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Zusammenfassung 
 

Analysen zur Entdeckung von Modellmissspezifikationen bei 

Strukturgleichungsmodellen anhand der Fit-Indizes nehmen in der Fachliteratur der 

letzten Jahrzehnte einen großen Raum ein. Dennoch wurden Missspezifikationen im 

Strukturmodell in Form einer nicht-spezifizierten Zweidimensionalität beispielsweise 

noch nicht untersucht. Daher wurde im Rahmen einer ersten Studie untersucht, inwieweit 

die am meisten verwendeten Fit-Indizes diese Art und unterschiedliche Grade dieser 

Missspezifikation (operationalisiert durch die Höhe der Faktorkorrelation und (un-) 

ausgewogene Indikatorenaufteilung im Populationsmodell) zuverlässig erkennen 

würden. Es wurden ferner realistisch hohe und heterogene Faktorladungen für die 

Populationsmodelle verwendet, aus denen die Stichproben erzeugt wurden. Der CFI 

führte bei schwerwiegender und mittelschwerer Missspezifikation zur Modellablehnung 

anhand des Cut-Offs nach Hu und Bentler (1998, 1999), RMSEA und SRMR erwiesen 

sich als ungeeignet, diese Form der Missspezifikation anzuzeigen. Insbesondere wurde 

jedoch die Frage nach den Konsequenzen missspezifizierter Modelle auf 

individualdiagnostische Entscheidungen basierend auf den Faktorwerten bisher nicht 

gestellt. Im Rahmen der zweiten Studie wurde daher mit einer populationsbasierten 

Simulation auf Basis vorab definierter Faktorwerte der Frage nachgegangen, inwieweit 

die Diagnosegenauigkeit leiden würde, sofern dichotome Diagnosen auf Basis der 

Bartlett-Faktorwerte missspezifizierter Modelle anstatt auf Basis der Bartlett-Faktorwerte 

korrekter Modelle vergeben wurden. Des Weiteren wurde die Güte der Diagnostik auf 

Basis der üblicherweise verwendeten Gesamtsummenwerte untersucht. Es wurde 

dasselbe Design wie für die erste Studie verwendet, wobei zusätzlich die Basisraten für 

die Diagnosegebung variiert wurden. Vor allem die unterschiedlichen Basisraten und die 

Höhe der Faktorladungen hatten bereits einen entscheidenden Einfluss auf die Güte der 

Diagnostik auf Basis korrekter Modelle; ebenso Basisraten, Faktorladungen und der Grad 

der Missspezifikation/die unterschiedlichen Populationsmodelle auf die Güte der 

Diagnostik auf Basis missspezifizierter Modelle und der Gesamtsummenwerte. Die 

Konsequenzen der Befunde für Wissenschaft und Praxis werden diskutiert. 
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I     EINLEITUNG 
 

 

„Das Bestehen der experimentellen Methode lä[ss]t uns glauben, 

wir hätten das Mittel, die Probleme, die uns beunruhigen, 

loszuwerden; obgleich Problem und Methode windschief 

aneinander vorbeilaufen.“ 

(Wittgenstein, 1953, S. 232) 

 

In diesem Zitat, das Wittgenstein bereits 1953 an die Psychologie richtete, findet 

sich ein Grund wieder, der sicherlich zu einem großen Teil zur aktuellen 

Replikationskrise der Psychologie beitrug: der Irrglaube, durch die Anwendung einer 

Methode sei Wissenschaftlichkeit bereits erreicht. Oder noch drastischer ausgedrückt: 

Der Zweck heilige die Mittel.  

In Gang gesetzt wurde die Replikationskrise mit einem kritischen Kommentar 

Wagenmakers', Wetzels', Borsbooms, und van der Maas' (2011) auf einen Artikel Bems 

(2011) im Journal of Personality and Social Psychology. Bems Befunde konnten nicht 

repliziert werden (Schimmack, 2012) – wie viele andere psychologische Befunde auch: 

In einem groß angelegten „Reproducibility Project: Psychology“ (Open Science 

Collaboration, 2015, S. 1) wurden beispielsweise nur 36% von 100 als signifikant 

publizierter psychologischer Befunde signifikant, wobei 83% der Effektstärken unter den 

im Original berichteten Effektstärken lagen. Vor allem Ursachen wie der Publikationsbias 

und fragwürdige Forschungspraktiken (für eine Auflistung vgl. Schimmack [2012]) 

führten zu diesen und weiteren falsch positiven Befunden psychologischer Studien 

(Schimmack, 2012, 2016). 

Auch diese Dissertation beschäftigte sich im weitesten Sinne mit der von 

Wittgenstein (1953) beschriebenen Diskrepanz zwischen dem Status-Quo in der 

Forschung und dem wissenschaftlichen Gold-Standard. Als Beispiel wurde die lineare 

Strukturgleichungsmodellierung herangezogen. Es wurden die Auswirkungen einer 

realistisch niedrigen Reliabilität (Faktorladungen) sowie mangelnder faktorieller 

Validität/einer Missspezifikation im Strukturmodell untersucht, und zwar einerseits 

hinsichtlich der Sensitivität der Fit-Indizes für diese Modellmissspezifikation, 
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andererseits hinsichtlich der Validität von Diagnosen, die vor dem Hintergrund von Test- 

und Fragebogenvalidierungen mittels Strukturgleichungsmodellen aus den Faktorwerten 

dieser Modelle vergeben wurden.  

Mit der linearen Strukturgleichungsmodellierung (Jöreskog, 1969, 1973) wurde 

ein Datenanalyseverfahren für diese Arbeit ausgewählt, welches innerhalb der letzten vier 

Jahrzehnte in Grundlagen-, wie auch in angewandten Forschungsbereichen der 

Psychologie und verwandten Disziplinen zunehmend an Bedeutung gewann 

(Hershberger, 2003; MacCallum & Austin, 2000; Reinecke, 2014; Tremblay & Gardner, 

1996). Wird beispielsweise in Google Scholar der einigermaßen spezifische Suchbegriff 

„Structural Equation Modeling“ eingegeben, erscheinen 2,47 Mio. Einträge. Im 

Vergleich dazu erreicht der sehr allgemeine Suchbegriff „Psychological Research“, der 

letztendlich alle Forschungsbereiche innerhalb der Psychologie abdeckt, mit 4,34 Mio. 

Einträgen nur fast doppelt so viele Verweise. Für die renommierte Fachzeitschrift 

Structural Equation Modeling lässt zudem sich ein kontinuierlicher Anstieg der 

Zitationen aus dieser Zeitschrift verzeichnen (SCImago, 2007). Außerdem rangiert diese 

Fachzeitschrift an erster Stelle der 45 Zeitschriften aus dem Bereich der Mathematischen 

Methoden (“Structural Equation Modeling: A Multidisciplinary Journal,” 2015).  

Die kritische Frage in Bezug auf die Modelltestung im Rahmen der 

Strukturgleichungsmodellierung bezieht sich auf die Modellpassung, also darauf, wie 

zuverlässig Missspezifikationen als solche erkannt werden (Fan & Sivo, 2005; Fan, 

Thompson, & Wang, 2009). Dieser Frage wurde im Rahmen einer ersten 

Simulationsstudie nachgegangen. Anhand von zahlreichen Studien (siehe Kapitel III. 1 

und 2) wurde bereits gezeigt, dass die Höhe der Faktorladungen (Reliabilität) einen 

entscheidenden Einfluss darauf hat, inwieweit die Fit-Indizes eine 

Modellmissspezifikation als solche erkennen. Daher wurden realistisch hohe und 

zugleich realistisch heterogene Faktorladungen (Buzick, 2010; Peterson, 2000) für die 

Generierung der Populationsmodelle verwendet, aus denen die Stichproben gezogen 

wurden. Die untersuchte Art der Missspezifikation stellte einen typischen Fall einer 

Missspezifikation in der Psychologie und verwandter Disziplinen dar (Little, 

Cunningham, Shahar, & Widaman, 2002b): Es wurde fälschlicherweise ein 

einfaktorielles Modell spezifiziert, wohingegen im Populationsmodell zwei korrelierte 

latente Variablen definiert wurden. Diese Art der Missspezifikation stellte eine 

Verletzung der faktoriellen Validität eines Modells/Testverfahrens dar und wurde bisher 
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noch kaum untersucht (siehe III. 2.3). Der Grad dieser Missspezifikation wurde einerseits 

variiert durch unterschiedlich hohe, für die Psychologie typische Korrelationen (Rost, 

2009; Steel, Schmidt, & Shultz, 2008) zwischen den latenten Variablen, andererseits 

durch eine (un-)ausgewogene Indikatorenaufteilung auf die beiden Faktoren im 

Populationsmodell, wobei insgesamt eine für psychologische Testverfahren/Fragebögen 

typische Indikatorenanzahl verwendet wurde (Peterson, 2000; Shrout & Yager, 1989). 

Konkret wurde im Rahmen der ersten Simulationsstudie untersucht, ob die am häufigsten 

verwendeten (Beauducel & Wittmann, 2005; Marsh, Hau, & Grayson, 2013; McDonald 

& Ho, 2002; Savalei, 2012) Fit-Indizes CFI (Bentler, 1990), RMSEA (Steiger & Lind, 

1980) und SRMR (Bentler, 1995) eine Missspezifikation der beschriebenen Form anhand 

der Cut-Off-Kriterien nach Hu und Bentler (1998, 1999) anzeigen würden. Diese 

Fragestellung betraf die Güte des Modells.  

Im Rahmen der zweiten Studie dieser Dissertation wurde noch ein Schritt weiter 

in Richtung der angewandten Forschung und der psychologischen Praxis gegangen und 

die Forschungsfrage gestellt, welche psychometrischen Konsequenzen 

Missspezifikationen im Gegensatz zu korrekten Modellen auf die psychologische 

Individualdiagnostik aus den Faktorwerten nach sich ziehen würden. Letztere 

Forschungsfrage ist insbesondere aufgrund der Tatsache von Interesse, dass mehr und 

mehr Testverfahren und Fragebögen anhand konfirmatorischer Faktorenanalysen und 

anhand von Strukturgleichungsmodellen konstruktvalidiert werden (“Datenbanksegment 

PSYNDEX Tests,” 2013). Es wurde dasselbe Forschungsdesign wie für die erste Studie 

verwendet, das ein wenig reliables (realistisch niedrige Faktorladungen) und nicht 

konstruktvalides (im Strukturmodell missspezifiziertes) Testverfahren darstellen sollte. 

Die Verwendung unterschiedlich hoher Basisraten in klinischen Größenordnungen 

(Wittchen et al., 2011) sowie zum Vergleich auch größerer Basisraten (vgl. die 

Eignungsdiagnostik; Schuler, 2014) für die Vergabe der Diagnosen im Rahmen der 

zweiten Studie komplettierte das realitätsnahe Forschungsdesign. Zudem wurde die 

diagnostische Präzision auf Basis der üblicherweise verwendeten Gesamtsummenwerte 

(Estabrook & Neale, 2013) untersucht.  

 

Zunächst soll im folgenden Kapitel ein Überblick über die lineare 

Strukturgleichungsmodellierung selbst gegeben werden, bevor anschließend die 
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Forschungsfragen konkretisiert, die Studien beschrieben und deren Relevanz für 

Wissenschaft und Praxis diskutiert wird.   
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II    THEORETISCHER HINTERGRUND 
 

1 Grundlegende Konzeption von Faktorenanalysen und 

linearen Strukturgleichungsmodellen 
 

Ausgangspunkt für Datenanalysemethoden wie exploratorische und 

konfirmatorische Faktorenanalysen sowie lineare Strukturgleichungsmodelle ist die 

Definition des Messwerts eines Indikators. Die Fundamentalgleichung der 

Faktorenanalyse stellt dar, dass sich die beobachteten Variablen aus gewichteten 

gemeinsamen und uniquen Faktorwerten zusammensetzen (Mulaik, 2009, S. 136):  

Y = 𝚲 X + Ψ E     (1) 

Y stellt eine n × 1 Matrix dar, wobei n die Anzahl der beobachteten Variablen ist. 

X stellt eine r × 1 Matrix dar, wobei r die Anzahl der gemeinsamen latenten Faktoren 

darstellt. 𝚲 ist die n × r Mustermatrix, Ψ ist die n × n Mustermatrix der Koeffizienten1 

der uniquen Faktorwerte2 und E die n × 1 Matrix der uniquen Faktorwerte (Mulaik, 2009). 

Voraussetzungen sind, dass die Erwartungswerte der beobachteten Variablen Y, der 

Faktorwerte X sowie der Fehler E Null sind.  

Im faktorenanalytischen Modell wird davon ausgegangen, dass die uniquen 

Faktorwerte sowohl Messfehleranteile enthalten, als auch einen Anteil, der spezifisch für 

die entsprechende beobachtete Variable ist und mit keiner anderen beobachteten 

Variablen geteilt wird (Eid, Gollwitzer, & Schmitt, 2013). Im Gegensatz dazu 

repräsentiert der Varianzanteil einer beobachteten Variablen, welcher nicht durch die 

latenten Variablen erklärt werden kann, im Rahmen eines True-Score-Modells (Eid et al., 

2013, S. 856) nur Messfehler. Bei den unter IV und V beschriebenen Studien handelt es 

sich ausschließlich um True-Score-Modelle.  

Unter der Voraussetzung, dass die gemeinsamen und die uniquen Faktorwerte 

unkorreliert sind, d.h. die Matrix der uniquen Faktorwerte E multipliziert mit ihrer 

Transponierten eine Identitätsmatrix darstellt, gibt das Fundamentaltheorem der 

                                                
1Residual-Standardabweichungen (Janssen & Laatz, 2013, S. 555) 
2Residuen (Janssen & Laatz, 2013, S. 548) 
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Faktorenanalyse an, wie die Korrelationsmatrix der beobachteten Variablen errechnet 

wird (Mulaik, 2009, S. 136):  

RYY = 𝚲	𝚽𝐗𝐗	𝚲% +	Ψ2     (2)3 

Dabei gibt	𝚽𝐗𝐗 die r × r Korrelationsmatrix der Faktoren an. Die Differenz aus 

RYY und Ψ2 ergibt die sog. reduzierte Korrelationsmatrix (Mulaik, 2009, S. 136), wobei 

Ψ2 positiv definit sein muss, d.h., die Eigenwerte dieser symmetrischen Matrix sind 

größer als Null (Fahrmeier, Hamerle, & Tutz, 1996). In der Diagonalen letzterer Matrix 

stehen die Kommunalitäten, die Varianzen der Items, welche nur durch die gemeinsamen 

Faktoren erklärt werden (Bühner, 2011). Die Kommunalität eines Items entspricht dem 

Determinationskoeffizienten in der multiplen Regressionsanalyse (Eid et al., 2013). Sie 

gibt die quadrierte multiple Korrelation zwischen der beobachteten Variablen und der 

latenten Variablen an.  

Sofern in den Off-Diagonal-Elementen von		𝚽𝐗𝐗 Nullen stehen, handelt es sich 

um ein orthogonales Faktorenmodell, andernfalls um ein obliques (Mulaik, 2009). Im 

Rahmen eines orthogonalen Faktorenmodells entspricht die Mustermatrix, die die 

Faktorladungen enthält, der Strukturmatrix, letztere enthält die Korrelationen der 

beobachteten Variablen mit den Faktoren. Andernfalls stellen die Einträge der 

Mustermatrix semipartielle Regressionsgewichte dar und werden aus der Multiplikation 

der Inversen von 𝚽𝐗𝐗 mit der Strukturmatrix berechnet (Mulaik, 2009, S. 138): 

   𝚲 = 𝐑𝐘𝐗	𝚽𝐗𝐗
*𝟏      (3)4 

Die reproduzierte Kovarianzmatrix 𝚺 des implizierten Modells kann im Rahmen 

der konfirmatorischen Faktorenanalyse konzeptuell genauso wie in Formel (2) dargestellt 

werden (Mulaik, 2009, S. 440), 𝚽𝐗𝐗 stellt die r × r Kovarianzmatrix der latenten Faktoren 

und Θ die n × n Varianz-Kovarianzmatrix der uniquen Faktorwerte dar:  

   𝚺 = 	𝚲	𝚽𝐗𝐗	𝚲% + 	𝚯     (4) 

                                                
3𝚲% stellt die Transponierte der Mustermatrix dar; der Apostroph kennzeichnet hier und im Folgenden die 

Transponierte eines Vektors oder einer Matrix.  
4Der Exponent -1 stellt hier und im Folgenden die Inverse einer Matrix dar.   
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Bei der konfirmatorischen Faktorenanalyse müssen die uniquen Faktorwerte – im 

Vergleich zur exploratischen Faktorenanalyse – nicht unkorreliert sein (Mulaik, 2009). 

Sollten sie unkorreliert sein, entspricht das Ψ2 aus Formel (2) im nicht-standardisierten 

Fall der Varianz-Kovarianz-Matrix Θ.  

Das Modell in Gleichung (4) besteht aus zwei oder mehreren Messmodellen bzw. 

konfirmatorischen Faktorenanalysen sowie einem Strukturmodell in Form von 

korrelierten latenten Variablen bzw. Faktoren. Gleichung (4) stellt insofern den 

einfachsten Fall eines linearen Strukturgleichungsmodells dar. Diese Arbeit fokussiert 

sich auf diesen Fall, weshalb an dieser Stelle auf die technische Einführung von 

Strukturmodellen in Form von gerichteten Pfaden verzichtet wird. Für eine Darstellung 

dieser Form von Strukturgleichungsmodellen werden die Lehrbücher von Byrne (1998), 

Byrne (2009), Kline (2001), Reinecke (2014) sowie Weiber und Mühlhaus (2010) 

empfohlen.  
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2 Beurteilung der Modellpassung 
 

2.1 χ2- Anpassungstest 

 

Die Schwierigkeit, die mit Datenanalyseverfahren wie konfirmatorischen 

Faktorenanalysen und linearen Strukturgleichungsmodellen einhergeht, liegt in der 

Beurteilung der Modellpassung. Der Fokus dieser Arbeit liegt auf einer Form der 

Missspezifikation: nicht-spezifizierter Zweidimensionalität im Strukturmodell. Daher 

werden im Folgenden die Kriterien zur Beurteilung der Modellpassung näher erläutert, 

die im Rahmen der ersten Studie zur Modellevaluation verwendet wurden. Als erstes wird 

der χ2-Anpassungstest beschrieben, bevor die Fit-Indizes, deren Sensitivität in Studie 1 

untersucht wurde, näher erläutert werden.  

 

Mittels eines χ2-Anpassungstests wird approximativ der globale Modellfit 

überprüft, d.h., ob die aus den empirischen Daten geschätzte Populations-

Kovarianzmatrix mit der aus dem theoretischen Modell implizierten Kovarianzmatrix 

übereinstimmt bzw. die Elemente in den Off-Diagonalen der Uniqueness-Matrix Null 

sind oder nahe an Null liegen (Schermelleh-Engel, Moosbrugger, & Müller, 2003). Dabei 

gilt die Entscheidung über die Modellpassung als dichotom, das theoretische Modell wird 

an der aus den Daten geschätzten Populations-Kovarianzmatrix entweder abgelehnt (bei 

einem Signifikanzniveau von 5%: p ≤ .05) oder angenommen (p > .05). Wenn die 

Nullhypothese korrekt ist (theoretisches Modell passt zu den Daten) erreicht die 

Diskrepanzfunktion F ein Minimum und der χ2-Wert berechnet sich folgendermaßen (S. 

32):  

    χ2 (df) = (N-1) F [S,	 (𝛉)]                       (5) 

wobei df: Anzahl der Freiheitsgrade 

N: Stichprobengröße 

F: Diskrepanzfunktion 

S: empirische Kovarianzmatrix 
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(𝛉): implizierte Kovarianzmatrix 

Der χ2-Test stellt einen statistischen Test zur Prüfung der Modellpassung dar, die 

Likelihood-Ratio-Statistik, dessen Verteilung F(N-1) eine χ2-Verteilung darstellt 

(Schermelleh-Engel et al., 2003). Diese lässt sich aus der multivariaten Normalverteilung 

herleiten (Mulaik, 2009). Voraussetzungen für die Analyse von 

Strukturgleichungsmodellen stellen daher multivariate Normalverteilung und hinsichtlich 

der Modellkomplexität hinreichend große Stichprobengrößen dar (Bentler & Yuan, 1999; 

Bollen, 1989; Boomsma & Hoogland, 2001; Boomsma, 1983; Mulaik, 2009; Reinecke, 

2014; Yang-Wallentin & Jöreskog, 2001).  

Einerseits fordern die Schätzalgorithmen bei der Modelltestung eine große 

Stichprobengröße, andererseits steigt jedoch der χ2-Wert bei sehr großen Stichproben 

stark an, sofern eine Modellabweichung vorliegt (Schermelleh-Engel et al., 2003): Bei 

sehr großen Stichproben reichen nur sehr geringe Abweichungen zwischen der 

modellimplizierten und der beobachteten Kovarianzmatrix aus, um eine Ablehnung des 

theoretischen Modells zu bewirken (Jöreskog, 1969; Reinecke, 2014; Steiger, 2007; 

Thompson & Daniel, 1996). Insofern liegt die Problematik bei der Beurteilung der 

Modellpassung anhand des χ2-Tests darin, dass der Schweregrad der Modellabweichung 

anhand des χ2-Tests nicht bestimmt werden kann (Saris, Satorra, & Sorbom, 1987). Eine 

Orientierung stellt lediglich der χ2-Wert in Relation zu den Freiheitsgraden des 

spezifizierten Modells dar. Bei einem korrekten Modell entspricht der Erwartungswert 

des χ2-Werts der Anzahl der Freiheitsgrade des spezifizierten Modells (Schermelleh-

Engel et al., 2003).  

 

2.2 Fit-Indizes 

 

Wie bereits im vorherigen Abschnitt erläutert, werden bereits geringfügig von den 

Daten abweichende Modelle von der χ2-Statistik abgelehnt (Fan & Sivo, 2005; Fan et al., 

2009). Gleichzeitig kann aber aus der Ablehnung eines implizierten Modells nicht 

geschlussfolgert werden, dass die Abweichung von der beobachteten Kovarianzmatrix 

unbedingt klein sei (Saris, Satorra, & Sorbom, 1987). Bei Ablehnung des Modells durch 

den χ2-Test können genauso große Missspezifikationen die Ursache sein. Aus diesem 

Grund wurden alternative Maße für die Überprüfung der Modellpassung entwickelt, die 
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Fit-Indizes (Schermelleh-Engel et al., 2003). Diese geben – im Gegensatz zum χ2-Test, 

anhand dessen die Beurteilung der Modellpassung nach einer dichotomen Entscheidung 

erfolgt – die Güte der Modellpassung an. Ebenso handelt es sich bei den Fit-Indizes – im 

Gegensatz zur Inferenzstatistik des χ2-Tests – um deskriptive Maße zur Evaluation der 

Modelpassung (Hu & Bentler, 1998; Hu & Bentler, 1999; Steiger, 1990, 2007). In diesem 

Kontext wurde von der Nullhypothese der exakten Passung zwischen theoretischen 

Modellmatrix und der empirisch geschätzten Populationsmatrix Abstand genommen und 

stattdessen der Begriff der annähernden Passung („close fit“) für die Fit-Indizes 

eingeführt (Browne & Cudeck, 1993, S. 146; Schermelleh-Engel et al., 2003, S. 36).  

Die Fit-Indizes sollen folgende – im Gesamten schwer erfüllbare – Kriterien 

erfüllen: die Spannweite soll zwischen 0 und 1 liegen, die Fit-Indizes sollen unabhängig 

von der Stichprobengröße sein, und ihre Verteilung sollte bekannt sein (Gerbing & 

Anderson, 1993). Weitere wünschenswerte Eigenschaften für Fit-Indizes führen Fan et 

al. (2009) an. So sollten die Fit-Indizes idealerweise auch invariant hinsichtlich der 

verwendeten Schätzmethode sein; zudem sollten die Fit-Indizes erwartungstreu sein und 

wenig zufällige Abweichungen anzeigen. Missspezifikationen hingegen sollten sich stark 

auf die Varianz eines Fit-Index auswirken.  

Die am häufigsten verwendeten Fit-Indizes stellen der Comparative fit index (CFI; 

Bentler, 1990), der Root-mean-square error of approximation (RMSEA; Steiger & Lind, 

1980) und das Standardized root-mean-square residual (SRMR; Jöreskog & Sörbom, 

1981) dar (Beauducel & Wittmann, 2005; Marsh, Hau, & Grayson, 2013; McDonald & 

Ho, 2002; Savalei, 2012). Alle drei Fit-Indizes hängen vom χ2-Wert ab (Heene, Hilbert, 

Draxler, Ziegler, & Bühner, 2011). Aufgrund ihrer häufigen Verwendung wird in Studie 

1 die Sensitivität dieser drei Fit-Indizes ausgetestet. Daher werden CFI, RMSEA und 

SRMR im Folgenden näher erläutert.  

 

Der RMSEA ist ein absoluter Fit-Index (Steiger & Lind, 1980). Absolute Fit-

Indizes indizieren, wie gut ein theoretisches Modell die aus den Daten geschätzten Werte 

reproduziert (Beauducel & Wittmann, 2005). Der RMSEA gibt die Quadratwurzel der 

durchschnittlichen Modellabweichung der geschätzten Populations-Kovarianzmatrix von 

der anhand des Modells spezifizierten Kovarianzmatrix, relativiert an der möglichen 

Modellabweichung pro Freiheitsgrad, an (Browne & Cudeck, 1993; Heene, Hilbert, 

Freudenthaler, & Bühner, 2012; Steiger & Lind, 1980; Steiger, 1990). Ein Wert von 0 
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stellt beim RMSEA eine perfekte Übereinstimmung und ein Wert von 1 eine maximale 

Abweichung zwischen theoretischer Kovarianzmatrix und der aus den empirischen Daten 

geschätzten Kovarianzmatrix dar. Die Formel für den RMSEA lautet (Heene et al., 2012, 

S. 38): 

                               RMSEA = max[ 567*896
896	(:*;)

, 0]               (6) 

wobei χ2
1 : χ2-Statistik des theoretischen Modells, welche eine gewichtete 

Funktion des Minimums der Maximum-Likelihood-Diskrepanzfunktion für die 

implizierte Kovarianzmatrix darstellt 

df1 : Freiheitsgrade des theoretischen Modells 

N: Stichprobengröße 

Somit stellt der RMSEA die Quadratwurzel des normalisierten durchschnittlichen 

Nonzentralitätsparameters pro Freiheitsgrad dar (Heene et al., 2012). Der 

Nonzentralitätsparameter gilt als unverzerrter Schätzer des Populationsparameters für die 

quadrierte Abweichung zwischen theoretischem Modell und empirischen Daten 

(Schermelleh-Engel et al., 2003) und wird unter III. 1 näher beschrieben.  

Das SRMR, entwickelt von Jöreskog und Sörbom (1981), stellt ebenfalls einen 

absoluten Fit-Index dar. Es entspricht dem durchschnittlichen Residuum der 

Residualkorrelationen und stellt demnach, wie der RMSEA, einen absoluten Fit-Index 

dar, welcher zwischen Null (perfekte Modellpassung) und Eins (sehr schlechte 

Modellpassung) liegen kann (Chen, 2007, S. 466). Es wird die durchschnittliche 

Abweichung zwischen den Korrelationen der empirischen und der implizierten 

Korrelationsmatrix berechnet (Heene et al., 2012, S. 39):  

                                    SRMR = 
?	

@ABCDEF
@AA@BB

7
A
BG6

H
AG6

I(IJ;)
                                      (7) 

wobei p: Anzahl an manifesten Variablen 

sij: empirische Kovarianzen 

σLM: implizierte Kovarianzen 
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sii, sjj: empirische Standardabweichungen 

Die gefitteten Residuen, welche aus der Differenz aus empirischen Kovarianzen 

und modellimplizierten Kovarianzen resultieren, werden anhand von Division durch die 

empirischen Standardabweichungen standardisiert. Dies kompensiert die Abhängigkeit 

von der Skalierung der Indikatoren (Jöreskog & Sörbom, 1981).  

Der CFI stellt einen komparativen Fit-Index dar und ist der am häufigsten 

berichtete Fit-Index aus dieser Kategorie (Mahler, 2011; Marsh, Hau, & Grayson, 2013). 

Komparative Fit-Indizes vergleichen den für das implizierte Modell berechneten χ2-Wert 

mit dem χ2-Wert eines restringierteren Basismodells unter Berücksichtigung der 

Freiheitsgrade (Bentler, 1992; Heene et al., 2012; Reinecke, 2014). Das Basismodell ist 

meistens ein Nullmodell, bei dem davon ausgegangen wird, dass die beobachteten 

Variablen unkorreliert sind (Heene et al., 2012). Die Formel für den CFI lautet (Heene et 

al., S. 39):  

     CFI = 1 – [(56
7	–	896)	

(5O	7 *89O)	
]                                      (8) 

wobei: χ2
0: χ2-Statistik des Basismodells 

df0: Freiheitsgrade des Basismodells 

χ2
1: χ2-Statistik des theoretischen Modells, welche eine gewichtete 

Funktion des Minimums der Maximum-Likelihood-Diskrepanzfunktion für die 

implizierte Kovarianzmatrix darstellt 

df1: Freiheitsgrade des theoretischen Modells 

Der CFI (Bentler, 1990) korrigiert die Unterschätzung der Modellpassung des NFI 

(Normed fit index; Bentler & Bonett, 1980; dieser Fit-Index ist ebenfalls ein komparativer 

Index; Bentler, 1990) bei kleinen Stichproben (Schermelleh-Engel et al., 2003). Beim CFI 

indiziert ein Wert nahe 1 einen sehr guten Fit, wohingegen ein Wert nahe 0 einen sehr 

schlechten Fit anzeigt. Allerdings wird argumentiert, die komparativen Fit-Indizes, wie 

der CFI, seien nicht über verschiedene Studien hinweg vergleichbar, da diese nicht nur 

abhängig von der Modellspezifikation seien, sondern auch von davon, wie schlecht das 

Nullmodell ist (siehe z.B. Marsh, Balla, und McDonald [1998]).   
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Hu und Bentler schlugen basierend auf zwei einflussreichen Simulationsstudien 

(1998, 1999) ab einer Stichprobengröße von 250 Personen folgende Cut-Off-Werte vor: 

CFI > .95, RMSEA < .06 und SRMR < .08 (Hu & Bentler, 1999, S. 27). Die Autoren 

empfahlen außerdem eine „two-index-strategy“ (S. 27) für die Evaluation der 

Modellpassung, da inkrementelle Fit-Indizes, wie der CFI, sowie der RMSEA sensitiv 

für Missspezifikationen im Messmodell wären und das SRMR sensitiv für 

Missspezifikationen im Strukturmodell (siehe III. 1). Für die Kombination des CFI oder 

des RMSEA zusammen mit dem SRMR empfehlen die Autoren (S. 27) einen Cut-Off 

von > .95 für den CFI oder den Cut-Off von < .06 für den RMSEA zusammen mit einem 

Cut-Off von < .09 für das SRMR.  

 Es wird kritisiert, dass die Cut-Off-Werte für die Fit-Indizes von Hu und Bentler 

(1998, 1999) relativ willkürlich  gesetzt wurden (Mahler, 2011). Des Weiteren führten sie 

ebenfalls zu einer Modellevaluation auf Basis einer dichotomen Entscheidung, ähnlich 

wie der χ2-Test, was ursprünglich nicht intendiert war (Marsh, Hau, & Wen, 2004). Die 

Fit-Indizes sollen hingegen über den Grad der Missspezifikation Auskunft geben (Fan et 

al., 2009), da dies der χ2-Test nicht leisten kann. Aus diesen Gründen ist die gleichzeitige 

Modellevaluation durch lokale Maße der Modellgüte unabdinglich. Lokale Maße der 

Modellevaluation stellen im Rahmen konfirmatorischer Ansätze unter anderem die 

Faktorreliablität, die Höhe und Signifikanz der Faktorladungen sowie der Prozentsatz der 

aufgeklärten Varianz dar (Hooper, Coughlan, & Mullen, 2008). 

Nach wie vor wird die Modellpassung von den angewandt Forschenden jedoch 

primär an den Cut-Off-Werten nach Hu und Bentler (1998, 1999) festgemacht. Diese 

Daumenregeln zur Interpretation des Modellfit anhand der Fit werden unter III. 1 anhand 

weiterer Simulationsstudien diskutiert. 
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3 Bestimmung der Faktorwerte 
 

In den vorherigen beiden Unterkapiteln wurden zum einen die linearen Modelle 

dargestellt, auf denen Faktorenanalysen und lineare Strukturgleichungsmodelle 

aufgebaut sind. Zum anderen wurden die Kennwerte zur Beurteilung der Modellpassung 

eingeführt, die in der ersten Studie hinsichtlich ihrer Sensitivität bezüglich der nicht-

spezifizierten Zweidimensionalität in der Faktorenstruktur ausgetestet wurden. Diese 

konzeptionelle Vorstellung der Strukturgleichungsmodellierung reicht für die Studie 1, 

die sich auf die Sensitivität der Fit-Indizes fokussiert, ebenso aus wie für die meisten Fälle 

der angewandten Forschung, bei denen es um die Testung von Theorien und Hypothesen 

für Populationen geht (Hershberger, 2003; MacCallum & Austin, 2000; Tremblay & 

Gardner, 1996), aus. Da jedoch mehr und mehr Testverfahren und Fragebögen für die 

Einzelfalldiagnostik anhand von konfirmatorischen Faktorenanalysen und 

Strukturgleichungsmodellen konstruktvalidiert werden (“Datenbanksegment PSYNDEX 

Tests,” 2013), liegt die Bedeutung der Bestimmung der Faktorwerte auf der Hand. Die 

zweite Studie fokussierte sich auf die Einzelfalldiagnostik aus den Faktorwerten. Im 

Speziellen wurden im Rahmen der zweiten Studie vor dem Hintergrund der 

Mehrdimensionalitätsthematik der Dissertation die psychometrischen Konsequenzen für 

die Diagnostik aus den Faktorwerten untersucht, die für die Individuen entstehen würden, 

wenn ein Modell angewendet wurde, dass fälschlicherweise nur eine latente Dimension 

anstatt zweier latenter Dimensionen abbildete. Daher wird im Folgenden auf die 

Faktorwerteschätzung näher eingegangen.  

 

Für die Bestimmung der Faktorwerte sind die drei bekanntesten und am weitesten 

verbreiteten Möglichkeiten die Faktorwerte nach Thurstone (1935), die Faktorwerte nach 

Bartlett (1937) sowie die Anderson-Rubin Faktorwerte (Anderson & Rubin, 1956), 

letztere machen jedoch nur für orthogonale Rotationen Sinn. Da es sich bei beiden 

Studien im Rahmen dieser Dissertation um oblique Designs handelt, werden im 

Folgenden nur die Thurstone- und die Bartlett-Faktorwerte erläutert. 

Die Faktorwerte nach Thurstone (Grice, 2001b, S. 433; Mulaik, 2009, S. 375) 

werden mittels Regressionsmethode geschätzt:  

𝐗𝐢 = 	𝚽XX 𝚲 𝐑𝐘𝐘*𝟏 𝐘𝐢	= RXY 𝐑𝐘𝐘*𝟏	𝐘𝐢      (9) 
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Dabei ergibt 𝐗𝐢	die Matrix der geschätzten Thurstone-Faktorwerte der Person i 

auf den r Faktoren. Diese Faktorwerte werden aus der Inversen der Korrelationsmatrix 

der beobachteten Variablen 𝐑𝐘𝐘*𝟏,	der Strukturmatrix RXY und dem Vektor	𝐘𝐢, der 

standardisierten Werte auf den beobachteten Variablen einer Person i berechnet (Grice, 

2001b; Mulaik, 2009). 

 Die Bartlett-Faktorwerte (Bartlett, 1937; Grice, 2001b) lassen sich wie folgt 

bestimmen (Grice, 2001b, Gleichung (9), S. 433; die Notation erfolgt in Anlehnung an 

Mulaik, 2009, Anm. d. Autorin): 

𝐗𝐢 = 𝐘𝐢	𝚿*𝟐	𝚲	(𝚲%	𝚿*𝟐	𝚲)*𝟏             (10) 

 Die Bartlett-Faktorwerte werden mittels Minimierung der Quadratsummen der 

uniquen Faktorwerte berechnet (DiStefano, Zhu, & Mindrila, 2009). Diese Art der 

Berechnung resultiert in dem Vorteil, dass die Bartlett-Faktorwerte erwartungstreue 

Schätzer für die wahren Faktorwerte sind (Lawley & Maxwell, 1971, S. 110). Ein 

Schätzer heißt erwartungstreu, wenn sein Erwartungswert dem wahren Wert des 

geschätzten Parameters entspricht (Kauermann & Küchenhoff, 2011, S. 21). Die 

Regressions-Faktorwerte erfüllen dieses Kriterium nicht5. Sowohl die Thurstone-

Faktorwerte, als auch die Bartlett-Faktorwerte stellen standardisierte Faktorwerte dar 

(DiStefano et al., 2009).  

Kriterien für die Güte der geschätzten Faktorwerte sind nach Grice (2001a, S. 68, 

2001b, S. 436) Validität, Eindeutigkeit und Orthogonalität. Die Validität der geschätzten 

Faktorwerte wird nach Grice (2001a, 2001b) an der Korrelation zwischen den geschätzten 

und den wahren Faktorwerten festgemacht. Eindeutigkeit beschreibt, inwieweit die 

bestimmten Faktorwerte mit den wahren Faktorwerten anderer Faktoren korrelieren. 

Orthogonalität bedeutet übertragen auf den Fall eines obliquen Designs, wie es auch in 

den Studien 1 und 2 verwendet wurde, dass die Uniqueness-Matrix des Faktorenmodells 

eine Diagonalmatrix darstellen sollte. Die Bartlett-Faktorwerte erfüllen alle drei Kriterien 

und sind, wie bereits beschrieben, erwartungstreu (McDonald & Burr, 1967). Maathuis 

(2008) empfiehlt zudem insbesondere die Bartlett-Faktorwerte, wenn Interesse an einer 

bestimmten Gruppe von Individuen besteht. Im Rahmen der zweiten Studie bestand 

genau dieses Interesse, es wurden Gruppen von Individuen mit positiven und negativen 

                                                
5Für eine Herleitung siehe Lawley und Maxwell (1971), S. 108-111.  
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Diagnosen aus den Faktorwerten gebildet. Insofern wurden bei der zweiten Studie (siehe 

V) die Bartlett-Faktorwerte verwendet.  

 

Die Problematik bei der Schätzung der Faktorwerte6 liegt in deren sog. 

„Indeterminacy“ (Mulaik, 2009, S. 375ff). Diese Unbestimmtheit bedeutet, dass es eine 

unendliche Anzahl an gleichwertigen Lösungen für die Berechnung der Faktorwerte X 

und der uniquen Faktorwerte E bei derselben Faktorlösung gibt (Beauducel, 2005; Grice, 

2001), wobei meist nur die Faktorwerte X der gemeinsamen Faktoren von Interesse sind. 

Für die Studie 2 spielt die Faktorenunbestimmtheit eine Rolle, da unter anderem auch die 

Ladungshöhe (Reliabilität) für die Generierung der Populationsdaten variiert wurde. Der 

Grad der Faktorenunbestimmtheit hängt von der Höhe der Ladungen ab (siehe ρ und 

Formel (11) auf der nächsten Seite). Dementsprechend hängt auch die Validität der 

Faktorwerte (für den Begriff vgl. Grice [2001a, 2001b]) von der Höhe der Faktorladungen 

ab (Erklärung folgt unter V. 2.2.1), aus denen in der zweiten Studien Diagnosen gebildet 

wurden. Daher wird im Folgenden die Faktorenunbestimmtheit sowohl algebraisch als 

auch geometrisch illustriert; ebenso die Konvention für die Bestimmung des Grades der 

Faktorenunbestimmtheit nach Guttman (1955).  

Eine simple Betrachtung der Fundamentalgleichung der Faktorenanalyse 

(Gleichung (1) unter II. 1) verdeutlicht die Faktoren-Unbestimmtheit: Die linke Seite der 

Gleichung hat n Parameter, nämlich die Anzahl der beobachteten Variablen. Diese n 

Parameter sollen jedoch durch n + r Parameter, durch die Summe der beobachteten 

Variablen und der latenten Faktoren, vorhergesagt werden, was zu einer Gleichung mit 

zwei Unbekannten und insofern mehreren Lösungen führt (vgl. Grice, 2001b; Mulaik, 

2009; Schönemann, 1996).  

                                                
6Bei der Bestimmung der Faktorwerte handelt es sich nicht um ein Schätzproblem im klassischen Sinne, 

welches keine exakte Lösung hervorbringt und deshalb eine Annäherung zum Ziel hat (Guttmann, 1972, 

zitiert nach Steiger & Schönemann, 1978, S. 137). Maraun (1996a) kritisiert daher die Verwendung der 

Begriffe „Faktorwerte“, „geschätzte Faktorwerte“ oder „Personenparameter“ in semantischer Hinsicht und 

empfiehlt den Begriff der „aus den manifesten Variablen vorhergesagten latenten Variablen“ (S. 518f). 

Trotz Marauns Kritik wird in der vorliegenden Arbeit weiterhin von „geschätzten Faktorwerten“ 

gesprochen. Der Begriff der „Schätzung der Faktorwerte“ im Rahmen dieser Arbeit soll neben der 

existierenden Konvention im Sprachgebrauch illustrieren, dass es verschiedene Methoden zur Berechnung 

der Faktorwerte gibt (vgl. Beauducel, 2005, S. 143).  
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Wilson (1928, zitiert nach Steiger & Schönemann, 1978), welcher als erstes über 

das Unbestimmtheitsproblem der Faktorwerte geschrieben hatte, erarbeitete eine 

geometrische Darstellung des Unbestimmtheitsproblems, indem er Spearmans g 

(Spearman, 1904, 1927) als Beispiel heranzog. Er veranschaulichte dies anhand eines 

Kegels, bei dem die Kegelachse die wahren Faktorwerte darstellt (Guttman, 1955; 

Mulaik, 2009; Steiger & Schönemann, 1978). Die Regressions-Faktorwerte, die lineare 

Schätzer für die wahren Faktorwerte sind, stellen die Mittelwerte aus den möglichen 

Faktorwertlösungen dar. Der Cosinus des Winkels zwischen dem Vektor der wahren 

Faktorwerte, also der Kegelachse, und allen anderen möglichen Faktorwerten, die den 

Kegelmantel aufspannen, bestimmt die Korrelation zwischen diesen Größen7. Daraus 

wird ersichtlich, dass eine unendliche Zahl an möglichen Faktorwerten durch das lineare 

Modell errechnet werden kann. Auf die Schätzung der Modellparameter hingegen hat die 

Faktorenunbestimmtheit keine Auswirkungen (Beauducel, 2007).  

Für eine detailliertere Auseinandersetzung mit der Geschichte der Faktoren-

Unbestimmtheit werden Steiger und Schönemann (1978), Grice (2001a) sowie Steiger 

(1996) empfohlen. Technisch empfehlenswerte Bearbeitungen der Faktoren-

Unbestimmtheit finden sich bei Guttman (1955), Schönemann und Steiger (1978) sowie 

Maraun (1996a, 1996b).  

Guttman (1955) quantifizierte den Grad der Faktorenunbestimmtheit. Er 

erarbeitete eine Formel, um die maximal mögliche Unbestimmtheit zwischen zwei 

alternativen Faktorwertlösungen für denselben Faktor zu berechnen (Guttman, 1955, S. 

