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Zusammenfassung

Aktive Systeme zeigen neuartige Physik, deren Verhalten von der gewohnten Gleichgewichts-
physik in oft überraschender Weise abweicht. Ein solches Beispiel sind getriebene Teilchen, die
durch Stöße ihre Laufrichtung ausrichten. Ist die Dichte solcher Teilchen hoch genug, ordnet
sich plötzlich das Durcheinander der wirr umlaufenden Teilchen, und die Teilchen beginnen
kollektiv in eine zufällige Richtung zu laufen. Zu diesem als Vicsek-Modell bekannten System
gibt es inzwischen eine experimentelle Verwirklichung im sogenannten Motility Assay — ge-
nau genommen weiß man aber nicht wirklich, ob es sich dabei um analoge Systeme handelt
oder lediglich um ähnliche Phänomenologie.

Ziel des ersten Teils dieser Arbeit war es daher, ein realistischeres Modell des Motility As-
says zu entwickeln. Dazu bedienten wir uns des etablierten Modells der wurmartigen Kette
um längliche Filamente darzustellen, und benutzten eine teilchen-basierte Fluid-Simulation
um die hydrodynamische Wechselwirkung zwischen den Filamenten zu modellieren. Diese Fil-
amente wurden nun mit einer konstanten Geschwindigkeit getrieben. Ein großer Vorteil dieses
Modells ist, dass die hydrodynamischen Wechselwirkungen ausgeschaltet werden können, so-
dass der Einfluss der Hydrodynamik direkt bestimmt werden kann.
Um dieses Modell einordnen zu können, wurden als erstes einzelne Filamente und binäre Stöße
zwischen Filamenten untersucht. Dabei bestätigte sich unsere Vermutung, dass die Filamen-
te einen persistenten Zufallspfad beschreiben und bei Stößen im Mittel ausgerichtet werden.
Dieser Effekt ist ausgeprägter, wenn die Filamente auch durch Hydrodynamik wechselwirken.
Sodann untersuchten wir zweidimensionale Systeme ohne Hydrodynamik mit bis zu 30 000
Filamenten, die aus einem zufälligen Anfangszustand starteten. Bei niedrigen Dichten bleibt
dieser chaotische Zustand auch bestehen, aber sobald die Dichte einen kritischen Schwellwert
übersteigt, kommt es zu einer Phasenseparation in eine geordnete Hochdichte-Region und eine
ungeordnete Niedrigdichte-Region. Um diesen Phasenübergang zu charakterisieren, führten
wir verschiedenste Observablen wie die gemittelte Ausrichtung, die Stärke der Dichteschwan-
kungen, die Dichte der Gasphase und die Größenverteilung der Filamentansammlungen ein.
Analog dazu untersuchten wir dieselben Systeme mit Hydrodynamik, und zwar zunächst in
zwei Dimensionen. Überraschenderweise ändert sich die Phänomenologie durch die hydrody-
namische Wechselwirkung grundlegend. Unabhängig von der Dichte fanden wir ausschließlich
weitgehend homogene und geordnete Zustände, sodass der Phasenübergang des “trockenen”
Systems vollkommen ausbleibt.
Schließlich gingen wir zu einem dreidimensionalen Fluid über, während die Filamente auf zwei
Dimensionen beschränkt blieben. Hier finden wir wiederum ähnlich zum trockenen System
eine Aufteilung in eine Hochdichte- sowie Niedrigdichte-Region.

Im zweiten Teil untersuchten wir ebenfalls ein aktives System, allerdings völlig anderer Na-
tur: Aktives Schwimmen durch eine zähe Flüssigkeit, wie es für Bakterien in Wasser der Fall
ist. Diese können, anders als wir, nicht durch Paddeln schwimmen, sondern müssen sich regel-
recht in die Flüssigkeit hineinschrauben um vom Fleck zu kommen. Bakterien wie E. Coli er-
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reichen dabei eine beachtliche Effizienz, weshalb ihr Aufbau für künstliche Mikro-Schwimmer
herangezogen werden kann. In einer Kollaboration mit der Gruppe von Prof. Tim Liedl ha-
ben wir versucht, diesen Schwimmmechanismus mit Hilfe von künstlichen DNA-Flagellen
zu imitieren. Diese experimentelle Arbeit habe ich durch eine analytische Untersuchung der
Schwimmgeschwindigkeit unterstützt.

Im Experiment werden mehrere DNA-Flagellen an einem magnetischen Kügelchen chemisch
befestigt, das über ein externes Magnetfeld rotiert wird. Dabei verwickeln sich die unterschied-
lich langen DNA-Flagellen zu einem einzelnen Bündel, das somit einen einzelnen Fortsatz bil-
det. Da dieses Bündel bei der Drehung durch die Flüssigkeit helixartig verbogen wird, bewegt
sich der künstliche Schwimmer vorwärts. Ziel der analytischen Rechnung war es zunächst, die
genaue Form dieses Bündels zu bestimmen. Vorarbeiten auf diesem Gebiet existieren zwar
für ähnliche Fälle, nicht aber für diesen Schwimmer, da das Bündel wegen der unterschied-
lich langen Flagellen eine längenabhängige Biegesteifigkeit besitzt. Aus gegebener Bündelform
war es schließlich möglich, eine Vorhersage über die Schwimmgeschwindigkeit des künstlichen
Schwimmers zu treffen. Trotz etlicher Näherungen und Fehlerquellen stimmen unsere Vorher-
sagen bis auf einen überraschend kleinen Faktor zwei mit dem Experiment überein. Unser
Ansatz erlaubte es uns, die Schwimmgeschwindigkeit auf verschiedenste Parameter wie die
Größe des Magnetkügelchens, die Anzahl der gebundenen DNA-Flagellen, oder deren Län-
ge zu untersuchen. Erstaunlich hierbei ist, dass eine abnehmende Biegesteifigkeit so gut wie
im gesamten untersuchten Parameterbereich die Schwimmgeschwindigkeit gegenüber einem
vergleichbaren Schwimmer mit konstanter Biegesteifigkeit erhöht.



Synopsis

Active systems show novel physics with phenomena that deviate from familiar equilibrium
physics in surprising ways. Such an example are driven particles which align locally. Above a
certain density threshold, the chaotic movement of the particles suddenly becomes an ordered
collective motion in a randomly chosen direction. This so-called Vicsek model has been
realized by the actomyosin motility assay — however, it is under dispute whether model and
experiment show indeed identical physics or just have a similar phenomenology.

Therefore, the goal of the first part of this work is to develop a more realistic model of the
motility assay. To this end, we used the well-established worm-like chain to model the fila-
ments of the motility assay and a particle-based fluid simulation to model the hydrodynamic
interaction between the filaments. These filaments were then driven at constant speed. A big
advantage of this model is its capability to selectively switch off hydrodynamic interactions,
so that the effect of hydrodynamics can be determined.
In order to characterize this model, we first examined single filaments and binary collisions.
Thereby, we were able to confirm our presumption that the filaments describe a persistent
random walk and get, on average, aligned in collisions. This alignment was stronger if hydro-
dynamic interactions were enabled.
Next, we considered two-dimensional systems of up to 30 000 filaments and random initial
configuration without hydrodynamics. At low filament densities, this mostly chaotic state
prevailed, but as soon as the density exceeded a critical threshold, we found a phase sepa-
ration into an ordered high-density and a disordered low-density phase. To characterize this
phase transition, we looked at various observables such as the average filament direction, the
strength of density fluctuations, the density of the gas phase, and the clustering behavior of
the filaments.
In an analogous way, we also examined the same systems with hydrodynamic interactions,
beginning with a two-dimensional fluid. Surprisingly, the hydrodynamic interactions fun-
damentally changed the observed phenomenology. Regardless of the filament density, we
exclusively found mostly homogeneous and ordered states so that the phase transition of the
“dry” system was completely gone.
Finally, we considered a three-dimensional fluid while keeping the filaments constrained to a
plane. Such systems behaved similarly to the dry case and had the same separation into a
high- and a low-density region.

In the second part of this thesis, we examined another, yet completely different active system:
active swimming through a viscous fluid, as it is the case for bacteria in water. In contrast to
humans, bacteria cannot swim by thrusting the surrounding water, but literally have to screw
into the fluid in order to move. Bacteria such as E. coli have evolved to remarkably efficient
swimmers. This is why their structure has been a blueprint for artificial microswimmers. In
a collaboration with the group of Prof. Tim Liedl, we tried to imitate the bacterial swimming
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mechanism using artificial DNA-flagella. I contributed to this project by an analysis of the
swimming speed of these artificial swimmers.

In the experiment, multiple DNA-flagella are chemically bound to a magnetic bead, which
can be rotated via an external magnetic field. Thereby, the DNA-flagella entangle to a flagel-
lar bundle, which thus can be seen as a single appendage. Because the fluid drag deforms the
bundle into a helical shape, the swimmer can move forward. The first aim of my analytical
work was to determine the exact shape of this bundle. Due to a length distribution in the
flagella, the flagellar bundle must have a length-dependent bending stiffness. Previous work
exists for similar cases, however not for cases with varying bending stiffnesses. From a given
bundle shape it is finally possible to calculate the swimming speed of our artificial swimmer.
Despite several approximations and measurement errors, our theoretical predictions agree re-
markably well with the measured swimming speeds. Further, our calculation made it possible
to test the swimming speeds for various parameters such as the size of the magnetic bead, the
number of attached DNA-flagella, or their length. Interestingly enough, a decreasing bending
stiffness improved the swimming speed in virtually the full parameter space as compared to
a similar swimmer with constant bending stiffness.
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Part I

Motility Assay





1 Introduction to active systems

“For any non-zero temperature, there is no long-range order for continuous symmetries in two
dimensions”, states the Mermin-Wagner theorem [1, 2]. And yet, Vicsek et al. came up with
a model that seemingly violates it [3–5] — Something got to be wrong.

The crucial detail we were ignoring is that the Mermin-Wagner theorem only applies to
equilibrium physics, whereas the Vicsek model is by construction out of equilibrium: It is
an agent-based model where particles propel at a constant speed and align their direction of
movement with all neighbors in their vicinity up to some angular noise [3]. In this model,
above a certain density threshold all particles start to collectively move into the same direction.
This first glimpse of exciting new non-equilibrium physics has sparked intensive research in
active systems [6–9]. The defining feature of an active system is that a local energy input
constantly drives the system out of equilibrium [8].

For experiments, this local input of energy is the major challenge. Exploiting the biochemical
machinery of cells has facilitated the design of experiments with active constituents on a very
small scale [10–13]. For example, in the actomyosin motility assay myosin motors are attached
to a surface and actively push actin filaments whereby consuming ATP [10]. At high enough
actin concentrations, the actin filaments form high-densitiy clusters or moving bands where all
filaments are aligned. An analogous setup to the actomyosin motility assay was later realized
with dynein motors and microtubules, although with a rather different phenomenology [11,
14]. Beside organic motor proteins, also inorganic catalysts have been employed to convert
chemical into mechanical energy, for example platinum covered Janus particles whose activity
drives an anomalous sedimentation behavior [15, 16]. Another, completely different driving
mechanism uses the spontaneous rotation of insulating spheres in a fluid due to an external
electric field (Quincke rotation) which leads to collective motion at high densities [17, 18].
Maybe less sophisticated, but nevertheless quite effective are experiments where inert particles
sit on a plate that is periodically shaken and thus directly transfers mechanical energy onto
every single particle [19–22]. Beside these inanimate setups, there is also a large number of
experiments where living bacteria act as the energy source [23–26]. Such dense suspensions
of bacteria have been shown to exhibit turbulent flows even in the regime of low Reynolds
numbers [25, 27].

Beside the experimental progress in active systems, theory has been quite successful in
explaining some of the observed phenomenology. For example, Toner and Tu coarse-grained
the Vicsek model to obtain an extended Navier-Stokes equation with further terms that are
allowed by the symmetries of the model [4, 28]. This generalized hydrodynamic equation
for self-propelled particles predicted large density fluctuations in the Vicsek model and the
mechanism by which it overcomes the constraints of the Mermin-Wagner theorem [4, 5]. The
basic principle of this mechanism is that in an ordered state where the order parameter is
also a velocity, fluctuations advect the order parameter into the perpendicular direction so
that spin-waves are suppressed [29]. Unfortunately, the Toner-Tu equation falls short when
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it comes to the details of the Vicsek model, such as travelling density waves, or the nature
of the order-disorder phase transition [30, 31]. By construction, the mean-field treatment
by Toner and Tu predicts a continuous phase transition which was compatible with early
simulations by Vicsek [3]. However, further work has shown that this phase transition is in
fact a first order transition [30–32]. Nevertheless, phenomenological hydrodynamic equations
with to-be-determined parameters have been successfully employed to further active systems,
such as the cytoskeleton of cells [33], suspensions of bacteria [34, 35], and active fluids [27, 36].
Last but not least, other authors have demonstrated how microscopic collision rules can be
coarse-grained into hydrodynamic equations with the added benefit that the hydrodynamic
coefficients are no longer free parameters [37–39].

Beside experiment and theory, simulations have proven as a prolific playground to explore
new ideas. Due to the rich phenomenology of active systems, there is now a mere zoo of
models for active systems. The original model of Vicsek consisted solely of point particles
with a polar alignment and showed the above-mentioned global order along with large density
fluctuations [3, 40]. For an application to animal flocks, the Vicsek model was later extended
by an additional potential between the particles [32, 41]. As an effective model of self-
propelled polar rods, the Vicsek model was further modified by a nematic interaction among
the particles [42, 43], which in particular allowed to study the differences in morphology
caused by polar or nematic alignment rules [44]. Because nematic interactions are naturally
mediated by stiff needles, other works replaced the point-like particles of the Vicsek model
by self-propelled rods which lead to a modified swarming and clustering behavior [45–47].
Beyond the Vicsek-like types of models with related phenomenologies, other active systems
have been reported to show a motility induced phase separation [48–52], jamming of propelled
colloids [53, 54], or aggregation and collective swimming in squirmers [55, 56].

Now consider again the actomyosin motility assay [10]. This experiment has a density
threshold above which high-density clusters or bands of actin filaments form in which all fil-
aments point into the same direction. This phenomenology is strikingly similar to the Vicsek
model, which raises the question whether experiment and model are equivalent. There are
good reasons to assume that the filament interactions are in fact only short-ranged contact
interactions. For example, binary collisions of filaments are almost perfectly nematic as is ex-
pected from a rod-like contact interaction [57]. Besides, in the similar system of microtubules
the authors cannot find any hydrodynamic interactions prior to microtubule contact [11].
And yet, Schaller et al. explicitly show that hydrodynamic interactions between clusters of
filaments do matter, which implies also long-ranged interactions [58]. As Marchetti et al.
note, the connection between the actomyosin motility assay and the Vicsek model is therefore
only qualitative at the moment [8].

Another shortcoming of proposed models for the motility assay is that these models treat
the actin filaments either as point-like particles or as hard rods. However, actin filaments
are extended semi-flexible polymers that bend easily and are therefore neither point-like
nor hard rods [59–61]. The length of filaments may however play an important role in the
filament interactions, because it makes interactions of multiple filaments at once much more
common. The work of Suzuki et al. highlights this importance of non-binary collisions [57].
Furthermore, it was recently shown that the shape of active particles has a profound impact
on the phenomenology of active systems [62]. Along that line, one has to expect that a soft
semi-flexible filament behaves differently than a hard rod.
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Therefore, the existing models for the actomyosin motility assay lack long-ranged hydrody-
namic interactions and the flexibility of actin filaments. This work fills this gap by including
hydrodynamic interactions among the filaments and modelling the filaments as semi-flexible
worm-like chains.

Chapter 2 introduces our qualitative model of the motility assay, including an exhaustive
list of the relevant simulation parameters in section 2.2. The numerically interested reader
also finds implementation notes in section 2.3. The following chapter 3 then examines the
characteristics of single polymers and polymer collisions. Systems with a large number of
filaments without hydrodynamic interactions are treated in chapter 4, where we consider the
phenomenology first (4.1) and then quantify our findings (4.2). In a broadly analogous way,
chapter 5 considers systems with large numbers of filaments with hydrodynamic interactions.
In addition to the phenomenological overview (5.1) and the quantitative analysis (5.2), sec-
tion 5.3 also looks at extensions of the model. For a brief overview, the results of these
chapters are summarized in sections 4.3 and 5.4, respectively. Finally, we discuss our findings
in chapter 6.
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2 Model definition & methods

From a theorist’s point of view, the motility assay of actin filaments basically consists of
two components. First, there is the solution of actin filaments in a thin aqueous film that
sits between two coverslips. Second, the bottom coverslip is coated with a dense carpet of
molecular motors. Additives in the solution push the actin filaments onto this functionalized
surface, where the motor proteins attach to and thrust the filaments, whereby consuming
dissolved ATP from the solution. Because F-actin has directionality and the used motor
proteins only attach in one direction, the filaments start to move about on the lower coverslip
with a speed of about 4.8µm/s [10].

Inspired by this experiment, we develop a model system that captures the essential ingre-
dients of the motility assay. However, the aim is not to simulate the motility assay and try
to estimate the model parameters from experimental input. Instead, we aim for a model
sui generis which only behaves similar to the motility assay. Therefore we need to make
simplifying assumptions about the experiment.

First, we note that the actin filaments are pushed onto the coverslip where the myosin
motors keep the filaments bound. Consequently, we restrict the filament dynamics to a
two-dimensional plane close to the lower boundary. Going one step further, we may even
ignore the third dimension altogether and arrive at a strictly two-dimensional model. Because
hydrodynamics of two dimensions is rather peculiar, we will nevertheless consider both two-
and three-dimensional fluids.

In the experiment, the actin filaments have a size distribution from 2− 10µm [10, 57]. To
avoid spurious effects from a mixture of different actin lengths, we require all filaments to
have one and the same length L in our model. Furthermore, we assume that the filaments
have only one more property, the persistence length lp which quantifies their free dynamics.
Typically, the persistence length of free F-actin is about 16µm [59–61], although the effective
persistence length when pushed on the motility assay is somewhat smaller. For our model,
we therefore focus on the range of persistence length 1L ≤ lp ≤ 10L.

Next, we need to characterise the filament–motor interactions. The heavy meromyosin
motor protein, which is typically used in the motility assay, exerts a force of about 1.8 pN
during its active thrust [10, 63]. At a typical motor spacing of 42nm, the reasonable maximal
force is still orders of magnitude smaller than the forces where contour length of actin starts
to stretch [64]. Therefore, we can regard the filaments as inextensible. However, apart from
the resulting constant speed of the filaments (≈ 4.8µm/s), most details of the filament–
motor interactions remain unknown. In particular, there is no proper understanding of the
competition for motor proteins between the filaments, which also affects filament–filament
interactions. Due to our lack of knowledge, we make the very simplified assumption that
filaments always move at the constant speed v0. Furthermore, we assume that the trailing
part of the filament is locked onto the path of the head, so that the filaments move like a snake



8 2. Model definition & methods

Figure 2.1 | The filaments in the motility assay move like snakes on the myosin function-
alized surface. The cartoon shows a sample filament at subsequent time steps (from shaded
to solid black) with the velocity of some local segments indicated by red arrows. The active
motion of the filament drags the surrounding fluid along, as indicated by the blue arrows.
Another filament (lower right) gets dragged along by this flow field.

(see Fig. 2.1). This is justified by the fact that at every point in time usually several motors
are attached to any filament, so that transverse motions are impossible in the experiment.

Finally, the filament–filament interactions need to be specified. Because several myosin
motors are attached to each actin filament at every point in time, a filament remains bound
to the surface after its first contact. Consequently, the filaments all have similar distances to
the functionalized surface and therefore repel sterically. In other words, if the path of one
filament is blocked by another, its tip feels a repulsive force. However, a filament tip may also
escape into the third dimension and reattach on the other side of an obstacle. Beside this
steric interaction there is also the competition for motor proteins that may effectively cause
an aligning interaction between two filaments, especially in high-density regions. Because
we have no access to the microscopic details of filament interactions, we have to rely on
qualitative assumptions about the interaction. Therefore, we make the crude assumption that
all direct interactions amount to a potential barrier of strength Ub that blocks the location
of one filament for other filaments. The height of this potential barrier determines whether
filaments may cross each other. Note that the requirements of constant speed, snake-like
movement, and strict non-crossing cannot be fulfilled in all situations. In such lockdown
situations with high Ub, it is then most natural that the filaments stop moving.

Beside the direct interaction, there is also an indirect interaction among the filaments via the
viscous fluid in which the filaments are immersed. One moving filament drags the surrounding
fluid along, which in turn affects other filaments (see Fig. 2.1). The relative strength of both
interactions is unknown, so we take an arbitrary strength for the hydrodynamic interaction.
It is one of the major aims of this work, to determine the role of hydrodynamic interactions
for the patterns observed in the experiment.

The following sections of this chapter will describe in detail how we implemented this model.
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2.1 Modelling the filaments

As discussed above, the filaments are fully described by their length L and their persistence
length lp. A very successful standard model for polymers of defined length and persistence
length is the worm-like chain model, which is briefly summarised in the following [65–67].
For a contact interaction among filaments, we introduce an additional soft interaction with a
small range.

The worm-like chain model breaks the continuous contour of the polymer into a finite num-
ber of discrete bonds, which are represented by a sequence of beads with positions r1, . . . rm
of mass mb at the bond joints. A spring and bending potential between subsequent beads
ensure constant bond length and correct bending angle statistics, respectively. Of course,
the constant bond length cannot be perfectly achieved by a spring potential, however for
our purposes it is sufficient when the filaments have almost constant length. For such pur-
poses, it has become common practice to use a Finitely Extensible Nonlinear Elastic (FENE)
spring potential, which allows for larger integration steps than for example a harmonic spring
potential [68]. The FENE spring potential Us is given by

Us

(
ri, rj |R0, Rmax

)
=

−1
2 κsR

2
max · log

(
1−

((
rij −R0

)
/Rmax

)2)
rij < Rmax

∞ else,
(2.1)

where rij = |rj − ri|, R0 is the rest length of a bond, Rmax the maximal extensibility of a
bond, and κs the spring constant.

In addition to the spring potential, a bending potential between subsequent bonds ensures
the proper angle statistics for a given persistence length. The bending potential between two
bonds is given by

U^(ui, ui+1) =
−1

2
κb

ui · ui+1

ui ui+1
, (2.2)

where ui = ri+1 − ri is the connecting vector of two subsequent beads, ui its length, and
κb = kBT lp/R0 is the bending stiffness [65, 66]. The full potential of a non-interacting single
filament is therefore

U
(j)
free({r1, r2, . . . , rm}) =

m−1∑
i=1

Us

(
ri, ri+1|R0, Rmax

)
+

m−2∑
i=1

U^(ui, ui+1) , (2.3)

where ri is the position of the ith bead of filament j.

Finally, the filaments need to interact with other filaments in the simulation, which we model
by a potential barrier as discussed above. This potential barrier is only relevant for the front
end of the filament, because we want filaments to move in a snake-like fashion. Besides, after
piercing an obstacle the potential energy due to the barrier does not change when moving.
Consequently, the potential barrier is only applied to the tip bead r

(j)
1 of each filament. The

form of the potential is completely arbitrary, because the underlying microscopic mechanism
is unknown. Therefore, we choose a simple harmonic potential with a finite range,

U
(j)
b =

1

2
Ub

N∑
q=1, q 6=j

m∑
i=1

(
max

(
0, 1−

∣∣r(q)i − r
(j)
1

∣∣/rc))2

, (2.4)
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where we have used that all filaments have the same number of beads m, r(q)i is the position of
the ith bead of filament q, N is the number of filaments, and Ub is the height of the potential
barrier. The full potential of the set of N filaments is therefore

U =
N∑
j=1

(
U

(j)
free + U

(j)
b

)
. (2.5)

Given some valid starting configuration of the polymer with bead positions ri and momenta
pi, direct numerical integration of the equations of motion yields its time evolution.

So far, we have developed a numerical model for a collection of filaments as worm-like chains
that interact via a local repulsive potential. The propulsion mechanism and the hydrodynamic
interactions between the filaments are still missing. Because the propulsion mechanism is
deeply interwoven with the hydrodynamic interactions, both will be treated in the following
section.

2.1.1 Filaments in aqueous solution

Hydrodynamic interactions among a large number of filaments is a notoriously difficult prob-
lem, because the hydrodynamic interactions are long-ranged, so that every pair of filaments
interacts. A way out is to explicitly model the fluid and define mutual interactions of the
fluid on the filaments and vice versa. Thereby, the time-consuming pairwise interactions of
filaments can be saved, but on the other hand one has the added complexity of dealing with
the fluid. One way to efficiently model the fluid is via Multiparticle-Collision dynamics, which
we briefly summarise below.

Multiparticle-Collision dynamics The Multiparticle Collision dynamics (MPC) is a particle-
based simulation method that naturally incorporates thermal fluctuations and can naturally
embed worm-like chains [69]. Because thermal noise is an important factor in the dynamics
of actin in the motility assay, the thermal noise in the simulation is actually an advantage of
the MPC method. In the MPC method, the fluid is represented by an ideal gas of particles,
where every particle represents a small fluid package. Each fluid package has the same mass1

mf , a position ri, and a momentum pi. The goal is to update the positions and momenta of
the particles in such a way that hydrodynamic behavior emerges on long time- and length-
scales [69, 70].

The MPC algorithm updates momenta and positions in two steps: first, a simple streaming
step where the fluid particles drift freely for a constant period of time hMPC . Step two is
the crucial step of the MPC algorithm and updates the momenta of the fluid particles (see
Fig. 2.2). Interactions among the fluid particles therefore only happen at discrete points in
time. For the MPC interaction, the simulation volume is first partitioned into cubic cells of
edge length a. It is important to shift this grid of virtual cells by a random displacement
∆ran

t in every time step, otherwise the fluid is not Galilean-invariant [71]. The fluid particles
are then assigned to the fluid cell cijk by their position, i.e. if

b · a ≤ rβ +∆ran
t,β < (b+ 1) · a ∀(b, β) ∈ {(i, x), (j, y), (k, z)} . (2.6)

1There are variants of MPC with fluid particles of different mass, for our purpose this is however not necessary.



2.1 Modelling the filaments 11

Drift phase Collision phase

Figure 2.2 | Illustration of the two steps of the Multiparticle Collision (MPC) algorithm.
Left: In the drift phase all fluid particles stream force-free from their current position (red
dots) to their new position (blue circles) according to their velocity (black arrows). Right: In
the Collision phase the simulation volume is subdivided into equal-sized cells (dotted lines),
and each cell is processed independently of all other cells. For example, in the center cell
the old momenta (red arrows) are updated with new momenta (blue arrows) while keeping
the center-of-mass momentum of the cell constant (green arrow).

All fluid particles in one cell then collectively interact with each other, hence the name
Multiparticle Collision Dynamics. As long as the collective interaction increases the entropy of
the particles, and locally respects the conserved quantities, it is guaranteed that hydrodynamic
behavior emerges on long time- and length-scales [69, 70]. For example, the conservation of
kinetic energy leads to the diffusion of heat, the conservation momentum leads to streaming
modes, and angular momentum conservation leads to circular modes.

For our purpose, not every conserved quantity is equally important. For example, the myosin
motors of the motility assay constantly consume ATP and actively pull the filaments through
the fluid, whereby locally releasing thermal energy into the fluid. In the experiment this
energy is balanced by an exchange of thermal energy with the walls of the fluid compartment,
in other words the fluid is coupled to a thermal bath. Consequently, we should relax the
condition of conserving Ekin and instead couple each collision cell with a thermal bath of
the same temperature T . Furthermore, the conservation of angular momentum within MPC
is possible, but usually only necessary when the stability of circular flows is crucial [72, 73].
Because the angular momentum conservation is computationally more demanding, we neglect
the L-conservation in the collisions as well. As we show in Appendix A.4, this gives indeed
almost identical results. To sum up, we only require the collective collision to conserve the
total momentum of a cell, and thermostat the kinetic energy to a given temperature T .

Therefore, the collective collision must preserve the total fluid momentum in every cell c,
P c =

∑
i∈cell pi. In the MPC approach, the momenta of all fluid particles are updated via an

identical collision operator Ω for each particle in the cell via

p′
i =

mi

Mc
P c +Ω

[
pi

]
, (2.7)

where mi is the mass of the ith particle and Mc =
∑

i∈cell mi is the total mass of all particles
in the cell. The momentum conservation of the collision operator Ω then requires

0 ≡
∑
i∈cell

Ω
[
pi

]
.
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In the original variant of MPC, the collision operator was simply a rotation about a randomly
chosen axis, which also conserves the kinetic energy2. Even better suited to our problem
is the Andersen thermostat variant for the collision operator, because it has an implicit
thermostat [74]. Here, the collision operator Ω simply generates new random momenta pran

j

from the equilibrium distribution of particles with mass mf at temperature T ,

P (pran
α |mf , T )dpran

α =
(
2πmfkBT

)−1/2 exp
(
−(pran

α )2

2mf kBT

)
dpran

α (2.8)

〈pran
α , pran

β 〉 = 2mf kBT δα,β with α ∈ {x, y, z} ,

for every fluid particle. To ensure the conservation of momentum, the collision operator must
compensate the total momentum of the randomly chosen momenta, so that

ΩAT[pi

]
= pran

i − mi

Mc

∑
j∈cell

pran
j . (2.9)

Combining this collision operator with (2.7) gives the following rule for the new momenta p′
i

for the Andersen variant of MPC3:

p′
i =

mi

Mc
P c + pran

i − mi

Mc

∑
j∈cell

pran
j = pran

i +
mi

Mc

∑
j∈cell

(
pj − pran

j

)
(2.10)

Note that this formulation of the collision operator applies to fluid particles of different mass.
In the following we will only use fluid particles of identical mass mi = mf ∀1 ≤ i ≤ N , but
for the interaction with filaments the general formulation is required.

MPC with embedded filaments One of the great advantages of a particle based fluid sim-
ulation is that there is a natural interaction mechanism with non-fluid objects that consist
of particles [75, 76]. For example, the worm-like chain model for the actin filaments is based
on point-like beads. These beads can be incorporated in the MPC collision by treating the
filament beads as fluid particles of mass mb, which take part in the collision phase. Thus,
the filament beads and fluid particles exchange momentum via the MPC collisions. During
the drift phase on the other hand, each filament evolves according to the integration of its
equation of motion,

ẋ = p/mb, ṗ = −∂U

∂x
, (2.11)

where U is given by (2.5). In other words, the momentum of a filament bead changes by
two different mechanisms. First, there are hMPC-periodic interactions with the MPC-fluid
via (2.10), and second there are continuous interactions with other beads via the bead poten-
tial U via (2.11). For the numerical implementation, the equations of motion (2.11) have to
be integrated for every filament bead using an integration step ∆t ≤ hMPC .

2Concretely, the Stochastic Random Direction (SRD) collision operation is p′
i = miP c/Mc + Ω ·

(
pi −

miP c/Mc

)
, where Ω ·Ω† = Ed.

3If the masses of the particles in a cell are not identical, the collision is almost identical, p′
i = mi

Mc

(
P c −∑

j∈cell p
ran
j

)
+ pran

i , where it is implied that the random momenta also depend on the particle mass via
P (pran

α |mi, T )
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We note that more than one filament bead may occupy the same fluid cell, leading to a direct
transfer of momentum from one filament bead to another. This amounts to another source of
short-ranged direct interactions among filaments. Although this spurious interaction strength
is small, one has to keep in mind that it exists, so that Ub = 0 does not imply that filaments
are strictly non-interacting. Furthermore, this direct interaction of filaments implies that the
width of a filaments is not precisely defined. Instead, the filament width is somewhere in the
range from [2 rc, a], where rc is the cutoff radius of the contact interaction and a the width
of a collision cell. It is therefore reasonable to choose rc such that 2 rc ≈ a.

Propulsion mechanism of the filaments So far we have embedded the filaments in the fluid
and described how the filaments interact with the fluid, so finally it is time to set the filaments
in motion.

As discussed above, the aim is a propulsion model where the filaments move at a constant
speed and in a snake-like fashion. We approximate this behavior by a very crude mechanism,
where after every fluid interaction the bead momenta are artificially reset by the rule

p′
i = β pT (ri−1 − ri)/|ri−1 − ri| for 1 < i ≤ m . (2.12)

Here, β is a free parameter, pT =
√
mbkBT is the average speed of the thermal motion of

a bead4, and m is the number of beads in this filament. This rule ensures that all but the
first bead move towards the previous bead — regardless of the fluid velocity or thermal noise
— and thus approximates the snake-like movement of the filament during its drift phase.
Because the momenta of the tail end line up, this rule also acts as a propulsion mechanism.
We stress that the head of the filament has to be excluded here, so that the leading bead
actually reacts to external forces. The resulting movement speed of the filament is then in
the order of βpT /mb, because the trailing beads collectively push the head bead. Note that
the exact value of the resulting speed is not important for our model, as long as all filaments
have the same speed5.

To sum up, the filament–fluid interaction involves the following steps:

• A collective collision phase given by the MPC algorithm (2.10), where filament beads
are treated as fluid beads with a different mass.

• A momentum reset by (2.12) that ensures the snake-like movement at a constant speed

• A drift phase, where the fluid particles stream uninterrupted, whereas the filaments
evolve according to their equations of motion (2.11 & 2.5) with updated bead momenta
as initial condition.

This model has the strength to scale linearly in the fluid volume and the number of filaments.

4Here it is implied that the filaments only move in two dimensions.
5Because the momentum of the leading bead is random, the net displacement of the whole filament depends

on whether its momentum aligns with the momentum of the trailing beads. Because a net flow of fluid also
aligns the leading bead with the trailing ones, this propulsion mechanism actually leads to faster filaments
when aligned with the flow. Because β is usually small, this effect is however small.
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Figure 2.3 | Schematic of the 3D simulation setup with a slip boundary at the top (wavy
hatched), where the momentum parallel to the boundary, p‖, remains unchanged by wall
collisions (i). The filament motion is confined to a quasi two-dimensional surface close to
the lower boundary (ii), and the fluid above this layer will be referred to as bulk fluid. For
a strict no-slip boundary at the bottom we employ the bounce-back boundary condition,
where p‖ flips sign in wall collisions (iii). For a more fine-grained control of the slip velocity,
we also consider interpolating boundary conditions where the factor µ ∈ [−1, +1] gradually
allows for bigger slip velocities with increasing µ (iv). Note that for very low slip velocities,
we in addition use the ghost particle technique, as described in [77, 78].

2.1.2 Three-dimensional fluid

Finally, we give a short overview of the subtleties when dealing with simulations in three
dimensions.

In the motility assay experiment, the extension in the x- and y-directions is about three
orders of magnitude larger than the typical length of an actin filament [10]. Because such
large simulation boxes are computationally infeasible, we emulate an unbounded fluid by
periodic boundary conditions in the x- and y-directions. As discussed above, we assume that
the filaments are confined to a quasi two-dimensional plane, while the fluid is fully three-
dimensional. Because the actin filaments are pushed onto a solid wall, the plane to which
the filaments are restricted to should be parallel and close to a boundary (see Fig. 2.3 ii).
Although the filament beads are confined to this two-dimensional plane, the position vectors
and momenta of the filament beads must be three-dimensional vectors, because the beads
have to interact with fluid particles via the MPC collision operator (2.10). In order to restrict
the filament dynamics to a plane, the additional potential Uw is required to keep the filaments
at a given distance dwall

0 :

Uw

(
ri|dwall

0 , dwall
max
)
= Us

(
ri, πz(ri)|dwall

0 , dwall
max
)
, (2.13)

where πz(r) = (rx, ry, 0) is the projection onto the plane z = 0. We have re-used the FENE
spring potential between the filament beads, because it ensures that beads are forbidden to
touch the lower wall if dwall

0 > dwall
max. Note that it is practical to give Uw the same potential

strength as Us.

In contrast to the x- and y-directions where the simulation box is periodic, the z-direction
is bounded by solid walls. In the experiment, the z-height of the fluid film is about 0.1mm,
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Figure 2.4 | Illustration for the ghost particle technique which increases the wall drag.
A solid wall (broad broken line) cuts the fluid cells in two halves, leaving the lower fluid
cells under-filled. Virtual fluid particles (blue circles) with random thermal velocities are
added to the fluid cell until the mean occupation number is reached. During a collision, the
real particles (red) transfer momentum onto the virtual particles with zero mean velocity,
whereby the slip velocity at the wall is reduced.

so that the bulk fluid above the filaments is quite large. Because it is numerically not feasible
to simulate such a large fluid volume, we may assume that the upper boundary is far away.
In that case, the bulk fluid effectively feels no drag from the upper boundary, which allows to
make the z-height rather small, when the upper boundary has slip boundary conditions (see
Fig. 2.3 i). Such a slip-boundary is achieved by reflective boundary conditions where p′z = −pz
and p′

‖ = p‖. In that way, the fluid does not stick at the upper boundary, emulating a much
larger bulk fluid.

