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0 Summary 

 

0.1 Iron-catalyzed Generation of α-Amino Nitriles from Tertiary 

 Amines 

 

A combination of iron(II) chloride as catalyst, trimethylsilyl cyanide as source of 

cyanide ions, and tert-butyl hydroperoxide as oxidant enables the conversion of 

aromatic tertiary amines into  α-amino nitriles under mild conditions, as described by 

Han.[1] In this work the iron-catalyzed generation of α-amino nitriles was expanded to 

benzylic and aliphatic tertiary amines (Scheme 0.1). Chemoselective transformation 

of N-methyl groups into their corresponding α-amino nitriles was achieved in the 

presence of N-benzyl and N-alkyl groups.  

 

Scheme 0.1: FeCl2-catalyzed oxidative α-cyanations of benzylic and aliphatic tertiary 

amines. 

                                            
[1] W. Han, A. R. Ofial, Chem. Commun. 2009, 5024-5026. 
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Furthermore, N,N-dialkylanilines PhNR2 with R = Et, Bu, Bn furnished the alkyl-

(aryl)aminoacetonitriles PhN(R)CH2CN as the main products accompanied by α-

amino nitriles generated by ordinary α-cyanation of the aniline PhNR2. 

The formation of PhN(R)CH2CN was rationalized by oxidative degradation of N,N-

dialkylanilines to N-alkylanilines, their condensation with formaldehyde, generated by 

oxidation of the solvent methanol, and final trapping of the thus formed iminium ions 

by cyanide (Scheme 0.2). 

 

 

 

Scheme 0.2: Oxidative dealkylation of tertiary amines by FeCl2 as the catalyst and 

tert-butyl hydroperoxide as the oxidant and subsequent trapping of the secondary 

amine intermediates. 
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Isotopic labeling of the methylene unit that originated from the solvent methanol 

allowed to proof the solvent participation in this reaction as given in Scheme 0.3. 

 

 

Scheme 0.3: Dealkylative cyanomethylation of N,N-dialkylanilines in CD3OH. 

 

 

0.2 Sequential Oxidative α-Cyanation/Anti-Markovnikov 

Hydroalkoxylation of  Allylamines 

 

In recent years, the Ofial Group developed iron-catalyzed oxidative α-cyanations of a 

variety of tertiary amines. This work describes the development of an iron-catalysed 

α-cyanation of tertiary allylamines that is coupled with a subsequent chemo- and 

regioselective addition of alcohols to the π-system of the vinyl-substituted α-amino 

nitrile to yield 2-amino-4-alkoxybutanenitriles under mild conditions (Scheme 0.4). 

 

Scheme 0.4: Sequential oxidative cyanation/hydroalkoxylation of N,N-diallylamines.  
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While the ordinary cyanation product was isolated in low yield (21%) when the 

reaction was worked-up after 4 h reaction time, the product of addition of methanol to 

the corresponding 2-amino-4-alkoxybutanenitrile was obtained in 86% yield after 

16 h. Reactions with N-allyl-N-ethylaniline  and triallylamine showed that the scope 

of the oxidative α-cyanation/hydroalkoxylation can be extended to mono- and triallyl-

substituted amines (Scheme 0.5). Employing N-allyl-N-methylaniline as the 

substrate, the corresponding amino nitrile was formed exclusively. 

 

Scheme 0.5. Oxidative cyanation/hydroalkoxylation of the mono-allylamines, 

triallylamine and N,N-diallylbenzylamine. 

 

Further studies indicated, that the α-cyanation is followed by a Michael-type addition 

of the alcohol (Scheme 0.6). 
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Scheme 0.6: Suggested mechanism for the oxidative C1-cyanation of the N-allyl 

group with subsequent anti-Markovnikov hydroalkoxylation. 

 

 

0.3 Potassium Thiocyanate as Source of Cyanide for the 

Oxidative  α-Cyanation of Tertiary Amines 

 

Oxidation at the sulfur of the safe-to-handle potassium thiocyanate released cyanide 

units that were trapped in the presence of co-oxidized tertiary amines to form α-

amino nitriles. These cyanations worked in aqueous solutions and did not require a 

catalyst, nor did they form toxic byproducts (Scheme 0.7). 



15 

 

 

Scheme 0.7: Generation of α-amino nitriles from tertiary amines and potassium 

thiocyanate. 

a Reaction conditions: amine (1 mmol), KSCN (4 equiv.), aq tBuOOH (70 % (w/w), 4 equiv.), ambient 

temperature (ca. 23 °C); yields refer to isolated products after column chromatography. b A 4.5 M 

solution of tBuOOH in CH2Cl2 was used as oxidant. c With MeCN as solvent (0.5 mL). d With MeCN as 

solvent (2 mL) at 50 °C. e With 5 equiv. of tBuOOH. 

 

N,N-Dialkylanilines did not undergo oxidative α-cyanation at ambient temperature.  

After heating the reaction mixtures for 1 h to 80 ºC, oxidative cyanation at one of the 

NMe groups of para-substituted N,N-dimethylanilines produced the corresponding α-

amino nitriles (Scheme 0.8). 



16 

 

 

Scheme 0.8: Generation of α-amino nitriles from anilines and potassium thiocyanate. 

 

In this work both the electrophile and the nucleophile were generated in situ from 

oxidizable precursors. The sulfur of SCN– is used as a sacrifical group that 

safeguards the toxic nucleophile CN– until its active form is released under the 

reaction conditions. 

 

 

0.4 Direct Conversion of Tertiary N-Methyl Amines to N-Boc 

Protected Amines 

 

The direct oxidative conversion of N-methyl into N-Boc groups would be an attractive 

method to generate N-Boc protected tertiary amines.  As summarized in Scheme 0.9 

a series of seven tertiary methyl amines underwent selective oxidation to form N-Boc 

protected amines. However, the method suffers from low functional group tolerance 

and small substrate scope. 
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Scheme 0.9: Direct transformation of N-methyl into N-Boc groups. 
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 1 Introduction 

 

1.1 General 

 

The formation of new C–C and C–X bonds is one of the major challenges in 

synthetic chemistry. The classical approach to control reactivity and target 

regioselectivity in such reactions uses molecules with already functionalized entities 

C–Y. After being installed in the substrate, the C–Y group subsequently undergoes 

reactions with appropriate reagents to form new C–C or C–X bonds selectively. As 

an alternative strategy, the direct transformation of ubiquitous C–H bonds of organic 

molecules has recently moved to center (Scheme 1).[1]  

 

 

Scheme 1.1: General scheme for the introduction of functional groups (X) into 

organic molecules. 

 

The direct functionalization of alkyl, alkenyl and aryl C–H bonds implies two 

fundamental challenges in organic and organometallic chemistry. Due to the 

numerous C–H bonds in nearly all organic molecules, selectivity is a very important 

issue. For effective applications, only a certain C–H bond has to undergo activation, 

rather than several C–H bonds in the same molecule. To achieve high selectivity, 

several strategies have been developed, such as the use of directing group effects, 

intramolecular chelation effects, using one substrate in excess,[2a,b] electronic effect-

regulated substrates,[2b,c] or steric effect-regulated substrates. [2d,e,f] 

C XC Y CH
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The inert nature of many C–H bonds bears the second challenge for useful synthetic 

applications. A bond dissociation energy of about 400-440 kJ/mol,[3] characterizes 

alkyl C–H bonds as strong and robust, furthermore these bonds are localized and 

unpolarized.[1b,3] Bond dissociation energies of about 340-380 kJ/mol are described 

for C–H bonds adjacent to nitrogen atoms in tertiary amines.[3] Transition metal 

catalysts have turned out as efficient C–H bond activating agents via insertion into 

C–H bonds to form C–M bonds.[2g-l] These C–M bonds, formed as intermediates in 

the catalytic circle, are significantly more reactive than their C–H counterparts and 

can subsequently be transformed into the desired products.  

Transition metal catalysis, therefore, is one of the most powerful and versatile tools 

in organic chemistry. In the past decades, transition metal catalysts, such as 

palladium,[4] ruthenium,[5] rhodium,[6] iridium,[7] gold[8] and platinum[9] have shown 

powerful abilities. Among the transition metal catalysts, palladium is well known to be 

the most versatile catalyst in organic synthesis.[10] The increase of prices for many 

transition metals brought the need to focus on cheaper alternatives.  

Iron is not only one of the least toxic but also one of the most abundant metals in 

nature.[11] It is not an accidental occurance, that iron, from ancient times[12a] to todays 

industrial importance,[12b] played an essential role in the progress of human 

societies.[12c] To the present day, iron catalysis has revealed a huge potential and 

covers almost the full scope of transformations which are relevant in organic 

synthesis.[13] 
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1.2 Iron catalyzed carbon-carbon bond formation via C–H 

functionalization  

 

1.2.1 General 

 

One of the major goals in C–H activation is the development of resource efficient and 

sustainable synthetic applications. Thus it is inspiring, that various iron compounds 

are incorporated in biological systems, such as cytochrome P-450. Hence, catalytic 

chemistry based on cytochrome P-450 modeling is well-documented.[14] Iron 

catalyzed C–H bond functionalization meets the requirements of high efficiency and 

sustainable synthetic processing.[13] 

In particular, the iron-catalyzed functionalizations of C(sp3)–H bonds is a versatile 

synthetic strategy to avoid the use of prefunctionalized substrates.[14] This chapter 

will give a short overview on iron-catalyzed carbon-carbon bond forming reactions 

via  C–H bond functionalization, where at least one reaction center is an sp3 

hybridized carbon. 

 

1.2.2 Iron catalyzed C–H / C–metal cross coupling reactions on C(sp3)–H bonds 

 

Organometallic reagents are reliable and versatile tools in organic synthesis. They 

play an important role in many synthetic strategies, including the field of C–H bond 

functionalizations. 

The Kumaraswarmy group developed a direct oxidative coupling of allylstannanes 

with tetrahydroisoquinolines (Scheme 1.2).[15] Readily available iron(III) chloride 

hexahydrate was used as catalyst and aqueous tBuOOH as oxidant. 

 



21 

 

Scheme 1.2: Iron-catalyzed oxidative coupling of allylstannanes with 

tetrahydroisoquinolines.[15] 

 

The authors proposed a tentative mechanism, where initial activation by FeCl3–

tBuOOH generates a metal coordinated iminium intermediate and intermolecular 

nucleophilic addition to this iminium ion leads to the observed product.[15] 

The reaction substrates included morpholines, pyrrolidines and N-methylanilines. 

The method provided products, which are suitable for ring closing metathesis. 

 

Vishwakarma and co-workers reported a C(sp3)–H activation of the α-position of 

aliphatic ethers by an iron(III) oxide catalyzed coupling with Grignard or 

organolithium reagents (Scheme 1.3).[16]  

 

 

 

Scheme 1.3: Iron-catalyzed coupling of arylmagnesium halides with 

tetrahydrofuran.[16] 
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In 2010 Nakamura and co-workers reported an unconventional iron-catalyzed C–H 

activation.[17] The α-positions in cyclic and acyclic tertiary amines were arylated or 

alkenylated by Grignard or organozinc reagents under Fe(acac)3 catalysis (Scheme 

1.4).  

 

Scheme 1.4: Proposed mechanism of the iron-catalyzed C–C bond formation at α-

position of aliphatic amines via C–H activation.[17] 

 

The authors assumed that the reductive generation of an aryl radical from the 

iodoarene is followed by hydrogen abstraction from the α-position of the tertiary 

amine. The stabilized alkyl radical adjacent to the nitrogen could undergo oxidative 

addition to an aryliron complex and reductive elimination leads to C–C bond 

formation.[17] 
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1.2.3 C–C bond formation via cross-dehydrogenative-coupling 

 

Among various methods to form carbon-carbon bonds, the direct coupling of of two 

C–H bonds would be the most efficient and straightforward method, by avoiding the 

use of organo halides or organometallic reagents.[13a] The construction of C–C bonds 

by direct formation from two C–H bonds under oxidative conditions was named as 

the cross-dehydrogenative-coupling (CDC).[18]  

The first iron-catalyzed CDC reaction was reported by C.-J. Li and co-workers in 

2007 (Scheme 1.5).[19] 

 

Scheme 1.5: Iron-catalyzed direct alkylation of 1,3-dicarbonyl compounds.[19] 

 

The suggested mechanism for this reaction is given in Scheme 1.6. Li et al. assume, 

that the alkoxy radical derives from the iron-catalyzed decomposition of the peroxide. 

The radical species would then react with cyclohexane to give a cyclohexyl radical, 

whereas the alkoxy-iron complex would react with the β-keto ester to form a Fe 

enolate. The cyclohexyl radical would be able to react with the enolate to form the 

alkylated β-keto ester, and regeneration of Fe(II) restarts the catalytic cycle.[19] 
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Scheme 1.6: Mechanism for the Fe-catalyzed alkylation of 1,3-dicarbonyl 

compounds as suggested by Li et al.[19] 

 

The concept of cross-dehydrogenative-coupling is a growing field of scientific interest 

and some research effort has been invested to investigate the potential of this 

reactions. The CDC reactions are commonly classified according to different 

hybridizations of the both carbon reaction centers.[13a]  

 

1.2.3.1 CDC between C(sp3) and C(sp) bonds 

 

A cross-dehydrogenative-coupling between sp3 and sp C–H bonds was described by 

Volla and Vogel in 2009 (Scheme 1.7).[20] A direct alkynylation of C(sp3)–H bonds 

adjacent to the N atom of both aromatic and aliphatic tertiary amines with terminal 
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alkynes was realized. The reaction was carried out without using a solvent in the 

presence of FeCl2 as a catalyst and tBuOOtBu as an oxidant. A silyl group was 

applied for protecting one side of the terminal alkyne. After removing the protecting 

group Volla and Vogel were able to perform a second cross-dehydrogenative-

coupling between the terminal alkyne and N,N-dimethyloctan-1-amine. 

 

 

Scheme 1.7: Subsequent FeCl2-catalyzed oxidative couplings with two different 

tertiary amines.[20] 

 

As a mechanistic explanation the authors suggested the generation of iminium ions 

by iron catalyzed single electron transfer reactions. The iminium ions were then 

quenched by alkynyl anions, derived from the iron-acetylide indermediates, to form 

the desired products.[20] 

 

1.2.3.2 CDC between C(sp3) and C(sp2) bonds 

 

With the iron-catalyzed arylation of diphenylmethanes, Shi and co-workers reported 

a cross-dehydrogenative-coupling between sp3 and sp2 C–H bonds (Scheme 1.8).[21] 
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Scheme 1.8: Iron-catalyzed cross-dehydrogenative-coupling of aryl C–H bonds with 

benzylic C–H bonds.[21] 

 

Various electron-rich arenes and different diarylmethanes were suitable substrates 

with good regioselectivity, controlled by the electronic properties of the arenes. With 

the more electron rich arenes, double CDC reactions were also observed.[21] 

Aliphatic substrates were beyond the reactions scope. 

 

1.2.3.3 CDC between two C(sp3) bonds 

 

A method for the CDC reaction of a single 1,3-dicarbonyl compound with different 

ethers was discovered by the group of Z. Li in 2008.[22b]  With double alkylation of the 

methylene group from the methyl moiety of N,N-dimethylaniline Z. Li and co-workers 

reported a cross-dehydrogenative-coupling between two C(sp3)–H bonds in 2009 

(Scheme 1.9).[22a]   
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Scheme 1.9: Iron-catalyzed CDC of N-methyl amines with 1,3-dicarbonyl 

compounds.[22a] 

 

 

Scheme 1.10: Mechanistic study and suggested pathways for the iron-catalyzed 

CDC of N-methyl amines with 1,3-dicarbonyl compounds.[22a] 

 

N
Ph R1 R2

O O Fe2(CO)9 (2.5 mol%)
tBuOOH (2 equiv.)

r.t., 1 h
2

R1 R2

O O

R1 R2

O O

(70-92%)

Me

N
R4R3 R1 R2

O O
[Fe]/[O]

oxidative coupling
2

R1 R2

O O

R3
N

R4

R1 R2

O O

R1 R2

O O

Michael addition

B

A

R1 R2

O O

R1 R2

O O

elimination
SN2 R1 R2

O O

C

N
Ph Ph Et

O O Fe2(CO)9 (2.5 mol%)
tBuOOH (2 equiv.)

r.t., 1 h

R1 R2

O O

R1 R2

O O

(37%)

R1 R2

O O

R3
N

R4

A
    5 mmol             0.5 mmol

(47%)

I) Synthesis of the suggested reaction intermediate A.

II) Proposed mechanism for the synthesis of methylene-bridged bis-1,3-dicarbonyl compounds.



28 

 

The authors reported, that the oxidative coupling product A  was isolated in 47% 

yield together with 37% of C in the presence of 10 equivalents of N,N-dimethylaniline 

(Scheme 1.10 I).[22a] The isolated intermediate A was subjected to standard reaction 

conditions and C was obtained in 91% yield. Due to this result, the authors 

suggested that the oxidative coupling product A is most likely a possible intermediate 

for the reaction (Scheme 1.10 II).[22a] The product C is formed by either a nucleophilic 

substitution or a tandem Cope elimination / Michael addition via an intermediate 

B.[22a] Hence, Z. Li and co-workers pointed out that the reaction of 1,3-dicarbonyl 

compounds with formaldehyde (the presence of formaldehyde in this reaction was 

proven by a Nash test, for details see ref [22a]), which was generated in situ via iron-

catalyzed oxidative N-demethylation, would also afford the methylene-bridged bis-

1,3-dicarbonyl product C.[22a] 

In 2013 Doyle and co-workers described an iron-catalyzed CDC reaction between 

sp3 hybridized C–H bonds of aniline derivatives and sp3 or sp2 C–H bonds of several 

types of nucleophiles (Scheme 1.11).[23] 
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Scheme 1.11: FeCl3 catalyzed oxidative coupling of tertiary amines with various 

nucleophiles.[23] 

 

The Doyle group proposed a general mechanism for transition metal catalyzed 

oxidative N,N-dialkyanilines with tert-butyl hydroperoxide (TBHP).[24] The TBHP 

radical is the major oxidant in the rate-determining single electron transfer (SET) 

step that is followed by competing backward SET and irreversible heterolytic 

cleavage of the carbon−hydrogen bond at the α-position to nitrogen. A second SET 

completes the conversion of N,N-dimethylaniline to an iminium ion that is 

subsequently trapped by the nucleophilic solvent or the oxidant prior to formation of 

the product (Scheme 1.12).[24] 
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Scheme 1.12: General mechanism of oxidative Mannich reactions with TBHP, 

suggested by Doyle et al.[24] 

 

In summary, iron-catalyzed cross-dehydrogenative-coupling has been demonstrated 

to be an attractive and versatile tool for the formation of C–C bonds under oxidative 

conditions. In the presence of simple and affordable catalysts like iron salts and 

cheap oxidants such as hydrogen peroxide, oxygen and TBHP the functionalization 

of various sp3 C–H bonds by other C–H bonds can be performed without the need of 

prefunctionalized reagents such as halides, pseudohalides or metals. 
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1.3 Cyanides 

 

1.3.1 General 

 

Nitriles are important building blocks in organic chemistry, their applications include 

the synthesis of many products, such as dyes, herbicides, pesticides and drugs.[25] 

Furthermore, the nitrile group serves as a platform for the generation of functional 

groups, like amino, amidino, tetrazolidino, amido groups, aldehydes or carboxylic 

acids.[26a]  

Their importance in organic chemistry and the demand for a safe to handle synthesis 

of nitriles has triggered research towards employing less toxic or completely non-

toxic cyanide sources.[26b] This chapter gives a short overview on the methods 

applied for the cyanation of organic compounds. It moves from common nitrile 

syntheses to more recent synthetic strategies highlighting less toxic cyanide 

surrogates.  

 

1.3.2 Prussic acid and potassium cyanide – classical approaches on the 

 synthesis of nitriles 

 

The classical pathways to synthesize arylnitriles are the Sandmeyer reaction[27]  and 

the Rosenmund-von Braun reaction (Scheme 1.13).[28]  
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Scheme 1.13: Classical reactions for the synthesis of aryl nitriles. 

 

With the need of stoichiometric amounts of CuCN and their relatively harsh reaction 

conditions, both reactions tend to have significant disadvantages. Avoiding these 

problems, alternative reactions have been developed to synthesize nitriles.[29] 

Especially transition metal catalysis has turned out to be a promising tool to 

synthesize nitriles.[30] In industry the standard method to generate aliphatic nitriles is  

the nickel catalyzed hydrocyanation where HCN gas is used as a cyanide source 

(Scheme 1.14).[31] 
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Scheme 1.14: Hydrocyanation reaction.[31] 

 

Other metal or metalloid bound cyanide sources have been successfully employed in 

transition metal catalyzed nitrile synthesis, such as KCN, [32]  NaCN, [33]  Zn(CN)2,
 [34]  

trimethylsilylcyanide(TMSCN)[35]  and K4[Fe(CN)6][36]  (Scheme 1.15). 

 

 

Scheme 1.15: Transition metal catalyzed synthesis of aryl nitriles.[37] 
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the cyanide concentration, to avoid the formation of inert metal-cyanide 

complexes.[38] And nevertheless, most of these methods still suffer from the 

disadvantage to require highly toxic cyanide sources.  

 

1.3.3 Cyanohydrins as source of cyanides in organic synthesis 

 

The development of non-toxic cyanide sources has been object of research in recent 

years. Cyanohydrins have been used as surrogates of highly toxic CN-salts. In 

particular acetone cyanohydrin has been successfully applied as a cheap and 

relatively save alternative cyanide source. [39] 

In 2003, Beller and co-workers described the first Pd-catalyzed cyanation of aryl 

halides using acetone cyanohydrin as the CN-source (Scheme 1.16).[40] To avoid 

poisoning of the catalyst, acetone cyanohydrin was added continuously in small 

amounts over the whole reaction time. [38c,41]  

 

 

Scheme 1.16: Pd-catalyzed cyanation of aryl halides.[41] 

 

Cyclohexanone cyanohydrin as CN-source was employed by the Taran group in 

2010 to furnish a Pd-catalyzed decarboxylative cyanation of arene carboxylic acids 

(Scheme 1.17). [42] 
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Scheme 1.17: Decarboxylative cyanation of arene carboxylic acids.[42] 

 

In order to avoid deactivation of the Pd-catalyst, Beller’s method was adapted, and 

cyclohexanone cyanohydrin was slowly added over the whole reaction time. 

 

A direct, ruthenium catalyzed cyanation of tertiary aryl amines employing acetone 

cyanohydrin as CN-source was reported by Sain and co-workers in 2011 (Scheme 

1.18).[43] A remarkable feature of the described method is the application of acetone 

cyanohydrin both as CN-source and solvent. 

