM 

predictions retrieve the continuous LAI data with lower uncertainties than those of DLM and 

CSDM. In respect to the different land cover types, the overall patterns of DLM and TPVM 

are more realistic and continuous compared to the CSDM. Furthermore, comparing to the field 

measured LAI, all the three models retrieved more realistic LAI data than the original MODIS 

data indicated by the raise of the lowest CC of 0.14 to a higher level (ranging from 0.69 to 

0.78). Nevertheless, TPVM manifested the superiority over the prediction of the agricultural 

fields with the overall CC of 0.78.   

Moreover, the phenological metrics including the SOST, EOST, MAXT and LOGS were 

derived from the time series of LAI values predicted by TPVM from 2003 to 2013. Consistent 

with the previous research (Menzel and Fabian, 1999), the SOST and EOST of BLF advanced 

with the warming temperature. The LOGS of exampled CCP shortened due to the higher 

temperature and less precipitation such as in the Europe heat wave year of 2003. Besides that, 

the precipitation data exert more influences on the NIA, indicating with relatively early SOST 

and MAXT when more precipitation were available.  
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The main advantage of the TPVM model is its simplicity in predicting the dynamic LAI data 

with the climate observation data. In the study, we only applied the model in the meso-scale 

Attert Catchment, which has modest climate variabilities over the whole catchment. For future 

studies, we would recommend the implementation of the TPVM model in a larger and more 

heterogeneous catchment to test its applicability. Furthermore, in the larger-scale terrestrial 

ecosystem, the vegetation dynamic and the climate changes interact far more complicatedly. 

Other climate factors such as the photoperiod, soil moisture, soil temperature or topographic 

factors could also significantly affect the vegetation dynamics in different ways. Therefore, the 

integration with more climate controls, more meteorological observations, and finer spatial-

resolution remotely sensed data could further mitigate the uncertain predictions in the 

vegetation dynamics modelling.  
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6 Conclusions and Outlook 

This thesis aims at improving the capability of remote sensing techniques to retrieve land 

surface properties. Two essential parts of the land surface characteristics were investigated 

including the land cover categorization and vegetation dynamics modelling. On the one hand, 

the potential of TIR for improving land cover classification, on the other hand, a new vegetation 

dynamic model was proposed by integrating the climate variables and the satellite data for the 

temporal LAI prediction. 

For the comprehensive evaluation of the effectiveness of TIR data, the key aspects influencing 

the classification results include the choice of data sources, the selection of classification 

algorithms and the error evaluation methods. Landsat images were classified into three-level 

categorization by the k-NN and RF algorithms using single-date and time series of images. 

Two cross validation methods based on the pixel and polygon level were evaluated for the 

uncertainty assessment. Considering all the evaluation results by using the two CV methods, it 

can be pointed out that the inclusion of the TIR data improves the land cover classification 

compared to the results only using the VIS/NIR bands.  

Accuracy data from the single-date Landsat 8 image proved that the TIR data clearly improved 

the classification results especially for Level 2 and Level 3 categories when incorporating the 

two thermal bands with the VIS/NIR bands. The time series of Landsat images retrieved 

varying accuracy data by the pixel-based CV and polygon-based CV methods. For Level 1 and 

Level 2 category evaluated by pixel-based CV method, adding the TIR band or only using the 

time series of TIR bands, the accuracy data were comparable or even higher than the results 

from VIS/NIR data. Whereas based on the polygon-based CV method, the accuracy declined 

greatly when only using the time series of TIR bands for Level 2 category classification. The 

discrepancies between the two CV methods are mainly caused by the pixel correlation when 

resampling the TIR band from coarse spatial resolution to the fine resolution as the VIS/NIR 



    6. Conclusions and Outlook 

131 

bands. In general, the pixel-based CV method showed clear weaknesses when sampling the 

pixels from the resampled TIR data. As complement, the polygon-based CV method 

substantially alleviate the correlation problem of the resampled pixels by using the independent 

polygons. For future studies using the resampled satellite images in land cover classification, 

the polygon-based method is preferred when using the CV method for training and validating. 

Nevertheless, in spite of the evaluation discrepancy, the land cover types could be better 

interpreted by incorporating the TIR data. Therefore, the TIR data is recommended in 

combination with the VIS/NIR information for the future investigation of land cover 

categorization.  

Due to the limitation of Landsat images and relatively stable condition of the study area, our 

work still needs to be examined when applying to large-scale or rapidly-changing catchment. 

The time series of remote sensing data, if possible at least two images from the winter or 

summer seasons, could be very helpful for the agricultural land cover classification. 

Additionally, with the growing interest of TIR application in eco-hydrological system, more 

advanced TIR data from other satellite platforms (e.g. ASTER) or hyperspectral TIR sensors 

onboard drones have better possibility to extract the land surface properties. The further 

significant progress in LST retrieval from multispectral satellite data has been very slow and 

requires innovative fusion methods to integrate the multiple bands of multispectral and multi-

temporal TIR data from the current and new satellites (Li et al., 2013). Data fusion methods 

such as the wavelet transform (Wu et al., 2015) or data mining sharpener (Gao et al., 2012) 

could also be applied for the TIR data. 

 Regarding to the uncertainty evaluation, the land cover classification process needs to be 

carefully managed when using the resampled TIR data. The correlation issue when using the 

pixel-based CV methods should be noted. Actually, if the TIR data has the higher spatial 

resolution and does not need to be resampled, the pixel-based CV method can still be used. 