On the other hand, the filaments are very close to the functionalized coverslip in the ex-
periment. This coverslip is a non-moving boundary at which the fluid must also be at rest,
in other words the lower z-boundary must be a no-slip boundary. The standard method to
achieve such a non-slip boundary condition is the so-called bounce-back boundary condition,
where the momentum of a fluid particle is flipped (p′ = −p) if it hits a no-slip wall (see
Fig. 2.3 iii) [77]. The bounce-back boundary condition drastically reduces the slip velocity,
however for our MPC-fluid settings the slip is not completely suppressed. To further reduce
the slip velocity, underful wall cells can be filled up with virtual ghost particles that have a
random momentum with zero average (see Fig. 2.4). Thereby, a momentum transfer onto the
wall also occurs without particles hitting the boundary, which makes the momentum transfer
much more efficient [77, 78].

Finally, we will also consider a gradual increase of the slip velocity at the lower boundary.
We do this by generalizing the collision condition when fluid particles hit the wall. For
example, with reflective boundary conditions, the parallel momentum that is transfered onto
the boundary is ∆p‖ = p‖ − p′

‖ = 0, whereas for bounce-back boundary conditions it is
∆p‖ = 2p‖. In general, for a collision rule p′z = −pz and p′

‖ = µp‖ the amount of momentum
that is transfered onto the wall becomes ∆p‖ = (1 − µ)p‖ (see Fig. 2.3 iv). Because the
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momentum transfer onto the wall impedes the fluid flow in the wall cell, µ can be used to
tune the slip velocity at the wall from bounce-back (µ = −1) to reflective (µ = +1).

To sum up, this section explained the setup for simulations of the motility assay in three
dimensions. In short, the filaments are confined to a two-dimensional plane close to a bound-
ary whose slip velocity can be controlled. The opposing boundary is always a slip-boundary,
which emulates the large bulk fluid between the coverslips.

2.1.3 No hydrodynamic interactions

One of the major advantages of the MPC method is the possibility to disable the hydrody-
namic interactions, so that the dynamics become effectively Langevin-dynamics. Because the
simulation is otherwise identical, the results of hydrodynamic versus no hydrodynamics are
very well comparable.

There are a few different approaches how the hydrodynamic interactions can be suppressed.
For example, instead of sorting the fluid particles into collision cells by their position (2.6),
the fluid particles are assigned to random cells via random positions rr. Consequently, the
collisions in the cell become non-local and therefore no hydrodynamic behavior emerges.
Although this method is enlightening and elegant, it is not the most efficient, because the
fluid particles need to be processed even though hydrodynamics is suppressed. However,
it can be greatly simplified, by realizing that assigning thermal particles to a random cell is
equivalent to adding a random momentum pran

i . Therefore, the total cell momentum becomes

P c =

nc∑
i=1

pran
i +

nb∑
i=1

p
(b)
i , (2.14)

where nc is the average number of fluid particles per cell, nb is the number of filament beads in
the cell, and p

(b)
i the corresponding momenta. As the first term is a sum of Gaussian random

numbers, the sum can be substituted by a single random momentum from the Gaussian
distribution P (pran

α |nc · mf , T )dpran
α , where P is defined in (2.8). The collision algorithm

from equation (2.10) remains otherwise unchanged6. Because no hydrodynamic flows are
possible, the fluid particles can be removed from the simulation and only their virtual action
via the noise in (2.14) is retained. Consequently, an MPC simulation without hydrodynamics
can be seen as Langevin dynamics where the beads in the same collision cell receive the same
random noise.

To sum up, we use an adapted worm-like chain model for the filaments which emulates the
snake-like movement of actin filaments. Unless the whole simulation is two-dimensional, the
filaments are locked to a thin layer near the lower z-boundary for quasi 2D dynamics. The
filaments interact via a direct contact interaction given by a harmonic potential barrier of
strength Ub, so that stacking of filament intersections is suppressed. In addition, the filaments
interact with a two- or three-dimensional MPC fluid that conveys indirect hydrodynamic
interactions via the fluid. Last but not least, the hydrodynamic interactions can be turned
off, so that the filament dynamics become Langevin-like.

6As mentioned above, also without hydrodynamics the filament beads within the same collision cell directly
exchange momentum via (2.14) and (2.10).
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2.2 Simulation parameters and unit system

Our model has a large number of simulation parameters which must be carefully adjusted
for physically reasonable results. This section collects all parameters, briefly discusses related
caveats, and lists the settings for the simulations in the following chapters.

Unlike the results in the following chapters, here we use a unit system that is well-suited
for MPC simulations, and uses the following fundamental units:

• the cell length a

• the fluid particle mass mf

• the mean free path of a fluid particle Λ =
√
kBT/mfhMPC/a.

As remarked by Ihle, MPC simulations with otherwise different parameters but same Λ are
equivalent [79, 80]. Consequently, kBT and hMPC can be chosen freely to obtain the same Λ.
For reasons of numerical efficiency, it is best to set hMPC = 1 because this allows to save a lot
of multiplications by this constant. We now give an exhaustive list of settings and parameters
and briefly discuss the implications of the parameters.

kBT Temperature
The temperature is the most important setting in the MPC algorithm and affects the
Reynolds number, the Péclet number, and the Schmidt number of the fluid [81, 82].
Because a change of temperature affects all these fluid numbers, the temperature should
not be changed. Throughout this work, we used the temperature

√
kBT = Λ = 0.05.

hMPC Time-step of the fluid collisions
By a proper choice of the fluid temperature, the time-step can be chosen as hMPC ≡ 1

a Collision cell size
We only use cubic cells and use the length a as the fundamental unit for length.

mf Mass of a fluid particle
We use the mass of one fluid particle as the fundamental unit for mass.

nc Fluid particles per cell
The number of fluid particles per cell affects the fluid transport coefficients, and also
determines the typical ratio of flow speed to thermal noise. Here, we used nc = 18,
resulting in up to 107 fluid particles.

Lx, Ly, Lz Size of the simulation box
The size of the simulation box should be much larger than the filament length. Here,
we used simulation boxes of 240 a × 240 a for the two-dimensional setups and 120 a ×
120 a × 10 a for the three-dimensional setups. In terms of the filament length L, the
dimensions of the simulation box become 80L× 80L and 40L× 40L for two and three
dimensions, respectively.

N, [ρ] Number of filaments
The number of filaments in the simulation corresponds to the filament density via ρ =
N/(Lx ·Ly) — also in three-dimensional setups. It is one of the free parameters that will
be examined in in the range 3 000 ≤ N ≤ 30 000, corresponding to a filaments density
of 0.47n/L2 ≤ ρ ≤ 4.69n/L2.
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L, [m] Filament length
The filament length L corresponds to the number of filament beadsm via L = (m−1)R0.
Because the length L defines the physical unit of length for the results in the follow-
ing. Therefore it is important to always use the same filament length L. Throughout
this work, we used m = 7, i.e. L = 3 a. Note that the width of a filament can be
approximated by the cutoff radius rc or a/2, resulting in an aspect ratio of 1:3 to 1:3.75.

mb Mass of a filament bead
The mass regulates how strongly thermal noise affects the dynamics of the filament,
and in particular how strong the lateral diffusion of a filament bead is. In addition,
the ratio of bead mass and fluid mass in a cell determines how effectively the fluid and
filaments exchange momentum. In other words, how strong is the coupling of filaments
and fluid. For an effective coupling, the total bead mass in a collision cell should be
about as big as the total fluid mass in a collision cell. Here, we used mb = 3mf , so that
a/R0 ·mb = 1/3 · nc.

β [v0] Filament driving
This crucial parameter determines how fast the filaments move, v0 ≈ β

√
kBT/mb.

Intuitively, it determines what fraction of the thermal kinetic energy is directed and not
randomly orientated. Because the motion of a filament drags the fluid particles along, it
is extremely important that the diffusion of fluid particles on the scale of a collision cell is
stronger than this advection. In other words, it must hold that the corresponding Péclet
number is smaller than one, 1 & Pe = vTβ a/Df where Df ≈ kBT/2 is the diffusion
constant of the fluid particles [81, 82]. This gives the simple condition β .

√
mb kBT/2a.

Here, we used β = 0.03, which is smaller than the upper bound β . 0.043 that is required
by our parameter choice.

κs Stiffness of the filament FENE bond
This value should be much larger than 1kBT/a, in order to ensure that thermal fluc-
tuations only result in bond stretching much smaller than Rmax. Here, we used κs =
100 kBT/a.

R0 Rest length of a filament FENE bond
This determines, how many filament beads of the same chain are assigned to the same
collision cell. To avoid “holes” along the filament, the bead spacing should be smaller
than 1 a. Here, we follow the widely used standard setting and use R0 = a/2.

Rmax Maximum extensibility of a filament FENE bond
Generally, it is desirable to take Rmax < R0. For our model it is crucial that rc <
R0 − Rmax, because otherwise subsequent beads in a chain could be repelled via the
potential barrier Ub. If this happens, the bending stiffness of the filaments effectively
increases, leading to erroneous results. Here, we used Rmax = R0/5 = 0.1 a.

lp, [κb] Persistence length of the filaments
The persistence length lp and bending stiffness κb are related via κb = kBT lp. The
persistence length is one of the free parameters that will be examined in in the range
1L ≤ lp ≤ 10L in the following.

Ub Strength of the potential barrier
The potential strength tunes the repulsion strength of the direct interaction between
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filaments. It is one of the free parameters that will be examined in in the range 0 kBT ≤
Ub ≤ 4kBT in the following.

rc Width of the potential barrier
Smaller values of rc make the filaments rougher, therefore rc should be chosen as large
as possible. On the other hand, larger rc also make the aspect ratio smaller, so that
rc should not be too large. An upper boundary for rc is given by the condition rc <
R0 − Rmax which ensures that subsequent beads of a chain do not interact. Here, we
used rc = 0.4 a.

dwall
0 (only 3D) Average distance of a filament to the boundary

This length sets the average distance of the 2D-plane to which the filament motion is
confined and the lower z-boundary. Here, we used dwall

0 = R0 = a/2.

dwall
max (only 3D) Maximum extensibility of a FENE wall bond

For our model it is crucial that dwall
max < dwall

0 , because otherwise filament beads can hit
the boundary. Here, we used dwall

max = R0 = a/2.

∆t Integration step for the filaments
This integration step subdivides the time between fluid collisions hMPC . See section 2.3
for details about the step width. The starting value is ∆t = hMPC/8.

From the given parameters, one can predict the transport coefficients of the fluid [81, 82].
Given the transport coefficients, it is possible to determine the value of dimensionless fluid
numbers that characterise the fluid. Among these are the Reynolds number of the filaments
Re ≈ 3.4, the Schmidt number Sc ≈ 57, and the Péclet number Pe ≈ 1. The values show that
the MPC fluid is a reasonable representation of an aqueous solution at small length scales.

2.3 Implementation notes

Finally, we give a few technical remarks about the numerical implementation of our model.
Readers who are mainly interested in the results may skip ahead to the next chapter.

In principle all steps of the above algorithm are easily parallelizable, because every step con-
sists of independent sub-tasks. For example, in the collision phase, every cell can be processed
independently of every other cell. Similarly, in the drift phase the fluid particle displacements
are independent of one another. However, the more computationally demanding integration
of the equations of motion for each filament is not independent of other filaments, because
Ub (2.4) depends on all filament positions. Because the total filament displacements over a
period of hMPC (one drift phase) is small, we may however assume that the potential Ub

remains approximately constant. Therefore, every filament can be integrated via the much
simpler U (j)

free (2.3), and more importantly independent of the other filaments. Figure 2.5 shows
the scaling of the runtime with the number of threads nt, which for a perfect parallelization
should scale like n−1

t . The data show that the scaling is close to −1 and therefore quite good.

Furthermore, figure 2.5 shows that the set of filaments requires more CPU time than the fluid
(middle vs. right panel). The speed-determining step of the filament part is the integration
of the equations of motion, which consequently has to be fast. To speed up the calculation,
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Figure 2.5 | The scaling of the total simulation runtime (left) as a function of the number
of threads. The total runtime consists among others from the runtime of fluid-related parts
(middle) and filament-related parts (right). The blue bullets show the runtime on the Intel
phi architecture with 60 cores (vertical dashed line at 60). The other data show the runtime
on a 16-core Haswell machine (vertical dotted line at 16) with the Intel compiler (green
bullets) and GNU g++ compiler (red bullets). The solid lines in the corresponding color
show the optimal scaling, which is almost reached up to the number of physical cores on the
respective architecture.

we optimized the force calculation as described in Appendix A.1. Furthermore, we use the
Velocity-Verlet integration scheme which is simple and fast [83, 84],

r(t+∆t) = r(t) + ∆tv(t) +
∆t2

2m
F (t) (2.15)

F (t+∆t) = − ∂U

∂r

∣∣∣∣
r(t+∆t)

(2.16)

v(t+∆t) = v(t) +
∆t

2m

(
F (t) + F (t+∆t)

)
. (2.17)

The main requirement on the integration is speed, whereas accuracy only has a subordinate
role because the filaments are exposed to a heat bath whose noise is much bigger than any
integration error. Therefore, the integration step ∆t should be chosen just below the point
where the integration becomes unstable due to the non-linear effects of the FENE potential.
To find out the largest tolerable ∆t, we compared the Velocity-Verlet solution of a particle
in a harmonic trap with its analytic solution and found that ∆t = hMPC/8 is accurate with
only 6% relative error. Because in some rare cases the integration of the equations of motion
blows up, we check that each bond length lies within [R0 −Rmax, R0 +Rmax] after each drift
step and repeat the integration with ∆t/2 if this was not the case. This is repeated up to four
times (∆t/16), until an error is reported. There were only two cases where the integration
could not be recovered in this way, such that a previous snapshot had to be loaded.

Last but not least, the other speed-determining operation is the generation of random num-
bers. Our implementation uses a handcrafted version of the Mersenne Twister that is tuned
for the SSE2 instruction set [85–87]. Furthermore, these random numbers need to be trans-
formed into Gaussian random numbers, for which we employ the ziggurat algorithm which
is the fastest known method for this task [88]. Finally, we periodically do a locality sorting
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of the fluid particles along a space-filling Peano-Hilbert curve, so that physically neighboring
particles are also in the same memory region [89]. Because the memory access to the fluid
particles is the bottleneck of the MPC algorithm, this speeds up the MPC part by a factor of
≈ 2. The graphical figures in this work were done with inkscape and all figures were created
with the matplotlib plotting library [90, 91].
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3 Filament motion and binary collisions

3.1 Characterization of the filament motion

In order to get an understanding for the behavior of our model for propelled filaments, we
looked at the properties of the trajectory of a single filament.

Figure 3.1 | An exemplary path of a single filament. In order to determine the properties
of the random walk of the filament, we tracked one bead (red) in the tail of the filament and
recorded its position r(t) and velocity v(t). This bead follows the path of the head bead as
if on tracks. An inner bead has the advantage that it picks up less noise so that its velocity
correlation is cleaner.

Due to the construction of the propulsion mechanism only the head bead may wiggle freely,
whereas the tail beads can only move towards the next bead. As long as the angle distribution
of the head bead remains unaffected by the driving mechanism, it seems plausible that the
path described by a driven filament is a persistent random walk whose persistence length Lp

is determined by the persistence length of a free filament lp. If the path of the driven filaments
is indeed a persistent random walk, the tangent correlation along the trajectory is given by

〈n(s′) · n(s)〉 = exp
(
|s′ − s|/Lp

)
. (3.1)
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Figure 3.2 | The mean-squared displacement of an isolated filament in a two-dimensional
setup as a function of time and rescaled according to the scaling assumption (3.2) with
Lp = lγp . The panels show data with 2D hydrodynamics (left) and purely Brownian dynamics
(right). Apart from very late times, the errors are smaller than the line width. The collapse
of the data onto the master curve f(x) = 2

(
x + (e−x − 1)

)
(dashed black line) supports

the assumption that isolated filaments perform a persistent random walk with persistence
length Lp ≈ lp.

From the tangent correlation, it is possible to calculate the expected mean-squared displace-
ment

〈(
r(t+ t′)− r(t′)

)2〉
t′
≡
∫
t′
dt′
(∫ t′+t

t′
v0n(v0 τ)dτ

)2

= v20

∫
t′
dt′
∫ t

0
dτ ′
∫ t

0
dτ n(v0 (t

′ + τ)) · n(v0 (t′ + τ ′))

!
= v20

∫ t

0
dτ ′
∫ t

0
dτ exp

(
−v0|τ − τ ′|/Lp

)
= . . . = 2L2

p

(
v0 t

Lp
+
(
exp(−v0 t/Lp)− 1

))
, (3.2)

where we used that the filaments move at a constant speed v0 and the time average in the
second line can be approximated by (3.1). Note that the filament speed v0 is not a free
parameter but given by v0 ≈ β

√
kBT/mb (see 2.2). As a consequence, we conjecture that

the recorded mean-squared displacement from our simulation collapses onto a single master
curve when rescaled by 〈(

r(t+ t′)− r(t′)
)2〉

t′
= L2

pf(v0 t/Lp) , (3.3)

and the scaling function can be approximated by f(x) = 2
(
x+ (e−x − 1)

)
. Figure 3.2 shows

the rescaled mean-squared displacement for different persistence lengths of the filaments. The
data were acquired from a moving average of the corresponding interval along the path realiza-
tion and the corresponding error was estimated by the fluctuation of independent realizations.
The fact that the curves for different persistence lengths lp collapse very well onto a single
master curve, validates our conjecture that the random walk of a single filament is indeed
a persistent random walk. Although not shown, we find a better collapse for the case with
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Figure 3.3 | The measured tangent diffusion for an isolated filament in a two-dimensional
setup as function of time and rescaled according to the scaling assumption (3.4). The panels
show data with 2D hydrodynamics (left) and purely Brownian dynamics (right). Apart from
very late times, the errors are smaller than the line width. For small times, the data deviate
considerably from the expected scaling f(x) = 2 (1 − e−x) (dashed black line). There are
tree different scaling regimes (see footnote 1): a diffusive regime at very small time-scales
(only for lp � L), a quadratic regime at intermediate times, and another diffusive regime
(only for lp � L). For times t & Lp/v0 the data transition into a plateau as is expected.
The data are in good agreement with the tangent diffusion of a snake-like movement.

hydrodynamics with Lp = lγp and γ ≈ 0.85, meaning a less persistent random walk. As the
focus of this work is on the phenomena of many filaments, it is however absolutely sufficient
to assume Lp ≈ lp for both cases.

To sum up, Fig. 3.2 confirms that the propelled filament walks in a directed fashion over a
period of t̂ ≈ lp/v0 which causes a quadratic growth of the mean-squared displacement. For
later times, the filament starts to lose its direction and begins to move isotropically, giving
rise to the diffusive behavior with linear scaling.

To confirm this picture, we also looked at the diffusion of the tangent vector n(s) along the
contour of the path,

〈(
n(t+ t′)−n(t′)

)2〉
t′
. With equation (3.1) the tangent diffusion can be

given analytically,〈(
n(t+ t′)− n(t′)

)2〉
t′
= 2− 2

〈
n(t+ t′) · n(t′)

〉
t′

!
= 2
(
1− exp

(
−v0|t|/Lp

))
. (3.4)

So when time is rescaled to t̂ = v0 t/Lp, the data should collapse onto a single master curve
f(x) = 2

(
− exp(−x)

)
. Figure 3.3 shows the tangent diffusion for the same data set as in

Fig. 3.2, where again Lp = lγp with γ = 1. In agreement with Fig. 3.2 the tangent diffusion
saturates at about t̂ = 1, confirming the isotropic and erratic movement for times greater
than this time-scale. On the other hand on short time-scales, the measured curves deviate
substantially from the predicted behavior. Instead of the one purely diffusive scaling regime
as expected from (3.4), we find two diffusive and one quadratic scaling regime1. The first
diffusive regime is only observed for filaments with weak bending rigidity and shows up at
small times. It is caused by an unwanted spurious angular relaxation which happens during
the drift phase of the filament. The snake-like movement of a filament can only be imposed

1Note that most data show only two of the three scaling regimes.
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at full drift phase intervals hMPC , but for filaments the drift phase is again subdivided into
chunks ∆t ≤ hMPC/8 (see 2.2). Consequently, during intervals of hMPC the filaments may
evolve freely, leading to this diffusive regime at small time-scales. Due to the rescaling of
time in Fig. 3.3, the time-scale hMPC shifts for different Lp. After this first diffusive regime,
we find a quadratic regime telling that the tangent changes deterministically on that time-
scale. Remembering that the filament follows its contour like on a track, it is evident that
the tangent changes deterministically when tracing out a bend in the contour. Beyond the
point where the tangent retraces a bend of the filament, the tangent diffusion is determined
by the tangent correlation along the path, giving rise to the second diffusive regime. Finally,
at the time t̂ ≈ 1 the tangent becomes uncorrelated with its initial orientation leading to the
plateau at late times. Note that for Lp < L this means that the second diffusive regime must
be absent.

Concerning the scaling parameter γ, we find that the scaling parameter of γ ≈ 1 for pure
Brownian motion and γ < 1 for 2D hydrodynamics does not contradict our results from
above. However, because the data necessarily deviate from the predicted curve at small times
as discussed above a single master curve remains to be found. Therefore, these data cannot
be used to estimate γ.

In summary, we find that the path of a single filament can be well described by a persistent
random walk whose persistence length is approximately given by the persistence length of
a free filament. This also shows that the relation for the filament speed v0 ≈ β

√
kBT/mb

holds reasonably well which was not evident from our propulsion mechanism (see 2.1.1). This
picture applies very well to the case of pure Brownian motion and reasonably well to the
case with a two-dimensional fluid. For the latter case, the persistence length Lp seems to be
shifted towards smaller persistence lengths Lp ≈ l0.85p , a difference that is irrelevant in what
follows. Note that isolated actin filaments in the actomyosin motility assay also perform a
persistent random walk so that our model reproduces the dynamics of a free filament [10].
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3.2 Binary collisions of filaments

For an understanding of the behavior of multiple filaments, it is essential to characterize
binary collisions of the propelled filaments. In the following, we therefore examine binary
collisions of the filaments and determine the characteristics of the collisions.

To that end, we prepared the filaments to collide in a controlled manner, such that every
collision has a defined incoming angle Θin and a defined offset b (see Fig. 3.4). For simulations
with 2D hydrodynamics, it is important to move the filaments in from afar, so that the
fluid flow around the filaments is correctly established. In order to have well-defined initial
conditions, we disabled the internal dynamics of the filaments until right before two filaments
came into direct contact. This direct contact arises from the interaction potential of the tip
with other beads (2.4) (here repeated),

U
(j)
b =

1

2
Ub

N∑
q=1, q 6=j

m∑
i=1

(
max

(
0, 1−

∣∣r(q)i − r
(j)
1

∣∣/rc))2

for distances of tip and some other bead below the cutoff threshold rc. We expect that the
outcome will depend on the height of the potential barrier, Ub, and other filament properties
such as its persistence length lp. Other important filament properties such as its total length
L, travel speed v0, cutoff radius rc, or bond length were not examined. For example, filament
length L and cutoff radius rc determine the aspect ratio and roughness of the filaments, so
that the collision outcome should depend on both parameters. However, rescaling L requires
to rescale all other dimensional quantities that involve a length unit such as v0, the size of the
simulation box, and the filament density. This quickly becomes impractical, because larger
simulations are not feasible. Therefore, to have comparable results we only used our standard
settings with L = 3 a, v0 = 0.03

√
kBT/mb, and rc = 0.4 a where a is the width of a collision

cell.

Figure 3.5 shows exemplary traces of the measured angle between to filaments

Θ
(
t|Θin, b, Ub

)
≡ cos−1

(
n1(t) · n2(t)

)
(3.5)

for exemplary filament parameters and various incoming angles Θin. Every measurement was
repeated at least 2×103 times, because thermal noise has considerable impact on the outcome

Figure 3.4 | Schematic setup for the binary collision of two filaments. The filaments start
at a distance of 2L from the collision site and move in with their internal dynamics disabled.
Just before direct contact, the internal dynamics are enabled and the angle between the two
filaments is recorded until the filaments have travelled a distance of 3L.
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Figure 3.5 | Measured angle between two filaments as a function of time for various initial
angles Θin (colors). The ensemble mean of the measured angle 〈Θ〉 is shown as dashed lines,
and the reference model Θ0 of pure angular diffusion as dotted lines. The solid lines show
the angular change that is caused by the contact interaction, 〈Θ〉 −

(
Θin − Θ0

)
(3.6). The

filament parameters are lp = 2L, Ub = 2 kBT , and the impact parameter is b = 0. Every
curve is the average of at least 2 × 103 realisations. Errors are up to three times the line
width and omitted for clarity.

of a single collision event and only the mean is shown. At a closer look, it becomes evident
that especially at late times, the measured change of the angle 〈Θ〉 must have a considerable
contribution from angular diffusion, because the filaments can no longer be in contact. In
order to correct for this spurious angle change due to angular diffusion, a reference model
without interaction is required. Unfortunately, we could not find an analytic expression for
the angle between two non-interacting filaments over time. Therefore we performed reference
simulations with strictly non-interacting filaments and measured the angle between the fila-
ments as a function of time, Θ0

(
t|Θin

)
(see Figs. 3.5 and 3.6). In contrast to Θ

(
t|Θin, b, Ub

)
,

Θ0 does not depend on Ub or b, because the filaments are non-interacting. This quantity now
serves as a calibration that allows to isolate the angular change that is attributable to the
interaction between two filaments. Two observations from Fig. 3.6 are evident: due to angular
diffusion the filaments lose their initially well-defined relative orientation over time. Because
uncorrelated direction vectors on average have a zero scalar product and the arc-cosine of zero
is π/2, the relative angle between the filaments approaches π/2. Furthermore, this relaxation
towards the equilibrium angle is faster the more flexible the filament is.

With this zero model for the angular diffusion of non-interacting filaments, the effect of the
interaction onto the angular change can be estimated by

Θout

(
t|Θin, b, Ub

)
= Θ

(
t|Θin, b, Ub

)
−
(
Θin −Θ0

(
t|Θin

))
. (3.6)

Figure 3.5 shows this procedure for a few exemplary filament parameters and various incoming
angles Θin.

This dataset is too verbose to be of much use, therefore a more condensed picture is re-
quired. In particular, the full time evolution of Θout

(
t|Θin, b, Ub

)
contains a lot of redundant

information, because the angular change at specific points in time is usually sufficient. There
are natural choices for characteristic points in time, if one imagines non-interacting filaments.
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Figure 3.6 | The average angle between two non-interacting filaments, Θ0
(
t|Θin

)
, as a

function of the input angle for four different points in time. As the filaments are strictly
non-interacting, the angular change between the filaments is solely due to angular diffusion.
The angular change from this measurement serves as reference to isolate the influence of
filament interactions.

First, for a head-on collisions with Θin = π, the filaments fully overlap at a time t ≈ L
2 v0

, so
we can expect that around this time the filaments are in full contact for large Θin. Looking
at Fig. 3.5 confirms that the initial collision phase is over by that time. Second, for very small
collision angles Θin ≈ 0, the filaments fully overlap at a time t ≈ L

v0
, and comparing with

Fig. 3.5 shows that for Θin < π/2 Θout ceases to decrease around that time. Finally, to also
have a point in time where the collision should be over, we also look at time t = 2L

v0
.

In summary, this section has introduced a setup for controlled collisions of filaments. This
setup allows to measure the average angles between filaments during a collision, and via a
reference model that accounts for angular diffusion the angular change can be attributed to
the interaction of filaments.

3.2.1 Binary filament collisions without hydrodynamics

First, we consider the dependency on the impact parameter b and the repell strength Ub for
“dry” simulations without hydrodynamics.

When Ub = 0, Fig. 3.7 shows a marginal effect on the angle for any impact parameter b.
This seemingly unsurprising result is actually an important consistency check, because even
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Figure 3.7 | The average angle as defined in (3.6) between to colliding filaments with
persistence length lp = 2L for different times (columns) and repulsion potential Ub (rows).
The graphs show nearly identical angles for different impact parameters b except for spot-on
collisions (b = 0) and misses (b = L). For Ub = 0 kBT the interaction is only very weak.
On the other hand for Ub > 0, the interaction is in general aligning and gets an increasing
nematic component for higher Ub. Although not shown, the results for Ub = 4 kBT are nearly
identical to Ub = 2 kBT . Standard errors are indicated by horizontal lines and are smaller
than the symbol size.
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for vanishing Ub, there is a spurious interaction between the filaments. It is caused by a
momentum exchange that occurs when beads of different filaments share the same collision
cell. This spurious interaction could be removed for Brownian dynamics, but for runs with
hydrodynamics it is inevitable. In order to make our results with and without hydrodynamics
maximally comparable, we decided to keep this spurious interaction. Because the angular
change for Ub = 0 is smaller than angular diffusion, this interaction is usually irrelevant.
Only at extremely large densities, this spurious interaction will play a role, as will be shown
below (see 4.2).

For non-zero interaction strength Ub, we find an aligning effect of the filament collision which
becomes stronger for higher Ub. Over the entire range of parameters, the impact parameter b
has only a minor influence on the collision. As Fig. 3.7 shows, the impact parameters b = 1

4L,
b = 1

2L, and b = 3
4L seem to be almost equivalent. This indifference is readily explained with

our filament model, so consider again the situation of Fig. 3.4. Because the collided-on beads
in the tail of the black filament cannot respond to external forces due to the condition to
move towards the next bead in the chain, the black head — and therefore the whole filament
— is not affected by the collision along its tail. On the other hand, the collision outcome of
the red filament is only determined by the interaction of its head with a few beads along the
tail of the black filament. The position of these black beads along the tail is irrelevant for the
red filament, as long as they form the same angle. This explains why the outgoing angle is
nearly indifferent to the impact parameter in the range 0 < b < L.

This leaves the two special cases b = 0 where the heads collide spot-on and b = L where
they narrowly miss. As expected, for b = L the filaments pass by almost without noticing
each other, and only for very strong Ub a marginal effect is found. So indeed, the filaments
pass by without affecting each other. For b = 0 on the other hand, the effect is very similar
to 0 < b < L although it is even stronger aligning so that the slight nematic character for
Θin > π/2 is almost completely lost.

For interaction strengths Ub > 1 kBT , the collision becomes aligning for small angles, and
slightly anti-aligning for Θin & π

2 . This nematic character agrees well with our picture of
the filaments behaving like rods which slide along their contour when in contact. However,
if the potential barrier is not high enough, the sliding only happens if |Θin − π/2| is small,
otherwise the filaments can cross each other, resulting in only a small net change of Θout. As
a consequence, the interaction becomes more pronounced for increasing Ub and approaches a
limiting behavior which is already reached for Ub ≈ 2 kBT . The results for Ub = 4 kBT are
not shown, because they hardly differ from the results with Ub = 2 kBT .

The picture of sliding rods is however not perfect, because the interaction would then have
to be point-symmetric around the point (π/2, π/2) which it apparently is not. The reason for
this discrepancy is that filaments are represented by spherical beads, whose surface is best
defined as the equi-potential surface of the repulsion potential (2.4),

SF (e) ≡
{
x|e = Ub

Nq∑
i=1

max
(
0,
(
rc −

∣∣ri − x
∣∣)2)} . (3.7)

Typically, a colliding filament “sees” the potential SF (1 kBT ), so it is clear that this surface
is quite rough. This roughness drags the filament head of a colliding filament along if Θin is
small enough, leading to a much more polar character of the collision than one would expect
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Figure 3.8 | The angular change of two colliding filaments at Ub = 2 kBT for different
filament stiffnesses lp at different times (columns) and for impact parameter b = 0 (top
panels) and b = L/2 (bottom panels). For both b = 0 and b = L/2, the overall character of
the collision shows only a small dependence on the filament stiffness. The main difference
shows up at π/4 < Θin < 2π/3 and is due to a more persistent preservation of the outgoing
angle for stiff filaments.

from the picture of a contact interaction of rods. An extension of the collision rule to a more
nematic interaction is possible but left for future investigation.

Finally, consider the influence of the filament stiffness lp on the collision characteristics.
Figure 3.8 shows only a small dependence of the collision on the stiffness of the filaments in
the range from lp = 1L to lp = 10L irrespective of the collision parameter b. However, it is
instructive to also consider the differences in the time evolution of Θout for the ranges of small
Θin < π/2 and Θin > π/2. Consider the time-evolution of Θout for the collision parameter
b = L/2. For initial angles Θin < π/2, Fig. 3.8 shows nearly identical Θout up to t = L

v0

where the alignment is close to maximal. Only at the last displayed point in time, t = 2L
v0
,

the angles for different lp start to deviate from each other and the alignment passes away.
Because angular diffusion destroys alignment as soon as aligning forces become ineffective,
this observation allows to estimate the duration of a collision. In this case of small incoming
angles, it follows that the collision takes about t ≈ L

v0
. On the other hand for large collision

angles Θout up t = L
v0
, the anti-alignment is already maximal at t ≈ L

2 v0
and already starts to

relax to the equilibrium value at t ≈ L
v0
. Hence, a collision event for large collision angles is

about twice as fast as for small collision angles. The geometry of aligning and anti-aligning
collision gives a good explanation for this observation: if a collision event is aligning, the
filaments run side-by-side after they have travelled a full length L. On the other hand if a
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collision event is anti-aligning, the filaments are side-by-side after they have travelled only
L/2, because the filaments run in opposite directions. Although not shown here, qualitativley
analogous results hold for intermediate Ub.

In summary, we have found that the bending stiffness lp only has a small impact on the
collision characteristics. Similarly, the outcome of a collision event is nearly identical of a
wide range of impact parameters b, unless b is very small in which case the collision becomes
more polar, or so large that the filaments miss. The major influence determining the collision
outcome has the height of the potential barrier Ub. For Ub = 0 kBT , we found only a marginal
interaction of the filaments, and as soon as the potential was non-zero the interaction became
effective. Beyond Ub > 2 kBT the interaction becomes insensitive to increasing Ub, because
filaments cannot cross anymore.

3.2.2 Binary filament collisions with hydrodynamics

With the understanding of the dry collision, it is now possible to clarify the role of hydrody-
namic interactions in the collision process of two filaments. Analogously to the data of dry
runs, all data are diffusion compensated according to (3.6), re-using the reference model from
Fig. 3.6. Although this reference was acquired from a dry run, it corresponds to an identical
environment for the filaments except for the hydrodynamic interaction, hence it has exactly
the desired properties. In analogy to Fig. 3.7, Fig. 3.9 shows the average observed angle
Θout at different times and collision parameters. Comparing this with Fig. 3.7, we observe a
similar signature as for dry runs. In addition, this signature is superimposed with an aligning
interaction from a hydrodynamic interaction of the filaments. This hydrodynamic compo-
nent acts aligning along the whole length of the filament, so that even for large angles, where
the dry case was anti-aligning, the interaction becomes aligning in the long run. Beside the
added hydrodynamic alignment, very similar observations hold as for the dry case, however
with subtle differences. For example, with hydrodynamics there is a slight dependence on
the impact parameter in the range 0 < b < L, if Ub is small. This small effect comes from a
dependence of the strength of the hydrodynamic flow field on the position along the filament,
so that the net force on a colliding filament becomes dependent on where along the filament
the collision happens. However, this effect can only come into play, if the contact interaction
allows the filaments to cross which apparently is only the case for Ub < 1 kBT .

The other eye-catching difference to the dry interaction is interaction that occurs for b = L,
where the filaments had simply passed by in the pure Brownian case. Although this effect is
virtually the same for all Ub, it is best visible for Ub = 2 kBT , because there its graph is not
overlayed with other curves. It shows, how the alignment is most efficient around Θin ≈ π/2
which is readily explained by the larger fluid drag perpendicular than along the orientation of
a rod. Furthermore, it highlights that with hydrodynamics, the interaction of two filaments
becomes non-local and has a long range. Admittedly, the two-dimensional hydrodynamics of
our setup exaggerate the strength and range of the hydrodynamic interaction. However, even
in three-dimensional environments the aligning effect of hydrodynamics plays an important
role and acts on length-scales much larger than direct contact.

Analogously to the dry case, Fig. 3.10 shows the collision angle for different filaments stiff-
nesses lp. A comparison to Fig. 3.8 shows again a very similar signature of the collision,
with the expected added polarity due to the aligning hydrodynamic drag. In contrast to the
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Figure 3.9 | The average angle as defined in (3.6) between to colliding filaments with
persistence length lp = 2L for different times (columns) and repulsion potential Ub (rows).
The data show nearly identical angles for different impact parameters b except for spot-on
collisions (b = 0) and misses (b = L). In general, the interactions show a similar signature
as the dry collisions, but with an additional aligning component from the hydrodynamic
interaction especially at later times. Although not shown, the results for Ub = 4 kBT are
nearly identical to Ub = 2 kBT . Standard errors are indicated by horizontal lines and are
smaller than the symbol size.
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Figure 3.10 | The angular change of two colliding filaments at Ub = 2 kBT for different
filament stiffnesses lp at different times (columns) and for impact parameter b = 0 (top
panels) and b = L/2 (bottom panels). Compared to the dry case Fig. 3.8, the collsision
shows a stronger alignment and also a small stiffness dependence at larger Θin.

dry case, however, we find a dependence of 〈Θout〉 on the filament stiffness for high incoming
angles. This difference comes about from the fact that the hydrodynamic acts as a soft force
that competes against the bending stiffness of the filaments. In contrast to the contact inter-
action which is so strong that it dominates any bending forces, the hydrodynamic drag is a
real competition against the bending stiffness of a filament. Because of that, easily bendable
filaments align quicker with the flow field of another filament than stiff filament, leading to
the observed dependence of the collsision angle.

