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1. Summary 

Cell adhesion to the extracellular matrix (ECM) is mainly mediated by integrins, which 

are heterodimeric transmembrane receptors composed of α and β subunits. 18 

different α subunits and 8 different β subunits assemble into 24 different integrin 

heterodimers recognizing specific ECM ligands.  

Prior to the assembly of an adhesion site, integrins have to be activated. Integrin 

activation is characterized by switching the unbound integrin from a low affinity 

(inactive) to a high affinity (active) state, which is followed by binding ECM substrates. 

Upon activation and ligand binding, integrins recruit adaptor and signaling proteins and 

cluster into nascent adhesions (NAs). NAs are small (with a diameter less than 1 μm) 

and short-lived adhesions that emerge at the leading edge of cell protrusions. While 

most NAs are rapidly dissolved, a small population of them are coupled to F-actin and 

undergo maturation into large focal adhesions in an actomyosin-dependent manner. 

During this process, mechanical force generated by non-muscle myosin-II acts on 

mechano-sensitive proteins in the adhesion leading to conformational changes and 

further recruitment of adaptor and signaling proteins. At a later step and only of cells 

that adhere to fibronectin (FN), fibrillar adhesions are formed during fibrillogenesis 

through the centripetal translocation of a5β1 integrins.  

The recruitments of the two adaptor proteins, talin and kindlin to two NPxY/NxxY motifs 

present in β integrin cytoplasmic domains are crucial for integrin activation. Talin is 

highly conserved ~270kD big protein and composed of an N‑terminal FERM domain 

(talin head) and a long C-terminal rod domain. The binding of talin FERM domain to 

the membrane-proximal NPxY motif and juxtamembrane region in β-integrin tails alters 

β-integrin transmembrane domain topology and promotes the high affinity state in the 

integrin ectodomain. Moreover, talin plays essential roles in mechano-transduction 

through its C-terminal rod domain. Besides direct F-actin binding, talin rod domain 

expose cryptic vinculin binding sites under mechanical force. Vinculin recruitment 

further strengthens the F-actin linkage with talin. The dynamic connection between 

talin and the actomyosin system creates a molecular clutch that drives cell migration. 

Given its important function in integrin activation, talin activity is tightly controlled by 

an autoinhibitory intramolecular head-rod interaction. RIAM (Rap1–GTP-interacting 

adapter molecule) and a splice isoform of phosphatidylinositol 4-phosphate 5-kinase 
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type Iγ (PIPKIγ90) have been shown to activate talin. However, genetic ablations of 

either gene in mice did not lead to overt phenotypes related to talin dysfunction, 

indicating the existence of redundant talin activation mechanisms. 

Specialized adhesion structures recruit large ensembles of proteins, which are 

collectively termed adhesome. Literature survey and high resolution quantitative mass 

spectrometry identified more than one thousand candidate adhesome proteins with 

versatile functions. However, most of these proteins’ localization and enrichment in 

adhesion sites still lack biochemical validation. In my study, I developed an unbiased 

focal adhesion enrichment index (FAEI) to quantitatively describe protein enrichment 

in adhesome. By combining results obtained from FAEI with integrin tail peptide 

interactome, I identified Kank2 as a novel abundant adhesome protein. Kank2 is a 

member of evolutionarily conserved Kank family proteins. Cell biology analysis 

identified Kank2 as marker for a novel focal adhesion subcompartment, the FA belt, 

which marks the outer border of focal adhesion. Remarkably, Kank2 activates talin 

through a direct interaction between the KN motif present in the Kank2 N-terminus and 

the central region of the talin rod. Moreover, Kank2 appears to destabilize talin-actin 

connection and mobilize talin in adhesion sites. As a consequence, Kank2 suppresses 

cell migration through talin regulation. Altogether, my study establishes Kank family 

proteins as novel FA proteins residing in a novel FA compartment where they bind and 

induce/maintain talin activation and disengage the molecular clutch on talin. 
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2. Introduction 

2.1. Integrin receptors 

Multicellular organisms are organized through highly coordinated cell-cell and cell-

substratum interactions. Cells constantly sense the biophysical and biochemical 

properties of their extracellular environment, and translate this information into a wide 

spectrum of biological outputs including cell migration, cell proliferation, differentiation, 

etc. While cell-cell adhesion is mediated by cadherin receptors, integrins are the major 

transmembrane receptors that mediate the interactions between cells and the 

extracellular matrix (ECM). 

Integrins are large family of hetero-dimeric type I transmembrane receptors consisting 

of one α and one β subunit. The existence of integrin receptor was theorized in 1970s 

and identified in 1980s (Hynes, 2004). They were termed as ‘integrin’ due to their 

ability to ‘integrate’ the extracellular matrix and the cytoskeleton across the plasma 

membrane (Hynes, 1987; Tamkun et al., 1986). Integrin receptors are restricted to but 

universally expressed in metazoan. During evolution, integrin family receptors, 

together with extracellular matrix proteins, expanded and diversified to accommodate 

different requirements for organ development, tissue organization as well as tissue 

homeostasis (Johnson et al., 2009).  

2.1.1. Integrin structure 

In mammals, the integrin superfamily comprises 18 α- and 8 β-subunits, and together 

they form 24 different obligate heterodimers, each binding to a specific set of 

extracellular matrix proteins (Figure 1) (Hynes, 2002). The α-subunits usually contain 

around 1000 amino acids whereas the β-subunits contain around 750 amino acids. 

The structure of each subunit could be divided into an ectodomain, a transmembrane 

domain (TMD) and a short cytoplasmic tail.  
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Figure 1. Classification of mammalian integrin family members according to their hetero-

dimeric partner and ligand binding specificity. Image is adapted from (Hynes, 2002). 

2.1.1.1. Ectodomain 

The α-subunit ectodomain consists of 4 or 5 domains dependent on different integrin 

subtypes (Figure 2). All integrin α-subunits contain an N-terminal β-propeller, followed 

by a thigh and two calf domains, both of which have similar immunoglobulin-like, β-

sandwich folds (Larson et al., 1989; Xiong et al., 2001). The linker between β-propeller 

domain and the thigh domain and the ‘genu’ at the junction between the thigh and calf 

1 domain confer most of the interdomain flexibility. Nine integrin α-subunits contain an 

additional α-I domain of around 200 amino acids that is inserted between blade 2 and 

blade 3 of the β-propeller domain (Larson et al., 1989). The α-I domain is structurally 

related to von Willebrand factor A domain. In integrins with α-I domain, it is the 

exclusive ligand binding site. At the N-terminus of the ectodomain of integrin β-

subunits, β-I domains are structurally similar with α-I domains and is inserted in a 

hybrid domain, which is in turn inserted in a plexin-semaphorin-integrin (PSI) domain 

(Xiong et al., 2004). The PSI domain is followed by four cysteine-rich epidermal growth 

factor (EGF) domains and a tail domain (Figure 2). The β-tail domain is flexible enough 

to allow topological rearrangement between ectodomain and TMD. The β-leg exhibits 

overall more structural flexibility than the α-leg, which undergoes large conformational 

change during ligand binding, particularly in β-I/hybrid domain (see below). The 

heterodimerization of integrin ectodomain is mainly mediated by a large interaction 

interface between the β-I domain in the β-subunit and the β-propeller domain in the α-

subunit, which buries ~1700Ǻ2 surface (Figure 2). In integrins that lack α-I domain, 
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ligand binding occurs at the groove of this interface. Mutations that disrupt this 

interaction in β2 integrins result in leukocyte adhesion defects (Bunting et al., 2002). 

 

 

Figure 2. Domain organization in integrin primary structures. Insertion of α-I domain is indicated 

with dash lines. Disulfide bonds are shown in lines connecting cysteines at corresponding 

positions. Integrin heterodimerized ectodomain could also be spatially annotated as head, 

upper leg, lower leg in the α-subunit and headpiece and tailpiece in the β-subunit. Image is 

adapted from (Luo et al., 2007). 

 

Integrin-ligand interaction could be categorized into four main classes. Two β1 

integrins (α5β1 and α8β1), αIIbβ3 integrin and all five αV integrins (αVβ3, αVβ5, αVβ6 

and αVβ8) bind RGD tripeptide present in fibronectin (FN), fibrinogen, vitronectin and 

many other proteins. Four α-I domain-containing β1 integrins (α1β1, α2β1, α10β1 and 

α11β1) form a laminin/collagen binding integrin subfamily. These integrins recognize 

the Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER; Hyp or O represent Hydroxyproline) motif in 

collagen. A third integrin subfamily contains three β1 integrins (α3β1, α6β1 and α7β1) 

and α6β4 which selectively interact with laminins through unknown motif(s). Another 

integrin subfamily includes α4β1, α4β7 and α9β1 which interact with the acidic LDV 

motif in fibronectin and VCAM-1 in a RGD motif-independent manner. Belonging to 

the same subfamily are leucocyte-specific β2 integrins (αDβ2, αMβ2, αLβ2, αXβ2) and 

αEβ7 integrin that interact with LDV-related sequences in ICAM, VCAM and E-

cadherin through their α-I domains.  

Structural studies of both ligand-bound α-I domain and β-I domain conclude that 

divalent cations are universally required for ligand binding by all integrins (Lee et al., 
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1995; Xiao et al., 2004; Zhu et al., 2008a). In order to interact with negatively charged 

residues in the ligand, the metal ion-dependent adhesion site (MIDAS) binds Mg2+ 

under physiological condition. Two regulatory metal ion binding sites locate adjacently 

to MIDAS, both of which bind Ca2+ under physiological condition. One site positively 

regulate ligand binding in the presence of Ca2+ and thus is termed synergistic metal 

ion binding site (SyMBS) or ligand-induced metal ion binding site (LIMBS). The other 

site is called adjacent to metal ion-dependent adhesion site (ADMIDAS) and plays 

inhibitory role in ligand binding. Thus Ca2+ has dual effects on integrin-mediated 

adhesion that high Ca2+ concentration inhibits adhesion whereas low Ca2+ 

concentration promotes adhesion. Replacing Ca2+ with Mn2+ at ADMIDAS increases 

ligand binding affinity. 

2.1.1.2. Transmembrane domain 

The transmembrane domains (TMD) of both α-subunit and β-subunit are highly 

conserved among different species. Several additional hydrophobic residues locate to 

the C-terminus of the predicted hydrophobic transmembrane region after a snorkeling 

lysine residue (Figure 3). It was proposed that these juxtamembrane hydrophobic 

residues may allow the TMD to be either straight or tilted in the plasma membrane, 

thus topologically permitting transmembrane signal transduction (Ginsberg et al., 

2005). The TMD association is mediated by two types of interaction. Residues with 

opposing charges (Arg-995 in αIIb integrin and Asp-723 in β3 integrin) at the 

juxtamembrane region link two TMDs through electrostatic interaction and this site is 

termed inner membrane clasp (IMC, Figure 3). Inside the membrane, α-TMD contains 

a conserved GxxxG motif, which is statistically, the most over-represented simple 

sequence motif among all transmembrane domains (Russ and Engelman, 2000; 

Senes et al., 2000). Structurally, the two glycines (Gly-972 and Gly-976 in αIIb integrin) 

form a ‘groove’ that the dimerizing TMD could fit in to closely pack against each other. 

Any mutation on these glycines will result in a significant disruption of TMD 

dimerization. This GxxxG motif-mediated integrin TMD association is termed outer 

membrane clasp (OMC, Figure 3). 

Both IMC and OMC are indispensable for the efficient transmembrane association of 

integrin heterodimer (Kim et al., 2009). Structural analysis of the αIIbβ3 integrin TMD 

dimer revealed a 25˚ crossing angle between α-TMD and β-TMD with α-TMD 
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perpendicular to the membrane and β-TMD tilted in the membrane (Figure 3) (Lau et 

al., 2009). TMD tilting allows simultaneous formation of both IMC and OMC. Integrin 

activation is accompanied by topological alteration of the β-TMD that disrupts the 

transmembrane dimerization (Kim et al., 2012). Both charge reversal of the IMC 

(R995D or D723R) and bulky mutations in the OMC (G972L or G976L) in αIIbβ3 

integrin resulted in constitutive activation of integrin (Hughes et al., 1996; Luo et al., 

2005). Thus it is widely accepted that transmembrane dimerization is required to 

stabilize integrin in its low affinity state for some integrins, although it is debated 

whether the salt bridge of the IMC is required for all integrins. 

 

Figure 3. (a) and (b), sequence alignment of α-TMD and β-TMD indicates sequence 

conservation. Both α-TMD and β-TMD contain additional hydrophobic residues at the C-

terminus than predicted transmembrane sequence. Highly conserved GxxxG and GFFKR 

motifs in α-subunit are indicated by arrows. (c), nuclear magnetic resonance structure of the 

TMD complex of αIIbβ3 integrin (αIIb TMD in blue and β3 TMD in red). TMD association occurs 

at two positions termed outer membrane clasp (OMC) and inner membrane clasp (IMC). 

Residues involved in OMC and IMC are indicated. Picture is adapted from (Kim et al., 2011). 

 

2.1.1.3. Cytoplasmic domain  

Unlike receptor tyrosine kinases that transduce growth factor signaling, integrins have 

short cytoplasmic domain (~20-50 amino acids) with no catalytic activity. One 

exception is β4 integrin which contains a large cytoplasmic domain of around 1000 

amino acids. α6β4 associates with intermediate filaments but not actin in 

hemidesmosomes. The lack of structural consensus suggests that the short integrin 

cytoplasmic domains are most likely very flexible by themselves and only adopt certain 
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secondary structure when complexed with specific adaptor proteins (Campbell and 

Humphries, 2011). 

The cytoplasmic domains of β integrin contains a juxtamembrane HDRR motif, a 

membrane-proximal NPxY motif and a membrane-distal NxxY motif separated by a 

serine/threonine-rich linker (TT motif in β1A integrin) (Legate and Fassler, 2009).  

NPxY and NxxY motifs are commonly recognized by phospho-tyrosine binding (PTB) 

domains or domains with similar fold (e.g. FERM domain) (Figure 4). Kindlin binding 

to the TT motif and distal NxxY motif through its FERM domain is crucial for integrin 

activation. The other integrin activator, talin, uses the FERM domain to interact with 

the entire sequence from HDRR motif to membrane-proximal NPxY motif. All other 

integrin tail interactors that compete with kindlin and/or talin are potentially integrin 

inactivators. Among them, integrin cytoplasmic domain-associated protein 1 (ICAP1) 

and docking protein 1 (DOK1) interact with the membrane-distal and membrane-

proximal NxxY/NPxY motifs, respectively, and thus keep integrin in its inactive state 

(Bouvard et al., 2013). Recent structural study showed that filamin may inhibit integrin 

activation by directly competing with kindlin for NxxY motif binding, blocking talin 

binding via steric hindrance and stabilizing the IMC (Liu et al., 2015). Integrin 

endocytosis is redundantly mediated by disabled homolog 2 (Dab2) and Numb that 

interact with NPxY and NxxY motif, although the binding specificity is unclear 

(Calderwood et al., 2003; Ezratty et al., 2009; Nishimura and Kaibuchi, 2007). Once 

internalized into endosomes, integrin could be either recycled to the plasma 

membrane or degraded in lysosome. The FERM-domain containing sorting nexins 

(SNX17 and SNX31) interact with the membrane-distal NPKY motif in β1 integrin on 

the endosomes and prevent the lysosomal degradation (Bottcher et al., 2012; 

Steinberg et al., 2012; Tseng et al., 2014).  

 

Figure 4. Hot spots of integrin tail binding events are highlighted (blue). The binding regions for 

several integrin activators and inactivators and their integrin subtype specificity are indicated. 

Picture is adapted from (Bouvard et al., 2013). 
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The protein interactions on α integrin cytoplasmic tail are less well studied. Recently it 

was reported that both SHANK-associated RH domain-interacting protein (SHARPIN) 

and mammary-derived growth inhibitor (MDGI) interact with the juxtamembrane 

WKxGFFKR motif in α integrin tail (Figure 4) and inactivate integrin likely through steric 

hindrance of talin binding as well as IMC stabilization (Nevo et al., 2010; Rantala et 

al., 2011). It appears that α tail interactions mainly play roles in integrin inactivation. In 

sum, Integrin tail binding proteins control the entire life cycle of integrin including 

activation, inactivation, endocytosis, recycling and degradation. How these mutually 

exclusive binding events are dynamically regulated needs further research. 

2.1.2. Allosteric integrin activation 

It is well accepted that integrin activation and ligand binding is accompanied by large 

conformational changes (Figure 5). The X-ray crystal structure of the αVβ3 integrin 

ectodomain is in a V-shaped bent conformation with the globular N-terminal ligand 

binding domain juxtaposed to the membrane-proximal region of the leg pieces (Xiong 

et al., 2001). Bent conformation may restrict the accessibility of the ligand binding site 

and thus represent physiological low-affinity state. Electron microscopy (EM) study 

could confirm that αVβ3 integrin ectodomain stays in a bent conformation in its resting 

state. Ligand or Mn2+ can induce a switchblade-like opening to an extended 

conformation with the head piece facing upwards and two leg pieces separated 

(Takagi et al., 2002). This concept is further validated for αIIbβ3 integrin reconstituted 

in phospholipid nanodiscs (Ye et al., 2010). While the majority of αIIbβ3 integrins stay 

in compact bent conformation with ~11nm in height, integrin activation induced by the 

talin head domain (see below) or ligand binding promotes the ectodomain extension 

with ~19nm in height.  

The low-affinity bent conformation is stabilized by several weak interactions including 

the interface between α and β leg pieces, between the head piece and the lower leg 

piece and the TMD dimerization (Figure 5 (1)). Structural perturbations of the 

cytoplasmic domain and/or transmembrane domain favor the extended conformation 

in which the ligand binding site is more accessible (Figure 5 (2)). Extrinsic ligand 

binding to β-I or α-I domains induces conformational changes in the head piece so that 

the βI-α7-helix pistons downward and induces a remodeling of the interface between 

β-I/α-I domain and hybrid domain, leading to a 60˚ degree swing-out of the hybrid 
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domain, 70 Ǻ away from the α subunit. The hybrid domain swing-out translates the 

local interface change into a global conformational rearrangement and eventually an 

overall open conformation of the integrin ectodomain (Figure 5 (3)). For integrins with 

α-I domain, extrinsic ligand binding on α-I induces intrinsic ligand binding to β-I domain 

(Luo et al., 2007). 

 

 

Figure 5. Schematic illustration of the conformation change during integrin activation for 

integrins that lack (upper panel) or contain (lower panel) α-I domain. Image is adapted from 

(Luo et al., 2007). 

 

2.2. Talin-dependent integrin activation 

Among various integrin tail binding proteins, talin plays a critical role in integrin 

activation. Like integrins, talin is conserved throughout metazoans. Mammals express 

two talin paralogue genes, talin-1 and talin-2, with different tissue specificity. While 

talin-1 is ubiquitously expressed in all tissues as a single isoform, full length talin-2 is 
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mainly expressed in muscle and neuronal lineages with multiple alternatively spliced 

isoforms expressed in other tissues. The milestone discovery that overexpression of 

talin head domain (see below) induced the high affinity conformation of αIIbβ3 integrin 

and shRNA-mediated knockdown of talin suppressed integrin activation established 

talin as the first integrin activator (Tadokoro et al., 2003). Genetic analysis of talin 

genes in D.melanogaster (Brown et al., 2002) and C.elegans (Cram et al., 2003) as 

well as in mice (Monkley et al., 2000; Petrich, 2009) have all demonstrated that talin 

is essential for integrin-mediated functions.  

2.2.1. Talin structure and autoinhibition 

Talin is a large cytosolic protein with a molecular weight of ∼270 kDa. It was initially 

found to connect integrin cytoplasmic domain with vinculin (Burridge and Mangeat, 

1984; Horwitz et al., 1986). Talin comprises a globular N-terminal head domain and a 

large C-terminal rod domain connected by a flexible linker (Critchley, 2009) (Figure 6). 

The talin head contains a FERM domain which shares homology with those found in 

the band 4.1/ezrin/radixin/moesin family cytoskeletal proteins (Fehon et al., 2010). The 

talin FERM domain can be divided into four subdomains: F0, F1, F2, and F3. While 

both F0 and F1 subdomains are ubiquitin-like folds, the F3 subdomain has a 

phosphotyrosinebinding (PTB)-like fold which is responsible for the interaction with 

integrin (integrin-binding site 1; IBS1), phosphatidylinositol 4-phosphate 5-kinase type 

Iγ 90 (PIPKIγ90) and the hyaluronan receptor layilin in a structurally similar mode 

(Anthis et al., 2009; de Pereda et al., 2005; Wegener et al., 2008). Talin head also 

interacts with focal adhesion kinase (FAK), Tiam, actin-related protein 2/3 (ARP2/3) 

and actin (Lawson et al., 2012; Lee et al., 2004; Wang et al., 2012). Moreover, the F1-

3 domains contain positively charged patches of basic amino acids that interact with 

negatively charged PtdIns (4,5)P2 and facilitate talin-integrin binding at plasma 

membrane (Wang, 2012). 

Talin rod domain contains 62 α-helices that are packed into 13 helical bundles (R1-

R13) followed by a single helix dimerization domain (DD), which dimerizes in anti-

parallel manner (Figure 6). Among them, R1, R5-R7 and R9-R13 are 5-helix bundles 

and the others are 4-helix bundles. The successive 4-helix bundles between R2 and 

R4 create a relatively compact cluster since their N-terminal and C-terminal ends are 

centripetally oriented. R7 and R8 domain adopt unique fold with the 4-helix bundle R8 
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inserted in the R7 bundles (Gingras et al., 2010). The talin rod domain contains 

numerous binding sites for actin, vinculin, Rap1–GTP-interacting adapter molecule 

(RIAM) and a second integrin binding site (IBS2) (Critchley, 2009). R8 domain in the 

talin rod is able to recruit tumor suppressor Rho GTPase activating protein, deleted in 

liver cancer 1 (DLC1) and synemin which links actin with intermediate filaments (Li et 

al., 2011b; Sun et al., 2008). 

Although full length talin 1 structure has been modeled based on crystal and nuclear 

magnetic resonance (NMR) structures of individual domains, the tertiary structure of 

talin remains elusive. While in low salt condition talin adopts a compact globular 

structure, in higher salt concentration (above 150mM KCl), talin adopts a U-shaped 

flexible conformation with about 56nm in length (Winkler et al., 1997). EM 

reconstruction of full-length talin at low salt condition based on SAXS (small angle X‑

ray scattering) analysis of individual domain proposed a donut-shaped talin dimeric 

structure with two rod domains stacking against each other and the talin head domain 

embedded within the donut (Goult et al., 2013a). Interestingly, R7-R9, R13 and DD 

domains are adjacent to each other in this model. 

 

 

Figure 6. Domain organization and structural model of full-length talin. Talin 1 and talin 2 are 

predicted to have the same domain structure. Upper panel: Domain boundaries are annotated 

according to amino acids sequence of human talin-1. Vinculin binding sites (VBSs) are 
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indicated in dark blue. Lower panel: structural model of talin 1 is assembled from the crystal 

and nuclear magnetic resonance (NMR) structures of the various domains. Picture is adapted 

from (Calderwood et al., 2013). 

 

As talin is essential in integrin activation, its activity is tightly controlled. The majority 

of overexpressed talin stays in the cytosol indicating that most talin molecules stay in 

an inactive form (Banno et al., 2012). The globular closed conformation of the talin 

dimer is thought to reflect the autoinhibited conformation of talin in the cytoplasm. 

Crystal structure analysis revealed an intramolecular interaction between talin F3 

subdomain in the head and R9 domain in the rod with sub-micromolar affinity, which 

masks both the integrin binding site and the PtdIns(4,5)P2 binding surface in the FERM 

domain (Goksoy et al., 2008; Song et al., 2012) (Figure 7). Point mutations disrupting 

the talin autoinhibition enhance talin-mediated integrin αIIbβ3 activation when 

overexpressed in CHO cells (Song et al., 2012). Other weak intramolecular 

interactions in talin rod may contribute to the packing of globular dimer structure. Talin 

autoinhibition is physiologically important as constitutive active talin mutant in flies 

causes morphogenetic defects such as delayed dorsal closure during development 

(Ellis et al., 2013).  

2.2.2. Talin activation 

In order to bind integrin, talin requires an activation step that disrupts the auto-

inhibitory head-rod interaction. Several mechanisms promote talin activation and 

plasma membrane localization to induce integrin activation.  

The best characterized talin activator is the Rap1 effector protein Rap1–GTP-

interacting adapter molecule (RIAM). RIAM belongs to the MRL (Mig-

10/RIAM/Lamellipodin) protein family which contains an N-terminal short talin binding 

sequence, a Ras-association (RA), pleckstrin homology (PH), and several proline-rich 

domains (Krause et al., 2004). RIAM has been shown to mediate talin activation 

downstream of the PKC-Rap1 signaling pathway (Han et al., 2006; Lafuente et al., 

2004). The talin rod contains several binding sites for RIAM in the R2R3 domains, R8 

domain and R11 domain with the one in R8 showing the highest affinity (Chang et al., 

2014). Active Rap1 GTPase-bound RIAM may initially bind the R8 helical bundle and 

thereby recruits talin to the plasma membrane through the geranylgeranyl group on 



I n t r o d u c t i o n | 20 

 

the active Rap1 (Lee et al., 2009). After targeting talin to plasma membrane, RIAM is 

able to bind the F3 subdomain, which leads to the disruption of the autoinhibitory 

interaction between F3 and R9 domains (Yang et al., 2014a). Since RIAM interacts 

with the actin elongator, vasodilator-stimulated phosphoprotein (VASP), RIAM may 

also couple talin activation with actin dynamics to drive membrane protrusion at cell 

leading edge (Lafuente et al., 2004; Worth et al., 2010). 

As the positively charged surface in the F3 domain interacts with both R9 domain and 

acidic phospholipids, the F3–R9 interaction can be disrupted by PtdIns(4,5)P2 (Goksoy 

et al., 2008). PtdIns(4,5)P2 can also promote MRL protein-mediated talin translocation 

to the plasma membrane by interacting with the PH domain in RIAM and Lamellipodin 

(Krause et al., 2004; Wynne et al., 2012). A spliced variant of phosphatidylinositol 4-

phosphate 5-kinase Type Iγ, PIPKIγ90, is responsible for localized synthesis of 

PtdIns(4,5)P2 in focal adhesions (Legate et al., 2011). Talin recruits and activates 

PIPK1γ90 by a direct interaction between talin F3 domain and the WVYSPLH 

sequence in the C-terminus of PIPK1γ90 (Di Paolo et al., 2002; Ling et al., 2002). Cells 

lacking PIPK1γ90 show delayed cell adhesion and spreading, reduced recruitment of 

talin to focal adhesions and subsequently impaired force transduction (Legate et al., 

2011). However, since integrin tail and PIPKIγ90 have overlapping binding site on the 

talin head, PIPK1γ90 may only be involved in adhesion reinforcement after the initial 

talin recruitment to adhesion sites. 

Recently it was reported that talin was not detectable in early paxillin-positive nascent 

adhesions in FAK-null cells (Lawson et al., 2012). Although such an observation does 

not speak against a role for talin in integrin activation, it is plausible that FAK interacts 

with talin and promotes its recruitment to early adhesion sites in a positive feedback 

loop. 

In addition, talin contains several actin binding sites, some of which may be initially 

exposed on the autoinhibitory globular structure. By dynamically interacting with F-

actin and the PtdIns(4,5)P2 on the plasma membrane, the frictional force created by 

the actin retrograde flow may release the autoinhibited structure, resulting in stochastic 

talin activation events in cell protrusions. Subsequent engagement with free integrin 

cytoplasmic domains would lead to a deterministic talin activation event. Although this 

mechanism is highly speculative, a recent study showed that the actin retrograde flow 
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has the potential to induce the high affinity state of αLβ2 integrins in the immune 

synapse mediated by T cells (Comrie et al., 2015). 

The lack of overt developmental defects in mice lacking PIPK1γ90 or RIAM suggests 

that talin activation is either stochastic or entirely mediated by the retrograde actin flow 

(Legate et al., 2012; Plow and Qin, 2015; Stritt et al., 2015). While RIAM controls talin 

in cell protrusions, talin in mature focal adhesions still undergoes fast exchange in 

fluorescence recovery after photobleaching (FRAP) analysis (Goult et al., 2013b). 

Importantly, talin is directly recruited to mature focal adhesion from cytoplasm without 

lateral diffusive movement across the plasma membrane (Rossier et al., 2012), 

suggesting the existence of several, possibly functionally distinct talin activation 

mechanisms. 

2.2.3. Structural basis of Talin-dependent integrin activation 

Once activated, talin head domain can interact with the entire N-terminal half of the β 

integrin cytoplasmic domain from the HDDR motif to the first NPxY motif  (Anthis et 

al., 2009; Wegener et al., 2007) (Figure 7). The F3 subdomain first binds to the NPxY 

motif, which allows additional interaction between F3 and the juxtamembrane region 

of the β-integrin tail. At the juxtamembrane region, talin F3 disrupts the salt bridge of 

IMC by interacting with the conserved Asp residue in β integrin (Asp-723 in β3 integrin) 

(Figure 7). The loss of IMC destabilizes the integrin TMD dimerization, induces tilting 

and repositioning of the β-TMD in the membrane and eventually a conformational 

change of the ectodomain (Kim et al., 2012) (Figure 7).  

The interaction between talin head and PtdIns(4,5)P2 in the plasma membrane plays 

important role in talin-mediated integrin activation at least partially by strengthening 

talin-integrin interaction (Moore et al., 2012). Mutations in talin F1 and F2 subdomains 

that impair talin-membrane interaction result in reduced talin-dependent integrin 

activation (Anthis et al., 2009; Goult et al., 2010). The simultaneous interactions of 

talin with both plasma membrane and integrin tail may also coordinate the 

intramembranous TMD topological change (Figure 7). 
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Figure 7. Structural basis of talin-mediated integrin activation. (a) Talin interaction sites are 

highlighted in β1A and β3 integrin cytoplasmic domain. (b) Crystal structure of talin in complex 

with the 1D tail. Talin interaction with Asp-759 and Tyr-783 are important for talin-dependent 

integrin activation and talin-integrin interaction. (c) Talin activates integrin by modulating β 

integrin TMD topology. TMD dimerization by innermembrane clasp (IMC, Asp-723 and Arg-

995) and transmembrane interaction stabilize integrin in inactive state (left); Talin binding to 

Asp-723 on β3 integrin tail disrupts the IMC (middle); talin binding to plasma membrane tilts β-

TMD, induces TMD separation at outer membrane side and promotes conformation change in 

ectodomain (right). (d) Crystal structure of the autoinhibitory interaction between talin-F3 

domain and R9 domain. Picture is adapted from (Calderwood et al., 2013). 

 



I n t r o d u c t i o n | 23 

 

2.2.4. Connections between talin and actin 

Although talin is clearly required for integrin activation in platelets (Gee et al., 2015; 

Petrich et al., 2007), the physiological significance of talin-mediated integrin activation 

in other tissues remains debatable. While talin-2 knockout results in mild muscle 

dystrophy, talin-1 and talin-2 double knockout (talin-1/2 DKO) in mouse skeletal 

muscles leads to defects in the myotendinous junction maintenance, myoblast fusion 

and sarcogenesis (Conti et al., 2009). Strangely, although these phenotypes are 

similar to muscle-specific ablation of β1 integrin (Schwander et al., 2003), myoblasts 

from talin-1/2 DKO mice have normal β1 integrin activation and adhesion to various 

ECM ligands. Furthermore, although talin head domain rescues integrin activation in 

talin-depleted cells, it fails to rescue cell spreading, focal adhesion kinase activation 

or traction force generation (Zhang et al., 2008). Genetic studies of different talin 

truncation mutants in flies also showed that talin-actin connections are essential for 

tissue-specific talin function (Klapholz et al., 2015; Tanentzapf and Brown, 2006; 

Tanentzapf et al., 2006). Notably, talin head domain alone failed to rescue any talin-

dependent function in flies (Klapholz et al., 2015). Thus at least in some tissues, the 

major function of talin is to mediate the connection between integrin and actin 

cytoskeleton. 

Talin could interact with actin either directly or indirectly. Early in vitro studies found 

that talin purified from gizzard could interact with both G-actin and F-actin (Goldmann 

and Isenberg, 1991; Schmidt et al., 1999). However, neither exact locations of actin 

binding sites, nor the physiological function of these direct actin association are 

completely understood. At least three F-actin binding sites have been identified 

(Hemmings et al., 1996). F2 and F3 subdomains in the talin head directly interact with 

F-actin when pH is below 7.0 and may couple integrin with F-actin (Lee et al., 2004). 

The R7R8 domains in talin rod also directly interact with F-actin (Gingras et al., 2010). 

The best characterized actin binding site locates at the C-terminal end of the talin rod 

which contains the R13 helical bundle and the dimerization domain. This actin binding 

domain is now referred as THATCH domain (talin/HIP1R/Sla2p actin tethering C-

terminal homology) due to its structural similarity with a homologous region in HIP1R. 

Notably, efficient actin binding only occurs when two THATCH domains dimerize 

through the dimerization domain (Gingras et al., 2008). In silico modeling suggested 
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that the flexible linker between R13 and DD could allow different talin dimer geometries 

depending on the orientation of mechanical force (Golji and Mofrad, 2014). 

The indirect linkage between talin and F-actin is mainly mediated by vinculin. Vinculin 

is a 116 kDa protein containing a talin-binding head domain and an actin-binding tail 

domain linked by a short proline-rich sequence (Ziegler et al., 2006). Crystal structures 

of full length vinculin revealed that both talin-binding and actin-binding sites are 

masked in the resting state through an autoinhibitory interaction between head and 

tail domains (Borgon et al., 2004; Ziegler et al., 2006). Talin rod domain contains 

multiple (up to 11) potential vinculin-binding sites (VBSs) with the consensus 

sequence of LxxAAxxVAxxVxxLIxxA that are distributed in different helical bundles 

along the talin rod (Gingras et al., 2005). Most of these VBSs are buried in the α-helix 

bundles and thus cryptic. Tensile force in the pico newton range is sufficient to unfold 

the talin rod domain to expose the cryptic VBSs. Vinculin binding in turn stabilizes talin 

in the unfolded state (del Rio et al., 2009; Yao et al., 2014). In sum, talin is a 

mechanosensitive protein whose linkage to F-actin is sensitive to both geometry and 

magnitude of mechanical force. 

