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Zusammenfassung

Analysen zur  Entdeckung von  Modellmissspezifikationen  bei
Strukturgleichungsmodellen anhand der Fit-Indizes nehmen in der Fachliteratur der
letzten Jahrzehnte einen grofen Raum ein. Dennoch wurden Missspezifikationen im
Strukturmodell in Form einer nicht-spezifizierten Zweidimensionalitit beispielsweise
noch nicht untersucht. Daher wurde im Rahmen einer ersten Studie untersucht, inwieweit
die am meisten verwendeten Fit-Indizes diese Art und unterschiedliche Grade dieser
Missspezifikation (operationalisiert durch die Hohe der Faktorkorrelation und (un-)
ausgewogene Indikatorenaufteilung im Populationsmodell) zuverldssig erkennen
wiirden. Es wurden ferner realistisch hohe und heterogene Faktorladungen fiir die
Populationsmodelle verwendet, aus denen die Stichproben erzeugt wurden. Der CFI
fithrte bei schwerwiegender und mittelschwerer Missspezifikation zur Modellablehnung
anhand des Cut-Offs nach Hu und Bentler (1998, 1999), RMSEA und SRMR erwiesen
sich als ungeeignet, diese Form der Missspezifikation anzuzeigen. Insbesondere wurde
jedoch die Frage nach den Konsequenzen missspezifizierter Modelle auf
individualdiagnostische Entscheidungen basierend auf den Faktorwerten bisher nicht
gestellt. Im Rahmen der zweiten Studie wurde daher mit einer populationsbasierten
Simulation auf Basis vorab definierter Faktorwerte der Frage nachgegangen, inwieweit
die Diagnosegenauigkeit leiden wiirde, sofern dichotome Diagnosen auf Basis der
Bartlett-Faktorwerte missspezifizierter Modelle anstatt auf Basis der Bartlett-Faktorwerte
korrekter Modelle vergeben wurden. Des Weiteren wurde die Giite der Diagnostik auf
Basis der iiblicherweise verwendeten Gesamtsummenwerte untersucht. Es wurde
dasselbe Design wie fiir die erste Studie verwendet, wobei zusétzlich die Basisraten fiir
die Diagnosegebung variiert wurden. Vor allem die unterschiedlichen Basisraten und die
Hohe der Faktorladungen hatten bereits einen entscheidenden Einfluss auf die Giite der
Diagnostik auf Basis korrekter Modelle; ebenso Basisraten, Faktorladungen und der Grad
der Missspezifikation/die unterschiedlichen Populationsmodelle auf die Giite der
Diagnostik auf Basis missspezifizierter Modelle und der Gesamtsummenwerte. Die

Konsequenzen der Befunde fiir Wissenschaft und Praxis werden diskutiert.
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I EINLEITUNG

,Das Bestehen der experimentellen Methode 14[ss]t uns glauben,
wir hétten das Mittel, die Probleme, die uns beunruhigen,
loszuwerden; obgleich Problem und Methode windschief
aneinander vorbeilaufen.*

(Wittgenstein, 1953, S. 232)

In diesem Zitat, das Wittgenstein bereits 1953 an die Psychologie richtete, findet
sich ein Grund wieder, der sicherlich zu einem groen Teil zur aktuellen
Replikationskrise der Psychologie beitrug: der Irrglaube, durch die Anwendung einer
Methode sei Wissenschaftlichkeit bereits erreicht. Oder noch drastischer ausgedriickt:
Der Zweck heilige die Mittel.

In Gang gesetzt wurde die Replikationskrise mit einem kritischen Kommentar
Wagenmakers', Wetzels', Borsbooms, und van der Maas' (2011) auf einen Artikel Bems
(2011) im Journal of Personality and Social Psychology. Bems Befunde konnten nicht
repliziert werden (Schimmack, 2012) — wie viele andere psychologische Befunde auch:
In einem gro3 angelegten ,,Reproducibility Project: Psychology* (Open Science
Collaboration, 2015, S. 1) wurden beispielsweise nur 36% von 100 als signifikant
publizierter psychologischer Befunde signifikant, wobei 83% der Effektstirken unter den
im Original berichteten Effektstarken lagen. Vor allem Ursachen wie der Publikationsbias
und fragwiirdige Forschungspraktiken (fiir eine Auflistung vgl. Schimmack [2012])
filhrten zu diesen und weiteren falsch positiven Befunden psychologischer Studien
(Schimmack, 2012, 2016).

Auch diese Dissertation beschiftigte sich im weitesten Sinne mit der von
Wittgenstein (1953) beschriebenen Diskrepanz zwischen dem Status-Quo in der
Forschung und dem wissenschaftlichen Gold-Standard. Als Beispiel wurde die lineare
Strukturgleichungsmodellierung herangezogen. Es wurden die Auswirkungen einer
realistisch niedrigen Reliabilitit (Faktorladungen) sowie mangelnder faktorieller
Validitit/einer Missspezifikation im Strukturmodell untersucht, und zwar einerseits

hinsichtlich der Sensitivitit der Fit-Indizes fiir diese Modellmissspezifikation,
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andererseits hinsichtlich der Validitét von Diagnosen, die vor dem Hintergrund von Test-
und Fragebogenvalidierungen mittels Strukturgleichungsmodellen aus den Faktorwerten
dieser Modelle vergeben wurden.

Mit der linearen Strukturgleichungsmodellierung (Joreskog, 1969, 1973) wurde
ein Datenanalyseverfahren fiir diese Arbeit ausgewéhlt, welches innerhalb der letzten vier
Jahrzehnte in Grundlagen-, wie auch in angewandten Forschungsbereichen der
Psychologie und verwandten Disziplinen zunehmend an Bedeutung gewann
(Hershberger, 2003; MacCallum & Austin, 2000; Reinecke, 2014; Tremblay & Gardner,
1996). Wird beispielsweise in Google Scholar der einigermallen spezifische Suchbegriff
»tructural Equation Modeling™ eingegeben, erscheinen 2,47 Mio. Eintrige. Im
Vergleich dazu erreicht der sehr allgemeine Suchbegriff ,,Psychological Research®, der
letztendlich alle Forschungsbereiche innerhalb der Psychologie abdeckt, mit 4,34 Mio.
Eintrdgen nur fast doppelt so viele Verweise. Fiir die renommierte Fachzeitschrift
Structural Equation Modeling lasst zudem sich ein kontinuierlicher Anstieg der
Zitationen aus dieser Zeitschrift verzeichnen (SCImago, 2007). AuBBerdem rangiert diese
Fachzeitschrift an erster Stelle der 45 Zeitschriften aus dem Bereich der Mathematischen
Methoden (“Structural Equation Modeling: A Multidisciplinary Journal,” 2015).

Die kritische Frage in Bezug auf die Modelltestung im Rahmen der
Strukturgleichungsmodellierung bezieht sich auf die Modellpassung, also darauf, wie
zuverldssig Missspezifikationen als solche erkannt werden (Fan & Sivo, 2005; Fan,
Thompson, & Wang, 2009). Dieser Frage wurde im Rahmen einer ersten
Simulationsstudie nachgegangen. Anhand von zahlreichen Studien (siehe Kapitel III. 1
und 2) wurde bereits gezeigt, dass die Hohe der Faktorladungen (Reliabilitit) einen
entscheidenden  Einfluss  darauf hat, inwieweit die  Fit-Indizes eine
Modellmissspezifikation als solche erkennen. Daher wurden realistisch hohe und
zugleich realistisch heterogene Faktorladungen (Buzick, 2010; Peterson, 2000) fiir die
Generierung der Populationsmodelle verwendet, aus denen die Stichproben gezogen
wurden. Die untersuchte Art der Missspezifikation stellte einen typischen Fall einer
Missspezifikation in der Psychologie und verwandter Disziplinen dar (Little,
Cunningham, Shahar, & Widaman, 2002b): Es wurde félschlicherweise ein
einfaktorielles Modell spezifiziert, wohingegen im Populationsmodell zwei korrelierte
latente Variablen definiert wurden. Diese Art der Missspezifikation stellte eine

Verletzung der faktoriellen Validitét eines Modells/Testverfahrens dar und wurde bisher
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noch kaum untersucht (siehe III. 2.3). Der Grad dieser Missspezifikation wurde einerseits
variiert durch unterschiedlich hohe, fiir die Psychologie typische Korrelationen (Rost,
2009; Steel, Schmidt, & Shultz, 2008) zwischen den latenten Variablen, andererseits
durch eine (un-)ausgewogene Indikatorenaufteilung auf die beiden Faktoren im
Populationsmodell, wobei insgesamt eine fiir psychologische Testverfahren/Fragebogen
typische Indikatorenanzahl verwendet wurde (Peterson, 2000; Shrout & Yager, 1989).
Konkret wurde im Rahmen der ersten Simulationsstudie untersucht, ob die am haufigsten
verwendeten (Beauducel & Wittmann, 2005; Marsh, Hau, & Grayson, 2013; McDonald
& Ho, 2002; Savalei, 2012) Fit-Indizes CFI (Bentler, 1990), RMSEA (Steiger & Lind,
1980) und SRMR (Bentler, 1995) eine Missspezifikation der beschriebenen Form anhand
der Cut-Off-Kriterien nach Hu und Bentler (1998, 1999) anzeigen wiirden. Diese
Fragestellung betraf die Giite des Modells.

Im Rahmen der zweiten Studie dieser Dissertation wurde noch ein Schritt weiter
in Richtung der angewandten Forschung und der psychologischen Praxis gegangen und
die  Forschungsfrage  gestellt,  welche  psychometrischen = Konsequenzen
Missspezifikationen im Gegensatz zu korrekten Modellen auf die psychologische
Individualdiagnostik aus den Faktorwerten nach sich ziehen wiirden. Letztere
Forschungsfrage ist insbesondere aufgrund der Tatsache von Interesse, dass mehr und
mehr Testverfahren und Fragebdgen anhand konfirmatorischer Faktorenanalysen und
anhand von Strukturgleichungsmodellen konstruktvalidiert werden (‘““Datenbanksegment
PSYNDEX Tests,” 2013). Es wurde dasselbe Forschungsdesign wie fiir die erste Studie
verwendet, das ein wenig reliables (realistisch niedrige Faktorladungen) und nicht
konstruktvalides (im Strukturmodell missspezifiziertes) Testverfahren darstellen sollte.
Die Verwendung unterschiedlich hoher Basisraten in klinischen Grofenordnungen
(Wittchen et al., 2011) sowie zum Vergleich auch groBerer Basisraten (vgl. die
Eignungsdiagnostik; Schuler, 2014) fiir die Vergabe der Diagnosen im Rahmen der
zweiten Studie komplettierte das realitidtsnahe Forschungsdesign. Zudem wurde die
diagnostische Prézision auf Basis der iiblicherweise verwendeten Gesamtsummenwerte

(Estabrook & Neale, 2013) untersucht.

Zunichst soll im folgenden Kapitel ein Uberblick iiber die lineare

Strukturgleichungsmodellierung selbst gegeben werden, bevor anschlieBend die



Forschungsfragen konkretisiert, die Studien beschrieben und deren Relevanz fiir

Wissenschaft und Praxis diskutiert wird.






II THEORETISCHER HINTERGRUND

1 Grundlegende Konzeption von Faktorenanalysen und

linearen Strukturgleichungsmodellen

Ausgangspunkt  fiir  Datenanalysemethoden wie exploratorische und
konfirmatorische Faktorenanalysen sowie lineare Strukturgleichungsmodelle ist die
Definition des Messwerts eines Indikators. Die Fundamentalgleichung der
Faktorenanalyse stellt dar, dass sich die beobachteten Variablen aus gewichteten

gemeinsamen und uniquen Faktorwerten zusammensetzen (Mulaik, 2009, S. 136):
Y=AX+WE (1)

Y stellt eine n X 1 Matrix dar, wobei n die Anzahl der beobachteten Variablen ist.
X stellt eine r x 1 Matrix dar, wobei r die Anzahl der gemeinsamen latenten Faktoren
darstellt. A ist die n x r Mustermatrix, W ist die n x n Mustermatrix der Koeffizienten'
der uniquen Faktorwerte” und E die n x 1 Matrix der uniquen Faktorwerte (Mulaik, 2009).
Voraussetzungen sind, dass die Erwartungswerte der beobachteten Variablen Y, der
Faktorwerte X sowie der Fehler E Null sind.

Im faktorenanalytischen Modell wird davon ausgegangen, dass die uniquen
Faktorwerte sowohl Messfehleranteile enthalten, als auch einen Anteil, der spezifisch fiir
die entsprechende beobachtete Variable ist und mit keiner anderen beobachteten
Variablen geteilt wird (Eid, Gollwitzer, & Schmitt, 2013). Im Gegensatz dazu
reprasentiert der Varianzanteil einer beobachteten Variablen, welcher nicht durch die
latenten Variablen erklart werden kann, im Rahmen eines True-Score-Modells (Eid et al.,
2013, S. 856) nur Messfehler. Bei den unter IV und V beschriebenen Studien handelt es
sich ausschliefSlich um True-Score-Modelle.

Unter der Voraussetzung, dass die gemeinsamen und die uniquen Faktorwerte
unkorreliert sind, d.h. die Matrix der uniquen Faktorwerte E multipliziert mit ihrer

Transponierten eine Identititsmatrix darstellt, gibt das Fundamentaltheorem der

1Residual-Standardabweichungen (Janssen & Laatz, 2013, S. 555)
“Residuen (Janssen & Laatz, 2013, S. 548)



Faktorenanalyse an, wie die Korrelationsmatrix der beobachteten Variablen errechnet

wird (Mulaik, 2009, S. 136):
Ryy = A &y A’ + P2 )’

Dabei gibt ®xx die r X r Korrelationsmatrix der Faktoren an. Die Differenz aus
Ryy und ¥* ergibt die sog. reduzierte Korrelationsmatrix (Mulaik, 2009, S. 136), wobei
W2 positiv definit sein muss, d.h., die Eigenwerte dieser symmetrischen Matrix sind
groBer als Null (Fahrmeier, Hamerle, & Tutz, 1996). In der Diagonalen letzterer Matrix
stehen die Kommunalititen, die Varianzen der Items, welche nur durch die gemeinsamen
Faktoren erklédrt werden (Biihner, 2011). Die Kommunalitit eines Items entspricht dem
Determinationskoeffizienten in der multiplen Regressionsanalyse (Eid et al., 2013). Sie
gibt die quadrierte multiple Korrelation zwischen der beobachteten Variablen und der
latenten Variablen an.

Sofern in den Off-Diagonal-Elementen von ®xyx Nullen stehen, handelt es sich
um ein orthogonales Faktorenmodell, andernfalls um ein obliques (Mulaik, 2009). Im
Rahmen eines orthogonalen Faktorenmodells entspricht die Mustermatrix, die die
Faktorladungen enthidlt, der Strukturmatrix, letztere enthdlt die Korrelationen der
beobachteten Variablen mit den Faktoren. Andernfalls stellen die Eintrige der
Mustermatrix semipartielle Regressionsgewichte dar und werden aus der Multiplikation

der Inversen von ®@xy mit der Strukturmatrix berechnet (Mulaik, 2009, S. 138):
A = Ryx Ot 3)*

Die reproduzierte Kovarianzmatrix X des implizierten Modells kann im Rahmen
der konfirmatorischen Faktorenanalyse konzeptuell genauso wie in Formel (2) dargestellt
werden (Mulaik, 2009, S. 440), ®xx stellt die r x r Kovarianzmatrix der latenten Faktoren

und O die n x n Varianz-Kovarianzmatrix der uniquen Faktorwerte dar:

zqu)XxA""@ (4)

N’ stellt die Transponierte der Mustermatrix dar; der Apostroph kennzeichnet hier und im Folgenden die
Transponierte eines Vektors oder einer Matrix.

*Der Exponent -1 stellt hier und im Folgenden die Inverse einer Matrix dar.
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Bei der konfirmatorischen Faktorenanalyse miissen die uniquen Faktorwerte — im
Vergleich zur exploratischen Faktorenanalyse — nicht unkorreliert sein (Mulaik, 2009).
Sollten sie unkorreliert sein, entspricht das W2 qus Formel (2) im nicht-standardisierten
Fall der Varianz-Kovarianz-Matrix ©.

Das Modell in Gleichung (4) besteht aus zwei oder mehreren Messmodellen bzw.
konfirmatorischen Faktorenanalysen sowie einem Strukturmodell in Form von
korrelierten latenten Variablen bzw. Faktoren. Gleichung (4) stellt insofern den
einfachsten Fall eines linearen Strukturgleichungsmodells dar. Diese Arbeit fokussiert
sich auf diesen Fall, weshalb an dieser Stelle auf die technische Einflihrung von
Strukturmodellen in Form von gerichteten Pfaden verzichtet wird. Fiir eine Darstellung
dieser Form von Strukturgleichungsmodellen werden die Lehrbiicher von Byrne (1998),
Byrne (2009), Kline (2001), Reinecke (2014) sowie Weiber und Miihlhaus (2010)

empfohlen.



2 Beurteilung der Modellpassung

2.1 y*- Anpassungstest

Die Schwierigkeit, die mit Datenanalyseverfahren wie konfirmatorischen
Faktorenanalysen und linearen Strukturgleichungsmodellen einhergeht, liegt in der
Beurteilung der Modellpassung. Der Fokus dieser Arbeit liegt auf einer Form der
Missspezifikation: nicht-spezifizierter Zweidimensionalitdt im Strukturmodell. Daher
werden im Folgenden die Kriterien zur Beurteilung der Modellpassung néher erldutert,
die im Rahmen der ersten Studie zur Modellevaluation verwendet wurden. Als erstes wird
der y*-Anpassungstest beschrieben, bevor die Fit-Indizes, deren Sensitivitit in Studie 1

untersucht wurde, naher erldutert werden.

Mittels eines y’-Anpassungstests wird approximativ der globale Modellfit
iberpriift, d.h., ob die aus den empirischen Daten geschitzte Populations-
Kovarianzmatrix mit der aus dem theoretischen Modell implizierten Kovarianzmatrix
iibereinstimmt bzw. die Elemente in den Off-Diagonalen der Uniqueness-Matrix Null
sind oder nahe an Null liegen (Schermelleh-Engel, Moosbrugger, & Miiller, 2003). Dabei
gilt die Entscheidung tiber die Modellpassung als dichotom, das theoretische Modell wird
an der aus den Daten geschétzten Populations-Kovarianzmatrix entweder abgelehnt (bei
einem Signifikanzniveau von 5%: p < .05) oder angenommen (p > .05). Wenn die
Nullhypothese korrekt ist (theoretisches Modell passt zu den Daten) erreicht die
Diskrepanzfunktion F ein Minimum und der x*-Wert berechnet sich folgendermaBen (8.

32):
1 (D) =(N-1) F [S, X.(0)] (5)
wobei df: Anzahl der Freiheitsgrade
N: Stichprobengrof3e
F: Diskrepanzfunktion

S: empirische Kovarianzmatrix



3:(0): implizierte Kovarianzmatrix

Der y*-Test stellt einen statistischen Test zur Priifung der Modellpassung dar, die
Likelihood-Ratio-Statistik, dessen Verteilung F(N-1) eine y>-Verteilung darstellt
(Schermelleh-Engel et al., 2003). Diese lasst sich aus der multivariaten Normalverteilung
herleiten =~ (Mulaik, = 2009).  Voraussetzungen  fiir die  Analyse  von
Strukturgleichungsmodellen stellen daher multivariate Normalverteilung und hinsichtlich
der Modellkomplexitit hinreichend grof3e Stichprobengréfen dar (Bentler & Yuan, 1999;
Bollen, 1989; Boomsma & Hoogland, 2001; Boomsma, 1983; Mulaik, 2009; Reinecke,
2014; Yang-Wallentin & Joreskog, 2001).

Einerseits fordern die Schéitzalgorithmen bei der Modelltestung eine grof3e
StichprobengroBe, andererseits steigt jedoch der y*-Wert bei sehr groBen Stichproben
stark an, sofern eine Modellabweichung vorliegt (Schermelleh-Engel et al., 2003): Bei
sehr groBen Stichproben reichen nur sehr geringe Abweichungen zwischen der
modellimplizierten und der beobachteten Kovarianzmatrix aus, um eine Ablehnung des
theoretischen Modells zu bewirken (Joreskog, 1969; Reinecke, 2014; Steiger, 2007;
Thompson & Daniel, 1996). Insofern liegt die Problematik bei der Beurteilung der
Modellpassung anhand des x*-Tests darin, dass der Schweregrad der Modellabweichung
anhand des xz-Tests nicht bestimmt werden kann (Saris, Satorra, & Sorbom, 1987). Eine
Orientierung stellt lediglich der y’-Wert in Relation zu den Freiheitsgraden des
spezifizierten Modells dar. Bei einem korrekten Modell entspricht der Erwartungswert
des y*-Werts der Anzahl der Freiheitsgrade des spezifizierten Modells (Schermelleh-
Engel et al., 2003).

2.2 Fit-Indizes

Wie bereits im vorherigen Abschnitt erldutert, werden bereits geringfligig von den
Daten abweichende Modelle von der Xz-Statistik abgelehnt (Fan & Sivo, 2005; Fan et al.,
2009). Gleichzeitig kann aber aus der Ablehnung eines implizierten Modells nicht
geschlussfolgert werden, dass die Abweichung von der beobachteten Kovarianzmatrix
unbedingt klein sei (Saris, Satorra, & Sorbom, 1987). Bei Ablehnung des Modells durch
den y*-Test konnen genauso grofe Missspezifikationen die Ursache sein. Aus diesem

Grund wurden alternative MalBe fiir die Uberpriifung der Modellpassung entwickelt, die
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Fit-Indizes (Schermelleh-Engel et al., 2003). Diese geben — im Gegensatz zum y’-Test,
anhand dessen die Beurteilung der Modellpassung nach einer dichotomen Entscheidung
erfolgt — die Giite der Modellpassung an. Ebenso handelt es sich bei den Fit-Indizes — im
Gegensatz zur Inferenzstatistik des y*-Tests — um deskriptive MaBe zur Evaluation der
Modelpassung (Hu & Bentler, 1998; Hu & Bentler, 1999; Steiger, 1990, 2007). In diesem
Kontext wurde von der Nullhypothese der exakten Passung zwischen theoretischen
Modellmatrix und der empirisch geschitzten Populationsmatrix Abstand genommen und
stattdessen der Begriff der anndhernden Passung (,close fit“) flir die Fit-Indizes
eingefiihrt (Browne & Cudeck, 1993, S. 146; Schermelleh-Engel et al., 2003, S. 36).

Die Fit-Indizes sollen folgende — im Gesamten schwer erfiillbare — Kriterien
erflillen: die Spannweite soll zwischen 0 und 1 liegen, die Fit-Indizes sollen unabhéngig
von der StichprobengrofBe sein, und ihre Verteilung sollte bekannt sein (Gerbing &
Anderson, 1993). Weitere wiinschenswerte Eigenschaften fiir Fit-Indizes fithren Fan et
al. (2009) an. So sollten die Fit-Indizes idealerweise auch invariant hinsichtlich der
verwendeten Schiatzmethode sein; zudem sollten die Fit-Indizes erwartungstreu sein und
wenig zufillige Abweichungen anzeigen. Missspezifikationen hingegen sollten sich stark
auf die Varianz eines Fit-Index auswirken.

Die am hiufigsten verwendeten Fit-Indizes stellen der Comparative fit index (CFI,
Bentler, 1990), der Root-mean-square error of approximation (RMSEA; Steiger & Lind,
1980) und das Standardized root-mean-square residual (SRMR; Joreskog & Sorbom,
1981) dar (Beauducel & Wittmann, 2005; Marsh, Hau, & Grayson, 2013; McDonald &
Ho, 2002; Savalei, 2012). Alle drei Fit-Indizes hingen vom Xz-Wert ab (Heene, Hilbert,
Draxler, Ziegler, & Biihner, 2011). Aufgrund ihrer hdufigen Verwendung wird in Studie
1 die Sensitivitdt dieser drei Fit-Indizes ausgetestet. Daher werden CFI, RMSEA und
SRMR im Folgenden ndher erlautert.

Der RMSEA ist ein absoluter Fit-Index (Steiger & Lind, 1980). Absolute Fit-
Indizes indizieren, wie gut ein theoretisches Modell die aus den Daten geschétzten Werte
reproduziert (Beauducel & Wittmann, 2005). Der RMSEA gibt die Quadratwurzel der
durchschnittlichen Modellabweichung der geschétzten Populations-Kovarianzmatrix von
der anhand des Modells spezifizierten Kovarianzmatrix, relativiert an der moglichen
Modellabweichung pro Freiheitsgrad, an (Browne & Cudeck, 1993; Heene, Hilbert,
Freudenthaler, & Biihner, 2012; Steiger & Lind, 1980; Steiger, 1990). Ein Wert von 0
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stellt beim RMSEA eine perfekte Ubereinstimmung und ein Wert von 1 eine maximale
Abweichung zwischen theoretischer Kovarianzmatrix und der aus den empirischen Daten
geschitzten Kovarianzmatrix dar. Die Formel fiir den RMSEA lautet (Heene et al., 2012,
S. 38):

RMSEA = JGdh
max[dfl TEL ] (6)

wobei ¢’ : x*-Statistik des theoretischen Modells, welche eine gewichtete
Funktion des Minimums der Maximum-Likelihood-Diskrepanzfunktion fiir die

implizierte Kovarianzmatrix darstellt
df; : Freiheitsgrade des theoretischen Modells
N: Stichprobengrofie

Somit stellt der RMSEA die Quadratwurzel des normalisierten durchschnittlichen
Nonzentralititsparameters pro Freiheitsgrad dar (Heene et al.,, 2012). Der
Nonzentralititsparameter gilt als unverzerrter Schétzer des Populationsparameters fiir die
quadrierte Abweichung zwischen theoretischem Modell und empirischen Daten
(Schermelleh-Engel et al., 2003) und wird unter III. 1 ndher beschrieben.

Das SRMR, entwickelt von Joreskog und Soérbom (1981), stellt ebenfalls einen
absoluten Fit-Index dar. Es entspricht dem durchschnittlichen Residuum der
Residualkorrelationen und stellt demnach, wie der RMSEA, einen absoluten Fit-Index
dar, welcher zwischen Null (perfekte Modellpassung) und Eins (sehr schlechte
Modellpassung) liegen kann (Chen, 2007, S. 466). Es wird die durchschnittliche
Abweichung zwischen den Korrelationen der empirischen und der implizierten

Korrelationsmatrix berechnet (Heene et al., 2012, S. 39):

. [s4i—6, z
2 2?:12]!:1( ;]--S--])
SRMR = — U (7)

p(p+1)

wobei p: Anzahl an manifesten Variablen
sij: empirische Kovarianzen

Gj;: implizierte Kovarianzen
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Sii, Sjj: empirische Standardabweichungen

Die gefitteten Residuen, welche aus der Differenz aus empirischen Kovarianzen
und modellimplizierten Kovarianzen resultieren, werden anhand von Division durch die
empirischen Standardabweichungen standardisiert. Dies kompensiert die Abhingigkeit
von der Skalierung der Indikatoren (Joreskog & Sorbom, 1981).

Der CFI stellt einen komparativen Fit-Index dar und ist der am héufigsten
berichtete Fit-Index aus dieser Kategorie (Mahler, 2011; Marsh, Hau, & Grayson, 2013).
Komparative Fit-Indizes vergleichen den fiir das implizierte Modell berechneten y*-Wert
mit dem y>-Wert eines restringierteren Basismodells unter Beriicksichtigung der
Freiheitsgrade (Bentler, 1992; Heene et al., 2012; Reinecke, 2014). Das Basismodell ist
meistens ein Nullmodell, bei dem davon ausgegangen wird, dass die beobachteten
Variablen unkorreliert sind (Heene et al., 2012). Die Formel fiir den CFI lautet (Heene et
al., S. 39):

_ 1 0d-df)
CFI=1-[s—r] (8)

wobei: y%o: x’-Statistik des Basismodells
dfy: Freiheitsgrade des Basismodells

v*1: y - Statistik des theoretischen Modells, welche eine gewichtete
Funktion des Minimums der Maximum-Likelihood-Diskrepanzfunktion fiir die

implizierte Kovarianzmatrix darstellt
df;: Freiheitsgrade des theoretischen Modells

Der CFI (Bentler, 1990) korrigiert die Unterschitzung der Modellpassung des NFI
(Normed fit index; Bentler & Bonett, 1980; dieser Fit-Index ist ebenfalls ein komparativer
Index; Bentler, 1990) bei kleinen Stichproben (Schermelleh-Engel et al., 2003). Beim CFI
indiziert ein Wert nahe 1 einen sehr guten Fit, wohingegen ein Wert nahe 0 einen sehr
schlechten Fit anzeigt. Allerdings wird argumentiert, die komparativen Fit-Indizes, wie
der CFI, seien nicht iiber verschiedene Studien hinweg vergleichbar, da diese nicht nur
abhéngig von der Modellspezifikation seien, sondern auch von davon, wie schlecht das

Nullmodell ist (siche z.B. Marsh, Balla, und McDonald [1998]).
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Hu und Bentler schlugen basierend auf zwei einflussreichen Simulationsstudien
(1998, 1999) ab einer Stichprobengréfie von 250 Personen folgende Cut-Off-Werte vor:
CFI > .95, RMSEA < .06 und SRMR < .08 (Hu & Bentler, 1999, S. 27). Die Autoren
empfahlen auBerdem eine ,two-index-strategy (S. 27) fiir die Evaluation der
Modellpassung, da inkrementelle Fit-Indizes, wie der CFI, sowie der RMSEA sensitiv
fir Missspezifikationen im Messmodell wiren und das SRMR sensitiv fiir
Missspezifikationen im Strukturmodell (siehe III. 1). Fiir die Kombination des CFI oder
des RMSEA zusammen mit dem SRMR empfehlen die Autoren (S. 27) einen Cut-Off
von > .95 fiir den CFI oder den Cut-Off von < .06 fiir den RMSEA zusammen mit einem
Cut-Off von < .09 fiir das SRMR.

Es wird kritisiert, dass die Cut-Off-Werte fiir die Fit-Indizes von Hu und Bentler
(1998, 1999) relativ willkiirlich gesetzt wurden (Mahler, 2011). Des Weiteren fiihrten sie
ebenfalls zu einer Modellevaluation auf Basis einer dichotomen Entscheidung, dhnlich
wie der y*-Test, was urspriinglich nicht intendiert war (Marsh, Hau, & Wen, 2004). Die
Fit-Indizes sollen hingegen {liber den Grad der Missspezifikation Auskunft geben (Fan et
al., 2009), da dies der y*-Test nicht leisten kann. Aus diesen Griinden ist die gleichzeitige
Modellevaluation durch lokale Mafle der Modellgiite unabdinglich. Lokale Maf3e der
Modellevaluation stellen im Rahmen konfirmatorischer Ansétze unter anderem die
Faktorreliablitét, die Hohe und Signifikanz der Faktorladungen sowie der Prozentsatz der
aufgeklarten Varianz dar (Hooper, Coughlan, & Mullen, 2008).

Nach wie vor wird die Modellpassung von den angewandt Forschenden jedoch
primér an den Cut-Off-Werten nach Hu und Bentler (1998, 1999) festgemacht. Diese
Daumenregeln zur Interpretation des Modellfit anhand der Fit werden unter II1. 1 anhand

weiterer Simulationsstudien diskutiert.
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3 Bestimmung der Faktorwerte

In den vorherigen beiden Unterkapiteln wurden zum einen die linearen Modelle
dargestellt, auf denen Faktorenanalysen und lineare Strukturgleichungsmodelle
aufgebaut sind. Zum anderen wurden die Kennwerte zur Beurteilung der Modellpassung
eingefiihrt, die in der ersten Studie hinsichtlich ihrer Sensitivitdt beziiglich der nicht-
spezifizierten Zweidimensionalitit in der Faktorenstruktur ausgetestet wurden. Diese
konzeptionelle Vorstellung der Strukturgleichungsmodellierung reicht fiir die Studie 1,
die sich auf die Sensitivitit der Fit-Indizes fokussiert, ebenso aus wie fiir die meisten Fille
der angewandten Forschung, bei denen es um die Testung von Theorien und Hypothesen
fiir Populationen geht (Hershberger, 2003; MacCallum & Austin, 2000; Tremblay &
Gardner, 1996), aus. Da jedoch mehr und mehr Testverfahren und Fragebdgen fiir die
Einzelfalldiagnostik ~ anhand von  konfirmatorischen  Faktorenanalysen und
Strukturgleichungsmodellen konstruktvalidiert werden (“Datenbanksegment PSYNDEX
Tests,” 2013), liegt die Bedeutung der Bestimmung der Faktorwerte auf der Hand. Die
zweite Studie fokussierte sich auf die Einzelfalldiagnostik aus den Faktorwerten. Im
Speziellen wurden im Rahmen der zweiten Studie vor dem Hintergrund der
Mehrdimensionalititsthematik der Dissertation die psychometrischen Konsequenzen fiir
die Diagnostik aus den Faktorwerten untersucht, die fiir die Individuen entstehen wiirden,
wenn ein Modell angewendet wurde, dass falschlicherweise nur eine latente Dimension
anstatt zweier latenter Dimensionen abbildete. Daher wird im Folgenden auf die

Faktorwerteschitzung néher eingegangen.

Fiir die Bestimmung der Faktorwerte sind die drei bekanntesten und am weitesten
verbreiteten Mdoglichkeiten die Faktorwerte nach Thurstone (1935), die Faktorwerte nach
Bartlett (1937) sowie die Anderson-Rubin Faktorwerte (Anderson & Rubin, 1956),
letztere machen jedoch nur fiir orthogonale Rotationen Sinn. Da es sich bei beiden
Studien im Rahmen dieser Dissertation um oblique Designs handelt, werden im
Folgenden nur die Thurstone- und die Bartlett-Faktorwerte erldutert.

Die Faktorwerte nach Thurstone (Grice, 2001b, S. 433; Mulaik, 2009, S. 375)

werden mittels Regressionsmethode geschatzt:

X; = ®xx ARy: Yi=Rxy Ry1 Y, 9)
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Dabei ergibt X; die Matrix der geschiitzten Thurstone-Faktorwerte der Person i
auf den r Faktoren. Diese Faktorwerte werden aus der Inversen der Korrelationsmatrix
der beobachteten Variablen Ryi,der Strukturmatrix Rxy und dem VektorY;, der
standardisierten Werte auf den beobachteten Variablen einer Person i berechnet (Grice,
2001b; Mulaik, 2009).

Die Bartlett-Faktorwerte (Bartlett, 1937; Grice, 2001b) lassen sich wie folgt
bestimmen (Grice, 2001b, Gleichung (9), S. 433; die Notation erfolgt in Anlehnung an
Mulaik, 2009, Anm. d. Autorin):

Xi =Y, P ZAN P 2A)T (10)

Die Bartlett-Faktorwerte werden mittels Minimierung der Quadratsummen der
uniquen Faktorwerte berechnet (DiStefano, Zhu, & Mindrila, 2009). Diese Art der
Berechnung resultiert in dem Vorteil, dass die Bartlett-Faktorwerte erwartungstreue
Schitzer flir die wahren Faktorwerte sind (Lawley & Maxwell, 1971, S. 110). Ein
Schitzer heiflit erwartungstreu, wenn sein Erwartungswert dem wahren Wert des
geschitzten Parameters entspricht (Kauermann & Kiichenhoff, 2011, S. 21). Die
Regressions-Faktorwerte erfiillen dieses Kriterium nicht’. Sowohl die Thurstone-
Faktorwerte, als auch die Bartlett-Faktorwerte stellen standardisierte Faktorwerte dar
(DiStefano et al., 2009).

Kriterien fiir die Giite der geschétzten Faktorwerte sind nach Grice (2001a, S. 68,
2001b, S. 436) Validitdt, Eindeutigkeit und Orthogonalitit. Die Validitit der geschétzten
Faktorwerte wird nach Grice (2001a, 2001b) an der Korrelation zwischen den geschétzten
und den wahren Faktorwerten festgemacht. Eindeutigkeit beschreibt, inwieweit die
bestimmten Faktorwerte mit den wahren Faktorwerten anderer Faktoren korrelieren.
Orthogonalitit bedeutet {ibertragen auf den Fall eines obliquen Designs, wie es auch in
den Studien 1 und 2 verwendet wurde, dass die Uniqueness-Matrix des Faktorenmodells
eine Diagonalmatrix darstellen sollte. Die Bartlett-Faktorwerte erfiillen alle drei Kriterien
und sind, wie bereits beschrieben, erwartungstreu (McDonald & Burr, 1967). Maathuis
(2008) empfiehlt zudem insbesondere die Bartlett-Faktorwerte, wenn Interesse an einer
bestimmten Gruppe von Individuen besteht. Im Rahmen der zweiten Studie bestand

genau dieses Interesse, es wurden Gruppen von Individuen mit positiven und negativen

°Fiir eine Herleitung siche Lawley und Maxwell (1971), S. 108-111.
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Diagnosen aus den Faktorwerten gebildet. Insofern wurden bei der zweiten Studie (siehe

V) die Bartlett-Faktorwerte verwendet.

Die Problematik bei der Schitzung der Faktorwerte® liegt in deren sog.
,Indeterminacy* (Mulaik, 2009, S. 375ff). Diese Unbestimmtheit bedeutet, dass es eine
unendliche Anzahl an gleichwertigen Losungen fiir die Berechnung der Faktorwerte X
und der uniquen Faktorwerte E bei derselben Faktorlosung gibt (Beauducel, 2005; Grice,
2001), wobei meist nur die Faktorwerte X der gemeinsamen Faktoren von Interesse sind.
Fiir die Studie 2 spielt die Faktorenunbestimmtheit eine Rolle, da unter anderem auch die
Ladungshohe (Reliabilitit) fiir die Generierung der Populationsdaten variiert wurde. Der
Grad der Faktorenunbestimmtheit hdangt von der Hohe der Ladungen ab (siche p und
Formel (11) auf der ndchsten Seite). Dementsprechend hédngt auch die Validitit der
Faktorwerte (fiir den Begriff vgl. Grice [2001a, 2001b]) von der Hohe der Faktorladungen
ab (Erklarung folgt unter V. 2.2.1), aus denen in der zweiten Studien Diagnosen gebildet
wurden. Daher wird im Folgenden die Faktorenunbestimmtheit sowohl algebraisch als
auch geometrisch illustriert; ebenso die Konvention fiir die Bestimmung des Grades der
Faktorenunbestimmtheit nach Guttman (1955).

Eine simple Betrachtung der Fundamentalgleichung der Faktorenanalyse
(Gleichung (1) unter II. 1) verdeutlicht die Faktoren-Unbestimmtheit: Die linke Seite der
Gleichung hat n Parameter, nimlich die Anzahl der beobachteten Variablen. Diese n
Parameter sollen jedoch durch n + r Parameter, durch die Summe der beobachteten
Variablen und der latenten Faktoren, vorhergesagt werden, was zu einer Gleichung mit
zwei Unbekannten und insofern mehreren Losungen fiihrt (vgl. Grice, 2001b; Mulaik,

2009; Schonemann, 1996).

%Bei der Bestimmung der Faktorwerte handelt es sich nicht um ein Schitzproblem im klassischen Sinne,
welches keine exakte Losung hervorbringt und deshalb eine Anndherung zum Ziel hat (Guttmann, 1972,
zitiert nach Steiger & Schonemann, 1978, S. 137). Maraun (1996a) kritisiert daher die Verwendung der
Begriffe ,,Faktorwerte®, ,,geschitzte Faktorwerte™ oder ,,Personenparameter® in semantischer Hinsicht und
empfiehlt den Begriff der ,,aus den manifesten Variablen vorhergesagten latenten Variablen* (S. 518f).
Trotz Marauns Kritik wird in der vorliegenden Arbeit weiterhin von ,geschitzten Faktorwerten®
gesprochen. Der Begriff der ,,Schitzung der Faktorwerte im Rahmen dieser Arbeit soll neben der
existierenden Konvention im Sprachgebrauch illustrieren, dass es verschiedene Methoden zur Berechnung

der Faktorwerte gibt (vgl. Beauducel, 2005, S. 143).
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Wilson (1928, zitiert nach Steiger & Schonemann, 1978), welcher als erstes iiber
das Unbestimmtheitsproblem der Faktorwerte geschrieben hatte, erarbeitete eine
geometrische Darstellung des Unbestimmtheitsproblems, indem er Spearmans g
(Spearman, 1904, 1927) als Beispiel heranzog. Er veranschaulichte dies anhand eines
Kegels, bei dem die Kegelachse die wahren Faktorwerte darstellt (Guttman, 1955;
Mulaik, 2009; Steiger & Schonemann, 1978). Die Regressions-Faktorwerte, die lineare
Schétzer fir die wahren Faktorwerte sind, stellen die Mittelwerte aus den moglichen
Faktorwertlosungen dar. Der Cosinus des Winkels zwischen dem Vektor der wahren
Faktorwerte, also der Kegelachse, und allen anderen moglichen Faktorwerten, die den
Kegelmantel aufspannen, bestimmt die Korrelation zwischen diesen GroBen’. Daraus
wird ersichtlich, dass eine unendliche Zahl an moglichen Faktorwerten durch das lineare
Modell errechnet werden kann. Auf die Schéitzung der Modellparameter hingegen hat die
Faktorenunbestimmtheit keine Auswirkungen (Beauducel, 2007).

Fiir eine detailliertere Auseinandersetzung mit der Geschichte der Faktoren-
Unbestimmtheit werden Steiger und Schonemann (1978), Grice (2001a) sowie Steiger
(1996) empfohlen. Technisch empfehlenswerte Bearbeitungen der Faktoren-
Unbestimmtheit finden sich bei Guttman (1955), Schonemann und Steiger (1978) sowie
Maraun (1996a, 1996Db).

Guttman (1955) quantifizierte den Grad der Faktorenunbestimmtheit. Er
erarbeitete eine Formel, um die maximal mogliche Unbestimmtheit zwischen zwei
alternativen Faktorwertlosungen fiir denselben Faktor zu berechnen (Guttman, 1955, S.

