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Abstract 

The first homolog of Kon-tiki (Kon) was identified in human melanoma 

cells over 30 ago. However, numerous aspects of the function of Kon 

and its homologues are poorly understood, including how their three 

protein domain types, the lamininG domains, the chondroitin sulphate 

proteoglycan (CSPGs) repeats, and the PDZ-binding domain, interplay 

to mediate a multitude of biological processes. This study shed light on 

this question, using Drosophila myogenesis as a model system. Here, 

a kon genomic fosmid clone derived toolkit, which recapitulates the 

expression profile of endogenous kon, was applied to investigate how 

Kon adapts its activity in two distinct developmental scenarios: one in 

the embryo, in which the small larval muscles form, and a second one 

in the pupae, in which the larger adult muscles form. This study 

showed that a compact version of Kon, missing the long CSPG 

domains is sufficient for building the smaller larval muscles. However, 

during formation of larger muscles, this compact version is not 

sufficient, requiring thus to be synergized by the CSPG domains. 

Furthermore, this study identified the extracellular domain type, which 

renders Kon able to mediate myotube guidance, the CSPG domains. 

This is the first in vivo study, which establishes a link between 

guidance and Kon, thus providing insights to how Kon homologues, 

NG2/CSPG4, may increase the metastatic potential of melanomas or 

of soft tissue sarcoma.  
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1 Introduction 

Muscles enable animals to develop an escape response, thus 

increasing their chances to survive and to generate offspring in hostile 

habitats. The sophistication of the escape response varies throughout 

the kingdom Animalia, and it is partially dependent on the complexity of 

each type of musculature. 

The myogenesis of the somatic muscles is a stereotyped sequence of 

cellular processes, including cell specification, cell proliferation, fusion, 

migration and cell–cell interactions.  

Evolutionary conservation both at levels of DNA sequence and of 

cellular morphogenesis makes model organisms, such as the fruit fly 

Drosophila melanogaster, a versatile experimental framework to 

investigate the general principles of muscle biology and disease. 

Drosophila myogenesis shares key aspects with vertebrate somatic 

myogenesis, including expression of myogenic genes, such as MEF2 

and TWIST; formation of syncytial myotubes; and the establishment of 

a contractile apparatus based on a conserved sarcomeric organization. 

Therefore, studying Drosophila myogenesis is of high relevance to 

understand general principles underlying human muscle formation, 

regeneration, aging, as well as myopathies, including Duchenne 

dystrophy, as the most common and severe example.  

1.1 Development of the larval somatic 

musculature 

Drosophila melanogaster has two phases of myogenesis. In the first 

phase, occurring during embryogenesis, the larval muscles are formed. 

While in the second phase, taking place during pupal metamorphosis, 

the adult muscles of the fly are built. The larval musculature consist of 

single-fiber muscles, while the adult musculature is composed of multi-
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fiber arrays, rendering the Drosophila adult muscles more similar to 

vertebrate muscles (Baylies et al., 1998). 

1.1.1 Mesoderm formation 

The larval somatic muscles arise from the germ layer mesoderm. The 

formation of the mesoderm is triggered during Drosophila oogenesis by 

the mechanism that establishes the dorsal-ventral (D-V) axis. The D-V 

spatial information is transmitted from the oocyte to the embryo by a 

spatially restricted cascade of molecular events (Moussian and Roth, 

2005; Stein and Stevens, 2014). This cascade of events includes the 

activation of Toll specifically at the ventral side of the embryo, which in 

turn generates a nuclear gradient of the transcription factor, Dorsal, 

across the D-V axis of the syncytial blastoderm. The Dorsal gradient is 

established during the nuclear division cycles 10 through 14, 

embryonic stage 4 (Roth et al., 1989). This gradient modulates a 

multitude of genes according to their responsiveness to Dorsal 

(Stathopoulos and Levine, 2002). 

At embryonic stage 5, the nuclei are enveloped by the embryonic 

membrane, resulting in the cellularization of the embryo. At stage 6, 

gastrulation begins. During gastrulation, mesoderm, neurogenic 

ectoderm and dorsal ectoderm are formed. The development of these 

germ layers is orchestrated by the differential activation of downstream 

genes of Dorsal (Stathopoulos and Levine, 2002; 2004).  

Twist (Twi), the master regulator of the mesoderm, is activated by a 

high concentration of Dorsal at the ventral part of the blastoderm. Twi 

orchestrates a complex network of genes, responsible for the 

mesoderm formation and subsequent sub-patterning. The activation of 

this complex network of genes in the ventral cells from the embryos 

induces the contraction of their basal side. These cells acquire then a 

wedge shape necessary to invaginate into the interior of the embryo. 

This inward movement of cells creates a furrow on the ventral side, a 
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developmental hallmark of Drosophila embryo (Leptin and Grunewald, 

1990).  

The secretion of Thisbe (a FGF ligand) by the overlying ectoderm 

orchestrates subsequently the mesodermal spreading below the 

ectoderm, through FGF receptor activation (Sandmann et al., 2007). 

As the mesoderm spreads below the overlaying ectoderm, it receives 

ectodermal signals, which are essential for the patterning of the 

mesoderm (Stathopoulos and Levine, 2004; Moussian and Roth, 

2005).  

The anterior-posterior segmentation of the ectoderm instructs the 

patterning of the underlying mesoderm, by modulating the expression 

of twi. Two important molecules that modulate twi expression levels in 

the mesoderm are Wingless (Wg) and Sloppy-paired (Slp). The 

ectoderm secretes Wg, which in turn leads to the activation of slp in 

the mesoderm, via the transcription factor dTCF (Pangolin). Slp, in 

turn, inhibits a repressor of twi, Bagpipe, in the anterior part of each 

mesodermal segment. In the posterior part, Bagpipe remains active, 

leading to twi repression (Lee and Frasch, 2000). Thus, twi only 

remains expressed in the anterior mesoderm of each segment (Figure 

1.1A). The somatic muscles originate from the region of high twi, 

whereas the visceral mesoderm and the fat body from the regions of 

low twi expression (Dobi et al., 2015).  

1.1.2 Formation of the larval musculature in the 

embryo 

The larval somatic muscles develop from the anterior region of each 

mesodermal hemisegment, which is composed of cells with high 

expression of twi. These cells are allocated into 18 myogenic clusters 

(in the case of the abdominal hemisegment) (Figure 1.1B), from which 

the progenitors of the 30 somatic muscles are specified (Carmena et 

al., 1995), (Figure 1.1C-F).  
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Diffusible molecules secreted by the ectoderm orchestrate within each 

of the 18 myogenic clusters a stepwise decrease in the number of cells 

that can become a muscle progenitor. The first stage of a myogenic 

cluster is designated competence domain. Some cells from the 

competence domain then acquire the potential to become a muscle 

progenitor, thus forming an equivalence (pro-muscular) cluster 

(Carmena et al., 1998). Notch inhibition assures that only one cell from 

the equivalence cluster acquires the progenitor fate (Rusconi and 

Corbin, 1998), (Figure 1.1B, C).  

From 18 competence domains in the abdominal hemisegment, 18 

muscle progenitors are specified, which in turn give rise to 30 muscle 

founder cells (FCs) and six adult muscle precursors (AMPs) by 

asymmetric division. The AMPs are quiescent cells necessary for the 

adult myogenesis, whose role is described later (Carmena et al., 

1995). The 30 FCs within the hemisegment are organized in three 

groups: dorsal, lateral, and ventral, according to the spatial 

organization of the future muscles (Dobi et al., 2015), (Figure 1.1D-F). 
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Figure 1.1. Development of the larval somatic muscles in the embryo 

(A) Modulation of twi expression underlies mesodermal anterior-posterior patterning. 
Ectodermal signalling modulates twi expression at the mesoderm, generating a high 
expression region, at the anterior part, and a low expression region at the posterior 
part of a segment. The somatic muscles originate from the high twi region. 

(B) Diffusible molecules secreted by the ectoderm subdivide the high twi region into 
18 myogenic clusters throughout an abdominal hemisegment, designated 
competence domains. All the cells from the competence domains express lethal of 
scute (l’sc). 

(C) The competence domains undergo a stepwise decrease in the number of cells 
that can become a muscle progenitor cell (MPC). The muscle progenitors divide 
asymmetrically. As representative examples, the cell lineage of P2 and P17 are 
depicted. 

(D) Cell lineage generated by each muscle progenitor. Some progenitors originate 
only FCs, others AMPs and pericardial cells (PCs). DAMPs (dorsal AMPs), LAMPs 
(lateral AMPs) and VAMPs (ventral AMPs). A to E adapted from Dobi et al., 2015. 

(E) The FCs of each type of larval muscles occupy the position of the future muscle. 

(F) The larval somatic muscles from an abdominal hemisegment.  Each muscle has a 
two-letters nomenclature. The first letter describes the position within the 
hemisegment: D (dorsal), L (lateral) and V (ventral); and the second letter the 
orientation of the muscle: O (oblique), A (acute), T (transverse), and L (longitudinal). 
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1.1.2.1 Founder Cells provide instructions for muscle 

development 

Each FC contains the genetic instructions to form a particular muscle 

fiber. If fusion is blocked, some FCs are able to create mini-muscles, 

which can even attach to tendon cells, and express markers of the 

mature muscle (Rushton et al., 1995).  

The identity genes, expressed by the FCs, encode the genetic 

instructions for the formation of each muscle fiber (Frasch, 1999), 

including their size and shape (Bataillé et al., 2010). The identity genes 

are either expressed exclusively in a single FC, such as ladybird (Jagla 

et al., 1998), or in a larger and overlapping number of FCs, such as 

Krüppel (Kr) (Ruiz Gomez et al., 1997), slouch (slou) (Knirr et al., 

1999), nautilus (nau) (Keller, 1998), and Pox meso (Poxm) (Duan et 

al., 2007).  

These identity genes are either activated by extrinsic factors secreted 

by the ectoderm, such as Wg activates eve; or by other identity genes, 

such as, the activation of slou in the VA2 muscle by Kr (Ruiz Gomez et 

al., 1997). Moreover, identity genes can also prevent the expression of 

other identity genes (Knirr et al., 1999). In summary, the identity genes 

interplay with each other, thus generating a specific expression profile 

of identity genes unique to each FC or forming muscle fiber. This 

unique profile of identity genes expression, known as combinatorial 

code of identity gene expression, orchestrates a multitude of 

downstream targets responsible for development and morphology of 

each muscle fiber (Dobi et al., 2015). 

Once a FC-specific network of identity genes is established, how does 

it control muscle formation and differentiation? The comparison of the 

transcriptional profile from two distinct FC populations provided 

insights into how muscle morphology and diversity are generated by a 

network of identity genes (Dobi et al., 2014). The first interesting 

insight was that the majority of genes found to be up-regulated were 



 1. Introduction 
 

 15 

similar in the two population of FCs. This group of genes comprises the 

FC transcriptional core, whose genes are involved in cell morphology, 

cell motility, and cell adhesion, as well as microtubule cytoskeleton 

organization. While the diversification of the muscles is controlled only 

by a smaller number of genes (Dobi et al., 2014). An example of such 

a gene is kon-tiki (kon). Kon is expressed in only a subset of FCs and 

myotubes (Estrada et al., 2006). Kon is a receptor essential for 

myotube elongation and attachment (Schnorrer et al., 2007). 

As mentioned before, the FCs have all the genetic instructions to form 

a muscle, but they need to increase their mass to become a mature 

muscle. This is achieved by the fusion of the fusion competent 

myoblasts (FCMs) with the FCs. The FCMs derive from the cells that 

had a strong Notch signal within the equivalence cluster, leading to the 

expression of Lame duck (Lmd), a zinc finger transcription factor 

(Busser et al., 2012). Lmd regulates in turn Mef2, stick-and-stones, 

and blow, whose activities are essential for fusion with the FCs (Duan 

et al., 2001; Busser et al., 2012). Interestingly, Lmd also activates 

tramtrack69, a zinc finger repressor, whose function is to repress FC 

genes in FCMs, and thus to stabilize the FCM fate (Ciglar et al., 2014). 

1.1.2.2 Fusion and elongation of the larval muscles  

Muscle fibers contain from four to 25 nuclei (Beckett and Baylies, 

2007), thus rendering myoblast fusion a key morphogenetic process 

for the formation of muscles (Figure 1.2). The fusion of FCMs with FCs 

takes place in five main steps: (1) recognition and adhesion between a 

FCM and a FC or growing myotube, (2) cytoskeletal arrangement at 

the site of fusion, (3) pore formation, (4) mixture of the cytoplasmic 

contents and FCM nuclear reprogramming, and (5) disassemble of the 

fusion machinery at the site of fusion to allow subsequent fusion 

events (Rochlin et al., 2010; Schulman et al., 2015).  

FCs and FCMs express cell-type specific transmembrane proteins 

containing immunoglobulin (Ig) domains, whose function is to mediate 
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cell-recognition and cell-adhesion (Figure 1.2B). The expression of 

two different types of adhesion proteins guarantees only heterotypic 

fusion events. Interestingly, identity genes also control the number of 

fusion events, and thus the number of nuclei per muscle (Bataillé et al., 

2010). Upon each fusion event, the two cytoplasms are mixed, 

however the nucleus of the FCM acquires the fate of the FC/myotube. 

The mechanism that leads to FCM reprogramming after fusion is not 

yet understood. 

1.1.2.3 Specification of tendon cells 

During myoblast fusion, the myotube elongates towards the tendon 

cells to form a special type of attachment, designated myotendinous 

junction (MTJ), (Figure 1.2). The myotube elongation and attachment 

are partially non-autonomous processes. In these two processes, the 

muscles need extrinsic molecules, namely guidance cues and ECM 

components, secreted by the tendon cell precursors (Schweitzer et al., 

2010).  

The tendon cell precursors originate from ectodermal cells that express 

stripe, a master regulator of tendon cell development (Frommer et al., 

1996). Stripe is an Early growth response (EGR)-like transcription 

factor (Frommer et al., 1996; Hatini and DiNardo, 2001), present in two 

splice variants, stripeA and stripeB. Each isoform is associated with a 

particular developmental status of the tendon cells: stripeB controls the 

early differentiation of ectodermal cells into tendon precursors, while 

stripeA orchestrates the steps for tendon precursor cell maturation 

(Volohonsky et al., 2007).  

The specification of the tendon cell precursors is directed by secreted 

signals within the ectoderm. During stages 11-12, each ectodermal 

parasegment includes three territories that secret Hedgehog (Hh), 

Spitz (ligand for EGF receptor) and Wg, respectively. These three 

secreted ligands induce expression of stripeB in the adjacent cells. 
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stripeB orchestrates subsequently the specification of these 

ectodermal cells in tendon precursors (Hatini and DiNardo, 2001).  

Differentiation of the tendon precursors in tendon cells is triggered by 

the degradation of stripeB mRNA (Nabel-Rosen et al., 1999). The 

degradation of stripeB mRNA is mediated by the interplay of the two 

isoforms of a RNA-binding protein from the Star family (Signal 

transduction and RNA control), Held Out Wing (How): How(L) and 

How(S) (Nabel-Rosen et al., 2002; Volohonsky et al., 2007). StripeB 

induces the expression of How(L), which in turn decreases the levels 

of stripeB mRNA (Nabel-Rosen et al., 1999), thus inhibiting further 

differentiation until the elongating myotubes reaches the vicinity of the 

tendon cell precursor (Becker et al., 1997). 

The growing myotubes secrete an EGFR ligand, Vein, which is 

essential for the maturation of the tendon cell precursor (Yarnitzky et 

al., 1997). Upon muscle-tendon contact, the level of How(S) increases 

in the tendon precursors, presumably due to Vein signalling (Nabel-

Rosen et al., 1999). Subsequently, How(S) enhances the splicing of 

stripeA, thus elevating the stripeA  mRNA levels (Volohonsky et al., 

2007). StripeA in turn induces the expression of genes necessary for 

the maturation of the tendon cells (Subramanian et al., 2003). 

1.1.2.4 Muscle attachment: formation of myotendinous 

junctions 

Muscle and tendon cells form a stable attachment, a myotendinous 

junction (MTJ) (Figure 1.2C), which is essential to withstand the forces 

generated during muscle contractions. The building blocks of this 

junction are integrin heterodimers and a special type of ECM, tendon 

matrix. The tendon matrix “glues” the two cells together. Moreover, it 

provides elastic properties to the myotendinous junction (Brown, 

2000a). 

There are two types of myotendinous junctions: direct and indirect 

junctions. In the direct type, such as in the Lateral Transverse (LT) 
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muscles, a single muscle attaches to a tendon cell with little tendon 

matrix between them. While in an indirect type, such as in the ventral 

longitudinal (VL) muscles, multiple muscles, often from different 

directions, connect to a tendon cell with large quantities of tendon 

matrix in between (Brown, 2000a), (Figure 1.2C). 

The tendon matrix is composed mainly of Thrombospondin (Tsp) and 

Tiggrin (Figure 1.2C). Tendon cells and muscles contribute differently 

to the assembly of this matrix: tendon cells secret Tsp, while muscles 

capture Tiggrin secreted distally by other cell types (Schweitzer et al., 

2010). Tsp starts to be secreted at embryonic stages 12-13, 

accumulating in dots around the tendon cells precursors (Subramanian 

et al., 2007). Because Tsp is secreted much before the myotube has 

reached the tendon cells, direct cell-cell membrane contact between 

muscle and tendon is thus unlikely to occur. At stage 16, upon 

myotendinous junctions formation, Tsp accumulates strongly at the 

MTJ (Subramanian et al., 2007). The integrin heterodimer expressed 

by the muscle, αPS2βPS, binds to Tsp, attaching then the muscle to 

the tendon matrix (Subramanian et al., 2007).  

Tiggrin is secreted into the hemolymph (insect blood) by the fat body 

and the hemocytes. Tiggrin diffuses through the hemolymph, and 

eventually reaches the muscle attachment, where it is captured. 

Tiggrin is also a ligand for the integrin heterodimer, αPS2βPS, thus 

contributing to the attachment of the muscle to the tendon matrix 

(Fogerty et al., 1994). Interestingly, the recruitment of Tiggrin by the 

muscle appear to be independent of αPS2βPS (Martin-Bermudo and 

Brown, 2000). 

The myotubes and the tendon cells express different types of integrin 

heterodimers. The both types of heterodimers share the same β 

subunit, but they are composed of different α subunits: αPS1 in 

tendons, and αPS2 in muscles. As mentioned before, αPS2βPS from 

the muscle side binds to Tsp and Tiggrin. ECM accumulation can 

recruit integrin at the muscle ends. In fact, the extracellular parts of 
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αPS2 and βPS subunits can localize at the attachment sites without 

their intracellular parts (integrin tails) (Brown, 2011). Conversely, the 

cytoplasmic tail of βPS can also localize without the extracellular part 

(Martin-Bermudo and Brown, 1999). This localization is independent of 

Talin, a cytoplasmic protein essential to link integrin tails to the 

cytoskeleton (Brown et al., 2002). 

 

 

Figure 1.2. Elongation and attachment of the larval muscles in the embryo 

(A) The larval myogenesis in the embryo occurs during stages 13 to 17. The 
formation of a ventral longitudinal (VL) muscle is described to depict the main steps 
of muscle formation in the embryo. The founder cell (FC), containing the genetic 
instructions for muscle formation, localizes at the correct position within the 
hemisegment. The fusion competent myoblasts (FCMs) fuse with the FCs to yield a 
myotube (details on 1.2B). The growing myotube elongates towards the tendon cells 
in response to guidance cues secreted by the tendon cells. Once the myotube 
reaches the tendon cells, the leading edge is remodelled in response to attachment 
cues to form an attachment with the tendon cells. 

(B) FCs and FCMs express cell-type specific transmembrane proteins, containing 
immunoglobulin (Ig) domains, whose function is to mediate cell-recognition and cell-
adhesion. FCs express both Dumbfounded/Kirre (Duf) and Roughest/IrreC (Rst), 
while FCMs express Sticks and Stones (Sns) and Hibris (Hbs). Duf interacts with Sns 
and Rst with Hbs. The expression of the two different set of adhesion proteins 
guarantees only heterotypic fusion events. 

(C) Cross-sectional view (dashed line on 1.2A) of an attached VL muscle. The VL 
muscle attachment type is indirect, meaning multiple muscles connect to a tendon 
cell with large quantities of a special type of ECM, the tendon matrix, in between. The 
tendon matrix is composed mainly of Thrombospondin (Tsp) and Tiggrin. Tendon 
cells and muscles contribute differently to the assembly of this matrix: tendons secret 
Tsp, while muscles capture Tiggrin secreted by other cell types.  
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Lack of αPS2 leads to severe detachment of the muscles during 

embryogenesis (Brown, 1994), whereas absence of αPS1 results in a 

milder phenotype  (Brower et al., 1995). This phenotypic difference 

shows that the integrin heterodimer αPS2βPS has an essential role in 

anchoring the muscles to the tendon matrix, and thus in the formation 

of MTJ. In contrast, the contribution of the integrin heterodimers from 

the tendon is less important.  

1.2 Development of the somatic adult musculature 

The main activities of a Drosophila larva are searching and eating 

food. The musculature formed during embryogenesis (Figure 1.3A) 

makes the larva a perfect vehicle to navigate in soft substrates, such 

as decomposing fruit. However, the larval musculature does not 

support adult movements, such as flight. 

Pulses of the steroid hormone 20-hydroxycdysone (ecdysone) control 

the end of the larval phase and of the onset of metamorphosis. During 

metamorphosis, the cylindrical larva has to be remodelled into a fly 

with legs, wings and an everted head. This dramatic transformation 

demands the destruction of almost all larval tissues by programmed 

cell death (PCD) (Zirin et al., 2013). 

1.2.1 Formation of the adult abdominal muscles  

There are three main sets of adult abdominal muscles: the dorsal, the 

lateral and the ventral sets. In each segment, the dorsal set is 

composed of 17-22 parallel longitudinal fibers; the lateral set consists 

of 20 parallel fibers along the dorsoventral axis; while the ventral set is 

composed of 5-8 fibers, localized laterally to the ventral midline (Bate 

et al., 1991; Currie and Bate, 1991). The development of the abdomen 

dorsal muscles is explained here (Figure 1.3B).  

The adult abdominal muscles of each segment derive from abdominal 

adult muscle precursors (AMPs), whose specification occurs during 
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embryogenesis as explained before (Figure 1.1). AMPs are muscle-

committed stem-like cells that during metamorphosis build the adult 

muscles. Distinct populations of abdominal AMPs (Figure 1.3A) 

originate different types of adult abdominal muscles. Similarly to the 

embryonic FCs, the AMPs express specific identity genes, whose role 

is to control the development of a particular type of adult muscle. For 

instance, the lateral AMPs (Figure 1.3A), expressing ladybird, form all 

the lateral abdomen muscles (Figeac et al., 2010), .  

 

 

Figure 1.3. The larval and adult Drosophila musculatures 

(A) Several populations of adult myoblast precursors (AMPs) are present in the L3 
larvae. The AMPs that originate the adult abdominal muscles are located in the 
abdominal hemisegments, associated with nerve bundles. These abdominal AMPs 
are allocated into three clusters: a ventral, a lateral, and a dorsal. The AMPs that give 
rise to the indirect flight muscles (IFMs), are located in the thoracic segments, 
organized in structures called imaginal discs. Two populations of AMPs, one 
associated with the imaginal wing disc and other presumable with the imaginal leg 
disc (ld), contribute to the formation of DLMs and DVMs, respectively. The imaginal 
discs serve as a stem cell niche for the AMPs. Haltere disc (hd). 

(B) The adult somatic musculature is composed of several types of muscles. In the 
abdomen, there are three distinct muscles types: dorsal, lateral and ventral types. 
The fly thorax contains the IFMs, which are composed of the dorsoventral muscles 
(DVMs) and the dorsal longitudinal muscles (DLMs). The DVMs are composed of 
three fiber groups: DVM-I (three fibers), DVM-II (two fibers), and DVM-III (2 fibers). 
The DLMs are composed of an array of six large fibers. 
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During the larval phase, the abdominal AMPs proliferate, giving rise to 

a pool of myoblasts expressing duf, a FC-specific gene (Figure 1.3A). 

The proliferation continues during metamorphosis, however, only a 

subset of these cells retains the expression of duf. These cells are the 

FCs of the adult abdominal muscles (Dutta, 2004). Duf is a 

transmembrane protein important to attract duf non-expressing 

myoblasts to fuse, and thus originating myotubes (Dutta, 2004).  

At 28h APF (23-25C), single FCs, surrounded by myoblasts that 

resemble the embryonic FCMs, are at the positions corresponding to 

myotube forming sites (Dutta, 2004), (Figure 1.4A). Upon fusion, 17-

22 myotubes start to form, along the anteroposterior axis (Figure 

1.4B). These growing myotubes extend long cellular processes mainly 

towards the anterior side (Currie and Bate, 1991). Presumably, these 

cellular processes probe the environment for guidance cues, secreted 

by the tendon precursors in the overlying developing epidermis.  