73): 

  ρ∗ = 2ρ? − 1            (11) 

ρ stellt die multiple Korrelation zwischen dem latenten Faktor und den 

beobachteten Variablen dar (Guttman, 1955). An dieser Stelle wird ersichtlich, dass der 

Grad der Faktorenunbestimmtheit eines Faktors nach Guttman alleine durch die Höhe der 

Faktorladungen determiniert ist. Da diese im Rahmen der zweiten Studie variiert wurde, 

wurde Guttmans Quantifizierung des Grades der Faktorenunbestimmtheit auch im 

Rahmen der zweiten Studie bestimmt (siehe V. 2.2.1 und 2.3.1). ρ? liegt zwischen 0 und 

                                                
7In einem Euklidischen Vektorraum entspricht der Cosinus des Winkels zwischen zwei Vektoren der 

Korrelation zwischen diesen beiden Vektoren (Guttman, 1955).  
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1, wobei ein Wert nahe 1 wünschenswert ist, da er eine hohe Bestimmtheit darstellt 

(Grice, 2001). Dass ρ? bzw. ρ	nie ganz Eins werden kann, liegt an der Unbestimmtheit 

der Faktorwerte an sich (Mulaik, 2009). ρ∗ ist die Korrelation zwischen einem möglichen 

Vektorelement, also einem möglichen Faktorwert, und einem korrespondierenden 

Vektorelement bzw. einem Faktorwert, der maximal verschieden ist von ersterem. ρ∗ 

bewegt sich zwischen -1 und 1. In Wilsons (1928, zitiert nach Steiger & Schönemann, 

1978) geometrischer Veranschaulichung entspricht ρ∗ dem Cosinus des Winkels 

zwischen zwei Faktorwertvektoren, die zusammen mit den anderen möglichen 

Faktorwertvektoren den Kegelmantel aufspannen, welche aber auf derselben Ebene 

liegen und insofern maximal weit voneinander entfernt sind.  

Die Quantifizierung der Faktoren-Unbestimmtheit Guttmans (1955) zeigt, dass 

die individuellen Faktorwerte der Personen komplett unterschiedlich sein können, je 

nachdem, welches Aggregat an Faktorwerten herangezogen wurde (Grice, 2001b). Sofern 

ρ kleiner als oder gleich .71 ist, kann die Korrelation zwischen verschiedenen 

Faktorwertlösungen negativ werden (Guttman, 1955) und in substanzieller8 Hinsicht in 

die umgekehrte Richtung gehen.  

 

                                                
8Der Begriff „substanziell“ meint an dieser Stelle die psychometrische Interpretation der individuellen 

Faktorwerte.  
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III   ABLEITUNG DER FRAGESTELLUNGEN 
 

1 Missspezifikationsforschung  
 

Im vorherigen Kapitel II wurde die Konzeption von Strukturgleichungsmodellen und die 

Modelltestung anhand des χ2-Tests und der Fit Indizes dargestellt. In diesem Zuge wurde bereits 

berichtet, dass die kritische Frage bei der Modelltestung lautet, wie zuverlässig 

Missspezifikationen, als solche erkannt werden. Auf diese Frage bezieht sich die erste Studie 

dieser Dissertation.  

Die Power/Sensitivität des χ2-Tests sowie der Fit-Indizes wurde innerhalb der letzten 20 

bis 30 Jahre ausführlich hinsichtlich unterschiedlicher Stichprobengrößen, Schätzmethoden und 

Arten von Missspezifikationen beforscht. Für die Überprüfung der Power/Sensitivität der Fit-

Indizes eignet sich das Monte-Carlo-Simulationsverfahren9 (vgl. Paxton, Curran, Bollen, 

Kirby, & Chen, 2001), welches auch im Rahmen der Studie 1 verwendet wurde. Dabei werden 

zunächst Populationsmodelle definiert. Aus diesen spezifizierten Populationsmodellen lassen 

sich Populations-Kovarianz-Matrizen darstellen. Aus diesen Populationsmodellen oder 

Populations-Kovarianz-Matrizen wird per Zufall/stichprobenfehlerbedingt eine große Anzahl 

von Stichprobendaten aus zufällig variierenden Stichproben-Kovarianz-Matrizen erzeugt. 

Diese so simulierten Stichprobendaten werden dann anhand eines missspezifizierten Modells 

analysiert. Abschließend wird ausgezählt, für wie viele Stichproben die Fit-Indizes ein 

missspezifiziertes Modell korrekterweise als solches anzeigen.  

Es wäre zwar wünschenswert, die Varianz der Fit-Indizes würde nur von 

Missspezifikationen beeinflusst werden, jedoch zeigt die Forschungslage, dass die Werte der 

Fit-Indizes in hohem Maße aufgrund anderer Modellbedingungen variieren, die nichts mit der 

Missspezifikation zu tun haben (Saris, Satorra, & van der Veld, 2009). 

                                                
9Der Unterschied einer Monte-Carlo-Simulation im Vergleich zu einer sog. Resampling-Methode liegt darin, dass 

bei ersterer der Daten-Generierungs-Prozess der wahren Population bekannt ist (Carsey & Harden, 2014, S. 4). 

Dabei werden vom Forschenden alle Aspekte des wahren Populations-Daten-Generierungs-Prozesses kontrolliert, 

was im genannten Kontext ermöglicht, die Fit-Indizes auf ihre Sensitivität hin auszutesten. Resampling-Methoden 

hingegen ziehen Stichprobendaten aus empirisch erhobenen Daten, der wahre Populations-Daten-Generierungs-

Prozess ist unbekannt.  
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Es ist augenfällig, dass weniger Simulationsstudien zu den Auswirkungen von 

Missspezifikationen auf die Fit-Indizes als zum Beispiel zu Stichprobengrößen und 

Schätzmethoden durchgeführt wurden, die auch Einfluss auf die Fit-Indizes nehmen (Fan et al., 

2009). Die Gründe dafür sehen Fan et al. sowie Gerbing und Anderson (1993) darin, dass der 

Grad einer Missspezifikation nur schwer zu bestimmen sei und Missspezifikationen deshalb 

schwierig zu quantifizieren seien.  

Grundsätzlich wird versucht, Missspezifikationen nach ihrem Typ und ihrem 

Schweregrad einzuteilen (Fan et al., 2009). Es wird zwischen Missspezifikationen im 

Messmodell, also zwischen latenter Variable und deren messfehlerbehafteten Indikatoren, 

sowie Missspezifikationen im Strukturmodell, also zwischen latenten Variablen, unterschieden. 

Fan und Sivo (2005) empfehlen, den Schweregrad einer Missspezifikation anhand des 

Nonzentralitätsparameters unter Berücksichtigung der Freiheitsgrade des Modells zu 

bestimmen. Der Nonzentralitätsparameter indiziert, wie weit die nonzentrale χ2-Verteilung 

unter der Alternativhypothese einer Modellabweichung von der zentralen χ2-Verteilung unter 

der Nullhypothese der Modellpassung abweicht (Kaplan, 1988). Mit steigendem 

Nonzentralitätsparameter steigt also der Schweregrad der Missspezifikation. Desto größer der 

Nonzentralitätsparameter, desto linkssteiler und flacher ist die Verteilung (Erdfelder, Faul, 

Buchner, & Cüpper, 2010). Bei festgelegtem Alpha-Fehler steigt die Power bei steigendem 

Nonzentralitätsparameter. Der Nonzentralitätsparameter hängt ferner von der Stichprobengröße 

ab. Der Vorteil der Bestimmung des Grades der Missspezifikation anhand des 

Nonzentralitätsparameters bestehe nach Fan und Sivo (2005) darin, dass dieser unabhängig von 

der Art der Missspezifikation bestimmt werden könne. Curran, Bollen, Paxton, Kirby, und Chen 

(2002) zeigten allerdings, dass selbst korrekt spezifizierte Modelle nur einer zentralen χ2-

Verteilung folgten, wenn die Stichproben mittelgroß oder groß waren (N = 200 bis N = 1,000). 

Des Weiteren zeigten die Autoren, dass schwer missspezifizierte Modelle (operationalisiert 

durch nicht-spezifizierte [Neben-]Faktorladungen unterschiedlicher Anzahl, aber gleicher 

Faktorladungshöhe) oder auch ein unkorreliertes Basismodell keiner non-zentralen χ2-

Verteilung folgten, genauso wenig jedoch einer zentralen χ2-Verteilung. Letzterer Befund war 

unabhängig von der Stichprobengröße. Weiters zeigte sich, dass weniger schwer 

missspezifizierte Modelle bei kleinen Stichproben auch keiner non-zentralen χ2-Verteilung 

folgten, bei mittleren und größeren Stichproben (mindestens N = 200 bis N = 1,000) jedoch 

schon. Allerdings zeigte sich, trotz der Tatsache, dass die (Non-)Zentralität der erwarteten 

Verteilungen nicht in allen Modellbedingungen den Vermutungen entsprach, dass die 
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Varianzen der Verteilungen bei der Anwendung missspezifizierter Modelle stark streuten. 

Insofern ist zu vermuten, dass die Einordnung von Missspezifikationen in verschiedene 

Schweregrade anhand des Nonzentralitätsparameters auch nicht unproblematisch ist. Zudem 

bestätigt dieser Befund, dass das Problem der Quantifizierung einer Missspezifikation weder 

gelöst ist, noch Konsens hinsichtlich der Herangehensweise besteht. Dennoch wurden diverse 

Studien durchgeführt, die die Auswirkungen von Missspezifikationen unterschiedlicher 

Operationalisierungen auf die Fit-Indizes, also den globalen Modellfit, überprüften. Im 

Folgenden werden die wichtigsten dieser Studien aufgeführt und anhand weiterer Befunde 

diskutiert, bevor anschließend speziell die Studien aufgeführt werden, aus denen sich die erste 

Forschungsfrage (siehe III. 3) ableitet.  

Hu und Bentler (1998, 1999) führten zwei einflussreiche Simulationsstudien durch, die 

die Sensitivität gängiger Fit-Indizes gegenüber Missspezifikationen im Mess- und im 

Strukturmodell austesten sollten. Aus diesen Studien gingen die unter II. 2 genannten 

Daumenregeln hervor. Hu und Bentler (1999) untersuchten unterschiedliche Fit-Indizes 

hinsichtlich zwei verschiedener Schweregrade sowie Typen von Missspezifikationen 

(fälschlicherweise nicht spezifizierte Ladungen auf mehr als einen Faktor [einfache 

Missspezifikation bzw. Missspezifikation im Messmodell]) versus fälschlicherweise nicht 

spezifizierte Faktorkovarianzen ungleich Null [komplexe Missspezifikation bzw. 

Missspezifikation im Strukturmodell] bei einem drei-Faktorenmodell mit insgesamt 15 

Indikatoren), welche alle eine Unterparametrisierung in den missspezifizierten Modellen 

darstellten. Die Stichprobengröße variierte zwischen 150 und 5,000 Fällen. Hu und Bentler 

(1999) schlussfolgerten aus ihren Ergebnissen, dass es sich empfehlen würde, eine 

Kombination aus einem der Fit-Indizes RNI (Relative Noncentrality Index; Bentler & Bonett, 

1980), TLI (Tucker-Lewis-Index; Bentler & Bonett, 1980; Tucker & Lewis, 1973), CFI 

(Bentler, 1990) oder RMSEA (Steiger & Lind, 1980) zusammen mit dem SRMR (Jöreskog & 

Sörbom, 1981) für die deskriptive Evaluation des Model-Fit zu verwenden, da erstere Fit-

Indizes sensitiv für Missspezifikationen im Messmodell wären und letzteres sensitiv für ein 

missspezifiziertes Strukturmodell. Dafür schlugen sie die unter II. 2 genannten Cut-Off-Regeln 

vor, die mehr und mehr zu einer dichotomen Entscheidung hinsichtlich der Beurteilung der 

Modellpassung führten (Marsh et al., 2004). Diese Cut-Offs nach Hu und Bentler (1999) 

werden im Folgenden vor dem Hintergrund weiterer Forschung diskutiert.  



 
 

 24  

Eine berechtigte Kritik an Hu und Bentlers (1998, 1999) Studien ist, dass Art und Grad 

der Missspezifikationen konfundiert waren (Fan et al., 2009). Insofern sind die 

Schlussfolgerungen der Autoren insbesondere für missspezifizierte Modelle nur sehr 

eingeschränkt haltbar (Fan & Sivo, 2005; Fan et al., 2009). Dies betrifft sowohl die propagierte 

Sensitivität der Fit-Indizes für die Art der Missspezifikation, als auch die empfohlenen Cut-

Off-Werte.  

Olsson et al. (2000) zogen aus ihrer Simulationsstudie die Schlussfolgerung, dass 

empirische Fit-Indizes nicht über verschiedene Schätzmethoden hinweg verglichen werden 

könnten. Dementsprechend wären die verschiedenen Fit-Indizes nicht austauschbar, unter 

anderem, weil zum Beispiel der CFI Maximum-Likelihood-basiert ist, der RMSEA jedoch 

nicht. Olsson et al. argumentierten schlussendlich, dass die Cut-Offs nach Hu und Bentler auch 

aufgrund der mangelnden Vergleichbarkeit der Fit-Indizes nicht angemessen wären. Ding, 

Velicer, und Harlow (1995) kamen zu einem ähnlichen Ergebnis, nämlich, dass die Werte der 

Fit-Indizes durch die Schätzmethode im Rahmen ihrer Simulationsstudie verzerrt waren. Sie 

variierten ebenfalls die Schätzalgorithmen (Maximum-Likelihood versus General Least 

Squares), sowie die Anzahl an Indikatoren pro Faktor und die Höhe der Faktorladungen. Die 

Ergebnisse in Bezug auf den Faktor der Schätzalgorithmen zeigten, dass unter Maximum-

Likelihood zwar weniger Heywood Cases10 auftraten, die Parameterschätzungen aber verzerrter 

waren als unter General Least Squares. Fan et al. (2009) zogen aus ihren Befunden ähnliche 

Implikationen wie Olsson et al. (2000), nämlich, dass die Fit-Indizes über verschiedene 

Schätzmethoden hinweg nicht vergleichbar und damit nicht austauschbar wären. Fan et al. 

(2009) untersuchten zehn Fit-Indizes auf ihre Sensitivität hinsichtlich Missspezifikationen im 

Messmodell entweder in Form von fälschlicherweise auf Null gesetzten Faktorladungen oder 

fälschlicherweise hinzugefügten Faktorladungen ungleich Null, was eine Verletzung der 

Einfachstruktur darstellte. Es zeigte sich – und dies ist konsistent zu den Befunden von Hu und 

Bentler – dass der RMSEA am sensitivsten gegenüber beiden Missspezifikationen, also 

Missspezifikationen im Messmodell, war. CFI und SRMR schnitten diesbezüglich im 

Vergleich mittelmäßig ab.  

                                                
10Heywood Cases stellen ungültige Lösungen dar (Faktorladungen über Eins oder negative Fehlervarianzen bei 

Standardisierung), welche aus Schätzproblemen, Missspezifikationen oder auch aus Sampling Fluktuationen 

resultieren; für eine ausführlichere Erklärung sowie Vorschläge für den Umgang mit Heywood Cases bei der 

Datenanalyse wird Kolenikov und Bollen (2012) und Dillon, Kumar, und Mulani (1987) empfohlen.  
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Rigdon (1996) verglich RMSEA und CFI und zeigte analytisch, dass der Gebrauch des 

CFI problematisch wäre, weil er, wie alle inkrementellen Fit-Indizes, von einem geeigneten 

Nullmodell abhängt. Alternative Baseline-Modelle wurden im Artikel beschrieben. Der Autor 

empfahl die Betrachtung des CFI daher im Rahmen von eher explorativen Kontexten und 

kleinen Stichprobengrößen. Hu und Bentlers (1998, 1999) Studien waren konfirmatorischer 

Art. Den RMSEA schlug Rigdon für konfirmatorische Ansätze mit größeren Stichproben vor, 

unter anderem, weil der RMSEA als weniger abhängig von der Stichprobengröße gilt.  

Eine weitere angemessene Kritik ist, dass Hu und Bentler in ihren Studien sehr hohe 

Faktorladungen verwendeten (standardisiert zwischen .70 und .80), welche jedoch im Rahmen 

der meisten psychologischen Untersuchungen und Testvalidierungen nicht erreicht werden 

(Fan & Sivo, 2005; Fan et al., 2009; Heene et al., 2011). Peterson (2000) verglich in einer Meta-

Analyse Faktorladungen von 803 exploratorischen Faktorenanalysen aus Psychologie- und 

Marketing-Journals. Er ermittelte eine durchschnittliche standardisierte Faktorladungshöhe von 

.32, wobei 25% der berichteten Faktorladungen unter .23 lagen und 25% der berichteten 

Faktorladungen über .37. Der Anteil der erklärten Varianz durch die Faktorenmodelle lag bei 

durchschnittlich knapp 57%. Diese Kritik lässt die Schlussfolgerung zu, dass die Cut-Offs nach 

Hu und Bentler (1998, 1999) auch aufgrund unterschiedlicher Faktorladungshöhen in der 

angewandten Forschung nicht verallgemeinert werden können (Heene et al, 2011).   

Heene et al. (2011) untersuchten ein zu Hu und Bentler (1998, 1999) vergleichbares 

Design, jedoch ohne Konfundierungen zwischen Art und Grad der Missspezifikationen, und 

erweiterten das Design noch um den Faktor Testlänge. Außerdem wurden anstatt von tau-

äquivalenten Indikatoren kongenerische Indikatoren verwendet, deren Faktorladungen 

zwischen gering, mittelhoch und hoch variierten, wobei die hohen Faktorladungen der von Hu 

und Bentler (1998, 1999) getesteten Höhe an Faktorladungen entsprach. Bei den komplex 

missspezifizierten Modellen wurden, wie bei Hu und Bentler, die Faktorkovarianzen auf Null 

gesetzt, bei den einfach missspezifizierten Modellen hatten drei Indikatoren, ähnlich zu Hu und 

Bentler, Doppelladungen im Vergleich zum Populationsmodell. Die Stichprobengrößen 

variierten zwischen 150 und 2,500 Fällen. Die Ergebnisse zeigten einen Haupteffekt für die 

Höhe der Faktorladungen: Sowohl die χ2-Werte, als auch die Werte der Fit-Indizes sanken bei 

sinkenden Ladungen. Das heißt, eine Modellevaluation durch den CFI führte bei geringen 

Ladungen eher dazu, dass missspezifizierte Modelle verworfen wurden. Bei hohen Ladungen 

jedoch wurden zu viele Modelle durch den CFI anhand des Cut-Offs nach Hu und Bentler als 
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passend indiziert. Dass dieser Befund bei Hu und Bentler nicht auftrat, kann durch die 

Heterogenität der Faktorladungen im Vergleich zu den homogenen Faktorladungen bei Hu und 

Bentler erklärt werden (Heene et al., S. 322). RMSEA und SRMR11 akzeptierten bei geringen 

Faktorladungen zu oft missspezifizierte Modelle, wohingegen sie bei höheren Faktorladungen 

sensitiver reagierten. Erklärt werden kann dieses Phänomen dadurch, dass bei geringen 

Faktorladungen und dementsprechend großen uniquen Varianzen der χ2-Test an Power verliert 

(Heene et al., S. 328f). Somit verlieren auch die Fit-Indizes CFI und RMSEA, da sie vom χ2-

Wert abhängen, wie auch der SRMR an Sensitivität. Die Befunde sprechen dafür, dass die Cut-

Offs von Hu und Bentler für eine realistische Faktorladungshöhe zu niedrig gewählt wurden, 

sofern man sie als allgemeingültige Regeln verwenden wollte.  

  Während die Befunde von Heene et al. (2011) eher für noch strengere Cut-Offs 

sprechen, vertreten Marsh, Hau, und Wen (2004) eine gegensätzliche Meinung. Sie 

argumentierten, die konventionellen Cut-Offs nach Hu und Bentler wären zu strikt. Marsh et 

al. schrieben, dass es – ihrer Erfahrung nach (S. 325) – fast unmöglich wäre, mit diesen Cut-

Off-Regeln einen akzeptablen Modellfit zu erhalten, selbst, wenn die Testinstrumente 

psychometrisch gut wären und ausreichend Items zur Abbildung der latenten Faktoren 

vorhanden wären. Die Autoren argumentierten ferner, dass sich die Klassifikationsregeln nach 

Hu und Bentler paradox verhalten würden (Marsh et al., S. 327): Die Wahrscheinlichkeit, ein 

missspezifiziertes Modell zu verwerfen wäre für mindestens eines der Modelle, die Hu und 

Bentler spezifizierten, geringer für größere Stichproben als für kleinere. Dies wäre laut Marsh 

et al. vermeidbar gewesen, wenn die Autoren die Cut-Offs anders gesetzt hätten. Marsh et al. 

kritisierten, dass, sofern Hu und Bentler im Rahmen ihres Designs noch noch extremer 

missspezifizierte Modelle verwendet hätten, Cut-Offs von .80 für inkrementelle Fit-Indizes sehr 

exakt zwischen diesen und korrekt spezifizierten Modellen hätten diskriminieren können. Nach 

Marsh et al. hätten Hu und Bentler missspezifizierte Modelle spezifiziert, die theoretisch 

durchaus akzeptabel gewesen wären. In der typischen Praxis wären Modelle hingegen deutlich 

missspezifizierter.  

An Marsh et al.s (2004) Argumentationsführung wird deutlich, dass nicht nur kein 

Konsens darüber besteht, wie Missspezifikationen hinsichtlich Art und Schweregrad 

einzuordnen sind, sondern vielmehr auch, ab wann ein Modell überhaupt als missspezifiziert 

                                                
11An dieser Stelle ist zu beachten, dass im Rahmen dieser Studie für das SRMR ein Cut-Off von < .11 verwendet 

wurde.  
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gilt. Letztere Frage wird jedoch nicht alleine anhand von Simulationsstudien zu klären sein. 

Hierfür bedarf es den Bezug auf vielfach replizierte substanzielle Theorien und insbesondere 

auch die kriterielle Evaluation der Schlussfolgerungen, die aus diesen Theorien gezogen werden 

sollen.  

Trotz der Unstimmigkeiten in Bezug auf die Quantifizierung von Missspezifikationen 

sind sich die Autoren der oben genannten Studien insofern einig, als dass die von Hu und 

Bentler vorgeschlagenen Cut-Off-Werte zur Beurteilung der Modellpassung nicht als 

allgemeingültige Regeln angewendet werden können (Fan & Sivo, 2005; Fan et al., 2009; 

Heene et al., 2011; Marsh et al., 2004). Die Fit-Indizes sind nicht alleine abhängig von der 

Größe der Modellabweichung, sondern auch von anderen Faktoren, wie Stichprobengröße, 

Schätzalgorithmus oder Faktorladungshöhe (Beauducel & Wittmann, 2005; Fan & Sivo, 2005; 

Fan et al., 2009; Heene et al., 2011; Olsson, Foss, Troye, & Howell, 2000; Yang & Green, 

2010).  

Fan und Sivo (2005) argumentierten, dass noch nicht ausreichend verschiedene Modelle 

getestet worden wären und somit der Grad der Missspezifikation noch nicht hinreichend 

kontrolliert worden wäre, um Aussagen über die Sensitivität der Fit-Indizes bezüglich 

verschiedener Typen und Grade von Missspezifikationen treffen zu können. Eine 

Schlussfolgerung aus diesen Forschungsbemühungen ist unter anderem, dass die Fit-Indizes für 

korrekt spezifizierte Modelle vergleichbar sind, für missspezifizierte Modelle aber nicht (Fan 

et al., 2009). Dementsprechend ist offensichtlich, dass die Cut-Off-Kriterien zur Beurteilung 

des Modellfits von Hu und Bentler insbesondere bei missspezifizierten Modellen nicht haltbar 

sind. Wie bereits von Marsh et al. (2004) angedeutet, liegt allerdings die Vermutung nahe, dass 

missspezifizierte Modelle den Großteil der in der psychologischen Anwendung spezifizierten 

Modelle repräsentieren.  
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2 Mehrdimensionalität 
 

2.1 Itemparcels 

 

Innerhalb der Psychologie und verwandter Disziplinen stellt eine nicht-spezifizierte 

Mehrdimensionalität eine typische Missspezifikation dar (Heene et al., 2012; Little et al., 

2002b). Dennoch besteht insgesamt noch wenig Forschung zur Sensitivität der Fit-Indizes für 

diese Formen der Missspezifikation. Mehrdimensionalität im Kontext der Psychometrie 

bedeutet, dass ein Test, Fragenbogen oder Item systematisch nicht nur ein Merkmal misst, 

sondern mehrere12. Die Klassische Testtheorie, auf der konfirmatorische Faktorenanalysen und 

Strukturgleichungsmodelle basieren, ist allerdings für eindimensionale Tests, Fragebögen oder 

Items konzipiert (Bortz & Döring, 2002/2003). Insofern stellen mehrdimensionale Tests, 

Fragebögen oder Items, sofern nicht als solche spezifiziert, eine fundamentale Verletzung der 

statistischen Eindimensionalitätsannahme dar (Bühner, 2011).  

Innerhalb der Forschung zu konfirmatorischen Faktorenanalysen und 

Strukturgleichungsmodellen erregten hinsichtlich der Frage nach der Dimensionalität unter 

anderem gruppierte (sog. geparcelte [Bandalos, 2000, S. 78]) Items Aufmerksamkeit. Bandalos 

untersuchte die Auswirkungen von geparcelten Items im Rahmen von 

Strukturgleichungsmodellen auf die Parameterschätzungen und auf die Fit-Indizes CFI und 

RMSEA. Sie untersuchte im Rahmen einer ersten Studie ein Populationsmodell mit zwei 

exogenen latenten Variablen und je 12 Indikatoren und einer endogenen latenten Variablen, die 

durch 6 Items abgebildet wurde. Alle Indikatoren genügten der Einfachstruktur. Es wurden 

sowohl normalverteilte als auch nicht normalverteilte Items inkludiert. Die standardisierten 

                                                
12Einfachstruktur hingegen bedeutet, dass Items in Faktorenanalysen möglichst hoch auf einen Faktor, aber 

möglichst niedrig auf alle anderen Faktoren laden sollten (Bühner, 2011, S. 204). Einfachstruktur garantiert nicht 

psychologische Eindimensionalität, die nicht gleichzusetzen ist mit statistischer Eindimensionalität. 

Psychologische Eindimensionalität meint die phänomenologische Eindimensionalität des Messgegenstands. Falls 

beispielsweise alle Indikatoren, die eine latente Variablen messen sollen, zwei Eigenschaften/Fähigkeiten messen, 

diese aber in einem konfirmatorischen Modell nicht in Form von Nebenladungen auf eine zweite latente Variable 

spezifiziert werden, bildet die eine latente Variable psychologisch zwei Eigenschaften/Fähigkeiten ab. In diesem 

Fall würde statistische Eindimensionalität vorliegen, psychologische Eindimensionalität allerdings nicht. Im 

Folgenden ist immer, sofern nicht anders gekennzeichnet, von statistischer Ein- und Mehrdimensionalität – im 

Gegensatz zu psychologischer Ein- oder Mehrdimensionalität – die Rede.  
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Ladungen der Indikatoren wurden auf .70 festgesetzt, die standardisierten Messfehlervarianzen 

auf .30. Die Parcels aus den Indikatoren, die aus 2, 3, 4 oder 12 (Gesamtwert) Indikatoren 

bestanden, wurden anhand der Verteilung der Indikatoren gebildet, woraus Parcels mit 

normalverteilten Indikatoren, Parcels mit normal- und mit nicht normalverteilten Indikatoren, 

sowie Parcels, deren Indikatoren schiefer und gewölbter verteilt waren als normalverteilte 

Indikatoren, resultierten. Die Stichprobengrößen variierten zwischen 100 und 800 Fällen. Die 

Modelle mit den geparcelten Indikatoren führten insgesamt betrachtet zu niedrigeren Werten 

des RMSEA und höheren Werten des CFI, also zu besserem Fit, als das korrekte Modell ohne 

Parcels. Nur für das Modell mit den 12-Indikatoren-Parcels war der RMSEA hingegen leicht 

höher als beim Modell mit den individuellen Indikatoren. Beim CFI zeigten sich aufgrund von 

insgesamt sehr hohem Fit nur geringfügig Unterschiede bei kleinen Stichprobengrößen, hier 

fiel die Modellpassung auch zugunsten der individuell verwendeten Indikatoren aus. Die 

Ergebnisse wurden allerdings nicht mehr zwischen der Anzahl der Indikatoren in den Parcels 

getrennt ausgewertet.  

Im Rahmen ihrer zweiten Studie spezifizierte Bandalos (2002) in der Grundstruktur 

dasselbe Populationsmodell wie im Rahmen ihrer ersten Studie, allerdings mit dem wichtigen 

Unterschied, als dass jeweils sechs Indikatoren der exogenen latenten Variablen gleichzeitig 

einen dritten Faktor widerspiegelten. Insgesamt hatten also 12 Indikatoren Nebenladungen, die 

auf .40 (standardisiert) gesetzt wurden. Diese Indikatoren folgten also keiner Einfachstruktur. 

Die Indikatoren wurden wieder in Parcels zu 2, 3, 4 oder 12 Indikatoren zusammengefasst, 

wobei unterschieden wurde zwischen Parcels mit Indikatoren, die nur auf eine latente Variable 

luden oder nur auf zwei latente Variablen luden (isoliert; S. 87), oder Parcels, die sowohl 

Indikatoren ohne Nebenladungen als auch Indikatoren mit Nebenladungen enthielten 

(aufgeteilt; S. 87). Die Stichprobengrößen waren die gleichen wie in der ersten beschriebenen 

Studie der Autorin. Die Lösungen für die Itemparcels wurden verglichen mit dem 

missspezifizierten Modell, bei dem die dritte exogene latente Variable, und somit die 

Nebenladungen der Indikatoren, nicht spezifiziert wurden. Es zeigte sich, dass der RMSEA für 

die Lösungen mit aufgeteilten Parcels kleiner war als für die Lösungen mit isolierten Parcels, 

der RMSEA zeigte also bei den aufgeteilten Parcels besseren Fit an. Die Modellpassung anhand 

des RMSEA bei den ungeparcelten Indikatoren im missspezifizierten Modell lag zwischen den 

RMSEA-Werten für die aufgeteilten und isolierten Parcels. Insgesamt lagen die Werte des 

RMSEA entweder unter oder knapp über der Cut-Off-Regel von Hu und Bentler (1998, 1999). 

Der CFI zeigte bessere Modellpassung bei den Parcels bestehend aus 12 Indikatoren im 
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Vergleich zu Parcels bestehend aus weniger Indikatoren; ebenso, wie der RMSEA, bei den 

aufgeteilten Parcels im Vergleich zu den isolierten Parcels (Bandalos, 2002). Die individuellen 

Indikatoren im missspezifizierten Modell führten zu niedrigeren CFI-Werten als die 

geparcelten Indikatoren. Insgesamt lag der CFI jedoch immer über .90 und, sofern die 

aufgeteilten Parcels verwendet wurden, über .95, also über dem Cut-Off nach Hu und Bentler.  

Die Schlussfolgerung aus Bandalos’ (2002) Studien lautete, dass die statistischen 

Dimensionen, auf die die Indikatoren luden, für das Parceling eine entscheidende Rolle spielten. 

Sofern die Indikatoren der Einfachstruktur genügten, konnte das Zusammenfassen der 

Indikatoren in höherer Modellpassung hinsichtlich der Fit-Indizes resultieren, und dies selbst 

bei nicht normalverteilten Indikatoren. Sofern jedoch Indikatoren mit Nebenladungen auftraten, 

welche nicht als solche spezifiziert wurden, maskierten aufgeteilte Itemparcels diese 

Missspezifikation sogar noch im Vergleich zu nicht-geparcelten Indikatoren. Sie führten zu 

akzeptablen Werten der Fit-Indizes, sofern die Kriterien nach Hu und Bentler (1998, 1999) zur 

Beurteilung der Modellpassung herangezogen wurden (Bandalos, 2002).  

Marsh, Lüdtke, Nagengast, Morin, und von Davier (2013) untersuchten Itemparcels 

zunächst anhand von zwei empirischen Datensätzen, welche sie anschließend mit zwei 

simulierten Datensätzen verglichen. Der erste empirische Datensatz bestand aus zehn 

beobachteten Variablen, die eine Dimension anhand einer Skala messen sollten. Die Daten 

stammten von 2,175 Schülerinnen und Schülern aus unterschiedlichen Messzeitpunkten. 

Itemparcels wurden einerseits anhand der Mittelwerte zusammengestellt, andererseits anhand 

nur positiv oder nur negativ formulierter Indikatoren (homogene Parcels; S. 263), sowie anhand 

positiv und negativ formulierter Indikatoren (aufgeteilte Parcels; S. 263). Wurde ein korrektes 

Strukturgleichungsmodell auf die empirischen Daten angewandt, welches die unterschiedlich 

formulierten Indikatoren nicht in Form von Methodenfaktoren berücksichtigte, resultierte 

daraus ein schlechter Fit, das korrekte Modell wurde an den Daten abgelehnt. Die Modelle mit 

den aufgeteilten Parcels führten zur Akzeptanz des Modells nach den Kriterien von Hu und 

Bentler (1998, 1999). Die homogenen Itemparcels führten zu schlechterem Fit, allerdings war 

der Fit anhand der konventionellen Kriterien immer noch gut (Marsh et al., 2013).  

Der zweite empirische Datensatz bestand aus 24 beobachteten Variablen, von denen je 

12 eine von zwei Dimensionen darstellten (Marsh et al., 2013). Der verwendete Datensatz mit 

3,390 Schülerinnen und Schülern stammte aus einer früheren Publikation der ersten beiden 

Autoren (Marsh et al., 2010). Auch hier führte die Anwendung eines korrekten Zwei-Faktoren-
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Modells anhand der individuellen Items auf den Datensatz zu einem schlechten Fit anhand des 

CFI und des RMSEA, ein Ein-Faktoren-Modell wurde klar verworfen (Marsh et al., 2013). Die 

Parcels aus jeweils 2, 3 oder 4 Items wurden auch in dieser Studie entweder aufgeteilt oder 

homogen gebildet und die Parcels stellten entweder eine Zwei-Faktoren-Lösung oder eine 

einfaktorielle Lösung dar. Die Modelle mit den homogenen Itemparcels, die eine Ein-Faktoren-

Lösung widerspiegelten, wurden nach den Kriterien von Hu und Bentler (1998, 1999) durch 

die Fit-Indizes abgelehnt. Die Ein-Faktoren-Modelle mit den aufgeteilten Parcels, bei denen 

Neurotizismus und Extraversion konfundiert waren, resultierten jedoch in der Akzeptanz des 

Modells anhand der Cut-Off-Kriterien für den CFI und den RMSEA (Marsh et al., 2013).  

Im Rahmen der dritten Studie wurden Daten simuliert (Populationssimulation mit je 

100,000 Fällen pro Bedingung), die das Antwortverhalten auf einer Skala von 24 Items 

widerspiegeln sollten (Marsh et al., 2013). Variiert wurde in den Populationsmodellen der Grad 

der Einfachstruktur (Einfachstruktur [alle standardisierten Nebenladungen auf zweiten Faktor 

.00], annähernd Einfachstruktur [alle standardisierten Nebenladungen auf zweiten Faktor 

zwischen .00 und .10], gute Einfachstruktur [vier standardisierte Nebenladungen auf zweiten 

Faktor zwischen .00 und .20], akzeptable Einfachstruktur [sechs standardisierte Nebenladungen 

auf zweiten Faktor zwischen .00 und .40]), als auch die Faktorkorrelation (.25 oder .60). In den 

missspezifizierten Modellen wurden die Nebenladungen nicht spezifiziert und insofern wurde 

bei diesen fälschlicherweise von Einfachstruktur ausgegangen. Alle missspezifizierten Modelle 

ohne Parcels führten zur Annahme der Modelle durch die Fit-Indizes CFI und RMSEA. Die 

Item-Parcels wurden genauso gebildet wie in Studie 2. Einfaktorielle Modelle mit aufgeteilten 

Itemparcels führten genauso wie in Studie 2 anhand des CFI und des RMSEA zu akzeptabler 

Modellpassung. Die Ein-Faktoren-Modelle mit homogenen Parcels wurden hingegen durch die 

Fit-Indizes verworfen.  

In Studie 4 wurde ein Populationsmodell mit drei korrelierten exogenen latenten 

Variablen und einer endogenen latenten Variablen untersucht, wobei nur die latente endogene 

Variable Indikatoren ohne Nebenladungen widerspiegelte (Marsh et al., 2013). Bei dieser 

Studie handelte es sich ebenfalls um eine Populationssimulation. Zudem wurde als weitere 

Populationsbedingung ein Methodenfaktor spezifiziert und die Korrelation zwischen erstem 

und zweitem exogenen Faktor sowie deren Strukturpfade auf dem endogenen Faktor in der 

Höhe variiert. Es wurden wie in den Studien 2 und 3 homogene und aufgeteilte Itemparcels 

gebildet. Auch im Rahmen dieser Studie führten insbesondere die aufgeteilten Parcels zu 
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akzeptablen Werten hinsichtlich der Modellpassung anhand der Cut-Off-Werte für den CFI und 

den RMSEA. Der Modellfit für die homogenen Parcels war nur geringfügig schlechter als der 

Modellfit für die aufgeteilten Parcels und führte bei der überwiegenden Mehrheit an 

Bedingungen zur Akzeptanz der Modelle.  

Sowohl die Studien von Bandalos (2002) als auch die Studien von Marsh et al. (2013) 

zeigten, dass der Gebrauch von Item-Parcels bei unbekannter wahrer Faktorenstruktur im 

Rahmen konfirmatorischer Faktorenanalysen oder im Rahmen von 

Strukturgleichungsmodellen nicht zu empfehlen ist. Dies hat den Grund, dass im Rahmen der 

beschriebenen Studien die Fit-Indizes eine missspezifizierte Faktorenstruktur eines implizierten 

Modells bei geparcelten Indikatoren noch weniger erkannten als bei missspezifizierten 

Modellen, deren Indikatoren nicht geparcelt wurden. Insbesondere kaschierte der Gebrauch von 

aufgeteilten Parcels, also Parcels, deren Items hinsichtlich einer Gegebenheit variierten, eine 

Verletzung der Einfachstruktur in den Daten bzw. im wahren Modell. Sofern also homogene 

und aufgeteilte Itemparcels zu unterschiedlichen Resultaten führen, sei es hinsichtlich der 

Parameterschätzungen oder auch hinsichtlich der Modellpassung anhand der Fit-Indizes, ist 

Vorsicht geboten (Marsh et al., 2013, S. 276). Dies kann darauf hinweisen, dass die 

Einfachstruktur in den empirischen beobachteten Variablen verletzt ist. In diesem Fall kann 

dann auch die Varianz der entsprechenden latenten Variablen nicht mehr als Varianz eines 

einzigen Faktors interpretiert werden (Little et al., 2002a; Raykov, 2001).  

 

2.2 Missspezifikationen in Form von Mehrdimensionalität im Messmodell  

 

Im Folgenden werden zunächst Studien beschrieben, die die Fit-Indizes hinsichtlich 

Modellabweichungen in Form von Mehrdimensionalität im Messmodell untersuchten, bevor 

die Studien beschrieben werden, die sich auf nicht-spezifizierte Mehrdimensionalität im 

Strukturmodell fokussierten und aus denen die Fragestellung für die erste Studie abgeleitet 

wurde. 

Mehrdimensionalität im Messmodell kann sich äußern durch Verletzung der 

Einfachstruktur (Indikatoren einer latenten Variablen haben Nebenladungen auf eine andere 

latente Variable; Beauducel & Wittmann, 2005). Eine Verletzung der Einfachstruktur 

bezeichnet also Mehrdimensionalität innerhalb der Indikatoren (Von Davier & Carstensen, 
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2007; Wei, 2008), die Dimensionalität im Strukturmodell bleibt erhalten (Wei, 2008).13 Eine 

weitere Form der Mehrdimensionalität im Messmodell stellen Messfehlerkorrelationen der 

Indikatoren dar. Die Studien zur Sensitivität der Fit-Indizes bei Verletzung der Einfachstruktur 

und beim Vorliegen von Messfehlerkorrelationen werden im Folgenden näher beschrieben.  

 

Beauducel und Wittmann (2005) untersuchten die Auswirkungen von 

Missspezifikationen in Form von Verletzungen der Einfachstruktur auf die gängigen Fit-

Indizes. Deren Design bestand aus vier orthogonalen oder obliquen Faktoren mit insgesamt 20 

Indikatoren, die unterschiedlich hoch, aber homogen auf die Faktoren luden und von denen vier 

Indikatoren positive oder negative Nebenladungen hatten. In den orthogonalen 

Faktorenmodellen konnte also keine Einfachstruktur durch oblique Rotation erreicht werden, 

in den obliquen Faktorenmodellen jedoch schon. Bei den missspezifizierten Modellen, die auf 

die Daten, die aus den beschriebenen Populationsmodellen erzeugt wurden, gefittet wurden, 

wurden die Nebenladungen nicht spezifiziert, was Missspezifikationen im Messmodell 

darstellte. Die Stichproben enthielten 250, 500 oder 1,000 Fälle. Die Ergebnisse waren ähnlich 

zu denen Heene et al.s (2011): Bei geringen Ladungen wurden die missspezifizierten Modelle 

durch RMSEA und SRMR zu oft akzeptiert. Einen wichtigen Befund von Beauducel und 

Wittmann stellte außerdem dar, dass die Höhe des Cut-Offs für den CFI mit der Ladungshöhe 

interagierte: Während bei einem Cut-Off von .90 bei steigender Ladungshöhe auch die 

Modellakzeptanz stieg, sank bei einem Cut-Off von .95 die Modellakzeptanz bei steigender 

Ladungshöhe. Die Beurteilung des Modellfits anhand des χ2-Werts unter Berücksichtigung der 

Freiheitsgrade sowie anhand des RMSEA und SRMR, wie von Hu und Bentler (1998, 1999) 

vorgeschlagen, kann nach Beauducel und Wittmann (2005) bei geringen Ladungen nur 

empfohlen werden, wenn die Einfachstruktur leicht verletzt ist. Bei einer gröberen Verletzung 

der Einfachstruktur sei davon auszugehen, dass diese bei geringen Ladungen durch die Fit-

Indizes nicht angezeigt wird und somit zu einer falschen Akzeptanz des missspezifizierten 

Modells führt. Dieses Resultat geht einher mit Heene et al.s (2011) Ergebnissen, nach denen 

sich die Cut-Offs für die Fit-Indizes nach Hu und Bentler (1998, 1999) über unterschiedliche 

Faktorladungen und eine Verletzung der Einfachstruktur hinweg nicht bewährten.   

                                                
13Von Mehrdimensionalität zwischen den Indikatoren spricht man hingegen, wenn jede latente Variable nur 

Indikatoren abbildet, die nicht gleichzeitig auch eine andere latente Variable abbildet. Insofern ist im Falle der 

Mehrdimensionalität zwischen den Indikatoren Einfachstruktur gegeben (Stout et al., 1996; Wei, 2008). 