2.2.5. Post-translational regulation of talin function 

With the exception of a few examples, little is known about the post-translational 

regulation of talin. Much of the efforts have been focused on the flexible linker region 

that contains several phosphorylation sites as well as a calpain-2 cleavage site. 

Calpain-2 mediated cleavage at Gln-433 separates talin head domain from talin rod 

domain and thus may liberate talin head from the autoinhibition. Isolated talin head is 

much more potent in integrin binding than full length talin in vitro mainly due to a higher 

on-rate (Yan et al., 2001). However in living cells, cleaved talin head domain is 

susceptible to Smurf1 (SMAD ubiquitination regulatory factor 1)-mediated 

ubiquitination and degradation (Huang et al., 2009). A point mutation (L432G) in the 

linker region renders talin insensitive to calpain-2 and leads to  reduced adhesion 

disassembly rate (Franco et al., 2004). A mutation that disrupt a C-terminal calpain 

cleavage site (Glu-2492 in talin-1) also inhibits adhesion disassembly (Bate et al., 

2012). Thus the major function of calpain-mediated talin cleavage is to disconnect 

integrins from the actin cytoskeleton and destabilize focal adhesion. Interestingly, 

CDK5 (cyclin-dependent kinase 5)-mediated phosphorylation at Ser-425 residue 
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prevents talin head ubiquitination and counteracts calpain-induced adhesion 

destabilization (Huang et al., 2009). Although in SH-SY5Y cells, both S425A and 

S425D mutants inhibit cells migration in a wound healing assay, CDK5-dependent talin 

phosphorylation at Ser-425 promotes β1 integrin activation and bone metastasis in 

metastatic prostate cancer (PCa) cells, suggesting that the in vivo function of talin 

phosphorylation is context-dependent (Jin et al., 2015). CDK5 may also orchestrate 

the activation of RhoGAP DLC1 and talin function (Tripathi et al., 2014). 

Other types of post-translational regulation are recently emerging. It was shown that 

arginylation of a C-terminal calpain-released talin fragment regulates cell-cell contact 

(Zhang et al., 2012). Moreover, methylation of the talin C-terminal THATCH domain 

by histone methyltransferase enhancer of zeste homolog 2 (Ezh2) partially liberates 

talin from F-actin. Loss of Ezh2 leads to larger focal adhesion, aberrant stress fiber, 

reduced adhesion dynamics and reduced transendothelial migration of innate 

leukocytes and dendritic cells (Gunawan et al., 2015). In sum, post-translational 

modifications play important roles in regulating the talin connection to actin and 

adhesion dynamics. 

2.3. Kindlin-dependent integrin activation 

Recently, kindlins are identified as a new family of integrin activators. The kindlin family 

in mammals comprises three members (kindlin1-3) that have different tissue 

expression patterns. While kindlin-1 is preferentially expressed in epithelial cells, 

kindlin-3 expression is restricted in hematopoietic cells; and kindlin-2 is widely 

expressed in non-hematopoietic cells (Ussar et al., 2006). 

Mutations in kindlin genes are linked to human genetic diseases with pathological 

manifestations traced to integrin defects. Mutations in kindlin-1 cause Kindler 

syndrome which is characterized by skin blisters, photosensitivity, mucosal errosion, 

etc. (Jobard et al., 2003; Siegel et al., 2003). Genetic studies in kindlin-1 knockout 

mice have attributed at least some of these phenotypes to defects in integrin-mediated 

adhesion (Meves et al., 2013; Rognoni et al., 2014; Ussar et al., 2008). Mutations in 

human kindlin-3 cause leukocyte adhesion deficiency type III (LADIII) characterized 

by severe bacterial infections and bleedings (Karakose et al., 2010). Using kindlin-3 

knockout mice, it was shown kindlin-3 is required for the functions of multiple integrins 

in hematopoietic lineages (Moser et al., 2009; Moser et al., 2008; Schmidt et al., 2011). 
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Constitutive kindlin-2 knockout in mice results in peri-implantation lethality due to the 

defective integrin-mediated adhesion of the primitive endoderm and the epiblast to the 

basement membrane (Montanez et al., 2008). The conserved function of kindlins could 

be validated in other model organisms. C.elegans expresses one kindlin homologue 

gene called unc-112. UNC-112 colocalizes with PAT-3/β-integrin at muscle-epidermal 

attachment sites. Homozygous mutants of unc-112 genes exhibit defective assembly 

of dense bodies and M-lines, loss of integrin at the muscle attachment sites and a 

severe Pat (paralyzed, arrested elongation at twofold) phenotype similar to integrin 

mutants (Rogalski et al., 2000). D.melanogaster expresses two kindlin homologues 

(Fit-1 and Fit-2). Simultaneous knockdown of both Fit-1 and Fit-2 results in muscle 

rounding up, similar to the phenotype of integrin knockdown (Bai et al., 2008). 

Like the talin head domain, kindlins consist of a FERM domain with an insertion of a 

pleckstrin homology (PH) domain into the F2-subdomain (Karakose et al., 2010). The 

PH domain interacts with plasma membrane and facilitates kindlin-mediated integrin 

activation (Yates et al., 2012). The F3 subdomain of Kindlin FERM interacts with the 

membrane distal NPxY motif. A serine/threonine-rich motif before the NPxY as well as 

the carboxyl terminus of β1 integrin tails also significantly contribute to Kindlin binding 

affinity and specificity (Fitzpatrick et al., 2014; Harburger et al., 2009). 

It is clear that integrin activation requires a cooperation between talin and kindlin as 

genetic disruption of either binding on β1 integrin tail phenocopies β1 knockout defects 

(Meves et al., 2013). Eventhough kindlin-2 is not expressed in platelets, in an artificial 

system, kindlin-2 overexpression can enhance the activation of αIIbβ3 but not α5β1 

only in the presence of overexpressed talin head (Ma et al., 2008). One possible 

explanation is that different integrin subtypes have different sensitivities in activation 

assays due to their different affinities for kindlin. How kindlin contributes to integrin 

activation is mechanistically unclear. In contrast to talin, kindlin binding to β integrin 

tails is not sufficient to disrupt the inner membrane clasp (Bledzka et al., 2012). Recent 

studies on αIIbβ3 integrin suggest that while talin allosterically activates integrin, 

kindlin may promote integrin clustering and thus avidity for multivalent ligands (Ye et 

al., 2013). Notably, the talin head domain has aslo been shown to induce active 

integrin clustering both in vitro and in vivo (Ellis et al., 2014; Saltel et al., 2009). 

Whether talin and kindlin cooperate in integrin clustering remains to be investigated. 
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2.4. A molecular clutch between integrins and actomyosin required 

for migration 

Various migratory strategies are exploited in vivo in a cell type and tissue context-

dependent manner. For instance, cancer cells can rapidly disseminate in 3 

dimensional matrix with membrane bleb protrusions, which are formed by a polarized 

rupture of the actin cortex and inflation of cytosolic content (Paluch and Raz, 2013). 

Interestingly, interstitial leukocyte migration shows a typical amoeboid migration mode 

with actin-rich lobopodia protrusions (Lammermann and Sixt, 2009). Notably, in 

physically confined three dimensional space, both bleb and lobopodia protrutions 

could intercalate with extracellular matrix fibers and thus immobilize the migrating front 

without necessarily relying on transmembrane receptors (Lammermann et al., 2008; 

Renkawitz and Sixt, 2010). Mesenchymal migration is another prototype of cell 

migration widely used by highly spread cells including epithelial cells and fibroblasts. 

During mesenchymal migration, a mechanical coupling is formed between 

polymerized actin and integrin-based adhesion (Gardel et al., 2010). Notably, different 

migratory strategies could be combined in vivo by a single cell to achieve maximal 

migration efficiency in complex tissue environment (Diz-Munoz et al., 2010). 

Regardless which migratory strategy is exploited, dynamic actin polymerization and 

actomyosin contraction provide the driving force for cell deformation and ultimate 

movement (Charras and Paluch, 2008; Parsons et al., 2010; Renkawitz and Sixt, 

2010).  

2.4.1. Actin structures and dynamics in mesenchymal migration 

Cell protrusions in mesenchymal migration are driven by lamellipodia protrusions 

and/or by filopodia protrusions. Lamellipodia are thin sheet-like protrusions which 

emerge at the leading edge plasma membrane and extend 2-4 μm towards the cell 

center (Pollard and Borisy, 2003) (Figure 9). They are formed by the rapid 

polymerization of dendritic F-actin network mainly through the actin-related protein 2/3 

(ARP2/3) complex and actin severing factor, cofilin. ARP2/3 complex is the major actin 

nucleator in the lamellipodium. When the ARP2/3 complex binds to the side of pre-

existing actin filaments, it mimics the barbed end of an actin filament from which a new 

actin-filament can branch out (Goley and Welch, 2006). Loss of ARP2/3 results in loss 

of lamellipodia formation, reduced 2-D migration speed and defective haptotaxis 
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(Suraneni et al., 2012; Wu et al., 2012). The full activity of the ARP2/3 complex 

requires nucleation-promoting factors (NPF). WASP-family verprolin-homologous 

protein-2 (WAVE2) complex, as an effector of PtdIns(3,4,5)P3 and Rac1 GTPase, is 

responsible for ARP2/3 activation in the leading edge (Oikawa et al., 2004; Yamazaki 

et al., 2003).  

Once the actin branching point is established by the ARP2/3 complex, new actin 

filaments can elongate spontaneously. However, spontaneous actin assembly is 

kinetically inefficient and the free barbed ends could be blocked by actin capping 

proteins (Edwards et al., 2014). Two classes of actin elongators, vasodilator-

stimulated phosphoprotein (VASP) and formins, protect the barbed ends from capping 

proteins and promote elongation of unbranched filaments (Campellone and Welch, 

2010). Actin elongators also play roles in linking actin barbed ends with plasma 

membrane at the leading edge (Block et al., 2012). The balance between ARP2/3-

mediated branching and unbranched elongation determines the dynamics of 

lamellipodia. While high WAVE2 activity results in denser actin network which 

protrudes slower but more persistently; high actin elongation activity results in unstable 

protrusions that retract frequently (Bear et al., 2002). 

Filopodia are thin spike-like protrusions that usually originate from dendritic actin 

network of lamellipodia (Mattila and Lappalainen, 2008) (Figure 9). They contain tightly 

bundled parallel actin filaments with their barbed ends facing the plasma membrane. 

The formation of filopodia rely on actin elongators including VASP and formins and 

actin bundling proteins including fascin, insulin receptor substrate p53 (IRSp53) and 

epidermal growth factor receptor pathway substrate 8 (Eps8) (Mattila and 

Lappalainen, 2008). Myosin-X is also required for filopodia formation since it transports 

VASP proteins and integrins into filopodia tips (Tokuo and Ikebe, 2004; Zhang et al., 

2004). Point-like integrin-based adhesions are often found at the tips of filopodia 

(Galbraith et al., 2007). Filopodia thus can sense the extracelullar microenvironment, 

initiate and orientate the following lamellipodia extensions (Johnson et al., 2015). 

Depletion of fascin results in the loss of filopodia and haptotaxis but not chemotaxis 

(Vignjevic et al., 2006). Irrespective of their different structures, lamellipodia and 

filopodia exhibit actin polymerization at the protruding plasma membrane and 
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depolymerization at cell-proximal area, which results in the retrograde treadmilling flow 

of actin filaments. 

Behind the dynamic protrusions sites is the contractile lamella consisting of stress 

fibers and transverse arcs. Transverse arcs  are formed by lateral annealing of F-actin 

meshwork from lamellipodia; in contrast, stress fibers are assembled through formin 

activity at focal adhesions (Hotulainen and Lappalainen, 2006). Both stress fibers and 

transverse arcs are composed of periodic α-actinin/myosin-II patches interspersed by 

short (<5 μm) anti-parallel F-actin filaments. The non-muscle myosin-II activity also 

drives the retrograde movement of these structure although at much slower speed 

than that in lamellipodia, forming an integrated treadmilling contractile structure 

(Burnette et al., 2014; Hotulainen and Lappalainen, 2006). 

2.4.2. Molecular clutch between integrin and actomyosin 

The retrograde actin movements are mechanical coupled to integrin-based adhesion 

structures through a ‘molecular clutch’. The ‘molecular clutch’ model predicts 

bifurcated transmission of retrograde actin flow into membrane protrusion at the 

leading edge and traction force at adhesion sites which pulls the cell body forward 

(Figure 8) (Giannone et al., 2009). The clutch engagement results in loss of retrograde 

flow, traction force generation, and persistent membrane protrusion (Gardel et al., 

2010). 

Several actin binding proteins, including talin, vinculin, α-actinin, filamin, tensin and 

integrin-linked kinase (ILK),  can directly or indirectly mediate the engagement of the 

integrin cytoplasmic tail with F-actin (Brakebusch and Fassler, 2003). As direct integrin 

binding protein with several actin-binding sites, talin mediates the initial clutch between 

ligand-bound integrin and actin filaments with slip bonds of 2 pN amplitude (Jiang et 

al., 2003). Individual integrin molecules bear large tension up to 50pN during cell 

adhesion (Wang and Ha, 2013). Force in this range partially unfolds talin molecules 

and reveals multiple cryptic sites for vinculin (del Rio et al., 2009). Vinculin 

recruitments further strengthen the connection between talin and F-actin, hence 

resulting in a stronger clutch. Vinculin is essential for the molecular clutch since 

depletion of vinculin results in excessive actin retrograde flow into the lamellum and 

ambiguous lamellipodium–lamellum border (Thievessen et al., 2013). As talin is 

required for the recruitment of vinculin to integrin, depletion of talin also leads to 



I n t r o d u c t i o n | 30 

 

excessive retrograde F-actin flow at the initial cell spreading stage (Johnson et al., 

2015; Zhang et al., 2008). α-actinin forms an anti-parallel rod-shaped dimer with actin-

binding sites at both end of the rod and bundles actin filaments (Ribeiro Ede et al., 

2014; Sjoblom et al., 2008). α-actinin is also able to directly interact with integrin 

cytoplasmic tails, actin and vinculin head through distinct domains and stabilize the 

molecular clutch between integrin and actin (Ziegler et al., 2006). 

 

Figure 8. Dynamic engagement of the molecular clutch between adhesion complexes and 

actomyosin system. (a) Unengaged clutch with no coupling between actomyosin and adhesion 

complexes results in fast actin retrograde flow, no traction force on ECM and no membrane 

protrusion.(b) When transient connections are formed between the F-actin flow and adhesion 

complexes, low traction force is produced at the expense of reduced F-actin flow. (c) With a 
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strong coupling between F-actin and adhesion complexes, high traction force and persistent 

membrane protrusion are produced to drive cell migration. Image is adapted from (Giannone 

et al., 2009). 

 

The molecular clutch engagement at adhesion site is dynamically regulated. With 

fluorescent speckle microscopy, it was observed that clutch proteins including talin, 

vinculin and α-actinin, all move retrogradely at intermediary velocities between the fast 

F-actin retrograde flow rate and the stationary integrins (Hu et al., 2007). Thus, these 

findings confirm that a slip clutch is formed at the interface between integrin and F-

actin through dynamic binary interactions. By regulating  a tunable force-transmitting 

linkage through clutch engagement at different levels, the slip clutch theoretically 

allows sensitive cellular adaptation to external mechanical cues (Chan and Odde, 

2008). 

2.4.3. Mechano-sensing and transduction 

Mechano-sensing and transduction describe the ability of adherent cells to measure 

and translate the mechanical stimuli of the biological environment into biochemical 

signals and adapt their physiological processes accordingly (Jaalouk and 

Lammerding, 2009). In vivo, sensory cells including inner ear hair cells, sensory 

neurons, etc. acutely respond to mechanical changes in the environment and convert 

them into electrochemical signals. Also, physical properties of the extracellular 

environment including rigidity, geometry and nanoscale topology influence cell 

proliferation, differentiation and death. Consequently, mechano-sensing and 

transduction are essential for embryonic development and tissue homeostasis and 

play an important role in pathology. 

Force-induced functionality is the central mechanism of mechano-sensing and 

transduction. Cells probe the rigidity of extracellular environment by pulling on ECM or 

neighboring cells and thereby detect their effective displacements. Contractile forces 

produced by the actomyosin apparatus are transduced to the ECM through the 

‘molecular clutch’ mentioned above. Considering that individual force-bearing integrins 

link to a force-transducing molecular chain, tensile force builds up until the weakest 

protein-protein interaction interface ruptures, which results in a local failure of the 

force-transducing chain; or the displacement of the extracellular ligand which results 
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in force relaxation. Within this time window, intra- and extracellular force-bearing 

proteins can be increasingly stretched into different functional states. These force-

induced functionality could be achieved by exposing cryptic binding sites as is shown 

for talin and filamin or by altering enzymatic reactivity as is shown for p130Cas and 

titin kinase (del Rio et al., 2009; Ehrlicher et al., 2011; Puchner et al., 2008; Rognoni 

et al., 2012; Sawada et al., 2006). Force-induced functionality thus allows protein 

complex remodeling and biochemical signal transduction. 

In addition to the induction of protein interactions and kinase activation, the formation 

of catch bonds is also an essential type of force-induced functionality. With a constant 

protein-protein interaction interface, the bond lifetime decreases exponentially with the 

force applied. These types of interfaces are referred as slip bonds. Interestingly, some 

bond interfaces can be allosterically activated by mechanical forces, which leads to 

significantly increased bond lifetimes. These types of interfaces are referred to as 

catch bonds. The presence of catch bond interfaces in the integrin-based adhesion 

structures greatly prolongs the time window within which force-bearing proteins can 

be switched into new functional states. 

Robust mechano-transduction also relies on lateral clustering of multiple force-

transducing linkages. On one hand, the lateral interactions within an adhesion plaque 

allow the tensile force to be distributed across multiple mechanical linkages, which 

reduces the force per molecule and thus the likelihood of local bond rupture (Howard, 

2009). Moreover, clustered linkages also allow the broken bond to reform before the 

collapse of other remaining bonds resulting in the stabilization of the tensile 

connection. As a result, clustered mechanical linkages forms a bistable system: when 

the bond numbers stay above a critical threshold, the cluster could survive multiple 

local single-bond ruptures; when the bond number is below the critical threshold, the 

system fails completely. Consistent with this model, autonomous force fluctuations 

were observed within single adhesion site (Plotnikov et al., 2012). 

By establishing a tension balance between intracellular and extracellular opposing 

force elements, cells stiffen the force-bearing cytoskeleton as prestressed tensegrity 

structure (Ingber, 2003a, b). According to the tensegrity model, mechanical stress 

propagates along prestressed element in a speed of ~30m/s, much faster than 

diffusion-mediated and motor mediated signal propagation (usually in speed of a few 
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micrometers per second) (Wang et al., 2009). Moreover, cellular tensegrity allows the 

mechanical force to be propagated with little dissipation for long distance (Wang et al., 

2009). Consistent with this model, only when cells are prestressed in a more rigid ECM 

environment, locally applied mechanical force can trigger rapid Src kinase activation 

at both local force-bearing site and long distance sites in an integrin-dependent 

manner (Bai et al., 2008). The long range transduction of locally generated 

biochemical signaling allows rapid delivery of extracellularly stored mechanical 

information to multiple intracellular organelles including the nucleus.  

One of the most impressive example of mechano-sensing and transduction is 

transcriptional reprograming of stem cell differentiation under different biophysical 

stimuli. Human mesenchymal stem cells (hMSC) isolated from bone marrow can 

differentiate into multiple mesenchymal lineages, including adipocytes and 

osteoblasts, when induced with defined soluble factors (Pittenger et al., 1999). While 

adipocytes adopt rounded shapes with loose adhesion, osteoblasts usually show large 

spreading areas. In vivo, adipocytes and osteoblasts reside in tissue environments of 

different rigidities. The seminal work of McBeath et al. demonstrated that single hMSC 

confined in small adhesive island preferentially undergo adipogenic differentiation, 

while on large adhesive patch, single hMSCs tend to differentiate into osteoblasts 

(McBeath et al., 2004). Thus cell shape can instruct stem cell fate determination. The 

landmark work by Engler et al. unequivocally showed that various substrate elasticities 

predispose hMSCs to different lineages with corresponding stiffness even in the 

absence of soluble differentiation inducers (Engler et al., 2006). Moreover, parallel 

nanogratings induce the expression of neuronal markers in hMSCs (Yim et al., 2007). 

Remarkably, cell shape and ECM stiffness converge with soluble differentiation cues 

on RhoA GTPase and its effector Rho-associated coiled-coil containing protein kinase 

(ROCK) to regulate stem cell fate. Inhibition of cellular tension by the actin 

depolymerizating agent cytochalasin D, or by ROCK inhibitor Y-27632, promotes 

adipogenic differentiation of hMSCs. Conversely, overexpression of constitutively 

active ROCK restores osteogenic fate in hMSCs that are confined on small adhesive 

island. Moreover, dominant negative RhoA overrides soluble osteogenic cues and 

induces adipogenesis (Engler et al., 2006; McBeath et al., 2004).  
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How could mechano-transduction regulate cell fate decision at the transcriptional 

level? Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding 

motif (TAZ) are the major downstream transcriptional factors of RhoA/ROCK pathway 

in mechano-transduction (Low et al., 2014). Initially, YAP and TAZ are identified as 

major targets of the Hippo pathway. Hippo pathway comprises a regulatory kinase 

cascade including mammalian homologues of the Hippo kinase in D.melanogaster, 

STE20-like protein kinase 1 (MST1) and MST2, their downstream kinases large tumor 

suppressor 1 (LATS1) and LATS2 and the YAP/TAZ transcriptional factors. YAP/TAZ 

shuttle between cytoplasm and nucleus and function as transcriptional co-activators 

for TEA domain (TEAD) containing proteins to induce pro-proliferative and anti-

apoptotic gene expressions. MST1/2 phosphorylate and activate LATS1/2 which in 

turn phosphorylate YAP/TAZ. Phosphorylated YAP/TAZ is sequestered in cytoplasm 

by 14-3-3 and eventually degraded in the proteasome. Interestingly, ECM rigidity, cell 

geometry and density control cell proliferation and stem cell differentiation by 

regulating YAP/TAZ activity (Aragona et al., 2013; Dupont et al., 2011). While these 

regulations depend on the actin cytoskeleton and the RhoA/ROCK pathway, they do 

not rely on the activation status of LATS1/2, thus should be considered as a non-

canonical Hippo signaling pathway. In contrast to the static mechanical state, cyclic 

stretch regulates YAP/TAZ via canonical Hippo signaling through JNK kinase pathway 

(Codelia et al., 2014; Mohseni et al., 2014). 

Beside YAP/TAZ, mechano-transduction regulates gene expression at different time 

scale and on multiple levels through different transcriptional factors including serum-

responsive factor (SRF), NF- κB, etc. (Olson and Nordheim, 2010; Sero et al., 2015). 

Mechano-responsive regulation of mRNA splicing has also been reported for the 

epigenetic regulators such as methyltransferase-like protein 8 (METTL8) (Jakkaraju et 

al., 2005). Thus, long range mechano-transduction allows the mechanical information 

of the extracellular environment to affect long term gene expression in the nucleus. 

2.5. Molecular organization of integrin-based adhesions 

A hallmark of integrin family receptors is their ability to sense the dynamic biochemical 

and biophysical properties of extracellular matrices with specialized adhesion 

structures of distinct morphology, subcellular localization, mechanical properties as 

well as protein composition. To achieve efficient cell migration, different integrin-based 
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adhesion structures undergo highly dynamic life cycles in which both the actin and 

microtubule cytoskeletons participate. Accumulating evidences also suggest that 

specialized endocytosis/exocytosis events occur in close vicinity around adhesion 

complexes.  

2.5.1. Nascent adhesion (NA) 

Initial integrin activation and ligand binding trigger the formation of short-lived nascent 

adhesions (NAs) with a diameter less than 0.5μm at the leading edge of cell 

protrusions (Gardel et al., 2010) (Figure 9). NAs emerge at the border between 

lamellipodium and lamellum where the actin retrograde flow switches from fast flow 

rate to slow flow rate (Hu et al., 2007). 

Several principles govern NA formation. First, an integrin-ligand bond must be formed 

and stabilized for the initial NA nucleation. Lack of the integrin activator, kindlin, led to 

total failure of NA formation (Theodosiou et al, in preparation). Interestingly however, 

talin appeared to be dispensable for the formation of NAs during initial cell spreading 

(Zhang et al., 2008). Second, clustering of active integrin is important for NA formation. 

Integrin-mediated adhesion requires the presence of nanoscale RGD clusters on 

which at least three integrins could bind with inter-distances less than ∼70nm 

(Cavalcanti-Adam et al., 2007; Coussen et al., 2002; Maheshwari et al., 2000). EM-

tomography analysis of the thin lamellipodium indeed revealed uniform doughnut-

shaped particles with diameters of around 25nm, presumably representing integrin 

nano-clusters (Patla et al., 2010). Moreover, kindlin-3 was shown to promote 

multivalent ligand binding through integrin clustering (Ye et al., 2013). Third, since NAs 

are not coupled to thick stress fibers and show high turnover rates, integrins in nascent 

adhesion must have fast ligand binding kinetics under low mechanical force. 

Interestingly, in fibroblasts, α5β1 integrin but not αVβ3 integrin participates in the 

formation of NAs (Schiller et al., 2013). Consistently, β1 integrin is less immobilized 

on its ligand in comparison to β3 integrin at a single molecular level and such 

difference requires the extracellular domain (Rossier et al., 2012). Fourth, intracellular 

adaptor proteins that are recruited to integrin cytoplasmic tails are also important in 

NA formation either through stabilizing integrin clusters or downstream signaling 

events. For instance, β3 integrin-enriched NAs could be artificially forged by fusing 

IPP complex components to β3 integrin cytoplasmic domain (Elad et al., 2013). Finally, 
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the molecular clutch between integrin and actin is essential for NA formation since 

either deletion of vinculin or inhibition of the actin retrograde flow by targeting the 

ARP2/3 complex leads to reduced NA formation (Alexandrova et al., 2008; Thievessen 

et al., 2013). Consistent with the mechanisms mentioned above, recent microscopic 

analysis revealed that NAs initiate as a cluster of α5β1 integrins. While Kindlin-2 forms 

constitutive complex with β1 throughout the NA life time, talin:integrin stoichiometry 

increases from 1:2 to 1:1 in a myosin-II dependent manner (Bachir et al., 2014).  

Dynamic formation of NAs is essential for a productive and processive lamellipodium 

protrusion during cell migration in a 2 dimensional environment (Gardel et al., 2010). 

On one hand, coupling between NAs and actin retrograde flow converts actin 

treadmilling into the force that pushes the leading edge membrane forward (Gardel et 

al., 2008). On the other hand,  NAs could function as a signaling hub to promote actin 

dynamics in the lamellipodium through β-PIX-Rac1-ARP2/3 axis (Kuo et al., 2011) or 

kindlin-paxillin-p130Cas-Rac axis (Theodosiou et al., in preparation). Since the 

molecular clutch is required for NA formation, actin dynamics and NAs form a positive 

feedback loop to drive cell protrusions. Most NA complexes are rapidly dissolved within 

minutes and only a small population of them eventually undergoes maturation into 

focal adhesions (FAs) behind lamellum in an actomyosin-dependent manner (Choi et 

al., 2008) (Figure 9). It is not clear whether the disassembly of NAs is a default fate or 

an actively controlled process. 
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Figure 9. Spatial organization of actin-based structures are linked to dynamic integrin-based 

adhesive structures in mesenchymal migration. Lamellipodium protrusion in supported by 

Arp2/3-induced dendritic actin network which links to nascent adhesions. Filopodia originate 

from lamellipodia through actin elongators including VASP and formins. Nascent adhesions 

under go either disassembly or force-dependent maturation into focal adhesion in the transition 

zone between lamellipodia and lamellum. Mature focal adhesions are connected to thick stress 

fibers. Image is adapted from (Parsons et al., 2010). 

 

2.5.2. Focal adhesion (FA) 

FAs have diameters ranging from 1μm to 5μm with a lifetime up to 20 minutes. FA 

maturation is a coordinated process requiring integrin clustering, actin bundling, and 

actin-integrin linkage reinforcement (Figure 9).  

Although clustering of active integrins already occurs in NAs, the fact that most NAs 

dissolve without connection to the contractile stress fiber suggests that crosslinked 

actin bundles could serve as a structural  template for FA growth. One candidate that 

links integrin clustering to the actin template is α-actinin. α-actinin is also able to 

directly interact with integrin cytoplasmic tails, indicating that it is sufficient to 

oligomerize integrin receptors in growing FAs along the actin filament (Roca-Cusachs 
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et al., 2013). Bulky β1 integrin clusters are co-recruited with α-actinin into growing FAs 

in periodic manner (Bachir et al., 2014). siRNA mediated depletion of the actin 

crosslinker α-actinin impairs FA maturation without significantly reducing the 

contractile feature of lamella and traction force generation (Choi et al., 2008; Oakes et 

al., 2012). Thus, α-actinin is able to promote β1 integrin clustering and set up a 

connection between the integrin cluster and the actin cytoskeleton. However, 

overexpression of a motor-dead myosin IIA mutant which retains actin crosslinking 

activity is sufficient to restore FA maturation in α-actinin knockdown cells, suggesting 

that the actin bundling is sufficient to guide FA clustering without α-actinin (Choi et al., 

2008). In mature FAs, α-actinin regulates mechano-transduction probably by 

stabilizing the integrin-actin linkage as the chromophore-assisted laser inactivation of 

actinin-GFP in FAs induced rapid disconnection of stress fibers from FAs (Rajfur et al., 

2002; Roca-Cusachs et al., 2013). Given the low affinity between talin head and 

integrin cytoplasmic domain (Anthis et al., 2010), bundled actin filaments in mature 

FAs can also stabilize integrin clustering by immobilizing talin through its C-terminal 

actin binding site and promoting avidity between talin and integrin clusters (Rossier et 

al., 2012). 

The transition from NAs to FAs is stimulated by mechanical force which is generated 

by non-muscle myosin II activity and transduced via F-actin (Balaban et al., 2001). 

Inhibiting non-muscle myosin-II activity by blebbistatin blocks FA maturation and 

induces massive formation of NAs (Straight et al., 2003; Vicente-Manzanares et al., 

2008). Several mechanisms could explain the force-dependent FA maturation 

processes. First, mechanical force exerted on certain FA proteins may induce 

conformational changes or partial protein unfolding leading to the exposure of cryptic 

binding sites for downstream adaptor proteins. Since talin could interact with both the 

integrin cytoplasmic tails and actin filaments at the same time, it transduces the 

mechanical force to integrins. Stretching force in the pico newton range is sufficient to 

unfold the talin rod domain and promote the recruitment of vinculin, which in turn 

stabilize talin in the unfolded state (del Rio et al., 2009; Yao et al., 2014). Thus vinculin 

is recruited to FAs in a force-dependent manner and further reinforces the connection 

between integrins and F-actin (Cohen et al., 2006; Humphries et al., 2007). A large 

group of proteins, particularly LIM domain containing proteins, are recruited to FAs in 

force-dependent manner to promote FA growth, probably through a similar mechanism 
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(Schiller et al., 2011). Second, tension-induced conformational changes may alter 

kinase/phosphatase activity or substrate specificity/accessibility within FA and trigger 

downstream signal transduction. For instance, p130Cas is more efficiently 

phosphorylated by Src family kinases when stretched both in vitro and in vivo (Sawada 

et al., 2006). It has also been suggested that, PR65, a scaffolding subunit of protein 

phosphatase PP2A, could change conformation and alter substrate specificity under 

tension (Grinthal et al., 2010). Finally, the mechanical force induces catch-bonds 

between α5β1 integrins and fibronectin (Friedland et al., 2009; Kong et al., 2009). Thus 

mechanical force promotes FA maturation not only by promoting adaptor protein 

recruitment and enhancing integrin signaling but also by stabilizing integrin-ligand 

interaction.  

  

Figure 10. Vertical hierarchy of the molecular organization in mature focal adhesion. 

Interferometric photoactivated localization microscopy was used to measure the position of 

different focal adhesion proteins relative to the integrin-ligand interface with a resolution of 

~5nm. Several functional layers are designated according to their respective marker proteins. 

Picture is adapted from (Kanchanawong et al., 2010). 

 

RhoA GTPase activity plays a central role in FA maturation since it can promote actin 

elongation through the formin pathway and myosin-dependent force generation 

through the ROCK pathway. Since actin bundling and mechanical force promote FA 

growth differently, FA size is not always correlated with or predicted by the traction 

force transmitted to FAs. For instance, depletion of mDia reduces FA size without 
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impairing the cell traction force (Oakes et al., 2012). Similarly, fibroblasts expressing 

only αVβ3 and αVβ5 integrins assemble large FA but apply smaller traction force in 

comparison to fibroblasts expressing only α5β1 integrins, which is likely caused by 

integrin subtype-specific RhoA activation and its differential coupling to downstream 

effectors (Schiller et al., 2013).  

Hundreds of different proteins are recruited into focal adhesion and form a dynamic 

interaction network, whose connectivity, complexity and plasticity massively increase 

during FA maturation (Winograd-Katz et al., 2014). Nevertheless, mature FAs still 

exhibit a laminated modular molecular organization. Three-dimensional super-

resolution fluorescence microscopy of several key FA components revealed that 

different functional modules in mature FAs are spatially organized into stratified layers 

of nanometer scale, with integrin-ligand binding module spanning 20nm across the 

plasma membrane, followed by integrin activator/signaling module containing the talin 

head, FAK and paxillin 20nm above the plasma membrane, a force transduction 

module containing the stretched talin rod domain and vinculin,  and an actin regulatory 

module which is connected with actin stress fibers (Kanchanawong et al., 2010) 

(Figure 10). This organization fits well with the molecular clutch model. While the 

components in the integrin signaling module stay stationary on the substrate with 

integrin, the retrograde flow velocities increase from the force transduction module to 

actin regulatory module (Hu et al., 2007). The lateral organization of focal adhesion 

structure is less appreciated, probably due to the fact that all current FA markers show 

a homogeneous staining pattern and the lack of definition of the lateral border of FAs. 