 

Scheme 1.18: Ru- catalyzed cyanation of tertiary amines.[43] 

 

Though cyanohydrins seem to be an alternative source for cyanide ions, their 

production requires highly toxic CN-salts. Their status as less-toxic surrogates for 

KCN and NaCN is therefore questionable. 
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1.3.4 Solvents as direct source of cyanides 

 

A method using the solvent as CN-source, was reported by Cheng and co-workers 

already in 1998. In these Pd- or Ni-catalyzed reactions, compared to acetone 

cyanohydrin much less toxic alkyl nitriles, such as acetonitrile were used as cyanide 

source (Scheme 1.19).[35] 

 

 

Scheme 1.19: Pd- catalyzed cyanation of aryl halides.[35] 

 

1.3.5 N-Cyano-N-phenyl-p-toluenesulfonamide as a less toxic CN-source 

 

Beller and co-workers explored another pathway for the generation of aryl nitriles, 

employing N-cyano-N-phenyl-p-toluenesulfonamide (NCTS) as an easy to provide 

CN-source.[44] 

The synthesis of NCTS was first published in 1949 by Frederick Kurzer.[45] This N-

bound cyanide source can easily be furnished without using any toxic CN-salts 

(Scheme 1.20). 
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Scheme 1.20: Synthesis of NCTS by F. Kurzer.[45] 

  

In 2011, the Beller group developed a Rh-catalyzed cyanation method in which 

NCTS and aryl boronic acids reacted to aryl nitriles (Scheme 1.21).[44a] The proposed 

mechanism suggests, that no HCN is generated within the catalytic cycle (Scheme 

1.22).[44a] 

 

 

Scheme 1.21: Rh-catalyzed cyanation of aryl boronic acids using NCTS as CN-

source.[44a] 
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Scheme 1.22: Suggested mechanism for the Rh-catalyzed cyanation of boronic 

acids.[44a]  

 

Furthermore, NCTS was employed by Beller and co-workers in an electrophilic 

cyanation of aryl-Grignard-reagents[44b] Aryl nitriles were generated through addition 

of NCTS to the lithiated aryl bromides (Scheme 1.23).[46, 44b] 

 

 

Scheme 1.23: Cyanation of aryl bromides by NCTS.[44b] 

 

An electrophilic cyanation, using NCTS, was also reported by Wang and co-workers 

in 2011 (Scheme 1.24). [47] 
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Scheme 1.24: Cyanation of indoles and pyrroles using NCTS.[47] 

 

1.3.6 Multi component cyanide sources 

  

Another approach to achieve the cyanation of organic molecules without the use of 

toxic CN salts is given in the concept of “combined” cyanide sources. Herein, the 

reaction partner cyanide is generated in situ from two separate molecules, which are 

less toxic and easy to handle.[35] 

N,N-Dimethylformamide (DMF) is a commonly used solvent in organic chemistry. It 

has also been shown to be a very versatile precursor for the generation of several 

functional groups, such as O, CO, NMe2, CONMe2, Me and CHO.[48]  

In 2009, Jia and co-workers disclosed the development of a CN-source by a Pd-

catalyzed direct cyanation of 2-phenylpyridines employing DMF and aqueous 

ammonia(Scheme 1.25).[49] 

A similar method was employed by Kim and Chang for the Cu-catalyzed reaction of 

DMF and aqueous ammonia in 2010.[50]  

 

 

Scheme 1.25: Direct cyanation of 2-phenylpyridines with DMF and ammonia.[49] 
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Formation of the cyanide was investigated by using both isotopically labeled DMF 

and ammonia and a mechanism shown in Scheme 1.26 was proposed. [51] 

 

 

Scheme 1.26: Proposed mechanism for the generation of cyanide from DMF and 

ammonia.[51] 

 

The authors suggested, that a Cu(II)-mediated single-electron transfer takes place 

first, converting DMF to an iminium species, which reacts with ammonia to afford an 

amidine intermediate.[35,51] The C–N bond cleavage of amidine was assumed to 

proceed under the employed oxidative conditions, thus releasing the cyano 

moiety.[35,51] 

 

Cheng and co-workers reported the direct Pd-catalyzed cyanation of indoles by 

using dimethylsulfoxide (DMSO) and ammonium bicarbonate as the combined CN-

source (Scheme 1.27). [52] 

 

 

Scheme 1.27: Direct cyanation of hetero arenes using DMSO and NH4HCO3.
[52] 
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A mixture of DMF and ammonium iodide was employed by Chang and co-workers to 

achieve direct cyanation of aryl and alkenyl boronic acids.[54] The scope of this 

method also comprised the direct cyanation of electron rich arenes (Scheme 

1.28).[54] 

 

 

Scheme 1.28: Direct cyanation of electron rich arenes using NH4I and DMF.[54] 

 

In 2011, Ding and Jiao described the Pd-catalyzed direct cyanation of indoles by 

using only DMF as the CN-source.[55] The work of Bhanage et al. also described the 

in situ generation of cyanide just employing formamides (Scheme 1.29).[56]  

 

 

Scheme 1.29: Cyanation of aryl halides using formamide.[56] 
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formamide may generate benzamide as an intermediate that undergoes the 

sequential dehydration, thus leading to benzonitrile products.[56] 

 

 

Scheme 1.30: Postulated mechanism for a Pd-catalyzed cyanation of aryl halides.[56] 

 

1.3.7 Potassium thiocyanate – an approach from the 19th century 

 

Although some efforts were taken to investigate new metal free and less toxic 

cyanide sources, like developing “combined” CN-sources, it is surprising that the 

very simple thiocyanate has not been in focus of research. 

In 1857 Hugo Schiff reported the generation of benzonitrile from benzoyl chloride 

and potassium thiocyanate.[57] Edmund A. Letts discovered in 1872 that benzoic acid 

and potassium thiocyanate reacted to give benzonitrile (Scheme 1.31).[58]    
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Scheme 1.31: Letts nitrile synthesis.[58] 

 

Improving the Letts reaction by using the zinc(II) salt of the acid, done by E. E. 

Reids, was the last major improvement of the application of thiocyanates as CN-

sources for a long time.[59] 

In 2006 Zhang and Liebeskind described a Pd-catalyzed cross coupling reaction of 

benzyl thiocyanates with arylboronic acids (Scheme 1.32).[60] 

 

 

Scheme 1.32: Cyanation of aryl- and alkenylboronic acids with benzylthiocyanate.[60] 

 

Scheme 1.33 shows the proposed mechanism, for the reaction of aryl- and 

alkenylboronic acids with benzylthiocyanate. [60,61] 

The authors suggested that the cyanation may start with an oxidative addition of 

benzoyl thiocyanate to Pd0,[35,61] followed by the transmetallation from boron to 

palladium and then reductive elimination. Additionally, it was suggested that the 

copper additive acts as a thiophilic reagent agent to enhance the polarization of the 

palladium-thiolate bond, while simultaneously providing borophilic activation by 

coordination of carboxylate to the boron atom.[35,61] 
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Scheme 1.33: Proposed mechanism, for the reaction of aryl- and alkenylboronic 

acids with benzyl thiocyanate.[61]
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1.4 Objectives 

 

 

Nitrogen-containing compounds can frequently be found among natural products, 

biological active molecules and therapeutic drugs.[25] Therefore, functionalization of 

nitrogen-containing compounds has attracted considerable attention.[26b,35] In 

particular the nitrile group serves as a very versatile building block for the generation 

of functional groups.[26a] 

An iron catalyzed cyanation of tertiary aryl amines was developed by Wei Han in 

2009 (Scheme 1.34).[62] 

 

 

 

Scheme 1.34: Cyanation of a tertiary aryl amine by Wei Han.[62] 

 

One aim of this Thesis was the expansion of the substrate scope of the α-cyanation 

to aliphatic and allyl substituted amines. Further studies should explore the 

selectivity of this reaction as well as possibilities for its application beyond the scope 

of a simple cyanation. Especially the exploration of multi step reactions was in the 

focus. The use of tertiary allyl amines would provide the option to combine α-

cyanations with additions on alkenes in a one-pot synthesis (Scheme 1.35). 
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Scheme 1.35: Multi step reaction which combines α-cyanations with additions on 

alkenes. 

 

Most methods for the synthesis of nitriles suffer from the disadvantage to require 

highly toxic cyanide sources. The development of non-toxic cyanide sources has 

therefore been subject of research in the last years. However, most of the cyanide 

sources reported as non-toxic alternative still have a significant level of toxicity 

(Table 1.1). 
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Table 1.1: Toxicity of different CN sources used for oxidative α-cyanations of tertiary 

amines.[73] 

Compound LD50
a
 [mg·kg

–1
] Danger Pictograms

a
 

NaCN 1.67 (intramuscular, rabbits), 

4.3 (intraperitoneal, rats) 

4.8 (oral, rats) 

10.4 (dermal, rabbits) 

 

KCN 4 (intraperitoneal, rats), 

7.5 (oral, female rats), 

14.3 (dermal, rabbits) 

 

malononitrile 19 (oral, mice) 

 

acetone cyanohydrin 15.8 (dermal, rabbits) 

18.7 (oral, rats)  

ethyl cyanoformate  no data available 

 

trimethylsilyl cyanide  no data available 

 

trimethylsilyl azide
b
  no data available 

 

benzoyl cyanide 37.6 (oral, rats) 

 

benzyl cyanide 270 (oral, rats) 

270 (dermal, rabbits)  

   

potassium thiocyanate 854 (oral, rats) 

 

a According to the Globally Harmonized System of Classification and Labeling of Chemicals (GHS 

Classification) compounds with LD50 < 300 mg kg–1 are classified as toxic (data from MSDS sheets by 

Sigma-Aldrich, Steinheim, Germany, Dec. 12th, 2014). b Trimethylsilyl azide (N source) and 1,2-

dichloroethane (C source) were used as a combined source of CN, see ref 7a-c in Chapter 4. 

 

One major goal of this Thesis was the development of a most simple and versatile 

method for the cyanation of tertiary amines, which employs an easy to access and 

non-toxic cyanide source. This could be achieved with the employment of potassium 

thiocyanate as described in Chapter 4. 
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2.1 Introduction 

 

The direct transformation of ubiquitous CH bonds of organic molecules has recently 

moved to the center of synthetic organic chemistry.[1] In many cases, heteroatoms in 

the substrate cause a differentiation of the intrinsic reactivities of the CH bonds in 

their vicinity and facilitate selective reactions without the extra steps needed for the 

prefunctionalization of a certain position in the substrate.[2]  In particular, CH bonds 

adjacent to the nitrogen atom of amines can be oxidatively functionalized with high 

selectivity as shown by the rapid development of cross dehydrogenative couplings 

(CDC) and related reactions in the past decade that were often exemplified by using 

tetrahydroisoquinolines or N,N-dimethylanilines as substrates. [3,4] 

According to recent mechanistic studies, a sequence of electron–proton–electron 

transfer reactions and final interception by nucleophilic solvent or oxidant converts 

tertiary amines in the presence of transition metal catalysts and oxidants to 

hemiaminals or N,O-acetals which are in equilibrium with iminium ions (Scheme 

2.1).[5,6] Trapping of the electrophilic iminium ions with a variety of nucleophiles has 

been exploited,[3-5,6a] e.g., for alkynylations,[7] (hetero)arylations,[8] phosphonations,[9]  

reactions with enolizable nucleophiles[10]  and many other α-functionalizations of 

tertiary amines. [11] 
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Scheme 2.1. Transition metal (TM)-catalyzed oxidative α-functionalization of tertiary 

amines. 

 

In recent years α-cyanation has evolved to an often studied test reaction for the 

oxidative α-functionalization of tertiary amines.[12-15] The thus generated α-amino 

nitriles are highly interesting synthetic targets owing to their versatility as 

intermediates in organic transformations and occurrence in natural products.[16] 

Numerous transition metals (Ru,[17]  Cu,[18]  V,[19] Au,[20] Mo,[21] Co[22]) without or with 

ligands have been employed as catalysts for the amine cyanation in combination 

with peroxides or molecular oxygen as oxidants. Cheap sodium or potassium 

cyanide worked excellently as cyanide sources, but efforts were also undertaken to 

use less toxic cyanation reagents, such as trimethylsilyl cyanide,[23] cyanohydrins,[24] 

ethyl cyanoformate,[25] or malononitrile.[18] 

Iron is not only one of the least toxic but also one of the least expensive metals that 

possesses the ability to catalyze direct CH transformations.[26,27] Iron-containing 

heme and non-heme enzymes are catalysts for a variety of oxidative reactions,[28,29]  

and structurally related phthalocyanine- and oligopyridine-complexed iron(II) salts 
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efficiently catalyze oxidative cyanations of tertiary amines.[30,31] However, designed 

ligands are not prerequisites for the catalytic activity of iron salts.[32-37] 

We reported recently that various α-amino nitriles can be synthesized selectively and 

under mild conditions by oxidizing tertiary amines with catalytic amounts of iron salts 

and tert-butyl hydroperoxide as oxidant.[34a]  The conversion of N,N-dimethyl-p-

toluidine (1a) to 2-[methyl(p-tolyl)amino]acetonitrile (2a) was used to optimize the 

catalyst system for the α-cyanation of N,N-dialkylanilines. We found that 2a was 

formed in optimum yield of 92% from 1a and trimethylsilyl cyanide (2 equiv.) when 

catalytic amounts of FeCl2 (10 mol%) were combined with 2.5 equiv. of tert-butyl 

hydroperoxide as oxidant in methanol (Scheme 2.2).[34a] 

 

 

Scheme 2.2. FeCl2-catalyzed α-cyanation of 1a with trimethylsilyl cyanide and tert-

butyl hydroperoxide.[34a] 

 

The optimized reaction conditions were generally applicable for the oxidative 

cyanation of ring-substituted anilines and cyclic N-phenylamines and allowed the 

isolation of the α-functionalized amines 2a–l (Scheme 2.3).[34a] Biscyanation in α- 

and α′-positions to the nitrogen of N-phenylpyrrolidine with 4 equiv. of trimethylsilyl 

cyanide gave 2l′ that was characterized by X-ray crystallography.[34b] 
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Scheme 2.3. α-Amino nitriles obtained by FeCl2-catalyzed cyanations of aniline 

derivatives with trimethylsilyl cyanide and tert-butyl hydroperoxide.[34] 

 

We have now extended the scope of this cyanation reaction with regard to functional 

group tolerance and amines used. Furthermore, we show that oxidative degradation 

of N,N-dialkylanilines to N-alkylanilines can be combined with solvent oxidation to 

establish an unprecedented access to amino-substituted acetonitriles. 
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2.2. Results and Discussion 

 

2.2.1. Iron-Catalyzed Cyanations of Aromatic and Aliphatic Tertiary Amines 

 

Table 2.1 shows that a series of N,N-dialkylated anilines underwent α-cyanation 

under the standard reaction conditions defined in Scheme 2.2. The presence of an 

N-naphthyl substituent resulted in a slight retardation of the oxidative cyanation at 

the dimethylamino moiety. Nevertheless, N,N-dimethyl-1-naphthylamine (3) was 

converted in good yield of 72% to 2-[methyl(naphth-1-yl)amino]acetonitrile (4). 

The cyanations of methyl-, methoxy-, bromo-, and nitro-substituted anilines (Scheme 

2.3) already showed that several functional groups are tolerated as ring substitutents 

in the N,N-dimethylanilines (Scheme 2.3).[34a] Furthermore, the linkage of a p-

ethoxycarbonyl or a p-benzoyl group to the aniline substrate was compatible with the 

cyanation reaction and gave acceptable yields of 6 (74%) and 8 (85%), respectively. 

Although two dimethylamino groups are available in Michler’s ketone 9, only one of 

them was cyanated under the standard reaction conditions. Probably the connection 

of the two dimethylamino groups through conjugated sp2-hybridized carbon atoms 

decreases the reactivity of the remaining NMe2 group after oxidation and 

functionalization of the first NMe2 group. 

Separation of the conjugated systems by a methylene group, as in bis[4-

(dimethylamino)phenyl]methane (11), resulted in undisturbed and independent 

reactivity of both dimethylamino units of 11 which led to the symmetrical bis-cyano 

product 12 in 68% yield when the reaction was performed with a moderately 

increased amount of cyanating agent (3.0 equiv. of trimethylsilyl cyanide used 

instead of 2.0 equiv.). Oxidation or competing cyanation of the CH2 group in the 

benzylic position was not observed.[38]
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Table 2.1. FeCl2-catalyzed oxidative α-cyanations of N,N-dialkylated anilines. 

Entry Amine Conditions[a] Products (Yield [%])[b]

10 mol-% FeCl2, 24 h

NMe2 N
Me

CN

4 (72 %)

20 mol-% FeCl2, 24 h, ref lux

NMe2

6 (74 %)

EtO2C

N

EtO2C

Me

CN

20 mol-% FeCl2, 24 h, ref lux

NMe2

8 (85 %)

N

Me

CN

20 mol-% FeCl2, 24 h, ref lux

NMe2

10 (74 %)

N

Me

CN

15 mol-% FeCl2, 15 h[c] 12 (68 %)

O
O

O
O

Me2N
Me2N

NMe2
N

Me

CN

Me2N
N

Me

CN

15 mol-% FeCl2, 24 h[c] 14 (61 %)

NMe2
N

Me

CN

Me2N N

Me

CN

NMe2
N

Me
CN

N

O

Ph

N

O

Ph

CN

10 mol-% FeCl2, 16 h 16 (92 %)

NMe
Ph

N CN
Ph

10 mol-% FeCl2, 14 h 18a (93 %)

1

2

3

4

5

6

7

8

N
Ph

R

9

10

11

R

22 (72 %)
N

Me

CN

N

Me

CN

R = Me

R = nPr

R = Ph

10 mol-% FeCl2, 50 h

10 mol-% FeCl2, 50 h

10 mol-% FeCl2, 50 h

20a (22 %) + 18a (67 %)

20b (27 %) + 18b (62 %)

20c (34 %) + 18c (47 %)

12

+

15 mol-% FeCl2, 72 h, ref lux[d]

3

5

7

9

11

13

15

17

19a

19b

19c

21

N
Ph

R

R

N
Ph

R

CN
CN

+ Me3Si-CN

(2 equiv.) MeOH

tBuOOH (2.5 equiv.)
FeCl2 (10–20 mol-%)

R'

N
Ar

R

R'

N
Ar

R

CN

 
 [a] Reaction conditions: amine (1.0 mmol), trimethylsilylcyanide (2.0 mmol), t-BuOOH (2.5 mmol), 

MeOH (2.0 mL), room temperature (22±1 °C). [b] Yield of isolated product after column 

chromatography on SiO2. [c] In the presence of 3.0 mmol trimethylsilyl cyanide and 3.0 mmol t-

BuOOH. [d] Oxidant t-BuOOH replaced by O2 (1 atm). 
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Upon oxidation at the central CH unit tris[4-(dimethylamino)phenyl]methane 13 could 

easily form one of the most stable carbocations, crystal violet (pKR+ = 9.36).[38] 

However, analogous to the behaviour of 11, 13 was oxidized exclusively at the 

dimethylamino substituents as indicated by the subsequent three-fold cyanation to 

14 (61% yield) when 3.0 equiv. of trimethylsilyl cyanide were used. 

As previously shown for N-phenylpyrrolidine (Scheme 2.3),[34a] the strategy of 

oxidative cyanation can also be employed for generating carbonitrile derivatives of 

N-phenylated cyclic amines. The morpholine moiety has rarely been demonstrated to 

be able to undergo oxidative α-functionalization at a heterocyclic CH bond adjacent 

to the nitrogen.[15d] To our delight, oxidative cyanation of 4-phenylmorpholine (15) 

gave 4-phenylmorpholine-3-carbonitrile (16) in an excellent yield of 92%. 

The chemoselective oxidative cyanation of N-ethyl-N-methylaniline (17) to the 2-

aminoacetonitrile 18a (93% yield) illustrates that oxidation at the N-methyl group is 

highly preferred over a competing process at an NCH2 of the N-ethyl group, in 

agreement with previous reports[17b,18,25b,30,31] and the order of kinetic acidities of 

laser flash photolytically generated amine radical cations (Ph2NCH3 > Ph2NCH2CH3, 

from radical cation deprotonations with acetate ions).[40] 

Surprisingly low yields of the expected α-amino nitriles 20a–c were obtained for 

aniline derivatives 19a–c that do not carry a methylated amino group. The α-

cyanated products 20a–c (22–34% yield) were accompanied by the 

aminoacetonitrile derivatives 18a–c, which could be isolated in useful yields between 

47 and 67%. 

Oxygen is an attractive, atom-economic, and environmentally benign (“green”) 

oxidant.[41] As detailed in the Supporting Information for the formation of 2a–g, it was 

possible to replace the oxidant tert-butyl hydroperoxide by molecular oxygen in 

several cases. However, when the FeCl2-catalyzed cyanations of anilines 1a–g 
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under aerobic conditions are compared with the analogous reactions in which 

oxidation is achieved with a 5.5 M decane solution of tert-butyl hydroperoxide,[34] it 

becomes obvious that using the organic peroxide is the superior method because 

the yields of α-amino nitriles 2a–g were generally higher (+8 to +30 %), and in 

several reactions room temperature was sufficient, whereas the analogous reaction 

under aerobic conditions required heating to reflux temperature of the solvent. Only 

for electron-rich anilines, may the aerobic version of the iron-catalyzed α-cyanation 

be a practical alternative, as exemplified by the conversion of N,N-dimethylmesidine 

(21) to 22 (Table 2.1, entry 12). 

Table 2.2 summarizes our results for α-cyanations of benzylic and aliphatic tertiary 

amines that were carried out at ambient or even lower temperature. Oxidative 

cyanations at benzylamines showed that oxidation at NCH3 groups is preferred over 

oxidizing C(sp3)H bonds of NCH2Ph. N,N-Dimethylbenzylamine (23) reacted at 0 °C 

selectively to furnish 24 in a yield of 81%. The cyanation of tribenzylamine (25), a 

substrate that does not contain a NCH3 group, was much less efficient and gave 26 

in only a moderate yield of 41%. 
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Table 2.2. FeCl2-catalyzed oxidative α-cyanations of benzylic and aliphatic tertiary 

amines.[a] 

N

Me

CN

N

Me

CN

(nPr)2N

CN

Ph(PhCH2)2N

CN

Ph N

Me

CN

(nBu)2N

CN

(isopentyl)2N

CN

(iBu)2N

CN

NMe2

NMe2

Ph NMe2

(nPr)3N

(nBu)3N

(isopentyl)3N

(iBu)3N

Entry Amine Products (Yield [%])[b]

+ Me3Si-CN

(2 equiv.)

tBuOOH (2.5 equiv.)
FeCl2 (10 mol-%)

R''

N
R'

R

R''

N
R'

R

CN

1

2

3

4

5

6

7

8

9

23

25

27

29

31

33

24 (81 %)[c]

35

39

MeOH
1 d

26 (41 %)[d]

28 (46 %)

30 (47 %)

32 (48 %)

34 (69 %)

36 (70 %)

40 (73 %)

(PhCH2)3N

(n-octyl)2N

CN
(n-octyl)3N 37 38 (68 %)

 

 [a] Reaction conditions: amine (1.0 mmol), trimethylsilyl cyanide (2.0 mmol), t-BuOOH (2.5 mmol), 

FeCl2 (10 mol%), MeOH (2.0 mL), room temperature (22±1 °C). [b] Yield of isolated product after 

column chromatography on SiO2. [c] Reaction at 0 °C. [d] With 15 mol% of FeCl2. 

 

The versatility of the FeCl2-catalyzed oxidative cyanation of amines is further 

underscored by the fact that purely aliphatic tertiary amines can be used as 

substrates (Table 2.2, entries 3–9). The tertiary amines 27 and 29 with an 

unbranched alkyl substituent at NMe2 reacted selectively at the methyl groups to 

give amino nitriles 28 (46% yield) and 30 (47% yield), respectively. Furthermore, a 



 

series of trialkylamines 31, 

34, 36, and 38, respectively, in useful yields.

Interestingly, even the sterically demanding triisobutylamine 

high efficiency to 40 (73% yield). Precipitation from water delivered crystals of 

that could be characterized by X

crystal structure of 40 are reported in 

Figure 2.1. X-ray structure of 

model was applied (sof ratio 0.72/0.28), the Figure shows the main component only, 

thermal ellipsoids are drawn at the 50% probability level].

