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1 Introduction 

The availability of molecular dioxygen, O2, plays an essential role for cellular respira-

tion in aerobic organisms, amongst them virtually all eukaryotes, including mammals. 

The central metabolic role of oxygen is its utilization in the process of cellular respira-

tion. In the generation of energy via oxidative phosphorylation, O2 serves as the final 

electron acceptor in the respiratory chain (Alberts et al. 2002). The transport of oxy-

gen and thus an optimal oxygenation of all cells occur through the uptake via the 

lungs over the downstream transport via erythrocytes to the different tissues eventu-

ally reaching mitochondria. During that process the partial pressure of oxygen (pO2) 

in air, which is 21 kPa at sea level drops on the one hand by physically limited solu-

bility in aqueous solution and on the other hand continuous consumption down to 0.5 

kPa once the oxygen reaches the mitochondria (Østergaard and Gassmann 2011).  

 

 

Figure 1: Partial pressure of oxygen in different compartments of the body.  

Normoxic dry air has a pO2 of 21 kPa (160 mmHg). With entering the lungs it is reduced to 20 kPa 

(150 mmHg) by humidification. The subsequent constant removal of oxygen by the pulmonary capillar-

ies, the pO2 in the alveolae is around 14 kPa (100 mmHg), whereas oxygen tension in the blood is 

physiologically between 5 and 13 kPa (40-90 mmHg), venous to arterial side, respectively. In tissues 

and single cells, the pO2 goes down to 1-5 kPa (6-40mmHg), in mitochondria.down to 0.5-1.3 kPa (4-8 

mmHg). At an ambient pressure of 100 kPa, pO2 levels given in kPa correspond to the relative fraction 

given in percent.  (Figure adapted from Østergaard and Gassmann 2011) 

However, when the supply with oxygen does not longer meet the demand in tissues 

or cells, the resulting condition is called hypoxia.  

The expression “hypoxia” derives from the Greek terms hypo (= under, sub-) and ox-

ygen [Anc Greek: oxys (= sharp) + genos (= generation, produced by) meaning acid-
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former because oxygen was thought to be essential in the formation of acid]. Hypoxia 

describes the situation in which the body or tissues or cells encounter insufficient ox-

ygen supply, which can occur by dysfunction of either delivery or utilization on cellu-

lar level (Legrand et al. 2008). It is important to note that hypoxia is not only involved 

in pathophysiological conditions like cancer or fetal heart defects but is also crucial in 

development like in the establishment of the embryonic cardiovascular system (Ruan 

et al. 2009; Dunwoodie 2009). 

Thus, in order to maintain the supply with energy by efficient oxidative phosphoryla-

tion oxygen homeostasis is absolutely crucial. This process comprises several re-

sponses amongst them the precise establishment and regulation of blood vessels, 

the physiological infrastructure for O2 delivery supply. 

1.1 Responses to hypoxia 

The adaptation to hypoxia occurs on different levels, depending on the severity and 

duration of hypoxia. An immediate body wide response occurs by vasoconstriction of 

underventilated areas in the lung to ensure an efficient oxygenation of areas that are 

ventilated (systemic effects) (Evans et al. 2011). A prolonged adapation involves a 

switch from aerobic to anaerobic metabolism. This includes a change in post-

glycolytic processes when pyruvate is not longer decarboxylated to form acetyl-CoA 

but to form lactate by fermentation (cellular effects) (Goda and Kanai 2012). An addi-

tional effect is the hypoxia triggered secrection of EPO which confers further capacity 

in the transport of oxygen. Ultimately, it includes the activation of genes in order to 

counteract the negative effects of sustained hypoxia (regulation on gene expression 

level) (Semenza 2010). 
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1.1.1 Systemic effects 

Upon low oxygen, peripheral vessels dilate, whereas vessels of pulmonary vascula-

ture constrict thus rapidly modulating pulmonary ventilation and perfusion to optimize 

the supply of metabolising tissues with O2 by shunting blood from poorly ventilated 

areas. The immediate systemic response to altered O2 supply is regulated by spe-

cialized chemoreceptors, the carotid and neuroepithelial bodies (Figure 2) (Ward 

2008). While the carotid body is located close to the bifurcation of the carotid artery, 

the neuroepithelial bodies are found in the intrapulmonary epithelium mainly at the 

bifurcation of the bronchi. These clusters of chemoreceptors are sensing changes in 

pO2 levels in a yet to be identified way and secrete neurotransmitters which activate 

afferent neurons. Subsequently, the cardiovascular center of the brain gets stimulat-

ed and causes besides other effects a change of breathing rate, heart rate and tone 

of pulmonary and peripheral vessels. 