Mature FAs maintain their equilibrium by symmetrical exchange of pre-assembled 

protein complex in individual functional modules (Hoffmann et al., 2014). It is possible 

that the spatiotemporally uniform FA building blocks in the cytosol could maintain the 

steady state FA but not NAs, which have non-equilibrium protein composition. 

2.5.3. Fibrillar adhesion (FB) 

Fibrillar adhesions (FBs) are cell-matrix adhesion structures that form in cells cultured 

on fibronectin. They locate towards the cell center with elongated streak-like 

morphology or as dotty arrays (Geiger and Yamada, 2011; Zaidel-Bar et al., 2004). 

Fibrillar adhesions arise from centripetal myosin-II-driven translocation of α5β1-

integrins from mature FAs along the underlying fibronectin matrix (Zamir et al., 2000). 
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This myosin-dependent translocation pre-stresses the fibronectin dimers to expose 

cryptic binding sites and promote their assembly into fibrils (Singh et al., 2010).  

Although the initial phase of FB formation relies upon actin stress fibers (Pankov et al., 

2000), once formed, assembled FBs lack the linkage to thick stress fiber and persist 

even when the force is relaxed (Zamir et al., 2000). Notably, the formation of FBs on 

a uniformly fibronectin-coated 2-dimensional surface requires translocation of 

fibronectin molecules as covalently conjugated fibronectin suppresses FB formation 

(Katz et al., 2000). These observations suggest that unlike FAs, the mechanical 

coupling between the contractile actomyosin system and integrin-ligand complexes in 

FBs must be weak. Consistent with this hypothesis, the force-responsive signature of 

FAs (e.g. phospho-Tyrosine, pTyr397FAK) or force dependent integrin subtypes (e.g. 

αVβ3 integrin) are not observed in FB (Schiller et al., 2013; Zamir et al., 1999). As a 

consequence, FBs do not provide pulling force to promote cell migration; instead, they 

regulate cell migration by increasing adhesiveness or curbing cell orientation along 

pre-existing matrix fibers. FBs play more important roles during extracellular matrix 

remodeling in tissue homeostasis (Bonnans et al., 2014).  

2.5.4. Adhesion sliding 

FA sliding, defined as the translocation of adhesion plaques along the substratum, 

could be due to a combination of different mechanisms. At both the front and the rear 

end of migrating fibroblasts, asymmetric force distribution within FAs could lead to 

focal adhesion growth at the proximal and disassembly at the distal end, resulting in a 

treadmilling-type movement of adhesion (Ballestrem et al., 2001; Hu et al., 2007; 

Olberding et al., 2010). Adhesion treadmilling is directed toward the actomyosin 

contractility along the structural template of the attached stress fiber (Olberding et al., 

2010).  

Adhesion structure may also slide without turnover when several requirements are 

fulfilled. First, the integrins in the sliding adhesions must bind their ligands through slip-

bonds rather than catch-bonds so the integrins can dissociate and rebind the 

substratum during sliding; second, integrins must be maintained in their active 

conformation so that the sliding adhesions do not detach; third, integrin clustering must 

be stabilized so that the sliding adhesions do not disintegrate. This theory predicts that 

adhesion sliding uncouples or loosens the mechanical clutch between actomyosin and 
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integrin. Interestingly, in sharp contrast to motile fibroblasts where FA sliding occur 

only at the rear end, sliding adhesions are frequently observed in stationary fibroblasts, 

suggesting that the force coupling and the forward pulling is compromised by adhesion 

sliding (Smilenov et al., 1999). How to maintain active integrin clustering when the 

mechanical force is uncoupled? It has been shown that overexpression of vinculin 

head domain could induce aberrant active integrin clusters that are insensitive to F-

actin disruption (Humphries et al., 2007). Since vinculin head is able to stabilize talin 

in its open conformation, the formation of a the talin-integrin complex at low 

mechanical force may be the key to this question. However, since full length vinculin 

only exposes its talin binding site under force, this task is likely accomplished by other, 

still unknown proteins. 

2.5.5. Focal adhesion disassembly 

The dynamic adhesion turnover is crucial for cell migration. For NAs, it appears that 

the disassembly is the default fate if FA maturation does not occur. Spatial and 

temporal regulation of FA disassembly is required for efficient forward movement of 

the cell body (Webb et al., 2002). Microscopic studies of FA assembly and 

disassembly revealed  similar kinetics (Stehbens and Wittmann, 2014). However, 

given the high degree of complexity and plasticity in the protein interaction network in 

FA, a simple reversion of the molecular events in FA assembly most likely cannot 

effectively disrupt FAs (Ezratty et al., 2005). A bottom-up strategy, in which FA 

disassembly mechanism specifically targets the most liable nodes in the integrin 

adhesome to induce a collapse of the network, is much more likely. Another preferred 

strategy for FA disassembly is to collectively attack multiple nodes in adhesome 

network to generally destabilize the FA structure.  

FAs are assembled around the short cytoplasmic tails of β integrin subunits. 

Importantly, unlike the rest of the adhesome network, the linkage between integrin tail 

and the rest of adhesome mostly relies upon two integrin activators, talin and kindlin. 

Thus, displacement of talin and/or kindlin from the β integrin cytoplasmic tail is 

probably the converging point of all FA disassembly pathways. While little is known 

about how kindlin is regulated during FA disassembly, cells exploit several 

mechanisms to destabilize the integrin-talin-actin linkage to promote FA disassembly. 

The calcium-dependent protease calpain cleaves talin and several other FA proteins, 
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and inhibition of calpain  perturbs FA disassembly (Bhatt et al., 2002; Franco et al., 

2004). Intriguingly, EZH2, a histone methyl-transferase which was thought to only act 

in nuclei, can also methylate C-terminal F-actin binding motif of talin and disrupt talin-

F-actin interaction (Gunawan et al., 2015). EZH2-mediated talin methylation promotes 

adhesion turnover and transendothelial migration of neutrophils and dendritic cell 

(Gunawan et al., 2015). Moesin, a highly abundant cell cortex-enriched FERM domain-

containing protein, can be phosphorylated by MAP4K4 kinase and then compete with 

talin for integrin binding and thereby induce adhesion disassembly (Vitorino et al., 

2015). Interestingly, the D.melanogaster MAP4K4 homologue, misshapen, enriches 

at the trailing edge of migrating cell and promotes epithelial cell migration by 

decreasing integrin levels (Lewellyn et al., 2013). 

In an extreme scenario, global microtubule disruption by nocodazole leads to aberrant 

FA growth and nocodazole wash-out triggers microtubule re-growth towards FA and 

subsequent FA disassembly by integrin endocytosis (Ezratty et al., 2005). Several 

endocytic adaptor proteins including Dab2, the closely related ARH (autosomal 

recessive hypercholesterolemia) and Numb concentrate around disassembling FAs, 

directly compete with talin and kindlin for the NxxY/NPxY motifs in β integrin 

cytoplasmic tails and promote clathrin-mediated integrin internalization and FA 

disassembly (Calderwood et al., 2003; Chao and Kunz, 2009; Ezratty et al., 2009; 

Nishimura and Kaibuchi, 2007). Both Dab2 and Numb are able to bridge the integrins 

with the AP2 complex and the clathrin coat (McMahon and Boucrot, 2011). 

Consistently, silencing either AP2 or dynamin results in enlarged FAs (Chao et al., 

2010; Chao and Kunz, 2009; Ezratty et al., 2005). Proteins in the integrin signaling 

module actively regulate clathrin-mediated integrin internalization and FA 

disassembly. For instance, dynamin is recruited to FAs by FAK and subsequently 

activated by Src kinase (Ezratty et al., 2005; Wang et al., 2011). Talin may also 

regulate FA disassembly by regulating the RIAM-MEK-ERK1/2 pathway (Colo et al., 

2012).  

In contrast to the constitutive integrin endocytosis-recycling cycle in non-adhesive 

plasma membrane areas, endocytosis-mediated FA disassembly most likely requires 

internalization of ECM-engaged integrins. Thus, proteolytic release of integrin-bound 

ECM fragment from the fibrillary matrix at FAs can greatly facilitate FA disassembly. 
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The  membrane type 1 matrix metalloprotease (MT1-MMP) is exocytosed around FAs 

in Rab6 GTPase dependent manner and mediates focused ECM degradation during 

FA disassembly (McNiven, 2013; Stehbens et al., 2014; Takino et al., 2007; Wang and 

McNiven, 2012) (Figure 11). Consequently, MT1-MMP is required for integrin and 

fibronectin endocytosis as well as normal FA turnover (Shi and Sottile, 2011; Takino 

et al., 2006). Similar to clathrin-dependent integrin internalization, MT1-MMP is 

regulated by FAK and Src kinases. FAK recruits MT1-MMP recruitment to FAs and 

Scr kinase stabilizes the FAK-p130Cas-MT1-MMP complex by phosphorylating 

Tyr573 at the cytoplasmic tail of MT1-MMP (Wang and McNiven, 2012).  

Most FA plaque proteins are not endocytic cargo and are dismissed during FA 

disassembly by releasing the mechanical force. All FA disassembly mechanisms 

eventually lead to tension relaxation by disrupting ECM-integrin-actin linkage. FAs 

rapidly disassemble when actomyosin-dependent force is inhibited by blebbistatin or 

ROCK inhibitor even in the presence of MT1-MMP inhibitor (Carisey et al., 2013; 

Stehbens et al., 2014). Although microtubule regrowth-induced FA disassembly is 

RhoA and Rac1 independent, under physiological condition, integrin internalization in 

FA must be coordinated with tension release through Rho GTPase signaling (Ezratty 

et al., 2005). 

2.5.6. Microtubules target FAs 

Spatial and temporal regulation of FA turnover is mediated by microtubules. 

Microtubules explore intracellular space by stochastically switching between growing 

and shortening phases, a behavior called dynamic instability (Mitchison and Kirschner, 

1984). Interestingly, microtubules and FAs mutually regulate each other at the cell 

periphery. Individual microtubules repeatedly target FAs where they switch from a 

growing phase to a shortening phase in a frequency that is fivefold higher than in 

cytoplasm (Efimov et al., 2008; Kaverina et al., 1998). The growing microtubules tips 

bend towards the adhesion sites at the cell periphery where they reach to 50nm near 

the ECM, as close as the integrin signaling module (Krylyshkina et al., 2003; Stehbens 

et al., 2014). Frequent microtubule targeting correlates with FA disassembly (Kaverina 

et al., 1999). It was thus initially proposed that microtubules may deliver certain FA 

relaxation factors to promote FA disassembly (Kaverina et al., 1999). Microtubule 
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targeting to FAs participates in all major FA disassembly mechanisms described 

above. 

First of all, microtubules can influence FA dynamics by local modulation of Rho 

GTPase signaling. Global microtubule depolymerization induces rapid RhoA activation 

and high cell contractility, which correlates with FA stabilization (Ren et al., 1999). 

RhoA GTPases are activated by guanine nucleotide exchange factors (GEF). The 

microtubule depolymerization-induced RhoA activation is almost completely mediated 

by GEF-H1 (also known as ArhGEF2) as depletion of GEF-H1 abrogates nocodazole-

induced RhoA activity and cell contractility (Chang et al., 2008; Krendel et al., 2002). 

The inactive GEF-H1 is sequestered by dynein light chain Tctex on microtubules and 

released into the cytosol upon its activation downstream of protein kinase A (PKA) as 

well as G protein coupled receptor signaling (Krendel et al., 2002; Meiri et al., 2012; 

Meiri et al., 2014). Although global microtubule depolymerization completely release 

GEF-H1 into the cytosol, under physiological conditions, GEF-H1 is required for RhoA 

activation at the cell leading edge (Nalbant et al., 2009), suggesting that the GEF-H1 

activity is locally regulated. Therefore, microtubules around FAs may locally regulate 

RhoA activity by sequestering or releasing active GEF-H1. Microtubule targeting can 

also suppress RhoA activity by activating Rac1, a functionally antagonizing GTPase 

of RhoA. Microtubule-associated RacGEF, Tiam 1 and Tiam 2, have been shown to 

activate Rac1 during microtubule regrowth and are required for FA disassembly (Even-

Ram et al., 2007; Rooney et al., 2010).  

Microtubules also control FA dynamics by locally regulating endocytosis and 

exocytosis (Figure 11). Clathrin-mediated endocytosis is initiated by the nucleation of 

FCH domain only 2 (FCHO2) proteins on PtdIns(4,5)P2, followed by cargo selection 

through AP2 and other cargo specific adaptors, subsequently followed by clathrin coat 

assembly and membrane scission through the dynamin GTPase activity (Ezratty et al., 

2009). The observations that AP2, Dab2, Numb, clathrin and dynamin all concentrate 

around FAs after nocodazole treatment suggest that microtubules are not required for 

the delivery of endocytic adaptors to FAs but required to enable integrin internalization. 

This may be due to a microtubule-dependent signaling pathway. For instance, 

microtubule mediates the targeting of MAP4K4 kinase to FAs, where MAP4K4 not only 

promotes talin displacement by Moesin but also promotes integrin internalization 



I n t r o d u c t i o n | 46 

 

through activating Arf6 GTPase (Vitorino et al., 2015; Yue et al., 2014). Besides 

clathrin-dependent integrin endocytosis, caveolae may also mediate integrin 

internalization (del Pozo et al., 2005). Importantly, caveolin-containing vesicles are 

targeted to FAs along microtubules (Wickstrom et al., 2010) (Figure 11). In addition, 

MT1-MMP-containing exocytic carriers travel along microtubules toward FAs (Figure 

11), where the exocyst complex can be recognized and activated by GEF-H1 

(Grigoriev et al., 2007; Pathak et al., 2012). 

Although microtubules frequently target FAs, the interaction is transient and the switch 

between growing and shortening phase is stochastic and not synchronized. Thus, the 

ultimate FA disassembly signal(s) may originate from FAs or actin cytoskeleton and 

microtubule targeting serves as a spatio-temporal cue. Interestingly, mechanically 

loaded FAs resist external force by recruiting GEF-H1 and activating RhoA GTPase 

independent of microtubule stability (Guilluy et al., 2011). Moreover, mechanical force 

stabilizes FAs and stimulates microtubule growth toward FAs at the same time 

(Kaverina et al., 2002). Thus the mechanical state of FAs can override the microtubule-

induced FA disassembly supporting the notion that microtubules regulate but do not 

deliver the ultimate trigger for FA disassembly. 

 

Figure 11. Microtubules target to focal adhesions and influence FA life cycle. The image is 

adapted from (Stehbens and Wittmann, 2012). Microtubule targeting to FAs promotes FA 

disassembly by local exocytosis of metalloprotease MT1-MMP and promoting clathrin-
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mediated integrin endocytosis. Internalized integrins could be recycled back to cell surface. 

ILK-IQGAP1-mDia axis stabilize microtubule around FAs and promote stable insertion of 

caveolin into the plasma membrane. 

 

FAs also reciprocally regulate microtubule dynamics. For instance, ILK, FAK and 

paxillin were shown to be required for microtubule stabilization at cell periphery. ILK 

recruits the IQGAP1-mDia1 complex, which promotes microtubule stabilization at the 

downstream of RhoA signaling likely through the adenomatous polyposis coli (APC) 

complex (Wen et al., 2004; Wickstrom et al., 2010). Moreover, integrin-dependent FAK 

activation is required to couple RhoA with the mDia1-dependent microtubule 

stabilization pathway (Palazzo et al., 2004). Lys-40 acetylation on α tubulin reflects 

stable microtubules, which is mainly catalyzed in vivo by α-tubulin N-acetyltransferase 

1 (ATAT1) and removed by histone deacetylase 6 (HDAC6) (Aguilar et al., 2014; 

Zhang et al., 2003). At the downstream of ILK, myosin phosphatase-targeting subunit 

1 (MYPT1, also known as PPP1R12A) could inhibit both non-muscle myosin II and 

HDAC6 activity, thus coordinating actomyosin with microtubule stability (Joo and 

Yamada, 2014). Paxillin can also inhibit HDAC6 in cell protrusions and promote 

polarized microtubule stabilization (Deakin and Turner, 2014). Moreover, ATAT1 

partially colocalizes with paxillin in FAs and loss of ATAT1 leads to impaired cell 

adhesion and spreading (Aguilar et al., 2014; Montagnac et al., 2013). Interestingly, 

ATAT1 is also recruited to early endocytic sites by AP2 complex (Montagnac et al., 

2013), indicating a correlation between microtubules stabilization in cell protrusions 

and endocytosis-mediated FA disassembly. The mutual regulation between FAs and 

microtubules thus maintains an intricate balance between cellular contractility and 

microtubule stability.  

2.5.7.  Cortical complexes around FAs 

Despite the functional links between FAs and the complex for microtubule targeting, 

the microtubule targeting complex does not penetrate into FAs. Instead, this complex 

clusters on the plasma membrane around FAs. The cortical microtubule targeting 

complex is composed of two groups of proteins: a microtubule guidance module 

containing adenomatous polyposis coli (APC), actin cross-linking family protein 7 

(ACF7) and cytoplasmic linker associated proteins (CLASPs) that guides growing 
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microtubule ends towards the cell periphery and a microtubule anchorage module 

containing liprin-α, liprin-β, ELKS, LL5 that captures the microtubule ends on the cell 

cortex. This complex is also the docking sites for exocytic carrier vesicles. 

APC, ACF7 and CLASPs are recruited to microtubule plus ends by EB1 (Akhmanova 

and Steinmetz, 2008). APC is a large multifunctional adaptor protein initially identified 

as a tumor suppressor frequently mutated in familial and sporadic colon cancer (Aoki 

and Taketo, 2007). Beside its function in regulating the canonical Wnt signaling 

pathway, APC clusters at plus ends of a subset of stable microtubules in cell 

protrusions where it regulates FA assembly and directional cell migration (Matsumoto 

et al., 2010). ACF7 is a spectraplakin family protein that crosslinks microtubule with F-

actin and may guide microtubule growth along F-actin toward FAs (Suozzi et al., 2012). 

Loss of ACF7 leads to disorganized peripheral microtubule bundles and reduced FA 

turnover rates, suggesting that ACF7 is required for microtubule-dependent FA 

disassembly (Wu et al., 2008; Wu et al., 2011). Interestingly, depletion of either 

CLASPs or LL5β with siRNA results in defects in microtubule targeting and large FAs 

resembling the ACF7 knockout (Mimori-Kiyosue et al., 2005; Stehbens et al., 2014). 

GSK3β-mediated phosphorylation of APC, ACF7 and CLASPs negatively control their 

association with EB1 (Etienne-Manneville and Hall, 2003; Kumar et al., 2009; Wu et 

al., 2011). β1 integrin activation in the leading edge of migratory cells leads to local 

activation of Cdc42 GTPase and GSK3β inactivation, which can in turn promote stable 

microtubule anchorage around FAs (Etienne-Manneville and Hall, 2003). 

The microtubule guidance module further links microtubule plus ends with cell cortex 

through a plasma membrane-associated microtubule anchorage complex consisting 

of at least liprin-α, liprin-β, ELKS and LL5 (Astro and de Curtis, 2015).  Four liprin-α 

(1-4) and two liprin-β (1-2) belong to the liprin family scaffold proteins that are 

characterized by an N-terminal coiled-coil domain and C-terminal SAM domain 

repeats. Liprin-α and liprin-β form heterodimers with each other through the SAM 

domain repeats (Wei et al., 2011) and homodimers through the coiled-coil domain 

(Taru and Jin, 2011). Liprin-α recruits multiple signaling and adaptor proteins involved 

in cytoskeletal regulation and vesicle trafficking, including ELKS (Dai et al., 2006; Ko 

et al., 2003a; Ko et al., 2003b; Shin et al., 2003). ELKS family proteins consisting of 

ELKS1 and ELKS2, are coiled-coil proteins with no defined domain structure. ELKS1 
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interacts with Rab6-GTPase and serves as the major docking site for Rab6-containing 

exocytic vesicles (Grigoriev et al., 2007; Ohtsuka et al., 2002). LL5 family proteins, 

LL5α and LL5β, are coiled-coil proteins with a C-terminal PH domain. Importantly, 

LL5β directly interacts with CLASP proteins on microtubule plus ends (Lansbergen et 

al., 2006).  Moreover, LL5β  also interacts with ELKS through the coiled-coil structure 

and PtdIns(3,4,5)P3 on the plasma membrane through the PH domain (Lansbergen et 

al., 2006). The extensive homo- and hetero-dimerization as well as the interaction with 

phospholipids promote the nucleation of liprin-β-liprin-α-ELKS1-LL5β complex on the 

cell cortex. Depletion of either component or inhibition of PI3K-dependent 

PtdIns(3,4,5)P3 synthesis reduces the clustering of the microtubule anchorage 

complex on the cell cortex (Lansbergen et al., 2006). Importantly, although the 

microtubule anchorage complex does not colocalize with FAs, it tends to cluster 

around mature FAs and integrin-mediated adhesion is required for the complex 

nucleation on the basal side of epithelial cells (Hotta et al., 2010). Mechanical force 

has been shown to activate PI3K and promote PtdIns(3,4,5)P3 synthesis, which may 

in turn promote liprin-α-liprin-β-ELKS1-LL5β complex clustering (Rubashkin et al., 

2014). It is not clear whether there is a physical linkage between the cortical 

microtubule anchorage complex and integrins in FAs.  

The internalization of ligand-bound integrins also occurs around FAs. Although most 

endocytic adaptors have uniform distribution across the basal cell cortex, the integrin–

specific cargo selector Numb shows polarized distribution in cell protrusions in close 

vicinity to FAs (Nishimura and Kaibuchi, 2007; Taylor et al., 2011). Similar to the 

microtubule anchorage complex, depletion of Numb interferes with directional 

persistence of cell migration (Nishimura and Kaibuchi, 2007). However, Numb-positive 

endocytic sites and liprin-β1-positive microtubule anchorage sites show mutually 

exclusive localization. Therefore, plasma membrane around FAs seems to be 

specialized into different functional domains.  

2.6. Integrin adhesome analysis 

Large ensemble of proteins, collectively termed ‘integrin adhesome’, are assembled 

into macro-complexes on integrin clusters with defined nano-scale organization and 

molecular stoichiometry (Schiller and Fassler, 2013; Winograd-Katz et al., 2014). Ever 

since the identification of vinculin and talin as the first adhesion adaptors in 1980s, 



I n t r o d u c t i o n | 50 

 

microscopic analysis has been the major driving force for discovery of new adhesome 

components (Geiger and Zaidel-Bar, 2012). By 2006, through data mining of published 

microscopic observations as well as biochemical analysis, Zaidel-Bar et al 

summarized the first adhesome list containing 156 components and 690 interactions 

(Zaidel-Bar et al., 2007).  

With the help of quantitative mass spectrometry and novel adhesion complex isolation 

methods, several labs extended the integrin adhesome list to more than 1000 proteins 

(Humphries et al., 2009; Kuo et al., 2011; Schiller et al., 2011; Schiller et al., 2013). 

Notably however, the degree of overlap between three adhesome analysis are 

unexpectedly low, with less than 100 proteins in common (Geiger and Zaidel-Bar, 

2012). Several reasons could explain the major deviance between these studies. First, 

they used different adhesion complex isolation methods. While Schiller et al. and Kuo 

et al. isolated adhesion from adherent cells seeded on fibronectin coated plastic 

culture dishes with the help of osmotic pressure and hydrodynamic shear force, 

Humphries et al. isolated adhesion complex from suspended cells by incubating them 

with ligand-coated latex beads. Moreover, Schiller et al. and Humphries et al. used 

different chemical crosslinkers to stabilize the integrin adhesion complex. 

Furthermore, different cell types were used to bind integrin ligand for different times in 

these studies. Finally, while both Kuo et al. and Humphries et al. used spectral counts 

for quantification, Schiller et al. used high resolution mass spectrometry combined with 

a label-free quantification algorithm. 

As mentioned before, each adherent cell contains heterogeneous adhesion 

populations due to different mechanical tensions and integrin conformations. Fibrillary 

adhesions assembled on the dorsal side of cells may be removed by the hydrodynamic 

force thus lost in the adhesome analysis. The slip-bond integrin complex may be less 

crosslinked and thus underrepresented (Friedland et al., 2009). The power of 

adhesome analysis is more obvious when adhesion states are synchronized with 

genetic or pharmaceutical manipulations. By inhibiting focal adhesion maturation with 

blebbistatin, Schiller et al. revealed that LIM domain proteins are recruited during FA 

maturation in a tension-dependent manner (Schiller et al., 2011). With similar 

approaches, Kuo et al. discovered that β-PIX protein is enriched in nascent adhesion 

to promote Rac GTPase activation and membrane protrusion (Kuo et al., 2011). 
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Adhesome analysis under the condition of global microtubule depolymerization has 

led to the discovery of MAP4K4 as microtubule-dependent FA relaxation factor (Yue 

et al., 2014). By synchronizing integrin conformation with conformation-specific 

antibodies, Byon, A, et al. showed that microtubules are preferentially attracted to 

active integrins (Byron et al., 2015). 

The strikingly high number of integrin adhesome components is largely due to the 

‘non-canonical adhesome’, including ribosomes, translation initiation factors, and 

heterogeneous nuclear ribonucleoproteins (hnRNPs) (Humphries et al., 2009; 

Humphries et al., 2015; Kuo et al., 2011; Schiller et al., 2011). These observations are 

in line with the proposed function of localized protein translation in cell migration and 

axon guidance. For instance, mRNAs encoding β-actin are transported to cell leading 

edge by RNA binding protein ZBP1, where Src kinase locally activates β-actin mRNA 

translation (Huttelmaier et al., 2005). Forced localization of β-actin mRNA at adhesion 

sites slightly increases adhesion complex stability (Katz et al., 2012). Moreover, 

paxillin was shown to bind multiple hnRNP proteins including hnRNPK to form the 

spreading initiation center (de Hoog et al., 2004). However, many of these non-

canonical adhesome components are highly abundant in cells and belong to the 

category of CRAPome (contaminant repository for affinity purification) (Mellacheruvu 

et al., 2013). Their over-representation may be due to high abundance and unspecific 

binding or crosslinking. For instance, hnRNPK is among the most frequently detected 

proteins in all affinity-purified samples, suggesting its high propensity to participate in 

non-specific interaction in biochemical purification procedures (Mellacheruvu et al., 

2013). The apparent adhesion-dependent enrichment of these RNA binding proteins 

may be due to nuclear export induced by integrin signaling (e.g. ERK kinase) 

(Habelhah et al., 2001). One possible improvement of adhesome analysis is to quantify 

relative enrichment of individual proteins in isolated adhesion complex after 

normalizing their levels in FA fraction against total cell expression levels.  

In summary, although recent advances in quantitative mass spectrometry have greatly 

facilitated the comprehensive profiling of the integrin adhesome, conventional cell 

biology approaches are still indispensable to validate each candidate. Furthermore, it 

remains to be a challenging task to understand the self-assembly logic of various 

adhesion structures and how they interact with other cellular components.  
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2.7. Kank family proteins 

Kank family proteins are evolutionarily conserved from C.elegans to humans. KANK 

stands for ‘KN motif and ankyrin repeat domains’ due to the presence of a unique and 

evolutionarily conserved N-terminal KN motif and C-terminal ankyrin repeats or ‘kidney 

ankyrin repeat-containing protein’ due to its initial identification in kidney tissue and 

kidney-derived cell lines.  

The founding member of Kank family proteins, Kank1, was initially identified as 

candidate tumor suppressor in a screening for loss of heterozygosity in renal 

carcinoma cell lines (Sarkar et al., 2002). Consistently, overexpression of Kank1 is 

sufficient to induce cell cycle arrest and apoptosis in glioma cell lines in vitro (Guo et 

al., 2014). Homology searching in human genome revealed the presence of three 

more family members termed Kank2, Kank3 and Kank4 (Kakinuma et al., 2009). As 

indicated above, the hall mark of this Kank family is the presence of a unique KN motif 

at the N-terminus and five ankyrin repeats at the C-terminus (Figure 12). Another well 

conserved structural element is the coiled-coil domain in the central region of the 

protein (Figure 12). However, this coiled-coil domain is lost in Kank4 (Kakinuma et al., 

2009). Due to their high structural similarity, Kank family proteins most likely have 

overlapping and redundant functions. 

 

Figure 12. Domain organization of mammalian Kank family proteins. Evolutionarily conserved 

domains are indicated. KN motif locates at the N-terminus of the protein (Red). Several coiled-

coil domains (green) locate in the central part of the proteins with the first coiled-coil domain to 

be the most conserved during evolution. All Kank family proteins contain five ankyrin repeats 

(black) at the C-terminus. Picture is adapted from (Kakinuma et al., 2009) 
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Several rare human genetic diseases have been linked to mutations and deletions in 

Kank family gene locus. The genomic deletion of Kank1 gene locus has been 

associated with a neurodegenerative disease similar to cerebral palsy (type 2 spastic 

quadriplegic cerebral palsy) (Lerer et al., 2005). Moreover, p.Ala670Val mutation in 

Kank2 has been linked to Naxos and Carvajal syndrome characterized by 

keratoderma and woolly hair phenotypes (Ramot et al., 2014). Recently, several 

mutations in Kank1 (p.E454K), Kank2 (p.S181G and p.S684F) and Kank4 (p.Y801H) 

are linked with nephrotic syndromes including minimal change kidney disease and 

focal segmental glomerulosclerosis (Gee et al., 2015). p.Y801H mutation in Kank4 

may also result in facial dysmorphism, intellectual disability, dilated cardiomyopathy, 

atrial septal defect and leukocytosis (Gee et al., 2015). Interestingly, Kank2 

knockdown in zebrafish also results nephrotic syndrome-like phenotypes 

characterized by proteinuria and podocyte foot process effacement. Interestingly, it is 

known that both dysregulated RhoA GTPase and defects in integrin-mediated 

podocytes adhesion also lead to nephrotic syndromes (Gee et al., 2013; Tian et al., 

2014). Kank2 forms a complex with RhoGDIα and siRNA knockdown of Kank1 or 

Kank2 upregulate active RhoA GTPase activity in podocytes.  

Although identified as disease-related proteins in humans, much of our knowledge of 

Kank family genes’ in vivo function is based on the studies in C.elegans. Unlike high 

vertebrates, C.elegans has only one Kank homologue, called VAB-19. VAB-19 was 

found to localize at muscle-epidermal attachment sites in a myotactin-dependent 

manner. Both the KN motif and the conserved coiled-coil domain are required for this 

localization. The epidermal elongation during C.elegans embryo development requires 

coordinated actomyosin-mediated lateral epidermal cell shape change as well as a 

stable muscle-epidermal linkage. VAB-19 mutants are defective in epidermal 

elongation and muscle attachment to the epidermis, which leads to developmental 

arrest and subsequent embryonic lethality (Ding et al., 2003). Notably, aberrant actin 

cytoskeleton organization was also observed in VAB-19 mutants (Ding et al., 2003). 

VAB-19 may regulate the actin cytoskeleton organization in the epidermis through 

binding to Eps8, an actin bundling and capping protein whose mutation also leads to 

epidermal elongation defects in C.elegans (Ding et al., 2008). Interestingly, the 

embryonic lethal phenotype could be largely rescued with an α-spectrin null mutant, 

suggesting that VAB-19 may regulate cell cortex organization.  
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Other genetic studies in C.elegans suggested that VAB-19 may be a general stabilizer 

of the muscle-epidermal attachment due to the synthetic lethality between conditional 

VAB-19 mutant allele with other mutants that affect basement membrane components 

or ECM receptor (Zahreddine et al., 2010). Moreover, like UNC-97 (PINCH 

homologue) and UNC-112 (Kindlin homologue), VAB-19 also regulates directional 

HSN (hermaphrodite specific motor neurons) axon outgrowth towards netrin (Yang et 

al., 2014b).  

Definitive evidence for an involvement of VAB-19 in integrin-mediated cell adhesion 

came from the study of basement membrane remodeling during uterine-vulval 

attachment. During the mid-L3 larval stage in C.elegans, the ventral uterine and vulval-

precursor cells are separated by basement membranes. A specialized gonadal cell 

called anchor cell initially breaches the basement membranes by locally degrading the 

basement membrane through metalloproteinase. Later, to complete the attachment 

between neighboring uterine and vulval tissue, the initial basement membrane gap is 

widened due to basement membrane sliding. It was noticed that VAB-19 and the 

C.elegans integrin homologue INA/PAT-3 cooperate to stabilize the basement 

membrane gap (Ihara et al., 2011). Furthermore, cell cycle arrest, laminin deposition, 

and increased integrin levels in non-dividing vulval cells are also essential to stabilize 

the basement membrane gap (Matus et al., 2014).  

Using zebrafish as model organism, it was demonstrated that Kank3 localizes to cell-

cell and cell basement membrane adhesions where it controls cell adhesion and 

convergence and extension movements during gastrulation and neural tube closure. 

Knockdown of Kank3 in zebrafish resulted in embryonic epidermal detachment with 

various penetrance, further supporting a functional link between Kank and integrin 

(Boggetti et al., 2012). Interestingly, zebrafish Kank3 uses a conserved NGGY motif 

to interact with the PTB domain of Numb. Double knockdown of both Kank3 and Numb 

leads to more severe phenotypes than single gene knockdown (Boggetti et al., 2012). 

Thus, Kank3 may coordinate integrin adhesion with endocytic trafficking. 

The D.melanogaster contains only one Kank homolog (dKank) which is encoded by 

the gene CG10249. dKank has been shown to localize to mature muscle-tendon 

attachment sites and to bind the microtubule plus end protein EB1 (Clohisey et al., 

2014). However, this EB1 binding site is not evolutionarily conserved and is not 
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present in other Kank family members. Although complete deletion of dKank does not 

lead to severe developmental defects, knockdown of dKank leads to defects in 

pericardial nephrocyte function (Gee et al., 2015; Zhang et al., 2013) and altered 

neuron morphology (Sepp et al., 2008).  

At the cellular level, Kank family proteins regulate both actin and microtubule 

cytoskeleton architecture. Kank1 has been shown to inhibit cell spreading on 

fibronectin through binding to IRSp53. IRSp53 is a downstream effector protein of both 

Rac1 and Cdc42 during lamellipodia and filopodia formation respectively (Scita et al., 

2008). Kank1 inhibits the association between IRSp53 and Rac1 but not with Cdc42. 