The adult abdominal epidermis develops from histoblasts, from which 

the tendon precursors are also generated. During metamorphosis, the 

histoblasts replace the polyploid larval epithelia cells (LECs). The adult 

epithelium of each abdominal hemisegment is composed of two 

compartments: an anterior (A) and a posterior (P) compartments. The 

anterior part of A originates the tendon cell precursors, which are the 

epidermal attachments of the dorsal abdominal muscles. The muscles 

attach anteriorly to the tendon cells of the same hemisegment, 

whereas the posterior tip of the muscle attaches to the tendon cells, 

located at the anterior part of A, from the next hemisegment (Krzemien 

et al., 2012), (Figure 1.4C).  
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Figure 1.4. Development of the dorsal adult abdominal muscles in the pupa 

(A) The FCs occupy the positions of the future muscles within the abdominal 
segment in the pupa. The FCMs fuse then with each of the FCs to yield a myotube.  

(B) The growing myotubes elongate towards the tendon cells in response to 
presumable guidance cues. These cues make the myotube elongate along the 
anterior-posterior axis. Both myotube ends display very dynamic filopodia. 

(C) The dorsal abdominal muscles attach anteriorly to the tendon cells of the same 
hemisegment, whereas the posterior tip of the muscle attaches to the tendon cells, 
located at the anterior part of A, from the next hemisegment. 

 

Interestingly, when the histoblasts start to migrate dorsomedially (18h 

APF at 23-25 C), stripe, a pivotal gene for tendon cell specification, is 

detected in the most anterior histoblasts from the A compartment 

(Krzemien et al., 2012). Stripe may instruct the developing tendons to 

secrete molecular cues for guiding the myotubes underneath.  

Interestingly, inducing the ectopic expression of stripe in different 

regions of the epithelium leads to dorsal muscles to build ectopic 

attachments there. This shows that stripe, as a master regulator of 

tendon cell identity, is able to induce other epithelial cells to acquire a 

tendon cell fate. These tendons induced ectopically are able in turn to 

secrete guidance cues, thus attracting the growing myotubes towards 

them (Krzemien et al., 2012) . 

The mechanisms regulating the abdominal muscle guidance towards 

the tendon cell are still poorly understood.  However, a pivotal player in 

this mechanism has been identified, Kon. kon knockdown in the dorsal 
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abdominal muscles by RNAi results in a severely disorganized dorsal 

abdominal musculature (Perez-Moreno et al., 2014). However, how 

Kon helps the muscle to find the correct attachment is not clear.  

1.2.2  Formation of the indirect flight muscles  

Flying is a complex activity that requires very specialized muscles. The 

Drosophila adult has two sets of flight muscles: the indirect and the 

direct sets. Here, the formation of the indirect flight muscles (IFMs), 

composed of the dorsoventral muscles (DVMs) and the dorsal 

longitudinal muscles (DLMs), is described (Figure 1.5).  

The IFMs are fibrillar muscles (Schönbauer et al., 2011), meaning that 

the sarcomeres are nonaligned. In addition, the IFMs contract 

asynchronously. These features among others render the IFMs perfect 

engines for flying. The remaining adult muscles, including the 

abdominal, are tubular, with laterally aligned sarcomeres. In addition, 

they contract synchronously (Dickinson, 2006; Wang et al., 2011b). 

Although the DVMs and DLMs are the unique fibrillar adult muscles, 

their developmental programs differ: one is formed from FCs and other 

uses a template-based mechanism. 

Two populations of AMPs, one associated with the imaginal wing disc 

and other presumable with the imaginal leg disc, contribute to the 

formation of DLMs and DVMs, respectively (Rivlin et al., 2000; Dutta, 

2004; Atreya and Fernandes, 2008), (Figure 1.3A). The epidermal 

tissue of the imaginal discs serves as a stem cell niche for the AMPs 

(Gunage et al., 2014). 

1.2.2.1 The developmental program of the DVMs 

The DVMs are composed of three groups of muscles: DVM-I (three 

fibers), DVM-II (two fibers), and DVM-III (two fibers), (Figure 1.5C). 

The three groups of multi-fiber arrays arise from FCs (Atreya and 

Fernandes, 2008), (Figure 1.5A). The FCs can be distinguished from 

the other myoblasts by the strong expression of duf (Dutta, 2004), 
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larger nuclei, and a cytoskeleton highly enriched in microtubules (Rivlin 

et al., 2000). 

Each FC originates a single DVM fiber (Figure 1.5B). At 10h APF 

(25C), the seven FCs of the three groups of DVMs are located in the 

region, where the DVM fibers are going to form. Three FCs originate 

the three fibers of the DVM-I, two FCs “seed” the two fibers of DVM-II, 

and finally, two other FCs originate the two DVM-III fibers (Figure 

1.5A). When the fusion is impaired these FCs are able to form mini 

DVM fibers (Dutta, 2004). 

The mechanism underlying the elongation of these muscles (Figure 

1.5B) is not yet known. However, it is likely that molecular cues 

secreted by the tendon cells have a central role in DVMs guidance and 

attachment.  

1.2.2.2 The developmental program of the DLMs 

The DLMs originate from larval scaffolds named templates. These 

scaffolds derive from the three larval dorsal oblique muscles (LOM) in 

the second thoracic hemisegment (Figure 1.5A). These muscles 

undergo a series of transformations to become templates, which 

include the loss of the larval sarcomeres, and myotube elongation (6-

13h APF at 25C). The onset of the LOMs remodelling coincides with 

the beginning of the myoblast migration from the imaginal wing disc 

towards the LOMs (Fernandes et al., 1991). 

During remodelling of the LOMs, their nuclei do not degenerate. In fact, 

they are transcriptionally active. The templates start to express duf, 

founder cell-specific gene, as early as 6.5 h APF (Dutta, 2004).  

From 14h APF onward, the three templates begin to split generating 

six DLMs myotubes in a hemisegment (Fernandes et al., 1991). 

Concomitantly, the myotubes elongate towards the anterior and 

posterior sides of the thorax, where their epidermal attachments are 

located (Weitkunat et al., 2014), (Figure 1.5B). Upon continuous 

fusion, the DLMs keep elongating towards the epidermis. At 20h APF, 
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filamentous extension from the tendon cells, decorated with αPS1βPS 

integrin (tendon specific integrin heterodimer), meet the extension from 

the DLMs, which have not yet accumulated αPS2βPS integrin (muscle 

specific integrin heterodimer). At 24h APF, a band of αPS2βPS integrin 

decorates the muscle ends. αPS1βPS integrin is still present in the 

tendon extension, but it is also accumulated in a band, between the 

processes and the cellular body of the tendon cells (Fernandes et al., 

1996; Weitkunat et al., 2014) . 

 

 

Figure 1.5. Development of the indirect flight muscles, DVMs and DLMs, in the 
pupa 

(A) DVMs: The seven FCs of the three groups of DVMs are located in the region, 
where the DVM fibers are going to form. DLMs: The DLMs originate from larval 
scaffolds named templates. These scaffolds derive from the three larval dorsal 
oblique muscles (LOM). These muscles undergo a series of transformations to 
become templates, which include the loss of the larval sarcomeres, and elongation. 

(B) DVMs: FCMs fuse with the DVM FCs to form myotubes. These myotubes 
elongate presumable in response to guidance cues secreted by the tendon cells. 
DLMs: The three templates begin to split generating six DLMs myotubes in a 
hemisegment. Concomitantly, they extend towards the anterior and posterior sides of 
the thorax, where their epidermal attachments are located. 

(C) DVMs: The DVMs are composed of three groups of muscles: DVM-I (three 
fibers), DVM-II (two fibers), and DVM-III (two fibers). DLMs: The DLMs are 
composed of six fibers per hemisegment. 

 

The tendon cells, to which DLMs attach, derive from the stripe 

expressing epithelial cells in the wing disc. From 8 h APF onwards, the 

four anterior patches are part of the developing dorsal epidermis from 

the thorax, and are located anteriorly to the templates. The tendon 
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cells, which attach to the anterior end of the DLMs, belong to one of 

the four anterior-epidermal domains-expressing stripe (Fernandes et 

al., 1996; Tiwari et al., 2015). In addition, the posterior stripe-

expressing patch produces the tendon cells that connect with the 

posterior end of the DLMs. Kon is essential for the recognition of the 

tendon cells, and thus to form a stable myotube-tendon attachment 

(Weitkunat et al., 2014). However, the mechanism underpinning this 

process is poorly understood. 

An interesting question is whether the growing DLMs need guidance 

cues to find the tendon cells; or if the templates, by increasing their 

mass in a laterally constricted fashion, elongate and subsequently 

arrive to their epidermal attachments. Interestingly, when the templates 

are ablated, the DLMs are able to form de novo, which includes finding 

and attaching to the tendon cells (Farrell et al., 1996). This ability 

suggests that, if it is necessary, the DLMs formed de novo are 

endowed, possibly, with receptors able to sense guidance cues 

secreted by the tendon cells.  

1.3 Kon is essential for the two phases of 

Drosophila myogenesis 

Kon participates in the formation both of larval muscles in the embryo 

(Schnorrer et al., 2007), and of adult muscles in the pupa (Perez-

Moreno et al., 2014; Weitkunat et al., 2014), thus making Kon a pivotal 

player in the two phases of Drosophila myogenesis. The mechanism 

underlying Kon function is, however, poorly understood. 

1.3.1 The role of Kon in the larval myogenesis, in the 

embryo  

In the embryo, Kon has an essential role in the formation of a subset of 

muscles, called ventral longitudinal (VL) (Schnorrer et al., 2007). At the 

end of the embryogenesis, stage 17, wild-type VL muscles attach to 
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tendon cells, located at two opposite segment borders, while kon 

mutant VL muscles are detached and rounded. This severe phenotype 

results from defects, both in elongation and attachment of these 

muscles. During elongation, kon mutant myotubes do not form a 

normal leading edge (Schnorrer et al., 2007), which normally 

characterizes migrating cells (Montell, 2003; Jacquemet et al., 2015), 

(Figure 1.6). This defect suggests that in absence of Kon, the 

myotubes cannot organize properly the cytoskeleton to elongate. 

 

 

Figure 1.6. Kon is essential for the formation of the VL muscles  

(A) Kon participates in the formation of the larval ventral longitudinal (VL) muscles in 
the embryo. The VL muscles are attached to the tendon cells located at the 
hemisegment borders. The FCMs fuse with the VL FC to give rise to an elongating 
myotube. During elongation, the VL myotube forms a leading edge, which extends 
towards the anterior tendons, located at the hemisegment borders. Once the VL 
myotube reaches the tendon cells, the leading edge enlarges to form an attachment. 
This remodelling is presumably triggered by attachment cues. 

(B) kon mutant myotubes do not form a normal leading edge. The VL myotubes that 
eventually reach the vicinity of the tendon cells exhibit a second type of defect: the 
underdeveloped leading edge does not enlarge to form an attachment with the 
tendon cells. This defect results in detached and rounded VL muscles. 
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A hypothesis to explain the defect observed during elongation could be 

that Kon functions as a co-receptor. Kon may thus assist in the 

enrichment of guidance cues in the vicinity of a particular receptor to 

facilitate its activation. A possible example of such a guidance 

molecule is Slit. Slit is secreted by the tendon cells, which in turn 

activates Robo in the VL muscles, steering the elongating myotubes 

towards the tendon cells (Kramer et al., 2001). Interestingly, a Kon 

homolog, NG2 was shown to modulate the cell responsiveness to FGF 

(Binamé et al., 2013), possibly by increasing the local concentration in 

the vicinity of the FGF receptor. In kon mutant embryos, which express 

normally Slit and Robo, it is interesting to note, that the myotubes have 

nonetheless problems in the formation of a normal leading edge, which 

is a morphological hallmark of cellular migration. This, in turn, could 

indicate that the myotube cannot, for example, sense properly Slit, 

because without Kon, the concentration of Slit in the vicinity of Robo is 

not optimal.  

The VL myotubes from kon mutants that eventually reach the vicinity of 

the tendon cells exhibit a second type of defect: the underdeveloped 

leading edge does not enlarge to form an attachment with the tendon 

cells. This defect results in detached and rounded VL muscles 

(Schnorrer et al., 2007), (Figure 1.6B). The inability in remodelling the 

cytoskeleton at the leading edge possibly underlies the failure in 

forming an attachment. The remodulation of the leading edge is 

presumably necessary to increase the myotube surface, and thus the 

number of integrin molecules binding to the tendon matrix.  

Which molecules could Kon sense that trigger attachment formation? 

Possible examples are ECM components secreted by the tendon cells, 

or molecules present at the membrane of the tendon cells, here 

collectively called attachment cues.  These attachment cues could 

through Kon mediate a switch from an extending to an attaching mode. 

Together, it is conceivable, that Kon has a dual mode of action, long- 

and short rage, specific for each phase of VL development: elongation 
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and attachment. The here proposed long- and short-range sensing 

activities of Kon require, however, to be further investigated.  

1.3.2 The role of Kon in the adult myogenesis, in the 

pupa  

In the pupa, Kon participates in the formation of two types of adult 

muscles, dorsal abdominal muscles (Perez-Moreno et al., 2014) and 

the DLMs (Weitkunat et al., 2014). kon knockdown in the dorsal 

abdominal muscles results in a severely disorganized dorsal 

abdominal musculature, consisting of muscles with different angles of 

orientation in respect to the A-P axis (Perez-Moreno et al., 2014). This 

suggests that Kon has a role in the guidance of these adult muscles to 

the correct attachment site. Interestingly, this phenotype also indicates 

an increase in the contribution of the presumable long-range function 

of Kon to adult muscle development, probably due to an increase in 

the distance between the dorsal abdominal muscles and the tendon 

cell, comparing to the distance between the VL muscles and the 

tendon cells in the embryo. Nevertheless, the mechanism underpinning 

Kon function in abdominal muscle is still poorly understood. 

Kon also has an essential role in the DLM formation also shown by 

RNAi knock-down. This study showed that the DLM fibers can reach 

the tendon cells, however, they fail to form stable attachments, 

resulting in a rounding muscles similarly to the VL muscles in the 

embryo (Schnorrer et al., 2007; Weitkunat et al., 2014). Thus, the 

development of the DLM muscles seems to require more the 

presumable short-range function of Kon than the long-range one. 

Interestingly, the DLM elongating fibers may compensate for the lack 

of the presumable long-range role of Kon by producing very long 

cellular projections (Weitkunat et al., 2014), whose function could be 

similar to that of cytonemes. Taken together, these long projections, 

generated upon kon knockdown, could be a strategy of the DLMs to 

compensate for the inability of sensing guidance cues via Kon. 
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Nonetheless, the mechanism mediated by Kon in the DLMs remains 

still poorly understood. 

Kon presumably recognizes molecular cues, either secreted or present 

at the surface of the tendon extensions. A recently published genetic 

screen examined the function of 1384 genes by knock-down 

specifically in tendon cells, using the stripe-GAL4 driver. This RNAi 

screen aimed to discover new tendon players that participate in the 

formation and maintenance of the attachments with the DLMs. The 

knock-down screen yielded 21 candidates, however none of them is a 

suitable interaction partner of Kon. The 21 candidates identified are 

involved in different molecular functions, such as intracellular transport, 

cell adhesion, transcription factor activity, and chromatin remodelling. 

The gene myospheroid (it produces the βPS integrin subunit) and talin 

were among the candidates identified. This demonstrates that integrin 

and Talin are also essential at the tendon side to form the attachment 

with the DLM muscles (Tiwari et al., 2015). 

To date, there is no particular study addressing the role of Kon in 

DVMs formation, however, there are preliminary evidences showing 

that Kon may also be important for DVMs development. These 

preliminary evidences came from a already mentioned study, which 

used a general muscles driver, Mef2, also expressed in the DVMs, to 

address the role of Kon in DLMs. kon RNAi driven by Mef2 yielded an 

empty thorax, meaning that both the DLMs and DVMs were rounded or 

missing (Weitkunat et al., 2014).  

1.3.3 Kon homologues and protein structure 

Kon is conserved up to humans. Examples of relevant homologues 

include NG2, in mouse and rat, and CSPG4 in humans. NG2/CSPG4 

is expressed in numerous tissues, such as in the brain (Birey et al., 

2015; Dimou and Gallo, 2015), skin (Giangreco et al., 2009) and 

muscles (Grako et al., 1999; Petrini et al., 2003). In the human 

muscles, NG2/CSPG4 decorates the sarcolemma. Interestingly, the 
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highest level of expression in the muscles is observed after birth, 

although the expression levels decline with the age (Petrini et al., 

2003). Thus, it is likely according to this trend that, the expression 

levels are even higher before birth. 

The role of NG2/CSPG4 in vertebrate myogenesis is poorly 

understood. However, it was shown that the platelet-derived growth 

factor-α (PDGFα)-receptor in aortic smooth muscles from a 

NG2/CSPG4 mouse knockout is unresponsive to one of its ligands, 

PDGF-AA. Thus, these NG2/CSPG4 null smooth muscle cells cannot 

proliferate and migrate upon PDGF-AA treatment (Grako et al., 1999) . 

A possible explanation for this impairment could be that Kon assists in 

the enrichment of PDGF-AA in the vicinity of its receptor, thus 

facilitating activation.  

The role of NG2/CSPG4 in tumorigenesis (Schrappe et al., 1991; 

Behm et al., 1996; Shoshan et al., 1999; Chekenya et al., 2002; Wang 

et al., 2011a), including in metastasis (Burg et al., 1998; Benassi et al., 

2009), has been receiving more attention than that in human 

myogenesis. NG2/CSPG4 was suggested to increase the invasiveness 

of the tumour, presumably by triggering cell migration via Rho 

activation (Paňková et al., 2012). The main cause of death by a tumour 

is organ failure due to invasion of healthy tissues by tumour cells. 

Hence, tumour cell migration underlies tumour malignancy (Paňková et 

al., 2009; Jacquemet et al., 2015). In fact, NG2/CSPG4 is expressed in 

the most malignant brain tumour, glioblastoma (GBM) (Wang et al., 

2011a). Furthermore, targeting NG2/CSPG4-expressing cells from the 

GBM was shown to decrease tumour size as well as to improve the 

survival, in a mice model for GBM (Poli et al., 2013). The link among 

NG2/CSPG4, Rho activation and cell migration was also shown in 

oligodendrocyte precursors cells (OPC) (Binamé et al., 2013). 

During metastasis, tumour cells require to sense cytokines secreted 

distally in the target-organs (Chiang and Massagué, 2008), and thus 

present at very low concentration in the vicinity of the tumour. A 
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possible function of NG2/CSPG4 in metastasis could be to concentrate 

cytokines, and thus facilitating the activation of other receptors 

important to trigger migration. Interestingly, NG2/CSPG4 was shown to 

modulate the responsiveness of OPCs to FGF. In OPCs, down-

regulation of NG2/CSPG4 impairs FGF-dependent directional 

migration. However, the impairment is ameliorated upon increase in 

FGF concentration in the medium (Binamé et al., 2013). This could 

indicate that NG2/CSPG4 has a role in increasing the local 

concentration of FGF in the vicinity of the receptor.  

The protein structure of Kon is rather complex. Kon has a very large 

extracellular part composed of two lamininG  (LamGs) domains, and 

15 chondroitin sulphate proteoglycan  (CSPGs) repeats. The 

intracellular part of Kon is short and contains a PDZ-Binding Domain 

motif (PDZ-BD) (Schnorrer et al., 2007), (Figure 1.7). The Kon 

homologues are also composed of similar domain types (Staub et al., 

2002). The LamG domain is found in several proteins, such as Laminin 

(Beckmann et al., 1998), Neurexin (Südhof, 2008; Knight et al., 2011) 

and Slit (Ypsilanti et al., 2010). The CSPG domains of Kon 

homologues, including the human one, are linked to a sulphated 

polysaccharide, called chondroitin sulphate (Staub et al., 2002). This 

modification is not, however, present in Kon (Schnorrer et al., 2007). 

The lack of chondroitin sulphate combined with a new Pfam 

classification, considering Kon CSPG domains as cadherin-like instead 

(Pfam database, (Finn et al., 2016)), may lead in the future to a 

reclassification of this domain. 

How these protein domain clusters contribute to the overall activity of 

Kon, and thus to muscle formation? The EMS-mutagenesis screen, by 

which kon null alleles were generated, also yielded other alleles with 

less severe point mutations (Schnorrer et al., 2007). These alleles 

showed that some domain clusters contribute significantly to the 

overall Kon activity, and in the embryo to the formation of the VL 

muscles. One of those alleles, konC41 contains a missense mutation in 
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a LamG domain (Figure 1.7). In konC41 embryos, the majority of VL 

muscles were detached, resulting in embryonic lethality. However, this 

phenotype was not as severe as that of kon null embryos (Schnorrer et 

al., 2007). This could indicate that the residual activity of KonC41 at 

extracellular level comes from the CSPG domains. An alternative 

interpretation is that KonC41 could act as a dominant negative, and thus 

masking the actual activity of the CSPG domains. Taken together, a 

more conclusive approach is necessary to investigate what is the 

actual contribution of the LamG domains to the overall activity of Kon.  

 

 

Figure 1.7. Kon protein structure 

Kon has a very large extracellular part composed of two lamininG  (LamGs) domains, 
and 15 chondroitin sulphate proteoglycan  (CSPGs) repeats. The intracellular part of 
Kon is short and contains a PDZ-Binding Domain motif (PDZ-BD). konC41 contains a 
missense mutation in a LamG domain. konA04 has a nonsense mutation in the 
intracellular part, yielding a truncated version without the PDZ-BD. 

 

A second allele, konA04, which contains a nonsense mutation in the 

intracellular part, yielding a truncated version without the PDZ-BD 

(Figure 1.7), revealed that the PDZ-BD is also essential for the overall 

activity of Kon. This phenotype also resulted in embryonic lethality. In 

konA04 embryos, the majority of the VL muscles were also detached, 

although, a less severe phenotype than that of kon null embryos 

(Schnorrer et al., 2007). How the PDZ-BD of Kon participates in the 

formation of the VL muscles is not yet clear. 

A possible mechanism is that this domain may anchor proteins that 

can induce cytoskeletal remodelling during leading edge and 

attachment formation. This is suggested by an experiment, which 

investigated the phenotype generated by either overexpression of kon 

or of a mutated version with an inactive PDZ-BD. Overexpressed Kon 
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increases the number of filopodia in the muscles, although this effect is 

partially prevented upon inactivation of the PDZ-BD (Schnorrer et al., 

2007).  

PDZ-BD was shown to interact with Glutamate receptor binding 

protein, Dgrip (Schnorrer et al., 2007). Dgrip has seven PDZ domains 

(Swan et al., 2004; 2006), which could recruit potentially up to six 

additional proteins. These proteins in turn could recruit (directly or 

indirectly) protein complexes linked to cytoskeletal dynamics. Hence, 

identifying Kon intracellular interactions partners is essential to 

understand the link between Kon and cytoskeletal dynamics. And thus, 

how Kon induces myotube elongation and attachment. 

1.3.4 Drosophila myogenesis: a system to study 

challenges in ligand sensing  

A central question in developmental biology is how a particular 

receptor that lies, during different developmental contexts, at various 

distances to the ligand source, senses efficiently its ligand. An example 

of such a context is the formation of muscles during the two phases of 

Drosophila myogenesis, which at the onset of their formation, lie at 

different distances to the ligand source. However, these different 

distances seem not to interfere with Kon activity.  

Studying metastasis provided insights into how a particular population 

of receptors adapts to sense cytokines secreted distally in the target-

organs, and thus present at very low concentration in the vicinity of the 

metastasizing tumour cell. As a strategy, these cells increase the 

concentration of the receptor, so that the cells are still responsive to 

cytokines at lower concentrations (Müller et al., 2001).  

The participation of Kon in the two phases of Drosophila myogenesis 

provides a good model to study this problem during development, due 

to two main reasons, besides the one already mentioned. First, Kon is 

a putative receptor for guidance and attachment cues. Therefore, it is 
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likely that its ligand sensing activity is gradually challenged as the 

muscle increases in size. Second, Kon has a complex extracellular 

structure, which could be used differently according to the size of the 

muscle, as a mechanism to solve challenges in sensing a ligand.  

1.4 The genomic fosmid library provides tools for 

studying Kon 

The genomic fosmid library provides a source of molecular reagents 

with an intact cis-regulatory neighbourhood (Ejsmont et al., 2009). This 

collection is composed of genomic fragments carried by a fosmid 

vector called FlyFos. FlyFos clones serve as molecular reagents that 

can be manipulated through recombineering in bacteria. Examples of 

such manipulations include tagging, deleting and mutating. Then, the 

resulting construct can be introduced into the fly genome via ΦC31 

mediated site-specific transgenesis, generating thus a transgenic fly 

line (Venken et al., 2006). 

The expression of the construct in the fly is then driven by its intact 

close to endogenous cis-regulatory elements. These regulatory 

elements, like in the endogenous gene, dictate the expression levels, 

as well as the spatial and temporal expression patterns of the construct 

(Ejsmont et al., 2009). Thus, the fosmid approach circumvents possible 

experimental artefacts generated by overexpression, as well as 

expression in incorrect tissues, and at incorrect developmental stages. 

This strategy has been recently used to generate a genome-wide 

resource to study the localization of endogenous proteins in Drosophila 

(Sarov et al., 2016). 

Taken together, the Drosophila genomic fosmid library is a suitable 

resource to obtain a kon genomic clone, from which a set of constructs 

can be engineered, aiming to elucidate the mechanism underlying Kon 

function in Drosophila myogenesis.  
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1.5 Aim and objectives of this work 

The aim of this work was to unveil the mechanism underlying the 

function of Kon during Drosophila myogenesis.  