By now, it has become clear that the major effect of the hydrodynamic interaction is a
stronger alignment. For a better comparison of the collision characteristics with and without
hydrodynamics, we introduce a polarization index

Sρ(t) =
2

π

∫ π

0
dΘin ρ(Θin)∆Θout(Θin)

=
2

π

∫ π

0
dΘin ρ(Θin)

(
Θout

(
t|Θin, b, Ub

)
−Θin

)
, (3.8)

which characterizes the polarity of the interaction. The idea is to average the angular change
over the distribution of collision angles and normalize it to the interval [−1,+1]. In the
following, we make the assumption that all incoming angles are equally likely, so that the
distribution becomes flat, ρ(Θin) = 1

π . Consequently, a perfectly anti-aligning interaction
with Θout(Θin) = π would have an index S = 1, whereas a perfectly aligning interaction with
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Figure 3.11 | Polarization index as defined in (3.8) shown for intermediate (top) and strong
(bottom) repulsion Ub. For otherwise identical parameters, the collision with hydrodynamics
(left column) is much more aligning and the hydrodynamic interaction continues to align
the filaments for much longer than in dry simulation. On the other hand for interactions
without hydrodynamics, S quickly reaches an extremal value and relaxes to the equilibrium
value thereafter.

Θout(Θin) = 0 would have an index if S = −1. On the other hand, if the interaction does
not change the polarization in the mean, S becomes zero. In other words, S is a measure if
an initially homogeneous distribution of filament angles becomes more polar or anti-polar by
interactions between the filaments.

Figure 3.11 shows a palpable difference in the polarization index between collisions with
and without hydrodynamics. In the dry case, the S decreases for higher Ub, while there is
virtually no dependence in b with the exception of b = 0. This is in complete accordance
to our above analysis of the collision charactersistics. In addition, the polarization index
shows a small anti-alignment at small times for b = L which has elapsed our attention so
far. An explanation for this transient effect is that b = L corresponds to a very close miss
of the two filaments. So close in fact that a change of direction of the red filament towards
the direction of the black filament is sterically hindered, such that the angular diffusion into
anti-alignment is favored. The most important observation in the dry case is, however, that a
maximal alignment is quickly reached around t ≈ L/v0, i.e. when the filaments have travelled
a full length. The seeming relaxation towards S = 0 can be attributed to an imperfect
compensation of the angular diffusion.

Likewise, in the case with hydrodynamic interaction we find a strong shift of the polarization
index S towards more negative values, which again is in accordance to our discussion above.
In particular, also for b = L where there was no angle change in the dry case, the interaction
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Figure 3.12 | Comparison of the polarization index S as defined in (3.8) for different lp
and Ub. With hydrodynamics (left), the polarization index S is nearly independent of lp,
especially at longer times. On the other hand for pure contact interaction (right), S becomes
more negative for stiffer filaments and therefore S does depend on lp.

is about as polar as for smaller b. However, the biggest difference to the dry case is the much
longer duration of the interaction showing in a decrease of S even at times much greater
than t ≈ L/v0. It is clear that this long-term effect must come from the long range of
hydrodynamic interactions compared to the short-ranged contact interaction mediated by
the potential barrier. Furtermore, the difference in S between weak and strong Ub becomes
rather small after longer times. This is an important insight because it means that at long
time scales, the pair-wise contact interaction is dominated by the much weaker hydrodynamic
interaction. Likewise, even the bending stiffness lp has virtually no impact on the resulting
angle at long times Fig. 3.12, which is in stark contrast to the dry case.

In summary, we have found that on top of the short-ranged aligning interaction due to
contact interaction, the hydrodynamic interaction adds a further aligning force. In contrast
to the short-ranged strong contact interaction, the hydrodynamic alignment is weaker, but
has a long range such that it dominates the alignment of two filaments on longer time-scales.

3.2.3 Comparison to the actomyosin motility assay

In a recent work, Suzuki et al. have determined the scattering statistics of the motility assay
experiment [57]. Because this experiment inspired our model, we will compare our results to
their findings in the following.
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Figure 3.13 | Experimentally obtained binary-collision statistics for the actomyosin motil-
ity assay from [57]. Left: Scatter plot of incoming angle Θ12 versus outgoing angle Θ′

12.
Red open squares and blue solid circles represent data for different filament densities.
Right: Mean plot via binning by Θ12. Indication of weak polar bias where Θ′

12 < Θ12 for
highly acute Θ12. Error bars: Standard deviation. Reprinted by permission from Macmillan
Publishers Ltd: Nat. Phys. [57], © 2015.

Suzuki et al. looked at the actomyosin motility assay with very low filament densities, where
no collective motion is observed. At such low densities, it is possible to identify binary filament
collisions and determine the incoming and outgoing angle between the actin filaments. From
these data, they estimated the scattering function Θ′

12(Θ12) which directly compares to our
Θout

(
t|Θin, b, Ub

)
from (3.6). Their measured Θ′

12(Θ12) shows mostly a nematic signature
with Θ′

12(Θ12) ≷ Θ12 for Θ12 ≷ π/2, and only a minuscule scattering polarity S < 0 (see
Fig. 3.13). The hydrodynamic drag which strongly polarizes the scattering statistics for in our
model (e.g. Fig. 3.11), is therefore apparently irrelevant for binary collision of actin filaments.
Consequently, the dry case has more similarity with the experimental scattering statistics.
However even without hydrodynamics, our filaments collisions are more polar than observed
by Suzuki et al. A reason for this could be the surface roughness of our filaments, because
they are represented by a chain of spherical beads. Apart from this stronger polarity, the
best matching amplitude to Θ′

12(Θ12) is at rather low Ub below 1 kBT .

In summary, the experimental measurements of binary actin filament collisions by Suzuki
et al. are best reproduced by our dry simulations at small Ub. In general, our binary filament
interactions are stronger polar and less nematic than the measured collisions. An extension
of our filament model to a more nematic contact interactions is left for future work.



4 Many filaments in a dry environment

The previous chapter has established that a single filament describes a persistent random
walk and that binary filament collisions are aligning. Large systems of propelled semi-flexible
filaments with contact interactions are novel, therefore this chapter will first consider systems
of filaments without hydrodynamic interactions. In particular, we only consider systems with
identical filaments of length L, persistence length lp, and interaction strength Ub.

In addition to these microscopic parameters, there is now an additional macroscopic pa-
rameter, the density of filaments ρ. One can give a very simple argument why ρ matters: in
between collisions, the filaments lose their memory of direction due to angular diffusion. The
filament density controls how often filaments collide, because by a very crude estimate, the
average time between collisions is t ∝

(
rd−1
c v0 ρ

)−1. Because v0 and rc remain unchanged,
the filament density ρ controls whether the next collision occurs before or after the memory
of direction is lost. Therefore, if collisions happen frequently enough, the alignment of one
collision can carry through to the next collision, so that correlations build up.

All simulations in this chapter had a periodic box of size 80L× 80L and filament densities
between 0.47n/L2 ≤ ρ ≤ 4.69n/L2 (3000–30 000 filaments). Such high numbers of filaments
are computationally only viable through our scalable implementation of this model. Even
then, a single run can easily take up to 500 hours compute time, resulting in about 63 hours
runtime on an eight-core machine. For that reason, we only generated a single realization for
every parameter combination. Although this causes considerable realization noise, the trends
become sufficiently clear when considering the whole parameter set.

Data are acquired as follows: we start from random initial conditions where both the location
and the direction of filaments are uniformly initialized. From these random initial conditions,
we evolve the system of filaments as described in chapter 2 up to tmax = 222 hMPC ≈ 4.2 ·
106 hMPC iterations, corresponding to about tmax ≈ 1200L/v0 filament lengths. Data are
only saved to disk at intervals of 512 iterations, corresponding to about 0.44L/v0.

This chapter is structured as follows: Section 4.1 sets the stage and gives a phenomenological
overview of the system. Section 4.2 then quantifies these findings by looking at two different
order parameters (4.2.1 & 4.2.2), the number fluctuations of the density (4.2.2), the density
in the gas phase (4.2.3), and the clustering behavior (4.2.4). Finally, section 4.3 briefly
summarizes the findings of this chapter.

4.1 Phenomenology

We find a plethora of different behaviour as the density ρ and filament parameters (Ub and
lp) are changed. To avoid confusion in the following sections, it is therefore necessary to first
give an overview of the phenomenology and establish a simple nomenclature of the observed
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features. To that end, we will show snapshots of the simulation at various points in time.
Of course, the full time evolution can not be displayed in a printed form, however a central
question is whether the system has become quasi-periodic. Here, quasi-periodic means that
from a macroscopic point of view, the system repeatedly attains a very similar state. To
address this question, we present a method that gives a two-dimensional representation for
the time evolution of the system of filaments and thus allows to determine whether the system
has become quasi-periodic.

4.1.1 The tSNE method

For a better understanding of the system of filaments, we want to give a visualization of the
complete time evolution of our system. The time evolution of the system can be thought of as
a sequence of points in the state space of the whole system, which is very high-dimensional.
We are therefore looking for a two-dimensional representation of high-dimensional data. The
tSNE-method is a general-purpose visualization method for high-dimensional data given by
xi [92, 93], which is well suited for our goal.

Any mapping of high-dimensional xi ∈ Rn onto yi ∈ R2 must discard a lot of information,
so that no embedding can be perfect. For example, a typical embedding that physicists are
familiar with, is the principal component analysis, where the points xi are projected along
some axis onto yi in a 2D-plane. The projection axis is chosen in such a way that the variance
of the yi becomes maximal. In that way, the principal component analysis preserves the global
structure of the points xi for the two preserved dimensions, but on the other hand the local
structure of the other n − 2 dimensions is completely lost. The aim of the tSNE method is
an embedding that preserves the local structure of the xi for all dimensions, while ignoring
the global structure of xi for the most part.

The approach taken by tSNE is to go from a deterministic embedding to a stochastic em-
bedding (the SNE in the name stands for “Stochastic Neighbor Embedding”) by defining a
measure of similarity between two points by

pj|i =

{
exp
(
−‖xi − xj‖2/2σ2

i

)
/
∑

k 6=i exp
(
−‖xi − xk‖2/2σ2

i

)
for j 6= i

0 for j = i
. (4.1)

The gaussian weight ensures that points which are close together have a large similarity,
whereas widely separated points have no similarity. The width of the gaussian distribution
σi has to be adjusted appropriately, so that points in dense and sparse regions both have a
reasonable number of similar neighbors. Likewise, the image points yi receive a similarity
measure

qj|i =

{(
1 + ‖yi − yj‖2

)−2
/
∑

k 6=i

(
1 + ‖yi − yk‖2

)−2 for j 6= i

0 for j = i
, (4.2)

which is given by a Student-t distribution for reasons that are explained below1.

1The “t” in tSNE stands for the Student-t distribution of the image points, so that the full name is Student-t
distributed Stochastic Neighbor Embedding



4.1 Phenomenology 41

Both similarities can be understood as the probabilities to find point xj in the neighborhood
of xi or yj in the neighborhood of yi. A measure of the similarity of the two distributions is
given by the Kullback-Leibler divergence [94]

DKL(P |Q) =
∑
i

∑
j

pj|i log
pj|i

qj|i
. (4.3)

Minimizing DKL(P |Q) by adjusting the positions yi appropriately gives the best embedding
of the xi in two dimensions. This minimization procedure is rather complex and requires
intelligently chosen simplifications in order to be feasible2. The advantage of this embedding
is that a pair of close-by points xj and xi has a high chance of being mapped to a pair of points
yj and yi which are again neighbors in the image. If this were followed strictly, the image
points y would always be very dense, because the volume of an n-dimensional sphere grows
much faster than the area of a circle. To avoid this crowding, the Student-t distribution is
employed for the image points, so that long distances in the image may be vastly exaggerated
due to the heavy tail of the distribution. As a consequence, the embedding preserves the local
structure of the xi by putting their image points close together, but as the distance in the
source increases, the image point may end up much further away. Of course, the image points
y are no faithful representation, but it allows to determine whether the xi have no structure,
dense regions, or periodic orbits.

In our case, the dimensionality is rather high, specifically we have N × 2d × Nb degrees
of freedom for our N polymers with Nb beads, each of which has position and velocity in
d = 2 dimensions. For N of the order of 104 this is even too much for a sophisticated
method such as tSNE. As a first step, we can ignore the velocity of the filaments, because
every filament usually moves with the same speed. Because filaments align in dense regions,
even the direction of filaments becomes irrelevant so that we can be sure that this does
not lose essential information. Furthermore, if filaments only exchange their location, we
should consider these states as equivalent, because filaments are indistinguishable. Instead
of individual filaments, we should therefore use the filament density instead. A very elegant
way to achieve this is to generate a picture of the simulation and take the grey-values of each
pixel as a degree of freedom. For every point in time3 we generate a picture of the current
state of the simulation. In order to keep the number of degrees of freedom low, we use only
pictures of 10× 10 pixels, resulting in 100 degrees of freedom.

There is one last obstacle; because the tSNE-method aims at preserving the local structure
and subsequent frames are so similar, it only generates a linear sequence of image points yi
from our input data. The solution is to make the input image data dij artificially fuzzy. To
that end, we apply a radial smoothing kernel with a density kij = max

(
0, 1−(i2+j2)/r2

)
and

a radius r of five pixels to the input images, effectively blurring the image. This smears out
the small-scale features, so that a recurring state is already categorized as similar if its large-
scale configuration is similar, although its small-scale features are different. However, this
even increases the tendency of tSNE to group subsequent states together, because subsequent
states mostly differ by their small-scale features and they are blurred out. To overcome this

2For the tSNE-plots shown below we performed the minimization with the publicly available implementation
from [93]

3In fact, we store only a fraction of 1/512 of the simulation states and discard the rest. However, between
stored states a filament typically moves only 0.15L, so that the motion of a filament is still captured very
well.
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drawback, we added a uniformly distributed random noise on top of the image data. In that
way, the sequence of images in image space is no longer a sharply defined path, but a blurry
point cloud along this path, which can overlap with a recurring state. The noise level had to
be adjusted in each of the examples below and was in the range of 2-6 signal to noise ratio4.

In summary, we have introduced a method that allows to depict the time evolution of the
large-scale filament density distribution in our system. The stochastic nature of the tSNE-
embedding places similar states close together while ignoring the global configuration for the
most part. We stress that discrete jumps or discontinuities in the path are possible, and
cannot be avoided due to the dimensional reduction.

4.1.2 Observations

In the following we will present typical simulation snapshots and introduce terms for the
observed features. The main part of this section are the plots which should stand on its own
and the text is merely a description with some explanations. For easy reference, we therefore
highlight new terms in bold.

To avoid misunderstandings, we first give a few remarks how to read the tSNE-plots. The
tSNE-plots are a two-dimensional representation of the time evolution of the entire simulation,
so that each dot corresponds to a particular state. In color and luminosity of the dots
encodes the simulation time of the state, such that early points in time are dark (violet)
whereas towards the end of the simulation, the dots are bright (yellow). As explained above,
the tSNE-plot arranges the dots in such a way that close-by dots most likely correspond to
similar states, where similar refers to a similar density distribution. On the other hand, if dots
are separated by a large distance, they are likely different. Note that due to the construction
of the plot, it is more likely that widely separated dots are similar, than close-by dots are
dissimilar. It is therefore important not to misinterpret the plot in a geometric sense, instead
it should be understood as a topological depiction of the path in the phase space.

The first example in Fig. 4.1 (top) shows the simulation at a rather low density (ρ =
1.41n/L2) and low interaction strength (Ub = 0.4 kBT ). Note that a single filament is so
small compared to the box size that it merely appears as a dot in the printed version. In
the center of this figure is a tSNE-plot of the simulation, which in this case looks just like
a random point cloud. In fact, early states (dark) and late states (bright) are mixed up
randomly without showing any structure, so that the final state and beginning state have
to be similar. Indeed, the snapshots of the filament distribution show no apparent density
fluctuations and the initial state (top left) looks just like the final state (bottom right). It
follows that for low density and interaction strength, the filaments form an unordered gas.

When the density is increased, the filaments start to cluster locally, as Fig. 4.1 (bottom)
shows. In this case, both the density and the interaction strength were increased (ρ =
2.34n/L2 and Ub = 2.8 kBT ). The snapshots show local clustering up to a length scale that
remains much smaller than the size of the simulation box (in the following just system size).
The tSNE-plot now has a few arcs and blobs that do not mix with the remaining states, which
clearly indicates that the filaments are no longer completely randomly distributed. Because

4In other words, for a normalized input data dij ∈ [0, 1] the noise variance was uniformly distributed from
[0, η] with η ∈ [0.1, 0.5]
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Figure 4.1 | Top: ρ = 1.41n/L2, Ub = 0.4 kBT , lp = 2L Bottom: ρ = 2.34n/L2,
Ub = 2.8 kBT , lp = 2L. More explanation about these plots is found in Appendix A.2.1 on
page 156.
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some states are grouped in lines, we can follow that there is a strong correlation among the
states along this line. In fact, the lines in the tSNE plot correspond to the coherent movement
of large clusters of the filaments. We note that widely separated start and end point mean
uncorrelated density distributions, whereas along the line the correlation is strong, therefore
the points are grouped together. At some point these clusters disintegrate and the line in the
tSNE plot stops. As will be explained below, the clusters remain so small and disintegrate,
because Ub is so large that the clusters can not permeate each other when colliding, which
causes them to disassemble instead.

Upon further increasing the density of filaments, collisions among the filaments become so
frequent that the direction between two collisions starts to be correlated. As a consequence,
two filaments can align without direct interaction, but by collisions with a third filament.
In particular, the alignment of two filaments can also propagate in the direction orthogonal
to the direction of movement. Under such circumstances, an occasional density fluctuation
has a drastic chain effect. Figure 4.2 (top) shows how an initially homogeneous system
spontaneously produces a density fluctuation (ρ = 3.75n/L2, Ub = 0 kBT , and lp = 2L). In
this dense seed region, the filaments align through direct interactions and start moving in
one direction. Because filaments to the sides of such a cluster are not re-aligned with the
cluster, such a cluster splays to its side, thereby creating a spherical wave-shaped cluster
of aligned filaments. As this cluster propagates through the system, it eventually spans the
whole simulation box. Due to the wave-like behaviour of this system size cluster, such a cluster
will be called density wave in the following. Such a density wave sweeps the simulation box
and collects filaments at its front. It is essential that the un-aligned filaments which collide
with the density wave do not disturb the filament alignment in the density wave too strongly,
otherwise the density wave would not emerge at all. Towards the rear of the density wave, the
density of the filaments drops so that filaments are no longer effectively realigned with the
density wave. As a result, the density wave loses filaments at its rear end. Figure 4.2 (top)
also shows that the density wave starts as a spherical wave, but as it propagates several times
through the system, it basically flattens out over time. The tSNE-plot for this run shows
a dark blob of unordered initial states with a trail leading away from it which corresponds
to states where the density wave develops. After the density wave has established itself,
the system repeatedly attains very similar states, so that the tSNE-plot shows a closed loop
(greenish and yellow region). As a final remark to the alert reader, we note that the interaction
potential is actually zero, so that filaments should not interact at all. This is however not
correct, because in addition to the contact interaction, there is a spurious interaction between
two filament beads, if they share the same collision cell. This interaction is however much
weaker than the contact interaction via Ub and only has an effect, because the density in this
example is extremely high.

If the interaction strength Ub of two filaments is increased, the onset of the density wave
is in general at much earlier times. For example, Fig. 4.2 (bottom) shows the density wave
for ρ = 1.88n/L2 and Ub = 1.2 kBT . Here, the filaments quickly form small locally aligned
patches and merge to bigger clusters, until the density wave forms. The lower left panel of
this figure nicely shows that the density wave usually has a sharp front and becomes more
fuzzy and less dense towards the end. Besides, one can see that the density in the density
wave also has a large variability, a feature that is found in most realizations. Similarly to the
previous case, the tSNE-plot shows a blob of unordered initial states out of which partially
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ordered states emerge. After the onset of the density wave, the system states form a closed
loop, which means that the system has become quasi-periodic.

The similar pattern is found, if the density is further increased, with the difference that
the width of the density wave grows with the total density ρ (Fig. 4.3 top). Intuitively, we
may conjecture that the rate at which filaments are lost at the rear of a density wave is
dominated by the microscopic filament parameters. Consequently, the density of all filaments
which are not part of the density wave should be constant for the same combination of lp and
Ub. We call the region of freely moving disordered filaments the gas phase. Therefore, the
remaining filaments have to be in the density wave and its width must grow with ρ. Another
notable and not so obvious difference to Fig. 4.2 (bottom) is that the onset of the density
wave shifts towards later times as Ub increases. As already stated above, the reason is that
cluster collisions at large Ub are often fatal, and result in the complete disintegration of the
cluster.

The trend that the density wave emerges at later times becomes even more expressed if ρ is
even further increased (Fig. 4.3 bottom, ρ = 4.69n/L2, Ub = 3.6 kBT ). Only the lower three
panels of this figure are in the quasi-periodic state as their localization on the tSNE-plot
shows. In contrast, local clustering is much more efficient, so that even the first snapshot
shows strong clustering. However, collisions of small clusters for such high Ub often lead to
complete disintegration of the clusters, as will be discussed below. Another observation is
that the fuzziness of the rear of the density wave becomes less fuzzy and increasingly sharper
as Ub increases. This has an important consequence for the density in the gas phase, ρgas.
Consider the gas phase in Figs. 4.2 & 4.3, where Ub increases from 0 − 4 kBT , and which
clearly show that the density in the gas phase varies drastically.

So far, we have only shown examples with a single density wave. The reason for that
is that the run-length of a density seed is of the same order as the system size and that our
system has periodic boundary conditions. Even if two density waves form, their paths will
cross unless they are perfectly aligned. However, two crossing density waves merge to one
big density wave, unless the interaction strength is so low that they may pass through each
other. In the latter case, the density waves would still partially align and potentially form
two distinct aligned density waves. It follows that multiple density waves can only form in
parameter regions where the propensity to form clusters is large (high ρ and Ub big enough),
but cluster collisions are not fatal (small Ub).

Figure 4.4 (top) shows an example where the periodic final state shows two density waves.
In accordance to our discussion above, the simulation parameters are at large density (ρ =
4.69n/L2) and intermediate interaction strength (Ub = 1.2 kBT ). Another exotic example
shows Fig. 4.4 (bottom) where a single density wave winds around the toroidal simulation
box in such a way that it winds twice around the vertical axis and once around the horizontal
axis. Even though it looks like two density waves, it is actually a single one from a topological
point of view. We note, however, that a wave with multiple winding numbers is most likely
observed in a region where multiple waves form, because it is less stable than a wave with a
single winding and therefore easily destroyed by fluctuations.

The examples of Fig. 4.4 are however exceptions for two reasons. First, as already mentioned,
a single density wave in the final state is much more likely than multiple density waves.
Second, because multiple density waves only appear at parameters where the density waves
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Figure 4.2 | Top: ρ = 3.75n/L2, Ub = 0 kBT , lp = 2L Bottom: ρ = 1.88n/L2, Ub =
1.2 kBT , lp = 2L (wave moving upwards). More explanation about these plots is found in
Appendix A.2.1 on page 156.
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Figure 4.3 | Top: ρ = 2.81n/L2, Ub = 4.0 kBT , lp = 2L (wave moving downwards)
Bottom: ρ = 4.69n/L2, Ub = 3.6 kBT , lp = 2L (wave moving leftwards). More explanation
about these plots is found in Appendix A.2.1 on page 156.
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Figure 4.4 | Top: ρ = 4.69n/L2, Ub = 1.2 kBT , lp = 2L (waves moving leftwards)
Bottom: ρ = 3.75n/L2, Ub = 1.2 kBT , lp = 2L (wave moving towards the lower left). Note
that this is a single wave, because of the toroidal topology of the simulation box. More
explanation about these plots is found in Appendix A.2.1 on page 156.



4.1 Phenomenology 49

Figure 4.5 | Top: ρ = 2.81n/L2, Ub = 0.8 kBT , lp = 2L (waves moving towards the lower
left) Bottom: ρ = 4.69n/L2, Ub = 0.5 kBT , n.b. lp = 7L (filaments moving towards the
upper right). More explanation about these plots is found in Appendix A.2.1 on page 156.
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are weakly interacting, the stationary state is achieved at much later times than normal. The
stationary state is only reached, if all density waves have aligned their direction of movement.
However, if one interaction is not enough to align the waves — and it is not because otherwise
the cluster would merge — then the angle between the two density waves shrinks. But if
the angle between the density waves shrinks, the period of their interaction grows. As a
consequence, a typical final state in our simulations with multiple distinct density waves
is one where the waves have a small non-zero angle. It follows that our simulation time had
not been enough to reach a steady (quasi-periodic) state. Figure 4.5 (top) shows a typical
example for such a situation. The tSNE-plot clearly shows multiple distinct lines, which
means that these states are dissimilar to all others, and the plot has no closed loop, so that
the system is not periodic.

Finally, multiple waves can also appear in a different flavor. Figure 4.5 (bottom) shows
weakly interacting filaments at very high density (ρ = 4.69n/L2, Ub = 0.5 kBT ) and n.b. lp =
7L (all previous examples were at lp = 2L). We have discussed above that smaller Ub also
makes the rear of the density wave move fuzzy, so that effectively the density wave also
becomes more elongated. At these parameters, the density wave is in fact so elongated that it
overlaps with the next one or itself. So instead of a distinct high- and a low-density gas phase,
we observe a single phase with large density fluctuations which are typical for the high-density
phase. In particular, all filaments in this joint phase move roughly in the same direction, so
that there is no gas phase anymore where the filaments move in random directions. In contrast
to multiple distinct density waves, we can assume that multiple overlapping density waves
have reached a stationary state which is however non-periodic. The tSNE-plot in Fig. 4.5
(bottom) shows how in the beginning, a large density blob forms, leading the system far
away from the initial density distribution. At later times (4th snapshot), the density is again
much more evenly distributed and stays like that until the end. Because the image points
of different times are so mixed and there is no closed orbit, the tSNE-plot tells us that the
system has a non-periodic stationary state.

In summary we have observed a gas-like disordered state at low filament densities. As the
filament density increases, larger clusters of correlated filaments form and when these clusters
reach system size, a density wave propagates through the system. The separation of the
filaments into a coherently moving high-density region, the density wave, and a disordered low-
density gas phase is a defined phase transition. The density wave itself also shows large density
variations. The density in the gas phase varies drastically with the microscopic filament
parameters or, in other words, the alignment strength of binary filament collision. Multiple
distinct density waves are possible, but an exception. Where distinct density waves form,
the system becomes quasi-periodic in the long run. The density waves can become so spread
out that they even overlap with the subsequent wave. In that case, there is a single phase
with large density variations where all filaments are mostly aligned. This is another phase
transition, which is however much more difficult to quantify.

4.2 Quantitative analysis of the simulation data

The phenomenological findings of the previous section will now be quantified in the following.
For that, we performed parameter sweeps over the parameters Ub, lp, and ρ, for constant
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Ub and varying ρ/lp (for Ub = 0.5 kBT , 1 kBT , 2 kBT , and 4 kBT ), and also for constant lp
and varying ρ/Ub(for lp = 2L and 9L). As mentioned above, we only generated a single
realization for every parameter combination, which makes it impossible to estimate the error
range for our measurements. The limited time-series also prohibits to quantitatively evaluate
the fluctuations over time. As we will become apparent, the relevant trends are nevertheless
obvious.

4.2.1 Order parameter and angular distribution

The phenomenological overview showed that the system of filaments transitions from a homo-
geneous gas-like state into a state with large density fluctuations, as ρ increases. In addition,
the figures suggest that the filaments become aligned and walk into the same direction. Con-
sequently, the direction of filaments is not only locally aligned, but on a system-size length
scale. This section will quantitatively investigate the degree of global directional order of the
filaments in the simulation. To that end, we present two different approaches how order can
be measured. The goal is to understand whether global directional order coincides with the
appearance of the density wave.

Binary collisions of filaments show that filaments on average emerge polarly aligned, from a
collision (see 3.2.1). If collisions among the filaments are frequent enough, so that the filament
direction is correlated between subsequent collisions, we can expect that many collisions lead
at least to a good local alignment of the filaments. Furthermore, as the filament density
increases, so does the collision rate, and one can expect that with increasing density the
filaments become better aligned. In particular, the frequency of collisions can become so high
that the patches where the filaments are aligned grow up to system size. This is what we will
refer to as “global order” or just “order” in the following. Global order is particularly easy to
measure and easy to interpret. In the following, we present two alternative ways to measure
order in our system and quantify our findings.

Polarization as order parameter

A very simple way to determine global order is to measure whether the filaments point into
the same direction. Measuring the direction of a filament requires an unambiguous definition
of its direction, which is unfortunately not trivial for filaments that may bend. Possible
choices are the normalized end-to-end vector r(0) − r(L) or the tangent at some position l
along the contour of the filament, ∂sr(s)|s=l. For our model, the tangent method taken at
the far end of the head worked best, because it showed the smallest thermal noise. Because
each filament is represented by a sequence of beads and not by a continuous line, the tangent
on the filament has to be approximated by the normalized vector connecting two subsequent
beads. So for a filament with Nb beads at positions {r1, . . . , rNb

} where its head bead is at
position one, we defined the filament direction as

t ≡ rNb−1 − rNb

|rNb−1 − rNb
|
. (4.4)
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The average polarization is then given by the length of the tangent vector averaged over the
ensemble of filaments,

P(t) ≡
∣∣∣∣ N∑
i=1

ti(t)

∣∣∣∣ . (4.5)

In order to avoid shot noise, we average the polarization over a period of 1/64 of our simulation
duration or 57L/v0. This duration should be read as 57 times travelled the filament length,
which in most cases is much bigger than the persistence length of the persistent random walk.
Therefore, the duration is long enough to sample statistically independent realisations in the
region of the current state. In summary, the full expression for the averaged polarization is

〈P(t)〉 ≡ 1

∆t

∫ t+∆t

t
ds
∣∣∣∣ N∑
i=1

ti(s)

∣∣∣∣ . (4.6)

For the current analysis, we are interested in the steady state of the system. Therefore,
Fig. 4.6 shows the observed polarization at the end of the simulation for varying filament
density ρ and persistence length lp. Every data point was acquired from a single realisation
of the system, so that the evident noise in the data contains realization artifacts. In order to
reduce this error and get an estimate of the noise, several realizations for the same parameter
set would be necessary. Although this is a simple procedure, the long compute time of up
to 500h for a single realization prohibits that. Because the trend is already quite clear, this
would be a waste of compute time.

Despite the shortcoming of a single realization, it is evident from Fig. 4.6 that there is a
transition from an unordered state with a rather small polarization to an ordered state with
non-zero polarization. This transition shows virtually no dependence on the persistence length
of the filaments for lp ≥ 2L, which is surprising, because the persistence length determines
how long the alignment of two filaments remains stable. Figure 3.6 for example shows that
floppy filaments lose their respective orientation much quicker than stiff ones. A possible
explanation for this peculiar is that the high-density regions contain many filaments of which
only a minor fraction is at the boundary. Because in the high-density region the filaments
are aligned, and collisions happen frequently, every deviation is suppressed by collisions with
aligned neighbors. Only at the boundary can disalignments lead to a loss of filaments, because
when a filament strays away into the low-density phase, it does not get re-aligned. Only for
the low range of lp we find a small dependency in the system polarization. The general picture
seems to be that at small persistence lengths the filament density must be higher in order to
find an ordered state.

On the other hand the dependence of P the filament density ρ is much more evident. For
every interaction strength Ub there is a minimal density below which the polar state does not
form. This threshold density shifts towards higher densities when Ub increases.

Kullback-Leibler divergence as order parameter

The polar order parameter as defined in (4.6) is in essence a mean of the angular distribution
of the filaments. As such, it is best suited to answer the question “has the system polar
order?”. However, there are partially ordered systems for example with mixtures of polarized
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Figure 4.6 | Top panels: The observed polarization as defined by (4.6) scanned over
persistence length lp and filament density ρ. The panels show the same setup for different
contact interaction strengths Ub. Bottom panels: Analogous to the top panels but for fixed
lp and scanned over interaction strength Ub and filament density ρ. Because one data point
took up to 500 hours compute time, each data point was acquired from only one realisation,
such that the evident noise contains realization artifacts. As a consequence, the error range
is unknown. The numbers mark the location of the examples from Figs. 4.1–4.5.
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Figure 4.7 | Top panels: The observed Kullback-Leibler divergence of the measured
angular distribution from a flat distribution as defined in (4.8) scanned over persistence
length lp and filament density ρ. The panels show the same setup for different contact
interaction strengths Ub. Bottom panels: Analogous to the top panels but for fixed lp and
scanned over interaction strength Ub and filament density ρ. Because one data point took
up to 500 hours compute time, each data point was acquired from only one realisation, such
that the evident noise contains realization artifacts. As a consequence, the error range is
unknown. The numbers mark the location of the examples from Figs. 4.1–4.5.
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sub-populations5 which are not well captured by the polarization. In such cases, the question
“is the system disordered” is better suited. To overcome these deficiencies of the polarization,
we will develop a method where the whole angular distribution is taken into account. The
idea is to compare the angular distribution with a flat distribution via the Kullback-Leibler
divergence.

In order to do so, we measured the probability distribution P (ϕ) of the angle ϕ between the
filaments and an arbitrary reference axis. If the system is disordered, this distribution should
be flat, Pf (ϕ)dϕ = 1

2πdϕ, which will serve as the reference distribution. A standard measure
to test how well a measured distribution matches a is the Kullback-Leibler divergence

DKL(P |Q) ≡
∫

dxP (x) log
(
P (x)

Q(x)

)
, (4.7)

which can easily be adapted to a discrete setting. One can show that DKL becomes zero
only if P and Q are identical, otherwise the Kullback-Leibler divergence is positive. As for
the polarization, we averaged the Kullback-Leibler divergence over a period of 1/64 of our
simulation duration or 57L/v0

〈DKL(t)〉 ≡
1

∆t

∫ t+∆t

t
dsDKL

(
P (s)|Pf

)
, (4.8)

where P (s) is the measured distribution at time s and Pf the flat angular distribution.

Figure 4.7 shows the Kullback-Leibler divergence for the same simulations as in Fig. 4.6.
In agreement with Fig. 4.6 one finds a transition from a disordered state (DKL ≈ 0) to a
non-disordered state (DKL > 0) for the same parameters where the polarization P shows
a transition to a polar ordered state. As a consequence, it follows that the system has no
intermediate states with ordered subpopulations when transitioning from disorder to polar
order. Furthermore, figure 4.7 shows a significant change ofDKL in the ordered phase when Ub

is increased. This increase comes from a stronger peaked angular distribution of the filaments
which can be explained by the more efficient alignment of filament interactions (see 3.2.1).

In summary, we have shown two different measures to determine the order in the system,
where the first – standard – method was based on the average direction of the filaments and
the second method took the full angular distribution into account. Using these measures of
order, we found a sharp transition from an unordered state at low filament densities into an
ordered state as the density was increased. Both measures gave qualitatively identical results,
however the Kullback-Leibler based approach gave more information about the peakedness
of the angular distribution. Surprisingly, the order transition showed almost no dependence
on the persistence length lp. On the other hand, we found that with increasing Ub the onset
of order shifts towards lower densities, as long as Ub < 1kBT , but towards higher densities
beyond this threshold.

4.2.2 Number fluctuations

The maximization principle of entropy forbids large density fluctuations in systems which
are in equilibrium. In other words, a system with large density fluctuation cannot be in

5For example, the analogous system with hydrodynamic interactions often has a two sub-regions with different
polarizations.
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Figure 4.8 | Illustration how the density fluctuations were measured. After choosing a
random pivot p (red dot), we count the number of filaments nr contained in concentric
circles around this point with increasing radius r. In every following state, a new random
pivot is chosen so that the statistical independence subsequent measurements of nr increases.

equilibrium. Possible reasons for being out of equilibrium are that the evolution of the system
has slowed down so drastically that it appears to be frozen, which happens for example in
glasses. Another possibility is that via a steady input of energy the system is actively pushed
out of equilibrium, so that the system remains non-static and constantly changing. Clearly,
the system of filaments belongs to the second class, because the filaments are actively pushed
at all times. Indeed, it is a generic feature of systems where the order parameter is also a
velocity to have large density fluctuations [19, 42]. In this section, we will measure density
fluctuations of the filaments in our simulation and quantify to what extent they are abnormal.