Consequently, Kank1 could suppress Rac1-dependent lamellipodia formation and 

thereby promote Cdc42-induced filopodia formation (Roy et al., 2009). Notably, 

IRSp53 forms a functional complex with Eps8 to promote F-actin bundling (Kast et al., 

2014), suggesting that IRSp53, Eps8 and Kank1 may form a tertiary complex to 

regulate filopodia formation. Moreover, Kank1 in mammalian cells also blocks RhoA 

activation induced by insulin signaling. Although the exact molecular mechanism 

remains elusive, Akt-dependent phosphorylation of the flexible loop before the central 

coiled-coil domain and subsequent recruitment of 14-3-3 seem to be involved 

(Kakinuma et al., 2008). Moreover, it was suggested that Kank1 regulates RhoA 

activity by interacting with deleted in liver cancer 1 (DLC1), a talin-binding RhoGAP 

(Kakinuma et al., 2008). Accordingly, all Kank family members in mammalian cells 

could antagonize stress fiber formation likely through attenuating RhoA activity (Zhu 

et al., 2008b).  
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Figure 13. Summary of known Kank (red) interacting protein complexes (blue) and their 

association with integrins (red). Cellular processes controlled by individual complex proposed 

in literatures are highlighted in green boxes. 

 

A recent paper reported that Kank1 can form a complex with liprin-β1 via its conserved 

coiled-coil region and kinesin 21a (KIF21a) via its ankyrin repeats (van der Vaart et 

al., 2013). These interactions are conserved during evolution as they are also detected 

in flies (Guruharsha et al., 2011). Interestingly, this tertiary complex could inhibit 

microtubule plus end outgrowth at the periphery of cell cortex (van der Vaart et al., 

2013). Consistently, depletion of Kank1 through siRNA resulted in aberrant 

microtubule bundles at cell periphery in Hela cells resembling the ACF7 knockout and 

leading to abnormal axon morphology in neurons (Li et al., 2011a; van der Vaart et al., 

2013). Interestingly, a KIF21a mutation causing congenital fibrosis of the extraocular 

muscles type 1 (CFEOM1) disease characterized by abnormal oculomotor nerve 

migration was shown to result in a constitutive active KIF21a that concomitantly 

enhanced Kank1 recruitment to the plasma membrane, suggesting that Kank1 may 

be involved in the disease development (Cheng et al., 2014; Kakinuma and Kiyama, 

2009). A role of Kank1 in neuronal migration may also be the underlying mechanism 
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of type 2 spastic quadriplegic cerebral palsy. Notably, mRNP particles containing 

Kank2 mRNA were shown to be transported to the filopodia tips where they associate 

with APC on stabilized microtubules (Mili et al., 2008). Thus, microtubules may control 

localized translation of Kank2 proteins in cell protrusions.  

Besides cytoskeletal functions, Kank family proteins also participate in the 

transcriptional regulation. For instance, Kank2 sequesters steroid receptor 

coactivators (SRC1-5) in the cytoplasm to dampen the transcriptional response of 

estrogen and vitamin D receptors (Ramot et al., 2014; Zhang et al., 2007). Moreover, 

Kank1 may regulate β-catenin signaling by escorting it into nuclei (Wang et al., 2006). 

In summary, despite accumulating evidences suggesting that Kank family proteins 

may coordinate the actin and microtubule cytoskeleton architecture, how these 

processes are linked to integrin based-adhesion by Kank proteins needs further 

investigations. 
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3. Aim of the thesis 

As introduced above, quantitative mass spectrometry analysis have greatly expanded 

the inventory of integrin-based adhesomes and linked FAs to some non-canonical 

adhesion functions (e.g. protein translation, RNA splicing, etc.). However, since the 

previous approaches are potentially biased by the total protein abundance, the 

specificity of the adhesome analysis remains questionable.  

Thus, the 1st aim of my PhD study was to develop an integrative, quantitative and 

abundance-independent description of protein enrichment in FAs and recruitment to 

integrin tail complexes. Based upon this analysis, we have identified many novel 

adhesion proteins, one of which is Kank2. 

Numerous reports in the literature indicated that Kank proteins play important role in 

integrin-mediated adhesion and migration. As 2nd aim of my PhD study, I combined 

cell biology and biochemistry to gain mechanistic insights into the functions of Kank 

proteins during integrin-mediated processes. Our data establish Kank family proteins 

as a novel type of talin activator. 

Kank family genes have been implicated in rare congenital human diseases including 

cerebral palsy, nephrotic syndrome, keratoderma and renal tumors. The 3rd aim of my 

PhD study is to generate Kank1 and Kank2 conditional knockout mice in order to study 

their in vivo functions. The phenotype analysis is ongoing and thus not included in the 

manuscripts that are summarized below. 
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4. Short summary of manuscripts 

4.1. Kank family proteins comprise a novel type of talin activator 

Zhiqi Sun, Hui-Yuan Tseng, Sally J. Deeb, Dirk Dedden, Maik Veelders, Naoko 

Mizuno, Matthias Mann, Reinhard Fässler (Manuscript in preparation) 

In this manuscript, we developed an integrative adhesome analysis by combining a 

focal adhesion enrichment index with integrin tail interactome to identify novel FA 

proteins. Using this approach we identified the evolutionarily conserved Kank protein 

family as novel FA proteins. Interestingly, Kank2 concentrates at the lateral border of 

FAs (which we term the FA belt), a previously unrecognized FA sub-compartment. 

Mechanistically, Kank directly binds the talin R7 domain through its evolutionarily 

conserved KN motif and promotes talin activation in a force- and F-actin-independent 

manner. Consequently, Kank2 induces and/or maintains the formation of active 

integrins at sites deprived of actomyosin coupling. Our data identify Kank family 

proteins as novel type of talin activator, which specifically stabilize integrin-talin 

complexes that are uncoupled from the actomyosin system.  

4.2. β1- and αv-class integrins cooperate to regulate myosin II 

during rigidity sensing of fibronectin-based microenvironments 

Schiller HB, Hermann MR, Polleux J, Vignaud T, Zanivan S, Friedel CC, Sun Z, 

Raducanu A, Gottschalk KE, Théry M, Mann M, Fässler R. Nat Cell Biol 2013, 15, 

625. 

At the beginning of my PhD study, I supported Dr. Herbert Schiller in his analysis of 

integrin subtype specific signaling. In this study, β1- and αV-class integrins were 

expressed in integrin-null fibroblasts. Notably, while α5β1-class integrins promote NA 

formation and cell protrusions, αV-class integrins induce the formation of large FAs 

Combining functional assays with adhesome and phosphoproteome analyses, we 

found that β1- and αV-class integrins differentially activate and couple RhoA to 

downstream effectors. While α5β1 integrins induce a RhoA-Rock-myosin II pathway, 

αv-class integrins couple RhoA to the formin mDia1 but not myosin II. Moreover, αv-

class integrins recuit GEF-H1 to activate RhoA in FAs. Optimal mechano-sensing is 

achieved by the synergistic effects of both integrin classes in fibroblasts. This study 

assigns specific functions to distinct fibronectin-binding integrins. My major 
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contribution to this project is to analyze the RhoA and Rac1 activities and perform 

GEF-H1 knockdown experiments. 

4.3. A firm grip does not always pay off: a new Phact(r) 4 integrin 

signaling 

Sun Z, Fässler R. Gene Dev 2012, 26, 1-5. 

Hirschsprung disease is a congenital disorder of the distal colon due to the absence 

of the enteric nervous system. The lack of enteric neurons can be caused by impaired 

proliferation, differentiation, or migration of enteric neural crest cells into the distal 

colon and rectum. β1 integrin plays a critical role in enteric neural crest cell migration. 

Too much or too low β1 integrin signaling can lead to enteric neural crest cell migration 

defects and hence Hirschsprung disease-like phenotypes. During my PhD study, I 

wrote a perspective for Genes & Development with my PhD supervisor summarizing 

the current understanding of β1 integrin signaling during enteric neural crest cell 

migration.  

4.4. Nascent Adhesions: From Fluctuations to a Hierarchical 

Organization 

Sun Z, Lambacher A, Fässler R. Curr Biol 2014, 24, R801-R803. 

Integrins assemble a complex network of proteins termed adhesome at cell–matrix 

adhesion sites. The large inventory of proteins makes it an intimidating task to 

comprehend the underlying logic of their assembly. In this short dispatch, we 

commented on a recent attempt by Bachir et al. In their paper, Bachir et al. used 

fluorescence correlation microscopy to measure the spatial and temporal regulation of 

complex stoichiometry during assembly and stabilization of NAs. This work suggested 

a new model of NA assembly: kindlin-2 binds to β1 integrin and induces the high-

affinity state of α5β1; α-actinin promotes β1 integrin clustering and sets up a transient 

connection between the integrin cluster and the actin cytoskeleton; talin subsequently 

replaces α-actinin and establishes a more stable integrin–actin linkage with the help 

of vinculin. 
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Abstract 
We developed an integrative adhesome analysis by combining a focal adhesion 

enrichment index with integrin tail interactome to identify novel FA proteins. Using this 

approach we identified the evolutionarily conserved Kank protein family as novel FA 

proteins. Interestingly, Kank2 concentrates at the lateral border of FAs (which we term the 

FA belt), a previously unrecognized FA sub-compartment. Mechanistically, Kank directly 

binds the talin R7 domain through its evolutionarily conserved KN motif and promotes talin 

activation in a force- and F-actin-independent manner. Consequently, Kank2 induces 

and/or maintains the formation of active integrins and destabilizes talin-actin connection. 

Our data identify Kank family proteins as novel type of talin activator, which specifically 

stabilize integrin-talin complexes that are uncoupled from the actomyosin system. 

  



Introduction 
Mesenchymal migration relies on integrin receptors, a large family of α/β heterodimers 

that couple the extracellular matrix (ECM) to the actin cytoskeleton 1. To allow cell 

adhesion and migration, integrins have to be activated. Integrin activation is characterized 

by shifting the unbound form of the integrin from a low to a high affinity conformation 

followed by ligand binding 2. Ligand bound integrins then cluster and assemble a 

mechano-sensitive macro-protein complex (called the adhesome) around their 

cytoplasmic domains 3, 4. The initial adhesion complex are small, short-lived nascent 

adhesions (NAs) formed at the periphery of cell protrusions. A limited number of NAs 

subsequently couple to F-actin and actomyosin-mediated pulling forces reinforce the 

integrin-ligand interaction and promote the recruitment of more proteins to form large, 

mature focal adhesions (FAs). The dynamic engagement between integrin and 

actomyosin serves as a molecular clutch that promotes both forward membrane protrusion 

and rearward traction force to drive cell migration 5. 

Talin and kindlin directly bind to β integrin cytoplasmic tails and play key roles in integrin 

activation and coupling to actin 6. Talin is a large, ~270 kD protein composed of an N-

terminal FERM (protein 4.1, ezrin, radixin, moesin) domain, also called talin head domain 

(THD), and a long C-terminal rod domain consisting of 13 helical bundles (R1-R13 

domains). The THD is divided into four subdomains (F0, F1, F2, F3). The F3 subdomain 

of the THD binds β integrin tails and negatively charged lipids on the plasma membrane, 

and mediates integrin activation. The rod domain contains two F-actin binding sites, 

several binding sites for RIAM, numerous binding sites for vinculin and a dimerization 

domain at the extreme C-terminus 7. The F-actin binding through talin rod couples the 

integrin/talin complexes to actomyosin, which is required for adhesion re-enforcement and 

rigidity sensing. 

Talin cycles between plasma membrane, where it activates integrins, and cytosol, where 

it adopts an auto-inhibited form, presumably as a compact globular dimer 8 with an 

intramolecular interaction between the F3 subdomain and the R9 domain 9, 10. Since this 

interaction masks the integrin binding site, talin requires an activation step that disrupts 

the auto-inhibitory head-rod interaction. A prime candidate for talin activation is the Rap1 

effector protein RIAM (Rap1–GTP-interacting adapter molecule), which binds the R8 

helical bundle 11, relieves the autoinhibitory interaction and recruits talin to the plasma 

membrane 12, 13. A second, potential talin activator is PtdIns(4,5)P2 
10. A splice isoform of 

phosphatidylinositol 4-phosphate 5-kinase type Iγ (PIPKIγ90) locally synthesizes 



PtdIns(4,5)P2 upon recruitment to FAs through direct binding to talin F3 subdomain 14. 

Finally, the actin retrograde flow was shown to induce the high affinity state of αLβ2 (LFA-

1) on T cells 15, although it is not clear whether talin is the target of the actin flow. However, 

it is clear from genetic studies that talin activation is a highly redundant process, as neither 

RIAM- nor PIPKIγ90-deficient mice have apparent phenotypes 16, 17. 

In the present paper we developed a FA enrichment index to identify novel FA proteins 

through high-resolution quantitative mass spectrometry (MS). We identified the 

evolutionarily conserved Kank protein family as novel FA proteins. Kank family proteins 

consist of 4 members (Kank1-4) characterized by an N-terminal Kank (KN) motif, several 

central coil-coil domains and C-terminal ankyrin repeats 18. Kank1 was shown to restrict 

microtubule outgrowth at cell cortex by recruiting Kif21a to liprin β1 19. Overexpressed 

Kank proteins inhibit stress fiber formation and migration probably by downregulating 

RhoA 20. A single Kank ortholog in C.elegans, called VAB19, controls epidermis-muscle 

attachment 21, neuronal migration 22 and basement membrane sliding during vulval 

morphogenesis 23. The Kank3 knockdown in zebrafish leads to epidermal detachment 24. 

We found that Kank localizes to the outer border of FAs (which we term the FA belt) and 

to central fibrillar adhesion, and induces and/or maintains the formation of active integrins 

at sites lacking actomyosin coupling. Mechanistically, Kank directly binds the talin R7 

domain through its evolutionarily conserved KN motif and promotes talin activation in a 

force- and F-actin-independent manner. Our data identify Kank as novel talin activator, 

which specifically stabilizes integrin-talin complex that are uncoupled from the actomyosin 

system. 

  



Results 
Kank is a novel FA protein 
To identify highly enriched proteins in integrin adhesion sites, we seeded mouse kidney-

derived fibroblasts for 3 hours on FN, isolated whole cell lysates and the crosslinked FA 

fraction and quantified their proteome using high-resolution mass spectrometry combined 

with the label free protein quantification algorithm (MaxLFQ) (suppl. Fig. 1a). We identified 

7954 proteins in the total proteome and 2378 proteins in the corresponding FA-enriched 

protein fractions. Proteins that were highly abundant in the total proteome were over-

represented in the FA-enriched subproteome (suppl. Fig. 1b) pointing to an abundance-

dependent unspecific enrichment. We used the false discovery rate (FDR) controlled 2D 

annotation enrichment algorithm to systematically compare the relative abundance of 

functional categories between the total proteome and the FA-enriched subproteome and 

found that proteins involved in cell adhesion including the known adhesome proteins as 

well as ECM components were strongly enriched in the FA-enriched subproteome, while 

proteins from intracellular organelles and cytosol such as the endoplasmic reticulum, 

mitochondria, proteasome were significantly underrepresented in the FA-enriched protein 

fraction (suppl. Fig. 1c). To identify true FA proteins, we determined the enrichment for 

each protein of the FA fraction relative to the total proteome abundance (FA enrichment 

index; FAEI) by calculating ratios of MS-intensity in the FA-enriched subproteome and the 

total proteome (n=2378; Table S1, suppl. Fig. 1a). The FAEI fits a typical Gaussian 

distribution (Fig. 1a) with a correlation coefficient of R2 >0.98. Among the proteins in the 

upper 10% quartile of the FAEI distribution (Table S1), were several novel proteins that 

have been shown to regulate potentially integrin-regulated processes such as cell 

adhesion or migration. They include the Kank family member Kank2 (Fig. 1a), three 

kinases (Csnk1a1, Taok1 and CDK11b) and two phosphatases (Ptp4a2 and Ppp1cc, 

Table S1). 

To identify novel adhesome proteins that associate with β1 integrin tails, we overlaid the 

FAEI with MS results of β1 integrin tail peptide pulldowns from whole cell lysate. Several 

known FA proteins enriched with β1 tail peptide pulldown including talin, kindlin and the 

members of the IPP complex showed high FAEI scores. Proteins such as Dab2 25, known 

to bind β1 tails during endocytosis, or SNX17 26, known to bind β1 tails in the endosomal 

compartment displayed a low FAEI score. Interestingly, Kank2 was among the proteins 

that showed a high FAEI score and strong β1 tail binding (Fig. 1a, b). Unlike kindlin2 or c-

Src, which preferentially bind β1 and β3 integrin tails respectively, Kank2 bound β1 and 



β3 tails with similar efficiencies (Fig. 1c). Immunostaining with polyclonal anti-Kank2 

antibodies revealed Kank2-positive puncta closely attached to mature FAs (Fig.1d arrow 

heads). The nuclear signal is likely unspecific, as it remained in Kank2-depleted cells (data 

not shown). Interestingly, Kank2-specific immunostaining signals were absent from small 

NAs. The absence of Kank2 from NAs was confirmed by inhibiting myosin-II with 

blebbistatin. While blebbistatin-treated cells showed no Kank2 co-localisation with paxillin 

in NAs at protruding cell membranes (Fig. 1d), Kank2 and paxillin overlapped in thin and 

long trailing tails (Fig. 1d). Using line intensity profile measurements we observed that 

endogenous Kank2 puncta peaked at the outer border of FAs (termed FA belt) where 

conventional FA proteins including talin, kindlin-2, ILK, paxillin and vinculin showed ~50% 

of their plateau intensity (Fig. 1e-g). 

To test whether the localisation of Kank2 to the FA belt depends on the presence of a 

specific FN-binding integrin class, we overexpressed Kank2-GFP in cells expressing α5β1 

and/or αvβ3 and αvβ5 integrins 27, seeded them on FN and determined Kank2 localisation. 

The experiments revealed that overexrpessed Kank2-GFP localized to the FA belt in β1 

as well as αv-class integrin expressing fibroblasts (suppl. Fig 1d), indicating that FA belt 

localization of Kank2 is integrin class-independent. 

Kank is targeted to FAs via the KN motif 
To determine the protein domain(s) of Kank2 that is(are) responsible for Kank2 

recruitment to FA belt, we generated GFP-tagged Kank2 expression constructs lacking 

evolutionarily conserved domains (Fig. 2a): the Kank2∆KN-GFP lacked the Kank (KN) 

motif; the Kank2∆Coil-GFP lacked the liprin-binding coiled-coil domain; the Kank2(1-670)-

GFP lacked the Kif21a-binding C-terminal ankyrin repeats; and the Kank2∆KN∆Coil-GFP 

lacked the KN and coil-coil domains. The constructs were stably transduced into FN-

cultured, Kank2-depleted cells (Fig. 2b), and immunostained for paxillin and for F-actin 

with phalloidin. Similar to endogenous Kank2, full length Kank2-GFP localized to the belt 

of paxillin-positive FAs and to fibrillar adhesions. In sharp contrast, Kank2∆KN-GFP did 

not concentrate on FA belts and fibrillar adhesion but accumulated outside FAs (Fig. 2c-

e) co-localizing with liprin β1 (suppl. Fig. 2a). Kank2∆Coil-GFP and Kank2(1-670)-GFP 

localized to FA belts and to fibrillar adhesions (Fig. 2c-e), indicating that liprin β1 or Kif21a 

are not required for FA belt localization of Kank2. Interestingly however, Kank2 could 

recruit liprin-β1 to FA belt through the coiled-coil domain (suppl. Fig.2a). Kank2∆KN∆Coil-

GFP was diffusely distributed throughout the cytosol (Fig. 2c). To test whether the KN 



motif alone is sufficient for FA belt localization, we transduced Kank2-depleted cells with 

a GFP-tagged KN construct and found a complete overlap of GFP with paxillin (Fig. 2c). 

These findings indicate (i) that the KN motif is essential to localize Kank2 to FA belts and 

fibrillar adhesions, (ii) that neither the coil-coil nor the ankyrin repeats are required for 

Kank2 targeting to the FA belt or exclusion from the FA center, and (iii) that the KN motif 

peptide is not sufficient to restrict Kank2 localisation to the FA belt. 

To test whether the Kank2-KN motif associates with β1 integrin cytoplasmic tails, we 

performed β1 tail pull downs with lysates from Kank2-depleted cells expressing the GFP-

tagged Kank2 expression constructs (Fig. 2a,b) and found that Kank2-GFP and KN-GFP 

but not GFP or Kank2∆KN-GFP associated with β1 integrin tail peptides (Fig. 2f,g). In line 

with the high sequence conservation of the KN motifs from Kank1-4, the GFP-tagged KN 

motifs from Kank1, Kank3 and Kank4 localized to paxillin-positive FAs (suppl. Fig. 2b). 

Interestingly, when expressed at similar levels as judge by GFP intensity, Kank1-GFP and 

Kank3-GFP localized to FA belts, while Kank4-GFP did not show a clear FA belt 

localization, probably due to its additional diffused localization in the cytoplasm (suppl. 

Fig. 2c).  

The talin rod binds the KN motif of Kank2 
Pull down experiments of Kank2 with different wild type and mutant integrin tail peptides 

from wild type fibroblast lysates revealed that β2 integrin tails had the highest affinity for 

Kank2, β1 tails an intermediate affinity and β5 tails the lowest affinity (Fig. 3a). 

Interestingly, the binding profile of Kank2 overlapped with that of talin but not kindlin-2 

(Fig. 3a), suggesting that talin and Kank2 are co-recruited to integrin tails. In line with this 

hypothesis, β1 tails, in which the tyrosine-783 was substituted with alanine (β1-Y783A), 

neither pulled down Kank2 nor talin, but still kindlin-2 (Fig. 3a). To identify novel Kank2 

interacting proteins, we expressed GFP alone or GFP-tagged Kank2 in fibroblasts, 

performed GFP pull-downs and determined their interactors by MS. In line with a previous 

report, we identified liprin β1 as a binding partner of Kank2 19. Furthermore, talin-1 and 

two dynein light chain isoforms (Dynll1/LC8a and Dynll2/LC8b) were also among Kank2 

interacting proteins (Fig. 3b). Strikingly, while β1 integrin tails specifically recruited talin 

and Kank2 in tyrosine 783-dependent manner, deletion of talin-1 and talin-2 genes in 

fibroblasts completely abolished Kank2 recruitment to β1 integrin tails (Fig. 3c), indicating 

that Kank2 recruitment to integrin tails is indeed talin-dependent. To test whether Kank2 

forms a complex with talin through the KN motif, we performed GST pull downs with 



recombinant GST-KN motif and recombinant talin head domain (THD) or full length talin-

1 (suppl. Fig. 3a). These experiments revealed that the GST-KN motif efficiently pulled 

down full length talin-1 but not the THD (Fig. 3d) indicating that Kank2 is recruited to β 

integrin tails through a direct interaction between the KN motif and the talin rod. 

Fluorescence correlation microscopy measurements revealed a binding affinity of 230±70 

nM (mean ± error represents 95% confidence interval) between recombinant full length 

talin and fluorescently labelled KN peptide (suppl. Fig. 3b). To further narrow down the 

KN-binding site on the talin rod we expressed different GFP-tagged Talin rod domains in 

fibroblasts, prepared cell lysates, incubated the cell lysates with the recombinant GST-KN 

motif and immunoprecipitated protein complexes with anti-GFP antibodies. The 

experiments revealed that the R7R8 domains of the talin rod bind the GST-KN motif 

(suppl. Fig. 3c). Altogether these findings show that the KN motif of Kank2 can directly 

bind the R7R8 domains of Talin. 

Kank2 induces Talin and β1 integrin activation 
The R7R8 domains were shown to bind RIAM, actin and vinculin 28, all of which can induce 

and/or maintain the active, integrin binding state of talin. Therefore, we tested whether 

Kank2 binding to the R7R8 domains also controls talin-integrin interactions. First, we 

incubated normal fibroblast cell lysates with bacterially expressed, recombinant GST-KN 

polypeptides or chemically synthesized KN peptides and subsequently performed β1 

integrin tail pulldowns. The experiments revealed that GST-KN as well as the synthesized 

KN peptide efficiently displaced endogenous Kank2 from β1 integrin tail peptides and 

strongly increased talin binding but affected neither kindlin2 nor Dab2 binding (Fig. 4a; 

suppl. Fig. 4a-d). Second, we depleted Kank2 using specific shRNA and found that Kank2 

depletion decreased binding of endogenous talin to β1 integrin tail peptides by ~30% (Fig. 

4b), while overexpression of full length Kank2-GFP but not Kank2∆KN-GFP increased 

talin binding to β1 integrin tails in a dose-dependent manner (suppl. Fig. 4e, f). Third, we 

incubated equal molar (10nM) recombinant full length talin protein with either GST-KN or 

GST and performed integrin tail peptide pulldown assays in vitro. We observed that the 

GST-KN protein but not GST significantly increased talin binding to β1 integrin tails and 

that GST-KN was co-recruited with talin to β1 integrin tail (Fig. 4c). Finally, co-expression 

of talin-GFP with Cherry-tagged Kank2, Kank2∆KN and Kank2-KN in Kank2-depleted 

fibroblasts revealed that Kank2 as well as Kank2-KN enhanced localization of talin-GFP 

to kindlin2-positive adhesion sites, while Kank2∆KN or Cherry left talin-1-GFP to a large 



extent in the cytosol (Fig. 4d,e). These findings clearly indicate that Kank2 induces and/or 

maintains talin binding to integrin β tails through the KN motif. 

Since the activation of talin is a pre-requisite for integrin activation we next tested whether 

Kank2 regulates integrin activation. To this end, we overexpressed Kank2-GFP, 

Kank2∆KN-GFP, KN-GFP or GFP in fibroblasts, seeded them on FN and immunostained 

them with the activation epitope reporting antibody 9EG7. We found that overexpressed 

Kank2-GFP or KN-GFP co-localized with 9EG7-positive β1 integrins and increased active 

β1 integrin clusters in the central cell area, while overexpression of Kank2∆KN-GFP had 

no influence on the active integrin clusters at the ventral cell cortex compared with GFP 

alone (Fig.4f,g).  

 

Kank2 regulates Talin turnover, adhesion remodeling and cell 
migration 
It has been shown that overexpression of Kank2 proteins suppressed stress fiber 

formation 18. We next co-stained 9EG7 epitope with phalloidin in cell expressing GFP or 

Kank2-GFP. We noticed that Kank2-GFP strongly co-localized with active integrin clusters 

that were apparently not linked with thick stress fibers (suppl. Fig.5a). While Kank2-GFP 

overexpression consistently increased active β1 integrin clusters, the phalloidin-stained F-

actin in 9EG7-positive area is significantly reduced (suppl. Fig.5b, c), suggesting that 

Kank2 may dislodged F-actin from talin. It has been has been shown that talin binding to 

F-actin plays the dominant role in immobilizing talin within adhesion sites 29, 30. To test 

whether Kank2 regulates talin turnover, we performed fluorescence recovery after 

photobleaching (FRAP) in central adhesion sites of Kank-2-deplted fibroblasts expressing 

Kank2-mCherry, Kank2∆KN-mCherry, KN-mCherry or mCherry alone. While neither 

Kank2∆KN, nor the KN motif alone affected the mobile fraction of talin in comparison with 

mCherry control, expression of full length Kank2 increased the mobile fraction of Talin 

from 63.8±9.0% to 92.4±7.5% (Fig. 5a-c) suggesting that talin is almost completely 

decoupled from F-actin by full length Kank2. Interestingly, however, when we calculated 

the recovery rates of talin-GFP by measuring κ (1/τ1/2) we noticed that full length Kank2 

but not Kank2∆KN reduced the recovery rates of Talin by ~50% (Fig.5b,d), which indicates 

that Talin associated with Kank2 undergoes a more stable association to β integrin tails. 

While the KN motif alone did not change the mobile fraction of Talin in adhesion sites, it 

reduced Talin recovery rates in comparison to mCherry, although not to the same extent 

as full length Kank2 (Fig. 5d). 



Next we examined whether Kank2-induced talin turnover changes adhesion dynamics. To 

this end, we expressed talin-TagRFP in Kank2-depleted cells rescued with either Kank2-

GFP or Kank2∆KN-GFP and imaged individual adhesion sites over a period of 10 min. In 

Kank2 expressing cells, talin- TagRFP-positive central adhesions underwent rapid lateral 

sliding movements and shape remodeling (Fig. 5e; suppl. Movie 1). In sharp contrast, in 

cells expressing Kank2∆KN, talin-TagRFP-positive central adhesions remained largely 

immobile before disassembly (Fig. 5e; suppl. Movie 2). As revealed in color-overlaid time 

lapse images, Kank2-GFP but Kank2∆KN-GFP induced adhesion sliding throughout the 

cell (Fig, 5f). Tracking the mass center of the adhesion sites revealed that expression of 

full length Kank2 induced a significantly higher adhesion sliding velocity in comparison to 

expression of Kank2∆KN (Fig, 5g). Moreover, we observed rapid extensional growth of 

the adhesion structure in cells expressing full length Kank2 (suppl. Fig. 5d; suppl. Movie 

3), suggesting that Kank2 is able to promote de novo assembly of adhesion structure. 

Altogether these findings suggest that Kank2 regulates talin turnover and adhesion 

remodeling both by stabilizing talin-integrin complexes and by destabilizing talin-actin 

linkage. 

Increased adhesion sliding is correlated with reduced migration 31. To test whether Kank2 

influences integrin-mediated 2D random cell migration, we depleted ~90% of Kank2 using 

2 independent shRNA in fibroblasts (Fig. 6a). Kank2 depletion significantly increased cell 

migration velocity (Fig. 6b), while directional persistence or β1 integrin expression 

remained unaffected (Fig.6a and data not shown). Conversely, overexpression of Kank2 

(Fig. 6c) reduced migration velocity, regardless whether serum was present or absent 

during the experiment (Fig. 6d). Finally, the accelerated migration speed of Kank2 

knockdown cells was normalized by re-expressing full length Kank2-AcGFP but not 

Kank2∆KN-AcGFP or Kank2-KN-AcGFP as measured by mean square displacement (Fig. 

6.e,f). Together these result indicate that Kank2 suppresses cell migration by stabilizing 

talin-integrin complex in the absence of stress fiber coupling. 

  



Discussion 
Recent advances in focal adhesion isolation and proteomic analysis provided 

comprehensive profiling of integrin adhesome 4. However, the protein enrichment analysis 

based on spectral counting or label free quantification (LFQ) in biochemical fractions are 

biased by the protein abundance in the raw material 32. By normalizing the LFQ intensities 

in purified FA with total expression level, we derived the FA enrichment index (FAEI), 

which reflects the enrichment of each protein in the FA fraction regardless of its expression 

level. Combined with β1 integrin tail interactome, we identified Kank2 as a novel 

component in integrin binding complex. The evolutionarily conserved Kank family proteins 

have been implicated in cell-ECM adhesion. For instance, Kank homologue, vab19 in 

C.elegans act synergistically with integrin to restrict basement membrane sliding during 

vulval morphogenesis 23. Importantly, mutations of Kank1, Kank2 and Kank4 in human 

lead to nephrotic syndrome 33, which is often caused by defects in integrin-mediated 

adhesion or hyper-activated Rho GTPase 34, 35. Kank1 deletion results in cerebral palsy 

type 2, spastic quadriplegic (CPSQ2) which could be due to neuronal migration defects 36. 

Kank2 is connected to integrin through talin as Kank2 recruitment to integrin tail was 

abolished in talin-1 and talin-2 double knockout cells. We found direct interaction between 

KN motif in Kank2 and R7 domain in talin rod. Talin is autoinhibited in the cytoplasm by 

intramolecular interaction between F3 domain in talin head the R9 in talin rod. Its activation 

is thought to be mediated by Rap1-RIAM complex and PI(4,5)P2 at the plasma membrane. 

Activated talin couples integrin with actomyosin system through direct and indirect F-actin 

binding. The affinity between KN motif and full length Talin measured with FCS is 

230±70nmol, in the same range of talin auto-inhibitory interaction. R7 and R8 domains 

have unique folding with R8 domain inserted in R7 domain. Strikingly, Kank2 binding to 

talin induced talin activation. Notably, Kank-mediated talin activation could be 

reconstituted in either cell lysate or recombinantly in vitro in a force and F-actin-

independent manner. Accordingly, Kank2 promotes translocation of overexpressed talin 

from cytosol to adhesion sites in KN motif-dependent manner. Consistent with the role of 

talin in integrin activation, overexpression of Kank2 but not KN motif deletion mutant 

induced more active β1 integrin clusters in adherent cells. Since R7R8 domain also 

contains high affinity binding sites for RIAM, vinculin and F-actin, all of which are 

implicated in talin activation, our data indicate that R7R8 fusion domain contains talin 

activation motifs where protein interactions disturb talin auto-inhibitory conformation. 



Whether other proteins (e.g. DLC1 and synemin) 37, 38 that also bind R7R8 domain have 

similar talin activation activity needs further investigation. 

Intriguingly, endogenous and ectopically expressed Kank2 as well as other Kank 

homologs concentrate at the lateral border of focal adhesions (FA belt) and fibrillar 

adhesions but not in nascent adhesions. This localization relies on the interaction with 

talin as KN motif deletion mutant failed to associate with adhesion border but localized to 

liprin-β1-positive cortical complex ~200nm away from FA border. Thus Kank2 marks the 

FA belt as a novel FA sub-compartment. The FA belt localization of Kank2 is independent 

of integrin subtype since Kank2 concentrates at FA belt in cell expressing only α5β1 

integrin or αVβ3/β5 integrins. Notably, KN motif alone was not restricted to FA border but 

also penetrated into the center of FA, indicating that an unknown structural or functional 

feature in full length Kank2 excludes it from FA center. It has been shown that RIAM and 

vinculin compete for talin binding and localize to nascent adhesion and focal adhesion 

respectively in mutually exclusive manner 39, 40. Similarly, Kank2 may be excluded from 

FA center by steric hindrance with other talin interacting molecules. 