73):
p*=2p*—1 (11)

p stellt die multiple Korrelation zwischen dem latenten Faktor und den
beobachteten Variablen dar (Guttman, 1955). An dieser Stelle wird ersichtlich, dass der
Grad der Faktorenunbestimmtheit eines Faktors nach Guttman alleine durch die Hohe der
Faktorladungen determiniert ist. Da diese im Rahmen der zweiten Studie variiert wurde,
wurde Guttmans Quantifizierung des Grades der Faktorenunbestimmtheit auch im

Rahmen der zweiten Studie bestimmt (siche V. 2.2.1 und 2.3.1). p? liegt zwischen 0 und

"In einem Euklidischen Vektorraum entspricht der Cosinus des Winkels zwischen zwei Vektoren der

Korrelation zwischen diesen beiden Vektoren (Guttman, 1955).
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1, wobei ein Wert nahe 1 wiinschenswert ist, da er eine hohe Bestimmtheit darstellt
(Grice, 2001). Dass p? bzw. p nie ganz Eins werden kann, liegt an der Unbestimmtheit
der Faktorwerte an sich (Mulaik, 2009). p* ist die Korrelation zwischen einem mdglichen
Vektorelement, also einem moglichen Faktorwert, und einem korrespondierenden
Vektorelement bzw. einem Faktorwert, der maximal verschieden ist von ersterem. p*
bewegt sich zwischen -1 und 1. In Wilsons (1928, zitiert nach Steiger & Schonemann,
1978) geometrischer Veranschaulichung entspricht p* dem Cosinus des Winkels
zwischen zwei Faktorwertvektoren, die zusammen mit den anderen moglichen
Faktorwertvektoren den Kegelmantel aufspannen, welche aber auf derselben Ebene
liegen und insofern maximal weit voneinander entfernt sind.

Die Quantifizierung der Faktoren-Unbestimmtheit Guttmans (1955) zeigt, dass
die individuellen Faktorwerte der Personen komplett unterschiedlich sein konnen, je
nachdem, welches Aggregat an Faktorwerten herangezogen wurde (Grice, 2001b). Sofern
p kleiner als oder gleich .71 ist, kann die Korrelation zwischen verschiedenen
Faktorwertldsungen negativ werden (Guttman, 1955) und in substanzieller® Hinsicht in

die umgekehrte Richtung gehen.

*Der Begriff ,,substanziell“ meint an dieser Stelle die psychometrische Interpretation der individuellen
Faktorwerte.
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III ABLEITUNG DER FRAGESTELLUNGEN

1 Missspezifikationsforschung

Im vorherigen Kapitel II wurde die Konzeption von Strukturgleichungsmodellen und die
Modelltestung anhand des y>-Tests und der Fit Indizes dargestellt. In diesem Zuge wurde bereits
berichtet, dass die kritische Frage bei der Modelltestung lautet, wie zuverldssig
Missspezifikationen, als solche erkannt werden. Auf diese Frage bezieht sich die erste Studie

dieser Dissertation.

Die Power/Sensitivitit des y*-Tests sowie der Fit-Indizes wurde innerhalb der letzten 20
bis 30 Jahre ausfiihrlich hinsichtlich unterschiedlicher Stichprobengrofen, Schitzmethoden und
Arten von Missspezifikationen beforscht. Fiir die Uberpriifung der Power/Sensitivitit der Fit-
Indizes eignet sich das Monte-Carlo-Simulationsverfahren’ (vgl. Paxton, Curran, Bollen,
Kirby, & Chen, 2001), welches auch im Rahmen der Studie 1 verwendet wurde. Dabei werden
zundchst Populationsmodelle definiert. Aus diesen spezifizierten Populationsmodellen lassen
sich Populations-Kovarianz-Matrizen darstellen. Aus diesen Populationsmodellen oder
Populations-Kovarianz-Matrizen wird per Zufall/stichprobenfehlerbedingt eine grofle Anzahl
von Stichprobendaten aus zufdllig variierenden Stichproben-Kovarianz-Matrizen erzeugt.
Diese so simulierten Stichprobendaten werden dann anhand eines missspezifizierten Modells
analysiert. AbschlieBend wird ausgezéhlt, fiir wie viele Stichproben die Fit-Indizes ein

missspezifiziertes Modell korrekterweise als solches anzeigen.

Es wire zwar wiinschenswert, die Varianz der Fit-Indizes wiirde nur von
Missspezifikationen beeinflusst werden, jedoch zeigt die Forschungslage, dass die Werte der
Fit-Indizes in hohem MalBe aufgrund anderer Modellbedingungen variieren, die nichts mit der

Missspezifikation zu tun haben (Saris, Satorra, & van der Veld, 2009).

’Der Unterschied einer Monte-Carlo-Simulation im Vergleich zu einer sog. Resampling-Methode liegt darin, dass
bei ersterer der Daten-Generierungs-Prozess der wahren Population bekannt ist (Carsey & Harden, 2014, S. 4).
Dabei werden vom Forschenden alle Aspekte des wahren Populations-Daten-Generierungs-Prozesses kontrolliert,
was im genannten Kontext ermdglicht, die Fit-Indizes auf ihre Sensitivitdt hin auszutesten. Resampling-Methoden
hingegen ziehen Stichprobendaten aus empirisch erhobenen Daten, der wahre Populations-Daten-Generierungs-

Prozess ist unbekannt.
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Es ist augenfillig, dass weniger Simulationsstudien zu den Auswirkungen von
Missspezifikationen auf die Fit-Indizes als zum Beispiel zu Stichprobengréfen und
Schiatzmethoden durchgefiihrt wurden, die auch Einfluss auf die Fit-Indizes nehmen (Fan et al.,
2009). Die Griinde dafiir sehen Fan et al. sowie Gerbing und Anderson (1993) darin, dass der
Grad einer Missspezifikation nur schwer zu bestimmen sei und Missspezifikationen deshalb

schwierig zu quantifizieren seien.

Grundsidtzlich wird versucht, Missspezifikationen nach ihrem Typ und ihrem
Schweregrad einzuteilen (Fan et al.,, 2009). Es wird zwischen Missspezifikationen im
Messmodell, also zwischen latenter Variable und deren messfehlerbehafteten Indikatoren,
sowie Missspezifikationen im Strukturmodell, also zwischen latenten Variablen, unterschieden.
Fan und Sivo (2005) empfehlen, den Schweregrad einer Missspezifikation anhand des
Nonzentralititsparameters unter Berilicksichtigung der Freiheitsgrade des Modells zu
bestimmen. Der Nonzentralititsparameter indiziert, wie weit die nonzentrale y’-Verteilung
unter der Alternativhypothese einer Modellabweichung von der zentralen y’-Verteilung unter
der Nullhypothese der Modellpassung abweicht (Kaplan, 1988). Mit steigendem
Nonzentralitidtsparameter steigt also der Schweregrad der Missspezifikation. Desto grofer der
Nonzentralitidtsparameter, desto linkssteiler und flacher ist die Verteilung (Erdfelder, Faul,
Buchner, & Ciipper, 2010). Bei festgelegtem Alpha-Fehler steigt die Power bei steigendem
Nonzentralititsparameter. Der Nonzentralitidtsparameter hingt ferner von der Stichprobengrof3e
ab. Der Vorteil der Bestimmung des Grades der Missspezifikation anhand des
Nonzentralitidtsparameters bestehe nach Fan und Sivo (2005) darin, dass dieser unabhingig von
der Art der Missspezifikation bestimmt werden konne. Curran, Bollen, Paxton, Kirby, und Chen
(2002) zeigten allerdings, dass selbst korrekt spezifizierte Modelle nur einer zentralen y’-
Verteilung folgten, wenn die Stichproben mittelgro3 oder grofl waren (N = 200 bis N = 1,000).
Des Weiteren zeigten die Autoren, dass schwer missspezifizierte Modelle (operationalisiert
durch nicht-spezifizierte [Neben-]Faktorladungen unterschiedlicher Anzahl, aber gleicher
Faktorladungshéhe) oder auch ein unkorreliertes Basismodell keiner non-zentralen y’-
Verteilung folgten, genauso wenig jedoch einer zentralen x*-Verteilung. Letzterer Befund war
unabhdngig von der Stichprobengrofe. Weiters zeigte sich, dass weniger schwer
missspezifizierte Modelle bei kleinen Stichproben auch keiner non-zentralen y’-Verteilung
folgten, bei mittleren und gréferen Stichproben (mindestens N = 200 bis N = 1,000) jedoch
schon. Allerdings zeigte sich, trotz der Tatsache, dass die (Non-)Zentralitit der erwarteten

Verteilungen nicht in allen Modellbedingungen den Vermutungen entsprach, dass die
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Varianzen der Verteilungen bei der Anwendung missspezifizierter Modelle stark streuten.
Insofern ist zu vermuten, dass die Einordnung von Missspezifikationen in verschiedene
Schweregrade anhand des Nonzentralitdtsparameters auch nicht unproblematisch ist. Zudem
bestitigt dieser Befund, dass das Problem der Quantifizierung einer Missspezifikation weder
gelost ist, noch Konsens hinsichtlich der Herangehensweise besteht. Dennoch wurden diverse
Studien durchgefiihrt, die die Auswirkungen von Missspezifikationen unterschiedlicher
Operationalisierungen auf die Fit-Indizes, also den globalen Modellfit, {iberpriiften. Im
Folgenden werden die wichtigsten dieser Studien aufgefiihrt und anhand weiterer Befunde
diskutiert, bevor anschlieBend speziell die Studien aufgefiihrt werden, aus denen sich die erste

Forschungsfrage (siehe III. 3) ableitet.

Hu und Bentler (1998, 1999) fiihrten zwei einflussreiche Simulationsstudien durch, die
die Sensitivitdt gédngiger Fit-Indizes gegeniiber Missspezifikationen im Mess- und im
Strukturmodell austesten sollten. Aus diesen Studien gingen die unter II. 2 genannten
Daumenregeln hervor. Hu und Bentler (1999) untersuchten unterschiedliche Fit-Indizes
hinsichtlich zwei verschiedener Schweregrade sowie Typen von Missspezifikationen
(félschlicherweise nicht spezifizierte Ladungen auf mehr als einen Faktor [einfache
Missspezifikation bzw. Missspezifikation im Messmodell]) versus falschlicherweise nicht
spezifizierte ~Faktorkovarianzen wungleich Null [komplexe Missspezifikation bzw.
Missspezifikation im Strukturmodell] bei einem drei-Faktorenmodell mit insgesamt 15
Indikatoren), welche alle eine Unterparametrisierung in den missspezifizierten Modellen
darstellten. Die StichprobengroB3e variierte zwischen 150 und 5,000 Fillen. Hu und Bentler
(1999) schlussfolgerten aus ihren Ergebnissen, dass es sich empfehlen wiirde, eine
Kombination aus einem der Fit-Indizes RNI (Relative Noncentrality Index; Bentler & Bonett,
1980), TLI (Tucker-Lewis-Index; Bentler & Bonett, 1980; Tucker & Lewis, 1973), CFI
(Bentler, 1990) oder RMSEA (Steiger & Lind, 1980) zusammen mit dem SRMR (Joreskog &
Sorbom, 1981) fiir die deskriptive Evaluation des Model-Fit zu verwenden, da erstere Fit-
Indizes sensitiv flir Missspezifikationen im Messmodell wiren und letzteres sensitiv fiir ein
missspezifiziertes Strukturmodell. Dafiir schlugen sie die unter II. 2 genannten Cut-Off-Regeln
vor, die mehr und mehr zu einer dichotomen Entscheidung hinsichtlich der Beurteilung der
Modellpassung fiihrten (Marsh et al., 2004). Diese Cut-Offs nach Hu und Bentler (1999)

werden im Folgenden vor dem Hintergrund weiterer Forschung diskutiert.
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Eine berechtigte Kritik an Hu und Bentlers (1998, 1999) Studien ist, dass Art und Grad
der Missspezifikationen konfundiert waren (Fan et al, 2009). Insofern sind die
Schlussfolgerungen der Autoren insbesondere fiir missspezifizierte Modelle nur sehr
eingeschrinkt haltbar (Fan & Sivo, 2005; Fan et al., 2009). Dies betrifft sowohl die propagierte
Sensitivitdt der Fit-Indizes fiir die Art der Missspezifikation, als auch die empfohlenen Cut-

Off-Werte.

Olsson et al. (2000) zogen aus ihrer Simulationsstudie die Schlussfolgerung, dass
empirische Fit-Indizes nicht {iber verschiedene Schitzmethoden hinweg verglichen werden
konnten. Dementsprechend wéren die verschiedenen Fit-Indizes nicht austauschbar, unter
anderem, weil zum Beispiel der CFI Maximum-Likelihood-basiert ist, der RMSEA jedoch
nicht. Olsson et al. argumentierten schlussendlich, dass die Cut-Offs nach Hu und Bentler auch
aufgrund der mangelnden Vergleichbarkeit der Fit-Indizes nicht angemessen wéren. Ding,
Velicer, und Harlow (1995) kamen zu einem dhnlichen Ergebnis, ndmlich, dass die Werte der
Fit-Indizes durch die Schitzmethode im Rahmen ihrer Simulationsstudie verzerrt waren. Sie
variierten ebenfalls die Schédtzalgorithmen (Maximum-Likelihood versus General Least
Squares), sowie die Anzahl an Indikatoren pro Faktor und die Hohe der Faktorladungen. Die
Ergebnisse in Bezug auf den Faktor der Schétzalgorithmen zeigten, dass unter Maximum-
Likelihood zwar weniger Heywood Cases'’ auftraten, die Parameterschitzungen aber verzerrter
waren als unter General Least Squares. Fan et al. (2009) zogen aus ihren Befunden &hnliche
Implikationen wie Olsson et al. (2000), ndmlich, dass die Fit-Indizes tiber verschiedene
Schiatzmethoden hinweg nicht vergleichbar und damit nicht austauschbar wéren. Fan et al.
(2009) untersuchten zehn Fit-Indizes auf ihre Sensitivitédt hinsichtlich Missspezifikationen im
Messmodell entweder in Form von félschlicherweise auf Null gesetzten Faktorladungen oder
falschlicherweise hinzugefiigten Faktorladungen ungleich Null, was eine Verletzung der
Einfachstruktur darstellte. Es zeigte sich —und dies ist konsistent zu den Befunden von Hu und
Bentler — dass der RMSEA am sensitivsten gegeniiber beiden Missspezifikationen, also
Missspezifikationen im Messmodell, war. CFI und SRMR schnitten diesbeziiglich im
Vergleich mittelmiBig ab.

""Heywood Cases stellen ungiiltige Losungen dar (Faktorladungen iiber Eins oder negative Fehlervarianzen bei
Standardisierung), welche aus Schétzproblemen, Missspezifikationen oder auch aus Sampling Fluktuationen
resultieren; fiir eine ausfiihrlichere Erkldrung sowie Vorschldge fiir den Umgang mit Heywood Cases bei der

Datenanalyse wird Kolenikov und Bollen (2012) und Dillon, Kumar, und Mulani (1987) empfohlen.
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Rigdon (1996) verglich RMSEA und CFI und zeigte analytisch, dass der Gebrauch des
CFI problematisch wire, weil er, wie alle inkrementellen Fit-Indizes, von einem geeigneten
Nullmodell abhéngt. Alternative Baseline-Modelle wurden im Artikel beschrieben. Der Autor
empfahl die Betrachtung des CFI daher im Rahmen von eher explorativen Kontexten und
kleinen StichprobengroBen. Hu und Bentlers (1998, 1999) Studien waren konfirmatorischer
Art. Den RMSEA schlug Rigdon fiir konfirmatorische Ansétze mit groferen Stichproben vor,

unter anderem, weil der RMSEA als weniger abhéngig von der Stichprobengrofe gilt.

Eine weitere angemessene Kritik ist, dass Hu und Bentler in ihren Studien sehr hohe
Faktorladungen verwendeten (standardisiert zwischen .70 und .80), welche jedoch im Rahmen
der meisten psychologischen Untersuchungen und Testvalidierungen nicht erreicht werden
(Fan & Sivo, 2005; Fan et al., 2009; Heene et al., 2011). Peterson (2000) verglich in einer Meta-
Analyse Faktorladungen von 803 exploratorischen Faktorenanalysen aus Psychologie- und
Marketing-Journals. Er ermittelte eine durchschnittliche standardisierte Faktorladungshéhe von
.32, wobei 25% der berichteten Faktorladungen unter .23 lagen und 25% der berichteten
Faktorladungen tiber .37. Der Anteil der erkldrten Varianz durch die Faktorenmodelle lag bei
durchschnittlich knapp 57%. Diese Kritik l4sst die Schlussfolgerung zu, dass die Cut-Offs nach
Hu und Bentler (1998, 1999) auch aufgrund unterschiedlicher Faktorladungshéhen in der

angewandten Forschung nicht verallgemeinert werden konnen (Heene et al, 2011).

Heene et al. (2011) untersuchten ein zu Hu und Bentler (1998, 1999) vergleichbares
Design, jedoch ohne Konfundierungen zwischen Art und Grad der Missspezifikationen, und
erweiterten das Design noch um den Faktor Testlinge. AuBlerdem wurden anstatt von tau-
dquivalenten Indikatoren kongenerische Indikatoren verwendet, deren Faktorladungen
zwischen gering, mittelhoch und hoch variierten, wobei die hohen Faktorladungen der von Hu
und Bentler (1998, 1999) getesteten Hohe an Faktorladungen entsprach. Bei den komplex
missspezifizierten Modellen wurden, wie bei Hu und Bentler, die Faktorkovarianzen auf Null
gesetzt, bei den einfach missspezifizierten Modellen hatten drei Indikatoren, dhnlich zu Hu und
Bentler, Doppelladungen im Vergleich zum Populationsmodell. Die Stichprobengréf3en
variierten zwischen 150 und 2,500 Fillen. Die Ergebnisse zeigten einen Haupteftekt fiir die
Hohe der Faktorladungen: Sowohl die y*-Werte, als auch die Werte der Fit-Indizes sanken bei
sinkenden Ladungen. Das heilit, eine Modellevaluation durch den CFI fiihrte bei geringen
Ladungen eher dazu, dass missspezifizierte Modelle verworfen wurden. Bei hohen Ladungen

jedoch wurden zu viele Modelle durch den CFI anhand des Cut-Offs nach Hu und Bentler als
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passend indiziert. Dass dieser Befund bei Hu und Bentler nicht auftrat, kann durch die
Heterogenitét der Faktorladungen im Vergleich zu den homogenen Faktorladungen bei Hu und
Bentler erklirt werden (Heene et al., S. 322). RMSEA und SRMR'" akzeptierten bei geringen
Faktorladungen zu oft missspezifizierte Modelle, wohingegen sie bei hoheren Faktorladungen
sensitiver reagierten. Erklart werden kann dieses Phinomen dadurch, dass bei geringen
Faktorladungen und dementsprechend groBen uniquen Varianzen der x>-Test an Power verliert
(Heene et al., S. 328f). Somit verlieren auch die Fit-Indizes CFI und RMSEA, da sie vom y’-
Wert abhidngen, wie auch der SRMR an Sensitivitit. Die Befunde sprechen dafiir, dass die Cut-
Offs von Hu und Bentler fiir eine realistische Faktorladungshohe zu niedrig gewihlt wurden,

sofern man sie als allgemeingiiltige Regeln verwenden wollte.

Wihrend die Befunde von Heene et al. (2011) eher fiir noch strengere Cut-Offs
sprechen, vertreten Marsh, Hau, und Wen (2004) eine gegensitzliche Meinung. Sie
argumentierten, die konventionellen Cut-Offs nach Hu und Bentler wéren zu strikt. Marsh et
al. schrieben, dass es — ihrer Erfahrung nach (S. 325) — fast unmdglich wire, mit diesen Cut-
Off-Regeln einen akzeptablen Modellfit zu erhalten, selbst, wenn die Testinstrumente
psychometrisch gut wiren und ausreichend Items zur Abbildung der latenten Faktoren
vorhanden wiren. Die Autoren argumentierten ferner, dass sich die Klassifikationsregeln nach
Hu und Bentler paradox verhalten wiirden (Marsh et al., S. 327): Die Wahrscheinlichkeit, ein
missspezifiziertes Modell zu verwerfen wére fiir mindestens eines der Modelle, die Hu und
Bentler spezifizierten, geringer fiir groere Stichproben als fiir kleinere. Dies wire laut Marsh
et al. vermeidbar gewesen, wenn die Autoren die Cut-Offs anders gesetzt hitten. Marsh et al.
kritisierten, dass, sofern Hu und Bentler im Rahmen ihres Designs noch noch extremer
missspezifizierte Modelle verwendet hitten, Cut-Offs von .80 fiir inkrementelle Fit-Indizes sehr
exakt zwischen diesen und korrekt spezifizierten Modellen hétten diskriminieren kdnnen. Nach
Marsh et al. hiatten Hu und Bentler missspezifizierte Modelle spezifiziert, die theoretisch
durchaus akzeptabel gewesen wiren. In der typischen Praxis wiaren Modelle hingegen deutlich

missspezifizierter.

An Marsh et al.s (2004) Argumentationsfithrung wird deutlich, dass nicht nur kein
Konsens dariiber besteht, wie Missspezifikationen hinsichtlich Art und Schweregrad

einzuordnen sind, sondern vielmehr auch, ab wann ein Modell {iberhaupt als missspezifiziert

"An dieser Stelle ist zu beachten, dass im Rahmen dieser Studie fiir das SRMR ein Cut-Off von < .11 verwendet

wurde.
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gilt. Letztere Frage wird jedoch nicht alleine anhand von Simulationsstudien zu klédren sein.
Hierfiir bedarf es den Bezug auf vielfach replizierte substanzielle Theorien und insbesondere
auch die kriterielle Evaluation der Schlussfolgerungen, die aus diesen Theorien gezogen werden

sollen.

Trotz der Unstimmigkeiten in Bezug auf die Quantifizierung von Missspezifikationen
sind sich die Autoren der oben genannten Studien insofern einig, als dass die von Hu und
Bentler vorgeschlagenen Cut-Off-Werte zur Beurteilung der Modellpassung nicht als
allgemeingiiltige Regeln angewendet werden konnen (Fan & Sivo, 2005; Fan et al., 2009;
Heene et al., 2011; Marsh et al., 2004). Die Fit-Indizes sind nicht alleine abhingig von der
GroBe der Modellabweichung, sondern auch von anderen Faktoren, wie Stichprobengrofe,
Schétzalgorithmus oder Faktorladungshdhe (Beauducel & Wittmann, 2005; Fan & Sivo, 2005;
Fan et al., 2009; Heene et al., 2011; Olsson, Foss, Troye, & Howell, 2000; Yang & Green,
2010).

Fan und Sivo (2005) argumentierten, dass noch nicht ausreichend verschiedene Modelle
getestet worden wéren und somit der Grad der Missspezifikation noch nicht hinreichend
kontrolliert worden wire, um Aussagen iiber die Sensitivitdt der Fit-Indizes beziiglich
verschiedener Typen und Grade von Missspezifikationen treffen zu konnen. FEine
Schlussfolgerung aus diesen Forschungsbemiihungen ist unter anderem, dass die Fit-Indizes fiir
korrekt spezifizierte Modelle vergleichbar sind, fiir missspezifizierte Modelle aber nicht (Fan
et al., 2009). Dementsprechend ist offensichtlich, dass die Cut-Off-Kriterien zur Beurteilung
des Modellfits von Hu und Bentler insbesondere bei missspezifizierten Modellen nicht haltbar
sind. Wie bereits von Marsh et al. (2004) angedeutet, liegt allerdings die Vermutung nahe, dass
missspezifizierte Modelle den Grof3teil der in der psychologischen Anwendung spezifizierten

Modelle reprisentieren.
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2 Mehrdimensionalitit

2.1 Itemparcels

Innerhalb der Psychologie und verwandter Disziplinen stellt eine nicht-spezifizierte
Mehrdimensionalitit eine typische Missspezifikation dar (Heene et al., 2012; Little et al.,
2002b). Dennoch besteht insgesamt noch wenig Forschung zur Sensitivitét der Fit-Indizes fiir
diese Formen der Missspezifikation. Mehrdimensionalitit im Kontext der Psychometrie
bedeutet, dass ein Test, Fragenbogen oder Item systematisch nicht nur ein Merkmal misst,
sondern mehrere'”. Die Klassische Testtheorie, auf der konfirmatorische Faktorenanalysen und
Strukturgleichungsmodelle basieren, ist allerdings fiir eindimensionale Tests, Fragebdgen oder
Items konzipiert (Bortz & Doring, 2002/2003). Insofern stellen mehrdimensionale Tests,
Fragebogen oder Items, sofern nicht als solche spezifiziert, eine fundamentale Verletzung der

statistischen Eindimensionalitdtsannahme dar (Biihner, 2011).

Innerhalb  der  Forschung zu  konfirmatorischen = Faktorenanalysen  und
Strukturgleichungsmodellen erregten hinsichtlich der Frage nach der Dimensionalitit unter
anderem gruppierte (sog. geparcelte [Bandalos, 2000, S. 78]) Items Aufmerksamkeit. Bandalos
untersuchte  die  Auswirkungen von  geparcelten Items im  Rahmen von
Strukturgleichungsmodellen auf die Parameterschitzungen und auf die Fit-Indizes CFI und
RMSEA. Sie untersuchte im Rahmen einer ersten Studie ein Populationsmodell mit zwei
exogenen latenten Variablen und je 12 Indikatoren und einer endogenen latenten Variablen, die
durch 6 Items abgebildet wurde. Alle Indikatoren geniigten der Einfachstruktur. Es wurden

sowohl normalverteilte als auch nicht normalverteilte Items inkludiert. Die standardisierten

“Einfachstruktur hingegen bedeutet, dass Items in Faktorenanalysen mdglichst hoch auf einen Faktor, aber
moglichst niedrig auf alle anderen Faktoren laden sollten (Biihner, 2011, S. 204). Einfachstruktur garantiert nicht
psychologische Eindimensionalitit, die nicht gleichzusetzen ist mit statistischer Eindimensionalitit.
Psychologische Eindimensionalitdt meint die phinomenologische Eindimensionalitdt des Messgegenstands. Falls
beispielsweise alle Indikatoren, die eine latente Variablen messen sollen, zwei Eigenschaften/Fahigkeiten messen,
diese aber in einem konfirmatorischen Modell nicht in Form von Nebenladungen auf eine zweite latente Variable
spezifiziert werden, bildet die eine latente Variable psychologisch zwei Eigenschaften/Fahigkeiten ab. In diesem
Fall wiirde statistische Eindimensionalitdt vorliegen, psychologische Eindimensionalitit allerdings nicht. Im
Folgenden ist immer, sofern nicht anders gekennzeichnet, von statistischer Ein- und Mehrdimensionalitdt — im

Gegensatz zu psychologischer Ein- oder Mehrdimensionalitéit — die Rede.
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Ladungen der Indikatoren wurden auf.70 festgesetzt, die standardisierten Messfehlervarianzen
auf .30. Die Parcels aus den Indikatoren, die aus 2, 3, 4 oder 12 (Gesamtwert) Indikatoren
bestanden, wurden anhand der Verteilung der Indikatoren gebildet, woraus Parcels mit
normalverteilten Indikatoren, Parcels mit normal- und mit nicht normalverteilten Indikatoren,
sowie Parcels, deren Indikatoren schiefer und gewdlbter verteilt waren als normalverteilte
Indikatoren, resultierten. Die Stichprobengroflen variierten zwischen 100 und 800 Féllen. Die
Modelle mit den geparcelten Indikatoren fiihrten insgesamt betrachtet zu niedrigeren Werten
des RMSEA und hoheren Werten des CFI, also zu besserem Fit, als das korrekte Modell ohne
Parcels. Nur fiir das Modell mit den 12-Indikatoren-Parcels war der RMSEA hingegen leicht
hoher als beim Modell mit den individuellen Indikatoren. Beim CFI zeigten sich aufgrund von
insgesamt sehr hohem Fit nur geringfiigig Unterschiede bei kleinen Stichprobengréflen, hier
fiel die Modellpassung auch zugunsten der individuell verwendeten Indikatoren aus. Die
Ergebnisse wurden allerdings nicht mehr zwischen der Anzahl der Indikatoren in den Parcels

getrennt ausgewertet.

Im Rahmen ihrer zweiten Studie spezifizierte Bandalos (2002) in der Grundstruktur
dasselbe Populationsmodell wie im Rahmen ihrer ersten Studie, allerdings mit dem wichtigen
Unterschied, als dass jeweils sechs Indikatoren der exogenen latenten Variablen gleichzeitig
einen dritten Faktor widerspiegelten. Insgesamt hatten also 12 Indikatoren Nebenladungen, die
auf .40 (standardisiert) gesetzt wurden. Diese Indikatoren folgten also keiner Einfachstruktur.
Die Indikatoren wurden wieder in Parcels zu 2, 3, 4 oder 12 Indikatoren zusammengefasst,
wobei unterschieden wurde zwischen Parcels mit Indikatoren, die nur auf eine latente Variable
luden oder nur auf zwei latente Variablen luden (isoliert; S. 87), oder Parcels, die sowohl
Indikatoren ohne Nebenladungen als auch Indikatoren mit Nebenladungen enthielten
(aufgeteilt; S. 87). Die Stichprobengréflen waren die gleichen wie in der ersten beschriebenen
Studie der Autorin. Die Losungen fiir die Itemparcels wurden verglichen mit dem
missspezifizierten Modell, bei dem die dritte exogene latente Variable, und somit die
Nebenladungen der Indikatoren, nicht spezifiziert wurden. Es zeigte sich, dass der RMSEA fiir
die Losungen mit aufgeteilten Parcels kleiner war als fiir die Losungen mit isolierten Parcels,
der RMSEA zeigte also bei den aufgeteilten Parcels besseren Fit an. Die Modellpassung anhand
des RMSEA bei den ungeparcelten Indikatoren im missspezifizierten Modell lag zwischen den
RMSEA-Werten fiir die aufgeteilten und isolierten Parcels. Insgesamt lagen die Werte des
RMSEA entweder unter oder knapp iiber der Cut-Off-Regel von Hu und Bentler (1998, 1999).

Der CFI zeigte bessere Modellpassung bei den Parcels bestehend aus 12 Indikatoren im
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Vergleich zu Parcels bestehend aus weniger Indikatoren; ebenso, wie der RMSEA, bei den
aufgeteilten Parcels im Vergleich zu den isolierten Parcels (Bandalos, 2002). Die individuellen
Indikatoren im missspezifizierten Modell fiihrten zu niedrigeren CFI-Werten als die
geparcelten Indikatoren. Insgesamt lag der CFI jedoch immer iiber .90 und, sofern die

aufgeteilten Parcels verwendet wurden, {liber .95, also iiber dem Cut-Off nach Hu und Bentler.

Die Schlussfolgerung aus Bandalos’ (2002) Studien lautete, dass die statistischen
Dimensionen, auf die die Indikatoren luden, fiir das Parceling eine entscheidende Rolle spielten.
Sofern die Indikatoren der Einfachstruktur geniigten, konnte das Zusammenfassen der
Indikatoren in hoherer Modellpassung hinsichtlich der Fit-Indizes resultieren, und dies selbst
bei nicht normalverteilten Indikatoren. Sofern jedoch Indikatoren mit Nebenladungen auftraten,
welche nicht als solche spezifiziert wurden, maskierten aufgeteilte Itemparcels diese
Missspezifikation sogar noch im Vergleich zu nicht-geparcelten Indikatoren. Sie fiithrten zu
akzeptablen Werten der Fit-Indizes, sofern die Kriterien nach Hu und Bentler (1998, 1999) zur
Beurteilung der Modellpassung herangezogen wurden (Bandalos, 2002).

Marsh, Liidtke, Nagengast, Morin, und von Davier (2013) untersuchten Itemparcels
zundchst anhand von zwei empirischen Datensdtzen, welche sie anschlieBend mit zwei
simulierten Datensdtzen verglichen. Der erste empirische Datensatz bestand aus zehn
beobachteten Variablen, die eine Dimension anhand einer Skala messen sollten. Die Daten
stammten von 2,175 Schiilerinnen und Schiilern aus unterschiedlichen Messzeitpunkten.
Itemparcels wurden einerseits anhand der Mittelwerte zusammengestellt, andererseits anhand
nur positiv oder nur negativ formulierter Indikatoren (homogene Parcels; S. 263), sowie anhand
positiv und negativ formulierter Indikatoren (aufgeteilte Parcels; S. 263). Wurde ein korrektes
Strukturgleichungsmodell auf die empirischen Daten angewandt, welches die unterschiedlich
formulierten Indikatoren nicht in Form von Methodenfaktoren beriicksichtigte, resultierte
daraus ein schlechter Fit, das korrekte Modell wurde an den Daten abgelehnt. Die Modelle mit
den aufgeteilten Parcels fiihrten zur Akzeptanz des Modells nach den Kriterien von Hu und
Bentler (1998, 1999). Die homogenen Itemparcels flihrten zu schlechterem Fit, allerdings war

der Fit anhand der konventionellen Kriterien immer noch gut (Marsh et al., 2013).

Der zweite empirische Datensatz bestand aus 24 beobachteten Variablen, von denen je

12 eine von zwei Dimensionen darstellten (Marsh et al., 2013). Der verwendete Datensatz mit

3,390 Schiilerinnen und Schiilern stammte aus einer fritheren Publikation der ersten beiden

Autoren (Marsh et al., 2010). Auch hier fiihrte die Anwendung eines korrekten Zwei-Faktoren-
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Modells anhand der individuellen Items auf den Datensatz zu einem schlechten Fit anhand des
CFI und des RMSEA, ein Ein-Faktoren-Modell wurde klar verworfen (Marsh et al., 2013). Die
Parcels aus jeweils 2, 3 oder 4 Items wurden auch in dieser Studie entweder aufgeteilt oder
homogen gebildet und die Parcels stellten entweder eine Zwei-Faktoren-Ldsung oder eine
einfaktorielle Losung dar. Die Modelle mit den homogenen Itemparcels, die eine Ein-Faktoren-
Losung widerspiegelten, wurden nach den Kriterien von Hu und Bentler (1998, 1999) durch
die Fit-Indizes abgelehnt. Die Ein-Faktoren-Modelle mit den aufgeteilten Parcels, bei denen
Neurotizismus und Extraversion konfundiert waren, resultierten jedoch in der Akzeptanz des

Modells anhand der Cut-Off-Kriterien fiir den CFI und den RMSEA (Marsh et al., 2013).

Im Rahmen der dritten Studie wurden Daten simuliert (Populationssimulation mit je
100,000 Fillen pro Bedingung), die das Antwortverhalten auf einer Skala von 24 Items
widerspiegeln sollten (Marsh et al., 2013). Variiert wurde in den Populationsmodellen der Grad
der Einfachstruktur (Einfachstruktur [alle standardisierten Nebenladungen auf zweiten Faktor
.00], anndhernd Einfachstruktur [alle standardisierten Nebenladungen auf zweiten Faktor
zwischen .00 und .10], gute Einfachstruktur [vier standardisierte Nebenladungen auf zweiten
Faktor zwischen .00 und .20], akzeptable Einfachstruktur [sechs standardisierte Nebenladungen
auf zweiten Faktor zwischen .00 und .40]), als auch die Faktorkorrelation (.25 oder .60). In den
missspezifizierten Modellen wurden die Nebenladungen nicht spezifiziert und insofern wurde
bei diesen falschlicherweise von Einfachstruktur ausgegangen. Alle missspezifizierten Modelle
ohne Parcels fiihrten zur Annahme der Modelle durch die Fit-Indizes CFI und RMSEA. Die
Item-Parcels wurden genauso gebildet wie in Studie 2. Einfaktorielle Modelle mit aufgeteilten
Itemparcels flihrten genauso wie in Studie 2 anhand des CFI und des RMSEA zu akzeptabler
Modellpassung. Die Ein-Faktoren-Modelle mit homogenen Parcels wurden hingegen durch die

Fit-Indizes verworfen.

In Studie 4 wurde ein Populationsmodell mit drei korrelierten exogenen latenten
Variablen und einer endogenen latenten Variablen untersucht, wobei nur die latente endogene
Variable Indikatoren ohne Nebenladungen widerspiegelte (Marsh et al., 2013). Bei dieser
Studie handelte es sich ebenfalls um eine Populationssimulation. Zudem wurde als weitere
Populationsbedingung ein Methodenfaktor spezifiziert und die Korrelation zwischen erstem
und zweitem exogenen Faktor sowie deren Strukturpfade auf dem endogenen Faktor in der
Hohe variiert. Es wurden wie in den Studien 2 und 3 homogene und aufgeteilte Itemparcels

gebildet. Auch im Rahmen dieser Studie fiihrten insbesondere die aufgeteilten Parcels zu
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akzeptablen Werten hinsichtlich der Modellpassung anhand der Cut-Off-Werte fiir den CFI und
den RMSEA. Der Modellfit fiir die homogenen Parcels war nur geringfiigig schlechter als der
Modellfit fiir die aufgeteilten Parcels und fiihrte bei der liberwiegenden Mehrheit an
Bedingungen zur Akzeptanz der Modelle.

Sowohl die Studien von Bandalos (2002) als auch die Studien von Marsh et al. (2013)
zeigten, dass der Gebrauch von Item-Parcels bei unbekannter wahrer Faktorenstruktur im
Rahmen konfirmatorischer Faktorenanalysen oder im Rahmen von
Strukturgleichungsmodellen nicht zu empfehlen ist. Dies hat den Grund, dass im Rahmen der
beschriebenen Studien die Fit-Indizes eine missspezifizierte Faktorenstruktur eines implizierten
Modells bei geparcelten Indikatoren noch weniger erkannten als bei missspezifizierten
Modellen, deren Indikatoren nicht geparcelt wurden. Insbesondere kaschierte der Gebrauch von
aufgeteilten Parcels, also Parcels, deren Items hinsichtlich einer Gegebenheit variierten, eine
Verletzung der Einfachstruktur in den Daten bzw. im wahren Modell. Sofern also homogene
und aufgeteilte Itemparcels zu unterschiedlichen Resultaten fiithren, sei es hinsichtlich der
Parameterschitzungen oder auch hinsichtlich der Modellpassung anhand der Fit-Indizes, ist
Vorsicht geboten (Marsh et al.,, 2013, S. 276). Dies kann darauf hinweisen, dass die
Einfachstruktur in den empirischen beobachteten Variablen verletzt ist. In diesem Fall kann
dann auch die Varianz der entsprechenden latenten Variablen nicht mehr als Varianz eines

einzigen Faktors interpretiert werden (Little et al., 2002a; Raykov, 2001).

2.2 Missspezifikationen in Form von Mehrdimensionalitit im Messmodell

Im Folgenden werden zundchst Studien beschrieben, die die Fit-Indizes hinsichtlich
Modellabweichungen in Form von Mehrdimensionalitit im Messmodell untersuchten, bevor
die Studien beschrieben werden, die sich auf nicht-spezifizierte Mehrdimensionalitit im
Strukturmodell fokussierten und aus denen die Fragestellung fiir die erste Studie abgeleitet
wurde.

Mehrdimensionalitit im Messmodell kann sich duBlern durch Verletzung der
Einfachstruktur (Indikatoren einer latenten Variablen haben Nebenladungen auf eine andere
latente Variable; Beauducel & Wittmann, 2005). Eine Verletzung der Einfachstruktur

bezeichnet also Mehrdimensionalitit innerhalb der Indikatoren (Von Davier & Carstensen,
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2007; Wei, 2008), die Dimensionalitit im Strukturmodell bleibt erhalten (Wei, 2008)."* Eine
weitere Form der Mehrdimensionalitidt im Messmodell stellen Messfehlerkorrelationen der
Indikatoren dar. Die Studien zur Sensitivitét der Fit-Indizes bei Verletzung der Einfachstruktur

und beim Vorliegen von Messfehlerkorrelationen werden im Folgenden ndher beschrieben.

Beauducel und Wittmann (2005) untersuchten die Auswirkungen von
Missspezifikationen in Form von Verletzungen der Einfachstruktur auf die gingigen Fit-
Indizes. Deren Design bestand aus vier orthogonalen oder obliquen Faktoren mit insgesamt 20
Indikatoren, die unterschiedlich hoch, aber homogen auf die Faktoren luden und von denen vier
Indikatoren positive oder negative Nebenladungen hatten. In den orthogonalen
Faktorenmodellen konnte also keine Einfachstruktur durch oblique Rotation erreicht werden,
in den obliquen Faktorenmodellen jedoch schon. Bei den missspezifizierten Modellen, die auf
die Daten, die aus den beschriebenen Populationsmodellen erzeugt wurden, gefittet wurden,
wurden die Nebenladungen nicht spezifiziert, was Missspezifikationen im Messmodell
darstellte. Die Stichproben enthielten 250, 500 oder 1,000 Fille. Die Ergebnisse waren dhnlich
zu denen Heene et al.s (2011): Bei geringen Ladungen wurden die missspezifizierten Modelle
durch RMSEA und SRMR zu oft akzeptiert. Einen wichtigen Befund von Beauducel und
Wittmann stellte auBerdem dar, dass die Hohe des Cut-Offs fiir den CFI mit der Ladungshéhe
interagierte: Wihrend bei einem Cut-Off von .90 bei steigender Ladungshohe auch die
Modellakzeptanz stieg, sank bei einem Cut-Off von .95 die Modellakzeptanz bei steigender
Ladungshéhe. Die Beurteilung des Modellfits anhand des x*-Werts unter Beriicksichtigung der
Freiheitsgrade sowie anhand des RMSEA und SRMR, wie von Hu und Bentler (1998, 1999)
vorgeschlagen, kann nach Beauducel und Wittmann (2005) bei geringen Ladungen nur
empfohlen werden, wenn die Einfachstruktur leicht verletzt ist. Bei einer groberen Verletzung
der Einfachstruktur sei davon auszugehen, dass diese bei geringen Ladungen durch die Fit-
Indizes nicht angezeigt wird und somit zu einer falschen Akzeptanz des missspezifizierten
Modells fiihrt. Dieses Resultat geht einher mit Heene et al.s (2011) Ergebnissen, nach denen
sich die Cut-Offs fiir die Fit-Indizes nach Hu und Bentler (1998, 1999) {iber unterschiedliche

Faktorladungen und eine Verletzung der Einfachstruktur hinweg nicht bewahrten.