The specific objectives were: 

1. Developing kon constructs that recapitulate the expression 

profile of endogenous kon, to provide a bone fide understanding 

of the function of Kon during Drosophila myogenesis  

2. Identifying the contribution of each Kon domain type to the 

overall activity of Kon 

3. Testing whether Kon participates in myotube guidance 

4. Determining which mechanism Kon uses to solve the 

challenges generated by a larger distance to the putative source 

of molecular cues, the tendon cells 

5. Identifying possible Kon interactions partners  
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2 Results 

The Results chapter is divided in five sections. In section 1, I assessed 

if the tendon cells precursors, the putative source of guidance cues, 

were present in kon mutant embryos. In addition, I expanded the 

characterization of kon mutant embryos by analysing the distribution of 

components necessary for muscle attachment. In section 2, I 

developed and validated a kon fosmid derived toolkit that recapitulates 

the expression profile of endogenous kon. In section 3, I describe how 

this Kon toolkit enabled me to determine which Kon domains are 

required for the formation of the smaller muscles of the Drosophila 

embryo. In section 4, I tested if Kon participates in myotube guidance. 

In addition, I assessed if the participation of Kon in muscle formation is 

customized according to the developmental circumstances of a 

particular type of muscle.  Finally, in section 5, I explain how I applied 

the tagged constructs from the Kon toolkit to identify Kon interaction 

partners.  

2.1 Tendon cell specification and ECM assembly 

in kon mutant embryos 

Kon is essential for the formation of the larval VL muscles in the 

embryo. The developmental journey of these muscles is composed of 

a stereotyped sequence of events, which includes myotube elongation 

and attachment. In kon mutant embryos, the VL muscles have defects 

in cytoskeleton remodelling that are translated into defects either to 

reach the tendon cells or to form a stable attachment with the tendon 

cells (Schnorrer et al., 2007).  

The VL muscle elongation and attachment are partially non-

autonomous processes. In these processes, the VL muscles need 

extrinsic molecules, namely guidance cues and ECM components, 

secreted by the tendon cell precursors (Schweitzer et al., 2010). Kon 

may detect (directly or indirectly) extrinsic molecular information to 
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induce cytoskeletal remodelling, essential for myotube extension and 

attachment.  

Before I tested this hypothesis, I verified in kon mutant embryos (1) if 

the essential source of guidance and attachment cues, the tendon 

cells precursors, are specified; and (2) whether components necessary 

for muscle attachment, such as ECM, are present. 

2.1.1  Tendon cells precursors were specified in kon 

mutant embryos 

To determine if the tendon cell precursors are specified in kon mutant 

embryos, I immunostained the mutant embryos with a marker for 

tendon precursors, Short stop (Shot) (Strumpf and Volk, 1998). In 

control embryos, the tendon cell precursors located at the segment 

border were decorated with Shot (Figure 2.1A). In kon mutant 

embryos, I observed the same pattern (Figure 2.1B). This pattern 

indicates that the tendon precursors are specified normally in kon 

mutant embryos. Thus, the VL muscles receive most likely secreted 

guidance cues, such as Silt (Kramer et al., 2001). Nonetheless, the 

kon mutant muscles cannot form a normal leading edge (Schnorrer et 

al., 2007), resulting into elongation and attachment defects of the VL 

muscles. 
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Figure 2.1. Tendon precursors are specified in kon mutant embryos 

(A) Shot decorates the tendon cell precursors located at the segment borders. In 
stage 17 control embryos (kon+/-), the VL muscles attach to those cells.  

(B) In stage 17 kon mutant embryos (kon-/-), the tendon cell precursors, marked by 
Shot, are specified. The asterisk marks a VL muscle attached.  Scale bar = 30 um 

2.1.2 Tendon matrix components were present in kon 

mutant embryos 

The VL muscles attach indirectly to tendon cells via tendon matrix, 

forming a myotendinous junction (MTJ). This matrix includes ECM 

components that are for example secreted by the tendon cells 

(Schweitzer et al., 2010). To form this attachment, the myotubes 

undergo morphological changes. One of the initial changes is the 

remodelling of the leading edge. The tips of the myotube enlarge, 

leading to an increase in surface area contacting with the tendon 

matrix. This morphological change is part of the transition from a 

growing to an attaching myotube (Schnorrer and Dickson, 2004). At 

this stage, integrin is also recruited to the myotube tips to mediate the 

direct attachment of the muscle to the ECM components, which 

comprise the tendon matrix (Hynes and Zhao, 2000; Charvet et al., 

2012). 

I analysed whether the components necessary for attachment are 

present in kon mutant embryos. For this purpose, I analysed the 

distribution of: (1) the main ECM components of the tendon matrix, Tsp 

and Tiggrin (Fogerty et al., 1994; Bunch et al., 1998; Brown, 2000b; 

Subramanian et al., 2007); (2) the main ECM receptor, integrin (Brown 
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et al., 2000), and its cytoskeletal linker, Talin (Brown et al., 2002; 

Klapholz et al., 2015); (3) as well as the main components of the 

muscle basement membrane, Laminin and Collagen IV (Borchiellini et 

al., 1996; Urbano et al., 2009; Pastor-Pareja and Xu, 2011). 

Tsp is secreted locally by the tendon cell precursors as early as 

embryonic stage 12. Lack of Tsp causes muscle defects at embryonic 

stage 16 (Subramanian et al., 2007). Tsp is localized at the attachment 

sites (Figure 2.2A), as previously reported (Subramanian et al., 2007). 

In kon mutant embryos, Tsp was still localized at the remaining MTJ 

(Figure 2.2B), however its level seemed lower. This requires to be 

further investigated. 

Tiggrin is synthesized distally by other embryonic tissues and recruited 

by the muscles through a process independent of integrin, the main 

Tiggrin receptor. tiggrin mutants show defects in the muscles during 

embryonic (Borchiellini et al., 1996) and larval phases (Bunch et al., 

1998). Tiggrin was highly enriched at the attachment sites of the VL 

muscles, at stage 17, the end of larval muscle myogenesis (Figure 

2.2C), as previously reported (Fogerty et al., 1994; Bunch et al., 1998). 

In kon mutant embryos, Tiggrin was still localized both at the remaining 

MTJ and at ectopic muscle-muscle attachments, formed by clustering 

of tendon-detached kon mutant-VL muscles (Figure 2.2D). This result 

indicates that the kon mutant muscles can still recruit Tiggrin. 

In control embryos, βPS integrin accumulated at the muscle 

attachment sites (Figure 2.2E), as previously reported (Brown, 1994; 

Devenport et al., 2007; Pines et al., 2012). In kon mutant muscles, 

βPS integrin was enriched in ectopic attachments between detached 

neighboring muscles (Figure 2.2F). However, it was also present at 

the remaining MTJs of attached muscles (data not shown). This 

suggests that Kon is not essential for βPS integrin recruitment at the 

remaining MTJs. 

In control muscles, Talin accumulated at the muscle attachment sites 

(Figure 2.2G) similarly to βPS integrin, as previously reported (Brown 
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et al., 2002; Klapholz et al., 2015).  In kon mutant muscles, Talin was 

both at the remaining MTJ and at the ectopic muscle-muscle 

attachments (Figure 2.2H). This can be explained in light of published 

data showing that ECM components, such as Tsp (Figure 2.2B), at 

ectopic muscle-muscle attachments can recruit integrin, and thus Talin 

(Brown et al., 2002). 

Besides the ECM at the muscle-tendon junction, another layer of ECM, 

called the basement membrane, is also important for the formation of 

muscles. The basement membrane surrounds the entire muscle and 

enables it, for example, to slide smoothly against other muscles, during 

larval movement (Brown, 2011). The basement membrane is mainly 

composed of Laminin and Collagen IV (Kalluri, 2003). To analyse the 

distribution of Laminin on the VL muscles, I used a tagged, fully 

functional LanB1-GFP fosmid obtained from the Drosophila 

TransgeneOme project (Sarov et al., 2016). LanB1 encodes the β 

chain, which is incorporated in both Laminin trimers (Urbano et al., 

2009).  

In control muscles, Laminin enveloped the VL muscles with a slight 

enrichment at the MTJs (Figure 2.2I), as previously described (Urbano 

et al., 2009). In kon mutant muscles, Laminin also enveloped the VL 

muscles, although they were rounded and detached (Figure 2.2J). 

Collagen IV, as a component of the basement membrane, also 

surrounded control VL muscles with a prominent enrichment at MTJs 

(Figure 2.2K), as well as the rounded and detached mutant muscles 

(Figure 2.2L). This result indicates that, in kon mutant embryos, the 

components of the basement membrane are present in comparable 

levels to those in control embryos. 

Taken together, these data show that the tendon cell precursors are 

specified in kon mutant embryos. In addition, the ECM components 

from the tendon matrix, as well as integrin, are present at comparable 

levels to those of control embryos. However, in the absence of Kon, 

the VL myotubes most presumably do not respond properly to them, 
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leading to defects during myotube extension and attachment, and 

subsequently to rounded VL muscles and embryonic lethality 

(Schnorrer et al., 2007).  

 

 

Figure 2.2. Attachment components are present in kon mutant embryos 

(A) Tsp accumulates at the attachment sites in control embryos (kon+/-). 

(B) Tsp localizes at the remaining MTJs from kon-/- embryos, however at lower 
levels. 

(C) Tiggrin accumulates at the attachment sites in control embryos.  

(D) Tiggrin localizes at the remaining MTJs, as well as at the ectopic muscle-muscle 
attachments (yellow arrowhead), in kon mutant embryos. 

(E) βPS localizes at the attachment sites in control embryos.  

(F) βPS accumulates at the ectopic muscle-muscle attachments (yellow arrowheads) 
in kon mutant embryos.  

(G) Talin accumulates at the attachment sites in control embryos.   

(H) Talin is present at the remaining MTJs, as well as at the muscle-muscle ectopic 
attachments (yellow arrowhead), in kon mutant embryos.  

(I) LanB1 is incorporated in both Laminin trimers. Laminin envelops the larval 
muscles in control embryos.   

(J) Laminin encloses the VL muscles, although they are rounded and detached in 
kon mutant embryos. 

(K) Collagen IV envelops the larval muscles. In addition, Collagen IV accumulates at 
the muscle attachments in control embryos.  

(L) Collagen IV envelops the VL muscles, although they are rounded and detached. 
In kon mutant embryos, some ectopic muscle-muscle attachments still contain high 
levels of Collagen IV. Scale bar = 30 um. All embryos are stage 17.  
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2.2 Development and validation of molecular tools 

to study the functional domain types of Kon 

Kon participates in the formation of muscles with very different sizes 

(Schnorrer et al., 2007; Perez-Moreno et al., 2014; Weitkunat et al., 

2014). Often larger muscles start to develop further away from their 

attachment sites, the tendon cells, than smaller muscles do. 

Nevertheless, both type of muscles have to be able to sense tendon-

derived ligands, independently of the distance that they have to diffuse 

to reach the muscles. The distance of diffusion may, however, impose 

some challenges to the receptors, namely a decrease in concentration 

of the ligand in their vicinity.  

Kon protein has a complex and large extracellular part, composed of 

two LamG and 15 CSPG domains (Schnorrer et al., 2007). These two 

domain clusters could be used differently according to the size of the 

muscles, as a mechanism to respond efficiently to a decrease in ligand 

concentration, generated by longer distances of diffusion.  

To elucidate how the individual Kon domains participate in the 

formation of the Drosophila muscles, I generated a toolkit using as a 

starting material, a genomic kon clone. This clone was provided by the 

Drosophila genomic fosmid library (Ejsmont et al., 2009). A particular 

gene present in one of those clones can be, for example, tagged 

through recombineering in bacteria.  This tagged gene can be 

subsequently integrated into the Drosophila genome, thus generating a 

transgenic fly expressing a tagged version of that particular gene.  

The workflow to create such a fly line includes a multitude of steps, 

such as tagging through recombineering; injecting the tagged fosmid in 

Drosophila embryos for genomic integration; screening the resulting 

flies to identify the ones that have incorporated successfully the fosmid 

in their genome; and finally, characterizing the expression and 

functionality of the tagged protein.  
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As a proof of principle, I have tested the entire workflow using a small 

group of fosmid clones. From this work, two fly lines of tagged 

sarcomeric proteins, Stretchin-GFP and Obscurin-GFP, were applied 

to study how a RNA-binding protein Arrest (Aret, also known as Bruno) 

controls splicing of IFM specific isoforms (Spletter et al., 2015). 

Numerous conditions were tested to establish an efficient workflow for 

the generation of the fly lines from the TransgeneOme project. I have 

contributed to the design and optimization part of this workflow, as well 

as to test the functionality of the tags. These tested tags and the 

optimized workflow were applied to generate 880-tagged transgenic fly 

lines, which are available for the entire scientific community (Sarov et 

al., 2016). 

Finally, I have also applied this workflow to generate tools for studying 

the functional domains of Kon. 

2.2.1 Validation of the kon fosmid  

To engineer deletions and mutations in kon, as well as to add tags, I 

selected the clone FlyFos021621 from the genomic fosmid library 

(Ejsmont et al., 2009).  This clone carries an approximately 44 kb 

genomic fragment, which includes the complete known kon locus. The 

kon locus comprises about 14 kb (Figure 2.3A), with an 8,276 

nucleotides long mRNA, distributed in twelve exons. The majority of 

the signal sequence is harboured in the second exon, however the last 

amino acid of the signal sequence is encoded by the third exon 

(Schnorrer et al., 2007).  

To verify the functionality of kon harboured in the genomic fragment 

from the FlyFos021621 clone, I performed a functional assay. I 

introduced the genomic clone into the fly genome, and then crossed it 

into a kon mutant background (see Material and Methods), to test for 

rescue of this phenotype. A kon mutant embryo has rounded VL1 

muscles, which were labelled by 5053-Gal4/UAS-GMAGFP (Schnorrer 

et al., 2007) (Figure 2.3B, C). Because of these defects, kon mutants 
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die during embryogenesis (Schnorrer et al., 2007). Upon expression of 

kon derived from the FlyFos021621 clone, the rounded muscle 

acquired a normal morphology and attachment pattern (Figure 2.3D), 

indistinguishable from those of control embryos (Figure 2.3B). In 

addition to the full rescue of the embryonic phenotype, the animals 

carrying this clone reached adulthood, and could be maintained as a 

homozygous stock.   

This functional assay demonstrated that the FlyFos021621 clone 

contains a functional copy of kon, and it is thus suitable as a molecular 

reagent to engineer constructs to characterize the function of the Kon 

domains.  

 

 

Figure 2.3. kon from  FlyFos021621 clone is completely functional 

(A) The genomic fragment from the FlyFos021621 clone.  

(B) Stage 17 embryo expressing GMA-GFP using the VL1 muscles-specific 5053-
GAL4 driver in wild-type background. 

(C) Stage 17 embryo expressing GMA-GFP using the VL1 muscles-specific 5053-
GAL4 driver in a kon mutant background. The VL1 muscles are completely rounded 
and detached. (D) Stage 17 embryo expressing Kon derived from FlyFos021621 
clone in a kon mutant background.  Kon provided from the fosmid clone rescues the 
kon mutant phenotype. Scale bar = 30 um 
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2.2.2 Generation of tools to detect the localization of 

Kon during myogenesis 

Using the functional kon fosmid (FlyFos021621), I generated a set of 

tagged clones that allow in vivo localization studies of the tagged Kon 

protein.  

In growing myotubes, the polarized localization of Kon at the 

attachment sites (Schnorrer et al., 2007) is, presumably, important for 

the detection of molecular cues, necessary to orchestrate myotube 

elongation and attachment. Therefore, I expected that at least one of 

the domains of Kon mediates Kon enrichment at the tips of the 

muscles. Testing this hypothesis requires the detection of the 

engineered Kon proteins after deletion or mutation of a particular 

domain or domain cluster. A good way to detect the localization of 

proteins is using a tag. It is essential, however, to preserve the 

biological activity of the protein upon tagging. For that purpose, I tested 

two variables: (1) the size of the tag and (2) the location of the tag 

within the protein.  

To address both issues, I tested three cassettes, containing three 

different tag sequences: (1) a GFP-containing cassette (38 kDa), (2) a 

HA cassette (4 kDa), and (3) a V5-containing cassette (13 kDa). The 

GFP- and the V5-containing cassettes also include 3xFLAG and 

2xTY1 sequences (see Material and Methods). These three cassettes 

were introduced at two different locations within the coding sequence 

of Kon: (1) immediately after the signal sequence; and (2) at the 

intracellular part of Kon, immediately after its transmembrane domain. 

In this way the C-terminal PDZ-BD is left intact. 

I applied bacterial recombineering technology to insert the different 

tags into FlyFos021621 clone (see Material and Methods). The tagged 

clones were next integrated into the fly genome by site-specific 

transgenesis into VK00033 on chromosome 3. I tested four tagged 

proteins, Kon-GFPaSS (after signal sequence), Kon-HAaSS, Kon-
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GFPintra, and Kon-V5intra (Figure 2.4A, D, G, J). All of them localized 

at the tips of the VL muscles, in wild-type background, similarly to the 

endogenous protein (Figure 2.4B, E, H, K). Thus, the tags do not 

interfere with the localization ability of the Kon protein. 

To test functionality of these constructs, I crossed them in a kon 

mutant background. The VL muscles expressing exclusively Kon-

GFPaSS were either partially attached or rounded (Figure 2.4C), 

whereas the muscles expressing Kon-HAaSS were fully attached 

(Figure 2.4F). This result may suggest (1) that the large GFP tag 

obstructs the interaction between the two LamGs at the N-terminus 

with a putative ligand; and (2) that the two LamG domains have an 

essential role in Kon activity during myogenesis. In contrast, the small 

HA tag after the signal sequence resulted in a fully functional Kon. In 

addition to the full rescue of the embryonic phenotype, the animals 

carrying this clone reached adulthood, and can be maintained as a 

homozygous stock. 

Interestingly, both the GFP as well as the V5 tag, within the Kon 

intracellular part, produced VL muscles with wild-type morphology 

(Figure 2.4I, L), indicating that these two-tagged versions of Kon are 

fully functional. Moreover, these two-tagged constructs yielded adult 

flies, which can be maintained as a homozygous stock. Because kon-

V5intra was smaller than kon-GPFintra, and thus easier to modify 

through recombineering, I decided to use kon-V5 fosmid in the 

following experiments, as the parent construct to delete or modify the 

various domains of Kon. 
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Figure 2.4. Tagging the intracellular part of Kon preserves its biological activity  

(A-C) Kon containing (A) a GFP tag (38 kDa) after the signal sequence expressed in 
(B) wild-type background or (C) in a kon mutant background. This GFP tagged 
version of Kon cannot rescue the mutant phenotype.  

(D-F) Kon containing (D) a HA tag (4 kDa) after the signal sequence expressed in (E) 
wild-type background or (F) in a kon mutant background. This HA tagged version of 
Kon produced VL muscles with wild-type morphology.  

(G-I) Kon with (G) an intracellular GFP tag (38 kDa) expressed in (H) wild type or (I) 
in a kon mutant background. The VL muscles have wild-type morphology.  

(J-L) Kon with (J) an intracellular V5 tag (13 kDa) expressed in (K) wild type or (L) in 
a kon mutant background. The kon mutant phenotype was fully rescued. Scale bar = 
30 um 

 

2.3 The role of Kon domains during myogenesis 

of the larval somatic muscles in the embryo 

2.3.1 Expression levels of the Kon fosmid derived 

constructs 

The Kon protein can be divided into three major domain types: two N-

terminal LamGs, 15 extracellular CSPGs, and a C-terminal intracellular 

part terminating in a PDZ-binding domain (PDZ-BD). To study the role 

of each domain of Kon, I engineered a set of kon deletion constructs.  
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This set of constructs is derived from kon-V5intra, which is fully 

functional (Figure 2.4L). Using this construct, I deleted either (1) the 

two LamGs (kon-V5 ∆LamGs), or (2) the 15 CSPGs (kon-V5 

∆CSPGs). In addition, I (3) mutated the PDZ-BD (kon-V5 PDZ-BD 

mutated) by replacing the last amino acid, valine, by glycine (see 

Material and Methods) (Figure 2.5A). 

 

 

Figure 2.5. Kon-V5 derived toolkit 

(A) Schematic representation of the Kon-V5 derived toolkit. The main domain types 
of Kon were either deleted or mutated. 

(B) The proteins levels of Kon-V5, Kon-V5 ∆CSPGs, Kon-V5 ∆LamGs and Kon-V5 
PDZ-BD mutated were assessed. The four proteins were expressed in wild-type 
embryos. The embryos were then lysated and the proteins were pulled down with a 
V5 antibody. The four proteins are expressed at comparable levels. 

 

Before assessing the contribution of each domain type to the overall 

activity of Kon, I first compared the level of protein expression of each 

of the constructs by Western blot analysis. Either deletions or mutation 

of the main domain types of Kon did not interfere with the protein 

stability (Figure 2.5B). 

The following section describes the applications of these tools to 

assess the contribution of each Kon domain type to the larval muscle 

formation in the embryo. 
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2.3.2 The LamG domains and the PDZ-BD of Kon are 

essential for the formation of the VL muscles 

To pinpoint the contribution of each Kon domain to the formation of the 

VL muscles, I performed a functional genetic rescue assay by 

expressing kon-V5 (positive control), kon-V5 ∆LamGs, kon-V5 

∆CSPGs and kon-V5 PDZ-BDmut in a kon mutant background. In this 

functional assay, the biological activity of each construct was then 

quantified, at embryonic stage 17, by scoring two variables: the length 

and attachment site size of the VL1 muscle. For scoring attachment 

site, I stained the muscles with Talin, the protein that links the integrin 

to the cytoskeleton (Brown et al., 2002). 

The two phenotypic extremes in this assay were the kon mutant 

embryos, with mostly rounded and detached VL1 muscles (Figure 

2.6B, H), comparing to the wild-type or Kon-V5 embryos, with fully 

attached VL1 muscles (Figure 2.6A, C, H).  

I observed that the VL muscles expressing exclusively kon-V5 

∆LamGs were 25 percent shorter (median value) and had attachment 

sites 50 percent smaller (median value), (Figure 2.6E, H). Although 

the lack of the two LamGs produced VL muscles with severe defects, 

this phenotype was less severe than that of the kon null situation 

(Figure 2.6B). By contrast, the VL1 muscles expressing kon-V5 

∆CSPGs exhibited wild-type morphology (Figure 2.6D, H). Taken 

together, the extracellular domains of Kon had different roles in VL 

muscle formation. This striking difference indicates that the two LamGs 

are essential for VL muscle formation, while the 15 CSPG domains are 

dispensable at embryonic stage. This difference also suggests that the 

two LamG domains are important to interact with a putative 

extracellular ligand. However, the lack of the LamG domains did not 

generate a kon null phenotype, suggesting that the CSPG domains 

could also interact with the extracellular ligand. 
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Finally, to assess the role of the PDZ-BD, as most likely the only 

domain that conveys intracellularly the activation signalling from the 

extracellular part of Kon, I evaluated the biological activity of the kon-

V5 PDZ-BDmut construct. I observed that the VL muscles expressing 

Kon-V5 PDZ-BDmut were 37 percent shorter (median value) and had 

attachment sites 50 percent smaller (median value), than wild-type 

muscles (Figure 2.6F, H). This indicates that the C-terminal PDZ-BD is 

also essential for Kon function and thus for VL muscles formation.  

The essential roles of the two LamGs and the PDZ-BD were 

additionally confirmed by the inability of Kon-V5 ∆LamGs, and Kon-V5 

PDZ-BDmut to rescue the embryonic lethality of kon mutants (Figure 

2.7A). Together, these data yielded the main conclusion that, Kon 

consisting of the LamG domains, the transmembrane domain (TM), 

and the intracellular part with its PDZ-BD comprises a “compact” 

version of Kon, which is sufficient for the formation of the VL muscles 

in the embryo. In addition, this compact version of Kon generated 

viable larvae (Figure 2.7A).  
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Figure 2.6. A compact version of Kon is sufficient for the formation of VL 
muscles in the embryo 

(A) VL1 muscles in wild-type background. The muscles are fully attached. 

(B) VL1 muscles in a kon mutant background.  

(C) Expression of kon-V5 in a kon mutant background. The VL muscles are fully 
attached. 

(D) Expression of kon-V5 ∆CSPGs in a kon mutant background. The VL muscles are 
fully attached. 

(E) Expression of kon-V5 ∆LamGs in a kon mutant background. The VL muscles are 
shorter and rounded. Talin accumulates at the remaining MTJs. 

(F) Expression of kon-V5 PDZ-BDmut in a kon mutant background. The VL muscles 
are shorter and detached. Talin accumulates at the remaining MTJs. 

(H) The VL1 length and attachment size quantification of all the genotypes above 
mentioned. Stage 17 embryos, expressing all GMA-GFP in the VL1 muscle. Median 
and the interquartile range (IQR). n = 60-120 VL muscles, number of embryos = 20-
30 per condition. ns (not significant), ***p < 0.001. Scale bar = 30 um 
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2.3.3 The 15 CSPG domains have a minor role in 

attachment formation 

The attachment sites are essential to withstand the tension generated 

upon muscle contraction. The muscles at stage 17, at the end of 

embryogenesis, are already under tension, although this tension is 

supposedly lower than the tension generated upon larval movement 

(Yuan et al., 2010; Pines et al., 2012). This leads to the question, 

whether this “compact” version of Kon produces attachments that are 

able to withstand the forces generated during larval movement. 