FA center is linked to thick stress fibers and exerts mechanical tension. Overexpression 

of Kank proteins has been shown to attenuate stress fiber formation at least partially 

through down-regulating RhoA activity probably by recruiting RhoGDI 33. We hypothesize 

that Kank proteins may locally dislodge F-actin from talin-integrin complex. In comparison 

with the dynamic interaction between talin head domain and integrin, the F-actin binding 

through talin rod plays a dominant role in talin immobilization within FA. Our FRAP analysis 

of talin dynamics revealed that Kank2 but not KN motif deletion mutant increased the talin 

mobile fraction from ~65% to ~94%. Thus Kank2 almost induced complete mobilization of 

talin within adhesion, indicating that it destabilized talin’s linkage to F-actin. On the other 

hand, Kank2 but not KN motif deletion mutant slowed the talin recovery rate in the mobile 

fraction, indicating a reduced off-rate due to stabilized talin-integrin complex. Consistent 

with its FA center localization, KN motif reduced talin recovery rate but failed to mobilize 

talin. These data suggests that Kank2 uncoupled talin-mediated integrin activation from 

actomyosin linkage. Consistent with this hypothesis, Kank2 co-localized with active β1 

integrin clusters that appeared not linked to stress fibers. Mechanistically it is difficult to 

envision how Kank2 controls talin coupling to F-actin. Since Kank2 interacts with central 

region in Talin rod, calpain-dependent cleavage between talin head and rod is unlikely to 

be the cause. Kank2 binding may directly pose steric hindrance for F-actin binding on talin. 



Post-translational modification may also be involved since methylation of Talin C-terminal 

F-actin binding site by methyltransferase Ezh2 partially liberates Talin from F-actin 41. 

Kank2 may also locally inhibit RhoA activity through RhoGDI and thus suppress F-actin 

filament assembly.  

Integrin-mediated cell migration is driven by the molecular clutch between integrins and 

actomyosin system 5. The migration velocity is determined by the balance between clutch 

engagement and adhesiveness 42, 43. Stationary fibroblasts exhibit more sliding adhesions, 

reflecting uncoupled actomyosin connection to ECM and reduced catch-bond interaction 

31. DNA hairpin-based digital force sensor revealed that certain adhesion plaques in the 

cell do not apply force to their ECM ligands 44. Consistent with our FRAP analysis, Kank2-

GFP and talin-1-TagRFP positive adhesion structures underwent rapid sliding movement 

and shape deformation, suggesting a slip-bond behavior. In sharp contrast, in cells 

expressing mutant Kank2 lacking KN motif, talin-1-TagRFP-labeled adhesions remained 

static and underwent only slight uniaxial movement likely along stress fiber. Our 

observations suggest that Kank2 could maintain adhesive structure with a slip-bond 

interface and prevented its conversion to a catch-bond interface. While the catch-bond 

interface applies pulling force to drive cell migration, slip-bond interface provides frictional 

adhesiveness that inhibits cell migration. In this sense, the excessive basement 

membrane sliding in vab-19 mutant in C.elegans may be caused by reduced cell 

adhesiveness and increase cell traction force on the ECM. Indeed, Kank2 overexpression 

strongly suppressed random cell migration velocity. Conversely, Kank2 knockdown led to 

increase cell migration speed. Although KN motif alone is able to activate talin, it is 

required in the full length Kank2 but not sufficient by itself to reduce cell migration velocity 

in Kank2-depleted cells.  

Besides regulating talin activation and talin-actin linkage, Kank proteins may control cell 

migration by regulating local ECM degradation. We have identified liprin-β1 and two 

dynein light chain subunits dynll1 and dynll2 as Kank2 binding partners. Kank1 has been 

shown to interact with liprin-β1 and restrict cortical microtubule (MT) growth by recruiting 

Kif21a 19. Although we did not find Kif21a in Kank2 interactome probably due to its low 

expression in fibroblasts, dynein motors are also involved in MT capture on cell cortex 45. 

Liprin-β1 forms large protein complex containing at least liprin-α, ELKS and LL5, which 

captures MT plus end protein CLASPs and mediates focal exocytosis of MT1-MMP around 

FAs 19, 46-48. Local metalloprotease exocytosis then facilitates FA disassembly. Although 



liprin interaction is not required for Kank2’s FA belt localization, Kank2 could recruit liprin-

β1 to FA belt. Moreover, in the absence of talin binding, Kank2∆KN mutant fully 

colocalized with liprin-β1. Thus, Kank2 is not only able to participate into both integrin-talin 

and liprin complex but also further bridge these two complexes. Whether Kank proteins 

coordinate integrin activation with local exocytosis will be investigated in the future. 

Despite the importance of talin activation, neither PIPKIγ90 knockout mice nor RIAM 

knockout mice display obvious developmental defect 16, 17, suggesting that Talin activation 

mechanisms may be highly redundant in vivo. Moreover, RIAM knockdown decreased 

melanoma cell migration 49 whereas a Talin mutant with disrupted auto-inhibition led to 

delayed dorsal epidermal closure in drosophila 50.  Together with these observations, our 

data support the existence of redundant and more importantly, functionally distinct talin 

activation mechanisms. Different talin activation modes have different migratory effects 

according to differential actomyosin or membrane coupling. 
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Figure legends 
Figure 1. Identification of Kank2 as a novel component in 
integrin complex. 
(a) Histogram of focal adhesion enrichment index (FAEI). (b) Scatter plot of β1 integrin tail 

peptide binding proteins overlay with coloration according to FAEI. The log2 SILAC ratio 

of proteins are plotted as the forward pulldown (x axis) against the reverse labelling 

pulldown (y axis). (c) Westernblot analysis of proteins complex assembled around β1 and 

β3 integrin tail peptides. (d) Mouse kidney fibroblasts are plated on fibronectin for 3hours, 

then treated with or without blebbistatin for 1hour, fixed and immunostained for 

endogenous Kank2, paxillin (Pxn, red), F-actin with phalloidin (blue) and DAPI (grey). 

Scale bar, 10μm. (e) Line profile analysis of focal adhesion stained with anti-Talin and 

anti-vinculin antibody together with Kank2. (f) Theoretical definition of the lateral border of 

focal adhesion and distance to FA border in line profile analysis. (g) Measurement of the 

distance between Kank2-postive puncta and FA border using different conventional FA 

protein markers including ILK, kindlin, vinculin, talin and paxillin. The Kank2-positive 

puncta structures locates at the lateral border of focal adhesion in line profile analysis. 

Figure 2. KN motif is essential for Kank2 localization at FA 
border and recruitment to integrin tail complex. 
(a) Domain organization of Kank2 protein and illustration of truncation/deletion mutant 

design. (b) Westernblot analysis of the expression level of endogenous Kank2 and 

reconstituted GFP-tagged Kank2 constructs using anti-Kank2 antibody and ant-GFP 

antibody in cell with stable Kank2 knockdown and reconstitutions with GFP-tagged Kank2 

truncation/deletion mutants. Vinculin is used as loading control. (c) Immunofluorescence 

of GFP-tagged Kank2 constructs (green) co-stained with anti-Paxillin antibody (Pxn, red), 

phalloidin (blue) and DAPI (grey). Scale bar, 10μm. (d) Line profile analysis for localization 

of full length Kank2 and Kank2∆KN mutant. (e) Quantification of the distance between 

indicated Kank2 wild type and mutants’ localization to FA border indicates KN motif is 

required for FA association. Student t-test ***P<0.0001. (f)&(g) Integrin tail peptide 

pulldown and westernblot analysis showed that GFP-tagged full length Kank2 and KN 

motif along but not Kank2∆KN mutant or GFP control could be recruited to integrin tail 

complex. Kank2 constructs were detected with anti-GFP antibody. Kindlin2 was used as 

positive control.  



Figure 3. Kank2 is recruited to integrin tail complex through 
direct interaction with Talin. 
(a) Westernblot (upper panel) and densitometry analysis (lower panel) of the recruitments 

of endogenous Kank2, kindlin2 and talin to wildtype β1, β2, β5 integrin tail and β1 integrin 

tail with tyrosine to alanine mutation at the position of tyrosine 783 in full length β1 integrin 

(β1 Y783A). β1 scrambled peptide (β1 scr) was used as universal control. Note that the 

binding profiles of Kank2 and talin completely overlapped with each other. (b) Scatter plot 

of LFQ-intensity ratio between Kank2-GFP pulldown and GFP control pulldown identified 

Ppfibp1, Dynll1, Dynll2 and talin-1 as strongest Kank2 binding partners. (c) Westernblot 

(upper panel) and densitometry analysis (lower panel) of the recruitments of endogenous 

Kank2, kindlin2 and talin to wildtype β1 tail and β1 Y783A mutant tail peptides from 

wildtype cells (Talin-1/2 flox/flox) or talin knockout cells (Talin-1/2 DKO). Kank2 

recruitment to integrin tail strictly depends on the presence of talin. Student t-test 

***P<0.0001.  (d) GST pulldown of GST-KN fusion protein or GST control with full length 

recombinant talin-1 or talin-head domain (THD). 

Figure 4. Kank2 activates talin and promote integrin activation 
(a) Westernblot (left panel) and densitometry analysis (right panel) of the recruitments of 

endogenous Kank2, talin, kindlin-2 and Dab2 to β1 integrin tail peptide in the presence of 

exogenous KN-GST or GST recombinant protein. GST-KN recombinant protein replaced 

endogenous Kank2 but promoted Talin recruitment without affecting kindlin-2 or Dab2 

binding. (b) Westernblot (left panel) and densitometry analysis (right panel) of the 

recruitments of endogenous Kank2, talin and kindling-2 to β1 integrin tail in control cells 

or Kank2-knockdown cells. (c) Westernblot (left panel) and densitometry analysis (right 

panel) show that purified GST-KN promotes recombinant talin-1 binding to β1 integrin tail 

in vitro. (d) Talin-AcGFP (shown in rainbow LUT) was co-transfected with Cherry-tagged 

full length Kank2, Kank2∆KN mutant, KN motif along or cherry control into Kank2 

knockdown cells. Cells are fixed and stained for kindling-2 (blue). Scale bar, 10μm. (e) 

Quantification of talin-AcGFP intensity ratio between kindling-2-positive adhesion area 

and kindling-2-negative cytosolic region in (d) revealed that Kank2 promoted talin 

localization to adhesion sites through KN motif. (f) Kank2 knockdown cells were 

transfected with GFP-tagged full length Kank2, Kank2∆KN mutant, KN motif along or GFP 

control (green), plated on fibronectin and stained for active integrin with 9EG7 antibody 

(shown in rainbow LUT). Scale bar, 10μm. (g) Kank2 promote active integrin cluster 



formation through KN motif. 9EG7 staining intensity per cell area is quantified from (f). 

Student t-test *P<0.05, **P<0.01, ***P<0.0001. 

Figure 5. Kank2 regulate Talin turnover and adhesion dynamics. 
(a) Representative timelapse images of Talin-1-AcGFP (shown in rainbow LUT) in FRAP 

experiments. Talin-1-AcGFP was co-transfected with Cherry-tagged full length Kank2 or 

Kank2∆KN mutant into Kank2 knockdown cells. AcGFP signal is bleached in region of 

interest (ROI, red circle). (b) Fluorescence recovery curves corresponding to FRAP 

experiments in (a). Mean fluorescence intensity in ROI is plotted as the percentage of the 

initial intensity after normalization to cytosolic background. Fluorescent recovery curves 

from 6 FRAP experiments are fitted with one-phase association model (mean±s.d.). (c) 

Full length Kank2 but not Kank2∆KN mutant or KN motif along increased talin-1 mobile 

fraction in adhesion sites. Mobile fraction is quantified from 10 independent FRAP 

experiment (mean ± sd. one-way ANOVA Tukey test, ***P<0.001). (d) Full length Kank2 

and KN motif along but not Kank2∆KN mutant reduced talin-1-AcGFP recovery rate. 

Recovery rate is quantified from 10 independent FRAP experiment (mean ± sd. one-way 

ANOVA Tukey test, *P<0.05, **P<0.01, ***P<0.0001). (e) Timelapse images of talin-1-

TagRFP (rainbow LUT) and Kank2-GFP or Kank2∆KN-GFP. Talin-1-Tag-RFP was co-

transfected with Cherry-tagged full length Kank2 or Kank2∆KN mutant into Kank2 

knockdown cells. Scale bar, 5μm. (f) Color overlay of talin timelapse images from 0min 

(red), 5min (green) and 10min (blue). (g) Sliding velocities of talin-positive adhesion sites 

were plotted as box and whisker (min to max). Student t-test ***P<0.001.  

Figure 6. Kank2 regulates cell migration through talin. 
(a) Westernblot analysis of Kank2 and β1 integrin (Itgb1) expression in cells expressing 

scrambled shRNA control or two different Kank2 shRNA. Β-actin is used as loading control. 

(b) Kank2 knockdown increased velocity of 2-D random migration on fibronectin. Data is 

illustrated as box and whisker (minimal to maximal value). Student t-test ***P<0.0001. (c) 

Westernblot analysis of Kank2 and β1 integrin (Itgb1) expression in cells expressing GFP 

control or Kank-GFP fusion protein. Β-actin is used as loading control. (d) Kank2 

overexpression decreased velocity of 2-D random migration on fibronectin with or without 

serum stimulation. Data is illustrated as box and whisker (minimal to maximal value). 

Student t-test ***P<0.0001. (e) Single cell tracking is plotted for Kank2 knockdown cells 

rescued with wild type Kank2, Kank2 lacking KN motif, KN motif alone or GFP control. (f) 



Mean square displacement analysis showed that only full length Kank2 restored normal 

cell migration speeds in Kank2 knockdown cells. 

  



Supplementary figure legends 
Suppl. Figure 1 
(a) Experiment work flow for mass spectrometry analysis and focal adhesion enrichment 

index (FAEI) calculation. (b) Histogram of LFQ intensity distribution of total proteome for 

all quantified proteins in whole cell lysates and those identified in isolated adhesion 

revealed that adhesion isolation method tends to enrich high abundance proteins. (c) 

False discovery rate (FDR) controlled 2D annotation enrichment analysis of the relative 

abundance of functional categories between the total proteome and the FA-enriched 

subproteome. (d) Kank2-EGFP was overexpressed in cells expressing only α5β1 or 

αvβ3/β5 integrins and stained for paxillin (Pxn, red), F-actin with phalloidin (blue) and DAPI 

(grey). Scale bar, 10μm. 

Suppl. Figure 2 
(a) Immunofluorescence of GFP-tagged Kank2 constructs (green) co-stained with anti-

paxillin antibody (Pxn, blue), anti-liprin β1 antibody (red) and DAPI (grey). Scale bar, 10μm. 

(b) GFP-tagged KN motifs from Kank1, Kank3 and Kank4 are transfected into Kank2 

knockdown cells and co-stained with anti-Paxillin antibody (Pxn, red), F-actin with 

phalloidin (blue) and DAPI (grey). Scale bar, 10μm. (c) GFP-tagged Kank1, Kank3 and 

Kank4 are transfected into normal fibroblasts and co-stained with anti-paxillin antibody 

(Pxn, red), F-actin with phalloidin (blue) and DAPI (grey). Scale bar, 10μm. 

Suppl. Figure 3 
(a) SDS-PAGE analysis of purified full length talin-1, talin head domain, GST-KN fusion 

protein and GST. (b) Fluorescence correlation spectroscopy measurement of complex 

formation between atto488-leabeled KN peptide and full length talin-1. (c) Different GFP-

tagged talin rod truncations were overexpressed. Cell lysates were mixed with GST-KN 

motif and immunoprecipitated with anti-GFP antibody and analyzed with westerblot. 

Suppl. Figure 4 
(a-d) Westernblot (a, c) and densitometry analysis (b, d) of the recruitments of 

endogenous Kank2, talin, kindlin-2 to β1 integrin tail peptide in the presence of 

recombinant KN-GST (a, b) or chemically synthesized KN peptide (c, d). GST-KN 

recombinant protein and KN peptide replaced endogenous Kank2 but promoted talin 

recruitment without affecting kindlin-2 binding in a dose-dependent manner. (e, f) 

Westernblot and densitometry analysis of the recruitments of talin to β1 integrin tail in the 



presence of different doses of overexpressed full length Kank2 or Kank2∆KN mutant. 

Student t-test ***P<0.0001. 

Suppl. Figure 5 
(a) Kank2 knockdown cells reconstituted with GFP control or Kank2-GFP were stained for 

active integrin with 9EG7 antibody (red) and F-actin with phalloidin (grey). Lower enlarged 

boxed region shows that Kank2 strongly colocalized with 9EG7 but not phalloidin (see 

arrow heads). (b) Kank2 promote active integrin cluster formation. 9EG7 staining intensity 

per cell area is quantified from (a). Student t-test ***P<0.0001. (c) Quantification of F-actin 

linked to active β1 integrin. Phalloidin intensity in 9EG7-positive area is quantified from (a) 

and plotted as box and whisker (min to max). Student t-test ***P<0.001. (d) Timelapse 

images of Talin-1-TagRFP (rainbow LUT) and Kank2-GFP. Scale bar, 5μm. 

 

  



Supplementary material and methods 
Focal adhesion isolation 

Focal adhesion isolation with chemical crosslinking was performed as previously 

described with minor modification. Serum-starved cells were plated on plastic dishes 

coated with10 μg ml−1 fibronectin at density of 1.5X106 cells per 10cm dish for 3hours. 

Cells were washed with PBS and crosslinked with 0.5mM DSP and 0.05mM DPDPB at r.t. 

for 5min and the crosslinker was quenched and washed with buffer containing 134mM 

NaCl, 50mM TrisHCl. Crosslinked cells were lysed with RIPA buffer (50mM Tris-Hcl pH7.5, 

150mM NaCl, 1% Triton-X100, 0.2% SDS, 0.5% sodium deoxycholic acid, and EDTA-free 

protease inhibitor cocktail) for 30min at 4˚C. Plates were sprayed with high pressure water 

for 60 second to remove cellular material that was not covalently bound. Crosslinked 

materials were released in 3ml of lysis buffer (150mM NaCl, 50mMTrisHCl 7.5, 0.1%SDS) 

at 60°C for 60 minutes and precipitated with cold acetone. Protein pellets were re-

dissolved in lysis buffer. Whole cell lysates were collected immediately after crosslinking 

and quenching in 100mM TrisHCl pH7.5, 4%SDS, 100mM DTT. Samples were snap-

freezed in liquid nitrogen for further mass spectrometry sample processing. Experiments 

were performed in triplicate. 

Mass spectrometry analysis 

For focal adhesion enrichment index analysis, isolated focal adhesion fractions and total 

cell lysates were collected in parallel and samples were processed in FASP method. To 

calculate the FA enrichment index (FAEI), proteins with at least one valid LFQ intensity 

value in three replicates were filtered and matched according to uniprot ID. After 

imputation of missing values from normal distribution, ratios between average LFQ 

intensity in FA and average LFQ intensity in total proteome were calculated and fitted with 

a Gaussian distribution. FAEI is derived by normalizing mean value of Gaussian 

distribution to 0. 

For in gel digestion and mass spectrometry analysis of EGFP pulldown samples, the 

samples were loaded on a gel and run for approximately 1 cm length and stopped mainly 

to incorporate all the proteins onto the gel rather than separating the proteins. Then the 

whole lane up to where the gel was run was then cut into 1mmX1mm pieces and subjected 

to a standard in-gel digestion protocol. Briefly the gel pieces were destained in ethanol 

followed by sequential reduction and alkylation with 10 mM dithiothreitol (DTT) and 40 mM 



chloroacetamide (CAA). The gel pieces were then dried and incubated with digestion 

buffer containing 12.5 ng/μl of trypsin in 25mM Tris pH 8.5. Following overnight digestion 

the peptides were extracted and purified in StageTips and analyzed in LTQ-Orbitrap XL 

mass spectrometer. The raw data were processed using MaxQuant computational 

platform version 1.5.0.26. 

Antibodies. 

The following antibodies were used for western blotting (WB) and immunofluorescence 

(IF): GFP (A11122, Life Technologies, 1:1,1000 for WB), Kank2 (HPA015643, Sigma; 

1:2,000 for WB and 1:800 for IF), Dab2 (610464, BD Transduction Laboratories, 1:1,000 

for WB ), actin (A-2066, Sigma; 1:3,000 for WB), β1 integrin (MAB1997, MB1.2, Chemicon; 

1:800 for IF), GAPDH (CB1001, 6C5, Calbiochem; 1:5,000 for WB), Kindlin-2 (MAB2617, 

EMD Millipore 1:1,000 for WB and 1:800 for IF), paxillin (610051, 349, BD Transduction 

Laboratories, 1:800 for IF), talin-1 (T3287, 8d4, Sigma; 1:1,000 for WB, 1:200 for IF), talin-

head specific antibody (sc-15336, Santa Cruz Biotechnology; 1:1000 for WB). A home-

made β1-integrin antibodies was used for western blotting (1:10,000 for WB), Phalloidin 

(Alexa Fluor 546 and Alexa Fluor 647 conjugated, Molecular Probes; 1:50 for IF) was used 

to stain F-actin. DAPI (Sigma) was used to stain nuclei. 

Plasmids and constructs. 

cDNA encoding mouse Kank1 and Kank2 were cloned into pEGFP-N1 vector (Clontech) 

between XhoI and EcoRI sites. Mouse Kank3 was cloned into pEGFP-N1 vector between 

BglII and EcoRI sites. Mouse Kank4 was cloned into pEGFP-N1 vector between XhoI and 

AgeI sites. For retrovirus mediated overexpression, DNA fragment encoding Kank2 full 

length, Kank2∆KN (a.a.31-56 deleted), Kank2∆LID (a.a.181-240 deleted), 

Kank2∆KN∆LID (a.a.31-56 and a.a.181-240 deleted), Kank2-1-670 (a.a 1-670) and KN 

motif (a.a. 29-72) were amplified via PCR and inserted between XhoI and EcoRI sites in 

pRetroQ-AcGFP-N1 vector. To generate NIH3T3 cells stably expressing Kank2-EGFP, 

AcGFP fragment was replaced with Kank2-EGFP or EGFP fragments from pEGFP-N1-

Kank2 with XhoI and NotI cutting sites.  

Plasmids for Talin-AcGFP and Talin-TagRFP expression in mammalian cells were 

generated from pLPCXmod-Talin-1-Ypet (gift from Dr. Carsten Grashoff). Ypet was 

replaced with either AcGFP sequence or TagRFP-T sequence. Various Talin rod 



truncations were amplified with PCR and inserted between XhoI and EcoRI sites in 

pEGFP-N1 vector.  

For retrovirus mediated stable knockdown of mouse Kank2, two shRNA targeting 

ATACTGTATTCTTGAGTCA (shKank2#1) and AGCCAGAAAGCCAAGCTAC 

(shKank2#2) in mouse Kank2 3’UTR region were cloned into pSuper.Retro.puro vector 

(OligoEngine) according to the manufacturer’s instruction.  

For recombinant protein production, cDNA encoding Kank2 KN motif (a.a 29-72) was 

inserted into pGEX-6P1 (GE Healthcare) between EcoRI and BamHI sites. Plasmid for 

recombinant Talin-1 head domain (a.a 405) was cloned in pCoofy vector. Plasmid for full 

length Talin-1 recombinant protein production (pET101-Talin-FL) was described before 

[citation].  

Cell lines. 

Mouse kidney fibroblasts carrying floxed αv and β1 alleles were cultured as previously 

described and used for focal adhesome analysis. Mouse kidney fibroblasts containing 

floxed β1-integrin allele were cultured as previously described. NIH3T3 mouse fibroblasts 

and hTert-RPE1 cells were cultured according to the recommendation of ATCC.  

Transient and stable transfection/transduction. 

Cells were transiently transfected with Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s protocol. To generate stable cell lines, VSV-G pseudotyped retroviral 

vectors were produced by transient transfection of HEK293T (human embryonic kidney) 

cells. Viral particles were concentrated from cell culture supernatant as described 

previously and used for infection. 

Expression and purification of recombinant proteins. 

For GST fusion protein of KN motif, plasmids encoding GST–KN or GST alone were 

transformed into BL21 (DE3) and protein expression was autoinduced over night at 37˚C. 

5g biomass was lysed with high pressure homogenizer in GST binding buffer (TrisHCl 

50mM, NaCl 150mM, EDTA 1mM, DTT 1mM, pH 7.5). Protease inhibitor (AEBSF-HCl 

1mM, Aprotinin 2μg/ml, Leupeptin 1μg/ml, Pepstatin 1μg/ml) and nuclease (Benzonase) 

were added during the cell lysis. After clarification, supernatant were incubated with 

Glutathione Sepharose 4 Fast Flow (GE Healthcare) for 3.5hour at 4˚C followed by 3 times 



washing with GST binding buffer and elution with 50 mM Glutathione in the binding buffer. 

Elute fractions containing were pooled and desalted (Sephadex G-25 in Hi Prep 26/10) in 

buffer (TrisHCl 50mM, NaCl 150mM, 0.1mM DTT) and further purified with size-exclusion 

chromatography (Superdex 75 PC 3.2/30) in desalting buffer. 

Full length talin recombinant protein production was optimized based on previously 

published protocol. Briefly, pET101-Talin-FL was transformed into BL21 (DE3) Gold and 

induced 1 mM IPTG at 18˚C overnight. After lysis with high pressure homogenizer in lysis 

buffer (50mM TrisHCl pH7.8, 500mM NaCl, 30mM imidazole, 1mM DTT) and clarification 

of the supernatant, full length Talin was purified by Ni-NTA affinity chromatography (Ni 

SepharoseHigh Performance, GE Healthcare). Elute fractions with 500mM imidazole in 

lysis buffer were pooled and loaded on anion exchange (HiTrap Q HP, 6% highly cross 

linked agarose; strong anion -N+(CH3)3, GE Healthcare) in MES buffer (20mM MES 

pH6.3, 1mM DTT, gradient from 100mM KCl to 100mM KCl). Elute fractions were pooled 

and concentrated (Amicon Ultra 15, MWCO 100kD) and further purified by size-exclusion 

chromatography (Superdex 200 10/300 GL, GE Healthcare) in 50mM TrisHCl pH7.8, 

150mM KCl, 1mM DTT. Purified fractions were stored in presence of 50% glycerol in -

80˚C. 

Talin-1-head (a.a. 1-405) was cloned into pCoofy vector. The recombinant production of 

talin-1-head (a.a. 1-405) in E. coli Rosetta cells (Merck Millipore) was autoinduced at 24 °C 

for 22 h. After cell lysis and clarification of the supernatant, talin-1-head was purified by 

Ni-NTA affinity chromatography (Qiagen). Elute fractions containing talin-1-head were 

pooled, cleaved with SenP2 protease and purified by size-exclusion chromatography 

(Superdex 200 26/600, GE Healthcare) yielding unmodified murine talin dead domain. 

Immunoprecipitation and GST pulldown 

For immunoprecipitation of EGFP tagged proteins, cells were lysed in M-PER buffer and 

1mg cells lysates in were immunoprecipitated with µMACS GFP Isolation Kit (Miltenyi 

Biotec) according to the manufacturer’s protocol. Elutes were separated in SDS-PAGE for 

westernbloting or in-gel digestion and mass spectrometry analysis. 

For GST pulldown experiments, full length Talin and Talin-head recombinant protein were 

re-buffered in the GST binding buffer (137mM NaCl, 13mM KCl, 0.05% Tween-20, 50mM 

TrisHCl pH7.5) with Zebra Desalt Spin Columns (Thermo Scientific). 200nM GST or GST-



KN fusion proteins were incubated with 100nM full length Talin or 300nM Talin head for 

30min at 4˚C and then incubated with Glutathione Sepharose (GE Healthcare) for another 

1.5hour at 4˚C. Resin was washed three times with the GST binding buffer and eluted in 

2X laemmli buffer at 95˚C for 2min. Samples were analyzed in westernblot using antibody 

against Talin head and GST.  

Fluorescence correlation spectroscopy (FCS) 

The diffusion time as a function of talin protein concentration was measured by 

fluorescence correlation spectroscopy (FCS). FCS experiments were performed on a 

custom-build confocal microscopy. Prior to the experiment, the known diffusion coefficient 

of AlexaFluor 488 in water was used to calibrate the confocal volume (D = 400 µm2/s). To 

analyze the interactions between the atto488 fluorescently-labeled KN peptide and talin, 

the peptide was diluted to a final concentration of ~1 nM in buffer (20 mM HEPES, 150 

mM KCl, 0.5 mM EDTA, 1 mM DTT, pH 7.5) and 32 μM of talin was added. The reaction 

was incubated at room temperature for 3 minutes before subject to the FCS measurement. 

Lower concentrations in solution of talin were made by subsequent dilution in buffer 

containing 1nM of atto488-labeled KN peptide. The full dilution series was repeated three 

times.  The fluctuation of fluorescence arising from the fluorescent KN-talin complexes 

was monitored and auto-correlated using all three measurements and diffusion time was 

estimated by fitting with a single diffusing species. 

Integrin peptide pulldowns. 

Peptide pulldowns were performed as described previously with minor modifications with 

β1 wt cytoplasmic tail peptides 

(HDRREFAKFEKEKMNAKWDTGENPIYKSAVTTVVNPKYEGK-OH), β1 Y795A tail 

peptide (HDRREFAKFEKEKMNAKWDTGENPIYKSAVTTVVNPKAEGK-OH), β3 tail 

peptide (HDRKEFAKFEEERARAKWDTANNPLYKEATSTFTNITYRGT-OH), β5 tail 

peptide (HDRREFAKFQSERSRARYEMASNPLYRKPISTHTVDFAFNKFNKSYNGSVD-

OH), β2 tail peptide (TDLREYRRFEKEKLKSQWNN-DNPLFKSATTTVMNPKFAES-OH), 

a scrambled peptide (EYEFEPDKVDTGAKGTKMAKNEKKFRNYTVHNIWESRKVAP-

OH). All peptides were desthiobiotinylated. Before use, peptides were immobilized on 

20 μl Dynabeads MyOne Streptavidine C1 (10 mg ml−1, Invitrogen) in washing buffer 

containing 137mM NaCl, 13mM KCl, 50mM TrisHCl at pH 7.4, 0.05% Tween-20 for 2hours 

at 4˚C. Beads were washed twice with washing buffer and once with M-PER buffer. 0.5mg 



cell lysate at 1mg/ml collected in M-PER buffer was incubated with the beads for 5hours 

at 4˚C. After incubation with tail peptides, proteins were eluted with 2X laemmli buffer at 

95˚C for 5min. For in vitro Talin activation assay, 10nM recombinant talin diluted in the 

peptide pulldown washing buffer for 15min and then incubated with 10nM GST or GST-

KN motif for 1hour together with the Dynabeads at 4˚C. Beads were washed three times 

with the washing buffer and eluted with 2X laemmli buffer at 95˚C for 5min. 

Immunofluorescence microscopy.  

For immunostaining, cells were cultured on glass coated with 10 μg ml−1 fibronectin 

(Calbiochem) for 5hours in complete culture medium before fixed with cold 

methanol:acetone (1:1) for 5min at -20˚C (for endogenous Talin staining) followed by 

15min rehydration in PBS at r.t. or with 2% PFA/PBS for 15min at r.t. For PFA fixed 

samples, fixed cells were permeabilized with 0.1% Triton-X100/PBS for 30min at r.t. Cells 

were blocked with 5%BSA/PBS for 1 h at r.t. followed by incubation with the primary 

antibodies in 5%BSA/PBS overnight at 4˚C and secondary antibodies for 1 h at r.t. Images 

were collected at room temperature on a ZEISS (Jena, Germany) LSM780 confocal laser 

scanning microscope equipped with a ZEISS Plan-APO 63x/NA1.46 oil immersion 

objective.  

Fluorescence recovery after photobleaching and fluorescence live cell imaging 

Fluorescence recovery after photobleaching (FRAP) and fluorescence live cell imaging 

were performed on a ZEISS (Jena, Germany) LSM780 confocal laser scanning 

microscope equipped with a ZEISS Plan-APO 63x/NA1.46 oil immersion objective with 

environmental control (5% CO2 and humidification). Cells were transfected with indicated 

plasmids and cultured on 10 μg ml−1 fibronectin coated glass-bottom live cell imaging 

chamber (ibidi) for 24 hours. For FRAP experiments, region of interest was bleached with 

full laser power at 488nm for 30 iterations and fluorescence recovery was monitored for 

5min with 20second interval with 1% laser power. No significant photobleaching was 

observed during the post-bleaching phase. FRAP data was extracted with build-in 

package in Carl Zeiss ZEN software and analyzed in GraphPad Prism 6. FRAP curves 

were fitted in one phase association model: Y=Y0 + (Plateau-Y0)*(1-exp(-K*x)). For 

fluorescence live cell imaging, cells were imaged for 10min with 20second interval with 1% 

laser power. 

Time-lapse video microscopy of 2D-random cell migration. 



Indicated cells were seeded sparsely on 6-well plate coated with 5μg/ml fibronectin in the 

absence of serum for 2hours, then the cell migrations were recorded at 37 °C and 

5% CO2 for 6hours with 5min time interval on a Zeiss Axiovert 200 M (Zeiss, Germany) 

equipped with ×10/.3, ×20/.4 and ×40/.6 objectives, a motorized stage (Märzhäuser) and 

an environment chamber (EMBL Precision Engineering) with a cooled CCD (charge-

coupled device) camera (Roper Scientific). Image acquisition and microscope control were 

carried out with MetaMorph software (Molecular Devices). The acquired images were 

analyzed using the manual tracking plugin of ImageJ and the Chemotaxis and Migration 

Tool (ibidi).  

Statistics. 

Statistical analysis was performed in GraphPad Prism software (version 5.00, GraphPad 

Software). Results are illustrated as the mean±sd. unless otherwise indicated. 