 
 

 34  

Problematisch am Design von Beauducel und Wittmann (2005) war allerdings, dass mit 

ansteigender Faktorladungshöhe in den spezifizierten Populationsmodellen auch die 

Nebenladungen stiegen, welche im missspezifizierten Modell nicht spezifiziert wurden 

(Savalei, 2012). Mit höheren Ladungen stieg also auch der Grad der Missspezifikation. Nach 

den Ergebnissen von Heene et al. (2011) reagieren die absoluten Fit-Indizes aber genau konträr 

dazu. Bei hohen Ladungen im Vergleich zu niedrigen Ladungen wird eine Modellabweichung 

durch die absoluten Fit-Indizes eher als solche erkannt, durch die inkrementellen Fit-Indizes 

weniger. Bei niedrigen Ladungen bedarf es also einer schwerwiegenderen Missspezifikation, 

damit die absoluten Fit-Indizes diese indizieren (Savalei, 2012).  

Eine andere häufige Form der Mehrdimensionalität im Messmodell stellen korrelierte 

Messfehler bzw. korrelierte unique Faktorwerte dar (Heene et al., 2012). Das Konzept der 

statistischen Eindimensionalität erfordert, dass, sobald die latente Variable spezifiziert wurde, 

die Korrelationen zwischen den Items Null werden sollten, da die Ursache der Korrelationen 

zwischen den Items die latente Variable ist (Bühner, 2011). Korrelierte Messfehler entstehen 

insofern durch Kovarianzen, die durch die latente Variable nicht erklärt werden können. Sie 

repräsentieren – im Gegensatz zu unsystematischen Messfehlern – systematische Messfehler 

(Brown & Moore, 2012). Sofern korrelierte Messfehler in den Daten vorhanden sind, stellt die 

Matrix Ψ2 aus Formel (2) unter II. 1 keine Diagonalmatrix mehr dar, die Off-Diagonal-

Elemente sind dann nicht mehr signifikant verschieden von Null (Mulaik, 2009). Korrelierte 

Messfehler entstehen beispielsweise durch die gleichen Wörter innerhalb verschiedener 

Fragebogenitems, logische Abhängigkeiten zwischen den Items oder auch Mehrdimensionalität 

(Brown & Moore, 2012; Heene et al., 2012; Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). 

Korrelierte Fehler führen zu verzerrten Schätzungen der internen Konsistenz, der 

Reliabilitätsschätzung im Rahmen der Strukturgleichungsmodellierung und der 

Minderungskorrektur der Kriteriumsvalidität (Green & Hershberger, 2000; Gu, Little, & 

Kingston, 2013; Heene et al., 2012; Maxwell, 1968; Osburn, 2000; Zimmermann & Williams, 

1977a). Außerdem kann für die Beurteilung der Validität dann nicht mehr der 

Korrelationskoeffizient betrachtet werden, da die Korrelation zwischen beobachteten Variablen 

durch die korrelierten Messfehlervarianzen verzerrt ist (Zimmermann & Williams, 1977b).  

Trotz der hohen Relevanz korrelierter Messfehler wurde bisher kaum untersucht, ob 

Modellabweichungen in Form von korrelierten Fehlern von den gängigen Fit-Indizes anhand 

der Cut-Offs nach Hu und Bentler (1998, 1999) zuverlässig entdeckt werden. Heene et al. 
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(2012) konstruierten ein Design aus Populationsmodellen mit zwei korrelierten Faktoren mit je 

12 Indikatoren, von denen die Messfehlervarianzen von drei oder sechs Indikatoren des einen 

Faktors entweder nur positiv oder positiv und negativ mit drei oder sechs Messfehlervarianzen 

der Indikatoren des anderen Faktors korreliert waren. Die Höhe der standardisierten 

Faktorladungen rangierte entweder zwischen .30 und .60 oder zwischen .50 und .80, die Höhe 

der Messfehlerkorrelationen bewegte sich zwischen .30 und .50 sowie -.30 und .30. Die 

Stichprobengrößen variierten zwischen 150 und 2,500 Fällen. Die Missspezifikation bestand in 

nicht-spezifizierten Messfehlerkorrelationen. Heene et al. konnten zeigen, dass SRMR und 

RMSEA selbst schwerwiegende Missspezifikationen in Form von nicht spezifizierten sechs 

positiv korrelierten faktorübergreifenden Messfehlervarianzen anhand der von Hu und Bentler 

(1998, 1999) vorgeschlagenen Cut-Off-Werte nicht als solche indizierten, und dies selbst bei 

einem Cut-Off von < .11 für das SRMR (Heene et al. 2012). Auch diese Befunde waren ähnlich 

zu den Befunden unter III. 1 abhängig von Stichprobengröße und Faktorladungshöhe. Der CFI 

stieg bei zunehmender Stichprobengröße an, wohingegen der SRMR und der RMSEA bei 

zunehmender Stichprobengröße geringer ausfielen (dieselben Befunde zeigten sich bei Fan et 

al. [2009] sowie Marsh et al. [2004]). Im Gegensatz zu RMSEA und SRMR erkannte der CFI 

die Missspezifikationen größtenteils, insbesondere bei niedrigen Faktorladungen. Letzterer 

Befund kann dadurch erklärt werden, dass ein Modell mit niedrigen Faktorladungen näher am 

Nullmodell ist (Heene et al., 2012, S. 43).  

Savalei (2012) untersuchte den RMSEA auf seine Sensitivität hinsichtlich einer im 

fehlspezifizierten Modell nicht inkludierten Messfehlerkorrelation. Sie spezifizierte ein 

Populationsmodell mit einem Faktor, der von 8 Indikatoren widergespiegelt wurde. Die Autorin 

variierte die Ladungshöhen und die Höhe der Messfehlerkorrelation zwischen ].00, 1.00[, 

wobei bei höheren Ladungen die Messfehlerkorrelation niedriger angesetzt wurde14. Bei 

homogenen Ladungen von .90 zeigte der RMSEA selbst bei einer nicht-spezifizierten 

Messfehlerkorrelation von .06 eine Modellabweichung an. Mathematisch-analytisch wurde die 

Modellablehnung eines Modells mit hohen Faktorladungen und kleinen 

Messfehlerkorrelationen durch die Fit-Indizes bereits von Browne, MacCallum, Kim, 

Andersen, und Glaser (2002) gezeigt. Bei homogenen Ladungen von .40 jedoch konnte die 

                                                
14Die Stichprobengröße wurde nicht genannt.  
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Messfehlerkorrelation im Populationsmodell .26 erreichen, sodass der RMSEA bei .0515 lag 

(Savalei, 2012). Dieser Effekt der Ladungen auf die Werte des RMSEA verstärkte sich, 

allerdings nur geringfügig, wenn die Ladungen heterogen waren und um .10 bis .15 von der 

durchschnittlichen Ladung abwichen. Der Effekt der Höhe der Ladungen auf den RMSEA 

reduzierte sich, wenn anstatt der 8 Indikatoren 16 Indikatoren verwendet wurden.  

In einer zweiten Monte-Carlo-Studie untersuchte Savalei (2012) ein zweifaktorielles 

Populationsmodell mit zu .30 korrelierten Faktoren und 8 oder 16 Indikatoren insgesamt16. 

Weiters wurde eine Messfehlerkorrelation in das Populationsmodell einbezogen, die sich 

entweder zwischen zwei Indikatoren desselben Faktors bewegte oder faktorübergreifend 

spezifiziert wurde. Ladungshöhe und Höhe der Messfehlerkorrelation wurden wie in Savaleis 

erster Studie gewählt. Im Vergleich zum einfaktoriellen Modell aus der ersten Studie reduzierte 

sich die Sensitivität des RMSEA hinsichtlich der nicht-spezifizierten Messfehlerkorrelation im 

missspezifizierten Modell stark; dieser Befund war unabhängig von der Itemanzahl pro Faktor 

oder insgesamt. Bei homogenen Ladungen und Messfehlerkorrelationen zwischen Indikatoren 

desselben Faktors von .40 wurde die Missspezifikation bei einem Cut-Off von .05 nicht erkannt, 

selbst bei Messfehlerkorrelationen von fast 1.00 im Populationsmodell. Bei 

faktorübergreifenden Messfehlerkorrelationen jedoch zeigte der RMSEA eine deutlich höhere 

Sensitivität: Bei 8 Indikatoren insgesamt und homogenen Ladungen von .40 lag der RMSEA 

bei einer nicht-spezifizierten Messfehlerkorrelation von .20 bei .05, bei 16 Items insgesamt 

musste die Messfehlerkorrelation .40 erreichen, damit der RMSEA über .05 lag. Das Ergebnis, 

dass der RMSEA im Populationsmodell mit mehr Indikatoren und mehr Freiheitsgraden 

weniger sensitiv für nicht-spezifizierte Messfehlerkorrelationen war, steht im Kontrast zu dem 

bekannten Befund, nach dem der RMSEA die Sparsamkeit eines spezifizierten Modells belohnt 

(Beauducel & Wittmann, 2005; Breivik & Olsson, 2001; Savalei, 2012). Basierend auf den 

Ergebnissen der zweiten Studie ist allerdings einerseits zu vermuten, dass die Sensitivität des 

RMSEA primär von der tatsächlichen Faktorenstruktur im Populationsmodell, also vom 

Strukturmodell und weniger vom Messmodell, abhängt (Savalei). Andererseits konnte die 

nicht-spezifizierte Messfehlerkorrelation möglicherweise durch die Größe des Modells 

kompensiert werden (Savalei).  

                                                
15Man beachte, dass Savalei (2012) nicht die Cut-Off-Regel von Hu und Bentler (1998, 1999) von < .06 

verwendete, sondern eine ältere, die auf Browne & Cudeck (1993) zurückgeht.  
16Die Stichprobengröße der Simulationsstudie wurde nicht genannt.  
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Während kleine Verletzungen der Einfachstruktur in Form von Nebenladungen bei 

Beauducel & Wittmann (2005) insbesondere bei hohen Ladungen zur Ablehnung der Modelle 

anhand des CFI führten, akzeptierten RMSEA und SRMR die missspezifizierten Modelle 

anhand der Cut-Offs nach Hu und Bentler (1998, 1999) oft. Bei Heene et al. (2012) sowie 

Savalei (2012) zeigte sich, dass der RMSEA insbesondere bei nicht-spezifizierten 

faktorübergreifenden Messfehlerkorrelationen vor dem Hintergrund von Ladungen realistischer 

Höhe nicht sensitiv für diese Art der Modellabweichung war, sofern diese Cut-Off-Werte als 

Kriterien zur Modellevaluation herangezogen wurden. 

 

2.3 Missspezifikationen in Form von Mehrdimensionalität im Strukturmodell 

 

Während zu den Auswirkungen von nicht spezifizierter Mehrdimensionalität im 

Messmodell auf die Fit-Indizes schon einige Simulationsstudien durchgeführt wurden, hinkt 

die Forschung zu Missspezifikationen im Strukturmodell hinterher. Doch gerade die Forschung 

von Heene et al. (2012) zu RMSEA und SRMR sowie von Savalei (2012) zum RMSEA lässt 

die Schlussfolgerung zu, dass die statistische Dimensionalität der Faktorenstruktur im 

Populationsmodell für die Sensitivität dieser Fit-Indizes eine entscheidende Rolle spielt. Es 

kann zudem argumentiert werden, dass Missspezifikationen im Strukturmodell 

schwerwiegender sind als im Messmodell (Mahler, 2011).  

Kenny und McCoach (2009) untersuchten die Auswirkungen einer Missspezifikation in 

Form von Mehrdimensionalität im Strukturmodell auf die Fit-Indizes sowohl anhand einer 

Simulationsstudie, als auch berechneten sie die Werte der Fit-Indizes analytisch. Das 

Hauptaugenmerk der Studie lag allerdings darin, die Auswirkungen unterschiedlicher 

Indikatorenanzahlen auf die Fit-Indizes auszutesten. Die Autoren kreierten ein 

Populationsmodell mit zwei zu .80 korrelierten latenten Variablen und wandten ein 

einfaktorielles Modell auf die aus dem Populationsmodell erzeugten Stichproben an. Variiert 

wurde im Populationsmodell die Anzahl der Indikatoren: Jeweils 3, 6 oder 10 Indikatoren 

spiegelten je eine der beiden latenten Variablen wider, wobei die Faktorladungen bei .70 

(standardisiert) lagen. Die Stichprobengröße betrug in allen erzeugten Stichproben N = 200. 

Die Ergebnisse der Simulationsstudie zeigten, dass der CFI mit steigender Anzahl an 

Indikatoren sank, also schlechtere Modellpassung anzeigte, wohingegen der RMSEA auch 
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sank, also besseren Modellfit anzeigte. Genauso verhielt es sich auch bei den analytisch 

berechneten Werten für die Fit-Indizes.  

Mahler (2011) untersuchte den Effekt von nicht-spezifizierter statistischer 

Mehrdimensionalität hinsichtlich der Faktorenstruktur auf die Fit-Indizes. Dazu spezifizierte 

sie Populationsmodelle mit zwei oder drei latenten Variablen, die zwischen Null (orthogonales 

Modell) und Eins (obliques Modell bei einer Faktorkorrelation > 0) korrelierten. Die Anzahl 

der Indikatoren lag bei 12 und die Faktorladungen lagen entweder alle bei .40, .50., .60, .70, 

.80 oder .9017. Sie wandte ein einfaktorielles Modell auf die aus den Zwei- oder Drei-

Faktorenmodellen erzeugten Stichprobendaten an. Sowohl CFI, als auch RMSEA und SRMR 

zeigten eine höhere Modellpassung, wenn die Faktorkorrelation stieg und das 

Populationsmodell insofern näher am eindimensionalen Modell lag. Der CFI zeigte besseren 

Modellfit, wenn ein einfaktorielles Modell auf zweifaktorielle (im Vergleich zu 

dreifaktoriellen) Stichprobendaten angewandt wurden, der SRMR zeigte bessere 

Modellpassung bei Anwendung eines einfaktoriellen Modells auf eine Drei-Faktoren-Struktur 

(im Vergleich zu einer zweifaktoriellen) in den Daten. Der RMSEA zeigte keinen Unterschied 

hinsichtlich der Modellpassung, wenn ein eindimensionales Modell auf zwei- oder 

dreidimensionale Stichprobendaten angewandt wurde. Die Ergebnisse zeigten außerdem 

wiederum, dass die Ladungshöhe einen entscheidenden Einfluss auf die Indizierung der 

Missspezifikation durch die Fit-Indizes anhand der Cut-Offs nach Hu und Bentler (1998, 1999) 

hatte. Bei einer Ladungshöhe von .40 lag der SRMR, egal, wie hoch die Faktorkorrelation war, 

nicht über dem Cut-Off von Hu und Bentler (1998, 1999) von .08 (Mahler, 2011). Bei derselben 

Ladungshöhe zeigte der CFI bis zu einer Faktorkorrelation von .60 eine Modellabweichung 

nach Hu und Bentlers Daumenregeln an, darüber, unabhängig von der Anzahl der Faktoren im 

Populationsmodell, nicht mehr. Der RMSEA zeigte bei einer Ladungshöhe von .40 erst Misfit 

im Sinne von Hu und Bentlers Daumenregeln an, wenn die Faktorkorrelation kleiner als .30 

war.  

Mahlers (2011) Ergebnisse zeigten, dass die Fit-Indizes, vor allem die absoluten Fit-

Indizes, bei geringen Faktorladungen, die dennoch überdurchschnittlich hoch ausfielen, große 

Schwierigkeiten bei der Entdeckung der Missspezifikation im Strukturmodell in Form von 

nicht-spezifizierten Faktoren hatten, sofern man die Cut-Offs nach Hu und Bentler (1998, 1999) 

                                                
17Die Stichprobengröße für die Simulationsstudie wurde nicht genannt.  
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heranzog. Dabei interagierte außerdem die Ladungshöhe mit der Faktorkorrelation im 

Populationsmodell (Mahler, 2011).  

Savalei (2012) führte zwei weitere Studien durch, die die Auswirkungen von 

Missspezifikationen im Strukturmodell in Form von nicht spezifizierter Mehrdimensionalität 

auf den RMSEA untersuchen sollten. Im Vergleich zur Studie von Mahler (2011) schränkte sie 

einerseits die Anzahl der betrachteten Fit-Indizes auf den RMSEA ein, erweiterte aber 

andererseits das Design von Mahler. Die Autorin spezifizierte Populationsmodelle mit obliquen 

Faktoren, deren Korrelation aus dem Bereich [.00, 1.00]18 kam und die von insgesamt 8 

Indikatoren repräsentiert wurden19. Die homogenen Ladungen in den Populationsmodellen 

variierten zwischen .40, .50, .60., .70 oder .80. Sie wandte dann einerseits ein orthogonales 

Modell auf die Daten an (bei der Faktorkorrelation von .00 ein korrektes Modell), die aus den 

Populationsmodellen gezogen wurden, andererseits ein eindimensionales Modell (bei der 

Faktorkorrelation von 1.00 ein korrektes Modell). Wurde ein orthogonales Modell auf die 

eigentlich oblique Faktorenstruktur in den Daten angewandt, stieg der RMSEA mit steigender 

Faktorkorrelation im wahren Modell, zeigte also zunehmend Modellmisfit an. Sofern ein 

eindimensionales Modell auf die erzeugten Stichprobendaten gefittet wurde, stieg der RMSEA 

mit sinkender Faktorkorrelation im Populationsmodell. Waren die Faktorladungen im 

Populationsmodell gering (.40), lag der RMSEA bei einer Faktorkorrelation von .50 im 

Populationsmodell gerade noch unter dem Cut-Off nach Hu und Bentler (1998, 1999), zeigte 

also Modellpassung an, unabhängig davon, ob ein orthogonales Modell oder ein 

eindimensionales Modell angewandt wurde (Savalei, 2012). Bei höheren Faktorladungen 

wurden die missspezifizierten Modelle bereits bei niedrigerer (Anwendung eines annähernd 

orthogonalen Modells) bzw. bei höherer Faktorkorrelation (Anwendung eines annähernd 

eindimensionalen Modells) durch den RMSEA-Cut-Off abgelehnt. Bei in der Psychologie 

realistischen Faktorladungen, die sogar noch unter den von Savalei festgelegten Ladungen 

liegen (vgl. Peterson, 2000), wäre nach Savaleis Ergebnissen eine schwere Missspezifikation 

im Strukturmodell notwendig, damit der RMSEA eine Modellabweichung anzeigen würde. 

Über alle Faktorladungshöhen hinweg betrachtet bestrafte der RMSEA ein missspezifiziertes 

eindimensionales Modell eher mit einem schlechten Modellfit als ein missspezifiziertes 

orthogonales Modell: Einen Faktor nicht zu spezifizieren, stellte also in der Metrik des RMSEA 

                                                
18Das Populationsmodell mit der Faktorkorrelation von .00 spiegelte insofern ein orthogonales Modell wider.  
19Die Stichprobengröße ist hier ebenfalls nicht bekannt.  
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eine schwerwiegendere Missspezifikation dar, als zwei Faktoren fälschlicherweise als 

unabhängig zu betrachten (Savalei).  

In einem zweiten Schritt untersuchte Savalei (2012), ob die Anzahl der latenten 

Dimensionen im Populationsmodell eine Auswirkung auf den RMSEA hätten, wenn ein 

eindimensionales Modell auf die aus dem Populationsmodell erzeugten Stichproben-

Kovarianzmatrizen angewandt würden. Sie spezifizierte Populationsmodelle mit zwei bis acht 

latenten Variablen, die sie entweder zu .30 oder zu .50 korrelieren ließ. Die Höhe der 

Faktorladungen setzte sie in gleicher Höhe wie in den vorherigen Studien fest. Die Anzahl der 

Indikatoren lag unabhängig von der Anzahl der Faktoren immer bei 2420. Die Befunde sind 

alarmierend: Wenn die Anzahl der Faktoren im Populationsmodell stieg, sanken die Werte des 

RMSEA, wenn das eindimensionale Modell angewandt wurde (Savalei). Bei niedrigen 

Ladungen von .40 lag der RMSEA immer unter dem Cut-Off-Wert nach Hu und Bentler (1998, 

1999). Bei Faktorladungen von .50 lag er über .06, wenn die Faktorkorrelation im 

Populationsmodell bei .50 lag; wenn die Faktorkorrelation bei .30 lag, resultierte der RMSEA 

bei Ladungen von .50 in Werten um .06, wenn zwei bis vier Faktoren im Populationsmodell 

vorlagen (Savalei, 2012).   

Die Studien von Savalei (2012) zeigten im Einklang mit den Ergebnissen von Mahler 

(2011), dass der RMSEA bei niedrigen Faktorladungen, die dennoch für die angewandte 

Psychologie relativ hoch sind (vgl. Peterson, 2000), bei Anwendung eines eindimensionalen 

Modells kaum Modellabweichung anhand der Cut-Off-Werte anzeigte, und dies unabhängig 

davon, ob die tatsächliche Faktorenstruktur zwei oder sogar acht Dimensionen beinhaltete 

(Savalei, 2012).  

 

  

                                                
20Die Stichprobengröße der Simulationsstudie wurde nicht genannt.  
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3 Erste Fragestellung: Auswirkungen nicht-spezifizierter 

Mehrdimensionalität im Strukturmodell auf die Fit-Indizes 

 
Die beschriebenen Studien lassen den Schluss zu, dass insbesondere die Faktorladungen, 

also inzidentelle Parameter eines Modells, großen Einfluss auf die Sensitivität der Fit-Indizes 

hinsichtlich der Indizierung von Missspezifikationen haben. Dieser Einfluss der 

Faktorladungen führt von einer Modellablehnung bei sehr geringen Modellabweichungen bei 

hohen Ladungen bis hin zu einer Verschleierung nicht vorhandener Modellpassung bei 

geringen Ladungen (siehe III. 1 und 2). Der Schluss, dass die Faktorladungen einen großen 

Einfluss auf die Fit-Indizes haben, kann sowohl für Missspezifikationen im Messmodell als 

auch für Missspezifikationen im Strukturmodell gezogen werden (Heene et al., 2011; Savalei, 

2012).  

Savalei (2012), Mahler (2011) und insbesondere Kenny und McCoach (2009) 

untersuchten Missspezifikationen in Form von Mehrdimensionalität im Strukturmodell bei 

unrealistisch hohen Faktorladungen. Wie bereits unter III. 1, basierend auf Petersons (2000) 

Metaanalyse, erwähnt, fallen Faktorladungen in der angewandten Psychologie und verwandten 

Disziplinen deutlich geringer aus. Das Forschungsdesign von Kenny und McCoach war des 

Weiteren vor allem auf die Austestung des Einflusses der Indikatorenanzahl angelegt und die 

Autoren verwendeten nur homogene Faktorladungen. Auch letzteres ist in der angewandten 

Forschung so gut wie nie der Fall (Buzick, 2010). Bei Savalei kommt neben den ebenso als 

homogen festgelegten Faktorladungen hinzu, dass sie nur den Einfluss von Missspezifikationen 

in Form von Mehrdimensionalität auf den RMSEA überprüfte. Mahler untersuchte zwar auch 

CFI und RMSEA, allerdings auch nur bei homogenen und relativ hohen Faktorladungen.  

Im Rahmen der ersten Studie wurde ein Forschungsdesign konzipiert, welches die oben 

genannten Forschungslücken im Fokus hatte: Es wurde die Sensitivität der gängigen Fit-Indizes 

CFI, RMSEA und SRMR hinsichtlich nicht-spezifizierter Mehrdimensionalität in Form von 

zwei obliquen Faktoren im Populationsmodell (eindimensionales missspezifiziertes Modell) 

untersucht. Die Faktorladungen wurden sowohl heterogen, als auch für die angewandte 

Psychologie realistisch hoch definiert. Der Grad der Missspezifikation wurde einerseits durch 

die Höhe der Faktorkorrelation im Populationsmodell, andererseits durch das 

Modell(un)gleichgewicht hinsichtlich der Anzahl der Indikatoren pro Faktor variiert; ein 

niedrigerer Grad an Missspezifikation bestand in einer höheren Faktorkorrelation im 
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Populationsmodell (im Vergleich zu einer niedrigeren Faktorkorrelation) und in einer 

ungleichen Indikatorenaufteilung im Populationsmodell (im Vergleich zu einer 

ausgewogenen). Die Auswirkungen einer ungleichen Indikatorenaufteilung auf zwei Faktoren 

auf die Fit-Indizes wurden bisher nur im Kontext von Missspezifikationen im Messmodell von 

Mahler (2011) untersucht. Dies allerdings nur in Form eines inzidentellen Parameters, bei 

Mahler wurde die Missspezifikation nicht durch die Indikatorenaufteilung bestimmt. Unter IV 

wird die Studie genauer beschrieben.  

 

Nachdem der Forschungsbedarf hinsichtlich der Sensitivität der gängigen Fit-Indizes 

gegenüber Missspezifikationen in Form von Mehrdimensionalität im Strukturmodell aufgezeigt 

wurde, stellt sich im folgenden Kapitel III. 4 als nächstes die Frage, inwiefern sich 

Missspezifikationen dieser Form substanziell und auf die Individuen auswirken würden. Die 

Beurteilung der Güte der Modellpassung anhand der Fit-Indizes kann als eine Frage der 

Reliabilität betrachtet werden, letztere Fragestellung bezieht sich auf die Validität der 

Faktorwerte (für den Begriff vgl. Grice [2001a, 2001b]) und darauf aufbauend auf die Validität 

der Diagnosen aus den Faktorwerten im Rahmen der zweiten Studie. Wünschenswert wäre, 

dass die Fit-Indizes eine Modellabweichung anzeigen, bevor die Missspezifikation hinsichtlich 

der Validität der Faktorwerte der Individuen kritisch wird.   
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4 Diagnostische Entscheidungen 
 

Wie bereits beschrieben, werden mehr und mehr psychologische Tests und Fragebögen 

anhand von konfirmatorischen Faktorenanalysen und linearen Strukturgleichungsmodellen 

konstruktvalidiert (“Datenbanksegment PSYNDEX Tests,” 2013). Ein Grund dafür liegt 

sicherlich in der Möglichkeit der Modellierung der latenten Variablen (Fan et al., 2009; 

Tomarken & Waller, 2005) aufgrund der Kontrolle der Messfehlerkovarianz der manifesten 

Variablen (Bollen, 1989; Oberski & Satorra, 2013). Die Möglichkeit, latente Variablen zu 

modellieren, hat insbesondere für die Psychometrie große Vorteile (Fan et al., 2009; Tomarken 

& Waller, 2005), da die Test- und Fragebogenkonstruktion auf eine valide Erfassung der 

Ausprägungen der Individuen auf den latenten Variablen mittels der Faktorwerte abzielt. 

Bei der Anwendung von Testverfahren im Rahmen psychologischer 

Einzelfalldiagnostik werden sehr oft diagnostische Entscheidungen hinsichtlich quantitativer 

Klassifikationen21 getroffen. Dieser werden entweder auf Basis der Faktorwerte22 oder, deutlich 

häufiger, auf Basis von Summenwerten23 (siehe III. 5.2) getroffen. Derartige diagnostische 

Entscheidungen betreffen beispielsweise klinische Diagnosestellungen („krank“ versus 

„gesund“) oder auch die Personalauswahl („geeignet“ versus „ungeeignet“). Diese 

diagnostischen Entscheidungen werden entweder normorientiert oder kriterienorientiert 

getroffen (Amelang & Schmidt-Atzert, 2006, S. 16). Eine normorientierte Diagnostik bestimmt 

(inter-)individuelle Unterschiede hinsichtlich eines Merkmals, wohingegen eine 

kriterienorientierte Diagnostik die individuelle Position in Relation zu einem 

Merkmalskriterium angibt (S. 16). Eine normorientierte Diagnostik stellt beispielsweise eine 

Top-Down-Klassifikation dar, nach der ein festgelegter Prozentsatz an Personen ausgewählt 

wird, die die höchsten Werte auf einer Skala/in einem Testverfahren erreichen24, oder auch eine 

Bottom-Up-Klassifikation, nach der ein festgelegter Prozentsatz an Personen ausgewählt wird, 

die die niedrigsten Werte auf einer Skala/in einem Testverfahren erreichen (Gatewood, Feild, 

                                                
21Es sei darauf hingewiesen, dass weder an dieser Stelle, noch an folgenden Textstellen eine qualitative Wertung 

mit dem Begriff „Klassifikation“ einhergeht.  
22So kann zum Beispiel beim I-S-T 2000 R (Liepmann, Beauducel, Brocke, & Amthauer, 2007) ein Faktorwert 

für die Individuen berechnet werden, wobei keine weiteren quantitativen Klassifikationen getroffen werden.   
23beispielsweise beim BDI-II (Beck et al., 2006)  
24Beim I-S-T 2000 R (Liepmann et al., 2007) wird beispielsweise der Prozentrang des individuellen IQ-Wertes in 

Relation zur Normstichprobe bestimmt.  
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& Barrick, 2016, S. 662). Eine kriterienorientierte diagnostische Entscheidung kann 

beispielsweise auf einem Cut-Off-Wert basieren, also einer Mindestanforderung, die die 

Personen überschreiten müssen, um ausgewählt zu werden25 (Gatewood et al., S. 663).  

 

Sofern die Diagnostik auf Basis der Faktorwerte (im Gegensatz zu den Summenwerten; 

siehe III. 5.2) erfolgt, resultiert die Frage nach der Validität einer diagnostischen Entscheidung 

aus der Validität der Faktorwerte aus einem Modell, das dem Testverfahren zugrunde liegt. Im 

Gegensatz dazu bezieht sich die Frage nach der Modellpassung, auf die sich Studie 1 

fokussierte, auf die Reliabilität eines Modells. Die Frage nach den psychometrischen 

Auswirkungen einer Modellabweichung auf die Validität der Faktorwerte bzw. die Validität 

diagnostischer Entscheidungen aus den Faktorwerten heraus wurde erstmals im Rahmen der 

zweiten Studie dieser Dissertation gestellt. Bevor jedoch die zweite Fragestellung näher 

beschrieben wird (siehe III. 5.1), wird die bisherige Forschung zur Güte diagnostischer 

Entscheidungen beschrieben. Diese zeigt, dass die diagnostische Präzision nicht nur vom 

theoretischen Modell und dessen (in-)korrekter Spezifikation (Konstruktvalidität) abhängt, auf 

dessen Basis die diagnostische Entscheidung erfolgt (Emons, Sijtsma, & Meijer, 2007; Kruyen, 

Emons, & Sijtsma, 2012; Schönemann, 1997; Schönemann & Thompson, 1996; Taylor & 

Russell, 1939). Weitere Einflussfaktoren stellen neben der Validität eines Testverfahrens auch 

die Basisrate (Anteil an Personen in der Population, die zu einem bestimmten Zeitpunkt ein 

bestimmtes Merkmal aufweisen; Eid, Gollwitzer, & Schmitt, 2013, S. 163), die Selektionsrate 

(Anteil der ausgewählten Individuen; S. 163) sowie Reliabilität und Trennschärfe des 

Testverfahrens dar (Emons et al., 2007; Kruyen et al., 2012; Meehl & Rosen, 1955; 

Schönemann, 1997; Schönemann & Thompson, 1996; Taylor & Russell, 1939).  

Taylor und Russell (1939) zeigten für den Fall von bivariat normalverteilten Variablen, 

dass sich die Güte der Vorhersage einer Variable bei steigender Validität eines Testverfahrens 

(operationalisiert durch den Pearson-Korrelationskoeffizienten) exponentiell verbesserte. Die 

Autoren entwickelten Tabellen für binäre Entscheidungen, an denen abzulesen ist, inwiefern 

die Rate an erfolgreich ausgewählten Kandidatinnen und Kandidaten bei vorgegebener 

Basisrate mit der Validität und der Selektionsrate variiert. Außerdem machen diese Tabellen 

                                                
25Beim BDI-II (Beck et al., 2006) wird beispielsweise ab einem Cut-Off von 29 basierend auf den 

Gesamtsummenwerten eine major depressive Episode diagnostiziert.   
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deutlich, dass die Rate an korrekt als „geeignet“ Eingeordneten bei gleich großen Basis- und 

Selektionsraten sowie einer Validität von Null der Basis- bzw. Selektionsrate, also einer 

Zufallsentscheidung, entspricht; bei nicht gleich großen Basis- wie Selektionsraten der 

Selektionsrate.  

Meehl und Rosen (1955), Schönemann und Thompson (1996) sowie Schönemann 

(1997) argumentierten genauso wie Taylor und Russell (1939), dass die Güte einer 

diagnostischen Entscheidung stark von der Basisrate, der Validität des Tests und der 

Selektionsrate  abhängt. Schönemann und Thompson (1996) betonten für den spezifischen Fall 

von dichotomen Variablen und sowohl unter Kontrolle des Alpha- als auch des Beta-Fehlers, 

was bereits von Meehl und Rosen geschrieben wurde: Testverfahren würden unabhängig von 

deren Validität nur für Basisratensplits von 50%/50% bei dichotomen Entscheidungen 

hinsichtlich der Hit Rate26 deutlich häufiger korrekt als der Zufall klassifizieren (S. 14). Für 

Tests mit geringen Validitäten würden die Basisraten entscheidender für die Korrektheit der 

diagnostischen Entscheidung. Für Basisraten von 30% (versus 70% in der Gruppe der Nicht-

Merkmalsträgerinnen und Nicht-Merkmalsträger) und einer geringen, aber laut den Autoren 

realistischen Validität von kleiner als .50 würde sich ein Test zur Klassifikation nicht besser als 

der Zufall eignen (S. 14). Schönemann (1997) sowie Meehl und Rosen (1955) warnten zudem, 

dass für Populationen mit extrem kleinen Basisraten, wie sie in der klinischen Psychologie 

vorkommen, oder extrem großen Basisraten das Einsetzen eines Testverfahrens hinsichtlich der 

korrekten diagnostischen Einordnung sogar schlechter ausfallen könne als der Zufall, wenn die 

Validität des Testverfahrens gering ist.  

Meehl und Rosen kritisierten bereits 1955, dass die Basisraten nicht ausreichend 

berichtet würden und es insofern schwierig wäre, psychometrische Entscheidungen überhaupt 

zu evaluieren, nach Schönemann (1997) hätte sich in der Zwischenzeit daran nichts geändert. 

Im Folgenden werden zwei Simulationsstudien berichtet, die die Güte diagnostischer 

Entscheidungen auf der Basis probabilistischer Modelle27 u.a. mit verschiedenen Basisraten 

                                                
26Dieser von Schönemann und Thompson (1996, S. 8) sowie Schönemann (1997, S. 175) als „Hit Rate“ 

bezeichnete Kennwert ist mittlerweile unter dem Begriff der „Sensitivität“ bekannt und bezeichnet die Rate der 

korrekt als Merkmalsträgerinnen und Merkmalsträger erkannten Fälle an den Fällen aller Merkmalsträgerinnen 

und Merkmalsträger (Amelang & Schmidt-Atzert, 2006, S. 422; Eid, Gollwitzer, & Schmitt, 2013, S. 163; Ziegler 

& Bühner, 2012, S. 146). 
27Im Gegensatz zur Strukturgleichungsmodellierung, die auf der Klassischen Testtheorie basiert 
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untersuchten, welche auch im Rahmen der zweiten Studie variiert wurden. Allerdings lag der 

Hauptfokus dieser Studien – im Gegensatz zur vorliegenden Arbeit, bei der die Auswirkungen 

von Missspezifikationen untersucht wurden – auf der Austestung von Kurzskalen hinsichtlich 

diagnostischer Entscheidungen unter der Voraussetzung der Modellgültigkeit.  

Emons et al. (2007) untersuchten die Konsistenz von disjunkten diagnostischen 

Entscheidungen („braucht Behandlung“ versus „braucht keine Behandlung“) im Rahmen einer 

Simulationsstudie. Die Skalen, anhand derer die diagnostischen Entscheidungen getroffen 

wurden, waren entweder Kurz- oder Lang-Skalen und bestanden entweder aus dichotomen oder 

polytomen Items. Als Analysemethoden wurden Rasch-Modelle ausgewählt. Extreme Cut-Off-

Werte, d.h. kleine Basisraten für die definierte Behandlungsgruppe, führten zu höheren Raten 

an diagnostischen Konsistenzen für die Gruppe, die keine Behandlung brauchte (Korrekt 

Negative) und zu kleineren Raten an diagnostischen Konsistenzen für die Gruppe, die 

Behandlung brauchte (Korrekt Positive). Insbesondere bei Basisraten von 10% und 5%, wie sie 

auch in der klinischen Psychologie vorkommen, in Interaktion mit geringen Trennschärfen und 

einer für die Psychologie typischen Itemanzahl von 20 dichotomen Items, wurden nur 47% 

(Basisrate 10%) bzw. 42% (Basisrate 5%) der Fälle, die in Wahrheit in der Behandlungsgruppe 

waren, mit einer 90%igen Sicherheit korrekt in diese Behandlungsgruppe eingeordnet; dagegen 

wurden 90% (Basisrate 10%) bzw. 94% (Basisrate 5%) der Individuen, die in Wahrheit in der 

Gruppe ohne Behandlungsbedarf waren, bei einem Sicherheitslevel von 90% korrekt 

klassifiziert (S. 113). Für im Rahmen der Simulation definierte hohe Trennschärfen der Items 

oder auch polytome Items verbesserte sich die Klassifikation für die Behandlungsgruppe, für 

die nicht behandlungsbedürftige Gruppe nur unwesentlich. Für die Kurzskalen fielen die 

diagnostischen Konsistenzen deutlich niedriger aus.  

In einer weiteren Simulationsstudie untersuchten Kruyen et al. (2012) die Güte 

verschiedener Arten von dichotomen diagnostischen Entscheidungen (Top-Down-

Klassifikationen wie auch Cut-Score-basierte Klassifikationen). Sie verwendeten 

unterschiedliche Basis- und Selektionsraten, dichotome und polytome manifeste Variablen 

sowie unterschiedliche Testlängen. Als Datenanalysemethoden wurden wiederum 

Raschmodelle und Graded-Response-Modelle verwendet. Top-Down-Klassifikationen nach 

den höchsten Werten auf jeder der fünf gleich langen Einzelskalen, welche zu .20 korrelierten, 

führten bei einer typischen Testlänge von 20 Items bei einer Basisrate von 50% und der 
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kleinsten Selektionsrate von 10% zu einer Sensitivität28 von .65 und einer Spezifität von .96 

(Kruyen et al., 2012, S. 332). Die Ergebnisse fielen wie bei Emons et al. (2007) klar zugunsten 

der Langskalen mit höheren Reliabilitäten aus, wobei die Testlänge mit der Basisrate und der 

Selektionsrate interagierte. Die Befunde für die Cut-Score-basierten 

Klassifikationsentscheidungen fielen sehr ähnlich im Vergleich zu den Top-Down-

Zuordnungen aus. Die diagnostischen Entscheidungen fielen basierend auf polytomen Items 

ähnlich aus wie auf Basis von dichotomen Items. Auch dieser Befund zeigte sich bereits bei 

Emons et al. (2007).  

Die Autoren schlussfolgerten aus ihren Simulationsstudien, dass – bei realistischen 

Trennschärfen und guten Reliabilitäten – Langskalen erforderlich wären, um ausreichend hohe 

Trefferquoten zu erreichen, und dies insbesondere für die Gruppe der Merkmalsträgerinnen und 

Merkmalsträger im Vergleich zur Gruppe der Nicht-Merkmalsträgerinnen und Nicht-

Merkmalsträger (Emons et al., 2007; Kruyen et al., 2012) Diese Befunde stellen die neueren 

Entwicklungen in der Testkonstruktion in Richtung der Kurzskalen (z.B. das BDI-FS; Beck, 

Steer, & Brown, 2013) stark in Frage. 

Die Ergebnisse von Emons et al. (2007) sowie Kruyen et al. (2012) können u.a. aufgrund 

anderer Verteilungseigenschaften der untersuchten Variablen und aufgrund eines sehr 

unterschiedlichen Designs nicht mit den Taylor-Russell-Tafeln (Taylor & Russell, 1939) 

verglichen werden. Ein Vergleich mit den Berechnungen von Schönemann und Thompson 

(1996) ist nicht möglich, da diese Autoren einerseits nur Berechnungen für Validitäten bzw. 

Korrelationskoeffizienten bis .50 anstellten und sich auch zwischen diesen beiden Studien das 

Design stark unterschied. Jedoch zeigen die Befunde aus den beiden genannten 

Simulationsstudien, was bereits von Schönemann und Thompson (1996) sowie Taylor und 

Russell (1939) berechnet wurde: Die Basis- und Selektionsraten haben einen entscheidenden 

Einfluss auf die Güte von diagnostischen Entscheidungen (Emons et al., 2007; Kruyen et al., 

                                                
28Die Begriffe Sensitivität und Spezifität wurden erstmals im Rahmen der Signalentdeckungstheorie beschrieben 

(Green & Swets, 1966) und später in die psychologische Diagnostik übertragen. Die Sensitivität bezeichnet die 

Rate an korrekt klassifizierten Merkmalsträgerinnen und Merkmalsträger relativiert an allen Merkmalsträgerinnen 

und Merkmalsträgern und die Spezifität bezeichnet die Rate an korrekt klassifizierten Nicht-Merkmalsträgerinnen 

und Nicht-Merkmalsträger relativiert an allen Nicht-Merkmalsträgerinnen und Nicht-Merkmalsträgern (siehe z.B. 

Amelang & Schmidt-Atzert, 2006, S. 422; Eid, Gollwitzer, & Schmitt, 2013, S. 163; Ziegler & Bühner, 2012, S. 

146). 



 
 

 48  

2012). Außerdem zeigte sich, dass neben der Validität, wie von den genannten Autoren sowie 

von Meehl und Rosen (1955) als auch Schönemann (1981) beschrieben, auch die 

unterschiedlichen Reliabilitäten der Skalen sowie die Höhe der Trennschärfe einen wichtigen 

Faktor hinsichtlich der Sensitivität darstellte (Emons et al., 2007; Kruyen et al., 2012).  
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5 Zweite Fragestellung: Auswirkungen nicht-spezifizierter 

Mehrdimensionalität im Strukturmodell auf diagnostische 

Entscheidungen 
 

5.1 Diagnostische Entscheidungen basierend auf missspezifizierten Modellen 

 

Es wurde bereits berichtet, dass die Validierung von Testverfahren durch 

konfirmatorische Faktorenanalysen und lineare Strukturgleichungsmodelle zunimmt 

(“Datenbanksegment PSYNDEX Tests,” 2013). Diese bringt psychometrische Vorteile mit sich 

(Fan et al., 2009; Tomarken & Waller, 2005), welche sich wiederum positiv auf die Güte 

diagnostischer Entscheidungen auswirken können. Dass bisher nur wenig Forschung zur Güte 

diagnostischer Entscheidungen existiert, wurde unter III. 4 aufgezeigt. Diese Studien 

untersuchten unter anderem den Einfluss der Validität eines diagnostischen Instruments auf die 

Güte diagnostischer Entscheidungen (Schönemann & Thompson, 1996; Schönemann, 1997; 

Taylor & Russell, 1939). Unter III. 1 wurde beschrieben, dass Missspezifikationen mehr die 

Regel als die Ausnahme bei der Strukturgleichungsmodellierung darstellen (Marsh et al., 2004). 