Density fluctuations can be measured in a robust way by evaluating the number fluctuations
on different length scales. The great advantage of the number fluctuations is that they are
easy to measure, however there are a few caveats. Figure 4.8 illustrates the process how we
measured the number fluctuations. First we choose a random pivot point p. Around this
pivot point we then draw concentric circles of increasing radius r and count the number of
filaments in each circle nr. It greatly improves the independence of subsequent measurements
of nr, if the pivot point is chosen randomly. This is because subsequent pivot points can be
so far apart that the regions around these points are spatially uncorrelated, and so will be
nr for small r. Furthermore, it is important to count the number fluctuations in circles and
not square boxes, as other authors have proposed [42]. The problem with boxes is that they
have an orientation and are therefore not isotropic. This orientation can cause artifacts if the
underlying density field itself has an orientation as well. As the snapshots of the simulation
show (e.g. Figs. 4.2 & 4.3), this is indeed the case for our system.

In equilibrium when the system has a constant well-defined density, density correlations
are absent and therefore the placement of the particles is independent of each other. As
a consequence, 〈nr〉 is proportional to the area of the circle. Likewise, the law of large
numbers dictates that the number fluctuations ∆n2

r ≡ 〈n2
r〉 − 〈nr〉2 are proportional to 〈nr〉.
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Figure 4.9 | Example for the number fluctuations at different densities (colors) and Ub as
indicated in the panel titles. Linear and quadratic slope are indicated by the dashed and
dash-dotted line, respectively. The dotted lines indicate the slope of the number fluctuations
in the lower range. The slope bigger than one indicates density fluctuations that are not
reconcilable with an equilibrium density distribution. The reason for the vanishing numbers
fluctuations at high numbers is that fluctuations become impossible when the radius of the
circle approaches system size. Errors are missing due to the fact that the data were taken
from a single realisation. The persistence length of the polymers is lp = 7L.

Consequently, in order to check whether a system has a defined density, one can measure
∆n2

r and 〈nr〉 and plot these in double-logarithmic scaling. Figure 4.9 shows the number
fluctuations for a few selected parameters, which were chosen such that different regimes are
displayed. First of all, it is striking that the number fluctuations drop to zero for high 〈n〉.
However, this must necessarily happen, because the number of filaments in the simulation is
fixed. As a consequence, number fluctuations are no longer possible when the circle diameter
approaches system size.

The low density curve (blue) in Fig. 4.9 is from a region where the order parameters indicated
disorder. For that case, the number fluctuations show ordinary scaling with ≈ 1 for all Ub.
It follows that the filaments in this phase have not only no polar order, but also no spatial
structure. In other words, the filaments are almost randomly distributed, much like in a gas.
We say that it is almost randomly distributed, because the scaling exponent is slightly larger
than 16, especially for Ub = 4 kBT . This already hints a non-equilibrium filament distribution.

6For completeness, we list the measured scaling exponents: for the low-density case, the fit of the scaling
exponent is 1.11, 1.17, 1.26 and 1.27 for Ub 0.5kBT , 1kBT , 2kBT , and 4kBT , respectively.
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Figure 4.10 | Sample number fluctuation data (blue) with the range highlighted from which
the scaling exponent is determined (green). Only the first ten data points are used when
fitting with the linear function b+ αx (red) to the loglog transformed data.

The high density curve (red) is in a region where the polarization is close to one. Here,
the number fluctuations reveal a scaling exponent close to two for all Ub, so-called giant
number fluctuations7. This shows that the system has no flat density profile and indicates
the existence of high-density regions with length scales comparable to the system size.

Finally, the intermediate density (green) was chosen such that the polarization jumps from
≈ 1 to ≈ 0 from Ub = 2kBT to Ub = 4kBT . As for the high density, one finds a scaling
exponent of ≈ 2 for Ub ≤ 2kBT , and a significantly smaller scaling exponent for Ub = 4kBT

8.
So this case is a bit peculiar and deserves more explanation. At a closer look, the number
fluctuations for ρ = 1.88n/L2 and Ub = 4kBT indicate a crossover from a ≈ 2 regime to a
≈ 1 regime at 〈n〉 ≈ 200. This means that the high-density phase only grows up to a length
scale lc that is much smaller than the system size. Consequently, the number fluctuations
show approximately quadratic scaling up to lc, but above this length scale the high-density
clusters are randomly distributed, leading to the ≈ 1 scaling. Unfortunately, the data from
these giant number fluctuations are not perfectly reliable, because the linear scaling only
appears at rather large numbers where finite-size effects may already play a role. However,
this explanation is supported by video material.

Although the discussion so far was insightful, it has only shown a few cases out of a few
hundred simulations. Therefore, a more compact presentation of the essential information of
the giant number fluctuations is needed. The main information we extract from such a scaling
plot is the scaling exponent α, as already mentioned above. We determine α by a linear fit
b+αx to the loglog-data where every point gets the same weight. In order to avoid any finite
size effects which suppress number fluctuations, we used only the first ten data points for the
fit (see Fig. 4.10).

7For the high-density case, the fit of the scaling exponent is 1.63, 1.80, 1.85 and 1.88 for Ub 0.5kBT , 1kBT ,
2kBT , and 4kBT , respectively.

8For the intermediate density case, the fit of the scaling exponent is 1.72, 1.85, 1.85 and 1.56 for Ub 0.5kBT ,
1kBT , 2kBT , and 4kBT , respectively.
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Figure 4.11 | The observed scaling exponents of the number fluctuations scanned over
persistence length lp and filament density ρ. The panels show the same setup for different
contact interaction strengths Ub. Because one data point took up to 500 hours compute
time, each data point was acquired from only one realisation, such that the evident noise
contains realization artifacts. As a consequence, the error range is unknown. The arabic
(roman) numbers mark the location of the examples from Figs. 4.1–4.5 (4.9).
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Using this procedure, we thus determined the scaling exponents for all our simulations.
Figure 4.11 shows the scaling exponents of the giant number fluctuations for the same data as
for the order parameters. In agreement with our previous findings, there is a sharp increase of
the scaling exponent for the parameters where order emerges, such that the overall appearance
is very similar to our previous findings. However, the match is not one-to-one and there are
important differences.

First, the distribution of filaments is only random (α ≈ 1) for very low Ub and low densities.
As the interaction strength increases and with it the alignment efficiency (see 3.2.1), the
filaments are no longer randomly distributed, showing in an increase of α. In addition, the
scaling exponent increases with the density of the system, as the panel for Ub = 4kBT shows
best. As for the order parameters, the persistence length of the filaments seems to play a
subordinate role, because the scaling exponents are virtually independent of lp. Only the
lowest persistence length lp = L shows divergent behavior. As a consequence, we follow that
even in the disordered state some local clustering is happening for the larger Ub values.

As a second big difference to previous results, for small Ub we find in the region of high ρ and
large lp a significant decrease of the scaling exponent. This is rather counter-intuitive because
all previous results seem to suggest that high densities and high persistence lengths favor the
emergence of high-density polar clusters. The key to understand this is that the high-density
region becomes larger for smaller Ub, because the alignment of filaments is less efficient there.
With increasing density, the high-density region starts to fill the whole simulation volume, so
that a low density region can no longer emerge. However, because the high-density region itself
has no constant density, the number fluctuations stay at a level above α = 1 but significantly
below α = 2. Of course this does not change the polar order of the system, therefore the
polarization shows no signature of this subtle change.

In summary, the giant number fluctuations are abnormally large with a scaling exponent
close to α = 2 in almost the entire region where the polarization is non-zero. In contrast
to the polarization, the system shows clustering at small scales even in the unordered state,
where the scaling of the number fluctuations becomes 1 < α < 2. This trend with anomalous
scaling is most expressed for large Ub, whereas for small Ub both the scaling exponent α and
the polarization show a sudden jump. In addition, we have found downturn of the scaling
exponent of the number fluctuations in regions where distinct density waves are impossible,
which is in accordance to the more homogeneous distribution of filaments at these parameters
(see Fig. 4.5 bottom).

4.2.3 Density in the gas phase

The phenomenological overview in 4.1.2 has shown that the filaments form a high- and low-
density region, which we call gas phase. The filament density in this gas phase holds important
information about the collective interaction mechanisms. However, estimating the density of
the gas phase is difficult, because in order to measure the density in a high- or low-density
region, these regions need to be separated first. Because the way in which the two regions are
separated has great impact on the result, an unbiased method is of paramount importance.
Below, we will develop such an unbiased method to measure the density in the gas phase and
apply it to our data.
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When trying to separate the high- and low-density regions, one quickly realizes that there is
no standard way to cut one region from the other. Further, the resulting density in one cut-
out region sensitively depends on the chosen procedure. Therefore, a more robust approach is
needed than separating the two regions by some – maybe intelligently – chosen cutoff. In the
following, we propose a robust method to measure the density of low-density regions if there
is a mixture of low and high density regions. The idea is to partition the simulation volume
into equal-sized boxes and evaluating the count statistics of the filaments in the boxes. The
aim is to choose the box sizes in such a way that the count statistics for nearly empty boxes
is dominated by the low-density region.

Under this pre-condition, it is possible to give an analytic formula for the density in the
low-density phase. Consider a density field ρ(x), so that we can define a conditional density
by

R(ρ0) ≡
∫
V dV ρ(x)1ρ(x)≤ρ0∫

V dV 1ρ(x)≤ρ0

, (4.9)

which is the average density in the region where the local density is smaller than ρ0. In a
simulation, this conditional density can be estimated by partitioning the simulation volume
into equal-sized boxes of length lb and counting the contained filaments. Then the conditional
density becomes

R(n) ≡
∑

i niΘ(n− ni)

ldb
∑

iΘ(n− ni)
, (4.10)

where Θ is the Heaviside-theta function and ni the number of filaments in box i. Now let’s
assume that the system has a low-density region with an average number of m filaments per
box. In our simulation, this average number m is so small that collisions in the gas phase
are rare and therefore we may assume that the filaments in the gas phase are in equilibrium.
Consequently, we may assume that the average over a single state of the simulation approaches
the ensemble average, if the simulation volume is large. Hence it follows that the ratio
in (4.10) approaches the probability to find a box with ni filaments. This probability is a
classic application of the Poisson distribution, so that (4.10) becomes

R(n|λ) =
∑

i≤n iP(i|λ)
ldb
∑

i≤n P(i|λ)
, (4.11)

where P(i|λ) is the Poisson distribution with mean λ. The great advantage is that this
expression has an analytic solution:

R(n|λ) = λ− e−λ

E−n(λ)
, (4.12)

where En(x) is the exponential integral function9.

In the limit, R(n) approaches λ for n → ∞ and 0 for n → 0. Furthermore, we can expect
that R(n = λ) ≈ λ if the number of filaments per box is large, because a surplus of filaments
becomes rather unlikely then. Therefore, we expect that the function R∗(n∗|λ) ≡ R(λn∗|λ)/λ
has a crossover to a constant value at ≈ 1, which becomes sharper for increasing λ. This is
indeed the case, as Fig. 4.12 shows.

9The exponential integral function is defined by En(z) ≡
∫∞
1

e−z tt−ndt and is implemented in common math
libraries.
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Figure 4.12 | Rescaled conditional density function as defined in (4.12) for various λ. As
expected, the conditional density approaches λ for n∗ ≈ 1, if the average number of filaments
per box, λ, becomes larger. Furthermore, one can show that the scaling exponent for n∗ � 1
is approximately 1.

In a simulation, we can measure R(n) so that we need to invert equation (4.12) for λ. Un-
fortunately, this is not possible for arbitrary n, however there are simple analytic expressions
for the first few values of R,

R(1) =
λ

1 + λ
R(2) =

2λ(1 + λ)

2 + λ(2 + λ)
. (4.13)

For these two values, analytic expressions for λ are therefore easily found,

λ =
R(1)

1−R(1)
λ =

1−R(2)−
√
2−

(
R(2)− 1

)2
R(2)− 2

. (4.14)

These two expressions can be used as bias-free estimators for the density in the low-density
phase, if the high-density phase only contributes little to the empty, single, or double occupied
boxes. The great advantage of this method is that it does not depend on an arbitrary choice
of some cutoff, but only on the box size. For proper results, one therefore has to make sure
that the high-density phase does not contribute to the nearly empty boxes. Consequently,
the box size lb must be large enough to avoid this but still small enough to ensure a large
number of nearly empty boxes. This number depends both on the density of the low-density
phase and the simulation volume, therefore it is essential that the simulation volume is large.

Of course, nothing would be won if equations (4.14) would yield different results for different
box sizes. We therefore generated mock data with densities in the same range as our simulation
and compared the predicted density with the actual one. Thus we found that for box sizes in
the range from ≈ 1L to ≈ 4L10 the predicted density differed from the actual one by only
≈ 1%. Furthermore, we found that the expression for R(2) gave in general more accurate
results than the expression for R(1). Therefore, we used a box size of 2L in the following and
obtained the density by inversion of (4.14) for R(2).
10These box sizes correspond to a number of 6400 and 400 boxes, respectively.
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Figure 4.13 | Top panels: The density in the gas phase determined via (4.14) scanned over
persistence length lp and filament density ρ. The panels show the same setup for different
contact interaction strengths Ub. Bottom panels: Analogous to the top panels but for fixed
lp and scanned over interaction strength Ub and filament density ρ. Because one data point
took up to 500 hours compute time, each data point was acquired from only one realisation,
such that the evident noise contains realization artifacts. As a consequence, the error range
is unknown. The numbers mark the location of the examples from Figs. 4.1–4.5.
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Figure 4.13 shows the measured filament density in the gas phase scanned over persistence
length and filament density for different Ub. All panels show a significant drop of ρgas at
the emergence of order and large clusters (see also figs. 4.10 & 4.6). For densities below this
transition, ρgas increases, although the increase of ρgas remains far below the total filament
density ρ. This is in accordance with the increase of the scaling exponent of the number
fluctuations, because filament clustering on small scales reduces the gas phase density and
likewise increases the number fluctuations. As the clustering is more stable and thus stronger
for larger lp, the increase of ρgas with the total density ρ is slightly larger for small lp.

Interestingly, the gas phase density is approximately constant in the whole ordered region,
except for parameters with low Ub and high lp. The increase of ρgas in this region is connected
to the decrease of the scaling exponent of the number fluctuations there. Above, we already
explained that the high-density phase becomes system spanning in this region, so that the
disordered gas phase no longer exists. Hence, the method of measuring the density of a low-
density phase must break down here. Our results indicates that the lowest density increases
which means that overall the system shows smaller density variations. Yet this has to be
taken with a grain of salt, because the high-density region is ordered and therefore not gas-
like, so that the equilibrium assumption on which our method builds is no longer fulfilled.
Apart from this peculiar region however, the density in the gas phase is surprisingly low
and flat. In particular, ρgas stays constant even if the total density ρ is increased, which
allows to determine ρgas = 0.22 ± 0.01

[
n/L2

]
(Ub = 2kBT ) and ρgas = 0.14 ± 0.01

[
n/L2

]
(Ub = 4kBT ). It follows that all the added filaments are accumulated in the ordered high-
density phase which therefore grows in size, whereas the low-density region shrinks. The
mechanism how this works is that the density wave has a direction and periodically sweeps
the system from one side to the other, thereby hoovering up all filaments in the gas phase.
The density in the gas phase is therefore only replenished by filaments that are lost at the
trailing end end of the density wave. It is reasonable to assume that the rate of lost filaments
at the trailing end only depends on the filament properties and is therefore independent of
the total filament density. This explains why the density in the gas phase is independent of
the total density.

However, ρgas also shows little to no dependence on lp, as far as the noisy data allow this
conclusion. We have shown that the alignment characteristics depend only very weakly on the
persistence length lp, whereas the persistence length of the random walk Lp is approximately
equal to lp. Therefore, the independence of ρgas on lp shows that aligning collisions in the
dense phase and its tail are much more frequent than Lp/v0, otherwise it should make a
difference how long Lp is. If collisions are frequent, ρgas may however depend on the polarity
of binary collisions. However, Fig. 3.8 shows, if at all, little dependence of the alignment
for two filaments if the collision angle is small. As filament collisions in the ordered phase
happen frequently, the incoming collision angel Θin is usually small, so that lp makes virtually
no difference. Consequently, also the density of the gas phase becomes virtually independent
of lp.

In summary, we have developed an unbiased estimator for the density in the gas phase,
which is based on the count statistics of filaments in a partition of the simulation into equal-
sized boxes. Applying this method to our data showed that ρgas increases with ρ as long as
no density wave has formed. However, as soon as the density wave appeared, the gas density
dropped drastically and remained independent of both ρ and lp as far as our data allow that
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conclusion. On the other hand, ρgas drops drastically with increasing Ub. These observations
allowed the conclusion that the gas density is determined by the alignment efficiency of binary
filament interactions.

4.2.4 Clustering of the filaments

The density fluctuations in the simulation have shown (see 4.2.2) that the system has large
density fluctuations which are impossible in equilibrium. Although the number fluctuations
are a robust method to measure out-of-equilibrium density fluctuations, they are a rather
crude measure which is most appropriate for experimental data. For a simulation where
data acquisition is no obstacle, the clustering behavior can be examined in more detail. This
section will therefore quantitatively examine the clustering behavior of the filaments in our
system. For that, we establish a procedure how to determine the cluster sizes at any point
in time and thus measure the cluster size distribution. In addition, we will present equations
which qualitatively reproduce the features of the measured cluster size distribution.

The first step in this analysis is to define a unique cluster set for every given snapshot of the
simulation. This requires to partition the set of filaments F = {f1, f2, . . . , fn} into disjoints
subsets Ci which we call clusters, such that the following conditions are met,

F = C1 ∪ C2 ∪ . . . ∪ Cm Ci ∩ Cj = ∅ ∀i 6= j .

Further, we call two filaments f1 and f2 clustered, if they are in the same cluster f1, f2 ⊂ C.
This partition into clusters form a new set,

C = {C1, C2, . . . , Cm} , (4.15)

which we call cluster set. Of course, this partition has to be built in a way that it corresponds
to our understanding of clusters. Here, we are mainly interested in spatial clusters, that is,
filaments should be clustered if their distance is smaller than some cutoff distance d(f1, f2) ≤
rc. However, even if filaments are close together, we would not consider them clustered, if they
are walking into different directions and are thus close together only by chance. In addition to
the spatial criterion, we therefore also require that the angle between two filaments is below
some cutoff angle ^(f1, f2) ≤ αc.

These criteria enable us to define a unique cluster set. For any two filaments f1 and fl
in the same Ci, we require that there exists a sequence of filaments f1, f2, . . . , fl such that
subsequent filaments fulfill our clustering criteria. We call this property of Ci path-connected.
Furthermore, for every filament fi in Ci we require that no other cluster Cj contains some
filament fj such that fi and fj fulfill the clustering criteria. In other words, fi may not be
path-connected to any filament in any cluster other than Ci. It is easy to see that this defines
a unique cluster set, because assume there are two cluster sets C and B. Then there has to
be at least one cluster Ci ∈ C that is not in B and without loss of generality we may assume
that |Ci| > 1. Therefore there exists a pair of filaments {f1, fl} ⊂ Ci which are in different
clusters in B, B1 and Bl. Because f1 and fl are clustered in Ci, there exists a sequence
of filaments f1, f2, . . . , fl, such that along the sequence every filament fulfills the clustering
criteria. Some part of this sequence f1, . . . , fb has to be contained in B1, but it has to be
broken somewhere, otherwise fl would be in B1. Consequently, fb+1 3 B1 although fb and
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fb+1 fulfill the clustering criteria, which is a contradiction. Therefore, the partition into the
cluster set C must be unique.

The spirit of this definition is that a filament belongs to a cluster, if there is at least one
filament in this cluster which fulfill the clustering criteria. This makes sense, because a
filament can only sense its immediate environment, however it has the drawback that big
blobs of filaments can be connected via a thin thread of filament, like a bridge. It depends
on the questions one tries to answer if this is a concern or not, for our purposes this is fine.
However in such a situation with a bridge, the noise in our system often leads to flickering
cluster partitions, because it may happen frequently that the path over the bridge fulfills the
clustering criteria or not. So in essence, this problem arises if filaments were clustered but then
no longer fulfill the clustering criteria. Hence, we make use of the sequence C0, C1, . . . , Ci of
previous cluster sets and when building Ci+1 we relax the clustering criteria for two filaments,
if they were already clustered in Ci. The uniqueness of the partition into a cluster set follows
along the same line of arguments as above, but one has to keep in mind that it also depends on
the sequence of cluster sets, so that individual states cannot be processed independently. For
the relaxed clustering criteria we use both distance and angle again, but the cutoff thresholds
are higher. It is clear that these cutoff values are to some extent arbitrary, and the resulting
cluster partition depends on the particular cutoff values. Therefore, it is important to carefully
choose the cutoff values that make sense. In practice, a rather strict alignment cutoff and
a distance cutoff in the order of the filament length have proven to work best. All cluster
partitions below were constructed with a (relaxed) cutoff distance 2

3L (1L) and a (relaxed)
angle of 10◦ (15◦).

In the following, we describe the procedure how the cluster set is built in practice. Given clus-
ter set Ci of the previous step, we start with an initial cluster set C = {{f1} , {f2} , . . . , {fn}},
which already fulfills the disjointedness and path-connectedness that is required for the cluster
set. What is missing is the requirement that different Ci are not path-connected. To achieve
this, two clusters Ci, Cj ∈ C are joined, if there exists an fi ∈ Ci and fj ∈ Cj which fulfill the
strong clustering criteria, or the relaxed ones, if {fj , fi} ⊂ Ck ∈ Ci for some k. This joined
cluster is disjoint to all other clusters in C and also path-connected, because any two filaments
in f̃i, f̃j ∈ Ci ∪ Cj can be connected via fi and fj which are connected. This joined cluster
replaces Ci and Cj in C, and it is ensured that the disjointedness and path-connectedness
remains valid for the updated cluster set C. This procedure is repeated, until no connected
pairs of filaments in two different clusters can be found, so that the remaining requirement of
the cluster partition is fulfilled. The so-constructed cluster set C becomes the next Ci+1.

In summary, the above procedure defines an algorithm to partition the filaments into a set
of disjoint clusters. The above proof shows that the partition is in fact unique. The algorithm
is also efficient with a complexity linear in the number of filaments, if properly implemented.
In the following, we will discuss particular features of this cluster set.

Largest cluster

The cluster partition can answer important non-trivial questions about our system. A very
fundamental question for example is, how many filaments are in the largest high-density region
in our system. Because our clustering criteria also require an alignment of the filaments in
a cluster, this question is related to the polarization. With clusters, on the other hand, the
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Figure 4.14 | Top panels: The relative cluster size of the largest cluster in the system,
|Cmax|/N , scanned over persistence length lp and filament density ρ. The panels show the
same setup for different contact interaction strengths Ub. Bottom panels: Analogous to
the top panels but for fixed lp and scanned over interaction strength Ub and filament density
ρ. Because one data point took up to 500 hours compute time, each data point was acquired
from only one realisation, such that the evident noise contains realization artifacts. As a
consequence, the error range is unknown. The numbers mark the location of the examples
from Figs. 4.1–4.5.
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emphasis is on being connected and high-density and not only aligned. As a consequence, the
largest cluster size can be small even if the polarization is large, for example if the filaments
are distributed homogeneously but all point into the same direction. In the following, we will
investigate the question, if a large polarization necessarily implies the existence of a large
cluster.

With the definition of our cluster size distribution from above, it is straight-forward to
extract the size of the largest cluster, |Cmax|. Yet we have to expect that the cluster size of
the largest cluster also depends on the total number of filaments N , so that it makes no sense
to compare cluster sizes at different densities. To compensate for this undesired dependence,
we rescale the cluster size by the total number of filaments, |Cmax|/N . Thus, this relative
cluster is a measure for the fraction of filaments contained in the largest cluster which is
independent of the filament density ρ.

Figure 4.14 displays the relative cluster size of the largest cluster for various parameter
combinations. A first observation is that |Cmax|/N can be close to one which means there
is a huge cluster that contains nearly all filaments. This trend is most expressed for large
Ub, for which the alignment of filaments is most efficient, but less pronounced for small Ub.
Considering that the density in the gas phase changes by almost one order of magnitude
from Ub = 0.5kBT to Ub = 4kBT , this dependence makes perfect sense. Of course, the
relative size of the largest cluster is not always large. Concretely, wherever the polarization
is small, also the size of the largest cluster must necessarily be small, as the low-ρ region in
Fig. 4.14 shows. If this were not the case, a considerable fraction of the filaments would form
an orientated structure whose contribution to the polarization cannot be balanced by the
remaining filaments. Therefore, the polarization must be non-zero which is a contradiction.
On the other hand, a large polarization does not imply that the largest cluster must contain
most of the filaments. Indeed, Fig. 4.14 shows a rather small fraction of filaments in the
largest cluster for large lp and ρ. In contrast, Fig. 4.6 shows a very large polarization in that
region. There are two possible explanations for this anomaly; either the density of the ordered
phase is too low so that the clustering criteria split the density wave into several clusters,
or there are multiple distinct density waves in the system. A visual inspection of the data
shows that both situations apply in in different regions (e.g. Fig. 4.5 bottom). Specifically,
we find multiple waves for low ρ which become more and more elongated as ρ grows. At some
point, when ρ is large enough, the density waves start to overlap, so that nearly all filaments
point into the same direction which explains the large polarization11. However, the density
in this region varies drastically, so that the filaments form no coherent cluster according to
our definition. In general, multiple density waves seem to be favored at large lp and we find
them almost exclusively at low Ub.

Overall, the cluster size of the largest cluster shows a behavior that is in good agreement with
our previous findings. In the region where the polarization is large, we found for Ub ' 1kBT
that a large cluster forms which accumulates nearly all filaments in the system. We can
identify this giant cluster as the density wave which was described in 4.1.2. In contrast at
low Ub, the fraction of filaments in the largest cluster only reaches 30% of the filaments. This
is in perfect agreement with 4.1.2 where we found that multiple distinct density waves form
in this parameter region.

11Note that the giant number fluctuations also showed an anomaly for these parameters, which had the same
reasons.
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Figure 4.15 | Cluster size distribution for lp = 2L, Ub = 1kBT , and different densities. The
data is shown in loglog-scale, so that it becomes evident that the cluster size distribution
drops approximately algebraically. At high densities where the ordered phase forms, the size
distribution shows an outlier at very high cluster size which corresponds to the orientated
density wave. To determine the power law exponent, only cluster sizes up to 20 are used
(dotted black line).

Cluster size distribution

Instead of considering just a single cluster, the cluster set as defined in 4.2.4 can also yield
a distribution of cluster sizes. This cluster size distribution allows to address the question,
how the clustering propensity of the filaments changes with the simulation parameters. In
particular, it tells how the balance of large and small clusters changes. In the following, we
will discuss typical cluster size distributions as they are found in our simulation and compare
them to an analytic model for the cluster size distribution.

The abundance of clusters with a specific size s is easily calculated by counting,

Nc(s|Ci) ≡
∣∣∣{C | C ∈ Ci ∧ |C| = s}

∣∣∣ . (4.16)

Similarly to other observables from above, we averaged the cluster size distribution for over
a duration of 1/64 of our simulation duration and only show data at the final state of our
simulation. Figure 4.15 gives an example of the cluster size distributions for arbitrarily
chosen parameters. The plot shows a few notable features which are generic for our measured
cluster size distributions: First, because the plot has loglog scaling, it reveals that the cluster
number distribution approximately drops algebraically with the cluster size up to intermediate
cluster sizes. Second, this scaling only applies at large enough filament densities, because for
ρ = 0.47n/L2 the cluster size distribution deviates from the algebraic scaling. Third, very
large cluster sizes are much more abundant than a strict algebraic scaling would predict In
particular, there are extreme outliers which correspond to the density wave which encompasses
a major fraction of all filaments. Furthermore, some cluster size distributions show a kink at
intermediate cluster sizes, for example at 100 for a density ρ = 1.88n/L2. These features can
be explained by a clustering model first presented by Peruani et al. [95].
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Theoretic model for the cluster size distribution Inspired by Master equation approaches to
understand nucleation in gases, Peruani et al. found a simplified model for cluster growth [95,
96], which we outline in the following. Take the average number of clusters with size i at
time t, ni(t), so that free filaments are just clusters of size 1. An individual cluster can
either shrink by losing filaments, or grow by colliding with another cluster and absorbing
its filaments. The loss of filaments can either come from a splay of the whole cluster, so
that the whole cluster breaks up at once, or by losing individual filaments. Because splay
can also be viewed as a repeated loss of single filaments on a faster time-scale, we assume
that a cluster only shrinks by losing one filament at a time. A filament breaks away from
its cluster, if its direction of movement is not aligned with its cluster and therefore with its
neighboring filaments. Because a single filament in the interior of a cluster is quickly re-
aligned by collisions with its neighbors, it follows that only filaments at the boundary of the
cluster can effectively leave the cluster. As a consequence, the rate Bi at which filaments
in a cluster of size i leave the cluster is proportional to the cluster circumference, so that
we approximate Bi ∝

√
i. Similarly, the collision rate Ai,j of two clusters can be estimated

by the collision rate of two spherical disks, which has been shown to be proportional to the
relative speed and the sum of the disk radii [97]. In fact, not every collision leads to a merger
of two clusters, but for simplicity we can assume assume that a constant fraction of collisions
results in a merger, so that Ai,j ∝ (

√
i+

√
j). Of course, the collision rate A also depends on

the relative cluster speed v0 and quadratic on the overall density of clusters. We now make
the simplifying assumption that cluster collisions are only binary, so that the time evolution
of the average cluster size ni is given by

ṅ1 = 2B2n2 +

N∑
k=3

Bknk −
N−1∑
k=1

Ak,1nkn1

ṅN = −BNnN +
1

2

N−1∑
k=1

Ak,N−knknN−k (4.17)

ṅj = Bj+1nj+1 −Bjnj −
N−j∑
k=1

Ak,jnknj +
1

2

j−1∑
k=1

Ak,j−knknj−k for j = 2, . . . , N − 1 ,

(4.18)

where N is the total number of filaments. Here, we are only interested in the stationary state
of this equation system, therefore the absolute value of the rates Ai,j and Bk are irrelevant,
because they only affect how fast the equilibrium is reached. On the other hand, the relative
magnitude of of the rates determines the balance of clusters breaking up (B) and re-forming
due to mergers (A). Hence, by transforming time to an unknown time-scale, the rates become

Bk =
√
k Ai,j = P

(√
i+
√
j
)

, (4.19)

where P is the ratio of the rates of cluster merging and disassembly. In principle, the assembly
ratio P can be estimated from microscopic filament parameters, however these microscopic
parameters are not well-known for our filament model. Therefore, a quantitative comparison
of the predicted cluster size distribution makes no sense and we focus on the question, whether
this model describes cluster formation qualitatively.

These equations have to be integrated numerically for a duration that is long enough so
that the fixed point of the equation system is reached. Numerical accuracy and computing



4.2 Quantitative analysis of the simulation data 71

100 101 102

s

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

n
s
(∞

)

P=8.75e-04

P=3.50e-03

P=1.40e-02

P=5.60e-02

Figure 4.16 | Fixed point solutions of the equations (4.18) for N = 256 and various
assembly ratios P . The equation system was integrated numerically using Mathematica.

power limit the feasible range of the number of filaments to N ≈ 250, which is twice as much
as was possible at the time of Peruani’s original work. Still, this is substantially smaller than
the number of filaments in our simulation (up to 30 000), however we find that the solutions
for smaller N are qualitatively similar to the one at large N . Therefore, assuming that the
behaviour does not change drastically up to N = 104, we may assume that the comparison
with our data is nevertheless valid.

Figure 4.16 shows the so-obtained cluster size distribution for different assembly ratios P . At
small assembly ratio P , the filaments can not cluster fast enough, before the loss of filaments
on the surface destroys the cluster (blue curve). In that case, the cluster size distribution is
not a power law, and we find a similar behavior in our data at small densities. At increased
P , the cluster size distribution then shows a power law that deviates only at very large cluster
sizes (green curve). Upon further increase of the assembly ratio, the power law remains only
valid up to intermediate cluster sizes of about 50 filaments, and for very large cluster sizes
the model predicts an excess of clusters (red curve). For even higher P , the transition from
power law to excess of clusters shifts towards smaller cluster sizes (turquoise curve).

Comparison the measured cluster size distribution and the theoretic model A comparison
of the theoretic model with the data shows strikingly similar features (Figs. 4.16 & 4.15).
As mentioned above, the assembly rate grows with the total filament density, because the
density of clusters increases alike. Consequently, the low-density data correspond to small
P values, whereas the high density data correspond to larger P values. In that regard, the
model predictions are in good agreement with the observed cluster size distribution, despite
the considerable simplifications of the model. However, there are a few discrepancies in the
qualitative behavior. For example, our data do not show the steep increase in the cluster
abundance for large cluster sizes, as predicted by the model. Deviations at large cluster sizes
have to be expected because the density wave has peculiar properties compared to smaller
clusters. To understand this, consider a square-shaped cluster with one edge as the front.
Filaments cannot outrun the cluster, therefore filament loss at the leading edge is impossible.
On the sides, filaments can easily leave the cluster by a small angular deviation pointing
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away from the cluster center, because in the long run even a small angular difference adds up.
The rear of the cluster is special, because small angular deviations are re-aligned with the
direction of movement of the cluster, of the filament density is large enough. So a filament at
the rear can only escape from the cluster, if the density in its vicinity is rather thin, or the
angular misalignment is so large that neighboring filaments cannot outbalance the difference.
From this discussion follows that filament loss at the rear is slow compared to the sides. This
has no impact on the scaling of the decay rate Bk of a cluster, because we can assume that
the length of the sides still scales with

√
k. However, this is wrong if the cluster has no sides.

Due to the toroidal topology of our simulation, this is indeed the case, if the cluster width
reaches system size. The density wave does indeed span the whole system and is therefore
much more stable than the model predicts. This also impacts on the cluster distribution of
the intermediate clusters, because they are long-lived enough to eventually collide with the
density wave. Therefore, we have to expect that the model only fits well for cluster sizes
where the life-time is smaller than a sweep of the density wave.

So far, we have found that the measured cluster size distribution shows a falloff that is
stronger than algebraic at small densities and a near perfect algebraic decrease over about two
orders of cluster size for higher densities. These findings are in good qualitative agreement
with a theoretic cluster model by Peruani et al. The major difference between model and
theory concerns the clustering at the largest cluster sizes. Instead of the predicted surplus
over a wide range of large cluster sizes, we merely found a single outlier from the density
wave, which we could explain by the increased lifetime of the density wave.

Scaling exponents of the cluster size distribution

Although the full cluster size distribution contains most information, it allows no easy com-
parison of the clustering behaviour for different parameters. However, it is possible to extract
the scaling exponent of the cluster size distribution which is a measure for the propensity to
form clusters. Our data only allow to measure the scaling exponent for small cluster sizes,
therefore this scaling exponent measures clustering of small clusters. In the following we
address the question, how the clustering propensity changes with the filament parameters.

The scaling exponent α makes only sense for distributions where the cluster size distribution
is proportional to Nc(s) ∝ sα, in other words if the cluster size distribution is algebraic. A
large scaling exponent then favors the buildup of large clusters, whereas a small scaling
exponent shifts the distribution towards small clusters. To measure the scaling exponent
from our data, we transformed both cluster size and cluster abundance to a logarithmic scale
and fitted a linear function to the transformed data. In order to circumvent the stronger noise
at higher cluster sizes and other deviations from the algebraic scaling due to the influence
of the density wave, we limited the range of Nc to a maximal cluster size of 20. In the
parameter region where the cluster size distribution fits a power law well (see Fig. 4.15), we
typically found scaling exponents α in the range from −2.8 to −2.2. This is a remarkably
good agreement with the typical scaling exponent found in the theoretic model ranging from
−2.7 to −2.3, despite the considerable simplifications of the model. Consequently, we may
assume that the clustering model proposed by Peruani et al. can even make quantitative
predictions about the cluster size distribution of small clusters.
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Figure 4.17 | Top panels: The measured scaling exponents α of the cluster size distri-
bution as defined by (4.16) scanned over persistence length lp and filament density ρ. The
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Figure 4.18 | Illustration of cluster collisions with low Ub (left) and high Ub (right). If Ub

is small, filaments may easily cross each other so that two colliding clusters may permeate
and either merge or change their direction. If Ub is large, filaments can no longer cross each
other, because the potential barrier is too high. As a consequence, two colliding clusters do
not permeate but come to a halt and disintegrate over time.