Analysing the VL muscle morphology at third instar larval stage (L3) 

provides the opportunity to directly test if the attachments are 

completely functional, and thus able to withstand forces generated 

during larval movement. To test whether the lack of the 15 CSPGs 

impacts the ability of the attachment sites to bear force upon larval 

movement, I analysed the morphology of the VL muscles in kon-V5 

∆CSPGs L3 larvae. These muscles experienced more than 72 hours of 

intense activity. The VL muscles in wild-type L3 larvae were attached 

to the hemisegment border, like observed at the end of embryogenesis 

(Figure 2.7B, D). Around 25% of the VL muscles from kon-V5 

∆CSPGs larvae were however lost, supposedly due to detachment 

(Figure 2.7C, D), thus showing that those attachment sites were not 

able to bear the forces generated upon larval movement. This 

indicates that 15 CSPGs have a minor role in generating stable VL 

attachments, possibly through sensing a particular attachment cue.  
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Figure 2.7. The 15 CSPG domains have a minor role in generating stable VL 
attachments  

(A) The viability of the fly lines expressing exclusively kon-V5, kon-V5 ∆CSPGs, kon-
V5 ∆LamGs or kon-V5 PDZ-BDmut. Either deleting the two LamG domains or 
mutating the PDZ-BD causes embryonic lethality. Deleting the CSPGs domains 
results in pupal lethality.  

(B) A representative live image from a L3 larva hemisegment expressing GMA-GFP 
driven by Mef2-GAL4. The VL muscles are fully attached.  

(C) A representative live image from a L3 larva expressing Kon-V5 ∆CSPGs together 
with GMA-GFP driven by Mef2-GAL4, in kon mutant background. Some VL muscles 
are missing. Scale bar = 200 um 

(D) Quantification of the number of VL muscles per hemisegment (Means ± SEM. n = 
20-30 hemisegments, per 10-20 larvae per condition. ***p < 0.001). 

 

Interestingly, the 15 CSPGs are conserved up to humans (Schnorrer et 

al., 2007), arguing that these domains are likely to have an important 

function. However, the data, presented so far, indicated that the 15 

CSPG domains have a minor role in VL attachment. A possible 

explanation is that Kon-V5 ∆LamGs may not localize as well as the 

other mutated versions of Kon. In other words, Kon may require the 

two LamGs to localize at the attachment site, and thus to participate in 

the VL development. 
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2.3.4 Kon requires the LamG domains to localize at 

the muscle attachment site 

To determine if a particular domain is important for Kon localization, I 

measured the enrichment ratio of Kon-V5, Kon-V5 ∆LamGs, Kon-V5 

∆CSPGs, and Kon-V5 PDZ-BDmut proteins at muscle attachment 

sites, during stages 15-17, in a wild-type background. The enrichment 

ratio was calculated by normalizing the fluorescence intensity of the V5 

staining, from a representative area at the attachment site, with the 

fluorescence intensity of the adjacent cytoplasmic area. 

All three mutated proteins, Kon-V5 ∆LamGs, Kon-V5 ∆CSPGs, and 

Kon-V5 PDZ-BDmut localized significantly less than Kon-V5 protein at 

the tips of the VL muscles, throughout stages 15-17 (Figure 2.8). This 

result indicates that all the three domain types contribute to a normal 

localization of Kon at the tips of the VL muscles.  

In addition, I observed that Kon-V5 ∆CSPGs localized similarly to Kon-

V5 PDZ-BDmut, whereas Kon-V5 ∆LamGs localized the least at the 

attachment sites (Figure 2.8F, L, R). This indicates that the two 

LamGs play a major role in localizing the Kon protein to the attachment 

sites.  
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Figure 2.8. Kon requires the LamG domains to localize at the attachment site 

(A-E) Stage 15 embryos stained with V5 antibody to reveal the localization of the 
Kon-V5 derived constructs in wild-type background. (A) Wild-type embryos. This 
condition was a control for the specificity of the V5 antibody. (B) Kon-V5. (C) Kon-
V5∆CSPGs. (D) Kon-V5∆LamGs. (E) Kon-V5 PDZ-BDmut.  

(F) Enrichment ratio of the Kon-V5 derived constructs, expressed in wild-type 
background, at stage 15.  

(G-L) Stage 16 embryos stained with V5 antibody. (G) Wild-type embryos. (H) Kon-
V5. (I) Kon-V5∆CSPGs.  (J) Kon-V5∆LamGs. (K) Kon-V5 PDZ-BDmut.  

(L) Enrichment ratio of the Kon-V5 derived constructs expressed in wild-type 
background at stage 16.  

(M-R) Stage 17 embryos stained with V5 antibody. (M) Wild-type embryos. (N) Kon-
V5. (O) Kon-V5∆CSPGs. (P) Kon-V5∆LamGs. (Q) Kon-V5 PDZ-BDmut. Scale bar = 
20 um 

(R) Enrichment ratio of the Kon-V5 derived constructs expressed in wild-type 
background at stage 17. Median and the interquartile range (IQR). n = 50-120 
attachment sites, number of embryos = 25-35 per condition. ns (not significant), **p < 
0.01, ***p < 0.001. 
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2.3.5 The CSPG domains synergize with the LamG 

domains 

Kon-V5 ∆LamGs protein cannot localize properly at attachment sites 

(Figure 2.8), thus defects in localization may underlie the problems in 

VL formation shown before (Figure 2.6). To assess the biological 

activity of the extracellular domains independently of their 

concentration at the attachment site, I overexpressed kon ∆LamGs and 

kon ∆CSPGs using a UAS promoter, instead of the endogenous kon 

cis-regulatory elements, present in the fosmid-derived constructs. 

These UAS-constructs were exclusively overexpressed in a single VL1 

muscle, per hemisegment, in a kon mutant background, using a 5053-

GAL4 driver. The two overexpressed proteins, Kon ∆CSPGs and Kon 

∆LamGs, were highly enriched at the attachment sites (Figure 2.9D, 

E). Their protein levels were higher than the levels of endogenous Kon 

(Figure 2.9A). Therefore, the attachment sites of the VL1 muscles 

were fully saturated with each of the overexpressed Kon mutated 

proteins.  

To quantify the biological activity of the two overexpressed mutated 

proteins, Kon ∆LamGs and Kon ∆CSPGs, I scored the length and 

attachment site size of the VL1 muscles. Remarkably, overexpression 

of Kon ∆LamGs resulted in VL muscles with length and attachment site 

size (Figure 2.9E, H) similar to the ones, observed upon 

overexpression of Kon ∆CSPGs (Figure 2.9D, H). This indicates that 

when Kon ∆LamGs is expressed at high levels, leading to sufficient 

localization of the mutated protein to the myotube tips, the 15 CSPGs 

are as functional as the LamG domains. This prompted me to test, if 

the CSPG domain can synergize extracellularly with the LamG 

domains, when they are expressed together. To test this, I 

overexpressed kon full length in VL1 muscles, in a kon mutant 

background.  



 2. Results 
 

 59 

 

Figure 2.9. The CSPG domains synergize with the LamG domains  

(A-F) Stage 17 embryos were stained with Mhc, Kon, and Talin.  

(A) Kon and Talin localize at the attachment sites of the VL muscles in wild-type 
embryos.  

(B) In kon mutant embryos Talin localizes at the remaining muscle attachments. 

(C) Overexpression of Kon using 5053-GAL4 driver (VL1 muscles) in a kon mutant 
background. The yellow arrowheads pointed to filopodia at the lateral side of the VL1 
muscles.  

(D) Overexpression of Kon ∆CSPGs driven by 5053-GAL4 in a kon mutant 
background. The VL1 muscle displays wild-type morphology. 

(E) Overexpression of Kon ∆LamGs driven by 5053-GAL4 in a kon mutant 
background. The construct enrichment at the attachment site is higher than the 
enrichment of Kon in wild-type attachments. This high enrichment boosted the rescue 
ability of Kon ∆LamGs.  

(F) Overexpression of Kon PDZ-BDmut driven by 5053-GAL4 in a kon mutant 
background. Increasing the levels of the construct does not lead to a boost of the 
rescue ability of Kon PDZ-BDmut. Scale bar = 30 um 

(H) Quantification of the VL1 length and the attachment site size, detected here by 
Talin staining. Median and the interquartile range (IQR). n = 60-120 VL muscles, 
number of embryos = 20-35 per condition. ns (not significant), ***p < 0.001. 
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Kon overexpression resulted in larger attachment sites (Figure 2.9H), 

and in filopodia formation at the lateral sides of the VL1 muscles 

(Figure 2.9C), while the overexpression of Kon ∆CSPGs resulted in 

VL1 muscles with wild-type morphology (Figure 2.9D, H). Comparing 

the two phenotypes suggests that the 15 CSPGs can synergize with 

the LamG domains, thus leading to an increase in actin dynamics and 

to the modulation of the attachment site architecture.  

In contrast to the two proteins with a single type of extracellular 

domain, the overexpression of Kon PDZ-BDmut yielded shorter VL1 

muscles with smaller attachment sites (Figure 2.9F, H). Therefore, an 

increase of Kon protein levels with mutated PDZ-BD, at the attachment 

site, did not increase its overall biological activity. This result indicates 

that the two types of extracellular domains cannot compensate for the 

intracellular PDZ-BD. In fact, the PDZ-BD is the only predicted 

intracellular domain of Kon, and thus the only domain that can 

participate in signalling transductions upon extracellular activation. 

Together, these experiments yielded two main conclusions: (1) Kon 

consisting of the two LamG domains, TM domain, and the intracellular 

part with its PDZ-BD comprises a “compact” version of Kon, sufficient 

for the formation of the VL muscles in the embryo, and for survival until 

pupal stage. (2) The CSPG domains can serve as a booster of the 

LamG domain, which could be required at later stages in development, 

namely adult myogenesis in pupa. 

2.4 An essential role of the CSPG domains in 

adult myogenesis 

The distance that the muscles have to elongate to reach the tendon 

cells is larger during adult myogenesis. How do receptors, which 

participate in both phases of myogenesis, cope with an increase in 

distance to the tendon cell, presumably the major source of guidance 

and attachment cues? 
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During the formation of the larval VL muscles in the embryo, whose 

length is approximately 40 μm, a compact version of Kon, missing the 

CSPG domains, is sufficient (Figure 2.6). However, during the 

development of the adult muscles, the 15 CSPGs may be essential to 

synergize with the LamG domains, as a potential mechanism to cope 

with a distant source of molecular cues. Three arguments encouraged 

me testing this hypothesis.  

First, the 15 CSPGs are conserved up to human, suggesting an 

important role for these domains (Schnorrer et al., 2007). Second, 

when the localization problem of Kon-V5 ∆LamGs was circumvented 

by overexpression, the 15 CSPGs could produce VL muscles with wild-

type morphology (Figure 2.9). This suggests that the 15 CSPGs may 

boost the activity mediated by the two LamGs, which in turn may be 

necessary for the development of larger muscles. Finally, all the kon-

V5 ∆CSPGs pupae died during metamorphosis (Figure 2.7A), 

indicating that the 15 CSPGs are likely to play a major role during adult 

myogenesis. 

To test this hypothesis, I analysed two types of adult muscles, dorsal 

abdominal muscles and the dorsoventral muscles (DVMs, indirect flight 

muscles), which similarly to the larval VL muscles, derive from founder 

cells. Both muscle types are larger than the VL muscles, approximately 

seven and twenty times, respectively. 

2.4.1 The 15 CSPGs are essential for guidance of the 

dorsal abdominal muscles 

To investigate if the 15 CSPG domains participate in the formation of 

the adult dorsal abdomen muscles, I analysed at 72h APF the mature 

morphology of abdominal muscles from wild-type, and kon-V5 

∆CSPGs pupae, using immunohistochemistry.  

At 72h APF, the wild-type dorsal longitudinal abdominal muscles were 

connected to the hemisegment borders, along the A-P axis (Figure 
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2.10A, C). In contrast, in absence of the Kon CSPG domains, the 

abdominal musculature was composed of muscles with different 

angles of orientation (Figure 2.10B, C). This indicates that 15 CSPGs 

have an essential role in the formation of the dorsal abdominal 

muscles.  

 

 

Figure 2.10. The CSPGs have a pivotal role during adult dorsal muscles 
formation  

(A) The abdominal muscles in wild-type background at 72h APF. The muscles are 
parallel to the A-P axis. The asterisk marks larval muscles that at 72h APF were still 
present. 

(B) The abdominal muscles expressing Kon-V5 ∆CSPGs in kon mutant background 
at 72h APF. The abdominal musculature is highly disorganized with muscles oriented 
with different angles. The asterisk marks larval muscles that at 72h APF were still 
present. Scale bar = 50 um 

(C) Quantification of the angles from the muscles composing the dorsal abdominal 
musculature. 0° orientation angle corresponds to muscles parallel to the A-P axis. 
Median and the interquartile range (IQR). n = 60, number of pupae = 9 per condition. 
***p < 0.001. 

 

To identify how the lack of the 15 CSPGs affects the development of 

the dorsal abdominal muscles, I monitored the abdominal myogenesis 

in kon-V5 ∆CSPGs pupae, by live imaging. The abdominal muscles 

emerged from a cluster of myoblasts located at the posterior border of 

the hemisegment. This cluster was organized like a string along the 

hemisegment, perpendicular to the A-P axis (Figure 2.11A, B). This 

string of cells is composed of founder myoblasts, at the positions 

corresponding to future fiber forming sites, and fusion competent 

myoblasts (Dutta, 2004). The string of myoblasts started then to fuse, 

yielding myotubes oriented along the anterior-posterior axis (Figure 

2.11C-F). These myotubes elongated mainly towards the anterior end, 

although both ends possessed very active filopodia (Figure 2.11C-F). 
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This is consistent with the view that the myotubes actively probe the 

environment (Jacquemet et al., 2015).  

In absence of the 15 CSPGs at 27h APF, I could not detect myotubes 

elongating out of the myoblast cluster (Figure 2.11H), as I observed in 

wild type (Figure 2.11C). However the borders of the cluster were 

decorated with filopodia. These filopodia were likely from the forming 

myotubes, whose growth orientation was random, instead of in the 

anterior-posterior direction (Figure 2.11G-J). Later, I could detect 

within this cluster, clumps of myotubes that elongated almost 

perpendicular to the A-P axis (Figure 2.11K), instead of along this axis 

like in the wild-type muscles (Figure 2.11C-E). This indicates that the 

abdominal myotubes cannot respond properly to guidance information 

without the 15 CSPGs, and thus they elongate along the wrong 

direction. Ultimately, these myotubes managed to attach, but at 

incorrect positions within the hemisegment. Some of these 

attachments were likely to be ectopic muscle-muscle connections 

(Figure 2.11L).  

Together, these data show that when the muscles surpass a certain 

size, the LamG domains are not sufficient to sense guidance cues, but 

rather they require the 15 CSPGs as a booster. 
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Figure 2.11. The CSPGs are essential for guidance of the adult dorsal muscles  

(A) Depiction of the adult dorsal abdominal muscle development in pupa. (B-F) Wild-
type muscles were imaged from 26h APF on. (B) From the myoblast cluster, (C-F) 
myotubes started to grow oriented along the anterior-posterior axis. The myotubes 
display filopodia laterally as well as at the anterior and posterior tips. 

(G) Depiction of the kon-V5 ∆CSPGs dorsal abdominal myotubes development. (H-L) 
kon-V5 ∆CSPGs muscles were imaged from 27h APF on. (H-J) The borders of the 
myoblast cluster were decorated with filopodia. These filopodia were likely from the 
forming myotubes. (K) The myotubes grow with wrong direction. (L) The myotubes 
clump all together, probably due to ectopic muscle-muscle attachments. Scale bar = 
50 um 
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2.4.2 The 15 CSPGs are essential for guidance of the 

DVMs 

To examine whether the lack of 15 CSPGs also affects the DVM 

formation, I followed the development of the DVMs by live imaging 

(Figure 2.12). The DVMs, similarly to the abdominal muscles, derive 

from founder cells. The DVMs are composed of three distinct muscle 

groups spanning the thorax, approximately along the dorsoventral axis: 

DVM I (3 fibers), DVM II (2 fibers) and DVM III (2 fibers) (Fernandes et 

al., 1991).  

The DVMs begin to form at the ventral side of the thorax. There, the 

myoblast clusters start to fuse yielding myotubes, similarly to the 

abdominal muscles (Dutta, 2004). This developmental stage is very 

difficult to image, because the myoblast cluster is located very deep in 

thorax. Thus, the DVM imaging started at the myotube stage, when the 

DVMs are closer to the dorsal part. From 17-18 h APF, I could detect 

the two DVM II myotubes. Their width was similar to the width of the 

DLMs, located bellow them. The dorsal leading edge contained 

filopodia that grew towards the dorsal attachment site, while the ventral 

side was not possible to visualize clearly (Figure 2.12A-C). The 

development of the DVMs shares key aspects with that of other type of 

indirect flight muscles, the dorsal longitudinal muscles (DLMs). Next, 

the fibers underwent compaction. In this process, the two DVM fibers 

gradually became shorter and thicker (Figure 2.12D, E).  
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Figure 2.12. The CSPG domains are essential for the guidance of the DVMs 

(A) Depiction of DVM development, which corresponds to B-E.  

(B-E) Wild-type DVM muscles were imaged from 18h APF on. (B-C) The elongation 
of the DVM myotubes (asterisks) is followed by (D-E) their compaction. 

(F) Depiction of the developmental problems of kon-V5 ∆CSPGs DVM myotubes, 
corresponding to G-J.  

(G-J) kon-V5 ∆CSPGs muscles were imaged from 17h APF on. (G) The DVMs 
(asterisks) are not elongating, but rather rounding-up. The leading edges were very 
thin (white arrowhead). (H-J) Gradually, the DVM myotubes round, until becoming 
completely spherical.  Scale bar = 100 um 

 



 2. Results 
 

 67 

In absence of the 15 CSPGs, the two DVM II myotubes formed, 

however, they displayed severe morphological defects (Figure 2.12F, 

G). First, the lateral sides of the myotubes had a clear curvature, 

indicating that the myotubes were not elongating, but rather rounding-

up (Figure 2.12G). Second, the leading edges were very thin (Figure 

2.12G), in contrast to those of a wild-type myotube (Figure 2.12B). 

These two types of defects suggest that the DVMs cannot correctly 

elongate, probably due to problems in sensing guidance cues, which 

trigger cytoskeletal changes leading the myotube to elongate towards 

their attachments sites.  

Gradually, the DVM myotubes rounded, and eventually they became 

two spherical myotubes (Figure 2.12H-J). This severe phenotype 

indicates that the 15 CSPGs are essential for the DVMs to elongate, 

possibly by helping the myotubes to access guidance information.  

2.4.3 The CSPG domains have a minor role in DLM 

attachment (template-based) 

The CSPG domains have an essential role in guidance of the dorsal 

abdominal muscles and of the DVMs. I could not assess, however, if 

the 15 CSPGs also play a pivotal role during attachment. To clarify this 

point, I tested the role of the 15 CSPGs in the attachment of the DLMs, 

a second type of indirect flight muscles. 

The DLMs derive from larval templates. These templates constitute a 

substantial proportion of the mature DLMs (Fernandes et al., 1991; 

Fernandes and Keshishian, 1996). Hence, the DLMs elongate 

substantially less than the DVMs. To date, the mechanism 

underpinning the DLM elongation is not known. Nevertheless, I believe 

that three models are conceivable.  

The first model of DLM elongation is increasing the mass of the 

templates through fusion, in a laterally constricted fashion. This model 

does not require guidance cues, because the templates provide the 
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direction of elongation. A second model is elongation driven by 

guidance cues secreted by the tendon cells, similarly to the muscles 

described before. A third model combines the two models mentioned 

before. In this model, the contribution of the guidance cues to DLM 

elongation is however substantial less than in the second model. 

I favour the first and the third models, because, as it was suggested 

before (Fernandes et al., 1996), the templates are not only a source of 

mass, but also a structure that potentially provides an orientation for 

DLM elongation.  

To determine if the DLMs develop normally in the absence of the 15 

CSPGs, I analysed the mature morphology of these muscles in kon-V5 

∆CSPGs pupae, at 90h APF by immunohistochemistry.  

At 90 APF, the wild-type DLMs spanned the thorax along the anterior-

posterior axis (Figure 2.13A). In absence of the 15 CSPG domains, 

most of the DLMs also spanned across the thorax, however, some 

minor defects were visible (Figure 2.13B), possibly due to detachment.  

 

 

Figure 2.13. The 15 CSPG domains have a minor role the DLM formation  

(A) The DLMs fibers in the control at 90h APF. They span the entire thorax.   

(B) The kon-V5 ∆CSPGs DLMs fibers in kon mutant background at 90h APF. Some 
fibers are missing, possibly due to detachment. Scale bar = 100um 

 

To understand the origin of those minor defects, I monitored the early 

developmental hallmarks of the DLMs by live imaging. As described 

before (Fernandes et al., 1991; Fernandes et al., 1996), the DLMs 

originate from three larval dorsal oblique muscles (LO), which resist 

histolysis. These three larval muscles dedifferentiate into three 
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templates (Figure 2.14A, B). Next, each template split in two 

myotubes (Figure 2.14C). Those myotubes elongated along the A-P 

axis, towards the attachment sites, located near the cuticle of the 

thorax (Figure 2.14D). 

 

 

Figure 2.14. The CSPG domains have a minor role in DLM development  

(A) Depiction of the DLM development, corresponding to B-D.  

(B-D) Wild-type DLM muscles were imaged from 11h APF on. 

(C) Each template split in two myotubes.  

(D) The DLM myotubes elongate along the A-P axis, towards the attachment sites.  

(E) Depiction of the developmental problems of kon-V5 ∆CSPGs DLM myotubes, 
corresponding to F-H. 

(F) kon-V5 ∆CSPGs pupae had a normal number of templates, but their leading 
edges have abnormally long and thin protrusions (white arrowheads). 

(G-H) kon-V5 ∆CSPGs templates split, and the myotubes elongate. The leading 
edges are, however, abnormal, composed of very long and thin protrusions (white 
arrowheads). Scale bar = 100 um 
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kon-V5 ∆CSPGs pupae had a normal number of templates, but their 

leading edges had abnormally long and thin protrusions (Figure 14E, 

F), similarly to the DVM myotubes (Figure 2.12). In absence of the 15 

CSPGs the templates split nevertheless, and the majority of the 

muscles continued to elongate towards the tendon cells. The leading 

edges were, however, abnormal, composed of very long and thin 

protrusions (Figure 2.14G, H).  

In summary, lack of the 15 CSPGs caused cytoskeletal defects at the 

leading edges of the DLM muscles, which could indicate that those 

muscles do not respond properly to possible guidance cues. Because 

guidance cues may play a secondary role in DLM elongation, they 

could reach nonetheless the tendon cells, by most likely increasing 

template mass, in a laterally constricted fashion. During attachment 

initiation, the two LamG domains were sufficient to sense attachment 

cues, and thus triggering the attachment formation. However, as 

demonstrated by analysing the kon-V5 ∆CSPGs DLMs at 90h APF 

(Figure 2.13), the attachments did not appear entirely normal. 

Analysing the function of the 15 CSPG domains during adult 

myogenesis yielded two main conclusions: (1) the CSPG domains are 

essential in the formation of larger muscles, which depend heavily on 

guidance cues to find their attachment sites; and (2) the activity of the 

CSPG domains is primarily required during guidance. Together, these 

data suggest that for the formation of adult muscles, the LamG 

domains require to be boosted by the CSPG domains. 

2.5 Strategies to identify Kon interactions 

partners 

To date, besides Dgrip, no other Kon interaction partner was identified 

(Schnorrer et al., 2007). The identification of other interaction partners 

is central to understand the molecular mechanism underpinning the 

activity of Kon during the two phases of myogenesis. To shed light on 
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which guidance and attachment molecules Kon recognizes, I 

performed immunoprecipitation of Kon using lysates from embryos and 

pupae, followed by label free mass spectrometry analysis.  

One of the strategies to identify protein complexes, namely affinity 

purification mass spectrometry (AP-MS), requires several purification 

steps, including fractionating the eluate by gel electrophoresis, 

followed by analysing each gel band by mass spectrometry. Here, I 

used another strategy, affinity enrichment mass spectrometry (AE-MS). 

With AE-MS the purification steps can be minimized, which includes 

using mild buffers and a single-step of affinity enrichment of the tagged 

protein, and its interactors. This process yields an eluate with a large 

amount of unspecific binders, regarded as background. However, the 

true interactors, defined as significantly enriched proteins, are 

extracted by analysing their intensity profile across the samples with 

generic statistical testing (Keilhauer et al., 2014; Hein et al., 2015). 

2.5.1 Kon interactions partners during larval 

myogenesis 

To identify the interaction partners of Kon during embryonic 

myogenesis, I used as baits two different fosmid-derived tagged 

versions of Kon, Kon-V5 and Kon-HA. I performed single-step affinity 

enrichment of endogenously expressed V5 or HA-tagged Kon. These 

two baits had the potential to yield binding partners of the two LamGs, 

the 15 CSPGs and the PDZ-BD. Kon-V5 and Kon-HA are expressed at 

endogenous levels and are completely functional (Figure 2.4). 

Furthermore, the two tagged version of Kon localized specifically at the 

tips of the VL muscles (Figure 2.4), and therefore artefacts generated 

by Kon mislocalization, due to overexpression (Figure 2.9), were less 

likely to occur. 