Die im Rahmen der Dissertation untersuchte Art der Missspezifikation (nicht-spezifizierte 

Zweidimensionalität im Strukturmodell) stellt eine Missspezifikation in Form einer Verletzung 

der Konstruktvalidität dar und ist somit von inzidentellen Parametern des Modells abzugrenzen, 

die Einfluss auch auf die Güte diagnostischer Entscheidungen basierend aus einem Modell 

heraus nehmen. Daher stellt sich als nächstes die Frage, was es in substanzieller Hinsicht für 

die getesteten Individuen bedeuten würde, wenn ein Modell in Form der beschriebenen 

Verletzung der Konstruktvalidität missspezifiziert ist. Diese Fragestellung betrifft im Kontext 

der Strukturgleichungsmodellierung die Validität der Faktorwerteschätzung bzw. darauf 

aufbauend die Validität der diagnostischen Entscheidungen basierend auf den Faktorwerten und 

ist insbesondere für die Testkonstruktion und die Einzelfalldiagnostik von Interesse. Im 

Rahmen der zweiten Studie wurde daher untersucht, inwieweit die Güte der Diagnostik 

beeinträchtigt werden würde, wenn Diagnosen auf Basis der Faktorwerte fälschlich als 

einfaktoriell spezifizierter Modelle vergeben wurden, die Faktorenstruktur der True Scores (der 

wahren Faktorwerte der Individuen; Eid et al., 2013, S. 818) jedoch zweifaktoriell ist. Aus 

Referenzgründen wurde außerdem untersucht, inwieweit die Diagnosen auf Basis der 

Faktorwerte korrekter zweifaktorieller Modelle den wahren Diagnosen basierend auf den True 
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Scores entsprechen würden. Der Grad der Missspezifikation wurde durch die Höhe der 

Faktorkorrelation sowie die (Un-)Ausgewogenheit der Indikatorenaufteilung auf die Faktoren 

im Populationsmodell variiert. Neben des Einflusses der Validität wurde die Relevanz von 

Parametern wie der Basisrate und der Reliabilität eines Testverfahrens/Fragebogens 

hinsichtlich der Güte diagnostischer Entscheidungen unter III. 4 aufgezeigt. Daher wurden die 

Diagnosen im Rahmen der zweiten Studie basierend auf unterschiedlichen Basisraten vergeben 

sowie zudem als inzidenteller Modellparameter die Reliabilität (Höhe der Faktorladungen) in 

einem realistischen Ausmaß (vgl. Peterson, 2000) variiert. Da die klinische Psychologie einen 

großen Teil angewandter Forschung innerhalb der Psychologie ausmacht und tagtäglich in 

Deutschland im Rahmen der Einzelfalldiagnostik allen voran klinische Tests und Fragebögen 

im Einsatz sind (“Datenbanksegment PSYNDEX Tests,” 2013), wurden für die 

Diagnosenvergabe Basisraten in klinischen Größenordnungen herangezogen. Die Relevanz 

klinischer Diagnostik wird ferner an Wittchen et al.s (2011, S. 656) EU-Studie deutlich, nach 

der pro Jahr etwa 38% aller EU-Bürger an mindestens einer psychischen Störung leiden. Zudem 

wurden aus Vergleichsgründen auch größere Basisraten, wie sie in der Eignungsdiagnostik 

vorkommen (vgl. Schuler, 2014), für die Vergabe der Diagnosen verwendet.  

 

Für die Evaluation der Güte psychologischer Diagnostik wurden Sensitivität, Spezifität, 

Positiver und Negativer Prädiktionswert berechnet (Amelang & Schmidt-Atzert, 2006, S. 422; 

Eid, Gollwitzer, & Schmitt, 2013, S. 163; Ziegler & Bühner, 2012, S. 146), wie sie in Tabelle 

2 erklärt werden. Diese diagnostischen Kennwerte werden zumeist zur Beurteilung der 

diagnostischen Präzision verwendet, so auch im Rahmen der Studie 2 (siehe V). Sensitivität 

und Spezifität sowie Positiver und Negativer Prädiktionswert verhalten sich komplementär: 

Steigt die Sensitivität oder steigt der Positive Prädiktionswert, sinkt die Spezifität und sinkt der 

Negative Prädiktionswert und umgekehrt. Diese diagnostischen Kennwerte lassen sich aus den 

diagnostischen Konsistenzen berechnen (Korrekt Positive, Korrekt Negative, Falsch Positive 

sowie Falsch Negative; Ziegler & Bühner, 2012, S. 147), welche in Tabelle 1 aufgeführt sind.  
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  Tabelle 1 

  Konsistenzen diagnostischer Entscheidungen 

                                                                 Tatsächlicher Zustand 

  Krank Gesund 

Testergebnis 

Krank 

Korrekt 

Positiv/True 

Positive (TP) 

Falsch 

Positiv/False 

Positive (FP) 

Gesund 

Falsch 

Negativ/False 

Negative (FN) 

Korrekt 

Negativ/True 

Negative (TN) 

  Anmerkungen. Aus Gründen des allgemeinen Sprachgebrauchs in der  
  Literatur werden die Begriffe auch auf Englisch eingeführt (Ziegler &   

   Bühner, 2012, S. 147).  
 

 
     Tabelle 2 

     Diagnostische Kennwerte 

Positiver Prädiktionswert = TP / (TP + FP) 

Negativer Prädiktionswert = TN / (TN + FN) 

Sensitivität = TP / (TP + FN) 

Spezifität = TN / (TN + FP) 

     Anmerkungen. Die Diagnostischen Kennwerte (Amelang & Schmidt- 
     Atzert, 2006, S. 422; Eid, Gollwitzer, & Schmitt, 2013, S. 163; Ziegler  
     & Bühner, 2012, S. 146) lassen sich aus den Konsistenzen diagnosti- 
     scher Entscheidungen (siehe Tabelle 1) berechnen.  
 

 

5.2 Diagnostische Entscheidungen basierend auf Gesamtsummenwerten 

 

Eine Nebenfragestellung für die genannte zweite Simulationsstudie leitet sich aus der 

gängigen Praxis der Testkonstruktion ab (Estabrook & Neale, 2013). Die Auswertung vieler 

Testverfahren stützt sich auf Summenwerte, die über einzelne Skalen oder den gesamten Test 

oder Fragebogen (z.B. Beck-Depressionsinventar – BDI-II; Beck et al., 2006) hinweg gebildet 

werden. Dabei ist anzumerken, dass Summenwerte immer ungewichtet sind, bei der 

Berechnung von Summenwerten wird kein itemspezifischer Gewichtungsfaktor angewandt 

(Eid et al., 2013). Anhand der Summenwerte werden bei diesen Testverfahren norm- oder 

kriterienorientierte Aussagen über die Merkmalsausprägung getroffen. Demgegenüber 

erlauben Faktorwerte eine durch die Faktorladungen (Reliabilität) der Indikatoren gewichtete 

Einordnung des Grads der Merkmalsausprägung (Eid et al.).  
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Sofern das theoretische Modell dem tau-äquivalenten Messmodel (Bühner, 2011, S. 

125; Eid et al., 2013, S. 831) genügt und insofern die Faktorladungen homogen sind, führen 

Gesamtsummenwert- und Faktorwertdiagnostik zum selben Ergebnis hinsichtlich der 

Schätzung der Merkmalsausprägungen der Individuen (DiStefano et al., 2009; Eid et al., 2013; 

Skrondal & Rabe-Hesketh, 2014). Der kritische Punkt bei der Verwendung der 

Gesamtsummenwerte zur Diagnostik ist jedoch der, dass die Faktorladungen in der 

angewandten psychologischen Forschung selten homogen sind (Buzick, 2010; Peterson, 

2000)29. Sind die Faktorladungen heterogen bzw. die Indikatoren der Skala/des Testverfahrens 

unterschiedlich gewichtet (vgl. das tau-kongenerische Messmodell; Bühner, 2011, S. 125; Eid 

et al., 2013, S. 835), ergeben die Faktorwerte das bessere Abbild der Merkmalsausprägung (Eid 

et al., 2013; Estabrook & Neale, 2013; Skrondal & Rabe-Hesketh, 2014).  

Die im vorherigen Absatz genannten Studien bezogen sich auf die Diagnostik auf Basis 

der Faktorwerte korrekt spezifizierter Modelle, die mit den Summenwerten verglichen wurden. 

Dabei wurden die Summenwerte der Indikatoren eines Faktors mit den Faktorwerten der 

einzelnen Faktoren verglichen. Daher stellt sich die weiterführende Frage, wie die 

Summenwerte im Vergleich zu den Faktorwerten eines missspezifizierten Modells hinsichtlich 

der Güte der Diagnostik abschneiden würden. Eingebettet in das Design der zweiten Studie 

lautet diese Nebenfragestellung konkret, ob ein Gesamtsummenwert oder die Faktorwerte eines 

einfaktoriellen, unterschiedlich stark missspezifizierten Modells zu besserer Diagnostik führen, 

wenn das Populationsmodell zweifaktoriell ist und die Faktorladungen des Populationsmodells 

heterogen definiert wurden.  

 

Bevor jedoch in Kapitel V die psychometrischen Auswirkungen auf die Individuen 

beschrieben werden, die sich aus der Diagnostik basierend auf Faktorwerten missspezifizierter 

Modelle und auf Basis der Gesamtsummenwerte ergeben, wird im folgenden Kapitel IV 

zunächst der Forschungsfrage nachgegangen, inwieweit die gängigen Fit-Indizes die 

unterschiedlichen Schweregrade der Missspezifikation im Strukturmodell in Form einer nicht-

                                                
29Wie bereits unter III. 1 beschrieben, lagen in Petersons Metaanalyse bei einem Mittelwert von λ = .32 

(standardisiert) 25% der Faktorladungen unter λ = .23 und 25% der Faktorladungen über λ = .37, die 

Faktorladungen fielen also heterogen aus. 
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spezifizierten Zweidimensionalität anhand der Cut-Off-Regeln nach Hu und Bentler (1998, 

1999) als solche erkennen.  
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IV    STUDIE 1 
 

1   Methode 
 

1.1 Stichprobenziehungen 

 

Die unter III. 3 ausgeführte Fragestellung, inwiefern die Fit-Indizes CFI, RMSEA und 

SRMR fälschlicherweise als einfaktoriell spezifizierte Modelle anhand der Cut-Off-Regeln 

nach Hu und Bentler (1998, 1999) als nicht passend erkennen, wurde anhand einer 

Simulationsstudie untersucht. Es handelte sich dabei um eine Monte-Carlo-Simulation (vgl. 

Paxton, Curran, Bollen, Kirby, & Chen, 2001). Diese wurde mithilfe der „R“-Pakete (R Core 

Team, 2015) „lavaan“ (Rosseel, 2012) und „simsem“ (Pornprasertmanit, Miller, & Schoemann, 

2015) realisiert. Um eine optimale Rechenleistung durch die Nutzung aller verfügbarer 

Prozessorkerne zu erreichen, wurde das Paket „parallel“ (R Core Team, 2015) eingesetzt30. Für 

jede der zwölf Bedingungen, die im Folgenden beschrieben werden, wurden aus den 

Populationsmodellen jeweils 1,000 Stichproben-Kovarianz-Matrizen aus multivariat 

normalverteilten Daten erzeugt. Es wurden aus Replikationsgründen Startwerte für die Ziehung 

der Zufallszahlen gesetzt.  

 

1.2 Design 

 

Die Basis für die verschiedenen Populationsmodelle bildete ein lineares 

Strukturgleichungsmodell bestehend aus zwei korrelierten Faktoren und insgesamt 20 

Indikatoren. Die Anzahl der Indikatoren wurde auf 20 festgelegt, da diese eine gängige 

Fragebogenlänge in der psychologischen Forschung darstellt (Peterson, 2000; Shrout & Yager, 

1989). Für die zwölf verschiedenen experimentellen Bedingungen, aus denen die 

Populationsmodelle zusammengesetzt wurden, eignete sich ein 2(Faktorladungen: hoch versus 

typisch) × 2(Indikatorenaufteilung: 10:10 versus 15:5) × 3(Faktorkorrelation: .30 versus .50 

versus .80) Studiendesign. Die Faktorladungshöhe wurde in Anlehnung an die Meta-Analyse 

                                                
30An dieser Stelle sei Terrence Jorgensen (“lavaan Google Groups,” 2015) für die Hilfe beim Schreiben der 

ineinander verschachtelten Schleifen-Funktion in R gedankt.  
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von Peterson (2000) vorab festgelegt. Demnach wurden die typischen Faktorladungen 

(standardisiert) für die Simulationsstudie gleichverteilt und zufällig aus dem Bereich [.20, .40] 

gezogen. Die hohen Faktorladungen (standardisiert) wurden aus dem Bereich [.40, .60] zufällig 

und gleichverteilt gezogen. Die Varianzen der latenten Variablen wurden bei allen für die 

Simulation verwendeten und bei allen auf die Simulationsdaten angewandten Modellen auf 

Eins gesetzt. Die Bedingungen, die sich aus den Kombinationen der Faktorstufen der 

unabhängigen Variablen Itemaufteilung und Faktorkorrelation ergaben, bestimmten den Grad 

der Missspezifikation. Die 20 Indikatoren wurden im Rahmen von sechs der zwölf 

Bedingungen gleichmäßig auf beide Faktoren aufgeteilt und im Rahmen der anderen sechs 

Bedingungen wurde der erste Faktor durch 15 Items repräsentiert und der zweite Faktor durch 

5 Items. Eine unausgewogene Indikatorenaufteilung sollte daher einen geringeren Grad an 

Missspezifikation darstellen als eine ausgewogene Aufteilung, da erstere einen Faktor stärker 

repräsentiert als den anderen und diese Bedingung somit näher am einfaktoriellen Modell liegt. 

Weiters wurde in den Populationsmodellen die Höhe der Korrelation zwischen beiden Faktoren 

variiert. Oblique Faktorenstrukturen sind typisch in der Psychologie, die durchschnittliche 

Korrelation zwischen zwei Variablen beträgt r = .30, was einem mittelhohen Zusammenhang 

entspricht (Cohen & Manion, 1980). Somit stellte im Rahmen dieser Studie eine 

Faktorkorrelation von r = .30 eine in der Psychologie typisch hohe Korrelation31 und einen 

hohen Grad an Missspezifikation dar. Eine in der Psychologie eher seltene hohe Korrelation 

wurde durch r = .5032 repräsentiert, diese entsprach einem mittleren Grad an Missspezifikation. 

Die Faktorkorrelation von r = .80 wurde aufgenommen, um Bedingungen zu untersuchen, die 

noch näher an der Eindimensionalität liegen bzw. latente Variablen darstellen, die annähernd 

dasselbe messen (geringe Missspezifikation).  

 

1.3 Durchführung 

 

Fälschlicherweise als einfaktoriell spezifizierte Messmodelle mit 20 Indikatoren wurden 

auf die aus den zweifaktoriellen Populationsmodellen erzeugten Stichproben angewandt. Die 

Schätzung der Modellpassung wurde mit dem Maximum-Likelihood-Algorithmus 

                                                
31Die Metaanalyse von Steel, Schmidt, und Shultz (2008) zeigte beispielsweise über 17 Studien hinweg, dass die 

Big-Five-Faktoren Neurotizismus und Extraversion zu r = -.33 korrelierten.  
32So wurde zum Beispiel eine Korrelation von r = .50 zwischen Intelligenz und Schulerfolg bereits mehrfach 

bestätigt (Rost, 2009).  
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vorgenommen, da dieser die am häufigsten genutzte Schätzmethode darstellt (Beauducel & 

Wittmann, 2005; Eid et al., 2013; Mahler, 2011; Reinecke, 2014; Schermelleh-Engel et al., 

2003). Es wurde ausgewertet, wie oft das missspezifizierte Modell an den erzeugten 

Stichprobendaten durch die Fit-Indizes CFI, RMSEA und SRMR anhand der Cut-Off-Kriterien 

und der Kombinationsregel von Hu und Bentler (1998, 1999) zurückgewiesen wurde.  
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2 Ergebnisse  
 

2.1 Nonzentralitätsparameter 

 

Der Nonzentralitätsparameter stieg mit sinkender Faktorkorrelation, d.h. der 

Nonzentralitätsparameter zeigte mit sinkender Faktorkorrelation zunehmende 

Modellabweichung an (siehe Tabelle 3). Ebenso fiel der Nonzentralitätsparameter bei der 

ungleichmäßigen Indikatorenaufteilung niedriger aus als bei der ausgewogenen 

Indikatorenaufteilung (siehe Tabelle 3). Insgesamt passte also die intuitive Ordnung des Grades 

der Missspezifikation mit derjenigen durch den Nonzentralitätsparameter zusammen.  

 
Tabelle 3 

Nonzentralitätsparameter bei den missspezifizierten Modellen 

 Modell 1: 

.80 

[.20, .40] 

10:10 

Modell 2: 

.50 

[.20, .40] 

10:10 

Modell 3: 

.30 

[.20, .40] 

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5: 

.50 

[.20, .40] 

15:5 

Modell 6: 

.30 

[.20, .40] 

15:5 

NCP 18.263 88.588 154.873 8.653 34.199 51.352 

 Modell 7: 

.80 

[.40, .60] 

10:10 

Modell 8: 

.50 

[.40, .60] 

10:10 

Modell 9: 

.30 

[.40, .60] 

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60] 

15:5 

Modell 12: 

.30 

[.40, .60] 

15:5 

NCP 98.99 435.531 710.532 47.058 182.389 258.958 

Anmerkungen. NCP = gemittelter Nonzentralitätsparameter über alle 1000 Stichprobenkovarianzmatrizen hinweg. 

Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die Höhe der Faktorkorrelation, der 

Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das Verhältnis gibt die 

Indikatorenaufteilung auf die Faktoren an. 

 

2.2 Korrekte Modelle  

 

2.2.1 Ergebnisse hinsichtlich des χ2-Tests bezüglich der korrekten Modelle 

 

Es wurde die exploratorische Fragestellung untersucht, inwieweit die gängigen Fit-

Indizes CFI, RMSEA und SRMR eine fälschlicherweise als einfaktoriell spezifiziertes Modell 

im Gegensatz zu einem zweifaktoriellen Modell, das den Stichprobendaten zugrunde liegt, 
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anhand der Cut-Off-Kriterien nach Hu und Bentler (1998, 1999) korrekterweise zurückwiesen. 

Aus Vollständigkeits- und Vergleichsgründen wurde zunächst die Modellpassung korrekter 

Modelle in den Stichproben anhand des χ2-Tests inspiziert.  

Die korrekten Modelle wurden an allen Stichprobenkovarianzmatrizen durch den χ2-

Test angenommen, wobei der Mittelwert des χ2-Werts über alle Bedingungen und 

Stichprobenziehungen hinweg bei M = 168.404 (SD = 3.937), also sehr nahe an der Anzahl der 

Freiheitsgrade (df = 169) der korrekten Modelle, lag. 

 

2.2.2 Ergebnisse hinsichtlich des CFI bezüglich der korrekten Modelle 

 

Aus Vergleichsgründen wurden die drei Fit-Indizes zunächst in Bezug auf korrekt 

spezifizierte Modelle untersucht. Dabei wurden korrekt spezifizierte Modelle mit frei zu 

schätzenden Parametern auf die aus den Populationsmodellen erzeugten Stichprobendaten 

angewandt und ausgezählt, wie oft die korrekten Modelle durch die Fit-Indizes angenommen 

wurden.  

Die Mittelwerte des CFI lagen in allen zwölf Bedingungen über dem von Hu und Bentler 

(1998, 1999) vorgeschlagenen Cut-Off von .95. In den sechs Bedingungen mit den hohen 

Ladungen wurde das korrekte Modell an allen jeweils 1000 Stichproben korrekterweise 

angenommen. In den sechs Bedingungen mit den typischen Faktorladungen wurden mindestens 

931 korrekte Modelle pro Bedingung angenommen, wobei die Anzahl der korrekterweise 

angenommenen Modelle durch den CFI mit der Faktorkorrelation im Populationsmodell stieg 

und außerdem zugunsten der ungleichen Indikatorenaufteilung ausfiel.  

  

2.2.3 Ergebnisse hinsichtlich des RMSEA bezüglich der korrekten Modelle 

 

Innerhalb der zwölf verschiedenen Simulationsbedingungen zeigte der RMSEA sehr 

konsistent eine sehr gute Modellpassung anhand der Cut-Off-Kriterien, wenn ein korrektes, frei 

zu schätzendes Modell auf die jeweils aus dem Populationsmodell erzeugten 

Stichprobenkovarianzmatrizen angewandt wurde. In allen zwölf Bedingungen wurde das 

korrekte Modell an allen jeweils 1000 Stichproben durch den RMSEA korrekterweise als 

passend indiziert. Ebenfalls lag der Mittelwert des RMSEA in den einzelnen zwölf 

Bedingungen über die jeweils 1000 Stichprobendaten hinweg unter dem Cut-Off von Hu und 

Bentler (1998, 1999).   
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2.2.4 Ergebnisse hinsichtlich des SRMR bezüglich der korrekten Modelle 

 

Das SRMR verhielt sich ähnlich wie der RMSEA und zeigte über alle zwölf 

Bedingungen hinweg eine sehr gute Modellpassung. Die korrekten Modelle wurden an allen 

1000 Stichprobenmatrizen je Bedingung nach dem Cut-Off von Hu und Bentler (1998, 1999) 

angenommen. Weiters lagen die Mittelwerte des SRMR stets unter dem Cut-Off von Hu und 

Bentler.  

 

2.3 Missspezifizierte Modelle  

 

2.3.1 Ergebnisse hinsichtlich des χ2-Tests bezüglich der missspezifizierten Modelle 

 

Das missspezifizierte Modell wurde in allen Bedingungen über alle 

Stichprobenkovarianzmatrizen hinweg abgelehnt. Die unterschiedlichen Grade an 

Missspezifikation zeigten sich anhand der χ2-Werte, mit steigendem Grad an Missspezifikation 

stieg der χ2-Wert (siehe Tabelle 4): Der χ2-Wert stieg mit sinkender Faktorkorrelation im 

Populationsmodell (höherer Grad an Missspezifikation) und war im Rahmen der Bedingungen 

mit der ungleichen Indikatorenaufteilung auf die Faktoren im Populationsmodell (niedrigerer 

Grad an Missspezifikation) niedriger als in den Bedingungen mit der ausgewogenen 

Aufteilung. Bei den hohen Faktorladungen im Populationsmodell waren auch die χ2-Werte 

höher als bei den typischen Faktorladungen (siehe Tabelle 4). Dies zeigt, dass der χ2-Test bei 

hohen Faktorladungen sensitiver war für die Missspezifikation.  
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Tabelle 4 

Ergebnisse bezüglich des χ2-Tests hinsichtlich der missspezifizierten Modelle 

 Modell 1: 

.80 

[.20, .40] 

10:10 

Modell 2: 

.50 

[.20, .40] 

10:10 

Modell 3: 

.30 

[.20, .40] 

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5: 

.50 

[.20, .40] 

15:5 

Modell 6: 

.30 

[.20, .40] 

15:5 

M χ2(170) 

SD χ2(170) 

188.263 

20.365 

258.588 

27.774 

324.873 

33.873 

178.653 

19.120 

204.199 

22.451 

221.352 

23.903 

 Modell 7: 

.80 

[.40, .60] 

10:10 

Modell 8: 

.50 

[.40, .60] 

10:10 

Modell 9: 

.30 

[.40, .60] 

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60] 

15:5 

Modell 12: 

.30 

[.40, .60] 

15:5 

M χ2(170) 

SD χ2(170) 

268.990 

28.954 

605.531 

56.755 

880.532 

74.487 

217.058 

23.045 

352.389 

35.252 

428.958 

40.719 

Anmerkungen. M = Mittelwert des χ2-Werts über alle 1000 Stichprobenkovarianzmatrizen hinweg, SD = 

Standardabweichung des χ2-Werts über alle 1000 Stichprobenkovarianzmatrizen hinweg. Die Zellen der 

Beschreibung der Populationsmodelle enthalten als ersten Wert die Höhe der Faktorkorrelation, der Bereich 

bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das Verhältnis gibt die 

Indikatorenaufteilung auf die Faktoren an. 

 

2.3.2 Ergebnisse hinsichtlich des CFI bezüglich der missspezifizierten Modelle 

 

Es zeigten sich Haupteffekte zugunsten der Anzahl an abgelehnten missspezifizierten 

Modellen sowohl für die Höhe der Faktorkorrelation als auch die Balancierung der Indikatoren 

in den Populationsmodellen und die Höhe der Faktorladungen (letzterer Haupteffekt ist 

allerdings nicht interpretierbar; Erklärung folgt).  

Hinsichtlich der Ausgewogenheit der Anzahl der Indikatoren zeigte sich, dass die 

ausgewogene Itemaufteilung (hohe Missspezifikation) vorteilhafter hinsichtlich der 

Entdeckung der Missspezifikation war als die unausgewogene Itemverteilung (geringe 

Missspezifikation), die missspezifizierten Modelle wurden an den Daten der ersteren 

Populationsmodelle öfter abgelehnt (siehe Tabelle 5). Ebenso führte die unausgewogene 

Itemaufteilung im Mittel zu einem höheren CFI als die ausgewogene Itemaufteilung.  

Desto höher die Faktorkorrelation, desto weniger häufig wurden die missspezifizierten 

Modelle an den Stichprobendaten abgelehnt (siehe Tabelle 5). Ebenso stieg mit der 

Faktorkorrelation (sinkender Grad an Missspezifikation) im Populationsmodell auch der 

Mittelwert des CFI bei Anwendung des missspezifizierten Modells auf die Stichprobendaten. 
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Tabelle 5 

Ergebnisse bezüglich des CFI hinsichtlich der missspezifizierten Modelle 

 Modell 1: 

.80 

[.20, .40] 

10:10 

Modell 2: 

.50 

[.20, .40] 

10:10 

Modell 3: 

.30 

[.20, .40] 

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5: 

.50 

[.20, .40] 

15:5 

Modell 6: 

.30 

[.20, .40] 

15:5 

M(SD) CFI .971(.025) .848(.043) .713(.051) .983(.020) .946(.033) .916(.037) 

Korr. Zurückw. 191 996 1000 81 539 826 

 Modell 7: 

.80 

[.40, .60] 

10:10 

Modell 8: 

.50 

[.40, .60] 

10:10 

Modell 9: 

.30 

[.40, .60] 

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60] 

15:5 

Modell 12: 

.30 

[.40, .60] 

15:5 

M(SD) CFI .960(.011) .805(.024) .668(.030) .982(.009) .923(.015) .886(.017) 

Korr. Zurückw. 179 1000 1000 1 974 1000 

Anmerkungen. M = Mittelwert, SD = Standardabweichung, Korr. Zurückw. = Anzahl korrekter Zurückweisungen 

durch den CFI. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die Höhe der 

Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das 

Verhältnis gibt die Indikatorenaufteilung auf die Faktoren an.  

 

Hinsichtlich der Anzahl an korrekt zurückgewiesenen missspezifizierten Modellen 

durch den Cut-Off nach Hu und Bentler (1998, 1999) für den CFI interagierte die Höhe der 

Faktorladungen hybrid mit der Höhe der Faktorkorrelation (siehe Tabelle 5). Bei geringer und 

mittlerer Faktorkorrelation (hoher und mittlerer Grad an Missspezifikation) im 

Populationsmodell war die Anzahl an korrekt zurückgewiesenen missspezifizierten Modellen 

bei den hohen Ladungen höher als bei den typischen Ladungen. Bei einer hohen 

Faktorkorrelation (geringer Grad an Missspezifikation) drehte sich dieses Muster um; bei hohen 

Ladungen wurden die missspezifizierten Modelle weniger oft zurückgewiesen als bei typischen 

Ladungen. Die Mittelwerte des CFI über die Stichproben eines Populationsmodelles hinweg 

lagen jedoch bei hohen Ladungen stets unter denen bei typischen Ladungen. Dieser Befund 

wird unter 3.2 diskutiert.  

 

2.3.3 Ergebnisse bezüglich des RMSEA hinsichtlich der missspezifizierten 

Modelle 

 

Insgesamt betrachtet zeigte der RMSEA eine äußerst geringe Sensitivität hinsichtlich 

der Indizierung des missspezifizierten eindimensionalen Modells (siehe Tabelle 6). Lediglich 



 
 

 63  

in der am höchsten missspezifizierten Bedingung (Modell 9) mit hohen Faktorladungen, einer 

ausgewogenen Indikatorenaufteilung sowie einer geringen Faktorkorrelation im 

Populationsmodell wurde das missspezifizierte Modell in 914 von 1000 Fällen als nicht passend 

indiziert. Ebenso lag der Mittelwert über die 1000 Stichprobendaten pro Bedingung hinweg nur 

in dieser Bedingung über dem Cut-Off von .06.  

 
Tabelle 6 

Ergebnisse hinsichtlich des RMSEA bezüglich der missspezifizierten Modelle 

 Modell 1: 

.80 

[.20, .40] 

10:10 

Modell 2: 

.50 

[.20, .40] 

10:10 

Modell 3: 

.30 

[.20, .40] 

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5: 

.50 

[.20, .40] 

15:5 

Modell 6: 

.30 

[.20, .40] 

15:5 

M(SD) RMSEA .009(.006) .023(.004) .030(.003) .006(.006) .013(.005) .017(.004) 

Korr. Zurückw. 0 0 0 0 0 0 

 Modell 7: 

.80 

[.40, .60] 

10:10 

Modell 8: 

.50 

[.40, .60] 

10:10 

Modell 9: 

.30 

[.40, .60] 

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60] 

15:5 

Modell 12: 

.30 

[.40, .60] 

15:5 

M(SD) RMSEA .024(.004) .051(.003) .065(.003) .016(.005) .033(.003) .034(.003) 

Korr. Zurückw. 0 3 914 0 0 0 

Anmerkungen. M = Mittelwert, SD = Standardabweichung, Korr. Zurückw. = Anzahl der korrekten 

Zurückweisungen durch den RMSEA. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten 

Wert die Höhe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen 

wurden und das Verhältnis gibt die Indikatorenaufteilung auf die Faktoren an.  

 

Die Mittelwerte des RMSEA lagen in den Bedingungen mit den typischen Ladungen im 

Populationsmodell geringfügig unter denen der hohen Ladungen. Allerdings ist dieser 

Unterschied vernachlässigbar, zumal die Mittelwerte des RMSEA in allen Bedingungen außer 

der genannten neunten unter dem Cut-Off von Hu und Bentler (1998, 1999) lagen, die 

Modellabweichung also nicht identifizierten. Die Unterschiede hinsichtlich der Mittelwerte 

bezüglich des RMSEA bei einer geringen Faktorkorrelation (höherer Wert des RMSEA im 

Vergleich zu den Bedingungen mit einer mittleren oder hohen Faktorkorrelation im 

Populationsmodell) und bei einer ausgewogenen Indikatorenaufteilung (höherer Wert des 

RMSEA im Vergleich zu einer unausgewogenen Indikatorenaufteilung) sind ebenfalls nur 

marginal.  
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2.3.4 Ergebnisse bezüglich des SRMR hinsichtlich der missspezifizierten Modelle 

 

Die Ergebnisse hinsichtlich des SRMR sind noch kritischer als die bezüglich des 

RMSEA (siehe Tabelle 7).  

Der Mittelwert des SRMR lag in allen Bedingungen unter dem Cut-Off nach Hu und 

Bentler (1998, 1999). Ebenfalls wurden nur 70 von 1000 Stichprobenkovarianzmatrizen in der 

neunten Bedingung, also der am wenigsten eindimensionalen Bedingung kombiniert mit hohen 

Faktorladungen, durch das SRMR zurückgewiesen. Betrachtet man die Mittelwerte, wird zwar 

deutlich, dass die Sensitivität des SRMR mit sinkender Faktorkorrelation (höherer 

Missspezifikation), hohen Ladungen (im Vergleich zu typischen Ladungen) und einer 

ausgewogenen Indikatorenaufteilung (höhere Missspezifikation im Vergleich zu einer 

unausgewogenen) stieg, dies aber äußerst geringfügig. 

 
Tabelle 7 

Ergebnisse hinsichtlich des SRMR bezüglich der missspezifizierten Modelle 

 Modell 1: 

.80 

[.20, .40] 

10:10 

Modell 2: 

.50 

[.20, .40] 

10:10 

Modell 3: 

.30 

[.20, .40] 

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5: 

.50 

[.20, .40] 

15:5 

Modell 6: 

.30 

[.20, .40] 

15:5 

M(SD) SRMR .028(.002) .034(.002) .040(.003) .027(.001) .029(.002) .031(.002) 

Korr. Zurückw. 0 0 0 0 0 0 

 Modell 7: 

.80 

[.40, .60] 

10:10 

Modell 8: 

.50 

[.40, .60] 

10:10 

Modell 9: 

.30 

[.40, .60] 

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60] 

15:5 

Modell 12: 

.30 

[.40, .60] 

15:5 

M(SD) SRMR .030(.002) .055(.003) .073(.004) .027(.002) .038(.002) .045(.002) 

Korr. Zurückw. 0 0 70 0 0 0 

Anmerkungen. M = Mittelwert, SD = Standardabweichung, Korr. Zurückw. = Anzahl korrekter Zurückweisungen 

durch den SRMR. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die Höhe der 

Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das 

Verhältnis gibt die Indikatorenaufteilung auf die Faktoren an.  

 

Wendet man den Cut-Off von < .09 für das SRMR im Rahmen der Kombinationsregel 

nach Hu und Bentler (1999) zusammen mit dem RMSEA oder dem CFI an, wurde das 

missspezifizierte Modell auch in der neunten Bedingung an allen 1,000 

Stichprobenkovarianzmatrizen durch das SRMR angenommen. Das heißt, bei den 70 
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Stichproben, an denen das missspezifizierte Modell bei einem Cut-Off von < .08 für den SRMR 

noch abgelehnt wurde, lag das SRMR zwischen .08 und .09.  
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3 Diskussion 
 

3.1 Zusammenfassung der Ergebnisse 

 

Es wurde die Fragestellung untersucht, inwieweit drei der am meist genutzten Fit-

Indizes CFI, RMSEA und SRMR Missspezifikationen im Strukturmodell im Kontext realistisch 

hoher und heterogener Faktorladungen anhand der Cut-Offs nach Hu und Bentler (1998, 1999) 

zurückweisen würden. Die untersuchte Art der Missspezifikation stellte eine einfaktorielles 

Modell im Gegensatz zu einem obliquen zweifaktoriellen Populationsmodell dar. Um 

unterschiedliche Schweregrade an Missspezifikationen im Strukturmodell zu erreichen, wurde 

die Höhe der Korrelation zwischen den latenten Variablen im Populationsmodell variiert, 

ebenso die (Un-)Ausgewogenheit der Indikatoren pro latenter Variable. Pro Populationsmodell 

wurden 1,000 Stichprobenkovarianzmatrizen erzeugt, auf die das eindimensionale 

missspezifizierte Modell angewandt wurde.  

Alle drei Fit-Indizes zeigten bei Anwendung korrekter Modelle auf die erzeugten Daten 

anhand der Kriterien nach Hu und Bentler (1998, 1999) eine gute Modellpassung. Die Fit-

Indizes konnten also unter der besagten Cut-Off-Bedingung ohne Probleme korrekte Modelle 

als korrekt identifizieren. Hinsichtlich des missspezifizierten Modells zeigte sich ein anderes 

Bild.  

Der CFI wies das schwer und mittelgradig missspezifizierte Modell anhand des Cut-

Offs von Hu und Bentler ausreichend oft zurück. Die Höhe der Faktorkorrelation in Interaktion 

mit der Höhe der Faktorladungen stellte einen wichtigeren Einflussfaktor als die 

Indikatorenaufteilung auf den CFI dar, die missspezifizierten Modelle abzulehnen. Bei geringer 

und mittlerer Faktorkorrelation (hoher und mittlerer Grad an Missspezifikation) lag der 

Mittelwert des CFI immer unter dem Cut-Off von Hu und Bentler (1998, 1999) und das 

missspezifizierte Modell wurde an der überwiegenden Mehrheit an 

Stichprobenkovarianzmatrizen abgelehnt. Bei hohen Ladungen lagen die Mittelwerte des CFI 

stets unter den Mittelwerten bei typischen Ladungen und mit Ausnahme der Bedingungen mit 

der hohen Faktorkorrelation (niedrige Missspezifikation) wurden in ersteren Bedingungen auch 

so gut wie alle Modelle an den Stichprobendaten durch den CFI abgelehnt. Eine ausgewogene 

Indikatorenaufteilung erwies sich als vorteilhafter hinsichtlich der Entdeckung des Misfit 

(niedrigere Mittelwerte des CFI und mehr Zurückweisungen des missspezifizierten Modells) 
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als die unausgewogene Aufteilung, da erstere näher an der Zwei-Faktoren-Struktur lag als an 

der Ein-Faktoren-Struktur.  

Während sich die Sensitivität des CFI hinsichtlich der Zurückweisung des 

missspezifizierten Modells – mit Ausnahme der Bedingungen mit hohen Faktorkorrelationen – 

als vergleichsweise hoch erwies, zeigte sich bezüglich des RMSEA und des SRMR ein anderes 

Ergebnis. Beide Fit-Indizes bewährten sich hinsichtlich der Ablehnung des missspezifizierten 

Modells nicht, sofern die Cut-Off-Werte nach Hu und Bentler (1998, 1999) als Kriterium 

galten. Während der Mittelwert des RMSEA in der am höchsten missspezifizierten neunten 

Bedingung noch über dem Cut-Off nach Hu und Bentler lag und das missspezifizierte Modell 

am Großteil der Stichprobenmatrizen in dieser Bedingung abgelehnt wurde, lag der Mittelwert 

des SRMR in allen Bedingungen unter dem Cut-Off von Hu und Bentler und wies das 

missspezifizierte Modell nicht zurück. Beide Indizes zeigten hohe Typ-2-Fehlerraten und 

insofern eine äußerst geringe Sensitivität hinsichtlich der Entdeckung der 

Modellabweichungen.  

Die Kombinationsregel aus CFI oder RMSEA zusammen mit dem SRMR wäre im 

Rahmen des Designs der vorliegenden Studie nur für den CFI zusammen mit dem SRMR und 

nur bei einer mittleren oder schwerwiegenden Missspezifikation (geringe und mittelhohe 

Faktorkorrelation) zielführend bei der Identifikation der Missspezifikation gewesen.  

Im Gegensatz zu den Fit-Indizes konnte die Missspezifikation an allen Stichprobendaten 

der verschiedenen Populationsmodelle anhand des χ2-Tests als solche identifiziert werden. 

Ebenso stieg der Grad der Missspezifikation mit dem absoluten Wert des 

Nonzentralitätsparameters.  

 

3.2 Diskussion der Ergebnisse  

 

Während der CFI im Rahmen dieser Studie eine ausreichende Sensitivität zur 

Entdeckung des Misfit zeigte, sofern die Faktorkorrelation im Populationsmodel nicht zu hoch 

(die Missspezifikation zu niedrig) war, zeigten die untersuchten absoluten Fit-Indizes keine 

Modellabweichung an, sofern die Cut-Offs nach Hu und Bentler (1998, 1999) als Kriterien zur 

Modellevaluation herangezogen wurden. Das SRMR schnitt im Rahmen des untersuchten 

Designs am schlechtesten ab. Dabei wurde von Hu und Bentler propagiert, dass das SRMR 

gerade für Missspezifikationen im Strukturmodell sensitiv wäre. Bei Mahler (2011) und Savalei 

(2012) zeigten sich ähnliche Ergebnisse wie die vorliegenden für die untersuchten Fit-Indizes. 
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Insgesamt schnitten die absoluten Fit-Indizes RMSEA und SRMR besser ab, wenn es sich bei 

der Art der Missspezifikation um nicht-spezifizierte Messfehlerkovarianzen handelte (vgl. 

Heene et al., 2012; Mahler, 2011; Savalei, 2012) als um die Art der Missspezifikation im 

Strukturmodell, die im Rahmen dieser Simulationsstudie untersucht wurde. Diese Befunde sind 

vor dem Hintergrund, dass Missspezifikationen auf der Ebene der latenten Variablen 

konzeptuell als schwerwiegender angesehen werden können als Missspezifikationen im 

Messmodell (Mahler, 2011), bedenklich. Der Umstand, dass die Stichprobengröße in dieser 

Studie für die angewandte Forschung sehr hoch gewählt wurde und auch die Voraussetzung der 

multivariaten Normalverteilung erfüllt war, macht die Ergebnislage noch gravierender.  

Die Sensitivität dieser drei Fit-Indizes für die Missspezifikation im Strukturmodel fiel 

in dieser Studie in absoluten Werten geringfügig niedriger aus als in den Studien von Mahler 

(2011) und Savalei (2012) in den hinsichtlich der Missspezifikation äquivalenten Bedingungen. 

Letzteres kann möglicherweise auf die in der Hälfte der Bedingungen noch niedrigeren 

Faktorladungen sowie die Heterogenität der Faktorladungen oder auch die unterschiedliche 

Indikatorenanzahl33 im Rahmen der vorliegenden Studie zurückgeführt werden. Andererseits 

wurden in den Studien von Mahler und Savalei keine Stichprobengrößen genannt, sodass auch 

die Stichprobengröße als möglicher Grund für den Unterschied genannt werden kann.  

Hinsichtlich der Wichtigkeit der Einflussfaktoren auf die Sensitivität der Fit-Indizes 

zeigten sich ähnliche Ergebnisse wie bei Savalei (2012) für den RMSEA. Die Höhe der 

Faktorladungen sowie die Höhe der Faktorkorrelation, insbesondere in Interaktion, stellten sich 

als wichtige Einflussfaktoren auf die Sensitivität der Indizes heraus. In Savaleis Studien hatte 

die Höhe der Faktorladungen den höchsten Einfluss auf die Sensitivität des RMSEA. Dieser 

Unterschied kann ebenfalls dadurch erklärt werden, dass die untersuchte Spannweite an 

Faktorladungen in der vorliegenden Studie kleiner war als bei Savalei und die Faktorladungen 

absolut niedriger waren als bei Savalei. Dies führte zu Bodeneffekten für den RMSEA und das 

SRMR, welche eine klare Ordnung der Einflussfaktoren hinsichtlich ihrer Wirkung 

erschwerten, zumal die Höhe der Faktorkorrelation ähnlich wie bei Mahler (2011) mit der Höhe 

der Faktorladungen interagierte. Jedoch hatte auch die Indikatorenaufteilung auf die beiden 

latenten Variablen im Populationsmodell vor allem einen Einfluss auf die Sensitivität des CFI, 

die ausgewogene Aufteilung auf die latenten Faktoren erwies sich als vorteilhafter hinsichtlich 

                                                
33Savalei (2012) verwendete insgesamt 8 Indikatoren, Mahler (2011) insgesamt 12, wohingegen in der 

vorliegenden Studie 20 Indikatoren insgesamt verwendet wurden. 
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der Sensitivität für die Missspezifikation. Bei RMSEA und SRMR ging die Tendenz zwar in 

dieselbe Richtung, allerdings waren die Unterschiede aufgrund der genannten Bodeneffekte 

dieser beiden Indizes marginal.  

Hinsichtlich der Höhe der Faktorladungen bestätigte sich für den RMSEA und das 

SRMR, was von Heene et al. (2011) gezeigt wurde und was auch im Rahmen der Studien von 

Mahler (2011) und Savalei (2012) auftrat: Bei niedrigeren Faktorladungen waren RMSEA und 

SRMR weniger sensitiv gegenüber Missspezifikationen. Dieser Befund resultiert aus dem 

positiven Zusammenhang zwischen Faktorladungshöhe und der Höhe des χ2-Werts, der sich 

auch im Rahmen dieser Studie zeigte. Sofern die Uniqueness-Matrix durch niedrigere 

Faktorladungen größer wird, sinken die Eigenwerte dieser Matrix und die χ2-Test-Statistik, die 

diese Eigenwerte enthält, sinkt auch (Heene et al., S. 329). Insofern verfehlen Fit-Indizes wie 

der RMSEA und das SRMR, die auf der Differenz zwischen beobachteter und implizierter 

Kovarianzmatrix basieren, ihre Funktion, missspezifizierte Modelle abzulehnen.  