In order to have a more systematic overview, Fig. 4.17 shows the scaling exponents for
all our data in the familiar heat map. In general, the bottom panels show that the scaling
exponent α increases with the density ρ, which is expected, because the collision rate Ai,j

grows with the density. Additionally, we find that α also increases with Ub, which comes from
the better alignment of the binary collisions with increasing Ub. Consider now the regions
where α is small (dark regions in Fig. 4.17). Because large clusters emerge from collisions of
small clusters, it is a necessary condition that a dense ordered phase can only build up, if the
clustering propensity at small scales is strong. Hence it is consistent that the regions where α
is small do not show an ordered phase (compare to Fig. 4.6). However, it is rather surprising
that in general the scaling exponent is even quite large in regions where no ordered phase is
found. Especially for large Ub the difference is quite stark, because the scaling exponent is
around −2.4 for almost the entire parameter space, but the ordered phase is only found in
the upper half. At least, this discrepancy between the scaling exponent and the polarization
is no contradiction, because α only measures the propensity to cluster at small scales.

Figure 4.17 suggests that at low Ub, the ordered phase is limited by clustering on small
scales, and on the other hand for high Ub it is not. Because small clusters do form for the
entire parameter range of high Ub, it follows that cluster growth must be inhibited at a length
scale which is large compared to the filament size, but still smaller than system size. Indeed,
video material shows that as Ub increases, collisions of two clusters become more and more
fatal in a sense that the clusters destroy each other. Figure 4.18 illustrates the underlying
problem. If Ub is small enough, filaments may easily cross each other so that two colliding
clusters may permeate and either merge or change their direction. On the other hand, if Ub

is large, filaments can no longer cross each other, because the potential barrier is too high.
Because our model is constructed in a way that filaments cannot be pushed away, the two
clusters are in a stalemate which resolves over time by disintegration of both clusters. As a
consequence, the rate at which clusters collide Ai,j is no longer proportional to the rate at
which clusters merge.

In summary, we found a good quantitative agreement of the scaling exponent of the cluster
size distribution between data and the theoretic cluster model. The scaling exponent of
the measured cluster size distribution increased with filament density or Ub and approached
a scaling exponent around −2.3 (see Fig. 4.17). At small Ub where clusters rather merge
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instead of destroying each other, the scaling exponent showed a sudden increase at the same
parameters where order emerges. On the other hand for large Ub where clusters can not
permeate, the scaling exponent shows a completely different behavior than the polarization.
We explained this by an increased trend towards fatal cluster collision that destroy two clusters
rather than merging them. Consequently, we inferred that clustering at small scales does not
necessarily imply an ordered phase.

4.3 Summary of the dry system

In this chapter we examined a system of many filaments that interacted solely via a short-
ranged contact interaction. In particular, we looked at the dependence on filament density ρ,
persistence length lp, and interaction strength Ub.

For low enough filament densities ρ we found a disordered gas-phase of almost homoge-
neously distributed filaments. At such low densities, the filaments only align locally.

With increasing ρ, the filaments started to cluster locally, resulting in an increase of the num-
ber fluctuations of the filament density. At some filament density threshold, which depends
on the filament parameters lp and Ub, the disordered system undergoes a phase transition
where the filaments start to form two distinct phases: first, a disordered gas phase much like
the gas phase at low filament densities. Second, a tightly packed high-density phase where
all filaments point into the same direction. This high-density phase periodically sweeps the
simulation volume — therefore “density wave” — and encompasses most of the filaments.
Interestingly, the density of the gas phase remains independent of the total filament density,
so that additional filaments are simply taken up by the density wave.

Additional filaments in the density wave also increase the width of the density wave. There-
fore, at very large filament densities there is another phase transition where the disordered
gas phase ceases to exist because the density wave spans the whole system.

These findings are akin to the Vicsek model of point particles with a polar alignment by
Grégoire et al. who find a similar clustering before the onset of a density wave [32]. Because
their particles only have an attractive interaction, their density waves do not spread out as the
filaments in our model. Consequently, they observe no mostly homogeneous ordered phase at
very high densities (see Fig. 4.5 bottom), although the Vicsek model could be readily extended
to that case. In a completely different approach, Thüroff et al. considered a numerical solution
of the Boltzmann equation for self-propelled particles with polar alignment [31]. Similarly
to our system, they find a disordered phase at low densities and an ordered phase at high
densities. In addition, they also report an intermediate regime where multiple density waves
occupy different lanes and travel in opposite directions which was absent in our simulations.

The density wave from our simulations is similar to the phenomenology of the actomyosin
motility assay as reported by Schaller et al. [10]. Like in our simulation, they find a disordered
phase at low filament densities ρ, and the formation of system-spanning density waves above
a critical density ρ∗. However, for intermediate densities ρc < ρ < ρ∗, they also report the
formation of long-lived compact clusters that are substantially smaller than a density wave.
Although we also find cluster formation on intermediate scales at high persistence length
lp and interaction strength Ub, these clusters are always short-lived in our simulation. We
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cannot exclude that other simulation settings will also produce such long-lived structures,
but given the fact that the clusters in the experiment also interact hydrodynamically [58], it
seems much more likely that the dry system lacks essential details.



5 Many filaments in a wet environment

The previous chapter has examined the collective behavior of self-propelled filaments without
hydrodynamic interactions — in other words a “dry” system. This chapter deals with the wet
case, where the filaments interact via both a contact and hydrodynamic interaction. Because
the dry and wet systems are identical up to the hydrodynamic interaction, this approach allows
to directly deduce the consequences of long-ranged interactions on the collective phenomena
that were observed in the dry system. Apart from the added hydrodynamic interactions, the
whole procedure of initialization and data acquisition is the same as in 4.

The chapter is structured as follows: Section 5.1 discusses the phenomenology of wet sys-
tems with many filaments for purely two-dimensional setups. These observations are then
quantified in section 5.2 in a broadly analogous manner to the dry system: section 5.2.1 looks
at the order parameters, section 5.2.2 is new and examines the flow patterns, section 5.2.3
shows the number fluctuations, and section 5.2.4 examines the clustering behavior. Finally,
section 5.3 then extends the purely two-dimensional fluid in two different ways. First, by an
effective friction (5.3.1) and then by a fully three-dimensional fluid (5.3.2). Our findings are
then briefly summarized in section 5.4.

5.1 Phenomenology

In analogy to the case without hydrodynamic interactions in section 4.1, this section presents
the phenomenology of a system of many filaments with both contact and hydrodynamic
interactions. For now, we only consider two-dimensional systems with 2D hydrodynamics, so
that the hydrodynamic interactions are rather long-ranged and strong. For further details
about the tSNE-method that is used in the following, we refer to section 4.1.1.

The following plots are analogous to Figs. 4.1–4.5, however they also depict the flow field
of the fluid via streamlines. The first example in Fig. 5.1 (top) shows at a very low number
density of filaments (ρ = 0.94n/L2), where the filaments in the dry system were at most
locally ordered, but globally disordered. In the wet system on the other hand, the filaments
initially also align locally in small packs of a few filaments. For the formation of small packs,
the hydrodynamic interaction should play no role, because a single filaments only have a weak
flow field that is usually dominated by thermal noise. In contrast to a single filament, these
packs of filaments generate enough drag to move the surrounding fluid. As a result, these
packs interact over a long range via their induced hydrodynamic flow, so that the large-scale
motion of the filaments becomes more and more dominated by the fluid flow. This coordinated
movement initially shows in small swirls of filaments, which over time merge into larger swirls.
The merging of vortices with an anti-vortex1 happens on rather long time-scales as it has to be

1It is standard nomenclature to refer to points with a winding number of +1 as vortices. In analogy, we refer
to singular points with a winding number of −1 as anti-vortices or saddles.
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Figure 5.1 | Top: ρ = 0.94n/L2, Ub = 2 kBT , lp = 4L Bottom: ρ = 1.41n/L2, Ub =
2 kBT , lp = 2L. More explanation about these plots is found in Appendix A.2.2 on page 156.
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expected of global conformation changes such as vortex diffusion. As the number of vortices
shrinks, the movement of the filaments becomes more and more coherent over long length-
scales. Thus, the final state in the example of Fig. 5.1 (top) is a globally polar state, where
all filaments walk into the same direction. Nearly global polar order was also observed in the
dry case, albeit at much higher filament densities. However, the important difference to the
dry case is that here the filaments show no apparent density modulations. The lack of density
modulations also shows in the unstructured tSNE-plot.

The second example in Fig. 5.1 (bottom) for a slightly higher density (ρ = 1.41n/L2) shows
a completely analogous behavior. However, in that case the evolution of the vortex dynamic
is so slow that the final state still has two pairs of vortices and saddles. In all the cases
where such a state formed it was very long-lived. Despite long-range order, a final state with
vortices has no global order so that its polarization should be rather small.

As the density of filaments increases further, the initial density fluctuations become more
pronounced, as Fig. 5.2 (top) shows. This density modulation shows up as an arc in the
tSNE-plot (protruding dark arc), however at later times the density profile levels out and the
tSNE-plot takes the form of an amorphous blob. The quasi-stationary order of the filaments
in this example is two regions where the filaments stream downwards and upwards, separated
by two sharp turning lines. This zig-zag flow is the most predominant quasi-stationary state
at high densities. However, this flow pattern is only quasi-stationary and not stationary,
because the turning lines move over time. The speed at which these turning lines shift is
not necessarily the same, so that the two turning lines may hit and annihilate. Another
way how this state decays is by a gradual reduction of the amplitude of the zig-zag motion.
Figure 5.2 (bottom) shows an example where two flow regions coexist over a long time, until
one direction wins over the other and the flow becomes almost perfectly parallel.

Upon further increase of the filament density, the general behavior remains the same al-
though small-scale fluctuations become more and more suppressed. There is one major differ-
ence at high densities, where the locations of vortices are depleted of filaments. This depletion
is plausible because in order for a filament to stay close to the vortex center, it has to be
strongly curved. Yet the bending rigidity of the filaments forbids too strongly bent filaments,
so that the filament inevitably wanders away from the center. Besides, the vortex is kept
stable by the large number of filaments that move about the vortex center in stable orbits,
so that small numbers of filaments in the eye of the vortex can not perturb the vortex and
render it unstable. For example, Fig. 5.3 (top) shows an example with apparent depletion
of the vortices. In this example, the vortices annihilate with anti-vortices at about half the
simulation time, which shows nicely in the red stream lines. It is quite common that after the
last vortex annihilation the system of filaments remains in the zig-zag stream pattern for a
long time. Apparently, in this zig-zag pattern the filament density flattens out even if it was
non-uniform in the beginning. Consequently, the tSNE-plot has some structure at early times
where the vortices are depleted of filaments, whereas at later times, it becomes amorphous.
It is no coincidence that the path in the tSNE-plot returns to where it started off, because
the initial density distribution was also uniform as is the final state.

Finally, Fig. 5.3 (bottom) shows an example with a very weak density wave travelling from
bottom left to top right. Due to the travelling density waves, the tSNE-plot also shows
a (broken) yellow ring. This example proves that density waves can actually form with
hydrodynamic interactions, although their density profile is much flatter than without hy-
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Figure 5.2 | Top: ρ = 2.81n/L2, Ub = 2 kBT , lp = 3L Bottom: ρ = 3.75n/L2, Ub =
2 kBT , lp = 5L. More explanation about these plots is found in Appendix A.2.2 on page 156.
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Figure 5.3 | Top: ρ = 4.22n/L2, Ub = 2 kBT , lp = 4L Bottom: ρ = 2.81n/L2, Ub =
2.4 kBT , lp = 2L. More explanation about these plots is found in Appendix A.2.2 on
page 156.
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drodynamic interactions. From its phenomenological appearance, the best matching example
from the dry cases is 4.5 (bottom) where the system was globally ordered and had similar
overlapping density bands. However, in the dry case the density waves were very robust
and formed nearly always above a certain filament density, whereas the rather faint density
wave from this example (Fig. 5.3) with hydrodynamic interactions is only found in rare cases.
Therefore there are two possibilities: either the density waves are suppressed in favor of a flat
density profile, or the other systems from above without a density wave have not yet fully
equilibrated.

In summary, we have found that the systems of multiple filaments with hydrodynamic
interactions always have long-range orientation correlations. Three very long-lived orientation
states were found: global order where all filament point into the same direction, vortices where
the filaments move in circular orbits, and zig-zag where at least two stripe regions form in
which the filaments move into the same direction. Because the states other than global order
evolve slowly, they are only quasi-stationary and may eventually transition into global order.
The observed density profiles of the final states were usually flat and had almost no apparent
density variations. Only the vortex centers (if any) were depleted of filaments and in rare
cases we also found faint density waves. In short, the density modulations that were observed
in the dry case were flattened out by the hydrodynamic interactions.

5.2 Quantitative analysis of the simulation data

The findings from the phenomenological overview of the previous section will now be quanti-
fied in the following. For that, we performed two parameter sweeps over the parameters Ub,
lp, and ρ, where either the persistence length lp = 2L or interaction strength Ub = 2 kBT
was kept constant. As mentioned in the introduction of chapter 4, we only generated a single
realization for every parameter combination, which makes it impossible to estimate the error
range for our measurements. The following analysis uses the observables from section 4.2, so
that the results are fully compatible and comparable.

5.2.1 Order parameter and angular distribution

The phenomenological overview has indicated that the filaments order on large length scales
even for very small filament densities. In the following, this observation will be quantified
using the measures that were developed in 4.2.1.

The easiest way to measure global alignment is to evaluate the average direction P(t) ≡∣∣∣∣∑N
i=1 ti(t)

∣∣∣∣, as introduced in (4.5) on page 52. Figure 5.4 shows the polarization 〈P(tfinal)〉

for two parameter scans over filament density ρ versus interaction strength Ub and persistence
length lp. Except for a few dark speckles of bad alignment, the polarization is indeed quite
large for the entire parameter range. In fact, the polarization is so large for most runs that
for example the zig-zag states (e.g. #3) do not separate cleanly from the more ordered states
(e.g. #4). To understand the reason for this small variability in the polarization, imagine a
mixture of two equal-sized sub-populations of filaments which are aligned, but off by an angle
of α. Then the polarization will be 〈P〉 = cos α

2 , which is still ≈ 0.7 for an angle of α = π/4.
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Figure 5.4 | Left: The observed polarization as defined by (4.6) for constant lp = 2L
scanned over interaction strength Ub and filament density ρ. Right: Analogous to the left
panel but for fixed Ub = 2 kBT and scanned over persistence length lp and filament density
ρ. Because one data point took up to 500 hours compute time, each data point was acquired
from only one realisation, such that the evident noise contains realization artifacts. As a
consequence, the error range is unknown. The numbers mark the location of the examples
from Figs. 5.1–5.3.
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In other words, the polarization P recognizes the relatively good alignment within each of
the two sub-populations, but it fails to punish the mutual misalignment between those two
sub-regions.

This situation is where the Kullback-Leibler divergence approach to measure global order
shines. Compare Fig. 5.5 to Fig. 5.4, showing DKL and 〈P〉 for the same dataset. The two
measures qualitatively agree on the non-ordered2 states (dark spots) and the very well ordered
states (bright yellow). The range in between looks however quite different: the whole region
where the P has values around 0.8×Pmax has shifted towards the region 0.5×DKL,max. In
other words, the Kullback-Leibler divergence penalizes the misalignment of the two regions
stronger. We can estimate the difference of the Kullback-Leibler divergence of a single peak
versus two peaks by

∆DKL ≈ 1 · log p

q
− 2× 1

2
log p/2

q
= log(2) ≈ 0.7 ,

which well matches the difference in the observed Kullback-Leibler divergence from the or-
dered (DKL ≈ 1.8) and the zig-zag states (DKL ≈ 1). So the Kullback-Leibler divergence is
better suited than P to separate ordered from zig-zag states. Because the Kullback-Leibler
divergence is also more sensitive to orientational fluctuations of the filaments, it also shows
a slight gradient from small filament densities towards high filament densities, indicating a
stabler alignment at higher filament densities.

Finally, we need to elucidate the nature of the non-ordered states (dark spots), which seem
to be scattered randomly over the parameter range. Figure 5.1 suggests that the global order
in these states is so low, because the filaments revolve around vortices, so that every direction
becomes equally likely and the polarization is thus small. Such a vortex has a topological and
therefore global nature, such that even small displacements of a vortex center require a global
rearrangement of all filaments. Due to this large-scale reorganization, the evolution of these
vortex states is very slow, and the vortex states become long-lived. Apparently, the life-time
of these vortex states is comparable to our simulation window, so that some final states still
have such vortices.

In summary, our analysis of the order parameters has shown that the systems of filaments
with hydrodynamic interactions have strong global order throughout the parameter range, we
looked at. This is in stark contrast to the dry system where the there was a sharp transition
from disordered to ordered systems. Despite the long-range order in all cases, we found
states where the wet system was trapped in long-lived vortex states, whose polarization is
necessarily small. Last but not least, the most prevalent final state was not perfectly ordered,
but rather one with an intermediate global order. It will be the goal of the next section to
further elucidate the nature of these states.

5.2.2 Streaming patterns

The last section has established that the filaments order on a large scale, however not in all
cases and usually not perfectly. In the following, we will provide further evidence that the
streaming pattern for the filaments is indeed linear, zig-zag, or in vortices.

2For brevity we say non-ordered, because those systems usually have swirls and thus no preferred direction,
although they are locally ordered.
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First, we focus on the non-ordered cases, for which the comparison to simulation snapshots
has shown that the filaments move in swirls. Our conjecture that the non-ordered systems
are always systems with swirls in their final state is so far solely based on the comparison
to these examples. To support this claim for the remaining non-ordered cases, we want to
measure the total vorticity in the fluid field v(r). The local vorticity of such a vector field
can be measured by the curl of the fluid flow field, ∂xvy(x)− ∂yvx(x). For a total measure of
vorticity, a first guess could therefore be to integrate the curl over the simulation area A,

Ṽ[v] =
∫
A

(
∂xvy − ∂yvx

)
dA .

However, via the Stokes law this definition can be re-written as a line integral and one can
calculate

Ṽ[v] =
∫
A

(
∂xvy − ∂yvx

)
dA =

∫
∂A

v dl

= −
∫
AC

(
∂xvy − ∂yvx

)
dA =

∫
∅
· · · = 0 .

Here we have used the Stokes law twice and rewritten the integral as an integral over the
complement of A, which is the empty set and therefore the integral must be zero. To remedy
this situation, we define our global measure for the vorticity as

V[v] =
∫
A

∣∣∣∂xvy − ∂yvx

∣∣∣dA . (5.1)

By taking the absolute value of the local curl, we basically count left- and right-turning
vortices as the same, which is fine for our aim. For a better intuition of what features this
measure of vorticity is sensitive to, Fig. A.1 shows the vorticity field of the examples in
Figs. 5.1–5.3.

Figure 5.6 shows this measure of vorticity, V, for the same data as in Fig. 5.4. It is apparent
that both measures are somewhat complementary to each other. In particular, the vorticity
measure is especially large at all the spots where the polarization was small. In conjunction
with our direct observation of vortices, this is a strong indicator for vortices being the cause
of a small polarization. Consequently, the small polarization for these isolated spots must not
be interpreted as disordered systems, but rather as states with large-scale order that contain
vortices. Furthermore, Fig. 5.6 shows a very low vorticity measure for the regions with very
high order parameter. This means that the fluid streams in those examples have no bends
and thus stream in a laminar fashion. Last but not least, we observe a general trend towards
larger vorticity at small densities or high interaction potential Ub. The small level of vorticity
at small Ub is a hint that the contact interaction of filaments causes irregular stream patterns
and thus creates vorticity. On the other hand the decrease of vorticity with the filament
density ρ is a sign that the fluid flow alone cannot keep the filaments perfectly on track.
However, as the filament density rises, the contact interaction of the filaments suppresses
directional fluctuations, while the hydrodynamic interaction ensures the coherent motion on
longer length and time scales.

Finally, we want to support the claim that the most common final state is a zig-zag state
and not a laminar stream pattern. To that end, we consider the angular distribution P (ϕ)
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Figure 5.6 | Left: The vorticity measure V as defined by (5.1) for constant lp = 2L
scanned over interaction strength Ub and filament density ρ. Right: Analogous to the left
panel but for fixed Ub = 2 kBT and scanned over persistence length lp and filament density
ρ. Because one data point took up to 500 hours compute time, each data point was acquired
from only one realisation, such that the evident noise contains realization artifacts. As a
consequence, the error range is unknown. The numbers mark the location of the examples
from Figs. 5.1–5.3.
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As a consequence, the error range is unknown. The numbers mark the location of the
examples from Figs. 5.1–5.3.
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of the filaments and count the number of peaks. For a laminar stream, the filament angles
should be distributed over a single peak around the average direction, whereas for the zig-zag
pattern we expect two peaks. We determined the angle distribution by averaging all filament
directions over a period of 1/64 of our simulation duration or 57L/v0. Because these data still
had some noise, we performed an order-3 Savitzky-Golay smoothing with a window width of
17 points 3 to reduce the number of candidate maxima [98]. In the next step we determined all
maxima of the smoothed probability distribution PSG(ϕ), which correctly contains all peak
maxima, but still some spurious local maxima in ϕ-regions where PSG(ϕ) is close to zero. To
avoid counting these unwanted artifacts, we additionally required that each valid peak must
have at least 2% the height of the largest peak.

Figure 5.7 shows the number of peaks of PSG(ϕ) for the same dataset as in Fig. 5.4. It is
remarkable that the vortex states light up with three or more peaks. Two features catch the
eye: first, below a filament density of ρ ≈ 1n/L2 there are no double-peaked states, but only
singly-peaked angular distributions or vortex states. Second, below Ub = 1 kBT there are no
double-peaked states. Both these observations indicate that the contact interaction between
filaments plays an important role for the stability of the zig-zag states, because in the first
case direct collisions are rare, and in the second the collisions are not very effective because
filaments may cross each other. This suggests the following mechanism for the stability of the
zig-zag states: when a filament enters a band where the direction changes, it is forced by the
already present filaments to bend as well. Because the filament density is high enough that
new filaments are almost guaranteed to run into other (bent) filaments, the band is in a way
self-sustaining. This process is of course only effective, if the filament-filament interactions
are strong enough, which apparently is above Ub ≈ 1 kBT . Finally, it is palpable how the
cases with high order parameter and low vorticity also correspond to singly-peaked angular
distributions. It is clear that these states must have a laminar order. The figure also shows
that double-peaked or zig-zag states are rather common.

In summary, this discussion has shown that the filaments either flow in a laminar fashion, in
zig-zag patterns, or around vortices. Because zig-zag states were only found above a certain
filament density and contact interaction strength Ub, it seems likely that the steric interaction
of filaments is the mechanism that causes the bending bands of the zig-zag states.

5.2.3 Number fluctuations

Large density variations are a generic sign for being out of equilibrium. This section evaluates
the number fluctuations of the filament density in the wet system. It is thus analogous to 4.2.2
where we found large number fluctuations in the dry case.

Figure 5.8 shows the scaling coefficient of the number fluctuations in the wet system, which
were obtained via the identical procedure as in 4.2.2. Ordinary uniformly distributed densities
would have a scaling exponent of one, whereas non-uniformly distributed have larger scaling
exponents. The first thing to note is that the range of scaling exponents is only [1, 1.5]
here, whereas for the dry system we found a range of [1, 2] (see Fig. 4.11). This means
that the density fluctuations in the system of filaments are far less pronounced if the long-

3The Savitzky-Golay smoothing procedure calculates an n-th order polynomial of the data points in the
moving window and uses the interpolation for the midpoint of the window as the smoothed data point.
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Figure 5.8 | The observed scaling exponents of the number fluctuations scanned over
persistence length lp and filament density ρ. The panels show the same setup for different
contact interaction strengths Ub. Because one data point took up to 500 hours compute
time, each data point was acquired from only one realisation, such that the evident noise
contains realization artifacts. As a consequence, the error range is unknown. The numbers
mark the location of the examples from Figs. 5.1–5.3.

ranged hydrodynamic interaction is relevant. On the other hand, the scaling exponent of
the number fluctuations is still significantly larger than one, so that the filaments cannot be
randomly distributed either. One should note here that the scaling exponent for very low
Ub is rather small, and rises with increasing Ub up to Ub ≈ 1.5 kBT (Fig. 5.8 left). Because
the hydrodynamic interaction is unaffected by Ub, it follows that it is the contact interaction
what causes the density anomaly, and not the hydrodynamic interaction. On the contrary,
because the density fluctuations in the dry system were much stronger, it follows that the
hydrodynamic interaction actually suppresses the density waves. Note that the cases with the
strongest number fluctuations are states with vortices, where the vortex centers are depleted
of filaments. As noted above, the depletion of the vortex centers is caused by the filament
stiffness which makes it impossible for filaments to circle around the vortex center in a stable
orbit.

In summary, the number fluctuations of the filament density in the wet system showed that
the filaments are not uniformly distributed. However, the density fluctuations in the wet case
are greatly reduced compared to the dry case.

5.2.4 Clustering of the filaments

One very characteristic feature of the dry system was the emergence of a traveling high-density
wave. We have however not found such density waves in our phenomenological overview,
therefore the goal of this chapter is to confirm that there are no density waves in the wet
system.

A very reliable indicator for the density wave in the dry case was the size of the largest
cluster in the system. Figure 5.9 shows the size of the largest cluster where the clustering
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Figure 5.9 | Left: The relative cluster size of the largest cluster in the system, |Cmax|/N ,
as defined in 4.2.4 for constant lp = 2L scanned over interaction strength Ub and filament
density ρ. Right: Analogous to the left panel but for fixed Ub = 2 kBT and scanned over
persistence length lp and filament density ρ. Because one data point took up to 500 hours
compute time, each data point was acquired from only one realisation, such that the evident
noise contains realization artifacts. As a consequence, the error range is unknown. The
numbers mark the location of the examples from Figs. 5.1–5.3.

criteria are identical to the clustering criteria in 4.2.44. Apparently, there are no fat clusters in
wet systems. Only at very high densities ρ ≈ 4n/L2 there is a stripe region where the largest
cluster becomes fat. However, at this density it is quite likely that the next filament is less
than 2/3L away – even if most filaments are part of small dense clusters. In other words, our
clustering criteria make one big cluster out of the (more or less) homogeneously distributed
filaments, because the hydrodynamic interaction also creates order on long length-scales.

Another important quantity that derives from the cluster size distribution is the scaling
exponent of the cluster size distribution. As before, we only use the first 20 data points
to derive the scaling exponent from the cluster size distribution. The scaling exponent is
therefore mostly a measure for the cluster distribution of small clusters. Figure 5.10 shows
the scaling exponents for the wet system. A comparison to the results for the dry system in
Fig. 4.17 shows a very similar behavior, albeit the scaling exponents tend to be a bit larger
in the wet system. The crucial point is, however, that the cluster size distribution is almost
unaffected by the hydrodynamic interaction. This is a strong indication that the small-scale
clustering of filaments is solely due to the contact interaction and that the hydrodynamic
interaction plays almost no role in clustering. An explanation for this similarity is that the
hydrodynamic interaction only becomes effective for long-lived large clusters which create a
strong hydrodynamic flow field. For single filaments or clusters of only a few filaments, the
hydrodynamic interaction is too feeble to counteract the thermal fluctuations of the polymers.

In summary, we found that the small-scale clustering of filaments is almost unaffected by
the hydrodynamic interactions. Despite the similar clustering behavior at small scales, the

4This means that two filaments are considered as clustered, if their distance is less than 2
3
L and their angle

is less than 10◦. If the filaments were clustered in the last step, these criteria are relaxed to 1L and 15◦.
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Figure 5.10 | Left: The measured scaling exponents α of the cluster size distribution as
defined by (4.16) for constant lp = 2L scanned over interaction strength Ub and filament
density ρ. Right: Analogous to the left panel but for fixed Ub = 2 kBT and scanned over
persistence length lp and filament density ρ. Because one data point took up to 500 hours
compute time, each data point was acquired from only one realisation, such that the evident
noise contains realization artifacts. As a consequence, the error range is unknown. The
numbers mark the location of the examples from Figs. 5.1–5.3.

hierarchy of cluster growth breaks at some point and fat clusters that contain almost all
filaments do not form. In other words, there was no evidence for a density wave.

5.3 Recovering density waves with hydrodynamic interaction

It is puzzling that our wet system does not form a density wave, given that there are numerous
experimental realizations of similar setups where the filaments are in aqueous solution. In
fact, the dimensionless numbers characterizing the hydrodynamic interactions would mean
even stronger hydrodynamic interactions in real systems. The lack of density waves in our
wet systems of filaments therefore raises the question, what went wrong in our model. The
goal of the next two subsections is to extend the wet model so that density waves re-emerge.

5.3.1 Wet systems with 2D hydrodynamics and finite range

One major difference between the contact interaction and the hydrodynamic interaction is the
long range of the latter [99]. Because in real experiments the filaments are in close proximity
to a no-slip boundary, the hydrodynamic flow field of the filaments falls off much faster due
to the presence of the wall [100]. If the two-dimensional fluid can be augmented so that
it effectively models three-dimensional fluid interactions, one would have a computationally
pretty efficient interaction mechanism. In the following we therefore emulate a screened fluid
flow by a modified collision kernel of the multi particle collision method, and study the effect
on the emergence of a density wave.
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One should always keep in mind that our two-dimensional model is only an approxima-
tion of an actual three-dimensional system, where the filaments are confined to a quasi two-
dimensional layer close to a no-slip boundary. Due to the proximity to this no-slip wall,
the fluid feels a strong drag from the stationary wall. So imagine an initially moving fluid
streaming over this no-slip wall, then the fluid would quickly5 come to a halt. In other words,
the initial momentum of the fluid particles dissipates out of the system — into the no-slip
wall. It is possible to emulate this dissipation of momentum in the collision step of the MPC
hydrodynamics. Remember the general form of the MPC collision in (2.7) from section 2.1.1,

p′
i =

mi

Mc
P c +Ω

[
pi

]
.

The crucial point of the collision operator was to conserve the fluid momentum on the level
of a collision cell. Now we modify this collision prescription to

p′
i = γ

mi

Mc
P c +Ω

[
pi

]
, (5.2)

where γ is a friction coefficient in the range γ ∈ ]0, 1]. Effectively, this amounts to a wall
friction that is proportional to the local speed of the fluid, which is very similar to the
dissipated momentum in an actual three-dimensional fluid layer. Note that this modified
collision kernel dissipates kinetic energy, so that the fluid temperature would decrease without
a thermostat. The Andersen-thermostat variant of MPC that is used throughout this thesis,
has such a thermostat implicit in its collision operator Ω.

For a more intuitive understanding of the friction coefficient we would like to express the fric-
tion coefficient as a length lh which corresponds to the range of the hydrodynamic interaction.
We define this length to be

lh ≡ − log γ/vT or γ ≡ e−vT /lh (5.3)

where vT is the thermal speed of a particle vT ≈
√
kBT/mf , and mf is the mass of a fluid

particle. This definition aims to be the length after which the speed of a thermal particle of
speed vT has dropped down to vT /e. Figure 5.11 shows the measured flow speed between two
boundaries moving up and down (so-called Lees-Edwards boundary condition), where a linear
velocity profile is expected (black dotted line) [101]. By (5.3), the intersection of the data
with the dashed horizontal line corresponds to the actual hydrodynamic range lh. The data
show that the hydrodynamic range lh of the shear flow is only approximately correct for very
small lh ≈ 3, whereas the flow range for large lh is apparently overestimated by (5.3). Yet,
for large lh this discrepancy is expected, because the drag from the opposing wall becomes
relevant. These details are irrelevant here, because for our purposes it is only important that
the range is indeed finite.

In addition, Fig. 5.12 shows the flow field of the fluid around a disk that is dragged at a
constant speed through a fluid with lh = 3 a. Due to the effective friction of the fluid, the flow
in remote regions remains small, leading to vortices with backflow of fluid. The range of the
induced flow field becomes larger when the hydrodynamic range lh increases, and becomes
completely laminar when lh → ∞ (see Appendix A.5 on p. 162). To sum up, the modified

5How quick depends on the viscosity of the fluid. Because we are at small Reynolds numbers, we may assume
that this dissipation of momentum happens rapidly.
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Figure 5.11 | The measured fluid speed for different hydrodynamic range lh between to
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(dotted) line shows the measured (theoretic) velocity profile for lh = ∞ or γ = 1. The
intersection of the data with the dashed lines give the actual hydrodynamic range lh, which
in general is smaller than predicted by (5.3). Note the logarithmic scale for the velocity axis.

collision kernel with a finite hydrodynamic range yields flow fields with a finite range, as was
intended. The effects of lh on the fluid properties such as its viscosity were not explored,
but as a first approximation, we may assume that the fluid transport coefficients remain
approximately constant.

We applied this modified hydrodynamic interaction with a finite range to our system of
driven filaments in order to see if a density wave as in the dry case can be recovered. Fig-
ure 5.13 shows the scaling exponents of the number fluctuations, which have proven as a
robust measure for the existence of a density wave in the preceding sections. The data show
that both cases with hydrodynamic interactions have only modest density fluctuations with
α ≤ 1.3, regardless of the hydrodynamic interaction range. In contrast, the dry case shows a
significant jump to large scaling coefficients α > 1.8. This finding is surprising, because one
could expect that for the extreme case with lh = L/3 = 1 a the hydrodynamic interaction
becomes weak and the filament interactions are dominated by the contact interactions via Ub.
Despite the shorter range, the hydrodynamic interactions are therefore still strong enough to
destroy the patterns that were found in the dry case.

In fact, the data for both lh = L/3 and lh = ∞ hardly differ at all, raising the question
whether the proposed mechanism to reduce the hydrodynamic range is effective for the system
of filaments. Although we have no definite answer, we can speculate about why this may not
be the case. So consider a fluid package in front of a propelled disc, and assume it has the
same flow speed as the disc, v. The effective friction then decelerates this fluid package so
that its speed decreases, v′ < v. However, because the disc is pushing the fluid by its constant
speed, the volume of fluid between the package and the disc shrinks, so that an excess of fluid
particles builds up in front of the disc. In two dimensions, this excess of particles can only
evade in-plane, leading to a strong in-plane fluid flow with vortices in the proximity of the
sphere. Note that the strong drag and backflow must also emerge with finite lh.

It seems reasonable that the flow pattern between such vortices acts aligning on filaments.
This leads to a self-reinforcing cluster growth, because a slightly larger cluster would push its
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Figure 5.12 | Simulations of a sedimenting sphere of diameter 5 a in a box of side-length
48 a. Left: The flow field (black arrows) and streamlines (red) for two-dimensional hydrody-
namics with a range lh = 3 a. Note the strong backflow of fluid in the far region of the disc.
Right: The flow field (blue arrows) of a three-dimensional setup in a parallel and orthogonal
plane. The sphere moves close to a no-slip boundary (bottom), whereas the top boundary
has slip conditions. The fluid flow at the lower fluid layer is marginal, because the fluid flow
can evade into the third dimension.

swirls even farther out, thus aligning even more filaments. However, if the cluster has crossed
a certain threshold size, the cluster of filaments would push the whole fluid in its direction.
As soon as the fluid flow becomes global, all filaments become aligned, regardless how far
they were away from the seed cluster. In particular, the filaments are not required to interact
with a high-density filament region.

In summary, we have shown an MPC variant that generates hydrodynamics with a finite
range. Despite the finite range however, the long-ranged hydrodynamic interaction remains
the dominant interaction mechanism between filaments, so that the density waves from the
dry case do not emerge.

5.3.2 Wet systems with full 3D hydrodynamics

The complete lack of density waves in our two-dimensional system with hydrodynamic in-
teractions is unsatisfactory, because it contradicts the motility assay experiment which is
in aqueous solution. However, the preceding section discussed that two-dimensional hydro-
dynamics is peculiar, because a fluid flow must necessarily stay in the same plane as the
filaments. This chapter will therefore consider true three-dimensional simulations of the fluid
layer, to see if density waves can be recovered.

Section 2.1.2 already discussed the simulation setup with a focus on the technical detail,
so we need only briefly recapitulate the setup. Similarly to the two-dimensional setup, the
filaments are confined to a plane z = 0.5 a close to the lower boundary. The in-plane motion
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Figure 5.13 | Scaling exponents α of the number fluctuations as a function of filament
density ρ for lp = 2L, Ub = 1.6 kBT , and lh = L/3. In the dry case (blue dots), a density
wave consistently forms for ρ & 1.6n/L2 (shaded region) so that α jumps to values close to
2. In the wet cases of lh = ∞ (green dots) and lh = L/3 (red dots), the number fluctuations
remain much smaller than 2, showing that no density wave formed.

then closely resembles the two-dimensional setup, because the simulation volume is again
periodic in the x and y directions. In contrast, the z-direction is bounded by two solid walls,
where the upper wall has slip boundary conditions, and was chosen to emulate the behavior
of a much larger fluid bulk. The lower wall on the other hand should have a large drag
because it corresponds to a real no-slip boundary in the experiment. For the lowest possible
slip velocities, we employ the bounce-back boundary condition in conjunction with virtual
ghost particles (see 2.1.2 for details).