 

























ART I C L E S

β1- and αv-class integrins cooperate to regulate
myosin II during rigidity sensing of fibronectin-based
microenvironments
Herbert B. Schiller1,6, Michaela-Rosemarie Hermann1,6, Julien Polleux1, Timothée Vignaud2, Sara Zanivan3,
Caroline C. Friedel4, Zhiqi Sun1, Aurelia Raducanu1, Kay-E. Gottschalk5, Manuel Théry2, Matthias Mann3

and Reinhard Fässler1,7

How different integrins that bind to the same type of extracellular matrix protein mediate specific functions is unclear. We report
the functional analysis of β1- and αv-class integrins expressed in pan-integrin-null fibroblasts seeded on fibronectin.
Reconstitution with β1-class integrins promotes myosin-II-independent formation of small peripheral adhesions and cell
protrusions, whereas expression of αv-class integrins induces the formation of large focal adhesions. Co-expression of both integrin
classes leads to full myosin activation and traction-force development on stiff fibronectin-coated substrates, with αv-class
integrins accumulating in adhesion areas exposed to high traction forces. Quantitative proteomics linked αv-class integrins to a
GEF-H1–RhoA pathway coupled to the formin mDia1 but not myosin II, and α5β1 integrins to a RhoA–Rock–myosin II pathway.
Our study assigns specific functions to distinct fibronectin-binding integrins, demonstrating that α5β1 integrins accomplish force
generation, whereas αv-class integrins mediate the structural adaptations to forces, which cooperatively enable cells to sense the
rigidity of fibronectin-based microenvironments.

Integrins are α/β heterodimers that mediate cell adhesion to the
extracellular matrix (ECM) and to receptors on other cells1, thereby
regulating numerous biological processes that are essential for
development, postnatal homeostasis and pathology1–4. Themammalian
genome encodes 18 α and 8 β integrin genes, which form 24
heterodimers. Mammalian cells usually co-express several integrins,
which recognize ECM components by binding specific amino-acid
stretches such as the Arg-Gly-Asp (RGD) motif1,5. RGD motifs are
found in many matrix proteins including fibronectin, in which
RGD mediates binding to α5β1 and all αv-class integrins6. In vivo
and in vitro studies indicated that α5β1 and αv-class integrins (for
example, αvβ3) exert both specific and redundant functions7–15;
however, how these distinct integrins accomplish their individual
functions and whether these cooperate remains unclear. The signalling
properties and functions of integrins are executed by specialized
adhesive structures with distinct morphology, subcellular localization,
lifespan and molecular composition. Nascent adhesions are short-lived
adhesive structures in membrane protrusions16 that promote the
activity of Rho–GTPases such as Rac1. Some nascent adhesions
develop into large focal adhesions that initiate multiple signalling
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pathways, which activate effectors including myosin II. Myosin II
exerts contractile forces resulting in adhesion reinforcement and
recruitment of more proteins to focal adhesions, which induces
a further increase in myosin II activity17. This feedback signalling
to myosin II critically depends on biophysical parameters such as
ECM stiffness. The identity of mechanosensor(s) in focal adhesions,
whether it is an integrin, a focal adhesion protein or a combination
of both, is unknown18. Quantitative mass spectrometry (MS) was
previously used to determine the protein composition of adhesion
structures (adhesomes) of cells seeded on fibronectin, and the dynamic
changes on myosin-II-induced adhesion maturation19,20. As cells
recruit different integrin classes to fibronectin-induced adhesions,
these studies did not assign specific proteins and signalling outputs
to particular integrins.
Here we developed a cell system to investigate the protein

composition and signalling properties of adhesion sites anchored
selectively through α5β1 and/or αv-class integrins. We found marked
integrin-class-specific differences in the morphology of focal adhesions,
in their requirement formechanical tension, in the protein composition
of their adhesomes and their signalling capacity. Furthermore, we
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Figure 1 Different morphologies and adhesive functions of pKO-αv, pKO-β1
and pKO-αv/β1 cells. (a) Flow cytometry analysis of β1 and αv cell surface
levels. (b) Immunostaining of indicated cell types plated for 90min on
fibronectin for β1 and β3. The merged images show an overlay of integrin
(β1, blue; β3, green), F-actin (red) and nuclear (DAPI, blue) staining. Scale
bars, 10 µm. (c) Spreading areas of cells seeded on fibronectin. Error
bars represent s.e.m. (n = 20 cells per time point; 1 representative of
2 independent experiments is shown). The P value is derived from a
t -test. (d) Cells were plated on circular fibronectin-coated micropatterns
and immunostained for paxillin (Pxn). The merged images show an
overlay of paxillin (white), F-actin (red) and nuclear (DAPI, blue) staining.
Arrows indicate nascent adhesions (<2 µm2) in the cell periphery. Scale
bar, 10 µm. (e) Boxplots show the distribution of adhesion size classes.
Significance was calculated using a t -test (n =30 cells; 1 representative

of 2 independent experiments is shown; boxplot whisker ends are at 1.5
interquartile range and outliers are shown as dots). (f-h) Migration velocity
(g) and mean persistence time (h) was determined with the MSD values
of cell nuclei (f) by filming migrating cells over a period of 90min with a
1min time lapse (pKO-αv n=12, pKO-β1 n=14, pKO-αv/β1 n=12; data
aggregated over 5 independent experiments). The P value for velocities
(g) was calculated using an unpaired Wilcoxon test and the persistence
time bar graph (g) shows the fit error as implemented in the MatLab
software. NS, not significant. (i) Trailing edge lengths of migrating cells are
shown with mean lengths from the cell rear to the middle of the nucleus.
Error bars represent s.d. and the P values were calculated using a t -test
(pKO-αv n = 51, pKO-β1 n = 66, pKO-αv/β1 n = 40; 1 representative of
2 independent experiments is shown). pKO-αv, green; pKO-αv/β1, blue;
pKO-β1, orange.

identified a functional synergy between α5β1 and αv-class integrin
signalling hubs leading to feedback amplification of myosin II activity
required for focal-adhesion-mediated rigidity sensing.

RESULTS
Differential functions of α5β1 and αv-class integrins in adhesion
formation and cell migration
To obtain cells expressing β1- and/or αv-class integrins we intercrossed
mice carrying conditional null mutations for the αv and β1 integrin
genes and constitutive null mutations for the β2 and β7 integrin
genes (βf/f1 , αf/fv , β−/−

2 , β−/−

7 mice)21, isolated kidney fibroblasts and
immortalized themwith the SV40 large T antigen (parental fibroblasts).
Deletion of floxed αv and β1 integrin genes by adenoviral Cre
transduction removed all integrins from the parental fibroblast clones
(pan-knockouts, pKO; Supplementary Fig. S1a–c). Next we transduced

parental fibroblasts with αv or β1 or both complementary DNAs and
simultaneously transduced Cre to delete the floxed integrin alleles.
This produced cells expressing αv (pKO-αv), β1 (pKO-β1) or αv
and β1 (pKO-αv/β1) integrins, respectively (Fig. 1a). The pKO-αv,
pKO-β1 and pKO-αv/β1 cells were sorted for comparable integrin
surface levels to the parental cell clones (Supplementary Fig. S1d,e).
Using western blotting, flow cytometry and MS we identified the
following fibronectin-binding integrins; α5β1 in pKO-β1 cells, αvβ3
and αvβ5 in pKO-αv cells, and α5β1, αvβ3 and αvβ5 in pKO-αv/β1 cells
(Supplementary Fig. S1f,g). Calibration of our flow cytometry analysis
estimated the presence of 170,000 α5β1 and 300,000 αv-class integrins
on the surface of each cell, resulting in approximately equimolar surface
levels for β1, β3 and β5 integrins.
All three cell lines specifically adhered to fibronectin, whereas

adhesion on vitronectin was similar for pKO-αv and pKO-αv/β1 cells
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and absent for pKO-β1 cells (Supplementary Fig. S1h). To compare
the size distribution of focal adhesions we seeded cells for 90min
on fibronectin and immunostained for paxillin, integrin β1 and β3
(Fig. 1b and Supplementary Fig. S2a,b). The percentage of small
nascent adhesions (<2 µm2) was significantly elevated in pKO-β1 and
pKO-αv/β1 cells, whereas large focal adhesions of 6–12 µm2 dominated
in pKO-αv cells (Supplementary Fig. S2a,b). The cell spreading area on
fibronectin was significantly lower in pKO-αv relative to pKO-β1 and
pKO-αv/β1 cells and reduced in pKO-αv/β1 relative to pKO-β1 (Fig. 1c
and Supplementary Fig. S1i). As cell shape and spreading area can affect
cell contractility, focal adhesion size and distribution22, we seeded
cells on circular fibronectin-coated micropatterns surrounded by
non-adhesive polyethylene glycol (PEG), and confirmed the different
adhesion size distribution in the three cell lines (Fig. 1d,e). pKO-αv/β1
cells contained both small nascent adhesions and large focal adhesions
(Fig. 1d). pKO-β1 and pKO-αv/β1 cells showed increased protrusive
activity when compared with pKO-αv cells (Supplementary Fig. S2a,c),
which correlated with increased migration speed. The mean square
displacement (MSD) of cells migrating on fibronectin showed that
pKO-β1 cells migrated significantly faster than pKO-αv cells, and that
pKO-αv/β1 cells exhibited an intermediate migration speed (Fig. 1f,g).
As previously shown13,23,24, expression of αv-class integrins increased
migration persistence (Fig. 1h). pKO-β1 cells exhibited a significant
defect in trailing edge detachment (Fig. 1i and Supplementary Fig. S2c
and Videos S1–S3). These results identify a role for α5β1 in protrusive
activities and nascent adhesion formation, whereas co-expression of
αv-class integrins also promotes the production of large, stable focal
adhesions and trailing edge detachment inmigrating cells.

Differential functions of α5β1 and αv-class integrins synergize
to regulate cell contractility
Adhesion maturation and trailing edge retraction in migrating
fibroblasts requires coordinated control of myosin-II-mediated cell
contractility25. We measured myosin II activity using fibronectin-
coated X- or crossbow-shaped micropatterns, which report subtle
changes in myosin II activity and traction forces along non-
adhesive edges26–28. Parental fibroblasts cultured on X-shaped
fibronectin-coated micropatterns showed a dose-dependent decrease
of phosphoT18/S19-myosin light chain (pMLC), paxillin fluorescence
intensities and cell area following treatment with the myosin II
inhibitor blebbistatin (Supplementary Fig. S2d–g). Crossbow patterns
polarize cells into a low contractile front and a highly contractile
rear28. Immunofluorescence analysis revealed that pMLC and paxillin
intensities were the highest in pKO-αv/β1, lower in pKO-β1 and the
lowest in pKO-αv cells (Fig. 2a). Myosin II activity was low in the cell
front (Fig. 2b) and high in the cell rear (Fig. 2c) and the cooperative
effect of the two integrin classes on pMLC and paxillin intensities in
pKO-αv/β1 was most prominent in the cell rear (Fig. 2a–c). Treatment
with the αv-class-specific small-molecule inhibitor cilengitide reduced
contractility of pKO-αv/β1 cells to intermediate levels (Fig. 2b,c),
confirming that the adhesive function of αv-class integrins is required
for the synergy with α5β1. We corroborated these results with
fibronectin-coated X-shapes, revealing phenotypes that resembled the
rear of crossbow shapes (Supplementary Fig. S2h–j).
The ability to form large focal adhesions and stress fibres indicative

of high contractile forces together with low pMLC levels in pKO-αv

cells was surprising. Traction-force microscopy experiments on
polyacrylamide gels of 35 kPa stiffness revealed good correlation of
traction forces and pMLC levels, confirming that traction forces on
fibronectin-coated crossbow micropatterns are the lowest in pKO-αv,
the highest in pKO-αv/β1 and intermediate in pKO-β1 cells (Fig. 2d).
Along the cell front, traction forces were significantly higher in pKO-β1
cells when compared with pKO-αv cells and the highest in pKO-αv/β1
(Fig. 2e). Similar differences were observed by calculating the total
contractile energy of individual cells (Fig. 2f).

αv-class integrins accumulate in areas of high traction force
and mediate rigidity sensing
αvβ3 integrins are known to become immobilized in large and static
focal adhesions, whereas α5β1 integrins are mobile, separate from
the αvβ3 integrins and translocate rearward to fibrillar adhesions10,29.
To investigate whether α5β1 and αv-class integrins segregate owing
to differential dependence on myosin-II-mediated tension at focal
adhesions we seeded pKO-αv/β1 and parental floxed cells on
fibronectin-coated crossbow shapes and immunostained β1 and β3
integrins. Indeed, β3 heavily accumulated in areas that were shown to
be exposed to the highest traction forces, whereas β1 levels remained
very low at these sites (Fig. 3a,b). The β3 integrins in contractile focal
adhesions at the cell rear were lost following blebbistatin treatment,
whereas small β1-containing focal adhesions in the cell periphery were
still forming (Fig. 3a). To confirm these findings we plated pKO-αv/β1
cells on 1-µm-thin fibronectin-coated lines separated by 3-µm-wide
non-adhesive PEG lines. This set-up allows distinguishing ligand-
bound from unbound integrins, which is impossible on uniformly
coated fibronectin surfaces. Whereas the β1 integrin staining co-
localized with fibronectin lines almost throughout the entire cell length,
small β3 clusters overlaid with lines in the cell periphery associated with
F-actin bundles. Blebbistatin treatment or inhibition of Rock with
Y-27632 disassembled the β3 integrin clusters on fibronectin lines,
whereas β1 remained unchanged (Fig. 3c). The differential dependence
of α5β1 and αv-class integrins on myosin-II-mediated tension at focal
adhesions suggested that tension-dependent stabilization of αv-class
integrins contributes to rigidity sensing. In line with this hypothesis,
traction-force measurements of pKO-β1 and pKO-αv/β1 cells plated
on micropatterned polyacrylamide gels of 3 different rigidities (1.4,
10 and 35 kPa) revealed that only pKO-αv/β1, but not pKO-β1, cells
were able to increase contractile energies concomitantly with the
substrate rigidity. Most notably, the traction forces and contractile
energies generated by pKO-β1 and pKO-αv/β1 cells were similar
on soft, 1.4 kPa substrates, whereas they differed significantly on
stiffer substrates (Fig. 3d,e). We therefore conclude that stabilization
of αvβ3–fibronectin bonds through actomyosin-mediated tension is
required to adjust cell contractility to defined substrate stiffnesses.

Adhesome composition and stoichiometry is controlled by the
integrin class and myosin II activity
Cells sense their environment through integrins and numerous plaque
proteins in focal adhesions17,30. The composition and stoichiometry
of the adhesome in fibronectin-bound fibroblasts is controlled
by myosin II (refs 19,20). We therefore reasoned that specific
binding activities of the integrin cytoplasmic tails and also the
differential myosin II activities in pKO-αv, pKO-β1 and pKO-αv/β1
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Figure 2 αv-class integrins cooperate with α5β1 for myosin II reinforcement
on stiff fibronectin-coated substrates. (a) Averaged confocal images of
immunostainings (Merge: F-actin, red; pMLC, green; paxillin, blue; DAPI,
blue) of the indicated cell lines plated for 3 h on fibronectin-coated
micropatterns (pKO-αv n =55, pKO-β1 n =36, pKO-αv/β1 n =71; data
aggregated over 3 independent experiments). Areas with strong pMLC
and paxillin fluorescent signals are marked with arrows. Scale bar, 10 µm.
(b,c) Intensities of pMLC and paxillin (Pxn) fluorescence in the front (b)
and rear (c) regions of individual cells (pKO-αv n =25, pKO-β1 n =32,
pKO-αv/β1 n = 26; 1 representative of 3 independent experiments is
shown). Optionally, cells were treated with the αv-class integrin inhibitor
cilengitide (1 µM). (d) Average traction-force fields of indicated cell types

(pKO-αv n =54, pKO-β1 n =86, pKO-αv/β1 n =68; data aggregated over
3 independent experiments). Arrows indicate force orientation; colour and
length represent local force magnitude in nanonewtons. Scale bar, 10 µm.
(e) Average integrated traction forces along the cell border (pKO-αv n=54,
pKO-β1 n =86, pKO-αv/β1 n =58; data aggregated over 3 independent
experiments; thin lines represent s.e.m.). (f) Contractile energy of
individual cells (pKO-αv n = 54, pKO-β1 n = 86, pKO-αv/β1 n = 68;
data aggregated over 3 independent experiments). Each data point
corresponds to the total contractile energy of an individual cell measured
by traction-force microscopy. All statistical comparisons were t -tests (error
bars represent s.e.m.). pKO-αv (green); pKO-αv/β1 (blue); pKO-β1 (orange);
pKOαv/β1+1 µM cilengitide (black).

cells may contribute to their specific adhesome composition. To
test this hypothesis we determined the integrin-class-specific protein
composition of focal adhesions. The three cell lines were plated
for 45 or 90min on fibronectin or poly-l-lysine (PLL; permits
integrin-independent adhesion) followed by chemical crosslinking and
purification of focal adhesions, sample elution and quantitative MS as
described previously19 (Supplementary Fig. S4a and Table S1). Isolated
adhesome proteins were quantified using the label-free quantification
algorithm of the MaxQuant software31. We calculated median MS
intensities of 3–4 replicates and performed hierarchical clustering to

compare the three cell lines at different time points with and without
blebbistatin. This approach allowed identifying protein groups with
high correlation of their intensity changes across different substrates,
time points and cell lines. We identified a cluster containing 168
proteins significantly enriched for known (previously annotated) focal
adhesion proteins. In addition to the 168 proteins, we also considered
all previously annotated focal adhesion proteins32 assigned to other
clusters in our analysis. This led to 245 proteins used for further analysis
(Supplementary Fig. S4b). Analysis of variance (ANOVA) tests revealed
thatMS intensities of 62% (152/245) of themwere significantly changed
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Figure 3 αv-class integrins accumulate in adhesion areas exposed to high
traction force and cooperate with α5β1 for rigidity sensing on fibronectin.
(a) pKO-αv/β1 cells were plated on fibronectin-coated crossbow shapes
for 3 h with and without blebbistatin (BLEB) and immunostained for β1
(blue), β3 (green) integrins and F-actin (red). Scale bars, 10 µm. DAPI,
white (left panel, merge). (b) Fluorescence intensity profile of the indicated
stainings along the depicted linescan (3.75 µm). (c) pKO-αv/β1 cells were
plated on 1 µm thin fibronectin-coated lines for 90min with and without
blebbistatin and stained for β1 (blue), β3 (green) integrin and F-actin (red).
Scale bars, 10 µm. DAPI, white (merge). (d) Each data point represents
the total contractile energy of individual cells measured by traction-force

microscopy on gels of indicated rigidities (pKO-β1: soft n =54, medium
n=50, stiff n=86; pKO-αv/β1: soft n=31, medium n=71, stiff n=68;
data aggregated over 3 independent experiments; all pairwise statistical
comparisons from t -tests are shown in Supplementary Table S5; NS, not
significant). (e) Each data point represents the total integrated traction
force in kilo Pascal (kPa) of individual cells measured by traction-force
microscopy on gels of indicated rigidities (pKO-β1: soft n =54, medium
n=50, stiff n=86; pKO-αv/β1: soft n=31, medium n=71, stiff n=68;
data aggregated over 3 independent experiments; P values of pairwise
comparisons were calculated with a t -test). pKO-αv/β1 (blue); pKO-β1
(orange).

in at least one of the three cell lines or one of the two time points
(Supplementary Table S1).
In line with our previous report19, blebbistatin induced different

intensity reductions in floxed fibroblasts for different classes of
adhesome proteins. Following blebbistatin treatment pKO-αv/β1 and

pKO-β1 cells were still able to recruit integrin-proximal proteins such as
Talin-1, Kindlin-2 and ILK, whereas LIM-domain-containing proteins
were reduced to background levels defined by MS intensities from cells
seeded on PLL (Fig. 4a). Strikingly, blebbistatin reduced almost all focal
adhesion proteins to background levels in pKO-αv cells, indicating that
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Figure 4 Composition and stoichiometry of the adhesome is determined by
the individual integrin and myosin II activity. (a) Focal-adhesion-enriched
fractions analysed by MS before and after blebbistatin (BLEB) treatment.
The Z -scores of median MS intensities (n =3–4) are colour coded to show
relative protein abundance. A blebbistatin-insensitive cluster is marked
with a red bar and blebbistatin-sensitive clusters are marked with blue
bars. The arrow highlights the pronounced effect of blebbistatin on pKO-αv
cells. FN, fibronectin. (b) Boxplots showing MS intensity differences of 58
known focal adhesion proteins of the indicated cells relative to pKO-αv cells
cultured for 45min without blebbistatin. A t -test revealed significant MS
intensity changes after blebbistatin treatment. Boxplot whisker ends are at

1.5 interquartile range and outliers are shown as dots. (c) Focal adhesion
proteins with similar Z -score profiles (colour coded) as α5β1 or αv-class
integrins (selection based on Supplementary Fig. S6) were subjected
to hierarchical cluster analysis. Focal-adhesion-enriched fractions were
collected 45 and 90min after plating on fibronectin. (d) SILAC ratio plot
from label-inverted replicates comparing β1 with β3 tail pulldowns. Specific
interactors have high SILAC ratios in the forward experiment (fwd) and low
SILAC ratios in the label swapped reverse experiment (rev). The colour code
shows the percentage of sequence coverage of the proteins identified by MS
analysis (n =4; 2 independent experiments). pKO-αv (green); pKO-αv/β1
(blue); pKO-β1 (orange).
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the protein recruitment to focal adhesions in blebbistatin-treated pKO-
αv/β1 cells was mediated by α5β1 (Fig. 4a). A paired Student’s t -test
for 58 known focal adhesion proteins confirmed a significant reduction
of crosslinked focal adhesion proteins in pKO-αv cells by blebbistatin
(Fig. 4b). Furthermore, comparing the 45 and 90min time points re-
vealed that protein recruitment to focal adhesions was delayed in pKO-
αv cells (Fig. 4a,b). Importantly, blebbistatin did not change the MS in-
tensities of αv-class integrins, excluding inefficient integrin crosslinking
as the cause for the diminished recruitment of focal adhesion proteins,
and indicating that short-lived/weak αv-class integrin–fibronectin
interactions occur in the absence of cell contractility and can be
crosslinked. These findings together with those depicted in Fig. 3
indicate that α5β1 can cluster and induce adhesome assemblies in the
absence of myosin-II-mediated tension, whereas the ability of αv-class
integrins to cluster and recruit adhesome proteins depends onmyosin II
activation and/or the stress fibre architecture at focal adhesions.

ILK and GEF-H1 are required for myosin II reinforcement
on stiff substrates
Consulting published protein–protein interactions within the
adhesome30, we established a putative core interactome of fibronectin-
bound α5β1 or αv-class integrins (Supplementary Fig. S5). Hierarchical
cluster analysis of MS intensities of the 125 core proteins of the
integrin interactome from all conditions tested (Supplementary Fig.
S6) revealed 29 proteins correlating with MS intensities of α5β1 at
both time points and 2 proteins correlating with MS intensities of
αv-class integrins (Fig. 4c). In addition to this integrin interactome,
we analysed the MS intensities of all actin-binding proteins in the
focal-adhesion-enriched fraction and found that WAVE and Arp2/3
complexes, which drive lamellipodia formation, correlated with α5β1,
whereas the RhoA effector mDia1 (Diap1), which drives stress-fibre
formation, correlated with αv-class integrins (Supplementary Fig. S7).
We performed stable isotope labelling with amino acids in cell culture
(SILAC)-based peptide pulldown assays with β1 and β3 integrin tail
peptides and scrambled control peptides followed by MS (ref. 33) to
identify which of the 29 α5β1-enriched and 2 αv-class integrin-enriched
adhesome proteins were enriched through differential associations
with integrin cytoplasmic tails. Comparison of integrin-tail interactors
with scrambled peptide interactors identified common and specific
β1 tail- and β3 tail-binding proteins (Supplementary Fig. S8). Talin-1
showed equal binding to β1 and β3 tails and was therefore used to
control the experiments. In line with the adhesome analysis (Fig. 4c)
we observed very high β1-tail-specific enrichment for Kindlin-2 and a
lower enrichment for the ILK/PINCH/Parvin (IPP) complex, and a high
β3-tail-specific enrichment of the RhoA guanine nucleotide exchange
factor GEF-H1 (Fig. 4d). Thus, the recruitment of Kindlin-2, the IPP
complex and GEF-H1 to focal adhesions is controlled by the integrin
tail sequence rather than the different focal adhesion architecture
in pKO-β1 and pKO-αv cells. Ratiometric analysis of fluorescence
intensities in focal adhesions confirmed higher Kindlin-2 and ILK levels
in pKO-β1 cells and pKO-αv/β1 cells (Fig. 5a–d). To analyse GEF-H1
levels in focal adhesions we first chemically crosslinked and unroofed
the cells to remove the large cytoplasmic and microtubule-associated
GEF-H1 pool, and then performed immunostainings, which revealed
that crosslinked GEF-H1 levels were significantly higher in pKO-αv
and pKO-αv/β1 cells than in pKO-β1 cells (Fig. 5e–g).

To investigate whether the IPP complex and GEF-H1 contribute to
myosin II regulation by α5β1 and αv-class integrins we seeded ILKfl/fl

(control) and ILK−/− fibroblasts34 on fibronectin-coated X-shapes
and stained for pMLC. ILK−/− fibroblasts had similarly low pMLC
signals as pKO-αv cells (Fig. 5h,i). Furthermore, inhibition of α5β1
with blocking antibodies or αv-class integrins with cilengitide in ILKfl/fl

cells significantly reduced pMLC levels (Fig. 5h,i), confirming that both
fibronectin-binding integrin classes are required to activate myosin II.
To examine whether GEF-H1 regulates integrin-mediated activation
of myosin II on fibronectin-coated X-shapes we depleted GEF-H1
messenger RNAusing short interfering RNA (siRNA; Fig. 5j) and found
significantly reduced pMLC levels inGEF-H1-silenced pKO-αv/β1 cells,
slightly reduced levels in pKO-β1 cells and unaffected levels in pKO-αv
cells (Fig. 5k,l) indicating that GEF-H1 reinforces myosin II activity in
a α5β1-dependent manner.
The IPP complex and GEF-H1 have been implicated in cell

contractility regulation by tuning RhoA GTPases35–37. Therefore, we
investigated whether the activity of RhoA and Rac1 are affected in our
cell lines. Seeding the three cell lines for 45min on fibronectin induced a
significantly higher RhoA activity in pKO-αv cells when compared with
pKO-β1 and pKO-αv/β1 cells (Fig. 5m). Rac1 activity was the lowest
in pKO-αv cells, higher in pKO-β1 and the highest in pKO-αv/β1 cells
(Fig. 5n). As the high GEF-H1 and RhoA levels in focal adhesions of
pKO-αv cells are not able to promote high pMLC, we conclude that only
α5β1 can elicit signals formediatingRhoA-drivenmyosin II activation.

Integrin-specific signalling pathways cooperate for feedback
regulation of myosin II
The coupling of active RhoA to its effector Rock requires unknown
signalling events that depend on cell adhesion, cell shape and
cytoskeletal tension22. To uncover integrin-specific regulators of
myosin II upstream and downstream of active RhoA we performed
SILAC-based quantitative phosphoproteomics of adhesion signalling
on fibronectin. We quantified a total of 3,180 proteins (Supplementary
Table S2) and 7,529 phosphorylation sites (Supplementary Table
S3) in the three cell lines seeded for 45min on fibronectin.
ANOVA tests of triplicate experiments identified 150 proteins
and 1,010 phosphorylation events as significantly regulated in
at least one of the three cell lines (Fig. 6a and Supplementary
Fig. S9, Tables S2 and S3). Hierarchical cluster analysis of the
SILAC ratios of the 1,010 phosphorylation events revealed clusters
dominated by α5β1 and clusters dominated by αv-class integrins.
We also observed clusters regulated oppositely by α5β1 and αv-class
integrins, indicating antagonistic regulation, and clusters regulated
by both integrin classes, indicating synergistic regulation. Using
ratio thresholds for the different pairwise comparisons allowed
assignment of 646 of the 1,010 determined phospho-sites into
either the antagonistic, dominant or synergistic category (Fig. 6b and
Supplementary Table S4).
We searched for phospho-sites that influence myosin II activity

in an integrin-dependent manner and found that pKO-β1 and
pKO-αvβ1 cells showed increased phosphorylation of the RhoA/Rock
targets S693-myosin phosphatase-1 (Mypt1; Fig. 6c–e) and S3-cofilin
(Fig. 6c–e). MLC phosphorylation can also be induced by Mlck, whose
activity is controlled by Ca2+ or Erk2 in focal adhesions38,39. We
observed synergistic downregulation of S364-Mlck and synergistic
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Figure 5 αv- and β1-mediated activation of myosin II requires ILK and
GEF-H1. (a–f) Cells were plated on fibronectin-coated glass coverslips for
90min and immunostained for: Talin-1 (Tln; red) and Kindlin-2 (Kind2;
green) (a); ILK (red), paxillin (Pxn; green) and F-actin (white) (b); or
GEF-H1 (red) and paxillin (green) (e); scale bars, 10 µm. DAPI, blue (a,b).
Ratios of thresholded fluorescence intensities (FI) were calculated for
Kindlin-2 and Talin-1 (pKO-αv n=12, pKO-β1 n=22, pKO-αv/β1 n=22;
results are aggregated over 3 independent experiments) (c), and ILK and
paxillin (pKO-αv n=33, pKO-β1 n=40, pKO-αv/β1 n=40; aggregated over
3 independent experiments) (d). The correlation coefficient for GEF-H1
and paxillin staining (pKO-αv n =11, pKO-β1 n =10, pKO-αv/β1 n =15;
aggregated over 3 independent experiments) was determined (f).
(g) Total fluorescence intensity of focal-adhesion-retained GEF-H1 after
crosslinking and unroofing of cells (pKO-αv n = 11, pKO-β1 n = 10,
pKO-αv/β1 n=15; aggregated over 3 independent experiments). (h) ILK−/−

and ILK-floxed fibroblasts plated for 3 h on fibronectin-coated X-shapes
stained for pMLC, F-actin and paxillin were treated with cilengitide (Cil)
to block αv-class integrins and with monoclonal antibody 2575 to block

α5β1. Scale bar, 10 µm. (i) Quantification of the relative fluorescence
intensities for pMLC to untreated ILK-floxed cells (ILK-flox n = 26;
ILK-null n = 17; ILK-flox +Cil n = 24; ILK-null +Cil n = 12; ILK-flox
+anti-α5β1 n = 16, ILK-null anti-α5β1 n = 10; data aggregated over
2 independent experiments). (j) siRNA-mediated depletion of GEF-H1
confirmed by western blotting. (k) Cells were plated on fibronectin-coated
X-shapes and stained for pMLC, F-actin and paxillin. Scale bar, 10 µm.
(l) Quantification of the relative fluorescence intensities for pMLC in
siRNA-treated cells (pKO-αv +control siRNA n = 24, pKO-β1 +control
siRNA n=48, pKO-αv/β1 +control siRNA n=56, pKO-αv + GefH1 siRNA
n=22, pKO-β1 + GefH1 siRNA n=34, pKO-αv/β1 + GefH1 siRNA n=59;
data aggregated over 2 independent experiments). (m) Relative RhoA–GTP
loading in cells plated for 45min on fibronectin (n =9; 1 representative
of 3 independent experiments is shown). (n) Relative Rac1–GTP loading
in cells plated for 45min on fibronectin (n = 9; 1 representative out of
3 independent experiments is shown). Error bars represent s.e.m. and
P values were calculated using a t -test. pKO-αv (green); pKO-αv/β1 (blue);
pKO-β1 (orange).
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Figure 6 Integrin-specific phosphorylation landscapes on adhesion to
fibronectin. (a) Hierarchical cluster analysis of SILAC ratios of 1,010
significantly regulated (ANOVA test and Benjamini/Hochberg false
discovery rate) phosphorylation events in the indicated cells plated for
45min on fibronectin from 3 independent replicates. The colour code
depicts the normalized log2 SILAC ratio between cell lines. (b) The bar
graph shows the number of phosphorylation events grouped into different
modes of regulation based on the indicated SILAC ratio threshold criteria.
AG, antagonistic; DO, dominant; SY, synergistic. (c) SILAC ratios for
selected phosphorylation events. The bar graph depicts the median
of 3 independent experiments with error bars showing the s.d. (d) A
selection of differentially regulated phosphorylation events confirmed by
western blotting using phospho-site-specific antibodies. (e) Signalling

network with differentially regulated phosphorylation events shown to be
functionally relevant in cell protrusion or contraction. Sites dominated
by α5β1 or synergistically upregulated in pKO-αv/β1 cells are shown.
(f,g) Mean pMLC fluorescence intensity (f) and mean cell area (g)
on fibronectin-coated X-shapes before and after treatment with ML-7
(25 µM) to inhibit Mlck, UO126 (50 µM) to inhibit ERK and Y-27632
(10 µM) to inhibit Rock. (pKO-αv: untreated n = 12, +ML-7 n = 10,
+U0126 n = 15, +Y-27 n = 16; pKO-β1: untreated n = 16, +ML-7
n =17, +U0126 n =19, +Y-27 n =21; pKO-αv/β1: untreated n =11,
+ML-7 n = 18, +U0126 n = 19, +Y-27 n = 30; 1 representative of 3
independent experiments is shown; all pairwise statistical comparisons
using t -tests are shown in Supplementary Table S5; error bars represent
s.e.m.). pKO-αv, green; pKO-αv/β1, blue; pKO-β1, orange.

upregulation of pT183/pY185-Erk2 activities in pKO-αv/β1 cells
(Fig. 6c–e). Western blotting using phospho-site-specific antibodies
corroborated these results (Fig. 6d). We uncovered three pathways
(Erk2, Rock,Mlck) that were differentially regulated by the two integrin
classes following adhesion to fibronectin, and reasoned that inhibition

of either one or any combination of these pathways would abrogate
synergistic myosin II reinforcement. Indeed, the cooperative activation
ofmyosin II in pKO-αv/β1 cells was blocked by inhibiting Erk (UO126),
Rock (Y-27632) or Mlck (ML-7; Fig. 6f,g). To confirm the relevance
of this finding, we overexpressed constitutively active (ca-) kinase
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Figure 7 Activation of Rock is α5β1-dependent. (a–c) Total cell lysates
of cells plated for 90min on fibronectin in the indicated conditions and
analysed by western blotting with phospho-specific antibodies. The levels
of pErk2 (b) and pMLC (c) were quantified using densitometry (n=3). (d) A
representative western blot analysis of cells transfected with myc-tagged
ca-RhoA or myc-tagged ca-ROCK constructs and probed with the indicated
antibodies. (e) Densitometric quantification of western blots (n = 3). The
bar graphs show ratios of pMLC signals from cells expressing ca-RhoA or
ca-Rock over the empty vector control. NS, not significant. (f) Confocal

image of indicated cells transfected with a myc-tagged ca-ROCK construct,
seeded on fibronectin-coated crossbow shapes and immunostained with
Myc (red), pMLC (green), F-actin (blue) and DAPI (white). Scale bar, 25 µm.
(g) Pearson correlation coefficient of fluorescence intensities of pMLC and
Myc staining for the three cell lines (pKO-αv n = 30; pKO-β1 n = 25;
pKO-αv/β1 n=25; 1 representative of 3 independent experiments is shown).
All error bars represent s.d. and P values were calculated using a t -test.
pKO-αv (green); pKO-αv/β1 (blue); pKO-β1 (orange). Uncropped images of
blots are shown in Supplementary Fig. S10.

constructs and measured their effects on pMLC. Overexpression of
ca-MEK1 rescued the low pErk2 levels and significantly increased
pMLC in pKO-αv cells (Fig. 7a–c). The high RhoA and low Rock and
pMLC activities in pKO-αv cells (Figs 5 and 6) suggest that αv-class
integrins are unable to couple active RhoA to Rock, which was tested by
overexpressing ca-RhoA or ca-Rock in the three cell lines. Whereas ca-
RhoA significantly increased pMLC in pKO-β1 and pKO-αv/β1, pMLC
levels remained unchanged in pKO-αv cells. In sharp contrast, ca-Rock
increased pMLC twofold in all three cell lines (Fig. 7d,e), indicating
that endogenous Rock in pKO-αv cells remained inactive even in the
presence of high RhoA–GTP. This finding was further confirmed with
pMLC staining of cells seeded on fibronectin-coatedX shapes (Fig. 7f,g).
In conclusion, the Mek1/Erk2 and the RhoA/Rock/pMLC pathways are
preferentially induced by α5β1, whereas the high RhoA activity induced
in pKO-αv cells is not coupled to Rock/pMLC.