Der CFI hingegen, der als inkrementeller Fit-Index den Vergleich mit einem Nullmodell 

heranzieht, markierte bei Heene et al. (2011) bei sinkenden Ladungen das missspezifizierte 

Modell in höherem Maße als abweichend (vgl. die Ergebnisse von Beauducel und Wittmann, 

2005), da die Differenz zwischen impliziertem Modell und Nullmodell geringer wird. 

Allerdings zeigte sich dieses Muster in der vorliegenden Studie nicht. In der vorliegenden 

Studie waren die Mittelwerte des CFI über die jeweils 1,000 Stichproben eines 

Populationsmodells hinweg bei den typischen Ladungen geringfügig höher als bei den hohen 

Ladungen. Dies zeigte sich auch in der Studie von Mahler (2011) mit vergleichbarem Design. 

Hinsichtlich der Anzahl an korrekten Zurückweisungen des missspezifizierten Modells durch 

den CFI zeigte sich in der vorliegenden Studie ein komplexeres Muster: Bei hohen Ladungen 

und einer hohen Faktorkorrelation wurde das missspezifizierte Modell weniger oft an den 

Stichprobendaten abgelehnt als bei typischen Ladungen und einer hohen Faktorkorrelation 

(dieser Befund deckt sich mit Heene et al.s [2011] Ergebnissen; steht jedoch in Kontrast zum 

Verhalten der Mittelwerte des CFI in der vorliegenden Studie). Bei hohen Ladungen und einer 

geringen oder mittleren Faktorkorrelation im Populationsmodell wurde das missspezifizierte 

Modell anhand der Cut-Offs nach Hu und Bentler (1998, 1999) öfter zurückgewiesen als bei 

den typischen Ladungen und einer geringen und mittleren Faktorkorrelation im 

Populationsmodell (dieser Befund steht in Kontrast zu Heene et al.s [2011] Befunden, deckt 

sich allerdings mit den Mittelwerten des CFI in der vorliegenden Studie). Mahler (2011) 

berechnete nur Mittelwerte für die Fit-Indizes über die Stichproben pro Populationsmodell 
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hinweg und nicht noch zusätzlich die Anzahl an korrekten Zurückweisungen des 

missspezifizierten Modells durch die Cut-Off-Werte nach Hu und Bentler (1998, 1999), sodass 

letzterer Befund nicht mit Mahler verglichen werden kann. Eine mögliche Erklärung für das 

Ergebnismuster des CFI stellt dar, dass im Prinzip nichts über die Verteilung der Teststatistik 

des unkorrelierten Baseline-Modells bekannt ist, auf der die inkrementellen Fit-Indizes, so auch 

der CFI, basieren (Curran et al., 2002). Insofern ist auch nicht bekannt, ob die Teststatistik einer 

(non-)zentralen χ2-Verteilung folgt. Abgesehen davon führen Curran et al. an, dass die relativen 

Fit-Indizes keine linearen Funktionen der Teststatistik für das unkorrelierte Basismodell und 

das implizierte Modell darstellen. Demnach verkompliziert sich die Einordnung des Grades der 

Missspezifikation. Vermutet wird von den Autoren außerdem, dass die (Non-)Zentralität der 

Verteilung der Teststatistik auch abhängig ist von der Art der Missspezifikation, nicht nur von 

deren Schweregrad.  

Hinsichtlich der Anwendung der korrekten Modelle zeigten sich die Fit-Indizes 

homogen in der Hinsicht, als dass sie alle drei eine gute Modellpassung nach den Cut-Off-

Kriterien anzeigten. Hinsichtlich der Anwendung des missspezifizierten Modells zeigte sich im 

Rahmen des untersuchten Designs, was bereits von Beauducel und Wittmann (2005) sowie Fan 

et al. (2009) im Kontext deren Designs beschrieben wurde: Die Fit-Indizes reagierten heterogen 

auf die verschiedenen Modellbedingungen. Bei Beauducel und Wittmann stieg mit höheren 

Ladungen allerdings auch der Grad der Missspezifikation (Savalei, 2012). Dies führte dazu, 

dass die Fit-Indizes mit steigenden Ladungen homogenere Ergebnisse zeigten, da die Fit-

Indizes bei höheren Ladungen sensitiver für die Missspezifikation wurden.  

Als Schlussfolgerung aus dieser wie auch aus den unter III. 1 und 2 beschriebenen 

vorherigen Simulationsstudien kann wiederum gezogen werden, dass allgemeingültige Cut-

Offs für die Fit-Indizes kaum zu definieren sind. Erstens haben inzidentelle Parameter eines 

Modells, wie die Faktorladungshöhe (oder auch die Stichprobengröße; siehe z.B. Beauducel 

und Wittmann, 2005) einen Einfluss auf die Modellpassung anhand der Fit-Indizes (vgl. Heene 

et al., 2011, wie auch die vorliegende Studie), zweitens die Art und der Schweregrad einer 

Missspezifikation (vgl. Fan et al., 2009, wie auch die vorliegende Studie) und drittens die 

Interaktion aus inzidentellen und die Missspezifikation determinierenden Modellbedingungen 

(vgl. Savalei, 2012, wie auch die vorliegende Studie). Die zusätzliche Verwendung der 

Modifikationsindizes kann zur Verbesserung der Beurteilung der Modellpassung nicht 

empfohlen werden, da diese keine reliablen Indikatoren für den Ort der Missspezifikation 

darstellen (Kaplan, 1988).  



 
 

 71  

Entgegen der Befunde zu den Fit-Indizes identifizierte der χ2-Test im Rahmen dieser 

Studie die Missspezifikation über alle Bedingungen hinweg und an allen 

Stichprobenkovarianzmatrizen. Aufgrund dessen, dass der χ2-Wert die unterschiedlichen Grade 

der Missspezifikation anzeigte, konnte auch der Nonzentralitätsparameter, wie von Fan und 

Sivo (2005) sowie Fan et al. (2009) vorgeschlagen, zur Bestimmung des Grades der 

Missspezifikation dienen.   

Die Empfehlungen, die sich aus dieser Simulationsstudie ableiten lassen, sind 

keineswegs neu. Zum einen wird generell empfohlen, mehrere Fit-Indizes (siehe II. 2) nur in 

Kombination mit dem χ2-Test unter Berücksichtigung seiner Freiheitsgrade zur Beurteilung der 

Modellpassung heranzuziehen (Schermelleh-Engel et al., 2003). Die Befunde aus der 

vorliegenden Studie legen insbesondere nahe, dass bei der Modellevaluation auf den χ2-Test zu 

achten ist, da dieser die Modellabweichung im Gegensatz zu den Fit-Indizes anzeigte. Als 

Empfehlung für die Anwendung kann daher gegeben werden, dass Vorsicht geboten ist, sobald 

die Fit-Indizes Modellpassung anzeigen, der χ2-Test aber nicht. Der χ2-Test gibt allerdings nicht 

die Größe der Missspezifikation an (Saris et al., 1987), daher ist die gleichzeitige Betrachtung 

der lokalen Fitmaße unabdingbar.  

Zum anderen bestätigen diese und andere Befunde (z.B. Beauducel & Wittmann, 2005; 

Heene et al., 2011; Savalei, 2012), wie wichtig eine gute Test- und Skalenkonstruktion im 

Vorfeld ist. Es wurde bereits im Rahmen zahlreicher Studien (Heene et al., 2011; Savalei, 2012; 

siehe III. 1 und 2) bestätigt, dass hohe Ladungen die Sensitivität der Fit-Indizes für 

Missspezifikationen erhöhen und dass die Ladungen im Rahmen dieser Studie zwar für die 

Anwendung typisch hoch waren (vgl. Peterson, 2000), für die Entdeckung der 

Missspezifikation aber zu niedrig. Ebenso wurde im Rahmen dieses Studiendesigns gezeigt, 

dass sowohl die Höhe der Faktorkorrelation als auch die Ausgewogenheit der Anzahl der 

Indikatoren pro latenter Variable im Populationsmodell insbesondere für die Sensitivität des 

CFI relevant war, Missspezifikationen im Strukturmodell in Form von 

Dimensionalitätsverletzungen in der Faktorenstruktur zu entdecken. Um den letzteren Befund 

verallgemeinern zu können, bedarf es allerdings weiterer Forschung mit anderen Formen von 

Missspezifikationen im Strukturmodell sowie auch unterschiedlichen Graden an 

Unausgewogenheit der Aufteilung der Indikatoren auf die latenten Variablen.  
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 3.3 Limitationen und Implikationen 

 

Die Befunde aus dem Design dieser Simulationsstudie lassen vermuten, dass 

insbesondere die Fit-Indizes RMSEA und SRMR nicht geeignet dafür sind, 

Missspezifikationen in Form von Dimensionalitätsverletzungen in der Faktorenstruktur zu 

entdecken, sofern die Cut-Off-Werte nach Hu und Bentler (1998, 1999) das Kriterium 

darstellen. Allerdings sollte diese Vermutung umfassender untersucht werden, um die Befunde 

bestätigen zu können, zumal, wie bereits unter III. 2.3 beschrieben, Fehlspezifikationen im 

Strukturmodell und deren Auswirkungen auf die Fit-Indizes bisher noch wenig untersucht 

wurden.    

Wie bereits erwähnt, wurde die Stichprobengröße in dieser Studie konstant gehalten, 

um die Missspezifikation im Strukturmodell möglichst spezifisch, ohne zu viele Mehrfach-

Interaktionen mit anderen Modellparametern, zu untersuchen. Vermutlich schneiden die Fit-

Indizes bei der Entdeckung des Misfit bei einer größeren Stichprobe besser ab. Eine größere 

Stichprobe ist allerdings im Kontext der angewandten Forschung innerhalb der Psychologie 

kaum realistisch.  

Im Rahmen dieser Studie fiel der absolute Wert des RMSEA geringer aus als in 

derselben Missspezifikationsbedingung bei Savalei, ähnlich verhielten sich SRMR und CFI im 

Vergleich zu Mahlers (2011) Studie. Wie bereits erwähnt wurde, liegt die Vermutung nahe, 

dass die Heterogenität der Faktorladungen im Rahmen dieser Simulationsstudie, die 

unterschiedliche Anzahl an Items und möglicherweise aber auch Unterschiede in der 

Stichprobengröße34 verantwortlich dafür waren, dass die Modellpassung schlechter ausfiel als 

bei Savalei und Mahler. Daher sollten im Kontext weiterer Studien homogene und heterogene 

Ladungen sowohl im Rahmen korrekter Modelle verglichen werden, als auch im Rahmen von 

Missspezifikationen im Strukturmodell und im Messmodell hinsichtlich ihrer Fähigkeit, die 

Modellabweichung zu entdecken, untersucht werden.   

Außerdem ist im Rahmen weiterer Simulationsstudien zu Missspezifikationen im 

Strukturmodell zu untersuchen, ob der CFI tatsächlich auch abhängig von der Art der 

Missspezifikation und der (Non-)Zentralität deren Teststatistik ist, wie von Curran et al. (2002) 

vorgeschlagen wurde und wie in der vorliegenden Studie und der Studie von Mahler (2011) in 

                                                
34Mahler (2011) und Savalei (2012) nannten ihre Stichprobengrößen nicht.  
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Kontrast zu den Befunden von Heene et al. (2011) zur Höhe der Faktorladungen angenommen 

wurde.  

Im Rahmen dieses Designs stellte die Höhe der Faktorkorrelation in den 

Populationsmodellen einen Parameter dar, der neben der Indikatorenaufteilung den 

Schweregrad der Missspezifikation determinierte. Dieser Parameter interagierte hinsichtlich 

seines Einflusses auf die Fit-Indizes mit der Höhe der Faktorladungen, einem inzidentellen 

Parameter im Rahmen dieser Studie. Es liegt daher nahe, den Einfluss der 

Faktorkorrelationshöhe und der Faktorladungshöhe danach getrennt hinsichtlich ihrer 

Auswirkungen auf die Fit-Indizes zu untersuchen, ob sie beide inzidentelle Parameter darstellen 

oder beide für den Grad der Missspezifikation verantwortlich sind.   

Ebenso wurden im Rahmen dieses Designs die Nebenladungen auf Null gesetzt. Dies 

stellt allerdings in der angewandten Forschung einen sehr seltenen Fall dar (Beauducel & 

Wittmann, 2005). Nebenladungen, die fälschlicherweise auf Null gesetzt wurden, sollten daher 

als weitere inzidentelle Bedingung im Rahmen dieses Designs, oder auch als Bedingung, die 

u.a. den Grad der Missspezifikation ausmacht, in ihren Auswirkungen auf die Fit-Indizes 

untersucht werden.  

Weiters sind mehr und verschiedenere Missspezifikationen im Strukturmodell zu 

untersuchen, da Missspezifikationen im Strukturmodell, insbesondere Missspezifikationen 

hinsichtlich der Dimensionalität der Faktorenstruktur, bisher noch kaum untersucht wurden. Es 

bietet sich an, weitere Fit-Indizes im Rahmen des umfassenden Designs von Savalei (2012) zu 

untersuchen: Eine Missspezifikation in Form von statistischer Eindimensionalität, wenn im 

Populationsmodell oblique oder orthogonale Faktorenstrukturen vorliegen, sowie 

Populationsmodelle mit mehr als zwei latenten Variablen. Allerdings sollte das Design von 

Savalei, wie in der vorliegenden Studie, anhand von realistisch hohen und realistisch 

heterogenen Faktorladungen bezüglich der Fit-Indizes ausgetestet werden.  

Die oben aufgeworfene Frage nach den Nebenladungen führt zu einer weiteren 

Implikation für künftige Simulationsstudien, die die Auswirkungen von Missspezifikationen 

auf die Fit-Indizes untersuchen. Es ist zu vermuten, dass in der angewandten Forschung nicht 

nur entweder Missspezifikationen im Messmodell oder im Strukturmodell, sondern beide Arten 

von Missspezifikationen gleichzeitig auftreten. Die Forschung bisher beschränkte sich 

vermutlich aus Gründen der Handhabbarkeit entweder auf Missspezifikationen im Mess-, oder 

im Strukturmodell. Die Vermutung liegt nahe, dass miteinander einhergehende 

Modellverletzungen im Mess- und Strukturmodell die Modellevaluation anhand der Fit-Indizes 
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noch zusätzlich erschweren. Insbesondere für den RMSEA sollte ein derartiges Design 

herausfordernd sein, da dieser Fit-Index zusätzlich noch von der Anzahl der Indikatoren 

abhängt (Kenny & McCoach, 2009; Savalei, 2012). Savalei (2012) schlussfolgerte dazu aus 

ihren Studien, dass drei Indikatoren pro latenter Variable dazu führen, dass die Sensitivität des 

RMSEA zur Entdeckung von Modellabweichungen in Form von Messfehlerkovarianzen 

innerhalb eines Messmodells minimal wäre, wohingegen die Sensitivität zur Entdeckung von 

Missspezifikationen im Strukturmodell in Form nicht-spezifizierter Faktorkorrelationen 

maximiert wäre.   

 

 3.4 Ausblick auf die zweite Studie 

 

Im Rahmen der ersten Simulationsstudie wurden die Auswirkungen von 

Missspezifikationen auf die Güte der Modellpassung untersucht. Die Ergebnisse implizieren, 

dass SRMR und RMSEA im Kontext des verwendeten Forschungsdesigns ungeeignet dafür 

waren, Missspezifikationen auf der Ebene der latenten Variablen zu erkennen. Die Befunde 

favorisieren zwar den CFI zur Beurteilung des Modellfits, sofern das zu evaluierende Modell 

ein oder mehrere Strukturmodelle enthält, doch erkannte der CFI geringe Missspezifikationen 

in Form von hohen Faktorkorrelationen im Populationsmodell im Rahmen des untersuchten 

Designs auch nicht.   

Vor dem Hintergrund dieser Befunde stellt sich nun die Frage, inwiefern sich 

Missspezifikationen im Strukturmodell, welche insbesondere von den absoluten Fit-Indizes im 

Gegensatz zum CFI anhand der gängigen Cut-Offs nach Hu und Bentler (1998, 1999) nicht 

erkannt wurden, auf die Validität eines Modells – genauer gesagt auf die Validität der 

diagnostischen Entscheidungen aus den Faktorwerten – auswirken. Diese Fragestellung wurde 

im Rahmen einer zweiten Simulationsstudie untersucht, welche im folgenden Kapitel V 

beschrieben wird. Dazu wurden diagnostische Entscheidungen basierend auf korrelierten 

Populationsfaktorwerten mit diagnostischen Entscheidungen basierend auf den geschätzten 

Faktorwerten aus missspezifizierten einfaktoriellen Modellen verglichen.  
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V     STUDIE 2 
 

1 Methode 
 

1.1 Populationsgenerierung 

 

Die unter III. 5.1 ausgeführte Fragestellung lautete, inwiefern sich 

Modellabweichungen, wie sie bereits im Rahmen von Studie 1 unter IV spezifiziert wurden, 

auf diagnostische Entscheidungen basierend auf den Faktorwerten auswirken würden. Diese 

Fragestellung wurde ebenfalls anhand einer Simulationsstudie untersucht. Es wurden die „R“-

Pakete (R Core Team, 2015) „lavaan“ (Rosseel, 2012), „MASS“ (Venables & Ripley, 2002) 

sowie „psych“ (Revelle, 2015) verwendet. Die Simulationsstudie stellte eine 

Populationssimulation dar. Bei einer Populationssimulation (Kaplan, 1988) werden keine 

Stichproben aus dem Populationsmodell gezogen, wie es in einer Monte-Carlo-Simulation 

üblich ist (vgl. Paxton, Curran, Bollen, Kirby, & Chen, 2001), sondern eine Population 

definiert. Für jede der Bedingungen, welche im Folgenden näher beschrieben werden, wurde 

eine Population mit 1 Million Faktorwerten (True Scores; Eid et al., 2013, S. 818) generiert. 

Aus Replikationsgründen wurden Startwerte für die Generierung der Zufallszahlen gesetzt.  

 

1.2 Design 

 

Der Vergleich beruhte auf dichotomen diagnostischen Entscheidungen, die auf der Basis 

wahrer bzw. definierter Faktorwerte erstellt wurden und dichotomen Klassifikationen, die auf 

Basis der Faktorwerte aus den zu untersuchenden Modellen berechnet wurden. Das Design für 

die Populationsmodelle wurde aus Studie 1 (siehe Kapitel IV) übernommen: Es handelte sich 

wiederum um ein obliques Zwei-Faktoren-Populationsmodell, bei dem der Grad an 

Missspezifikation durch die Höhe der Faktorkorrelation und die Aufteilung der Indikatoren auf 

die beiden latenten Variablen im Populationsmodell bestimmt war. Die beiden Faktoren 

korrelierten entweder zu .30, .50 oder .80 und entweder wurden beide Faktoren von jeweils 10 

Indikatoren gemessen oder der erste Faktor von 15 Indikatoren und der zweite von 5. Der 

entscheidende Unterschied zur Methode der Simulation im Rahmen der Studie 1 lag darin, dass 

die Datengenerierungen nicht aus einem Populations- oder wahren Strukturgleichungsmodell 
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heraus erfolgten, sondern basierend auf definierten bzw. wahren Faktorwerten35. Auf Basis 

dieser definierten Faktorwerte wurden die Strukturgleichungsmodelle aufgebaut36. In einem 

ersten Schritt wurden daher bivariat verteilte wahre Faktorwerte für zwei latente Variablen 

generiert, die entweder zu .30, zu .50 oder zu .80 korrelierten. Außerdem wurden 20 

standardnormalverteilte unique Faktorwerte erzeugt, die weder untereinander korrelierten, noch 

mit den Faktorwerten korrelierten. Weiters wurden die Faktorladungen aus den unter II. 1 und 

3 sowie III 5.1 genannten Gründen zufällig aus dem Bereich [.20, .40] oder aus dem Bereich 

[.40, .60] gleichverteilt gezogen und somit festgelegt. Dadurch konnte die Koeffizientenmatrix 

der uniquen Faktorwerte errechnet werden. In einem zweiten Schritt konnten dann anhand der 

Fundamentalgleichung der Faktorenanalyse (siehe (1) unter II. 1; Mulaik, 2009) aus den wahren 

Faktorwerten, deren Mustermatrix sowie den uniquen Faktorwerten und deren 

Koeffizientenmatrix die beobachteten Werte für die 1 Million Individuen erstellt werden. Die 

generierten Populationsmodelle stellten True-Score-Modelle dar (vgl. Eid, Gollwitzer, & 

Schmitt, 2013, S. 856).  

 

1.3 Durchführung 

 

Zur Beantwortung der ersten Fragestellung wurden fälschlicherweise als einfaktoriell 

spezifizierte Messmodelle mit 2037 Indikatoren auf die Daten angewandt, die basierend auf den 

wahren Faktorwerten erzeugt wurden. Die Varianzen der latenten Variablen der untersuchten 

Modelle wurden auf Eins gesetzt und die Faktorladungen frei geschätzt. Die Schätzung der 

Modellpassung erfolgte wiederum mit dem Maximum-Likelihood-Algorithmus (für eine 

Begründung siehe IV. 1.3). Die Schätzung der Faktorwerte, welche sich bei Anwendung der 

korrekten zweifaktoriellen Modelle und des missspezifizierten einfaktoriellen Modells auf die 

Daten ergaben, erfolgte nach der Methode von Bartlett (1937; für die Begründung siehe Kapitel 

II. 3).  

                                                
35Diese Methode wurde erstmals von Grice und Harris (1998) sowie Grice (2001a, 2001b) beschrieben.  
36An dieser Stelle sei sehr herzlich Herrn Prof. Dr. André Beauducel sowohl für die Idee zu dieser Art der 

Datengenerierung als auch für die Hilfestellung beim Aufbau der entsprechenden Funktion zur Datengenerierung 

gedankt.  
37Wie bereits unter IV erwähnt, stellt dies eine typische Fragebogenlänge dar (vgl. Peterson, 2000; Shrout & Yager, 

1989).  
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Die dichotome Top-Down-Klassifizierung (Gatewood et al., 2016, S. 662; „Störung 

liegt vor“ versus „Störung liegt nicht vor“ ) erfolgte sowohl auf Basis der wahren Faktorwerte, 

als auch auf Basis der aus dem missspezifizierten Modell errechneten Bartlett-Faktorwerte nach 

den höchsten Faktorwerten. Es wurden unterschiedliche Basisraten für die diagnostischen 

Entscheidungen nach den höchsten Faktorwerten berücksichtigt. Die klinischen Basisraten 

wurden an den 12-Monatsprävalenzen psychischer Störungen in der Europäischen Union 

orientiert (Wittchen et al., 2011). Die Basisrate gibt den Prozentsatz der Fälle an der erzeugten 

Gesamtpopulation an, die eine positive Diagnose („Störung liegt vor“) bekamen. Die kleinste 

für die Simulationsstudie verwendete Basisrate von 2.5% wurde an der Prävalenz der 

Posttraumatischen Belastungsstörung, der sozialen Phobie oder der generalisierten 

Angststörung festgemacht (S. 656). Die 5%-Basisrate deckt Suchterkrankungen oder auch das 

Aufmerksamkeits-Defizit-Hyperaktivitäts-Syndrom bei Kindern und Jugendlichen ab (S. 664). 

Die nächstgrößere verwendete Basisrate von 7.5% wurde anhand der Prävalenzen für Insomnie 

oder Major Depression festgelegt (S. 666). Einer Basisrate von 10% entspricht einer 12-

Monatsprävalenz für eine depressive Störung (S. 666). Aus Vergleichsgründen wurden zu den 

kleinen Basisraten in Größenordnungen für die Diagnose einer einzelnen Störung zusätzlich 

noch größere Basisraten von 30%, 50% und 70% in die Studie miteinbezogen. Einer Prävalenz 

von 30% entspricht eine Diagnose aus den Bereichen der Suchterkrankungen, der Angst- und 

Belastungsstörungen, der affektiven Störungen und der somatoformen Störungen im Gesamten 

(S. 666). Gleichzeitig stellt eine Basisrate von 30% auch die Lebenszeitprävalenz für eine 

Angststörung dar (Meyer, Rumpf, Hapke, Dilling, & John, 2000, S. 537); ebenso die 12-

Monats-Prävalenz für zwei oder mehr psychische Störungen (Wittchen & Jacobi, 2001, S. 999). 

Die Lebenszeitprävalenz für irgendeine psychische Störung beträgt nahezu 50% (Meyer et al., 

2000, S. 540). Außerdem entsprechen die größeren verwendeten Basisraten Grundquoten, wie 

sie in der Eignungsdiagnostik vorkommen (Schuler, 2014, S. 359). Eine positive Diagnose 

(„krank“) wurde gestellt, wenn ein Individuum auf beiden wahren Faktoren (konjunktive 

Entscheidungsstrategie; Amelang & Schmidt-Atzert, 2006, S. 399) unter den entsprechenden 

höchsten Perzentilen (97.5%, 95%, 92.5%, 90%, 70%, 50%, 30%) rangierte. Um diese 

bivariaten Basisraten trotz der unterschiedlichen Faktorkorrelationen konstant zu halten, da mit 

der Faktorkorrelation auch die Anzahl der Fälle stieg, die auf beiden Faktoren hohe Werte 

erzielten (vgl. Gardner & Neufeld, 2013), wurden unterschiedliche univariate Cut-Offs 
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ermittelt38. Für die Vergabe der Diagnosen basierend auf den Faktorwerten des 

eindimensionalen missspezifizierten Modells wurde der univariate Cut-Off bei den höchsten 

97.5%, 95%, 92.5%, 90%, 70%, 50% und 30% der Bartlett-Faktorwerte angesetzt. Analog dazu 

wurde der Cut-Off für die Vergabe der Diagnosen basierend auf dem Gesamtsummenwert 

gesetzt.   

Für die Beurteilung der Güte der Klassifikation wurden Sensitivität, Spezifität sowie 

Positiver und Negativer Prädiktionswert berechnet, da diese Kennwerte im Rahmen der 

Psychometrie weit verbreitete Größen zur Evaluation der Güte der Diagnostik darstellen 

(Amelang & Schmidt-Atzert, 2006) und sich gegenseitig komplementieren. Diese ließen sich 

aus den diagnostischen Konsistenzen (True Positives, True Negatives, False Positives und False 

Negatives) berechnen, die zur Erklärung der Befunde zu den diagnostischen Kennwerten 

herangezogen wurden.   

Weiters wurden für einen ordinalen Vergleich der wahren Faktorwerte mit den 

Faktorwerten aus dem missspezifizierten Modell deren Korrelationen gebildet, indem die 

Faktorwerte aus dem missspezifizierten Modell einerseits mit den wahren Faktorwerten des 

ersten Faktors, andererseits mit den wahren Faktorwerten des zweiten Faktors korreliert 

wurden. Diese Korrelationen stellen nach Grice (2001a, 2001b) Maße für die Validität der 

geschätzten Faktorwerte dar.  

Zur Beantwortung der Nebenfragestellung wurden in den 12 verschiedenen 

Bedingungen Gesamtsummenwerte über die 20 erzeugten beobachteten Variablen hinweg 

gebildet. Die Diagnosevergabe erfolgte bei den Gesamtsummenwerten wie bei den 

missspezifizierten Modellen nach den höchsten Werten basierend auf den genannten 

Basisraten. Die Diagnostik auf Basis der Gesamtsummenwerte wurde ebenso anhand der 

genannten diagnostischen Kennwerte mit der Diagnostik basierend auf den wahren 

Faktorwerten verglichen. Außerdem wurden auch die Summenwerte jeweils mit den wahren 

Faktorwerten auf dem ersten Faktor wie auch mit denen auf dem zweiten Faktor korreliert. 

 

  

                                                
38An dieser Stelle sei ganz herzlich Felix Naumann und Florian Pargent für die Hilfe beim Schreiben der 

entsprechenden R-Funktion gedankt.  
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2 Ergebnisse 
 

2.1 Sanity Checks 

 

2.1.1 Eigenwerte 

 

Zur Prüfung der Plausibilität der Generierung der beobachteten Daten aus den wahren 

Faktorwerten heraus wurden zunächst die Eigenwerte der beobachteten Kovarianzmatrix der 

Populationsdaten inspiziert (siehe Tabelle 8). Die Eigenwerte bestimmen zusammen mit den 

Eigenvektoren die Berechnung der Faktorladungen eines Modells (Lawley & Maxwell, 1971; 

Mulaik, 2009); die (Höhe der) Faktorladungen wirken sich wiederum als primärer 

Einflussfaktor auf die Berechnung der Bartlett-Faktorwerte aus (Erklärung folgt unter 2.2.1).  

Die Eigenwerte hingen von der definierten Faktorkorrelation wie auch von der 

vorgegebenen Aufteilung der Indikatoren auf die beiden Faktoren im Populationsmodell ab. 

Die Eigenwerte verhielten sich plausibel: Die ersten beiden Eigenwerte variierten mit der Höhe 

der definierten Faktorkorrelation und mit der vorgegebenen Indikatorenaufteilung auf die 

beiden Faktoren (siehe Tabelle 8). Die Eigenwerte 3 bis 20 waren über die verschiedenen 

Bedingungen hinweg gleich und wurden aus diesem Grund nicht in die Tabelle inkludiert. Mit 

sinkender definierter Faktorkorrelation sank der erste Eigenwert, wohingegen der zweite stieg 

(siehe Tabelle 8), was zeigt, dass sich die Eigenwerte bei sinkender Faktorkorrelation mehr und 

mehr anglichen und sich der Zwei-Faktoren-Struktur im Populationsmodell annäherten. Bei der 

ungleichmäßigen Aufteilung der Indikatoren auf die Faktoren war der erste Eigenwert größer 

und der zweite Eigenwert kleiner als in den vergleichbaren Bedingungen mit der ausgewogenen 

Indikatorenaufteilung (siehe Tabelle 8). Dies spiegelt wider, dass die ungleichmäßige 

Aufteilung der Indikatoren näher am einfaktoriellen Modell lag als die gleichmäßige Aufteilung 

der Indikatoren auf die Faktoren.  

 

 

 

 

 

 

 



 
 

 81  

Tabelle 8 

Erste zwei Eigenwerte der erzeugten beobachteten Kovarianzmatrix 

 Modell 1:  

.80 

[.20, .40] 

10:10 

Modell 2: 

.50 

[.20, .40] 

10:10 

Modell 3: 

.30 

[.20, .40] 

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5: 

.50 

[.20, .40] 

15:5 

Modell 6: 

.30 

[.20, .40] 

15:5 

1. EW 2.685 2.387 2.188 2.744 2.561 2.470 

2.    EW 1.095 1.391 1.590 1.038 1.213 1.303 

 Modell 7:  

.80 

[.40, .60] 

10:10 

Modell 8: 

.50 

[.40, .60] 

10:10 

Modell 9: 

.30 

[.40, .60] 

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60] 

15:5 

Modell 12: 

.30 

[.40, .60] 

15:5 

1. EW 5.475 4.684 4.157 5.624 5.133 4.887 

2.    EW 1.260 2.048 2.575 1.111 1.596 1.842 

Anmerkungen. EW = Eigenwert. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert 

die Höhe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden 

und das Verhältnis gibt die Indikatorenaufteilung auf die Faktoren an.  

 

2.1.2 Modellfit der korrekten Modelle 

 

Aus Vergleichsgründen wurden die diagnostischen Entscheidungen auf Basis der 

wahren Faktorwerte zunächst mit den diagnostischen Entscheidungen verglichen, die auf Basis 

der Bartlett-Faktorwerte aus einem korrekten Modell getroffen wurden. Daher wird an dieser 

Stelle die Modellpassung der korrekten Modelle berichtet. Tabelle 9 gibt den Modellfit 

korrekter Modelle wider, die auf die erzeugten Populationsdaten angewandt wurden, welche 

basierend auf den wahren Faktorwerten generiert wurden. Alle korrekten Modelle zeigten sehr 

gute Modellpassung auf die erzeugten Populationsdaten.  
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Tabelle 9 

Modellpassung der korrekten Modelle 

 Modell 1: 

.80 

[.20, .40] 

10:10 

Modell 2: 

.50 

[.20, .40] 

10:10 

Modell 3: 

.30 

[.20, .40] 

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5: 

.50 

[.20, .40] 

15:5 

Modell 6: 

.30 

[.20, .40] 

15:5 

χ2(169) 

p 

CFI 

RMSEA 

SRMR 

172.746 

.406 

1.000 

< .001 

.001 

168.343 

.500 

1.000 

< .001 

.001 

166.434 

.501 

1.000 

< .001 

.001 

178.452 

.294 

1.000 

< .001 

.001 

179.147 

.282 

1.000 

< .001 

.001 

179.839 

.270 

1.000 

< .001 

.001 

 Modell 7:  

.80 

[.40, .60] 

10:10 

Modell 8: 

.50 

[.40, .60] 

10:10 

Modell 9: 

.30 

[.40, .60] 

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60] 

15:5 

Modell 12: 

.30 

[.40, .60] 

15:5 

χ2(169) 168.686 164.904 164.722 177.066 176.824 177.873 

p 

CFI 

RMSEA 

SRMR 

.492 

1.000 

< .001 

.001 

.575 

1.000 

< .001 

.001 

.579 

1.000 

< .001 

.001 

.320 

1.000 

< .001 

.001 

.324 

1.000 

< .001 

.001 

.305 

1.000 

< .001 

.001 

Anmerkungen. Die Zellen der Beschreibung der Populationsmodelle als ersten Wert die Höhe der 

Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das 

Verhältnis gibt die Indikatorenaufteilung auf die Faktoren an. 

 

2.1.3 Modellfit der missspezifizierten Modelle 

 

Tabelle 10 zeigt die Parameter der Modellpassung für die missspezifizierten 

einfaktoriellen Modelle, die auf die erzeugten Daten angewandt wurden, welche basierend auf 

den wahren Faktorwerten der beiden obliquen Faktoren generiert wurden. Der χ2-Test zeigte 

keine Modellpassung an und der χ2-Wert erzielte in Relation zu der Anzahl der Freiheitsgrade 

von 170 sehr hohe Werte, was eine hohe Modellabweichung indiziert. Die Fit-Indizes zeigten 

ein ähnliches Muster wie in Studie 1 unter VI, wobei insbesondere RMSEA und SRMR in 

vielen Fällen Modellpassung anzeigten.  

Wie in der ersten Studie (siehe Kapitel IV) konnte der χ2-Wert Auskunft über den Grad 

der Missspezifikation geben. Mit zunehmender Missspezifikation (sinkende Faktorkorrelation 

im Populationsmodell) stieg der χ2-Wert. Ebenso war der χ2-Wert bei der ungleichen 

Indikatorenaufteilung auf die beiden Faktoren im Populationsmodell (geringerer Grad an 
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Missspezifikation) niedriger als bei der ausgewogenen Indikatorenaufteilung. 

Dementsprechend verhielt sich auch der Nonzentralitätsparameter (Differenz aus χ2-Wert und 

Freiheitsgraden des Modells; für beide Werte im Einzelnen siehe Tabelle 10): Der 

Nonzentralitätsparameter stieg mit höherem Schweregrad der Missspezifikation, 

operationalisiert durch geringere Faktorkorrelation und ausgewogene Indikatorenaufteilung auf 

die Populationsfaktoren.  

 
Tabelle 10 

Modellpassung der missspezifizierten Modelle 

 Modell 1: 

.80 

[.20, .40] 

10:10 

Modell 2: 

.50 

[.20, .40] 

10:10 

Modell 3: 

.30 

[.20, .40] 

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5: 

.50 

[.20, .40] 

15:5 

Modell 6: 

.30 

[.20, .40] 

15:5 

χ2(170) 

p 

CFI 

RMSEA 

SRMR 

21193.601 

< .001 

.974 

.011 

.010 

108171.383 

< .001 

.842 

.025 

.024 

189767.004 

< .001 

.703 

.033 

.033 

9181.598 

< .001 

.989 

.007 

.006 

40472.649 

< .001 

.946 

.015 

.014 

60537.001 

< .001 

.915 

.019 

.018 

 Modell 7:  

.80 

[.40, .60] 

10:10 

Modell 8: 

.50 

[.40, .60] 

10:10 

Modell 9: 

.30 

[.40, .60] 

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60] 

15:5 

Modell 12: 

.30 

[.40, .60] 

15:5 

χ2(170) 170692.725 707129.913 1127164.083 86337.547 292464.751 404395.746 

p 

CFI 

RMSEA 

SRMR 

< .001 

.953 

.032 

.025 

< .001 

.785 

.064 

.063 

< .001 

.645 

.081 

.088 

< .001 

.978 

.022 

.017 

< .001 

.915 

.041 

.038 

< .001 

.879 

.049 

.049 

Anmerkungen. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die Höhe der 

Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das 

Verhältnis gibt die Indikatorenaufteilung auf die Faktoren an.  

 

2.1.4 Faktorladungen 

 

Die standardisierten Faktorladungen der korrekten Modelle bewegten sich innerhalb der 

Spannweiten, wie sie in den Populationsmodellen definiert wurden (Bedingungen mit den 

typischen Ladungen: M = .310, SD = .063; Bedingungen mit den hohen Ladungen: M = .520, 

SD = .063).  
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Die Faktorladungen der missspezifizierten einfaktoriellen Modelle waren geringer als 

die in den Populationsmodellen definierten Faktorladungen. Die Mittelwerte der Ladungen der 

missspezifizierten Modelle in den Bedingungen mit den typischen Ladungen in den 

Populationsmodellen bewegten sich zwischen M = .246 und M = .293 (SD = .050 bis SD = 

.103), wohingegen sich die Mittelwerte der Bedingungen mit den hohen Ladungen in den 

Populationsmodellen zwischen M = .404 und M = .490 (SD = .053 bis SD = .157) bewegten. 

Außerdem zeigte sich, dass die Ladungen in den missspezifizierten Modellen mit sinkender 

Faktorkorrelation in den Populationsmodellen in zunehmendem Maße geringer wurden 

(Reduktion der standardisierten Faktorladungen im missspezifizierten Modell von .02 bis .11 

bei sinkender Faktorkorrelation).  

 

2.2 Faktorwerte korrekter Modelle 

 

2.2.1 Korrelationen 

 

Bevor aus den Bartlett-Faktorwerten korrekter Modelle Diagnosen gebildet wurden und 

diese mit den Diagnosen aus den wahren Faktorwerten verglichen wurden, wurde zunächst die 

Validität (für den Begriff vgl. Grice [2001a, 2001b]) der Faktorwerteschätzung aus den 

korrekten Modellen bestimmt, auf der wiederum die Validität der diagnostischen 

Entscheidungen aus den Faktorwerten basiert. Dazu wurden die wahren Faktorwerte der beiden 

definierten obliquen Faktoren mit den Bartlett-Faktorwerten der beiden spezifizierten Faktoren 

aus korrekten Modellen korreliert.  

Tabelle 11 zeigt, dass die Höhe der Ladungen in den Populationsmodellen einen 

Einfluss auf die Korrelationen der Faktorwerte hatte. Hohe Faktorladungen in den 

Populationsmodellen führten zu höheren Korrelationen der True Scores und der Bartlett-

Faktorwerte aus den korrekten Modellen. Die unausgewogene Indikatorenaufteilung führte zu 

geringfügig höheren Korrelationen (Unterschied auf der zweiten Dezimalstelle, siehe Tabelle 

11) der wahren und der aus dem korrekten Modell geschätzten Faktorwerte der ersten Faktoren 

(überrepräsentiert durch 15 Indikatoren) und niedrigeren Korrelationen der Faktorwerte der 

zweiten Faktoren (5 Indikatoren) im Vergleich zur gleichmäßigen Indikatorenaufteilung auf die 

Faktoren (siehe Tabelle 11). Für letzteren Befund liegt folgende Erklärung nahe: Estabrook und 

Neale (2013) zeigten anhand einer Simulationsstudie mit einem mehrfaktoriellen Modell, dass 

die geschätzten Faktorwerte bei einer höheren Anzahl an Indikatoren näher an den wahren 
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Faktorwerten lagen als bei einer geringen Anzahl an Indikatoren pro Faktor. Lawley und 

Maxwell (1971) zeigten außerdem, dass sich die Verteilungseigenschaften der geschätzten 

Faktorwerte mehr denen der wahren Faktorwerte annähern, wenn mehr Indikatoren verwendet 

wurden.  

 
Tabelle 11 
Korrelationen der wahren Faktorwerte und der Faktorwerte aus einem korrekten Modell 

 Modell 1: 

.80 

[.20; .40] 

10:10 

Modell 2: 

.50 

[.20; .40] 

10:10 

Modell 3: 

.30 

[.20; .40] 

10:10 

Modell 4: 

.80 

[.20; .40] 

15:5 

Modell 5: 

.50 

[.20; .40] 

15:5 

Modell 6: 

.30 

[.20; .40] 

15:5 

rW1-K1 

rW2-K2 

.733*** 

.723*** 

.733*** 

.724*** 

.733*** 

.724*** 

.795*** 

.591*** 

.795*** 

.591*** 

.795*** 

.591*** 

 Modell 7:  

.80 

[.40; .60] 

10:10 

Modell 8:  

.50 

[.40; .60] 

10:10 

Modell 9:  

.30 

[.40; .60]  

10:10 

Modell 10: 

.80 

[.40; .60] 

15:5 

Modell 11: 

.50 

[.40; .60] 

15:5 

Modell 12: 

.30 

[.40; .60] 

15:5 

rW1-K1 .889*** .889*** .889*** .921*** .921*** .921*** 

rW2-K2 .885*** .885*** .885*** .800*** .800*** .800*** 

Anmerkungen. rW1-K1 = Korrelation der wahren Faktorwerte des ersten definierten Faktors mit den Bartlett-

Faktorwerten des ersten Faktors des korrekten Modells, rW1-K1 = Korrelation der wahren Faktorwerte des zweiten 

definierten Faktors mit den Bartlett-Faktorwerten des zweiten Faktors des korrekten Modells, *** = höchst 

signifikanter Zusammenhang. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die 

Höhe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden 

und das Verhältnis gibt die Indikatorenaufteilung auf die Faktoren an.  

 

Die Höhe der Korrelationen zwischen den wahren Faktorwerten und den Faktorwerten 

aus den korrekten Modellen war insgesamt unerwartet niedrig, wurden doch korrekte Modelle 

auf die erzeugten Daten angewandt. Der Grund für dieses Phänomen liegt in den niedrigen 

definierten Faktorladungen in den Populationsmodellen. Desto niedriger die Faktorladungen 

eines Modells, desto mehr ist die Berechnung der Faktorwerte fehlerbehaftet. Wie aus 

Gleichung (10) unter II. 3 (Grice, 2001b, S. 433) ersichtlich, werden für die Berechnung der 

Bartlett-Faktorwerte (wie auch der anderen Faktorwerte) die Faktorladungen benötigt; die 

Berechnung der Bartlett-Faktorwerte erfolgt durch Minimierung der Off-Diagonal-Elemente 

der Uniqueness-Matrix (DiStefano et al., 2009). Die uniquen Faktorwerte sind proportional zu 
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den uniquen Faktorladungen39. Das heißt, große Einträge in den Off-Diagonal-Elementen der 

Uniqueness-Matrix senken die Validität (Grice, 2001a, 2001b) der berechneten Faktorwerte.  