 

Figure 2: Effects of hypoxia. 

Upon low levels of pO2, the carotid body and the neuroepithelial bodies detect the changed oxygen 

content in blood and inhaled air, respectively. The triggered secretion of neurotransmitters in the brain 

leads to an increase of heart and breathing rate and a constriction of vessels in the lung, while periph-

eral blood vessels dilate (figure adapted from LadyofHats). 

 

The carotid and neuroepithelial bodies sense low 
oxygen level in the blood and inhaled air and 
stimulate the cardiovascular center of the brain 
by secreting neurotransmitters. The subsequent 
signaling causes: 

Low pO2 

Increased breathing rate and 
constriction of vessels in the 
lung 

Increased heart rate  

Dilated peripheral 
blood vessels  



Introduction 
 

 

 
5 

 

Figure 3: Decreased pO2 levels in alveoli leads to constriction of serving pulmonary arterioles. 

In case of reduced alveolar ventilation, the excessive perfusion of capillaries is downregulated by a 

constriction of the respective serving pulmonary arterioles upon decreased pO2 levels in alveoli (figure 

modified after de Leval and Deanfield 2010).  

However, the aforementioned effects are beneficial only in acute phase hypoxia; with 

sustained hypoxic conditions, the systemic effects may lead to pathologic side ef-

fects. Due to the hypoxia mediated vasoconstriction of pulmonary arteries an in-

creased resistance and thus an increased blood pressure occurs, which leads to 

pathological vascular remodeling including endothelial dysfunction and smooth mus-

cle cell hypertrophy (Aggarwal et al. 2013). The subsequent right heart hypertrophy 

due to the increased workload is known as pulmonary hypertension (Voelkel et al. 

2011). In contrast to the short-term adaptation, vascular remodeling is majorly irre-

versible even after being back to normoxia, at least the form which occurs due to in-

creased proliferation of endothelial cells (Hirota and Martin 2013).  

In addition, the reduced pO2 triggers enhanced O2 delivery by erythropoiesis. Unlike 

increased ventilation and cardiac output (probably resulting from heightened sympa-

thetic drive), the production and release of erythropoietin (EPO) from renal peritubu-

lar fibroblasts is less costly in terms of energy and can easily be sustained for 

extended periods (Boron and Boulpaep 2008). Released EPO acts selectively on 

burst forming unit erythroid cells and colony forming unit erythroid cells to stimulate 

cell proliferation and differentiation to proerythroblasts, usually occurring in the bone 
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marrow (Rifkind et al. 1976). The further maturation of cells downstream of erythro-

blasts does not require EPO (Figure 4). The increased number of mature erythro-

cytes ultimately compensates for the lack of oxygen by improved capacity of oxygen 

transport. However, this organism wide response is not only beneficial in the adapta-

tion to hypoxia but is also used as a trigger the endurance performance of sportsmen 

by altitude training.  

 

 

Figure 4: Role of erythropoietin in the process of erythropoiesis. 

Erythropoiesis starts from pluripotent stem cells, which differentiate into burst-forming-unit-erythroid 

cells before EPO triggers the formation of colony-forming-unit-erythroid cells. The subsequent differen-

tiation into proerythroblasts is again EPO-dependent. During the maturation of erythroblasts and retic-

ulocytes the nucleus is extruded. Eventually, fully differentiated erythrocytes are formed (figure 

adapted from Elliott et al. 2014). 