The proteins identified by mass spectrometry were given with their 

LFQ values (label free quantification), which were depicted in a 

volcano plot. On the x-axis of the volcano plot, the variable Log (LFQ 
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bait- LFQ control) indicates the enrichment level of a particular protein, 

thus proteins that have higher values on the x-axis are more enriched 

in the sample. On the y-axis, the variable -Log (p value) indicates 

whether the enrichment of a particular protein was statistically 

significant. The level of statistic significance increases along y-axis. 

Using either Kon-V5 or Kon-HA as baits yielded eluates in which Kon 

was significantly enriched (Figure 2.15A, B), indicating that the 

immunoprecipitation and in principle the mass spectrometry analysis 

worked. The Kon-V5 derived eluate contained significantly enriched 

levels of Sallimus (Sls), the fly Titin homologue (Figure 2.15A). 

However, if the interaction was real, it would not be biological relevant, 

because the sls mutant phenotype (Hakeda et al., 2000) is not similar 

to the one of kon.  

Taf10b, RpL36, CG5343and Actin 57B were almost significantly 

enriched in Kon-V5 derived eluate (Figure 2.15A). Taf10b is a 

transcription initiation factor (Georgieva et al., 2000), RpL36 a 

ribosomal protein (Voelker et al., 1989; Rugjee et al., 2013), and 

CG5343 was inferred to have a role in RNA splicing (Herold et al., 

2008). Because these three proteins do not have a reported role in 

ECM recognition/interaction, actin dynamics or in myogenesis in 

general, I excluded them for further validation experiments.  

Interestingly Actin 57B is one of the actins present in the muscles, 

however according to literature it plays only a role in actin dynamics in 

the postsynaptic side. Moreover, the actin 57B mutant phenotype is 

not similar to the one of kon (Blunk et al., 2014).  

The Kon-HA derived eluate did not yield any potential interaction 

partner (Figure 2.15B). The poor yield of these two experiments could 

be due to the low abundance of the putative ligand of Kon. Alternative 

experiments to circumvent these problems are suggested in the 

Discussion chapter. 
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Figure 2.15. Kon interaction partners in the embryo 

(A) Eluates from kon-V5 embryos were analysed by mass spectometry. Kon was 
significantly enriched, indicating that the immunoprecipitation and in principle the 
mass spectrometry analysis worked. Sallimus (Sls), the fly Titin homologue, was also 
significantly enriched. On the x-axis of the volcano plot, the variable Log (LFQ bait- 
LFQ control) indicates the enrichment level of a particular protein. On the y-axis, the 
variable -Log (p value) indicates whether the enrichment of a particular protein was 
statistically significant. FDR (False discovery rate) = 0.01 

(B) Eluates from kon-HA embryos were analysed by mass spectometry. Kon was 
significantly enriched. FDR (False discovery rate) = 0.01 

 

Using the full length of Kon as bait to identify Kon interaction partners 

in the embryo was unsuccessful, likely because of the large size of 

Kon and the lability of the interactions. Therefore, I decided to use 

smaller bait. The smallest functional domain of Kon is the PDZ binding 

domain (PDZ-BD). A PDZ domain recognizes short peptides with a 

COOH-terminal hydrophobic residue and a free carboxylate group. 

(Pawson and Scott, 1997). The last residues from the C-terminal 

sequence of the PDZ-BD bind to the ß strand from the flanking 

peptide-binding groove, thus forming an antiparallel ß sheet (Doyle et 
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al., 1996). Protein domains that recognize short and unstructured 

sequences can be successfully identified using peptides as baits 

(Schulze and Mann, 2004). This approach was already successfully 

applied, for instance, to identify interaction partners of the cytoplasmic 

tail of ß1 integrin (Meves et al., 2011; Böttcher et al., 2012).  

To identity proteins that interact with the PDZ-BD from Kon, I used 

synthetic peptides composed of 25 amino acids as baits in pull-down 

experiments (see Material and Methods), followed by mass 

spectrometry analysis. I used two peptides as baits. The “active” 

peptide included the complete PDZ-BD sequence from Kon, whereas 

the “inactive” peptide had its COOH-terminal hydrophobic residue 

valine, replaced by glycin, which leads to the disruption of the PDZ-BD 

activity (Beuming et al., 2005; Schnorrer et al., 2007; Tonikian et al., 

2008). I used a similar strategy to inactivate the PDB-BD from the kon 

fosmid. I performed two biological replicates, each one with technical 

triplicates for each of the peptides. This approach yielded a longer list 

of proteins, which were significantly enriched in the eluate produced 

with the active peptide (Figure 2.16). The proteins that were 

significantly enriched in the two independent experiments (biological 

replicates) were PALS1- associated tight-junction protein (Patj), 

Polychaetoid, (Pyd or ZO-1), Stardust (Std), Protein tyrosine 

phosphotase Meg (Ptpmeg) and Myosin heavy chain-like (Mhcl). All 

these proteins contain PDZ domains, and with the exception of MhcI, 

they are all known polarity components. 

In the embryo, Mhcl is expressed in founder cells (FC) of the somatic 

mesoderm, and it localizes at the contact site between the fusion 

competent myoblast (FCM) and the FC during fusion. However, in the 

absence of Mhcl the musculature of the embryo is normal (Bonn et al., 

2013), indicating that, even if the interaction was real, it would not be 

functionally relevant.  
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Figure 2.16. PDZ-BD peptide as bait to identify PDZ containing interaction  
partners 

Two synthetic peptides (an “active” and an “inactive”) were used as baits in pull-down 
experiments with w- embryos, followed by mass spectrometry analysis. The “active” 
peptide included the complete PDZ-BD sequence from Kon, whereas the “inactive” 
peptide had its COOH-terminal hydrophobic residue valine, replaced by glycin, which 
leads to the disruption of the PDZ-BD activity. Two biological replicates yielded six 
proteins significantly enriched: PALS1- associated tight-junction protein (Patj), 
Polychaetoid, (Pyd or ZO-1), Stardust (Std), Protein tyrosine phosphotase Meg 
(Ptpmeg) and Myosin heavy chain-like (Mhcl). All these proteins contain PDZ 
domains, and with the exception of MhcI, they are all known polarity components. 
FDR (False discovery rate) = 0.01 

 

The remaining candidates have a well known role in the 

morphogenesis of the epithelium (Tepass, 2012), however, to my 

knowledge a role in myotube polarization and growth has not been yet 

reported. On the other hand, there is some indication given by work 

done with the mouse homolog of Kon, NG2, which prompted me to 

further consider a possible interaction between Kon and Patj.  

NG2 interacts with MUPP1 (Barritt et al., 2000). This protein is very 

similar to its homologue, Patj (Adachi et al., 2009). Work done in the 

polarization and migration of oligodendrocytes implied that NG2 may 

interact with Patj, and that Patj, in turn, would recruit Pals (Binamé et 

al., 2013), an homologue of Stardust (Roh and Margolis, 2003).  

To test whether Kon interacts with Patj in Drosophila, I cloned the four 

PDZ domains of Patj and overexpressed them together with the 

intracellular part of Kon in S2 cells. These initial experiments failed to 

validate this interaction (data not shown), however, this requires further 

analysis.  
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2.5.2 Kon interaction partners during adult 

myogenesis  

To identify Kon interaction partners in pupae, I tried, in collaboration 

with Dr Marco Hein (Mann department, MPI of Biochemistry), to 

circumvent possible technical problems, which could explain the poor 

results from the embryo experiments. During sample processing, 

namely immunoprecipitation, the composition of each replicate can 

vary, without any biological cause, but rather due to human error, such 

as inaccurate pipetting. This source of variability of human origin 

decreases the replicability among triplicates, which in turn decreases 

the significance values for the enrichment of each particular protein in 

the sample. Thus, to minimize the sources of variability during 

immunoprecipitation, this procedure was fully automatized using an IP 

robot (Hein et al., 2015). Part of the workflow as well as the 

bioinformatics analyses used in this set of experiments was originally 

developed to characterize the human interactome (Hein et al., 2015).  

To identify Kon interaction partners that have a role in the myogenesis 

of adult muscles, I used pupal lysate and as baits, the fosmid-derived 

Kon-GFP, which is completely functional (Figure 2.4), or the 

overexpressed Kon-YFP under Mef2-GAL4 driver (general muscle 

driver). In theory, this approach could yield interaction partners that 

assist Kon during the formation of DLMs, DVMs and abdominal 

muscles.  

Using either Kon-GFP or Kon-YFP as baits yielded eluates in which 

Kon was significantly enriched (Figure 2.17A, B), indicating that the 

immunoprecipitation followed by the mass spectrometry analysis 

worked. Both eluates were also significantly enriched for other 

proteins, although the two baits yielded two different lists of 

significantly enriched proteins (Figure 2.17A, B).  
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Figure 2.17. Kon interaction partners in pupae 

(A) Eluates from kon-GFP pupae were analysed by mass spectometry. Kon was 
significantly enriched, indicating that the immunoprecipitation and in principle the 
mass spectrometry analysis worked. The eluates yielded by Kon-GFP were 
significantly enriched for Pellino (Pli), Mec2, Oligosaccharyltransferase (OstStt3), 
CG14088, Chloride intracellular channel (Clic), and Flotillin-2 (Flo2). FDR (False 
discovery rate) = 0.01 

(B) Eluates from overexpressed kon-YFP pupae were analysed by mass 
spectometry. Kon was significantly enriched. The eluates yielded by overexpressed 
Kon-YFP were significantly enriched for yellow (y, probably cuticle contamination), 
Glutathione S Transferase E3 (GstE3), Odorant-binding protein 99b (Obp99b), wing 
morphogenesis defect (wmd), Fat body protein 2 (Fbp2), smooth (sm), and Sec3.  
FDR (False discovery rate) = 0.01 
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Before I performed further validation experiments, I checked whether 

these potential Kon interaction partners met two criteria: (1) having a 

role in ECM recognition/interaction, actin dynamics or in myogenesis in 

general, and (2) if the mutant alleles were at least pupal lethal.  

The eluates yielded by Kon-GFP were significantly enriched for Pellino 

(Pli, participates in innate immune signalling (Ji et al., 2014)), Mec2 

(biological activity in nephrocytes filtration (Zhang et al., 2013)), 

Oligosaccharyltransferase (OstStt3, involved in the biological process 

of protein glycosylation (Yamamoto-Hino et al., 2015)), CG14088 (a 

serine protease without known function, however the mutants are 

viable), Chloride intracellular channel (Clic, biological role in ethanol 

tolerance (Bhandari et al., 2012)), and Flotillin-2 (Flo2, participates in 

spread of morphogens, but the mutant is viable (Katanaev et al., 

2008)) (Figure 2.17A). Because these proteins did not fulfil the two 

criteria necessary for continuing with further validation, I did not 

proceed with further experiments. 

The eluates yielded by overexpressed Kon-YFP were significantly 

enriched for yellow (y, participates in the melanin biosynthetic process 

(Wittkopp et al., 2002), probably cuticle contamination), Glutathione S 

Transferase E3 (GstE3, involved in glutathione metabolic process 

(Saisawang et al., 2012)), Odorant-binding protein 99b (Obp99b, an 

pheromone binding protein (Hekmat-Scafe et al., 2002)), wing 

morphogenesis defect (wmd, it participates in the morphogenesis of 

the wing (Dworkin and Gibson, 2006)), Fat body protein 2 (Fbp2, it has 

alcohol dehydrogenase activity (Guruharsha et al., 2011)), smooth 

(sm, role in RNA processing (Lasko, 2000)), and Sec3 (it belongs to 

the exocytosis complex, and it has a role in asymmetric distribution of 

receptor during cell polarization (Wan et al., 2013), however the 

knockdown in muscles is viable (data not shown), (Figure 2.17B). 

Because these proteins did not fulfil the two criteria mentioned before, I 

did not proceed with further analysis. 
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Taken together, these approaches revealed to be unsuccessful to 

identify Kon interaction partners that may play a role during Kon 

mediated myogenesis. Alternative approaches are suggested in the 

Discussion chapter. 
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3 Discussion 

The main objectives of this study were, first, identifying the contribution 

of each domain type to the overall activity of Kon; second, determining 

if Kon, as putative receptor, has a role in myotube guidance; and 

finally, identifying how Kon customizes its activity in two distinct 

developmental scenarios: one in the embryo, in which the formed 

larval muscles are rather small, and another in the pupae, in which the 

formed adult muscles are larger. My results suggest that Kon functions 

according to two modes, which mediate either muscle elongation 

(guidance) or attachment. These two modes are particularly 

distinguishable in adult myogenesis. These two modes are not 

however linked exclusively to a particular extracellular domain type, 

because the two types of domains are partially redundant. In addition, I 

showed that a compact version of Kon, missing the long CSPG 

domains was sufficient for the formation of smaller muscles, during 

larval myogenesis. However, during formation of larger muscles, in the 

adult myogenesis, this compact version is not sufficient, requiring thus 

to be synergized by the CSPG domains. In the absence of the CSPG 

domains, the adult muscles had severe defects, similarly to the kon 

RNAi phenotype (Perez-Moreno et al., 2014), showing that the CSPG 

domains have an essential role during adult myogenesis. Together, 

Kon CSPG domains boost the sensing activity of the LamG domains, 

so that Kon maintains an efficient ligand sensing activity in the two 

developmental scenarios, including across long distances in pupae. 
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3.1 Unveiling the function of the three Kon protein 

domain types 

The first homolog of Kon was identified in human melanoma cells over 

30 ago (Harper and Reisfeld, 1983). However, numerous aspects of 

the role of Kon and its homologues are poorly understood, including 

how the three types of protein domains, which compose Kon and their 

homologues, interplay to mediate a multitude of biological processes. 

This study shed light on this question, using Drosophila myogenesis as 

a model system. This model system can emulate certain aspects of 

human pathologies, in which the Kon homologues were shown to play 

a relevant role, namely in metastasis (Burg et al., 1998; Benassi et al., 

2009). This is the first in vivo study, which establishes a link between 

guidance and Kon, thus providing insights how NG2/CSPG4 may 

increase the metastatic potential of, for example, melanomas and soft 

tissue sarcomas (Burg et al., 1998; Benassi et al., 2009). Furthermore, 

this study also explained how the two types of extracellular domains of 

Kon, which are conserved up to humans (Staub et al., 2002), 

contribute to myotube guidance. Testing if similar mechanism underlies 

the activity of the Kon homologues, NG2/CSPG4, could pave the way 

toward designing better therapeutically solutions to decrease the 

metastatic potential of, for example, melanomas. 

The contribuition of the extracellular domain types of Kon to myotube 

guidance varies according to the distance that the myotube has to 

elongate to reach the tendon cells. To note that with the exception of 

the DLMs, the size of the muscle reveals approximately the distance 

that the myotube has to elongate. A compact version of Kon, missing 

the long CSPG domains was sufficient for the formation of smaller 

muscles, during larval myogenesis. Investigating further the functional 

difference between the two types of extracellular domains showed that, 

what renders the LamG domains particularly distinguishable from the 

CSPG domains is their essential role in Kon localization at the tips of 
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the myotubes (Figure 2.8). However, when Kon ∆LamGs was 

overexpressed, this protein could accumulate at the tips of the VL 

muscles (Figure 2.9). In this context, Kon ∆LamGs could also yield VL 

muscles with wild-type morphology. Hence, when the localization 

problem of Kon ∆LamGs was circumvented by overexpression, both 

LamG and CSPG domain types could generate wild-type VL muscles 

without its counterpart type (Figure 2.9). Remarkably, overexpression 

of full length Kon resulted in more filopodia dynamics and larger 

attachment sites (Figure 2.9). This indicates that the two extracellular 

domain types synergize with each other, possibly by rendering the 

myotube more responsive to guidance and attachment cues.  

The role of guidance cues in adult myogenesis has been so far not 

investigated. However, during the formation of the adult muscles, the 

tendon cells, like in the larval myogenesis in the embryo (Kramer et al., 

2001; Schweitzer et al., 2010), are also likely to secrete guidance 

cues. Hence, Kon may mediate myotube guidance by helping the 

elongating myotube to sense guidance cues, presumable secreted by 

the tendon cells. Taken together, I propose that Kon has a long-range 

sensing activity, which is defined here as the ability to sense cues 

secreted distally. In fact, Kon homologues were shown in vitro to 

mediate cell chemotaxis in response to a PDGF source (Binamé et al., 

2013), demonstrating that Kon homologues are also endowed with a 

long-range sensing activity.  

The participation of Kon in myotube attachment suggests that Kon also 

senses attachment cues. These cues, in contrast to the guidance 

ones, require to be exclusively localized in vicinity of the tendon cells, 

thus only triggering attachment formation when the myotube reaches 

the tendon cells. Taken together, Kon is likely to function according to 

two different modes, which are characterized by long- and short-range 

sensing activities. The long-range sensing activity contributes to 

myotube elongation through sensing guidance cues secreted 

presumably by the tendon cells (Figure 3.1). Thus, this mode is mainly 
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required during the formation of adult muscles, whose elongation 

needs to be guided. In contrast, short-rage sensing activity contributes 

to myotube attachment through sensing attachment cues (Figure 3.1). 

This mode is essential for all the muscles that require Kon for their 

development, independently of their size and developmental program 

(founder cell- or template-based). Although, the LamG domains appear 

to be the most important extracellular type for the short-range sensing 

mode, the overexpressed Kon ∆LamGs was also able to mediate VL 

muscle attachment (Figure 2.9). This suggests that 15 CSPGs can 

also sense attachment cues, which direct the myotube to form an 

attachment.  

The synergy between the LamG and the CSPG domains are mainly 

required during adult myogenesis. Analysing the myogenesis of kon-

V5 ∆CSPGs pupae provided evidences that the CSPG domains are 

essential for the formation of larger muscles, which depend heavily on 

guidance cues to find their attachment sites. In addition, the synergetic 

activity of the CSPG domain is primarily required during myotube 

guidance. A similar synergy could also underlie NG2/CSPG4-

expressing tumours metastasis. 

The study of each domain type of Kon also showed that they 

contribute differently for Kon localization at the myotube tips. Although 

the three domain types influence Kon localization, the LamG domains 

are the most important (Figure 2.8). An explanation for the higher 

contribution of the LamG domains to Kon localization could be the 

affinity strength with which this extracellular domain type binds to the 

ligand.  

Interestingly, accumulation of a Kon homolog, NG2/CSPG4, at the 

membrane is controlled by PDGF, a proposed co-ligand. NG2/CSPG4 

was proposed to serve as a co-receptor for a PDGF receptor, as a 

strategy to potentiate PDGF signalling (Feutlinske et al., 2015). This 

piece of evidence could support the hypothesis that interaction with the 

ligand controls the turnover rate of NG2/CSPG4, as well as that of 
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Kon. If the affinity to the ligand is a way to control the persistence of 

Kon at the membrane, this may explain why eliminating each 

extracellular domain type resulted in a decrease of the protein 

localization ability (Figure 2.8). Because the decrease in localization 

was more pronounced upon deletion of the two LamG domains 

(Figure 2.8), this would mean that the two extracellular domain types 

interact with the ligand with different levels of affinity. 

A possible experiment to test the affinity hypothesis is to characterize 

the mobility of Kon ∆LamGs and Kon ∆CSPGs, both tagged with GFP, 

by FRAP (Fluorescence recovery after photobleaching). If the affinity 

hypothesis was valid, the turnover of Kon-GFP ∆CSPGs would be 

lower than the turnover of Kon-GFP ∆LamGs. 

Given the resemblance of the CSPG domains with the cadherin 

repeats, an alternative mechanism to control Kon localization at the 

membrane could be through homophilic interactions between CSPG 

domains of neighbour Kon molecules, at the muscle tips. However, this 

would not be the main mechanism for Kon localization, because the 

contribution of the LamG domains for Kon localization is higher than 

that of the CSPG domains (Figure 2.8). An additional hypothesis to 

explain the different levels of enrichment upon mutation or deletion of 

Kon domains (Figure 2.8) is that these Kon domain types interact with 

components necessary for Kon trafficking, and delivery at the muscle 

tips. Hence, lack of some of these domains would result that the 

protein could not be normally delivered at the tips of the muscles.  

On the other hand, endocytosis may be a process to prevent excessive 

accumulation of Kon at the membrane. A tight control is necessary, 

because excessive Kon can lead to excessive filopodia (Figure 2.9). In 

fact, NG2/CSPG4 concentration at the membrane is controlled by 

endocytosis via Stonin1, an endocytic adaptor. Lack of Stonin1 results 

in higher NG2/CSPG4 concentration at the cell membrane, leading to 

an enhancement in cell migration directionality (Feutlinske et al., 

2015). Because NG2/CSPG4 is considered an oncogene (Feutlinske 
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et al., 2015; Schrappe et al., 1991; Behm et al., 1996; Wang et al., 

2011a; Poli et al., 2013), controlling its concentration at the membrane 

is of extreme relevance to prevent tumour metastasis. It was 

suggested by a biochemical experiment that Stonin1 interacts indirectly 

with the PDZ-BD to mediate endocytosis (Feutlinske et al., 2015), 

however this presumable interaction was not functionally validated. My 

data show, however, that the mutation of the Kon PDZ-BD did not 

increase Kon concentration at the membrane (Figure 2.8). This could 

argue that either Kon level is not controlled by endocytosis, or the 

interaction between NG2/CSPG4 PDZ-BD and Stonin1 was an 

artefact. Hence, the interaction between NG2/CSPG4 and Stonin1 via 

PDZ-BD requires to be functionally validated to demonstrate its 

biological role. 

3.2 Challenges to find interaction partners and 

new strategies 

Identifying Kon interactions partners is central to complement the 

mechanistic knowledge discussed above. To identify Kon interactions 

partners I have applied enrichment purification followed by mass 

spectrometry (EP-MS) (Keilhauer et al., 2014). This approach was 

used for instance to generate large-scale protein interactions studies, 

such human Interactome (Hein et al., 2015). Similarly to this study, I 

have also used as baits, three different tagged versions of Kon 

expressed at endogenous levels (Figure 2.4), thus recapitulating the in 

vivo conditions. In addition, I have tested embryos and pupa to identify 

potential Kon interactors from the two phases of Drosophila 

myogenesis. However, these sets of experiments were unsuccessful to 

find Kon stable interactors (Figure 2.15).  

A recent study showed that obligate protein complexes are rare among 

a multitude of interactions in the cell. The majority of the interactions 

are weak and non-obligatory as well as at substoichiometric levels 

(Hein et al., 2015). Numerous variables govern protein-protein 
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interactions in the cell, including biophysical affinity, kinetics exchange, 

spatiotemporal overlap of interactors, and cellular abundance. A stable 

complex contains components of equal cellular abundance, which are 

constitutively bound to each other. Strong complexes have also other 

features: the members of the complex are co-regulated across cell 

types, and they are present at stoichiometric levels, which is in turn 

predictive of the biophysical stability of an interaction (Hein et al., 

2015).  

Low biophysical affinity, high kinetics exchange, limited spatiotemporal 

overlap of interactors, or cellular abundance could explain why 

identifying Kon interaction partners is very challenging (Figure 2.15). 

For example, during myotube elongation, Kon may function as a co-

receptor to help to increase the local concentration of guidance cues, 

and thus facilitating the counterpart receptor activation. In this context, 

the interaction between Kon and the putative co-ligand are likely to 

have low biophysical affinity and high kinetics exchange. An additional 

problem is the low cellular abundance of Kon in the embryo and in the 

pupa. On the top of that, source of variability, such as technical 

problems generated during the preparation of the eluates, can 

decrease replicability, and thus the probability of identifying weak 

interactors. When the enrichment values of a particular protein 

fluctuate dramatically among technical replicates, the statistic 

significance of the enrichment for this particular protein decreases, and 

the protein is likely to be discarded after the statistical analysis. 

To increase the reproducibility among technical replicates a full-

automatized procedure was used. This yielded significant 

improvements, shown by an increase in the number of significantly 

enriched proteins identified (Figure 2.17), however none could be 

considered as a biologically relevant interactor of Kon, during 

myogenesis. Of note, the Kon bait with an endogenous expression 

profile yielded a completely different list of proteins, compared to that 

of the overexpressed counterpart (Figure 2.17). Overexpressed baits 
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can yield different protein lists according to the stoichiometry of the bait 

and the prey in the cell. When the bait is more abundant than the prey, 

a small part of the bait population is in theory engaged with the prey, 

whereas the remaining bait is free. This free bait can then interact with 

other molecules, however with lower affinity. This could also explain 

the results obtained with the PDZ-BD peptides pull-downs (Figure 

2.16). 

Using a high quantity of the Kon PDZ-BD peptide to pull down PDZ 

containing proteins, which in this context were present at 

substoichiometric levels, most likely resulted that a small population of 

peptides interacted with the obligatory PDZ-containing protein. The 

rest of Kon PDZ-BD peptides was, however, free to interact with other 

PDZ-containing proteins, according to the stoichiometry and affinity 

levels. In fact, Dgrip, an interaction partner of the PDZ-BD of Kon 

(Schnorrer et al., 2007), was not identified in this assay (Figure 2.16). 

A strategy to identify weak interaction partners with a high kinetic 

exchange, presumable like the interactors of Kon, is to label all the 

protein that interact at a particular time point with the bait, through 

biotinylation. A suitable technique to biotinylate protein complexes is 

BioID (Roux et al., 2012). To identify potential interactors, this 

technique can be combined with standard biotin-affinity capture, 

followed by mass spectrometry (Roux et al., 2012; Kim et al., 2014). 