Because it is computationally rather expensive to model the increased number of fluid
particles which are necessary to model the three-dimensional fluid, we only looked at a few
examples instead of a full parameter sweep. In addition, we only considered simulation boxes
of 120 × 120 × 10 collision cells, which is only half as many in the x and y direction as in
the two-dimensional case. Figures 5.14 & 5.15 (top) show tSNE-plots of the filament systems
at three different densities. Each of these examples shows the emergence of a density wave.
In fact, it seems that the density waves even emerge at earlier simulation times than in
the dry case. More importantly, the density waves also emerge at much smaller filament
densities. For example, in Fig. 5.14 (top) the density is only ρ = 0.94n/L2 where in the
dry case no density wave formed (see e.g. Fig. 4.11 on p. 59). Consequently, these examples
not only demonstrate the existence of density waves in systems with fully three-dimensional
hydrodynamic interactions, but also show that these density waves are more stable than in
the dry case.

Now consider the streamlines of the fluid flow in these examples. The fluid in the filament
layer (red streamlines) only co-moves with the cluster in high filament density regions. On
the other hand, where the filament density is low, the fluid flow stops and becomes random,
showing as entangled and broken streamlines. Such a broken fluid flow in the plane is only
possible in three dimensions, where the fluid flow can evade into the third dimension. Al-
though not visible in the figures, the fluid flow in the top z-layer (blue streamlines) is also
aligned with the cluster movement and not anti-aligned. Therefore, there is no a back-flow
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Figure 5.14 | Top: ρ = 0.94n/L2, Ub = 1.6 kBT , lp = 2L Bottom: ρ = 1.88n/L2,
Ub = 1.6 kBT , lp = 2L. More explanation about these plots is found in Appendix A.2.3 on
page 157.
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Figure 5.15 | Top: ρ = 1.41n/L2, Ub = 1.6 kBT , lp = 2L Bottom: Same as the top
panel, but with increased fluid slip at the boundary (no ghost particles). More explanation
about these plots is found in Appendix A.2.3 on page 157.
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Figure 5.16 | The observed scaling exponents of the number fluctuations in a three-
dimensional setup scanned over time for different different slip boundary conditions. The
factor µ controls the momentum that is transfered to the boundary when a fluid particle
collides with the wall via p′

‖ = µp‖ (see Fig. 2.3 for details). The line labeled by ghost uses
ghost particle to further reduce the slip velocity (see Fig. 2.4 for details). Note that there
is a synchronous overshoot at small times that is a consequence of the random orientation
initial condition.

of fluid in the top layers, but the fluid rather funnels over the obstructing non-moving fluid
region. The in-plane vortex of a sedimenting disc in two dimensions (Fig. 5.12 left) therefore
becomes a revolving fluid tube over the density wave.

Unfortunately, the thermal noise in the available data made it impossible to properly mea-
sure the fluid flow that is generated by a moving density wave. Therefore, for a better
understanding of the flow field we instead measured the flow field of a sphere that moves at
a constant speed along a no-slip boundary. Figure 5.12 (right) shows that the in-plane flow
field quickly drops to zero when moving away from the sphere, which is in accordance to our
observations of the streamlines in Fig. 5.14. In addition, the vertical cut of the simulation
volume reveals that the fluid which is pushed by the sphere moves upwards into higher layers
where the wall drag is smaller. Likewise, on the rear end of the sphere, the fluid is pulled
down to from higher layers. For the large-scale flow it does not matter whether the fluid is
pushed by a sphere or dragged along by a cluster of moving filaments. Therefore, the flow
field of the filaments must resemble this example of a moving sphere.

Having demonstrated that a density wave emerges with no-slip boundary conditions, this
immediately raises the question how important the no-slip boundary condition is. Without
a strict no-slip boundary condition at the lower wall, one has to expect that the flow field
extends further in-plane. In other words, a larger slip velocity should make the hydrodynamic
interactions more similar to the two-dimensional fluid and thus interpolates between these
two cases. Consequently, with increased slip the hydrodynamic interactions among filaments
become more long-ranged and stronger, so that the density wave could become unstable. Our
MPC simulation can test this hypothesis, by gradually allowing for larger slip velocities at
the lower boundary. For example, a rather large increase of slip velocity is obtained when
no ghost particles are inserted at wall cell. Furthermore, the drag can be fine-controlled by
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gradually increasing µ in the boundary condition p′
‖ = µp‖ for fluid particles that hit the

wall (see 2.1.2).

We therefore focused on the case ρ = 1.41n/L2 from Fig. 5.15 and varied µ from −1 to +1/2.
For example, Fig. 5.15 (bottom) shows the observed density pattern for µ = −1 but without
ghost particles. Note that apart from the slip velocity, all simulation parameters are identical
in the top and bottom example of this figure. Indeed, the plot shows that the increased slip
velocity also makes the density wave more unstable and the filaments are much more spread
out. Furthermore, as expected, the fluid streamlines extend much further, especially in the
filament fluid layer.

To quantify the reduction in filament clustering, we used the number fluctuations as defined
in 4.2.2. Figure 5.16 shows the scaling exponents of the number fluctuations for different µ
over time. Although the data fluctuate over time, there is an apparent drop of the number
fluctuations when ghost particles are omitted, which is in accordance to our observation from
Fig. 5.15. With further increasing µ, there is no conclusive trend up to µ ≈ 0, but it seems
that for µ > 0 the number fluctuations decrease further. It seems reasonable that for µ = 1,
the system behaves similar to the two-dimensional setup where the number fluctuations for
otherwise identical parameters are α ≈ 1.3.

In summary, we have demonstrated that the density waves, which were absent in two-
dimensional hydrodynamics, are recovered when the fluid is modelled in three dimensions. In
fact, the density wave emerged quickly and even formed at filament densities where we found
no density wave at all in the dry system. In contrast, the large-scale flow states (vortex and
zig-zag) could not form, because the boundary drag inhibits stable hydrodynamic flows. By
increasing the slip velocity at the lower boundary, we found that the number fluctuations of
the filament density drop considerably and the filaments were much more evenly distributed.
This shows that non-confined long-range hydrodynamic interactions among filaments are in-
compatible with large density fluctuations.

5.4 Summary of the wet system

In this chapter, we examined a system of many filaments that interacted both via a short-
ranged contact interaction and via a long-randed hydrodynamic interaction. As for the dry
system, we looked at the dependence on filament density ρ, persistence length lp, and inter-
action strength Ub. In addition, we also considered different variants of the hydrodynamic
interaction, namely two- and three-dimensional fluids and a two-dimensional fluid with a finite
range.

A full parameter scan was computationally only feasible for two-dimensional fluids. Regard-
less of the filament density ρ and filament properties (lp and Ub) the filaments were always
mostly homogeneously distributed with a small scaling coefficient in the number fluctuations
around 1.3. For comparison, the number fluctuations of the dry system had a scaling coeffi-
cient around 1.9. Apart from that, the filaments always moved in a coordinated fashion, for
example completely laminar or in vortices. Beside these two expectable flow patterns, we also
found a surprising zig-zag flow pattern. This zig-zag pattern may be related to the instability
of ordered self-propelled particles with hydrodynamic interactions reported by [36, 102, 103].



5.4 Summary of the wet system 99

For example, Aditi Simha et al. predict wavelike excitations in ordered suspensions of self-
propelled particles and a convective instability of low Reynolds number suspensions [102]. To
what extent their work applies to extended filaments as in our model, and why both zig-zag
and laminar flow seem to be stable is left for future investigation.

One could argue that a faithful representation of the fluid interactions must also respect
the conservation of angular momentum, which is violated by the MPC variant which was em-
ployed above [72, 73]. However, Appendix A.4 presents the results for an angular momentum
conserving MPC-variant, which are virtually identical to the above presented data.

Because the lack of density waves stands in contrast to the actomyosin motility assay, we
extended the two-dimensional fluid by an effective wall drag that yields a finite hydrodynamic
range. Despite a very short hydrodynamic range, this two-dimensional variant gave virtually
identical results as the conventional 2D fluid.

Finally, with a three-dimensional fluid, the density wave pattern from the dry system was
recovered. Here, the density wave even formed faster and at lower densities than in the dry
system. By allowing for larger slip velocities at the boundaries, we found that the density
wave becomes unstable and the filaments become more evenly spread out. We concluded that
a non-confined long-range hydrodynamic interaction among filaments is incompatible with
large density fluctuations.

Nevertheless, this shows that hydrodynamic interactions could be the essential aligning
mechanism between actin filaments in the actomyosin motility assay. In light of the marginal
collision polarity of binary filament encounters [57], this would require primordial nucleations
to trigger the emergence of a density wave [104]: Only a nucleation of a critical size may
create a flow field which is strong enough to recruit further filaments to the cluster. At this
stage this hypothesis is however only speculative and requires further evidence.
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6 Discussion & outlook

In this part, we developed a model of driven filaments that is inspired by the actomyosin
motility assay [10, 58]. Our model allows to selectively enable hydrodynamic interactions
between the filaments, thereby allowing to explore the consequences of a long-ranged hy-
drodynamic interaction on collective effects. The filaments in this model are represented by
worm-like chains with FENE bonds and a soft repulsion of strength Ub. By construction,
these filaments move in a snake-like fashion at a constant speed.

To characterize the filament motion, we first looked at the path of a single filament. We
found that the path of an isolated filament can be understood as a persistent random walk
whose persistence length Lp roughly equals the persistence length of a free filament, lp. This
is similar to the actomyosin motility assay where the persistence length of the path is also in
the same order as the persistence length of actin filaments.

As a next step towards systems of many filaments, we examined binary filament collisions
in two-dimensional setups. Without hydrodynamic interactions, the signature of the filament
collisions had a nematic component with Θout ≷ Θin for Θin ≷ π/2, but also an aligning
polar component. The overall angular change depended on the interaction strength Ub and
was vanishingly small for Ub = 0 kBT . Our findings showed that for Ub . 1 kBT , two filaments
can easily cross each other. When enabling hydrodynamic interactions, the nematic signature
of the direct filament collision remained almost unchanged, while the polarity of the interac-
tion was greatly amplified. Furthermore, we saw that the hydrodynamic interaction remains
effective over a much greater range than the contact interaction. Comparing these results to
the measurements of Suzuki et al. showed that binary actin interactions of the actomyosin
motility assay are best reproduced by the dry system [57].

Finally, we examined systems with up to 30 000 filaments to explore the collective effects
of the filaments therein. To the best of our knowledge, these are the largest simulations of
driven semi-flexible filaments so far. For the analysis of these large systems, we used standard
measures such as the polarity of the filaments or the number fluctuations of the density
distribution. In addition to these standard measures, we also introduced a new measure for
the order in the system via the Kullback-Leibler divergence. Furthermore, to measure the
density of the low-density phase, we invented an estimator that is based on count statistics
in equally-sized regions. Finally, for a qualitative representation of the time-evolution of
these systems, we adapted the tSNE-method, which is a stochastic embedding method that
visualizes high-dimensional data in two dimensions, to the analysis of time series. The tSNE-
method can also be used for pattern characterization in other biological contexts.

To this end, we first examined systems without hydrodynamic interactions, which are almost
equivalent to Langevin dynamics. At low filament density, the filaments in these systems
were disordered and mostly homogeneously distributed. With growing filament density, the
filaments increasingly clustered into bigger packages of aligned filaments. At a certain density
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threshold, which depends on the microscopic filament parameters, the filaments underwent a
phase transition where a disordered low-density gas phase separated from an ordered, system-
spanning, tightly-packed high-density region that swept the system— in short, a density wave.
This density wave encompassed the major fraction of all filaments, so that the total polarity
became very high. More filaments then only increased the width of this density wave, whereas
the density of the low-density region stayed constant. At a second, larger density threshold,
the density wave became so spread out that the disordered gas phase completely vanished.
This second phase transition goes along with a decrease in the number fluctuations in the
density of the filaments.

Second, we examined systems with hydrodynamic interactions, where the fluid was modelled
via Multiparticle Collision dynamics (MPC). For numerical feasibility, we first considered
two-dimensional MPC fluids. In contrast to the dry systems, we found no large density
fluctuations for two-dimensional fluids — regardless of the filament density and filament
properties. However, all filaments moved in a coordinated fashion, be it as a laminar flow
or in vortices. Beside these expectable flow patterns, there was also a surprising zig-zag flow
pattern where the filaments and the fluid flow abruptly changed their direction. Which of
these flow patterns emerged, seemed to be random. These results remained virtually the same
with angular momentum conserving variants of MPC (Appendix A.4).

To see how density waves can be recovered, we modified the MPC method so that the hy-
drodynamic interactions are screened. However, even with strongly screened hydrodynamics,
the screened and unscreened two-dimensional systems had an identical phenomenology. Even
quantitatively, the number fluctuations of the density were virtually the same.

Finally, we made the fluid fully three-dimensional, while the filaments remained confined
to a two-dimensional plane close to a no-slip wall. In that case, we recovered the density
waves of the dry system, which even formed faster and at lower filament densities than in the
dry system. Thus we showed that hydrodynamic interactions do stabilize the density wave.
Furthermore, our simulation allowed to gradually increase the fluid slip velocity at the walls,
upon which the density wave destabilized and the filaments became much more evenly spread
out. We concluded that a non-confined long-range hydrodynamic interaction among filaments
is incompatible with large density fluctuations.

Because our model is inspired by the actomyosin motility assay, this begs a comparison to
the phenomenology of the experiment. Schaller et al. report two critical densities [10]: below
a critical density ρc, the driven actin filaments are disordered and homogeneous. Above a
second threshold ρ∗, the actin filaments separate into density waves and a disordered low-
density phase. In addition, for intermediate actin densities ρc < ρ < ρ∗, they report another
regime with compact, long-lived clusters having diameters of 50–200µm (corresponding to
≈ 5–20L).

With respect to the density wave, this phenomenology is similar to our model without
hydrodynamic interactions or with the three-dimensional fluid. However, the intermediate
regime with long-lived compact clusters was not found. Even though there was clustering on
a small scale in the dry system (high Ub and low densities, e.g. Fig. 4.1 bottom), these clusters
were only transient and not long-lived as in the experiment. Because we currently lack data
for very low densities with the three-dimensional fluid, there is nevertheless a chance that
these clusters can be found there.
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It is peculiar that the phenomenology of our two-dimensional hydrodynamic systems is so
vastly different from the dry and three-dimensional case. We presume this to be due to the
unscreened long-ranged fluid interactions in two-dimensional fluids. Consequently, collective
systems with a truly long-range interaction are a completely different class than systems with
only short-ranged interactions. So why are systems with two- and three-dimensional fluid
interactions apparently in different classes, even though three-dimensional hydrodynamics is
also long-ranged? The reason is that in three dimensions, a fluid flow can evade into the third
dimension so that the hydrodynamic flow close to a no-slip boundary remains negligible. Only
at very short ranges, the hydrodynamic interaction therefore plays a role. These findings imply
that in the actomyosin motility assay, the hydrodynamic interactions must also be screened.
Indeed, Schaller et al. report hydrodynamic interactions in the cluster phase ρc < ρ < ρ∗

where the clusters come very close before being deflected [58]. This finding can be well
explained by a screened hydrodynamic flow field.

Furthermore, one may speculate that the hydrodynamic interactions in the actomyosin
motility assay are actually essential. Remember that Suzuki et al. reported an almost entirely
nematic interaction in binary filament encounters, which necessarily means that the flow field
of a single actin filament is marginal. However, if a primordial nucleation of filaments is large
enough to create a relevant flow field, the hydrodynamic interaction could recruit further
filaments to the cluster and stabilize the structure [104].

Our model can and should be extended in a few obvious ways that were out of scope of
this current work. First, the most obvious question — which does not even require further
work — is whether the regime with compact long-lived clusters can be reproduced using the
three-dimensional fluid. Another important check is to consider the three-dimensional case
without contact interactions, to see if the same phenomenology is observed. If it is not, this
can finally answer the question whether it is contact or hydrodynamic interactions that cause
the density waves in the actomyosin motility assay. At the time of writing, these results were
unfortunately not available. Next, we have only considered a single filament length in this
work. It will be interesting to see whether longer filaments have other consequences than only
a mere rescaling of length. Furthermore, due to the spherical potential around the filament
beads, our filaments had a considerable roughness that made filament collisions aligning.
Because Suzuki et al. report a mostly nematic interaction, the current filament model should
be extended to a more nematic character. Last but not least, the three-dimensional case can
also improved by a more realistic filament propulsion that is based on forces instead of an
imposed propulsion speed.

Apart from modifying the filament properties, this model can also be used to investigate
questions of a different kind. For example, the density profiles of the density waves could be
analyzed and compared to other works [30, 31]. Furthermore, one can examine the behavior
of binary mixtures with filaments of different properties, as has been explored for a similar
system [47]. Besides, we have only considered the emergence of density waves from a disor-
dered initial state. In a next step, the stability of artificially prepared ordered states should
be determined, which should be possible to compare to theoretic predictions [102].

Finally, we can also speculate about our two-dimensional wet system. We argued that this
system is of a completely different class due to its truly long-range interactions. It would be
ideal to have an experimental counterpart to this situation, but unfortunately, we do not know
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of any matching experiment. Maybe a clever experimentalist will one day realize analogous
conditions in an experiment.

The ultimate goal, however, is to establish a comprehensive theory of active matter. Until
such a theory is found, simulations such as these give us clues what to look out for.
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Part II

Swimmer





7 Swimming at low Reynolds numbers

Swimming at small scales is very different to what we are used when going to the pool —
welcome to the world of Aristotle, where nothing moves without a pushing force.

Theorists have begun to investigate the unfamiliar physics of low Reynolds numbers more
than 60 years ago, including the pioneering works by Taylor [1–3]. In his seminal talk “Life
at low Reynolds number”, Purcell put this physics into perspective [4]. In particular, he
coined the so-called “scallop theorem”, which states that in a highly viscous Newtonian fluid,
a reciprocal or time-reversible motion does not lead to propulsion [4–6].

The restrictions posed by the scallop theorem can be overcome in a number of different
ways [7–9]. In order to move, a swimmer must in essence have more than one degree of
freedom that can change alternately and independently. For example, Purcell suggested
a three-link swimmer that moves by alternately waving one of its two arms, but the full
analysis of this swimmer is quite complex [4, 10]. Therefore, a similar but simpler to analyze
toy model was suggested that consists of three spheres in a line whose distances alternately
shorten and widen [11, 12]. This model can be further reduced to only two spheres, if the
sphere radii can grow and shrink [13]. However, these toy models are neither very efficient
nor can they be built in experiment.

For practical examples of swimmers, one may have a look at nature, which has evolved highly
optimized swimming strategies in basically all animals. For example, unicellular organisms
often have to search for food in aqueous environments for which they have to propel [14, 15],
and higher order animals reproduce via sperm cells that have to find the egg [16]. These
swimming strategies form two major categories [17]: on the one hand, there are passive, stiff
flagella, which are actuated at one end and are found in procaryotes. On the other hand,
there are actively beating flagella which deform via motors along the flagellum and can be
found in eucaryotes. Interestingly enough, the structure of these appendages has been highly
conserved during the evolution [18].

Analyzing the propulsion mechanisms of bacteria requires appropriate tools, because the
equations governing low Reynolds number motion are notoriously difficult. This has sparked
the development of several very successful methods and approximations. Among these is the
slender body approximation that estimates the hydrodynamic drag on an elongated body
and thereby renders the full solution of the hydrodynamic equations unnecessary [17, 19–21].
Another approach is to use the fundamental solutions of the Stokes equation for the flow of
point-like particles, the so-called Stokeslets [22–24]. These fundamental solutions can be used
to calculate the flow field of complex bodies by distributing point sources of fluid flow over
their surface so that the boundary conditions of the fluid flow are met [25–27]. Because in most
cases, such complex bodies have to be approximated by many Stokeslets — with the notable
exception of the tree-sphere swimmer from above [11, 12] — this method has to be considered
as semi-analytic. Beside these analytic approaches, there are numerous simulation methods,
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among which is the Multiparticle Collision dynamics (MPC) which has been employed in the
first part of this thesis [28].

These tools allowed to analytically examine the swimming strategies of living microorganism.
For active eucaryotic flagella, the hydrodynamic analysis was done for both Newtonian [17, 29–
31] and viscoelastic fluids [32, 33], but a quantitative comparison to experiments is challenging
because the swimming depends on the details of the beat shape. The beat shape, on the other
hand, depends on the driving of the molecular motors, for which various models exist, but the
parameters of these models are unknown [34, 35]. Furthermore, engineering active flagella is
even more challenging than it is to build passive flagella, which explains why swimming with
passive flagella has received much more attention.

The prototypic example for a passive procaryotic flagellum are the helical flagella found in
Escherichia Coli [14, 15]. E. Coli is particularly suited as a model bacterium for swimming,
because it is easy to cultivate, often harmless, and an excellent swimmer with a speed of
≈ 30µm/s at ≈ 10µm body length [14]. It swims by rotating its helical flagella at the base,
which is a well-understood problem in both Newtonian and viscoelastic fluids [36–39]. In terms
of swimming efficiency, E. Coli is close to the maximally attainable efficiency of ≈ 1% [40–42].
One particularly interesting aspect of E. Coli is its ability to bundle its multiple helical flagella
and to run fast or unbundle the flagella and tumble. This bundling and unbundling can be
explained solely by hydrodynamic interactions of the filaments and is caused by a change of
the sense of rotation in one of the filaments [43–47].

It is the helical shape of the flagella of E. Coli that makes this bacterium such a good
swimmer. However, Purcell already realized that even swimming with a flexible oar is enough
to break the time-reversibility [4]. This becomes clear when considering a flexible oar that is
fixed at one end while rotating on a cone. The hydrodynamic drag of the fluid then bends
the oar such that it gains an induced helicity, an effect that has been studied in several
works [48–51]. In terms of the equation of motion, the crucial point of a flexible oar is that
the boundary condition of the hydrodynamic problem, in other words the current shape of
the oar, is itself a function of the fluid flow [52]. For the motion of a micro-swimmer, this
was first exploited by Wiggins et al. [53, 54], although the relevant hyper-diffusive equation
of motion had already been reported much earlier by Machin [55].

This theory gave rise to the first micro-swimmer with an artificial flagellum, where a large
cell was decorated with a flagellum made from flexibly linked magnetic micro-particles which
could be actuated by an external magnetic field [56–58]. Since then, the advances in micro-
fabrication have made ever more sophisticated micro-swimmers possible. For example, a
whip-like swimmer with a flexible tail and a magnetic head [59], micro-screws with a magnetic
head [60, 61], and an exotic hybrid made from an inorganic structure with contractile bacteria
as motor [62].

None of the above-mentioned examples had an appendage with variable bending stiffness
which explains why all theoretic approaches have so far ignored the consequences from a
variable stiffness when swimming with a flexible appendage. However, in a collaboration with
the group of Prof. Tim Liedl we designed and realized a microswimmer based on DNA-flagella
attached to a magnetic bead (see Fig. 7.1) [63]. When rotated by an external magnetic field,
this microswimmer forms a flagella bundle whose number of flagella decreases towards its
end. This thinning number of flagella results in a decreasing bending stiffness of the flagella
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Figure 7.1 | Schematic of the experimental microswimmer. Top: Multiple DNA-flagella
of different length are chemically attached to a magnetic bead. Without a magnetic field,
the DNA-flagella stick out randomly from the bead. Bottom: An external magnetic field
rotates the magnetic bead, thereby entangling the DNA-flagella to a bundle. If the bundle
only forms on one side, the induced helical shape of the bundle propels the hybrid swimmer
through the surrounding fluid. Note the thinning number of flagella towards the end of the
bundle.

bundle. This work fills the gap in the theoretic treatment of swimming with a passive flexible
oar of variable stiffness by extending an earlier work by Lauga [52].

This work is structured as follows: Section 8.1 describes the model and the necessary simpli-
fications to make the problem feasible and derives a generalized hyper-diffusion equation for
the tail shape. This equation will be solved analytically in 8.1.3. Section 8.1.4 and the follow-
ing finally derive a formula for the swimming speed. This formula is discussed in general and
examined for special cases in 8.1.4. Finally, section 8.3 applies our model to a self-assembled
swimmer with artificial DNA flagella, which was realized by Alexander Maier from the group
of Prof. Tim Liedl.
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8 Swimming with a variable bending modulus

8.1 A model for swimmers with a variable bending modulus

This section introduces a model for swimming with a flexible oar that has a variable bending
stiffness. After establishing a shape-determining equation for the tail, we use that equation
to derive an expression for the swimming speed of such a swimmer.

Our swimmer model aims to reflect a micro-swimmer that has been conceived in collab-
oration with and realized by Maier et al. [63]. This swimmer will be discussed in detail
in 8.3, but for our discussion below we reduce its structure to the most basic description. The
swimmer consists of a magnetic micro-particle to which straight artificial flagella are attached
(see Fig. 7.1). Upon rotation of the bead, the flagella form a bundle that extends from the
rear side of the swimmer. For the following theoretic treatment, we consider the bundle of
flagella as a single filament that is attached to a rotating bead (see Fig. 8.1). We will argue
in 8.3 that the local stiffness of the flagella bundle decreases away from the bead due to the
thinning number of flagella towards the end. Consequently, the single coarse-grained filament
representing the bundle must also have a decreasing local bending stiffness.

This model closely resembles a swimmer model by Lauga, who discussed these swimmers
in-depth, however only for tails with constant stiffness [52]. In the following, we generalize
this work to tails with variable stiffness. Because the following line of argument is similar to
the steps taken in Lauga’s work, we try to be brief and focus on the differences.

Solving the equations of motion in a hydrodynamic setting is notoriously difficult, rendering
adroit simplifications inevitable for an analytic treatment. As a first step, we neglect hydro-
dynamic fluctuations so that the model becomes deterministic. Without noise, any notion of
diffusion is lost, but since we are mainly interested in active swimming here, this is acceptable.
The following section introduces the shape-determining equation for the tail alone, and only
in 8.1.2 will the swimmer head come into play.

8.1.1 The shape-determining equation for the tail

This section establishes the equation of motion for only the tail in three steps. Below, we
introduce the general equation of motion for the tail via the slender body approximation
and discuss its boundary conditions. The following subsections then apply a small amplitude
approximation and finally switch to a better suited unit system.
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Above, we introduced our swimmer model as a single inextensible elastic filament with a
bending stiffness A(s) that changes with the arc length position s along the filament. The
elastic energy of the filament with length-dependent bending modulus A(s) is given by

E =
1

2

∫ L

0

(
(A(s)∂2

sr)
2 + (σ(s)∂sr)

2
)
ds , (8.1)

where σ(s) is a Lagrange multiplier ensuring the in-extensibility of the filament. We stress
that both A(s) and σ(s) depend on the position s along the filament. From the energy
(8.1) the force density due to bending and constraint forces is obtained via variation of the
contour path. In the low-Reynolds number regime where inertia plays no role, this force
needs to balance with the anisotropic friction forces on the filament from the fluid as given
by standard slender body theory [19, 64, 65],(

ξ‖t⊗ t+ ξ⊥(1− t⊗ t)
)
u = −∂2

s (A(s)∂2
sr) + ∂s(σ(s)∂sr) . (8.2)

Here t(s) = ∂sr(s) is the local tangent to the filament and u(s) = ṙ(s) is the local speed of
the filament with respect to the surrounding fluid. Note the difference on the RHS to the
original work of Lauga [52], where the term ∂2

s (A(s)∂2
sr) is replaced by the simpler much

simpler term A∂4
sr. An equation for the Lagrange multiplier which ensures the constraint

|t2| = 1 is given in an implicit form by

t · ∂su = 0 . (8.3)

These two equations have the boundary conditions

F ext = ∂s(A∂2
sr)− σ∂sr, T ext = −t×A∂2

sr at s = 0, (8.4a)
F ext = −∂s(A∂2

sr) + σ∂sr, T ext = +t×A∂2
sr at s = L, (8.4b)

where F ext and T ext are externally applied forces and torques on the filament, respectively.
We remark that a drag force from the bead is also called “external” in this nomenclature.

Small amplitude approximation

The compound head-tail object is torqued into a steady rotation by the externally applied
rotating homogeneous magnetic field. The rotation of the head creates a rotating fluid flow
around the head that falls off with 1/r. This is true for both externally and internally actuated
swimmers, though the head of externally actuated swimmers co-rotates with the tail whereas
for internally actuated swimmers it counter-rotates. In both cases however, this rotational
fluid flow is small over the major part of the bundle, so it will be neglected in what follows.

After the swimmer has established a stationary shape, the magnetic field rotates the head
about the axis in which it propels himself and the attachment point of the bundle follows
a circular path on the bead surface. We choose this rotation axis as the êx direction and
arbitrary orthogonal vectors êy and êz as the local coordinate system that co-rotates with
the head (Fig. 8.1). As long as the rotations about the y and z axes are small, it is straight-
forward to find this coordinate system. The origin of this coordinate system is placed at the
projection of the attachment point on the rotation axis of the swimmer. Consequently, the
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Figure 8.1 | Coordinate system of the swimmer. The local coordinate system of the
swimmer is indicated by êx and êy. The origin of this coordinate system is at the projection
of the attachment point on the x-axis, indicated by O (red dot). The swimmer rotates
around the êx axis (blue arrow). The effective swimming direction ê1 is slightly off the êx
axis, because the êx axis precesses with a small opening angle around the ê1 axis. The
arrows indicate the direction of the coordinate directions.

origin does not coincide with the center of the head, but is offset by some distance in the
range [0, rh] where rh is the bead radius.

The actuation of the bundle is about the x-axis in this coordinate system. In the following
we assume small actuations of the bundle about the x-axis, such that s ≈ x and

r ≈ x êx + y(x, t) êy + z(x, t) êz , (8.5)

where y(s, t) and z(s, t) are the small amplitudes along the contour. The error inflicted
by this approximation is small, as experiments have shown [66]. Equations (8.2) and (8.3)
written in this coordinate frame become with the definitions γ = ξ⊥/ξ‖ and r⊥(x, t) =
y(x, t) êy + z(x, t)êz,

ξ‖ux + (ξ‖ − ξ⊥)(uyy
′ + uzz

′) = σ′ (8.6a)
uy
(
ξ⊥ − (ξ‖ − ξ⊥)z

′2)+ (ξ‖ − ξ⊥)(ux + uzz
′) y′ = −∂2

x(Ay′′) + ∂x(σ y′) (8.6b)
uz
(
ξ⊥ + (ξ‖ − ξ⊥)z

′2)+ (ξ‖ − ξ⊥)(ux + uyy
′) z′ = −∂2

x(Az′′) + ∂x(σ z′) (8.6c)

A ·
((1

γ
− 1
)
r′′⊥r

(4)
⊥ − r′⊥r

(5)
⊥

)
−
( 2

3γ
+

7

3

)
r′⊥r

(4)
⊥ A′ −

(1
γ
+ 2
)
r′⊥r

(3)
⊥ A′′ +

1

γ
r′⊥r

(3)
⊥ σ + σ′′ = 0 .

(8.6d)

Here and in the following a prime denotes a derivative with respect to x. Note the appearance
of terms with A′ and A′′ in the equation for σ.

This set of equations is greatly simplified by an order of magnitude analysis. If r⊥ is of
order ε, σ must be of order ε2 by (8.6d). Likewise by (8.6a–8.6c) ux is of order ε2 and u⊥ of
order ε. Keeping only terms of leading order, equations (8.6) simplify to

ξ‖ux + (ξ‖ − ξ⊥)(uyy
′ + uzz

′) = σ′ (8.7a)
ξ⊥uy + ∂2

x(Ay′′) = 0 (8.7b)
ξ⊥uz + ∂2

x(Az′′) = 0 . (8.7c)

The corresponding small-amplitude approximation of the boundary conditions (8.4) for a
bundle of length L are

F ext = ∂x(A∂2
xr⊥)− σêx, Text,y = −A∂2

xz Text,z = A∂2
xy at s = 0 (8.8a)

F ext = −∂x(A∂2
xr⊥) + σêx, Text,y = A∂2

xz Text,z = −A∂2
xy at s = L. (8.8b)
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Natural units

It is convenient to use intrinsic units such that all pre-factors are numbers. The externally
applied magnetic field revolves in the yz-plane with an angular speed ω and periodically
actuates the swimmer. Hence, time is best measured in multiples of ω−1.

Next, we look for a natural unit of length for our swimmer, which is a bit more contrived.
Without friction forces but only thermal activity, a natural length scale for a slender body is
given by its persistence length lp = A/kBT . However, the tail is not force-free but experiences
a drag from being pulled through the fluid. For such elasto-hydrodynamic equations an
intrinsic bending length

`ω ≡
(
A/ωξ⊥

)1/4 (8.9)

is a natural unit for the length [25, 53, 67]. Because in our case, A is not constant but a
function of the arc length position, we need to choose at which point of the filament the
bending stiffness should be taken. Below we will argue that an experimentally realisable way
to obtain a variable bending stiffness is by attaching multiple filaments to a bead, it seems
most natural to take the bending stiffness of a single filament as the typical scale for the
bending stiffness. Hence, we define As as the bending stiffness of a single filament, so that in
dimensionless A(x) corresponds to the number of filaments making up the bundle at position
x. Forces and torques are measured by ξ⊥`ω and ξ⊥`

3
ω, respectively. In the following we will

only refer to the dimensionless quantities but use the same symbols as before.

In particular, we will consider the swimming speed of the swimmer. To convert swimming
speeds from our choice of units back into physical units, the result has to be multiplied by
`ω · 2πf where f is the rotation frequency of the external magnetic field. The extra factor of
2π is necessary because the natural unit of time is given by the angular frequency ω−1 and
not frequency f−1.

8.1.2 Attaching the tail to a sphere

In the preceding sections we developed the determining equations for the shape of the tail
in the small amplitude approximation. The next step is to choose appropriate boundary
conditions in the equations for the tail such that one end of the tail is free and the other
attached to a movable sphere. This equation will then be cast into a single complex differential
equation with complex boundary conditions.

The motion of the bead shall be given by the velocity U(t) and rotation speed Ω(t). Given
the current speed of the bead, the total speed with respect to the fluid u of any point on the
bundle is then a superposition of the velocity and rotation of the bead coordinate system and
the local bundle velocity in the reference frame of the bead:

ux = Ux + zΩy − yΩz uy = Uy + xΩz − zΩx + ẏ uz = Uz + yΩx − xΩy + ż (8.10)
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Because the local coordinate system co-rotates with the head, the tail shape becomes static
in these coordinates, such that ẏ = ż = 0. In the low-Reynolds number regime drag through
motion and rotation must balance with external force and torque,

F̃ ext = −

RFU
‖ 0 0

0 RFU
⊥ 0

0 0 RFU
⊥

 Ũ T̃ ext = −

RLΩ
‖ 0 0

0 RLΩ
⊥ 0

0 0 RLΩ
⊥

 Ω̃ ,

when taken with respect to the center of mass of the bead. When expressed in the shifted
local coordinate system these equations become

F ext = −

RFU
‖ 0 0

0 RFU
⊥ 0

0 0 RFU
⊥

 ·U +

0 0 0
0 0 aRFU

⊥
0 −aRFU

⊥ 0

 ·Ω (8.11a)

T ext =

0 0 0
0 0 −aRFU

⊥
0 aRFU

⊥ 0

 ·U −

RLΩ
‖ 0 0

0 RLΩ
⊥ + a2RFU

⊥ 0
0 0 RLΩ

⊥ + a2RFU
⊥

 ·Ω ,

(8.11b)

where a is the offset of the origin from the center of the head (see Fig. 8.1). Because the
external magnetic field is strong enough to ensure a phase-locked rotation of the head, we
take Ωx = −1 as given. However, for the remaining components, the forces need to balance
out. Therefore with (8.8) we find for the attached end of the tail

RFU
‖ Ux = σ(0) (8.12a)

RFU
⊥ Uy − aRFU

⊥ Ωz = −∂x(A(x) y′′(x, t))
∣∣
x=0

(8.12b)
RFU

⊥ Uz + aRFU
⊥ Ωy = −∂x(A(x) z′′(x, t))

∣∣
x=0

(8.12c)
aRFU

⊥ Uz + (RLΩ
⊥ + a2RFU

⊥ )Ωy = −A(0) z′′(0) (8.12d)
−aRFU

⊥ Uy + (RLΩ
⊥ + a2RFU

⊥ )Ωz = A(0) y′′(0) (8.12e)

and for the free end at x = L where no external force applies

y′′(L) = z′′(L) = y(3)(L) = z(3)(L) = σ(L) = 0 . (8.13)

With the driving of the bundle

y(0) = <[ε1] y′(0) = <[ε2] (8.14a)
z(0) = =[ε1] z′(0) = =[ε2] (8.14b)

there are eight boundary conditions (8.14, 8.13) for the two fourth order equations for y and
z and two boundary conditions 8.12a, 8.13 for the second order equation for σ. For each
of the unknowns y, z, σ, Ux, Uy, Uz, Ωy, Ωz there is a determining function 8.6, 8.12b–8.12e.
As long as the rotation about the y and z axes remains small, we can safely assume that the
swimmer revolves mainly about the x-axis with an angular speed ω. We will argue below
that this condition is well met in our experiment.