However, in the case similar to the present work, the polygon-based CV method would be more 
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suitable to avoid the correlation effect. Alternatively, other sampling methods such as the 

random sampling method possibly could also be helpful to avoid this problem (Foody et al., 

2006). The random sampling method generates the training or validating samples randomly 

over the study area and undoubtedly requires more efforts for the ground truth data collection. 

Although the random sampling method is considered to be more subjective, the applicability 

in the large-scale catchment should be further examined.  All in all, further study using the 

resampled TIR data is recommended to determine the appropriate evaluation method according 

to the features of three sampling methods and in consideration of the data sources as well as 

the possibility of large ground truth data validation.  

The vegetation dynamics modelling study focused on integrating the climate controls into the 

newly proposed TPVM model. The assumption of the model origins from the characteristics 

of the deciduous canopies, which follows the logistic functions and uses the cumulative 

temperature and precipitation data as variables. After the preprocessing by the mBISE method, 

the noises caused by the cloud contamination or system errors have been well filtered. The 11-

year MODIS LAI data were utilized as the reference data for the model optimized by the DDS 

method. Together with the TPVM, two vegetation dynamics models solely based on the 

cumulative temperature data were also used for the performance evaluation. For the uncertainty 

analysis, both, the mean block values and the pixel-based value evaluation were conducted to 

compare with the mean original MODIS data and the field measured LAI data respectively.  

The results indicated that the TPVM model can achieve better LAI values when compared with 

two temperature-dependent models (DLM and CSDM), especially for the agricultural land 

cover types. In Attert catchment, the deciduous forest is proved to be dominated by the 

temperature control. Whereas, the agricultural areas including the non-irrigated arable land or 

complex cultivation patterns are coherently affected by the temperature and precipitation 

conditions. The phenological metrics derived from the proposed model also demonstrate that 

the warm spring could advance the start season of the beech forest. Besides, the precipitation 
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effect on the agricultural area is obviously shown as early start season and early crop mature 

time.  

The uncertainty evaluation between the model results and the field measured LAI data 

demonstrate that TPVM obtained the best modelled LAI data compared to the original MODIS 

LAI product and the results of DLM and CSDM. It is not surprising to see that TPVM predicted 

the deciduous forest with the highest accuracy. The good capability and simplicity of the 

proposed model provide a robust way to predict the temporal LAI values of different vegetation 

covers and also promote the progress of interaction study between the climate changes and the 

vegetation dynamics. In fact, instead of the year-to-year constant LAI values in most of the 

eco-hydrological models, the dynamic LAI values predicted by the TPVM model could 

represent more reliable vegetation dynamics properties, therefore, quantify the energy or water 

processes accurately. Besides, the climate-variable based TPVM model has the necessity to be 

compared with the complex photosynthesis models.  The further integration of TPVM into the 

hydrological model also need to be tested. For instance, the dynamic variation of the LAI values 

can be utilized for interception calculation in the hydrological process, as well as the 

corresponding influences could be simulated by the hydrological models.  

In future studies, the proposed TPVM model should be further investigated in the large-scale 

catchment with more heterogeneous landscape. Not only the land cover types but also the 

varying topography conditions need to be considered. The elevation in Attert Catchment ranges 

from 220m to 550m, which has relatively homogenous temperature patterns of the same land 

cover type over the catchment. However, this may not fit to other large-scale catchment with 

diverse topography conditions, for example the Mur Catchment in Austria. Firstly, the 

temperature data should be generated with more meteorological observations by taking the 

lapse rate into account. Secondly, the precipitation with higher variability over the catchment 

needs to be further improved in the TPVM model. Moreover, additional meteorological and 

soil variables should be evaluated and integrated in the model. For example, topographical 
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controls such as the elevation or aspect, the photoperiod, soil moisture, soil temperature may 

alter the patterns of the vegetation dynamic in the large-scale catchment.  

Furthermore, the TPVM model works quite well for the deciduous canopies while is constraint 

to the coniferous canopies. The interaction between the climate and the coniferous forest may 

be more stable compared to the deciduous forests. Using other functions to simulate the LAI 

changes of the coniferous forest would be more suitable. Existing studies have tried to describe 

the dynamics of coniferous forest by the polynomial functions or various empirical functions 

using the satellite vegetation index data (Pettorelli et al., 2005). Considering the agricultural 

land covers especially the croplands, it would be helpful to determine the growing season 

beforehand. Due to the lack of cultivation data, the present study is limited in the assumption 

of one growing season. This could be improved with the statistical data from the local farmers 

or identified using the multi-temporal remote sensing images. Nevertheless, further studies 

need more efforts to improve the model to fit different land covers by fully exploiting the 

characteristic of the vegetation growth. 

The last but not least important thing for both, the land cover classification and the vegetation 

dynamics modelling is to improve the quality of the satellite products. The importance of the 

preprocessing for the satellite data has been emphasized repeatedly.  No matter for the 30m 

Landsat images or the 500m MODIS LAI products, the preprocessing should always be done 

before further application. Therefore, in a future study, before any further investigation, more 

precise atmospheric correction methods and noise filtering algorithms could be evaluated in 

order to improve the accuracy of satellite data in deriving the land surface properties.  
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