Dass primär die Faktorladungen Einfluss auf die Berechnung der Bartlett-Faktorwerte 

haben und als Konsequenz niedriger Ladungen die Faktorenunbestimmtheit größer wird, wurde 

bereits unter II. 3 beschrieben und zeigte sich bereits an der Validität der Faktorwerte (siehe 

Tabelle 11). Dieser Befund hat wiederum negative Auswirkungen auf die Güte der Diagnostik 

auf Basis der Bartlett-Faktorwerte, die an späterer Stelle berichtet werden. Daher wird an dieser 

Stelle zunächst der Grad der Unbestimmtheit anhand der Formel von Guttman (1955, S. 73; 

siehe Gl. (11) unter II. 3) berichtet.  

Dem Befund zu den Korrelationen der True Scores und der Bartlett-Faktorwerte  

entsprechend war die Unbestimmtheit der Faktorwerte, operationalisiert durch ρ? (siehe Gl. 

(11) unter II. 3; Guttman, 1955, S. 73), in den Bedingungen mit den typischen Ladungen höher 

als in den Bedingungen mit den hohen Ladungen (siehe Tabelle 12). In allen Bedingungen mit 

den typischen Ladungen im Populationsmodell war der Grad an Faktorenbestimmtheit kleiner 

als 50% (Quadratwurzel aus ρ?;	siehe Tabelle 12). Ein Grad an Faktorenunbestimmtheit von 

unter 70% bedeutet, dass es Sets aus Faktorwerten gibt, die nicht einmal positiv miteinander 

korrelieren, d.h., dass die Sets aus Faktorwerten substanziell sogar in die entgegengesetzte 

Richtung gehen können (Guttman). Außerdem war bei den Bedingungen mit den typischen 

Ladungen im Populationsmodell die maximal mögliche Unbestimmtheit der Faktorwerte, 

operationalisiert durch ρ∗ (siehe Gl. (11) unter II. 3; Guttman, S. 73), größer als in den 

Bedingungen mit den hohen Ladungen (siehe Tabelle 12). Dies geht einher mit dem Befund zu 

den Korrelationen, nach denen die Faktorwerte der Populationsmodelle mit hohen Ladungen 

höher korrelierten als die der Populationsmodelle mit typischen Ladungen. Bei der 

unausgewogenen Indikatorenaufteilung ging die Bestimmtheit der Faktoren zwischen den 

beiden Faktoren weiter auseinander als bei der ausgewogenen Indikatorenaufteilung. Auch 

dieses Ergebnismuster steht im Einklang zu den Befunden zu den Korrelationen der 

Faktorwerte.  

 
 

                                                
39Diese Proportionalität 𝚿 ∙ 𝐄 (siehe Fundamentalgleichung der Faktorenanalyse; Gleichung (1) unter II. 1; 

Mulaik, 2009) wird an den Bartlett-Faktorwerten ersichtlich, sobald man in die Gleichung zur Berechnung der 

Matrix der Bartlett-Faktorwerte (siehe Gl. (10) unter II. 3) die Fundamentalgleichung der Faktorenanalyse einsetzt:  

𝐗	=	𝐘	𝚿−𝟐	𝚲	(𝚲′	𝚿−𝟐	𝚲)−𝟏	=(𝚲	𝐗	+	Ψ	𝐄)	(Ψ	𝐄)−𝟏	𝚲	(𝚲′	(Ψ	𝐄)−𝟏	𝚲)−𝟏	 
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Tabelle 12 

Unbestimmtheit der Faktorwerte im korrekten Modell 

 Modell 1: 

.80 

[.20, .40] 

10:10 

Modell 2: 

.50 

[.20, .40] 

10:10 

Modell 3: 

.30 

[.20, .40] 

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5: 

.50 

[.20, .40]  

15:5 

Modell 6: 

.30 

[.20, .40]  

15:5 

ρ?1F 

ρ?2F 

ρ∗1F 

ρ∗2F 

.624*** 

.618*** 

.249*** 

.236*** 

.568*** 

.556*** 

.136*** 

.112*** 

.548*** 

.534*** 

.097*** 

.069*** 

.667*** 

.549*** 

.335*** 

.097*** 

.645*** 

.420*** 

.290*** 

-.160*** 

.637*** 

.374*** 

.274*** 

-.253*** 

 Modell 7:  

.80 

[.40, .60] 

10:10 

Modell 8:  

.50 

[.40, .60] 

10:10 

Modell 9:  

.30 

[.40, .60]  

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60]  

15:5 

Modell 12: 

.30 

[.40, .60]  

15:5 

ρ?1F .827*** .800*** .793*** .863*** .853*** .850*** 

ρ?2F 

ρ∗1F 

ρ∗2F  

.822*** 

.653*** 

.644*** 

.793*** 

.600*** 

.587*** 

.786*** 

.587*** 

.572*** 

.748*** 

.726*** 

.495*** 

.671*** 

.705*** 

.343*** 

.650*** 

.700*** 

.300*** 

Anmerkungen. ρ? = Maß für die Höhe der Faktorenunbestimmtheit (Guttman, 1955, S. 73), ρ∗ = Maß für die 

maximal mögliche Unbestimmtheit der Faktorwerte (Guttman, S. 73), 1F = 1. Faktor des korrekten Modells, 2F = 

2. Faktor des korrekten Modells, *** = höchst signifikanter Zusammenhang. Die Zellen der Beschreibung der 

Populationsmodelle enthalten als ersten Wert die Höhe der Faktorkorrelation, der Bereich bezeichnet das Intervall, 

aus dem die Faktorladungen gezogen wurden und das Verhältnis gibt die Indikatorenaufteilung auf die Faktoren 

an.  

 

Exkurs: Populationsmodelle mit extrem hohen Ladungen  

 

Wurden im Rahmen desselben Designs Populationsmodelle mit Faktorladungen aus 

dem Bereich [.80, 1.00[40 zusammengesetzt, beträgt ρ? nahezu Eins (Range	ρ? .993-.996) und 

die Bartlett-Faktorwerte aus dem korrekt spezifizierten Modell korrelierten mit den wahren 

Faktorwerten auch zu fast Eins (Range der Korrelationen .994-.997). Das heißt, sehr hohe 

Ladungen (hohe Reliabilität) führten auch zu einer hohen Validität (für den Begriff vgl. Grice 

[2001a, 2001b]) der berechneten Faktorwerte.  

                                                
40Für die Berechnung der Bartlett-Faktorwerte wird die Inverse der Uniqueness-Matrix benötigt (Grice, 2001b, S. 

433). Daher müssen die Einträge in der Diagonalen dieser Matrix ungleich Null sein. Aus diesem Grund wurde 

die Zahl 1 für die zufällige Erzeugung der Faktorladungen exkludiert, damit die Matrix nicht-singulär und somit 

invertierbar ist.  
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2.2.2 Güte der Diagnostik 

 

Die Diagnosen wurden auf Basis der höchsten wahren Faktorwerte auf beiden Faktoren 

wie auch basierend auf den Bartlett-Faktorwerten der beiden Faktoren aus den korrekten 

Modellen gebildet. Es wurden unterschiedliche Basisraten für die Diagnosegebung verwendet 

(die höchsten 97.5%, 95%, 92.5%, 90%, 70%, 50% und 30% auf beiden Faktoren). Es wurden 

unterschiedliche univariate Cut-Offs für die Vergabe der Diagnosen auf Basis der True Scores 

und der Bartlett-Faktorwerte aus den korrekten Modellen verwendet (siehe V. 1.3), die von der 

Korrelation der Faktoren in den Populationsmodellen abhingen. Für die Evaluation der Güte 

der dichotomen Klassifikationen wurden Sensitivität, Spezifität sowie Positiver und Negativer 

Prädiktionswert berechnet.  

 

Basisraten und Faktorladungen 

 

Zunächst ist zu erwähnen, dass die auf Basis der wahren Faktorwerte definierten 

bivariaten Basisraten (die 2.5%, 5%, 7.5%, 10%, 30%, 50% und 70% Fälle an der 

Gesamtpopulation mit den höchsten Faktorwerten auf beiden Faktoren) durch Anwendung der 

univariaten Cut-Offs auf die Bartlett-Faktorwerte, die aus den korrekten Modellen berechnet 

wurden, nicht reproduziert werden konnten (siehe Abbildungen 1a und b).  

Die vier kleinen Basisraten in klinischen Größenordnungen wurden deutlich überschätzt 

(Überschätzung bis zu knapp 100 Prozentpunkte der definierten kleinsten Basisrate; siehe 

Abbildung 1a), die drei großen Basisraten wurden deutlich unterschätzt (bis zu 25 

Prozentpunkte Unterschätzung der größten Basisrate; siehe Abbildung 1b). Für dieses 

Phänomen können die realistisch niedrig definierten Ladungen in den Populationsmodellen 

verantwortlich gemacht werden. Außerdem wurden bei den höheren Ladungen im Rahmen 

dieses Designs die vier kleinen Basisraten weniger überschätzt als bei den typischen Ladungen 

und die drei großen Basisraten weniger unterschätzt als bei den typischen Ladungen. 
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Abbildung 1a. Überschätzung der kleinen Basisraten basierend auf den aus den korrekten Modellen berechneten 

Bartlett-Faktorwerten, die vier breiten grauen Linien symbolisieren die Basisraten, wie sie in den 

Populationsmodellen definiert wurden; die Spalten der x-Achse sind mit den Beschreibungen der 

Populationsmodelle gekennzeichnet 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Abbildung 1b. Unterschätzung der großen Basisraten basierend auf den aus den korrekten Modellen berechneten 

Bartlett-Faktorwerten (für die Legende siehe Abbildung 1a) 
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Im Folgenden werden die Auswirkungen der über- und unterschätzten Basisraten auf 

die Güte der Diagnostik aus den Faktorwerten der korrekten Modelle geschildert. 

 

Alle diagnostischen Kennwerte zeigten eine hohe Abhängigkeit von den Basisraten. 

Kleine Basisraten bzw. Basisraten unter 50% beeinträchtigten vor allem die Rate der korrekt 

als krank Erkannten (siehe Abbildung 14 im Anhang) im Vergleich zur Rate an korrekt als 

gesund Erkannten (siehe Abbildung 15 im Anhang). Die überschätzten kleinen und die 

unterschätzten großen Basisraten wirkten sich an erster Stelle auf den Positiven Prädiktionswert 

(siehe Abbildung 2) aus, an zweiter Stelle auf die Sensitivität (siehe Abbildung 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Abbildung 2. Positiver Prädiktionswert der Diagnostik basierend auf den Bartlett-Faktorwerten korrekter 

Modelle; die Spalten der x-Achse sind im Rahmen dieser und aller folgenden Abbildungen mit den 

Beschreibungen der Populationsmodelle gekennzeichnet 
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Abbildung 3. Sensitivität der Diagnostik basierend auf den Bartlett-Faktorwerten korrekter Modelle  

 

Insgesamt fiel die Anzahl der False Positives (siehe Abbildung 16 im Anhang) aus den 

Bartlett-Faktorwerten korrekter Modelle zwischen den verschiedenen 

Populationsmodellbedingungen heterogener aus als die anderen Kennwerte der diagnostischen 

Konsistenzen (siehe die Abbildungen 14, 15 und 17 im Anhang), was sich primär auf den 

Positiven Prädiktionswert (siehe Abbildung 2) auswirkte (Erklärung folgt unter „Exkurs: 

Populationsmodelle mit extrem hohen Ladungen“ am Ende des Unterkapitels).  

Dass der Positive Prädiktionswert (siehe Abbildung 2) bei kleinen Basisraten am 

niedrigsten von allen diagnostischen Kennwerten ausfiel, ist darauf zurückzuführen, dass bei 

kleinen Basisraten, die anhand des korrekten Modells überschätzt wurden, einerseits prozentual 

an der Gesamtpopulation pro Bedingung gesehen weniger Korrekt Positive auftraten als 

Korrekt Negative, und andererseits, dass bei kleinen Basisraten aufgrund deren Überschätzung 

sehr viele Falsch Positive auftraten (siehe Abbildung 16 im Anhang) und weniger Falsch 

Negative (siehe Abbildung 17 im Anhang; Unterschied zwischen Falsch Positiven und Falsch 

Negativen bis zu einem Prozentpunkt an allen Diagnosen insgesamt auf Basis der Faktorwerte 

des korrekten Modells). Auf Grund dieser Befunde fiel die Sensitivität (siehe Abbildung 3) bei 

kleinen Basisraten auch niedrig aus, aber höher als der Positive Prädiktionswert. Dadurch, dass 

bei großen Basisraten aufgrund deren Unterschätzung mehr Falsch Negative als Falsch Positive 
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auftraten (Unterschied bis zu 10 Prozentpunkte an allen Diagnosen in der Gesamtpopulation 

auf Basis der Faktorwerte des korrekten Modells), fiel die Sensitivität bei großen Basisraten 

niedriger aus als der Positive Prädiktionswert.  

Weniger als auf Positiven Prädiktionswert und Sensitivität wirkten sich die 

überschätzten kleinen und unterschätzten großen Basisraten auf den Negativen Prädiktionswert 

(siehe Abbildung 4) und am wenigsten auf die Spezifität (siehe Abbildung 5) aus. Durch die 

Unterschätzung der großen Basisraten gab es bei der Diagnostik durch die Faktorwerte des 

korrekten Modells bei den großen Basisraten deutlich mehr Falsch Negative (siehe Abbildung 

17 im Anhang) als Falsch Positive (siehe Abbildung 16 im Anhang; Unterschied bis zu 10 

Prozentpunkte an allen Diagnosen der Gesamtpopulation auf Basis der Faktorwerte des 

korrekten Modells), sodass sich dieser Umstand vor allem auf den Negativen Prädiktionswert 

(siehe Abbildung 4) niederschlug und weniger auf die Spezifität (siehe Abbildung 5). Dadurch, 

dass die Rate der Korrekt Negativen absolut gesehen bei kleinen Basisraten sehr hoch war, 

fielen Negativer Prädiktionswert und Spezifität bei kleinen Basisraten ähnlich aus, da die 

kleinen Unterschiede in der Anzahl der Falsch Positiven und der Falsch Negativen hinsichtlich 

dieser beiden diagnostischen Kennwerte weniger ins Gewicht fielen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Abbildung 4. Negativer Prädiktionswert der Diagnostik basierend auf den Bartlett-Faktorwerten korrekter 
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Über alle diagnostischen Kennwerte hinweg (siehe die Abbildungen 2 bis 5) führte die 

ausgewogene Indikatorenaufteilung im Populationsmodell im Vergleich zu unausgewogener zu 

marginal besserer Diagnostik auf Basis der Faktorwerte der korrekten Modelle. Der Befund 

wird unter 3.2 im Kontext der Befunde zum missspezifizierten Modell diskutiert.  

Die Abbildungen 2 bis 5 zeigen die beiden Hauptbefunde hinsichtlich der Diagnostik 

auf Basis der Bartlett-Faktorwerte der korrekten Modelle: Die Güte der Diagnostik hing vor 

allem von der Höhe der Basisrate ab, aber auch von der Höhe der Faktorladungen und von der 

Interaktion aus beidem. Hinsichtlich der Korrektheit eines Krankheitszustands und Korrektheit 

einer positiven Diagnose41 zeigten sich kleine Basisraten als problematisch. Sofern die 

Korrektheit eines Gesundheitszustands und die Korrektheit einer negativen Diagnose42 Ziel der 

Diagnostik ist, waren hohe Basisraten für das Vorliegen einer positiven Diagnose ungünstig. 

Mit höheren Faktorladungen in den Populationsmodellen stieg sowohl die Güte der Diagnostik 

anhand aller vier Kennwerte als auch wurde der Einfluss der unterschiedlichen Basisraten auf 

die Güte der Diagnostik mit höheren Ladungen geringer (siehe Modelle 7 bis 12 in den 

Abbildungen 2 bis 5).  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Abbildung 5. Spezifität der Diagnostik basierend auf den Bartlett-Faktorwerten korrekter Modelle 

                                                
41Sensitivität und Positiven Prädiktionswert betreffend  
42respektive Spezifität und Negativem Prädiktionswert  
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Exkurs: Populationsmodelle mit extrem hohen Ladungen  

 

Aus Vergleichsgründen wurden Populationsdaten basierend auf Populationsmodellen 

mit unrealistisch hohen Ladungen aus dem Bereich [.80, 1.00[ erzeugt. Diese 

Populationsmodelle entsprachen mit Ausnahme der Höhe der Ladungen den unter V. 1.2 

beschriebenen Modellbedingungen.  

Wie bereits unter V. 2.2.1 erwähnt, stieg die Validität der berechneten Faktorwerte aus 

den korrekten Modellen mit der Höhe der Faktorladungen. In Konsequenz dessen wurden bei 

Verwendung dieser extrem hohen Ladungen auch die im Rahmen der Populationsmodelle 

definierten Basisraten reproduziert (Unterschiede zwischen den Basisraten bei den True Scores 

und den Basisraten aus den Faktorwerten korrekter Modelle unter 0.1 Prozentpunkten). 

Die Befunde zur Diagnostik basierend auf den Bartlett-Faktorwerten korrekter Modelle, 

die auf die Populationsdaten angewandt wurden, die aus Modellen mit extrem hohen 

Faktorladungen erzeugt wurden, zeigten, dass sich die Verteilungseigenschaften der 

Faktorwerte aus diesen Modellen denen der True Scores annäherten (SD der wahren 

Faktorwerte 0.999-1.000 versus SD der Faktorwerte aus korrekten Modellen 1.003-1.006). Bei 

den realistisch hoch definierten Ladungen im Rahmen dieses Designs wichen die 

Verteilungseigenschaften der Faktorwerte aus den korrekten Modellen hingegen stärker von 

denen der Populationsfaktorwerte ab (SD der Faktorwerte aus den korrekten Modellen mit 

realistisch hohen Ladungen über die Modellbedingungen hinweg 1.218-1.492).  

Wurden diese extrem hohen Ladungen zur Generierung der Populationsmodelle 

verwendet, sanken Sensitivität und Positiver Prädiktionswert selbst bei kleinen Basisraten nicht 

unter .895. Mit extrem hohen Ladungen schwankte die Anzahl der False Positives weniger mit 

den Populationsmodellbedingungen (Unterschiede innerhalb einer Bedingung maximal 1 

Prozentpunkt über die Basisraten hinweg an allen Diagnosen) und insofern variierte auch der 

Positive Prädiktionswert weniger (maximaler Range .895-.981 innerhalb einer Bedingung) als 

bei den Ladungen, die für das vorliegende Design verwendet wurden. Negativer 

Prädiktionswert und Spezifität sanken bei großen Basisraten nicht unter .951. Das heißt, mit 

sehr hohen Faktorladungen konnte der Einfluss der Höhe der Basisrate auf die Güte der 

Diagnostik weitestgehend ausgeglichen werden.  

Eine Einschränkung dieser Befunde zu den extrem hohen Ladungen stellt allerdings dar, 

dass die Modellschätzung mittels Maximum-Likelihood-Algorithmus bei drei der korrekten 

Modelle nicht konvergierte. Allerdings lagen die frei zu schätzenden Modellparameter, 
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insbesondere die Faktorladungen dieser Modelle, welche primär für die Schätzung der Bartlett-

Faktorwerte verantwortlich sind, sehr nahe an den in den Populationsmodellen definierten 

Parametern (Unterschiede < .0015 bei standardisierten Ladungen), weshalb diese Befunde trotz 

dieser Einschränkung als erwähnenswert gelten.  

 

2.2 Faktorwerte missspezifizierter Modelle 

 

2.3.1 Korrelationen 

 

Auch bei Anwendung des missspezifizierten Modells auf die Populationsdaten wurde 

zunächst die Validität (Grice, 2001a, 2001b) der Faktorwerte selbst bestimmt, die aus diesem 

missspezifizierten Modell geschätzt wurden, bevor die Validität der Diagnosen aus den 

Faktorwerten des missspezifizierten Modells bestimmt wurde. Dazu wurden die wahren 

Faktorwerte der beiden definierten obliquen Faktoren jeweils mit den Bartlett-Faktorwerten des 

einen Faktors aus dem missspezifizierten Modell korreliert.  

Es zeigte sich, dass die Höhe der Ladungen in den Populationsmodellen einen Einfluss 

auf die Korrelationen der wahren Faktorwerte mit den Bartlett-Faktorwerten aus dem 

missspezifizierten Modell hatte (siehe Tabelle 13). Hohe Faktorladungen führten zu höheren 

Korrelationen (Unterschiede zu typischen Faktorladungen auf der ersten Dezimalstelle). Die 

unausgewogene Indikatorenaufteilung im Populationsmodell (geringerer Grad an 

Missspezifikation) führte im Vergleich zur gleichmäßigen Aufteilung zu geringfügig höheren 

Korrelationen der Faktorwerte der ersten Faktoren (überrepräsentiert durch 15 Indikatoren im 

Populationsmodell) mit den Faktorwerten aus dem eindimensionalen missspezifizierten Modell 

mit den 20 Indikatoren (Unterschiede auf der zweiten Dezimalstelle). Umgekehrt ergaben die 

Korrelationen der Faktorwerte der zweiten Faktoren (5 Indikatoren im Populationsmodell) mit 

den Faktorwerten aus dem missspezifizierten Modell mit den 20 Indikatoren im Vergleich zur 

gleichmäßigen Indikatorenaufteilung auf die Faktoren im Populationsmodell geringfügig 

niedrigere Korrelationen (siehe Tabelle 13; Unterschiede auf der zweiten Dezimalstelle). Für 

diesen Befund können zwei alternative Erklärungen angeführt werden. Die erste Erklärung 

betrifft den Grad der Missspezifikation operationalisiert an der Indikatorenaufteilung in den 

Populationsmodellen. Das missspezifizierte Modell lag mit den 20 Indikatoren näher am 

Populationsmodell mit unausgewogener Itemaufteilung, dies könnte sich positiv auf die 

Korrelation zwischen den Faktorwerten des missspezifizierten Modells und dem ersten wahren 



 
 

 96  

Faktor ausgewirkt haben und negativ auf die Korrelation der Faktorwerte des missspezifizierten 

Modells und dem zweiten wahren Faktor. Als zweite mögliche Erklärung wird die 

Indikatorenanzahl in Betracht gezogen. Mehr Indikatoren pro Faktor führen zu valideren 

Faktorwerteschätzungen als weniger Indikatoren (Estabrook & Neale, 2013). Außerdem nähern 

sich die Verteilungseigenschaften der geschätzten Faktorwerte mehr denen der True Scores an, 

wenn die Indikatorenanzahl höher ist im Vergleich zu niedriger (Lawley & Maxwell, 1971).  

 
Tabelle 13 

Korrelationen der wahren Faktorwerte und der Faktorwerte aus dem missspezifizierten Modell 

 Modell 1: 

.80 

[.20, .40] 

10:10 

Modell 2: 

.50 

[.20, .40] 

10:10 

Modell 3: 

.30 

[.20, .40] 

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5: 

.50 

[.20, .40]  

15:5 

Modell 6: 

.30 

[.20, .40]  

15:5 

rW1-M 

rW2-M 

.779*** 

.774*** 

.698*** 

.674*** 

.651*** 

.589*** 

.816*** 

.716*** 

.801*** 

.495*** 

.797*** 

.312*** 

 Modell 7: 

.80 

[.40, .60] 

10:10 

Modell 8: 

.50 

[.40, .60] 

10:10 

Modell 9: 

.30 

[.40, .60] 

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60]  

15:5 

Modell 12: 

.30 

[.40, .60]  

15:5 

rW1-M .887*** .807*** .780*** .927*** .920*** .920*** 

rW2-M .882*** .784*** .680*** .811*** .555*** .346*** 

Anmerkungen. rW1-M = Korrelation der wahren Faktorwerte des ersten definierten Faktors mit den Bartlett-

Faktorwerten des Faktors des missspezifizierten Modells, rW2-M = Korrelation der wahren Faktorwerte des zweiten 

definierten Faktors mit den Bartlett-Faktorwerten des Faktors des missspezifizierten Modells, *** = höchst 

signifikanter Zusammenhang. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die 

Höhe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden 

und das Verhältnis gibt die Indikatorenaufteilung auf die Faktoren an.  

 

Höhere Faktorkorrelationen in den Populationsmodellen (geringere Missspezifikation) 

führten im Vergleich zu geringen und mittleren Faktorkorrelationen (höhere Missspezifikation) 

zu höheren Korrelationen der wahren Faktorwerte mit den Faktorwerten aus dem 

missspezifizierten Modell, wobei sich dieser Unterschied bei der unausgewogenen 

Indikatorenaufteilung nur auf der zweiten und dritten Dezimalstelle zeigte und demnach nicht 

überinterpretiert werden sollte (siehe Tabelle 13).  

Insgesamt führte die Missspezifikation zu ähnlich hohen Korrelationen der 

Populationsfaktorwerte und der aus dem missspezifizierten Modell geschätzten Bartlett-
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Faktorwerte wie die Anwendung des korrekten Modells auf die Populationsdaten (vgl. die 

Tabellen 11 und 13).  

 

Dass die Faktorladungen großen Einfluss auf die Berechnung der Bartlett-Faktorwerte 

hatten und dementsprechend negative Auswirkungen auf die Güte der Diagnostik, wurde 

bereits im vorherigen Unterkapitel anhand der Anwendung korrekter Modelle illustriert. Daher 

sind die Auswirkungen der niedrigen Ladungen auf die Faktorenunbestimmtheit ebenso von 

Interesse, wenn zusätzlich noch eine Missspezifikation vorliegt.  
 

Tabelle 14 

Unbestimmtheit der Faktorwerte im missspezifizierten Modell 

 Modell 1: 

.80 

[.20, .40] 

10:10 

Modell 2: 

.50 

[.20, .40] 

10:10 

Modell 3: 

.30 

[.20, .40] 

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5: 

.50 

[.20, .40]  

15:5 

Modell 6: 

.30 

[.20, .40]  

15:5 

ρ?MF 

ρ∗MF 

.666*** 

.331*** 

.616*** 

.232*** 

.575*** 

.151*** 

.675*** 

.349*** 

.650*** 

.301*** 

.639*** 

.278*** 

 Modell 7:  

.80 

[.40, .60] 

10:10 

Modell 8:  

.50 

[.40, .60] 

10:10 

Modell 9:  

.30 

[.40, .60]  

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60]  

15:5 

Modell 12: 

.30 

[.40, .60]  

15:5 

ρ?MF .863*** .830*** .802*** .869*** .856*** .851*** 

ρ∗MF .726*** .660*** .605*** .739*** .712*** .701*** 

Anmerkungen. ρ? = Maß für die Höhe der Faktorenunbestimmtheit (Guttman, 1955, S. 73), ρ∗ = Maß für die 

maximal mögliche Unbestimmtheit der Faktorwerte (Guttman, S. 73), MF = Faktor des missspezifizierten 

Modells, *** = höchst signifikanter Zusammenhang. Die Zellen der Beschreibung der Populationsmodelle enthalten 

als ersten Wert die Höhe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen 

gezogen wurden und das Verhältnis gibt die Indikatorenaufteilung auf die Faktoren an.  

 

Die Faktorenunbestimmtheit war für den einen Faktor im missspezifizierten Modell bei 

hohen Ladungen niedriger als bei typischen Ladungen (siehe Tabelle 14). Die Bestimmtheit des 

Faktors im missspezifizierten Modell stieg geringfügig mit steigender Faktorkorrelation im 

Populationsmodell, also mit geringerer Missspezifikation, wobei der Unterschied zwischen 

diesen Bedingungen in elf der zwölf Bedingungen nur auf der zweiten oder dritten 

Dezimalstelle deutlich wurde (siehe Tabelle 14). Ebenso war die Bestimmtheit des Faktors bei 
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der unausgewogenen Indikatorenaufteilung (geringere Missspezifikation) geringfügig höher als 

bei der ausgewogenen Aufteilung (höhere Missspezifikation).  

 

Exkurs: Populationsmodelle mit extrem hohen Ladungen  

 

Wurden im Gegensatz zum Design dieser Studie mit realistischen Faktorladungen 

extrem hohe Faktorladungen aus dem Bereich [.80, 1.00[ für die Generierung der 

Populationsmodelle verwendet, war die Faktorenbestimmtheit sehr hoch (Range ρ? .993-.995) 

bzw. die Faktorenunbestimmtheit sehr niedrig. Bei den Populationsmodellen mit extrem hohen 

Ladungen wurde ersichtlich, dass sich die Missspezifikation stärker negativ auf die Validität 

der Faktorwerte des missspezifizierten Modells auswirkte als bei der Verwendung realistisch 

hoher Ladungen: Die Differenz zwischen der Korrelation der Faktorwerte des ersten wahren 

Faktors und den Faktorwerten des missspezifizierten Modells und der Korrelation der 

Faktorwerte des zweiten wahren Faktors und den Faktorwerten des missspezifizierten Modells 

wurde größer (Unterschiede bis zu .691). Außerdem stieg die Differenz dieser Korrelationen 

mit steigendem Grad an Missspezifikation (von .129 bis zu .691 bei schwerwiegender 

Missspezifikation), operationalisiert an der Faktorkorrelation im Populationsmodell.  

 

2.3.2 Güte der Diagnostik 

 

Es wurde untersucht, wie die diagnostischen Kennwerte ausfallen würden, wenn die 

dichotomen Diagnosen auf Basis der Bartlett-Faktorwerte des einen Faktors im 

missspezifizierten Modell getroffen wurden. Für die Diagnosegebung wurden univariate 

Basisraten von 2.5%, 5%, 7.5%, 10%, 30%, 50% und 70% für die Klassifikation nach den 

höchsten Faktorwerten des einen Faktors aus dem missspezifizierten Modell verwendet.  

 

Basisraten und Missspezifikation versus korrekte Spezifikation 

 

Durch die univariaten Cut-Offs für die Basisraten im missspezifizierten Modell konnte 

sichergestellt werden, dass die Raten der Diagnosen dieselben waren wie die Raten an 

Diagnosen basierend auf den bivariaten Cut-Offs der Populationsmodelle. Dementsprechend 

verhielten sich die Befunde aus dem missspezifizierten Modell, wenn man sie mit den 

Ergebnissen aus dem korrekten Modell vergleicht. Dadurch, dass bei Anwendung des korrekten 
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Modells die kleinen Basisraten überschätzt und die großen unterschätzt wurden, resultierte die 

Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells in weniger Korrekt 

Positiven bei kleinen Basisraten und in mehr Korrekt Positiven bei großen Basisraten im 

Vergleich zur Diagnostik auf Basis der Faktorwerte des korrekten Modells (siehe die 

Abbildungen 14 und 18 im Anhang). Dementsprechend führten die Faktorwerte des 

missspezifizierten Modells bei kleinen Basisraten zu mehr Korrekt Negativen und bei großen 

Basisraten zu weniger Korrekt Negativen als die Faktorwerte des korrekten Modells (siehe die 

Abbildungen 15 und 19 im Anhang).  

Da die True Positives im Rahmen des Designs weniger mit den Basisraten schwankten 

als die True Negatives –letztere wiesen eine größere Spannweite auf (siehe die Abbildungen 14 

und 15 im Anhang) – fielen die False Positives und die False Negatives (siehe die Abbildungen 

16 und 17 im Anhang) in Relation zu den True Positives mehr ins Gewicht als in Relation zu 

den True Negatives. Dieser Befund zeigte sich auch bei der Diagnostik auf Basis der 

Faktorwerte des korrekten Modells. Dementsprechend beeinträchtigte die Diagnostik auf Basis 

der Faktorwerte des missspezifizierten Modells den Positiven Prädiktionswert (siehe Abbildung 

6), aber auch die Sensitivität (siehe Abbildung 7). Da die Anzahl an False Positives (siehe 

Abbildung 20 im Anhang) und False Negatives (siehe Abbildung 21 im Anhang) durch das 

missspezifizierte Modell ähnlich hoch ausfielen, fielen die diagnostischen Kennwerte Positiver 

Prädiktionswert und Sensitivität sehr ähnlich aus (siehe Abbildungen 7 und 8).  

Letzterer Befund, dass die Rate der False Positives und der False Negatives basierend 

auf den Faktorwerten des missspezifizierten Modells ähnlich hoch ausfiel, erklärt auch den 

Unterschied zum Positiven Prädiktionswert und zur Sensitivität basierend auf den Diagnosen 

durch die Faktorwerte des korrekten Modells (vgl. die Abbildungen 2 und 3 mit den 

Abbildungen 6 und 7): Bei den korrekten Modellen traten bei kleinen Basisraten mehr Falsch 

Positive auf als Falsch Negative (Unterschiede von bis zu 1 Prozentpunkt an allen Diagnosen 

je Populationsbedingung auf Basis der Faktorwerte korrekter Modelle) und die Falsch Positiven 

schwankten mehr mit den Modellbedingungen als die Falsch Negativen (Unterschiede unter 10 

Prozentpunkten auf Basis der korrekten Modelle bei den Falsch Positiven versus unter 1 

Prozentpunkt bei den Falsch Negativen bei allen Diagnosen in der Population). Bei den großen 

Basisraten verhielt sich dies umgekehrt (vgl. die Abbildungen 16 und 17 mit den Abbildungen 

20 und 21 im Anhang).  
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Abbildung 6. Positiver Prädiktionswert der Diagnostik basierend auf den Bartlett-Faktorwerten missspezifizierter 

Modelle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Abbildung 7. Sensitivität der Diagnostik basierend auf den Bartlett-Faktorwerten missspezifizierter 
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Abbildung 8. Negativer Prädiktionswert der Diagnostik basierend auf den Bartlett-Faktorwerten 

missspezifizierter Modelle 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 9. Spezifität der Diagnostik basierend auf den Bartlett-Faktorwerten missspezifizierter Modelle 
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Negativer Prädiktionswert (siehe Abbildung 8) und Spezifität (siehe Abbildung 9) 

schwankten weniger mit den Basisraten als Positiver Prädiktionswert und Sensitivität, da 

insbesondere bei den kleinen Basisraten die Rate der Richtig Negativen sehr hoch war (siehe 

Abbildung 19 im Anhang). Bei den großen Basisraten, bei denen sich die Anzahl der positiven 

und negativen Fälle an sich stärker annäherten als bei den kleinen Basisraten, schwankten 

Negativer Prädiktionswert und Spezifität mehr (siehe Abbildung 8 und 9).  

 

Zusammenfassend ist zu sagen, dass sich die Missspezifikation im Vergleich zur 

korrekten Spezifikation des Modells vor allem negativ auf die Sensitivität bei kleinen 

Basisraten und auf die Spezifität bei großen Basisraten auswirkte. Die Diagnostik auf Basis der 

Faktorwerte des missspezifizierten Modells unterschied sich im Vergleich zur Diagnostik auf 

Basis der Faktorwerte des korrekten Modells im gravierendsten Fall um 28 Prozentpunkte bei 

der kleinsten Basisrate hinsichtlich der Sensitivität und um 17 Prozentpunkte bei der größten 

Basisrate hinsichtlich der Spezifität. Allerdings konnte die Missspezifikation im Vergleich zur 

korrekten Spezifikation des Modells – je nach betrachtetem diagnostischen Kennwert – durch 

eine geringe Basisrate (Negativer Prädiktionswert und Spezifität) oder hohe Basisrate (Positiver 

Prädiktionswert und Sensitivität) ausgeglichen werden.  

 

Basisraten und Grade der Missspezifikation 

 

Die psychometrischen Auswirkungen der unterschiedlichen Grade der 

Missspezifikation wie auch der unterschiedlichen Basisraten auf die Güte der Diagnostik auf 

Basis der Faktorwerte wurden an allen diagnostischen Kennwerten deutlich (siehe die 

Abbildungen 6 bis 9). Außerdem interagierte der Grad der Missspezifikation mit der Höhe der 

Basisrate. Beide Befunde werden im Folgenden näher beschrieben.  

Mit sinkender Faktorkorrelation im Populationsmodell (höherer Grad an 

Missspezifikation im Vergleich zu höherer Faktorkorrelation) sanken alle diagnostischen 

Kennwerte. Außerdem zeigten alle vier diagnostischen Kennwerte, dass sich die verschiedenen 

Grade an Missspezifikation bei den vier kleinen Basisraten gravierender auswirkten als bei den 

drei großen Basisraten (siehe die Abbildungen 6 bis 9). Zwischen der Bedingung mit der 

höchsten Faktorkorrelation im Populationsmodell (geringe Missspezifikation) und der 

geringsten Faktorkorrelation im Populationsmodell (hohe Missspezifikation) gab es 

hinsichtlich der Güte der Diagnostik bei kleinen Basisraten Unterschiede von bis zu 28 
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Prozentpunkten, bei großen Basisraten von bis zu 12 Prozentpunkten in der Richtung, als dass 

bei höherem Grad der Missspezifikation (geringerer Faktorkorrelation) die diagnostischen 

Kennwerte sanken.  

Die Diagnostik auf Basis einer unausgewogenen Indikatorenaufteilung führte im 

Vergleich zu einer ausgewogenen Indikatorenaufteilung im Populationsmodell zu schlechterer 

Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells. Bei kleinen Basisraten 

war die Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells bei einer 

unausgewogenen Indikatorenaufteilung im Populationsmodell um bis zu 19 Prozentpunkte 

schlechter als bei einer ausgewogenen Aufteilung, bei großen Basisraten um bis zu 5 

Prozentpunkte schlechter. Als Begründung für diesen Befund kann angeführt werden, dass die 

geschätzten Faktorladungen der missspezifizierten Modelle, die auf Populationsdaten aus 

Modellen mit unausgewogener Indikatorenaufteilung angewandt wurden, breiter streuten (SD 

.063-.157 bei standardisierten Ladungen) als die geschätzten Faktorladungen der 

missspezifizierten Modelle, die auf Populationsdaten aus Modellen mit ausgewogener 

Indikatorenaufteilung angewandt wurden (SD .050-.059 bei standardisierten Ladungen). Die 

Streuung der Faktorladungen der missspezifizierten Modelle, denen Populationsdaten auf Basis 

einer unausgewogenen Aufteilung zugrunde lagen, wich außerdem stärker von der Streuung 

der definierten Faktorladungen in den Populationsmodellen ab (Unterschied maximal .10 bei 

standardisierten Ladungen) als die Faktorladungen der missspezifizierten Modelle, die auf die 

Daten mit einer ausgewogenen Indikatorenaufteilung im Populationsmodell angewandt wurden 

(Unterschied maximal .013 bei standardisierten Ladungen). Die Ladungen sind, wie bereits 

beschrieben, primär verantwortlich für die Berechnung der Bartlett-Faktorwerte. Der Befund 

wird unter 3.2 näher diskutiert.  

 

Faktorladungen 

 

Auch bei Anwendung des missspezifizierten Modells führten höheren Faktorladungen 

(Modelle 7 bis 12) zu höheren diagnostischen Kennwerten (siehe die Abbildungen 6 bis 9). 

Dass die Diagnostik auf Basis der Faktorwerte des unterschiedlich stark missspezifizierten 

Modells im Vergleich zur korrekten Spezifikation des Modells nicht zu noch größeren 

negativen Auswirkungen führte, lag wiederum an den realistisch niedrig gewählten 

Faktorladungen des Populationsmodells. Diese bewirkten bereits eine starke Beeinträchtigung 

der Güte der Diagnostik auf Basis der Bartlett-Faktorwerte des korrekten Modells (so zum 



 
 

 104  

Beispiel im gravierendsten Fall einen Positiven Prädiktionswert von .240 bei der kleinsten 

Basisrate oder einen Negativen Prädiktionswert von .529 bei der größten Basisrate).  

 

Exkurs: Populationsmodelle mit extrem hohen Ladungen  

 

Einerseits zeigten die Ergebnisse, dass höhere Faktorladungen im Populationsmodell 

(Modelle 7 bis 12 in den Abbildungen) anhand aller vier diagnostischen Kennwerte zu besserer 

Diagnostik führten, und dies sowohl, wenn die Diagnostik auf Basis der Faktorwerte des 

korrekten Modells erfolgte (siehe die Abbildungen 2 bis 5), als auch basierend auf den 

Faktorwerten des missspezifizierten Modells (siehe die Abbildungen 6 bis 9). Andererseits 

wurden die negativen Auswirkungen der Missspezifikation auf die Diagnostik erst in vollem 

Umfang ersichtlich, sobald wiederum aus Vergleichsgründen extrem hohe Faktorladungen aus 

dem Bereich [.80, 1.00[ zur Generierung der Populationsmodelle verwendet wurden. Die 

diagnostischen Kennwerte schwankten hier deutlicher mit dem Grad der Missspezifikation als 

bei den realistisch gewählten Faktorladungen und der Grad der Missspezifikation interagierte 

gleichzeitig wiederum mit der Höhe der Basisrate. Ein höherer Grad an Missspezifikation 

beeinträchtigte vor allem Sensitivität und Positiven Prädiktionswert, wenn die Basisrate gering 

war43. Der Grad der Missspezifikation wirkte sich auch auf den Negativen Prädiktionswert und 

die Spezifität aus44, allerdings in geringerem Maße als auf die Sensitivität und den Positiven 

Prädiktionswert. Außerdem konnte die Missspezifikation im Vergleich zu einer korrekten 

Spezifikation auch bei den extrem hohen Ladungen in den Populationsmodellen in hohem Maße 

ausgeglichen werden, wenn die Basisrate, je nach Kennwert, entsprechend niedrig oder hoch 

war. Sensitivität und Positiver Prädiktionswert sanken bei der größten Basisrate von 70% 

                                                
43Range der Sensitivität bei geringer Faktorkorrelation (hoher Missspezifikation) und extrem hohen Ladungen in 

den Populationsmodellen .299-.946, bei hoher Faktorkorrelation (geringe Missspezifikation) .737-.946; Range des 

Positiven Prädiktionswerts bei geringer Faktorkorrelation (hoher Missspezifikation) und extrem hohen Ladungen 

in den Populationsmodellen .299-.945, bei hoher Faktorkorrelation (geringer Missspezifikation) .736-.945 (zum 

Vergleich siehe die Abbildungen 6 und 7). 
44Range des Negativen Prädiktionswerts bei geringer Faktorkorrelation (hoher Missspezifikation) und extrem 

hohen Ladungen in den Populationsmodellen .687-.993, bei hoher Faktorkorrelation (geringer Missspezifikation) 

.874-.993; Range der Spezifität bei geringer Faktorkorrelation (hoher Missspezifikation) und extrem hohen 

Ladungen in den Populationsmodellen .686-.993, bei hoher Faktorkorrelation (geringer Missspezifikation) .873-

.993 (zum Vergleich siehe die Abbildungen 8 und 9).  
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unabhängig vom Grad der Missspezifikation nicht unter .865, Spezifität und Positiver 

Prädiktionswert sanken bei der kleinsten Basisrate von 2.5% nicht unter .982.  

 

2.4 Gesamtsummenwerte 

 

2.4.1 Korrelationen  

 

Im Rahmen einer Nebenfragestellung wurden Diagnosen auf Basis der 

Gesamtsummenwerte gegeben, auf deren Basis, wie bereits unter III. 5.2 beschrieben, häufig 

psychologische Diagnosen vergeben werden.   

Die Gesamtsummenwerte wurden über die 20 auf Basis der Populationsfaktorwerte 

erzeugten Indikatoren gebildet. Diese Diagnosen wurden ebenfalls mit den Diagnosen 

basierend auf den wahren Faktorwerten beider Populationsfaktoren anhand der diagnostischen 

Kennwerte verglichen. Die Anwendung der Gesamtsummenwerte zur Diagnostik unterschied 

sich insofern von der Anwendung der Faktorwerte eines missspezifizierten Modells, als dass 

alle Indikatoren bei der Aufsummierung die gleichen Gewichtungsfaktoren bekamen; die 

Gewichtungsfaktoren/Faktorladungen des missspezifizierten Modells, auf dessen Basis die 

Faktorwerte berechnet wurden, waren heterogen.  