Rewriting equations 8.7b, 8.7c in natural units and using (8.10) yields

Uy + xΩz + z + ∂2
x(Ay′′) = 0 (8.15a)

Uz − xΩy − y + ∂2
x(Az′′) = 0 (8.15b)
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where we have used Ωx = −1. With the definitions ζ = y+ız, U = Uy+ıUz and Ω = Ωy+ıΩz

these two equations can be combined into one complex equation

U + ıxΩ− ıζ + ∂2
x(Aζ ′′) = 0 (8.16)

with boundary conditions corresponding to (8.13, 8.14)

ζ(0) = ε1 ζ ′(0) = ε2 ζ ′′(L) = 0 ζ(3)(L) = 0 . (8.17)

Inversion of the equation system 8.12b and 8.12e determines U and Ω in terms of x and y:

Uy = −
RLΩ

⊥ + a2RFU
⊥

RLΩ
⊥ RFU

⊥
∂x
(
A(x) y′′(x, t)

)∣∣
x=0

+
aA(0)

RLΩ
⊥

y′′(0) (8.18a)

Uz = −
RLΩ

⊥ + a2RFU
⊥

RLΩ
⊥ RFU

⊥
∂x
(
A(x) z′′(x, t)

)∣∣
x=0

+
aA(0)

RLΩ
⊥

z′′(0) (8.18b)

Ωy =
a

RLΩ
⊥

∂x
(
A(x) z′′(x, t)

)∣∣
x=0

− A(0)

RLΩ
⊥

z′′(0) (8.18c)

Ωz =
−a

RLΩ
⊥

∂x
(
A(x) y′′(x, t)

)∣∣
x=0

+
A(0)

RLΩ
⊥

y′′(0) (8.18d)

With the abbreviations

β = A(0)
RLΩ

⊥ + a2RFU
⊥

RLΩ
⊥ RFU

⊥
σ = A(0)

a

RLΩ
⊥

λ = −A(0)
a

RLΩ
⊥

+A′(0)
RLΩ

⊥ + a2RFU
⊥

RLΩ
⊥ RFU

⊥
µ = −A(0)

1

RLΩ
⊥

+A′(0)
a

RLΩ
⊥

these relations can be written in a more compact form

U = −
(
βζ(3)(0) + λζ ′′(0)

)
Ω = −ı

(
σζ(3)(0) + µζ ′′(0)

)
. (8.19)

Using this result in (8.16) yields the final form

− ıζ + ∂2
x(Aζ ′′) = (β + σx)ζ(3)(0) + (λ+ µx)ζ ′′(0) . (8.20)

The major challenge is to find a solution ζ for variable A(x).

In summary, the preceding subsections have established a single equation of motion for the
tail of the swimmer (8.20). The boundary conditions of this equation express the drag and
torque forces that the attached sphere exerts on the one end of the tail. We note that the
fluid flow field of the head was ignored in this approach.

8.1.3 Analytic solution for the swimmer shape

Lauga has presented an analytic solution for the tail shape (8.20) when A is constant. Here,
we extend this analytic solution to variable A(x).

For that, we assume the existence of an analytic solution of the homogeneous equation

− ıζ + ∂2
x(Aζ ′′) = 0 . (8.21)
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Therefore, assume the ζ1, ζ2, ζ3, and ζ4 are four independent solutions of (8.21). Because
equation (8.20) is linear, also any superposition of those fundamental solutions is a solution
of the homogeneous equation. We notice that the full solution has an inhomogeneity of the
form B x+C, where B = σζ(3)(0)+µζ(2)(0) and C = βζ(3)(0)+λζ(2)(0). Therefore, we make
the ansatz for the full solution

ζ(x) =

4∑
i=1

αiζi(x) + b x+ c , (8.22)

where the coefficients α1, . . . , α4, b, c are to be determined. It is very convenient that the
second derivative of b x+ c is zero, so that upon substitution of our ansatz (8.22) into (8.20),
we find

− ı(b x+ c)
!
=

4∑
i=1

(
β ζ

(3)
i (0) + λ ζ

(2)
i (0)

)
αi +

4∑
i=1

(
σ ζ

(3)
i (0) + µ ζ

(2)
i (0)

)
αi · x , (8.23)

where we have used that the left-hand side applied to ζi is zero according to (8.21). This
equation can only be fulfilled, if it holds that

0 =

4∑
i=1

(
βζ

(3)
i (0) + λζ

(2)
i (0)

)
αi + ıb (8.24)

0 =

4∑
i=1

(
σζ

(3)
i (0) + µζ

(2)
i (0)

)
αi + ıc . (8.25)

In addition, the solution has to obey the boundary conditions from (8.17), which can be
written as a matrix equation:

ζ1(0) ζ2(0) ζ3(0) ζ4(0) 0 1
ζ ′1(0) ζ ′2(0) ζ ′3(0) ζ ′4(0) 1 0
ζ ′′1 (L) ζ ′′2 (L) ζ ′′3 (L) ζ ′′4 (L) 0 0

ζ
(3)
1 (L) ζ

(3)
2 (L) ζ

(3)
3 (L) ζ

(3)
4 (L) 0 0

βζ
(3)
1 + λζ

(2)
1 βζ

(3)
2 + λζ

(2)
2 βζ

(3)
3 + λζ

(2)
3 βζ

(3)
4 + λζ

(2)
4 0 0

σζ
(3)
1 + µζ

(2)
1 σζ

(3)
2 + µζ

(2)
2 σζ

(3)
3 + µζ

(2)
3 σζ

(3)
4 + µζ

(2)
4 0 0


·



α1

α2

α3

α4

b
c

 =



ε1
ε2
0
0
0
0

 (8.26)

Here, the first four lines are the boundary conditions (8.17), and the lower two lines correspond
to the consistency conditions (8.25). Solving this matrix equation for the coefficients αi, b, c
yields a fully analytic solution for the tail shape of the tail, as given by equation (8.22).

Below, we will use an exponential stiffness profile for the tail, so that A(x) = A0e−x/χ. In
that case, an analytic solution of (8.21) can be given in terms of the Meijer-G functions [68],

ζ1(x) = G1,0
0,4

(
1, 0, 0, 1

∣∣∣∣−ıχ4

A0
ex/χ

)
ζ2(x) = G2,0

0,4

(
1, 1, 0, 0

∣∣∣∣ ıχ4

A0
ex/χ

)
(8.27a)

ζ3(x) = G3,0
0,4

(
0, 1, 1, 0

∣∣∣∣−ıχ4

A0
ex/χ

)
ζ4(x) = G4,0

0,4

(
0, 0, 1, 1

∣∣∣∣ ıχ4

A0
ex/χ

)
. (8.27b)
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Figure 8.2 | Tail shape for a swimmer with optimal tail parameters L = 4.1 `ω, rh = 1.7 `ω,
and exponential stiffness for constant tail stiffness A = 25 ·As (top) and variable tail stiffness
A(x) = As · 251−x/L (bottom) at eight time points over one beat period. The line opacity
fades at each step, so that each line can be discerned. The color indicates the local tail
stiffness and ranges from a = 25 (dark blue) to a = 1 (yellow). In addition, the middle
shows a swimmer with constant tail stiffness and a = 1. The black dashed lines indicate
the amplitude of ε1 and serve as a relative scale for the different cases. Active content:
In a flash enabled player, a click reveals an interactive 3D model showing the predicted tail
shape and movement for typical swimmer parameters (swimmer #2 in table 8.1). Although
the tail looks to be actively beating, this is indeed not the case as can be seen in the back
view.

The Meijer-G functions themselves are a generalization of the generalized hyper-geometric
functions and can be defined in a closed form by

Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣(−1)m+n+p x

)
=

1

2πı

∫
L

∏n
j=1 Γ(1− aj + s) ·

∏m
i=1 Γ(bi − s)∏p

j=n+1 Γ(aj − s) ·
∏q

i=m+1 Γ(1− bi + s)
xsds .

(8.28)
Here, the integration contour L has to be chosen appropriately, so that it encloses all residuals
of the integrand in the complex plane [69].

As one may imagine, the Meijer-G functions are not easily evaluated. In fact, the computer
algebra software Mathematica is very slow when evaluating the Meijer-G functions for numer-
ical values. In addition, the accuracy of the return values is not particularly good. The first
problem can be tackled by using an interpolating function, so that the function evaluation
becomes very fast. However, this does not ameliorate the problems concerning the accuracy
of the solution, but on the contrary makes the situation even worse. Because in the following
we need a very accurate solution that has small errors even in the derivatives, this renders
the analytic solution unusable. Instead, we had to resort to direct numerical solvers of the
differential equation (8.20) using the computer algebra system Mathematica. Due to the de-
pendence of the right-hand side on derivatives of ζ at zero, this required a small trick. We
first solved the equation system numerically with the values ζ(2)(0) and ζ(3)(0) as parameters
κ2 and κ3, respectively. In a second step, we used a root-finding algorithm to match the κi
to the desired derivatives of ζ. A complete listing of the Mathematica routine for this task



// ----------------------------
//   spin-x.js
// ----------------------------

// console.println( "*** The Javascript 'spin-x.js' is now being read..." );

// ---------------------------------------------
//   Spin Object Constructor
// ---------------------------------------------
function SpinX() {
	spinObject = this;

	// ----------------------------------
	//   private members
	// ----------------------------------
	var timeEventHandler      	= new TimeEventHandler();
	var omega			= Math.PI; // rotation @ 1/2 Hz
	var time			= 0.;
	var py				= 0.0677324;
	var pz				= 0.24536;

	// ------------------------------------
	//   configure the Time Event Handler
	// ------------------------------------
	timeEventHandler.onTimeChange = true;
	timeEventHandler.onEvent = function( event ) {
		spinObject.update( event.deltaTime );
	}

	this.initialize = function() {
		// console.println( "*** there are " + scene.meshes.count + " nodes");
	}

	this.update = function( deltaTime ) {
		time += deltaTime;
		var phi = time * omega;
		var offset = Vector3(0.,
				 Math.sin(phi) * py - Math.cos(phi) * pz,
				-Math.cos(phi) * py - Math.sin(phi) * pz)
		var rotMatrix = Matrix4x4().rotateAboutX(time * omega).translate(offset);

		scene.meshes.getByIndex(0).transform.set(rotMatrix);
	}

	this.makeActive = function() {
		runtime.addEventHandler( timeEventHandler );
	}

	this.makeInactive = function() {
		runtime.removeEventHandler( timeEventHandler );
	}

	this.initialize();
} // end of SpinX constructor

function MouseAction()
{
	mouseAction = this;

	var spinX = new SpinX();
	var generalMouseEventHandler = new MouseEventHandler();

	generalMouseEventHandler.onMouseDown	= true;
	generalMouseEventHandler.onMouseUp	= true;
	generalMouseEventHandler.onEvent = function(event) {
		if (event.isMouseDown) {
			spinX.makeInactive();
		}
		if (event.isMouseUp) {
			spinX.makeActive();
		}
	}
	runtime.addEventHandler(generalMouseEventHandler);
}

new MouseAction();

// console.println( "*** done  The Javascript 'spin-x.js' was successfully read to the end." );
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can be found in Appendix B.1. Despite its numerical nature, the so-obtained solution had a
much higher accuracy than the analytic one. For example, the integrated residual∫ L

0

∣∣∣∣−ıζ + ∂2
x(Aζ ′′)−

(
(β + σx)ζ(3)(0) + (λ+ µx)ζ ′′(0)

)∣∣∣∣dx (8.29)

was typically of the order of 10−1 for the analytic solution as opposed to 10−7 for the numerical
solution. In addition, this numerical method is more versatile, because it can deal with nearly
arbitrary stiffness models and is not restricted to cases where an analytic solution of the
homogeneous equation exists. Figure 8.2 shows typical solutions of the swimmer shape.

In summary, we have presented an analytical solution for the shape of the swimmer tail,
as determined by equation (8.20). This full solution requires solutions of the homogeneous
equation (8.21), which in turn depend on the stiffness profile A(x). For an exponential stiffness
profile, the solutions of the homogeneous problem are given by Meijer-G functions. Because
the numerical evaluation of the Meijer-G functions is rather inaccurate, we found that a direct
numerical differential equation solver yields better numerical results than the above analytical
solution.

8.1.4 Determining the swimming speed

This section derives an expression for the swimming speed of our swimmer, if the tail shape of
the swimmer is known. As we will see, this result has to be transformed into the laboratory
system, which will be done at the end of this section.

From the tail shape the swimming speed will be determined in the following. For this
equations 8.7b and 8.7c are substituted into (8.7a) which reads in natural units

ux − (1− γ)
(
y′∂2

x(Ay′′) + z′∂2
x(Az′′)

)
= γσ′ . (8.30)

Here γ = ξ⊥/ξ‖ is the ratio of the drag coefficient perpendicular and parallel to the bundle.
Using (8.12a) and (8.10), integration along the contour of the bundle yields

(γRFU
‖ + L)Ux =Ωz

∫ L

0

y dx− Ωy

∫ L

0

z dx+ (1− γ)(
A(0)|r′′⊥(0)|2 − r′⊥(0) ·

(
A(0)r

(3)
⊥ (0) +A′(0)r′′⊥(0)

)
+

∫ L

0

A(x) r′′⊥(x) · r
(3)
⊥ (x)dx

)
.

(8.31)

Note that with our choice of coordinates, this relation is time-independent. It is straight-
forward to express this equation in terms of the complex quantities

(γRFU
‖ + L)Ux = =

[
Ω∗
∫ L

0

ζ dx]
]
+ (1− γ)

<
[
A(0)|ζ ′′(0)|2 − ζ ′(0)∗

(
A(0)ζ(3)(0) +A′(0)ζ ′′(0)

)
+

∫ L

0

A(x) ζ ′′(x)ζ(3)(x)∗dx
]
.

(8.32)

Integration along the bundle of (8.16) with the boundary conditions (8.12b, 8.12c) yields the
relation ∫ L

0
ζ dx = ı

(
RFU

⊥ + L
)
U +

(
aRFU

⊥ − L2

2

)
Ω , (8.33)
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therefore =[Ω∗ ∫ L
0 ζ dx] = (RFU

⊥ + L)<[Ω∗U ]. With the expressions for Ω and U from (8.19)
one finds

<[Ω∗U ] =
A(0)2

RFU
⊥ RLΩ

⊥
=[ζ ′′(0)ζ(3)(0)∗] . (8.34)

Collecting the previous results, the final expression for the swimming speed in the local frame
of reference becomes

(γRFU
‖ + L)Ux =A(0)2

RFU
⊥ + L

RFU
⊥ RLΩ

⊥
=[ζ′′(0)ζ(3)(0)∗]+

(1− γ)<
[
A(0)|ζ′′(0)|2 − ζ′(0)∗

(
A(0)ζ(3)(0) +A′(0)ζ′′(0)

)
+

∫ L

0

A(x) ζ′′(x)ζ(3)(x)∗dx
]
.

(8.35)

It is instructive to look at the limiting behavior of this equation for long L. Because the
excitation of the tail is only locally at the origin, the amplitude |ζ(x)| must go to zero for
large x. Therefore, the second term on the right-hand side of (8.35) must remain finite as
L → ∞. It follows that

Ux ≈ A(0)2

RFU
⊥ RLΩ

⊥
=[ζ ′′(0)ζ(3)(0)∗] (8.36)

remains non-zero as L → ∞. However, this must be wrong because the drag from the tail
grows with L whereas the pushing portion of the tail remains bounded. The solution to this
contradiction is that Ux is the bead speed in the local coordinate system of the swimmer.
In contrast, the observed speed with respect to the fluid is measured from the laboratory
system. Therefore, the result from (8.35) must be transformed into the lab system, which
will be dealt with in the following section.

Transformation into the lab system

The swimming speed in (8.35) refers to a local coordinate system that co-rotates with the
swimmer’s head. Therefore, it must be transformed into the laboratory system. We define
the lab frame along the orthogonal vectors ê1, ê2, ê3, where ê1 points along the average
swimming direction. The swimmer revolves at constant angular velocity {Ωx = −1, Ωy, Ωz}
about its local axes. Hence, in the lab system the local coordinate vectors change according
to

d
dt

exyz =

 0 −Ωz Ωy

Ωz 0 −1
−Ωy 1 0

 · exyz . (8.37)

The analytical solution of this rotation is given through the matrix exponential <[exp(M t)] ·
exyz where M is the above rotation matrix. Dropping all terms of second order in Ω one finds

êx = ê1 −<[Ω(1− eıt)] ê2 −=[Ω(1− eıt)] ê3 (8.38a)
êy = −<[Ω(1− e−ıt)] ê1 + cos t ê2 + sin t ê3 (8.38b)
êx = −=[Ω(1− e−ıt)] ê1 − sin t ê2 + cos t ê3 (8.38c)

which is exact up to order |Ω|2. The total swimming velocity of the head is given by U =
Uxêx + Uyêy + Uzêz of which we are only interested in the ê1 component. Hence,

U1 = Ux −<[Ω(1− e−ıt)]Uy −=[Ω(1− e−ıt)]Uz . (8.39)
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In contrast to the velocity in co-rotating coordinates, this expression depends on time due to
the oscillating motion of the bead. However, the time-dependent terms average out over one
period, such that

〈U1〉 = Ux −<[Ω∗U ] . (8.40)
With the previous results from (8.34,8.35) this yields the swimming speed in the lab system

〈U1〉 =
1

γRFU
‖ + L

(
A(0)2

RFU
⊥ − γRFU

‖

RFU
⊥ RLΩ

⊥
=[ζ′′(0)ζ(3)(0)∗]+

(1− γ)<
[
A(0)|ζ′′(0)|2 − ζ′(0)∗

(
A(0)ζ(3)(0) +A′(0)ζ′′(0)

)
+

∫ L

0

A(x) ζ′′(x)ζ(3)(x)∗dx
])

.

(8.41)

Because the experimentally implemented swimmer has a spherical head for which RFU
⊥ =

RFU
‖ and RLΩ

⊥ = RLΩ
‖ , this expression simplifies further to

〈U1〉 =
1− γ

γRFU + L

(
A(0)2

RLΩ
=[ζ ′′(0)ζ(3)(0)∗]+

<
[
A(0)|ζ ′′(0)|2 − ζ ′(0)∗

(
A(0)ζ(3)(0) +A′(0)ζ ′′(0)

)
+

∫ L

0

A(x) ζ ′′(x)ζ(3)(x)∗dx
])

.

(8.42)

For A = const this result is consistent with the one from the work of Lauga.

As in the previous section, consider 〈U1〉 in the limit of L → ∞. In contrast to (8.35) which
has a linear term in L, all terms on the right-hand side of (8.41) are bounded. Consequently,
as L → ∞ the swimming speed approaches zero. This is in accordance to our intuition that
as the tail grows, the hydrodynamic drag increases, so that the swimmer becomes slower and
less efficient. Hence, there must be an optimal tail length up to which the pushing force of
the tail grows faster1 than the hydrodynamic drag of the filament.

8.2 Swimming performance of our swimmer model

8.2.1 General discussion of the swimming speed

The formula for the swimming speed (8.42) in conjunction with the analytic solution (8.22)
allows a few general remarks about swimming with a passive tail.

First of all, we remark that the swimming speed as given by (8.41) is the travelled distance
of the swimmer after one complete revolution. Apparently, this distance has no explicit time
dependence, which is typical for locomotion at small Reynolds number [4]. Consider the
conformations of the swimmer in an abstract phase space, where the swimmer starts at some
point A in this conformation space and takes a path P to point B. In doing so, the swimmer
translates in its physical space by some distance l, but this distance is solely a function of the
path taken and does not depend on how fast this path was traversed [70]. Swimming at low
Reynolds number is a therefore a purely geometric question. In our case, this shows in the

1Depending on the chosen tail parameters, the pushing force can also be negative, so that the swimmer swims
backwards.
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above-mentioned independence of the swimmer displacement over one rotation and the driving
frequency. There is however an indirect linear dependence on time, because revolutions of
the swimmer have a faster sequence, if the frequency increases. This indirect dependence
is hidden by the choice of our unit system and becomes apparent when transforming the
swimming speed into physical units by multiplying with `ω · 2πf (see 8.1.1). Furthermore,
there is an additional non-trivial dependence on the driving frequency, because `ω is a function
of ω. As a consequence, a higher frequency changes the relevant length scales of the swimmer,
leading to an entirely different tail shape. Intuitively, it is clear that the tail receives a stronger
drag from the fluid if driven faster, so that it bends more. This dependence will be the subject
of the next section (8.2.2).

Equation (8.41) also shows that for isotropic friction where RFU
⊥ = RFU

‖ and γ = 1 there is
no propulsion. This is an important consistency check, because propulsion at low Reynolds
number can only be achieved by anisotropic friction and not by inertial effects [4]. In addition,
there is a subtlety in (8.41) that is easily overlooked. Consider therefore the shape equation
(8.2)

Γu = −∂2
s (A(s)∂2

sr) + ∂s(σ(s)∂sr) ,

where we have abbreviated the friction tensor on the left-hand side by Γ. The left-hand side
sets the scale of typical friction forces that act on the tail by Γu. It follows that the typical
curvature of the tail is then in the order of |∂2

sr| ≈ |Γu|L2/A. Consequently, as A becomes
large, the curvature of the tail becomes negligibly small. However, ζ(2) or ζ(3) appear in every
single term of (8.41), so that the swimming speed becomes zero. What we have recovered
was the scallop theorem from [4], which states that a time-reversible motion does not lead to
propulsion. The motion of a straight rod is however always time-reversible.

Finally, we look at the functional form of the swimming speed (8.41). We note that every
single term is quadratic in ζ, so that the swimming speed scales quadratic with the amplitude
of the tail shape. This is a generic feature of low Reynolds number swimming as can be shown
in a simplified setup [70]. The tail shape on the other hand depends linearly on the excitation
parameters ε1 and ε2 (see 8.26).

In summary, we have found that our formula for the swimming speed scales linearly with the
frequency of the external field and quadratic with the amplitude of the tail shape. Because
the swimming mechanism is based on the anisotropic friction of a non time-reversible motion,
the motion subsides if the friction anisotropy vanishes (γ = 1) or the rod becomes too stiff to
bend. These findings are in accordance to fundamental considerations of swimming strokes
at low Reynolds numbers.

8.2.2 Design principles for fast swimming with passive tails

The geometric nature of swimming at low Reynolds number implies that the swimming speed
increases linearly with the rotation frequency ω — if the geometry stays the same. Because
the swimmer geometry determines the swimming speed, we examine the impact of various
geometrical parameters on the swimming speed. Before doing so, we limit the number of
free parameters and focus on the interesting ones in the following. The swimming speed as
function of these swimmer parameters will then be discussed in the next subsections.
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The parameters determining the tail shape and therefore the swimmer speed are the (vari-
able) tail stiffness A(x), the tail length L, the driving frequency ω, the head diameter rh,
and the excitation amplitudes ε1, ε2. As this list of parameters is rather long, we reduce
the number of parameters to the most interesting ones. First, we choose ε1 = εe−ıπ/4 and
ε2 = ε, so that ε1,2 contribute equally to the swimming speed. Remember that r(x) =
xêx + <ζ(x)êy + =ζ(x)êz, so that a phase shift of −π/4 of ε1 versus ε2 means that the tail
direction at x = 0 lags behind the direction of the point of attachment. The equality of
|ε1| = |ε2| = ε allows to scale our results of the swimming speed by ε2, so that the results
become independent of the amplitude ε. Furthermore as already mentioned above, our main
focus for the stiffness model A(x) is an exponential profile for reasons that will be explained
below (see 8.3.2 on p. 142). Unless explicitly stated otherwise, a variable stiffness will in the
following always refer to an exponential stiffness profile. To be precise, we use the stiffness
model A(x) = As · a1−x/L where a is the number of attached filaments to the bead. Because
As is one in our unit system, for brevity we refer to a as the stiffness.

In addition to the variable parameters, we have to specify the friction coefficients of the
tail and the head. For the tail, the friction coefficients can be estimated by slender body
theory [19, 71]

γ⊥ = 4πη/

(
log(L/d)− 1

2
+ log(2)−

1− π2

12

log(L/d)

)
(8.43a)

γ‖ = 2πη/

(
log(L/d)− 3

2
+ log(2)−

1− π2

12

log(L/d)

)
(8.43b)

where η is the dynamic viscosity of water and L/d is the aspect ratio of the tail. Because the
dominant L/d-dependence is 1/ log(L/d) and therefore logarithmic, the results below change
only slightly when varying L/d. In the following, we only use an aspect ratio of L/d = 200,
so that γ ≡ γ⊥/γ‖ ≈ 1.63. Where necessary, we used the dynamic viscosity of water at 20◦C,
which is η = 1.00mPa · s [72].

Finally, we restrict our considerations to swimmers with a spherical head of radius rh, for
which the friction coefficients are [73]

RFU = RFU
‖ = RFU

⊥ = 6πη rh/ξ⊥ [ξ⊥`ω] (8.44a)

RLΩ = RLΩ
‖ = RLΩ

⊥ = 8πη r3h/ξ⊥ [ξ⊥`
3
ω] . (8.44b)

The brackets are a reminder that the friction coefficients in natural units are simply numbers,
which have to be multiplied by the factor in the brackets to transform into physical units.
There is however a caveat. Consider the swimmer being rotated by an external field, e.g. a
magnetic field, so that it feels hydrodynamic drag forces from its movement through the
surrounding fluid. Because these drag forces apply also on the tail, they are asymmetric with
respect to the center of mass of the swimmer, so that they tilt the swimmer along its x- or
z-axis. Although this is fine for our theory, it is not what would happen in an experiment
if driven by a magnetic field that rotates around the x-axis. To understand this, remember
that the head must have a magnetic momentum to be rotated by the external magnetic
field. This momentum exerts a torque that rotates the bead along the x-axis so that its
magnetic moments points along a perpendicular direction, say the y direction. This also
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Figure 8.3 | Swimming speeds 〈U1〉 of a swimmer with head size rh = 1 `ω for constant
(top right) and variable (top left) stiffness model as a function of tail length L and tail
stiffness a. As explained in 8.2.2, RLΩ was 500-fold increased. Note that the scale bar of
the a-axis is logarithmic. The bottom panel shows the same data for selected a-values with
variable (solid lines) and constant (dashed lines) stiffness model. The corresponding cuts
through the parameter space are indicated by dotted lines in the top panels.

means, however, that the bead cannot rotate along the z-axis, because this rotation has to
work against the external torque. In practice, there will be a force balance of drag forces
which effectively lead to a suppression of rotations about the y- and z-axes. We can account
for this effect by using an effective torque RLΩ that is multiplied by an arbitrary large factor,
which we refer to as fixated.

Altogether, we have seen that there are three parameters of particular interest: the stiffness
a, the tail size L, and the head diameter rh. All other parameters can either be ignored, or we
use reasonable generic values. In the following, we will discuss design principles concerning
the above-mentioned free parameters for swimmers with passive tails.

Constant head size rh = 1 `ω

First, we discuss the interplay of tail length L and tail stiffness a2 with the swimming speed.
The results are exemplary and were obtained for rh = 1 `ω.

Figure 8.3 shows the swimming speed as a function of tail length L and tail stiffness a for
a swimmer with 500-fold increased RLΩ. In accordance to our general discussion above, the
swimming speed in general decreases for long tails. Besides, for very short tails, the swimming

2Remember that for brevity we refer to a stiffness model A(x) = As · a1−x/L simply as a.
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Figure 8.4 | Swimming speeds 〈U1〉 of a swimmer with head size rh = 1 `ω for constant (top
right) and variable (top left) stiffness model as a function of tail length L and tail stiffness
a. Here, RLΩ was left unchanged. Note that the scale bar of the a-axis is logarithmic.
The bottom panel shows the same data for selected a-values with variable (solid lines)
and constant (dashed lines) stiffness model. The corresponding cuts through the parameter
space are indicated by dotted lines in the top panels.

speed approaches zero, because an undecorated bead does not propel when rotated. However,
in between those limiting points, the swimming speed is non-zero and must therefore have a
maximum. As Fig. 8.3 shows, the qualitative behaviour for variable stiffness is similar to a
constant stiffness, but the peak speed is higher and shifts towards smaller tail lengths. Indeed,
the maximum speed of the variable stiffness swimmer is about 15% faster (0.24 versus 0.21).

At first sight it may be surprising to find an increase of the swimming speed even for very
high tail stiffness. The reason for this behavior is the strongly increased RLΩ, which has the
effect of suppressing any rotations3 of the swimmer. Because our boundary conditions ε1 and
ε2 have a phase shift, a completely straight tail points outward in a chiral fashion, so that
the swimming speed remains non-zero for arbitrarily large a.

If the rotation about the y- and z-axes is not suppressed, this picture changes significantly
(Fig. 8.4). In contrast to the fixated4 case, the swimming speed indeed decreases if a becomes
too large. This behavior is as expected from our general discussion of the swimming speed.
Furthermore, the swimming speed of the variable stiffness swimmer is in general faster than
the corresponding swimmer with constant stiffness. Indeed, the fastest swimmer with constant
stiffness is found for a = 1, which has almost the same speed as the fastest swimmer with

3Of course, the driven rotation of along the swimming axis is unaffected of the increased RLΩ

4See 8.2.2
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Figure 8.5 | Swimming speeds 〈U1〉 of a swimmer with tail length L = 3 `ω for constant
(top right) and variable (top left) stiffness model as a function of head size rh and tail
stiffness a. As explained in 8.2.2, RLΩ was 500-fold increased. Note that the scale bar of
the a-axis is logarithmic. The bottom panel shows the same data for selected a-values with
variable (solid lines) and constant (dashed lines) stiffness model. The corresponding cuts
through the parameter space are indicated by dotted lines in the top panels.

variable stiffness (0.090 versus 0.086). However, for a constant stiffness the swimming speed
quickly decreases with a, whereas the variable stiffness swimmer achieves significantly higher
speeds for a very large a-region (remember that the a-scale is logarithmic).

In summary, this example shows that the swimming speed of a swimmer with variable
stiffness is generally higher than that of a constant stiffness swimmer. The suppression of
rotations about the axes perpendicular to the swimming axis makes swimming with stiffer
tails effective, whereas non-fixated swimmers swim best at low tail stiffness. In all cases,
for any given stiffness a there is an optimal tail length where the swimming speed has a
pronounced optimum. In short, a variable stiffness tail is nearly always beneficial.

Constant tail length L = 3 `ω

In the following, we discuss the interplay of head size rh and tail stiffness a with the swimming
speed. The results are exemplary and were obtained for L = 3 `ω.

Figure 8.5 shows the swimming speed as a function of head size rh and tail stiffness a for
a swimmer with 500-fold increased RLΩ. It is apparent from the lower panel of Fig. 8.5 that
the swimming speed has a rather regular dependence on the head size rh. The reason for this
regularity becomes apparent when considering the geometry of the swimmer. Because the



8.2 Swimming performance of our swimmer model 135

1 2 3 4 5 6

rh [`ω ]

100

101

a

A(x) =a1−x/L

1 2 3 4 5 6

rh [`ω ]

A(x) =a

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

〈 U 1〉 /ε2

1 2 3 4 5 6

rh [`ω ]

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

〈 U 1〉 /ε2

a=1.28

a=4.90

a=16.64

a=50.00

Figure 8.6 | Swimming speeds 〈U1〉 of a swimmer with tail length L = 3 `ω for constant (top
right) and variable (top left) stiffness model as a function of head size rh and tail stiffness
a. Here, RLΩ was left unchanged. Note that the scale bar of the a-axis is logarithmic.
The bottom panel shows the same data for selected a-values with variable (solid lines)
and constant (dashed lines) stiffness model. The corresponding cuts through the parameter
space are indicated by dotted lines in the top panels.

rotations about the y- and z-axes are suppressed, the resulting beat shape of the swimmer does
not change when increasing rh. Therefore, the main effect of an increased rh is an additional
drag from the head. Because the head drag enters the swimming speed with 1/RFU , the
resulting swimming speed scales approximately with 1/rh. Therefore, the fastest swimmers
are found for the smallest head radius. As for the stiffness axis, we find that for all bead
sizes the swimming speed increases with tail stiffness up to some optimal stiffness and starts
to decrease for even higher values. In general, the qualitative behaviour for variable stiffness
and constant stiffness is similar, but the peak speed shifts towards higher tail stiffness and is
higher for variable stiffness. Indeed, the maximum speed of the variable stiffness swimmer is
about 19% faster (0.15 versus 0.13).

If the rotation about the y- and z-axes is not suppressed, this picture changes significantly
(Fig. 8.6). Similarly to the other cases above, the swimming speed for a freely rotating head
decreases by about a factor 2. In contrast to the fixated case, here the swimming speed
has a non-trivial dependence on the head size. If the head size is too small, the tail acts
like an anchor in the water and mainly the head moves, so that the overall swimming speed
remains small. With increasing head size, the roles interchange such that the head becomes
the anchor and the tail moves and the overall push by the tail increases. Because the drag
from the head increases at the same time, there is an optimal head size where the swimming
speed is maximized. A similar reasoning applies to the tail stiffness a: if the tail is too wiggly,
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it always bends away when a drag applies and the pushing force is small. If on the other
hand the tail is too stiff, the induced chirality of the tail is lost and the swimming speed
decreases. In general, the swimming speed of the variable stiffness swimmer is faster than the
corresponding swimmer with constant stiffness. Indeed, the fastest swimmer with variable
stiffness is about 12% faster than the fastest swimmer with variable stiffness (0.080 versus
0.072).

In summary, the preceding example demonstrated that the swimming speed of a swimmer
with variable stiffness is generally higher than that of a constant stiffness swimmer. The
suppression of rotations about the axes perpendicular to the swimming axis allows efficient
swimming with small heads, while for larger heads, the rotation lock is less important. For a
fixated swimmer, the guideline for the optimal head size is “as small as possible”, whereas for
a freely rotating swimmer the optimal head size is non-zero. In all cases, for any given head
size rh there was an optimal tail stiffness where the swimming speed is largest. In general, a
variable stiffness tail is nearly always beneficial.

Constant tail stiffness a = 25

In the following, we discuss the interplay of tail length L and head size rh with the swimming
speed. The results are exemplary and were obtained for a = 25.

Figure 8.7 shows the swimming speed as a function of tail length L and head size rh for a
swimmer with 500-fold increased RLΩ. As already discussed above, the geometry of a fixated
swimmer is almost independent of the bead size, so that the main effect of an increased rh
is an additional drag from the head. Because the head drag enters the swimming speed
with 1/RFU , the resulting swimming speed scales approximately with 1/rh. Therefore, the
fastest swimmers are found for the smallest head radius. Again, for very short tails or long
tails the swimming speed approaches zero, but is nonzero in between and therefore has a
maximum. As Fig. 8.7 shows, the qualitative behaviour for variable stiffness and constant
stiffness is similar, but the peak speed shifts towards smaller tail lengths and is higher for
variable stiffness. Indeed, the maximum speed of the variable stiffness swimmer is about 12%
faster (0.19 versus 0.17).

If the rotation about the y- and z-axes is not suppressed, this picture changes significantly
(Fig. 8.8). Similarly to the other cases above, the swimming speed for a freely rotating head
decreases by about a factor 2. In contrast to the fixated case, here the swimming speed has
a non-trivial dependence on the head size. If the head size is too small, the tail acts like
an anchor in the water and mainly the head moves and the overall swimming speed remains
small. With increasing head size, the roles interchange such that the head becomes the anchor
and the tail moves, so that the overall push by the tail increases. Because the drag from the
head increases at the same time, there is an optimal head size where the swimming speed is
maximized. A similar reasoning applies to the tail length L: if the tail is too short, it does not
push. If on the other hand the tail is too long, it adds to the hydrodynamic drag, so that the
swimming speed is highest for an intermediate tail length. In general, the swimming speed
of the variable stiffness swimmer is faster than the corresponding swimmer with constant
stiffness. Indeed, the fastest swimmer with variable stiffness is about 22% faster than the
fastest swimmer with variable stiffness (0.090 versus 0.074).
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Figure 8.7 | Swimming speeds 〈U1〉 of a swimmer with tail stiffness a = 25 for constant (top
right) and variable (top left) stiffness model as a function of tail length L and head size
rh. As explained in 8.2.2, RLΩ was 500-fold increased. The bottom panel shows the same
data for selected head sizes with variable (solid lines) and constant (dashed lines) stiffness
model. The corresponding cuts through the parameter space are indicated by dotted lines
in the top panels.