 

 

 

, 33, 35 and 37 was converted to the α-

, respectively, in useful yields. 

gly, even the sterically demanding triisobutylamine 39 was cyanated with 

(73% yield). Precipitation from water delivered crystals of 

that could be characterized by X-ray structure analysis (Figure 2.1). Details of the 

are reported in section 2.4 and ref.[42] 

ray structure of 40 [as the molecules crystallized disordered a split 

model was applied (sof ratio 0.72/0.28), the Figure shows the main component only, 

thermal ellipsoids are drawn at the 50% probability level].[42] 
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amino nitriles 32, 

was cyanated with 

(73% yield). Precipitation from water delivered crystals of 40 

2.1). Details of the 

 

[as the molecules crystallized disordered a split 

model was applied (sof ratio 0.72/0.28), the Figure shows the main component only, 
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2.2.2 Solvent Participation in the Formation of Aminoacetonitriles 18 from N,N-

Dialkylanilines 

 

It is well known that degradation of tertiary amines can occur under oxidative 

reaction conditions. For example, hydrolysis of the intermediate iminium ions (A) by 

water, that is unavoidably generated during oxidation, can produce secondary 

amines (B) and aldehydes (Scheme 2.4). [43-45] 

 

Scheme 2.4. Oxidative dealkylation of tertiary amines by FeCl2 as the catalyst and 

tert-butyl hydroperoxide as the oxidant and subsequent electrophilic trapping of the 

secondary amine intermediates. 
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We suspected that the aminoacetonitriles 18a–c (Table 2.1, entries 9–11) could 

originate from amines B. Recently, Z. Li and co-workers reported that in situ 

generated secondary amines B could be trapped by added aldehydes (in acetonitrile 

solution), and an iron-catalyzed oxidation of the thus formed aminols C by excess 

tert-butyl hydroperoxide furnished a variety of amides D.[46] 

Accordingly, hydrolysis of A to B becomes infeasible under water-free reaction 

conditions. Efficient removal of water from the reaction mixture by molecular 

sieves[47] during the oxidative cyanation of 19a with trimethylsilyl cyanide (Scheme 

2.5), therefore, entirely changed the product selectivity from prevailing 18a (Table 

2.1, entry 9) to clear preference for 20a. 

 

Scheme 2.5. Oxidative iron-catalyzed cyanation of 19a with trimethylsilyl cyanide in 

methanol under water-free conditions. 

 

We also speculated that the solvent could participate as a reagent, in accord with 

Bolm’s report that iron catalysis enables the oxidation of methanol to formaldehyde 

under reaction conditions very similar to ours.[48]  Furthermore, as shown in Scheme 

2.6, isotope scrambling was observed by Ratnikov and Doyle in the rhodium-

catalyzed oxidative Mannich reaction of 2a-d6 with 41 that was carried out in the 

presence of an excess of formaldehyde (37% aqueous solution).[48] The formation of 

19a Me3Si–CN
(2 equiv.)

FeCl2 (10 mol-%)
t-BuOOH (2.5 equiv.)

3 Å MS
MeOH, r.t., 50h

N CN

20a (83%)
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42 illustrates that formaldehyde is involved in a fast equilibration at the stage of N,O-

acetals before the potent nucleophile 41 can trap the intermediate iminium ions. 

 

Scheme 2.6. Oxidative Mannich reaction of 2a-d6 with siloxyfuran 41 catalyzed by 

di-rhodium caprolactame [Rh2(cap)4, 1 mol%] (from ref.[6a]). 

 

As sketched in Scheme 2.4, oxidation of the solvent methanol would provide 

formaldehyde that is capable of forming iminium ion E upon reaction with the amine 

B. Cyanide trapping of the iminium ion E would lead to the observed major products 

18a–c (or F in Scheme 2.4). 

Isotopic labelling of the methylene unit that originates from the solvent methanol 

would allow for testing this hypothesis. We repeated, therefore, the reactions that 

converted 19a and 19c to the mixtures of 20a/18a and 20c/18c, respectively, under 

the previously employed reaction conditions but now with methanol-d3 as the solvent 

and isolated the corresponding aminoacetonitriles 18a′ and 18c′ in yields of 69 and 

46%, respectively (Scheme 2.7). 
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Scheme 2.7. Dealkylative cyanomethylation of 19a and 19c in CD3OH. 

 

Figure 2.2 shows a comparison of the 1H NMR spectra of the products obtained from 

the oxidative cyanation of 19c in either CH3OH (Figure 2.2a) or CD3OH (Figure 

2.2b). Obviously the singlet at δ = 4.53 ppm, that corresponds to the resonance of 

the protons of the benzylic NCH2 group, remained unaffected by the change of the 

reaction medium from CH3OH to CD3OH. However, the resonance of the cyanated 

NCH2 group (δ = 4.08 ppm) was extinguished almost completely in the 1H NMR 

spectrum of 18c′. It can be derived from the integral for this singlet that >98% of the 

isolated 18c′ contained a CD2 group that originated from the oxidized solvent 

CD3OH. 
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3.94.04.14.24.34.44.54.6
f1 (ppm)

 

Figure 2.2. Oxidative cyanation of N,N-dibenzylaniline 19c: a) 1H NMR spectrum of 

18c obtained from the reaction 19 c in CH3OH (see Table 2.1, entry 11 for reaction 

conditions); b) 1H NMR spectrum of 18c′ obtained from the reaction 19c in CD3OH 

(see Scheme 2.7 for reaction conditions). 

 

Analogously, the cyanated NCH2 group of 18a (singlet at δ = 4.14 ppm) was 

replaced in 18a′ by a CD2 group with >97% probability (see the section 2.4 for the 1H 

NMR spectra of 18a and 18a′). As a consequence, the sequence of reaction steps 

proposed in Scheme 2.4 is corroborated by the results of the oxidative cyanations in 

deuterated methanol. 
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2.3 Conclusions 

 

In summary, structurally diverse α-amino nitriles were synthesized from tertiary 

amines by using FeCl2 as the catalyst and tert-butyl hydroperoxide as the oxidant. 

Oxidative α-functionalization could also be achieved for some substrates (1a–g, 21) 

when the organic peroxide was replaced by molecular oxygen (1 atm) as the oxidant. 

C(sp3)H bonds adjacent to the nitrogen of N,N-dimethylanilines, benzylic and 

aliphatic amines were selectively cleaved and converted to CN moieties by trapping 

the intermediate iminium ions with the cyanide ion source trimethylsilyl cyanide in 

methanol. 

Oxidative dealkylation with subsequent cyanomethylation under participation of the 

solvent methanol was the main reaction path for N,N-dialkylanilines PhNR2 with R = 

Et, Bu, Bn. Iron-catalyzed methanol oxidation to formaldehyde may explain on the 

one hand that hyperstoichiometric amounts (in relation to the amine) of tert-butyl 

hydroperoxide are required as the oxidant. On the other hand, it contributes to the 

understanding why methanol plays such a unique role as a solvent in oxidative α-

functionalizations of tertiary amines: Methanol does not only solubilize the reagents 

but also acts as a nucleophile that intercepts the intermediate iminium ions to 

generate N,O-acetals as a safe reservoir from which the electrophilically reactive 

iminium ions can be re-generated by thermal or acid-catalyzed equilibrium 

reactions.[5,49] In addition, methanol helps to avoid oxidative dealkylation of tertiary 

amines, which would give rise to by-products (secondary amines and products 

thereof), in reactions which actually aim to generate α-functionalized tertiary amines. 

Although N,N-dimethyl-substituted anilines belong to standard compounds for testing 

the reaction conditions of CDC reactions at tertiary amines, 3–11 participation of the 

solvent methanol in its oxidized form has probably remained undiscovered because 
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of two reasons: (a) the formation of products identical to those that are obtained by 

direct oxidative α-functionalization and (b) the use of catalysts that were unable to 

catalyze the oxidation of methanol to formaldehyde with tert-butyl hydroperoxide.[6a] 

Using methanol-d3 as a probe revealed that the solvent participates productively to 

generate the 2,2-dideuterated 2-aminoacetonitriles 18′ which may be useful as a 

cost effective synthetic platform for generating d2-derivatives of 1,2-diamines, amino 

acids or tetrahydroquinolines.[16b,17b] 
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2.4 Experimental Section 

 

In order to identify my contribution to this multiauthor publication, this Experimental 

Section covers exclusively those experiments, which were performed by me. 

 

General. All reactions were carried out under an atmosphere of dry nitrogen. 1H (300 

or 400 MHz) and 13C (75.5 or 100.6 MHz) NMR spectra of solutions in CDCl3 were 

recorded on 300 or 400 MHz NMR spectrometers. Chemical shifts are expressed in 

parts per million (ppm) downfield from tetramethylsilane and refer to the solvent 

signals (δH 7.26 and δC 77.16 ppm).[S2] Abbreviations for signal couplings are: s, 

singlet; d, doublet; t, triplet; q, quartet; m, multiplet. HRMS was performed on a 

Finnigan MAT 95Q mass spectrometer. Infrared spectra of neat substances were 

recorded on a Perkin-Elmer Spectrum BX II FT-IR spectrometer equipped with an 

ATR probe (diamond). 

 

Materials. Commercially available tertiary amines were used as received. N,N-

Dimethyl-p-anisidine was prepared according to a literature procedure.[S3] 

Trimethylsilyl cyanide (98 %, Acros) and tert.-butyl hydroperoxide (5.5 M solution in 

decane, purum, Aldrich) were purchased. 

The following iron and copper salts were used: Iron(II) acetate (anhydrous, 97 %, 

Strem), iron(III) acetylacetonate (99.9 %, Aldrich), iron(III) bromide (99 %, ABCR), 

iron(II) chloride (98 %, Aldrich), iron(III) chloride (anhydrous, 97 %, Grüssing), 

iron(III) chloride hexahydrate (99 %), iron(II) fluoride (anhydrous, 99 %, Strem), 

                                            
[S2] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. 

 Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179. 

[S3] J. A. Hodges, R. T. Raines, Org. Lett. 2006, 8, 4695-4697. 
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iron(II) gluconate hydrate (purum p.a., Fluka), iron(II) sulfate (99 %), copper(I) 

bromide (98 %, Acros), and copper(II) bromide (> 99%, Acros). 

 

The following amines were purchased from commercial suppliers: N-phenyl-

morpholine (11, 98 %, ABCR), N,N-diethylamine (15a, 99 %, Acros), N,N-

dibutylamines (15b, 97 %, Aldrich), N,N-dibenzylamine (15c, 99 %, ABCR), 

dimethyloctylamine (21, 98 %, ABCR), dimethyltetradecylamine (23, >95 %, techn., 

Aldrich), triisobutylamine (25, 98 %, ABCR),  

 

N-Ethyl-N-methyl-aniline (13) was prepared by heating a solution of N-methylaniline 

(3.25 mL, 30 mmol), EtBr (3.8 mL, 51 mmol) and NEt3 (10.4 mL, 75 mmol) in MeCN 

(30 mL) to reflux for 16 h. After allowing the reaction mixture to cool to ambient 

temperature, the suspension was filtrated, poured on brine (50 mL), and extracted 

with CH2Cl2 (3 × 50 mL). The combined organic phases were washed with water and 

dried (MgSO4). After evaporating the solvent, the crude material was distilled in the 

vacuum (65 °C/0.01 mbar) to give 13 (3.4 g, 84 %) as a colorless liquid. 

 

General Procedure A (FeCl2/tBuOOH/N2 atmosphere): Under an atmosphere of 

dry N2, a Schlenk flask was charged with iron(II) chloride (10 mol %, 13 mg). The 

tertiary amine (1.0 mmol), trimethylsilyl cyanide (2.0 mmol, 0.27 mL), and MeOH (2.0 

mL) were added successively by syringe. To the mixture was added dropwise tert-

butyl hydroperoxide (2.5 mmol, 0.47 mL, 5.5 M solution in decane) over a period of 5 

min. The mixture was stirred at room temperature for the indicated time. At the end 

of the reaction, the reaction mixture was poured into a saturated aqueous NaCl or 

Na2CO3 solution (20 mL) and extracted with CH2Cl2 (3 × 20 mL). The organic phases 

were combined, dried (MgSO4), and the volatile components were evaporated in a 
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rotary evaporator. The crude product was purified by column chromatography on 

silica gel (n-pentane/diethyl ether = 15:2, v/v). 

 

4-Phenylmorpholine-3-carbonitrile (16) 

Following General Procedure A, 4-phenyl-morpholine 15 (188 mg, 1.00 mmol) 

reacted with Me3SiCN (270 µL, 2.00 mmol) for 16 h to give 16 (173 mg, 92 %) as a 

colorless solid; mp 98.3-98.5 °C. 

1H NMR (CDCl3, 300 MHz): δ = 3.28–3.31 (m, 2 H), 3.71-3.80 (m, 1 H), 3.92 (dd, J = 

11.6 Hz, J = 2.9 Hz, 1 H), 4.08-4.19 (m, 2 H), 4.41-4.43 (m, 1 H), 6.97-7.07 (m, 3 H), 

7.32-7.39 ppm (m, 2 H); 13C NMR (CDCl3, 75.5 MHz): δ = 45.7, 51.2, 67.1, 68.3, 

116.1, 117.5, 122.8, 129.8, 148.5 ppm; analysis calcd for C11H12N2O: C, 70.19; H, 

6.43; N, 14.88; found C, 69.92; H, 6.43; N, 14.76. 

 

2-(Ethyl(phenyl)amino)acetonitrile (18a) 

Following General Procedure A, N-ethyl-N-methylaniline 17 (145 µL, 1.00 mmol) 

reacted with Me3SiCN (270 µL, 2.00 mmol) for 14 h to give 18a (149 mg, 93 %) as a 

colorless viscous liquid. Known compound; the NMR spectroscopic data agree with 

those given in ref[17a]. 

1H NMR (CDCl3, 300 MHz): δ = 1.26 (t, J = 7.2 Hz, 3 H), 3.45 (q, J = 7.2 Hz, 2 H), 

4.14 (s, 2 H), 6.85-6.94 (m, 3 H), 7.30-7.35 ppm (m, 2 H); 13C NMR (CDCl3, 75.5 

MHz): δ = 12.3, 39.6, 46.4, 115.0, 116.5, 119.9, 129.6, 147.0 ppm. 

 

2-(Ethyl(phenyl)amino)propanenitrile (20a) and 2-(Ethyl(phenyl)amino)- 

acetonitrile (18a) 

Following General Procedure A, N,N-diethylaniline 19a (160 µL, 1.00 mmol) reacted 

with Me3SiCN (270 µL, 2.00 mmol) for 50 h. The crude product mixture was 
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separated by column chromatography (SiO2, pentane/Et2O = 15:2) to give 20a (38 

mg, 22 %) and 18a (107 mg, 67 %), both as colorless viscous liquids. 

 

20a: Known compound; the NMR spectroscopic data agree with those given in 

ref[14c]. 1H NMR (CDCl3, 400 MHz): δ = 1.19 (t, J = 7.1 Hz, 3 H), 1.57 (d, J = 7.2 Hz, 3 

H), 3.28-3.42 (m, 2 H), 4.48 (q, J = 7.2 Hz, 1 H), 6.97-7.00 (m, 3 H), 7.29-7.33 ppm 

(m, 2 H); 13C NMR (CDCl3, 100.6 MHz): δ = 14.0, 18.7, 43.7, 48.4, 119.1, 119.6, 

121.9, 129.5, 146.9 ppm; ν (neat/ATR probe) 3061, 2977, 2936, 1597, 1579, 1498, 

1450, 1377, 1353, 1259, 1197, 1129, 1080, 1036, 789, 749, 691 cm–1; HRMS (EI) 

calcd for C11H14N2 m/z 174.1157, found m/z 174.1157. 

 

18a: Known compound; the NMR spectroscopic data agree with those given in 

ref[17a]. 1H NMR (CDCl3, 300 MHz): δ = 1.26 (t, J = 7.1 Hz, 3 H), 3.45 (q, J = 7.1 Hz, 2 

H), 4.15 (s, 2 H), 6.86-6.94 (m, 3 H), 7.29-7.35 ppm (m, 2 H); 13C NMR (CDCl3, 75.5 

MHz): δ = 12.3, 39.6, 46.4, 115.1, 116.5, 120.0, 129.6, 147.0 ppm; HRMS (EI) calcd 

for C10H12N2 m/z 160.0995, found m/z 160.0997; ν (neat/ATR probe) 3061, 3042, 

2975, 2929, 1599, 1577, 1503, 1377, 1347, 1274, 1243, 1185, 1129, 1075, 1038, 

1011, 975, 910, 871, 795, 749, 731, 690 cm–1. 

 

2-(Ethyl(phenyl)amino)propanenitrile (20a) 

Analogous to General Procedure A but with added molecular sieves (3 Å, 4–8 mesh, 

270 mg), 19a (160 µL, 1.00 mmol) reacted with Me3SiCN (270 µL, 2.00 mmol) for 50 

h in dry methanol. The crude product mixture was separated by column 

chromatography (SiO2, pentane/Et2O = 15:2) to give 20a (144 mg, 83 %) as 

colorless viscous liquids. The proton NMR spectrum proved purity and identity of 

20a. 
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2,2-Dideuterio-2-(ethyl(phenyl)amino)acetonitrile (18a’) 

Following General Procedure A, N,N-diethylaniline 19a (160 µL, 1.00 mmol) reacted 

with Me3SiCN (270 µL, 2.00 mmol) for 50 h in CD3OH (2 mL). The crude product 

was purified by column chromatography (SiO2, pentane/Et2O = 15:2) to give 18a’ 

(112 mg, 69 %) as a colorless viscous liquid. 

1H NMR (CDCl3, 400 MHz): δ = 1.25 (t, J = 7.1 Hz, 3 H), 3.42 (q, J = 7.1 Hz, 2 H), 

4.06 (s, 0.06 H), 6.78-6.86 (m, 3 H), 7.21-7.26 ppm (m, 2H); 2H NMR (CCl4/CDCl3, 

61.4 MHz): δ = 4.07 ppm (s); 13C NMR (CCl4/CDCl3, 100.6 MHz): δ = 12.7, 46.5, 

115.62, 115.65, 120.5, 129.7, 147.2 ppm; ν (neat/ATR probe) 3062, 2975, 2934, 

1599, 1576, 1503, 1370, 1350, 1267, 1203, 1096, 992, 788, 748, 690 cm–1; HRMS 

(EI) calcd for C10H10D2N2 m/z 162.1121, found m/z 162.1122. 

 

2-(Butyl(phenyl)amino)pentanenitrile (20b) and 2-(Butyl(phenyl)amino)- 

acetonitrile (18b) 

Following General Procedure A, N,N-dibutylaniline 19b (225 µL, 1.00 mmol) reacted 

with Me3SiCN (270 µL, 2.00 mmol) for 50 h. The crude product mixture was 

separated by column chromatography (SiO2, pentane/Et2O = 30:1 → 15:1) to give 

20b (62 mg, 27 %) and 18b (117 mg, 62 %), both as colorless viscous liquids.  

20b: Known compound; the NMR and IR spectroscopic data agree with those given 

in ref[14c]; 13C multiplicities are based on gHSQC experiments 1H NMR (CDCl3, 300 

MHz): δ = 0.93 (t, J = 7.3 Hz, 3 H), 0.99 (t, J = 7.3 Hz, 3 H), 1.33-1.63 (m, 6 H), 1.82-

1.90 (m, 2 H), 3.16-3.32 (m, 2 H), 4.29 (t, J = 7.8 Hz, 1 H), 6.95-7.01 (m, 3 H), 7.27-

7.34 ppm (m, 2 H); 13C NMR (CDCl3, 75.5 MHz): δ = 13.6 (q), 14.0 (q), 19.4 (t), 20.4 

(t), 30.2 (t), 34.3 (t), 49.1 (t), 54.3 (d), 119.05 (s), 119.18 (d), 121.7 (d), 129.4 (d), 

147.8 (s) ppm; ν (neat/ATR probe) 3061, 2958, 2932, 2872, 1597, 1498, 1465, 1377, 
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1281, 1257, 1219, 1179, 1134, 1112, 1037, 993, 931, 748, 692 cm–1; HRMS (EI) 

calcd for C15H22N2 m/z 230.1778, found m/z 230.1794. 

 

18b: 1H NMR (CDCl3, 300 MHz): δ = 0.97 (t, J = 7.3 Hz, 3 H), 1.34-1.46 (m, 2 H), 

1.56-1.69 (m, 2 H), 3.32-3.37 (m, 2 H), 4.15 (s, 2 H), 6.84-6.92 (m, 3 H), 7.27-7.33 

ppm (m, 2 H); 13C NMR (CDCl3, 75.5 MHz): δ = 14.1, 20.4, 29.4, 40.2, 52.0, 115.0, 

116.4, 119.9, 129.6, 147.4 ppm; ν (neat/ATR probe) 3060, 3041, 2957, 2929, 2871, 

1599, 1577, 1503, 1457, 1428, 1367, 1347, 1252, 1220, 1180, 1041, 924, 868, 747, 

690 cm–1; HRMS (EI) calcd for C12H16N2 m/z 188.1308, found m/z 188.1305. 

 

2-(Benzyl(phenyl)amino)-2-phenylacetonitrile (20c) and 2-

(Benzyl(phenyl)amino)acetonitrile (18c) 

Following General Procedure A, N,N-dibenzyl-aniline 19c (273 mg, 1.00 mmol) 

reacted with Me3SiCN (270 µL, 2.00 mmol) for 50 h. The crude product mixture was 

separated by column chromatography (SiO2, pentane/Et2O = 8:1) to give 18c (104 

mg, 47 %) as a colorless viscous liquid and a mixed fraction of 19c and 20c. Pure 

20c (101 mg, 34 %) could then be crystallized from pentane/Et2O = 5:1; mp 133.0-

133.5 °C (ref.[51] mp 134 °C, from EtOH). 

 

20c: 1H NMR (CDCl3, 300 MHz): δ = 4.28-4.40 (m, 2 H), 5.65 (s, 1 H), 6.86-6.96 (m, 

3 H), 7.13-7.23 (m, 7 H), 7.28-7.33 (m, 3 H), 7.46-7.49 ppm (m, 2 H); 13C NMR 

(CDCl3, 75.5 MHz): δ = 54.0, 58.7, 116.8, 119.9, 122.5, 127.5, 127.7, 127.8, 128.7, 

129.1, 129.2, 129.3, 133.5, 137.6, 147.4 ppm; ν (neat/ATR probe) 3061, 3025, 2922, 

2852, 1597, 1581, 1494, 1465, 1452, 1379, 1337, 1264, 1253, 1219, 1121, 1070, 

1027, 938, 921, 909, 761, 746, 724, 692 cm–1; HRMS (EI) calcd for C21H18N2 m/z 

298.1465, found m/z 298.1459. 
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18c: Known compound; the 1H NMR spectroscopic data agree with those given in 

ref[52]. 1H NMR (CDCl3, 400 MHz): δ = 4.08 (s, 2 H), 4.53 (s, 2 H), 6.95-7.00 (m, 3 H), 

7.32-7.39 (m, 7 H); 13C NMR (CDCl3, 100.6 MHz): δ = 39.7, 55.9, 115.8, 115.9, 

120.8, 127.8, 128.0, 129.0, 129.7, 136.9, 148.1 ppm; ν (neat/ATR probe) 3062, 

3029, 2925, 2852, 1598, 1579, 1503, 1495, 1452, 1426, 1357, 1221, 1199, 1168, 

1027, 960, 937, 869, 749, 729, 690 cm–1; HRMS (EI) calcd for C15H14N2 m/z 

222.1151, found m/z 222.1156. 

 

2-(Benzyl(phenyl)amino)-2,2-dideuterio-acetonitrile (18c’) 

Following General Procedure A, N,N-dibenzyl-aniline 19c (273 mg, 1.00 mmol) 

reacted with Me3SiCN (270 µL, 2.00 mmol) for 50 h in CD3OH (2 mL). The crude 

product was purified by column chromatography (SiO2, pentane/Et2O = 8:1) to give 

18c’ (103 mg, 46 %) as a colorless viscous liquid. 

1H NMR (CDCl3, 300 MHz): δ = 4.08 (s, 0.03 H), 4.53 (s, 2 H), 6.95-7.00 (m, 3 H), 

7.31-7.40 ppm (m, 7 H); 2H NMR (CCl4/CDCl3, 46.1 MHz): δ = 4.07 ppm (s); 13C 

NMR (CDCl3, 75.5 MHz): δ = 55.8, 115.8, 115.9, 120.8, 127.8, 128.0, 129.0, 129.7, 

137.0, 148.1 ppm; ν (neat/ATR probe) 3062, 3029, 2925, 2854, 1598, 1578, 1502, 

1452, 1351, 1297, 1246, 1203, 1069, 1028, 990, 940, 909, 892, 812, 748, 726, 690 

cm–1; HRMS (EI) calcd for C15H12D2N2 m/z 224.1277, found m/z 224.1275. 