Zunächst wurden die Gesamtsummenwerte mit den wahren Faktorwerten der 

entsprechenden Populationsbedingungen korreliert (siehe Tabelle 15).  

Auch bei der Korrelation der wahren Faktorwerte mit den Gesamtsummenwerten hatte 

die Höhe der Ladungen in den Populationsmodellen einen Einfluss auf die Güte der Diagnostik 

auf Basis der Gesamtsummenwerte (siehe Tabelle 15): Hohe Faktorladungen im Vergleich zu 

typischen Faktorladungen in den Populationsmodellen führten zu höheren Korrelationen der 

Gesamtsummenwerte mit den beiden Faktoren der Populationsmodelle. Außerdem führten 

höhere Faktorkorrelationen in den Populationsmodellen im Vergleich zu geringen und mittleren 

Faktorkorrelationen zu höheren Korrelationen der wahren Faktorwerte mit den 

Gesamtsummenwerten. Die unausgewogene Indikatorenaufteilung führte im Vergleich zur 

gleichmäßigen Aufteilung zu höheren Korrelationen der Faktorwerte der ersten 

Populationsfaktoren mit den Gesamtsummenwerten. Umgekehrt korrelierten die Faktorwerte 

der zweiten Populationsfaktoren niedriger mit den Gesamtsummenwerten als bei der 

ausgewogenen Itemaufteilung. Insgesamt ähnelten die Ergebnisse stark den unter 2.3.1 
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beschriebenen zur Diagnostik auf Basis der Faktorwerte des eindimensionalen 

missspezifizierten Modells. 

 
Tabelle 15 

Korrelationen der wahren Faktorwerte und der Gesamtsummenwerte 

 Modell 1:  

.80 

[.20, .40] 

10:10 

Modell 2:  

.50 

[.20, .40] 

10:10 

Modell 3:  

.30 

[.20, .40]  

10:10 

Modell 4: 

.80 

[.20, .40] 

15:5 

Modell 5:  

.50 

[.20, .40]  

15:5 

Modell 6:  

.30 

[.20, .40]  

15:5 

rW1-S 

rW2-S 

.770*** 

.768*** 

.683*** 

.676*** 

.620*** 

.609*** 

.805*** 

.718*** 

.776*** 

.548*** 

.755*** 

.426*** 

 Modell 7:  

.80 

[.40, .60] 

10:10 

Modell 8:  

.50 

[.40, .60] 

10:10 

Modell 9:  

.30 

[.40, .60]  

10:10 

Modell 10: 

.80 

[.40, .60] 

15:5 

Modell 11: 

.50 

[.40, .60]  

15:5 

Modell 12: 

.30 

[.40, .60]  

15:5 

rW1-S .883*** .797*** .734*** .920*** .897*** .882*** 

rW2-S .881*** .792*** .727*** .822*** .636*** .502*** 

Anmerkungen. rW1-S = Korrelation der wahren Faktorwerte des ersten definierten Faktors mit den Summenwerten, 

rW2-S = Korrelation der wahren Faktorwerte des zweiten definierten Faktors mit den Summenwerten, *** = höchst 

signifikanter Zusammenhang. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die 

Höhe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden 

und das Verhältnis gibt die Indikatorenaufteilung auf die Faktoren an.  

 

Exkurs: Populationsmodelle mit extrem hohen Ladungen  

 

Wurden wiederum die extrem hohen Faktorladungen aus dem Bereich [.80, 1.00[ für 

die Generierung der Populationsmodelle verwendet, wird ersichtlich, dass auch die 

Korrelationen der Gesamtsummenwerte mit den Faktorwerten des ersten und zweiten 

Populationsfaktors im Vergleich zu den realistisch gewählten Faktorladungen des vorliegenden 

Designs (siehe Tabelle 13) deutlich stiegen45. Außerdem führten höhere Faktorkorrelationen in 

den Populationsmodellen im Vergleich zu geringen und mittleren Faktorkorrelationen zu 

                                                
45Korrelationen der Gesamtsummenwerte mit den Faktorwerten des ersten Populationsfaktors .802-.983; 

Korrelationen der Gesamtsummenwerte mit den Faktorwerten des zweiten Populationsfaktors .546-.943 
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höheren Korrelationen der wahren Faktorwerte mit den Gesamtsummenwerten46. Die 

unausgewogene Indikatorenaufteilung führte im Vergleich zur ausgewogenen zu geringfügig 

höheren Korrelationen der Faktorwerte der ersten Populationsfaktoren mit den 

Gesamtsummenwerten; umgekehrt korrelierten die Faktorwerte der zweiten 

Populationsfaktoren geringfügig niedriger mit den Gesamtsummenwerten als bei der 

ausgewogenen Itemaufteilung47.  

 

2.4.2 Güte der Diagnostik 

 

Es wurde untersucht, wie hoch die diagnostischen Kennwerte ausfallen, wenn 

dichotome Diagnosen, die auf Basis der höchsten wahren Faktorwerte zweier obliquer Faktoren 

in der Population gebildet wurden, auf Basis der höchsten Gesamtsummenwerte über alle 

Indikatoren vergeben wurden. Für die Diagnosegebung auf Basis der Gesamtsummenwerte 

wurden wiederum univariate Basisraten von 2.5%, 5%, 7.5%, 10%, 30%, 50% und 70% 

verwendet.  

 

Basisraten 

 

Dadurch, dass im korrekten Modell die kleinen Basisraten überschätzt und die großen 

unterschätzt wurden, resultierte die Diagnostik auf Basis der Gesamtsummenwerte genauso wie 

auf Basis der Faktorwerte des missspezifizierten Modells in weniger Korrekt Positiven (siehe 

Abbildung 22 im Anhang) bei kleinen Basisraten und in mehr Korrekt Positiven bei großen 

Basisraten im Vergleich zur Diagnostik auf Basis der Faktorwerte des korrekten Modells. 

Dementsprechend führten die Gesamtsummenwerte wie die Faktorwerte des missspezifizierten 

Modells bei kleinen Basisraten zu mehr Korrekt Negativen (siehe Abbildung 23 im Anhang) 

                                                
46Die Korrelationen der zu .80 korrelierten True Scores mit den Gesamtsummenwerten lagen zwischen .878-.983, 

wohingegen sich die Korrelationen der zu .50 oder zu .30 korrelierten wahren Faktorwerte zwischen .546-.965 

bewegten. 
47Korrelation der Gesamtsummenwerte mit den True Scores ersten Faktors bei unausgewogener 

Indikatorenaufteilung im Populationsmodell .955-.983, bei ausgewogener .802-.944; 

Korrelationen der Gesamtsummenwerte mit den True Scores des zweiten Faktors bei unausgewogener 

Indikatorenaufteilung im Populationsmodell .546-.878, bei ausgewogener .798-.943.  
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und bei großen Basisraten zu weniger Korrekt Negativen als die Faktorwerte des korrekten 

Modells.  

Die Abbildungen 10 bis 13 zeigen die Güte der Diagnostik auf Basis der 

Gesamtsummenwerte. Die Güte der Diagnostik auf Basis der Gesamtsummenwerte stieg bei 

steigender Faktorkorrelation des Populationsmodells, aus dem die Daten erzeugt wurden. Eine 

unausgewogene Indikatorenaufteilung im Populationsmodell im Vergleich zu einer 

ausgewogenen führte in Interaktion mit einer kleinen Basisrate außerdem zu geringfügig 

niedrigeren Werten (Unterschiede maximal 7 Prozentpunkte) hinsichtlich der Sensitivität (siehe 

Abbildung 11) und des Positiven Prädiktionswerts (siehe Abbildung 10) und in Interaktion mit 

großen Basisraten zu maximal zwei Prozentpunkten Unterschied hinsichtlich Spezifität (siehe 

Abbildung 13) und Negativem Prädiktionswert (siehe Abbildung 12).  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 10. Positiver Prädiktionswert der Diagnostik basierend auf den Gesamtsummenwerten 
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Abbildung 11. Sensitivität der Diagnostik basierend auf den Gesamtsummenwerten 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Abbildung 12. Negativer Prädiktionswert der Diagnostik basierend auf den Gesamtsummenwerten 
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Abbildung 13. Spezifität der Diagnostik basierend auf den Gesamtsummenwerten  

 

Basisraten und Gesamtsummenwerte versus Faktorwerte der korrekten Modelle 
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Diagnostik auf Basis der Bartlett-Faktorwerte des korrekten Modells vor allem zu Einbußen 
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Gesamtsummenwerte aber auch die Spezifität bei großen Basisraten negativ (Unterschiede bis 

zu 9 Prozentpunkte zwischen der Diagnostik auf Basis der Faktorwerte des korrekten Modells 

und auf Basis der Gesamtsummenwerte). Dieses Muster in den Befunden zeigten sich auch, 

wenn die Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells vorgenommen 

wurde und diese mit der Diagnostik auf Basis der Faktorwerte der korrekten Modelle verglichen 

wurde, wie im Folgenden berichtet wird.  
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Basisraten und Gesamtsummenwerte versus Faktorwerte des missspezifizierten 

Modells 

 

Die Raten der Richtig Positiven, der Richtig Negativen, der Falsch Positiven und der 

Falsch Negativen auf Basis der Gesamtsummenwerte (siehe Abbildungen 22 bis 25 im Anhang) 

fielen im Vergleich zu den entsprechenden Raten auf Basis der Faktorwerte des 

missspezifizierten Modells sehr ähnlich aus (Unterschiede unter 1 Prozentpunkt an allen 

vergebenen Diagnosen in der jeweiligen Gesamtpopulation pro Bedingung). Verglichen mit der 

Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells war die Diagnostik auf 

Basis der Gesamtsummenwerte marginal überlegen. Bei der kleinsten Basisrate führten die 

Gesamtsummenwerte zu maximal 8 Prozentpunkten besserer Diagnostik hinsichtlich 

Sensitivität und Positivem Prädiktionswert, wobei sich hinsichtlich der großen Basisraten 

diesbezüglich kein Unterschied mehr zeigte. Umgekehrt führten die Gesamtsummenwerte bei 

der größten Basisrate zu maximal 5 Prozentpunkten besserer Diagnostik hinsichtlich 

Negativem Prädiktionswert und Spezifität im Vergleich zu den Faktorwerten des 

missspezifizierten Modells, wobei sich dieser Unterschied bei kleinen Basisraten ausglich. Dass 

Positiver Prädiktionswert und Sensitivität bzw. Negativer Prädiktionswert und Spezifität auf 

Basis der Gesamtsummenwerte in Kombination mit einer kleinen bzw. großen Basisrate höher 

ausfielen als auf Basis der Faktorwerte des missspezifizierten Modells, kann zum Teil mit der 

Reduktion der Faktorladungen in den missspezifizierten Modellen im Vergleich zur Höhe der 

definierten Faktorladungen in den Populationsmodellen erklärt werden. Die standardisierten 

Faktorladungen des missspezifizierten Modells waren im Mittel um bis zu .106 im Vergleich 

zu den definierten Faktorladungen geringer. Ferner streuten die Ladungen der 

missspezifizierten Modelle im Mittel breiter als die definierten Faktorladungen (bis zu .10 

Unterschied bei standardisierten Ladungen). Die Faktorladungen beeinflussen, wie bereits 

mehrfach erläutert wurde, wiederum die Schätzung der Bartlett-Faktorwerte. Dieser Befund 

wird unter 3.2 anhand weiterer Literatur diskutiert.  

 

Faktorladungen 

 

Wie bei der Diagnostik auf Basis der Faktorwerte der korrekten und missspezifizierten 

Modelle stieg auch die Güte der Diagnostik auf Basis der Gesamtsummenwerte anhand aller 

Kennwerte, wenn zur Generierung der Daten im Populationsmodell höhere Ladungen im 
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Vergleich zu typischen Ladungen verwendet wurden (vgl. die Modelle 1 bis 6 mit den Modellen 

7 bis 12 in den Abbildungen 10 bis 14). 

 

Exkurs: Populationsmodelle mit extrem hohen Ladungen  

 

Sofern in den Populationsmodellen extrem hohe Ladungen aus dem Bereich [.80, 1.00[ 

zur Generierung der Populationsdaten verwendet wurden, stieg auch die Güte der Diagnostik 

auf Basis der Gesamtsummenwerte48. Es wurde anhand der extrem hohen Ladungen deutlich, 

dass die Diagnostik auf Basis der Gesamtsummenwerte der Diagnostik auf Basis der 

Faktorwerte des korrekten Modells unterlegen war49. Die Befunde zum Vergleich der 

Diagnostik auf Basis der Gesamtsummenwerte und der Faktorwerte des missspezifizierten 

Modells mit extrem hohen Ladungen in den Populationsmodellen werden im Folgenden 

berichtet.  

Vergleicht man die Diagnostik auf Basis der Faktorwerte des eindimensionalen 

missspezifizierten Modells mit der Diagnostik auf Basis der Gesamtsummenwerte, wenn die 

Daten basierend auf Populationsmodellen mit extrem hohen Ladungen erzeugt wurden, fällt die 

Diagnostik auf Basis der Gesamtsummenwerte bei den kleinen Basisraten besser aus als die 

Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells50. Bei den großen 

Basisraten war die Diagnostik auf Basis der Gesamtsummenwerte zwar immer noch 

geringfügig besser als auf Basis der Faktorwerte des missspezifizierten Modells, jedoch glich 

sich die Güte der Diagnostik auf Basis der Gesamtsummenwerte mehr und mehr der 

diagnostischen Präzision auf Basis der Faktorwerte des missspezifizierten Modells an 

(Unterschiede maximal 5 Prozentpunkte bei großen Basisraten). Dieser Befund mag, wie 

bereits im Rahmen der realistisch hoch gewählten Faktorladungen des vorliegenden Designs 

beschrieben, einerseits an der Reduktion und andererseits an der zunehmenden Heterogenität 

der Faktorladungen des missspezifizierten Modells im Vergleich zu den definierten 

                                                
48Der maximale Range der diagnostischen Kennwerte auf Basis der Gesamtsummenwerte bei extrem hohen 

Ladungen in den Populationsmodellen über alle Basisraten und Bedingungen hinweg betrug .515-.955.  
49Der maximale Range der diagnostischen Kennwerte auf Basis der Faktorwerte des korrekten Modells mit extrem 

hohen Ladungen in den Populationsmodellen über alle Basisraten und Bedingungen hinweg betrug .895-.984. 
50Der maximale Range der diagnostischen Kennwerte auf Basis der Faktorwerte des missspezifizierten Modells 

mit extrem hohen Ladungen in den Populationsmodellen betrug über alle Basisraten und Bedingungen hinweg 

.299-.946, im Gegensatz dazu bei den Gesamtsummenwerten .515-955.  
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Faktorladungen liegen. Im Rahmen der Populationsmodelle mit extrem hohen Faktorladungen 

im Vergleich zu den realistischen Faktorladungen sanken die Ladungen des eindimensionalen 

missspezifizierten Modells in höherem Maße (um bis zu .308 bei standardisierten Ladungen im 

Vergleich zu max. .11 bei den realistischen Ladungen). Wie aus den vorherigen Ergebnissen 

ersichtlich steigt die Validität (Grice, 2001a, 2001b) der Bartlett-Faktorwerte, aus denen die 

Diagnosen gebildet wurden, mit der Höhe der Faktorladungen. Die Ladungen des 

missspezifizierten Modells wurden außerdem umso geringer, desto geringer die 

Faktorkorrelation (desto höher die Missspezifikation) im Populationsmodell mit extrem hohen 

Ladungen war (Reduktion von .06 bei hoher Faktorkorrelation bis zu .309 bei geringer 

Faktorkorrelation im Populationsmodell). Desto geringer die Faktorkorrelation im 

Populationsmodell, desto größer wurde auch die Standardabweichung der Ladungen des 

missspezifizierten Modells (von .087 bei hoher Faktorkorrelation bis zu .324 bei geringer 

Faktorkorrelation im Populationsmodell); d.h., bei steigender Missspezifikation wichen die 

Verteilungseigenschaften der Faktorladungen im missspezifizierten Modell stärker von denen 

der definierten Faktorladungen in den Populationsmodellen ab.  
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3 Diskussion 
 

3.1 Zusammenfassung der Ergebnisse 

 

Im Rahmen einer Simulationsstudie auf Basis zweier definierter Faktorwerte der 

Individuen in einer Population wurde untersucht, inwieweit die Güte der Diagnostik 

beeinträchtigt wurde, sofern dichotome Diagnosen („krank“/positive Diagnose versus 

„gesund“/negative Diagnose), die auf Basis der höchsten Werte auf beiden definierten 

Faktorwerten vergeben wurden, fälschlicherweise auf Basis der höchsten Faktorwerte 

missspezifizierter Strukturgleichungsmodelle vergeben wurden. Diese Missspezifikation im 

Strukturmodell stellte ein missspezifiziertes einfaktorielles Modell im Vergleich zu einem 

obliquen zweifaktoriellen Populationsmodell dar. Im Rahmen einer Nebenfragestellung wurden 

außerdem dichotome Diagnosen, die auf Basis der höchsten Gesamtsummenwerte über alle 

Indikatoren hinweg gebildet wurden, hinsichtlich der diagnostischen Kennwerte mit den 

Diagnosen auf Basis der definierten Faktorwerte verglichen.  

Die Ergebnisse zeigten, dass die unterschiedlich gewählten Basisraten für die 

Diagnosegebung im Rahmen des gewählten Designs den größten Effekt auf die Güte der 

Diagnostik auf Basis der Faktorwerte der korrekten wie auch der missspezifizierten Modelle 

und der Gesamtsummenwerte hatte. Einen ähnlich hohen Einfluss, wie sie die Faktorladungen 

auf die Diagnostik aus den Faktorwerten des korrekten und missspezifizierten Modells sowie 

aus den Gesamtsummenwerten hatte, hatte/n der Grad der Missspezifikation/die 

unterschiedlichen Populationsmodelle auf die Diagnostik aus den Faktorwerten des 

missspezifizierten Modells sowie auf die Diagnostik aus den Gesamtsummenwerten. Die 

genannten Parameter interagierten hinsichtlich des Einflusses auf die Diagnostik miteinander.  

Die verschiedenen Basisraten hatten den höchsten Einfluss auf die Güte der Diagnostik 

sowohl anhand der Faktorwerte korrekter und missspezifizierter Modelle als auch anhand der 

Gesamtsummenwerte. Große Basisraten wirkten sich positiv auf die Rate der korrekt erkannten 

Kranken an allen Kranken (Sensitivität) sowie die Rate der korrekt erkannten Kranken an allen 

als krank Diagnostizierten (Positiver Prädiktionswert) aus. Umgekehrt waren kleine Basisraten 

hinsichtlich der Rate an korrekt als gesund erkannten Gesunden an allen Gesunden (Spezifität) 

sowie der korrekt erkannten Gesunden an allen als gesund Diagnostizierten (Negativer 

Prädiktionswert) vorteilhaft.  
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Die Befunde zeigten außerdem, dass höhere Faktorladungen in den 

Populationsmodellen zu besserer Diagnostik anhand aller Kennwerte führten. Die realistisch 

niedrig gewählten Faktorladungen im Rahmen des Studiendesigns beeinträchtigte die Güte der 

Diagnostik auf Basis der Faktorwerte selbst bei Anwendung korrekter Modelle stark. Diese 

Beeinträchtigung begann damit, dass die in den Populationsmodellen definierten Basisraten zur 

Diagnosegebung auf Basis der Faktorwerte durch die korrekten Modelle nicht reproduziert 

werden konnten. Die kleinen Basisraten wurden um bis zu 100 Prozentpunkte überschätzt, die 

großen um bis zu 25 Prozentpunkte unterschätzt. Diese Beeinträchtigung durch die realistischen 

Faktorladungen wirkte sich insbesondere bei kleinen Basisraten in klinischen 

Größenordnungen negativ auf die Rate der korrekt als krank diagnostizierten Fälle an allen 

positiven Diagnosen aus (Positiver Prädiktionswert; Worst-Case-Szenario 24%), aber auch auf 

die Rate der korrekt als krank erkannten Kranken an allen Kranken aus (Sensitivität; Worst-

Case-Szenario 47%). Umgekehrt beeinträchtigten die realistisch hohen Faktorladungen in 

Kombination mit großen Basisraten bei Anwendung korrekter Modelle die Rate der korrekt als 

gesund diagnostizierten Fälle an allen negativen Diagnosen (Negativer Prädiktionswert; Worst-

Case-Szenario 53%), aber auch die Rate der korrekt als gesund erkannten Gesunden an allen 

Gesunden (Spezifität; Worst-Case-Szenario 77%). Anhand des Exkurses konnte gezeigt 

werden, dass sich der Effekt der unterschiedlichen Basisraten auf die Güte der Diagnostik 

nivellierte, sobald unrealistisch hohe Ladungen für die Populationsmodelle verwendet wurden, 

aus denen die Daten generiert wurden.  

Der Grad der Missspezifikation (operationalisiert an der Höhe der Faktorkorrelation im 

Populationsmodell versus eindimensionales missspezifiziertes Modell) im Vergleich zur 

korrekten Spezifikation hatte ebenfalls einen entscheidenden Einfluss auf die Güte der 

Diagnostik anhand der Faktorwerte des missspezifizierten Modells. Der Grad der 

Missspezifikation (Höhe der Faktorkorrelation) beeinträchtigte vor dem Hintergrund der 

niedrigen Faktorladungen in Kombination mit kleinen Basisraten die Rate der korrekt als krank 

erkannten Fälle an allen Kranken (Sensitivität), in Kombination mit großen Basisraten die Rate 

der korrekt als gesund erkannten Fälle an allen Gesunden (Spezifität). Eine ausgewogene 

Indikatorenaufteilung auf die Populationsfaktoren, welche mehr vom eindimensionalen 

missspezifizierten Modell abwich, führte zu besseren diagnostischen Kennwerten auf Basis der 

Faktorwerte missspezifizierter Modelle als eine unausgewogene Indikatorenaufteilung auf die 

beiden Populationsfaktoren. Dieser Befund wird unter 3.2. diskutiert.  
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Die Diagnostik auf Basis der Gesamtsummenwerte war der Diagnostik auf Basis der 

Faktorwerte der korrekten Modelle hinsichtlich der Rate der korrekt als krank erkannten Fälle 

an allen Kranken (Sensitivität) bei kleinen Basisraten und der Rate der korrekt als gesund 

erkannten Fälle an allen Gesunden (Spezifität) bei großen Basisraten unterlegen. Jedoch schnitt 

die Diagnostik auf Basis der Gesamtsummenwerte, welche sich vom missspezifizierten Modell 

nur durch die gleichen Gewichtungen der Indikatoren unterschied, marginal besser ab als die 

Diagnostik basierend auf den Faktorwerten des missspezifizierten Modells. Letzterer Befund 

wird unter 3.2 ausführlicher diskutiert.  

 

3.2 Diskussion der Ergebnisse  

 

Dass insbesondere die unter 3.1 genannten diagnostischen Kennwerte litten, erklärt sich, 

wie bereits unter 2.2.2 beschrieben, durch die Überschätzung kleiner Basisraten und die 

Unterschätzung großer Basisraten für die Diagnosen auf Basis der Faktorwerte korrekter 

Modelle aufgrund der realistisch niedrig gewählten Faktorladungen der Populationsmodelle. 

Als Konsequenz dieser Verzerrungen der Basisraten häuften sich bei kleinen Basisraten die 

falsch positiven Diagnosen und bei großen Basisraten die falsch negativen Diagnosen. 

Dementsprechend verhielten sich die diagnostischen Kennwerte. Bei der Diagnostik auf Basis 

der Faktorwerte missspezifizierter Modelle wurden die univariaten Basisraten genauso 

festgelegt wie die bivariaten Basisraten in den Populationsmodellen, sodass sich die Raten an 

falsch positiven und falsch negativen Diagnosen mehr ausglichen als bei den Faktorwerten der 

korrekten Modelle. Daraus ergaben sich einige der beschriebenen Unterschiede zwischen der 

Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells und des korrekten 

Modells. Verstärkt wurden diese Unterschiede zusätzlich durch eine niedrigere 

Faktorkorrelation im Populationsmodell (höherer Grad an Missspezifikation) im Vergleich zu 

einer höheren.  

Die Befunde zu den Basisraten können aufgrund des unterschiedlichen Designs und der 

unterschiedlichen Beschaffenheit der Indikatoren kaum mit den unter III. 4 beschriebenen 

Studien von Emons et al. (2007), Kruyen et al. (2012), Schönemann und Thompson (1996) 

sowie Taylor und Russell (1939) verglichen werden. Sowohl der vorliegenden Studie als auch 

den genannten Studien ist allerdings gemein, dass die Sensitivität eines diagnostischen 

Instruments unter realistischen Bedingungen bei kleinen Basisraten beeinträchtigt ist und bei 

großen Basisraten die Spezifität. Außerdem stimmen die Studien mit der vorliegenden insofern 
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überein, als dass eine geringe Reliabilität (niedrige Faktorladungen im Rahmen der 

vorliegenden Studie) oder niedrige Trennschärfen im Rahmen der drei erstgenannten Studien 

sowie eine geringe Validität (Missspezifikation im Strukturmodell als Verletzung der 

Konstruktvalidität bei der vorliegenden Studie und niedrige Kriteriumsvalidität bei 

Schönemann und Thompson sowie Taylor und Russell) hinsichtlich der Güte der Diagnostik 

problematisch sind. Im Rahmen des vorliegenden Designs interagierten die genannten 

Gütekriterien außerdem mit den Basisraten. Bei kleinen Basisraten wirkte sich eine geringe 

Reliabilität besonders negativ auf die Rate der korrekt als krank erkannten Kranken an allen als 

krank Diagnostizierten (Positiver Prädiktionswert) aus, eine geringe Konstruktvalidität vor 

allem auf die Rate der korrekt als krank erkannten Kranken an allen Kranken (Sensitivität). 

Umgekehrt beeinträchtigten große Basisraten in Kombination mit einer niedrigen Reliabilität 

vor allem die Rate der korrekt als gesund erkannt Gesunden an allen als gesund Diagnostizierten 

(Negativer Prädiktionswert), eine niedrige Konstruktvalidität vor allem die Rate der korrekt als 

gesund erkannten Gesunden (Spezifität) an allen Gesunden.  

Eine unausgewogene Indikatorenaufteilung im Populationsmodell führte zu 

schlechterer Diagnostik auf Basis der Faktorwerte des eindimensionalen missspezifizierten 

Modells als eine ausgewogene Indikatorenaufteilung im Populationsmodell. Für diesen Befund 

können zwei Erklärungen angeführt werden. Die erste Erklärung betrifft die Faktorladungen. 

Little, Cunningham, Shahar, und Widaman (2002a) sowie Marsh und Hocevar (1988) konnten 

zeigen, dass eine unausgewogene Indikatorenaufteilung auf die Faktoren im Rahmen 

konfirmatorischer Faktorenanalysen zu instabileren Faktorlösungen wie auch zu höheren 

Standardabweichungen und Standardfehlern bei den Modellparameterschätzungen im 

Vergleich zu einer ausgewogenen Indikatorenaufteilung führten. Ersteres Muster zeigte sich 

auch an den unter 2.1.1 beschriebenen Eigenwerten der Kovarianzmatrix der Indikatoren, 

welches auch dazu führte, dass die Diagnostik bei Anwendung korrekter Modelle auf 

Populationsdaten, denen ein Populationsmodell mit ungleicher Indikatorenaufteilung anstatt ein 

Populationsmodell mit gleicher Indikatorenaufteilung zugrunde lag, marginal schlechter war51. 

Mit letzterem Argument von Little et al. und Marsh und Hocevar zu den Standardabweichungen 

der Faktorladungen kann der Befund zur Diagnostik bei Anwendung missspezifizierter Modelle 

erklärt werden. Der Befund, dass eine unausgewogene Indikatorenaufteilung im Vergleich zu 

                                                
51Die Eigenwerte und Eigenvektoren der Matrix der Indikatoren bestimmt die Schätzung der Faktorladungen, 

welche wiederum die Schätzung der Bartlett-Faktorwerte bestimmt (Mulaik, 2009).   
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einer ausgewogenen zu höheren Standardabweichungen der Faktorladungen führt, trat auch bei 

der vorliegenden Studie bei den missspezifizierten Modellen auf (der Standardfehler der 

Faktorladungen hingegen ist aufgrund der Populationssimulation kein Argument). Von den 

Faktorladungen abhängig ist wiederum die Validität der Faktorwerte (für den Begriff siehe 

Grice [2001a, 2001b]). Hinsichtlich der Verteilung der aus den missspezifizierten berechneten 

Faktorwerte selbst zeigte sich kein Unterschied zwischen der unausgewogenen und der 

ausgewogenen Indikatorenaufteilung im Populationsmodell. Zu einem Vergleich der Schätzung 

der Faktorwerte bei unausgewogener versus ausgewogener Indikatorenaufteilung gibt es nach 

Kenntnisstand der Autorin noch keine Befunde. Als zweite Erklärung für das oben genannte 

Ergebnis zur Diagnostik auf Basis der Faktorwerte eines missspezifizierten Modells bei 

ungleicher Indikatorenaufteilung auf die Faktoren im Populationsmodell kann ein Befund zum 

Raschmodell angeführt werden. Stelzl (1979) stellte anhand von simulierten Stichproben fest, 

dass der Likelihood-Quotiententest von Andersen (1973) nicht sensitiv dafür war, 

Modellgültigkeit des Raschmodells bei einem Test abzulehnen, der aus zwei Itemgruppen 

bestand. Diese Itemgruppen erfassten jeweils eine eigene latente Dimension, die Items waren 

also heterogen. Dem eindimensionalen missspezifizierten Modell im Rahmen des vorliegenden 

Designs lagen ebenfalls zwei Populationsdimensionen zugrunde, weshalb die Faktorladungen 

der Items umso heterogener ausfielen, desto niedriger die Korrelation der Populationsfaktoren 

war (desto höher der Grad der Missspezifikation). Die beiden Gruppen, die aus den 

unterschiedlich hohen Faktorwerten der Individuen des missspezifizierten Modells gebildet 

wurden, stellten die Gruppen mit positiven und negativen Diagnosen dar. Formann (1981) 

sowie Heene, Kyngdon, und Sckopke (2016) erklärten das Versagen des Andersen-Tests so, 

dass sich in jeder der beiden Itemgruppen Personengruppen mit unterschiedlichen 

Parameterkombinationen hinsichtlich der zwei Dimensionen befanden. Es gab eine 

Personengruppe, die hinsichtlich ihres Antwortverhaltens auf einer Dimension einen höheren 

Wert besaß als auf der anderen Dimension, bei einer zweiten Personengruppe verhielt es sich 

umgekehrt und die dritte Personengruppe besaß gleich hohe Werte auf beiden Dimensionen. 

Dadurch, dass in beiden Itemgruppen Personen mit allen drei Kombinationen waren, kam es zu 

einer Kompensation der Heterogenität der Items. Die Personengruppe mit gleich hohen Werten 

auf beiden Dimensionen homogenisierte zusätzlich die Heterogenität der Items. Dieser 

Kompensationseffekt wurde größer, wenn jede Dimension von gleich vielen Indikatoren 

gemessen wurde; hingegen wurde der Kompensationseffekt bei unterschiedlich vielen Items 

pro Dimension geringer (Heene et al., 2016). Vor diesem Hintergrund, dass die unausgewogene 
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Indikatorenaufteilung im Populationsmodell im Vergleich zur ausgewogenen zu schlechterer 

Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells führte trotz dass das 

eindimensionale missspezifizierte Modell näher am Populationsmodell mit unausgewogener 

Indikatorenaufteilung als mit ausgewogener Indikatorenaufteilung lag, ist der Befund zu den 

Fit-Indizes in Studie 1 alarmierend: Alle drei untersuchten Fit-Indizes zeigten bei Anwendung 

des eindimensionalen missspezifizierten Modells auf die Stichprobendaten eine bessere 

Modellpassung an, wenn das Populationsmodell eine unausgewogene Indikatorenaufteilung 

hatte im Vergleich zu einer ausgewogenen. Hinsichtlich der Diagnostik auf Basis der 

Faktorwerte zeigte sich jedoch genau das Gegenteil, die ausgewogene Indikatorenaufteilung 

führte zu besserer Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells als die 

unausgewogene.  

Diese Heterogenität der Faktorladungen des missspezifizierten Modells leitet zur 

Erklärung des Befundes über, nach dem die Gesamtsummenwerte zu geringfügig besserer 

Diagnostik führten als die Faktorwerte des missspezifizierten Modells. Im missspezifizierten 

Modell sanken die Faktorladungen einerseits im Vergleich zu den festgelegten Faktorladungen 

in den Populationsmodellen, andererseits wurden die Ladungen mit dem Grad der 

Missspezifikation (Höhe der Faktorkorrelation im Populationsmodell) heterogener. Da die 

Ladungen primär verantwortlich sind für die Schätzung der Bartlett-Faktorwerte (Grice, 

2001b), kann vermutet werden, dass letztere beide Befunde zu niedrigerer Validität der 

geschätzten Faktorwerte eines Modells führten. Die Ergebnisse des verwendeten Designs legen 

die Schlussfolgerung nahe, dass die Gesamtsummenwerte zu besserer Diagnostik führten als 

die Faktorwerte eines eindimensionalen missspezifizierten Modells. Der Befund steht in 

Einklang mit DiStefano et al. (2009), Dobie, McFarland, und Long (1986) sowie Kukuk und 

Baty (1979), nach denen die Summenwerte zu besseren Trefferquoten führten als die 

Faktorwerte, sofern es sich um ein Konstrukt mit verschiedenen Attributen handelte, also 

letztendlich eine mehrdimensionale Skala, die jedoch eindimensional erfasst wurde. Dieser 

Befund kann allerdings nicht verallgemeinert werden, da er aus der Nicht-Spezifizierung der 

Mehrdimensionalität im Strukturmodell und der damit einhergehenden Reduktion und größeren 

Streuung der Faktorladungen im missspezifizierten Modell einherging.  

Hinzu kommt, dass die Bartlett-Faktorwerte, die im Rahmen der Studie verwendet 

wurden, zwar, im Gegensatz zu beispielsweise den Regressionsfaktorwerten, erwartungstreue 

Schätzer für die True Scores sind (für die Herleitung siehe Lawley & Maxwell, 1971), die 

Bartlett-Faktorwerte bei obliquen Faktoren aber noch abhängiger von den Faktorladungen sind 
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bzw. mehr mit den Ladungen variieren als die Regressionsfaktorwerte (Beauducel, 2005). Dies 

liegt daran, dass sich die Ähnlichkeit zwischen der Mustermatrix der Faktorladungen und der 

Matrix der True Scores in den Bartlett-Faktorwerten widerspiegelt. In den 

Regressionsfaktorwerten spiegelt sich hingegen die Ähnlichkeit zwischen der Strukturmatrix 

der Faktorladungen und der Matrix der True Scores wider (S. 147). 

 

3.3 Implikationen 

 

3.3.1 Implikationen für weitere Forschungen 

 

Vor dem Hintergrund der verschiedenen Möglichkeiten, Faktorwerte zu berechnen, 

wäre von Interesse, wie die Güte der Diagnostik ausfallen würde, wenn Diagnosen basierend 

auf den Regressionsfaktorwerten im Kontext von Strukturgleichungsmodellen oder 

konfirmatorischen Faktorenanalysen getroffen werden. Im Rahmen dieser Studie wurden die 

Diagnosen basierend auf den Bartlett-Faktorwerten getroffen; diese sind, wie bereits erläutert, 

erwartungstreue Schätzer für die wahren Faktorwerte (Lawley & Maxwell, 1971). In der 

angewandten Forschung werden aber, wie bereits unter II. 3 erwähnt, meist die 

Regressionsfaktorwerte zur Bestimmung der individuellen Ausprägungen auf den latenten 

Variablen herangezogen (Grice, 2001b). Aufgrund der Tatsache, dass die 

Regressionsfaktorwerte nicht erwartungstreu sind (Lawley & Maxwell), ist zu vermuten, dass 

die Diagnostik auf Basis der Regressionsfaktorwerte schlechter ausfallen würde als auf Basis 

der Bartlett-Faktorwerte. Andererseits werden die Regressionsfaktorwerte, wie oben 

beschrieben, bei obliquen Faktoren weniger durch die Ladungen und somit die Reliabilität 

beeinflusst als die Bartlett-Faktorwerte, was wiederum ein Pluspunkt für die Diagnostik auf 

Basis der Regressionsfaktorwerte im Rahmen des vorliegenden Designs sein könnte, der zu 

untersuchen ist.  

Im Zuge weiterer Forschungen wäre außerdem zu untersuchen, inwieweit sich die 

Diagnostik auf Basis der Faktorwerte und auf Basis der Gesamtsummenwerte verschlechtert, 

wenn anstatt einer Populationssimulation die Methode des Resampling (Stichprobenziehung; 

vgl. Carsey & Harden, 2014) verwendet werden würde, zumal in der angewandten Forschung 

einerseits eine eingeschränkte Anzahl von Fällen vorliegt, andererseits ein Testverfahren in der 

Praxis einer geringen Stichprobengröße standhalten muss.  
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Im Rahmen des vorliegenden Designs wurde Heterogenität der Faktorladungen in den 

Populationsmodellen simuliert, wobei für alle simulierten Fälle die gleichen Faktorladungen 

verwendet wurden. Diese Heterogenität der Faktorladungen vergrößerte sich noch zusätzlich 

durch die Nicht-Spezifizierung der Mehrdimensionalität im Strukturmodell. Dass – durch den 

Grad der Missspezifikation induziert – heterogenere Faktorladungen zu schlechteren 

Schätzungen der Faktorwerte führten als homogene, wurde bereits unter 3.2 diskutiert. Im 

Rahmen weiterer Simulationsforschung ist daher die Fragestellung von großem Interesse, ob 

und inwieweit heterogene Faktorladungen für sich und nicht durch eine Missspezifikation 

verursacht, die Validität der Faktorwerte der Individuen und die Validität diagnostischer 

Entscheidungen basierend auf den Faktorwerten der Individuen beeinträchtigen würden. Von 

Kelderman und Molenaar (2007) wurde bereits analytisch und anhand einer Simulationsstudie 

gezeigt, dass individuell heterogene Faktorladungen die Validität der individuellen Faktorwerte 

beeinträchtigen.  

Die Studien von Emons et al. (2007) sowie Kruyen et al. (2012) konnten zeigen, dass 

die Güte der Diagnostik insbesondere leidet, wenn Kurzskalen im Vergleich zu Langskalen 

(mindestens 20 Indikatoren) verwendet wurden. Estabrook und Neale (2013) konnten im 

Rahmen einer Simulationsstudie mit mehrdimensionalem Populationsmodell zeigen, dass im 

Rahmen des Designs der Autoren die Itemanzahl sogar noch wichtiger für die Validität der 

Faktorwerte war als die Höhe der Faktorladungen. Lawley und Maxwell (1971) zeigten formal-

analytisch, dass sich die Verteilungseigenschaften der geschätzten Faktorwerte mehr und mehr 

denen der True Scores annähern, wenn viele und reliable Indikatoren verwendet werden. 

Anknüpfend an das Design der vorliegenden Studie mit niedriger Reliabilität (niedrigen 

Faktorladungen) und niedriger Konstruktvalidität (durch Nicht-Spezifikation der 

Mehrdimensionalität in der Faktorenstruktur) wäre von Interesse, zu untersuchen, ab wie vielen 

Indikatoren pro Faktor und insgesamt sich die Güte der Diagnostik in klinisch bedeutsamem 

Ausmaß verbessern würde.  

Die Ergebnisse zeigten außerdem, dass die Faktorenunbestimmtheit als Konsequenz der 

realistisch niedrig gewählten Faktorladungen hoch war. Dadurch werden zwei Implikationen 

deutlich. Erstens drängt sich die Frage auf, ob die Faktorenunbestimmtheit im Kontext 

klassischer Verfahren bisher genug Beachtung fand. Zweitens schrieben Grice (2001b), Maraun 

(1996a), Schönemann und Steiger (1978) sowie Steiger (1979), dass die Unbestimmtheit der 

Faktoren im Kontext klassischer Verfahren vor allem problematisch würde, sobald kriterielle 

Aussagen aus den Faktorwerten getroffen werden würden. Daher wäre eine nächste 
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Forschungsfrage im Kontext einer Simulationsstudie, inwieweit Diagnosen, die auf Basis einer 

oder mehrerer exogener latenter Variablen getroffen werden, eine endogene latente Variable 

oder sogar Diagnosen basierend auf einer endogenen latenten Variablen vorhersagen können. 

Eine derartige angewandte Forschungsfrage beträfe zum Beispiel die Untersuchung der 

Passung der Diagnosen auf Basis verschiedener Testverfahren, unterschiedlicher methodischer 

Herangehensweisen oder auch die Überprüfung der Veränderung von individuellen Diagnosen 

über die Zeit52.  

 

3.3.2 Empfehlungen für die Testkonstruktion 

 

Die Ergebnisse der Simulationsstudie insgesamt (insbesondere die Ergebnisse aus dem 

Exkurs zu den Populationsmodellen mit extrem hohen Ladungen) zeigen aber auch eine 

wichtige gute Nachricht: Eine gute Testkonstruktion im Sinne der Gütekriterien führt zu 

diagnostischem Erfolg. Die Ergebnisse zu den missspezifizierten Modellen zeigen außerdem 

im Speziellen, wie wichtig eine gute Theorie im Sinne einer präzisen und trennscharfen 

Begriffsbestimmung bzw. ein empirisch gut abgesichertes Konstrukt ist, bevor überhaupt damit 

begonnen wird, ein diagnostisches Verfahren zu konstruieren. Sofern ein zu messendes 

Konstrukt aus verschiedenen Attributen besteht, die aus Gründen der Inhaltsvalidität niemals 

vernachlässigt werden sollten, kann als Empfehlung für die Testkonstruktion ausgesprochen 

werden, den Messgegenstand in möglichst homogene Teilkonstrukte aufzuteilen53. Diese 

homogenen Teilkonstrukte sollten dann von statistisch eindimensionalen und möglichst 

reliablen Items gemessen werden. Höhere Kommunalitäten erhöhen außerdem die Stabilität der 

Faktorladungen und somit auch der Faktoren selbst (Cliff & Hamburger, 1967; Cliff & Pennell, 

1967; Pennell, 1968) und damit verbessert sich wiederum die Faktorwerteschätzung, wie 

Estabrook und Neale (2013) zeigen konnten. Basierend auf einer hohen Reliabilität sollte dann 

die faktorielle Struktur der Teilkonstrukte zueinander möglichst valide spezifiziert werden.  

Die Ergebnisse der vorliegenden Simulationsstudie legen außerdem umfassendere 

Untersuchungen zur Validität neu entwickelter, aber auch bestehender Testverfahren 

                                                
52Letzteres wurde bereits von Kruyen, Emons, und Sijtsma (2014) vor dem Hintergrund von Kurzskalen anhand 

von Raschmodellen untersucht.  
53Dies entspricht dem unter III. 2.2 genannten Konzept der Mehrdimensionalität zwischen Items, die an der 

betreffenden Stelle von der Mehrdimensionalität innerhalb der Items (Verletzung der Einfachstruktur) abgegrenzt 

wurde.  
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insbesondere im Kontext kleiner Basisraten nahe. Korrelationen der beobachteten Variablen 

zwischen zwei verschiedenen Testverfahren sind nicht ausreichend, vor allem, wenn es um die 

Schätzung der individuellen Ausprägungen auf den latenten Variablen anhand der Faktorwerte 

geht. Da Simulationsstudien nicht möglich sind, können als Kriterien für die Evaluation der 

Diagnostik auf Basis von Faktorwerten die Faktorwerte eines anderen Testverfahrens oder ein 

Expertenurteil dienen. Weiters zeigen die Ergebnisse insbesondere zu den Graden der 

Missspezifikation auf, wie wichtig nicht nur gute faktorielle Validierungen hinsichtlich der 

Faktorwerte im Kontext neu entwickelter Testverfahren und Fragebögen sind, sondern auch 

andere Arten der Validierung, zum Beispiel kriterielle Validierungen. Außerdem verbessern 

Methoden, die über faktorielle und kriterielle Validierungen hinausgehen, die Güte der 

Diagnostik, so zum Beispiel Kreuzvalidierungen (vgl. Carsey & Harden, 2014, S. 255).  