"Von Mehrdimensionalitit zwischen den Indikatoren spricht man hingegen, wenn jede latente Variable nur
Indikatoren abbildet, die nicht gleichzeitig auch eine andere latente Variable abbildet. Insofern ist im Falle der

Mehrdimensionalitit zwischen den Indikatoren Einfachstruktur gegeben (Stout et al., 1996; Wei, 2008).
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Problematisch am Design von Beauducel und Wittmann (2005) war allerdings, dass mit
ansteigender Faktorladungshéhe in den spezifizierten Populationsmodellen auch die
Nebenladungen stiegen, welche im missspezifizierten Modell nicht spezifiziert wurden
(Savalei, 2012). Mit hoheren Ladungen stieg also auch der Grad der Missspezifikation. Nach
den Ergebnissen von Heene et al. (2011) reagieren die absoluten Fit-Indizes aber genau kontrér
dazu. Bei hohen Ladungen im Vergleich zu niedrigen Ladungen wird eine Modellabweichung
durch die absoluten Fit-Indizes eher als solche erkannt, durch die inkrementellen Fit-Indizes
weniger. Bei niedrigen Ladungen bedarf es also einer schwerwiegenderen Missspezifikation,

damit die absoluten Fit-Indizes diese indizieren (Savalei, 2012).

Eine andere hdufige Form der Mehrdimensionalitdt im Messmodell stellen korrelierte
Messfehler bzw. korrelierte unique Faktorwerte dar (Heene et al., 2012). Das Konzept der
statistischen Eindimensionalitdt erfordert, dass, sobald die latente Variable spezifiziert wurde,
die Korrelationen zwischen den Items Null werden sollten, da die Ursache der Korrelationen
zwischen den Items die latente Variable ist (Biihner, 2011). Korrelierte Messfehler entstehen
insofern durch Kovarianzen, die durch die latente Variable nicht erklart werden konnen. Sie
repriasentieren — im Gegensatz zu unsystematischen Messfehlern — systematische Messfehler
(Brown & Moore, 2012). Sofern korrelierte Messfehler in den Daten vorhanden sind, stellt die
Matrix ®* aus Formel (2) unter II. 1 keine Diagonalmatrix mehr dar, die Off-Diagonal-
Elemente sind dann nicht mehr signifikant verschieden von Null (Mulaik, 2009). Korrelierte
Messfehler entstehen beispielsweise durch die gleichen Worter innerhalb verschiedener
Fragebogenitems, logische Abhingigkeiten zwischen den Items oder auch Mehrdimensionalitét
(Brown & Moore, 2012; Heene et al., 2012; Podsakoff, MacKenzie, Lee, & Podsakoft, 2003).
Korrelierte Fehler fiihren zu verzerrten Schéitzungen der internen Konsistenz, der
Reliabilititsschidtzung im Rahmen der Strukturgleichungsmodellierung und der
Minderungskorrektur der Kriteriumsvaliditit (Green & Hershberger, 2000; Gu, Little, &
Kingston, 2013; Heene et al., 2012; Maxwell, 1968; Osburn, 2000; Zimmermann & Williams,
1977a). AuBerdem kann fiir die Beurteilung der Validitit dann nicht mehr der
Korrelationskoeffizient betrachtet werden, da die Korrelation zwischen beobachteten Variablen

durch die korrelierten Messfehlervarianzen verzerrt ist (Zimmermann & Williams, 1977b).

Trotz der hohen Relevanz korrelierter Messfehler wurde bisher kaum untersucht, ob
Modellabweichungen in Form von korrelierten Fehlern von den géngigen Fit-Indizes anhand

der Cut-Offs nach Hu und Bentler (1998, 1999) zuverléssig entdeckt werden. Heene et al.
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(2012) konstruierten ein Design aus Populationsmodellen mit zwei korrelierten Faktoren mit je
12 Indikatoren, von denen die Messfehlervarianzen von drei oder sechs Indikatoren des einen
Faktors entweder nur positiv oder positiv und negativ mit drei oder sechs Messfehlervarianzen
der Indikatoren des anderen Faktors korreliert waren. Die Hohe der standardisierten
Faktorladungen rangierte entweder zwischen .30 und .60 oder zwischen .50 und .80, die Hohe
der Messfehlerkorrelationen bewegte sich zwischen .30 und .50 sowie -.30 und .30. Die
StichprobengréBen variierten zwischen 150 und 2,500 Féllen. Die Missspezifikation bestand in
nicht-spezifizierten Messfehlerkorrelationen. Heene et al. konnten zeigen, dass SRMR und
RMSEA selbst schwerwiegende Missspezifikationen in Form von nicht spezifizierten sechs
positiv korrelierten faktoriibergreifenden Messfehlervarianzen anhand der von Hu und Bentler
(1998, 1999) vorgeschlagenen Cut-Off-Werte nicht als solche indizierten, und dies selbst bei
einem Cut-Off von < .11 fiir das SRMR (Heene et al. 2012). Auch diese Befunde waren dhnlich
zu den Befunden unter III. 1 abhdngig von Stichprobengrofle und Faktorladungshohe. Der CFI
stieg bei zunehmender StichprobengroBe an, wohingegen der SRMR und der RMSEA bei
zunehmender StichprobengrofBe geringer ausfielen (dieselben Befunde zeigten sich bei Fan et
al. [2009] sowie Marsh et al. [2004]). Im Gegensatz zu RMSEA und SRMR erkannte der CFI
die Missspezifikationen groBtenteils, insbesondere bei niedrigen Faktorladungen. Letzterer
Befund kann dadurch erklért werden, dass ein Modell mit niedrigen Faktorladungen néher am

Nullmodell ist (Heene et al., 2012, S. 43).

Savalei (2012) untersuchte den RMSEA auf seine Sensitivitidt hinsichtlich einer im
fehlspezifizierten Modell nicht inkludierten Messfehlerkorrelation. Sie spezifizierte ein
Populationsmodell mit einem Faktor, der von 8 Indikatoren widergespiegelt wurde. Die Autorin
variierte die Ladungshohen und die Hohe der Messfehlerkorrelation zwischen ].00, 1.00[,
wobei bei hoheren Ladungen die Messfehlerkorrelation niedriger angesetzt wurde'®. Bei
homogenen Ladungen von .90 zeigte der RMSEA selbst bei einer nicht-spezifizierten
Messfehlerkorrelation von .06 eine Modellabweichung an. Mathematisch-analytisch wurde die
Modellablehnung  eines  Modells mit hohen  Faktorladungen und  kleinen
Messfehlerkorrelationen durch die Fit-Indizes bereits von Browne, MacCallum, Kim,

Andersen, und Glaser (2002) gezeigt. Bei homogenen Ladungen von .40 jedoch konnte die

"“Die StichprobengréBe wurde nicht genannt.
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Messfehlerkorrelation im Populationsmodell .26 erreichen, sodass der RMSEA bei .05" lag
(Savalei, 2012). Dieser Effekt der Ladungen auf die Werte des RMSEA verstirkte sich,
allerdings nur geringfiigig, wenn die Ladungen heterogen waren und um .10 bis .15 von der
durchschnittlichen Ladung abwichen. Der Effekt der Hohe der Ladungen auf den RMSEA

reduzierte sich, wenn anstatt der 8 Indikatoren 16 Indikatoren verwendet wurden.

In einer zweiten Monte-Carlo-Studie untersuchte Savalei (2012) ein zweifaktorielles
Populationsmodell mit zu .30 korrelierten Faktoren und 8 oder 16 Indikatoren insgesamt'®.
Weiters wurde eine Messfehlerkorrelation in das Populationsmodell einbezogen, die sich
entweder zwischen zwei Indikatoren desselben Faktors bewegte oder faktoriibergreifend
spezifiziert wurde. Ladungshohe und Hohe der Messfehlerkorrelation wurden wie in Savaleis
erster Studie gewdhlt. Im Vergleich zum einfaktoriellen Modell aus der ersten Studie reduzierte
sich die Sensitivitdt des RMSEA hinsichtlich der nicht-spezifizierten Messfehlerkorrelation im
missspezifizierten Modell stark; dieser Befund war unabhéngig von der Itemanzahl pro Faktor
oder insgesamt. Bei homogenen Ladungen und Messfehlerkorrelationen zwischen Indikatoren
desselben Faktors von .40 wurde die Missspezifikation bei einem Cut-Off von .05 nicht erkannt,
selbst bei Messfehlerkorrelationen von fast 1.00 im Populationsmodell. Bei
faktoriibergreifenden Messfehlerkorrelationen jedoch zeigte der RMSEA eine deutlich hohere
Sensitivitit: Bei 8 Indikatoren insgesamt und homogenen Ladungen von .40 lag der RMSEA
bei einer nicht-spezifizierten Messfehlerkorrelation von .20 bei .05, bei 16 Items insgesamt
musste die Messfehlerkorrelation .40 erreichen, damit der RMSEA iiber .05 lag. Das Ergebnis,
dass der RMSEA im Populationsmodell mit mehr Indikatoren und mehr Freiheitsgraden
weniger sensitiv fiir nicht-spezifizierte Messfehlerkorrelationen war, steht im Kontrast zu dem
bekannten Befund, nach dem der RMSEA die Sparsamkeit eines spezifizierten Modells belohnt
(Beauducel & Wittmann, 2005; Breivik & Olsson, 2001; Savalei, 2012). Basierend auf den
Ergebnissen der zweiten Studie ist allerdings einerseits zu vermuten, dass die Sensitivitit des
RMSEA primédr von der tatsdchlichen Faktorenstruktur im Populationsmodell, also vom
Strukturmodell und weniger vom Messmodell, abhingt (Savalei). Andererseits konnte die
nicht-spezifizierte Messfehlerkorrelation mdglicherweise durch die GroBe des Modells

kompensiert werden (Savalei).

"Man beachte, dass Savalei (2012) nicht die Cut-Off-Regel von Hu und Bentler (1998, 1999) von < .06
verwendete, sondern eine éltere, die auf Browne & Cudeck (1993) zuriickgeht.

"Die Stichprobengréfe der Simulationsstudie wurde nicht genannt.

36



Wihrend kleine Verletzungen der Einfachstruktur in Form von Nebenladungen bei
Beauducel & Wittmann (2005) insbesondere bei hohen Ladungen zur Ablehnung der Modelle
anhand des CFI fiihrten, akzeptierten RMSEA und SRMR die missspezifizierten Modelle
anhand der Cut-Offs nach Hu und Bentler (1998, 1999) oft. Bei Heene et al. (2012) sowie
Savalei (2012) zeigte sich, dass der RMSEA insbesondere bei nicht-spezifizierten
faktoriibergreifenden Messfehlerkorrelationen vor dem Hintergrund von Ladungen realistischer
Hohe nicht sensitiv fiir diese Art der Modellabweichung war, sofern diese Cut-Off-Werte als

Kriterien zur Modellevaluation herangezogen wurden.

2.3 Missspezifikationen in Form von Mehrdimensionalitit im Strukturmodell

Wiéhrend zu den Auswirkungen von nicht spezifizierter Mehrdimensionalitit im
Messmodell auf die Fit-Indizes schon einige Simulationsstudien durchgefiihrt wurden, hinkt
die Forschung zu Missspezifikationen im Strukturmodell hinterher. Doch gerade die Forschung
von Heene et al. (2012) zu RMSEA und SRMR sowie von Savalei (2012) zum RMSEA lésst
die Schlussfolgerung zu, dass die statistische Dimensionalitit der Faktorenstruktur im
Populationsmodell fiir die Sensitivitdt dieser Fit-Indizes eine entscheidende Rolle spielt. Es
kann zudem argumentiert werden, dass Missspezifikationen im  Strukturmodell

schwerwiegender sind als im Messmodell (Mahler, 2011).

Kenny und McCoach (2009) untersuchten die Auswirkungen einer Missspezifikation in
Form von Mehrdimensionalitidt im Strukturmodell auf die Fit-Indizes sowohl anhand einer
Simulationsstudie, als auch berechneten sie die Werte der Fit-Indizes analytisch. Das
Hauptaugenmerk der Studie lag allerdings darin, die Auswirkungen unterschiedlicher
Indikatorenanzahlen auf die Fit-Indizes auszutesten. Die Autoren kreierten ein
Populationsmodell mit zwei zu .80 korrelierten latenten Variablen und wandten ein
einfaktorielles Modell auf die aus dem Populationsmodell erzeugten Stichproben an. Variiert
wurde im Populationsmodell die Anzahl der Indikatoren: Jeweils 3, 6 oder 10 Indikatoren
spiegelten je eine der beiden latenten Variablen wider, wobei die Faktorladungen bei .70
(standardisiert) lagen. Die Stichprobengréfle betrug in allen erzeugten Stichproben N = 200.
Die Ergebnisse der Simulationsstudie zeigten, dass der CFI mit steigender Anzahl an

Indikatoren sank, also schlechtere Modellpassung anzeigte, wohingegen der RMSEA auch
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sank, also besseren Modellfit anzeigte. Genauso verhielt es sich auch bei den analytisch

berechneten Werten fiir die Fit-Indizes.

Mahler (2011) wuntersuchte den Effekt von nicht-spezifizierter statistischer
Mehrdimensionalitit hinsichtlich der Faktorenstruktur auf die Fit-Indizes. Dazu spezifizierte
sie Populationsmodelle mit zwei oder drei latenten Variablen, die zwischen Null (orthogonales
Modell) und Eins (obliques Modell bei einer Faktorkorrelation > 0) korrelierten. Die Anzahl
der Indikatoren lag bei 12 und die Faktorladungen lagen entweder alle bei .40, .50., .60, .70,
.80 oder .90". Sie wandte ein einfaktorielles Modell auf die aus den Zwei- oder Drei-
Faktorenmodellen erzeugten Stichprobendaten an. Sowohl CFI, als auch RMSEA und SRMR
zeigten eine hohere Modellpassung, wenn die Faktorkorrelation stieg und das
Populationsmodell insofern niher am eindimensionalen Modell lag. Der CFI zeigte besseren
Modellfit, wenn ein einfaktorielles Modell auf zweifaktorielle (im Vergleich zu
dreifaktoriellen) Stichprobendaten angewandt wurden, der SRMR zeigte bessere
Modellpassung bei Anwendung eines einfaktoriellen Modells auf eine Drei-Faktoren-Struktur
(im Vergleich zu einer zweifaktoriellen) in den Daten. Der RMSEA zeigte keinen Unterschied
hinsichtlich der Modellpassung, wenn ein eindimensionales Modell auf zwei- oder
dreidimensionale Stichprobendaten angewandt wurde. Die Ergebnisse zeigten auBerdem
wiederum, dass die Ladungshohe einen entscheidenden Einfluss auf die Indizierung der
Missspezifikation durch die Fit-Indizes anhand der Cut-Offs nach Hu und Bentler (1998, 1999)
hatte. Bei einer Ladungshohe von .40 lag der SRMR, egal, wie hoch die Faktorkorrelation war,
nicht iiber dem Cut-Off von Hu und Bentler (1998, 1999) von .08 (Mahler, 2011). Bei derselben
Ladungshohe zeigte der CFI bis zu einer Faktorkorrelation von .60 eine Modellabweichung
nach Hu und Bentlers Daumenregeln an, dariiber, unabhingig von der Anzahl der Faktoren im
Populationsmodell, nicht mehr. Der RMSEA zeigte bei einer Ladungshohe von .40 erst Misfit
im Sinne von Hu und Bentlers Daumenregeln an, wenn die Faktorkorrelation kleiner als .30

war.

Mahlers (2011) Ergebnisse zeigten, dass die Fit-Indizes, vor allem die absoluten Fit-
Indizes, bei geringen Faktorladungen, die dennoch iiberdurchschnittlich hoch ausfielen, grof3e
Schwierigkeiten bei der Entdeckung der Missspezifikation im Strukturmodell in Form von

nicht-spezifizierten Faktoren hatten, sofern man die Cut-Offs nach Hu und Bentler (1998, 1999)

""Die Stichprobengréfe fiir die Simulationsstudie wurde nicht genannt.
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heranzog. Dabei interagierte auBlerdem die Ladungshohe mit der Faktorkorrelation im

Populationsmodell (Mahler, 2011).

Savalei (2012) fiihrte zwei weitere Studien durch, die die Auswirkungen von
Missspezifikationen im Strukturmodell in Form von nicht spezifizierter Mehrdimensionalitét
auf den RMSEA untersuchen sollten. Im Vergleich zur Studie von Mahler (2011) schrinkte sie
einerseits die Anzahl der betrachteten Fit-Indizes auf den RMSEA ein, erweiterte aber
andererseits das Design von Mahler. Die Autorin spezifizierte Populationsmodelle mit obliquen
Faktoren, deren Korrelation aus dem Bereich [.00, 1.00]'* kam und die von insgesamt 8
Indikatoren reprisentiert wurden'”. Die homogenen Ladungen in den Populationsmodellen
variierten zwischen .40, .50, .60., .70 oder .80. Sie wandte dann einerseits ein orthogonales
Modell auf die Daten an (bei der Faktorkorrelation von .00 ein korrektes Modell), die aus den
Populationsmodellen gezogen wurden, andererseits ein eindimensionales Modell (bei der
Faktorkorrelation von 1.00 ein korrektes Modell). Wurde ein orthogonales Modell auf die
eigentlich oblique Faktorenstruktur in den Daten angewandt, stieg der RMSEA mit steigender
Faktorkorrelation im wahren Modell, zeigte also zunehmend Modellmisfit an. Sofern ein
eindimensionales Modell auf die erzeugten Stichprobendaten gefittet wurde, stieg der RMSEA
mit sinkender Faktorkorrelation im Populationsmodell. Waren die Faktorladungen im
Populationsmodell gering (.40), lag der RMSEA bei einer Faktorkorrelation von .50 im
Populationsmodell gerade noch unter dem Cut-Off nach Hu und Bentler (1998, 1999), zeigte
also Modellpassung an, unabhingig davon, ob ein orthogonales Modell oder ein
eindimensionales Modell angewandt wurde (Savalei, 2012). Bei hoheren Faktorladungen
wurden die missspezifizierten Modelle bereits bei niedrigerer (Anwendung eines anndhernd
orthogonalen Modells) bzw. bei hoherer Faktorkorrelation (Anwendung eines anndhernd
eindimensionalen Modells) durch den RMSEA-Cut-Off abgelehnt. Bei in der Psychologie
realistischen Faktorladungen, die sogar noch unter den von Savalei festgelegten Ladungen
liegen (vgl. Peterson, 2000), wére nach Savaleis Ergebnissen eine schwere Missspezifikation
im Strukturmodell notwendig, damit der RMSEA eine Modellabweichung anzeigen wiirde.
Uber alle Faktorladungshdhen hinweg betrachtet bestrafte der RMSEA ein missspezifiziertes
eindimensionales Modell eher mit einem schlechten Modellfit als ein missspezifiziertes

orthogonales Modell: Einen Faktor nicht zu spezifizieren, stellte also in der Metrik des RMSEA

""Das Populationsmodell mit der Faktorkorrelation von .00 spiegelte insofern ein orthogonales Modell wider.

"Die StichprobengréBe ist hier ebenfalls nicht bekannt.
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eine schwerwiegendere Missspezifikation dar, als zwei Faktoren félschlicherweise als

unabhingig zu betrachten (Savalei).

In einem zweiten Schritt untersuchte Savalei (2012), ob die Anzahl der latenten
Dimensionen im Populationsmodell eine Auswirkung auf den RMSEA hitten, wenn ein
eindimensionales Modell auf die aus dem Populationsmodell erzeugten Stichproben-
Kovarianzmatrizen angewandt wiirden. Sie spezifizierte Populationsmodelle mit zwei bis acht
latenten Variablen, die sie entweder zu .30 oder zu .50 korrelieren lie}. Die Hohe der
Faktorladungen setzte sie in gleicher Hohe wie in den vorherigen Studien fest. Die Anzahl der
Indikatoren lag unabhingig von der Anzahl der Faktoren immer bei 24°°. Die Befunde sind
alarmierend: Wenn die Anzahl der Faktoren im Populationsmodell stieg, sanken die Werte des
RMSEA, wenn das eindimensionale Modell angewandt wurde (Savalei). Bei niedrigen
Ladungen von .40 lag der RMSEA immer unter dem Cut-Off-Wert nach Hu und Bentler (1998,
1999). Bei Faktorladungen von .50 lag er tiber .06, wenn die Faktorkorrelation im
Populationsmodell bei .50 lag; wenn die Faktorkorrelation bei .30 lag, resultierte der RMSEA
bei Ladungen von .50 in Werten um .06, wenn zwei bis vier Faktoren im Populationsmodell

vorlagen (Savalei, 2012).

Die Studien von Savalei (2012) zeigten im Einklang mit den Ergebnissen von Mahler
(2011), dass der RMSEA bei niedrigen Faktorladungen, die dennoch fiir die angewandte
Psychologie relativ hoch sind (vgl. Peterson, 2000), bei Anwendung eines eindimensionalen
Modells kaum Modellabweichung anhand der Cut-Off-Werte anzeigte, und dies unabhéngig
davon, ob die tatsdchliche Faktorenstruktur zwei oder sogar acht Dimensionen beinhaltete

(Savalei, 2012).

**Die StichprobengroBe der Simulationsstudie wurde nicht genannt.
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3 Erste Fragestellung:  Auswirkungen  nicht-spezifizierter

Mehrdimensionalitit im Strukturmodell auf die Fit-Indizes

Die beschriebenen Studien lassen den Schluss zu, dass insbesondere die Faktorladungen,
also inzidentelle Parameter eines Modells, grofen Einfluss auf die Sensitivitit der Fit-Indizes
hinsichtlich der Indizierung von Missspezifikationen haben. Dieser Einfluss der
Faktorladungen fiihrt von einer Modellablehnung bei sehr geringen Modellabweichungen bei
hohen Ladungen bis hin zu einer Verschleierung nicht vorhandener Modellpassung bei
geringen Ladungen (siehe III. 1 und 2). Der Schluss, dass die Faktorladungen einen grof3en
Einfluss auf die Fit-Indizes haben, kann sowohl fiir Missspezifikationen im Messmodell als
auch fiir Missspezifikationen im Strukturmodell gezogen werden (Heene et al., 2011; Savalei,

2012).

Savalei (2012), Mahler (2011) und insbesondere Kenny und McCoach (2009)
untersuchten Missspezifikationen in Form von Mehrdimensionalitdt im Strukturmodell bei
unrealistisch hohen Faktorladungen. Wie bereits unter III. 1, basierend auf Petersons (2000)
Metaanalyse, erwéhnt, fallen Faktorladungen in der angewandten Psychologie und verwandten
Disziplinen deutlich geringer aus. Das Forschungsdesign von Kenny und McCoach war des
Weiteren vor allem auf die Austestung des Einflusses der Indikatorenanzahl angelegt und die
Autoren verwendeten nur homogene Faktorladungen. Auch letzteres ist in der angewandten
Forschung so gut wie nie der Fall (Buzick, 2010). Bei Savalei kommt neben den ebenso als
homogen festgelegten Faktorladungen hinzu, dass sie nur den Einfluss von Missspezifikationen
in Form von Mehrdimensionalitit auf den RMSEA iiberpriifte. Mahler untersuchte zwar auch

CFI und RMSEA, allerdings auch nur bei homogenen und relativ hohen Faktorladungen.

Im Rahmen der ersten Studie wurde ein Forschungsdesign konzipiert, welches die oben
genannten Forschungsliicken im Fokus hatte: Es wurde die Sensitivitit der géngigen Fit-Indizes
CFI, RMSEA und SRMR hinsichtlich nicht-spezifizierter Mehrdimensionalitdt in Form von
zwei obliquen Faktoren im Populationsmodell (eindimensionales missspezifiziertes Modell)
untersucht. Die Faktorladungen wurden sowohl heterogen, als auch fiir die angewandte
Psychologie realistisch hoch definiert. Der Grad der Missspezifikation wurde einerseits durch
die Hohe der Faktorkorrelation im Populationsmodell, andererseits durch das
Modell(un)gleichgewicht hinsichtlich der Anzahl der Indikatoren pro Faktor variiert; ein

niedrigerer Grad an Missspezifikation bestand in einer hoheren Faktorkorrelation im
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Populationsmodell (im Vergleich zu einer niedrigeren Faktorkorrelation) und in einer
ungleichen Indikatorenaufteilung im Populationsmodell (im Vergleich zu einer
ausgewogenen). Die Auswirkungen einer ungleichen Indikatorenaufteilung auf zwei Faktoren
auf die Fit-Indizes wurden bisher nur im Kontext von Missspezifikationen im Messmodell von
Mahler (2011) untersucht. Dies allerdings nur in Form eines inzidentellen Parameters, bei
Mabhler wurde die Missspezifikation nicht durch die Indikatorenaufteilung bestimmt. Unter IV

wird die Studie genauer beschrieben.

Nachdem der Forschungsbedarf hinsichtlich der Sensitivitdt der gdngigen Fit-Indizes
gegeniiber Missspezifikationen in Form von Mehrdimensionalitédt im Strukturmodell aufgezeigt
wurde, stellt sich im folgenden Kapitel III. 4 als néchstes die Frage, inwiefern sich
Missspezifikationen dieser Form substanziell und auf die Individuen auswirken wiirden. Die
Beurteilung der Giite der Modellpassung anhand der Fit-Indizes kann als eine Frage der
Reliabilitdt betrachtet werden, letztere Fragestellung bezieht sich auf die Validitit der
Faktorwerte (fiir den Begriff vgl. Grice [2001a, 2001b]) und darauf aufbauend auf die Validitat
der Diagnosen aus den Faktorwerten im Rahmen der zweiten Studie. Wiinschenswert wire,
dass die Fit-Indizes eine Modellabweichung anzeigen, bevor die Missspezifikation hinsichtlich

der Validitit der Faktorwerte der Individuen kritisch wird.
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4 Diagnostische Entscheidungen

Wie bereits beschrieben, werden mehr und mehr psychologische Tests und Fragebogen
anhand von konfirmatorischen Faktorenanalysen und linearen Strukturgleichungsmodellen
konstruktvalidiert (“Datenbanksegment PSYNDEX Tests,” 2013). Ein Grund dafiir liegt
sicherlich in der Moglichkeit der Modellierung der latenten Variablen (Fan et al., 2009;
Tomarken & Waller, 2005) aufgrund der Kontrolle der Messfehlerkovarianz der manifesten
Variablen (Bollen, 1989; Oberski & Satorra, 2013). Die Moglichkeit, latente Variablen zu
modellieren, hat insbesondere fiir die Psychometrie gro3e Vorteile (Fan et al., 2009; Tomarken
& Waller, 2005), da die Test- und Fragebogenkonstruktion auf eine valide Erfassung der

Auspriagungen der Individuen auf den latenten Variablen mittels der Faktorwerte abzielt.

Bei der Anwendung von Testverfahren im Rahmen psychologischer
Einzelfalldiagnostik werden sehr oft diagnostische Entscheidungen hinsichtlich quantitativer
Klassifikationen®' getroffen. Dieser werden entweder auf Basis der Faktorwerte** oder, deutlich
haufiger, auf Basis von Summenwerten® (siche III. 5.2) getroffen. Derartige diagnostische
Entscheidungen betreffen beispielsweise klinische Diagnosestellungen (,krank® versus
»gesund®) oder auch die Personalauswahl (,,geeignet versus ,ungeeignet). Diese
diagnostischen Entscheidungen werden entweder normorientiert oder kriterienorientiert
getroffen (Amelang & Schmidt-Atzert, 2006, S. 16). Eine normorientierte Diagnostik bestimmt
(inter-)individuelle  Unterschiede hinsichtlich eines Merkmals, wohingegen eine
kriterienorientierte Diagnostik die individuelle Position in Relation zu einem
Merkmalskriterium angibt (S. 16). Eine normorientierte Diagnostik stellt beispielsweise eine
Top-Down-Klassifikation dar, nach der ein festgelegter Prozentsatz an Personen ausgewaihlt
wird, die die héchsten Werte auf einer Skala/in einem Testverfahren erreichen®*, oder auch eine
Bottom-Up-Klassifikation, nach der ein festgelegter Prozentsatz an Personen ausgewéhlt wird,

die die niedrigsten Werte auf einer Skala/in einem Testverfahren erreichen (Gatewood, Feild,

*'Es sei darauf hingewiesen, dass weder an dieser Stelle, noch an folgenden Textstellen eine qualitative Wertung
mit dem Begriff ,,Klassifikation* einhergeht.

2S0 kann zum Beispiel beim I-S-T 2000 R (Liepmann, Beauducel, Brocke, & Amthauer, 2007) ein Faktorwert
fiir die Individuen berechnet werden, wobei keine weiteren quantitativen Klassifikationen getroffen werden.
Speispielsweise beim BDI-II (Beck et al., 2006)

**Beim I-S-T 2000 R (Liepmann et al., 2007) wird beispielsweise der Prozentrang des individuellen IQ-Wertes in

Relation zur Normstichprobe bestimmt.
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& Barrick, 2016, S. 662). Eine kriterienorientierte diagnostische Entscheidung kann
beispielsweise auf einem Cut-Off-Wert basieren, also einer Mindestanforderung, die die

Personen iiberschreiten miissen, um ausgewéhlt zu werden® (Gatewood et al., S. 663).

Sofern die Diagnostik auf Basis der Faktorwerte (im Gegensatz zu den Summenwerten;
siehe III. 5.2) erfolgt, resultiert die Frage nach der Validitit einer diagnostischen Entscheidung
aus der Validitdt der Faktorwerte aus einem Modell, das dem Testverfahren zugrunde liegt. Im
Gegensatz dazu bezieht sich die Frage nach der Modellpassung, auf die sich Studie 1
fokussierte, auf die Reliabilitdit eines Modells. Die Frage nach den psychometrischen
Auswirkungen einer Modellabweichung auf die Validitit der Faktorwerte bzw. die Validitat
diagnostischer Entscheidungen aus den Faktorwerten heraus wurde erstmals im Rahmen der
zweiten Studie dieser Dissertation gestellt. Bevor jedoch die zweite Fragestellung ndher
beschrieben wird (siehe III. 5.1), wird die bisherige Forschung zur Giite diagnostischer
Entscheidungen beschrieben. Diese zeigt, dass die diagnostische Prézision nicht nur vom
theoretischen Modell und dessen (in-)korrekter Spezifikation (Konstruktvaliditit) abhéngt, auf
dessen Basis die diagnostische Entscheidung erfolgt (Emons, Sijtsma, & Meijer, 2007; Kruyen,
Emons, & Sijtsma, 2012; Schonemann, 1997; Schonemann & Thompson, 1996; Taylor &
Russell, 1939). Weitere Einflussfaktoren stellen neben der Validitit eines Testverfahrens auch
die Basisrate (Anteil an Personen in der Population, die zu einem bestimmten Zeitpunkt ein
bestimmtes Merkmal aufweisen; Eid, Gollwitzer, & Schmitt, 2013, S. 163), die Selektionsrate
(Anteil der ausgewihlten Individuen; S. 163) sowie Reliabilitit und Trennschdrfe des
Testverfahrens dar (Emons et al., 2007; Kruyen et al., 2012; Meehl & Rosen, 1955;
Schonemann, 1997; Schonemann & Thompson, 1996; Taylor & Russell, 1939).

Taylor und Russell (1939) zeigten fiir den Fall von bivariat normalverteilten Variablen,
dass sich die Giite der Vorhersage einer Variable bei steigender Validitét eines Testverfahrens
(operationalisiert durch den Pearson-Korrelationskoeffizienten) exponentiell verbesserte. Die
Autoren entwickelten Tabellen fiir bindre Entscheidungen, an denen abzulesen ist, inwiefern
die Rate an erfolgreich ausgewihlten Kandidatinnen und Kandidaten bei vorgegebener

Basisrate mit der Validitit und der Selektionsrate variiert. AuBerdem machen diese Tabellen

Beim BDI-II (Beck et al, 2006) wird beispielsweise ab einem Cut-Off von 29 basierend auf den

Gesamtsummenwerten eine major depressive Episode diagnostiziert.
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deutlich, dass die Rate an korrekt als ,,geeignet* Eingeordneten bei gleich groBen Basis- und
Selektionsraten sowie einer Validitit von Null der Basis- bzw. Selektionsrate, also einer
Zufallsentscheidung, entspricht; bei nicht gleich grolen Basis- wie Selektionsraten der

Selektionsrate.

Meehl und Rosen (1955), Schonemann und Thompson (1996) sowie Schonemann
(1997) argumentierten genauso wie Taylor und Russell (1939), dass die Giite einer
diagnostischen Entscheidung stark von der Basisrate, der Validitdt des Tests und der
Selektionsrate abhingt. Schonemann und Thompson (1996) betonten fiir den spezifischen Fall
von dichotomen Variablen und sowohl unter Kontrolle des Alpha- als auch des Beta-Fehlers,
was bereits von Meehl und Rosen geschrieben wurde: Testverfahren wiirden unabhéngig von
deren Validitit nur fiir Basisratensplits von 50%/50% bei dichotomen Entscheidungen
hinsichtlich der Hit Rate®® deutlich haufiger korrekt als der Zufall klassifizieren (S. 14). Fiir
Tests mit geringen Validititen wiirden die Basisraten entscheidender fiir die Korrektheit der
diagnostischen Entscheidung. Fiir Basisraten von 30% (versus 70% in der Gruppe der Nicht-
Merkmalstragerinnen und Nicht-Merkmalstrager) und einer geringen, aber laut den Autoren
realistischen Validitét von kleiner als .50 wiirde sich ein Test zur Klassifikation nicht besser als
der Zufall eignen (S. 14). Schonemann (1997) sowie Meehl und Rosen (1955) warnten zudem,
dass fiir Populationen mit extrem kleinen Basisraten, wie sie in der klinischen Psychologie
vorkommen, oder extrem grof3en Basisraten das Einsetzen eines Testverfahrens hinsichtlich der
korrekten diagnostischen Einordnung sogar schlechter ausfallen konne als der Zufall, wenn die

Validitét des Testverfahrens gering ist.

Meehl und Rosen kritisierten bereits 1955, dass die Basisraten nicht ausreichend
berichtet wiirden und es insofern schwierig wére, psychometrische Entscheidungen iiberhaupt
zu evaluieren, nach Schonemann (1997) hétte sich in der Zwischenzeit daran nichts geéndert.
Im Folgenden werden zwei Simulationsstudien berichtet, die die Giite diagnostischer

Entscheidungen auf der Basis probabilistischer Modelle®” u.a. mit verschiedenen Basisraten

*Dieser von Schénemann und Thompson (1996, S. 8) sowie Schénemann (1997, S. 175) als ,Hit Rate“
bezeichnete Kennwert ist mittlerweile unter dem Begriff der ,,Sensitivitit™“ bekannt und bezeichnet die Rate der
korrekt als Merkmalstrdgerinnen und Merkmalstridger erkannten Félle an den Fillen aller Merkmalstrigerinnen
und Merkmalstriger (Amelang & Schmidt-Atzert, 20006, S. 422; Eid, Gollwitzer, & Schmitt, 2013, S. 163; Ziegler
& Biihner, 2012, S. 146).

*"Im Gegensatz zur Strukturgleichungsmodellierung, die auf der Klassischen Testtheorie basiert
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untersuchten, welche auch im Rahmen der zweiten Studie variiert wurden. Allerdings lag der
Hauptfokus dieser Studien — im Gegensatz zur vorliegenden Arbeit, bei der die Auswirkungen
von Missspezifikationen untersucht wurden — auf der Austestung von Kurzskalen hinsichtlich

diagnostischer Entscheidungen unter der Voraussetzung der Modellgiiltigkeit.

Emons et al. (2007) untersuchten die Konsistenz von disjunkten diagnostischen
Entscheidungen (,,braucht Behandlung® versus ,,braucht keine Behandlung®) im Rahmen einer
Simulationsstudie. Die Skalen, anhand derer die diagnostischen Entscheidungen getroffen
wurden, waren entweder Kurz- oder Lang-Skalen und bestanden entweder aus dichotomen oder
polytomen Items. Als Analysemethoden wurden Rasch-Modelle ausgewihlt. Extreme Cut-Off-
Werte, d.h. kleine Basisraten fiir die definierte Behandlungsgruppe, fiihrten zu héheren Raten
an diagnostischen Konsistenzen fiir die Gruppe, die keine Behandlung brauchte (Korrekt
Negative) und zu kleineren Raten an diagnostischen Konsistenzen fiir die Gruppe, die
Behandlung brauchte (Korrekt Positive). Insbesondere bei Basisraten von 10% und 5%, wie sie
auch in der klinischen Psychologie vorkommen, in Interaktion mit geringen Trennschirfen und
einer fiir die Psychologie typischen Itemanzahl von 20 dichotomen Items, wurden nur 47%
(Basisrate 10%) bzw. 42% (Basisrate 5%) der Fille, die in Wahrheit in der Behandlungsgruppe
waren, mit einer 90%igen Sicherheit korrekt in diese Behandlungsgruppe eingeordnet; dagegen
wurden 90% (Basisrate 10%) bzw. 94% (Basisrate 5%) der Individuen, die in Wahrheit in der
Gruppe ohne Behandlungsbedarf waren, bei einem Sicherheitslevel von 90% korrekt
klassifiziert (S. 113). Fiir im Rahmen der Simulation definierte hohe Trennschérfen der Items
oder auch polytome Items verbesserte sich die Klassifikation fiir die Behandlungsgruppe, fiir
die nicht behandlungsbediirftige Gruppe nur unwesentlich. Fiir die Kurzskalen fielen die

diagnostischen Konsistenzen deutlich niedriger aus.

In einer weiteren Simulationsstudie untersuchten Kruyen et al. (2012) die Giite
verschiedener Arten von dichotomen diagnostischen Entscheidungen (Top-Down-
Klassifikationen wie auch Cut-Score-basierte Klassifikationen). Sie verwendeten
unterschiedliche Basis- und Selektionsraten, dichotome und polytome manifeste Variablen
sowie unterschiedliche Testlaingen. Als Datenanalysemethoden wurden wiederum
Raschmodelle und Graded-Response-Modelle verwendet. Top-Down-Klassifikationen nach
den hochsten Werten auf jeder der fiinf gleich langen Einzelskalen, welche zu .20 korrelierten,

filhrten bei einer typischen Testlinge von 20 Items bei einer Basisrate von 50% und der
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kleinsten Selektionsrate von 10% zu einer Sensitivitit™ von .65 und einer Spezifitit von .96
(Kruyen et al., 2012, S. 332). Die Ergebnisse fielen wie bei Emons et al. (2007) klar zugunsten
der Langskalen mit hoheren Reliabilititen aus, wobei die Testlainge mit der Basisrate und der
Selektionsrate interagierte. Die Befunde fiir die Cut-Score-basierten
Klassifikationsentscheidungen fielen sehr dhnlich im Vergleich zu den Top-Down-
Zuordnungen aus. Die diagnostischen Entscheidungen fielen basierend auf polytomen Items
dhnlich aus wie auf Basis von dichotomen Items. Auch dieser Befund zeigte sich bereits bei

Emons et al. (2007).

Die Autoren schlussfolgerten aus ihren Simulationsstudien, dass — bei realistischen
Trennschérfen und guten Reliabilitdten — Langskalen erforderlich wéren, um ausreichend hohe
Trefferquoten zu erreichen, und dies insbesondere fiir die Gruppe der Merkmalstridgerinnen und
Merkmalstrager im Vergleich zur Gruppe der Nicht-Merkmalstragerinnen und Nicht-
Merkmalstrager (Emons et al., 2007; Kruyen et al., 2012) Diese Befunde stellen die neueren
Entwicklungen in der Testkonstruktion in Richtung der Kurzskalen (z.B. das BDI-FS; Beck,
Steer, & Brown, 2013) stark in Frage.