1.1.2 Cellular effects 

Besides the systemic responses, an appropriate adaptation to hypoxia on cellular 

level is fundamental. An efficient supply with energy is vital for each cell, with hydrol-

ysis of ATP being the predominant source of energy. Homeostasis of intracellular 

environment through ion pumps are mainly dependent on ATP and can consume up 

to 80% of energy produced (Boutilier 2001). Mitochondria are regarded as the central 

compartment for the generation of energy rich phosphate bonds by cellular respira-

tion. In this process also known as oxidative phosphorylation electrons are trans-

ferred from a donor by an electron transport chain to the acceptor. In eukaryotic cells, 

the electrons are gained by the oxidation of NADH or FADH2 and transported by five 

main protein complexes that are located in the inner membrane of the mitochondria 

(Cooper 2000). In each of these steps of the electron transport chain, free energy 

gets released as H+ ions, which are pumped from the matrix into the intermembrane 
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space to create a proton gradient across the inner mitochondrial membrane. This 

potential drives the synthesis of ATP by complex V, the ATP synthase (Figure 5).  

Under hypoxic conditions, respiratory chain reaction is inhibited while proton leakage 

is increased (Wheaton and Chandel 2011). The resulting loss of ATP causes a failure 

of ion-motive ATPase, thus an uncontrolled influx of Ca2+ through voltage dependent 

ion channels, induced by membrane depolarization. Subsequently, Calcium depend-

ent phospholipases and proteases are activated, resulting in cell swelling concomi-

tant to damaging of cellular components and ultimately necrosis of the cell (Michiels 

2004). 

 

Figure 5: Cellular effects of hypoxia 

Under normoxic conditions, ATP production occurs majorly by proton driven ATP synthase after gly-

colysis with subsequent TCA cycle and oxidative phosphorylation. Under hypoxic conditions, cells 

switch their catabolic pathway to respiratory chain independent mechanism by changing to an anaero-

bic ATP production. The post-glycolysis processes switches from acetyl-CoA formation by decarboxy-

lating pyruvate to a fermentation of pyruvate to lactate (ATP: adenosine triphosphate; TCA cycle: 

tricarboxylic acid cycle; blue ovals ressemble complex I, III and IV of the respiratory chain, respective-

ly; PDH: pyruvate dehydrogenase; PDK1: pyruvate dehydrogenase kinase isozyme 1). Fig-

ure modified after Aragonés et al. 2008). 
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It is worth to mention, that although decreased O2 availability leads to a diminished 

final electron acceptor, activity of complex IV is not the main limiting factor as inhibi-

tion of mitochondrial respiration occurs at pO2 levels way above the Km of com-

plex IV, meaning at higher pO2-levels (Gnaiger et al. 1995).  

In order to counteract the pathological effects of hypoxia, cells decrease energy con-

suming processes concomitantly with an upregulation of energetic efficiency of ATP-

producing pathways, concretely increased anaerobic processing of pyruvate after 

glycolysis (Hochachka et al. 1993) 

The main metabolic processes of energy consumption in cells are ion shuttling by 

ATPases pumps and protein synthesis (Boutilier 2001). Thus inhibition of protein syn-

thesis as well as Na+/K+ and Ca2+ pumping is contributing in the first instance to re-

duce the need for ATP, of which the supply is limited under hypoxia. The 

orchestration of decreased energy consumption on translational level is amongst 

others controlled by the eukaryotic translation initiation factor 4E (eIF4E). The initial 

step of protein synthesis, the binding of eIF4E to the 5'-located 7-methylguanosine 

triphosphate cap of messenger RNAs, is repressed with low oxygen tension by se-

questering eIF4E through mammalian target of rapamycin (mTOR)-dependent 

mechanisms (Uniacke et al. 2012).  

Simultaneously, cells change their catabolic pathways producing ATP from the oxy-

gen dependent oxidative phosphorylation to the oxygen independent fermentation 

(known as “Pasteur effect” (Racker 1974)). However, the net production of ATP is 

remarkably lower in glycolysis compared to mitochondrial respiration (2:36) (Lodish 

et al. 2000). To overcome this limitation, activity of several glycolytic enzymes is in-

duced, either by kinases or by transcriptional induction (Seagroves et al. 2001) 

(Figure 5). Interestingly, O2 is not limiting in ATP production by oxidative phosphory-

lation. In hypoxic cells increased glycolytic flux to pyruvate and its reduction to lactate 

by lactate-dehydrogenase is stimulated. This change in the metabolism is additionally 

triggered by hypoxia-induced PDK1 inhibiting the multi-enzyme complex PDH activity 

that contributes to the transformation of pyruvate into acetyl-CoA, which is subse-

quently used in the tricarboxylic acid (TCA) cycle (Kim et al. 2006) (Figure 5). The 

resulting attenuation of oxidative phosphorylation is essential to prevent the genera-
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tion of reactive oxygen species (ROS) resulting from ineffective electron transport 

under hypoxic conditions (Kim et al. 2006).  