In summary, this exemplifies that the swimming speed of a swimmer with variable stiffness
is generally higher than that of a constant stiffness swimmer. The suppression of rotations
about the axes perpendicular to the swimming axis allows efficient swimming with small
heads, while for larger heads, the rotation lock is less important. For a fixated swimmer,
the guideline for the optimal head size is “as small as possible”, whereas for a freely rotating
swimmer the optimal head size is non-zero. In all cases, for any given head size rh there was
an optimal tail length where the swimming speed has a pronounced optimum. In general, a
variable stiffness tail is nearly always beneficial.

Optimized stiffness profile

So far, we have discussed the swimming performance for a particular stiffness model A(x) =
As · a1−x/L and discovered that a variable stiffness generally improves the swimming speed.
Although there is an optimal combination of stiffness a, tail length L, and head size rh, this
optimum remains within the subclass of exponential stiffness profiles. In the following, we
will consider a much bigger class of stiffness models and determine an optimal stiffness profile.

We now consider a swimmer with fixed tail length L and fixed head size rh, but unknown
stiffness profile A(x). Because a comparison to a bad swimmer with exponential stiffness
profile would be a bit unsportsmanlike, we take a parameter set where the exponential profile
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Figure 8.8 | Swimming speeds 〈U1〉 of a swimmer with tail stiffness a = 25 for constant
(top right) and variable (top left) stiffness model as a function of tail length L and head
size rh. Here, RLΩ was left unchanged. The bottom panel shows the same data for
selected head sizes with variable (solid lines) and constant (dashed lines) stiffness model.
The corresponding cuts through the parameter space are indicated by dotted lines in the
top panels.

swimmer was good at: L = 4.1 `ω, rh = 1.7 `ω, and a = 25. Of course, the set of relevant
stiffness functions A(x) has to be restricted so that the problem becomes feasible. Because
in experiments a variable stiffness is best achieved by attaching several thin filaments with
different lengths, it is clear that the stiffness can decrease along the tail, but not increase. In
addition to the monotonicity, we require that the stiffness has fixed values at the boundaries,
because the preceding sections have shown that the maximum stiffness improves the swimming
speed. Therefore, we limit our set of functions to monotonously decreasing ones that in
addition fulfill the boundary conditions A(0) = a and As = 1.

These conditions considerably restrict the set of possible stiffness profiles, but for a numerical
optimization, the degrees of freedom have to be drastically reduced. This has to be done in
a such way that every reasonable solution can be well approximated in this reduced function
set. Spline interpolations are the ideal choice for this task, because they approximate smooth
functions with very small error and are easy to handle [74]. Below we use an interpolating
spline function with six suspension points and an interpolation order of 3. Altogether, the
stiffness model then has four independent parameters s1, . . . , s4, because the boundary values
are fixed.

The reduction of the stiffness model A(x|s1, . . . , s4) allows to numerically maximize the
swimming speed with respect to the suspension points of A(x). The solver for the tail shape
as presented in Appendix B.1 can easily be generalized to handle spline stiffness models.
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Figure 8.9 | Stiffness profile A for a swimmer with optimized stiffness profile (green) and the
usual exponential stiffness profile (blue). The optimized stiffness profile was approximated
using a cubic spline function with six suspension points (green circles). The swimming speed
of the optimized swimmer is about 19% faster than with an exponential stiffness profile.

Because we can only calculate the swimming speed itself but not its gradient in the space of
the spline parameters, the minimization procedure is computationally quite demanding. In
addition, every evaluation of the swimming speed takes about 2 s, so that we have to stop
the optimization procedure at a rather coarse accuracy. For the minimization, we used the
differential evolution algorithm from the built-in Mathematica routines [75]. Figure 8.9 shows
the result of this optimization effort. This optimal stiffness profile has a large stiffness close
to the head and a small transition region at about half tail-length where it drops down to the
minimally allowed stiffness. This step-like shape of the optimized stiffness profile is also found
for other combinations of tail length, head stiffness, boundary conditions ε1 & ε2, and even
maximal stiffness a. One can therefore assume that the shape of the optimal stiffness profile
is rather generic. Compared to the exponential stiffness profile, the optimized stiffness profile
results in a speed boost from 0.091 `ωω/ε

2 to 0.108 `ωω/ε
2 (≈ 19%). This is a comparable

improvement as from constant stiffness to an exponential stiffness profile.

The simple shape of the optimized stiffness profile even allows to realize this stiffness profile
in experiments. In the next section, we will see how a variable stiffness profile can be realized
in an experiment by attaching several filaments with different lengths to a head. Because
without cross-links the local stiffness scales linearly with the number of filaments in the
tail [76–78], monotonously decreasing stiffness profiles can be approximated by attaching the
corresponding number of filaments

N(l) =

∫ A(L)

A(0)
δ
(
A−1

(
a
)
− l
)
da . (8.45)

For self-assembled structures however, where the filaments attach at random, the number of
attached filaments with a defined length can not be easily controlled. Yet, in the special case
of a step-like function it is possible to mix many small filaments with a few long filaments. If
done right, the short filaments bind much more often than the long ones, so that the step-like
stiffness profile can be approximated.
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In summary, by using a spline approximation of the stiffness profile, we determined an
optimal stiffness profile for a swimmer whose other tail parameters were fixed. Although
not rigorously proven, the obtained profile with a step-like transition from high stiffness to
low stiffness at about half tail-length seems to be generic, because it was also found in other
examples. Because of its simplicity, we argued that such a stiffness profile could even be
realized by experiments with self-assembled swimmers.

Summary of the design principles

The preceding examples considered the swimming speed of a swimmer with variable stiffness
profile when at least one parameter is fixed. In the following, these results will be combined
and the most important guidelines will be highlighted.

In general, one has to distinguish between the two cases where the rotation of the head
is free and only limited by its rotational friction RLΩ and where the rotation is suppressed
due to external torques (“fixated”). In an experiment with a driving by a magnetic field, the
latter usually applies better than the free rotation (see 8.2.2). For such a fixated swimmer, the
swimming speed has a trivial dependence on the head size rh, because a bigger head just means
a larger drag while the tail shape remains the same. Therefore, the smaller rh the higher is
the swimming speed (Figs. 8.5 and 8.7). On the other hand, for a and L the swimming speed
is a non-trivial function of these parameters, and the highest swimming speeds were found
for the highest stiffness a (Fig. 8.3). Consequently, it is unclear whether the swimming speed
would increase further for even higher stiffness values a. However, because the maximally
achievable stiffness is usually limited, the guideline for the best performance is to make the
stiffness as high as possible and adapt the tail length accordingly. For virtually any parameter
set the variable stiffness swimmer is faster than the swimmer with constant stiffness.

On the other hand, when the swimmer head is not fixated and may rotate freely, the
guidelines are quite different. In contrast to the fixated case, the swimmer head now influences
the tail shape and the swimming speed has a non-trivial dependence on the head size. As a
consequence, the optimal head size is in general no longer as small as possible but depends on
the other tail parameters (Figs. 8.6 and 8.8). Like for the fixated swimmer, there is still an
optimal tail length with a pronounced maximum (Figs. 8.4 and 8.8), so that the tail length
is the most important handle for the swimming performance. In contrast to the fixated case,
however, the stiffness a has a much smaller impact on the maximum speeds and in general,
the best swimming speeds are found at small and intermediate stiffnesses (a = 1 − 10). In
general, the swimming speed is only about half as big as in the fixated case. So if there is
a choice, the head rotation should be suppressed by external forces. Also in this case, for
virtually any parameter set, the variable stiffness swimmer is faster than the swimmer with
constant stiffness.

Last but not least, we found that the optimized stiffness profile has the very simple form
of step function. It is a mere coincidence that the shape of the optimal stiffness profile
is so simple, but it should make it possible to approximate the optimal stiffness profile in
experiments (see 8.2.2). Because the speed increase from an exponential to the optimized
stiffness profile is comparable to the gain from constant stiffness to exponential, it is worth
to consider. It is remarkable that the swimming speed for variable stiffness outperforms a
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constant stiffness for all parameters shown. Indeed, this is a feature that we found in all
stiffness profiles that we considered.

8.3 Application to an experimental micro-swimmer

The model presented above was developed in close collaboration to an experiment that realized
microscopic swimmers [63]. The aim of this experiment was to use bottom-up DNA-based self-
assembly techniques to build micro-scale oars that propel a rotating magnetic bead. Thereby
it opens up the toolbox of DNA self-assembly to the construction of micro-swimmers and
unravels a whole new class of versatile micro-swimmer designs. In the following, we will
outline the construction principle of this micro-swimmer and compare the measured swimming
speeds to the predicted ones.

8.3.1 Experimental micro-swimmer with variable bending stiffness

The bottom-up self-assembly of DNA into defined shapes is a powerful tool to construct a
huge variety of micro-structures [79, 80]. In particular, this technique also allows to construct
three-dimensional and curved structures with some control over their rigidity [81, 82]. Because
the self-assembly happens without the need of external control, the yield of so created particles
is huge. The versatility in shape and the high yield makes self-assembled DNA structures an
ideal component for the construction of micro-swimmers. In the following we will outline the
design for a DNA-based micro-swimmer that was developed in collaboration with the group
of Tim Liedl [63].

As this experiment aimed to be a proof of principle, we used the simplest shape that gen-
erates propulsion: a flexible oar [4]. This oar is the centerpiece in the construction of a
micro-swimmer, because it has to be several micrometers long and very stiff. These are re-
quirements that can be met by self-assembled DNA structures. Usual DNA origami works by
the controlled folding of a long single-stranded DNA scaffold via short DNA oligonucleotides
— so-called “staple strands” — that tie different points of the scaffold strand together [79].
After folding, several of these structures can be concatenated if the staple strands at the ends
stick out and complementarily match the staples at the other end. For example, it is possible
to create tube-like structures that can be concatenated via staple binding. However, such
links with staples create joints where the local stiffness of the tube differs from the target
value. Therefore, a more uniform design for DNA tubes is required. Yin et al. have proposed a
modified approach where the target structure is solely built from short DNA oligonucleotides
that repeat like in a polymer [83]. Because no staple has an exceedingly long sequence (as
the scaffold in DNA origami) and every staple type is repeated frequently along the tube,
the stiffness of the resulting structure is much more uniform than for concatenated DNA
origamis. In particular, this approach also allows to tune the diameter, stiffness and helicity
of the resulting tube structure [83–85]. For the experimental swimmer, we settled with a
straight twisted 8-helix structure [63] (in the following just “filament”) with a persistence
length of lp = 8.2µm [85].

As the motor of our swimmer we used a ferro-magnetic bead with about 1µm in diameter.
This bead was rotated by means of an externally applied homogeneous magnetic field, so that
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Figure 8.10 | Snapshot of swimmer #2 (table 8.1) as observed in the experiment. Active
content: In a flash enabled viewer, clicking the image plays a movie of this swimmer. With
courtesy of Alexander Maier

the bead receives a torque from the magnetic field. The head and tail were connected by
biotin-streptavidin bonds [86, 87]. For that, we let staple strands stick out along the filament,
which in turn were functionalized with biotin via the binding of complementary DNA strands.
The magnetic particles were already supplied with streptavidin functionalization. Because the
abundance of filaments was much higher than the abundance of beads, the number of attached
filaments was random. In particular, the beads attached at random positions along the tail
and the filaments covered the beads isotropically.

Upon rotation of the magnetic head via an external magnetic field, the filaments formed
bundles along the rotation axis of the bead. In about 10% of the cases, the bundles formed
only on one side of the bead and propelled the swimmer into the direction of the bead.
Figure 8.10 shows a typical example of such an example as observed in the experiment.

8.3.2 Observed and predicted swimming speed

The preceding section has presented an experimental realization of a swimmer with a variable
bending modulus. Above, we have presented a theory that exactly applies to this case, so
this begs a comparison of theory and experiment. For that, we discuss how to determine the
relevant model parameters and compare the predicted to the observed swimming speed.

The most direct way to compare theory and experiment would be to compare the observed
tail shape to the predicted tail shape. However, the shape of the experimental swimmer is
rather noisy so that it is hard to compare to a predicted shape. Therefore it is much cleaner
to compare a time-averaged quantity such as the translation during some time interval, in
other words the average speed. To apply the theoretic model, we must determine the whole
set of model parameters A(x), L, rh, ε1, ε2, lp, γ⊥, η, and ω. Some of these parameters
are well-known or well-controlled, such as the dynamic viscosity of water (η ≈ 1mPa s at
20◦C [72]), the persistence length of a single filament (8.2µm, [85]), the frequency at which
the magnetic field was rotated (f = 1–3Hz) and the head diameter (1µm). The remaining
parameters on the other hand are parameters that have to be determined individually for
each observed swimmer.

In particular, among the individual parameters is the stiffness profile A(x) or the number
of attached filaments a. For an estimate of the stiffness profile, we first have to understand
the length distribution of the attached filaments. Because each filament in the bundle re-
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sults from a linear polymerization process, we expect an exponential distribution of filament
lengths [88]. Indeed, Yin et al. found an exponential length distribution in the lengths of
unbound DNA filaments [83]. To verify this length distribution in the attached filaments,
we furthermore measured the fluorescence intensity along the contour of the bundle, which
we found to be exponentially decaying. Because we expect the fluorescence intensity to be
proportional to the number of filaments present at the respective bundle position, this sup-
ports our assumption that the attached filaments have an exponential length distribution. If
the attached filaments have an exponential length distribution, then the number of filaments
present at a distance l away from the head is proportional to

∫∞
l P (l′ > l)dl′, so again an

exponential function. Therefore we assumed that the number of filaments present at the bun-
dle position x is proportional to a e−x/χ. Next we need to establish a relationship between
the number of filaments present at a position x and the local stiffness of the bundle A(x).
Without crosslinks the stiffness scales linearly with the number of filaments in the tail [76–78,
89]. Because the twisted 8-helix tubes have no binding sites for linkers5, we therefore we take
A(x) = Asa e−x/χ as the stiffness model, where As is the bending stiffness of a single filament.
The parameters a and χ could be estimated by the ratio of the fluorescence intensity close to
the head and at the far end, if we assume that only a single filament extends to the far end.
Typical numbers of attached filaments a range from 7 to 25.

The individual parameters varied for different swimmers, so they had to be determined for
each swimmer instance.

Next, we determined the bundle length, the amplitude parameters ε1 & ε2 and their re-
spective phase from snapshots of the swimmer. The bundle length is easily measured by
integrating the length along the contour of the tail and was typically in the range from
4.8–8.0µm (Tab. 8.1). On the other hand the two amplitude parameters ε1 and ε2 have to
be determined with great care, because the swimming speed scales quadratically with their
amplitude (see 8.2.1). For that, we took snapshots of the video sequence where the tail was
maximally deflected. This allowed to measure the amplitude of the attachment point, ε1, in
fractions of the head radius and we found values ranging from 0.1–1.0. Likewise, the opening
angle α between tail and swimming direction was measured for which we found values ranging
from 20–40 degrees. This opening angle α determines ε2 via ε2 = tanα. The relative phase
of ε1 and ε2 corresponds to the torsion of the tail close to the head. From our data it was
not possible to reliably determine the phase difference, therefore we have to supply a generic
value. Because the tail is pulled through the fluid, it feels a drag directed against its current
direction of movement and bends accordingly. This induced bending corresponds to a phase
shift of −π/2 which we take as an estimate for the phase shift. We note that the phase shift
has only a minor impact on the swimming speed of about 5%. Because of the small size of the
swimmers and the coarseness of the data, this whole procedure is a source of a large unknown
error.

Finally the friction coefficients of tail and head need to be estimated. For the tail, the
friction coefficient can be calculated via slender-body theory (8.43) from the aspect ratio of
the tail, for which we assumed a value of 200, resulting in γ ≈ 1.6. The Stokes friction
coefficients for the head are given by (8.44). In the experiment, translational motion is free,

5Although no linkers were present, it is nevertheless possible that staple strands from one filament loosen and
bind to a neighboring filament that accidentally has a free complementary site. However, we assume that
these spurious interlinks are rare.
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swimmer #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
length [µm] 6.2 7.8 6.8 6.5 6.3 8.0 6.5 6.0 4.8 7.0

N0 20 25 11 12 23 18 24 21 9 7
frequency [Hz] 1 1 1 2 1 1 1 2 2 1

ε1/e−ıπ/2 [rh] 0.9 1. 0.9 0.25 0.5 0.1 0.9 0.5 0.9 0.8
arctan(ε2) [deg] 21 20 20 26 26 30 28 23 30 42

measured speed [µm/s] 0.12 0.12 0.17 0.19 0.20 0.22 0.25 0.27 0.31 0.42
predicted speed [µm/s] 0.21 0.18 0.14 0.23 0.26 0.21 0.36 0.29 0.50 0.44

Table 8.1 | Model parameters and swimming speeds for ten different swimmers that were
found in the experiment. The agreement of measured and predicted swimming speed agrees
up to a factor of two.

so that RFU is a reasonable value for the translational friction. On the other hand, the
head rotation is not free, because the external magnetic field aligns the magnetic moment of
the head with its direction. As a consequence, a torques working against the magnetic field
are suppressed and therefore lead to much smaller deflections. To emulate this suppressed
rotation, we scaled the rotational friction coefficient by a large factor (500). Because the
resulting values of the swimming speed differ by only 20% in the range [200,∞], the error
inflicted by this arbitrariness is small.

Table 8.1 shows the model parameters and predicted swimming speeds for ten swimmers
from the experiment. Note that the swimming speeds are converted into physical units by
multiplying with `ω · 2πf where f is the rotation frequency of the external magnetic field
(see 8.1.1). Typically, we measured swimming speeds around 0.2µm/s, and our predicted
swimming speeds were off by less than 40%. Differences between the model prediction and
the experimental observations are attributed to errors in determining ε1 & ε2. Besides, the
swimmers in the experiment are close to a cell wall with no-slip boundary conditions, leading
to an additional drag that is neglected in the theoretic model. Despite these differences, the
experimental observations agree remarkably well with the quantitative predictions from the
model, despite the considerable simplifications that the model involves.

In summary, we have found good quantitative agreement of our prediction with the experi-
mental observations. Interestingly, the proposed construction method for DNA-based micro-
swimmers automatically yields swimmers with tails that have a decreasing bending stiffness.
Our model has shown that such a decreasing stiffness profile improves the swimming speed
of such a swimmer. In other words, a bead with a bundle of multiple filaments of different
lengths surpasses one with a single filament, which is a feature that arises naturally in our
method of construction. We note that the increased swimming speed is a generic feature of
decreasing tail stiffness and is also found for other stiffness profiles.
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In this part, we have developed a theory for low Reynolds number swimming with a flexible
oar whose local stiffness decreases along its contour. This theory extends previous work by
Lauga [52]. We applied our model to an experimentally realized swimmer and found good
quantitative agreement of predicted and measured swimming speeds.

The swimmer model consists of a spherical bead, which is actuated from afar, and straight
flexible rods attached to the bead. By the motion of the attached oar through the surrounding
fluid, the fluid drag bends the oar and induces a chiral shape. It is by this chirality that our
swimmer breaks the constraints for swimming at low Reynolds numbers imposed by the
scallop theorem, which states that a swimming stroke must be non time-reversible to create
propulsion.

In order to determine the swimming speed of our proposed swimmer, we had to determine
the induced tail shape first. For that, we used the slender body approximation and simplified
the equations of motion by a small amplitude approximation of the tail shape. The resulting
differential equation is a generalized hyper-diffusion equation that was solved analytically for
an exponentially decreasing tail stiffness. Because the evaluation of the involved functions
has considerable numerical errors, the direct numerical solution of the differential equation
gave more accurate results in practice.

This tool allowed us to study the swimming speed of swimmers with an exponentially
decreasing tail stiffness as a function of their geometric parameters, such as its length, head
size, and maximal tail stiffness. Surprisingly, a decreasing tail stiffness in general improved
the swimming speed over a comparable swimmer with a constant tail stiffness. Our analysis
showed a qualitatively similar dependence of the swimming speed on the swimmer parameters
for both constant and variable tail stiffness. In addition, we discussed design principles
for optimal swimmers, e.g. an optimal ratio of head and tail size. Last but not least, we
determined that the optimal stiffness profile for the swimmer tail is given by a step-like
function which remains at high stiffness up to the mid of the tail where it transitions to very
low stiffness.

This model was applied to an experimentally realized swimmer made from self-assembled
DNA flagella. The novel fabrication method of this micro-swimmer and its advantages are
the subject of a joint publication by Alexander M. Maier, Cornelius Weig, Peter Oswald,
Erwin Frey, Peer Fischer, and Tim Liedl [63]. The comparison of the observed and predicted
swimming speed gave a good quantitative agreement.

There are a few open questions regarding the theory developed in this work. For example,
we have neglected any noise acting on the swimmer, although diffusion for micro-meter sized
particles is quite strong. A logical next step in the theory is therefore to include noise in the
analysis and examine its effects. In particular, we would like to know the minimal swimmer
size for which active swimming is viable [90], and below which the swimmer can only increase
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its diffusion [91, 92]. Furthermore, we used a small amplitude approximation for the swimmer
tail. Although experiments with a macroscopic realization of a constant stiffness tail have
shown that the theory predicts the tail shape remarkably well [66], it is unclear whether this
still applies for decreasing tail stiffness. It should however be easy to repeat this experiment
with decreasing tail stiffness. Last but not least, our treatment ignored the flow field from
the rotation of the head, which is common practice in this field, because it makes an analytic
treatment possible. Still, the inflicted error is completely unknown. Due to the complexity of
the problem, the validity of this approximation will best be checked via numerical simulations.

Apart from these consistency checks regarding the validity of our solution, the variable tail
stiffness opens up a lot of new questions that had been answered for constant tail stiffness: Is
there a better head shape than spherical [93]? What is the effect of large beat amplitudes [94]?
How do close-by boundaries affect a swimmer with variable bending stiffness [95–98]? What
happens if the fluid is viscoelastic [99]?

The ultimate goal is to use these insights for the construction of microscopic machines that
pump fluid [100], switch the fluid viscosity [101, 102], or even perform medical tasks on the
micro-scale [103, 104]. There is much to do.
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A Appendix Part I

A.1 Force calculation in wormlike chain

We define the connecting vectors of two different beads ui = ri+1− ri and use the shorthand
notation ui = |ui|. Then, it holds that

∂rjui = δj,i+1 − δij and ∂rjui = ∂rj

√
u2
i =

ui

ui
(δj,i+1 − δij) . (A.1)

We use a bending potential of the form (2.2),

Ubend = −
∑
i

αi
ui · ui+1

ui ui+1
. (A.2)

Therefore, the force acting on bead j is given by

F j = ∇jU^

=
∑
i

αi

(
1

ui ui+1

(
ui+1(δj,i+1 − δji) + ui(δj,i+2 − δj,i+1)

)
−

(ui · ui+1)

(ui ui+1)2

(
ui+1

ui

ui
(δj,i+1 − δji) + ui

ui+1

ui+1
(δj,i+2 − δj,i+1)

))

=
∑
i

αi

((
ui+1

ui ui+1
− (ui · ui+1)

u3i ui+1
ui

)
(δj,i+1 − δji)+(

ui

ui ui+1
− (ui · ui+1)

ui u3i+1

ui+1

)
(δj,i+2 − δj,i+1)

)

Using the definition Ii,i+1 =
1

ui ui+1
ui − (ui·ui+1)

ui u3
i+1

ui+1, this becomes

F j = −αjIj+1,j + αj−1(Ij,j−1 − Ij−1,j) + αj−2Ij−2,j−1 , (A.3)

where it is implied that for a linear polymer with N beads, Iij = 0 if i < 0 ∨ i > N − 1 ∨ j <
0 ∨ j > N − 1. Further, we can identify repeating terms in subsequent force calculations,
Ji = αiIi+1,i + αi−1Ii−1,i. Using these definitions, the forces along the chain become:



156 A. Appendix Part I

j F j

1 −α1I2,1
2 α1I2,1 − J2
...
j Jj−1 − Jj
...
N − 1 JN−2 − αN−2IN−2,N−1

N αN−2IN−2,N−1

Therefore, the numerical implementation can make use of this “actio equals reactio” principle
when calculating the forces along the chain. This allows to re-use a partial result for the
force on bead j − 1 when calculating the force on bead j, speeding up the force calculation
by about a factor of two.

This structure of the force calculation is also preserved for related bending potentials. As
long as the bending potential has the form

U^ = −
∑
i

αi fi

(ui · ui+1

ui ui+1

)
(A.4)

the transfer of forces can be employed via

F j = −βjIj+1,j + βj−1(Ij,j−1 − Ij−1,j) + βj−2Ij−2,j−1 ,

where βi = αi f
′
i .

A.2 Detailed captions for the tSNE-plots

A.2.1 Detailed caption for the tSNE-plots in the dry case

The center shows a tSNE-plot of the complete time evolution of the system of filaments, as
described in 4.1.1. In essence, this visualization groups similar density configurations together,
whereas dissimilar configurations are usually spaced apart. Every simulation snapshot is
represented by a dot in the tSNE-plot whose color indicates its simulation time from dark
blue (early) to bright yellow (late).

The eight panels surrounding the central tSNE-plot show visualizations of the filament
configuration in a regular interval of 1/8 of the total simulation time. The series of snapshots
is arranged in a row-wise fashion, starting with the first in the upper left corner. The arrows
locate the particular snapshot on the tSNE-plot. The size of the simulation domain is 80L×
80L with up to 30000 filaments. Note that a single filament is so small that in a printout it
appears as a single black dot.

A.2.2 Detailed caption for the tSNE-plots in the wet case

The general remarks from A.2.1 here apply as well. In addition, the surrounding snapshots
also show a few streamlines of the fluid (red), i.e. the traces of virtual particles that are
advected by the fluid.
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A.2.3 Detailed caption for the tSNE-plots in the 3D wet case

The general remarks from A.2.1 here apply as well. In addition, the snapshots also show a few
streamlines of the fluid, i.e. the traces of virtual particles that are advected by the fluid. For
that, we cut the 3D fluid into several layers and generate the streamlines from the projected
2D flow field in one layer. This yields an approximation of the streamlines in the bottom
fluid layer where the filaments are (thick red), and the topmost fluid layer close to the slip
boundary (thin blue).

Due to the increased computational demand of a full 3D fluid layer, these runs were done
with a simulation box of 40L × 40L × 3.3L with up to 7500 filaments. The filaments were
effectively confined to a 2D layer with a distance of 0.17L to the lower boundary.

A.3 Local vorticity in wet systems

We discussed in section 5.2.2 that the integrated curl is no apt measure for the global vorticity
in a toroidal topology. However, it helps the intuition to see where vorticity is generated. This
section therefore shows examples of the vorticity field for a few selected examples.

Figure A.1 | Local curl ∇z × v = ∂xvy − ∂yvx in arbitrary units of the final states in
Figs. 5.1–5.3 on pp. 78-81 (in sequence). Active content: In a flash enabled viewer,
clicking the images plays a movie of the time evolution of the curl.
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Section 5.2.2 used the curl of the velocity field ∇z × v = ∂xvy − ∂yvx to define a measure
for total vorticity, V[v] =

∫
A

∣∣∇z × v
∣∣dA. For a better intuition of the local curl, Fig. A.1

shows the local curl of the examples in Figs. 5.1–5.3. Panel 1 belongs to Fig. 5.1 (top) where
thermal noise distorts the flow field of the fluid, leading to strong curl. Panel 2 of Fig. A.1
shows an example with a vortex in the center, showing as a compact region very strong curl.
Panels 3 and 5 both have a zig-zag band structure, whose transition regions show as narrow
vertical stripes in Fig. A.1. Finally, panels 4 and 6 correspond to very well polarly ordered
systems whose vorticity is flat.

A.4 Comparison to angular momentum conserving MPC

The MPC collision operator that was used throughout this work violates the conservation of
angular momentum. To make sure that the results in this work remain valid when angular
momentum is conserved, this appendix shows analogous simulations with an L-conserving
variant of MPC.

The MPC collision operator as defined in 2.10 violates the conservation of angular momen-
tum:

p′
i =

mi

Mc
P c + pran

i − mi

Mc

∑
j∈cell

pran
j = pran

i +
mi

Mc

∑
j∈cell

(
pj − pran

j

)
where Mc =

∑
j∈cell mj is the total mass in the cell. Here, the conservation of momentum

was achieved through the term in parentheses, where the new total momentum is subtracted
while the total old momentum is added. A similar approach works for the angular momentum,
although it requires a little more work. Consider the angular momentum with respect to the
center-of-mass before and after the collision in each cell,

Lc =
∑
i∈cell

rcm
i × pi L′

c =
∑
i∈cell

rcm
i × pran

i , (A.5)

where rcm
i = ri − 1

Mc

∑
j∈cell mjrj is the distance of the particle to the center-of-mass in

the cell. To bring the angular momentum into balance, one needs to counter-rotate the
particles with respect to the center-of-mass by the angular velocity ω = Π−1 · (Lc − L′

c),
where Π =

∑
i∈cell mi

(
(rcm

i )2Ed − rcm
i ⊗ rcm

i

)
is the moment-of-inertia tensor of the mass

distribution in the cell. Consequently, the modified collision operator

p′
i = pran

i +
mi

Mc

(∑
j∈cell

(
pj − pran

j

))
+mi

∑
j∈cell

(
Π−1

(
rcm
j × (pj − pran

j )
))

× rcm
j , (A.6)

conserves both momentum P c as well as angular momentum Lc [72]. Because of the increased
complexity of the collision operator, L-conserving MPC simulations are also considerably
slower. For that reason, the L-conserving variant should only be used if necessary.

Figures A.2–A.8 show comparisons of all the observables that were introduced in section 4.2
for L-conserving and non-conserving simulations. None of these observables shows a sig-
nificant difference. Therefore, the MPC variant that violates the conservation of angular
momentum is sufficient to model the interactions among filaments.
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Figure A.2 | Comparison of the order parameter as defined by (4.6) scanned over the
interaction strength Ub and filament density ρ without (left) and with (right) angular
momentum conservation. The left panel shows the identical data as Fig. 5.4 (left). Because
every data point is based on a single realisation, the error range is unknown.
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Figure A.3 | Comparison of the observed Kullback-Leibler divergence of the measured
angular distribution from a flat distribution as defined in (4.8) scanned over the interaction
strength Ub and filament density ρ without (left) and with (right) angular momentum
conservation. The left panel shows the identical data as Fig. 5.5 (left). Because every data
point is based on a single realisation, the error range is unknown.
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Figure A.4 | Comparison of the vorticity measure V as defined by (5.1) scanned over
the interaction strength Ub and filament density ρ without (left) and with (right) angular
momentum conservation. The left panel shows the identical data as Fig. 5.6 (left). Because
every data point is based on a single realisation, the error range is unknown.
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Figure A.5 | Comparison of the number of peaks of the angular distribution P (ϕ) scanned
over the interaction strength Ub and filament density ρ without (left) and with (right)
angular momentum conservation. The left panel shows the identical data as Fig. 5.7. Because
every data point is based on a single realisation, the error range is unknown.
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Figure A.6 | Comparison of the observed scaling exponents of the number fluctuations
scanned over the interaction strength Ub and filament density ρ without (left) and with
(right) angular momentum conservation. The left panel shows the identical data as Fig. 5.8
(left). Because every data point is based on a single realisation, the error range is unknown.
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Figure A.7 | Comparison of the relative cluster size of the largest cluster in the system,
|Cmax|/N , as defined in 4.2.4 scanned over the interaction strength Ub and filament density
ρ without (left) and with (right) angular momentum conservation. The left panel shows
the identical data as Fig. 5.9 (left). Because every data point is based on a single realisation,
the error range is unknown.
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Figure A.8 | Comparison of the measured scaling exponents α of the cluster size distribution
as defined by (4.16) scanned over the interaction strength Ub and filament density ρ without
(left) and with (right) angular momentum conservation. The left panel shows the identical
data as Fig. 5.10 (left). Because every data point is based on a single realisation, the error
range is unknown.

We want to stress that vortices or circular flows are inherently unstable in L-violating
MPC simulations [73]. Because the intermediate states and also some final states of the wet
systems do have vortices, the L-conservation could have made a difference. We can speculate
why this is not the case. A vortex is stable, because the fluid revolves around a center at
a constant angular speed, so that there is no friction between circular layers around this
center. The constant angular speed requires, that regions close to the center move slower
than distant regions. However, the filaments in our model always move at the same speed
so that the inner domains are too fast while the outer domains are too slow. Hence, when
the fluid interacts with the filaments, its angular momentum cannot be conserved. Thus, the
interaction with filaments is the major reason for changes in the angular momentum, so that
the non-conservation of L during the MPC collision simply does not matter.

To sum up, this appendix has shown that L-conserving and violating MPC variants are
completely equivalent as far as the observables of the systems of driven filaments are con-
cerned.

A.5 Flow fields for finite hydrodynamic range

Section 5.3.1 introduces an effective friction for two-dimensional MPC simulations, leading to
an effective hydrodynamic range lh. In addition to the example for lh = 3 a (Fig. 5.12), we
now give three more examples for larger lh.

In comparison to Fig. 5.12, Fig. A.9 shows how for larger lh the backflow of fluid becomes
weaker (left), and the flow field extends farther. For that, consider in particular the size of
the black arrows, which indicates the magnitude of the local flow speed. At some point, no
backflow is observed at all and only a distortion of the flow field is observed (middle). For
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Figure A.9 | The flow field (black arrows) and streamlines (red) for two-dimensional hy-
drodynamics of a sedimenting sphere of diameter 5 a in a box of side-length 48 a with hy-
drodynamic range lh = 24 a (left), lh = 48 a, and lh = ∞.

completeness and as a consistency check, the right panel also shows the flow for lh = ∞ which
simply is a laminar flow because no momentum is dissipated here.

B Appendix Part II

B.1 Code listing for the parametric solution of the tail shape

For the solution of the swimmer shape and speed in 8.3, we used the following Mathematica
code:

swimmingSpeedParametricNDSolveNoHom[ratio_, length_, a_,
ε1_, ε2_, ferromagneticFixation_:False]:=
Module

[{
χ = N

[
length

Log[ratio]

]
, ζpar, ζih,upperlimit = 10., error, L = length, A, speed, offset

}
,

A[x_]:=ratioExp
[
−x
χ

]
;

offset =
√

a2 − ε1Conjugate@ε1;
Block

[{
RpFU = 6πηa

γperp ,RoFU = 6πηa
γperp ,RpLΩ = 8πηa3

γperp ,RoLΩ = 8πηa3

γperp ,

β = 1
RoFU + offset2

RoLΩ , σ = offset
RoLΩ , λ = −offset

RoLΩ , µ = −1
RoLΩ

}
,

If[ferromagneticFixation,
RpLΩ = 500RpLΩ;
RoLΩ = 500RoLΩ;
];

ζpar = ParametricNDSolveValue[
{−iζ[x] +A”[x]ζ”[x] + 2A′[x]ζ”’[x] +A[x]ζ””[x]==(β + xσ)(κ3 A[0] + κ2 A′[0]) + (λ+ xµ)A[0]κ2,
ζ[0] == ε1, ζ ′[0] == ε2, ζ”[L] == 0, ζ”’[L] == 0}, ζ, {x, 0, L}, {κ2, κ3}, InterpolationOrder → 4];

With[{Ps = FindRoot[{ζpar[κ2, κ3]”[0] == κ2, ζpar[κ2, κ3]”’[0] == κ3},
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{{κ2, 0.,upperlimit}, {κ3, 0.,upperlimit}}]},
ζih = ζpar[κ2, κ3]/.Ps;
];

error =
NIntegrate[Abs[−iζih[x] +A”[x]ζih”[x] + 2A′[x]ζih”’[x] +A[x]ζih””[x]−
((β + xσ)(ζih”’[0]A[0] + ζih”[0] A′[0]) + (λ+ xµ)A[0]ζih”[0])], {x, 0, L}];
speed = With[{ζ1 = ζih′[0],
ζ2 = ζih”[0],
ζ3 = ζih”’[0],
ζ4 = ζih””[0],
F0 = ζih”’[0]A[0] + ζih”[0] A′[0],

T0 = A[0]ζih”[0]
},

1
γRpFU+L

(
RoFU−γRpFU

RoFURoLΩ A[0]∧2Im[ζ2Conjugate@ζ3]+
(1− γ)Re[ζ2Conjugate[T0]− ζ1Conjugate[F0] +NIntegrate[A[x]ζih”[x]Conjugate[ζih”’[x]], {x, 0, L}]])
]; ];

Return[{(*final swimming speed*){speed, ζih}, L, a, ratio, error}
]; ]

The input parameters are

ratio The estimated number of attached filaments

length The length of the swimmer tail in µm

a The bead diameter, in our case this was 0.5µm

ε1 The radius of the attachment point in the local coordinates

ε2 The angle of the tail with the x-axis in the local coordinates

ferromagneticFixation Whether the external magnetic field impedes rotations of the swim-
mer about its y- and z-axes.

The function return a list with the projected swimmer speed, the calculated swimmer shape,
the input tail length (in µm), the input bead radius (in µm), the input ratio, and the residual
error of the obtained solution as defined in (8.29). Note that the returned list contains the
unaltered input parameters for bookkeeping of the results.
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