BioID is a technique based on a mutated version of the E. coli BirA 

biotin protein ligase, called BirA*. BirA* is a promiscuous version of the 

original BirA, which releases prematurely the intermediate product, 

biotinoyl-5´-AMP (bioAMP). Once released, bioAMP reacts 

immediately with primary amines within a 10 to 20 nm radius (Roux et 

al., 2012). Thus, BirA* requires to be in the proximity of the protein 

domains, which are likely to interact with other proteins. BioID was 

applied successfully to map protein complexes, such as nuclear pore 

complexes (Kim et al., 2014). BirA* is specially recommended to fuse 
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with transmembrane proteins, thus the localization of bioAMP is then 

restricted. Hence, Kon is a suitable protein for this technique.  

To yield potential interactors of Kon, either extracellular or intracellular, 

BirA* requires to be integrated in at least two locations within Kon 

protein. To identify intracellular partners, BirA* has to be introduced 

within the Kon intracellular part, nearby the PDZ-BD at the C-terminus. 

To identify extracellular partners, a good position may be between the 

second LamG domain and the first CSPG domain, because a potential 

extracellular ligand may bind to both types of domains, as discussed 

before. In addition, BirA* cannot be integrated at the N-terminus of Kon 

due to its size, which is similar to that of GFP. Thus, its N-terminal 

localization will most likely disrupt Kon activity, as a N-terminal GFP 

tag did (Figure 2.4). An additional challenge in using BioID in vivo may 

be to supply the enzyme BirA* with enough biotin.  

3.3 Possible mechanisms underlying the dual 

function of Kon during myogenesis 

3.3.1 Myotube guidance via a secreted ligand 

To fulfil a dual role in myotube elongation and attachment, Kon may 

act under certain circumstances as a co-receptor. Interestingly, 

NG2/CSPG4 was shown to modulate the responsiveness of OPCs to 

FGF. In OPCs, downregulation of NG2/CSPG4 impairs FGF-

dependent directional migration. However, the impairment is 

ameliorated upon increase in FGF concentration in the medium 

(Binamé et al., 2013). This could indicate that NG2/CSPG4 has a role 

in increasing the local concentration of FGF in the vicinity of the 

receptor. A link between NG2/CSPG4 and PDGF signalling was also 

shown. Increasing NG2/CSPG4 concentration at the membrane 

synergizes the PDGF signalling, by making the receptors more 

responsive to the ligand in the medium (Feutlinske et al., 2015). In 
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similar fashion, Kon may render Robo more responsive to Slit by 

increasing the local concentration in the vicinity of the receptor.  

Slit is essential for VL muscles guidance (Kramer et al., 2001). 

However, a role of Slit in the formation of adult muscle has not yet 

been investigated. A recently published genetic screen examined the 

function of 1384 genes by RNAi-mediated knock-down, specifically in 

tendon cells using the stripe-GAL4 driver (Tiwari et al., 2015). 

However, Slit was not tested in this screening. Further experiments are 

required to elucidate if Slit and Robo have a role in the formation of 

adult muscles. If so, it would be highly interesting to test whether Kon 

potentiates Slit-mediated signalling via Robo.   

3.3.2 Myotube attachment via a tendon cell-bound 

ligand 

Cell-cell adhesion may be a mechanism to trigger muscle attachment 

formation. The transition from an elongating to an attaching myotube 

could be triggered by the interaction between Kon at the myotube and 

a particular protein at the tendon cell. To form a stable muscle 

attachment, these transient protein-protein interactions would be then 

replaced by a stronger integrin-tendon matrix binding. In fact, both 

LamG and CSPG domains can mediate cell-cell interactions. For 

example, LamG domains are present in Neurexin. Neurexin, at the 

presynaptic side, interacts with Neuregulin, at the postsynaptic side, to 

form a synapse (Dean and Dresbach, 2006). While Kon CSPG 

domains resemble cadherin domains (Staub et al., 2002), which are 

required, for example, to form epithelial junctions (Harris and Tepass, 

2010). The direct muscle-tendon contact, as the first step to for an 

attachment, may however be unlikely. Tendon cells secrete Tsp, a 

component of the tendon matrix, since stage 12 (Subramanian et al., 

2007), which is likely to prevent direct contact between Kon at the 

muscles and a tendon-bound ligand. 
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3.3.3  Myotube attachment via integrin modulation  

An alternative hypothesis how Kon controls attachment, could be 

indirectly by modulating the binding properties of the integrins to the 

tendon matrix, as Kon homologues do (Iida et al., 1998). This could 

also explain why in the absence of the CSPG domains, some VL 

attachment cannot withstand the force generated during larval 

movement (Figure 2.7). Further experiments are necessary to clarify 

the link between Kon and integrin activity. 

3.3.4 Myotube attachment with Kon homologues 

Do the Kon homologues have also a role in muscle attachment? 

Apparently, the musculature from a NG2/CSPG4 null mouse is normal 

(Grako et al., 1999). If NG2/CSPG4 has a role in myotube attachment 

may be, however, redundant, or it is only detectable when the muscle 

homeostasis is compromised, such as during myopathies. 

Interestingly, it was suggested that NG2/CSPG4 has a compensatory 

role in human myopathies, including Duchenne muscular dystrophies 

(DMD). It was shown that regenerating fibers from DMD patients up-

regulate NG2/CSPG4. This may be a strategy to compensate the 

absence of the Dystroglycan complex, whose function is to mediate the 

connection between the muscular cytoskeleton and the extracellular 

matrix. NG2/CSPG4 could promote additional anchoring between the 

DMD regenerating muscle and the ECM, either directly or by recruiting 

other attachment components, such as integrin (Petrini et al., 2003).  

3.3.5 Cytoskeleton remodelling necessary for 

myotube elongation and attachment  

The link between Kon and cytoskeletal dynamics was shown by an 

increase in filopodia formation upon overexpression of Kon (Figure 

2.9), (Schnorrer et al., 2007), which presumably leads to hyper-

activation of pathways linked to actin dynamics. This means that Kon is 
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able to recruit intracellular components that control actin dynamics, 

which in turn contribute to leading edge formation, myotube elongation, 

and attachment.  

The PDZ-BD is presumably the only obvious conserved functional 

domain present in the intracellular part of Kon. The PDZ-BD interacts 

with one of the PDZ domains of Dgrip (Schnorrer et al., 2007), the 

Drosophila homolog of Grip. The other six remaining PDZ domains of 

Dgrip can potentially recruit other proteins (Swan et al., 2004; 2006), 

which in turn could induce cytoskeletal remodelling during leading 

edge and attachment formation.  

Interestingly, the human homologue of Kon, NG2/CSPG4, is involved 

in the activation of the Rho family GTPases Rac and Cdc42 

(Eisenmann et al., 1999). These molecules are involved in the 

formation of stress fibers, lamellipodia and filopodia (Nobes and Hall, 

1995). Thus, Kon is likely to also interact with similar type of Rho family 

GTPases to modulate the actin cytoskeleton.  

The challenge in studying proteins linked to actins dynamics during 

muscle elongation is that the majority of those molecules are also 

involved in myotube fusion, another essential mechanism for muscle 

formation (Rochlin et al., 2010). Mutations of those molecules prevent 

increase in muscle mass, thus masking their role in muscle elongation 

and attachment. Nevertheless, studying the downstream components 

of Kon is essential to understand the mechanism underlying the activity 

of Kon.  

Attachment cues also trigger cytoskeleton remodelling, necessary to 

mediate the transition from a leading edge with filopodia to a stable 

and force resistant attachment site. Kon also participates in this 

process. A direct evidence for that is the formation of larger attachment 

sites upon overexpression of Kon (Figure 2.9). This suggests that 

together, the both Kon extracellular domain types render the myotube 

more responsive to attachment cues. Probably without these 

attachment cues, Kon cannot mediate the transition from an elongating 
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to an attached muscle. This could explain why upon Kon 

overexpression, the attached muscles still had filopodia laterally 

(Figure 2.9), although they were presumably absent from the 

attachment sites. The reason could be lack of attachment cues at the 

lateral sides of the muscles, and thus Kon may still there stimulate 

actin dynamics required for elongation. 

3.4 A compact and a full version of Kon: 

adjustments to two myogenic phases 

A pivotal question in developmental biology is how cells and tissues 

optimize variables that influence the diffusion of signalling molecules, 

such as the distance and the speed required for a secreted molecule 

to efficiently reach a particular receptor. Diffusion-related variables, as 

the two mentioned before for example, are optimized according to the 

type of cell or tissue by several mechanisms, involving modifications of 

the cell membrane, the ligand or the receptor. 

A mechanism involving the cell membrane is the generation of 

cytonemes, which serve to facilitate the communication between 

distant cells. Cytonemes are very long cellular projections, which 

function as bridges between the receiving cell with the receptor, and 

the sending cell, the source of the ligand (Ramírez-Weber and 

Kornberg, 1999; Hsiung et al., 2005; Roy et al., 2011; Bischoff et al., 

2013). An alternative mechanism is to escort the ligand with 

lipoproteins to facilitate the diffusion, increasing thus the distance that 

a ligand can potentially diffuse (Panáková et al., 2005). The number of 

receptors at the membrane can also increase, as a strategy to keep 

the cells responsive to the ligand at lower concentrations (Müller et al., 

2001).  

Here, I described a new strategy, centred on the protein domains of 

the receptor. This strategy is less drastic than the expression of 

different Kon isoforms according to the size of the muscle would be. To 
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note that with the exception of the DLMs, the size of the muscle 

indicates approximately the distance that the muscle had to elongate 

to reach the tendon cells. Kon participates in the formation of muscles 

that can vary up to 20 times in size (Figure 3.1). While a compact 

version of Kon, missing the long CSPGs domains (Figure 2.6), was 

sufficient for the formation of smaller muscles, the adult muscles do 

require this domain type (Figure 2.11, and Figure 2.12). How do the 

CSPG domains boost the activity of the LamG domains? The LamG 

domains may sense an increase in the concentration of the secreted 

ligand, because the 15 CSPGs move the LamG domains further away 

from the muscle (Tillet et al., 1997), and thus closer to the source of 

the ligand, the tendon cells. Thus, without the 15 CSPG domains, the 

concentration of the ligand the vicinity of the shorter LamGs may not 

reach the critical value for receptor activation.  

Although, I believe that the length of the 15 CSPG domains contributes 

to increase the concentration of ligand reaching the two LamGs, this is 

unlikely to be the main function of the CSPG domains. This is 

supported by two pieces of evidence. First, when Kon missing the 

LamG domains was localized at the attachment sites by 

overexpressing it, the CSPG domains were able to mediate the 

formation of VL muscles without the two LamG domains (Figure 2.9). 

Most strikingly, the two extracellular domains could trigger the same 

intracellular signalling, which led to remodelling of the leading edge, 

necessary for mytotube extension and attachment. Second, when both 

extracellular domain clusters were overexpressed together, they 

caused excessive filopodia and enlarged attachment sites (Figure 

2.9). 

Taken together, I hypothesize that the ligand interacts with both 

extracellular domain types, and the strongest interaction occurs when 

the LamGs and CSPGs bind simultaneously to the ligand. Thus, the 15 

CSPGs may strengthen the binding to the ligand, which is essential in 

a large muscle milieu, such as the fly thorax.  



 3. Discussion 
 

 94 

Interestingly, the boosting activity of the CSPG domains is mainly 

required for the long-range sensing activity of Kon, which underlies 

myotube elongation from adult muscles formed from a FC (Figure 

2.11, and Figure 2.12). In the case of the DVM muscles, a FC 

measuring about 15 μm (Dutta, 2004) gives rise then to a muscle, 

which is up to 50 times larger. This FC, and the subsequent myotube 

require to access guidance cues secreted at large distance. The CSPG 

domains have an essential role in this function, possibly by increasing 

the probability of a successful interaction between the ligand and Kon. 

The adult muscles may also use other strategies to increase the 

probability of a successful interaction, such as increasing the density of 

Kon at the muscles leading edge.  

The role of the CSPG domains differs between the two types of indirect 

flight muscles, DVMs and DLMs (Figure 2.12, and Figure 2.14). A 

possible explanation for this difference is the role of guidance 

molecules in the development of these two muscle types. The DLMs 

derive from templates, which could provide a direction for elongation. 

Therefore, the DLMs may not need guidance cues to reach the tendon 

cells. Thus, this could explain why in absence of the CSPG domains, 

the DLM had only minor defects (Figure 2.13, and Figure 2.14), 

compared to kon knock-down by RNAi (Weitkunat et al., 2014). Long 

cell projections were, however, still detected (Figure 2.14). These cell 

projections could be a compensatory response to lack of the long-

range sensing activity of Kon. Moreover, these cell projections may be 

cytoneme-like structures, aiming to bridge the space between the 

elongating myotube and the tendon cell. Taken together, these 

cytoneme-like structures, generated upon CSPG domains deletion, 

may be a strategy of the DLMs to compensate for the inability in 

sensing guidance cues.  

Interestingly, when the templates are ablated, the DLMs are however 

able to form de novo, which includes finding and attaching to the 

tendon cells (Farrell et al., 1996). I hypothesize that, when the 
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templates are ablated, the CSPG domains will have an essential role in 

the DLMs guidance, as they have in the DVMs. 

The human and rat homologues of Kon, NG2/CSPG4, have also a role 

in migration and adhesion (Feutlinske et al., 2015; Eisenmann et al., 

1999; Paňková et al., 2012; Binamé et al., 2013), including in tumour 

cells (Burg et al., 1998; Benassi et al., 2009). NG2/CSPG4 is present 

both in primary and in metastatic tumour (Cattaruzza et al., 2013; 

Nicolosi et al. 2015). In fact, targeting NG2/CSPG4 in glioblastoma 

(GBM) and in melanoma was shown to slow down tumour growth and 

angiogenesis (Wang et al., 2011a). The transition between a primary 

and a metastatic tumour may require the use of the CSPG domains to 

sense the cytokines secreted distally from the target-organs, and thus 

present at very low concentration in the vicinity of the metastasizing 

cancer cell.  
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Figure 3.1. Model for the activity of Kon during Drosophila myogenesis 

Kon customizes its activity according to the distance that the myotube has to 
elongate to reach the tendon cells. A compact version of Kon, missing the long 
CSPG domains was sufficient for the formation of smaller muscles, during larval 
myogenesis. However, during formation of larger muscles, in the adult myogenesis, 
this compact version is not sufficient, requiring thus to be synergized by the CSPG 
domains. Kon is likely to function according to two modes, which are characterized 
by long- and short-range sensing activities. These two modes are particularly 
distinguishable in adult myogenesis. To note that with the exception of the DLMs, the 
size of the muscle indicates approximately the distance that the myotube has to 
elongate to reach the tendon cells. The Kon long-range sensing activity is defined 
here as the ability to sense guidance cues secreted distally by the tendon cells. Thus, 
this mode is mainly required during the formation of adult muscles, whose elongation 
needs to be guided. In contrast, Kon short-rage sensing activity contributes to 
myotube attachment through sensing attachment cues. These cues are exclusively in 
vicinity of the tendon cells, thus triggering attachment formation only when the 
myotube reaches the tendon cells. This mode is essential for all the muscles that 
require Kon for their development.  
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4 Conclusion 

This study showed that Kon is essential for myotube guidance, thus 

unveiling a novel function of Kon during Drosophila myogenesis. 

Furthermore, this study identified the extracellular domain type, which 

renders Kon able to mediate myotube guidance, the CSPG domains. I 

envision that Kon mediates guidance through sensing guidance 

molecules secreted by the tendon cells. 

The second major contribution of the study was determining for the first 

time how the three types of Kon protein domains interplay to mediate 

muscle formation in the two phases of Drosophila myogenesis. This 

study demonstrated that the participation of Kon in muscle formation is 

customized according to the developmental circumstances of a 

particular type of muscle. A compact version of Kon, missing the long 

CSPG domains is sufficient for the formation of smaller muscles, 

during larval myogenesis. However, during formation of larger 

muscles, in the adult myogenesis, this compact version is not 

sufficient, requiring thus to be synergized by the CSPG domains.  

Because these domain types are conserved up to humans, this study 

can help to understand how NG2/CSPG4 increases the metastatic 

potential of NG2/CSPG4 expressing tumours.  
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5 Material and Methods 

5.1 Materials 

5.1.1 General reagents 

NaCl (Roth), KCl (Merck), Na2HPO4 (Merck), KH2PO4 (Merck), Triton-X 

(Roth), Tween (Sigma-Aldrich), MgSO4·7H2O (Merck), methanol 

(Sigma-Aldrich), n-heptane (VWR), formaldehyde 37 % v/v stock, 

methanol free (Roth), ethanol (Sigma-Aldrich), Tris base (Sigma-

Aldrich), glycine (Sigma-Aldrich), NP-40 (Fluka), Nipagin (Sigma-

Aldrich), sucrose (Merck) and SDS pellets (Sigma-Aldrich). 

5.1.2 Molecular biology reagents and equipments 

5.1.2.1 General reagents 

Deoxynucleotides (dNTP) solution mix (NEB), Phusion polymerase 

(NEB), 5xPhusion buffer (NEB), Taq polymerase (NEB), 10x Taq 

buffer (NEB), ultra-pure agarose (Thermo Fisher Scientific), bacto-agar 

(Roth), tryptone (Roth), yeast extract (Roth), hygromycin 50 mg/ ml in 

H2O (Hgr, Sigma-Aldrich), chloramphenicol (Cm, Sigma-Aldrich), 

kanamycin (Kan, Sigma-Aldrich), L-rhamnose (Sigma-Aldrich), DpnI 

(NEB), and dithiothreitol (DTT, Sigma-Aldrich). 

5.1.2.2 Kits 

DNA QIAquick Gel Extraction kit (Qiagen), MinElute PCR Purification 

Kit (Qiagen), and PureLink HiPure Plasmid Miniprep (Thermo Fisher 

Scientific). 

5.1.2.3 Equipments  

C1000 Thermal cycler (BioRad), NanoDrop (Thermo Fisher Scientific), 

cell electroporator (Eppendorf 2510), electroporation cuvettes 1mm 
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(Eppendorf), benchtop centrifuge 5424 (Eppendorf), and Minitron 

incubator (Infors HT). 

5.1.2.4 Recombineering using kan resistance for selection 

5.1.2.4.1 Bacteriological reagents  

Arabinose (Sigma-Aldrich) and anhydrotetracycline 0.2 mM in ethanol 

(Clontech). 

5.1.2.4.2 Solutions and media 

Lysogeny broth (LB): 10 g tryptone, 5 g yeast extract, and 10 g NaCl 

were dissolved in ddH2O to make a total of 1 L. The mixture was then 

autoclaved. 

LB agar: 10 g tryptone, 5 g yeast extract, 10 g NaCl, and 15 g bacto-

agar were dissolved in ddH2O to make a total of 1 L. The mixture was 

then autoclaved. Next the medium was let to cool down until 

approximately 55 ºC, and antibiotics were added to yield the following 

combinations: LB plates Cm15 µg/ ml, LB plates Cm15/ Hgr20 µg/ ml, 

and LB plates Cm15/ Hgr50/ Kan30 µg/ml. 

5.1.2.4.3 Bacterial strains, plasmids and oligonucleotides 

Fosmid clone FlyFos021621. The genomic fragment from this clone 

contained the Drosophila genomic region 2L: 18,473,884 to 

18,518,106. EPI300 E. coli strain (Epicentre) hosted the fosmid. The 

resistance gene from the FlyFos vector is cat (chloramphenicol 

resistance). The Flyfos is a single copy plasmid. In presence of 

arabinose, there is shift to high copy number (Ejsmont et al., 2009; 

2011).  

Plasmid pRedFLp4 contains a -derived Red,, operon, which is 

inducible by L-rhamnose. The operon is composed of three enzymes: 

Red, 5’-3’ exonuclease, Red, a DNA annealing protein, and Red, 

an inhibitor of the major E. coli exonuclease and recombination 

complex, RecBCD. This plasmid also contains a flippase, Flp70L, 
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under the control of the tetP promoter and inducible by 

anhydrotetracycline. This plasmid is thermosensitive, and thus it is not 

replicated when the bacteria are incubated over 30 ºC (Ejsmont et al., 

2009; 2011). 

Plasmid pR6K carries either GFP or V5 tag sequences between 2xTY1 

and 3xFLAG sequences. pR6K contains amp and kan. The pR6K can 

only be amplified in a pir+ host strain. The GFP and V5 tags were 

amplified with oligonucleotides that were 70-bp long and HPLC purified 

(Table 5.1). 

 

Table 5.1. List of oligonucleotides for recombineering using kan resistance  

 

 

5.1.2.5 Recombineering using galk selection 

5.1.2.5.1 Bacteriological reagents  

D-biotin (Roth), galactose (Sigma-Aldrich), 2-deoxy-galactose (DOG, 

Sigma-Aldrich), glycerol (Sigma-Aldrich), L-leucine (Sigma-Aldrich), 

and MacConkey mixture (Roth). 

5.1.2.5.2 Solutions and media 

Aqueous solutions: 0.2 mg/ ml D-biotin, 20% m/v galactose, 20% m/v 

2-deoxy-galactose, 20% m/v glycerol, 10 mg/ ml L-leucine, and 1 M 

MgSO4·7H2O. 

1x M9 buffer: 6 g Na2HPO4, 3 g KH2PO4, 1 g NH4Cl, and 0.5 g NaCl, 

were dissolved in ddH2O to a final volume of 1 L and autoclaved. 

Oligos Sequence

GFPaSS1
TCTCAATTTGCCCATACCCATGTCTATGTCTATCCTATCCACCCACAG

TTGAAGTGCATACCAATCAGGACCCGC

GFPaSS2
ATCTTGGCCTCCTGCAGCGGCATCGATACGTAGCCATCGCCGAAGA

GGGACTTGTCGTCGTCATCCTTGTAGTCA

V5intra1
TGCTGTTGATATTAAAGATCAGGAAACTGAGAAAGCACAAGGCAGA

TATAGAAGTGCATACCAATCAGGACCCGC

V5intra2
ACAGAAGTCAAGTCTGGTGGACACGGTAGCGCCGGCGGCTGATCC

TTGGACTTGTCGTCGTCATCCTTGTAGTCA
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5X M63: 10 g (NH4)2SO4 , 68 g KH2PO4 , and 2.5 mg FeSO4·7H2O, 

were dissolved in ddH2O to a final volume of 1 L,  followed by adjusting 

the pH with KOH to 7 and autoclaving. 

M63 minimal plates with galactose: 20 g agar was dissolved in 800 ml 

ddH2O and autoclaved. Then 200 ml 5x M63 medium and 1 ml 1M 

MgSO4.7H2O were added together with 10 ml 20% m/v galactose (final 

concentration 0.2%), 5 ml 0.2 mg/ ml biotin (1 mg), 4.5 ml 10 mg/ ml L-

leucine (45 mg), 1 ml 15 mg/ ml chloramphenicol (final concentration 

15 µg/ ml) and 1 ml 50 mg/ ml hygromycin (final concentration 50 µg/ 

ml). 

M63 minimal plates with 2-deoxy-galactose (DOG): 20 g agar were 

dissolved in 800 ml ddH2O and autoclaved. Then 200 ml 5x M63 and 

1ml 1M MgSO4.7H2O were added together with 10 ml 20% m/v 

glycerol (final concentration 0.2%), 10 ml 20% 2-deoxy-galactose (final 

concentration 0.2%), 5 ml 0.2 mg/ml biotin (1 mg), 4.5 ml 10 mg/ml L-

leucine (45 mg) and chloramphenicol (final concentration 15 µg/ ml). 

MacConkey indicator plates: 50 g MacConkey mixture was autoclaved 

in 1 L ddH2O. Then chloramphenicol (final concentration 15 µg/ml) and 

hygromycin (final concentration 50 µg/ml) were added. 
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5.1.2.5.3 Bacterial strains, plasmids and oligonucleotides  

SW102 bacterial strain and the galk plasmid were generated by 

Warming and his colleagues (Warming et al., 2005). The galk cassette 

was amplified with oligonucleotides that were 70-bp long and HPLC 

purified (Table 5.2). 

 

Table 5.2. List of oligonucleotides for recombineering using galk selection 

 

5.1.3 Fly reagents 

5.1.3.1 List of fly lines 

The fosmid were injected into embryos from the fly line, y[1], w[*], 

P{nos-phiC31\int.NLS}X; PBac{y+-attP-3B}VK00033 (BL-32542) 

(Venken et al., 2006). The resulting F0 generation was crossed with 

y,w; Ly/TM3, Sb .  

To do the functional assay, the constructs were crossed into a kon 

mutant background (kon null alleles c1139 and c25 (Schnorrer et al., 

2007)). 

Fly lines for visualization of the muscles: y,w; Mef2-GAL4, UAS-Gma-

GFP/TM3,Sb, and  y,w; Mef2-GAL4, UAS-Gma-mCherry/TM3,Sb. 