1.1.3 Regulation of gene expression 

The above-described systemic and cellular responses to hypoxia occur within 

minutes to a few hours and are mainly based on preexisting components of the cell. 

To maintain or even improve the response to prolonged hypoxic conditions, newly 

synthesized enzymes, transporters, growth factors and even peptide hormones are 

necessary. To this end, a special family of transcription factors evolved which medi-

ate the synthesis of key factors involved in the adaptation to low oxygen tension. 

These transcription factors belong to the family of hypoxia inducible factors (HIFs) 

and are described in detailed below. 

1.2 Hypoxia inducible factors 

For an appropriate cellular adaptation to reduced availability of oxygen (hypoxia) 

transcription factors of the HIF (hypoxia-inducible factor) family are essential, ensur-

ing metabolism (Semenza 2012) and proliferation (Kaelin and Ratcliffe 2008). HIFs 

were postulated as master regulators under hypoxia (Wang and Semenza 1993), 

shown to mediate proliferative responses of vascular endothelial cells, such as divi-

sion (Iyer et al. 1998), sprouting and angiogenesis (Maxwell et al. 1997; Carmeliet et 

al. 1998).  

HIFs are heterodimers belonging to the bHLH-PAS (basic helix-loop-helix/Per-Arnt-

Sim homology) protein superfamily containing domains for heterodimerization and 

DNA binding (bHLH and PAS-A/PAS-B domain, respectively) (Semenza 2009). The 

HIF-family comprises the constitutively expressed β-subunit HIF-1β, also known as 

the aryl hydrocarbon receptor nuclear translocator (ARNT) and regulated α-subunits 

(HIF-1α, HIF-2α) resulting in an inducible transcription factor under hypoxia (Jiang et 

al. 1996). The alpha subunits contain an additional domain determining its protein 

stability (Huang et al. 1998) – oxygen dependent degradation domain (ODD) - as well 



Introduction 
 

 

 
10 

as a N- and C-terminal activation domain (NTAD and CTAD, respectively) (Ruas et 

al. 2002) providing the means to act as transcription factors (Figure 6). 

The third member of the HIF alpha subunits, HIF-3α, initially described by Gu et al. 

(1998) in mice also belongs to the bHLH-PAS protein family, but lacks the CTAD, 

suggesting a distinct role in comparison to HIF-1α and HIF-2α. Since only little is 

known about human HIF-3α, its regulation and function was investigated in this the-

sis. 

 

 

Figure 6: Domain structures of the HIF transcription factors and sequence comparison of alpha 

subunits.  

The three HIF-α paralogues, HIF-1α, HIF-2α and HIF-3α and the β-subunit ARNT all contain bHLH 

and PAS domains. Whereas HIF-1α and HIF-2α contain ODDs, NTADs and CTADs, HIF-3α only con-

tains a NTAD. Percentages of identity between HIF-3α and HIF-1α or HIF-2α are indicated. bHLH: 

basic helix-loop-helix domain, PAS: Per-Arnt-Sim homology domain, ODD: oxygen dependent degra-

dation domain, NTAD/CTAD: N- and C-terminal transactivation domain (adapted from Lisy and Peet 

2008). 
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Figure 7: Regulation of HIF-1 activity by degradation or stabilization of the alpha-subunit 

HIF-1α.  