Die Ergebnisse von Emons et al. (2007) sowie Kruyen et al. (2012) kdnnen u.a. aufgrund
anderer Verteilungseigenschaften der untersuchten Variablen und aufgrund eines sehr
unterschiedlichen Designs nicht mit den Taylor-Russell-Tafeln (Taylor & Russell, 1939)
verglichen werden. Ein Vergleich mit den Berechnungen von Schénemann und Thompson
(1996) ist nicht moglich, da diese Autoren einerseits nur Berechnungen fiir Validitéten bzw.
Korrelationskoeffizienten bis .50 anstellten und sich auch zwischen diesen beiden Studien das
Design stark unterschied. Jedoch zeigen die Befunde aus den beiden genannten
Simulationsstudien, was bereits von Schonemann und Thompson (1996) sowie Taylor und
Russell (1939) berechnet wurde: Die Basis- und Selektionsraten haben einen entscheidenden

Einfluss auf die Giite von diagnostischen Entscheidungen (Emons et al., 2007; Kruyen et al.,

*Die Begriffe Sensitivitit und Spezifitit wurden erstmals im Rahmen der Signalentdeckungstheorie beschrieben
(Green & Swets, 1966) und spiter in die psychologische Diagnostik iibertragen. Die Sensitivitit bezeichnet die
Rate an korrekt klassifizierten Merkmalstragerinnen und Merkmalstréger relativiert an allen Merkmalstrigerinnen
und Merkmalstridgern und die Spezifitit bezeichnet die Rate an korrekt klassifizierten Nicht-Merkmalstrédgerinnen
und Nicht-Merkmalstréger relativiert an allen Nicht-Merkmalstragerinnen und Nicht-Merkmalstridgern (siehe z.B.
Amelang & Schmidt-Atzert, 2006, S. 422; Eid, Gollwitzer, & Schmitt, 2013, S. 163; Ziegler & Biihner, 2012, S.
146).
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2012). AuBerdem zeigte sich, dass neben der Validitét, wie von den genannten Autoren sowie
von Meehl und Rosen (1955) als auch Schonemann (1981) beschrieben, auch die
unterschiedlichen Reliabilititen der Skalen sowie die Hohe der Trennschérfe einen wichtigen

Faktor hinsichtlich der Sensitivitét darstellte (Emons et al., 2007; Kruyen et al., 2012).
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5 Zweite Fragestellung: Auswirkungen nicht-spezifizierter
Mehrdimensionalitit im  Strukturmodell auf diagnostische

Entscheidungen

5.1 Diagnostische Entscheidungen basierend auf missspezifizierten Modellen

Es wurde bereits berichtet, dass die Validierung von Testverfahren durch
konfirmatorische Faktorenanalysen und lineare Strukturgleichungsmodelle zunimmt
(“Datenbanksegment PSYNDEX Tests,” 2013). Diese bringt psychometrische Vorteile mit sich
(Fan et al., 2009; Tomarken & Waller, 2005), welche sich wiederum positiv auf die Giite
diagnostischer Entscheidungen auswirken konnen. Dass bisher nur wenig Forschung zur Giite
diagnostischer Entscheidungen existiert, wurde unter III. 4 aufgezeigt. Diese Studien
untersuchten unter anderem den Einfluss der Validitét eines diagnostischen Instruments auf die
Giite diagnostischer Entscheidungen (Schonemann & Thompson, 1996; Schonemann, 1997;
Taylor & Russell, 1939). Unter III. 1 wurde beschrieben, dass Missspezifikationen mehr die
Regel als die Ausnahme bei der Strukturgleichungsmodellierung darstellen (Marsh et al., 2004).
Die im Rahmen der Dissertation untersuchte Art der Missspezifikation (nicht-spezifizierte
Zweidimensionalitdt im Strukturmodell) stellt eine Missspezifikation in Form einer Verletzung
der Konstruktvaliditdt dar und ist somit von inzidentellen Parametern des Modells abzugrenzen,
die Einfluss auch auf die Giite diagnostischer Entscheidungen basierend aus einem Modell
heraus nehmen. Daher stellt sich als ndchstes die Frage, was es in substanzieller Hinsicht fiir
die getesteten Individuen bedeuten wiirde, wenn ein Modell in Form der beschriebenen
Verletzung der Konstruktvaliditdt missspezifiziert ist. Diese Fragestellung betrifft im Kontext
der Strukturgleichungsmodellierung die Validitdt der Faktorwerteschitzung bzw. darauf
aufbauend die Validitdt der diagnostischen Entscheidungen basierend auf den Faktorwerten und
ist insbesondere fiir die Testkonstruktion und die Einzelfalldiagnostik von Interesse. Im
Rahmen der zweiten Studie wurde daher untersucht, inwieweit die Giite der Diagnostik
beeintrachtigt werden wiirde, wenn Diagnosen auf Basis der Faktorwerte félschlich als
einfaktoriell spezifizierter Modelle vergeben wurden, die Faktorenstruktur der True Scores (der
wahren Faktorwerte der Individuen; Eid et al., 2013, S. 818) jedoch zweifaktoriell ist. Aus
Referenzgriinden wurde auflerdem untersucht, inwieweit die Diagnosen auf Basis der

Faktorwerte korrekter zweifaktorieller Modelle den wahren Diagnosen basierend auf den True
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Scores entsprechen wiirden. Der Grad der Missspezifikation wurde durch die Hohe der
Faktorkorrelation sowie die (Un-)Ausgewogenheit der Indikatorenaufteilung auf die Faktoren
im Populationsmodell variiert. Neben des Einflusses der Validitdt wurde die Relevanz von
Parametern wie der Basisrate und der Reliabilitit eines Testverfahrens/Fragebogens
hinsichtlich der Giite diagnostischer Entscheidungen unter II1. 4 aufgezeigt. Daher wurden die
Diagnosen im Rahmen der zweiten Studie basierend auf unterschiedlichen Basisraten vergeben
sowie zudem als inzidenteller Modellparameter die Reliabilitdt (Hohe der Faktorladungen) in
einem realistischen AusmaB (vgl. Peterson, 2000) variiert. Da die klinische Psychologie einen
groflen Teil angewandter Forschung innerhalb der Psychologie ausmacht und tagtéglich in
Deutschland im Rahmen der Einzelfalldiagnostik allen voran klinische Tests und Fragebdgen
im FEinsatz sind (“Datenbanksegment PSYNDEX Tests,” 2013), wurden fiir die
Diagnosenvergabe Basisraten in klinischen GréBenordnungen herangezogen. Die Relevanz
klinischer Diagnostik wird ferner an Wittchen et al.s (2011, S. 656) EU-Studie deutlich, nach
der pro Jahr etwa 38% aller EU-Biirger an mindestens einer psychischen Stérung leiden. Zudem
wurden aus Vergleichsgriinden auch groBlere Basisraten, wie sie in der Eignungsdiagnostik

vorkommen (vgl. Schuler, 2014), fiir die Vergabe der Diagnosen verwendet.

Fiir die Evaluation der Giite psychologischer Diagnostik wurden Sensitivitit, Spezifitét,
Positiver und Negativer Priadiktionswert berechnet (Amelang & Schmidt-Atzert, 2006, S. 422;
Eid, Gollwitzer, & Schmitt, 2013, S. 163; Ziegler & Biihner, 2012, S. 146), wie sie in Tabelle
2 erkldart werden. Diese diagnostischen Kennwerte werden zumeist zur Beurteilung der
diagnostischen Préizision verwendet, so auch im Rahmen der Studie 2 (siehe V). Sensitivitit
und Spezifitit sowie Positiver und Negativer Priadiktionswert verhalten sich komplementér:
Steigt die Sensitivitét oder steigt der Positive Pradiktionswert, sinkt die Spezifitit und sinkt der
Negative Pradiktionswert und umgekehrt. Diese diagnostischen Kennwerte lassen sich aus den
diagnostischen Konsistenzen berechnen (Korrekt Positive, Korrekt Negative, Falsch Positive

sowie Falsch Negative; Ziegler & Biihner, 2012, S. 147), welche in Tabelle 1 aufgefiihrt sind.
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Tabelle 1

Konsistenzen diagnostischer Entscheidungen

Tatsdchlicher Zustand
Krank Gesund
Korrekt Falsch
Krank Positiv/True Positiv/False
Testergebnis Positive (TP) Positive (FP)
Falsch Korrekt
Gesund Negativ/False =~ Negativ/True

Negative (FN)  Negative (TN)

Anmerkungen. Aus Griinden des allgemeinen Sprachgebrauchs in der
Literatur werden die Begriffe auch auf Englisch eingefiihrt (Ziegler &
Biihner, 2012, S. 147).

Tabelle 2
Diagnostische Kennwerte
Positiver Pradiktionswert = TP / (TP + FP)
Negativer Pradiktionswert = TN / (TN + FN)
Sensitivitit = TP / (TP + FN)
Spezifitdt = TN / (TN + FP)

Anmerkungen. Die Diagnostischen Kennwerte (Amelang & Schmidt-
Atzert, 2006, S. 422; Eid, Gollwitzer, & Schmitt, 2013, S. 163; Ziegler
& Biihner, 2012, S. 146) lassen sich aus den Konsistenzen diagnosti-
scher Entscheidungen (siehe Tabelle 1) berechnen.

5.2 Diagnostische Entscheidungen basierend auf Gesamtsummenwerten

Eine Nebenfragestellung fiir die genannte zweite Simulationsstudie leitet sich aus der
gingigen Praxis der Testkonstruktion ab (Estabrook & Neale, 2013). Die Auswertung vieler
Testverfahren stiitzt sich auf Summenwerte, die iiber einzelne Skalen oder den gesamten Test
oder Fragebogen (z.B. Beck-Depressionsinventar — BDI-II; Beck et al., 2006) hinweg gebildet
werden. Dabei ist anzumerken, dass Summenwerte immer ungewichtet sind, bei der
Berechnung von Summenwerten wird kein itemspezifischer Gewichtungsfaktor angewandt
(Eid et al., 2013). Anhand der Summenwerte werden bei diesen Testverfahren norm- oder
kriterienorientierte Aussagen iiber die Merkmalsauspragung getroffen. Demgegeniiber
erlauben Faktorwerte eine durch die Faktorladungen (Reliabilitdt) der Indikatoren gewichtete

Einordnung des Grads der Merkmalsauspriagung (Eid et al.).
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Sofern das theoretische Modell dem tau-dquivalenten Messmodel (Biihner, 2011, S.
125; Eid et al., 2013, S. 831) geniigt und insofern die Faktorladungen homogen sind, fithren
Gesamtsummenwert- und Faktorwertdiagnostik zum selben Ergebnis hinsichtlich der
Schitzung der Merkmalsauspragungen der Individuen (DiStefano et al., 2009; Eid et al., 2013;
Skrondal & Rabe-Hesketh, 2014). Der kritische Punkt bei der Verwendung der
Gesamtsummenwerte zur Diagnostik ist jedoch der, dass die Faktorladungen in der
angewandten psychologischen Forschung selten homogen sind (Buzick, 2010; Peterson,
2000)*. Sind die Faktorladungen heterogen bzw. die Indikatoren der Skala/des Testverfahrens
unterschiedlich gewichtet (vgl. das tau-kongenerische Messmodell; Biithner, 2011, S. 125; Eid
etal., 2013, S. 835), ergeben die Faktorwerte das bessere Abbild der Merkmalsauspriagung (Eid
et al., 2013; Estabrook & Neale, 2013; Skrondal & Rabe-Hesketh, 2014).

Die im vorherigen Absatz genannten Studien bezogen sich auf die Diagnostik auf Basis
der Faktorwerte korrekt spezifizierter Modelle, die mit den Summenwerten verglichen wurden.
Dabei wurden die Summenwerte der Indikatoren eines Faktors mit den Faktorwerten der
einzelnen Faktoren verglichen. Daher stellt sich die weiterfiihrende Frage, wie die
Summenwerte im Vergleich zu den Faktorwerten eines missspezifizierten Modells hinsichtlich
der Giite der Diagnostik abschneiden wiirden. Eingebettet in das Design der zweiten Studie
lautet diese Nebenfragestellung konkret, ob ein Gesamtsummenwert oder die Faktorwerte eines
einfaktoriellen, unterschiedlich stark missspezifizierten Modells zu besserer Diagnostik fiihren,
wenn das Populationsmodell zweifaktoriell ist und die Faktorladungen des Populationsmodells

heterogen definiert wurden.

Bevor jedoch in Kapitel V die psychometrischen Auswirkungen auf die Individuen
beschrieben werden, die sich aus der Diagnostik basierend auf Faktorwerten missspezifizierter
Modelle und auf Basis der Gesamtsummenwerte ergeben, wird im folgenden Kapitel IV
zundchst der Forschungsfrage nachgegangen, inwieweit die géingigen Fit-Indizes die

unterschiedlichen Schweregrade der Missspezifikation im Strukturmodell in Form einer nicht-

*Wie bereits unter IIL. 1 beschrieben, lagen in Petersons Metaanalyse bei einem Mittelwert von A = .32

(standardisiert) 25% der Faktorladungen unter A = .23 und 25% der Faktorladungen iiber A = .37, die

Faktorladungen fielen also heterogen aus.
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spezifizierten Zweidimensionalitidt anhand der Cut-Off-Regeln nach Hu und Bentler (1998,

1999) als solche erkennen.
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IV STUDIE 1

1 Methode

1.1 Stichprobenziehungen

Die unter III. 3 ausgefiihrte Fragestellung, inwiefern die Fit-Indizes CFI, RMSEA und
SRMR filschlicherweise als einfaktoriell spezifizierte Modelle anhand der Cut-Off-Regeln
nach Hu und Bentler (1998, 1999) als nicht passend erkennen, wurde anhand einer
Simulationsstudie untersucht. Es handelte sich dabei um eine Monte-Carlo-Simulation (vgl.
Paxton, Curran, Bollen, Kirby, & Chen, 2001). Diese wurde mithilfe der ,,R“-Pakete (R Core
Team, 2015) ,,Javaan* (Rosseel, 2012) und ,,simsem* (Pornprasertmanit, Miller, & Schoemann,
2015) realisiert. Um eine optimale Rechenleistung durch die Nutzung aller verfiigbarer
Prozessorkerne zu erreichen, wurde das Paket ,,parallel” (R Core Team, 2015) eingesetzt3 % Fiir
jede der zwolf Bedingungen, die im Folgenden beschrieben werden, wurden aus den
Populationsmodellen jeweils 1,000 Stichproben-Kovarianz-Matrizen aus multivariat
normalverteilten Daten erzeugt. Es wurden aus Replikationsgriinden Startwerte fiir die Ziehung

der Zufallszahlen gesetzt.

1.2 Design

Die Basis fiir die verschiedenen Populationsmodelle bildete ein lineares
Strukturgleichungsmodell bestehend aus zwei korrelierten Faktoren und insgesamt 20
Indikatoren. Die Anzahl der Indikatoren wurde auf 20 festgelegt, da diese eine gingige
Fragebogenldnge in der psychologischen Forschung darstellt (Peterson, 2000; Shrout & Yager,
1989). Fiir die zwolf verschiedenen experimentellen Bedingungen, aus denen die
Populationsmodelle zusammengesetzt wurden, eignete sich ein 2(Faktorladungen: hoch versus
typisch) x 2(Indikatorenaufteilung: 10:10 versus 15:5) x 3(Faktorkorrelation: .30 versus .50

versus .80) Studiendesign. Die Faktorladungshohe wurde in Anlehnung an die Meta-Analyse

*An dieser Stelle sei Terrence Jorgensen (“lavaan Google Groups,” 2015) fiir die Hilfe beim Schreiben der

ineinander verschachtelten Schleifen-Funktion in R gedankt.
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von Peterson (2000) vorab festgelegt. Demnach wurden die typischen Faktorladungen
(standardisiert) fiir die Simulationsstudie gleichverteilt und zuféllig aus dem Bereich [.20, .40]
gezogen. Die hohen Faktorladungen (standardisiert) wurden aus dem Bereich [.40, .60] zufillig
und gleichverteilt gezogen. Die Varianzen der latenten Variablen wurden bei allen fiir die
Simulation verwendeten und bei allen auf die Simulationsdaten angewandten Modellen auf
Eins gesetzt. Die Bedingungen, die sich aus den Kombinationen der Faktorstufen der
unabhingigen Variablen Itemaufteilung und Faktorkorrelation ergaben, bestimmten den Grad
der Missspezifikation. Die 20 Indikatoren wurden im Rahmen von sechs der zwdolf
Bedingungen gleichméBig auf beide Faktoren aufgeteilt und im Rahmen der anderen sechs
Bedingungen wurde der erste Faktor durch 15 Items reprisentiert und der zweite Faktor durch
5 Items. Eine unausgewogene Indikatorenaufteilung sollte daher einen geringeren Grad an
Missspezifikation darstellen als eine ausgewogene Aufteilung, da erstere einen Faktor stirker
reprasentiert als den anderen und diese Bedingung somit ndher am einfaktoriellen Modell liegt.
Weiters wurde in den Populationsmodellen die Hohe der Korrelation zwischen beiden Faktoren
variiert. Oblique Faktorenstrukturen sind typisch in der Psychologie, die durchschnittliche
Korrelation zwischen zwei Variablen betrigt » = .30, was einem mittelhohen Zusammenhang
entspricht (Cohen & Manion, 1980). Somit stellte im Rahmen dieser Studie eine
Faktorkorrelation von » = .30 eine in der Psychologie typisch hohe Korrelation®' und einen
hohen Grad an Missspezifikation dar. Eine in der Psychologie eher seltene hohe Korrelation
wurde durch » = .50 reprisentiert, diese entsprach einem mittleren Grad an Missspezifikation.
Die Faktorkorrelation von » = .80 wurde aufgenommen, um Bedingungen zu untersuchen, die
noch ndher an der Eindimensionalitit liegen bzw. latente Variablen darstellen, die anndhernd

dasselbe messen (geringe Missspezifikation).

1.3 Durchfiihrung

Falschlicherweise als einfaktoriell spezifizierte Messmodelle mit 20 Indikatoren wurden
auf die aus den zweifaktoriellen Populationsmodellen erzeugten Stichproben angewandt. Die

Schitzung der Modellpassung wurde mit dem Maximum-Likelihood-Algorithmus

*'Die Metaanalyse von Steel, Schmidt, und Shultz (2008) zeigte beispielsweise iiber 17 Studien hinweg, dass die
Big-Five-Faktoren Neurotizismus und Extraversion zu r = -.33 korrelierten.
**So wurde zum Beispiel eine Korrelation von = .50 zwischen Intelligenz und Schulerfolg bereits mehrfach

bestdtigt (Rost, 2009).
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vorgenommen, da dieser die am hdufigsten genutzte Schéitzmethode darstellt (Beauducel &
Wittmann, 2005; Eid et al., 2013; Mahler, 2011; Reinecke, 2014; Schermelleh-Engel et al.,
2003). Es wurde ausgewertet, wie oft das missspezifizierte Modell an den erzeugten
Stichprobendaten durch die Fit-Indizes CFI, RMSEA und SRMR anhand der Cut-Off-Kriterien

und der Kombinationsregel von Hu und Bentler (1998, 1999) zuriickgewiesen wurde.
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2 Ergebnisse
2.1 Nonzentralititsparameter

Der Nonzentralitidtsparameter stieg mit sinkender Faktorkorrelation, d.h. der
Nonzentralititsparameter ~ zeigte  mit  sinkender  Faktorkorrelation  zunehmende
Modellabweichung an (siche Tabelle 3). Ebenso fiel der Nonzentralititsparameter bei der
ungleichméBigen Indikatorenaufteilung niedriger aus als bei der ausgewogenen
Indikatorenaufteilung (siche Tabelle 3). Insgesamt passte also die intuitive Ordnung des Grades

der Missspezifikation mit derjenigen durch den Nonzentralititsparameter zusammen.

Tabelle 3
Nonzentralititsparameter bei den missspezifizierten Modellen
Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 .50 .30 .80 .50 .30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5
NCP 18.263 88.588 154.873 8.653 34.199 51.352
Modell 7: Modell 8: Modell 9: Modell 10: Modell 11: Modell 12:
.80 .50 .30 .80 .50 .30
[.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60]
10:10 10:10 10:10 15:5 15:5 15:5
NCP 98.99 435.531 710.532 47.058 182.389 258.958

Anmerkungen. NCP = gemittelter Nonzentralititsparameter iiber alle 1000 Stichprobenkovarianzmatrizen hinweg.
Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die Hohe der Faktorkorrelation, der
Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das Verhéltnis gibt die

Indikatorenaufteilung auf die Faktoren an.

2.2 Korrekte Modelle
2.2.1 Ergebnisse hinsichtlich des y’-Tests beziiglich der korrekten Modelle

Es wurde die exploratorische Fragestellung untersucht, inwieweit die géangigen Fit-
Indizes CFI, RMSEA und SRMR eine félschlicherweise als einfaktoriell spezifiziertes Modell

im Gegensatz zu einem zweifaktoriellen Modell, das den Stichprobendaten zugrunde liegt,
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anhand der Cut-Off-Kriterien nach Hu und Bentler (1998, 1999) korrekterweise zuriickwiesen.
Aus Vollstindigkeits- und Vergleichsgriinden wurde zunichst die Modellpassung korrekter
Modelle in den Stichproben anhand des y*-Tests inspiziert.

Die korrekten Modelle wurden an allen Stichprobenkovarianzmatrizen durch den -
Test angenommen, wobei der Mittelwert des y°-Werts tiber alle Bedingungen und
Stichprobenziehungen hinweg bei M = 168.404 (SD = 3.937), also sehr nahe an der Anzahl der
Freiheitsgrade (df = 169) der korrekten Modelle, lag.

2.2.2 Ergebnisse hinsichtlich des CF1 beziiglich der korrekten Modelle

Aus Vergleichsgriinden wurden die drei Fit-Indizes zunéchst in Bezug auf korrekt
spezifizierte Modelle untersucht. Dabei wurden korrekt spezifizierte Modelle mit frei zu
schdtzenden Parametern auf die aus den Populationsmodellen erzeugten Stichprobendaten
angewandt und ausgezihlt, wie oft die korrekten Modelle durch die Fit-Indizes angenommen
wurden.

Die Mittelwerte des CFI lagen in allen zwolf Bedingungen iiber dem von Hu und Bentler
(1998, 1999) vorgeschlagenen Cut-Off von .95. In den sechs Bedingungen mit den hohen
Ladungen wurde das korrekte Modell an allen jeweils 1000 Stichproben korrekterweise
angenommen. In den sechs Bedingungen mit den typischen Faktorladungen wurden mindestens
931 korrekte Modelle pro Bedingung angenommen, wobei die Anzahl der korrekterweise
angenommenen Modelle durch den CFI mit der Faktorkorrelation im Populationsmodell stieg

und auflerdem zugunsten der ungleichen Indikatorenaufteilung ausfiel.

2.2.3 Ergebnisse hinsichtlich des RMSEA beziiglich der korrekten Modelle

Innerhalb der zwdlf verschiedenen Simulationsbedingungen zeigte der RMSEA sehr
konsistent eine sehr gute Modellpassung anhand der Cut-Off-Kriterien, wenn ein korrektes, frei
zu schitzendes Modell auf die jeweils aus dem Populationsmodell erzeugten
Stichprobenkovarianzmatrizen angewandt wurde. In allen zwdlf Bedingungen wurde das
korrekte Modell an allen jeweils 1000 Stichproben durch den RMSEA korrekterweise als
passend indiziert. Ebenfalls lag der Mittelwert des RMSEA in den einzelnen zwolf
Bedingungen tiiber die jeweils 1000 Stichprobendaten hinweg unter dem Cut-Off von Hu und
Bentler (1998, 1999).
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2.2.4 Ergebnisse hinsichtlich des SRMR beziiglich der korrekten Modelle

Das SRMR verhielt sich dhnlich wie der RMSEA und zeigte iiber alle zwolf
Bedingungen hinweg eine sehr gute Modellpassung. Die korrekten Modelle wurden an allen
1000 Stichprobenmatrizen je Bedingung nach dem Cut-Off von Hu und Bentler (1998, 1999)
angenommen. Weiters lagen die Mittelwerte des SRMR stets unter dem Cut-Off von Hu und

Bentler.
2.3 Missspezifizierte Modelle
2.3.1 Ergebnisse hinsichtlich des y>-Tests beziiglich der missspezifizierten Modelle

Das missspezifizierte Modell wurde in allen Bedingungen iiber alle
Stichprobenkovarianzmatrizen hinweg abgelehnt. Die unterschiedlichen Grade an
Missspezifikation zeigten sich anhand der x>-Werte, mit steigendem Grad an Missspezifikation
stieg der y*-Wert (siche Tabelle 4): Der x*-Wert stieg mit sinkender Faktorkorrelation im
Populationsmodell (hoherer Grad an Missspezifikation) und war im Rahmen der Bedingungen
mit der ungleichen Indikatorenaufteilung auf die Faktoren im Populationsmodell (niedrigerer
Grad an Missspezifikation) niedriger als in den Bedingungen mit der ausgewogenen
Aufteilung. Bei den hohen Faktorladungen im Populationsmodell waren auch die x’-Werte
héher als bei den typischen Faktorladungen (siehe Tabelle 4). Dies zeigt, dass der y*-Test bei

hohen Faktorladungen sensitiver war fiir die Missspezifikation.
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Tabelle 4

Ergebnisse beziiglich des x*-Tests hinsichtlich der missspezifizierten Modelle

Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 .50 .30 .80 .50 .30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5
M x*(170) 188.263 258.588 324.873 178.653 204.199 221.352
SD x*(170) 20.365 27.774 33.873 19.120 22.451 23.903
Modell 7: Modell 8: Modell 9: Modell 10: Modell 11: Modell 12:
.80 .50 .30 .80 .50 .30
[.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60]
10:10 10:10 10:10 15:5 15:5 15:5
M x*(170) 268.990 605.531 880.532 217.058 352.389 428.958
SD x*(170) 28.954 56.755 74.487 23.045 35.252 40.719

Anmerkungen. M = Mittelwert des y’-Werts iiber alle 1000 Stichprobenkovarianzmatrizen hinweg, SD =
Standardabweichung des y’-Werts iiber alle 1000 Stichprobenkovarianzmatrizen hinweg. Die Zellen der
Beschreibung der Populationsmodelle enthalten als ersten Wert die Hohe der Faktorkorrelation, der Bereich
bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das Verhiltnis gibt die

Indikatorenaufteilung auf die Faktoren an.

2.3.2 Ergebnisse hinsichtlich des CFI beziiglich der missspezifizierten Modelle

Es zeigten sich Haupteffekte zugunsten der Anzahl an abgelehnten missspezifizierten
Modellen sowohl fiir die Hohe der Faktorkorrelation als auch die Balancierung der Indikatoren
in den Populationsmodellen und die Hohe der Faktorladungen (letzterer Haupteffekt ist
allerdings nicht interpretierbar; Erklarung folgt).

Hinsichtlich der Ausgewogenheit der Anzahl der Indikatoren zeigte sich, dass die
ausgewogene Itemaufteilung (hohe Missspezifikation) vorteilhafter hinsichtlich der
Entdeckung der Missspezifikation war als die unausgewogene Itemverteilung (geringe
Missspezifikation), die missspezifizierten Modelle wurden an den Daten der ersteren
Populationsmodelle ofter abgelehnt (sieche Tabelle 5). Ebenso fiihrte die unausgewogene
Itemaufteilung im Mittel zu einem héheren CFI als die ausgewogene Itemaufteilung.

Desto hoher die Faktorkorrelation, desto weniger hdufig wurden die missspezifizierten
Modelle an den Stichprobendaten abgelehnt (siche Tabelle 5). Ebenso stieg mit der
Faktorkorrelation (sinkender Grad an Missspezifikation) im Populationsmodell auch der

Mittelwert des CFI bei Anwendung des missspezifizierten Modells auf die Stichprobendaten.
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Tabelle 5
Ergebnisse beziiglich des CFI hinsichtlich der missspezifizierten Modelle

Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 .50 30 .80 .50 30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5
M(SD) CFI .971(.025) .848(.043) .713(.051) .983(.020) .946(.033) .916(.037)
Korr. Zuriickw. 191 996 1000 81 539 826
Modell 7: Modell 8: Modell 9: Modell 10: Modell 11: Modell 12:
.80 .50 30 .80 .50 .30
[.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60]
10:10 10:10 10:10 15:5 15:5 15:5
M(SD) CFI .960(.011) .805(.024) .668(.030) .982(.009) .923(.015) .886(.017)
Korr. Zuriickw. 179 1000 1000 1 974 1000

Anmerkungen. M = Mittelwert, SD = Standardabweichung, Korr. Zuriickw. = Anzahl korrekter Zurlickweisungen
durch den CFI. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die Hohe der
Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das

Verhiltnis gibt die Indikatorenaufteilung auf die Faktoren an.

Hinsichtlich der Anzahl an korrekt zuriickgewiesenen missspezifizierten Modellen
durch den Cut-Off nach Hu und Bentler (1998, 1999) fiir den CFI interagierte die Hohe der
Faktorladungen hybrid mit der Hohe der Faktorkorrelation (siche Tabelle 5). Bei geringer und
mittlerer Faktorkorrelation (hoher und mittlerer Grad an Missspezifikation) im
Populationsmodell war die Anzahl an korrekt zuriickgewiesenen missspezifizierten Modellen
bei den hohen Ladungen hoher als bei den typischen Ladungen. Bei einer hohen
Faktorkorrelation (geringer Grad an Missspezifikation) drehte sich dieses Muster um; bei hohen
Ladungen wurden die missspezifizierten Modelle weniger oft zurtickgewiesen als bei typischen
Ladungen. Die Mittelwerte des CFI iiber die Stichproben eines Populationsmodelles hinweg
lagen jedoch bei hohen Ladungen stets unter denen bei typischen Ladungen. Dieser Befund

wird unter 3.2 diskutiert.

2.3.3 Ergebnisse beziiglich des RMSEA hinsichtlich der missspezifizierten
Modelle

Insgesamt betrachtet zeigte der RMSEA eine duferst geringe Sensitivitéit hinsichtlich
der Indizierung des missspezifizierten eindimensionalen Modells (siehe Tabelle 6). Lediglich
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in der am hochsten missspezifizierten Bedingung (Modell 9) mit hohen Faktorladungen, einer
ausgewogenen Indikatorenaufteilung sowie einer geringen Faktorkorrelation im
Populationsmodell wurde das missspezifizierte Modell in 914 von 1000 Féllen als nicht passend
indiziert. Ebenso lag der Mittelwert {iber die 1000 Stichprobendaten pro Bedingung hinweg nur
in dieser Bedingung iiber dem Cut-Off von .06.

Tabelle 6
Ergebnisse hinsichtlich des RMSEA beziiglich der missspezifizierten Modelle
Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 .50 .30 .80 .50 .30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5

M(SD) RMSEA  .009(.006)  .023(.004)  .030(.003)  .006(.006)  .013(.005)  .017(.004)

Korr. Zurtickw. 0 0 0 0 0 0
Modell 7: Modell 8: Modell 9: Modell 10: Modell 11: Modell 12:
.80 .50 .30 .80 .50 .30
[.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60]
10:10 10:10 10:10 15:5 15:5 15:5

M(SD) RMSEA  .024(.004)  .051(.003)  .065(.003)  .016(.005)  .033(.003)  .034(.003)

Korr. Zurlickw. 0 3 914 0 0 0

Anmerkungen. M = Mittelwert, SD = Standardabweichung, Korr. Zuriickw. = Anzahl der korrekten
Zuriickweisungen durch den RMSEA. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten
Wert die Hohe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen

wurden und das Verhéltnis gibt die Indikatorenaufteilung auf die Faktoren an.

Die Mittelwerte des RMSEA lagen in den Bedingungen mit den typischen Ladungen im
Populationsmodell geringfiigig unter denen der hohen Ladungen. Allerdings ist dieser
Unterschied vernachléssigbar, zumal die Mittelwerte des RMSEA in allen Bedingungen auf3er
der genannten neunten unter dem Cut-Off von Hu und Bentler (1998, 1999) lagen, die
Modellabweichung also nicht identifizierten. Die Unterschiede hinsichtlich der Mittelwerte
beziiglich des RMSEA bei einer geringen Faktorkorrelation (hoherer Wert des RMSEA im
Vergleich zu den Bedingungen mit einer mittleren oder hohen Faktorkorrelation im
Populationsmodell) und bei einer ausgewogenen Indikatorenaufteilung (hoherer Wert des
RMSEA im Vergleich zu einer unausgewogenen Indikatorenaufteilung) sind ebenfalls nur

marginal.
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2.3.4 Ergebnisse beziiglich des SRMR hinsichtlich der missspezifizierten Modelle

Die Ergebnisse hinsichtlich des SRMR sind noch kritischer als die beziiglich des
RMSEA (siehe Tabelle 7).

Der Mittelwert des SRMR lag in allen Bedingungen unter dem Cut-Off nach Hu und
Bentler (1998, 1999). Ebenfalls wurden nur 70 von 1000 Stichprobenkovarianzmatrizen in der
neunten Bedingung, also der am wenigsten eindimensionalen Bedingung kombiniert mit hohen
Faktorladungen, durch das SRMR zuriickgewiesen. Betrachtet man die Mittelwerte, wird zwar
deutlich, dass die Sensitivitit des SRMR mit sinkender Faktorkorrelation (hdherer
Missspezifikation), hohen Ladungen (im Vergleich zu typischen Ladungen) und einer
ausgewogenen Indikatorenaufteilung (hohere Missspezifikation im Vergleich zu einer

unausgewogenen) stieg, dies aber dullerst geringfiigig.

Tabelle 7
Ergebnisse hinsichtlich des SRMR beziiglich der missspezifizierten Modelle

Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:

.80 .50 .30 .80 .50 .30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5

M(SD) SRMR  .028(.002)  .034(.002)  .040(.003)  .027(.001)  .029(.002)  .031(.002)

Korr. Zurilickw. 0 0 0 0 0 0
Modell 7: Modell 8: Modell 9: Modell 10: ~ Modell 11: ~ Modell 12:
.80 .50 30 .80 .50 30
[.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60]
10:10 10:10 10:10 15:5 15:5 15:5

M(SD) SRMR  .030(.002)  .055(.003)  .073(.004)  .027(.002)  .038(.002)  .045(.002)

Korr. Zuriickw. 0 0 70 0 0 0

Anmerkungen. M = Mittelwert, SD = Standardabweichung, Korr. Zuriickw. = Anzahl korrekter Zurlickweisungen
durch den SRMR. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die Hohe der
Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das

Verhiltnis gibt die Indikatorenaufteilung auf die Faktoren an.

Wendet man den Cut-Off von < .09 fiir das SRMR im Rahmen der Kombinationsregel
nach Hu und Bentler (1999) zusammen mit dem RMSEA oder dem CFI an, wurde das
missspezifizierte Modell auch in der neunten Bedingung an allen 1,000

Stichprobenkovarianzmatrizen durch das SRMR angenommen. Das heifit, bei den 70
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Stichproben, an denen das missspezifizierte Modell bei einem Cut-Off von < .08 fiir den SRMR
noch abgelehnt wurde, lag das SRMR zwischen .08 und .09.
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3 Diskussion

3.1 Zusammenfassung der Ergebnisse

Es wurde die Fragestellung untersucht, inwieweit drei der am meist genutzten Fit-
Indizes CFI, RMSEA und SRMR Missspezifikationen im Strukturmodell im Kontext realistisch
hoher und heterogener Faktorladungen anhand der Cut-Offs nach Hu und Bentler (1998, 1999)
zuriickweisen wiirden. Die untersuchte Art der Missspezifikation stellte eine einfaktorielles
Modell im Gegensatz zu einem obliquen zweifaktoriellen Populationsmodell dar. Um
unterschiedliche Schweregrade an Missspezifikationen im Strukturmodell zu erreichen, wurde
die Hohe der Korrelation zwischen den latenten Variablen im Populationsmodell variiert,
ebenso die (Un-)Ausgewogenheit der Indikatoren pro latenter Variable. Pro Populationsmodell
wurden 1,000 Stichprobenkovarianzmatrizen erzeugt, auf die das eindimensionale
missspezifizierte Modell angewandt wurde.

Alle drei Fit-Indizes zeigten bei Anwendung korrekter Modelle auf die erzeugten Daten
anhand der Kriterien nach Hu und Bentler (1998, 1999) eine gute Modellpassung. Die Fit-
Indizes konnten also unter der besagten Cut-Off-Bedingung ohne Probleme korrekte Modelle
als korrekt identifizieren. Hinsichtlich des missspezifizierten Modells zeigte sich ein anderes
Bild.

Der CFI wies das schwer und mittelgradig missspezifizierte Modell anhand des Cut-
Offs von Hu und Bentler ausreichend oft zuriick. Die Hohe der Faktorkorrelation in Interaktion
mit der Hohe der Faktorladungen stellte einen wichtigeren Einflussfaktor als die
Indikatorenaufteilung auf den CFI dar, die missspezifizierten Modelle abzulehnen. Bei geringer
und mittlerer Faktorkorrelation (hoher und mittlerer Grad an Missspezifikation) lag der
Mittelwert des CFI immer unter dem Cut-Off von Hu und Bentler (1998, 1999) und das
missspezifizierte =~ Modell ~ wurde an  der  lberwiegenden = Mehrheit  an
Stichprobenkovarianzmatrizen abgelehnt. Bei hohen Ladungen lagen die Mittelwerte des CFI
stets unter den Mittelwerten bei typischen Ladungen und mit Ausnahme der Bedingungen mit
der hohen Faktorkorrelation (niedrige Missspezifikation) wurden in ersteren Bedingungen auch
so gut wie alle Modelle an den Stichprobendaten durch den CFI abgelehnt. Eine ausgewogene
Indikatorenaufteilung erwies sich als vorteilhafter hinsichtlich der Entdeckung des Misfit

(niedrigere Mittelwerte des CFI und mehr Zuriickweisungen des missspezifizierten Modells)
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als die unausgewogene Aufteilung, da erstere ndher an der Zwei-Faktoren-Struktur lag als an
der Ein-Faktoren-Struktur.

Wihrend sich die Sensitivitdit des CFI hinsichtlich der Zuriickweisung des
missspezifizierten Modells — mit Ausnahme der Bedingungen mit hohen Faktorkorrelationen —
als vergleichsweise hoch erwies, zeigte sich beziiglich des RMSEA und des SRMR ein anderes
Ergebnis. Beide Fit-Indizes bewéhrten sich hinsichtlich der Ablehnung des missspezifizierten
Modells nicht, sofern die Cut-Off-Werte nach Hu und Bentler (1998, 1999) als Kriterium
galten. Wéhrend der Mittelwert des RMSEA in der am hdchsten missspezifizierten neunten
Bedingung noch iiber dem Cut-Off nach Hu und Bentler lag und das missspezifizierte Modell
am Grofteil der Stichprobenmatrizen in dieser Bedingung abgelehnt wurde, lag der Mittelwert
des SRMR in allen Bedingungen unter dem Cut-Off von Hu und Bentler und wies das
missspezifizierte Modell nicht zuriick. Beide Indizes zeigten hohe Typ-2-Fehlerraten und
insofern eine &uBerst geringe Sensitivitdit hinsichtlich der Entdeckung der
Modellabweichungen.

Die Kombinationsregel aus CFI oder RMSEA zusammen mit dem SRMR wire im
Rahmen des Designs der vorliegenden Studie nur fiir den CFI zusammen mit dem SRMR und
nur bei einer mittleren oder schwerwiegenden Missspezifikation (geringe und mittelhohe
Faktorkorrelation) zielfiihrend bei der Identifikation der Missspezifikation gewesen.

Im Gegensatz zu den Fit-Indizes konnte die Missspezifikation an allen Stichprobendaten
der verschiedenen Populationsmodelle anhand des y>-Tests als solche identifiziert werden.
Ebenso stieg der Grad der Missspezifikation mit dem absoluten Wert des

Nonzentralitidtsparameters.

3.2 Diskussion der Ergebnisse

Wiéhrend der CFI im Rahmen dieser Studie eine ausreichende Sensitivitdt zur
Entdeckung des Misfit zeigte, sofern die Faktorkorrelation im Populationsmodel nicht zu hoch
(die Missspezifikation zu niedrig) war, zeigten die untersuchten absoluten Fit-Indizes keine
Modellabweichung an, sofern die Cut-Offs nach Hu und Bentler (1998, 1999) als Kriterien zur
Modellevaluation herangezogen wurden. Das SRMR schnitt im Rahmen des untersuchten
Designs am schlechtesten ab. Dabei wurde von Hu und Bentler propagiert, dass das SRMR
gerade fiir Missspezifikationen im Strukturmodell sensitiv wire. Bei Mahler (2011) und Savalei

(2012) zeigten sich dhnliche Ergebnisse wie die vorliegenden fiir die untersuchten Fit-Indizes.
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Insgesamt schnitten die absoluten Fit-Indizes RMSEA und SRMR besser ab, wenn es sich bei
der Art der Missspezifikation um nicht-spezifizierte Messfehlerkovarianzen handelte (vgl.
Heene et al., 2012; Mahler, 2011; Savalei, 2012) als um die Art der Missspezifikation im
Strukturmodell, die im Rahmen dieser Simulationsstudie untersucht wurde. Diese Befunde sind
vor dem Hintergrund, dass Missspezifikationen auf der Ebene der latenten Variablen
konzeptuell als schwerwiegender angesehen werden konnen als Missspezifikationen im
Messmodell (Mahler, 2011), bedenklich. Der Umstand, dass die Stichprobengrofle in dieser
Studie fiir die angewandte Forschung sehr hoch gewéhlt wurde und auch die Voraussetzung der
multivariaten Normalverteilung erfiillt war, macht die Ergebnislage noch gravierender.

Die Sensitivitdt dieser drei Fit-Indizes flir die Missspezifikation im Strukturmodel fiel
in dieser Studie in absoluten Werten geringfiigig niedriger aus als in den Studien von Mahler
(2011) und Savalei (2012) in den hinsichtlich der Missspezifikation dquivalenten Bedingungen.
Letzteres kann moglicherweise auf die in der Hailfte der Bedingungen noch niedrigeren
Faktorladungen sowie die Heterogenitit der Faktorladungen oder auch die unterschiedliche
Indikatorenanzahl® im Rahmen der vorliegenden Studie zuriickgefiihrt werden. Andererseits
wurden in den Studien von Mahler und Savalei keine Stichprobengréf3en genannt, sodass auch
die Stichprobengrofe als moglicher Grund fiir den Unterschied genannt werden kann.

Hinsichtlich der Wichtigkeit der Einflussfaktoren auf die Sensitivitdt der Fit-Indizes
zeigten sich dhnliche Ergebnisse wie bei Savalei (2012) fiir den RMSEA. Die Hohe der
Faktorladungen sowie die Hohe der Faktorkorrelation, insbesondere in Interaktion, stellten sich
als wichtige Einflussfaktoren auf die Sensitivitit der Indizes heraus. In Savaleis Studien hatte
die Hohe der Faktorladungen den hochsten Einfluss auf die Sensitivitdt des RMSEA. Dieser
Unterschied kann ebenfalls dadurch erkldrt werden, dass die untersuchte Spannweite an
Faktorladungen in der vorliegenden Studie kleiner war als bei Savalei und die Faktorladungen
absolut niedriger waren als bei Savalei. Dies flihrte zu Bodeneffekten fiir den RMSEA und das
SRMR, welche eine klare Ordnung der Einflussfaktoren hinsichtlich ihrer Wirkung
erschwerten, zumal die Hohe der Faktorkorrelation &hnlich wie bei Mahler (2011) mit der Hohe
der Faktorladungen interagierte. Jedoch hatte auch die Indikatorenaufteilung auf die beiden
latenten Variablen im Populationsmodell vor allem einen Einfluss auf die Sensitivitit des CFI,

die ausgewogene Aufteilung auf die latenten Faktoren erwies sich als vorteilhafter hinsichtlich

PSavalei (2012) verwendete insgesamt 8 Indikatoren, Mahler (2011) insgesamt 12, wohingegen in der

vorliegenden Studie 20 Indikatoren insgesamt verwendet wurden.
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der Sensitivitét fiir die Missspezifikation. Bet RMSEA und SRMR ging die Tendenz zwar in
dieselbe Richtung, allerdings waren die Unterschiede aufgrund der genannten Bodeneffekte
dieser beiden Indizes marginal.

Hinsichtlich der Hohe der Faktorladungen bestitigte sich fiir den RMSEA und das
SRMR, was von Heene et al. (2011) gezeigt wurde und was auch im Rahmen der Studien von
Mahler (2011) und Savalei (2012) auftrat: Bei niedrigeren Faktorladungen waren RMSEA und
SRMR weniger sensitiv gegeniiber Missspezifikationen. Dieser Befund resultiert aus dem
positiven Zusammenhang zwischen Faktorladungshéhe und der Hohe des y*-Werts, der sich
auch im Rahmen dieser Studie zeigte. Sofern die Uniqueness-Matrix durch niedrigere
Faktorladungen groBer wird, sinken die Eigenwerte dieser Matrix und die y’-Test-Statistik, die
diese Eigenwerte enthilt, sinkt auch (Heene et al., S. 329). Insofern verfehlen Fit-Indizes wie
der RMSEA und das SRMR, die auf der Differenz zwischen beobachteter und implizierter
Kovarianzmatrix basieren, ihre Funktion, missspezifizierte Modelle abzulehnen.