Oligos Sequence

galkLamG1
TCTCAATTTGCCCATACCCATGTCTATGTCTATCCTATCCACCCACA

GTTCCTGTTGACAATTAATCATCGGCA

galkLamG2
ATGGGTGAGACATAGAGCAGCTCTAGCTCTGGACTGGTTTCTGTGA

AGATTCAGCACTGTCCTGCTCCTT

galkCSPG1
TCATCTGCTACTGCGATCAGTCCTACTGCATCAAGGCCGATTTTCAG

GGACCTGTTGACAATTAATCATCGGCA

galkCSPG2
TTAATGGATAATCCTGCACTGCCCAAATGAACCGTCTCGGTTTCCTC

AACTCAGCACTGTCCTGCTCCTT

galkPDZ-BD1
ATGCCTCTGTGCCACAAAGTATTTCCGGATCGGTCAGCTCACCGCC

CTCGCCTGTTGACAATTAATCATCGGCA

galkPDZ-BD2
AATAACCTAGGACTAATTCCGATCGAATTGGAAACGCTTGTATTGAT

CCCTCAGCACTGTCCTGCTCCTT

HAaSS1
TCTCAATTTGCCCATACCCATGTCTATGTCTATCCTATCCACCCACA

GTTCCTGTTGACAATTAATCATCGGCA

HAaSS2
ATCTTGGCCTCCTGCAGCGGCATCGATACGTAGCCATCGCCGAAGA

GGGATCAGCACTGTCCTGCTCCTT

GFPintra1
TGCTGTTGATATTAAAGATCAGGAAACTGAGAAAGCACAAGGCAGA

TATACCTGTTGACAATTAATCATCGGCA

GFPintra2
ACAGAAGTCAAGTCTGGTGGACACGGTAGCGCCGGCGGCTGATCC

TTGGATCAGCACTGTCCTGCTCCTT
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5.1.4 Food for maintenance of fly stocks and 

collection of embryos  

All fly stocks were grown on standard cornmeal medium at 25 ºC.  

Plates for the collection of embryos: 17.5 g agar and 25 g sucrose 

were dissolved in 750 ml of dH2O and autoclaved. The mixture was let 

to cool down until 55 ºC, followed by the addition of 250 ml apple juice 

and 10 ml 15 % m/v Nipagin (in ethanol). 

5.1.4.1 Dissection tools and materials 

Oil Voltalef 10S (Lehmann & Voss), FemtoJet set-up 805 (Eppendorf 

5247), forceps No 5 (Fine Science Tools), scissors No. 15000-02 (Fine 

Science Tools), and double-sided tape (Tesa). 

5.1.5 Immunofluorescence reagents  

5.1.5.1 General solutions 

1xPBS: 8 g NaCl, 0.2 g KCl, 1.42 g Na2HPO4, and 0.24 g KH2PO4 in 1 

L ddH2O. 

50% bleach (Danklorix) in ddH2O, 1x PBS 0.1% Triton-X, 1x PBS 0.2% 

Triton-X, 70% methanol in 1x PBS, 50% methanol in 1x PBS. 3.7 % 

formaldehyde in 1x PBS. 

Heat fixation solution for embryos: 3 ml Triton-X and 40 g NaCl were 

dissolved in ddH2O up to the final volume of 1L. 

Fixation solution for adult muscles: 4 % paraformaldehyde in 1x PBS. 

5.1.5.2 Antibodies  

Primary antibodies: mouse anti-Collagen IV (gift from Lisa Fessler), 

rabbit anti-GFP 1:1000 (Amsbio), mouse anti-GFP 1:500 (Millipore-

Merck), rabbit anti-Kon (Schnorrer et al., 2007), anti-Integrin ßPS 

1:200 (DSHB), rat anti-Mhc 1:200 (Babraham Institute), mouse anti-

Shot 1:10 (DSHB), mouse anti-Talin A22A 1:200 (DSHB), mouse anti-
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Talin E16B 1:200 (DSHB), mouse anti-Tiggrin 1:500 (gift from Lisa 

Fessler), rat anti-Thrombospondin 1:500 (gift from Talila Volk), rabbit 

anti-ß1-tubulin 1:1000 (gift from Detlev Buttgereit), rabbit anti-ß3-

tubulin 1:1000 (gift from Renkawitz-Pohl) and mouse anti-V5 1:500 

(Thermo Fisher Scientifics). 

Secondary antibodies: anti-mouse IgG Alexa Fluor 488, anti-mouse 

IgG Alexa Fluor Alexa 633, anti-rabbit IgG Alexa Fluor 488, anti-rabbit 

IgG Alexa Fluor 633, anti-rat IgG Alexa Fluor 488, anti-rat IgG Alexa 

Fluor 568 and rhodamine phalloidin. All the secondary antibodies were 

diluted 1:500 and purchased from Thermo Fisher Scientifics. 

5.1.5.3 Mounting materials and solutions 

Glass slides (Thermo Fisher Scientifics), cover glasses #1.5 

(Marienfeld-Superior), plastic scaffolds  (MPI workshop), Vectashield 

mounting medium with DAPI (Vector laboratories), and 50 % glycerol 

in ddH2O, 

5.1.6 Biochemical reagents  

5.1.6.1 Western blot analysis 

5.1.6.1.1 Solutions 

Running buffer: 1x NuPage Tris-acetate SDS running buffer 

(ThermoFisher Scientific).  

Towbin buffer without methanol (transfer buffer): 3.03 g Tris base and 

14.4 g glycine were dissolved in 1 L ddH2O. 

Washing solutions: 0.1% Tween in 1x PBS. 

Blocking solution: 5 % nonfat dry milk (Bio-Rad) in 1x PBS 0.1% 

Tween. 
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5.1.6.1.2 Antibodies  

HRP conjugates: Goat anti-rabbit IgG (H+L)-HRP conjugated and Goat 

anti-mouse IgG (H+L)-HRP conjugated (Jackson ImmunoResearch 

Laboratories), dilution 1:10,000. 

5.1.6.1.3 Materials and equipments 

Tissue grinder 1 ml (Wheaton), NuPageTris-acetate 3-8% precast gels 

(Thermo Fisher Scientific), PageRuler Plus Prestained Protein Ladder 

(Thermo Fisher Scientific), MagicMark XP Western Protein Standard 

(Thermo Fisher Scientific), PVDF transfer membrane, pore size 0.45 

µm (Millipore-Merck), Whatman cellulose chromatography paper 3 MM 

Chr (GE Healthcare), Immobilon Western chemiluminescent HRP 

substrate (Millipore-Merck), XCell SureLock Mini-Cell electrophoresis 

chamber (Thermo Fisher Scientific), DynaMag-Spin Magnet (Thermo 

Fisher Scientific), and ImageQuant LAS 4000 (GE Healthcare). 

5.1.6.2 Immunoprecipitation  

5.1.6.2.1 Buffers 

1x Basic buffer (Hubner et al., 2010): 150 mM NaCl, 50 mM Tris-HCl 

and 5 % glycerol 

Lysis buffer (Hubner et al., 2010): 150 mM NaCl, 50 mM Tris-HCl, 5 % 

glycerol, 1% NP-40, 1 MgCl2 and 1x Protease inhibitor, EDTA free 

(Roche) 

Washing buffer I (Hubner et al., 2010): 150 mM NaCl, 50 mM Tris-HCl, 

5 % glycerol and 0.05% NP-40 

Washing buffer II (Hubner et al., 2010): 150 mM NaCl, 50 mM Tris-HCl 

and 5 % glycerol 

Elution buffer: 50mM Tris-HCl (pH 6.8), 1% SDS and 1mM DTT  

I-PER Insect cell protein extraction buffer (Thermo Fisher Scientific) 
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5.1.6.2.2 Antibodies, peptides and immunoprecipitation beads 

Rabbit anti-Kon antibody 1:10,000 (Schnorrer et al., 2007) and mouse 

anti-V5 (Thermo Fisher Scientific)  4 µg per 50 µl of magnetic beads.  

Peptides with the N-terminal coupled with biotin (synthesized in the 

core facility of the MPI of Biochemistry), (Table 5.3). 

Dynabeads coupled with G protein (ThermoFisher Scientific), Magnetic 

beads coupled with GFP antibody or HA antibody (Miltenyi Biotec) and 

Dynabeads MyOne Streptavidin C1 (ThermoFisher Scientific). 

 

Table 5.3. PDZ-BD peptides used for pull-down experiments 

 

5.1.7 Software packages  

Fiji (Eliceiri et al., 2012), Adobe Illustrator CS5, and GraphPad Prism. 

5.2 Methods 

5.2.1 Generating kon constructs and transgenic flies 

5.2.1.1 Engineering tagged versions of kon 

The following protocol was adapted from a liquid culture system 

optimized to tag genes from the Drosophila genomic fosmid library 

(Ejsmont et al., 2009; 2011), (Figure 5.1). 

Peptides Sequence
Kon PDZ-BD ISGSVSSPPSAPPTNPLLRRNQYWV

Kon PDZ-BDmutated ISGSVSSPPSAPPTNPLLRRNQYWG
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Figure 5.1. Workflow for generating a tagged version of kon (FlyFos021621) 

(A) The fosmid is tagged through recombineering in bacteria (Ejsmont et al., 2009). 
The fosmid clone FlyFos021621 is hosted by EPI300 E. coli strain (Epicentre). The 
resistance gene from the FlyFos vector is cat (chloramphenicol resistance). The 
Flyfos is a single copy plasmid. EPI300 E. coli are electroporated with the helping 
plasmid pRedFLP4, whose resistance is hygromycin. 

(B) The expression of the recombineering enzymes from pRedFLP4 is induced with 
L-rhamnose. These enzymes induce the integration of the cassette with the 
homology arms into the FlyFos021621. Integration of the cassette confers resistance 
to kanamycin. 

(C) The expression of FLP4 flippase from pRedFLP4 is induced with 
anhydrotetracycline. FLP4 mediates kan cassette excision. 

(D) The tagged fosmid is injected into PhiC31 (integrase)/ attP (docking site) 
embryos for generating a transgenic fly line. 
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The tag is inserted through homologous recombination mediated by 

enzymes expressed from a helping plasmid, pRed/Flp4. The tag 

cassette, in addition to GFP or V5, contains a kan resistance gene. 

kanamycin resistance is rendered by successfully integrating the tag  

(Figure 5.2). 

I applied this workflow to insert either a V5 or a GFP tag in kon, 

included in the clone FlyFos021621 from the genomic fosmid library 

(Figure 5.2). 

 

 

Figure 5.2. Tagging kon (FlyFos021621) either with a GFP or a V5 tag 

The GFP-containing tag is composed of 2xTY1, EGFP, BRLP (biotin ligase 
recognition peptide), kanR (kanamycin resistance) flanked by two FRTs, and 
3xFLAG.This cassette was amplified with homology arms for the region after the 
signal sequence (SS). The V5-containng tag is composed of 2xTY1, BRLP, V5, kanR 
(kanamycin resistance) flanked by two FRTs, and 3xFLAG. This cassette was 
amplified with homology arms for the region after the transmembrane domain. 

 

5.2.1.1.1 Amplifying a GFP tag and a V5 tag for homologous 

recombination 

The GFP and V5 tags were amplified with oligonucleotides that were 

70-bp long and HPLC purified (Table 5.1).  Each oligonucleotide 

included a 20-bp sequence that pairs with the tag cassette and a 

minimal homology arm of 50-bp that recombines with the loci where 

the tag was inserted (Figure 5.2). Phusion polymerase amplified both 

the GFP and the V5 tags. The PCR program: 95 ºC 3 min; 98 ºC 30 

sec, 67 ºC 30 sec, 72 ºC 60 sec, 20-25 amplification cycles; 72 ºC 10 
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min. The PCR reaction was run on a 1 % w/v agarose gel. Next the 

band with the correct size was excised. The DNA in the agarose 

fragment was purified with QIAquick Gel Extraction kit according to the 

manufacture instructions. The resulting eluate was then concentrated 

by ethanol precipitation. In summary, 0.1 volume sodium acetate (3 M, 

pH 5.6), 2.5 volumes 100% ethanol and 1 µl glycogen (1 mg/ ml) were 

added to the eluate followed by briefly vortexing it. The solution was 

then incubated at -20 ºC for 20 min. After the incubation, the solution 

was centrifuged at 4 ºC, for 15 min at 20,000 x g. The supernatant was 

carefully removed and then the pellet was washed two times with 150 

µl 70% ethanol. After the second washing step, the pellet was let to air 

dry for 5 min, and then it was dissolved in 10 µl ddH2O. The 

concentration was measured using NanoDrop accordingly to the 

manufacture instructions. The eluate was then diluted with ddH2O to a 

concentration of 200 ng/ µl and stored at -20ºC until section 5.2.1.1.3. 

5.2.1.1.2 Transforming the bacteria containing the fosmid 

FlyFos021621 with pRed/Flp4 

The fosmid clone FlyFos021621 (Ejsmont et al., 2009) was plated onto 

LB agar containing 15 µg/ ml chloramphenicol and incubated at 37 ºC 

overnight. A single colony was then picked and inoculated into 1 ml LB 

medium with 15 µg/ ml chloramphenicol and incubated overnight at 37 

ºC under constant agitation. 20 µl of overnight culture were inoculated 

in 1 ml LB medium with 15 µg/ ml chloramphenicol and incubated at 37 

ºC to a optical density of 0.4 at a wavelength of 600 nm (OD600). The 

bacteria were then incubated on ice for 5 min followed by 

centrifugation at 10,000 x g, for 30 sec at 2 ºC. The supernatant was 

discarded and the pellet resuspended in 1 ml ice-cold ddH2O by 

pipetting slowly up and down three times. The washing process was 

repeated two more times. The pellet was resuspended in 50 µl ddH2O 

and 1 µl pRedFlp4 100 ng/ µl was added to the cell suspension, 

followed by 1 min incubation on ice. The cell suspension was 
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transferred to a chilled electroporation cuvette and electroporated at 

1800 V for 5.6 ms using Eppendorf 2510 electroporator apparatus 

according to the manufacturer instructions. After electroporation, 1 ml 

LB medium without antibiotics was pipetted into the cuvette. The cell 

suspension was then incubated at 30 ºC for 2 h under constant 

agitation. To note that pRed/FLP4 is not replicated when the bacteria 

are incubated above 30 ºC. After the incubation, 100 µl culture was 

transferred to 1 ml LB medium with 15 µg/ ml chloramphenicol and 20 

µg/ ml hygromycin. The bacteria were incubated overnight at 30 ºC 

until the culture was saturated. 

5.2.1.1.3 Tagging by inducing the expression of the Red operon 

from pRed/Flp4 with L-rhamnose 

60 µl overnight culture was transferred to a new tube containing 1.5 ml 

LB medium with 15 µg/ ml chloramphenicol and 50 µg/ ml hygromycin. 

The bacteria were then incubated at 30 ºC until the culture reached an 

OD600 of 0.2. After that 35 µl 25 % L-rhamnose solution was added to 

induce expression of the Red operon. The bacteria were incubated a 

second time at 30 ºC until the culture OD600 reached 0.8. The bacteria 

were then placed on ice for 2 min followed by three washing steps with 

ice-cold ddH2O. After washing, the pellet was resuspended in 50 µl 

ddH2O, and 1 µl amplified tag 200 ng/ µl (section 5.2.1.1.1) was added. 

The cell suspension was transferred to a chilled electroporation cuvette 

and electroporated at 1800 V for 5.6 ms using Eppendorf 2510 

electroporator apparatus according to the manufacturer instructions. 

After electroporation, 1 ml LB medium without antibiotics was pipetted 

into the cuvette and incubated for 2.5 hours at 30 ºC under constant 

agitation. 100 µl was transferred to a new tube containing 1.5 ml of LB 

15 µg/ ml chloramphenicol, 50 µg/ ml hygromycin and 30 µg/ ml 

kanamycin and incubated at 30 ºC until the culture was saturated (30 

hrs).  
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5.2.1.1.4 Excising the kan resistance cassette 

10 µl overnight saturated tagged culture was transferred to 1.5 ml LB 

15 µg/ ml chloramphenicol, 50 µg/ ml hygromycin and 200 nM Tet, and 

incubated at 30 ºC until the culture was saturated (16-20 hrs). Tet 

activates the transcription of the flippase from pRed/Flp4, which in turn 

excises the kanamycin gene by homologous recombination of the two 

FRTs flanking the kan gene.  

5.2.1.1.5 Eliminating the pRed/Flp4 

The excision of the kan resistance gene was followed by the 

elimination of the plasmid pRed/Flp4. 10 µl of the saturated tagged 

culture was transferred to 1.5 ml LB 15 µg/ ml chloramphenicol and 

incubated at 37 ºC until the OD600 have reached 0.6. Glycerol stocks 

(15 %) were made for long-term storage of the clones. In summary, 

150 µl of glycerol was added to 850 µl of the culture. The mixture was 

then vigorously vortexed until the bacteria were properly mixed with the 

glycerol. Next, the bacteria were frozen in liquid nitrogen and stored at 

-80 ºC. To verify the elimination of the kan cassette, 4-5 colonies were 

analysed by colony PCR. The entire region predicted to be affected by 

the recombination was then sequenced. 

5.2.1.1.6 Preparing fosmid DNA to generate transgenic flies 

One of the correct clones was inoculated in 1ml LB 15 µg/ ml 

chloramphenicol and incubated at 37 ºC overnight. Next, the overnight 

culture was diluted in 9 ml LB 15 µg/ ml chloramphenicol in presence 

of arabinose 0.1% to induce the amplification of the fosmid in high 

copy. The bacteria were incubated at 37 ºC for 5 h under constant 

agitation. After the incubation, the bacteria were centrifuged for 10 min 

at 4 ºC, 6,000 x g. The fosmid DNA was purified with PureLink HiPure 

Plasmid DNA Purification Kit according to the manufacturer’s 

instructions with some modifications. In brief, the pellet was 

resuspended until homogeneous with 0.4 ml Resuspension Buffer (R3) 
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containing RNase A. Then 0.4 ml Lysis Buffer (L7) was added and the 

mixture was gently inverted five times. Next, the lysate was incubated 

at room temperature for 4 min, followed by the addition of 0.4 ml 

Precipitation Buffer (N3). The mixture was immediately inverted and 

incubated on ice for 4 min. Then the mixture was centrifuged at 15,000 

x g at 4 ºC for 10 min. In between, a HiPure Mini Column was 

equilibrated by applying 2 ml Equilibration Buffer (EQ1) to the column. 

After the buffer drained, the supernatant was applied onto the 

equilibrated column. The column was then washed twice with 2.5 ml 

Wash Buffer (W8). To elute the DNA from the column, 850 µl Elution 

buffer (E4), warmed to 55 ºC, was added to the column and the eluate 

collected. Next 595 µl isopropanol was added to the eluate, followed 

by centrifugation at 15,000 x g at 4ºC for 20 min. After centrifugation, 

the supernatant was removed and 800 µl 70% ethanol was added to 

the pellet. The mixture was then centrifuged at 15,000 x g at 4ºC for 2 

min. Next, the supernatant was removed and the pellet was let to air 

dry for 4 min. After drying, the pellet was resuspended in 20 µl Elution 

buffer (EB) and let it dissolve overnight at 4ºC. To remove insoluble 

residues, the DNA was centrifuged at 15,000 x g, at 4ºC for 30 sec. 

The solution was then transferred to a new microtube and the 

concentration was measured. Next, the fosmid DNA was diluted to a 

concentration of 250 ng/ µl and kept at 4ºC until the injection. 

5.2.1.2 Seamlessly deleting or mutating the three main 

protein domain types of kon 

To pin point the contribution of each domain type to the activity of Kon 

during Drosophila myogenesis, the kon fosmid tagged with V5, kon-V5 

(section 5.2.1.1), was used as a parent construct to delete the two 

LamGs and the 15 CSPGs, as well as to mutate the PDZ-BD (Figure 

5.3).  
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Figure 5.3. Deleting or mutating the protein domain types of kon  

kon-V5intra is used as a parent construct either to delete or to mutate the main 
protein domain types of kon. kon-V5intra includes 2xTY1, BRLP, V5, a FRT and 
3xFLAG after the transmembrane domain. The Galk system is used to engineer 
seamless deletions and mutations by homologous recombination in bacteria 
(Warming et al., 2005). A galK cassette is recombined with the loci flanking the 
region to delete or to mutate. Then the galk cassette is exchanged with a DNA 
fragment containing the sequence of the loci flanking the region deleted or mutated. 
Through this procedure (1) kon-V5 ∆LamGs, (2) kon-V5 ∆CSPGs, and (3) kon-V5 
PDZ-BD mutated were generated. 

 

kon-V5 contains one FRT (Figure 5.3) as the result of the excision of 

the kan cassette (section 5.2.2.1.4). Using the same protocol as before 

to delete or mutate the Kon domains requires a different pair of FRTs. 

A second problem of this approach is that, it does not generate 

seamless modification, because a FRT is always left behind upon 

excision. To overcome these two problems GalK-mediated selection 

was used (Warming et al., 2005). Warming and his colleagues 

developed a bacteria strain, SW102 that is deficient for the Galactose 

Kinase, an enzyme from the galactose operon. The first step of this 

approach was to recombine the galk cassette with the loci flanking the 

region to modify. The ability to grow in a medium with galactose as the 

only carbon source indicates a successful integration of the galk, and 

thus the deletion of the region of interest. The second step was to 

exchange the galk cassette with a DNA fragment containing the 

sequence of the loci flanking the region modified (Figure 5.4). The 
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SW102 bacteria were engineered to express the recombineering 

enzymes upon heat shock. I used however a helping plasmid, because 

chemical induction was more effective than heat shock, shown by the 

higher number of successful integrations (data not shown).  

In summary, the GalK approach was used to make seamless deletions 

of the two LamGs and the 15 CSPGs, as well as to mutate the PDZ-

BD, by replacing the last amino acid, valine, by glycine (Figure 5.3) 

This approach was also applied to add a N-terminal HA tag to the kon 

fosmid as well as to add a GFP tag in the intracellular part (Figure 

5.4). 
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Figure 5.4. Workflow for galK recombineering: GFP tagging 

(A) The kon fosmid is tagged through recombineering in bacteria. The fosmid clone 
FlyFos021621 is transfected into SW102 bacteria (Warming et al., 2005) together 
with the helping plasmid pRedFLP4 (Ejsmont et al., 2009).  

(B) The expression of the recombineering enzymes from pRedFLP4 is induced with 
L-rhamnose. These enzymes induce the integration of the galk cassette with the 
homology arms into the FlyFos021621. galk integration renders the SW102 bacteria  
able to grow in a medium with galactose as the only carbon source, which is used for 
selection. 

(C) The second step consists in exchanging the galk cassette with a DNA fragment 
containing the sequence of interested, the GFP tag. This tag replaces the galk 
cassette through homologous recombination. The bacteria, which failed to mediate 
this step, phosphorylate 2-deoxy-galactose in the medium, producing a toxic 
compound. 

(D) The tagged fosmid is injected into PhiC31 (integrase)/ attP (docking site) 
embryos to generated a transgenic fly line. 
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5.2.1.2.1 Preparing the galk cassettes  

The galk cassette was amplified with oligonucleotides 70-bp long and 

HPLC purified (Table 5.2). Each oligonucleotide included a region that 

paired with the galk cassette and a minimal homology arm of 50-bp to 

enable the cassette to recombine with the loci of interest. The galK 

cassette was amplified with Phusion polymerase. The PCR program: 

95 ºC 3 min; 98 ºC 30 sec, 61 ºC 30 sec, 72 ºC 60 sec, 20-25 

amplification cycles; and 72 ºC 10 min. To eliminate the galK plasmid 

from the PCR mixture, and thus increasing the efficiency of selection in 

the subsequent steps, the PCR product was digested with DpnI, by 

adding 4 µl DpnI to 50 µl of reaction, followed by incubation for 2 hours 

at 37 ºC. After digestion, the PCR reaction was run on a 1% agarose 

gel and then the band with the correct size was excised from the gel. 

The DNA was then extracted from the agarose fragment using 

QIAquick Gel Extraction according to the manufacture instructions. To 

increase the DNA concentration, the eluate of each product was 

concentrated by ethanol precipitation, as before described. The eluate 

was then diluted with ddH2 to a concentration of 200 ng/ µl and stored 

at -20ºC until 5.2.1.2.3. 

5.2.1.2.2 Transforming the SW102 bacteria with kon-V5 fosmid 

and pRed/Flp4 

A SW102 single colony was inoculated in 1 ml LB medium 10 µg/ ml 

tetracycline and incubated overnight at 30 ºC under constant agitation. 

Next, 20 µl of overnight culture was inoculated in 1 ml LB 10 µg/ ml 

tetracycline and incubated at 30 ºC until the culture reached an OD600 

of 0.4. The culture was then transferred to a microtube and incubated 

on ice for 5 min. After the incubation, the bacteria were centrifuged at 

10,000 x g for 30 sec at 2 ºC. The supernatant was then discarded and 

the pellet was resuspended in 1 ml ice-cold ddH2O. This washing step 

was repeated two additional times. After the last step, the pellet was 

resuspended in 50 µl ddH2O. Then 0.5 µl pRedFlp4 100 ng/ µl and 0.5 
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µl kon-V5 fosmid 1µg/ µl were added to the cell suspension and mixed 

briefly, followed by 1 min incubation on ice. The cell suspension was 

then transferred to a chilled electroporation cuvette and electroporated 

at 1800 V for 5.6 ms using an electroporator apparatus (Eppendorf 

2510) according to the manufacturer instructions. After the 

electroporation, 1 ml LB medium without antibiotics was added to the 

cuvette and then the cell suspension was incubated for 2 hours at 30 

ºC under constant agitation. After the incubation, 100 µl of the bacteria 

culture was plated onto LB agar 15 µg/ ml chloramphenicol and 50 µg/ 

ml hygromycin. The remaining volume was centrifuged for 1 min at 

4,000 x g and the resulting pellet resuspended in 100 µl of 

supernatant, which was next plated onto a LB agar 15 µg/ ml 

chloramphenicol and 50 µg/ ml hygromycin. The two plates were then 

incubated overnight at 30 ºC. 