 

2-(Benzyl(methyl)amino)acetonitrile (24) 

Following General Procedure A, benzyl-dimethylamine 23 (152 µL, 1.00 mmol) 

reacted with Me3SiCN (270 µL, 2.00 mmol) for 24 h at 0 °C to furnish 18 (129 mg, 81 

%). Known compound; the NMR spectroscopic data agree with those given in 

ref[12a,53]. 
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1H NMR (CDCl3, 400 MHz): δ = 2.44 (s, 3 H), 3.45 (s, 2 H), 3.61 (s, 2 H), 7.26-7.37 

ppm (m, 5 H); 13C NMR (CDCl3, 100.6 MHz): δ = 42.5, 44.3, 60.3, 114.7, 127.9, 

128.7, 129.1, 137.1 ppm; ν (neat/ATR probe) 3064, 3031, 2983, 2949, 2842, 2231, 

1496, 1454, 1416, 1371, 1327, 1125, 1037, 1027, 983, 840, 740, 698 cm–1; HRMS 

(EI) calcd for C10H12N2 m/z 160.1000, found m/z 160.0996. 

 

2-(Dibenzylamino)-2-phenylacetonitrile (26) 

Analogous to General Procedure A, tribenzylamine 25 (290 mg, 1.00 mmol) reacted 

with Me3SiCN (270 µL, 2.00 mmol) and FeCl2 (15 mol %) for 24 h to furnish 26 (128 

mg, 41 %). Known compound; the NMR spectroscopic data agree with those given in 

ref[12a,53]. 

1H NMR (CDCl3, 400 MHz): δ = 3.45 (d, 2J = 13.6 Hz, 2 H), 3.91 (d, 2J = 13.6 Hz, 2 

H), 4.94 (s, 1 H), 7.28-7.44 (m, 13 H), 7.60-7.62 ppm (m, 2 H); 13C NMR (CDCl3, 

100.6 MHz): δ = 55.1, 57.4, 115.5, 127.77, 127.79, 128.7, 128.89, 128.93, 134.0, 

137.8 ppm; ν (neat/ATR probe) 3061, 3033, 2925, 2803, 2235, 1493, 1452, 1372, 

1113, 1076, 1027, 966, 924, 744, 694 cm–1; HRMS (EI) calcd for C22H20N2 m/z 

312.1626, found m/z 312.1606. 

 

2-(Methyl(octyl)amino)acetonitrile (28) 

Following General Procedure A, dimethyl-octylamine 27 (205 µL, 1.00 mmol) reacted 

with Me3SiCN (270 µL, 2.00 mmol) for 26 h. The crude product was purified by 

column chromatography (SiO2, pentane/Et2O = 2:1) to give 28 (84 mg, 46 %) as a 

colorless viscous liquid. Known compound; the NMR spectroscopic data agree with 

those given in ref[54]. 

1H NMR (CDCl3, 300 MHz): δ = 0.85-0.89 (m, 3 H), 1.25-1.29 (m, 10 H), 1.42-1.48 

(m, 2 H), 2.36 (s, 3 H), 2.43-2.47 (m, 2 H), 3.54 ppm (s, 2 H); 13C NMR (CDCl3, 75.5 
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MHz): δ = 14.2, 22.8, 27.2, 27.4, 29.3, 29.5, 31.9, 42.1, 45.1, 56.0, 114.7 ppm; ν 

(neat/ATR probe) 2924, 2854, 2803, 1681, 1458, 1378, 1321, 1159, 1105, 1043, 

950, 860, 834, 723 cm–1; HRMS (EI) calcd for C11H22N2 m/z 182.1778, found m/z 

182.1786. 

 

2-(Methyl(tetradecyl)amino)acetonitrile (30) 

Following General Procedure A, dimethyl-tetradecylamine 29 (305 µL, 1.00 mmol) 

reacted with Me3SiCN (270 µL, 2.00 mmol) for 26 h. The crude product was purified 

by column chromatography (SiO2, pentane/Et2O = 2:1) to give 30 (125 mg, 47 %) as 

a colorless viscous liquid. 

1H NMR (CDCl3, 300 MHz): δ = 0.85-0.89 (m, 3 H), 1.25 (br s, 22 H), 1.43-1.49 (m, 2 

H), 2.36 (s, 3 H), 2.43-2.48 (m, 2 H), 3.54 ppm (s, 2 H); 13C NMR (CDCl3, 75.5 MHz): 

δ = 14.2, 22.8, 27.2, 27.5, 29.5, 29.6, 29.68, 29.72, 29.77, 29.79, 29.81, 32.1, 42.1, 

45.2, 56.0, 114.6 ppm; ν (neat/ATR probe) 2922, 2852, 1683, 1466, 1377, 1319, 

1042, 909, 860, 732 cm–1; HRMS (EI) calcd for C17H34N2 m/z 266.2717, found m/z 

266.2714. 

 

2-(Dipropylamino)butanenitrile (32): Following General Procedure A, 

tripropylamine 31 (0.19 mL, 1.0 mmol) reacted with Me3SiCN (0.270 µL, 2.00 mmol) 

for 24 h. The crude product was purified by column chromatography (SiO2, 

pentane/Et2O = 40:1) to give 32 as a colorless viscous liquid; yield: 81 mg (48%); 

known compound;[55] multiplicities of 13C resonances are based on gHSQC 

experiments.  

1H NMR (CDCl3, 300 MHz): δ = 0.89 (t, J = 7.4 Hz, 6 H), 1.04 (t, J = 7.4 Hz, 3 H), 

1.36–1.59 (m, 4 H), 1.65–1.86 (m, 2 H), 2.31–2.40 (m, 2 H), 2.46–2.55 (m, 2 H), 3.47 

(t, J = 7.8 Hz, 1 H); 13C NMR (CDCl3, 75.5 MHz): δ = 10.9 (q), 11.8 (q), 21.3 (t), 25.5 
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(t), 53.8 (t), 56.6 (d), 118.7 (s); IR (neat/ATR probe): ν = 2963, 2936, 2875, 2821, 

1464, 1382, 1341, 1301, 1261, 1191, 1178, 1068, 1014, 944, 864, 805 cm−1; HR-MS 

(EI): m/z=168.1601, calcd. for C10H20N2: 168.1621. 

 

2-(Dibutylamino)pentanenitrile (34): Following General Procedure A, tributylamine 

33 (0.24 mL, 1.0 mmol) was reacted with Me3SiCN (270 µL, 2.00 mmol) for 27 h. The 

crude product was purified by column chromatography (SiO2, pentane/Et2O=40:1) to 

give 34 as a colorless viscous liquid; yield: 145 mg (69%); known compound; the 1H 

NMR spectroscopic data agree with those given in ref.[56] 1H NMR (CDCl3, 300 MHz): 

δ = 0.89–0.97 (m, 9 H), 1.21–1.54 (m, 10 H), 1.66–1.75 (m, 2 H), 2.30–2.38 (m, 2 H), 

2.52–2.62 (m, 2 H), 3.58 (t, J=7.7 Hz, 1 H); 13C NMR (CDCl3, 75.5 MHz): δ = 13.6, 

14.1, 19.4, 20.5, 30.4, 34.1, 51.6, 54.5, 118.7; IR (neat/ATR probe): ν = 2958, 2932, 

2873, 2823, 1467, 1379, 1309, 1261, 1170, 1116, 1091, 877, 801, 741 cm−1; HR-MS 

(EI): m/z = 210.2106, calcd. for C13H26N2: 210.2091. 

 

2-(Diisopentylamino)-4-methylpentanenitrile (36): Following General Procedure 

A, triisopentylamine 35 (0.29 mL, 1.0 mmol) was reacted with Me3SiCN (270 µL, 2.00 

mmol) for 27 h. The crude product was purified by column chromatography (SiO2, 

pentane/Et2O=45:1) to give 36 as a colorless viscous liquid; yield: 177 mg (70%); 1H 

NMR (CDCl3, 300 MHz): δ=0.89 (d, J=2.9 Hz, 6 H), 0.91 (d, J = 3.0 Hz, 6 H), 0.94 (d, 

J = 6.6 Hz, 6 H), 1.29–1.36 (m, 4 H), 1.53–1.66 (m, 4 H), 1.83 (sept, J = 6.7 Hz, 1 H), 

2.28–2.37 (m, 2 H), 2.56–2.66 (m, 2 H), 3.65 (t, J = 7.8 Hz, 1 H); 13C NMR (CDCl3, 

75.5 MHz): δ = 22.2, 22.4, 22.5, 23.2, 24.8, 26.2, 37.2, 40.8, 50.1, 52.9, 118.8; IR 

(neat/ATR probe): ν = 2956, 2930, 2870, 1468, 1386, 1368, 1261, 1169, 1132, 1088, 

971, 920, 818 cm−1; HR-MS (EI): m/z = 252.2561, calcd. for C16H32N2: 252.2560. 
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2-(Dioctylamino)nonanenitrile (38): Following General Procedure A, tri-n-

octylamine 39 (0.45 mL, 1.0 mmol) was reacted with Me3SiCN (270 µL, 2.00 mmol) 

for 28 h. The crude product was purified by column chromatography (SiO2, 

pentane/Et2O=110:1) to give 38 as a colorless viscous liquid; yield: 258 mg (68%); 

1H NMR (CDCl3, 300 MHz): δ = 0.85–0.90 (m, 9 H), 1.23–1.75 (m, 36 H), 2.28–2.59 

(m, 4 H), 3.55 (t, J = 7.7 Hz, 1 H); 13C NMR (CDCl3, 75.5 MHz): δ = 14.17, 14.20, 

22.7, 22.8, 26.2, 27.4, 28.1, 29.1, 29.2, 29.4, 29.6, 31.9, 32.0, 32.1, 51.9, 54.7, 

118.7; IR (neat/ATR probe): ν = 2955, 2924, 2855, 1466, 1378, 1154, 1100, 722 

cm−1; HR-MS (EI): m/z = 378.3956, calcd. for C25H50N2: 378.3969. 

 

2-(Diisobutylamino)-3-methylbutanenitrile (40) 

Following General Procedure A, triisobutylamine 39 (240 µL, 1.00 mmol) reacted 

with Me3SiCN (270 µL, 2.00 mmol) for 24 h. The crude product was crystallized from 

H2O to give 40 (154 mg, 73 %) as colorless crystals, mp. 61.0–61.5 °C. Known 

compound; the NMR spectroscopic data agree with those given in ref[12a]; 13C 

multiplicities are based on gHSQC experiments. 

1H NMR (CDCl3, 300 MHz): δ = 0.88 (d, J = 6.6 Hz, 6 H), 0.93 (d, J = 6.4 Hz, 6 H), 

1.03 (d, J = 6.5 Hz, 3 H), 1.10 (d, J = 6.6 Hz, 3 H), 1.64-1.74 (m, 2 H), 1.88-1.96 (m, 

1 H), 2.12 (dd, J = 12.9 Hz, J = 10.3 Hz, 2 H), 2.24 (dd, J = 12.9 Hz, J = 4.3 Hz, 2 H), 

3.07 ppm (d, J = 10.7 Hz, 1 H); 13C NMR (CDCl3, 75.5 MHz): δ = 19.9 (q), 20.5 (q), 

20.8 (q), 21.1 (q), 26.3 (d), 29.4 (d), 60.9 (t), 63.0 (d), 117.8 (s) ppm; ν (neat/ATR 

probe) 2955, 2867, 2811, 1467, 1386, 1367, 1281, 1198, 1170, 1123, 1084, 1065, 

979, 932, 884, 867, 811 cm–1. 
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X-ray crystal structure analysis of 40 

 

The data collection was performed on a Bruker IµS diffractometer (MoKα radiation, 

200 K). The structure was solved by direct methods with SIR97[57] and refined with 

SHELXL-97.[58] 

CCDC 933149 contains the supplementary crystallographic data for this paper. 

These data can be obtained free of charge from The Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

 

 

Molecule disordered, split model applied, sof ratio 0.72/0.28. The figure shows the 

main component only. Split atoms of the minor part have been refined isotropically. 
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2-(Diisobutylamino)-3-methylbutanenitrile (40). Crystallographic data: 

 40 

net formula C13H26N2 

Mr/g mol−1 210.359 

crystal size/mm 0.257 × 0.256 × 0.105 

crystal system monoclinic 

space group P21/c 

a/Å 12.6577(17) 

b/Å 9.8704(12) 

c/Å 11.7460(16) 

α/° 90 

β/° 97.131(4) 

γ/° 90 

V/Å3 1456.2(3) 

Z 4 

calc. density/g cm−3 0.95952(20) 

µ/mm−1 0.056 

absorption correction multi-scan 

transmission factor range 0.9125–0.9801 

refls. measured 8097 

Rint 0.0317 

mean σ(I)/I 0.0325 

θ range 2.62–25.08 

observed refls. 1718 

x, y (weighting scheme) 0.0767, 0.6119 

hydrogen refinement constr 

refls in refinement 2550 

parameters 183 

restraints 0 

R(Fobs) 0.0590 

Rw(F2) 0.1769 

S 1.020 

shift/errormax 0.001 

max electron density/e Å−3 0.247 

min electron density/e Å−3 −0.258 
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3 

Sequential Oxidative α-Cyanation/Anti-Markovnikov 

Hydroalkoxylation of Tertiary Allylamines 

 

 

Reproduced with permission from 

A. Wagner, N. Hampel, H. Zipse, A. R. Ofial, Org. Lett. 2015, 17, 4770-4773. 

Copyright © 2015, American Chemical Society 
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3.1 Introduction 

 

Additions to alkenes are atom-economic reactions that are used by synthetic 

chemists in academia and industry to introduce a broad variety of functional groups 

into hydrocarbons.1 However, only a limited number of methods exist so far for anti-

Markovnikov additions of alcohols to simple aliphatic olefins. Arnold studied the 

photosensitized generation of alkene radical cations,2 which were trapped with 

alcohols to provide anti-Markovnikov adducts.3 Since then, only a few related 

examples for photochemically induced anti-Markovnikov alcohol additions have been 

reported, all of which use 1-aryl- or 1,1-diarylalkenes as reaction partners (Scheme 

1a).4-6 General methods for intermolecular anti-Markovnikov hydroalkoxylations 

under mild and practical conditions are still lacking because of a shortage of 

applicable catalytic processes,7 in particular with catalysts based on earth-abundant 

elements such as iron.8-10 

According to the methylenology principle11 Michael additions of alcohols at 

intrinsically nucleophilic CC double bonds could be mediated by linking the electron-

rich π-system with an electron-accepting group through a radical center. As C-

centered radicals are efficiently stabilized by captodative effects,12 vinyl-substituted 

α-amino nitriles would be ideal substrates for testing this approach. 

Introduction of nitrile groups at C-H bonds adjacent to the nitrogen of tertiary amines 

has recently been achieved with several catalyst-oxidant combinations and various 

cyanide sources.13-15 Hence, allylamines may serve as potential precursors for vinyl-

substituted α-amino nitriles. Indeed, it has been reported that allylamines can be 

used in oxidative α-cyanations under various conditions16,17 (Scheme 1b). The few 

examples show, however, that oxidation occurrs preferentially at aliphatic or benzylic 
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α-positions of the amines,17a-c and only Mizuno and co-workers detected small 

amounts of α-cyanated products that originated from reaction at the allyl group.17d,18 

 

Scheme 3.1. Direct anti-Markovnikov additions of alcohols to alkenesa and oxidative 

α-cyanations of allylamines.aSET, single electron transfer, HAT, hydrogen atom 

transfer. bFor reaction conditions see notes in ref 17. 

 

In recent years, we have developed iron-catalyzed oxidative α-cyanations of a 

variety of tertiary amines.19,20 Here, we report that FeCl2-catalysed direct α-

cyanations at tertiary allylamines in allylic position are followed by anti-Markovnikov 

additions of alcohols across the vinylic CC double bonds of the initially generated α-

amino nitriles (Scheme 3.1c).
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3.2 Results and discussion 

 

In recent years, we have developed iron-catalyzed oxidative α-cyanations of a 

variety of tertiary amines.19,20 Here, we report that FeCl2-catalysed direct α-

cyanations at tertiary allylamines in allylic position are followed by anti-Markovnikov 

additions of alcohols across the vinylic CC double bonds of the initially generated α-

amino nitriles (Scheme 1c). 

Monitoring the oxidative cyanation of N,N-diallylaniline 1a under our standard 

conditions in methanol [10 mol-% FeCl2, 2 equiv of Me3SiCN, 2.5 equiv of tBuOOH 

(5.5 M in decane), dry N2 atmosphere, ambient temperature]19c,21 by GC-MS 

indicated that significant amounts of the α-cyanation product 2a accumulated in the 

reaction mixture only during the initial phase of the reaction. The cyanation product 

2a was accompanied by generation of compounds with a molecular mass of 

2a·MeOH. While, 2a was isolated in low yield (21%) when the reaction was worked 

up after 4 h reaction time, the product of addition of methanol to 2a was obtained in 

86% yield after 16 h (Scheme 3.2). 2D-NMR spectroscopic characterization of 

2a·MeOH showed the presence of a terminal methoxy group, in agreement with 

structure 3a. N,N-diallylanilines 1b,c with electron donating p-methyl (σp = -0.17)22 or 

p-methoxy (σp
- = -0.27)22  substituents at the phenyl rings analogously gave 2-

anilino-4-methoxybutanenitriles 3b,c in yields of 85% and 93%, respectively. The 

electron-withdrawing p-bromo-substituted aniline 1d (σp
–(Br) = 0.25)22 gave 3d in a 

moderate yield of 67%. 
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Scheme 3.2. Sequential Oxidative Cyanation/Hydroalkoxylation of N,N-Diallylanilines 

1a-d (yields refer to isolated products after chromatographic purification). 

 

Changing the solvent from CH3OH to CD3OD for the reaction of 1a under otherwise 

identical conditions of Scheme 3.2 yielded the d3-methyl ether 3a’ in 88% yield. 

Ph
N CN

OCD3

D/H
H

3a' (88%, D/H = 42/58)

3

2

4

 

While the 1H and 13C NMR spectra of 3a’ indicate a quantitative OCD3 incorporation, 

the methylene group at C3 of the 4-methoxybutanenitrile branch shows a ca. 42% 

uptake of D (see experimental section). Because of fast H/D exchange between 

CD3OD and tBuOOH under the conditions applied, it is presently not possible to 

unequivocally assign the source of the H or D that adds to the C3 position. 

To rationalize the selective anti-Markovnikov addition of methanol, we suggest that 

iron-catalyzed oxidation converts the allyl-substituted amines A into α,β-unsaturated 

iminium ions B, which are then trapped by kinetically controlled attack of cyanide 

ions at the iminium carbon (Scheme 3.3).23 Further oxidation of the intermediate α-

amino nitriles C generates the donor/acceptor-substituted radicals D, which enter a 
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radical chain reaction. In accord with the methylenology principle,11 radicals D show 

reactivity comparable to the π-electron-deficient acrylonitriles. Therefore, Michael-

type addition of alcohols to the terminal C-4 may generate intermediates E, in which 

the negative charge is delocalized and efficiently stabilized by the electron-

withdrawing cyano group. Fast proton transfer converts E to radicals F, which benefit 

from captodative stabilization.12 Deuteration at C2 in product 3a’ was not observed 

(see above). Therefore, we conclude that O-H groups of tBuOOH or C–H of 

methanol do not act as hydrogen atom donors towards radicals F. The catalytic cycle 

may be closed, however, by direct or indirect hydrogen atom transfer24 from α-amino 

nitriles C to radicals F to generate the final products G as well as the radicals D that 

take part in the next cycle of the radical chain reaction. On the basis of the quantum-

chemically calculated radical stabilisation energies (RSEs),25 transfer of a hydrogen 

atom from C to radical F is thermodynamically feasible and exothermic by 38 kJ   

mol-1 (in the gas phase, for details see experimental section). 

 

Scheme 3.3. Suggested mechanism for the oxidative C1-cyanation of the N-allyl 

group with subsequent anti-Markovnikov hydroalkoxylation. 
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Both radicals D and F involved in the proposed catalytic cycle are unusually stable in 

absolute terms, which implies weak C-H bonds in the closed shell parent systems C 

and G. On the basis of bond dissociation energies (BDEs), the relevant C-H bond of 

2a (+310 kJ/mol) is slightly weaker than that of 2-phenlymalononitrile (+322 ± 4  

kJ/mol, from ref 26), which was successfully used as the H atom donor in intra-

molecular hydroetherifications.5g,6a The relevant C-H bond of 2a is also weaker than 

in reaction product 3a (+348 kJ/mol), and much weaker than the allylic C-H bond in 

propene (+369 kJ/mol)27 or the α-C-H bond in the glycine-derivative (+364 kJ/mol) 

depicted in Scheme 3.4.25,28 Interestingly, the α-C-H bond in 3a is of comparable 

strength as the O-H bond in tBuOOH (BDE = +353 ± 9 kJ/mol, from ref 29). 

 

 

Scheme 3.4. Comparison of C-H bond dissociation energies (BDEs) in α-amino 

nitriles 2a and 3a with those in structurally analogous compounds and in 2-

phenylmalononitrile. 

 

When ethanol was used as the solvent instead of methanol, the 4-ethoxy-substituted 

2-aminobutanenitrile 4 (68%) was obtained from 1a by the 

cyanation/hydroalkoxylation sequence (Scheme 3.5).  
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Scheme 3.5. Oxidative Cyanation of N,N-Diallylaniline in Ethanol (yields refer to 

isolated products after separation and purification by column chromatography). 

 

Ethyl ether 4 was accompanied by the 2-aminopropanenitrile 5 (31 % isolated yield), 

whose formation is rationalized in analogy to the previously described oxidative 

dealkylation/cyanomethylation of N,N-dialkylanilines in methanol:19c Oxidative 

degradation of 1a via hydrolysis of the intermediate α,β-unsaturated iminium ions 

forms N-allylaniline, which condenses with acetaldehyde, generated by oxidation of 

the solvent ethanol,30 to yield iminium ions, which are finally trapped by cyanide to 

yield 5 (Scheme 3.5). 

Reactions with N-allyl-N-ethylaniline (6a) and triallylamine (9) showed that the scope 

of the oxidative α-cyanation/hydroalkoxylation can be extended to mono- and triallyl-

substituted amines (Scheme 3.6). Preferred cyanation of the NMe group of N-allyl-N-

methylaniline (6b) to yield the α-amino nitrile 8 is in agreement with previous 

reports17b-d and allows one to derive the reactivity order NMe > N-allyl > NEt for the 

regioselectivity of these oxidative α-functionalization of N,N-disubstituted anilines. 

This reactivity order differs from Lambert’s observation of a preferred hydride 

transfer from the aliphatic group of allyl-diisobutylamine to tropylium ions.17a Our 
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reactivity order also differs from that for relative rates for the deprotonation of laser-

flash photolytically generated amine radical cations by acetate, krel = 2.7 (N-allyl) > 1 

(NMe) > 0.24 (NEt), which were explained by stereoelectronic effects in the preferred 

transition state conformation.31 One consequence of the chemoselectivity NMe > N-

allyl of the oxidative functionalisation step is that this preference makes NMe groups 

in tertiary amines incompatible with the α-cyanation/anti-Markovnikov 

hydroalkoxylation sequence because the α-cyanation is directed to the N-methyl 

group. 

 

 

Scheme 3.6. Oxidative Cyanation/Hydroalkoxylation of the Monoallylamines 6a,b, 

Triallylamine (9) and N,N-Diallylbenzylamine (11) (All reactions under dry N2 

atmosphere. Yields refer to isolated products after chromatographic purification) 
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Whereas a 7-fold preference for N-benzyl over N-allyl reactivity was found by 

Mizuno,17d we succeeded in preparing methyl ether 12 from N,N-diallylbenzylamine 

11 under our reaction conditions. 
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3.3. Conclusion 

 

In conclusion, an iron-catalysed α-cyanation of tertiary allylamines has been 

developed that is coupled with a subsequent chemo- and regioselective addition of 

alcohols to the π-system of the vinyl-substituted α-amino nitrile intermediate. Thus, 

this reaction combines three components32 in one pot to yield 2-amino-4-

alkoxybutanenitriles under mild conditions. Such ether-functionalized derivatives may 

further extend the rich synthetic versatility of α-amino nitriles.33 Detailed studies of 

the mechanism including further characterisation of highly stabilised radicals of 

structural type D, as well as broadening the scope of this novel type of anti-

Markovnikov hydroalkoxylation are currently underway.  
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3.4 Experimental section 

 

In order to identify my contribution to this multiauthor publication, this Experimental 

Section covers exclusively those experiments, which were performed by me. 