Der CFI hingegen, der als inkrementeller Fit-Index den Vergleich mit einem Nullmodell
heranzieht, markierte bei Heene et al. (2011) bei sinkenden Ladungen das missspezifizierte
Modell in héherem Mafe als abweichend (vgl. die Ergebnisse von Beauducel und Wittmann,
2005), da die Differenz zwischen impliziertem Modell und Nullmodell geringer wird.
Allerdings zeigte sich dieses Muster in der vorliegenden Studie nicht. In der vorliegenden
Studie waren die Mittelwerte des CFI {iber die jeweils 1,000 Stichproben -eines
Populationsmodells hinweg bei den typischen Ladungen geringfiigig hoher als bei den hohen
Ladungen. Dies zeigte sich auch in der Studie von Mahler (2011) mit vergleichbarem Design.
Hinsichtlich der Anzahl an korrekten Zuriickweisungen des missspezifizierten Modells durch
den CFI zeigte sich in der vorliegenden Studie ein komplexeres Muster: Bei hohen Ladungen
und einer hohen Faktorkorrelation wurde das missspezifizierte Modell weniger oft an den
Stichprobendaten abgelehnt als bei typischen Ladungen und einer hohen Faktorkorrelation
(dieser Befund deckt sich mit Heene et al.s [2011] Ergebnissen; steht jedoch in Kontrast zum
Verhalten der Mittelwerte des CFI in der vorliegenden Studie). Bei hohen Ladungen und einer
geringen oder mittleren Faktorkorrelation im Populationsmodell wurde das missspezifizierte
Modell anhand der Cut-Offs nach Hu und Bentler (1998, 1999) ofter zurlickgewiesen als bei
den typischen Ladungen und einer geringen und mittleren Faktorkorrelation im
Populationsmodell (dieser Befund steht in Kontrast zu Heene et al.s [2011] Befunden, deckt
sich allerdings mit den Mittelwerten des CFI in der vorliegenden Studie). Mahler (2011)

berechnete nur Mittelwerte fiir die Fit-Indizes tiber die Stichproben pro Populationsmodell
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hinweg und nicht noch zusdtzlich die Anzahl an korrekten Zuriickweisungen des
missspezifizierten Modells durch die Cut-Off-Werte nach Hu und Bentler (1998, 1999), sodass
letzterer Befund nicht mit Mahler verglichen werden kann. Eine mogliche Erklarung fiir das
Ergebnismuster des CFI stellt dar, dass im Prinzip nichts liber die Verteilung der Teststatistik
des unkorrelierten Baseline-Modells bekannt ist, auf der die inkrementellen Fit-Indizes, so auch
der CFI, basieren (Curran et al., 2002). Insofern ist auch nicht bekannt, ob die Teststatistik einer
(non-)zentralen y>-Verteilung folgt. Abgesehen davon fithren Curran et al. an, dass die relativen
Fit-Indizes keine linearen Funktionen der Teststatistik flir das unkorrelierte Basismodell und
das implizierte Modell darstellen. Demnach verkompliziert sich die Einordnung des Grades der
Missspezifikation. Vermutet wird von den Autoren aullerdem, dass die (Non-)Zentralitit der
Verteilung der Teststatistik auch abhingig ist von der Art der Missspezifikation, nicht nur von
deren Schweregrad.

Hinsichtlich der Anwendung der korrekten Modelle zeigten sich die Fit-Indizes
homogen in der Hinsicht, als dass sie alle drei eine gute Modellpassung nach den Cut-Oft-
Kriterien anzeigten. Hinsichtlich der Anwendung des missspezifizierten Modells zeigte sich im
Rahmen des untersuchten Designs, was bereits von Beauducel und Wittmann (2005) sowie Fan
et al. (2009) im Kontext deren Designs beschrieben wurde: Die Fit-Indizes reagierten heterogen
auf die verschiedenen Modellbedingungen. Bei Beauducel und Wittmann stieg mit hoheren
Ladungen allerdings auch der Grad der Missspezifikation (Savalei, 2012). Dies fiihrte dazu,
dass die Fit-Indizes mit steigenden Ladungen homogenere Ergebnisse zeigten, da die Fit-
Indizes bei hoheren Ladungen sensitiver fiir die Missspezifikation wurden.

Als Schlussfolgerung aus dieser wie auch aus den unter III. 1 und 2 beschriebenen
vorherigen Simulationsstudien kann wiederum gezogen werden, dass allgemeingiiltige Cut-
Offs fiir die Fit-Indizes kaum zu definieren sind. Erstens haben inzidentelle Parameter eines
Modells, wie die Faktorladungshohe (oder auch die Stichprobengrofle; siehe z.B. Beauducel
und Wittmann, 2005) einen Einfluss auf die Modellpassung anhand der Fit-Indizes (vgl. Heene
et al., 2011, wie auch die vorliegende Studie), zweitens die Art und der Schweregrad einer
Missspezifikation (vgl. Fan et al., 2009, wie auch die vorliegende Studie) und drittens die
Interaktion aus inzidentellen und die Missspezifikation determinierenden Modellbedingungen
(vgl. Savalei, 2012, wie auch die vorliegende Studie). Die zusitzliche Verwendung der
Modifikationsindizes kann zur Verbesserung der Beurteilung der Modellpassung nicht
empfohlen werden, da diese keine reliablen Indikatoren fiir den Ort der Missspezifikation

darstellen (Kaplan, 1988).
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Entgegen der Befunde zu den Fit-Indizes identifizierte der y*-Test im Rahmen dieser
Studie die Missspezifikation iiber alle Bedingungen hinweg und an allen
Stichprobenkovarianzmatrizen. Aufgrund dessen, dass der y>-Wert die unterschiedlichen Grade
der Missspezifikation anzeigte, konnte auch der Nonzentralititsparameter, wie von Fan und
Sivo (2005) sowie Fan et al. (2009) vorgeschlagen, zur Bestimmung des Grades der
Missspezifikation dienen.

Die Empfehlungen, die sich aus dieser Simulationsstudie ableiten lassen, sind
keineswegs neu. Zum einen wird generell empfohlen, mehrere Fit-Indizes (siehe II. 2) nur in
Kombination mit dem y°-Test unter Beriicksichtigung seiner Freiheitsgrade zur Beurteilung der
Modellpassung heranzuziehen (Schermelleh-Engel et al., 2003). Die Befunde aus der
vorliegenden Studie legen insbesondere nahe, dass bei der Modellevaluation auf den y*-Test zu
achten ist, da dieser die Modellabweichung im Gegensatz zu den Fit-Indizes anzeigte. Als
Empfehlung fiir die Anwendung kann daher gegeben werden, dass Vorsicht geboten ist, sobald
die Fit-Indizes Modellpassung anzeigen, der y>-Test aber nicht. Der y*-Test gibt allerdings nicht
die GroBe der Missspezifikation an (Saris et al., 1987), daher ist die gleichzeitige Betrachtung
der lokalen Fitmaf3e unabdingbar.

Zum anderen bestitigen diese und andere Befunde (z.B. Beauducel & Wittmann, 2005;
Heene et al., 2011; Savalei, 2012), wie wichtig eine gute Test- und Skalenkonstruktion im
Vorfeld ist. Es wurde bereits im Rahmen zahlreicher Studien (Heene et al., 2011; Savalei, 2012;
siche III. 1 und 2) bestdtigt, dass hohe Ladungen die Sensitivitit der Fit-Indizes fiir
Missspezifikationen erhohen und dass die Ladungen im Rahmen dieser Studie zwar fiir die
Anwendung typisch hoch waren (vgl. Peterson, 2000), fiir die Entdeckung der
Missspezifikation aber zu niedrig. Ebenso wurde im Rahmen dieses Studiendesigns gezeigt,
dass sowohl die Hohe der Faktorkorrelation als auch die Ausgewogenheit der Anzahl der
Indikatoren pro latenter Variable im Populationsmodell insbesondere fiir die Sensitivitdt des
CFI  relevant war, Missspezifikationen im  Strukturmodell in Form  von
Dimensionalititsverletzungen in der Faktorenstruktur zu entdecken. Um den letzteren Befund
verallgemeinern zu konnen, bedarf es allerdings weiterer Forschung mit anderen Formen von
Missspezifikationen im  Strukturmodell sowie auch unterschiedlichen Graden an

Unausgewogenheit der Aufteilung der Indikatoren auf die latenten Variablen.
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3.3 Limitationen und Implikationen

Die Befunde aus dem Design dieser Simulationsstudie lassen vermuten, dass
insbesondere die Fit-Indizes RMSEA und SRMR nicht geeignet dafiir sind,
Missspezifikationen in Form von Dimensionalititsverletzungen in der Faktorenstruktur zu
entdecken, sofern die Cut-Off-Werte nach Hu und Bentler (1998, 1999) das Kriterium
darstellen. Allerdings sollte diese Vermutung umfassender untersucht werden, um die Befunde
bestitigen zu konnen, zumal, wie bereits unter III. 2.3 beschrieben, Fehlspezifikationen im
Strukturmodell und deren Auswirkungen auf die Fit-Indizes bisher noch wenig untersucht
wurden.

Wie bereits erwihnt, wurde die Stichprobengréfle in dieser Studie konstant gehalten,
um die Missspezifikation im Strukturmodell moglichst spezifisch, ohne zu viele Mehrfach-
Interaktionen mit anderen Modellparametern, zu untersuchen. Vermutlich schneiden die Fit-
Indizes bei der Entdeckung des Misfit bei einer groferen Stichprobe besser ab. Eine grofere
Stichprobe ist allerdings im Kontext der angewandten Forschung innerhalb der Psychologie
kaum realistisch.

Im Rahmen dieser Studie fiel der absolute Wert des RMSEA geringer aus als in
derselben Missspezifikationsbedingung bei Savalei, dhnlich verhielten sich SRMR und CFI im
Vergleich zu Mabhlers (2011) Studie. Wie bereits erwdhnt wurde, liegt die Vermutung nahe,
dass die Heterogenitit der Faktorladungen im Rahmen dieser Simulationsstudie, die
unterschiedliche Anzahl an Items und moglicherweise aber auch Unterschiede in der
StichprobengroBe®* verantwortlich dafiir waren, dass die Modellpassung schlechter ausfiel als
bei Savalei und Mahler. Daher sollten im Kontext weiterer Studien homogene und heterogene
Ladungen sowohl im Rahmen korrekter Modelle verglichen werden, als auch im Rahmen von
Missspezifikationen im Strukturmodell und im Messmodell hinsichtlich ihrer Fahigkeit, die
Modellabweichung zu entdecken, untersucht werden.

AuBerdem ist im Rahmen weiterer Simulationsstudien zu Missspezifikationen im
Strukturmodell zu untersuchen, ob der CFI tatsdchlich auch abhéngig von der Art der
Missspezifikation und der (Non-)Zentralitit deren Teststatistik ist, wie von Curran et al. (2002)

vorgeschlagen wurde und wie in der vorliegenden Studie und der Studie von Mahler (2011) in

**Mahler (2011) und Savalei (2012) nannten ihre Stichprobengréfen nicht.
72



Kontrast zu den Befunden von Heene et al. (2011) zur Hohe der Faktorladungen angenommen
wurde.

Im Rahmen dieses Designs stellte die Hoéhe der Faktorkorrelation in den
Populationsmodellen einen Parameter dar, der neben der Indikatorenaufteilung den
Schweregrad der Missspezifikation determinierte. Dieser Parameter interagierte hinsichtlich
seines Einflusses auf die Fit-Indizes mit der Hohe der Faktorladungen, einem inzidentellen
Parameter im Rahmen dieser Studie. Es liegt daher nahe, den Einfluss der
Faktorkorrelationshohe und der Faktorladungshéhe danach getrennt hinsichtlich ihrer
Auswirkungen auf die Fit-Indizes zu untersuchen, ob sie beide inzidentelle Parameter darstellen
oder beide flir den Grad der Missspezifikation verantwortlich sind.

Ebenso wurden im Rahmen dieses Designs die Nebenladungen auf Null gesetzt. Dies
stellt allerdings in der angewandten Forschung einen sehr seltenen Fall dar (Beauducel &
Wittmann, 2005). Nebenladungen, die féalschlicherweise auf Null gesetzt wurden, sollten daher
als weitere inzidentelle Bedingung im Rahmen dieses Designs, oder auch als Bedingung, die
u.a. den Grad der Missspezifikation ausmacht, in ihren Auswirkungen auf die Fit-Indizes
untersucht werden.

Weiters sind mehr und verschiedenere Missspezifikationen im Strukturmodell zu
untersuchen, da Missspezifikationen im Strukturmodell, insbesondere Missspezifikationen
hinsichtlich der Dimensionalitét der Faktorenstruktur, bisher noch kaum untersucht wurden. Es
bietet sich an, weitere Fit-Indizes im Rahmen des umfassenden Designs von Savalei (2012) zu
untersuchen: Eine Missspezifikation in Form von statistischer Eindimensionalitdt, wenn im
Populationsmodell oblique oder orthogonale Faktorenstrukturen vorliegen, sowie
Populationsmodelle mit mehr als zwei latenten Variablen. Allerdings sollte das Design von
Savalei, wie in der vorliegenden Studie, anhand von realistisch hohen und realistisch
heterogenen Faktorladungen beziiglich der Fit-Indizes ausgetestet werden.

Die oben aufgeworfene Frage nach den Nebenladungen fiihrt zu einer weiteren
Implikation fiir kiinftige Simulationsstudien, die die Auswirkungen von Missspezifikationen
auf die Fit-Indizes untersuchen. Es ist zu vermuten, dass in der angewandten Forschung nicht
nur entweder Missspezifikationen im Messmodell oder im Strukturmodell, sondern beide Arten
von Missspezifikationen gleichzeitig auftreten. Die Forschung bisher beschrinkte sich
vermutlich aus Griinden der Handhabbarkeit entweder auf Missspezifikationen im Mess-, oder
im  Strukturmodell. Die Vermutung liegt nahe, dass miteinander einhergehende

Modellverletzungen im Mess- und Strukturmodell die Modellevaluation anhand der Fit-Indizes
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noch zusitzlich erschweren. Insbesondere fiir den RMSEA sollte ein derartiges Design
herausfordernd sein, da dieser Fit-Index zusétzlich noch von der Anzahl der Indikatoren
abhingt (Kenny & McCoach, 2009; Savalei, 2012). Savalei (2012) schlussfolgerte dazu aus
ihren Studien, dass drei Indikatoren pro latenter Variable dazu fiihren, dass die Sensitivitdt des
RMSEA zur Entdeckung von Modellabweichungen in Form von Messfehlerkovarianzen
innerhalb eines Messmodells minimal wire, wohingegen die Sensitivitdt zur Entdeckung von
Missspezifikationen im Strukturmodell in Form nicht-spezifizierter Faktorkorrelationen

maximiert ware.

3.4 Ausblick auf die zweite Studie

Im Rahmen der ersten Simulationsstudie wurden die Auswirkungen von
Missspezifikationen auf die Giite der Modellpassung untersucht. Die Ergebnisse implizieren,
dass SRMR und RMSEA im Kontext des verwendeten Forschungsdesigns ungeeignet dafiir
waren, Missspezifikationen auf der Ebene der latenten Variablen zu erkennen. Die Befunde
favorisieren zwar den CFI zur Beurteilung des Modellfits, sofern das zu evaluierende Modell
ein oder mehrere Strukturmodelle enthélt, doch erkannte der CFI geringe Missspezifikationen
in Form von hohen Faktorkorrelationen im Populationsmodell im Rahmen des untersuchten
Designs auch nicht.

Vor dem Hintergrund dieser Befunde stellt sich nun die Frage, inwiefern sich
Missspezifikationen im Strukturmodell, welche insbesondere von den absoluten Fit-Indizes im
Gegensatz zum CFI anhand der gingigen Cut-Offs nach Hu und Bentler (1998, 1999) nicht
erkannt wurden, auf die Validitit eines Modells — genauer gesagt auf die Validitit der
diagnostischen Entscheidungen aus den Faktorwerten — auswirken. Diese Fragestellung wurde
im Rahmen einer zweiten Simulationsstudie untersucht, welche im folgenden Kapitel V
beschrieben wird. Dazu wurden diagnostische Entscheidungen basierend auf korrelierten
Populationsfaktorwerten mit diagnostischen Entscheidungen basierend auf den geschétzten

Faktorwerten aus missspezifizierten einfaktoriellen Modellen verglichen.
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V STUDIE 2

1 Methode

1.1 Populationsgenerierung

Die unter III. 5.1 ausgefithrte Fragestellung lautete, inwiefern sich
Modellabweichungen, wie sie bereits im Rahmen von Studie 1 unter IV spezifiziert wurden,
auf diagnostische Entscheidungen basierend auf den Faktorwerten auswirken wiirden. Diese
Fragestellung wurde ebenfalls anhand einer Simulationsstudie untersucht. Es wurden die ,,R*-
Pakete (R Core Team, 2015) ,,lavaan* (Rosseel, 2012), ,,MASS* (Venables & Ripley, 2002)
sowie ,,psych®“ (Revelle, 2015) verwendet. Die Simulationsstudie stellte eine
Populationssimulation dar. Bei einer Populationssimulation (Kaplan, 1988) werden keine
Stichproben aus dem Populationsmodell gezogen, wie es in einer Monte-Carlo-Simulation
iiblich ist (vgl. Paxton, Curran, Bollen, Kirby, & Chen, 2001), sondern eine Population
definiert. Fiir jede der Bedingungen, welche im Folgenden ndher beschrieben werden, wurde
eine Population mit 1 Million Faktorwerten (True Scores; Eid et al., 2013, S. 818) generiert.

Aus Replikationsgriinden wurden Startwerte fiir die Generierung der Zufallszahlen gesetzt.

1.2 Design

Der Vergleich beruhte auf dichotomen diagnostischen Entscheidungen, die auf der Basis
wahrer bzw. definierter Faktorwerte erstellt wurden und dichotomen Klassifikationen, die auf
Basis der Faktorwerte aus den zu untersuchenden Modellen berechnet wurden. Das Design fiir
die Populationsmodelle wurde aus Studie 1 (siche Kapitel IV) ibernommen: Es handelte sich
wiederum um ein obliques Zwei-Faktoren-Populationsmodell, bei dem der Grad an
Missspezifikation durch die Hohe der Faktorkorrelation und die Aufteilung der Indikatoren auf
die beiden latenten Variablen im Populationsmodell bestimmt war. Die beiden Faktoren
korrelierten entweder zu .30, .50 oder .80 und entweder wurden beide Faktoren von jeweils 10
Indikatoren gemessen oder der erste Faktor von 15 Indikatoren und der zweite von 5. Der
entscheidende Unterschied zur Methode der Simulation im Rahmen der Studie 1 lag darin, dass

die Datengenerierungen nicht aus einem Populations- oder wahren Strukturgleichungsmodell
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heraus erfolgten, sondern basierend auf definierten bzw. wahren Faktorwerten®”. Auf Basis
dieser definierten Faktorwerte wurden die Strukturgleichungsmodelle aufgebaut®®. In einem
ersten Schritt wurden daher bivariat verteilte wahre Faktorwerte fiir zwei latente Variablen
generiert, die entweder zu .30, zu .50 oder zu .80 korrelierten. AuBerdem wurden 20
standardnormalverteilte unique Faktorwerte erzeugt, die weder untereinander korrelierten, noch
mit den Faktorwerten korrelierten. Weiters wurden die Faktorladungen aus den unter II. 1 und
3 sowie III 5.1 genannten Griinden zufillig aus dem Bereich [.20, .40] oder aus dem Bereich
[.40, .60] gleichverteilt gezogen und somit festgelegt. Dadurch konnte die Koeffizientenmatrix
der uniquen Faktorwerte errechnet werden. In einem zweiten Schritt konnten dann anhand der
Fundamentalgleichung der Faktorenanalyse (siehe (1) unter II. 1; Mulaik, 2009) aus den wahren
Faktorwerten, deren Mustermatrix sowie den uniquen Faktorwerten und deren
Koeffizientenmatrix die beobachteten Werte fiir die 1 Million Individuen erstellt werden. Die
generierten Populationsmodelle stellten True-Score-Modelle dar (vgl. Eid, Gollwitzer, &

Schmitt, 2013, S. 856).

1.3 Durchfiihrung

Zur Beantwortung der ersten Fragestellung wurden filschlicherweise als einfaktoriell
spezifizierte Messmodelle mit 20°” Indikatoren auf die Daten angewandt, die basierend auf den
wahren Faktorwerten erzeugt wurden. Die Varianzen der latenten Variablen der untersuchten
Modelle wurden auf Eins gesetzt und die Faktorladungen frei geschitzt. Die Schétzung der
Modellpassung erfolgte wiederum mit dem Maximum-Likelihood-Algorithmus (fiir eine
Begriindung siehe IV. 1.3). Die Schitzung der Faktorwerte, welche sich bei Anwendung der
korrekten zweifaktoriellen Modelle und des missspezifizierten einfaktoriellen Modells auf die
Daten ergaben, erfolgte nach der Methode von Bartlett (1937; fiir die Begriindung siche Kapitel
II. 3).

*Diese Methode wurde erstmals von Grice und Harris (1998) sowie Grice (2001a, 2001b) beschrieben.

**An dieser Stelle sei sehr herzlich Herrn Prof. Dr. André Beauducel sowohl fiir die Idee zu dieser Art der
Datengenerierung als auch fiir die Hilfestellung beim Aufbau der entsprechenden Funktion zur Datengenerierung
gedankt.

*"Wie bereits unter IV erwihnt, stellt dies eine typische Fragebogenlinge dar (vgl. Peterson, 2000; Shrout & Yager,

1989).
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Die dichotome Top-Down-Klassifizierung (Gatewood et al., 2016, S. 662; ,,Stérung
liegt vor* versus ,,Storung liegt nicht vor* ) erfolgte sowohl auf Basis der wahren Faktorwerte,
als auch auf Basis der aus dem missspezifizierten Modell errechneten Bartlett-Faktorwerte nach
den hochsten Faktorwerten. Es wurden unterschiedliche Basisraten fiir die diagnostischen
Entscheidungen nach den hochsten Faktorwerten beriicksichtigt. Die klinischen Basisraten
wurden an den 12-Monatspravalenzen psychischer Storungen in der Europidischen Union
orientiert (Wittchen et al., 2011). Die Basisrate gibt den Prozentsatz der Fille an der erzeugten
Gesamtpopulation an, die eine positive Diagnose (,,Storung liegt vor*) bekamen. Die kleinste
fir die Simulationsstudie verwendete Basisrate von 2.5% wurde an der Privalenz der
Posttraumatischen Belastungsstorung, der sozialen Phobie oder der generalisierten
Angststorung festgemacht (S. 656). Die 5%-Basisrate deckt Suchterkrankungen oder auch das
Aufmerksamkeits-Defizit-Hyperaktivitits-Syndrom bei Kindern und Jugendlichen ab (S. 664).
Die nichstgroBere verwendete Basisrate von 7.5% wurde anhand der Privalenzen fiir Insomnie
oder Major Depression festgelegt (S. 666). Einer Basisrate von 10% entspricht einer 12-
Monatsprivalenz fiir eine depressive Storung (S. 666). Aus Vergleichsgriinden wurden zu den
kleinen Basisraten in GroBenordnungen fiir die Diagnose einer einzelnen Storung zusétzlich
noch grofBere Basisraten von 30%, 50% und 70% in die Studie miteinbezogen. Einer Pravalenz
von 30% entspricht eine Diagnose aus den Bereichen der Suchterkrankungen, der Angst- und
Belastungsstorungen, der affektiven Storungen und der somatoformen Stérungen im Gesamten
(S. 666). Gleichzeitig stellt eine Basisrate von 30% auch die Lebenszeitprivalenz fiir eine
Angststorung dar (Meyer, Rumpf, Hapke, Dilling, & John, 2000, S. 537); ebenso die 12-
Monats-Pravalenz flir zwei oder mehr psychische Storungen (Wittchen & Jacobi, 2001, S. 999).
Die Lebenszeitpravalenz fiir irgendeine psychische Storung betrdgt nahezu 50% (Meyer et al.,
2000, S. 540). AuBerdem entsprechen die groferen verwendeten Basisraten Grundquoten, wie
sie in der Eignungsdiagnostik vorkommen (Schuler, 2014, S. 359). Eine positive Diagnose
(,,krank®) wurde gestellt, wenn ein Individuum auf beiden wahren Faktoren (konjunktive
Entscheidungsstrategie; Amelang & Schmidt-Atzert, 2006, S. 399) unter den entsprechenden
hochsten Perzentilen (97.5%, 95%, 92.5%, 90%, 70%, 50%, 30%) rangierte. Um diese
bivariaten Basisraten trotz der unterschiedlichen Faktorkorrelationen konstant zu halten, da mit
der Faktorkorrelation auch die Anzahl der Félle stieg, die auf beiden Faktoren hohe Werte

erzielten (vgl. Gardner & Neufeld, 2013), wurden unterschiedliche univariate Cut-Offs
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ermittelt’®. Fiir die Vergabe der Diagnosen basierend auf den Faktorwerten des
eindimensionalen missspezifizierten Modells wurde der univariate Cut-Off bei den hochsten
97.5%, 95%, 92.5%, 90%, 70%, 50% und 30% der Bartlett-Faktorwerte angesetzt. Analog dazu
wurde der Cut-Off fiir die Vergabe der Diagnosen basierend auf dem Gesamtsummenwert
gesetzt.

Fiir die Beurteilung der Giite der Klassifikation wurden Sensitivitéit, Spezifitit sowie
Positiver und Negativer Priadiktionswert berechnet, da diese Kennwerte im Rahmen der
Psychometrie weit verbreitete Grofen zur Evaluation der Giite der Diagnostik darstellen
(Amelang & Schmidt-Atzert, 2006) und sich gegenseitig komplementieren. Diese lieBen sich
aus den diagnostischen Konsistenzen (True Positives, True Negatives, False Positives und False
Negatives) berechnen, die zur Erklirung der Befunde zu den diagnostischen Kennwerten
herangezogen wurden.

Weiters wurden fiir einen ordinalen Vergleich der wahren Faktorwerte mit den
Faktorwerten aus dem missspezifizierten Modell deren Korrelationen gebildet, indem die
Faktorwerte aus dem missspezifizierten Modell einerseits mit den wahren Faktorwerten des
ersten Faktors, andererseits mit den wahren Faktorwerten des zweiten Faktors korreliert
wurden. Diese Korrelationen stellen nach Grice (2001a, 2001b) Mafle fiir die Validitét der
geschéitzten Faktorwerte dar.

Zur Beantwortung der Nebenfragestellung wurden in den 12 verschiedenen
Bedingungen Gesamtsummenwerte {iber die 20 erzeugten beobachteten Variablen hinweg
gebildet. Die Diagnosevergabe erfolgte bei den Gesamtsummenwerten wie bei den
missspezifizierten Modellen nach den hochsten Werten basierend auf den genannten
Basisraten. Die Diagnostik auf Basis der Gesamtsummenwerte wurde ebenso anhand der
genannten diagnostischen Kennwerte mit der Diagnostik basierend auf den wahren
Faktorwerten verglichen. Aulerdem wurden auch die Summenwerte jeweils mit den wahren

Faktorwerten auf dem ersten Faktor wie auch mit denen auf dem zweiten Faktor korreliert.

*An dieser Stelle sei ganz herzlich Felix Naumann und Florian Pargent fiir die Hilfe beim Schreiben der

entsprechenden R-Funktion gedankt.
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2 Ergebnisse

2.1 Sanity Checks

2.1.1 Eigenwerte

Zur Priifung der Plausibilitit der Generierung der beobachteten Daten aus den wahren
Faktorwerten heraus wurden zunichst die Eigenwerte der beobachteten Kovarianzmatrix der
Populationsdaten inspiziert (siche Tabelle 8). Die Eigenwerte bestimmen zusammen mit den
Eigenvektoren die Berechnung der Faktorladungen eines Modells (Lawley & Maxwell, 1971;
Mulaik, 2009); die (Hohe der) Faktorladungen wirken sich wiederum als primérer
Einflussfaktor auf die Berechnung der Bartlett-Faktorwerte aus (Erklédrung folgt unter 2.2.1).

Die Eigenwerte hingen von der definierten Faktorkorrelation wie auch von der
vorgegebenen Aufteilung der Indikatoren auf die beiden Faktoren im Populationsmodell ab.
Die Eigenwerte verhielten sich plausibel: Die ersten beiden Eigenwerte variierten mit der Hohe
der definierten Faktorkorrelation und mit der vorgegebenen Indikatorenaufteilung auf die
beiden Faktoren (siche Tabelle 8). Die Eigenwerte 3 bis 20 waren iiber die verschiedenen
Bedingungen hinweg gleich und wurden aus diesem Grund nicht in die Tabelle inkludiert. Mit
sinkender definierter Faktorkorrelation sank der erste Eigenwert, wohingegen der zweite stieg
(siche Tabelle 8), was zeigt, dass sich die Eigenwerte bei sinkender Faktorkorrelation mehr und
mehr anglichen und sich der Zwei-Faktoren-Struktur im Populationsmodell anndherten. Bei der
ungleichméBigen Aufteilung der Indikatoren auf die Faktoren war der erste Eigenwert groBBer
und der zweite Eigenwert kleiner als in den vergleichbaren Bedingungen mit der ausgewogenen
Indikatorenaufteilung (siche Tabelle 8). Dies spiegelt wider, dass die ungleichmiBige
Aufteilung der Indikatoren ndher am einfaktoriellen Modell lag als die gleichmiBige Aufteilung

der Indikatoren auf die Faktoren.
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Tabelle 8

Erste zwei Eigenwerte der erzeugten beobachteten Kovarianzmatrix

Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 .50 .30 .80 .50 .30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5
1. EW 2.685 2.387 2.188 2.744 2.561 2.470
2. EwW 1.095 1.391 1.590 1.038 1.213 1.303
Modell 7: Modell 8: Modell 9: Modell 10:  Modell 11:  Modell 12:
.80 .50 .30 .80 .50 .30
[.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60]
10:10 10:10 10:10 15:5 15:5 15:5
1. EW 5.475 4.684 4.157 5.624 5.133 4.887
2. EwW 1.260 2.048 2.575 1.111 1.596 1.842

Anmerkungen. EW = Eigenwert. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert
die Hohe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden

und das Verhéltnis gibt die Indikatorenaufteilung auf die Faktoren an.

2.1.2 Modellfit der korrekten Modelle

Aus Vergleichsgriinden wurden die diagnostischen Entscheidungen auf Basis der
wahren Faktorwerte zundchst mit den diagnostischen Entscheidungen verglichen, die auf Basis
der Bartlett-Faktorwerte aus einem korrekten Modell getroffen wurden. Daher wird an dieser
Stelle die Modellpassung der korrekten Modelle berichtet. Tabelle 9 gibt den Modellfit
korrekter Modelle wider, die auf die erzeugten Populationsdaten angewandt wurden, welche
basierend auf den wahren Faktorwerten generiert wurden. Alle korrekten Modelle zeigten sehr

gute Modellpassung auf die erzeugten Populationsdaten.
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Tabelle 9
Modellpassung der korrekten Modelle

Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 .50 .30 .80 .50 .30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5
%' (169) 172.746 168.343 166.434 178.452 179.147 179.839
p 406 .500 501 294 282 270
CFI 1.000 1.000 1.000 1.000 1.000 1.000
RMSEA <.001 <.001 <.001 <.001 <.001 <.001
SRMR .001 .001 .001 .001 .001 .001
Modell 7: Modell 8: Modell 9: Modell 10:  Modell 11:  Modell 12:
.80 .50 .30 .80 .50 .30
[.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60]
10:10 10:10 10:10 15:5 15:5 15:5
%' (169) 168.686 164.904 164.722 177.066 176.824 177.873
p 492 575 579 320 324 305
CFI 1.000 1.000 1.000 1.000 1.000 1.000
RMSEA <.001 <.001 <.001 <.001 <.001 <.001
SRMR .001 .001 .001 .001 .001 .001

Anmerkungen. Die Zellen der Beschreibung der Populationsmodelle als ersten Wert die Hohe der
Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das

Verhiltnis gibt die Indikatorenaufteilung auf die Faktoren an.

2.1.3 Modellfit der missspezifizierten Modelle

Tabelle 10 zeigt die Parameter der Modellpassung fiir die missspezifizierten
einfaktoriellen Modelle, die auf die erzeugten Daten angewandt wurden, welche basierend auf
den wahren Faktorwerten der beiden obliquen Faktoren generiert wurden. Der y>-Test zeigte
keine Modellpassung an und der x>-Wert erzielte in Relation zu der Anzahl der Freiheitsgrade
von 170 sehr hohe Werte, was eine hohe Modellabweichung indiziert. Die Fit-Indizes zeigten
ein dhnliches Muster wie in Studie 1 unter VI, wobei insbesondere RMSEA und SRMR in
vielen Féllen Modellpassung anzeigten.

Wie in der ersten Studie (siche Kapitel IV) konnte der y*-Wert Auskunft iiber den Grad
der Missspezifikation geben. Mit zunehmender Missspezifikation (sinkende Faktorkorrelation
im Populationsmodell) stieg der y*-Wert. Ebenso war der y’-Wert bei der ungleichen

Indikatorenaufteilung auf die beiden Faktoren im Populationsmodell (geringerer Grad an
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Missspezifikation) niedriger als bei der ausgewogenen Indikatorenaufteilung.
Dementsprechend verhielt sich auch der Nonzentralititsparameter (Differenz aus y>-Wert und
Freiheitsgraden des Modells; flir beide Werte im Einzelnen siche Tabelle 10): Der
Nonzentralititsparameter —stieg mit hoherem Schweregrad der Missspezifikation,
operationalisiert durch geringere Faktorkorrelation und ausgewogene Indikatorenaufteilung auf

die Populationsfaktoren.

Tabelle 10
Modellpassung der missspezifizierten Modelle

Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 .50 .30 .80 .50 .30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5
%’ (170) 21193.601 108171.383  189767.004 9181.598 40472.649 60537.001
p <.001 <.001 <.001 <.001 <.001 <.001
CFI 974 .842 .703 .989 .946 915
RMSEA .011 .025 .033 .007 .015 .019
SRMR .010 .024 .033 .006 .014 .018
Modell 7: Modell 8: Modell 9: Modell 10:  Modell 11:  Modell 12:
.80 .50 .30 .80 .50 .30
[.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60] [.40, .60]
10:10 10:10 10:10 15:5 15:5 15:5
%’ (170) 170692.725 707129913  1127164.083  86337.547  292464.751  404395.746
p <.001 <.001 <.001 <.001 <.001 <.001
CFI 953 785 .645 978 915 .879
RMSEA .032 .064 .081 .022 .041 .049
SRMR .025 .063 .088 .017 .038 .049

Anmerkungen. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die Hohe der
Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden und das

Verhiltnis gibt die Indikatorenaufteilung auf die Faktoren an.

2.1.4 Faktorladungen

Die standardisierten Faktorladungen der korrekten Modelle bewegten sich innerhalb der
Spannweiten, wie sie in den Populationsmodellen definiert wurden (Bedingungen mit den
typischen Ladungen: M = .310, SD = .063; Bedingungen mit den hohen Ladungen: M = .520,

SD = .063).
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Die Faktorladungen der missspezifizierten einfaktoriellen Modelle waren geringer als
die in den Populationsmodellen definierten Faktorladungen. Die Mittelwerte der Ladungen der
missspezifizierten Modelle in den Bedingungen mit den typischen Ladungen in den
Populationsmodellen bewegten sich zwischen M = .246 und M = .293 (SD = .050 bis SD =
.103), wohingegen sich die Mittelwerte der Bedingungen mit den hohen Ladungen in den
Populationsmodellen zwischen M = .404 und M = .490 (SD = .053 bis SD = .157) bewegten.
AuBerdem zeigte sich, dass die Ladungen in den missspezifizierten Modellen mit sinkender
Faktorkorrelation in den Populationsmodellen in zunehmendem Male geringer wurden
(Reduktion der standardisierten Faktorladungen im missspezifizierten Modell von .02 bis .11

bei sinkender Faktorkorrelation).

2.2 Faktorwerte korrekter Modelle

2.2.1 Korrelationen

Bevor aus den Bartlett-Faktorwerten korrekter Modelle Diagnosen gebildet wurden und
diese mit den Diagnosen aus den wahren Faktorwerten verglichen wurden, wurde zunéchst die
Validitdt (fiir den Begriff vgl. Grice [2001a, 2001b]) der Faktorwerteschitzung aus den
korrekten Modellen bestimmt, auf der wiederum die Validitit der diagnostischen
Entscheidungen aus den Faktorwerten basiert. Dazu wurden die wahren Faktorwerte der beiden
definierten obliquen Faktoren mit den Bartlett-Faktorwerten der beiden spezifizierten Faktoren
aus korrekten Modellen korreliert.

Tabelle 11 zeigt, dass die Hohe der Ladungen in den Populationsmodellen einen
Einfluss auf die Korrelationen der Faktorwerte hatte. Hohe Faktorladungen in den
Populationsmodellen fiihrten zu hoheren Korrelationen der True Scores und der Bartlett-
Faktorwerte aus den korrekten Modellen. Die unausgewogene Indikatorenaufteilung fiihrte zu
geringfiigig hoheren Korrelationen (Unterschied auf der zweiten Dezimalstelle, siche Tabelle
11) der wahren und der aus dem korrekten Modell geschétzten Faktorwerte der ersten Faktoren
(Giberrepréasentiert durch 15 Indikatoren) und niedrigeren Korrelationen der Faktorwerte der
zweiten Faktoren (5 Indikatoren) im Vergleich zur gleichmiBigen Indikatorenaufteilung auf die
Faktoren (siehe Tabelle 11). Fiir letzteren Befund liegt folgende Erkldarung nahe: Estabrook und
Neale (2013) zeigten anhand einer Simulationsstudie mit einem mehrfaktoriellen Modell, dass

die geschitzten Faktorwerte bei einer hoheren Anzahl an Indikatoren nidher an den wahren
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Faktorwerten lagen als bei einer geringen Anzahl an Indikatoren pro Faktor. Lawley und
Maxwell (1971) zeigten auBerdem, dass sich die Verteilungseigenschaften der geschitzten
Faktorwerte mehr denen der wahren Faktorwerte anndhern, wenn mehr Indikatoren verwendet

wurden.

Tabelle 11

Korrelationen der wahren Faktorwerte und der Faktorwerte aus einem korrekten Modell

Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 50 30 80 50 30
[.20; .40] [.20; .40] [.20; .40] [.20; .40] [.20; .40] [.20; .40]
10:10 10:10 10:10 15:5 15:5 15:5
Twikl 7337 7337 7337 7957 795 795
I'wa-K2 7237 7247 7247 5917 5917 5917
Modell 7: Modell 8: Modell 9: Modell 10: Modell 11: Modell 12:
.80 50 30 80 50 30
[.40; .60] [.40; .60] [.40; .60] [.40; .60] [.40; .60] [.40; .60]
10:10 10:10 10:10 15:5 15:5 15:5
Twikl 8897 8897 8897 9217 9217 9217
Tw2xz 885" 885" 885" 800" 8007 8007

Anmerkungen. rw;x; = Korrelation der wahren Faktorwerte des ersten definierten Faktors mit den Bartlett-
Faktorwerten des ersten Faktors des korrekten Modells, rw;.x; = Korrelation der wahren Faktorwerte des zweiten
definierten Faktors mit den Bartlett-Faktorwerten des zweiten Faktors des korrekten Modells, " = hochst
signifikanter Zusammenhang. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die
Hohe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden

und das Verhéltnis gibt die Indikatorenaufteilung auf die Faktoren an.

Die Hohe der Korrelationen zwischen den wahren Faktorwerten und den Faktorwerten
aus den korrekten Modellen war insgesamt unerwartet niedrig, wurden doch korrekte Modelle
auf die erzeugten Daten angewandt. Der Grund fiir dieses Phinomen liegt in den niedrigen
definierten Faktorladungen in den Populationsmodellen. Desto niedriger die Faktorladungen
eines Modells, desto mehr ist die Berechnung der Faktorwerte fehlerbehaftet. Wie aus
Gleichung (10) unter II. 3 (Grice, 2001b, S. 433) ersichtlich, werden fiir die Berechnung der
Bartlett-Faktorwerte (wie auch der anderen Faktorwerte) die Faktorladungen benétigt; die
Berechnung der Bartlett-Faktorwerte erfolgt durch Minimierung der Off-Diagonal-Elemente

der Uniqueness-Matrix (DiStefano et al., 2009). Die uniquen Faktorwerte sind proportional zu
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den uniquen Faktorladungen®. Das heift, groBe Eintrige in den Off-Diagonal-Elementen der
Uniqueness-Matrix senken die Validitét (Grice, 2001a, 2001b) der berechneten Faktorwerte.

Dass primér die Faktorladungen Einfluss auf die Berechnung der Bartlett-Faktorwerte
haben und als Konsequenz niedriger Ladungen die Faktorenunbestimmtheit groer wird, wurde
bereits unter II. 3 beschrieben und zeigte sich bereits an der Validitit der Faktorwerte (siche
Tabelle 11). Dieser Befund hat wiederum negative Auswirkungen auf die Giite der Diagnostik
auf Basis der Bartlett-Faktorwerte, die an spéterer Stelle berichtet werden. Daher wird an dieser
Stelle zunachst der Grad der Unbestimmtheit anhand der Formel von Guttman (1955, S. 73;
siche GI. (11) unter II. 3) berichtet.

Dem Befund zu den Korrelationen der True Scores und der Bartlett-Faktorwerte
entsprechend war die Unbestimmtheit der Faktorwerte, operationalisiert durch p? (siehe GI.
(11) unter II. 3; Guttman, 1955, S. 73), in den Bedingungen mit den typischen Ladungen hoher
als in den Bedingungen mit den hohen Ladungen (sieche Tabelle 12). In allen Bedingungen mit
den typischen Ladungen im Populationsmodell war der Grad an Faktorenbestimmtheit kleiner
als 50% (Quadratwurzel aus p?; siche Tabelle 12). Ein Grad an Faktorenunbestimmtheit von
unter 70% bedeutet, dass es Sets aus Faktorwerten gibt, die nicht einmal positiv miteinander
korrelieren, d.h., dass die Sets aus Faktorwerten substanziell sogar in die entgegengesetzte
Richtung gehen konnen (Guttman). AuBlerdem war bei den Bedingungen mit den typischen
Ladungen im Populationsmodell die maximal mdgliche Unbestimmtheit der Faktorwerte,
operationalisiert durch p* (siehe Gl. (11) unter II. 3; Guttman, S. 73), grofer als in den
Bedingungen mit den hohen Ladungen (siehe Tabelle 12). Dies geht einher mit dem Befund zu
den Korrelationen, nach denen die Faktorwerte der Populationsmodelle mit hohen Ladungen
hoher korrelierten als die der Populationsmodelle mit typischen Ladungen. Bei der
unausgewogenen Indikatorenaufteilung ging die Bestimmtheit der Faktoren zwischen den
beiden Faktoren weiter auseinander als bei der ausgewogenen Indikatorenaufteilung. Auch
dieses Ergebnismuster steht im Einklang zu den Befunden zu den Korrelationen der

Faktorwerte.