5.2.1.2.3 Inserting the galk cassette by inducing the expression 

of the Red operon from pRed/Flp4 with L-rhamnose 

A single colony containing both pRedFlp4 and kon-V5 fosmid was 

inoculated in 1 ml LB medium in the presence of 15 µg/ ml 

chloramphenicol and 20 µg/ ml hygromycin, and incubated overnight at 

30 ºC under constant agitation. Two tubes containing 1.5 ml LB with 15 

µg/ ml chloramphenicol and 50 µg/ ml hygromycin (one tube was used 

as control) were inoculated each with 60 µl of overnight culture 

followed by an incubation at 30 ºC until the culture reached an OD600 

of 0.4. The expression of the Red operon was then induced in one of 

the tubes by adding 35 µl of L-rhamnose 25% (the tube without L-

rhamnose served as negative control). The two tubes were incubated 

at 30 ºC until an OD600 ≈ 0.7-0.8. The culture was then incubated on 

ice for 5 min. After the incubation, the bacteria were centrifuged for 30 

sec at 2 ºC, 10,000 x g. The supernatant was discarded and the pellet 

was resuspended in 1 ml ice-cold ddH2O. This washing step was 

repeated two more times. After the last washing step, the pellet was 
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resuspended in 50 µl ddH2O. 1 µl of the galk cassette (200-500 ng/ µl) 

was added to the cell suspension (including the negative control) and 

mixed briefly, followed by incubation on ice for 1 minute. The cell 

suspension was then transferred to a chilled electroporation cuvette 

and electroporated at 1800 V for 5.6 ms using an electroporator 

apparatus (Eppendorf 2510) according to the manufacturer 

instructions. After the electroporation, 1 ml LB medium without 

antibiotics was added to the cuvette and then the cell suspension was 

incubated for 2.5 h at 30 ºC under constant agitation. After the 

incubation, the bacteria were centrifuged for 30 sec at 2 ºC, 10,000 x g 

and then resuspended in 1 ml ice-cold M9 buffer. This step was 

repeated three more times. This washing procedure aimed to eliminate 

all the possible carbon sources derived from LB medium. A successful 

integration of the galk cassette occurred in principle in the colonies that 

were able to grow on a medium that contained galactose as the only 

carbon source, M63 minimal plates with galactose. After the last 

washing step the pellet was resuspended in 1 ml M9 buffer and 100 µl 

of the suspension was plated on M63 minimal plates with galactose, 15 

µg/ ml chloramphenicol and 50 µg/ ml hygromycin. The remaining 

volume was centrifuged for 30 sec at 2 ºC, 10,000 x g and the resulting 

pellet was resuspended in 100 µl supernatant. The suspension was 

then plated on M63 minimal plates with galactose, 15 µg/ ml 

chloramphenicol and 50 µg/ ml hygromycin. The plates were incubated 

for 3-4 days at 30 ºC. To note that, when the plate of non-induced 

bacteria (negative control) contained a higher number of colonies, this 

could mean that the galk cassette contained traces of the galK 

plasmid. At least 10 colonies were screened by PCR for a successful 

deletion/ mutation of the Kon domains through recombination with the 

homology arms of the galk cassette. The positive colonies were then 

streaked on MacConkey agar plates and incubated overnight at 30ºC. 

MacConkey agar contains neutral red indicator that responds 

chromatically to changes of pH. A positive galK colony becomes purple 
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or rose, because the fermentation of galactose leads to a decrease of 

pH. A bright purple colony was selected to use on the next step. 

5.2.1.2.4 Exchanging the galk cassette  

A bright purple galk positive colony was inoculated in 1 ml LB 15 µg/ 

ml chloramphenicol and 20 µg/ ml hygromycin, and then incubated 

overnight at 30 ºC under constant agitation. Two tubes containing 1.5 

ml LB with 15 µg/ ml chloramphenicol and 50 µg/ ml hygromycin (one 

tube was used as control) were inoculated each with 60 µl of overnight 

culture followed by an incubation at 30 ºC until the culture reached an 

OD600 of 0.2. The expression of the Red operon was then induced in 

one of the tubes by adding 35 µl of L-rhamnose 25% (the tube without 

L-rhamnose served as negative control). The two tubes were 

incubated at 30 ºC until an OD600 ≈ 0.7-0.8. The culture was then 

incubated on ice for 5 min. After the incubation, the bacteria were 

centrifuged for 30 sec at 2 ºC, 10,000 x g. The supernatant was 

discarded and the pellet was resuspended in 1 ml ice-cold ddH2O. This 

washing step was repeated two more times. The supernatant was 

discarded and the pellet was resuspended in 1 ml ice-cold ddH2O. This 

washing step was repeated two more times. After the last step, the 

pellet was resuspended in 50 µl ddH2O. 1µl of the “replacing cassette” 

(200-500 ng/ µl) was added to the cell suspension (including the 

negative control) and mixed briefly, followed by incubation on ice for 1 

minute. The cell suspension was then transferred to a chilled 

electroporation cuvette and electroporated at 1800 V for 5.6 ms using 

an electroporator apparatus (Eppendorf 2510) according to the 

manufacturer instructions. After the electroporation, 1 ml LB medium 

without antibiotics was added to the cuvette and then the cell 

suspension was incubated for 2.5 h at 30 ºC under constant agitation. 

After the incubation, the bacteria were centrifuged for 30 sec at 2 ºC, 

10,000 x g and then resuspended in 1 ml ice-cold M9 buffer. This step 

was repeated three more times. After the last step the pellet was 
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resuspended in 1 ml M9 buffer. 100 µl of the bacteria was plated on 

M63 minimal plates with glycerol, DOG and 15 µg/ ml chloramphenicol. 

The remaining volume was centrifuged for 30 sec at 2 ºC, 10,000 x g. 

The resulting pellet was resuspended in 100 µl supernatant and then 

plated on M63 minimal plates with glycerol, DOG and 15 µg/ ml 

chloramphenicol. The plates were incubated for 3-4 days at 30 ºC. 

When the bacteria do not lose galK, they are able to phosphorylate 

DOG. When this component is phosphorylated, it becomes toxic for the 

bacteria. At least 10 colonies were screened by PCR for the correct 

integration of the replacing cassette. The positive colonies were then 

sent for sequencing. A glycerol stock of the correct clones was done 

and stored at – 80 ºC.  

5.2.1.2.5 Preparing fosmid DNA to generate transgenic flies  

One of the correct clones was inoculated in 30 ml LB 15 µg/ ml 

chloramphenicol at 30 ºC overnight under constant agitation. The 

fosmid DNA was purified with PureLinkTM HiPure Plasmid DNA 

Purification Kit according to the manufacturer’s instructions with some 

modifications. In brief, the overnight culture was centrifuged for 10 min 

at 4 ºC, 6,000 x g. The resulting pellet was resuspended in 2 ml 

Resuspension Buffer (R3) containing RNase A. Next, 2 ml Lysis Buffer 

(L7) was added and the mixture was gently inverted five times, 

followed by incubation of the lysate at room temperature for 4 min. 

After the incubation, 2 ml Precipitation Buffer (N3) was added, and 

then the mixture was immediately inverted. The following steps were 

similar to the ones of section 5.2.1.1.6. 

5.2.1.3 Generating transgenic flies 

5.2.1.3.1 Injecting the constructs into Drosophila embryos 

All the constructs generated in the sections above were injected in 

embryos from the fly stock y[1], w[*], P{nos-phiC31\int.NLS}X; 

PBac{y+-attP-3B}VK00033 (BL-32542). The injection procedure was 
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as before described (Sarov et al., 2016). In brief, embryos were 

collected 30 min AEL (after egg laying) and incubated in a 50 % 

chloride solution for 3 min to remove the chorion. The embryos were 

then washed abundantly with dH2O and then aligned on a glass slide 

according to their A-P axis. The posterior side of the embryos was 

injected with the fosmid DNA using FemtoJet set-up 805. The pole 

cells, located in the posterior pole, give rise to the germ line. After the 

injection, the embryos were covered with a thin layer of oil Voltalef 10S 

to prevent their dehydration and incubated at 18 ºC for 3 days, in a wet 

chamber, until their eclosion. The larvae, designated as generation F0, 

were then collected into a vial with fly food and incubated at 25 ºC until 

the adult stage. 

5.2.1.3.2 Crossing and screening for the genomic integration of 

the constructs 

The F0 flies were single crossed with Ly/ TM3, Sb flies. The flies were 

then incubated at 25 ºC for 10 days.  The offspring of those single 

crosses, F1 generation, was screened for the presence of red 

fluorescent eyes, an indicator of a successful integration of the fosmid 

into the fly genome. The FlyFos carries a selectable marker, dsRed, 

which is driven by a dominant eye-promoter (Ejsmont et al., 2009). 

5.2.2 Analysing the muscular phenotype from the 

transgenic flies 

5.2.2.1 Analysing the development of the larval somatic 

musculature 

5.2.2.1.1 Collecting, fixing and staining embryos 

Flies were transferred to a plastic cylindrical cage, containing on one of 

the sides a porous net to allow the ventilation of the cage, and on the 

other side an agar plate with 20 % apple juice and with yeast past. 

Flies were kept at 25 ºC during embryo collection. The collection 



 5. Material and Methods 
 

 122 

schedule was designed to have a population of embryos enriched for 

the interval between stage 15 and stage 17. The embryos were then 

preserved for staining by either methanol or heat fixation. The step that 

preceded both types of fixation was the removal of the chorion. To 

remove the chorion, the embryos were incubated for 3 min in an 

aqueous solution with 50 % bleach. During the incubation, the 

embryos were detached from the agar surface by gently brushing it. 

For methanol fixation, the resuspended embryos were poured into a 

funnel with a mesh and abundantly washed with dH2O. The embryos 

were then transferred from the mesh into a small glass flask by 

pipetting 5 ml heptane onto the bottom side of the mesh, which was 

beforehand attached to the opening of the container. Then 5 ml 3.7 % 

formaldehyde in 1x PBS freshly prepared was added, followed by an 

incubation of 20 min under strong agitation. Then the mixture was let to 

rest for one min, to allow (1) the embryos to sink at the bottom, and (2) 

heptane and the 3.7 % formaldehyde solution to separate according to 

their density. The 3.7 % formaldehyde solution, which is the lower 

phase, was removed with a Pasteur pipette glass, then 5 ml of 

methanol was added, and the mixture strongly agitated for 1 min to 

remove the vitelin membrane. The mixture was allowed to rest for 1 

min to let the embryos sink, and then the embryos were collected. The 

embryos were then washed two times with pure methanol and stored 

at – 20 ºC until the staining procedure.  

For the heat fixation, the embryos, after the incubation with 50 % 

bleach, were poured into a funnel containing a mesh. After that, they 

were washed shortly with PBS 0.3 % Triton-X and then abundantly 

with dH2O. The embryos were then transferred with a small brush into 

a small glass flask containing 5 ml boiling Heat fixation solution. After 

stirring the embryos gently for some seconds, 15 ml ice-cold Heat 

fixation solution was added to the flask followed by vigorous shacking. 

The embryos were then incubated on ice for 1 min. After the 

incubation, the embryos were let sink and the solution was completely 
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removed with a pipette. 5 ml n-heptane followed by 5 ml methanol was 

added. The mixture was vigorously shacked for 1 min and then the 

embryos were let to sink. Next, the embryos were washed two times 

with pure methanol and stored at – 20 ºC until the staining procedure. 

For staining, the embryos were rehydrated with solutions with 

decreasing methanol content diluted in 1X PBS: first with 70 % 

methanol, second with 50 % methanol and finally only with 1X PBS. 

Then the embryos were washed three times with PBS 0.1 % Triton-X, 

followed by an incubation with blocking solution, 5 % goat serum in 1X 

PBS 0.1 % Triton-X, for 1 hour. After the blocking, the embryos were 

incubated with the primary antibodies (Materials, section 5.1.5.2) 

diluted in 1X PBS 0.1 % Triton-X, overnight at 4 ºC with slow agitation. 

Then they were washed three times with PBS 0.1 % Triton-X during 45 

min in total, followed by incubation with the secondary antibodies 

(Materials, section 5.1.5.2) diluted in 1X PBS 0.1 % Triton-X for 2 

hours in the dark. The embryos were then washed three times with 1X 

PBS 0.1 % Triton-X for a total time of 45 min. After the last washing 

step, the embryos were dispersed with Vectashield on a microscope 

slide between two cover slippers, which functioned as spacers. These 

spacers prevented that the top cover slipper smashed the embryos. To 

finalize, the interface between the slide and the cover slippers was 

sealed with transparent nail polish. The slides were stored at 4 ºC and 

protected from the light until imaging.  

5.2.2.1.2 Imaging L3 larvae 

L3 larvae were immersed for 1 sec in water at 65 ºC and then mounted 

on a slide with an aqueous solution of 50 % glycerol followed by 

immediate imaging at the confocal microscope. The ventral longitudinal 

muscles (VL) were imaged for phenotype quantification with LSM 780 

confocal microscope. The images were then processed with Fiji 

(Eliceiri et al., 2012) and Adobe Illustrator CS5. 
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5.2.2.1.3 Measuring the VL length and attachment site size 

To assess the biological activity of the diverse tagged/deleted/mutated 

versions of Kon, the length of the VL1 muscle of the diverse genotypes 

was measured. For unambiguous identification of the VL1 muscles, 

GFP was expressed specifically in the VL1 muscle with a 5053-GAL4 

driver. The image stack of each embryo was projected with Fiji, so that 

the borders of the VL1 muscles were clearly visible. The length was 

also measured with Fiji. The resulting values were analysed 

statistically by Tukey’s multiple comparison test in GraphPad Prism.  

To measure the attachment site, the VL1 muscles were stained with 

Talin, which is normally present at the muscle attachment sites. The 

image stack of each embryo was projected with Fiji, so that the 

attachment sites of the VL muscles were clearly visible. The 

attachment site size was then measured with Fiji. The resulting values 

were analysed statistically by Tukey’s multiple comparison test in 

GraphPad Prism.  

5.2.2.1.4 Measuring the protein enrichment at the muscle 

attachment site 

Stages 15-17 embryos from the following genotypes were collected: 

kon-V5, kon-V5 ∆LamGs, kon-V5 ∆CSPGs, kon-V5 PDZ-BDmut and 

as negative control, w- embryos. These embryos were fixed by Heat 

fixation and then stained with rabbit anti-ß3-tubulin 1:1000 and mouse 

anti-V5 1:500 (section 5.2.2.1.1). The image stack of each embryo was 

projected with Fiji, so that the attachment site of each VL muscle was 

clearly visible. The intensity of the V5 staining at the attachment site 

was measured with Fiji, as well as the V5 intensity from an equal area 

in the interior of the muscles, adjacent to the attachment site. The 

intensity value at the attachment site was divided by the intensity value 

from the adjacent area, yielding an enrichment ration value of each 

protein, at the different embryonic stages. The resulting values were 
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analysed statistically by Tukey’s multiple comparison test in GraphPad 

Prism. 

5.2.2.2 Development of the adult somatic musculature 

5.2.2.2.1 Dissecting, fixing and staining 90h APF pupae 

White pupae (0 h after puparium formation, APF) were collected on a 

glass slide and stored at 27 ºC for 90 h. To dissect, pupae were glued 

with their ventral side to a glass slide coated with double-sided tape. 

The pupa case was removed with forceps, and next the membrane, by 

carefully rolling the pupa with a brush over the gluing surface. The 

wings, legs, head and abdomen were cut with a scissor and discarded 

while the remaining thorax was transferred to fixing solution. After a 15 

min incubation under shacking, thoraces were washed with 1X PBS 

0.1 % Triton-X for 10 min. Next, the thoraces were glued with their 

posterior side onto a slide coated with double-sided tape and cut with a 

blade along their sagittal plane. The resulting hemithoraces were 

incubated in blocking solution for 30 min and then in primary antibody 

(Materials, section 5.1.5.2) overnight. Hemithoraces were washed 

three times with 1X PBS 0.1 % Triton-X for a total time of 30 min, 

followed by the incubation with the secondary antibodies diluted in 1X 

PBS 0.1 % Triton-X (Materials, section 5.1.5.2), for 2 hours in the 

dark. The samples were then washed three times with 1X PBS 0.1 % 

Triton-X for a total of 30 min. After the last washing step, the 

hemithoraces were placed on a microscope slide between two spacers 

with Vectashield.  Next, the interface between the glass slide and the 

cover slippers was sealed with transparent nail polish. The slides were 

stored at 4 ºC and protected from the light until imaging with LSM 780 

confocal microscope. The images were then processed with Fiji 

(Eliceiri et al., 2012) and Adobe Illustrator CS5. 
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5.2.2.2.2 Dissecting, fixing and staining pupal abdomen (whole 

mount) 

White pupae (0h APF) were collected on a glass slide and incubated at 

27 ºC for 72 h. The pupa case was removed carefully followed by 

fixation overnight with 4% PFA in 1X PBS, at 4ºC under agitation. The 

pupae were then washed three times with PBS 0.3 % Triton-X. After 

the washing, the pupae were attached to a glass slide coated with 

double-sided tape. The internal pupal membrane was carefully 

removed with forceps and the thorax cut from the abdomen. The 

abdomens were then incubated with rhodamine-phalloidin for 3 days at 

4ºC, under constant agitation. Next, the abdomens were incubated 

sequential for 30 min in each of the following aqueous solutions with 

increasing concentration of fructose: 20%, 40%, 60%, 80% and 100%, 

under constant agitation. Then the abdomens were incubated 

overnight at 4ºC in an aqueous solution of 80.2% fructose. Next, they 

were mounted in 80.2% fructose solution and immediately imaged with 

LSM 780 confocal microscope. The images were then processed with 

Fiji (Eliceiri et al., 2012) and Adobe Illustrator CS5. 

5.2.2.2.3 Live imaging pupal abdomen 

White pupae (0h APF) were collected on a glass slide and incubated at 

27 ºC for 26 h (approximately the onset of the adult abdominal 

myogenesis). Half of the dorsal pupal case, overlapping the first and 

second abdominal segments, was removed carefully with forceps. The 

pupa, with the dorsal side facing up, was then placed into a 0.5 mm 

groove from a special imaging slide. For live imaging, the hole on the 

pupal case was first covered with an aqueous solution of 50% glycerol 

and then with a coverslip, which has fixed with tape. The development 

of the abdominal muscles was documented either by taking a stack 

image every 20 min for 24 h using a Spinning disk confocal or by 

taking a stack every 5 min for 24h using a multi-photon set up (La 
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Vision). The images were then processed with Fiji (Eliceiri et al., 2012) 

and Adobe Illustrator CS5. 

5.2.2.2.4 Live imaging DLMs and DVMs 

White pupae (0h APF) were collected on a glass slide and incubated at 

27 ºC either for 12 h, DLMs imaging, or for 16 h, DVMs imaging. Half 

of the dorsal pupal case, overlapping the mesothoracic segment, was 

removed carefully with forceps and scissors. The pupa, with the dorsal 

side facing up, was then placed into a 0.5 mm groove from a special 

imaging slide. The hole on the pupal case was first covered with an 

aqueous solution of 50% glycerol and then with a coverslip, which has 

fixed with tape. The development of either DLMs or DVMs was 

documented by taking a stack image every 20 min for 24 h using a 

multi-photon set up (La Vision). The images were then processed with 

Fiji (Eliceiri et al., 2012) and Adobe Illustrator CS5. 

5.2.3 Biochemistry and mass spectrometry 

5.2.3.1 Assessing the expression levels of the kon-V5 

derived constructs  

5.2.3.1.1 Biological Samples 

Embryos from stages 13-16 expressing the following constructs at 

endogenous levels: kon-V5, kon-V5 ∆LamGs, kon-V5 ∆CSPGs, kon-

V5 PDZ-BD mutated and as negative control, w- embryos. 

5.2.3.1.2 Workflow 

100 mg of dechorionated embryos were resuspended in 1 ml pre-

cooled (4° C) lysis buffer (Materials, section 5.1.6.2), followed by 

homogenization on ice with a tissue grinder. The lysate was 

centrifuged at 4°C for 5 min at 20,000 x g.  The supernatant was then 

transferred to a clean microtube, followed by the addition of 2 µg V5 

antibody and 50 µl magnetic beads coupled with protein G 
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(Dynabeads), which were pre-washed with lysis buffer with the help of 

the a magnet (DynaMag- Spin Magnet). The lysate was then incubated 

for 45 min at 4 °C with gentle rotation. After the incubation, the 

magnetic beads were washed three times with Washing buffer I 

(Materials, section 5.1.6.2), and then one time with Washing buffer II 

(Materials, section 5.1.6.2). After washing, the beads suspension was 

transferred to a new microtube and the Washing buffer II was 

exchanged by 50 µl Elution buffer (Materials, section 5.1.6.2). The 

beads suspension was gently resuspended and then incubated for 3 

min at 95 °C.  The eluate was then transferred to a new microtube and 

stored at - 20 °C until electrophoresis. 

5.2.3.1.3 Western blot analysis 

The samples were loaded into NuPage Tris-Acetate precast gels and 

run according to the manufacturer’s instructions. After the 

electrophoresis, the proteins in the gel were transferred to a PVDF 

membrane, which was previously incubated in methanol for 5 min. The 

proteins were transferred with Towin buffer without methanol at 

constant voltage, 100 V, for 60 min, at 4° C. After the wet 

electrotransfer, the PVDF membrane was incubated with Blocking 

solution for 60 min at RT. Next, the membrane was incubated with 

primary antibody diluted (Materials, section 5.1.5.2) in 1X PBS 0.1% 

Tween overnight at 4° C. After the overnight incubation, the membrane 

was washed three times with 1X PBS 0.1% Tween for 45 min, at RT 

under constant agitation. Next, the membrane was incubated with a 

horseradish peroxidase (HRP) conjugated antibody (Materials, section 

5.1.6.1.2) for 2 h at RT, under constant agitation. After the incubation, 

the membrane was washed three times with 1X PBS 0.1% Tween for 

45 min total, at RT, under constant agitation. Then, the membrane was 

incubated with a chemiluminescent reagent, Immobilon HRP substrate, 

and immediately visualized with ImageQuant LAS 4000 according to 



 5. Material and Methods 
 

 129 

the manufacturer’s instructions. Images were taken to document the 

gel. 

5.2.3.2 Experimental approach to identify Kon interaction 

partners 

5.2.3.2.1 Formation of the larval somatic musculature in the 

embryo: Kon-V5 and Kon-HA pull-downs  

5.2.3.2.1.1 Biological Samples 

Embryos from stages 13-16 expressing the following constructs at 

endogenous levels: kon-V5, kon-HA and as negative control, w- 

embryos. 

5.2.3.2.1.2 Workflow 

100 mg of dechorionated embryos were resuspended in 1 ml pre-

cooled (4° C) Lysis buffer (Materials, section 5.1.6.2), followed by 

homogenization on ice with a tissue grinder. The lysate was 

transferred to a microtube and centrifuged at 4°C for 5 min at 20,000 x 

g.  The supernatant was then transferred to a clean microtube and 

processed as described previously (Hubner et al., 2010). In brief, each 

genotype was done in triplicate. The eluate was then analysed by 

mass spectrometry at the core facility of the MPI of Biochemistry and 

the data processed as described previously (Cox et al., 2014; 

Keilhauer et al., 2014). 

5.2.3.2.2 Formation of the larval somatic musculature in the 

embryo: Kon PDZ-BD peptide pull-downs 

5.2.3.2.2.1 Biological Samples 

w- embryo from stages 13-16. 

5.2.3.2.2.2 Workflow 

This protocol was adapted from (Schulze and Mann, 2004). In brief, 40 

µl streptavidin beads (Myone) was pipetted to a microtube and washed 
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three times with 250 µl I-PER buffer. After the washing, 250 µl peptide 

solution (Table 5.3) (1mM peptide in ddH2O) was mixed with 250 µl I-

PER buffer containing 2 mM DTT. 460 µl of this mixture was pipetted 

into the microtube containing the beads and then rotated for 4 h at 4°C 

for coating the beads with the peptide. After the incubation, the beads 

were washed four times with ice cold I-PER buffer followed by a 

second incubation with 500 µl embryo lysate containing 1mM DTT at 

4°C for 4h. The beads were then washed three times with I-PER 

buffer. For elution of the proteins, 60 µl Elution buffer was added 

followed by an incubation for 7 min at 95°C. The eluate was then 

analysed by mass spectrometry at the core facility of the MPI of 

Biochemistry and the data processed as described previously (Cox et 

al., 2014; Keilhauer et al., 2014). Each condition was done in triplicate. 

5.2.3.2.3 Development of the adult somatic musculature in the 

pupa: Kon-GFP and Kon-YFP pull-downs 

5.2.3.2.3.1 Biological Samples 

Pupae of 24-48 h APF expressing the following constructs: kon-GFP 

(endogenous level), kon-YFP (overexpression, Mef2-GAL4 driver), and 

as a negative control, w- pupae. 

5.2.3.2.3.2 Workflow 

400 pupae were collected per genotype and snap-frozen. Next, they 

were grounded to a powder. The powder was resuspended, further 

processed and analysed as described previously (Hubner et al., 2010; 

Cox et al., 2014; Keilhauer et al., 2014) in collaboration with Marco 

Hein (Mann Department in the MPI of Biochemistry) (Hein et al., 2015).  
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