 

3.4.1. General 

 

All reactions were carried out under an atmosphere of dry nitrogen. 1H (300 or 400 

MHz) and 13C (75.5 or 100.6 MHz) NMR spectra of solutions in CDCl3 were recorded 

on 300 or 400 MHz NMR spectrometers. Chemical shifts are expressed in parts per 

million (ppm) downfield from tetramethylsilane and refer to the solvent signals (δH 

7.26 and δC 77.16 ppm).34
 Abbreviations for signal couplings are: s, singlet; d, 

doublet; t, triplet; q, quartet; m, multiplet. Signal assignments are based on gCOSY 

and gHSQC experiments. HRMS was performed on a Finnigan MAT 95Q mass 

spectrometer. Infrared spectra of neat substances were recorded on a Perkin-Elmer 

Spectrum BX II FT-IR spectrometer equipped with an ATR probe (diamond). 

Materials. Triallylamine (Aldrich), iron(II) chloride (98%, Aldrich), trimethylsilyl 

cyanide (98%, Acros), tert.-butyl hydroperoxide (5.5 M solution in decane, purum, 

Aldrich) and d4-methanol (99.80% D, Euriso-Top) were purchased. Allylanilines and 

allylamines were synthesized according to literature procedures.35,36 

 

3.4.2. Oxidative α-cyanation/hydroalkoxylation of tertiary allylamines  

 

General Procedure. Under an atmosphere of dry N2, a Schlenk flask was charged 

with iron(II) chloride (10 mol%, 13 mg). The tertiary allylamine (1.0 mmol), 

trimethylsilyl cyanide (2.0 mmol, 0.27 mL), and MeOH (2.0 mL) were added 
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successively by syringe. To the mixture was added dropwise tBuOOH (2.5 mmol, 

0.46 mL, 5.5 M solution in decane) over a period of 5 min. The mixture was stirred at 

room temperature for the indicated time. At the end of the reaction, the reaction 

mixture was poured into a saturated aqueous Na2CO3 solution (20 mL) and extracted 

with CH2Cl2 (3 × 20 mL). The organic phases were combined, dried (MgSO4), and 

the volatile components were evaporated in a rotary evaporator. The crude product 

was purified by column chromatography on silica gel. 

 

2-(Allyl(phenyl)amino)but-3-enenitrile (2a)  

Following the General Procedure, N,N-diallylaniline 1a (173 mg, 1.00 mmol) reacted 

with Me3SiCN and tBuOOH for 4 h. The crude product was purified by column 

chromatography (SiO2, pentane/CH2Cl2 = 3:2) to give 2a (42 mg, 21%) as a colorless 

liquid. 

 

1H NMR (300 MHz, CDCl3): δ = 3.77–3.90 (m, 2 H), 5.09–5.27 (m, 3 H), 5.41–5.45 

(m, 1 H), 5.64–5.70 (m, 1 H), 5.75–5.90 (m, 2 H), 6.87–6.93 (m, 3 H), 7.20–7.26 (m, 

2 H).  

13C NMR (75.5 MHz, CDCl3): δ = 52.2 (CH2), 55.3 (CH), 116.4 (C), 117.56 (CH), 

117.61 (CH2), 120.4 (CH2), 121.3 (CH), 129.4 (CH), 131.0 (CH), 134.5 (CH), 

147.4 (C).  

HRMS (EI, 70 eV): m/z [M]+· Calcd for [C13H14N2]
+·

 198.1152; Found 198.1147. 
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2-(Allyl(phenyl)amino)-4-methoxybutanenitrile (3a)  

Following the General Procedure, N,N-diallylaniline 1a (173 mg, 1.00 mmol) reacted 

with Me3SiCN and tBuOOH for 16 h. The crude product was purified by column 

chromatography (SiO2, pentane/CH2Cl2 = 3:2) to give 3a (198 mg, 86%) as a 

colorless liquid. 

 

1H NMR (300 MHz, CDCl3): δ = 2.03–2.18 (m, 2 H, 3-H), 3.36 (s, 3 H, 5-H), 3.51– 

3.55 (m, 2 H, 4-H), 3.85–4.00 (m, 2 H, 6-H), 4.76 (t, J = 7.7 Hz, 1 H, 2-H), 5.19–5.33 

(m, 2 H, 8-H), 5.83–5.95 (m, 1 H, 7-H), 6.93–7.01 (m, 10-H and 12-H), 7.26–7.32 (m, 

11-H).  

13C NMR (75.5 MHz, CDCl3): δ = 32.6 (CH2, C-3), 49.9 (CH, C-2), 52.8 (CH2, C-6), 

58.9 (CH3, C-5), 67.7 (CH2, C-4), 117.5 (CH2, C-8), 118.0 (CH, C-10), 118.6 (C, C-

1), 121.3 (CH, C-12), 129.3 (CH, C-11), 134.6 (CH, C-7), 147.7 (C, C-9).  

ν (neat/ATR probe): 2959, 2929, 2874, 1495, 1453, 1363, 1189, 1116, 913, 731, 698 

cm–1.  

HRMS (EI, 70 eV): m/z [M]+·
 Calcd for [C14H18N2O]+·

 230.1414; Found 230.1414. 

 

2-(Allyl(phenyl)amino)-4-(d3-methoxy)butanenitrile (3a’)  

Following the General Procedure using CD3OD as solvent, N,N-diallylaniline 1a (173 

mg, 1.00 mmol) reacted with Me3SiCN and tBuOOH for 16 h. The crude product was 

purified by column chromatography (SiO2, pentane/CH2Cl2 = 3:2) to give 3a’ (205 

mg, 88%) as a colorless liquid. 
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1H NMR (300 MHz, CDCl3): δ = 2.04–2.20 (m, 1.6 H, 3-H), 3.50–3.55 (m, 2 H, 4-H), 

3.84–4.00 (m, 2 H, 6-H), 4.73–4.78 (m, 1 H, 2-H), 5.18–5.33 (m, 2 H, 8-H), 5.82– 

5.95 (m, 1 H, 7-H), 6.92–7.01 (m, 10-H and 12-H), 7.26–7.31 (m, 11-H).  

2H NMR (61.4 MHz, CDCl3): δ = 3.33 (s, 3 D, 5-D), ca. 2.13 (m, 0.4 D, 3-D).  

13C NMR (100.6 MHz, CDCl3): δ = 32.3 (t, 1JC,D = 20.0 Hz, CHD, C-3) and 32.6 (CH2, 

C-3), 49.86/49.92 (CH, C-2), 52.79/52.80 (CH2, C-6), 58.1 (sept, 1JC,D = 21.5 Hz, 

CD3, C- 5), 67.55/67.60 (CH2, C-4), 117.5 (CH2, C-8), 118.0 (CH, C-10), 118.6 (C, C-

1), 121.3 (CH, C-12), 129.4 (CH, C-11), 134.6 (CH, C-7), 147.8 (C, C-9).  

HRMS (EI, 70 eV): m/z [M]+·
 Calcd for [C14H15

2H3N2O]+·
 233.1602; Found 233.1617. 

 

2-(Allyl(p-tolyl)amino)-4-methoxybutanenitrile (3b)  

Following the General Procedure, N,N-diallyl-4-methylaniline 1b (187 mg, 1.00 

mmol) reacted with Me3SiCN and tBuOOH in decane for 14 h. The crude product 

was purified by column chromatography (SiO2, pentane/CH2Cl2 = 3:2) to give 3b 

(208 mg, 85%) as a colorless liquid. 

 

1H NMR (300 MHz, CDCl3): δ = 1.98–2.20 (m, 2 H, 3-H), 2.30 (s, 3 H, 13-H), 3.36 (s, 

3 H, 5-H), 3.47–3.60 (m, 2 H, 4-H), 3.80–3.95 (m, 2 H, 6-H), 4.64 (t, J = 7.7 Hz, 1 H, 
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2-H), 5.18–5.33 (m, 2 H, 8-H), 5.81–5.93 (m, 1 H, 7-H), 6.94–6.97 (m, 2 H, 10-H), 

7.09–7.13 (m, 2 H, 11-H).  

13C NMR (75.5 MHz, CDCl3): δ = 20.6 (CH3, C-13), 32.6 (CH2, C-3), 50.6 (CH, C-2), 

53.4 (CH2, C-6), 58.9 (CH3, C-5), 67.8 (CH2, C-4), 117.6 (CH2, C-8), 118.6 (C, C-1), 

119.6 (CH, C-10), 129.9 (CH, C-11), 131.7 (C, C-12), 134.8 (CH, C-7), 145.4 (C, C-

9).  

ν (neat/ATR probe): 2925, 2875, 1616, 1514, 1455, 1385, 1239, 1219, 1183, 1117, 

990, 921, 866, 806, 727 cm–1.  

HRMS (EI, 70 eV): m/z [M]+· Calcd for [C15H20N2O]+·
 244.1571; Found 244.1576. 

 

2-(Allyl(4-methoxyphenyl)amino)-4-methoxybutanenitrile (3c)  

Following the General Procedure, N,N-diallyl-4-methoxyaniline 1c (203 mg, 1.00 

mmol) reacted with Me3SiCN and tBuOOH for 14 h. The crude product was purified 

by column chromatography (SiO2, pentane/CH2Cl2 = 3:2) to give 3c (242 mg, 93%) 

as a colorless liquid. 

 

1H NMR (300 MHz, CDCl3): δ = 1.88–2.14 (m, 2 H, 3-H), 3.35 (s, 3 H, 5-H), 3.45– 

3.60 (m, 2 H, 4-H), 3.68–3.85 (m, 2 H, 6-H), 3.78 (s superimposed with resonances 

of 6-H, 3 H, 13-H), 4.43 (t, J = 7.8 Hz, 1 H, 2-H), 5.14–5.31 (m, 2 H, 8-H), 5.75–5.88 

(m, 1 H, 7-H), 6.83–6.86 and 7.06–7.09 (2 m, 2 × 2 H, 10-H and 11-H).  
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13C NMR (75.5 MHz, CDCl3): δ = 32.6 (CH2, C-3), 51.9 (CH, C-2), 54.9 (CH2, C-6), 

55.6 (CH3, C-13), 58.9 (CH3, C-5), 67.9 (CH2, C-4), 114.5 (CH, C-10 or C-11), 118.0 

(CH2, C-8), 118.7 (C, C-1), 123.8 (CH, C-10 or C-11), 134.8 (CH, C-7), 141.1 (C, C-

9), 156.3 (C, C-12).  

ν (neat/ATR probe): 2931, 2834, 1509, 1462, 1244, 1214, 1181, 1117, 1036, 917, 

866, 834, 731 cm–1.  

HRMS (EI, 70 eV): m/z [M]+·
 Calcd for [C15H20N2O2]

+·
 260.1520; Found 260.1504. 

 

2-(Allyl(4-bromophenyl)amino)-4-methoxybutanenitrile (3d)  

Following the General Procedure, N,N-diallyl-4-bromoaniline 1d (252 mg, 1.00 

mmol) reacted with Me3SiCN and tBuOOH for 19 h. The crude product was purified 

by column chromatography (SiO2, pentane/CH2Cl2 = 3:2) to give 3d (207 mg, 67%) 

as a yellow liquid. 

 

1H NMR (300 MHz, CDCl3): δ = 2.02–2.20 (m, 2 H, 3-H), 3.35 (s, 3 H, 5-H), 3.49– 

3.53 (m, 2 H, 4-H), 3.82–3.97 (m, 2 H, 6-H), 4.73 (t, J = 7.7 Hz, 1 H, 2-H), 5.19–5.30 

(m, 2 H, 8-H), 5.78–5.91 (m, 1 H, 7-H), 6.83–6.86 (m, 2 H, 10-H), 7.35–7.38 (m, 2 H, 

11-H).  

13C NMR (75.5 MHz, CDCl3): δ = 32.4 (CH2, C-3), 49.7 (CH, C-2), 52.4 (CH2, C-6), 

58.9 (CH3, C-5), 67.4 (CH2, C-4), 113.5 (C, C-12), 117.8 (CH2, C-8), 118.2 (C, C-1), 

119.2 (CH, C-10), 132.1 (CH, C-11), 133.9 (CH, C-7), 146.6 (C, C-9).  
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ν (neat/ATR probe): 2929, 2877, 2831, 1590, 1493, 1458, 1385, 1236, 1183, 1116, 

1081, 998, 918, 866, 808, 731, 648 cm–1.  

HRMS (EI, 70 eV): m/z [M]+·
 Calcd for [C14H17

79BrN2O]+·
 308.0519; Found 308.0522. 

 

2-(Allyl(phenyl)amino)-4-ethoxybutanenitrile (4) and 2-(allyl(phenyl)amino)- 

propanenitrile (5)  

Following the General Procedure using EtOH as solvent, N,N-diallylaniline 1a (173 

mg, 1.00 mmol) reacted with Me3SiCN and tBuOOH for 16 h. The crude product was 

purified by column chromatography (SiO2, pentane/CH2Cl2 = 3:2) to give 4 (166 mg, 

68%) as a colorless liquid and 5 (58 mg, 31%) as a colorless liquid. 

 

Analytical data for 4: 1H NMR (300 MHz, CDCl3): δ = 1.21 (t, J = 7.0 Hz, 3 H, 5-CH3), 

2.03–2.23 (m, 2 H, 3-H), 3.45–3.59 (m, 4 H, 4-H and 5-H), 3.85–4.01 (m, 2 H, 6-H), 

4.79 (t, J = 7.7 Hz, 1 H, 2-H), 5.19–5.34 (m, 2 H, 8-H), 5.83–5.95 (m, 1 H, 7-H), 

6.92–7.01 (m, 10-H and 12-H), 7.26–7.32 (m, 2 H, 11-H).  

13C NMR (75.5 MHz, CDCl3): δ = 15.1 (CH3, 5-CH3), 32.6 (CH2, C-3), 49.8 (CH, C-2), 

52.6 (CH2, C-6), 65.3 (CH2, C-4), 66.5 (CH2, C-5), 117.4 (CH2, C-8), 117.9 (CH, C-

10), 118.6 (C, C- 1), 121.1 (CH, C-12), 129.2 (CH, C-11), 134.5 (CH, C-7), 147.7 (C, 

C-9).  

ν (neat/ATR probe): 2975, 2930, 2867, 1598, 1502, 1377, 1236, 1172, 1110, 990, 

915, 749, 732, 692 cm–1.  

HRMS (EI, 70 eV): m/z [M]+·
 Calcd for [C15H20N2O]+· 244.1570; Found 244.1569. 
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Analytical data for 5: 1H NMR (300 MHz, CDCl3): δ = 1.58 (d, J = 7.2, 3 H, 3-H), 

3.85–4.00 (m, 2 H, 4-H), 4.56 (q, J = 7.2 Hz, 1 H, 2-H), 5.20–5.35 (m, 2 H, 6-H), 

5.85–5.97 (m, 1 H, 5-H), 6.96–7.00 (m, 3 H, H-8 and H-10), 7.26–7.33 (m, 2 H, H-9). 

13C NMR (75.5 MHz, CDCl3): δ = 18.6 (CH3, C-3), 47.4 (CH, C-2), 53.0 (CH2, C-4), 

117.4 (CH2, C-6), 118.4 (CH, C-8), 119.3 (C, C-1), 121.7 (CH, C-10), 129.4 (CH, C-

9), 134.9 (CH, C-5), 147.7 (C, C-7).  

HRMS (EI, 70 eV): m/z [M]+·
 Calcd for [C12H14N2]

+·
 186.1152; Found 186.1163. 

 

2-(Ethyl(phenyl)amino)-4-methoxybutanenitrile (7) Following the General 

Procedure, N-allyl-N-ethylaniline 6a (161 mg, 1.00 mmol) reacted with Me3SiCN and 

tBuOOH for 18 h. The crude product was purified by column chromatography (SiO2, 

pentane/CH2Cl2 = 2:1) to give 7 (181 mg, 83%) as a colorless liquid. 

 

1H NMR (300 MHz, CDCl3): δ = 1.19 (t, J = 7.1 Hz, 3 H, 7-H), 2.02–2.19 (m, 2 H, 3- 

H), 3.26–3.43 (m, 2 H, 6-H), 3.36 (s superimposed with resonances of 6-H, 3 H, 5- 

H), 3.49–3.59 (m, 2 H, 4-H), 4.67 (t, J = 7.7 Hz, 1 H, 2-H), 6.94–7.02 (m, 3 H, 9-H 

and 11-H), 7.26–7.33 (m, 2 H, 10-H).  

13C NMR (75.5 MHz, CDCl3): δ = 13.7 (CH3, C- 7), 32.6 (CH2, C-3), 43.7 (CH2, C-6), 

50.7 (CH, C-2), 59.0 (CH3, C-5), 67.7 (CH2, C- 4), 118.7 (CH, C-9), 118.9 (C, C-1), 

121.5 (CH, C-11), 129.5 (CH, C-10), 147.2 (C, C-8).  

ν (neat/ATR probe): 2977, 2929, 2875, 1598, 1502, 1385, 1248, 1190, 1116, 1014, 

910, 862, 750, 730, 693, 647 cm–1. 
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HRMS (EI, 70 eV): m/z [M]+·
 Calcd for [C13H18N2O]+·

 218.1414; Found 218.1411. 

 

2-(Allyl(phenyl)amino)acetonitrile (8) Following the General Procedure, N-allyl-N-

methylaniline 6b (147 mg, 1.00 mmol) reacted with Me3SiCN and tBuOOH for 18 h. 

The crude product was purified by column chromatography (SiO2, pentane/CH2Cl2 = 

2:1) to give 8 (128 mg, 74%) as a colorless liquid. Known compound, the NMR 

spectroscopic data agree with those given in lit.37 

 

1H NMR (400 MHz, CDCl3): δ = 3.97 (d, J = 5.6 Hz, 2 H, 3-H), 4.15 (s, 2 H, 2-H), 

5.28–5.38 (m, 2 H, 5-H), 5.85–5.95 (m, 1 H, 4-H), 6.89–6.95 (m, 3 H, 7-H and 9-H), 

7.30–7.34 (m, 2 H, 8-H).  

13C NMR (100.6 MHz, CDCl3): δ = 39.4 (CH2, C-3), 54.6 (CH2, C-2), 115.3 (CH, C-7), 

116.1 (C, C-1), 118.6 (CH2, C-5), 120.3 (CH, C-9), 129.6 (C, C-8), 133.0 (CH, C-4), 

147.5 (C, C-6). 

 

2-(Diallylamino)-4-methoxybutanenitrile (10)  

Following the General Procedure, triallylamine 9 (137 mg, 1.00 mmol) reacted with 

Me3SiCN and tBuOOH for 40 h. The crude product was purified by column 

chromatography (SiO2, pentane/CH2Cl2 = 2:3) to give 10 (161 mg, 83%) as a 

colorless liquid. 
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1H NMR (300 MHz, CDCl3): δ = 1.95–2.04 (m, 2 H, 3-H), 2.88–2.96 (m, 2 H, 6-Ha), 

3.32–3.40 (m, 2 H, 6-Hb), 3.32 (s superimposed with resonances of 6-Hb, 3 H, 5-H), 

3.42–3.55 (m, 2 H, 4-H), 3.98 (t, J = 7.8 Hz, 1 H, 2-H), 5.16–5.30 (m, 4 H, 8-H), 

5.70–5.83 (m, 2 H, 7-H).  

13C NMR (75.5 MHz, CDCl3): δ = 31.9 (CH2, C-3), 50.3 (CH, C-2), 54.5 (CH2, C-6), 

58.9 (CH3, C-5), 68.0 (CH2, C-4), 117.8 (C, C-1), 118.5 (CH2, C-8), 134.9 (CH, C-7). 

ν (neat/ATR probe): 3082, 2981, 2931, 2814, 1644, 1450, 1420, 1189, 1116, 994, 

920, 732 cm–1.  

HRMS (EI, 70 eV): m/z [M-H]– Calcd for [C11H17N2O]– 193.1346; Found 193.1333. 

 

2-(Allyl(benzyl)amino)-4-methoxybutanenitrile (12) Following the General 

Procedure, N,N-diallyl-benzylamine 11 (187 mg, 1.00 mmol) reacted with Me3SiCN 

and tBuOOH for 40 h. The crude product was purified by column chromatography 

(SiO2, pentane/CH2Cl2 = 2:3) to give 12 (188 mg, 77%) as a colorless liquid. 

 

1H NMR (400 MHz, CDCl3): δ = 1.91–1.97 (m, 2 H, 3-H), 2.87–2.93 (m, 1 H, 6-Ha), 

3.19 (s, 3 H, 5-H), 3.20–3.43 (m, 4 H, 4-H, 6-Hb and 9-Ha), 3.86–3.91 (m, 2 H, 2-H 
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and 9-Hb), 5.12–5.15 (m, 2 H, 8-H), 5.21–5.26 (m, 1 H, 7-H), 7.18–7.29 (m, 5 H, 11- 

H, 12-H and 13-H).  

13C NMR (100.6 MHz, CDCl3): δ = 31.9 (CH2, C-3), 50.3 (CH, C- 2), 54.6 (CH2, C-6), 

55.5 (CH2, C-9), 58.8 (CH3, C-5), 68.0 (CH2, C-4), 117.7 (C, C- 1), 118.8 (CH2, C-8), 

127.6, 128.6, 128.7 (3 × CH, C-11, C-12 and C-13), 134.8 (CH, C-7), 138.1 (C, C-

10).  

HRMS (EI, 70 eV): m/z [M-H]– Calcd for [C15H19N2O]– 243.1503; Found 243.1490. 

 

3.4.3. Preparation of tertiary allylamines 1a-d, 6a, b, and 11 

 

According to a procedure reported in lit.35: In a 500 mL round-bottom flask equipped 

with a reflux condenser and a stir bar, aniline (50 mmol), allyl bromide (12.1 g, 100 

mmol), and Na2CO3 (5.40 g, 51 mmol) were added to aqueous ethanol (200 mL, 

EtOH/H2O = 4/1). The reaction mixture was refluxed overnight. The crude product 

was poured on saturated aq. NaHCO3 (50 mL) and extracted with Et2O (3 × 50 mL). 

The combined organic layers were washed with H2O (2 × 50 mL), dried over MgSO4, 

and the solvent was evaporated in the vacuum. The crude product was distilled over 

KOH to provide the corresponding diallylaniline. 

 

N,N-Diallylaniline (1a): 6.2 g (71%). Known compound, the NMR spectroscopic 

data agree with those given in lit.38: 1H NMR (300 MHz, CDCl3): δ = 3.99-4.02 (m, 4 

H), 5.22-5.30 (m, 4 H), 5.89-6.01 (m, 2 H), 6.77-6.81 (m, 3 H), 7.28-7.31 (m, 2 H). 

13C NMR (75.5 MHz, CDCl3): δ = 52.9, 112.5, 116.1, 116.4, 129.2, 134.2, 148.8. 

 

N,N-Diallyl-4-methylaniline (1b): 6.7 g (71%). Known compound, the NMR 

spectroscopic data agree with those given in lit.38: 1H NMR (300 MHz, CDCl3): δ = 
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2.29 (s, 3 H), 3.93-3.95 (m, 4 H), 5.17-5.26 (m, 4 H), 5.84-5.97 (m, 2 H), 6.67-6.70 

(m, 2 H), 7.05-7.08 (m, 2 H). 13C NMR (75.5 MHz, CDCl3): δ = 20.3, 53.1, 112.8, 

116.0, 125.6, 129.7, 134.4, 146.8. 