*Diese Proportionalitit ¥ - E (siche Fundamentalgleichung der Faktorenanalyse; Gleichung (1) unter II. 1;
Mulaik, 2009) wird an den Bartlett-Faktorwerten ersichtlich, sobald man in die Gleichung zur Berechnung der
Matrix der Bartlett-Faktorwerte (sieche GI. (10) unter II. 3) die Fundamentalgleichung der Faktorenanalyse einsetzt:
X=YP2ZAA'P2A)1=(AX+VE)(YE)1A(A' (YE)-1A)1
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Tabelle 12

Unbestimmtheit der Faktorwerte im korrekten Modell

Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 50 30 80 50 30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5
P21 6247 568 5487 667 645 637
p2op 618" 556" 534" 549" 420" 374
"1k 249™" 1367 097" 3357 290" 274
0 236" 1127 069" 097" -160"" -253"
Modell 7: Modell 8: Modell 9: Modell 10: Modell 11: Modell 12:
.80 50 30 80 50 30
.40, .60] .40, .60] [.40, .60] [.40, .60] [.40, .60] .40, .60]
10:10 10:10 10:10 15:5 15:5 15:5
P21 8277 8007 79377 8637 8537 8507
p2p 8227 7937 786" 748" 67177 6507
i 653" 6007 587" 726 705 7007
p or 6447 5877 572 495" 3437 3007

Anmerkungen. p?> = MabB fiir die Hohe der Faktorenunbestimmtheit (Guttman, 1955, S. 73), p* = MaB fiir die
maximal mdgliche Unbestimmtheit der Faktorwerte (Guttman, S. 73), 1F = 1. Faktor des korrekten Modells, 2F =
2. Faktor des korrekten Modells, " = hochst signifikanter Zusammenhang. Die Zellen der Beschreibung der
Populationsmodelle enthalten als ersten Wert die Hohe der Faktorkorrelation, der Bereich bezeichnet das Intervall,
aus dem die Faktorladungen gezogen wurden und das Verhéltnis gibt die Indikatorenaufteilung auf die Faktoren

an.

Exkurs: Populationsmodelle mit extrem hohen Ladungen

Wurden im Rahmen desselben Designs Populationsmodelle mit Faktorladungen aus
dem Bereich [.80, 1.00[*" zusammengesetzt, betriigt p? nahezu Eins (Range p? .993-.996) und
die Bartlett-Faktorwerte aus dem korrekt spezifizierten Modell korrelierten mit den wahren
Faktorwerten auch zu fast Eins (Range der Korrelationen .994-.997). Das heifit, sehr hohe
Ladungen (hohe Reliabilitdt) fiihrten auch zu einer hohen Validitét (fiir den Begriff vgl. Grice
[2001a, 2001b]) der berechneten Faktorwerte.

*Fiir die Berechnung der Bartlett-Faktorwerte wird die Inverse der Uniqueness-Matrix bendtigt (Grice, 2001b, S.
433). Daher miissen die Eintrdge in der Diagonalen dieser Matrix ungleich Null sein. Aus diesem Grund wurde
die Zahl 1 fiir die zufdllige Erzeugung der Faktorladungen exkludiert, damit die Matrix nicht-singuldr und somit

invertierbar ist.
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2.2.2 Giite der Diagnostik

Die Diagnosen wurden auf Basis der hdchsten wahren Faktorwerte auf beiden Faktoren
wie auch basierend auf den Bartlett-Faktorwerten der beiden Faktoren aus den korrekten
Modellen gebildet. Es wurden unterschiedliche Basisraten fiir die Diagnosegebung verwendet
(die hochsten 97.5%, 95%, 92.5%, 90%, 70%, 50% und 30% auf beiden Faktoren). Es wurden
unterschiedliche univariate Cut-Offs fiir die Vergabe der Diagnosen auf Basis der True Scores
und der Bartlett-Faktorwerte aus den korrekten Modellen verwendet (siehe V. 1.3), die von der
Korrelation der Faktoren in den Populationsmodellen abhingen. Fiir die Evaluation der Gite
der dichotomen Klassifikationen wurden Sensitivitdt, Spezifitit sowie Positiver und Negativer

Pradiktionswert berechnet.

Basisraten und Faktorladungen

Zunichst ist zu erwidhnen, dass die auf Basis der wahren Faktorwerte definierten
bivariaten Basisraten (die 2.5%, 5%, 7.5%, 10%, 30%, 50% und 70% Félle an der
Gesamtpopulation mit den hochsten Faktorwerten auf beiden Faktoren) durch Anwendung der
univariaten Cut-Offs auf die Bartlett-Faktorwerte, die aus den korrekten Modellen berechnet
wurden, nicht reproduziert werden konnten (siche Abbildungen 1a und b).

Die vier kleinen Basisraten in klinischen GréBenordnungen wurden deutlich iiberschétzt
(Uberschitzung bis zu knapp 100 Prozentpunkte der definierten kleinsten Basisrate; siche
Abbildung 1a), die drei groBen Basisraten wurden deutlich unterschétzt (bis zu 25
Prozentpunkte Unterschitzung der groBiten Basisrate; sieche Abbildung 1b). Fiir dieses
Phédnomen konnen die realistisch niedrig definierten Ladungen in den Populationsmodellen
verantwortlich gemacht werden. AuBBerdem wurden bei den hdheren Ladungen im Rahmen
dieses Designs die vier kleinen Basisraten weniger liberschitzt als bei den typischen Ladungen

und die drei groflen Basisraten weniger unterschétzt als bei den typischen Ladungen.
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" Kleine Basisraten aus den Faktorwerten korrekter Modelle
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Abbildung 1a. Uberschitzung der kleinen Basisraten basierend auf den aus den korrekten Modellen berechneten
Bartlett-Faktorwerten, die vier breiten grauen Linien symbolisieren die Basisraten, wie sie in den
Populationsmodellen definiert wurden; die Spalten der x-Achse sind mit den Beschreibungen der

Populationsmodelle gekennzeichnet
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Abbildung 1b. Unterschitzung der groflen Basisraten basierend auf den aus den korrekten Modellen berechneten

Bartlett-Faktorwerten (fiir die Legende siche Abbildung 1a)

&9



Positiver Pradiktionswert

Im Folgenden werden die Auswirkungen der iiber- und unterschétzten Basisraten auf

die Giite der Diagnostik aus den Faktorwerten der korrekten Modelle geschildert.

Alle diagnostischen Kennwerte zeigten eine hohe Abhéngigkeit von den Basisraten.
Kleine Basisraten bzw. Basisraten unter 50% beeintrachtigten vor allem die Rate der korrekt
als krank Erkannten (siehe Abbildung 14 im Anhang) im Vergleich zur Rate an korrekt als
gesund Erkannten (siche Abbildung 15 im Anhang). Die iiberschitzten kleinen und die
unterschétzten groflen Basisraten wirkten sich an erster Stelle auf den Positiven Pradiktionswert

(siche Abbildung 2) aus, an zweiter Stelle auf die Sensitivitit (siche Abbildung 3).

Positiver Pradiktionswert aus den Faktorwerten korrekter Modelle
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Populationsmodelle
Abbildung 2. Positiver Pradiktionswert der Diagnostik basierend auf den Bartlett-Faktorwerten korrekter

Modelle; die Spalten der x-Achse sind im Rahmen dieser und aller folgenden Abbildungen mit den

Beschreibungen der Populationsmodelle gekennzeichnet
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Sensitivitat aus den Faktorwerten korrekter Modelle
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Abbildung 3. Sensitivitdt der Diagnostik basierend auf den Bartlett-Faktorwerten korrekter Modelle

Insgesamt fiel die Anzahl der False Positives (siche Abbildung 16 im Anhang) aus den
Bartlett-Faktorwerten korrekter Modelle zwischen den verschiedenen
Populationsmodellbedingungen heterogener aus als die anderen Kennwerte der diagnostischen
Konsistenzen (siche die Abbildungen 14, 15 und 17 im Anhang), was sich primir auf den
Positiven Priadiktionswert (siche Abbildung 2) auswirkte (Erkldrung folgt unter ,,Exkurs:
Populationsmodelle mit extrem hohen Ladungen* am Ende des Unterkapitels).

Dass der Positive Pradiktionswert (sieche Abbildung 2) bei kleinen Basisraten am
niedrigsten von allen diagnostischen Kennwerten ausfiel, ist darauf zuriickzufiihren, dass bei
kleinen Basisraten, die anhand des korrekten Modells tiberschitzt wurden, einerseits prozentual
an der Gesamtpopulation pro Bedingung gesehen weniger Korrekt Positive auftraten als
Korrekt Negative, und andererseits, dass bei kleinen Basisraten aufgrund deren Uberschitzung
sehr viele Falsch Positive auftraten (sieche Abbildung 16 im Anhang) und weniger Falsch
Negative (siche Abbildung 17 im Anhang; Unterschied zwischen Falsch Positiven und Falsch
Negativen bis zu einem Prozentpunkt an allen Diagnosen insgesamt auf Basis der Faktorwerte
des korrekten Modells). Auf Grund dieser Befunde fiel die Sensitivitét (siche Abbildung 3) bei
kleinen Basisraten auch niedrig aus, aber hoher als der Positive Pradiktionswert. Dadurch, dass

bei grolen Basisraten aufgrund deren Unterschitzung mehr Falsch Negative als Falsch Positive
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auftraten (Unterschied bis zu 10 Prozentpunkte an allen Diagnosen in der Gesamtpopulation
auf Basis der Faktorwerte des korrekten Modells), fiel die Sensitivitit bei grolen Basisraten
niedriger aus als der Positive Priadiktionswert.

Weniger als auf Positiven Pridiktionswert und Sensitivitit wirkten sich die
iiberschétzten kleinen und unterschitzten grofen Basisraten auf den Negativen Pradiktionswert
(siche Abbildung 4) und am wenigsten auf die Spezifitit (siche Abbildung 5) aus. Durch die
Unterschitzung der groflen Basisraten gab es bei der Diagnostik durch die Faktorwerte des
korrekten Modells bei den groflen Basisraten deutlich mehr Falsch Negative (siche Abbildung
17 im Anhang) als Falsch Positive (siche Abbildung 16 im Anhang; Unterschied bis zu 10
Prozentpunkte an allen Diagnosen der Gesamtpopulation auf Basis der Faktorwerte des
korrekten Modells), sodass sich dieser Umstand vor allem auf den Negativen Pradiktionswert
(siche Abbildung 4) niederschlug und weniger auf die Spezifitit (siche Abbildung 5). Dadurch,
dass die Rate der Korrekt Negativen absolut gesehen bei kleinen Basisraten sehr hoch war,
fielen Negativer Pradiktionswert und Spezifitit bei kleinen Basisraten &hnlich aus, da die
kleinen Unterschiede in der Anzahl der Falsch Positiven und der Falsch Negativen hinsichtlich

dieser beiden diagnostischen Kennwerte weniger ins Gewicht fielen.

Negativer Pradiktionswert aus den Faktorwerten korrekter Modelle
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Abbildung 4. Negativer Pradiktionswert der Diagnostik basierend auf den Bartlett-Faktorwerten korrekter

Modelle
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Uber alle diagnostischen Kennwerte hinweg (siehe die Abbildungen 2 bis 5) fiihrte die
ausgewogene Indikatorenaufteilung im Populationsmodell im Vergleich zu unausgewogener zu
marginal besserer Diagnostik auf Basis der Faktorwerte der korrekten Modelle. Der Befund
wird unter 3.2 im Kontext der Befunde zum missspezifizierten Modell diskutiert.

Die Abbildungen 2 bis 5 zeigen die beiden Hauptbefunde hinsichtlich der Diagnostik
auf Basis der Bartlett-Faktorwerte der korrekten Modelle: Die Giite der Diagnostik hing vor
allem von der Hohe der Basisrate ab, aber auch von der Hohe der Faktorladungen und von der
Interaktion aus beidem. Hinsichtlich der Korrektheit eines Krankheitszustands und Korrektheit
einer positiven Diagnose®' zeigten sich kleine Basisraten als problematisch. Sofern die
Korrektheit eines Gesundheitszustands und die Korrektheit einer negativen Diagnose** Ziel der
Diagnostik ist, waren hohe Basisraten fiir das Vorliegen einer positiven Diagnose ungiinstig.
Mit hoheren Faktorladungen in den Populationsmodellen stieg sowohl die Giite der Diagnostik
anhand aller vier Kennwerte als auch wurde der Einfluss der unterschiedlichen Basisraten auf
die Giite der Diagnostik mit hoheren Ladungen geringer (siche Modelle 7 bis 12 in den
Abbildungen 2 bis 5).

Spezifitit aus den Faktorwerten korrekter Modelle

1 y o A — — o a8
0.9
0.8
0.7
~ .
;g 0.6 —®— Basisrate 2.5%
'] 05 —®— Basisrate 5%
O
c%.‘ 0.4 Basisrate 7.5%
0.3 Basisrate 10%
0.2 —@— Basisrate 30%
0.1
—®— Basisrate 50%
0

Modell Modell Modell Modell Modell Modell Modell Modell Modell Modell Modell Modell —@— Basisrate 70%
1:.80, 2:.50, 3:.30, 4:.80, 5:.50, 6:.30, 7:.80, 8:.50, 9:.30, 10:.80, 11:.50, 12: .30,

[20, [20, [20, [20, [20, [20, [40, [40, [40, [40, [.40, [.40,

40], .40], .40], .40], .40], .40], .60, .60], .60], .60], .60], .60l

10:10 10:10 10:10 15:5 15:5 15:5 10:10 10:10 10:10 15:5 15:5 15:5

Populationsmodelle
Abbildung 5. Spezifitit der Diagnostik basierend auf den Bartlett-Faktorwerten korrekter Modelle

“Qensitivitit und Positiven Pridiktionswert betreffend

*respektive Spezifitit und Negativem Pradiktionswert
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Exkurs: Populationsmodelle mit extrem hohen Ladungen

Aus Vergleichsgriinden wurden Populationsdaten basierend auf Populationsmodellen
mit unrealistisch hohen Ladungen aus dem Bereich [.80, 1.00[ erzeugt. Diese
Populationsmodelle entsprachen mit Ausnahme der Hohe der Ladungen den unter V. 1.2
beschriebenen Modellbedingungen.

Wie bereits unter V. 2.2.1 erwéhnt, stieg die Validitét der berechneten Faktorwerte aus
den korrekten Modellen mit der Hohe der Faktorladungen. In Konsequenz dessen wurden bei
Verwendung dieser extrem hohen Ladungen auch die im Rahmen der Populationsmodelle
definierten Basisraten reproduziert (Unterschiede zwischen den Basisraten bei den True Scores
und den Basisraten aus den Faktorwerten korrekter Modelle unter 0.1 Prozentpunkten).

Die Befunde zur Diagnostik basierend auf den Bartlett-Faktorwerten korrekter Modelle,
die auf die Populationsdaten angewandt wurden, die aus Modellen mit extrem hohen
Faktorladungen erzeugt wurden, zeigten, dass sich die Verteilungseigenschaften der
Faktorwerte aus diesen Modellen denen der True Scores anndherten (SD der wahren
Faktorwerte 0.999-1.000 versus SD der Faktorwerte aus korrekten Modellen 1.003-1.006). Bei
den realistisch hoch definierten Ladungen im Rahmen dieses Designs wichen die
Verteilungseigenschaften der Faktorwerte aus den korrekten Modellen hingegen stirker von
denen der Populationsfaktorwerte ab (SD der Faktorwerte aus den korrekten Modellen mit
realistisch hohen Ladungen tiber die Modellbedingungen hinweg 1.218-1.492).

Wurden diese extrem hohen Ladungen zur Generierung der Populationsmodelle
verwendet, sanken Sensitivitit und Positiver Pradiktionswert selbst bei kleinen Basisraten nicht
unter .895. Mit extrem hohen Ladungen schwankte die Anzahl der False Positives weniger mit
den Populationsmodellbedingungen (Unterschiede innerhalb einer Bedingung maximal 1
Prozentpunkt iiber die Basisraten hinweg an allen Diagnosen) und insofern variierte auch der
Positive Priadiktionswert weniger (maximaler Range .895-.981 innerhalb einer Bedingung) als
bei den Ladungen, die fiir das vorliegende Design verwendet wurden. Negativer
Priadiktionswert und Spezifitit sanken bei groBen Basisraten nicht unter .951. Das heilt, mit
sehr hohen Faktorladungen konnte der Einfluss der Hohe der Basisrate auf die Giite der
Diagnostik weitestgehend ausgeglichen werden.

Eine Einschrankung dieser Befunde zu den extrem hohen Ladungen stellt allerdings dar,
dass die Modellschdtzung mittels Maximum-Likelihood-Algorithmus bei drei der korrekten

Modelle nicht konvergierte. Allerdings lagen die frei zu schitzenden Modellparameter,
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insbesondere die Faktorladungen dieser Modelle, welche primir fiir die Schatzung der Bartlett-
Faktorwerte verantwortlich sind, sehr nahe an den in den Populationsmodellen definierten
Parametern (Unterschiede <.0015 bei standardisierten Ladungen), weshalb diese Befunde trotz

dieser Einschrankung als erwdahnenswert gelten.

2.2 Faktorwerte missspezifizierter Modelle

2.3.1 Korrelationen

Auch bei Anwendung des missspezifizierten Modells auf die Populationsdaten wurde
zundchst die Validitit (Grice, 2001a, 2001b) der Faktorwerte selbst bestimmt, die aus diesem
missspezifizierten Modell geschitzt wurden, bevor die Validitdt der Diagnosen aus den
Faktorwerten des missspezifizierten Modells bestimmt wurde. Dazu wurden die wahren
Faktorwerte der beiden definierten obliquen Faktoren jeweils mit den Bartlett-Faktorwerten des
einen Faktors aus dem missspezifizierten Modell korreliert.

Es zeigte sich, dass die Hohe der Ladungen in den Populationsmodellen einen Einfluss
auf die Korrelationen der wahren Faktorwerte mit den Bartlett-Faktorwerten aus dem
missspezifizierten Modell hatte (siehe Tabelle 13). Hohe Faktorladungen fiihrten zu héheren
Korrelationen (Unterschiede zu typischen Faktorladungen auf der ersten Dezimalstelle). Die
unausgewogene Indikatorenaufteilung im Populationsmodell (geringerer Grad an
Missspezifikation) fiihrte im Vergleich zur gleichméBigen Aufteilung zu geringfiigig héheren
Korrelationen der Faktorwerte der ersten Faktoren (iiberreprésentiert durch 15 Indikatoren im
Populationsmodell) mit den Faktorwerten aus dem eindimensionalen missspezifizierten Modell
mit den 20 Indikatoren (Unterschiede auf der zweiten Dezimalstelle). Umgekehrt ergaben die
Korrelationen der Faktorwerte der zweiten Faktoren (5 Indikatoren im Populationsmodell) mit
den Faktorwerten aus dem missspezifizierten Modell mit den 20 Indikatoren im Vergleich zur
gleichmidfBigen Indikatorenaufteilung auf die Faktoren im Populationsmodell geringfiigig
niedrigere Korrelationen (siche Tabelle 13; Unterschiede auf der zweiten Dezimalstelle). Fiir
diesen Befund konnen zwei alternative Erkldrungen angefiihrt werden. Die erste Erkldrung
betrifft den Grad der Missspezifikation operationalisiert an der Indikatorenaufteilung in den
Populationsmodellen. Das missspezifizierte Modell lag mit den 20 Indikatoren ndher am
Populationsmodell mit unausgewogener Itemaufteilung, dies konnte sich positiv auf die

Korrelation zwischen den Faktorwerten des missspezifizierten Modells und dem ersten wahren
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Faktor ausgewirkt haben und negativ auf die Korrelation der Faktorwerte des missspezifizierten
Modells und dem zweiten wahren Faktor. Als zweite mogliche Erkldrung wird die
Indikatorenanzahl in Betracht gezogen. Mehr Indikatoren pro Faktor fithren zu valideren
Faktorwerteschitzungen als weniger Indikatoren (Estabrook & Neale, 2013). Auerdem néhern
sich die Verteilungseigenschaften der geschétzten Faktorwerte mehr denen der True Scores an,

wenn die Indikatorenanzahl hoher ist im Vergleich zu niedriger (Lawley & Maxwell, 1971).

Tabelle 13

Korrelationen der wahren Faktorwerte und der Faktorwerte aus dem missspezifizierten Modell

Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 50 30 80 50 30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5
Wi 7797 6987 6517 816 8017 797
wam 774 6747 589" AT 4957 312
Modell 7: Modell 8: Modell 9: Modell 10: Modell 11: Modell 12:
.80 50 30 80 50 30
.40, .60] .40, .60] [.40, .60] [.40, .60] .40, .60] [.40, .60]
10:10 10:10 10:10 15:5 15:5 15:5
Wi 887 807 7807 9277 9207 9207
Twam 882" 784" 6807 811 5557 3467

Anmerkungen. rwiq = Korrelation der wahren Faktorwerte des ersten definierten Faktors mit den Bartlett-
Faktorwerten des Faktors des missspezifizierten Modells, rw, v = Korrelation der wahren Faktorwerte des zweiten
definierten Faktors mit den Bartlett-Faktorwerten des Faktors des missspezifizierten Modells, " = hochst
signifikanter Zusammenhang. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die
Hohe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden

und das Verhéltnis gibt die Indikatorenaufteilung auf die Faktoren an.

Hohere Faktorkorrelationen in den Populationsmodellen (geringere Missspezifikation)
fithrten im Vergleich zu geringen und mittleren Faktorkorrelationen (hdhere Missspezifikation)
zu hoheren Korrelationen der wahren Faktorwerte mit den Faktorwerten aus dem
missspezifizierten Modell, wobei sich dieser Unterschied bei der unausgewogenen
Indikatorenaufteilung nur auf der zweiten und dritten Dezimalstelle zeigte und demnach nicht
iiberinterpretiert werden sollte (siche Tabelle 13).

Insgesamt fithrte die Missspezifikation zu &hnlich hohen Korrelationen der

Populationsfaktorwerte und der aus dem missspezifizierten Modell geschitzten Bartlett-

96



Faktorwerte wie die Anwendung des korrekten Modells auf die Populationsdaten (vgl. die

Tabellen 11 und 13).

Dass die Faktorladungen groBen Einfluss auf die Berechnung der Bartlett-Faktorwerte
hatten und dementsprechend negative Auswirkungen auf die Giite der Diagnostik, wurde
bereits im vorherigen Unterkapitel anhand der Anwendung korrekter Modelle illustriert. Daher
sind die Auswirkungen der niedrigen Ladungen auf die Faktorenunbestimmtheit ebenso von

Interesse, wenn zusitzlich noch eine Missspezifikation vorliegt.

Tabelle 14

Unbestimmtheit der Faktorwerte im missspezifizierten Modell

Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 50 30 80 50 30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5
P2\ 666 616 5757 675 6507 6397
P*ME 3317 232" 1517 349" 3017 278"
Modell 7: Modell 8: Modell 9: Modell 10: Modell 11: Modell 12:
.80 50 30 80 50 30
.40, .60] .40, .60] [.40, .60] [.40, .60] .40, .60] .40, .60]
10:10 10:10 10:10 15:5 15:5 15:5
P2\ 8637 8307 80277 8697 856 8517
P*MF 726" 660" 6057 739" 1277 70177

Anmerkungen. p?> = MabB fiir die Hohe der Faktorenunbestimmtheit (Guttman, 1955, S. 73), p* = MaB fiir die
maximal mogliche Unbestimmtheit der Faktorwerte (Guttman, S. 73), MF = Faktor des missspezifizierten
Modells, " = hochst signifikanter Zusammenhang. Die Zellen der Beschreibung der Populationsmodelle enthalten
als ersten Wert die Hohe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen

gezogen wurden und das Verhéltnis gibt die Indikatorenaufteilung auf die Faktoren an.

Die Faktorenunbestimmtheit war fiir den einen Faktor im missspezifizierten Modell bei
hohen Ladungen niedriger als bei typischen Ladungen (siche Tabelle 14). Die Bestimmtheit des
Faktors im missspezifizierten Modell stieg geringfiigig mit steigender Faktorkorrelation im
Populationsmodell, also mit geringerer Missspezifikation, wobei der Unterschied zwischen
diesen Bedingungen in elf der zwolf Bedingungen nur auf der zweiten oder dritten

Dezimalstelle deutlich wurde (siche Tabelle 14). Ebenso war die Bestimmtheit des Faktors bei
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der unausgewogenen Indikatorenaufteilung (geringere Missspezifikation) geringfiigig hoher als

bei der ausgewogenen Aufteilung (héhere Missspezifikation).

Exkurs: Populationsmodelle mit extrem hohen Ladungen

Wurden im Gegensatz zum Design dieser Studie mit realistischen Faktorladungen
extrem hohe Faktorladungen aus dem Bereich [.80, 1.00[ fiir die Generierung der
Populationsmodelle verwendet, war die Faktorenbestimmtheit sehr hoch (Range p? .993-.995)
bzw. die Faktorenunbestimmtheit sehr niedrig. Bei den Populationsmodellen mit extrem hohen
Ladungen wurde ersichtlich, dass sich die Missspezifikation stirker negativ auf die Validitat
der Faktorwerte des missspezifizierten Modells auswirkte als bei der Verwendung realistisch
hoher Ladungen: Die Differenz zwischen der Korrelation der Faktorwerte des ersten wahren
Faktors und den Faktorwerten des missspezifizierten Modells und der Korrelation der
Faktorwerte des zweiten wahren Faktors und den Faktorwerten des missspezifizierten Modells
wurde grofler (Unterschiede bis zu .691). AuBBerdem stieg die Differenz dieser Korrelationen
mit steigendem Grad an Missspezifikation (von .129 bis zu .691 bei schwerwiegender

Missspezifikation), operationalisiert an der Faktorkorrelation im Populationsmodell.

2.3.2 Giite der Diagnostik

Es wurde untersucht, wie die diagnostischen Kennwerte ausfallen wiirden, wenn die
dichotomen Diagnosen auf Basis der Bartlett-Faktorwerte des einen Faktors im
missspezifizierten Modell getroffen wurden. Fiir die Diagnosegebung wurden univariate
Basisraten von 2.5%, 5%, 7.5%, 10%, 30%, 50% und 70% fiir die Klassifikation nach den

hochsten Faktorwerten des einen Faktors aus dem missspezifizierten Modell verwendet.

Basisraten und Missspezifikation versus korrekte Spezifikation

Durch die univariaten Cut-Offs fiir die Basisraten im missspezifizierten Modell konnte
sichergestellt werden, dass die Raten der Diagnosen dieselben waren wie die Raten an
Diagnosen basierend auf den bivariaten Cut-Offs der Populationsmodelle. Dementsprechend
verhielten sich die Befunde aus dem missspezifizierten Modell, wenn man sie mit den

Ergebnissen aus dem korrekten Modell vergleicht. Dadurch, dass bei Anwendung des korrekten
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Modells die kleinen Basisraten iiberschitzt und die groBen unterschétzt wurden, resultierte die
Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells in weniger Korrekt
Positiven bei kleinen Basisraten und in mehr Korrekt Positiven bei groflen Basisraten im
Vergleich zur Diagnostik auf Basis der Faktorwerte des korrekten Modells (sieche die
Abbildungen 14 und 18 im Anhang). Dementsprechend fiihrten die Faktorwerte des
missspezifizierten Modells bei kleinen Basisraten zu mehr Korrekt Negativen und bei grof3en
Basisraten zu weniger Korrekt Negativen als die Faktorwerte des korrekten Modells (siehe die
Abbildungen 15 und 19 im Anhang).

Da die True Positives im Rahmen des Designs weniger mit den Basisraten schwankten
als die True Negatives —letztere wiesen eine groflere Spannweite auf (sieche die Abbildungen 14
und 15 im Anhang) — fielen die False Positives und die False Negatives (siehe die Abbildungen
16 und 17 im Anhang) in Relation zu den True Positives mehr ins Gewicht als in Relation zu
den True Negatives. Dieser Befund zeigte sich auch bei der Diagnostik auf Basis der
Faktorwerte des korrekten Modells. Dementsprechend beeintrachtigte die Diagnostik auf Basis
der Faktorwerte des missspezifizierten Modells den Positiven Pradiktionswert (siche Abbildung
6), aber auch die Sensitivitét (siche Abbildung 7). Da die Anzahl an False Positives (siche
Abbildung 20 im Anhang) und False Negatives (siche Abbildung 21 im Anhang) durch das
missspezifizierte Modell dhnlich hoch ausfielen, fielen die diagnostischen Kennwerte Positiver
Pradiktionswert und Sensitivitit sehr dhnlich aus (siche Abbildungen 7 und 8).

Letzterer Befund, dass die Rate der False Positives und der False Negatives basierend
auf den Faktorwerten des missspezifizierten Modells dhnlich hoch ausfiel, erklirt auch den
Unterschied zum Positiven Pradiktionswert und zur Sensitivitdt basierend auf den Diagnosen
durch die Faktorwerte des korrekten Modells (vgl. die Abbildungen 2 und 3 mit den
Abbildungen 6 und 7): Bei den korrekten Modellen traten bei kleinen Basisraten mehr Falsch
Positive auf als Falsch Negative (Unterschiede von bis zu 1 Prozentpunkt an allen Diagnosen
je Populationsbedingung auf Basis der Faktorwerte korrekter Modelle) und die Falsch Positiven
schwankten mehr mit den Modellbedingungen als die Falsch Negativen (Unterschiede unter 10
Prozentpunkten auf Basis der korrekten Modelle bei den Falsch Positiven versus unter 1
Prozentpunkt bei den Falsch Negativen bei allen Diagnosen in der Population). Bei den grof3en
Basisraten verhielt sich dies umgekehrt (vgl. die Abbildungen 16 und 17 mit den Abbildungen
20 und 21 im Anhang).
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Abbildung 6. Positiver Pradiktionswert der Diagnostik basierend auf den Bartlett-Faktorwerten missspezifizierter
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Abbildung 7. Sensitivitdt der Diagnostik basierend auf den Bartlett-Faktorwerten missspezifizierter

Modelle

100



Negativer Pradiktionswert

Spezifitét

Negativer Priadiktionswert aus den Faktorwerten missspez. Modelle

1 Aema—pa—a—9 o O0—2_2__29_2 9

0.9 w./\

0.8 ‘\‘\/\‘\/\‘\/‘\‘\‘

0.7

0.6 —— Basisrate 2.5%
0.5 —O— Basisrate 5%
0.4 —®— Basisrate 7.5%
0.3 Basisrate 10%
0.2 —@— Basisrate 30%
0-(1) —@— Basisrate 50%

Modell Modell Modell Modell Modell Modell Modell Modell Modell Modell Modell Modell —®— Basisrate 70%
1:.80, 2:.50, 3:.30, 4:.80, 5:.50, 6:.30, 7:.80, 8:.50, 9:.30, 10:.80,11:.50,12: .30,
[20, [.20, [.20, [.20, [.20, [.20, [.40, [.40, [.40, [.40, [.40, [.40,
40],  .40], .40], .40], .40], .40], .60], .60], .60], .60], .60], .60],
10:10 10:10 10:10 15:5 155 155 10:10 10:10 10:10 15:5 155 15:5

Populationsmodelle

Abbildung 8. Negativer Pradiktionswert der Diagnostik basierend auf den Bartlett-Faktorwerten

missspezifizierter Modelle
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Abbildung 9. Spezifitit der Diagnostik basierend auf den Bartlett-Faktorwerten missspezifizierter Modelle
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Negativer Pradiktionswert (sieche Abbildung 8) und Spezifitit (siche Abbildung 9)
schwankten weniger mit den Basisraten als Positiver Priadiktionswert und Sensitivitit, da
insbesondere bei den kleinen Basisraten die Rate der Richtig Negativen sehr hoch war (siche
Abbildung 19 im Anhang). Bei den groen Basisraten, bei denen sich die Anzahl der positiven
und negativen Fille an sich stdrker anndherten als bei den kleinen Basisraten, schwankten

Negativer Pradiktionswert und Spezifitit mehr (siche Abbildung 8 und 9).

Zusammenfassend ist zu sagen, dass sich die Missspezifikation im Vergleich zur
korrekten Spezifikation des Modells vor allem negativ auf die Sensitivitdt bei kleinen
Basisraten und auf die Spezifitét bei groen Basisraten auswirkte. Die Diagnostik auf Basis der
Faktorwerte des missspezifizierten Modells unterschied sich im Vergleich zur Diagnostik auf
Basis der Faktorwerte des korrekten Modells im gravierendsten Fall um 28 Prozentpunkte bei
der kleinsten Basisrate hinsichtlich der Sensitivitit und um 17 Prozentpunkte bei der groften
Basisrate hinsichtlich der Spezifitit. Allerdings konnte die Missspezifikation im Vergleich zur
korrekten Spezifikation des Modells — je nach betrachtetem diagnostischen Kennwert — durch
eine geringe Basisrate (Negativer Priadiktionswert und Spezifitéit) oder hohe Basisrate (Positiver

Pradiktionswert und Sensitivitit) ausgeglichen werden.

Basisraten und Grade der Missspezifikation

Die psychometrischen  Auswirkungen der unterschiedlichen Grade der
Missspezifikation wie auch der unterschiedlichen Basisraten auf die Giite der Diagnostik auf
Basis der Faktorwerte wurden an allen diagnostischen Kennwerten deutlich (siehe die
Abbildungen 6 bis 9). AuBBerdem interagierte der Grad der Missspezifikation mit der Hohe der
Basisrate. Beide Befunde werden im Folgenden niher beschrieben.

Mit sinkender Faktorkorrelation im Populationsmodell (hdherer Grad an
Missspezifikation im Vergleich zu hoherer Faktorkorrelation) sanken alle diagnostischen
Kennwerte. Aulerdem zeigten alle vier diagnostischen Kennwerte, dass sich die verschiedenen
Grade an Missspezifikation bei den vier kleinen Basisraten gravierender auswirkten als bei den
drei groflen Basisraten (siche die Abbildungen 6 bis 9). Zwischen der Bedingung mit der
hochsten Faktorkorrelation im Populationsmodell (geringe Missspezifikation) und der
geringsten Faktorkorrelation im Populationsmodell (hohe Missspezifikation) gab es

hinsichtlich der Giite der Diagnostik bei kleinen Basisraten Unterschiede von bis zu 28
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Prozentpunkten, bei groen Basisraten von bis zu 12 Prozentpunkten in der Richtung, als dass
bei hoherem Grad der Missspezifikation (geringerer Faktorkorrelation) die diagnostischen
Kennwerte sanken.

Die Diagnostik auf Basis einer unausgewogenen Indikatorenaufteilung fiihrte im
Vergleich zu einer ausgewogenen Indikatorenaufteilung im Populationsmodell zu schlechterer
Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells. Bei kleinen Basisraten
war die Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells bei einer
unausgewogenen Indikatorenaufteilung im Populationsmodell um bis zu 19 Prozentpunkte
schlechter als bei einer ausgewogenen Aufteilung, bei groBen Basisraten um bis zu 5
Prozentpunkte schlechter. Als Begriindung fiir diesen Befund kann angefiihrt werden, dass die
geschitzten Faktorladungen der missspezifizierten Modelle, die auf Populationsdaten aus
Modellen mit unausgewogener Indikatorenaufteilung angewandt wurden, breiter streuten (SD
.063-.157 bei standardisierten Ladungen) als die geschitzten Faktorladungen der
missspezifizierten Modelle, die auf Populationsdaten aus Modellen mit ausgewogener
Indikatorenaufteilung angewandt wurden (SD .050-.059 bei standardisierten Ladungen). Die
Streuung der Faktorladungen der missspezifizierten Modelle, denen Populationsdaten auf Basis
einer unausgewogenen Aufteilung zugrunde lagen, wich auflerdem stérker von der Streuung
der definierten Faktorladungen in den Populationsmodellen ab (Unterschied maximal .10 bei
standardisierten Ladungen) als die Faktorladungen der missspezifizierten Modelle, die auf die
Daten mit einer ausgewogenen Indikatorenaufteilung im Populationsmodell angewandt wurden
(Unterschied maximal .013 bei standardisierten Ladungen). Die Ladungen sind, wie bereits
beschrieben, primér verantwortlich fiir die Berechnung der Bartlett-Faktorwerte. Der Befund

wird unter 3.2 niher diskutiert.

Faktorladungen

Auch bei Anwendung des missspezifizierten Modells fithrten hoheren Faktorladungen
(Modelle 7 bis 12) zu hoheren diagnostischen Kennwerten (siche die Abbildungen 6 bis 9).
Dass die Diagnostik auf Basis der Faktorwerte des unterschiedlich stark missspezifizierten
Modells im Vergleich zur korrekten Spezifikation des Modells nicht zu noch grofleren
negativen Auswirkungen fiihrte, lag wiederum an den realistisch niedrig gewihlten
Faktorladungen des Populationsmodells. Diese bewirkten bereits eine starke Beeintréchtigung

der Giite der Diagnostik auf Basis der Bartlett-Faktorwerte des korrekten Modells (so zum
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Beispiel im gravierendsten Fall einen Positiven Pradiktionswert von .240 bei der kleinsten

Basisrate oder einen Negativen Pradiktionswert von .529 bei der grof3ten Basisrate).

Exkurs: Populationsmodelle mit extrem hohen Ladungen

Einerseits zeigten die Ergebnisse, dass hohere Faktorladungen im Populationsmodell
(Modelle 7 bis 12 in den Abbildungen) anhand aller vier diagnostischen Kennwerte zu besserer
Diagnostik fiihrten, und dies sowohl, wenn die Diagnostik auf Basis der Faktorwerte des
korrekten Modells erfolgte (siche die Abbildungen 2 bis 5), als auch basierend auf den
Faktorwerten des missspezifizierten Modells (siche die Abbildungen 6 bis 9). Andererseits
wurden die negativen Auswirkungen der Missspezifikation auf die Diagnostik erst in vollem
Umfang ersichtlich, sobald wiederum aus Vergleichsgriinden extrem hohe Faktorladungen aus
dem Bereich [.80, 1.00[ zur Generierung der Populationsmodelle verwendet wurden. Die
diagnostischen Kennwerte schwankten hier deutlicher mit dem Grad der Missspezifikation als
bei den realistisch gewéhlten Faktorladungen und der Grad der Missspezifikation interagierte
gleichzeitig wiederum mit der Hohe der Basisrate. Ein hoherer Grad an Missspezifikation
beeintrichtigte vor allem Sensitivitdt und Positiven Pradiktionswert, wenn die Basisrate gering
war™. Der Grad der Missspezifikation wirkte sich auch auf den Negativen Pradiktionswert und
die Spezifitit aus™, allerdings in geringerem Mafe als auf die Sensitivitit und den Positiven
Priadiktionswert. Auflerdem konnte die Missspezifikation im Vergleich zu einer korrekten
Spezifikation auch bei den extrem hohen Ladungen in den Populationsmodellen in hohem Maf3e
ausgeglichen werden, wenn die Basisrate, je nach Kennwert, entsprechend niedrig oder hoch

war. Sensitivitdt und Positiver Pradiktionswert sanken bei der groften Basisrate von 70%

Range der Sensitivitit bei geringer Faktorkorrelation (hoher Missspezifikation) und extrem hohen Ladungen in
den Populationsmodellen .299-.946, bei hoher Faktorkorrelation (geringe Missspezifikation) .737-.946; Range des
Positiven Pradiktionswerts bei geringer Faktorkorrelation (hoher Missspezifikation) und extrem hohen Ladungen
in den Populationsmodellen .299-.945, bei hoher Faktorkorrelation (geringer Missspezifikation) .736-.945 (zum
Vergleich siehe die Abbildungen 6 und 7).

*Range des Negativen Pridiktionswerts bei geringer Faktorkorrelation (hoher Missspezifikation) und extrem
hohen Ladungen in den Populationsmodellen .687-.993, bei hoher Faktorkorrelation (geringer Missspezifikation)
.874-.993; Range der Spezifitit bei geringer Faktorkorrelation (hoher Missspezifikation) und extrem hohen
Ladungen in den Populationsmodellen .686-.993, bei hoher Faktorkorrelation (geringer Missspezifikation) .873-
.993 (zum Vergleich siehe die Abbildungen 8 und 9).
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unabhingig vom Grad der Missspezifikation nicht unter .865, Spezifitit und Positiver

Pradiktionswert sanken bei der kleinsten Basisrate von 2.5% nicht unter .982.

2.4 Gesamtsummenwerte

2.4.1 Korrelationen

Im Rahmen einer Nebenfragestellung wurden Diagnosen auf Basis der
Gesamtsummenwerte gegeben, auf deren Basis, wie bereits unter III. 5.2 beschrieben, hdufig
psychologische Diagnosen vergeben werden.

Die Gesamtsummenwerte wurden iiber die 20 auf Basis der Populationsfaktorwerte
erzeugten Indikatoren gebildet. Diese Diagnosen wurden ebenfalls mit den Diagnosen
basierend auf den wahren Faktorwerten beider Populationsfaktoren anhand der diagnostischen
Kennwerte verglichen. Die Anwendung der Gesamtsummenwerte zur Diagnostik unterschied
sich insofern von der Anwendung der Faktorwerte eines missspezifizierten Modells, als dass
alle Indikatoren bei der Aufsummierung die gleichen Gewichtungsfaktoren bekamen; die
Gewichtungsfaktoren/Faktorladungen des missspezifizierten Modells, auf dessen Basis die
Faktorwerte berechnet wurden, waren heterogen.

Zunichst wurden die Gesamtsummenwerte mit den wahren Faktorwerten der
entsprechenden Populationsbedingungen korreliert (siche Tabelle 15).