DISCUSSION
We reconstituted pan-integrin-deficient fibroblasts with β1- and/or
αv-class integrins and correlated integrin-class-specific cellular pheno-
types with integrin-class-specific adhesome composition and signalling
events. Fibroblasts exploring fibronectin-based microenvironments en-
gage α5β1 and αv-class integrins to orchestrate membrane protrusions,
cell contractility and cell migration. Our cell line analyses revealed a se-
ries of signalling events accomplished by α5β1 integrins, which activate
Rac1, induce membrane protrusions, assemble nascent adhesions and
generate RhoA/Rock-mediated myosin II activity. In conjunction with
these events, mechanosensitive αv-class integrins accumulate in areas
subjected to high tension and reinforce adhesive sites to induce further
activation of myosin II and development of large focal adhesions and
actomyosin bundles (Fig. 8). Our study uncovers a sequence of tightly
integrated biophysical and biochemical events induced by α5β1 and

634 NATURE CELL BIOLOGY VOLUME 15 | NUMBER 6 | JUNE 2013

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 



ART I C L E S

Kindlin-2

IPP complex
c-Src

GEF-H1

RhoA/mDia

Actin bundles

RhoA/Rock

Myosin II activity

Rac

Dendritic actin

Structure Force

αvβ3 α5β1

αvβ3 + α5β1

Erk2

Protrusion

Arp2/3

Adaption to mechanical and

topographic constraints—

ECM-stiffness-dependent modulation

of both force production (myosin) and

coupling (focal adhesion size 

and stress fibres)

Figure 8 Model of α5β1 and αv-class integrin cooperation during rigidity
sensing. α5β1 integrins adhere to fibronectin, and assemble Kindlin-2-
and ILK-rich small peripheral adhesions in a myosin-II-independent
manner. The protein assembly in α5β1-containing adhesions activates
Rac1, Wave and Arp2/3-driven actin polymerization to induce membrane
protrusions, and RhoA/Rock-mediated myosin II activation to induce
tension. This tension increases the adhesion lifetime of αv-class integrins
bound to ligand on stiff substrates, which reinforces and stabilizes focal
adhesions. αv-class integrins recruit GEF-H1 to focal adhesions, which
reinforces RhoA/myosin II in a α5β1-dependent manner, and increases RhoA
activity to promote mDia-mediated stress fibre formation. The combination
of αv-class integrin-mediated structure (focal-adhesion anchoring and
stress-fibre formation) with the α5β1-mediated force generation (myosin II
activity) constitutes a synergistic system, which is important for adapting
cellular contractility and architecture to the rigidity of fibronectin-based
microenvironments.

αv-class integrins that adjust fibroblast contractility to the rigidity of
fibronectin-coated substrates. The cooperation of α5β1 and αv-class
integrins to sense the rigidity of fibronectin-based microenvironments
predicts that cell migration towards a rigidity gradient, called durotaxis,
may also depend on the cooperation of both integrins. These findings
have potential ramifications for certain pathologies, such as fibrosis
and tumour metastasis where rigidity sensing of fibronectin matrices
is crucial in disease progression40.
To better understand how distinct integrin classes individually and

cooperatively probe the biophysical properties of a fibronectin-based
microenvironment, we established a cell model system and used
proteomics methods to characterize their focal adhesion composition,
phospho-signalling and proteome changes. Our comprehensive
proteomic data set of adhesion signalling revealed that integrin-
class-specific adhesomes and phospho-proteomes are enriched with
integrin-specific adapter proteins and signalling intermediates. Several
well-known integrin outside-in signalling pathways, including the
Rac1/Wave/Arp2,3 and RhoA/Rock pathways, were dominated by α5β1
integrins. Interestingly, the pKO-β1 cells developed very few stress

fibres, indicating that α5β1-induced RhoA activity was preferably used
for production of myosin-II-mediated force but not formin-mediated
stress-fibre formation. In contrast, the pKO-αv cells exhibited high
RhoA activity, which in turn induced the formation of thick stress
fibres, most likely through the activation of mDia, but did not activate
Rock/pMLC/myosin II. The coupling of active RhoA to different
downstream effectors by distinct integrin classes was unanticipated. The
underlying mechanism(s) are unclear, but probably involve specific
mark(s) either attached to active RhoA or to the effectors enabling
differential interactions with GTP-bound RhoA.
Although forces play an important role in the assembly of focal

adhesions, pKO-αv cells induced the largest focal adhesions among the
three cell lines and also exhibited the lowest myosin II activities and
traction forces. Focal adhesion size is not the sole predictor of traction
forces and the final focal adhesion size can also be determined by an
mDia-dependent mechanism41,42. Therefore, we propose that the large
size of focal adhesions in pKO-αv cells depends onRhoA/mDia-induced
stress fibres rather than on myosin II. However, although the final
focal adhesion size in pKO-αv cells was myosin-II-independent,
their formation and/or stability were strictly myosin-II-dependent,
evidenced by the pronounced destabilization of αv-class integrin
adhesions with blebbistatin. A role for αv-class integrins for focal
adhesion stabilization has also been obtained from single-protein
tracking experiments of β1 and β3 integrins, which showed that β3
integrins are immobilized in large focal adhesions, whereas β1 integrins
are more mobile29. The necessity of αvβ3 for cell stiffening following
force application has also been postulated43. Similarly, the recruitment
of GEF-H1 to focal adhesions and Erk2 activity was reported as
necessary for cell stiffening following force application35. Our results
link these observations and suggest that force-mediated stabilization
of αv–fibronectin bonds will reinforce focal adhesions, increase local
concentrations of GEF-H1 and activate RhoA following α5β1-induced
Erk2 activation. Therefore, αv-class integrins could be capable of
forming stronger extracellular catch bonds with fibronectin than α5β1
integrins do44, resulting in longer bond lifetimes of αv-class integrins
with fibronectin when force is applied. However, as the influence
of force on the on and off rates of α5β1 and αv-class integrins with
fibronectin have not been systematically studied, this hypothesis awaits
future testing. �

METHODS
Methods and any associated references are available in the online
version of the paper.

Note: Supplementary Information is available in the online version of the paper
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METHODS
Antibodies. Information about antibodies is provided in Supplementary Table S6.

Isolation, immortalization, viral reconstitution and transfection of cell
lines. Mouse pKO fibroblasts and reconstituted pKO-αv, pKO-β1 and pKOαv/β1
cell lines were generated from fibroblasts (floxed parental) derived from the kidney
of 21-day-old male mice carrying floxed αv and β1 alleles (αflox/floxv , βflox/flox1 ),
and constitutive β2 and β7 null alleles (β−/−

2 , β−/−

7 ; ref. 21). Individual kidney
fibroblast clones were immortalized by retroviral delivery of the SV40 large T.
The immortalized floxed fibroblast clones were then retrovirally transduced with
mouse αv and/or β1 integrin cDNAs and the endogenous floxed β1 and αv
integrin loci were simultaneously deleted by adenoviral transduction of the Cre
recombinase. Reconstituted cell lines were FACS sorted to obtain cell populations
with comparable integrin surface levels to the parental cell clones. Transduction
of ca-RhoA (myc–RhoA pcDNA3.1) and ca-ROCK (myc–ROCKD4 pcDNA3.1)
was carried out with Lipofectamine 2000 (Invitrogen through Life Technologies)
according to themanufacturer’s instructions. The transfection control was an empty
pcDNA3.1 vector.

Adhesion and cell migration analysis. Adhesion assays were carried out as
previously described45. Briefly, cells were plated for 20min in 96-well plates coated
with varying concentrations of ECM ligands. After washing the plates the number of
adhered cells that remained on the plate was quantified using attenuance at 595 nm.

To analyse random migration, cell culture dishes were coated with fibronectin
(5 µgml−1 in PBS; 2 h at room temperature) and blocked with 1% BSA in PBS. After
seeding, video time-lapse microscopy was performed using phase contrast at ×20
magnification. A total of 12 migrating pKO-αv, 12 migrating pKO-αv/β1 and 14
migrating pKO-β1 cells from 5 independentmovies were analysed. One pixel in each
cell nucleus was marked manually and served as the cell’s coordinate. Each tracked
cell j with a track length Nj was recorded by its xj,i and yj,i position for every frame
i. A tracking point was made every Dt = 1 min. The time difference between the
tracking coordinates xj,i and xj,i+n is t = nDt , where n is the frame number. The
mean squared displacement (msd) of the cell j at time t = nDt was calculated by

msdj (t )=
1

Nj−n

Nj−n∑
i=1

[(
xj,i+n−xj,i

)2
+
(
yj,i+n−yj,i

)2]

All msd values were calculated for all cells and averaged. The used propagated
uncertainty for themsd(t) is the standard deviation of the mean. For an increasing n
the number of given tracks contributes tomsd(t) decreases as well as the propagated
uncertainty caused by the tracking uncertainty increases. Therefore, the msd(t) has
been cut at n= 90. To determine the persistence time P and the diffusion constant
D, Fürths formula

msd(t )= 4D
(
t−P

(
1−exp

(
−

t
P

)))
has been fitted through the data. The mean velocity of a cell j has been computed as
the average of the distance travelled each time step divided by the time step.

Micropatterning and immunostainings. Micropatterns were generated on PEG-
coated glass coverslips with deep-ultraviolet lithography46. Glass coverslips were in-
cubated in a 1mM solution of a linear PEG, CH3–(O–CH2–CH2)43–NH–CO–NH–
CH2–CH2–CH2–Si(OEt)3 in dry toluene for 20 h at 80 ◦C under a nitrogen at-
mosphere. The substrates were removed, rinsed intensively with ethyl acetate,
methanol and water, and dried with nitrogen. A pegylated glass coverslip and a
chromium-coated quartz photomask (ML&C, Jena) were immobilizedwith vacuum
onto a mask holder, which was immediately exposed to deep ultraviolet light using
a low-pressure mercury lamp (NIQ 60/35 XL longlife lamp, quartz tube, 60W
from Heraeus Noblelight) at 5 cm distance for 7min. The patterned substrates were
subsequently incubated overnight with 100 µl of fibronectin (20 µgml−1 in PBS) at
4 ◦C and washed once with PBS.

For immunofluorescence microscopy, cells were seeded on micropatterns in
DMEM (GIBCO by Life Technologies) containing 0.5 % FBS at 37 ◦C, 5% CO2.
After 90 or 180min the medium was soaked off, and cells were fixed with 3%
PFA in PBS for 5min at room temperature, washed with PBS, blocked with 1%
BSA in PBS for 1 h at room temperature and then incubated with antibodies. The
fluorescent images were collected with a laser scanning confocal microscope (Leica
SP5).

Acrylamide micropatterning. Micropatterns were first produced on glass
coverslips as previously described46. Briefly, 20mm square glass coverslips were
oxidized through oxygen plasma (FEMTO, Diener Electronics) for 10 s at
30W before incubating with 0.1mgml−1 poly-l-lysine (PLL)–PEG (PLL20K-G35-
PEG2K, JenKem) in 10mM HEPES, pH 7.4, for 30min. After drying, coverslips
were exposed to 165 nm ultraviolet (UVO cleaner, Jelight) through a photomask
(Toppan) for 5min. Then, coverslips were incubated with 20mgml−1 of fibronectin
(Sigma) and 2mgml−1 of rhodamine-labelled fibronectin (Cytoskeleton) in
100mM sodium bicarbonate solution for 30min. Acrylamide solution containing
acrylamide and bisacrylamide (Sigma)was degassed for 20min under house vacuum
and mixed with passivated fluorescent beads (Invitrogen) by sonication before
addition of APS and TEMED. A 25 µl drop of this solution was put directly
on the micropatterned glass coverslip. A silanized coverslip was placed over the
drop and left polymerizing for 30min (fluorescent beads passivation and glass
silanization were performed as previously described4). The sandwich was then put
in 100mM sodium bicarbonate solution and the gel was gently removed from
the patterned glass coverslip while staying attached to the other coverslip owing
to the silanization treatment. This process transferred the protein micropatterns
onto the gel as previously described47. Three different solutions of 3%/0.225%,
5%/0.225%, 8%/0.264% acrylamide/bisacrylamide were used. The corresponding
Young’s modulus of the gels was 1.4, 9.6 and 34.8 kPa respectively as measured using
AFM. Coverslips were mounted in magnetic chambers (Cytoo) and washed with
sterile PBS before plating cells.

AFM measurements of the Young’s modulus of acrylamide gels. We
measured gel stiffness through nanoindentation using an atomic force microscope
(Bruker Nanoscope) mounted with silica-bead-tipped cantilevers (r(bead) =
2.5 µm, nominal spring constant 0.06Nm−1, Novascan Technologies). Initially, we
determined the sensitivity of the photodiode to cantilever deflection by measuring
the slope of a force distance curve when pressing the cantilever onto a glass coverslip,
and the force constant of the cantilever using the thermal noise method included
in the Bruker Nanoscope software. For each acrylamide/bisacrylamide ratio used
in the traction-force microscopy measurements we acquired 27 force curves in 3
by 3 grids (2 µm spacing between points) at three different locations on the gels.
Before and during indentation experiments gels were kept in PBS. To obtain stiffness
values from force curves we used the NanoScope Analysis software. Specifically, we
corrected for baseline tilt, and used the linear fitting option for the Hertz model with
a Poisson ration of 0.48 on the indentation curve.

Traction-force microscopy and image analysis. Confocal acquisition was
performed on an Eclipse TI-E Nikon inverted microscope equipped with a CSUX1-
A1 Yokogawa confocal head and an Evolve EMCCD camera (Ropert Scientific,
Princeton Instrument). A CFI Plan APOVCoil×60/1.4 objective (Nikon) was used.
The system was driven by the Metamorph software (Universal Imaging).

Traction-force microscopy was performed as previously described28. Displace-
ment fields describing the deformation of the polyacrylamide substrate are deter-
mined from the analysis of fluorescent bead images before and after removal of the
adhering cell with trypsin treatment. Images of fluorescent beads were first aligned
to correct experimental drift using the Align slices in stack ImageJ plugin. The
displacement field was subsequently calculated by a custom-written particle image
velocimetry (PIV) program implemented as an ImageJ (http://rsb.info.nih.gov/ij)
plugin. The PIV was performed through an iterative scheme. In all iterations the
displacement was calculated by the normalized correlation coefficient algorithm,
so that an individual interrogation window was compared with a larger searching
window. The next iteration takes into account the displacement field measured
previously, so that a false correlation peak due to insufficient image features is
avoided. The normalized cross-correlation also allowed us to define an arbitrary
threshold to filter out low correlation values due to insufficient beads present in the
window. The resulting final grid size for the displacement field was 2.67×2.67 µm.
The erroneous displacement vectors due to insufficient beads present in the window
were filtered out by their low correlation value and replaced by the median value
from the neighbouring vectors. With the displacement field obtained from the
PIV analysis, the traction-force field was reconstructed by the Fourier transform
traction cytometry (FTTC) method with regularized scheme on the same grid
(2.67× 2.67 µm) without further interpolation or remapping. The regularization
parameter was set at 1× 10–11 for all traction-force reconstructions. The Fourier
transform traction cytometry code was also written in Java as an ImageJ plugin, so
that the whole traction-force microscopy procedure from PIV to force calculation
could be performed with ImageJ. The entire package of traction-force microscopy
software is available at https://sites.google.com/site/qingzongtseng/tfm. Contractile
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energy was then computed as the integral under the cell of the scalar product of force
and displacement vectors using a custom-written code in MatLab. Force profiles
along the cell front were generated by integration of the tractionmaps over the width
of the circular part of the pattern. Average pictures were generated after alignment
using the Align slices in stack ImageJ plugin. Focal adhesion intensity profiles were
generated by integration of the paxillin intensity along the border of the circular part
of the micropattern.

Rho–GTPase assays. Cells were serum-starved overnight, detached with
trypsin–EDTA and kept in suspension in serum-free medium for 1 h. Cells were
then plated on fibronectin-coated dishes (blocked with 1% BSA) in serum-free
medium for 45min. Cell lysis and active Rho–GTPase pulldown was performed
using the active Rac1 Pull-Down and Detection Kit or the active Rho Pull-Down
and Detection Kit (Cat#16118, 16116, Pierce) according to the manufacturer’s
instruction. The active GTPase signal was normalized to total protein level of the
GTPase. Western blots were quantified with Totallab.

RNA interference. Cells were transiently transfected with a final concentration of
300 nM siRNA (stealth RNAi; Invitrogen) using Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s protocol, using the targeting sequence sense-5′-
CCCGGAACUUUGUCAUCCAUCGUUU-3′ for GEF-H1. As a control we used the
scrambled sequence sense-5′-CCCUCAAUGUUCUACCUACGGGUUU-3′.

MS. For proteome and phosphoproteome analysis fibroblasts were cultured in
lysine/arginine-free DMEM with 10% FBS (10KDa dialysed, PAA) and SILAC
labelled with light (l-arginine (R0) and l-lysine (K0))], medium (L-arginine-U-
13C6 (R6) and l-lysine-2H4(K4)) or heavy (l-arginine-U-13C6 −

15 N4 (R10) and
l-lysine-U-13C6−

15 N2 (K8)) amino acids (Cambridge Isotope Laboratories). For
phosphoproteome analysis, cells were serum-starved for 6 h and then plated in
serum-free medium on fibronectin-coated and BSA-blocked culture dishes for
45min. Cells were lysed in lysis buffer (100mM Tris–HCl, at pH 7.5, containing
4% SDS and 100mM dithiothreitol), boiled 5min at 95 ◦C, and sonicated. Lysate
was clarified by a 10min centrifugation at 16,000g. Cleared light/medium/heavy
proteins were mixed at a 1:1:1 ratio and digested with trypsin using the
FASP protocol48. For proteome analysis, 40 µg of peptides was separated with
strong anion exchange chromatography49. For phosphoproteome analysis, 3mg
of peptides was fractionated with strong cation exchange chromatography and
enriched for phosphorylated peptides with titanium dioxide (TiO2) as described
previously50. Peptides were then analysed on a LTQ-Orbitrap Velos equipped with a
nanoelectrospray source (Thermo Fisher Scientific). The full-scan MS spectra were
acquired in theOrbitrapwith a resolution of 30,000 atm/z 400. The tenmost intense
ions were fragmented by higher-energy collisional dissociation and the spectra of the
fragmented ions were acquired in the Orbitrap analyser with a resolution of 7,500.
Peptideswere identified and quantified using theMaxQuant software31 and searched
with the Andromeda search engine against the mouse IPI database 3.68 (ref. 51).
Phosphorylations were assigned as previously described50.

The adhesome analysis was performed as previously described19. In brief, cells
were serum-starved for 4 h and plated for either 45 or 90min in serum-free medium
on fibronectin-coated, BSA-blocked, culture dishes. Optionally, cells were treated
with 50 µMblebbistatin for 30 or 75min. Enrichment for focal-adhesion-associated
proteins was achieved by shortly fixing the ventral cell cortex using chemical
crosslinkers, followed by removal of non-crosslinked proteins and big organelles
by stringent cell lysis and hydrodynamic sheer flow washing. Quantitative mass
spectrometric analysis was performed on an LTQ Orbitrap mass spectrometer
(Thermo Electron) and analysed using the label-free quantification algorithm52,
which is embedded in the MaxQuant software31, as previously described19.

For in-gel digestion, gel bands were cut into 1mm3 cubes and washed two times
with 50mM ammonium bicarbonate in 50% ethanol. For protein reduction, gel
pieces were incubated with 10mMdithiothreitol in 50mM ammonium bicarbonate
for 1 h at 56 ◦C. Alkylation of cysteines was performed with 10mM iodoacetamide
in 50mM ammonium bicarbonate for 45min at 25 ◦C in the dark. Gel pieces
were washed two times with 50mM ammonium bicarbonate in 50% ethanol,
dehydrated with 100% ethanol, and dried in a vacuum concentrator. The gel
pieces were rehydrated with 12.5 ng µl−1 trypsin (sequencing grade, Promega) in
50mM ammonium bicarbonate and digested overnight at 37 ◦C. Supernatants
were transferred to fresh tubes, and the remaining peptides were extracted by
incubating gel pieces two times with 30% acetonitrile in 3% TFA followed by
dehydration with 100% acetonitrile. The extracts were combined and desalted using
RP-C18 StageTip columns, and the eluted peptides used for mass spectrometric
analysis.

For nanoLC–MS/MS, peptide mixtures were separated by on-line nanoLC and
analysed by electrospray tandemMS. The experimentswere performedon anAgilent
1200 nanoflow system connected to an LTQ Orbitrap mass spectrometer (Thermo
Electron) equipped with a nanoelectrospray ion source (Proxeon Biosystems).
Binding and chromatographic separation of the peptides took place in a 15-
cm fused-silica emitter (75-µm inner diameter from Proxeon Biosystems) in-
house packed with reversed-phase ReproSil-Pur C18-AQ 3 µm resin (Dr. Maisch).
Peptide mixtures were injected onto the column with a flow of 500 nlmin−1 and
subsequently eluted with a flow of 2500 nlmin−1 from 2% to 40% acetonitrile in
0.5% acetic acid, in a 100min gradient. The precursor ion spectra were acquired in
the Orbitrap analyser (m/z 300–1,800, R= 60,000, and ion accumulation to a target
value of 1,000,000), and the ten most intense ions were fragmented and recorded in
the ion trap. The lock mass option enabled accurate mass measurement in both MS
and Orbitrap MS/MS mode as described previously53. Target ions already selected
for MS/MS were dynamically excluded for 60 s.

For peptide identification and peptide quantification, the data analysis was
performed with the MaxQuant software as described previously31,54, supported
by Andromeda as the database search engine for peptide identifications. Peaks
in MS scans were determined as three-dimensional hills in the mass-retention
time plane. MS/MS peak lists were filtered to contain at most six peaks per
100Da interval and searched by Andromeda (in-house-developed software) against
the Mouse International Protein Index database. The initial mass tolerance
in MS mode was set to 7 ppm and MS/MS mass tolerance was 0.5Da.
Cysteine carbamidomethylation was searched as a fixed modification, whereas
N-acetyl protein, oxidized methionine, N -carbamidomethylated DSP protein and
carbamidomethylated DSP lysine were searched as variable modifications. Finally,
the label-free quantification algorithm implemented in the MaxQuant software was
used as described earlier52.

SILAC-based peptide pulldowns were carried out with the cytoplasmic tails of
β1 integrin (5′-HDRREFAKFEKEKMNAKWDTGENPIYKSAVTTVVNPKYEGK-
3′) and the tails of β3 integrin (5′-HDRKEFAKFEEERARAKWDTANNPLYKEATS-
TFTNITYRGT-3′). The tail peptides were de novo synthesized with a desthiobiotin
on the amino terminus, coupled to magnetic streptavidin beads (MyOne
Streptavidin C1—Invitrogen) and pulldowns from SILAC-labelled cell lysates
were performed as described previously33. After a mild wash the bound proteins
were eluted from the magnet using 16mM biotin (Sigma-Aldrich). After protein
precipitation and in-solution digestion, LC-MS/MS and data analysis was performed
as described above. The peptide pulldown experiments were done as reverse SILAC
labelling experiments in duplicate (4 biological replicates). We generally considered
outliers with high SILAC ratios and high sequence coverage/intensity as more
significant than proteins that had only a high SILAC ratio.

Bioinformatics and statistics. ANOVA analysis of the cellular proteome and
phosphoproteome was performed using the Perseus bioinformatics toolbox of
MaxQuant (J. Cox et al.; manuscript in preparation). Multiple testing corrections
were performed using the inbuilt permutation method and significant hits were
identified at a significance level of 0.01 and 0.05, respectively. ANOVA analysis of
the 245 core adhesome proteins was performed using the statistical programming
language R (http://www.R-project.org) with the adaptive Benjamini and Hochberg
step-up false discovery rate-controlling procedure for multiple testing and a
significance level of 0.05. Hierarchical clustering was performed using an average
linkage approach and Euclidean distances. Enrichment analysis of clusters for
Gene Ontology (GO) terms, KEGG pathways and PFAM and INTERPRO protein
domains was performed with the DAVID webserver55 using the multiple testing
correction method by Benjamini and Hochberg and a significance level of 0.05.
Protein–protein interactions (PPIs) were compiled from different sources including:
PPI databases (DIP (ref. 56; version of December 2009), IntAct (ref. 57) and
MINT (ref. 58) (both downloaded on 19 May 2010), BIOGRID (ref. 59; version
3.0.64) and HPRD (ref. 60; Release 9)); the adhesome network database32;
and the KEGG pathway database61. For the adhesome network database, we
distinguished between undirected PPIs and directed activating and inhibiting
interactions as annotated in the adhesome database and in KEGG. Human and
mouse interactions were combined using the orthologue tables of the Mouse
Genome Database (MGI) to increase coverage. The high-confidence network of
PPIs from public databases contained only interactions reported in at least two
separate publications. Networks were visualized using the Cytoscape software.
Bar graphs throughout the study were generated in Microsoft Office and depict,
unless otherwise indicated, the means and standard errors of the means. Box
plots and dot plots were generated using the SigmaPlot software or the MatLab
software.
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Data deposition. Raw data for the phosphoproteome and proteome analyses
of the three cell lines are deposited in the Tranche database (https://
proteomecommons.org/tranche/) with the following accession numbers:
Schiller_Integrins_Phosphoproteome, on33gw4tEXu5YErn5zrp; Schiller_Integrins_
Proteome, EvAbqut9c7fC9OQTyawI.
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Figure S1 Generation of pKO-αv, pKO-β1 and pKO-αv/β1 cell lines. (a) 
Workflow of the generation of pKO kidney fibroblasts (strategy 1) and integrin 
reconstituted pKO fibroblasts (strategy 2). (b) Phase contrast image of the 
floxed and pKO cells plated on FN. Scale bar 20 µm. (c) Integrin profile of 
floxed and pKO cells analysed by flow cytometry. (d) Cell surface levels of 
indicated integrins analysed by flow cytometry. (e) Relative fluorescence 
intensities of indicated integrins from three independent stainings analysed 
by flow cytometry. The means (n=3) and standard deviations are shown. (f) 
Western blots for αv and β1 integrins. GAPDH was used as loading control. 

(g) Cell lysates and immunoprecipitates of β1 integrin were immunoblotted 
for αv, α5 and β1 integrins. Note that αv does not associate with β1 in 
pKO-αv/β1 cells. (h) Adhesion assay on fibronectin (FN) or vitronectin (VN). 
Numbers of adherent cells 20 minutes after seeding are shown as relative 
values of OD=595nm. The bar graph shows the mean and s.e.m. (n=3; one 
representative out of 2 independent experiments is shown). (i)  Cells plated 
on FN and time-lapse imaged using a phase contrast microscope at 20x 
magnification. Scale bar 100 µm.  pKO-β1 (green); pKO-αv (blue);  
pKO-αv/β1 (orange);  parental β1/αv floxed cell (red).
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Figure S2 α5β1 and αv-class integrins induce different spreading areas, 
membrane protrusions and adhesion sites on FN. (a) Cells were plated on FN 
for 90 minutes and immunostained with the indicated antibodies. Arrowheads 
indicate cortactin-positive lamellipodia and arrows mark the small NAs in 
lamellipodia. Scale bar 10µm. (b) Size distribution of adhesive sites of cells 
stained with Paxillin calculated with the Metamorph software. Boxplots show 
the percentage of adhesions in the depicted size classes (pKO-αv n=15; 
pKO-αv/β1 n= 29; pKO-β1 n=23; one representative out of 2 independent 
experiments is shown). Boxplot whisker ends are at 1.5 interquartile range 
and outliers are shown as dots.  Significance was calculated using a t test 
(*=p<0.05; ***=p<10 E-06). (c) Still pictures taken from supplementary 
movies S1-S3 showing trailing edge detachment defects indicated by the 

arrows. Scale bar 100 µm. (d) Floxed cells cultured 3 hours on FN-coated 
X-shapes treated for 1 hour with indicated concentrations of blebbistatin 
(BLEB), and then stained for Paxillin, pMLC and f-actin. Scale bar 10 µm. 
(e) Fluorescence intensities of pT18/S19-MLC, (f) Paxillin (Pxn) and (g) cell 
areas after blebbistatin treatment (n=20 cells; error bars represent s.e.m.). (h) 
Cells plated on FN-coated X-shapes and stained for pMLC, Paxillin and f-actin. 
Scale bar 10 µm. (i) Fluorescence intensities of pS18/T19-MLC and (j) cell 
areas (pKO-αV n=46, pKO-β1 n=46, pKO-αV/β1 n=21, pKO-αV/β1 +Cil 
n=10; one representative out of 3 independent experiments is shown; error 
bars represent s.e.m.). Cilengitide (Cil) was used to block αv-class integrins. 
Significance was calculated using a ttest.  pKO-αv (green); pKOαv/β1 
(blue);  pKO-β1 (orange);  pKOαv/β1 + 1 µM cilengitide (black).
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Figure S3 Adhesome analysis of pKO-αv, pKO-β1 and pKOαv/β1 cells. (a) 
Workflow for isolation of FA enriched fractions and analysis of adhesome 
components. (b) Adhesomes derived from cells plated on indicated substrates 

for 45 or 90 minutes were examined by non-supervised hierarchical cluster 
analysis of Z-scores of median MS intensities (n=3-4). The labels on the right 
indicate significantly enriched gene ontology (GO) terms.
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Figure S4 α5β1- and αv-class-specific PPIs and phosphosites. (a) The PPI 
network derived from FA-enriched samples. Integrin subunits are in the 
centre and their direct and indirect interactors are in the inner and outer 
circles, respectively. Black lines between nodes indicate high confidence 
PPI, red arrows indicate activating interactions and blue lines indicate 
inhibiting interactions. The nodes were labelled with gene symbols and 
colour-coded according to the MS intensity ratio of pKO-αv/β1 versus 

pKO-β1. Node edges were colour-coded according to the SILAC ratio of the 
maximally regulated phosphosite on each significantly regulated protein. 
(b) The PPI-network was derived as in (a). The nodes and node edges were 
colour-coded according to the MS intensity ratio of pKO-αv versus pKO-αv/
β1. (c) The PPI-network was derived as described in (a). The nodes and 
node edges were colour-coded according to the MS intensity ratio of pKO-αv 
versus pKO-β1.
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Figure S4 continued
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Figure S4 continued
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Figure S5 Integrin-specific differences in the “core integrin interactome”. 
The Z-scores of median MS intensities (n=3-4) of the 125 core integrin-
interactome proteins (Fig. S4) were subjected to hierarchical clustering. The 

black bars on the left indicate α5β1-dependent FA proteins, while the green 
bar indicates the αv-class integrin-dependent FA proteins selected for the 
clustering in Fig. 4c.
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Figure S6 Network analysis of actin binding proteins enriched in the 
adhesome preparations. (a) Actin binding proteins were extracted from the 
adhesome dataset using gene ontology annotations. Black lines between 
nodes indicate high confidence PPI, red arrows indicate activating and 
blue lines indicate inhibiting interactions. The nodes were labelled with 
gene symbols and colour coded according to the log2 MS intensity ratio of 

pKO-αv over the pKO-β1 sample. Node edges were colour-coded according 
to the log2 SILAC ratio of the maximally regulated phosphosite on each 
significantly regulated protein. The box marks components of the WAVE and 
Arp2/3 complex, while the arrowhead marks the formin mDia. (b) The graph 
was generated as in (a), except that the nodes were colour-coded according 
to the log2 MS intensity ratio of pKO-αv/β1 over the pKO-β1 sample.
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β3-tail scr: Desthiobiotin - AETFLSRHYNKGFDKATKRPAEDRYWNTARENETAKTTIFE - OH
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Figure S7 Integrin tail peptide pulldowns. (a) Sequence of synthetic 
desthiobiotinylated peptides used for the pull down experiments. (b) SILAC 
ratio plot from label inverted replicates (specific interactors have high SILAC 
ratio in the forward experiment and low SILAC ratios in the label swapped 
reverse experiment) comparing the β1-tail peptide with a scrambled control. 
The table shows the most intense β1-specific interactors with high sequence 

coverage that were reproducibly enriched versus the scrambled control 
peptide (scr) (n=4; 2 independent experiments). (c) SILAC ratios of proteins 
from inverted replicates comparing the β3-tail peptide with a scrambled 
control. The table shows the most intense β3-specific interactors with high 
sequence coverage that were reproducibly enriched versus the scrambled 
control peptide (scr) (n=4; 2 independent experiments).
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Figure S8 Cellular proteome of pKO-αv, pKO-β1 and pKO-αv/β1 cells. (a) 
SILAC labelled cells cultured on FN for several passages were analysed by 
MS. SILAC ratios of 150 significantly regulated proteins (ANOVA, Benjamini/
Hochberg FDR) were subjected to non-supervised hierarchical cluster 

analysis and colour coded. The bars depict differentially regulated clusters 
of proteins. (b) Gene names of the 3 differentially regulated groups (a) are 
shown. Known FA proteins are marked with an asterisk. (c) Scatter plot 
showing SILAC ratios. Previously annotated FA proteins are labelled in red.
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Figure 5c

Figure 6d
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Figure S9 Uncropped western blots.
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Figure S1f
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Supplementary video legends

Video S1 Time-lapse movie of pKO-αv cells plated on FN. Cells were plated on FN coated (5 µg/ml; blocked with 1% BSA) tissue culture dishes in presence 
of 10% serum and video tracked over 20 hours with a frame rate of 1 picture every 4 minutes. Pictures were acquired with a phase contrast microscope at 
magnification 20x.