 

N,N-Diallyl-4-methoxyaniline (1c): 3.5 g (34%). Known compound, the NMR 

spectroscopic data agree with those given in lit.38: 1H NMR (300 MHz, CDCl3): δ = 

3.77 (s, 3 H), 3.88-3.89 (m, 4 H), 5.16-5.24 (m, 4 H), 5.82-5.93 (m, 2 H), 6.71-6.74 

 (m, 2 H), 6.82-6.85 (m, 2 H). 13C NMR (75.5 MHz, CDCl3): δ = 53.7, 55.9, 114.6, 

114.8, 116.2, 134.7, 143.6, 151.7. 

N,N-Diallyl-4-bromoaniline (1d): 3.5 g (28%). Known compound, the NMR 

spectroscopic data agree with those given in lit.38: 1H NMR (300 MHz, CDCl3): δ = 

3.89-3.92 (m, 4 H), 5.14-5.20 (m, 4 H), 5.78-5.90 (m, 2 H), 6.56-6.59 (m, 2 H), 7.25- 

7.28 (m, 2 H). 13C NMR (75.5 MHz, CDCl3): δ = 53.0, 108.2, 114.1, 116.3, 131.8, 

133.5, 147.7. 

 

N-Allyl-N-ethylaniline (6a) from N-ethylaniline (6.1 g, 50 mmol), allyl bromide (4.8 

mL, 40 mmol), and Na2CO3 (4.2 g, 40 mmol) as described above to the preparation 

of 1a-d. The crude product was purified by vacuum distillation from CaH2: 4.8 g 

(74%). Known compound, the NMR spectroscopic data agree with those given in 

lit.39: 1H NMR (300 MHz, CDCl3): δ = 1.25 (t, J = 7.1 Hz, 3 H), 3.46 (q, J = 7.1 Hz, 2 

H), 3.96-3.99 (m, 2 H), 5.19-5.29 (m, 2 H), 5.88-6.00 (m, 1 H), 6.74-6.79 (m, 3 H), 

7.26- 7.31 (m, 2 H). 13C NMR (75.5 MHz, CDCl3): δ = 12.4, 44.8, 52.8, 112.2, 115.9, 

116.0, 129.3, 134.6, 148.3. 

 

N-Allyl-N-methylaniline (6b) from N-methylaniline (5.4 g, 50 mmol), allyl bromide 

(4.8 mL, 40 mmol), and Na2CO3 (4.2 g, 40 mmol) as described above for the 
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preparation of 1a-d. The crude product was purified by vacuum distillation from 

CaH2: 4.0 g (68%). Known compound, the NMR spectroscopic data agree with those 

given in lit.39: 1H NMR (400 MHz, CDCl3): δ = 2.97 (s, 3 H), 3.94-3.96 (m, 2 H), 

5.16-5.23 (m, 2 H), 5.83-5.93 (m, 1 H), 6.73-6.78 (m, 3 H), 7.24-7.27 (m, 2 H). 13C 

NMR (100.6 MHz, CDCl3): δ = 38.1, 55.4, 112.6, 116.3, 116.5, 129.2, 134.0, 149.6. 

 

N,N-Diallyl-benzylamine (11) from benzylamine as described above for the 

preparation of 1a-d. The crude product was purified by vacuum distillation from 

CaH2: 5.7 g (61%). Known compound, the NMR spectroscopic data agree with those 

given in lit.38: 1H NMR (300 MHz, CDCl3, Me4Si): δ = 3.00 (dt, J = 6.3 Hz, J = 1.4 Hz, 

4 H), 3.49 (s, 2 H), 5.03-5.14 (m, 4 H), 5.73-5.87 (m, 2 H), 7.14-7.26 (m, 5 H). 13C 

NMR (75.5 MHz, CDCl3): δ = 56.6, 57.7, 117.4, 126.9, 128.3, 129.0, 136.0, 139.6.
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Oxidative α-Cyanation of Tertiary Amines 
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4.1. Introduction 

 

Oxidation of thiocyanate salts can be directed in a way that cyanide ions accumulate. 

This cyanide formation is of interest in mining industries where waste waters and 

tailings with high concentrations of thiocyanate salts are generated during the 

cyanidation of sulfur-containing metal ores. Several technical oxidation processes 

have, therefore, been developed for the recycling of CN– from SCN– with the goal to 

minimize costly loss of cyanide during the treatment of the ores as well as to reduce 

deleterious effects of SCN– on aquatic ecosystems.1,2 Also in organisms, 

peroxidases can catalyze the oxidative degradation of thiocyanate to cyanide.3 Such 

peroxidase activities, for example, complicate the correct forensic analysis of human 

tissue3d–f and disturb the relation of blood cyanide concentration with the amount of 

excreted hydrogen cyanide in breath.3c Furthermore, peroxidase-catalyzed 

production of CN– from SCN– has been discussed to contribute to the metabolic 

formation of toxic dicyano aurate (I) in patients treated with medicinal gold 

complexes.3g In addition, the mechanism of the pH dependent thiocyanate oxidation 

by H2O2 to form cyanide according to equation 1 has been studied in some detail.4 

 

3 H2O2 + SCN–  →  HSO4
– + HCN + 2 H2O (1) 
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4.2. Results and Discussion 

 

We had previously shown that CH-cyanation adjacent to the nitrogen of a broad 

range of tertiary amines can be achieved by using FeCl2 as the catalyst, tBuOOH as 

the oxidant and Me3SiCN as the CN source.5 We then hypothesized that, under 

analogous reaction conditions, combining oxidizable SCN– salts with oxidizable 

tertiary amines could provide an access to α-amino nitriles6 which is particularly 

appealing because a non-toxic CN source could be used (Scheme 4.1 and Table 

4.1, experimental section).5,7–10 

 

Scheme 4.1. Synthesis of α-Amino Nitriles by Oxidative Coupling of Cyanide with 

Tertiary Amines (DCE = 1,2-dichloroethane). 
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The reaction of N,N-dimethyl-p-toluidine (1a) with 2 equivalents of potassium 

rhodanide in the presence of catalytic amounts of FeCl2 (10 mol-%) and 2.5 

equivalents of tBuOOH produced neither the thiocyanated amine 2a nor the 

thermodynamically more stable isothiocyanate isomer 2a’ (Scheme 2, upper part). 

Instead, a mixture of N-methyl-p-toluidine (3a), N-methyl-N-(p-tolyl)formamide (4a) 

and the α-amino nitrile 5a formed with low selectivity (ratio in the crude product: 

33/24/43, as determined by GC-MS analysis). 
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Scheme 4.2. Formation of α-Amino Nitriles 5a and 7a by Oxidative Coupling of 

KSCN with the Amines 1a and 6aa 

 

a 5.5 M tBuOOH in decane was used as the oxidant. 

 

The presence of 5a in the crude product mixture confirmed that not only the aniline 

derivative 1a but also the thiocyanate ion was oxidized under the reaction conditions. 

After purification by column chromatography 5a was obtained in 29 % yield. 

Analogously, and even more promising, the oxidative cyanation of 

dimethyltetradecylamine (6a) with KSCN generated α-amino nitrile 7a in an isolated 

yield of 46 % (Scheme 4.2, lower part). N-Methyl-N-tetradecyl-formamide (7a’) was 

formed as a by-product of the oxidation of 6a, but the selectivity for the formation of 

7a (ratio in the crude product: 7a/7a’ = 84/16, as determined by GC-MS) was already 

encouraging. Further optimization of the cyanation of amine 6a by thiocyanate was 

carried to improve the practicability and selectivity of the reaction (Table 4.1). 

Entries 1-2 of Table 4.1 show that exclusion of moisture did not affect the yield of 7a, 

which enabled us to continue working without a protecting N2 atmosphere. 
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Increasing the excess of thiocyanate from 2 to 3 equivalents slightly increased the 

yield of 7a from 47 to 51 % (entry 3). After changing the solvent of the oxidant 

tBuOOH from decane to water, the yield of 7a remained unaffected while the 

reaction time could be reduced from 16 h to 5 h (entry 4). Surprisingly, the yield of 7a 

decreased gradually when the amount of FeCl2 was increased from 10 over 20 to 

100 mol-% (entries 4-6), which led us to study the oxidative cyanation reaction in 

absence of FeCl2. Comparison of entry 7 with entries 4-6 shows that FeCl2 was not 

necessary for the formation of 7a from 6a and KSCN. We, therefore, continued the 

optimization without using a catalyst. 

Owing to the consumption of the oxidant tBuOOH by interaction with the amine and 

the thiocyanate ions, a further increase of the amount of the oxidant seemed to make 

sense. Thus, the use of 4 equiv. of tBuOOH was beneficial for the yield of 7a (57 %, 

entry 8) and further shortened the reaction time from 6 h to 3 h. Similar yields of 7a 

(57-61 %) were obtained after comparable reaction times (3 to 4 h) when the 

reaction was carried out in methanol, acetonitrile, or water. However, the fastest 

conversion of 6a to 7a was achieved when the reactants were not diluted by any 

added solvent, which reduced the reaction time from 3 h (entries 8-10) to 45 min 

(entry 11). Further increase of the excess of potassium thiocyanate or the oxidant 

tBuOOH slightly improved the isolated yields of 7a (entries 12 and 14). An optimum 

of 66 % for the yield of 7a was found at a reaction time of 90 min when 4 equiv. of 

tBuOOH and 4 equiv. of KSCN were used (entry 13). Under the conditions of entry 

13 also the selectivity 7a/7a’ had increased to 95/5 in favour of the cyanation product 

7a (GC-MS of the crude material). Hence, entry 13 was defined as standard for 

testing the scope of the double oxidative cyanation with further amines. 
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Table 4.1. Optimization of the Oxidative α-Cyanation of Dimethyltetradecylamine 

(6a) by Potassium Thiocyanatea 

Entry 
FeCl2 

[mol-%] 
Solvent 

Equiv. 

KSCN 
Oxidant/conditions 

Yields of 

7a [%] 

1 10 MeOH 2 tBuOOHb/under N2, 16 h 46 

2 10 MeOH 2 tBuOOHb/air, 16 h 47 

3 10 MeOH 3 tBuOOHb/air, 16 h 51 

4 10 MeOH 3 aq tBuOOHc/air, 5 h 51 

5 20 MeOH 3 aq tBuOOHc /air, 6 h 50 

6 100 MeOH 3 aq tBuOOHc /air, 6 h 43 

7 — MeOH 3 aq tBuOOHc /air, 6 h 52 

8 — MeOH 3 aq tBuOOHd /air, 3 h 57 

9 — MeCN 3 aq tBuOOHd /air, 3 h 60 

10 — H2O 3 aq tBuOOHd /air, 4 h 61 

11 — — 3 aq tBuOOHd /air, 45 min 61 

12 — — 4 aq tBuOOHd /air, 45 min 62 

13 — — 4 aq tBuOOHd/air, 1.5 h 66 

14 — — 5 aq tBuOOHe/air, 45 min 64 

a At ambient temperature (ca. 23 °C), solvent volume: 2 mL; yields refer to isolated 

product after column chromatography. b–e Oxidants: b 2.5 equiv. of tBuOOH (5.5 M 

solution in decane); c 2.5 equiv. of aqueous tBuOOH (= 70/30 w/w mixture of 

tBuOOH and water). d 4 equiv. of aq tBuOOH; e 6 equiv. of aq tBuOOH. 

 

As summarized in Scheme 4.3, a series of aliphatic tertiary amines 6 was selectively 

α-cyanated to form 7a-h. Reactions of dimethylalkylamines RNMe2 led to formation 
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of 2-amino acetonitriles 7a,b because of a selective cyanation at the NMe groups. 

Efficient oxidation of the well water-soluble amines cyclohexyldimethylamine (6c) 

and tripropylamine (6d) under standard conditions generated the corresponding 

amides instead of α-cyanated amines.11 Cyanation of 6c by KSCN could be 

achieved, however, by using a 4.5 M solution of tBuOOH in dichloromethane, which 

is a milder oxidizing agent as compared with 70 % aq tBuOOH and provides a lower 

solubility for KSCN than purely aqueous reaction mixtures. Alternatively, small 

volumes of acetonitrile can be added to the reaction mixture when aq tBuOOH is 

used. In this way, 7d was obtained from 6d in a moderate yield of 61 %. 
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Scheme 4.3. Generation of α-Amino Nitriles from Tertiary Amines and Potassium 

Thiocyanatea 

 

a Reaction conditions: amine (1 mmol), KSCN (4 equiv.), aq tBuOOH (70 % (w/w), 4 

equiv.), ambient temperature (ca. 23 °C); yields refer to isolated products after 

column chromatography. b A 4.5 M solution of tBuOOH in CH2Cl2 was used as 

oxidant. c With MeCN as solvent (0.5 mL). d With MeCN as solvent (2 mL) at 50 °C. e 

With 5 equiv. of tBuOOH. 

 

Oxidative photo-generation of iminium ions from amines and subsequent trapping 

with trimethylsilyl cyanide has been reported to be an efficient method for the 

cyanation of a series of alkaloids.9a As tropinone (6j) was reported to undergo iron-

catalyzed oxidative amidations by aldehydes with tBuOOH as the oxidant,12 we set 

out to investigate whether cyanation of 6j is possible with the reagent combination 
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tBuOOH/KSCN. We found that neither tropane (6i) nor 6j were converted under the 

standard conditions at ambient temperature. However, heating the acetonitrile 

solutions of 6i and 6j with KSCN and tBuOOH at 50 °C resulted in the selective 

formation of the α-amino nitriles 7i and 7j in 61 and 87 % yield, respectively. In a 

gram scale experiment, 10 mmol of tropinone (6j) gave 7j in 85 % yield. Crystals 

suitable for x-ray single crystal analysis were grown by slow evaporation of the 

solvent from a CH2Cl2 solution of 7j.13 

The cyanated alkaloid 7j was also obtained from tropine (6k), which demonstrates 

that the secondary alcohol group of 6k is oxidized to a ketone under the reaction 

conditions. The corresponding cyanation of atropine, which carries a primary 

hydroxyl group, however, turned out to be beyond the scope of the tBuOOH/KSCN 

cyanation method in this work. 

We then studied the behavior of N,N-dialkylanilines under our reaction conditions 

(Scheme 4.4). After heating the reaction mixtures for 1 h at 80 °C, oxidative 

cyanation at one of the NMe groups of para-substituted N,N-dimethylanilines 

produced the corresponding α-amino nitriles 5a,b,d,e with yields of 81 to 87 %. 

Cyanation of the N-(p-anisyl)tetrahydroisoquinoline (1f) was less efficient, but still 

gave solely the product of the cyanation reaction 5f in 43 % yield. Only in the 

reaction with the parent N,N-dimethylaniline (1c), the formation of the α-amino nitrile 

was accompanied by the thiocyanation of the aromatic ring: After separation by 

column chromatography, 5c and 8 were obtained in 52 and 29 % yield, respectively. 

The formation of 8 is in accord with a recent report by Khazaei, Zolfigol, and co-

workers that N,N-dialkylanilines react with KSCN and 30% aq. H2O2 to yield para-

thiocyanated anilines.14 

In contrast to the regioselectivity observed for 6a-c, 1-methyl tetrahydroquinoline 

(1g) did not undergo cyanation at the NCH3 group after warming at 50 °C for 2 h but 
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was selectively cyanated at the NCH2 group to give 5g. Competing thiocyanation of 

the electron-rich aromatic ring of 1g was not observed. 

 

Scheme 4.4. Generation of α-Amino Nitriles from Anilines and Potassium 

Thiocyanatea 

+ K+ SCN–
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a Reaction conditions: aniline (1 mmol), KSCN (4 equiv.), 70% aq tBuOOH (4 equiv.), 

water (2 mL), 80 °C; yields refer to isolated products after column chromatography. b 

With MeCN as solvent (2 mL) at 50 °C for 2 h. 

 

Oxidation of SCN– by H2O2 has been described to generate OSCN– (or HOSCN) as 

a first intermediate that is easily further oxidized to finally yield SO4
2– as the sulfur-

containing product.4d Repeating the experiment in Table 1, entry 13, with subsequent 

treatment of the reaction solution with BaCO3/HCl led to precipitation of a colorless 

powder that was collected by filtration and analyzed by x-ray powder diffraction, 

which clearly showed that BaSO4 had precipitated (see Supporting Information) and 

thus clarified the fate of sulfur upon oxidation of SCN– by tBuOOH. 
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The important role of radical intermediates in the initial steps of the oxidative 

cyanation reactions in Schemes 4.3 and 4.4 is revealed by the ability of the radical 

scavenger 2,6-di-tert-butyl-4-methylphenol (BHT, 2.5 equiv.) to completely suppress 

the conversion of the tertiary amine 6a (Scheme 4.5) under reaction conditions 

similar to those of Table 4.1, entries 9 or 13. 

 

Scheme 4.5. Attempted Cyanation of 6a in the Presence of the Radical Scavenger 

BHT 

 

 

The regioselective formation of the α-amino nitriles 7a-c,i,j shows that oxidation at 

the methyl group adjacent to the nitrogen of the amine is highly preferred over a 

competing process at an NCH2R or NCHR2 group, which agrees with previous 

reports5c,7h,i,k,o,u,z but is just the opposite of the expectation based on the stabilities of 

structurally related amino-stabilized alkyl radicals or iminium ions. The reactivity 

order NCH3 > NCH2R >> NCHR2 agrees, however, with the regioselective 

photoadditions of tertiary amines to singlet stilbene15a,b as well as with relative rates 

for the deprotonation of laser-flash photolytically generated amine radical cations by 

acetate,15c which both have been rationalized by stereoelectronic effects in the 

preferred transition state conformation.15 We assume, therefore, that 

stereoelectronic effects during the deprotonation of the amine radical cations 

(Scheme 4.6) also control the regioselectivities under our reaction conditions. 
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Scheme 4.6. Oxidation of Tertiary Amines by Subsequent Electron-Proton-Electron 

Transfers 

 

 

In oxidative couplings one of the substrate nucleophiles is converted to an 

electrophilic species that is then trapped by the other nucleophile.16 In this work both 

the electrophile and the nucleophile were generated in situ from oxidizable 

precursors. The sulfur of SCN– is used as a sacrificial group that safeguards the 

toxic nucleophile CN– until its active form is released under the reaction conditions. 

To the best of our knowledge, this concept has only been applied once before: Wan 

and co-workers have recently obtained α-amino nitriles from benzyl cyanide and 

tertiary amines with tBuOOH as the oxidant.7aa In that reaction, tBuOOH oxidized the 

benzyl cyanide to benzoyl cyanide and the tertiary amines to α-aminoalkyl radicals. 

Experimental and theoretical investigations led Wan and coworkers to propose that 

the radical intermediates then attack the CN triple bond of PhCOCN to form imine 

radical intermediates that eliminate a phenacyl radical to yield the α-amino nitriles. 

Whether analogous radical processes also operate in the oxidative removal of sulfur 

from SCN– remains to be clarified. Alternatively, the intermediate α-aminoalkyl 

radicals could be further oxidized by tBuO· or HO· to yield iminium ions which are 

trapped by cyanide ions that are generated by oxidation of thiocyanate ions as 

suggested in equation 2. 

 

3 tBuOOH + H2O + SCN–  –>  HSO4
– + HCN + 3 tBuOH  (2) 
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4.3 Conclusion 

 

In summary, simultaneous oxidation of tertiary amines and thiocyanate ions by tert-

butylhydroperoxide in various solvents generated α-amino nitriles under mild 

conditions without the use of catalysts or toxic CN sources. Contributing to a 

development of synthetic chemistry that is friendly to the environment and hazard-

free to men, potassium thiocyanate is used for the first time in organic synthesis to 

replace toxic cyanation reagents.10,17 It is also worth mentioning that the waste 

products of the presented reactions (that is, H2O, KHSO4, tBuOH or KOCN from 

over-oxidation of KSCN) are unproblematic with regard to safety and environmental 

aspects.18 
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4.4 Experimental Section 

 

All reactions were carried out under air atmosphere. 1H (300 or 400 MHz) and 13C 

(75.5 or 100.6 MHz) NMR spectra of solutions in CDCl3 were recorded on 300 or 400 

MHz NMR spectrometers. Chemical shifts are expressed in parts per million (ppm) 

downfield from tetramethylsilane and refer to the solvent signals (δH 7.26 and δC 

77.16).19 Abbreviations for signal couplings are: s, singlet; d, doublet; t, triplet; q, 

quartet; m, multiplet. The numbers of attached hydrogen atoms (C, CH, CH2, or CH3) 

were derived from additional gHSQC data. HRMS was performed on a mass 

spectrometer with sector field detector. Infrared spectra of neat substances were 

recorded on a FT-IR spectrometer equipped with an ATR probe (diamond). 

Potassium thiocyanate (99%) and aqueous tBuOOH (70 wt % tBuOOH in H2O) were 

purchased. 

Commercially available tertiary amines were used as received: 

Dimethyltetradecylamine (technical, ≥95%), dimethyl-n-octylamine (95%), 

cyclohexyldimethylamine (98%), tropinone (99%), tropane (98%), tripropylamine 

(≥98%), tributylamin (puriss. p.a., ≥99%), triisobutylamine (98%), triisopentylamine 

(≥95%), tri-n-octylamine (96%), tropine (98 %), N,N,4-trimethylaniline (99 %), 

N,N,2,4,6-pentamethylaniline (98 %), 4-bromo-N,N-dimethylaniline (98 %), 

dicyclohexylmethylamine (97%), and N,N-dimethylaniline (99 %). 

N,N-Dimethyl-p-anisidine was prepared as described in ref.20 and 2-(4-

methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline was obtained by following a 

procedure reported in ref.21 Reductive formylation of quinoline with formic acid 

furnished 1-formyl-1,2,3,4-tetrahydroquinoline that was subsequently reduced with 

LiAlH4 to 1-methyl-1,2,3,4-tetrahydroquinoline.22 
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Experimental Procedure A.  

A 10 mL round-bottom flask was charged with KSCN (0.40 g, 4.0 mmol) and the 

tertiary amine (1.0 mmol). Then aqueous tBuOOH (70 wt % tBuOOH in H2O, 0.55 

mL, 4.0 mmol) or a 4.9 M solution of tBuOOH in CH2Cl2 (0.75 mL, 4.0 mmol) was 

added successively by syringe over a period of 5 min, and the suspension was 

stirred at room temperature for the indicated time. At the end of the reaction, the 

reaction mixture was poured on brine (20 mL), and extracted with CH2Cl2 (3 × 20 

mL). The combined organic layers were dried over MgSO4, and the solvent was 

removed under reduced pressure. The crude product was purified by column 

chromatography. 

 

Experimental Procedure B.  

KSCN (0.40 g, 4.0 mmol) and the tertiary amine (1.0 mmol) were dissolved in MeCN 

(2 mL). Then aqueous tBuOOH (70 wt % tBuOOH in H2O, 0.55 mL, 4.0 mmol) was 

added successively by syringe. The solution was stirred at 50 °C for the indicated 

time. After allowing the reaction mixture to cool to room temperature, the suspension 

was poured on brine (20 mL), and extracted with CH2Cl2 (3 × 20 mL). The combined 

organic layers were dried over MgSO4, and the solvent was removed under reduced 

pressure. The crude product was purified by column chromatography. 

 

Experimental Procedure C.  

KSCN (0.40 g, 4.0 mmol) and the N,N-dialkylated aniline (1.00 mmol) were poured 

on water (2.00 mL), and aqueous tBuOOH (70 wt % tBuOOH in H2O, 0.55 mL, 4.0 

mmol) was added by syringe. The solution was stirred at 80 °C for 1 h. After allowing 
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the reaction mixture to cool to room temperature, the suspension was poured on 

brine (20 mL), and extracted with CH2Cl2 (3 × 20 mL). The combined organic layers 

were dried over MgSO4, and the solvent was removed under reduced pressure. The 

crude product was purified by column chromatography. 

 

 

2-(Methyl(tetradecyl)amino)acetonitrile (7a).  