Auch bei der Korrelation der wahren Faktorwerte mit den Gesamtsummenwerten hatte
die Hohe der Ladungen in den Populationsmodellen einen Einfluss auf die Giite der Diagnostik
auf Basis der Gesamtsummenwerte (siche Tabelle 15): Hohe Faktorladungen im Vergleich zu
typischen Faktorladungen in den Populationsmodellen fiihrten zu hoheren Korrelationen der
Gesamtsummenwerte mit den beiden Faktoren der Populationsmodelle. AuBlerdem fiihrten
hohere Faktorkorrelationen in den Populationsmodellen im Vergleich zu geringen und mittleren
Faktorkorrelationen zu hdheren Korrelationen der wahren Faktorwerte mit den
Gesamtsummenwerten. Die unausgewogene Indikatorenaufteilung fiihrte im Vergleich zur
gleichmidfigen Aufteilung zu hoheren Korrelationen der Faktorwerte der ersten
Populationsfaktoren mit den Gesamtsummenwerten. Umgekehrt korrelierten die Faktorwerte
der zweiten Populationsfaktoren niedriger mit den Gesamtsummenwerten als bei der

ausgewogenen Itemaufteilung. Insgesamt dhnelten die Ergebnisse stark den unter 2.3.1

105



beschriebenen zur Diagnostik auf Basis der Faktorwerte des eindimensionalen

missspezifizierten Modells.

Tabelle 15

Korrelationen der wahren Faktorwerte und der Gesamtsummenwerte

Modell 1: Modell 2: Modell 3: Modell 4: Modell 5: Modell 6:
.80 50 30 80 50 30
[.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40] [.20, .40]
10:10 10:10 10:10 15:5 15:5 15:5
Twis 7707 6837 6207 8057 776 755
Iwa-s 768" 6767 609" 718" 548" 426"
Modell 7: Modell 8: Modell 9: Modell 10: Modell 11: Modell 12:
.80 50 30 80 50 30
.40, .60] .40, .60] [.40, .60] [.40, .60] .40, .60] .40, .60]
10:10 10:10 10:10 15:5 15:5 15:5
Twis 8837 797 7347 9207 897 8827
I'wa-s 8817 7927 727 822" 6367 5027

Anmerkungen. rw;.s = Korrelation der wahren Faktorwerte des ersten definierten Faktors mit den Summenwerten,
rws.s = Korrelation der wahren Faktorwerte des zweiten definierten Faktors mit den Summenwerten, " = hochst
signifikanter Zusammenhang. Die Zellen der Beschreibung der Populationsmodelle enthalten als ersten Wert die
Hohe der Faktorkorrelation, der Bereich bezeichnet das Intervall, aus dem die Faktorladungen gezogen wurden

und das Verhéltnis gibt die Indikatorenaufteilung auf die Faktoren an.

Exkurs: Populationsmodelle mit extrem hohen Ladungen

Wurden wiederum die extrem hohen Faktorladungen aus dem Bereich [.80, 1.00[ fiir
die Generierung der Populationsmodelle verwendet, wird ersichtlich, dass auch die
Korrelationen der Gesamtsummenwerte mit den Faktorwerten des ersten und zweiten
Populationsfaktors im Vergleich zu den realistisch gewéhlten Faktorladungen des vorliegenden
Designs (siche Tabelle 13) deutlich stiegen®. AuBerdem fiihrten héhere Faktorkorrelationen in

den Populationsmodellen im Vergleich zu geringen und mittleren Faktorkorrelationen zu

“Korrelationen der Gesamtsummenwerte mit den Faktorwerten des ersten Populationsfaktors .802-.983;

Korrelationen der Gesamtsummenwerte mit den Faktorwerten des zweiten Populationsfaktors .546-.943
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hoheren Korrelationen der wahren Faktorwerte mit den Gesamtsummenwerten®*. Die
unausgewogene Indikatorenaufteilung fiihrte im Vergleich zur ausgewogenen zu geringfiigig
hoheren Korrelationen der Faktorwerte der ersten Populationsfaktoren mit den
Gesamtsummenwerten;  umgekehrt  korrelierten die  Faktorwerte der  zweiten
Populationsfaktoren geringfiigig niedriger mit den Gesamtsummenwerten als bei der

ausgewogenen Itemaufteilung®’.

2.4.2 Giite der Diagnostik

Es wurde untersucht, wie hoch die diagnostischen Kennwerte ausfallen, wenn
dichotome Diagnosen, die auf Basis der hochsten wahren Faktorwerte zweier obliquer Faktoren
in der Population gebildet wurden, auf Basis der hochsten Gesamtsummenwerte iiber alle
Indikatoren vergeben wurden. Fiir die Diagnosegebung auf Basis der Gesamtsummenwerte
wurden wiederum univariate Basisraten von 2.5%, 5%, 7.5%, 10%, 30%, 50% und 70%

verwendet.

Basisraten

Dadurch, dass im korrekten Modell die kleinen Basisraten itiberschitzt und die groen
unterschétzt wurden, resultierte die Diagnostik auf Basis der Gesamtsummenwerte genauso wie
auf Basis der Faktorwerte des missspezifizierten Modells in weniger Korrekt Positiven (siche
Abbildung 22 im Anhang) bei kleinen Basisraten und in mehr Korrekt Positiven bei groB3en
Basisraten im Vergleich zur Diagnostik auf Basis der Faktorwerte des korrekten Modells.
Dementsprechend flihrten die Gesamtsummenwerte wie die Faktorwerte des missspezifizierten

Modells bei kleinen Basisraten zu mehr Korrekt Negativen (sieche Abbildung 23 im Anhang)

*Die Korrelationen der zu .80 korrelierten True Scores mit den Gesamtsummenwerten lagen zwischen .878-.983,
wohingegen sich die Korrelationen der zu .50 oder zu .30 korrelierten wahren Faktorwerte zwischen .546-.965
bewegten.

“Korrelation der Gesamtsummenwerte mit den True Scores ersten Faktors bei unausgewogener
Indikatorenaufteilung im Populationsmodell .955-.983, bei ausgewogener .802-.944;

Korrelationen der Gesamtsummenwerte mit den True Scores des zweiten Faktors bei unausgewogener

Indikatorenaufteilung im Populationsmodell .546-.878, bei ausgewogener .798-.943.
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und bei groBBen Basisraten zu weniger Korrekt Negativen als die Faktorwerte des korrekten
Modells.

Die Abbildungen 10 bis 13 zeigen die Giite der Diagnostik auf Basis der
Gesamtsummenwerte. Die Giite der Diagnostik auf Basis der Gesamtsummenwerte stieg bei
steigender Faktorkorrelation des Populationsmodells, aus dem die Daten erzeugt wurden. Eine
unausgewogene Indikatorenaufteilung im Populationsmodell im Vergleich zu einer
ausgewogenen fiihrte in Interaktion mit einer kleinen Basisrate auBerdem zu geringfiigig
niedrigeren Werten (Unterschiede maximal 7 Prozentpunkte) hinsichtlich der Sensitivitét (siche
Abbildung 11) und des Positiven Pradiktionswerts (sieche Abbildung 10) und in Interaktion mit
groflen Basisraten zu maximal zwei Prozentpunkten Unterschied hinsichtlich Spezifitdt (siche

Abbildung 13) und Negativem Pradiktionswert (siche Abbildung 12).
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Abbildung 10. Positiver Pradiktionswert der Diagnostik basierend auf den Gesamtsummenwerten
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Abbildung 11. Sensitivitit der Diagnostik basierend auf den Gesamtsummenwerten

Negativer Pradiktionswert auf Basis der Gesamtsummenwerte
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Abbildung 12. Negativer Pradiktionswert der Diagnostik basierend auf den Gesamtsummenwerten
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Abbildung 13. Spezifitit der Diagnostik basierend auf den Gesamtsummenwerten

Basisraten und Gesamtsummenwerte versus Faktorwerte der korrekten Modelle

Insgesamt fiihrte die Diagnostik auf Basis der Gesamtsummenwerte im Vergleich zur

Diagnostik auf Basis der Bartlett-Faktorwerte des korrekten Modells vor allem zu Einbuf3en

hinsichtlich der Sensitivitdt bei kleinen Basisraten (Unterschiede von bis zu knapp 17

Prozentpunkten zwischen der Diagnostik auf Basis der Faktorwerte des korrekten Modells und

auf Basis der Gesamtsummenwerte). Umgekehrt beeinflusste die Diagnostik auf Basis der

Gesamtsummenwerte aber auch die Spezifitét bei groen Basisraten negativ (Unterschiede bis

zu 9 Prozentpunkte zwischen der Diagnostik auf Basis der Faktorwerte des korrekten Modells

und auf Basis der Gesamtsummenwerte). Dieses Muster in den Befunden zeigten sich auch,

wenn die Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells vorgenommen

wurde und diese mit der Diagnostik auf Basis der Faktorwerte der korrekten Modelle verglichen

wurde, wie im Folgenden berichtet wird.
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Basisraten und Gesamtsummenwerte versus Faktorwerte des missspezifizierten

Modells

Die Raten der Richtig Positiven, der Richtig Negativen, der Falsch Positiven und der
Falsch Negativen auf Basis der Gesamtsummenwerte (siche Abbildungen 22 bis 25 im Anhang)
fielen im Vergleich zu den entsprechenden Raten auf Basis der Faktorwerte des
missspezifizierten Modells sehr dhnlich aus (Unterschiede unter 1 Prozentpunkt an allen
vergebenen Diagnosen in der jeweiligen Gesamtpopulation pro Bedingung). Verglichen mit der
Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells war die Diagnostik auf
Basis der Gesamtsummenwerte marginal {iberlegen. Bei der kleinsten Basisrate fiihrten die
Gesamtsummenwerte zu maximal 8 Prozentpunkten besserer Diagnostik hinsichtlich
Sensitivitdt und Positivem Pradiktionswert, wobei sich hinsichtlich der groen Basisraten
diesbeziiglich kein Unterschied mehr zeigte. Umgekehrt fiihrten die Gesamtsummenwerte bei
der grofiten Basisrate zu maximal 5 Prozentpunkten besserer Diagnostik hinsichtlich
Negativem Préadiktionswert und Spezifitit im Vergleich zu den Faktorwerten des
missspezifizierten Modells, wobei sich dieser Unterschied bei kleinen Basisraten ausglich. Dass
Positiver Pradiktionswert und Sensitivitdt bzw. Negativer Pradiktionswert und Spezifitit auf
Basis der Gesamtsummenwerte in Kombination mit einer kleinen bzw. groen Basisrate hoher
ausfielen als auf Basis der Faktorwerte des missspezifizierten Modells, kann zum Teil mit der
Reduktion der Faktorladungen in den missspezifizierten Modellen im Vergleich zur Hohe der
definierten Faktorladungen in den Populationsmodellen erkldrt werden. Die standardisierten
Faktorladungen des missspezifizierten Modells waren im Mittel um bis zu .106 im Vergleich
zu den definierten Faktorladungen geringer. Ferner streuten die Ladungen der
missspezifizierten Modelle im Mittel breiter als die definierten Faktorladungen (bis zu .10
Unterschied bei standardisierten Ladungen). Die Faktorladungen beeinflussen, wie bereits
mehrfach erldutert wurde, wiederum die Schitzung der Bartlett-Faktorwerte. Dieser Befund

wird unter 3.2 anhand weiterer Literatur diskutiert.

Faktorladungen

Wie bei der Diagnostik auf Basis der Faktorwerte der korrekten und missspezifizierten
Modelle stieg auch die Giite der Diagnostik auf Basis der Gesamtsummenwerte anhand aller

Kennwerte, wenn zur Generierung der Daten im Populationsmodell hohere Ladungen im
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Vergleich zu typischen Ladungen verwendet wurden (vgl. die Modelle 1 bis 6 mit den Modellen
7 bis 12 in den Abbildungen 10 bis 14).

Exkurs: Populationsmodelle mit extrem hohen Ladungen

Sofern in den Populationsmodellen extrem hohe Ladungen aus dem Bereich [.80, 1.00[
zur Generierung der Populationsdaten verwendet wurden, stieg auch die Giite der Diagnostik
auf Basis der Gesamtsummenwerte*®. Es wurde anhand der extrem hohen Ladungen deutlich,
dass die Diagnostik auf Basis der Gesamtsummenwerte der Diagnostik auf Basis der

Faktorwerte des korrekten Modells unterlegen war®

. Die Befunde zum Vergleich der
Diagnostik auf Basis der Gesamtsummenwerte und der Faktorwerte des missspezifizierten
Modells mit extrem hohen Ladungen in den Populationsmodellen werden im Folgenden
berichtet.

Vergleicht man die Diagnostik auf Basis der Faktorwerte des eindimensionalen
missspezifizierten Modells mit der Diagnostik auf Basis der Gesamtsummenwerte, wenn die
Daten basierend auf Populationsmodellen mit extrem hohen Ladungen erzeugt wurden, fillt die
Diagnostik auf Basis der Gesamtsummenwerte bei den kleinen Basisraten besser aus als die
Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells™. Bei den groBen
Basisraten war die Diagnostik auf Basis der Gesamtsummenwerte zwar immer noch
geringfligig besser als auf Basis der Faktorwerte des missspezifizierten Modells, jedoch glich
sich die Giite der Diagnostik auf Basis der Gesamtsummenwerte mehr und mehr der
diagnostischen Prézision auf Basis der Faktorwerte des missspezifizierten Modells an
(Unterschiede maximal 5 Prozentpunkte bei groBen Basisraten). Dieser Befund mag, wie
bereits im Rahmen der realistisch hoch gewidhlten Faktorladungen des vorliegenden Designs
beschrieben, einerseits an der Reduktion und andererseits an der zunehmenden Heterogenitit

der Faktorladungen des missspezifizierten Modells im Vergleich zu den definierten

®Der maximale Range der diagnostischen Kennwerte auf Basis der Gesamtsummenwerte bei extrem hohen
Ladungen in den Populationsmodellen iiber alle Basisraten und Bedingungen hinweg betrug .515-.955.

*“Der maximale Range der diagnostischen Kennwerte auf Basis der Faktorwerte des korrekten Modells mit extrem
hohen Ladungen in den Populationsmodellen iiber alle Basisraten und Bedingungen hinweg betrug .895-.984.
*°Der maximale Range der diagnostischen Kennwerte auf Basis der Faktorwerte des missspezifizierten Modells
mit extrem hohen Ladungen in den Populationsmodellen betrug iiber alle Basisraten und Bedingungen hinweg

.299-.946, im Gegensatz dazu bei den Gesamtsummenwerten .515-955.
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Faktorladungen liegen. Im Rahmen der Populationsmodelle mit extrem hohen Faktorladungen
im Vergleich zu den realistischen Faktorladungen sanken die Ladungen des eindimensionalen
missspezifizierten Modells in hoherem MaBle (um bis zu .308 bei standardisierten Ladungen im
Vergleich zu max. .11 bei den realistischen Ladungen). Wie aus den vorherigen Ergebnissen
ersichtlich steigt die Validitéit (Grice, 2001a, 2001b) der Bartlett-Faktorwerte, aus denen die
Diagnosen gebildet wurden, mit der Hohe der Faktorladungen. Die Ladungen des
missspezifizierten Modells wurden auBerdem umso geringer, desto geringer die
Faktorkorrelation (desto hoher die Missspezifikation) im Populationsmodell mit extrem hohen
Ladungen war (Reduktion von .06 bei hoher Faktorkorrelation bis zu .309 bei geringer
Faktorkorrelation im Populationsmodell). Desto geringer die Faktorkorrelation im
Populationsmodell, desto groBer wurde auch die Standardabweichung der Ladungen des
missspezifizierten Modells (von .087 bei hoher Faktorkorrelation bis zu .324 bei geringer
Faktorkorrelation im Populationsmodell); d.h., bei steigender Missspezifikation wichen die
Verteilungseigenschaften der Faktorladungen im missspezifizierten Modell stirker von denen

der definierten Faktorladungen in den Populationsmodellen ab.
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3 Diskussion

3.1 Zusammenfassung der Ergebnisse

Im Rahmen einer Simulationsstudie auf Basis zweier definierter Faktorwerte der
Individuen in einer Population wurde untersucht, inwieweit die Gilite der Diagnostik
beeintrachtigt wurde, sofern dichotome Diagnosen (,krank*“/positive Diagnose versus
»gesund/negative Diagnose), die auf Basis der hochsten Werte auf beiden definierten
Faktorwerten vergeben wurden, filschlicherweise auf Basis der hochsten Faktorwerte
missspezifizierter Strukturgleichungsmodelle vergeben wurden. Diese Missspezifikation im
Strukturmodell stellte ein missspezifiziertes einfaktorielles Modell im Vergleich zu einem
obliquen zweifaktoriellen Populationsmodell dar. Im Rahmen einer Nebenfragestellung wurden
aullerdem dichotome Diagnosen, die auf Basis der hochsten Gesamtsummenwerte {iber alle
Indikatoren hinweg gebildet wurden, hinsichtlich der diagnostischen Kennwerte mit den
Diagnosen auf Basis der definierten Faktorwerte verglichen.

Die Ergebnisse zeigten, dass die unterschiedlich gewéhlten Basisraten fiir die
Diagnosegebung im Rahmen des gewiéhlten Designs den grofiten Effekt auf die Giite der
Diagnostik auf Basis der Faktorwerte der korrekten wie auch der missspezifizierten Modelle
und der Gesamtsummenwerte hatte. Einen dhnlich hohen Einfluss, wie sie die Faktorladungen
auf die Diagnostik aus den Faktorwerten des korrekten und missspezifizierten Modells sowie
aus den Gesamtsummenwerten hatte, hatten der Grad der Missspezifikation/die
unterschiedlichen Populationsmodelle auf die Diagnostik aus den Faktorwerten des
missspezifizierten Modells sowie auf die Diagnostik aus den Gesamtsummenwerten. Die
genannten Parameter interagierten hinsichtlich des Einflusses auf die Diagnostik miteinander.

Die verschiedenen Basisraten hatten den hochsten Einfluss auf die Giite der Diagnostik
sowohl anhand der Faktorwerte korrekter und missspezifizierter Modelle als auch anhand der
Gesamtsummenwerte. Grof3e Basisraten wirkten sich positiv auf die Rate der korrekt erkannten
Kranken an allen Kranken (Sensitivitit) sowie die Rate der korrekt erkannten Kranken an allen
als krank Diagnostizierten (Positiver Pradiktionswert) aus. Umgekehrt waren kleine Basisraten
hinsichtlich der Rate an korrekt als gesund erkannten Gesunden an allen Gesunden (Spezifitit)
sowie der korrekt erkannten Gesunden an allen als gesund Diagnostizierten (Negativer

Pradiktionswert) vorteilhaft.
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Die Befunde zeigten aulerdem, dass hohere Faktorladungen in den
Populationsmodellen zu besserer Diagnostik anhand aller Kennwerte fiihrten. Die realistisch
niedrig gewihlten Faktorladungen im Rahmen des Studiendesigns beeintrichtigte die Giite der
Diagnostik auf Basis der Faktorwerte selbst bei Anwendung korrekter Modelle stark. Diese
Beeintrachtigung begann damit, dass die in den Populationsmodellen definierten Basisraten zur
Diagnosegebung auf Basis der Faktorwerte durch die korrekten Modelle nicht reproduziert
werden konnten. Die kleinen Basisraten wurden um bis zu 100 Prozentpunkte iiberschitzt, die
groflen um bis zu 25 Prozentpunkte unterschétzt. Diese Beeintrachtigung durch die realistischen
Faktorladungen wirkte sich insbesondere bei kleinen Basisraten in klinischen
GroBenordnungen negativ auf die Rate der korrekt als krank diagnostizierten Félle an allen
positiven Diagnosen aus (Positiver Pradiktionswert; Worst-Case-Szenario 24%), aber auch auf
die Rate der korrekt als krank erkannten Kranken an allen Kranken aus (Sensitivitit; Worst-
Case-Szenario 47%). Umgekehrt beeintrichtigten die realistisch hohen Faktorladungen in
Kombination mit grofen Basisraten bei Anwendung korrekter Modelle die Rate der korrekt als
gesund diagnostizierten Fille an allen negativen Diagnosen (Negativer Pradiktionswert; Worst-
Case-Szenario 53%), aber auch die Rate der korrekt als gesund erkannten Gesunden an allen
Gesunden (Spezifitit; Worst-Case-Szenario 77%). Anhand des Exkurses konnte gezeigt
werden, dass sich der Effekt der unterschiedlichen Basisraten auf die Giite der Diagnostik
nivellierte, sobald unrealistisch hohe Ladungen fiir die Populationsmodelle verwendet wurden,
aus denen die Daten generiert wurden.

Der Grad der Missspezifikation (operationalisiert an der Hohe der Faktorkorrelation im
Populationsmodell versus eindimensionales missspezifiziertes Modell) im Vergleich zur
korrekten Spezifikation hatte ebenfalls einen entscheidenden Einfluss auf die Giite der
Diagnostik anhand der Faktorwerte des missspezifizierten Modells. Der Grad der
Missspezifikation (Hohe der Faktorkorrelation) beeintrichtigte vor dem Hintergrund der
niedrigen Faktorladungen in Kombination mit kleinen Basisraten die Rate der korrekt als krank
erkannten Félle an allen Kranken (Sensitivitét), in Kombination mit groen Basisraten die Rate
der korrekt als gesund erkannten Fille an allen Gesunden (Spezifitit). Eine ausgewogene
Indikatorenaufteilung auf die Populationsfaktoren, welche mehr vom eindimensionalen
missspezifizierten Modell abwich, fiihrte zu besseren diagnostischen Kennwerten auf Basis der
Faktorwerte missspezifizierter Modelle als eine unausgewogene Indikatorenaufteilung auf die

beiden Populationsfaktoren. Dieser Befund wird unter 3.2. diskutiert.
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Die Diagnostik auf Basis der Gesamtsummenwerte war der Diagnostik auf Basis der
Faktorwerte der korrekten Modelle hinsichtlich der Rate der korrekt als krank erkannten Fille
an allen Kranken (Sensitivitét) bei kleinen Basisraten und der Rate der korrekt als gesund
erkannten Fille an allen Gesunden (Spezifitit) bei groBen Basisraten unterlegen. Jedoch schnitt
die Diagnostik auf Basis der Gesamtsummenwerte, welche sich vom missspezifizierten Modell
nur durch die gleichen Gewichtungen der Indikatoren unterschied, marginal besser ab als die
Diagnostik basierend auf den Faktorwerten des missspezifizierten Modells. Letzterer Befund

wird unter 3.2 ausfuhrlicher diskutiert.

3.2 Diskussion der Ergebnisse

Dass insbesondere die unter 3.1 genannten diagnostischen Kennwerte litten, erklért sich,
wie bereits unter 2.2.2 beschrieben, durch die Uberschitzung kleiner Basisraten und die
Unterschitzung groBer Basisraten fiir die Diagnosen auf Basis der Faktorwerte korrekter
Modelle aufgrund der realistisch niedrig gewéhlten Faktorladungen der Populationsmodelle.
Als Konsequenz dieser Verzerrungen der Basisraten héduften sich bei kleinen Basisraten die
falsch positiven Diagnosen und bei groflen Basisraten die falsch negativen Diagnosen.
Dementsprechend verhielten sich die diagnostischen Kennwerte. Bei der Diagnostik auf Basis
der Faktorwerte missspezifizierter Modelle wurden die univariaten Basisraten genauso
festgelegt wie die bivariaten Basisraten in den Populationsmodellen, sodass sich die Raten an
falsch positiven und falsch negativen Diagnosen mehr ausglichen als bei den Faktorwerten der
korrekten Modelle. Daraus ergaben sich einige der beschriebenen Unterschiede zwischen der
Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells und des korrekten
Modells. Verstirkt wurden diese Unterschiede zusétzlich durch eine niedrigere
Faktorkorrelation im Populationsmodell (hdherer Grad an Missspezifikation) im Vergleich zu
einer hoheren.

Die Befunde zu den Basisraten konnen aufgrund des unterschiedlichen Designs und der
unterschiedlichen Beschaffenheit der Indikatoren kaum mit den unter III. 4 beschriebenen
Studien von Emons et al. (2007), Kruyen et al. (2012), Schonemann und Thompson (1996)
sowie Taylor und Russell (1939) verglichen werden. Sowohl der vorliegenden Studie als auch
den genannten Studien ist allerdings gemein, dass die Sensitivitdt eines diagnostischen
Instruments unter realistischen Bedingungen bei kleinen Basisraten beeintrachtigt ist und bei

groBBen Basisraten die Spezifitit. AuBerdem stimmen die Studien mit der vorliegenden insofern
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iiberein, als dass eine geringe Reliabilitit (niedrige Faktorladungen im Rahmen der
vorliegenden Studie) oder niedrige Trennschérfen im Rahmen der drei erstgenannten Studien
sowie eine geringe Validitdt (Missspezifikation im Strukturmodell als Verletzung der
Konstruktvaliditdt bei der vorliegenden Studie und niedrige Kriteriumsvaliditit bei
Schonemann und Thompson sowie Taylor und Russell) hinsichtlich der Giite der Diagnostik
problematisch sind. Im Rahmen des vorliegenden Designs interagierten die genannten
Giitekriterien auflerdem mit den Basisraten. Bei kleinen Basisraten wirkte sich eine geringe
Reliabilitdt besonders negativ auf die Rate der korrekt als krank erkannten Kranken an allen als
krank Diagnostizierten (Positiver Pridiktionswert) aus, eine geringe Konstruktvaliditit vor
allem auf die Rate der korrekt als krank erkannten Kranken an allen Kranken (Sensitivitit).
Umgekehrt beeintriachtigten groe Basisraten in Kombination mit einer niedrigen Reliabilitét
vor allem die Rate der korrekt als gesund erkannt Gesunden an allen als gesund Diagnostizierten
(Negativer Priadiktionswert), eine niedrige Konstruktvaliditét vor allem die Rate der korrekt als
gesund erkannten Gesunden (Spezifitit) an allen Gesunden.

Eine unausgewogene Indikatorenaufteilung im Populationsmodell fithrte zu
schlechterer Diagnostik auf Basis der Faktorwerte des eindimensionalen missspezifizierten
Modells als eine ausgewogene Indikatorenaufteilung im Populationsmodell. Fiir diesen Befund
konnen zwei Erkldrungen angefiihrt werden. Die erste Erkldrung betrifft die Faktorladungen.
Little, Cunningham, Shahar, und Widaman (2002a) sowie Marsh und Hocevar (1988) konnten
zeigen, dass eine unausgewogene Indikatorenaufteilung auf die Faktoren im Rahmen
konfirmatorischer Faktorenanalysen zu instabileren Faktorlosungen wie auch zu hoheren
Standardabweichungen und Standardfehlern bei den Modellparameterschitzungen im
Vergleich zu einer ausgewogenen Indikatorenaufteilung fithrten. Ersteres Muster zeigte sich
auch an den unter 2.1.1 beschriebenen Eigenwerten der Kovarianzmatrix der Indikatoren,
welches auch dazu fiihrte, dass die Diagnostik bei Anwendung korrekter Modelle auf
Populationsdaten, denen ein Populationsmodell mit ungleicher Indikatorenaufteilung anstatt ein
Populationsmodell mit gleicher Indikatorenaufteilung zugrunde lag, marginal schlechter war".
Mit letzterem Argument von Little et al. und Marsh und Hocevar zu den Standardabweichungen
der Faktorladungen kann der Befund zur Diagnostik bei Anwendung missspezifizierter Modelle

erkliart werden. Der Befund, dass eine unausgewogene Indikatorenaufteilung im Vergleich zu

*'Die Eigenwerte und Eigenvektoren der Matrix der Indikatoren bestimmt die Schitzung der Faktorladungen,

welche wiederum die Schitzung der Bartlett-Faktorwerte bestimmt (Mulaik, 2009).
117



einer ausgewogenen zu hoheren Standardabweichungen der Faktorladungen fiihrt, trat auch bei
der vorliegenden Studie bei den missspezifizierten Modellen auf (der Standardfehler der
Faktorladungen hingegen ist aufgrund der Populationssimulation kein Argument). Von den
Faktorladungen abhingig ist wiederum die Validitdt der Faktorwerte (fiir den Begriff siche
Grice [2001a, 2001b]). Hinsichtlich der Verteilung der aus den missspezifizierten berechneten
Faktorwerte selbst zeigte sich kein Unterschied zwischen der unausgewogenen und der
ausgewogenen Indikatorenaufteilung im Populationsmodell. Zu einem Vergleich der Schiatzung
der Faktorwerte bei unausgewogener versus ausgewogener Indikatorenaufteilung gibt es nach
Kenntnisstand der Autorin noch keine Befunde. Als zweite Erklarung fiir das oben genannte
Ergebnis zur Diagnostik auf Basis der Faktorwerte eines missspezifizierten Modells bei
ungleicher Indikatorenaufteilung auf die Faktoren im Populationsmodell kann ein Befund zum
Raschmodell angefiihrt werden. Stelzl (1979) stellte anhand von simulierten Stichproben fest,
dass der Likelihood-Quotiententest von Andersen (1973) nicht sensitiv dafiir war,
Modellgiiltigkeit des Raschmodells bei einem Test abzulehnen, der aus zwei Itemgruppen
bestand. Diese Itemgruppen erfassten jeweils eine eigene latente Dimension, die Items waren
also heterogen. Dem eindimensionalen missspezifizierten Modell im Rahmen des vorliegenden
Designs lagen ebenfalls zwei Populationsdimensionen zugrunde, weshalb die Faktorladungen
der Items umso heterogener ausfielen, desto niedriger die Korrelation der Populationsfaktoren
war (desto hoher der Grad der Missspezifikation). Die beiden Gruppen, die aus den
unterschiedlich hohen Faktorwerten der Individuen des missspezifizierten Modells gebildet
wurden, stellten die Gruppen mit positiven und negativen Diagnosen dar. Formann (1981)
sowie Heene, Kyngdon, und Sckopke (2016) erklirten das Versagen des Andersen-Tests so,
dass sich in jeder der beiden Itemgruppen Personengruppen mit unterschiedlichen
Parameterkombinationen hinsichtlich der zwei Dimensionen befanden. Es gab eine
Personengruppe, die hinsichtlich ihres Antwortverhaltens auf einer Dimension einen hoheren
Wert besal} als auf der anderen Dimension, bei einer zweiten Personengruppe verhielt es sich
umgekehrt und die dritte Personengruppe besal3 gleich hohe Werte auf beiden Dimensionen.
Dadurch, dass in beiden Itemgruppen Personen mit allen drei Kombinationen waren, kam es zu
einer Kompensation der Heterogenitit der Items. Die Personengruppe mit gleich hohen Werten
auf beiden Dimensionen homogenisierte zusitzlich die Heterogenitit der Items. Dieser
Kompensationseffekt wurde grofler, wenn jede Dimension von gleich vielen Indikatoren
gemessen wurde; hingegen wurde der Kompensationseffekt bei unterschiedlich vielen Items

pro Dimension geringer (Heene et al., 2016). Vor diesem Hintergrund, dass die unausgewogene
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Indikatorenaufteilung im Populationsmodell im Vergleich zur ausgewogenen zu schlechterer
Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells fiihrte trotz dass das
eindimensionale missspezifizierte Modell ndher am Populationsmodell mit unausgewogener
Indikatorenaufteilung als mit ausgewogener Indikatorenaufteilung lag, ist der Befund zu den
Fit-Indizes in Studie 1 alarmierend: Alle drei untersuchten Fit-Indizes zeigten bei Anwendung
des eindimensionalen missspezifizierten Modells auf die Stichprobendaten eine bessere
Modellpassung an, wenn das Populationsmodell eine unausgewogene Indikatorenaufteilung
hatte im Vergleich zu einer ausgewogenen. Hinsichtlich der Diagnostik auf Basis der
Faktorwerte zeigte sich jedoch genau das Gegenteil, die ausgewogene Indikatorenaufteilung
fithrte zu besserer Diagnostik auf Basis der Faktorwerte des missspezifizierten Modells als die
unausgewogene.

Diese Heterogenitit der Faktorladungen des missspezifizierten Modells leitet zur
Erkldrung des Befundes iiber, nach dem die Gesamtsummenwerte zu geringfiigig besserer
Diagnostik fiihrten als die Faktorwerte des missspezifizierten Modells. Im missspezifizierten
Modell sanken die Faktorladungen einerseits im Vergleich zu den festgelegten Faktorladungen
in den Populationsmodellen, andererseits wurden die Ladungen mit dem Grad der
Missspezifikation (Hohe der Faktorkorrelation im Populationsmodell) heterogener. Da die
Ladungen primdr verantwortlich sind fiir die Schidtzung der Bartlett-Faktorwerte (Grice,
2001b), kann vermutet werden, dass letztere beide Befunde zu niedrigerer Validitdt der
geschitzten Faktorwerte eines Modells fiihrten. Die Ergebnisse des verwendeten Designs legen
die Schlussfolgerung nahe, dass die Gesamtsummenwerte zu besserer Diagnostik fiihrten als
die Faktorwerte eines eindimensionalen missspezifizierten Modells. Der Befund steht in
Einklang mit DiStefano et al. (2009), Dobie, McFarland, und Long (1986) sowie Kukuk und
Baty (1979), nach denen die Summenwerte zu besseren Trefferquoten fiihrten als die
Faktorwerte, sofern es sich um ein Konstrukt mit verschiedenen Attributen handelte, also
letztendlich eine mehrdimensionale Skala, die jedoch eindimensional erfasst wurde. Dieser
Befund kann allerdings nicht verallgemeinert werden, da er aus der Nicht-Spezifizierung der
Mehrdimensionalitit im Strukturmodell und der damit einhergehenden Reduktion und groBeren
Streuung der Faktorladungen im missspezifizierten Modell einherging.

Hinzu kommt, dass die Bartlett-Faktorwerte, die im Rahmen der Studie verwendet
wurden, zwar, im Gegensatz zu beispielsweise den Regressionsfaktorwerten, erwartungstreue
Schétzer fiir die True Scores sind (fiir die Herleitung siche Lawley & Maxwell, 1971), die

Bartlett-Faktorwerte bei obliquen Faktoren aber noch abhéngiger von den Faktorladungen sind
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bzw. mehr mit den Ladungen variieren als die Regressionsfaktorwerte (Beauducel, 2005). Dies
liegt daran, dass sich die Ahnlichkeit zwischen der Mustermatrix der Faktorladungen und der
Matrix der True Scores in den Bartlett-Faktorwerten widerspiegelt. In den
Regressionsfaktorwerten spiegelt sich hingegen die Ahnlichkeit zwischen der Strukturmatrix

der Faktorladungen und der Matrix der True Scores wider (S. 147).

3.3 Implikationen

3.3.1 Implikationen fiir weitere Forschungen

Vor dem Hintergrund der verschiedenen Mdglichkeiten, Faktorwerte zu berechnen,
wire von Interesse, wie die Giite der Diagnostik ausfallen wiirde, wenn Diagnosen basierend
auf den Regressionsfaktorwerten im Kontext von Strukturgleichungsmodellen oder
konfirmatorischen Faktorenanalysen getroffen werden. Im Rahmen dieser Studie wurden die
Diagnosen basierend auf den Bartlett-Faktorwerten getroffen; diese sind, wie bereits erldutert,
erwartungstreue Schétzer fiir die wahren Faktorwerte (Lawley & Maxwell, 1971). In der
angewandten Forschung werden aber, wie bereits unter II. 3 erwdhnt, meist die
Regressionsfaktorwerte zur Bestimmung der individuellen Ausprigungen auf den latenten
Variablen herangezogen (Grice, 2001b). Aufgrund der Tatsache, dass die
Regressionsfaktorwerte nicht erwartungstreu sind (Lawley & Maxwell), ist zu vermuten, dass
die Diagnostik auf Basis der Regressionsfaktorwerte schlechter ausfallen wiirde als auf Basis
der Bartlett-Faktorwerte. Andererseits werden die Regressionsfaktorwerte, wie oben
beschrieben, bei obliquen Faktoren weniger durch die Ladungen und somit die Reliabilitét
beeinflusst als die Bartlett-Faktorwerte, was wiederum ein Pluspunkt fiir die Diagnostik auf
Basis der Regressionsfaktorwerte im Rahmen des vorliegenden Designs sein kdnnte, der zu
untersuchen ist.

Im Zuge weiterer Forschungen wiére auflerdem zu untersuchen, inwieweit sich die
Diagnostik auf Basis der Faktorwerte und auf Basis der Gesamtsummenwerte verschlechtert,
wenn anstatt einer Populationssimulation die Methode des Resampling (Stichprobenziehung;
vgl. Carsey & Harden, 2014) verwendet werden wiirde, zumal in der angewandten Forschung
einerseits eine eingeschrankte Anzahl von Fillen vorliegt, andererseits ein Testverfahren in der

Praxis einer geringen Stichprobengrof3e standhalten muss.
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Im Rahmen des vorliegenden Designs wurde Heterogenitit der Faktorladungen in den
Populationsmodellen simuliert, wobei fiir alle simulierten Félle die gleichen Faktorladungen
verwendet wurden. Diese Heterogenitdt der Faktorladungen vergroBerte sich noch zusétzlich
durch die Nicht-Spezifizierung der Mehrdimensionalitét im Strukturmodell. Dass — durch den
Grad der Missspezifikation induziert — heterogenere Faktorladungen zu schlechteren
Schétzungen der Faktorwerte fiihrten als homogene, wurde bereits unter 3.2 diskutiert. Im
Rahmen weiterer Simulationsforschung ist daher die Fragestellung von groem Interesse, ob
und inwieweit heterogene Faktorladungen fiir sich und nicht durch eine Missspezifikation
verursacht, die Validitdt der Faktorwerte der Individuen und die Validitdt diagnostischer
Entscheidungen basierend auf den Faktorwerten der Individuen beeintrdchtigen wiirden. Von
Kelderman und Molenaar (2007) wurde bereits analytisch und anhand einer Simulationsstudie
gezeigt, dass individuell heterogene Faktorladungen die Validitét der individuellen Faktorwerte
beeintriachtigen.

Die Studien von Emons et al. (2007) sowie Kruyen et al. (2012) konnten zeigen, dass
die Giite der Diagnostik insbesondere leidet, wenn Kurzskalen im Vergleich zu Langskalen
(mindestens 20 Indikatoren) verwendet wurden. Estabrook und Neale (2013) konnten im
Rahmen einer Simulationsstudie mit mehrdimensionalem Populationsmodell zeigen, dass im
Rahmen des Designs der Autoren die Itemanzahl sogar noch wichtiger fiir die Validitit der
Faktorwerte war als die Hohe der Faktorladungen. Lawley und Maxwell (1971) zeigten formal-
analytisch, dass sich die Verteilungseigenschaften der geschitzten Faktorwerte mehr und mehr
denen der True Scores anndhern, wenn viele und reliable Indikatoren verwendet werden.
Ankniipfend an das Design der vorliegenden Studie mit niedriger Reliabilitdt (niedrigen
Faktorladungen) wund niedriger Konstruktvaliditdit (durch Nicht-Spezifikation der
Mehrdimensionalitét in der Faktorenstruktur) wire von Interesse, zu untersuchen, ab wie vielen
Indikatoren pro Faktor und insgesamt sich die Giite der Diagnostik in klinisch bedeutsamem
Ausmal} verbessern wiirde.

Die Ergebnisse zeigten auBerdem, dass die Faktorenunbestimmtheit als Konsequenz der
realistisch niedrig gewéhlten Faktorladungen hoch war. Dadurch werden zwei Implikationen
deutlich. Erstens dringt sich die Frage auf, ob die Faktorenunbestimmtheit im Kontext
klassischer Verfahren bisher genug Beachtung fand. Zweitens schrieben Grice (2001b), Maraun
(1996a), Schonemann und Steiger (1978) sowie Steiger (1979), dass die Unbestimmtheit der
Faktoren im Kontext klassischer Verfahren vor allem problematisch wiirde, sobald kriterielle

Aussagen aus den Faktorwerten getroffen werden wiirden. Daher wire eine nichste
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Forschungsfrage im Kontext einer Simulationsstudie, inwieweit Diagnosen, die auf Basis einer
oder mehrerer exogener latenter Variablen getroffen werden, eine endogene latente Variable
oder sogar Diagnosen basierend auf einer endogenen latenten Variablen vorhersagen konnen.
Eine derartige angewandte Forschungsfrage betrife zum Beispiel die Untersuchung der
Passung der Diagnosen auf Basis verschiedener Testverfahren, unterschiedlicher methodischer
Herangehensweisen oder auch die Uberpriifung der Verinderung von individuellen Diagnosen

iiber die Zeit>>.

3.3.2 Empfehlungen fiir die Testkonstruktion

Die Ergebnisse der Simulationsstudie insgesamt (insbesondere die Ergebnisse aus dem
Exkurs zu den Populationsmodellen mit extrem hohen Ladungen) zeigen aber auch eine
wichtige gute Nachricht: Eine gute Testkonstruktion im Sinne der Giitekriterien fiihrt zu
diagnostischem Erfolg. Die Ergebnisse zu den missspezifizierten Modellen zeigen aulerdem
im Speziellen, wie wichtig eine gute Theorie im Sinne einer prizisen und trennscharfen
Begriffsbestimmung bzw. ein empirisch gut abgesichertes Konstrukt ist, bevor tiberhaupt damit
begonnen wird, ein diagnostisches Verfahren zu konstruieren. Sofern ein zu messendes
Konstrukt aus verschiedenen Attributen besteht, die aus Griinden der Inhaltsvaliditdt niemals
vernachldssigt werden sollten, kann als Empfehlung fiir die Testkonstruktion ausgesprochen
werden, den Messgegenstand in moglichst homogene Teilkonstrukte aufzuteilen™. Diese
homogenen Teilkonstrukte sollten dann von statistisch eindimensionalen und moglichst
reliablen Items gemessen werden. Hohere Kommunalitdten erhohen auerdem die Stabilitét der
Faktorladungen und somit auch der Faktoren selbst (Cliff & Hamburger, 1967; Cliff & Pennell,
1967; Pennell, 1968) und damit verbessert sich wiederum die Faktorwerteschitzung, wie
Estabrook und Neale (2013) zeigen konnten. Basierend auf einer hohen Reliabilitdt sollte dann
die faktorielle Struktur der Teilkonstrukte zueinander mdglichst valide spezifiziert werden.

Die Ergebnisse der vorliegenden Simulationsstudie legen auBerdem umfassendere

Untersuchungen zur Validitit neu entwickelter, aber auch bestehender Testverfahren

?Letzteres wurde bereits von Kruyen, Emons, und Sijtsma (2014) vor dem Hintergrund von Kurzskalen anhand
von Raschmodellen untersucht.