Video S2 Time-lapse movie of pKO-αv/β1 cells plated on FN. Cells were plated on FN coated (5 µg/ml; blocked with 1% BSA) tissue culture dishes in 
presence of 10% serum and video tracked over 20 hours with a frame rate of 1 picture every 4 minutes. Pictures were acquired with a phase contrast 
microscope at magnification 20x.

Video S3 Time-lapse movie of pKO-β1 cells plated on FN. Cells were plated on FN coated (5 µg/ml; blocked with 1% BSA) tissue culture dishes in presence 
of 10% serum and video tracked over 20 hours with a frame rate of 1 picture every 4 minutes. Pictures were acquired with a phase contrast microscope at 
magnification 20x.

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 



PERSPECTIVE

A firm grip does not always pay off: a new
Phact(r) 4 integrin signaling

Zhiqi Sun and Reinhard Fässler1

Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany

b1 integrin signaling plays crucial roles in enteric ner-
vous system development. Zhang and colleagues (pp.
69–81) discovered that phosphatase and actin regulator 4
(Phactr4) antagonizes b1 integrin signaling through pro-
tein phosphatase 1 (PP1) in focal adhesions of enteric
neural crest cells (ENCCs). Loss of Phactr4–PP1 inter-
action leads to increased b1 integrin signaling, loss of
collective and directional migration, and hindgut hypo-
gangaliosis, indicating that the right adjustment of b1 in-
tegrin signaling is required for the normal migration and
organization of ENCCs.

Hirschsprung disease (HSCR; also called congenital agan-
glionic megacolon) is a congenital disorder of the distal
colon in which the enteric nervous system (ENS) is absent
(Brooks et al. 2005). The lack of the enteric neurons leads
to a contracted colon, which prevents peristaltic move-
ments of the intestine and obstructs the passage of food
residue. The cause for the absent ENS can be due to im-
paired proliferation, differentiation, or migration of en-
teric neural crest cells (ENCCs) into the distal colon and
rectum (Heanue and Pachnis 2007). ENS development
commences at around embryonic days 9–9.5 (E9–E9.5) in
mice, when vagal neural crest cells emigrate from the
neural tube and invade the foregut (Newgreen and Young
2002). From the foregut, they migrate as ENCCs in a
rostrocaudal direction to colonize the developing gastro-
intestinal tract. When the gastrointestinal tract is colo-
nized, the ENCCs differentiate into different subtypes of
neurons and glia, which organize into ganglia and finally
interconnect to form the mature ENS (Fig. 1). The differ-
entiation and migration of ENCCs are orchestrated by
chemoattractants such as Glial cell line-derived neuro-
trophic factor (GDNF) and endothelin 3 and their cog-
nate receptors, RET and endothelin-B receptors, respec-
tively (Hearn et al. 1998; Young et al. 2001; Barlow et al.
2003; Burzynski et al. 2009).

The migration of ENCCs has been studied by time-
lapse video microscopy in gut explants derived from

transgenic mice expressing fluorescent reporter genes in
neural crest cells. These studies revealed several intrigu-
ing features of their complex migration behavior. ENCCs
form long chains in which the cells are tightly connected
via cell–cell adhesion (Young et al. 2004). At the migra-
tory wave front of these cell chains are a few solitary cells,
also called advanced cells. They detach from the cell
chains, explore the environment by continuously protrud-
ing their plasma membranes, and aid the forward migra-
tion of the following chain of cells (Druckenbrod and
Epstein 2005, 2007). ENCCs migrate along most of the
gastrointestinal tract with a net migration speed of ;30–
40 mm per hour (Young et al. 2004; Druckenbrod and
Epstein 2005). When they reach the junction with the
caecum, they pause for ;8–12 h. During this period, the
migrating chains dissociate into single cells, which move
into the caecum, where they show a rapid and nondirec-
tional migration behavior (Druckenbrod and Epstein 2005).
Once they have reached the colon, they rejoin into cell
chains, form advanced cells at the wave front, and resume
the usual migratory mode. The exact reason for the switch
of the migratory mode in the caecum is not known.
However, it is likely due to the unique signaling and
tissue environment of the caecum (Heanue and Pachnis
2007). For instance, the caecum is tremendously rich in
extracellular matrix (ECM) proteins such as fibronectin
(FN). FN binds to b1 integrins, which were shown to be
essential for the migration of ENCCs (Breau et al. 2009).

Integrins are the major cell adhesion molecules for the
ECM. They are heterodimeric transmembrane receptors
consisting of an a and a b subunit. The human and mouse
proteomes contain 18 a and eight b subunits, which can
assemble into 24 different integrin heterodimers, each
binding to a specific set of ECM proteins (Humphries et al.
2006). A hallmark of integrins is that they must change
their conformation before they can bind their ECM ligand
(Moser et al. 2009). Following ligand binding, integrins
cluster and recruit signaling, adaptor, and actin-binding
molecules to their cytoplasmic domains, which results
in the coupling of the ECM to the actin cytoskeleton and
the formation of a large signaling hub known as focal
adhesion (FA) (Geiger et al. 2009). Integrin signaling is
finely tuned to control a large number of biological pro-
cesses, including directional and persistent cell migration.
To achieve this, integrins regulate the subcellular activity
of small RhoGTPases, which are essential for the dynamic
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formation of a stable and persistent lamellipodium at the
leading edge of a migrating cell, and adjust the activity of
actin-modulating proteins, including actin nucleators such
as formins or the Arp2/3 complex, filamentous actin
(F-actin)-severing proteins such as cofilin, and others (Petrie
et al. 2009). It is important to note that diminished as well
as elevated signaling by integrins can lead to pathology.
This is nicely demonstrated in mice with decreased and
increased b1 integrin function (Bouvard et al. 2007;
Legate et al. 2009; Rantala et al. 2011).

The b1 integrin subunit can associate with 12 a subunits
and thus forms the largest integrin subfamily. Constitutive
deletion of the b1 integrin gene leads to peri-implantation
lethality in mice (Fassler and Meyer 1995). Deletion of the
b1 integrin gene in neural crest cells affects the formation
of multiple neural crest-dependent structures, including the
ENS, leading to a HSCR-like phenotype with agangaliosis
of the distal part of the colon (Fig. 1; Breau et al. 2006).
The ENS defects are due to impaired migration and the
formation of abnormal aggregates of ENCCs in the distal
midgut, caecum, and hindgut. The major requirement
for b1 integrin expression for ENCCs becomes apparent
when the migration pauses, and they should dissoci-
ate and invade the caecum and the adjacent hindgut. The
b1-null ENCCs remain abnormally aggregated and show
reduced migration speed and persistence, resulting in di-
minished colonization of the rostral hindgut with ENCCs
and a complete absence in the caudal hindgut (Breau et al.
2009). The migration defect of b1-null ENCCs has not
been well studied so far, but it is believed that several
factors contribute to the defective hindgut colonization.
An abnormal activation of small RhoGTPases through
reduced adhesion to FN is most likely the major cause for
the impaired migration machinery of b1-null ENCCs.
Furthermore, due to the delayed invasion of the caecum
and the hindgut, the b1-null ENCCs are believed to meet
a growing and differentiating environment that is no
longer permissive for incoming ENCCs to migrate effi-
ciently and thus may prevent them from reaching the
caudal hindgut. Finally, it has been shown that the density
of ENCCs correlates with the efficiency of their own
migration (Druckenbrod and Epstein 2005). Therefore,
the reduced number of b1-null ENCCs and their cluster-
ing in aggregates may also contribute to their failure to
reach the rectum. These observations demonstrate that
the loss of b1 integrin expression severely compromises

the migration of ENCCs and the formation of a functional
ENS. In this issue of Genes & Development, Zhang et al.
(2012) report that phosphatase and actin regulator 4
(Phactr4), a novel adaptor protein, is present in FAs of
ENCCs, where it antagonizes b1 integrin signaling and
diminishes the activity of the actin-severing protein cofilin.
Consequently, impairing Phactr4 function in mice leads
to increased b1 integrin signaling in their ENCCs, result-
ing in severe defects in their migration and colonization
of the hindgut.

The Phactr family of proteins consists of four members
(Phactr1–4). They were initially identified as protein
phosphatase 1 (PP1)-binding proteins in a yeast-two-hybrid
screen (Allen et al. 2004). In addition to the C-terminal
PP1-binding domain, all four proteins contain three RPEL
repeats, which are actin-binding motifs (Miralles et al.
2003). Since immunoprecipitation of Phactr1, Phactr3
(also known as Scapinin), and Phactr4 brings down actin
from the soluble fraction of a cell lysate (Allen et al. 2004;
Kim et al. 2007; Sagara et al. 2009), it is believed that
Phactr proteins bind G-actin. All four members are ex-
pressed in the mouse brain; however, each isoform has
a distinct distribution and is found in different sub-
cellular compartments (Sagara et al. 2003; Allen et al.
2004; Farghaian et al. 2011). Data on the in vivo functions
of these proteins are scarce. In a forward genetic screen
for neural tube closure defects in mice, Niswander and
colleagues (Kim et al. 2007) identified a R650P mis-
sense mutation in Phactr4, which they called humdy
(Phactr4humdy). The R650P mutation disrupts PP1 binding
to Phactr4 and leads to an inhibitory phosphorylation of
PP1 at Thr 320 (Fig. 2) and loss of PP1 activity toward the
retinoblastoma protein (Rb) (Kim et al. 2007). In the
current study, Zhang et al. (2012) report that mice with
a homozygous Phactr4humdy mutation develop a HSCR-
like phenotype (Fig. 1). In the majority of Phactr4humdy

mutant mice, the number of enteric neurons was normal,
but they were individually distributed in the stomach,
foregut, and midgut, instead of clustered in ganglia, and the
neurites were disorganized. The hindgut of Phactr4humdy

mutant mice contained fewer neurons, which were also
abnormally distributed and without interconnected neu-
rites. In rare cases, neural crest cell invasion of the entire
bowel was abolished. Using gut explants combined with
time-lapse video microscopy, Zhang et al. (2012) showed
that the migration behavior of Phactr4humdy ENCCs is

Figure 1. Physiologic b1 integrin signal-
ing is required for the normal migration
and organization of ENCCs. The collective
migration ENCCs in cell chains estab-
lishes an interconnected network, which
resembles the organization of the ganglia
and the interconnecting neurites of the
mature ENS. While the b1 integrin gene
ablation leads to abnormal ENCC aggre-
gates and delayed invasion of the caecum,
the Phactr4humdy mutation leads to in-
creased b1 integrin signaling, dissociation
of ENCCs, loss of collective migration, and
hindgut hypogangaliosis.
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abnormal and is responsible for the aberrant formation of
the ENS. The normal number of ENCCs in the foregut and
midgut and the reduced number in the hindgut suggests
that Phactr4humdy ENCCs may have a defect in exiting the
caecum and resuming collective chain migration in the
adjacent hindgut. This possibility, however, was not tested,
but could be analyzed and confirmed with graft assays.

Zhang et al. (2012) excluded defective proliferation or
differentiation of ENCCs as the cause for the HSCR-like
phenotype and showed with several imaging experi-
ments that the collective and directional migration of
Phactr4humdy ENCCs was abnormal. Imaging ENCC mi-
gration in hindgut explants revealed that the Phactr4humdy

ENCCs lost their ability to form chains and to migrate in
the caudal direction. Instead, they moved as single cells,
which showed an erratic and nondirectional migration
behavior. When the gut explants were embedded in colla-
gen gels, the invasion of Phactr4humdy ENCCs into the
collagen gel could be triggered by exogenous GDNF, albeit
with lower efficiency when compared with wild-type cells,
suggesting that the Phactr4humdy mutation abrogates the
migration machinery of ENCCs rather than the ability to
respond to a GDNF gradient. This hypothesis was con-
firmed with mouse embryonic fibroblasts (MEFs) from
Phactr4humdy mutant mice that generate multiple retrac-
tion fibers and highly dynamic and unstable lamellipodia

when cultured in two dimensions. Clearly, such erratic
membrane protrusions and increased cell contractility can
account for the loss in directionality.

How could the Phactr4–PP1 complex regulate migration
of ENCCs at the molecular level? Experimental results by
Zhang et al. (2012) indicate that in Phactr4humdy cells,
PP1 activity is diminished and/or misregulated, b1 integ-
rin and Rho kinase (ROCK) activities are high, and cofilin
is hyperphosphorylated at Ser 3 (likely through ROCK-
mediated LIMK activation), which leads to a diminished
severing of F-actin. These findings suggest that PP1 ac-
tivation through binding to Phactr4 in wild-type cells antag-
onizes b1 integrin–ROCK–cofilin signaling to enhance
cofilin activity and thereby promotes directional migration
by maintaining a polarized actin cytoskeleton (Fig. 2).
Consistent with a requirement of an active PP1 for per-
sistent directional cell migration, chemical inhibition of
PP1 induced a migration defect in wild-type ENCCs of
gut tissue explants and in wild-type MEFs that closely
resembled the defects observed with Phactr4humdy cells. In
both cultured MEF cells and gut tissue explants, functional
blockade of b1 integrins using antibodies or RGD peptides
or by inhibition of ROCK rescued the migration defect.
Strikingly, blocking b1 integrin function in gut tissue
explants largely restored the collective migration ENCCs
and the net speed of the forward-moving wave front. This

Figure 2. (A) Role of the Phactr4–PP1 complex in normal ENCCs. b1 integrin signaling can activate ROCK through multiple, although
not completely understood, pathways. ROCK, in turn, activates nonmuscle myosin II (NMII) and LIMK, which promotes the
phosphorylation and subsequent inactivation of cofilin. Phactr4 interacts with PP1 and activates its phosphatase activity. The
enhanced PP1 activity has two consequences: PP1 directly dephosphorylates and activates cofilin, and PP1 antagonizes b1 integrin
signaling (and thus ROCK activation) through unknown mechanisms. The reduced ROCK activity leads to reduced activation of NMII
and decreased inactivation of cofilin. The reduced NMII activity dampens the contractility of ENCCs, and the increased cofilin activity
enhances directional migration of ENCCs. The increased cofilin activity also liberates G-actin, which can bind Phactr4 and may
thereby regulate the functional properties of the Phactr4–PP1 complex in a putative feedback loop. (B) Misregulation of PP1 in
Phactr4humdy cells. Loss of the interaction between Phactr4 and PP1 in the Phactr4humdy mutant mice leads to decreased and
misregulated PP1 activity. Consequently, cofilin is not inactivated and the b1 integrin signaling pathway is not blocked, resulting in the
loss of directional migration and increased cell contractility. In both panels, solid red arrows indicate direct activation between
proteins; solid black arrows indicate a shift in protein activity (active/inactive cofilin, PP1, and Phactr4) or state (F-actin/G-actin);
dotted red arrows indicate an unknown, multistep activation process; dotted black arrows indicate a putative feedback loop; and white
protein boxes represent active proteins, while gray boxes represent inactive proteins.
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observation strongly suggests that b1 integrin activity
needs to be down-regulated, particularly when ENCCs
invade the hindgut and are exposed to a change in FN
concentration to resume chain migration. One crucial ques-
tion is at which point Phactr4–PP1 intersects with b1
integrin–ROCK–cofilin signaling. Another unanswered
question is how Phactr4–PP1 controls cell contractility.
It has been shown that overexpression of constitutively
active LIMK (which can phosphorylate cofilin) or phos-
pho-mimicking mutants of cofilin disrupts cell polarity
by inducing the formation of multiple lamellipodia (Dawe
et al. 2003). However, cofilin does not directly interfere
with cell contractility. Contraction along F-actin filaments
is mainly mediated by nonmuscle myosin II (NMII) in
nonmuscle cells (Vicente-Manzanares et al. 2009). PP1 is
the major phosphatase that dephosphorylates myosin reg-
ulatory light chain (MRLC) (Matsumura and Hartshorne
2008). On the other hand, it is well known that ROCK
activates NMII by phosphorylating the MRLC. ROCK also
reduces the activity of PP1 toward MRLC by phosphory-
lating myosin phosphatase-targeting subunit 1 (Totsukawa
et al. 2000). Since chemical inhibition of ROCK restored
lamellipodia formation in Phactr4humdy cells, it is conceiv-
able that Phactr4–PP1 regulates integrin signaling up-
stream of cofilin. However, since ROCK inhibition only
partially rescued the collective migration of Phactr4humdy

mutant ENCCs, it is likely that Phactr4 also regulates
other signaling events downstream from b1 integrin through
either controlling PP1 activity or other unknown mecha-
nisms (Fig. 2).

PP1 is a ubiquitously expressed serine/threonine phos-
phatase that regulates many biological processes, including
cell survival, cell division, metabolism, and cytoskeletal
reorganizations (Cohen 2002). PP1 consists of a catalytic
and a regulatory subunit. There are three isoforms of PP1
catalytic subunits: PP1a, PP1b, and PP1g. The recruitment
of the catalytic subunit of PP1 to regulatory subunits
determines the subcellular localization and the sub-
strate specificity of PP1 (Shi 2009). For instance, the
actin-binding regulatory subunit spinophilin targets PP1
to actin filaments and cell–cell junctions (Satoh et al.
1998), where it also blocks potential substrate-binding
sites on the catalytic subunit and thereby increases sub-
strate specificity (Ragusa et al. 2010). Notably, Phactr4 can
interact with all PP1 family members, making Phactr4
a potent and multifunctional regulator of PP1 signaling
(Kim et al. 2007). Actin binding by Phactr proteins could
add another level of complexity. Biochemical analysis has
shown that Phactr proteins interact with G-actin through
RPEL repeats. Consistent with this finding, the localiza-
tion of overexpressed Phactr4 is largely reciprocal with
actin stress fibers. The interaction between Phactr and
G-actin is likely to reduce actin polymerization in cell
protrusions (Sagara et al. 2009). Furthermore, it is cur-
rently not known whether G-actin and PP1 binding to
Phactr4 are mutually exclusive, synergistic, or indepen-
dent. Since RPEL repeats abut the PP1 binding domain, it
is possible that actin binding to the RPEL repeats might
compete with the PP1 recruitment through steric hin-
drance. Low G-actin concentration might thus lead to the

formation of Phactr4–PP1 complexes, which could then
activate cofilin to increase the G-actin pool. In such a
scenario, Phactr4 could serve as a feedback regulator that
senses actin dynamics and modulates PP1 activity accord-
ingly (Fig. 2). To further clarify these issues, structural
analysis of the actin–Phactr–PP1 complex will be needed.

The subcellular localization Phactr4 is likely important
to locally regulate PP1 activity. Endogenous Phactr4 colo-
calizes with b1 integrin in mature FAs of MEFs seeded on
FN. Whether it also localizes to other subcellular compart-
ments such as cell–cell adhesion sites has not been in-
vestigated so far. The immunolocalization of Phactr4 in
FAs makes Phactr4 a novel FA protein. Interestingly,
Phactr4humdy is also recruited to FAs, indicating that its
recruitment does not require the interaction with PP1. FAs
have a complex protein composition and an intricate mol-
ecular organization and are highly dynamic. As with all
classic signaling centers, kinases are abundant in FAs, and
many FA proteins become phosphorylated at multiple sites.
How PP1 activity is controlled to balance the phosphoryla-
tion state of its target proteins and how it achieves substrate
specificity in this compartment are not understood. Many
potential PP1 regulatory partners have been found. Besides
tensin (Eto et al. 2007), PINCH1 has recently been identi-
fied as a regulator of PP1a in FAs (Eke et al. 2010). PINCH
is a constitutive component of the integrin-linked kinase,
PINCH, and parvin (IPP) complex (Legate et al. 2006).
PINCH interacts through a consensus PP1 interaction
motif in its fifth LIM domain with PP1a, but not with
the two other isoforms. This interaction inhibits the ac-
tivity of PP1a against Akt1 and regulates cell survival (Eke
et al. 2010). Since the IPP complex is crucial for b1
integrin-mediated cell motility and adhesion, it is possible
that Phactr4 might also regulate b1 integrin signaling by
competing with PINCH for PP1a binding. Reciprocally,
PINCH binding to PP1a might shift the binding of Phactr4
to other PP1 isoforms and thus modulate the activity and
substrate specificity of the Phactr4–PP1 complex.

In conclusion, the work on Phactr4 gives a new flavor to
our understanding of how b1 integrin signaling is regulated
at different stages of ENCC migration. But, as with all
studies describing novel and exciting findings, the study by
Zhang et al. (2012) also raises many new questions: How
does the Phactr4–PP1 complex intersect with integrin
signaling, and is cell–cell adhesion regulated directly by
Phactr4–PP1 or indirectly through integrins? Is it possible
that Phactr proteins control cell migration not only by
regulating PP1 activity, but also by regulating actin
dynamics via a feedback regulatory loop involving the
binding to PP1 and G-actin? Finally, is the aberrant up-
regulation of phospho-cofilin the only known substrate of
PP1 that disrupts cell polarity, or is the Phactr4humdy

phenotype in ENCCs due to a combined dysregulation of
many PP1 downstream targets? Time will surely give us
the answers!

Acknowledgment
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Nascent Adhesions: From
Fluctuations to a Hierarchical
Organization
Integrins assemble a complex network of molecular interactions at cell–matrix
adhesion sites. Fluorescence correlationmicroscopy has now shed light on the
spatial, temporal and numerical distributions of protein complexes during
assembly and stabilization of nascent adhesions.
Zhiqi Sun, Armin Lambacher,
and Reinhard Fässler*

A hallmark of integrins is their ability to
sense the highly dynamic and complex
biochemical and mechanical
properties of extracellular matrices. To
accomplish these tasks, integrins
cluster and assemble numerous
ancillary proteins in specialized
adhesion structures that differ in their
morphology, subcellular localization,
lifespan and protein composition.
Nascent adhesions are the smallest
adhesive structures. They emerge at
the edge of protruding membranes, are
less than 1 mm in diameter and either
disassemble after a lifespan of around
1 minute or mature in an actomyosin-
dependent manner into large (up to
10 mm2) and long-lived (several
minutes) focal adhesions [1]. The
functions that emanate from the
various cell–matrix adhesion sites
depend on a highly complex network of
interacting proteins. Although most
adhesion proteins have been identified,
little is known about where and when
they interact, and to what extent their
numbers change during the assembly
and stabilization of cell–matrix
adhesion sites. In a recent issue of
Current Biology, Bachir et al. [2] used
fluorescence correlation microscopy to
address such questions during nascent
adhesion development [2]. Their results
provide a hierarchy of assembly and
define the chronology and
stoichiometry of protein complexes
associated with integrins.

The formation of integrin-containing
adhesive sites proceeds in three major
steps. It is assumed that all integrins
require an activation step that switches
the unbound form of integrins from a
low-affinity (inactive) state to a
high-affinity (active) state [3]. This
activation triggers ligand binding and
initiates cell adhesion. Integrin
activation is induced upon binding of
the two adaptor proteins, talin
and kindlin, to b integrin cytoplasmic
domains. Upon activation,
integrins aggregate and recruit
integrin-associated proteins into small,
signalling-competent clusters that
eventually become visible by
conventional microscopy as nascent
adhesions. Clustering is observed with
all integrins and is required to stabilize
the integrin–ligand complex, most
likely by increasing the probability
for dissociated integrin–ligand
complexes to rebind before they
diffuse away from the adhesion site [4].
Although it is not clear how integrin
clustering is achieved at the molecular
level, different reports have assigned
roles to talin [5], kindlin [6] and the
glycocalyx [7]. Finally, a small number
of nascent adhesions mature into
large and stable focal adhesions, which
requires the linkage to the F-actin
cytoskeleton and the activation of
non-muscle myosin II. Active myosin II
generates pulling forces that change
the conformation of proteins
associated with the integrin tail, such
as talin [8] and Cas130 [9], leading to
the recruitment of further
adhesion-associated proteins. In
addition, a force-induced
conformational change in the integrin
ectodomain leads to increased
stability of the integrin–ligand complex,
termed adhesion reinforcement [10].
Notably, the newly recruited proteins
operate in a positive-feedback
manner to further increase F-actin
dynamics, myosin II activation and
focal adhesion size.

Talin and kindlin are assumed to be
the first proteins that bind to integrin
cytoplasmic domains [11]. Their
recruitment to adhesion sites is
thought to be primarily governed by
their ability to bind NPxY motifs in b

tails — talin to the membrane-proximal
motif and kindlin to the membrane-
distal motif. It is not clear whether they
bind simultaneously or sequentially to
integrin tails. Also their function is only
partially understood; it is even debated
whether both control integrin
activation. Similarly, it is also unclear
how they regulate integrin clustering
and adhesion reinforcement, and
whether they share these functions for
all integrins and in all cells. For
example, although there is ample
evidence supporting an essential role
for talin in activating integrins in
hematopoietic cells, it seems that
fibroblasts lacking both talin isoforms
(talin-1 and -2) can still adhere to
fibronectin and initiate membrane
protrusions, although these are
short-lived and inappropriate for
sustaining cell spreading [12]. Similarly,
loss of both talin isoforms in mouse
myoblasts leads to severe muscle
defects but does not apparently impair
activation of b1 integrins and substrate
adhesion [13]. Also the function of
kindlin is ambiguous. Loss of the
hematopoietic isoform (kindlin-3)
affects the binding of multiple blood
cell types to their substrates and this
was thought to be due to an impaired
activation of their integrins [14]. A
recent study, however, reveals a role
for kindlin-3 in integrin clustering rather
than activation [6].
Integrin activation and clustering are

associated with the recruitment to
adhesion sites of a large protein
ensemble, which is collectively termed
the adhesome [15]. The adhesome was
first determined in a meta-survey of the
adhesion literature [16] and further
refined by systematic studies using
high resolution quantitative mass
spectrometry [17–20]. The adhesome
contains at least 250 proteins,
several of which are recruited in a
myosin-II-dependent manner. The
large inventory of proteins makes it
difficult to comprehend the underlying
logic of their assembly. Moreover, their
recruitment dynamics, stoichiometry,
networking, modifications and linkage
to the cytoskeleton are poorly
understood. In an attempt to address
these questions, Bachir et al. [2] used
fluorescence correlation microscopy to
determine the dynamics, stoichiometry
and associations of a5b1 integrin, the
integrin-binding proteins talin and
kindlin-2, and the actin-binding
proteins talin, vinculin and a-actinin
during the nucleation/assembly and
stabilization of nascent adhesions.
They fluorescently labelled these
proteins, expressed them in CHO cells
and analysed their fluorescence

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2014.07.061&domain=pdf


Figure 1. Model of nascent adhesion assembly.

Kindlin-2, talin, vinculin and a-actinin are all recruited to nascent adhesions during their entire lifetime but in different complexes and distinct
stoichiometries. Outside of adhesive areas (1), a5b1 integrins remain singly or in clusters of two or three. Kindlin-2 binding to the b1 integrin
cytoplasmic domain promotes integrin activation and initiates the nucleation of nascent adhesions (2). Developing nascent adhesions (3) contain
talin, which is not associated with a5b1 but forms a complex with vinculin. Aggregates of a-actinin are periodically recruited to nascent adhe-
sions. This is associated with periodic incorporations of further integrins and the initial connection between nascent adhesions and the actin
cytoskeleton (3). In stable nascent adhesions (4), integrins reach a 2–3-fold higher degree of aggregation, a-actinin’s interaction with integrins
is replaced by the talin–vinculin complex, leading to a stable integrin–actin linkage. Myosin II creates pulling forces, resulting in an increased
stability of the integrin–ligand interaction, further recruitment of vinculin to the strained talin, and reinforcement of the integrin–actin linkage.
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intensity fluctuations in these
adhesions using time-lapse total
internal reflection fluorescence (TIRF)
microscopy. This methodology
capitalizes on the movements of the
fluorescently labelled proteins, which
allows for the determination of their
stoichiometry by analyzing the
fluctuations of the fluorescence signal
with respect to their average intensity,
and provides insight into their
interactions by simultaneously imaging
the fluctuations of two differently
labelled proteins and calculating
cross-correlations in fluorescence
intensities. The results by Bachir
et al. [2] reveal that the proteins
chosen for their study are present
throughout the lifetime of nascent
adhesions — assembly and
stabilization phase — although with
different recruitment rates and
numbers and in different molecular
complexes.

The authors found that neither talin
nor kindlin-2 associated with a5b1
integrin in areas adjacent to nascent
adhesions, which indicates that a5b1
integrins are not in an activated state
outside of adhesion sites. Within
nascent adhesions, kindlin-2 and a5b1
co-exist in a 1:1 ratio throughout the
lifetime of these adhesions and their
positive cross-correlation variance
indicates that they are constitutively
associated within these adhesions. The
association of a5b1 and kindlin-2 is not
influenced by the inhibition ofmyosin II.
In contrast, talin, which is also present
throughout the lifetime of nascent
adhesions, is stably associated with b1
tails only after nascent adhesion
assembly is completed, and this
interaction is myosin II dependent.
Moreover, the stoichiometry of a5b1
and talin is 2:1 in assembling nascent
adhesions and 1:1 in mature
adhesions.

These findings have significant
implications and lead to several
important conclusions and
hypotheses. The most surprising
finding is that kindlin-2 and b1 tails are
stably associated in developing
nascent adhesions, while talin and b1
tails are not. This suggests that the two
integrin activators bind sequentially
and that kindlin-2 is probably priming
the b1 tails for talin binding. It also
suggests that activation of a5b1 is
mediated by kindlin-2, while adhesion
reinforcement of a5b1 in mature
nascent adhesions is mediated by both
kindlin-2 and talin, likely by linking the
ternary protein complex to actomyosin.
The ability of kindlin-2 to activate
integrins would be in line with
previously published work showing
that talin is dispensable for fibroblast
adhesion to fibronectin [12] and
activation of integrins on mouse
myoblasts [13]. However, one should
keep in mind that transient interactions
of talin with b1 integrin tails that escape
detection may very well occur in
developing nascent adhesions. Such
transient interactions could be
sufficient for inducing integrin
activation, which is then stabilized by
kindlin-2. Nonetheless, the absence of
a stable talin–a5b1 integrin complex in
developing nascent adhesions
excludes a role for talin in integrin
clustering during the nucleation of
these adhesions. The authors propose
that a-actinin may perform this task.
Their hypothesis is based on the ability
of a-actinin to homodimerize as well as
their observation that a-actinin forms
aggregates, which are transiently
incorporated into developing nascent
adhesions. An alternative candidate
for integrin clustering and nucleation of
nascent adhesions could be kindlin-2,
as kindlins were shown to facilitate
integrin binding to multivalent ligand
[6]. Finally, the lack of association
of talin with a5b1 in developing
nascent adhesions also indicates that



Dispatch
R803
other adhesome proteins (e.g. RIAM,
FAK, vinculin) or lipids (e.g.
phosphatidylinositol (4,5) bisphosphate)
rather than the integrin tails are
responsible for talin recruitment.

In summary, the work of Bachir et al.
[2] suggests a new model of nascent
adhesion assembly and maintenance
(Figure 1): kindlin-2 binds to b1 integrin
and induces the high-affinity state of
a5b1; a-actinin promotes b1 integrin
clustering and sets up a transient
connection between the integrin
cluster and the actin cytoskeleton; and
kindlin-2 paves the way for talin
recruitment, which replaces a-actinin
and establishes a more stable
integrin–actin linkage with the help of
vinculin, leading to adhesion
reinforcement. This sequence of
molecular events is both intriguing and
provocative, although it may not
operate in all cell types and for all
integrins, so we look forward to further
confirmation in future studies.
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Neuroscience: Waiting for Serotonin
Serotonin dysfunction is implicated in many neuropsychiatric disorders yet the
precise behavioral functions of this neuromodulator are not well understood. A
new study employs optogenetic methods to activate serotonin neurons during
an effort-demanding waiting behavior and demonstrates that serotonin release
increases patience, the capacity for self-control.
Sachin Ranade, Hyun-Jae Pi,
and Adam Kepecs*

It is downtown Manhattan on a
Saturday evening. You decide to go
to Ippudu Ramen for dinner. There are
no reservations, so the person at the
door takes down your name and says,
‘‘45 minutes’’. You are not in a rush
but as time passes you get hungrier
by theminute and less and less patient.
At some point, you give up the wait
and decide to look for a slice of pizza
instead. We all have been in these
situations when we lose the ability
for self-control and make impulsive
decisions. In a new study in the current
issue Miyazaki et al. [1] shed light
(literally and figuratively) on the neural
mechanisms underlying patience.
The authors show that patient waiting
is enhanced by serotonin, an important
neurochemical long hypothesized to
be involved in inhibition of impulsive
actions.

Serotonin is a major neuromodulator
implicated in a broad assortment of
behavioral and physiological functions,
including aggression, appetite,
aversion, behavioral inhibition and
impulsivity. Serotonergic neurons
are located deep in the midbrain and
from there they send extensive, highly
divergent projections to virtually all
areas of the brain (Figure 1A). The
serotonin system is one of the most
important targets for the treatment
of depression, anxiety, panic and
mood disorders and other psychiatric
conditions. It has been difficult,
however, to explain the diverse effects
of serotonin on adaptive behavior
within a unified framework.
One of the main theories about

serotonin proposes that it is
important for behavioral inhibition
and self-control. Indeed, a prominent
behavioral effect of serotonin
manipulation is observed in studies
of impulsive choice, in which subjects
choose between a small immediate
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