Following General Procedure A, dimethyl-tetradecylamine 6a (0.30 mL, 0.99 mmol) 

reacted with KSCN and aq tBuOOH for 1.5 h. The crude product was purified by 

column chromatography (SiO2, pentane/Et2O = 2:1) to give 7a (174 mg, 66 %) as a 

colorless viscous liquid. Known compound; the NMR spectroscopic data agree with 

those given in ref.5c. 1H NMR (CDCl3, 300 MHz): δ 0.86–0.90 (m, 3 H), 1.26 (br s, 22 

H), 1.40–1.47 (m, 2 H), 2.35 (s, 3 H), 2.41–2.46 (m, 2 H), 3.53 (s, 2 H); 13C{1H} NMR 

(CDCl3, 75.5 MHz): δ 14.3, 22.8, 27.3, 27.6, 29.5, 29.6, 29.72, 29.74, 29.80, 29.82, 

29.83, 32.1, 42.2, 45.3, 56.0, 114.8. 

 

2-(Methyl(octyl)amino)acetonitrile (7b).  

Following General Procedure A, dimethyl-octylamine 6b (0.20 mL, 0.97 mmol) 

reacted with KSCN and aq tBuOOH for 1.5 h. The crude product was purified by 

column chromatography (SiO2, pentane/Et2O = 2:1) to give 7b (117 mg, 66 %) as a 

colorless viscous liquid. Known compound; the NMR spectroscopic data agree with 

those given in ref.5c. 1H NMR (CDCl3, 300 MHz): δ 0.85–0.90 (m, 3 H), 1.27–1.29 (m, 

10 H), 1.42–1.47 (m, 2 H), 2.35 (s, 3 H), 2.41–2.46 (m, 2 H), 3.52 (s, 2 H); 13C{1H} 

NMR (CDCl3, 75.5 MHz): δ 14.2, 22.8, 27.3, 27.6, 29.4, 29.5, 31.9, 42.2, 45.3, 56.0, 

114.8. 
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2-(Cyclohexyl(methyl)amino)acetonitrile (7c).  

Following General Procedure A, N,N-dimethylcyclohexylamine 6c (0.15 mL, 

1.00 mmol) reacted with KSCN and tBuOOH (4.9 M in CH2Cl2) for 1.5 h. The crude 

product was purified by column chromatography (SiO2, pentane/Et2O = 1:1) to give 

7c (108 mg, 71 %) as a colorless viscous liquid. Known compound; the NMR 

spectroscopic data agree with those given in ref.23. 1H NMR (CDCl3, 300 MHz): δ 

1.11–1.34 (m, 4 H), 1.59–1.92 (m, 6 H), 2.29–2.39 (m, 1 H), 2.40 (s, 3 H), 3.58 (s, 2 

H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 25.2, 25.9, 30.1, 39.2, 42.6, 61.3, 116.1; IR 

(neat/ATR probe): ν = 2923, 2850, 1660, 1448, 1436, 1421, 1292, 1268, 1232, 1180, 

1128, 994, 896, 810, 724, 715 cm–1. 

 

2-(Dipropylamino)butanenitrile (7d).  

Analogous to General Procedure A, tripropylamine 6d (0.19 mL, 1.0 mmol) reacted 

with KSCN and aq tBuOOH in acetonitrile (0.5 mL) for 2 h. The crude product was 

purified by column chromatography (SiO2, pentane/Et2O = 40:1) to give 7d (103 mg, 

61 %) as a colorless viscous liquid. Known compound; the NMR spectroscopic data 

agree with those given in ref.5c. 1H NMR (CDCl3, 300 MHz): δ 0.89 (t, J = 7.3 Hz, 6 

H), 1.04 (t, J = 7.4 Hz, 3 H), 1.38–1.56 (m, 4 H), 1.70–1.86 (m, 2 H), 2.31–2.40 (m, 2 

H), 2.46–2.55 (m, 2 H), 3.47 (t, J = 7.8 Hz, 1 H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 

10.9, 11.8, 21.3, 25.5, 53.8, 56.6, 118.7. 

 

2-(Dibutylamino)pentanenitrile (7e).  

Following General Procedure A, tributylamine 6e (0.24 mL, 1.0 mmol) reacted with 

KSCN and aq tBuOOH for 2 h. The crude product was purified by column 

chromatography (SiO2, pentane/Et2O = 40:1) to give 7e (124 mg, 59 %) as a 

colorless viscous liquid. Known compound; the NMR spectroscopic data agree with 
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those given in ref.5c. 1H NMR (CDCl3, 300 MHz): δ 0.88-0.96 (m, 9 H), 1.27–1.51 (m, 

10 H), 1.65–1.74 (m, 2 H), 2.29–2.38 (m, 2 H), 2.51–2.61 (m, 2 H), 3.57 (t, J = 7.7 

Hz, 1 H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 13.6, 14.1, 19.4, 20.5, 30.4, 34.1, 51.6, 

54.5, 118.7. 

 

2-(Diisobutylamino)-3-methylbutanenitrile (7f).  

Following General Procedure A, triisobutylamine 6f (0.24 mL, 1.0 mmol) reacted with 

KSCN and aq tBuOOH for 1.5 h. The crude product was crystallized from H2O to 

give 7f (145 mg, 69 %) as colorless crystals, mp. 61.0–61.5 °C. Known compound; 

the NMR spectroscopic data agree with those given in ref.5c. 1H NMR (CDCl3, 300 

MHz): δ 0.88 (d, J = 6.6 Hz, 6 H), 0.92 (d, J = 6.5 Hz, 6 H), 1.03 (d, J = 6.5 Hz, 3 H), 

1.10 (d, J = 6.7 Hz, 3 H), 1.62–1.76 (m, 2 H), 1.85–1.98 (m, 1 H), 2.12 (dd, J = 12.9 

Hz, J = 10.3 Hz, 2 H), 2.24 (dd, J = 12.9 Hz, J = 4.2 Hz, 2 H), 3.06 (d, J = 10.8 Hz, 1 

H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 19.9 (CH3), 20.5 (CH3), 20.8 (CH3), 21.1 

(CH3), 26.3 (CH), 29.4 (CH), 60.9 (CH2), 63.0 (CH), 117.8 (C), the numbers of 

attached hydrogen atoms were derived from additional gHSQC data. 

 

2-(Diisopentylamino)-4-methylpentanenitrile (7g).  

Following General Procedure A, triisopentylamine 6g (0.29 mL, 0.95 mmol) reacted 

with KSCN and aq tBuOOH for 2 h. The crude product was purified by column 

chromatography (SiO2, pentane/Et2O = 45:1) to give 7g (170 mg, 71 %) as a 

colorless viscous liquid. Known compound; the NMR spectroscopic data agree with 

those given in ref.5c. 1H NMR (CDCl3, 300 MHz): δ 0.89 (d, J = 2.9 Hz, 6 H), 0.91 (d, 

J = 3.0 Hz, 6 H), 0.93 (d, J = 6.6 Hz, 6 H), 1.25–1.36 (m, 4 H), 1.53–1.66 (m, 4 H), 

1.83 (sept, J = 6.7 Hz, 1 H), 2.28–2.37 (m, 2 H), 2.56–2.66 (m, 2 H), 3.66 (t, J = 7.7 
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Hz, 1 H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 22.2, 22.45, 22.52, 23.2, 24.8, 26.2, 

37.2, 40.8, 50.1, 52.9, 118.8. 

 

2-(Dioctylamino)nonanenitrile (7h).  

Following to General Procedure A, tri-n-octylamine 6h (0.45 mL, 1.0 mmol) reacted 

with KSCN and tBuOOH (4.9 M in CH2Cl2) for 1.5 h. The crude product was purified 

by column chromatography (SiO2, pentane/Et2O = 110:1) to give 7h (273 mg, 72 %) 

as a colorless viscous liquid. Known compound; the NMR spectroscopic data agree 

with those given in ref.5c. 1H NMR (CDCl3, 400 MHz): δ 0.86–0.90 (m, 9 H), 1.23-1.45 

(m, 34 H), 1.66–1.73 (m, 2 H), 2.30–2.36 (m, 2 H), 2.51–2.58 (m, 2 H), 3.55 (t, J = 

7.8 Hz, 1 H); 13C{1H} NMR (CDCl3, 100.6 MHz): δ 14.20, 14.24, 22.76, 22.81, 26.2, 

27.4, 28.2, 29.1, 29.2, 29.5, 29.6, 31.9, 32.0, 32.1, 51.9, 54.7, 118.8. 

 

2-((1R,5S)-8-Azabicyclo[3.2.1]octan-8-yl)acetonitrile (7i).  

Following General Procedure B, tropane 6i (0.14 mL, 1.0 mmol) reacted with KSCN 

and aq tBuOOH for 1 h. The crude product was purified by column chromatography 

(SiO2, pentane/EtOAc = 5:4) to give 7i (96 mg, 61 %) as a colorless viscous liquid. 

Known compound, ref.24. 1H NMR (CDCl3, 300 MHz): δ 1.34–1.78 (m, 8 H), 1.93–

1.97 (m, 2 H), 3.27–3.29 (m, 4 H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 16.2 (CH2), 

26.1 (CH2), 31.0 (CH2), 41.0 (CH2), 60.5 (CH), 117.9 (C), the numbers of attached 

hydrogen atoms were derived from additional gHSQC data; IR (neat/ATR probe): ν = 

2929, 2871, 1476, 1456, 1431, 1341, 1331, 1313, 1255, 1219, 1168, 1134, 1111, 

1069, 1057, 1038, 980, 942, 874, 849, 821, 768, 720 cm–1. 
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2-((1R,5S)-3-Oxo-8-azabicyclo[3.2.1]octan-8-yl)acetonitrile (7j) from tropinone 

(6j).  

Potassium thiocyanate (4.0 g, 40 mmol) and tropinone 6j (1.4 g, 10 mmol) were 

dissolved in acetonitrile (20 mL) and heated at 50 °C. The reaction was started by 

slow injection of aq tBuOOH (5.5 mL, 40 mmol, within ca. 5 min). The reaction 

mixture was then stirred at 50 °C for another 2.5 h, during which the mixture became 

more and more opaque. After allowing the reaction mixture to cool at ambient 

temperature, the suspension was poured on brine (60 mL) and extracted with 

dichloromethane (3 × 50 mL). The combined organic phases were dried (MgSO4), 

and the solvent was removed under reduced pressure. The crude product was 

purified by column chromatography on silica gel (pentane:ethyl acetate = 4:5) to give 

7j (1.4 g, 85 %) as a colorless solid (mp. 64.5–65 °C). Crystals suitable for x-ray 

single crystal analysis were obtained by slow evaporation of a dichloromethane 

solution of 7j.13 Known compound, ref.9a. 1H NMR (CDCl3, 300 MHz): δ 1.63–1.71 

(m, 2 H), 2.09–2.13 (m, 2 H), 2.22–2.27 (m, 2 H), 2.61–2.68 (m, 2 H), 3.50 (s, 2 H), 

3.59–3.60 (m, 2 H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 27.5 (CH2), 40.2 (CH2), 48.7 

(CH2), 59.7 (CH), 117.3 (C, CN), 208.1 (C, C=O), the numbers of attached hydrogen 

atoms were derived from additional gHSQC data; IR (neat/ATR probe): ν = 2955, 

2886, 1709, 1473, 1411, 1341, 1234, 1194, 1152, 1134, 1101, 1008, 905, 842, 776, 

726 cm–1. 

 

2-((1R,5S)-3-Oxo-8-azabicyclo[3.2.1]octan-8-yl)acetonitrile (7j) from tropine 

(6k).  

Analogous to General Procedure B, tropine 6k (0.14 mL, 0.99 mmol) reacted with 

KSCN and 5 equiv. of aq tBuOOH (0.69 mL, 5.00 mmol) for 2 h. The crude product 

was purified by column chromatography (SiO2, pentane/EtOAc = 4:5) to give 7j (118 



146 

 

mg, 72 %) as colorless crystals. 1H and 13C NMR spectra agree with those of 7j that 

was obtained from 6j. 

 

2-(Methyl(p-tolyl)amino)acetonitrile (5a).  

Following General Procedure C, N,N,4-trimethylaniline 1a (0.14 mL, 0.97 mmol) 

reacted with KSCN and aq tBuOOH for 1 h. The crude product was purified by 

column chromatography (SiO2, pentane/Et2O = 6:1) to give 5a (133 mg, 86 %) as a 

colorless viscous liquid. Known compound; the NMR spectroscopic data agree with 

those given in ref.5a..1H NMR (CDCl3, 300 MHz): δ 2.33 (s, 3 H), 2.97 (s, 3 H), 4.12 

(s, 2 H), 6.80–6.85 (m, 2 H), 7.14–7.17 (m, 2 H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 

20.4, 39.4, 42.7, 115.3, 115.6, 129.7, 130.0, 145.7. 

 

2-((4-Bromophenyl)(methyl)amino)acetonitrile (5b).  

Following General Procedure C, 4-bromo-N,N-dimethylaniline 1b (0.20 g, 1.0 mmol) 

reacted with KSCN and aq tBuOOH for 1 h. The crude product was purified by 

column chromatography (SiO2, pentane/Et2O = 20:1) to give 5b (182 mg, 81 %) as a 

colorless solid. Known compound; the NMR spectroscopic data agree with those 

given in ref.5a. 1H NMR (CDCl3, 300 MHz): δ 2.98 (s, 3 H), 4.14 (s, 2 H), 6.70–6.75 

(m, 2 H), 7.37–7.42 (m, 2 H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 39.4, 42.3, 112.7, 

115.2, 116.5, 132.4, 146.9. 

 

2-(Methyl(phenyl)amino)acetonitrile (5c) and N,N-dimethyl-4-thiocyanatoaniline 

(8).  

Following General Procedure C, N,N-dimethylaniline 1c (0.13 mL, 1.0 mmol) reacted 

with KSCN and aq tBuOOH for 1 h. The product mixture was separated by column 

chromatography (SiO2, pentane/Et2O = 15:1→15:2) to give 5c and 8. 
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2-(Methyl(phenyl)amino)acetonitrile (5c):  

76 mg (52 %), colorless viscous liquid. Known compound; the NMR spectroscopic 

data agree with those given in ref.5a. 1H NMR (CDCl3, 300 MHz): δ 3.01 (s, 3 H), 4.15 

(s, 2 H), 6.87–6.98 (m, 3 H), 7.32–7.37 (m, 2 H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 

39.2, 42.2, 114.8, 115.6, 120.1, 129.5, 147.8. 

 

N,N-Dimethyl-4-thiocyanatoaniline (8):  

52 mg (29 %), colorless solid, mp 73-73.5 °C. Known compound; the NMR 

spectroscopic data agree with those given in ref.14,25. 1H NMR (CDCl3, 300 MHz): δ 

2.99 (s, 6 H), 6.66–6.69 (m, 2 H), 7.39–7.45 (m, 2 H); 13C{1H} NMR (CDCl3, 75.5 

MHz): δ 40.3, 106.7, 112.7, 113.3, 134.6, 151.8. 

 

2-(Mesityl(methyl)amino)acetonitrile (5d).  

Following General Procedure C, N,N,2,4,6-pentamethylaniline 1d (0.18 mL, 1.0 

mmol) reacted with KSCN and aq tBuOOH for 1 h. The crude product was purified 

by column chromatography (SiO2, pentane/Et2O = 2:1) to give 5d (158 mg, 84 %) as 

a colorless viscous liquid. Known compound; the NMR spectroscopic data agree with 

those given in ref.5c. 1H NMR (CDCl3, 300 MHz): δ 2.27 (s, 3 H), 2.29 (s, 6 H), 2.95 

(s, 3 H), 3.93 (s, 2 H), 6.86 (s, 2 H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 19.0, 20.8, 

40.4, 44.1, 117.7, 129.8, 136.0, 137.0, 144.3. 

 

2-((4-Methoxyphenyl)(methyl)amino)acetonitrile (5e).  

Following General Procedure C, 4-methoxy-N,N-dimethylaniline 1e (0.15 g, 0.99 

mmol) reacted with KSCN and aq tBuOOH for 1 h. The crude product was purified 

by column chromatography (SiO2, pentane/Et2O = 2:1) to give 5e (151 mg, 87 %) as 
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a colorless viscous liquid. Known compound; the NMR spectroscopic data agree with 

those given in ref.5a. 1H NMR (CDCl3, 300 MHz): δ 2.92 (s, 3 H), 3.78 (s, 3 H), 4.07 

(s, 2 H), 6.88 (s, 2 H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 40.0, 44.0, 55.7, 114.9, 

115.5, 117.8, 142.3, 154.4. 

 

2-(4-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (5f). Following 

General Procedure C, 2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline 1f (0.24 g, 

1.0 mmol) reacted with KSCN and aq tBuOOH for 1 h. The crude product was 

purified by column chromatography (SiO2, pentane/Et2O = 15:2) to give 5f (114 mg, 

43 %) as a colorless solid. Known compound; the NMR spectroscopic data agree 

with those given in ref.5a. 1H NMR (CDCl3, 300 MHz): δ 2.88–2.96 (m, 1 H), 3.10–

3.22 (m, 1 H), 3.39–3.48 (m, 1 H), 3.54–3.61 (m, 1 H), 3.79 (s, 3 H), 5.36 (s, 1 H), 

6.88–6.94 (m, 2 H), 7.06–7.11 (m, 2 H), 7.20–7.33 (m, 4 H); 13C{1H} NMR (CDCl3, 

75.5 MHz): δ 28.8, 45.0, 55.66, 55.68, 114.9, 117.7, 121.1, 126.8, 127.2, 128.8, 

129.6, 129.8, 134.5, 142.7, 155.8. 

 

1-Methyl-1,2,3,4-tetrahydroquinoline-2-carbonitrile (5g).  

Following General Procedure B, 1-methyl-1,2,3,4-tetrahydroquinoline 1g (0.15 g, 1.0 

mmol) reacted with KSCN and aq tBuOOH for 1 h. The crude product was purified 

by column chromatography (SiO2, pentane/ Et2O = 7:1) to give 5g (125 mg, 73 %) as 

a colorless viscous liquid. 1H NMR (CDCl3, 300 MHz): δ 2.24–2.34 (m, 2 H), 2.80–

2.88 (m, 1 H), 3.02 (s, 3 H), 3.11–3.24 (m, 1 H), 4.28–4.31 (m, 1 H), 6.73–6.85 (m, 2 

H), 7.05–7.21 (m, 2 H); 13C{1H} NMR (CDCl3, 75.5 MHz): δ 24.2 (CH2), 25.6 (CH2), 

38.2 (CH3), 51.8 (CH), 112.6 (CH), 118.2 (CH, CN), 119.0 (CH2), 121.8 (C), 127.6 

(CH), 129.1 (CH), 143.4 (C) the numbers of attached hydrogen atoms were derived 

from additional gHSQC data; IR (ATR): ν = 3022, 2937, 2895, 2846, 2820, 1601, 
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1579, 1494, 1474, 1446, 1362, 1313, 1264, 1208, 1172, 1133, 1118, 1093, 1067, 

1044, 1036, 995, 932, 831, 800, 746, 704 cm–1. HRMS (EI, 70 eV) m/z: [M]+· Calcd 

for [C11H12N2]
+· 172.0995; Found 172.0985. 

 

Formation of N,N-Dicyclohexylformamide.  

Following General Procedure A, N,N-dicyclohexylmethylamine (0.21 mL, 0.98 mmol) 

reacted with KSCN and aq tBuOOH for 1.5 h. The crude product was purified by 

column chromatography (SiO2, pentane/Et2O = 2:1) to give N,N-

dicyclohexylformamide (174 mg, 85 %) as a colorless solid; mp 61–62 °C. Known 

compound (mp 62.5-63.5 °C).26 1H NMR (CDCl3, 600 MHz): δ 1.05–1.80 (m, 20 H), 

2.99–3.03 (m, 1 H), 3.87–3.91 (m, 1 H), 8.16 (s, 1 H, CHO); 13C{1H} NMR (CDCl3, 

150.6 MHz): δ 25.3, 25.4, 25.9, 26.3, 30.4, 34.7, 52.4, 54.9, 161.7. 

 

Precipitation of BaSO4.  

A 10 mL flask was charged with KSCN (0.40 g, 4.0 mmol) and the amine 6a (0.30 

mL, 1.0 mmol). Then aq tBuOOH (0.55 mL, 4.0 mmol) was added successively by 

syringe over a period of 5 min. The resulting suspension was stirred at room 

temperature for 1.5 h. At the end of the reaction, the reaction mixture was poured on 

deionized water (20 mL), and extracted with CH2Cl2 (3 × 20 mL). To the aqueous 

layer was poured in a 100 mL Erlenmeyer flask, and BaCO3 (1.0 g) and 2 M HCl (3 

mL) were added. A colorless precipitate formed, which was separated by filtration 

and dried at 67 ºC to give BaSO4 (340 mg, 1.5 mmol) as a colorless powder that was 

analyzed by x-ray powder diffraction. Reflections of the precipitated solid agreed with 

those for BaSO4.
27 
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Figure 4.1. Reflections of the precipitated solid (upper line in green) agree with 

those that were previously determined for barite (BaSO4, lower line in blue, data from 

ref.27). 

 

Reaction of 6a in Presence of Radical Scavenger 2,6-Di-tert-butyl-4-

methylphenol (BHT).  