>Dies entspricht dem unter III. 2.2 genannten Konzept der Mehrdimensionalitit zwischen Items, die an der
betreffenden Stelle von der Mehrdimensionalitit innerhalb der Items (Verletzung der Einfachstruktur) abgegrenzt

wurde.
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insbesondere im Kontext kleiner Basisraten nahe. Korrelationen der beobachteten Variablen
zwischen zwei verschiedenen Testverfahren sind nicht ausreichend, vor allem, wenn es um die
Schitzung der individuellen Auspragungen auf den latenten Variablen anhand der Faktorwerte
geht. Da Simulationsstudien nicht moglich sind, kénnen als Kriterien fiir die Evaluation der
Diagnostik auf Basis von Faktorwerten die Faktorwerte eines anderen Testverfahrens oder ein
Expertenurteil dienen. Weiters zeigen die Ergebnisse insbesondere zu den Graden der
Missspezifikation auf, wie wichtig nicht nur gute faktorielle Validierungen hinsichtlich der
Faktorwerte im Kontext neu entwickelter Testverfahren und Fragebogen sind, sondern auch
andere Arten der Validierung, zum Beispiel kriterielle Validierungen. AuBlerdem verbessern
Methoden, die tliber faktorielle und kriterielle Validierungen hinausgehen, die Giite der

Diagnostik, so zum Beispiel Kreuzvalidierungen (vgl. Carsey & Harden, 2014, S. 255).

Es ist offensichtlich, dass sich die Basisraten unter den untersuchten Einflussfaktoren
auf die Giite der Diagnostik in der Praxis nicht verdndern lassen. Eine mogliche Losung aus
dem Dilemma mit den kleinen Basisraten stellt moglicherweise dar, was bereits Emons et al.
(2007) vorschlugen, ndamlich, die Diagnostik in kleinere Teile an Information aufzuteilen.
Moglicherweise kommt dafiir die Beurteilung nach der Prasenz oder Absenz eines Symptoms,
das fiir das Vorliegen einer psychischen Storung notwendig ist, in Frage. Ein derartiges
Vorgehen wiirde die Basisraten fiir die diagnostischen Entscheidungen vergréern und somit
die Trefferquoten erhdhen, wenn es um moglichst hohe Raten an korrekt Positiven an allen
Positiven (Sensitivitdt) und an korrekt Positiven an allen als positiv Diagnostizierten (Positiver
Pradiktionswert) geht. Gleichzeitig ist ein Symptom an sich homogener als der Symptompool,
der zur Diagnose fiihrt, und kann somit auch homogener und reliabler erfasst werden als das
Syndromkomplex. Dies stellt einen Vorschlag dar, dessen diagnostische Sinnhaftigkeit und

Praktikabilitdt im Rahmen weiterer Forschung zu iiberpriifen ist.

3.4 Limitationen

Die Tatsache, dass im Rahmen der vorliegenden Simulationsstudie einerseits die
Voraussetzung der multivariaten Normalverteilung fiir die erzeugten Indikatoren erfiillt war,
andererseits die Indikatoren auch dem Intervallskalenniveau geniigten, findet sich im Rahmen
der angewandten Forschung selten wieder. Daher wire von Interesse fiir die angewandte
Forschung, wie die Giite der Diagnostik ausfillt, wenn falschlicherweise von multivariater

Normalverteilung und Intervallskalenniveau ausgegangen wird, zumal die Items vieler
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Fragebogen meist nur dem Ordinalskalenniveau geniigen. Sofern bekannt, kann das
Ordinalskalenniveau in den beobachteten Variablen jedoch durch eine andere Schéitzmethode
kompensiert werden (sieche beispielsweise Browne, 2011) und eine Verletzung der
multivariaten Normalverteilung durch robuste Korrekturen der Schitzmethoden (vgl. Finney &
DiStefano, 2006; Satorra & Bentler, 1994; Yuan & Bentler, 1998, 2000).

Die Missspezifikation im Rahmen dieser Simulationsstudie stellte eine
Unterparametrisierung des Modells dar. Im Zuge weiterer Studien mit unterschiedlichen
Basisraten wire zu tiberpriifen, wie die diagnostischen Kennwerte ausfallen, wenn basierend
auf den Faktorwerten eines fdlschlicherweise iiberparametrisierten Modells diagnostiziert wird.

AuBerdem stellte die Missspezifikation im Strukturmodell im Rahmen dieser Studie
eine schwerwiegende Missspezifikation dar. Es wére von Interesse, zu iiberpriifen, inwieweit
sich Diagnosen, die auf Basis von Faktorwerten mit Missspezifikationen im Messmodell
getroffen werden, auf die diagnostischen Kennwerte auswirkt. Die sehr hiufige
Missspezifikation in Form von nicht-spezifizierten korrelierten Messfehlern (Heene et al.,
2012; Savalei, 2012; siehe III. 2.2) konnte dafiir ein geeignetes Design darstellen.

Ferner wurden im Rahmen dieses Designs Diagnosen auf Basis des Top-Down-Prinzips
vergeben. Im Zuge weiterer Forschung zu Diagnosen aus Strukturgleichungsmodellen heraus
wire von Interesse, ob Diagnosen basierend auf einem Cut-Off zu anderen Ergebnissen
hinsichtlich der diagnostischen Kennwerte fiihren als auf Basis einer Top-Down-Entscheidung.
Im Rahmen des probabilistischen Designs von Kruyen et al. (2012) zeigten sich kaum
Unterschiede hinsichtlich der Giite der Klassifikation zwischen Cut-Off-basierten und Top-
Down-Klassifikationen.

Weiters wurde im Rahmen des beschriebenen Designs nur eine positive Diagnose
vergeben, wenn das Individuum auf beiden Populationsfaktoren (bzw. auf beiden Faktoren im
Rahmen des korrekten Modells) innerhalb der hochsten Faktorwerte je nach untersuchter
Basisrate rangierte. Dies entspricht einer konjunktiven Entscheidungsstrategie (Amelang &
Schmidt-Atzert, 2006, S. 399). Es wire zu iiberpriifen, wie die Diagnostik im Vergleich zum
vorliegenden Design ausfallen wiirde, wenn ein hoher Wert auf einem der beiden
Populationsfaktoren fiir eine positive Diagnose ausreichen wiirde, also auf Basis einer
kompensatorischen Entscheidungsstrategie (S. 399) diagnostiziert werden wiirde. Eine
kompensatorische Entscheidungsstrategie wurde im Rahmen des vorliegenden Designs nicht
untersucht, da diese hinsichtlich der Giite der Diagnostik mit der Modellbedingung der

unausgewogenen Indikatorenaufteilung konfundiert gewesen wiére.
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Die konjunktive Diagnosestrategie (Amelang & Schmidt-Atzert, 2006, S. 399) fiihrt zu
einer weiteren Limitation der Studie hinsichtlich der unterschiedlichen Cut-Off-Werte fiir die
Diagnosevergabe. Die unterschiedlich hoch definierten Faktorkorrelationen zwischen den True
Scores zwischen den einzelnen Bedingungen fiihrten dazu, dass mit steigender Korrelation
zwischen den True Scores auch die Anzahl der Falle, die hohe Werte auf beiden Faktoren hatte,
stieg. Das heiBit, mit hoherer Faktorkorrelation stieg die bivariate Basisrate flir die
Diagnosegebung. Diese Tatsache bot zwei Moglichkeiten: entweder die gleichen univariaten
Cut-Offs pro Faktor zu verwenden und damit die Vergleichbarkeit der Basisraten {iber die
Modellbedingungen hinweg einzuschrénken, oder, unterschiedliche univariate Cut-Off-Werte
je nach Korrelation der True Scores zu definieren, um unabhéngig von der Faktorkorrelation
dieselben bivariaten Basisraten fiir die Diagnosen zu erhalten. Aufgrund dessen, dass bereits
mehrere Studien den Einfluss der unterschiedlichen Basisraten auf die Giite von diagnostischen
Entscheidungen bestitigt hatten (Emons et al., 2007; Kruyen et al., 2012; Schonemann, 1997;
Schonemann & Thompson, 1996; siehe III. 4), wurde die Konstanthaltung der Basisraten iiber
die Bedingungen hinweg als wichtiger fiir die Studie erachtet als die Konstanthaltung der
univariaten Cut-Off-Werte.

Die Basisraten fiir die Diagnosen wurden aus Griinden der Verfligbarkeit verldsslicher
Zahlen nach den 12-Monats-Privalenzen einer EU-Studie konstruiert (Wittchen et al., 2011).
Eine &hnlich gute und so groB3 angelegte Studie fand sich fiir die Punktpridvalenzen der
psychischen Storungen nicht. Jedoch wéren aufgrund des querschnittlichen Designs
Punktprivalenzen zur Vergabe der Diagnosen angemessener gewesen als 12-Monats-
Privalenzen.

Des Weiteren war bei der Konstruktion des Untersuchungsdesigns geplant, die grof3en
Basisraten nicht basierend auf den Privalenzen fiir Komorbiditdten und Lebenszeitprivalenzen
in der Allgemeinbevolkerung oder Basisraten der Eignungsdiagnostik, sondern basierend auf
den Diagnose-Raten psychologischer Beratungsstellen zu vergeben. Es ist zu vermuten, dass
die Rate an positiven Diagnosen im Rahmen der Diagnostik durch beispielsweise
Beratungsstellen oder auch andere Erstanlaufstellen deutlich hoher ausfillt als die Rate an
positiven Diagnosen in der Allgemeinbevolkerung. Dies hat den Grund, dass eine hohe Rate
tatsdchlich kranker Menschen oder auch subklinisch kranker Menschen derartige Anlaufstellen
ansteuern, um sich Hilfe zu suchen, wohingegen gesunde Menschen derartige Beratungsstellen
kaum aufsuchen. Der Versuch, die grolen Basisraten an den Prévalenzen von Erstanlaufstellen

zu orientieren, scheiterte daran, dass kaum verldssliche Zahlen dazu aufzufinden waren, die
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dokumentiert hitten, wie viele der Personen, die eine derartige Beratungsstelle aufsuchten, auch
tatsdchlich eine positive Diagnose bekamen. Sofern die Vermutung naheliegt, dass die
betreffenden Personen tatsdchlich erkrankt sind, werden sie meist an Psychologische
Psychotherapeutinnen und Psychologen Psychotherapeuten oder Psychiaterinnen und
Psychiatern weiter verwiesen, die dann auch Diagnosen erstellen, sofern eine Psychotherapie
indiziert ist. Aufgrund dieses Schritts ist dann allerdings nicht mehr nachvollziehbar, wie viele
der anfinglich Hilfe-Suchenden sich tatsdchlich in Behandlung begeben hat und wie viele nicht.
Wittchen und Jacobi (2001) schdtzen auf Basis ihrer Studie zur deutschen
Allgemeinbevolkerung, dass nur etwa ein Drittel aller tatsdchlich Kranken mindestens einmal
im Verlauf des Lebens behandelt wird.

Eine weitere Limitation der vorliegenden Studie stellt die Mdglichkeit der Evaluierung
von Diagnosen anhand der klassischen Methoden generell in Frage. Diagnosen stellen
formative®* Modelle dar, da die Prisenz von bestimmten Symptomen zur Diagnose fiihrt bzw.
die Abwesenheit dieser Symptomen zur Einordnung in die Gruppe der Gesunden fiihrt.
Insbesondere kann sogar die Prisenz unterschiedlicher Symptomatik zur selben Diagnose
fiihren (man beachte beispielsweise die 256 Kombinationen an Symptomen, die nach dem ICD-
10 [WHO, 1993] zur Diagnose ,,Borderline-Stérung* fithren; Anm. der Autorin). Die klassische
Testtheorie fuflit allerdings auf reflexiven Messmodellen, nach denen die individuelle
Auspriagung auf der latenten Variablen fiir die Auspragungen auf den beobachteten Variablen
verantwortlich ist (Biihner, 2011, S. 21). Demnach #ndert eine Anderung auf einem Indikator
oder das Weglassen oder Hinzufiigen eines Indikators die Ausprigung auf der latenten
Variablen nicht, da alle Indikatoren das gleiche messen und positiv miteinander korrelieren.
Diese positive Korrelation wird Null, sobald die latente Variable spezifiziert wurde, da
Unterschiede der Personen auf dieser Variable die Ursache fiir die Korrelationen der Items sind.
Im Rahmen formativer Messmodelle jedoch miissen die Indikatoren nicht (positiv) miteinander
korrelieren (Biihner, 2011; Reinecke, 2014). AuBerdem fiihrt eine Anderung auf der Ebene der
manifesten Variablen zu einer Anderung hinsichtlich der Ausprigung auf dem Konstrukt und
kann im klinischen Fall iiber das Vorliegen oder Nicht-Vorliegen einer Diagnose entscheiden.
Die Tatsache, dass die Kriterien fiir einige Storungen, wie die ,,Borderline-Stérung* oder das
,»AD(H)S“-Syndrom, ungenau definiert sind, erschwert die Diagnostik erheblich. Eine

weiterfiihrende Fragestellung, die von hoher Relevanz fiir die klinische Forschung und

**Formative Modelle wurden erstmals von Curtis und Jackson (1962) beschrieben.
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Anwendung ist, stellt daher dar, welche Auswirkungen es auf die diagnostischen Kennwerte
hitte, wenn Diagnosen auf Basis reflektiver Modelle gegeben werden, die auf Basis formativer
Modelle konstruiert wurden. Das reflektive Modell stellt in diesem Kontext eine
Missspezifikation dar. MacKenzie, Podsakoff, und Jarvis (2005) untersuchten bereits den
Einfluss von Missspezifikationen in Form von reflektiven Messmodellen im Gegensatz zu
formativen Messmodellen auf die Schidtzung der Modellparameter, also auf die Reliabilitét
eines Modells. Die Autoren zeigten, dass diese Form der Missspezifikation zu falschlicherweise
signifikanten Parameterschitzungen und zur Uberschitzung der Varianz der latenten Variablen
fithrte. Studien zu den Auswirkungen dieser Form der Missspezifikation auf die Validitét eines
Modells, zum Beispiel auf die Giite von diagnostischen Entscheidungen aus den Faktorwerten

heraus, liegen nach Kenntnisstand der Autorin noch keine vor.

Im folgenden Kapitel VI werden die Hauptergebnisse der vorliegenden Dissertation
noch einmal zusammengefasst, bevor tiber die Arbeit reflektiert wird und deren Relevanz fiir

Wissenschaft und Praxis herausgearbeitet wird.
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VI ALLGEMEINE DISKUSSION

1 Zusammenfassung der Ergebnisse

Das Ziel dieser Arbeit war, die Auswirkungen von Missspezifikationen im Rahmen der
linearen Strukturgleichungsmodellierung in Form einer nicht-spezifizierten zweiten latenten
Dimension zu untersuchen. Die untersuchten Auswirkungen bezogen sich auf die Sensitivitét
der Fit-Indizes fiir diese Art und die unterschiedlichen Grade der Missspezifikation sowie auf
die psychometrischen Auswirkungen hinsichtlich von Diagnosen, die auf Basis der Bartlett-
Faktorwerte eines missspezifizierten Modells getroffen wurden. Das Design der nicht-
spezifizierten Mehrdimensionalitdt im Strukturmodell wurde gewahlt, da Mehrdimensionalitdt
ein allgegenwirtiges Problem der Psychometrie darstellt (Heene et al., 2011; Little et al., 2002b;
Savalei, 2012; siche III. 2), welche auf eindimensionalen Konstrukten fuflt, und die lineare
Strukturgleichungsmodellierung als Datenanalysemethode sowie als Validierungsmethode fiir
Testverfahren und Fragebogen sehr beliebt ist (“Datenbanksegment PSYNDEX Tests,” 2013;
MacCallum & Austin, 2000; Reinecke, 2014; Tremblay & Gardner, 1996; siehe 1. und III. 4).
Der Schweregrad der Missspezifikation wurde durch die Hohe der Faktorkorrelation und die
(Un-)Ausgewogenheit der Indikatoren pro latenter Variable im Populationsmodell variiert. Es
wurde zum einen tiberpriift, ob die weit verbreiteten Fit-Indizes CFI, RMSEA und SRMR diese
Art und die unterschiedlichen Schweregrade der Missspezifikation anhand der Cut-Off-
Kriterien nach Hu und Bentler (1998, 1999) bei Anwendung auf aus den Populationsmodellen
gezogene Stichproben anzeigen wiirden. Zum anderen wurde gepriift, inwieweit die Giite der
Diagnostik darunter leiden wiirde, wenn dichotome Diagnosen auf Basis der Bartlett-
Faktorwerte aus dem missspezifizierten einfaktoriellen Modell vergeben wurden, die wahren
Diagnosen jedoch auf Basis der True Scores zweier Populationsfaktoren gegeben wurden, aus
denen heraus die Populationsdaten simuliert wurden. Die Diagnostik erfolgte auf Basis der
Bartlett-Faktorwerte (Bartlett, 1937) nach einer hinsichtlich der beiden Populationsfaktoren
konjunktiven Entscheidungsstrategie (Amelang & Schmidt-Atzert, 2006, S. 399) und anhand
des Top-Down-Prinzips (Gatewood et al., 2016, S. 662). Fiir die Diagnosen wurden

unterschiedliche Basisraten verwendet.
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Anhand der ersten Simulationsstudie konnte gezeigt werden, dass die Fit-Indizes CFI,
RMSEA und SRMR korrekte Modelle anhand der Daumenregeln nach Hu und Bentler (1998,
1999) als korrekt indizierten. Allerdings zeigten die drei Fit-Indizes hinsichtlich der
missspezifizierten Modelle ein heterogeneres Bild. Die Fit-Indizes RMSEA und SRMR zeigten
die Missspezifikation anhand der Cut-Offs nicht an, und dies selbst bei im Rahmen der
angewandten Forschung hohen Faktorladungen. Der CFI zeigte die Modellabweichung mit
Ausnahme der Bedingungen mit der hohen Faktorkorrelation im Populationsmodell (geringe
Missspezifikation) an. Allerdings zeigte der CFI im Rahmen dieses Designs ein anderes Muster
als das von Heene et al. (2011) beschriebene: Bei hohen Faktorladungen zeigten die Werte des
CFI im Mittel bei der vorliegenden Studie eine hohere Sensitivitit gegeniiber der
Missspezifikation als bei typischen Ladungen. Als Erklidrung fiir diesen Unterschied wird
vermutet, dass die nonlineare Teststatistik des CFI auch abhingig von der Art der
Missspezifikation ist, wie von Curran et al. (2002) angenommen wurde. Die ,,two-index
strategy* funktionierte nur in Kombination mit dem CFI und dies auch nur bei mittlerem und
hohem Grad an Missspezifikation. Im Gegensatz zu den Fit-Indizes konnte der x>~ Test jeglichen

Grad an Missspezifikation als Modellabweichung identifizieren.

Im Rahmen der zweiten Simulationsstudie wurde gezeigt, dass die unterschiedlichen
Basisraten, die Reliabilitdit (Hohe der Faktorladungen) und die Validitdt (korrekte
Spezifikation) eines Strukturgleichungsmodells sowie Interaktion dieser Parameter fiir die Giite
der Diagnostik auf Basis der Faktorwerte einen bedeutenden Einfluss hatten, wobei die
Basisraten im Rahmen des verwendeten Designs den grofiten Effekt hatten. Die Giite der
Diagnostik auf Basis der Bartlett-Faktorwerte wurde selbst bei Anwendung eines korrekten
Modells durch eine niedrige Reliabilitdt stark beeintréchtigt. Diese Beeintrachtigung verstérkte
sich bei kleinen Basisraten in klinischen GroBenordnungen und wirkte sich insbesondere
hinsichtlich der Erkennung von Krankheit (Sensitivitit) und der Korrektheit der Diagnose
(Positiver Pradiktionswert) negativ aus. Wenn gleichzeitig auch die Konstruktvaliditét nicht
gegeben war (unterschiedliche Schweregrade der Missspezifikation), beeintréchtigte dies die
Wabhrscheinlichkeit, Krankheit zu erkennen (Sensitivitit) bei kleinen Basisraten und die

Wahrscheinlichkeit, Gesundheit zu erkennen (Spezifitdt) bei groBen Basisraten zusitzlich.

Gleichzeitig zeigten die Ergebnisse aber auch, dass ein hinsichtlich der Giitekriterien
sehr gut konstruierter Test zu validen diagnostischen Entscheidungen fiihrt. Wenn ein hoch

reliables und valides Modell fiir die diagnostischen Entscheidungen aus den Faktorwerten
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verwendet wurde, hing die Giite der Diagnostik anhand aller Kennwerte kaum noch von den
unterschiedlichen Basisraten ab. Die Gesamtsummenwerte waren den Faktorwerten des korrekt
spezifizierten/konstruktvaliden Modells unterlegen, wenn die Reliabilitét sehr hoch war. Wenn
das Modell nicht konstruktvalide bzw. missspezifiziert war, fiihrten die Gesamtsummenwerte
zu besserer Diagnostik als die Faktorwerte, was auf die Art der Missspezifikation

zuriickzufiihren ist.
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2 Kritische Reflexion der eigenen Arbeit

2.1 Stiarken der Arbeit

Die vorliegende Dissertation hat drei grof3e Stirken, welche im Folgenden herausgearbeitet
werden. Erstens besticht das Design der Simulationsstudien durch seine in jeder Hinsicht
duBerst realistische Konstruktion. Dies betrifft einerseits die Modellbedingungen, andererseits
den Prozess der Datengenerierung. Als Konsequenz dieses Forschungsdesigns, welches sich
iiber beide Studien zieht, zeichnet sich die Arbeit durch ihre hohe Struktur und ihren roten
Faden aus. Der Vergleich des Ist-Zustandes der gédngigen Forschungspraxis mit dem

Idealzustand erlaubt konkrete Handlungsempfehlungen fiir die Testkonstruktion.

Neben der Tatsache, dass psychologische Phanomene in ihrer Mehrdimensionalitit oft nicht
erfasst werden (kdnnen) und sich diese Arbeit den Konsequenzen dieses Problems annimmt,
wurde als Datenanalysemethode fiir die berichteten Studien ein Verfahren gewihlt, das
zunehmend an Popularitidt in Grundlagen-, wie in angewandten Forschungsbereichen der
Psychologie und verwandter Disziplinen gewinnt (MacCallum & Austin, 2000; Reinecke,
2014; Tremblay & Gardner, 1996; siehe I). AuBlerdem wurden — im Vergleich zu den meisten
Studien, die die Auswirkungen von Modellabweichungen austesteten — realistisch hohe
(Peterson, 2000) und realistisch heterogene (Buzick, 2010) Faktorladungen als inzidentelle
Modellparameter gewihlt (sieche III. 3 und 5 sowie IV. 1 und V. 1). Ebenso ist die
Indikatorenanzahl typisch (Peterson, 2000; Shrout & Yager, 1989) und eine oblique
Faktorenstruktur in der angewandten psychologischen Forschung hiufiger als eine orthogonale
Faktorenstruktur (vgl. Steel et al., 2008; siche IV. 1 und V. 1). Die beiden latenten Variablen
im Populationsmodell korrelierten in GroBenordnungen, wie sie in der Psychologie vorkommen
(z.B. Rost, 2009; Shrout & Yager, 1989), und determinierten gleichzeitig den Grad der
Missspezifikation im Strukturmodell (siehe IV. 1 und V. 1). Um die praktische Relevanz der
Arbeit zu erhhen, wurden diagnostische Entscheidungen auf klinische Diagnosen tibertragen,
wobei verschiedene Basisraten in klinischen Groflenordnungen (Wittchen & Jacobi, 2001;
Wittchen et al., 2011) zur dichotomen Diagnostik verwendet wurden. Der Einbezug der
Gesamtsummenwerte zur Diagnostik komplettiert das realitdtsnahe Design im Sinne der
géngigen Praxis der Testkonstruktion und Testanwendung (DiStefano et al., 2009; Estabrook
& Neale, 2013; siche I1I. 5.2).
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Im Rahmen der ersten Simulationsstudie wurde eine Simulation mit anschlieBendem
Resampling gewéhlt, da die Giite der Modellevaluation anhand der Fit-Indizes hinsichtlich der
beschriebenen Missspezifikation ausgetestet werden sollte. Dies entspricht einer
Robustheitsstudie hinsichtlich des Datenanalyseverfahrens an sich. Im Rahmen der zweiten
Studie wurde die Praxis der klinischen Einzelfalldiagnostik simuliert. Das Ziel der
Psychometrie ist es, die Auspragungen der Individuen auf den latenten Variablen moglichst
valide erfassen zu konnen. Daher wurde eine Simulationsmethode gewihlt, die einerseits eine
Populationssimulation darstellte, andererseits von den Populationsfaktorwerten ausging, also
den wahren Auspriagungen der Individuen auf den latenten Variablen. Dies hatte den Vorteil,
dass nicht nur die Giite der Diagnostik auf Basis der Faktorwerte eines missspezifizierten
Modells berechnet werden konnte, sondern als Referenz zu dieser auch die Giite der Diagnostik,
die die Faktorwerte eines korrekten Modells unter realistischen Bedingungen iiberhaupt leisten

konnten.

Das genannte Forschungsdesign fiihrt zur zweiten Stirke dieser Arbeit. Im Rahmen
beider Simulationsstudien wurde das gleiche Design fiir die Populationsmodelle verwendet,
sodass der Aufbau der Forschungsarbeit klar strukturiert und demnach die Aussagekraft hoch
war: Zunédchst wurden Fit-Indizes, welche in der angewandten psychologischen Forschung sehr
oft fiir die Evaluation der Modellpassung herangezogen werden (Beauducel & Wittmann, 2005;
Marsh et al., 2013; McDonald & Ho, 2002; Savalei, 2012; siehe II. 2 und IV. 1), auf ihre
Sensitivitdt hinsichtlich einer realistischen Art und realistisch hohen Graden an
Missspezifikation untersucht. In einem zweiten Schritt wurde dann am Beispiel von Diagnosen
gezeigt, was diese Missspezifikation hinsichtlich der der substanziellen Aussagen, die aus den

Faktorwerten dieser Modelle getroffen werden, fiir die Individuen iiberhaupt bedeuten wiirde.

Die dritte Stirke dieser Dissertation liegt darin, dass nicht nur aufgezeigt wurde, welche
substanziellen negativen Konsequenzen fiir die Individuen im Rahmen der psychologischen
Einzelfalldiagnostik entstehen, wenn bei der Testkonstruktion, wie auch bei der Auswertung
von Daten, nicht nach dem Gold-Standard vorgegangen wird. Es wurde auch dargestellt, dass
eine duBerst sorgfiltige Test- oder Fragebogenkonstruktion nach den Giitekriterien zu sehr
valider Diagnostik auf Basis der Bartlett-Faktorwerte fiihrt. Basierend auf diesem Vergleich
konnten einerseits Ratschlidge fiir die Beurteilung der Modellpassung im Rahmen der
Auswertung von Daten mittels Strukturgleichungsmodellen gegeben werden (siche IV. 3.2),

andererseits konkrete Handlungsempfehlungen fiir die Test- und Fragebogenkonstruktion
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(siche V. 3.3.2). Diese werden unter VI. 3.1 noch einmal aufeinander aufbauend

zusammengefasst.

2.2 Grenzen der Arbeit

Trotz eines Forschungsdesigns, das sehr nahe an der Realitdt konzipiert wurde, konnte
der diagnostische Entscheidungsprozess im Falle der klinischen Diagnosen dennoch nicht
vollstdndig nachgestellt werden und nur beispielhaft vor dem Hintergrund einer untersuchten

Art der Modellmissspezifikation skizziert werden.

An dieser Stelle sei neben den weiteren unter V. 3.3 genannten Limitationen nochmals
die Tatsache erwéhnt, dass es sich im Rahmen klinischer Diagnosen um formative Messmodelle
handelt (Biihner, 2011; Curtis & Jackson, 1962; Reinecke, 2014; siche V. 3.4), im Rahmen des

Designs dieser Arbeit jedoch lediglich reflexive Messmodelle untersucht wurden.

AuBlerdem wurden die Diagnosen im Rahmen dieser Arbeit rein auf Basis einer
konjunktiven Entscheidungsstrategie (Amelang & Schmidt-Atzert, 2006, S. 339) nach den
hochsten Faktorwerten auf beiden Populationsfaktoren vergeben. Zumeist fithren in der
psychologischen Einzelfalldiagnostik aber auch hohe Auspridgungen auf den Indikatoren des
einen Faktors kombiniert mit niedrigen Ausprdgungen auf den Indikatoren eines zweiten
Faktors insgesamt zu einer Diagnose, zumal in der gédngigen diagnostischen Praxis meist
Rohsummenwerte zu einer Diagnose fiihren (z.B. Beck et al., 2006; Estabrook & Neale, 2013).
Letztere = Entscheidungsstrategie =~ wire  allerdings mit der  unausgewogenen
Indikatorenaufteilung hinsichtlich der Giite der Diagnostik basierend auf den Faktorwerten

konfundiert gewesen.

Ferner waren im Rahmen des simulierten Fragebogen- bzw. Testdesigns das
erforderliche Skalenniveau der Indikatoren, als auch die Voraussetzung der multivariaten
Normalverteilung erfiillt, da der Fokus der Arbeit auf den Auswirkungen der unterschiedlichen
Grade der Missspezifikation lag. Oft sind jedoch in der angewandten Forschung genau diese
beiden genannten Annahmen verletzt (Kuzon, Urbanchek, & McCabe, 1996; Norman, 2010;
Von Eye & Bogar, 2004), ohne dass dafiir, z.B. anhand von robusten Maximum-Likelihood-
Schétzmethoden bei Verletzung der multivariaten Normalverteilung (Finney & DiStefano,

2006; Satorra & Bentler, 1994; Yuan & Bentler, 1998, 2000) oder durch ein anderes
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Schitzverfahren bei Vorliegen von ordinalskalierten Daten (Browne, 2011) korrigiert werden

wirde.

Zum Abschluss soll die Relevanz der Dissertation fiir Wissenschaft und Praxis
herausgestellt werden und Implikationen aus den Befunden der Dissertation fiir die jeweiligen

Bereiche abgeleitet werden.
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3 Relevanz der Arbeit fiir Wissenschaft und Praxis

3.1 Wissenschaft

,» Lhe difficulty faced by psychologists in measuring is not mathematical
or empirical in nature, but is instead that the concepts they wish to have
enter into their measurement operations are typically of the common-

or-garden variety.*

(Maraun, 1998, S. 436)

Dieses Kommentar Marauns (1998) auf Wittgensteins eingangs erwéhnte Worte betrifft
eine der Hauptimplikationen bei der Testkonstruktion. Diese Implikation ist keineswegs neu,
doch angesichts der aktuellen Replikationskrise der Psychologie von groer Bedeutung. Bei der
Konstruktion von Tests, Fragebogen und Skalen bedarf es einer guten Theorie im Sinne einer
préazisen und trennscharfen Konstruktdefinition. Dies stellt den ersten Schritt auf dem Weg zu

erfolgreicher Psychometrie dar.

Die erste konkrete Empfehlung fiir die Konstruktion von Tests, Fragebdgen oder Skalen,
die sich aus der vorliegenden Dissertation ableiten ldsst, betrifft den Prozess, den zu erfassenden
Messgegenstand, der in den meisten Fillen psychologischer Forschung mehrdimensional sein
wird (Little et al., 2002b), in ein empirisch {iberpriifbares Konstrukt zu iibersetzen. Die
Empfehlung lautet, das mehrdimensionale Konstrukt in homogene Teilbereiche aufzuteilen und
diese moglichst reliabel zu erfassen und deren Faktorenstruktur zueinander moglichst valide zu
spezifizieren™. Dabei ist eine duBerst sorgfiltige Indikatoren-Konstruktion zur Erfassung
dieses Konstrukts notwendig, insbesondere, wenn es sich um kleine Basisraten handelt. So
wurde im Rahmen der Dissertation gezeigt, dass hohe Faktorladungen, also eine hohe
Reliabilitit des Tests bzw. Fragebogens oder der Skala, sowohl die Sensitivitit des x*-Tests und
der Fit-Indizes fiir Missspezifikationen erhohte, als auch die Giite diagnostischer
Entscheidungen auf Basis der Faktorwerte eines Modells verbesserte. Eine hohe Reliabilitét

zeigte sich insbesondere vor dem Hintergrund kleiner Basisraten, wie sie in der klinischen

>Dies ist beispielsweise bei der Konstruktion des ,,I-S-T 2000 R (Liepmann et al., 2007) sehr gelungen.
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Psychologie vorkommen, von groBer Bedeutung fiir die diagnostische Prizision. Das Gleiche
wie fiur die Reliabilitdt gilt fiir die Korrektheit der faktoriellen Struktur, also fiir die
Konstruktvaliditit. Es wurde gezeigt, dass eine hohe Konstruktvaliditdt im Sinne der Absenz
einer Missspezifikation im Strukturmodell in Kombination mit einer sehr hohen Reliabilitit zu
valider Diagnostik auf Basis der Faktorwerte fiihrte. Desto hoher der Grad der
Missspezifikation (desto niedriger die Konstruktvaliditit), desto mehr litt die Giite der
diagnostischen Entscheidungen beim Vorliegen kleiner Basisraten, sofern das Ziel der
Diagnostik das Erkennen eines Krankheitszustands war. Umgekehrt beeintrdchtigte eine
niedrige Konstruktvaliditét bei groBen Basisraten die Wahrscheinlichkeit, Gesunde als gesund
zu erkennen. Ferner wurde im Rahmen des Exkurses gezeigt, dass die Diagnostik auf Basis der
Faktorwerte eines sorgfiltig konstruierten (hoch reliablen und konstruktvaliden)
Testinstruments der bloBen Aufsummierung der Antworten auf den Indikatoren vorzuziehen

1st.

Sofern die Voraussetzungen einer guten Theorie sowie deren reliable und valide
Erfassung gesichert sind und der néchste Schritt die Auswertung der (Norm-)Daten ist, ist in
jedem Fall davon abzuraten, sich bei der Modellevaluation im Rahmen der
Strukturgleichungsmodellierung nur auf die Fit-Indizes zu verlassen. Wie in der vorliegenden
Dissertation gezeigt wurde, konnten die gidngigsten Fit-Indizes die Dimensionalitétsverletzung
groBtenteils anhand der Cut-Off-Kriterien nach Hu und Bentler (1998, 1999) nicht als
modellabweichend identifizieren, der y>-Test allerdings schon. Sofern die Fit-Indizes
Modellpassung indizieren, der y°-Test aber nicht, ist insofern Vorsicht geboten. Da aus der
Signifikanz des y>-Tests insbesondere bei groBen Stichproben jedoch nicht geschlussfolgert
werden kann, wie grol die Modellverletzung ist (Saris et al., 1987), ist die gleichzeitige

Betrachtung lokaler Mal3e der Modellpassung unbedingt erforderlich.

Der letzte Schritt der Testkonstruktion betrifft die Wahl eines geeigneten Cut-Off-
Werts, der — im Rahmen eines dichotomen Beispiels, wie es auch in der vorliegenden
Dissertation verwendet wurde — die Individuen mit der Diagnose ,,krank* moglichst trennscharf
von den Individuen mit der Diagnose ,,gesund* differenziert. Hinsichtlich dieses Cut-Offs ist
eine dulerst kritische Abwigung hinsichtlich Sensitivitit und Spezifitdt anhand der ROC-
Kurve unter Beachtung des Testzwecks (Screening, Beurteilung des Schweregrades einer
Erkrankung, etc.) zu treffen (Amelang & Schmidt-Atzert, 2006). Wird der Testtrennwert

erhoht, sodass die Sensitivitdt steigt und die Rate an falsch negativen Diagnosen geringer wird,
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sinkt jedoch die Spezifitdt und die Rate an falsch positiven Diagnosen wird hoher (Amelang &
Schmidt-Atzert, 2006; Ziegler & Biihner, 2012). Wie die vorliegende Dissertation zeigte, spielt
die Reliabilitidt (Faktorladungen) auch hinsichtlich des Cut-Offs bei mehrdimensionalen
Testverfahren mit unterschiedlich hohen Korrelationen zwischen den Faktoren eine Rolle. Die
realistisch niedrige Reliabilitit im Rahmen des vorliegenden Studiendesigns fiihrte dazu, dass
der gewdhlte univariate Cut-Off fiir die Diagnosen in einer Verzerrung der Basisraten bei

Anwendung des korrekten Modells resultierte.

Schwieriger zu erreichen als eine reliable und valide Testkonstruktion ist ein geeigneter
Umgang mit kleinen Basisraten, da diese nicht verdnderbar sind. Basisraten konnen
insbesondere im klinischen Bereich oft sehr klein ausfallen, sogar deutlich kleiner als im
Rahmen des untersuchten Designs. So liegen die Punktprivalenzen fiir psychische Storungen
wie Anorexie, Schizophrenie oder die Borderline-Stérung beispielsweise unter 1% (Wittchen
etal., 2011). Das aus den kleinen Basisraten resultierende Dilemma hinsichtlich der Sensitivitat
und des Pradiktionswerts eines diagnostischen Instruments wurde sowohl in der vorliegenden
Arbeit als auch anhand der unter I11. 4 beschriebenen Studien deutlich. Dieser Befund impliziert
besondere Aufmerksamkeit vonseiten der Diagnostikerin/des Diagnostikers bei der

Verwendung von Screening-Verfahren.

Ein Ansatz, der die Problematik, die aus den kleinen Basisraten resultiert,
moglicherweise entschérfen konnte, stellt dar, die Diagnose durch den Einsatz verschiedener
Testverfahren mehrfach abzusichern. Dies macht allerdings bei Testpersonen, die durch ihre
Storung stark kognitiv beeintrachtigt sind, wenig Sinn. Ein anderer Ansatz, der 6konomischer
und zumutbarer filir die getesteten Individuen wére, konnte darstellen, die Diagnostik in Teile
aufzuteilen (vgl. Emons et al., 2007), die zusammen die End-Diagnose ergeben sollen. Dies
konnte, wie bereits unter V. 3.3.2 beschrieben, durch die Beurteilung der Prasenz oder Absenz
eines Symptoms erreicht werden. Dieser Vorschlag wiirde sich zusammen mit dem bekannten
Vorschlag, das zu erfassende Konstrukt in moglichst homogene Teilkonstrukte aufzuteilen, um
es anschlieend hinsichtlich der Faktorenstruktur mdglichst valide zu spezifizieren, sehr gut in

Einklang bringen und umsetzen lassen.
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3.2 Praxis

Neben den genannten Implikationen fiir die Testkonstruktion macht diese Dissertation
auch deutlich, wie wichtig nicht nur eine gute wissenschaftliche Ausbildung fiir
Diagnostikerinnen und Diagnostiker ist, sondern auch, wie wichtig diagnostische Erfahrung in
den jeweiligen Bereichen und gewissenhaftes Vorgehen bei der Diagnostik ist, zumal die

diagnostische Erfahrung hochstwahrscheinlich zusétzlich von der Hohe der Basisrate abhéngt.

Im Rahmen dieser Dissertation und einem nachsimulierten klinischen Design wurden
nur unterschiedliche Basisraten untersucht, nicht auch unterschiedliche Selektionsraten. In der
Eignungsdiagnostik kommt jedoch in den meisten Fillen eine von den Basisraten verschiedene
Selektionsrate hinzu. Sofern sich Basis- und Selektionsrate nicht gleichen, kann eine im
Vergleich zur Basisrate kleinere Selektionsrate die Trefferquote erhdhen (Schonemann &
Thompson, 1996; Taylor & Russell, 1939). Das heilit, mehr Bewerberinnen und Bewerber
erhohen die Chance, eine geeignete Kandidatin/einen geeigneten Kandidaten fiir eine vakante

Position auszuwihlen.

Fiir die Festlegung von geeigneten Testtrennwerten gibt es keine eindeutige Losung
(Amelang & Schmidt-Atzert, 20006, S. 432). Gleichzeitig geht eine diagnostische Entscheidung
aber mit einer qualitativen Wertung einher, die hinsichtlich individueller und gesellschaftlicher
Konsequenzen duBlerst sorgfiltig erwédgt werden sollte (Amelang & Schmidt-Atzert;
Wieczerkowski & Oeveste, 1982). Die praktische Bedeutsamkeit mangelhafter diagnostischer

Instrumente fiir die Einzelfalldiagnostik wird im Folgenden ausgefiihrt.

Falsche Diagnosen konnen weitreichende Konsequenzen nach sich ziehen. Falsch
positive Diagnosen verursachen nicht nur unnétige Behandlungskosten fiir Individuum und
Gesundheitswesen und damit wiederum fiir die Gesellschaft, sondern konnen fir die
Betroffenen auch zu negativen psychischen und physischen Konsequenzen fiihren. Derartige
negative Folgen fiihren von der Stigmatisierung, welche wiederum erst psychische
Beeintrachtigung verursachen kann, bis hin zu unerwiinschten Nebenwirkungen durch
psychologische Psychotherapie und/oder Pharmakotherapie (Angermeyer, 2003; Berk &
Parker, 2009; Briiggemann, 2007; Holzinger, Beck, Munk, Weithaas, & Angermeyer, 2003;
Linden, 2013; Riisch, 2010). Falsch negative Diagnosen konnen die Unterlassung notwendiger
Interventionsmethoden nach sich ziehen. Eine hohe Rate an falsch negativen Diagnosen ist
insbesondere im Rahmen von Screenings problematisch, da Patienten mit einer negativen
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Diagnose nicht weiter untersucht werden. Dieser Umstand kann sich, verglichen mit einer
frithzeitigen korrekten Diagnosestellung, in einer verringerten Chance auf Heilungserfolg

duBern (Milos, Spindler, Schnyder, & Fairburn, 2005; Von Holle et al., 2008).

Vor dem Hintergrund der Relevanz dieser Dissertation fiir Wissenschaft und Praxis
erscheinen Wittgensteins eingangs erwihnte Worte zur Bedeutung der Wissenschaftlichkeit

ebenso wesentlich wie 1953 (Maraun, 1998).
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True Positives in % an der Gesamtpopulation

Anhang

1 Diagnostische Konsistenzen korrekte Modelle
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Abbildung 21. Durch die Bartlett-Faktorwerte missspezifizierter Modelle als falsch-negativ diagnostizierte Félle

170



3 Diagnostische Konsistenzen Gesamtsummenwerte

True Positives aus den Gesamtsummenwerten
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Abbildung 22. Durch die Gesamtsummenwerte korrekt erkannte Positive
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Abbildung 24. Durch die Gesamtsummenwerte als falsch-positiv Diagnostizierte
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