Es ist offensichtlich, dass sich die Basisraten unter den untersuchten Einflussfaktoren 

auf die Güte der Diagnostik in der Praxis nicht verändern lassen. Eine mögliche Lösung aus 

dem Dilemma mit den kleinen Basisraten stellt möglicherweise dar, was bereits Emons et al. 

(2007) vorschlugen, nämlich, die Diagnostik in kleinere Teile an Information aufzuteilen. 

Möglicherweise kommt dafür die Beurteilung nach der Präsenz oder Absenz eines Symptoms, 

das für das Vorliegen einer psychischen Störung notwendig ist, in Frage. Ein derartiges 

Vorgehen würde die Basisraten für die diagnostischen Entscheidungen vergrößern und somit 

die Trefferquoten erhöhen, wenn es um möglichst hohe Raten an korrekt Positiven an allen 

Positiven (Sensitivität) und an korrekt Positiven an allen als positiv Diagnostizierten (Positiver 

Prädiktionswert) geht. Gleichzeitig ist ein Symptom an sich homogener als der Symptompool, 

der zur Diagnose führt, und kann somit auch homogener und reliabler erfasst werden als das 

Syndromkomplex. Dies stellt einen Vorschlag dar, dessen diagnostische Sinnhaftigkeit und 

Praktikabilität im Rahmen weiterer Forschung zu überprüfen ist.  

 

3.4 Limitationen  

 

Die Tatsache, dass im Rahmen der vorliegenden Simulationsstudie einerseits die 

Voraussetzung der multivariaten Normalverteilung für die erzeugten Indikatoren erfüllt war, 

andererseits die Indikatoren auch dem Intervallskalenniveau genügten, findet sich im Rahmen 

der angewandten Forschung selten wieder. Daher wäre von Interesse für die angewandte 

Forschung, wie die Güte der Diagnostik ausfällt, wenn fälschlicherweise von multivariater 

Normalverteilung und Intervallskalenniveau ausgegangen wird, zumal die Items vieler 
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Fragebögen meist nur dem Ordinalskalenniveau genügen. Sofern bekannt, kann das 

Ordinalskalenniveau in den beobachteten Variablen jedoch durch eine andere Schätzmethode 

kompensiert werden (siehe beispielsweise Browne, 2011) und eine Verletzung der 

multivariaten Normalverteilung durch robuste Korrekturen der Schätzmethoden (vgl. Finney & 

DiStefano, 2006; Satorra & Bentler, 1994; Yuan & Bentler, 1998, 2000). 

Die Missspezifikation im Rahmen dieser Simulationsstudie stellte eine 

Unterparametrisierung des Modells dar. Im Zuge weiterer Studien mit unterschiedlichen 

Basisraten wäre zu überprüfen, wie die diagnostischen Kennwerte ausfallen, wenn basierend 

auf den Faktorwerten eines fälschlicherweise überparametrisierten Modells diagnostiziert wird.  

Außerdem stellte die Missspezifikation im Strukturmodell im Rahmen dieser Studie 

eine schwerwiegende Missspezifikation dar. Es wäre von Interesse, zu überprüfen, inwieweit 

sich Diagnosen, die auf Basis von Faktorwerten mit Missspezifikationen im Messmodell 

getroffen werden, auf die diagnostischen Kennwerte auswirkt. Die sehr häufige 

Missspezifikation in Form von nicht-spezifizierten korrelierten Messfehlern (Heene et al., 

2012; Savalei, 2012; siehe III. 2.2) könnte dafür ein geeignetes Design darstellen.  

Ferner wurden im Rahmen dieses Designs Diagnosen auf Basis des Top-Down-Prinzips 

vergeben. Im Zuge weiterer Forschung zu Diagnosen aus Strukturgleichungsmodellen heraus 

wäre von Interesse, ob Diagnosen basierend auf einem Cut-Off zu anderen Ergebnissen 

hinsichtlich der diagnostischen Kennwerte führen als auf Basis einer Top-Down-Entscheidung. 

Im Rahmen des probabilistischen Designs von Kruyen et al. (2012) zeigten sich kaum 

Unterschiede hinsichtlich der Güte der Klassifikation zwischen Cut-Off-basierten und Top-

Down-Klassifikationen.  

Weiters wurde im Rahmen des beschriebenen Designs nur eine positive Diagnose 

vergeben, wenn das Individuum auf beiden Populationsfaktoren (bzw. auf beiden Faktoren im 

Rahmen des korrekten Modells) innerhalb der höchsten Faktorwerte je nach untersuchter 

Basisrate rangierte. Dies entspricht einer konjunktiven Entscheidungsstrategie (Amelang & 

Schmidt-Atzert, 2006, S. 399). Es wäre zu überprüfen, wie die Diagnostik im Vergleich zum 

vorliegenden Design ausfallen würde, wenn ein hoher Wert auf einem der beiden 

Populationsfaktoren für eine positive Diagnose ausreichen würde, also auf Basis einer 

kompensatorischen Entscheidungsstrategie (S. 399) diagnostiziert werden würde. Eine 

kompensatorische Entscheidungsstrategie wurde im Rahmen des vorliegenden Designs nicht 

untersucht, da diese hinsichtlich der Güte der Diagnostik mit der Modellbedingung der 

unausgewogenen Indikatorenaufteilung konfundiert gewesen wäre.   
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Die konjunktive Diagnosestrategie (Amelang & Schmidt-Atzert, 2006, S. 399) führt zu 

einer weiteren Limitation der Studie hinsichtlich der unterschiedlichen Cut-Off-Werte für die 

Diagnosevergabe. Die unterschiedlich hoch definierten Faktorkorrelationen zwischen den True 

Scores zwischen den einzelnen Bedingungen führten dazu, dass mit steigender Korrelation 

zwischen den True Scores auch die Anzahl der Fälle, die hohe Werte auf beiden Faktoren hatte, 

stieg. Das heißt, mit höherer Faktorkorrelation stieg die bivariate Basisrate für die 

Diagnosegebung. Diese Tatsache bot zwei Möglichkeiten: entweder die gleichen univariaten 

Cut-Offs pro Faktor zu verwenden und damit die Vergleichbarkeit der Basisraten über die 

Modellbedingungen hinweg einzuschränken, oder, unterschiedliche univariate Cut-Off-Werte 

je nach Korrelation der True Scores zu definieren, um unabhängig von der Faktorkorrelation 

dieselben bivariaten Basisraten für die Diagnosen zu erhalten. Aufgrund dessen, dass bereits 

mehrere Studien den Einfluss der unterschiedlichen Basisraten auf die Güte von diagnostischen 

Entscheidungen bestätigt hatten (Emons et al., 2007; Kruyen et al., 2012; Schönemann, 1997; 

Schönemann & Thompson, 1996; siehe III. 4), wurde die Konstanthaltung der Basisraten über 

die Bedingungen hinweg als wichtiger für die Studie erachtet als die Konstanthaltung der 

univariaten Cut-Off-Werte.  

Die Basisraten für die Diagnosen wurden aus Gründen der Verfügbarkeit verlässlicher 

Zahlen nach den 12-Monats-Prävalenzen einer EU-Studie konstruiert (Wittchen et al., 2011). 

Eine ähnlich gute und so groß angelegte Studie fand sich für die Punktprävalenzen der 

psychischen Störungen nicht. Jedoch wären aufgrund des querschnittlichen Designs 

Punktprävalenzen zur Vergabe der Diagnosen angemessener gewesen als 12-Monats-

Prävalenzen.  

Des Weiteren war bei der Konstruktion des Untersuchungsdesigns geplant, die großen 

Basisraten nicht basierend auf den Prävalenzen für Komorbiditäten und Lebenszeitprävalenzen 

in der Allgemeinbevölkerung oder Basisraten der Eignungsdiagnostik, sondern basierend auf 

den Diagnose-Raten psychologischer Beratungsstellen zu vergeben. Es ist zu vermuten, dass 

die Rate an positiven Diagnosen im Rahmen der Diagnostik durch beispielsweise 

Beratungsstellen oder auch andere Erstanlaufstellen deutlich höher ausfällt als die Rate an 

positiven Diagnosen in der Allgemeinbevölkerung. Dies hat den Grund, dass eine hohe Rate 

tatsächlich kranker Menschen oder auch subklinisch kranker Menschen derartige Anlaufstellen 

ansteuern, um sich Hilfe zu suchen, wohingegen gesunde Menschen derartige Beratungsstellen 

kaum aufsuchen. Der Versuch, die großen Basisraten an den Prävalenzen von Erstanlaufstellen 

zu orientieren, scheiterte daran, dass kaum verlässliche Zahlen dazu aufzufinden waren, die 
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dokumentiert hätten, wie viele der Personen, die eine derartige Beratungsstelle aufsuchten, auch 

tatsächlich eine positive Diagnose bekamen. Sofern die Vermutung naheliegt, dass die 

betreffenden Personen tatsächlich erkrankt sind, werden sie meist an Psychologische 

Psychotherapeutinnen und Psychologen Psychotherapeuten oder Psychiaterinnen und 

Psychiatern weiter verwiesen, die dann auch Diagnosen erstellen, sofern eine Psychotherapie 

indiziert ist. Aufgrund dieses Schritts ist dann allerdings nicht mehr nachvollziehbar, wie viele 

der anfänglich Hilfe-Suchenden sich tatsächlich in Behandlung begeben hat und wie viele nicht. 

Wittchen und Jacobi (2001) schätzen auf Basis ihrer Studie zur deutschen 

Allgemeinbevölkerung, dass nur etwa ein Drittel aller tatsächlich Kranken mindestens einmal 

im Verlauf des Lebens behandelt wird.  

Eine weitere Limitation der vorliegenden Studie stellt die Möglichkeit der Evaluierung 

von Diagnosen anhand der klassischen Methoden generell in Frage. Diagnosen stellen 

formative54 Modelle dar, da die Präsenz von bestimmten Symptomen zur Diagnose führt bzw. 

die Abwesenheit dieser Symptomen zur Einordnung in die Gruppe der Gesunden führt. 

Insbesondere kann sogar die Präsenz unterschiedlicher Symptomatik zur selben Diagnose 

führen (man beachte beispielsweise die 256 Kombinationen an Symptomen, die nach dem ICD-

10 [WHO, 1993] zur Diagnose „Borderline-Störung“ führen; Anm. der Autorin). Die klassische 

Testtheorie fußt allerdings auf reflexiven Messmodellen, nach denen die individuelle 

Ausprägung auf der latenten Variablen für die Ausprägungen auf den beobachteten Variablen 

verantwortlich ist (Bühner, 2011, S. 21). Demnach ändert eine Änderung auf einem Indikator 

oder das Weglassen oder Hinzufügen eines Indikators die Ausprägung auf der latenten 

Variablen nicht, da alle Indikatoren das gleiche messen und positiv miteinander korrelieren. 

Diese positive Korrelation wird Null, sobald die latente Variable spezifiziert wurde, da 

Unterschiede der Personen auf dieser Variable die Ursache für die Korrelationen der Items sind. 

Im Rahmen formativer Messmodelle jedoch müssen die Indikatoren nicht (positiv) miteinander 

korrelieren (Bühner, 2011; Reinecke, 2014). Außerdem führt eine Änderung auf der Ebene der 

manifesten Variablen zu einer Änderung hinsichtlich der Ausprägung auf dem Konstrukt und 

kann im klinischen Fall über das Vorliegen oder Nicht-Vorliegen einer Diagnose entscheiden. 

Die Tatsache, dass die Kriterien für einige Störungen, wie die „Borderline-Störung“ oder das 

„AD(H)S“-Syndrom, ungenau definiert sind, erschwert die Diagnostik erheblich. Eine 

weiterführende Fragestellung, die von hoher Relevanz für die klinische Forschung und 

                                                
54Formative Modelle wurden erstmals von Curtis und Jackson (1962) beschrieben.  
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Anwendung ist, stellt daher dar, welche Auswirkungen es auf die diagnostischen Kennwerte 

hätte, wenn Diagnosen auf Basis reflektiver Modelle gegeben werden, die auf Basis formativer 

Modelle konstruiert wurden. Das reflektive Modell stellt in diesem Kontext eine 

Missspezifikation dar. MacKenzie, Podsakoff, und Jarvis (2005) untersuchten bereits den 

Einfluss von Missspezifikationen in Form von reflektiven Messmodellen im Gegensatz zu 

formativen Messmodellen auf die Schätzung der Modellparameter, also auf die Reliabilität 

eines Modells. Die Autoren zeigten, dass diese Form der Missspezifikation zu fälschlicherweise 

signifikanten Parameterschätzungen und zur Überschätzung der Varianz der latenten Variablen 

führte. Studien zu den Auswirkungen dieser Form der Missspezifikation auf die Validität eines 

Modells, zum Beispiel auf die Güte von diagnostischen Entscheidungen aus den Faktorwerten 

heraus, liegen nach Kenntnisstand der Autorin noch keine vor.  

 

Im folgenden Kapitel VI werden die Hauptergebnisse der vorliegenden Dissertation 

noch einmal zusammengefasst, bevor über die Arbeit reflektiert wird und deren Relevanz für 

Wissenschaft und Praxis herausgearbeitet wird.   
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VI    ALLGEMEINE DISKUSSION 
 

1 Zusammenfassung der Ergebnisse 
 

Das Ziel dieser Arbeit war, die Auswirkungen von Missspezifikationen im Rahmen der 

linearen Strukturgleichungsmodellierung in Form einer nicht-spezifizierten zweiten latenten 

Dimension zu untersuchen. Die untersuchten Auswirkungen bezogen sich auf die Sensitivität 

der Fit-Indizes für diese Art und die unterschiedlichen Grade der Missspezifikation sowie auf 

die psychometrischen Auswirkungen hinsichtlich von Diagnosen, die auf Basis der Bartlett-

Faktorwerte eines missspezifizierten Modells getroffen wurden. Das Design der nicht-

spezifizierten Mehrdimensionalität im Strukturmodell wurde gewählt, da Mehrdimensionalität 

ein allgegenwärtiges Problem der Psychometrie darstellt (Heene et al., 2011; Little et al., 2002b; 

Savalei, 2012; siehe III. 2), welche auf eindimensionalen Konstrukten fußt, und die lineare 

Strukturgleichungsmodellierung als Datenanalysemethode sowie als Validierungsmethode für 

Testverfahren und Fragebögen sehr beliebt ist (“Datenbanksegment PSYNDEX Tests,” 2013; 

MacCallum & Austin, 2000; Reinecke, 2014; Tremblay & Gardner, 1996; siehe I. und III. 4). 

Der Schweregrad der Missspezifikation wurde durch die Höhe der Faktorkorrelation und die 

(Un-)Ausgewogenheit der Indikatoren pro latenter Variable im Populationsmodell variiert. Es 

wurde zum einen überprüft, ob die weit verbreiteten Fit-Indizes CFI, RMSEA und SRMR diese 

Art und die unterschiedlichen Schweregrade der Missspezifikation anhand der Cut-Off-

Kriterien nach Hu und Bentler (1998, 1999) bei Anwendung auf aus den Populationsmodellen 

gezogene Stichproben anzeigen würden. Zum anderen wurde geprüft, inwieweit die Güte der 

Diagnostik darunter leiden würde, wenn dichotome Diagnosen auf Basis der Bartlett-

Faktorwerte aus dem missspezifizierten einfaktoriellen Modell vergeben wurden, die wahren 

Diagnosen jedoch auf Basis der True Scores zweier Populationsfaktoren gegeben wurden, aus 

denen heraus die Populationsdaten simuliert wurden. Die Diagnostik erfolgte auf Basis der 

Bartlett-Faktorwerte (Bartlett, 1937) nach einer hinsichtlich der beiden Populationsfaktoren 

konjunktiven Entscheidungsstrategie (Amelang & Schmidt-Atzert, 2006, S. 399) und anhand 

des Top-Down-Prinzips (Gatewood et al., 2016, S. 662). Für die Diagnosen wurden 

unterschiedliche Basisraten verwendet. 
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Anhand der ersten Simulationsstudie konnte gezeigt werden, dass die Fit-Indizes CFI, 

RMSEA und SRMR korrekte Modelle anhand der Daumenregeln nach Hu und Bentler (1998, 

1999) als korrekt indizierten. Allerdings zeigten die drei Fit-Indizes hinsichtlich der 

missspezifizierten Modelle ein heterogeneres Bild. Die Fit-Indizes RMSEA und SRMR zeigten 

die Missspezifikation anhand der Cut-Offs nicht an, und dies selbst bei im Rahmen der 

angewandten Forschung hohen Faktorladungen. Der CFI zeigte die Modellabweichung mit 

Ausnahme der Bedingungen mit der hohen Faktorkorrelation im Populationsmodell (geringe 

Missspezifikation) an. Allerdings zeigte der CFI im Rahmen dieses Designs ein anderes Muster 

als das von Heene et al. (2011) beschriebene: Bei hohen Faktorladungen zeigten die Werte des 

CFI im Mittel bei der vorliegenden Studie eine höhere Sensitivität gegenüber der 

Missspezifikation als bei typischen Ladungen. Als Erklärung für diesen Unterschied wird 

vermutet, dass die nonlineare Teststatistik des CFI auch abhängig von der Art der 

Missspezifikation ist, wie von Curran et al. (2002) angenommen wurde. Die „two-index 

strategy“ funktionierte nur in Kombination mit dem CFI und dies auch nur bei mittlerem und 

hohem Grad an Missspezifikation. Im Gegensatz zu den Fit-Indizes konnte der χ2-Test jeglichen 

Grad an Missspezifikation als Modellabweichung identifizieren.  

Im Rahmen der zweiten Simulationsstudie wurde gezeigt, dass die unterschiedlichen 

Basisraten, die Reliabilität (Höhe der Faktorladungen) und die Validität (korrekte 

Spezifikation) eines Strukturgleichungsmodells sowie Interaktion dieser Parameter für die Güte 

der Diagnostik auf Basis der Faktorwerte einen bedeutenden Einfluss hatten, wobei die 

Basisraten im Rahmen des verwendeten Designs den größten Effekt hatten. Die Güte der 

Diagnostik auf Basis der Bartlett-Faktorwerte wurde selbst bei Anwendung eines korrekten 

Modells durch eine niedrige Reliabilität stark beeinträchtigt. Diese Beeinträchtigung verstärkte 

sich bei kleinen Basisraten in klinischen Größenordnungen und wirkte sich insbesondere 

hinsichtlich der Erkennung von Krankheit (Sensitivität) und der Korrektheit der Diagnose 

(Positiver Prädiktionswert) negativ aus. Wenn gleichzeitig auch die Konstruktvalidität nicht 

gegeben war (unterschiedliche Schweregrade der Missspezifikation), beeinträchtigte dies die 

Wahrscheinlichkeit, Krankheit zu erkennen (Sensitivität) bei kleinen Basisraten und die 

Wahrscheinlichkeit, Gesundheit zu erkennen (Spezifität) bei großen Basisraten zusätzlich.  

Gleichzeitig zeigten die Ergebnisse aber auch, dass ein hinsichtlich der Gütekriterien 

sehr gut konstruierter Test zu validen diagnostischen Entscheidungen führt. Wenn ein hoch 

reliables und valides Modell für die diagnostischen Entscheidungen aus den Faktorwerten 
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verwendet wurde, hing die Güte der Diagnostik anhand aller Kennwerte kaum noch von den 

unterschiedlichen Basisraten ab. Die Gesamtsummenwerte waren den Faktorwerten des korrekt 

spezifizierten/konstruktvaliden Modells unterlegen, wenn die Reliabilität sehr hoch war. Wenn 

das Modell nicht konstruktvalide bzw. missspezifiziert war, führten die Gesamtsummenwerte 

zu besserer Diagnostik als die Faktorwerte, was auf die Art der Missspezifikation 

zurückzuführen ist. 
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2 Kritische Reflexion der eigenen Arbeit  

 
2.1 Stärken der Arbeit 

 

Die vorliegende Dissertation hat drei große Stärken, welche im Folgenden herausgearbeitet 

werden. Erstens besticht das Design der Simulationsstudien durch seine in jeder Hinsicht 

äußerst realistische Konstruktion. Dies betrifft einerseits die Modellbedingungen, andererseits 

den Prozess der Datengenerierung. Als Konsequenz dieses Forschungsdesigns, welches sich 

über beide Studien zieht, zeichnet sich die Arbeit durch ihre hohe Struktur und ihren roten 

Faden aus. Der Vergleich des Ist-Zustandes der gängigen Forschungspraxis mit dem 

Idealzustand erlaubt konkrete Handlungsempfehlungen für die Testkonstruktion.  

Neben der Tatsache, dass psychologische Phänomene in ihrer Mehrdimensionalität oft nicht 

erfasst werden (können) und sich diese Arbeit den Konsequenzen dieses Problems annimmt, 

wurde als Datenanalysemethode für die berichteten Studien ein Verfahren gewählt, das 

zunehmend an Popularität in Grundlagen-, wie in angewandten Forschungsbereichen der 

Psychologie und verwandter Disziplinen gewinnt (MacCallum & Austin, 2000; Reinecke, 

2014; Tremblay & Gardner, 1996; siehe I). Außerdem wurden – im Vergleich zu den meisten 

Studien, die die Auswirkungen von Modellabweichungen austesteten – realistisch hohe 

(Peterson, 2000) und realistisch heterogene (Buzick, 2010) Faktorladungen als inzidentelle 

Modellparameter gewählt (siehe III. 3 und 5 sowie IV. 1 und V. 1). Ebenso ist die 

Indikatorenanzahl typisch (Peterson, 2000; Shrout & Yager, 1989) und eine oblique 

Faktorenstruktur in der angewandten psychologischen Forschung häufiger als eine orthogonale 

Faktorenstruktur (vgl. Steel et al., 2008; siehe IV. 1 und V. 1). Die beiden latenten Variablen 

im Populationsmodell korrelierten in Größenordnungen, wie sie in der Psychologie vorkommen 

(z.B. Rost, 2009; Shrout & Yager, 1989), und determinierten gleichzeitig den Grad der 

Missspezifikation im Strukturmodell (siehe IV. 1 und V. 1). Um die praktische Relevanz der 

Arbeit zu erhöhen, wurden diagnostische Entscheidungen auf klinische Diagnosen übertragen, 

wobei verschiedene Basisraten in klinischen Größenordnungen (Wittchen & Jacobi, 2001; 

Wittchen et al., 2011) zur dichotomen Diagnostik verwendet wurden. Der Einbezug der 

Gesamtsummenwerte zur Diagnostik komplettiert das realitätsnahe Design im Sinne der 

gängigen Praxis der Testkonstruktion und Testanwendung (DiStefano et al., 2009; Estabrook 

& Neale, 2013; siehe III. 5.2).  
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Im Rahmen der ersten Simulationsstudie wurde eine Simulation mit anschließendem 

Resampling gewählt, da die Güte der Modellevaluation anhand der Fit-Indizes hinsichtlich der 

beschriebenen Missspezifikation ausgetestet werden sollte. Dies entspricht einer 

Robustheitsstudie hinsichtlich des Datenanalyseverfahrens an sich. Im Rahmen der zweiten 

Studie wurde die Praxis der klinischen Einzelfalldiagnostik simuliert. Das Ziel der 

Psychometrie ist es, die Ausprägungen der Individuen auf den latenten Variablen möglichst 

valide erfassen zu können. Daher wurde eine Simulationsmethode gewählt, die einerseits eine 

Populationssimulation darstellte, andererseits von den Populationsfaktorwerten ausging, also 

den wahren Ausprägungen der Individuen auf den latenten Variablen. Dies hatte den Vorteil, 

dass nicht nur die Güte der Diagnostik auf Basis der Faktorwerte eines missspezifizierten 

Modells berechnet werden konnte, sondern als Referenz zu dieser auch die Güte der Diagnostik, 

die die Faktorwerte eines korrekten Modells unter realistischen Bedingungen überhaupt leisten 

konnten.  

Das genannte Forschungsdesign führt zur zweiten Stärke dieser Arbeit. Im Rahmen 

beider Simulationsstudien wurde das gleiche Design für die Populationsmodelle verwendet, 

sodass der Aufbau der Forschungsarbeit klar strukturiert und demnach die Aussagekraft hoch 

war: Zunächst wurden Fit-Indizes, welche in der angewandten psychologischen Forschung sehr 

oft für die Evaluation der Modellpassung herangezogen werden (Beauducel & Wittmann, 2005; 

Marsh et al., 2013; McDonald & Ho, 2002; Savalei, 2012; siehe II. 2 und IV. 1), auf ihre 

Sensitivität hinsichtlich einer realistischen Art und realistisch hohen Graden an 

Missspezifikation untersucht. In einem zweiten Schritt wurde dann am Beispiel von Diagnosen 

gezeigt, was diese Missspezifikation hinsichtlich der der substanziellen Aussagen, die aus den 

Faktorwerten dieser Modelle getroffen werden, für die Individuen überhaupt bedeuten würde.  

Die dritte Stärke dieser Dissertation liegt darin, dass nicht nur aufgezeigt wurde, welche 

substanziellen negativen Konsequenzen für die Individuen im Rahmen der psychologischen 

Einzelfalldiagnostik entstehen, wenn bei der Testkonstruktion, wie auch bei der Auswertung 

von Daten, nicht nach dem Gold-Standard vorgegangen wird. Es wurde auch dargestellt, dass 

eine äußerst sorgfältige Test- oder Fragebogenkonstruktion nach den Gütekriterien zu sehr 

valider Diagnostik auf Basis der Bartlett-Faktorwerte führt. Basierend auf diesem Vergleich 

konnten einerseits Ratschläge für die Beurteilung der Modellpassung im Rahmen der 

Auswertung von Daten mittels Strukturgleichungsmodellen gegeben werden (siehe IV. 3.2), 

andererseits konkrete Handlungsempfehlungen für die Test- und Fragebogenkonstruktion 
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(siehe V. 3.3.2). Diese werden unter VI. 3.1 noch einmal aufeinander aufbauend 

zusammengefasst.  

 

2.2 Grenzen der Arbeit 

 

Trotz eines Forschungsdesigns, das sehr nahe an der Realität konzipiert wurde, konnte 

der diagnostische Entscheidungsprozess im Falle der klinischen Diagnosen dennoch nicht 

vollständig nachgestellt werden und nur beispielhaft vor dem Hintergrund einer untersuchten 

Art der Modellmissspezifikation skizziert werden.  

An dieser Stelle sei neben den weiteren unter V. 3.3 genannten Limitationen nochmals 

die Tatsache erwähnt, dass es sich im Rahmen klinischer Diagnosen um formative Messmodelle 

handelt (Bühner, 2011; Curtis & Jackson, 1962; Reinecke, 2014; siehe V. 3.4), im Rahmen des 

Designs dieser Arbeit jedoch lediglich reflexive Messmodelle untersucht wurden.  

Außerdem wurden die Diagnosen im Rahmen dieser Arbeit rein auf Basis einer 

konjunktiven Entscheidungsstrategie (Amelang & Schmidt-Atzert, 2006, S. 339) nach den 

höchsten Faktorwerten auf beiden Populationsfaktoren vergeben. Zumeist führen in der 

psychologischen Einzelfalldiagnostik aber auch hohe Ausprägungen auf den Indikatoren des 

einen Faktors kombiniert mit niedrigen Ausprägungen auf den Indikatoren eines zweiten 

Faktors insgesamt zu einer Diagnose, zumal in der gängigen diagnostischen Praxis meist 

Rohsummenwerte zu einer Diagnose führen (z.B. Beck et al., 2006; Estabrook & Neale, 2013). 

Letztere Entscheidungsstrategie wäre allerdings mit der unausgewogenen 

Indikatorenaufteilung hinsichtlich der Güte der Diagnostik basierend auf den Faktorwerten 

konfundiert gewesen.  

Ferner waren im Rahmen des simulierten Fragebogen- bzw. Testdesigns das 

erforderliche Skalenniveau der Indikatoren, als auch die Voraussetzung der multivariaten 

Normalverteilung erfüllt, da der Fokus der Arbeit auf den Auswirkungen der unterschiedlichen 

Grade der Missspezifikation lag. Oft sind jedoch in der angewandten Forschung genau diese 

beiden genannten Annahmen verletzt (Kuzon, Urbanchek, & McCabe, 1996; Norman, 2010; 

Von Eye & Bogar, 2004), ohne dass dafür, z.B. anhand von robusten Maximum-Likelihood-

Schätzmethoden bei Verletzung der multivariaten Normalverteilung (Finney & DiStefano, 

2006; Satorra & Bentler, 1994; Yuan & Bentler, 1998, 2000) oder durch ein anderes 
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Schätzverfahren bei Vorliegen von ordinalskalierten Daten (Browne, 2011) korrigiert werden 

würde. 

Zum Abschluss soll die Relevanz der Dissertation für Wissenschaft und Praxis 

herausgestellt werden und Implikationen aus den Befunden der Dissertation für die jeweiligen 

Bereiche abgeleitet werden.  
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3 Relevanz der Arbeit für Wissenschaft und Praxis 
 

3.1 Wissenschaft 

 

„The difficulty faced by psychologists in measuring is not mathematical 

or empirical in nature, but is instead that the concepts they wish to have 

enter into their measurement operations are typically of the common-

or-garden variety.“ 

(Maraun, 1998, S. 436) 

 

Dieses Kommentar Marauns (1998) auf Wittgensteins eingangs erwähnte Worte betrifft 

eine der Hauptimplikationen bei der Testkonstruktion. Diese Implikation ist keineswegs neu, 

doch angesichts der aktuellen Replikationskrise der Psychologie von großer Bedeutung. Bei der 

Konstruktion von Tests, Fragebögen und Skalen bedarf es einer guten Theorie im Sinne einer 

präzisen und trennscharfen Konstruktdefinition. Dies stellt den ersten Schritt auf dem Weg zu 

erfolgreicher Psychometrie dar.  

Die erste konkrete Empfehlung für die Konstruktion von Tests, Fragebögen oder Skalen, 

die sich aus der vorliegenden Dissertation ableiten lässt, betrifft den Prozess, den zu erfassenden 

Messgegenstand, der in den meisten Fällen psychologischer Forschung mehrdimensional sein 

wird (Little et al., 2002b), in ein empirisch überprüfbares Konstrukt zu übersetzen. Die 

Empfehlung lautet, das mehrdimensionale Konstrukt in homogene Teilbereiche aufzuteilen und 

diese möglichst reliabel zu erfassen und deren Faktorenstruktur zueinander möglichst valide zu 

spezifizieren55. Dabei ist eine äußerst sorgfältige Indikatoren-Konstruktion zur Erfassung 

dieses Konstrukts notwendig, insbesondere, wenn es sich um kleine Basisraten handelt. So 

wurde im Rahmen der Dissertation gezeigt, dass hohe Faktorladungen, also eine hohe 

Reliabilität des Tests bzw. Fragebogens oder der Skala, sowohl die Sensitivität des χ2-Tests und 

der Fit-Indizes für Missspezifikationen erhöhte, als auch die Güte diagnostischer 

Entscheidungen auf Basis der Faktorwerte eines Modells verbesserte. Eine hohe Reliabilität 

zeigte sich insbesondere vor dem Hintergrund kleiner Basisraten, wie sie in der klinischen 

                                                
55Dies ist beispielsweise bei der Konstruktion des „I-S-T 2000 R“ (Liepmann et al., 2007) sehr gelungen.   



 
 

 137  

Psychologie vorkommen, von großer Bedeutung für die diagnostische Präzision. Das Gleiche 

wie für die Reliabilität gilt für die Korrektheit der faktoriellen Struktur, also für die 

Konstruktvalidität. Es wurde gezeigt, dass eine hohe Konstruktvalidität im Sinne der Absenz 

einer Missspezifikation im Strukturmodell in Kombination mit einer sehr hohen Reliabilität zu 

valider Diagnostik auf Basis der Faktorwerte führte. Desto höher der Grad der 

Missspezifikation (desto niedriger die Konstruktvalidität), desto mehr litt die Güte der 

diagnostischen Entscheidungen beim Vorliegen kleiner Basisraten, sofern das Ziel der 

Diagnostik das Erkennen eines Krankheitszustands war. Umgekehrt beeinträchtigte eine 

niedrige Konstruktvalidität bei großen Basisraten die Wahrscheinlichkeit, Gesunde als gesund 

zu erkennen. Ferner wurde im Rahmen des Exkurses gezeigt, dass die Diagnostik auf Basis der 

Faktorwerte eines sorgfältig konstruierten (hoch reliablen und konstruktvaliden) 

Testinstruments der bloßen Aufsummierung der Antworten auf den Indikatoren vorzuziehen 

ist.   

Sofern die Voraussetzungen einer guten Theorie sowie deren reliable und valide 

Erfassung gesichert sind und der nächste Schritt die Auswertung der (Norm-)Daten ist, ist in 

jedem Fall davon abzuraten, sich bei der Modellevaluation im Rahmen der 

Strukturgleichungsmodellierung nur auf die Fit-Indizes zu verlassen. Wie in der vorliegenden 

Dissertation gezeigt wurde, konnten die gängigsten Fit-Indizes die Dimensionalitätsverletzung 

größtenteils anhand der Cut-Off-Kriterien nach Hu und Bentler (1998, 1999) nicht als 

modellabweichend identifizieren, der χ2-Test allerdings schon. Sofern die Fit-Indizes 

Modellpassung indizieren, der χ2-Test aber nicht, ist insofern Vorsicht geboten. Da aus der 

Signifikanz des χ2-Tests insbesondere bei großen Stichproben jedoch nicht geschlussfolgert 

werden kann, wie groß die Modellverletzung ist (Saris et al., 1987), ist die gleichzeitige 

Betrachtung lokaler Maße der Modellpassung unbedingt erforderlich.  

Der letzte Schritt der Testkonstruktion betrifft die Wahl eines geeigneten Cut-Off-

Werts, der – im Rahmen eines dichotomen Beispiels, wie es auch in der vorliegenden 

Dissertation verwendet wurde – die Individuen mit der Diagnose „krank“ möglichst trennscharf 

von den Individuen mit der Diagnose „gesund“ differenziert. Hinsichtlich dieses Cut-Offs ist 

eine äußerst kritische Abwägung hinsichtlich Sensitivität und Spezifität anhand der ROC-

Kurve unter Beachtung des Testzwecks (Screening, Beurteilung des Schweregrades einer 

Erkrankung, etc.) zu treffen (Amelang & Schmidt-Atzert, 2006). Wird der Testtrennwert 

erhöht, sodass die Sensitivität steigt und die Rate an falsch negativen Diagnosen geringer wird, 
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sinkt jedoch die Spezifität und die Rate an falsch positiven Diagnosen wird höher (Amelang & 

Schmidt-Atzert, 2006; Ziegler & Bühner, 2012). Wie die vorliegende Dissertation zeigte, spielt 

die Reliabilität (Faktorladungen) auch hinsichtlich des Cut-Offs bei mehrdimensionalen 

Testverfahren mit unterschiedlich hohen Korrelationen zwischen den Faktoren eine Rolle. Die 

realistisch niedrige Reliabilität im Rahmen des vorliegenden Studiendesigns führte dazu, dass 

der gewählte univariate Cut-Off für die Diagnosen in einer Verzerrung der Basisraten bei 

Anwendung des korrekten Modells resultierte.  

 

Schwieriger zu erreichen als eine reliable und valide Testkonstruktion ist ein geeigneter 

Umgang mit kleinen Basisraten, da diese nicht veränderbar sind. Basisraten können 

insbesondere im klinischen Bereich oft sehr klein ausfallen, sogar deutlich kleiner als im 

Rahmen des untersuchten Designs. So liegen die Punktprävalenzen für psychische Störungen 

wie Anorexie, Schizophrenie oder die Borderline-Störung beispielsweise unter 1% (Wittchen 

et al., 2011). Das aus den kleinen Basisraten resultierende Dilemma hinsichtlich der Sensitivität 

und des Prädiktionswerts eines diagnostischen Instruments wurde sowohl in der vorliegenden 

Arbeit als auch anhand der unter III. 4 beschriebenen Studien deutlich. Dieser Befund impliziert 

besondere Aufmerksamkeit vonseiten der Diagnostikerin/des Diagnostikers bei der 

Verwendung von Screening-Verfahren.  

Ein Ansatz, der die Problematik, die aus den kleinen Basisraten resultiert, 

möglicherweise entschärfen könnte, stellt dar, die Diagnose durch den Einsatz verschiedener 

Testverfahren mehrfach abzusichern. Dies macht allerdings bei Testpersonen, die durch ihre 

Störung stark kognitiv beeinträchtigt sind, wenig Sinn. Ein anderer Ansatz, der ökonomischer 

und zumutbarer für die getesteten Individuen wäre, könnte darstellen, die Diagnostik in Teile 

aufzuteilen (vgl. Emons et al., 2007), die zusammen die End-Diagnose ergeben sollen. Dies 

könnte, wie bereits unter V. 3.3.2 beschrieben, durch die Beurteilung der Präsenz oder Absenz 

eines Symptoms erreicht werden. Dieser Vorschlag würde sich zusammen mit dem bekannten 

Vorschlag, das zu erfassende Konstrukt in möglichst homogene Teilkonstrukte aufzuteilen, um 

es anschließend hinsichtlich der Faktorenstruktur möglichst valide zu spezifizieren, sehr gut in 

Einklang bringen und umsetzen lassen.  
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3.2 Praxis 

 

Neben den genannten Implikationen für die Testkonstruktion macht diese Dissertation 

auch deutlich, wie wichtig nicht nur eine gute wissenschaftliche Ausbildung für 

Diagnostikerinnen und Diagnostiker ist, sondern auch, wie wichtig diagnostische Erfahrung in 

den jeweiligen Bereichen und gewissenhaftes Vorgehen bei der Diagnostik ist, zumal die 

diagnostische Erfahrung höchstwahrscheinlich zusätzlich von der Höhe der Basisrate abhängt. 

Im Rahmen dieser Dissertation und einem nachsimulierten klinischen Design wurden 

nur unterschiedliche Basisraten untersucht, nicht auch unterschiedliche Selektionsraten. In der 

Eignungsdiagnostik kommt jedoch in den meisten Fällen eine von den Basisraten verschiedene 

Selektionsrate hinzu. Sofern sich Basis- und Selektionsrate nicht gleichen, kann eine im 

Vergleich zur Basisrate kleinere Selektionsrate die Trefferquote erhöhen (Schönemann & 

Thompson, 1996; Taylor & Russell, 1939). Das heißt, mehr Bewerberinnen und Bewerber 

erhöhen die Chance, eine geeignete Kandidatin/einen geeigneten Kandidaten für eine vakante 

Position auszuwählen.  

Für die Festlegung von geeigneten Testtrennwerten gibt es keine eindeutige Lösung 

(Amelang & Schmidt-Atzert, 2006, S. 432). Gleichzeitig geht eine diagnostische Entscheidung 

aber mit einer qualitativen Wertung einher, die hinsichtlich individueller und gesellschaftlicher 

Konsequenzen äußerst sorgfältig erwägt werden sollte (Amelang & Schmidt-Atzert; 

Wieczerkowski & Oeveste, 1982). Die praktische Bedeutsamkeit mangelhafter diagnostischer 

Instrumente für die Einzelfalldiagnostik wird im Folgenden ausgeführt.  

Falsche Diagnosen können weitreichende Konsequenzen nach sich ziehen. Falsch 

positive Diagnosen verursachen nicht nur unnötige Behandlungskosten für Individuum und 

Gesundheitswesen und damit wiederum für die Gesellschaft, sondern können für die 

Betroffenen auch zu negativen psychischen und physischen Konsequenzen führen. Derartige 

negative Folgen führen von der Stigmatisierung, welche wiederum erst psychische 

Beeinträchtigung verursachen kann, bis hin zu unerwünschten Nebenwirkungen durch 

psychologische Psychotherapie und/oder Pharmakotherapie (Angermeyer, 2003; Berk & 

Parker, 2009; Brüggemann, 2007; Holzinger, Beck, Munk, Weithaas, & Angermeyer, 2003; 

Linden, 2013; Rüsch, 2010). Falsch negative Diagnosen können die Unterlassung notwendiger 

Interventionsmethoden nach sich ziehen. Eine hohe Rate an falsch negativen Diagnosen ist 

insbesondere im Rahmen von Screenings problematisch, da Patienten mit einer negativen 
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Diagnose nicht weiter untersucht werden. Dieser Umstand kann sich, verglichen mit einer 

frühzeitigen korrekten Diagnosestellung, in einer verringerten Chance auf Heilungserfolg 

äußern (Milos, Spindler, Schnyder, & Fairburn, 2005; Von Holle et al., 2008). 

 

Vor dem Hintergrund der Relevanz dieser Dissertation für Wissenschaft und Praxis 

erscheinen Wittgensteins eingangs erwähnte Worte zur Bedeutung der Wissenschaftlichkeit 

ebenso wesentlich wie 1953 (Maraun, 1998).  
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Anhang 
 

1 Diagnostische Konsistenzen korrekte Modelle 
 

 

 

 

 

 

 

 

 

 

 

Abbildung 14. Durch die Bartlett-Faktorwerte korrekter Modelle korrekt erkannte Positive 
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Abbildung 15. Durch die Bartlett-Faktorwerte korrekter Modelle korrekt erkannte Negative 

 

 

 

 

 

 

 

 

 

 

Abbildung 16. Durch die Bartlett-Faktorwerte korrekter Modelle als falsch-positiv diagnostizierte Fälle 
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Abbildung 17. Durch die Bartlett-Faktorwerte korrekter Modelle als falsch-negativ diagnostizierte Fälle 
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2 Diagnostische Konsistenzen missspezifizierte Modelle 
 

 

 

 

 

 

 

 

 

 

Abbildung 18. Durch die Bartlett-Faktorwerte missspezifizierter Modelle korrekt erkannte Positive 
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Abbildung 19. Durch die Bartlett-Faktorwerte missspezifizierter Modelle korrekt erkannte Negative 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 20. Durch die Bartlett-Faktorwerte missspezifizierter Modelle als falsch-positiv diagnostizierte Fälle 
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Abbildung 21. Durch die Bartlett-Faktorwerte missspezifizierter Modelle als falsch-negativ diagnostizierte Fälle 
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3 Diagnostische Konsistenzen Gesamtsummenwerte 
 

 

 

 

 

 

 

 

 

 

 

Abbildung 22. Durch die Gesamtsummenwerte korrekt erkannte Positive 
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Abbildung 26. Durch die Gesamtsummenwerte korrekt erkannte Negative 

Abbildung 23. Durch die Gesamtsummenwerte korrekt erkannte Negative 

 

 

 

 

 

 

 

 

 

 

Abbildung 24. Durch die Gesamtsummenwerte als falsch-positiv Diagnostizierte 
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Abbildung 25. Durch die Gesamtsummenwerte als falsch-negativ Diagnostizierte 
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