A mixture of KSCN (0.40 g, 4.0 mmol), the amine 6a (0.30 mL, 1.0 mmol), and 2,6-

di-tert-butyl-4-methylphenol (0.55 g, 2.5 mmol) was dissolved in MeCN (2.00 mL) 

and aq tBuOOH (0.55 mL, 4.0 mmol) was added successively by syringe. The 

resulting suspension was stirred at room temperature for 1.5 h. Subsequently, the 

reaction mixture was poured on brine (20 mL) and extracted with CH2Cl2 (3 × 20 

mL). Analysis of the crude product mixture with GC/MS showed only signals of the 

substrate 6a. 
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Table 4.2. Crystallographic data of 7j 
net formula C9H12N2O 

Mr/g mol−1 164.204 

crystal size/mm 0.130 × 0.100 × 0.060 

T/K 173(2) 

radiation 'Mo Kα 

diffractometer 'Bruker D8Venture' 

crystal system orthorhombic 

space group P212121 

a/Å 6.6807(5) 

b/Å 7.3529(6) 

c/Å 17.0246(13) 

α/° 90 

β/° 90 

γ/° 90 

V/Å3 836.29(11) 

Z 4 

calc. density/g cm−3 1.30420(17) 

µ/mm−1 0.087 

absorption correction multi-scan 

transmission factor range 0.9291–0.9585 

refls. measured 21210 

Rint 0.0383 

mean σ(I)/I 0.0157 

θ range 3.02–26.36 

observed refls. 1608 

x, y (weighting scheme) 0.0336, 0.1928 

hydrogen refinement constr 

Flack parameter 1.4(16) 

refls in refinement 1723 

parameters 109 

restraints 0 

R(Fobs) 0.0310 

Rw(F2) 0.0761 

S 1.090 

shift/errormax 0.001 

max electron density/e Å−3 0.149 

min electron density/e Å−3 −0.152 

Absolute structure unknown, no anomalous scatterer. 
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Toxicity of different CN sources used for oxidative α-cyanations of 

tertiary amines 

 

Table 4.3. Toxicity of different CN sources used for oxidative α-cyanations of tertiary 

amines (in references 5, 7–9 of the main text) 

Compound LD50
a
 [mg·kg

–1
] Danger Pictograms

a
 

NaCN 1.67 (intramuscular, rabbits), 

4.3 (intraperitoneal, rats) 

4.8 (oral, rats) 

10.4 (dermal, rabbits) 

 

KCN 4 (intraperitoneal, rats), 

7.5 (oral, female rats), 

14.3 (dermal, rabbits) 

 

malononitrile 19 (oral, mice) 

 

acetone cyanohydrin 15.8 (dermal, rabbits) 

18.7 (oral, rats)  

ethyl cyanoformate  no data available 

 

trimethylsilyl cyanide  no data available 

 

trimethylsilyl azide
b
  no data available 

 

benzoyl cyanide 37.6 (oral, rats) 

 

benzyl cyanide 270 (oral, rats) 

270 (dermal, rabbits)  

   

potassium thiocyanate 854 (oral, rats) 

 

a According to the Globally Harmonized System of Classification and Labeling of 

Chemicals (GHS Classification) compounds with LD50 < 300 mg kg–1 are classified 

as toxic (data from MSDS sheets by Sigma-Aldrich, Steinheim, Germany, Dec. 12th, 

2014). b Trimethylsilyl azide (N source) and 1,2-dichloroethane (C source) were used 

as a combined source of CN, see ref 7ac of the main text. 
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5 

Direct Conversion of Tertiary N-Methyl Amines to N-Boc 

Protected Amines 

 

5.1 Introduction 

 

5.1.1 General 

 

The modification of single functional groups in complex molecules or building blocks 

is a well known and widely used concept in organic chemistry. To achieve selective 

reactions only at a certain functional group it is often necessary to introduce 

protecting groups. The introduction and subsequent removal of protecting groups is, 

therefore, an important aspect when planning a synthetic strategy.[1]   

Extensive research effort has been invested in the development of protecting groups 

applicable to nearly every type of functional groups, including amines, alcohols, 1,2-

diols, carbonyl groups, carboxylic acids, alkenes and alkynes, amongst others.[1,2] 

The given possibility to get protection for most functional groups goes hand in hand 

with an abundance of protecting groups available, such as esters, benzyl protecting 

groups, organo silyl compounds, thioacetals, phosphates, alkyl ethers, alcoxyalkyl 

ethers, amongst others.[2] For an useful application in organic synthesis, with respect 

to ease of handling, simplicity, yield and cost of the process, a protecting group has 

to be choosen carefully.[1] Therefore the implementation and removal of protecting 

groups is still an important area of research.[3]  
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5.1.2 The Boc Protecting Group 

 

The protection and deprotection of amino groups are important issues in organic 

synthesis.[1] The amino functionality is present in a wide range of compounds and 

hence the protection of amines is frequently needed in synthetic and especially 

medicinal chemistry.[2] The most simple method for the protection of amines is 

acylation.[4]  But harsh reaction conditions are required to remove the protecting 

group to regain the amine functionality, which makes this method not suitable to 

handle multifunctional compounds.[4] Therefore, a protecting group that can be 

cleaved under mild reaction conditions is required. A very useful protecting group is 

the tert-butoxycarbonyl (Boc) group[1] introduced via commercially available di-tert-

butyl-dicarbonate (Boc)2O.[5] The Boc protecting group is suitable due to its stability 

under basic conditions as well as towards nucleophilic attacks and its removal by 

acid.[6]  

A standard procedure for the introduction and removal of the Boc protecting group is 

given in Scheme 5.1. For the initial deprotonation of the amine 4-(N,N-

dimethylamino)pyridine (DMAP)[7] or inorganic bases[8] are frequently used (Scheme 

5.1a). 
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Scheme 5.1: Protection and deprotection of amines employing the Boc Protecting 

group.[1c]  

 

Major disadvantages of this procedure are the long reaction time, toxic reagents and 

the formation of unwanted side products, such as isocyanates,[9] ureas,[7] and N,N-di-

Boc[10] derivatives. 

A strategy to avoid drawbacks occurring in base catalyzed Boc protections is the use 

of Lewis acids. Sharma and co-workers reported the ZrCl4 mediated introduction of a 

Boc protecting group in 2004 (Scheme 5.2).[11] 

 

 

Scheme 5.2: ZrCl4 mediated Boc protection of amines.[11] 

 

This method avoids above mentioned disadvantages, but still ZrCl4 is highly moisture 

sensitive and liberates fumes of hydrochloric acid. Other Lewis acids have been 
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employed for the Boc protection of amines, including LiClO4,
[12] HClO4,

[13] Zn(ClO4)2 • 

6 H2O,[14] La(NO3)3 • 6H2O
[15] and Cu(BF4)2

[16]. These reactions suffer from limited 

applicability and several disadvantages. Perchlorates are highly explosive 

compounds, most Lewis acids are deactivated by amines and vice versa, more than 

stoichiometric amounts are needed.[17] Further research has led to more suitable 

reagents for the implementation of the Boc protecting group, such as HClO4/SiO2,
[13] 

Montmorillonite K10 or KSF,[18] I2,
[19] H3PW12O40,

[20] HFIP,[21] sulfamic acid,[22] 

Amberlyst 15,[23] and H2O
[24]. Employing most of these reagents is accompanied with 

certain difficulties and limitations, such as high costs, toxicity, corrosiveness, limited 

applications, deprotection of other protecting groups, and difficulties in the isolation 

of products.[2c] 

The use of thiourea,[25a] thioglycoluril[25b] and guanidine hydrochloride[25c] in catalytic 

amounts published by Khaksar and co-workers showed an alternative pathway for 

metal free implementation of Boc protecting groups (Scheme 5.3). 
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Scheme 5.3: Metal free Boc protection of amines using catalytic amounts of 

guanidine hydrochloride.[25c] 

 

In 2012, Dighe and Jadhav published a microwave assisted Boc protection for 

amines, which does not require any reagent, catalyst, or solvent (Scheme 5.4).[26] 
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Scheme 5.4: Microwave assisted Boc protection of amines.[26] MWI, microwave 

irradiation. 

 

However, the standard reagent for implementing the Boc protecting group, di-tert-

butyl dicarbonate is a highly toxic compound and requires a laborious and dangerous 

synthesis. Another drawback of the use of Boc2O is the utilization of just one Boc 

protecting group, while two tert-butoxycarbonyl fragments need to be employed. 

Scheme 5.5 describes a gram scale synthesis of Boc2O.[27] 

 

 

Scheme 5.5: Gram scale synthesis of Boc2O.[27] 

 

To avoid the use of highly toxic compounds and the production of waste, alternatives 

have been developed to introduce Boc protecting groups in a more economic way.  

In 1977 Jampel and Wakselmann reported the Boc protection of amines by using 1-

Boc-4-(dimethylamino)pyridinium tetrafluoroborate (Scheme 5.6).[28] A drawback is 
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the need of Boc2O to synthesize 1-Boc-4-(dimethylamino)pyridinium 

tetrafluoroborate.[28] 

 

 

Scheme 5.6: Boc protection of amines by using 1-Boc-4-(dimethylamino)pyridinium 

tetrafluoroborate.[28] 

 

 

Nine years later Barcelo and co-workers developed a method to introduce the Boc 

protecting group via 1-chloralkyl carbonates (Scheme 5.7).[29] 

 

 

Scheme 5.7: Introduction of the Boc protecting group via 1-chloralkyl carbonates.[29] 

 

With respect to constant research efforts on the use of protecting groups in organic 

synthesis, there is room for further improvement. Especially replacing Boc2O by less 

toxic and more sustainable reagents for the introduction of 

Boc protecting groups can be a suitable field of activity. 
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5.1.3 Transforming N-methyl groups into amido functionalities 

 

The transformation of N-methyl groups into amido functionalities is a common 

synthetic strategy in medicinal chemistry.[30] A standard protocol to obtain 

carbamates from tertiary methyl amines has been developed by the Olofson 

group.[31] This method is consisting of a two-steps dealkylation reaction, including 

substitution of the N-methyl group by employing α-chloroethyl chloroformate (ACE-

Cl) (Scheme  5.8b).[31a] The use of chloroformate esters was established as a more 

efficient and versatile alternative compared to the dealkylation of tertiary amines with 

cyanogen bromide.[32] However, most chloroformate esters are highly toxic 

compounds and the preparation of carbamates from tertiary methyl amines still 

needs an additional third synthetic step. 

Equipping tropinone with a Boc protecting group via demethylation by ACE-Cl is 

described by Gilbert and co-workers (Scheme 5.8a).[30a] 

 

 

Scheme 5.8: Introduction of a Boc protecting group via demethylation of 

tropinone.[30a,31a] 
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5.2 Results and discussion 

 

In our previous work, we described potassium thiocyanate as source of cyanide for 

the oxidative α-cyanation of tertiary amines.[33] The scope of this method included 

the successful cyanation of tropine (1a) and tropinone (1b). To our surprise, the 

reaction of 1a and potassium thiocyanate furnished not only the expected 2-(8-

azabicyclo[3.2.1]octan-8-yl)acetonitrile (2a) but also tert-butyl 8-azabicyclo[3.2.1]oct- 

ane-8-carboxylate (3a) in 34% yield as a side product (Scheme 5.10 A). Employing 

1b as the substrate, 2b could be obtained in 87% yield, whereas the Boc protected 

tropinone 3b was only generated in 10% yield (Scheme 5.9 B). 

 

 

Scheme 5.9: A) Reaction of 1a with KSCN and tBuOOH. B) Reaction of 1b with 

KSCN and tBuOOH. 

 

With gaining a reasonable yield of 3a we were encouraged to undertake further 

investigations of this very simple Boc protection of an amine. Optimizing the method 

makes it necessary to completely reverse the selectivity of the reaction. Beginning 
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from the conversion of 1b with a high selectivity for the cyanation product 2b 

(Scheme 5.9 B), the method underwent further improvement.  

Decreasing the excess of potassium thiocyanate as the cyanide source from 4 

equivalents to 0.5 equivalents showed almost no impact to the selectivity of the 

reaction. An increase of the oxidizing agent tert-butylhydroperoxide from 4 to 6 

equivalents was accompanied by a strong increase of the selectivity of the reaction 

towards product 3b, but the cyanation still gave the major product. Applying higher 

temperatures moved the selectivity of the reaction slightly in the desired direction, 

but was not sufficient to establish 3b as the major product. Switching the solvent 

from MeCN to a MeCN/water mixture combined with a silght increase of the 

potassium thiocyanate to 0.7 equivalents resulted in a one-to-one product ratio. 

Changing the solvent to water and further increasing the reaction temperature gave 

the Boc protected tropinone 3b as the major product, still accompanied by the cyano 

product 2b. Employing a temperature gradient from 90 ºC to ambient temperature 

finally gave 3b in 74% yield, accompanied by formation of 2b in less than 10% yield. 

      

As summarized in Scheme 5.10 a series of tertiary methyl amines 1 underwent 

selective oxidation to form Boc protected 3a-g. The conversion of 1d-f afforded 

adjustment of the reaction conditions; Boc protection could be achieved, however, by 

using 0.5 equivalents of KSCN and constant heating to 80 ºC to give 3d-f in 

moderate yields. In a gram scale synthesis, N-methyl-piperidine (1d) reacted with 

tBuOOH to give 1.2 g of 3d in 69% yield. Transformation of N,N-

dimethylbenzylamine (1g) took place with 0.3 eqivalents of KSCN and constant 

heating to 80 ºC to avoid the formation of cyanated 1g as the major product. The 

Boc protected 3g was obtained a poor yield of 14%.  
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Scheme 5.10:  KSCN mediated Boc protection of tertiary methyl amines. aReaction 

conditions: amine (1 mmol), KSCN (0.7 equiv.), 70% aq tBuOOH (6 equiv.), water (2 

mL), 90 ºC↓, yields refer to isolated products after purification. bWith 0.5 equiv. 

KSCN and 80 ºC, in case of 3d, 50 mmol of the amine were used. cWith 0.3 equiv. 

KSCN and 80 ºC. 

 

A total amount of further 18 tertiary methyl amines have been employed as 

substrates for the conversion of N-methyl- into Boc protecting groups, but did not 

undergo the desired transformation. 

 

5.3 Conclusion 

 

In summary, the direct oxidative conversion of N-methyl groups into Boc protecting 

groups at tertiary amines may illustrate a contribution for the implementation of Boc 

protecting groups into tertiary amines. However, the method suffers from low 

functional group tolerance and limited substrate scope.   
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5.4 Experimental section 

 

All reactions were carried out under air atmosphere. 1H (300 or 400 MHz) and 13C 

(75.5, 101 or 151 MHz) NMR spectra of solutions in CDCl3 were recorded on 300, 

400 or 600 MHz NMR spectrometers. Chemical shifts are expressed in parts per 

million (ppm) downfield from tetramethylsilane and refer to the solvent signals (δH 

7.26 and δC 77.16).[34] Abbreviations for signal couplings are: s, singlet; d, doublet; t, 

triplet; q, quartet; m, multiplet. The numbers of attached hydrogen atoms (C, CH, 

CH2, or CH3) were derived from additional gHSQC data. HRMS was performed on a 

mass spectrometer with sector field detector.  

Potassium thiocyanate (99%) and aqueous tBuOOH (70 wt % tBuOOH in H2O) were 

purchased. 

Commercially available tertiary amines were used as received: 

Dimethyltetradecylamine (technical, ≥95%), cyclohexyldimethylamine (98%), 

tropinone (99%), tropane (98%), N,N,4-trimethylaniline (99%), 

dicyclohexylmethylamine (97%), N,N-dimethylbenzylamine (≥99%). 

 

Experimental procedure A 

 

KSCN (0.07 g, 0.7 mmol) and the tertiary amine (1.0 mmol) were dissolved in H2O (2 

mL). Then aqueous tBuOOH (70 wt % tBuOOH in H2O, 0.85 mL, 6.1 mmol) was 

added by syringe. The solution mixture was put on a pre heated oil bath  (90 °C) and 

was stirred for the indicated time without further heating. After allowing the reaction 

mixture to cool to room temperature, the suspension was poured on brine (20 mL), 

and extracted with CH2Cl2 (3 × 20 mL). The combined organic layers were dried over 
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MgSO4, and the solvent was removed under reduced pressure. The crude product 

was purified by column chromatography or distillation. 

 

 

Experimental procedure B 

 

KSCN (0.05 g, 0.5 mmol) and the tertiary amine (1.0 mmol) were dissolved in H2O (2 

mL). Then aqueous tBuOOH (70 wt % tBuOOH in H2O, 0.85 mL, 6.1 mmol) was 

added by syringe. The solution was stirred at 80 °C for the indicated time. After 

allowing the reaction mixture to cool to room temperature, the suspension was 

poured on brine (20 mL), and extracted with CH2Cl2 (3 × 20 mL). The combined 

organic layers were dried over MgSO4, and the solvent was removed under reduced 

pressure. The crude product was purified by column chromatography or distillation. 

 

 

tert-Butyl 8-azabicyclo[3.2.1]octane-8-carboxylate (3a) 

 

Following General Procedure A, tropane 1a (0.14 mL, 1.0 mmol) reacted with KSCN 

and aq. tBuOOH for 2 h. The crude product was purified by column chromatography 

(SiO2, pentane/EtOAc = 12:1) to give tert-butyl 8-azabicyclo[3.2.1]octane-8-

carboxylate  3a (36.6 mg, 17 %) as a colorless liquid. 

 

1H-NMR (600 MHz, CDCl3): δ = 4.12 (m, 2 H), 1.92 (m, 2 H), 1.69 (m, 1 H), 1.63 (m, 

1 H), 1.58 (m, 2 H), 1.45 (s, 9 H), 1.38 (m, 2 H), 1.24 (m, 2 H) ppm.  

13C-NMR (151 MHz, CDCl3): δ = 153.4, 78.8, 54.2, 31.0, 30.3, 28.5, 16.8 ppm. 

HRMS (EI, 70 eV) m/z: [M]+· Calcd for [C12H19NO3]
+· 225.1365; Found 225.1359. 
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tert-Butyl 3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (3b) 

 

Following General Procedure A, tropanone 1b (0.14 g, 1.0 mmol) reacted with KSCN 

and aq tBuOOH for 2 h. The crude product was purified by column chromatography 

(SiO2, pentane/EtOAc = 10:1) to give tert-butyl 8-azabicyclo[3.2.1]octane-8-

carboxylate  3b (167 mg, 74 %) as a colorless liquid. 

 

1H-NMR (600 MHz, CDCl3): δ = 4.46 (m, 2 H), 2.65 (m, 2 H), 2.33 (d, J = 15.8 Hz, 

2H),2.08 (s, 2 H), 1.69-1.62 (m, 2 H), 1.49 (s, 9 H) ppm.  

13C-NMR (151 MHz, CDCl3): δ = 208.5, 153.3, 80.4, 53.3, 49.1, 29.5, 28.6 ppm. 

HRMS (EI, 70 eV) m/z: [M]+· Calcd for [C12H19NO3]
+· 225.1365; Found 225.1359. 

 

tert-Butyl cyclohexyl(methyl)carbamate (3c) 

 

Following General Procedure B, N,N-dimethylcyclohexanamine 1c (0.22 mL, 1.0 

mmol) reacted with KSCN and aq tBuOOH for 3 h. The crude product was purified 

by column chromatography (SiO2, pentane/Et2O = 15:1) to give tert-butyl 

cyclohexyl(methyl)carbamate 3c (160 mg, 75 %) as a colorless liquid. 

 

1H-NMR (300 MHz, CDCl3): δ = 2.70 (s, 3 H), 1.77 (m, 4 H), 1.65 (m, 5 H), 1.45 (s, 9 

H), 1.33 (m, 2 H) ppm.  

13C-NMR (75 MHz, CDCl3): δ = 155.7, 79.0, 68.2, 30.3, 28.5, 28.2, 25.8, 25.6 ppm. 

HRMS (EI, 70 eV) m/z: [M]+· Calcd for [C12H23NO2]
+· 213.1729; Found 213.1730. 
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tert-Butyl piperidine-1-carboxylate (3d) 

 

KSCN (2.5 g, 25 mmol) and N-methylpiperidine 1d (6.5 mL, 50 mmol) were 

dissolved in H2O (100 mL). Then aqueous tBuOOH (70 wt % tBuOOH in H2O, 42.5 

mL, 0.300 mol) was added by syringe. The solution was stirred at 80 °C for 4 h. After 

allowing the reaction mixture to cool to room temperature, the suspension was 

poured on brine (100 mL), and extracted with CH2Cl2 (3 × 50 mL). The combined 

organic layers were dried over MgSO4, and the solvent was removed under reduced 

pressure. The crude product was purified by Kugelrohr distillation (82 °C, 0.06 mbar) 

and column chromatography (SiO2, pentane/Et2O = 15:1) to give tert-butyl-

piperidine-1-carboxylate 3d (6.8 g, 69 %) as a colorless liquid. 

 

1H-NMR (400 MHz, CDCl3): δ = 3.29 (m, 4 H), 1.50 (m, 2 H), 1.44 (m, 4 H), 1.39 (s, 9 

H) ppm. 

13C-NMR (101 MHz, CDCl3): δ = 154.8, 79.0, 44.5, 28.4, 25.7, 24.4 ppm. 

HRMS (EI, 70eV) m/z: [M]+· Calcd for [C10H19NO2]
+· 185.1416; Found 185.1409. 

 

tert-Butyl dipentylcarbamate (3e) 

 

Following General Procedure B, N-methyl-N-pentylpentan-1-amine 1e (0.22 mL, 1.0 

mmol) reacted with KSCN and aq tBuOOH for 3 h. The crude product was purified 

by column chromatography (SiO2, pentane/EtOAc = 40:1, pentane/EtOAc = 70:1) to 

give tert-butyl dipentylcarbamate 3e (97 mg, 28 %) as a colorless liquid. 

 

1H-NMR (300 MHz, CDCl3): δ = 2.31 (t, J = 7.5 Hz, 4 H), 1.57 (m, 2 H), 1.44 (s, 9 H), 

1.29 (m, 2 H), 1.27 (m, 2 H), 0.90 (m, 6 H) ppm.  
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13C-NMR (75 MHz, CDCl3): δ = 152.6, 78.8, 47.0, 34.09, 28.5, 26.1, 22.3, 14.0 ppm. 

HRMS (EI, 70 eV) m/z: [M]+· Calcd for [C15H31NO2]
+· 257.2355; Found 257.2341. 

 

tert-Butyl butyl(isopropyl)carbamate (3f) 

 

Following General Procedure B, N-isopropyl-N-methylbutan-1-amine 1f (0.13 mg, 

1.0 mmol) reacted with KSCN and aq tBuOOH for 2 h. The crude product was 

purified by column chromatography (SiO2, pentane/EtOAc = 35:1) to give tert-butyl 

butyl(isopropyl)carbamate  3f (45 mg, 14 %) as a colorless liquid. 

 

1H-NMR (400 MHz, CDCl3): δ = 4.05 (m, 1 H), 2.95 (m, 2 H), 1.49 (m, 2 H), 1.39 (s, 9 

H), 1.19 (m, 2 H), 1.05 (m, 6 H), 0.85 (t, J = 7.4 Hz, 3 H) ppm.  

13C-NMR (101 MHz, CDCl3): δ = 153.1, 79.7, 51.0, 28.6, 28.4, 26.4, 20.4, 13.9 ppm. 

HRMS (EI, 70 eV) m/z: [M]+· Calcd for [C12H25NO2]
+· 215.1885; Found 215.1862. 

 

tert-Butyl benzyl(isopropyl)carbamate (3g) 

 

Following General Procedure B, N-benzyl-N-methylpropan-2-amine 1g (0.22 mL, 1.0 

mmol) reacted with KSCN and aq tBuOOH for 3 h. The crude product was purified 

by column chromatography (SiO2, pentane/Et2O = 15:1) to give tert-butyl-

benzyl(isopropyl)carbamate 3g (60 mg, 14 %) as a colorless liquid. 

 

1H-NMR (400 MHz, CDCl3): δ = 7.31 – 7.05 (m, 5 H), 4.35 (s, 3 H), 2.76 (s, 2 H), 

1.41 (s, 9 H) ppm. 

13C-NMR (101 MHz, CDCl3): δ = 155.1, 138.1, 128.5, 127.2, 79.7, 53.4, 33.9, 28.5 

ppm. 
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HRMS (EI, 70 eV) m/z: [M]+· Calcd for [C13H19NO2]
+· 221.1416; Found 221.1438. 

 

N-Methyl-N-pentylpentan-1-amine (1e) 

 

Substrate 1e was synthesized according to a literature procedure:[35] Dipentylamine 

(6.5 mL, 32 mmol), glacial acetic acid (7.4 mL, 128 mmol, 4 equiv.), formaldehyde 

(37% in H2O, 3.6 mL, 48 mmol, 1.5 equiv.) and zinc dust (4.2 g, 64 mmol, 2 eqiv.) 

were dissolved in 64 mL H2O. The reaction mixture was stirred for 21 h at 50 ºC. 

After allowing the reaction mixture to cool to room temperature, the suspension was 

poured on saturated Na2CO3 solution (50 mL), and extracted with ethylacetate (3 × 

50 mL). The combined organic layers were dried over MgSO4, and the solvent was 

removed under reduced pressure. The crude product was purified by distillation to 

give N-methyl-N-pentylpentan-1-amine 1e (3.7 g, 67%) as a colorless liquid.  

 

1H-NMR (200 MHz, CDCl3): δ = 2.35 (t, J = 7.0 Hz, 4 H), 2.22 (s, 3 H), 1.44 (m, 4 H), 

1.21 (m, 8 H), 0.83 (t, J = 6.7 Hz, 6 H) ppm. 

 

N-Isopropyl-N-methylbutan-1-amine (1f) 

 

Substrate 1e was synthesized according to a literature procedure:[35] N-

methylpropan-2-amine (4.6 mL, 44.2 mmol), butylchloride (5.6 mL, 53.1 mmol, 1.2 

eqiv.) and Na2CO3 (49 g, 354 mmol, 8 eqiv.)  were dissolved in 70 mL of a 

MeCN/H2O 1:1 solution. After refluxing for 2.5 h, the reaction mixture was poured on 

45 mL saturated Na2CO3 solution, 100 mL H2O were added and the suspension was 

extracted with CH2Cl2 (3 × 50 mL). The combined organic layers were washed with 

H2O (3 × 200 mL) dried over MgSO4, and the solvent was removed under reduced 
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pressure to give N-isopropyl-N-methylbutan-1-amine 1f (0.68 g, 12%) as a slightly 

yellow liquid. 

 

1H NMR (200 MHz, CDCl3) δ = 2.89-2.73 (m, 1H), 2.39-2.28 (m, 2H), 1.99 (s, 3H), 

1.39 (m, 4H), 0.99 (d, J = 6.6 Hz, 6H), 0.90 (t, J = 7.1 Hz, 3H) ppm. 
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