Under normoxic conditions, the HIF–1α gets hydroxylated by prolyl hydroxylases (PHDs) using O2, 

2—Oxoglutarate and Fe2+ as cofactors. Tagged HIF–1α is recognized and complexed by von Hippel-

Lindau protein (VHL), a subunit of E3 ubiquitin ligase, and subsequently marked for proteasomal deg-

radation. Thus HIF–1α is inactive under normoxic conditions. However, under hypoxia, activity of 

PHDs is abrogated causing an accumulation of HIF–1α subunits in the cytoplasm. After translocation 

to the nucleus, HIF–1α interacts with the ubiquitous ARNT and binds as a heterodimer to HIF re-

sponse elements (HRE) present in the regulatory regions of HIF targets. By recruiting the cofactor 

CBP/p300, transcriptional induction of target genes involved in different processes is triggered.  
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1.2.1 ARNT 

The ubiquitously expressed β-subunit ARNT was initially described as the activating 

ligand-bound aryl hydrogen receptor (AhR) (Reyes et al. 1992). The AhR/ARNT 

complex is activating genes upon the stimulation by aromatic hydrocarbons, which 

explains the name. In addition, ARNT is also known to be the major interaction part-

ner of HIF-1α and is therefore also known as HIF-1β. Although ARNT has been sug-

gested to function as a homodimer (Sogawa et al. 1995), the biological relevance of 

this complex remains unclear. 

ARNT contains two major domains, namely bHLH and PAS domains for both hetero-

dimerization and binding to the target DNA. Hence ARNT is crucial for the formation 

of a functional heterodimeric transcription factor. Several studies suggest that apart 

from ARNT its orthologues ARNT2 and ARNT3 can act as β-class HIF subunits 

(Wang et al. 1995; Hirose et al. 1996; Hogenesch et al. 1997). However, as ARNT is 

described as the predominant β-subunit in HIF-1 and HIF-2 due to its ubiquitous ex-

pression over the restricted expression of ARNT2 and ARNT3 in the central nervous 

system (Crews 2003), this work focuses on ARNT and its role in the response to hy-

poxia. 

1.2.2 HIF-1α 

The hypoxia inducible α-subunit HIF-1α (Hypoxia-inducible factor 1-alpha) was initial-

ly described by Wang and Semenza, identified by affinity purification using oligonu-

cleotides from the 3’-UTR of the human erythropoietin gene EPO (Wang and 

Semenza 1993). With physiological levels of oxygen present (normoxia), the con-

stantly translated HIF-1α proteins are degraded via the 26S proteasome with half-life 

of less than 5 minutes (Huang et al. 1996; Yu et al. 1998). The underlying mecha-

nism is based on hydroxylation of Pro402 or Pro564, or both, by the prolyl hydroxylase 

domain proteins (PHD1-3) for which they use molecular oxygen as a substrate and 

α-ketoglutarate as a cosubstrate (Marxsen et al. 2004). The hydroxylation of proline 

residues located in the ODD (oxygen dependent degradation domain) of HIF-1α ena-

bles the interaction with the von Hippel-Lindau (pVHL) protein, which is a component 

of an E3 multiprotein ubiquitin-ligase complex (Jaakkola et al. 2001). The subsequent 
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polyubiquitination of HIF-1α triggers its degradation. Using the same set of sub-

strates, a third residue (N803) gets hydroxylated by factor inhibiting HIF-1 (FIH-1). In 

contrast to the hydroxylation of proline residues, the hydroxylation of the asparagine 

residue inhibits the binding of coactivators such as p300 and its paralogue CREB-

binding protein (CBP), histone acetyltransferases, which act as a cofactor in the 

transactivation of target genes (Ruas et al. 2002). Both, degradation as well as pre-

venting the interaction with cofactors tightly controls HIF-1α and therefore the activity 

of HIF-1 under normoxia (Figure 7). However, when oxygen availability drops, hy-

droxylation of all three mentioned residues is attenuated, contributing to an accumu-

lation of HIF-1α subunits which translocate to the nucleus due to its potential nuclear 

localization signal (NLS) located at positions 718-721. Subsequently, HIF-1α and the 

obligate nuclear located ARNT dimerize via the N-terminal bHLH and PAS domains 

of each subunit. This heterodimeric complex binds to DNA sequences with the ca-

nonical motif 5´-RCGTG-3´, so called HIF response elements (HREs), located in the 

promoter or enhancer of the respective target genes (Figure 8) (Wang and Semenza 

1993; Semenza 1999; Kaelin and Ratcliffe 2008).  

 

 

Figure 8: Representation of the bHLH domain of HIF- α/β heterodimer contacting DNA contain-

ing HRE consensus motif. 

 Cylinders represent helix domains that are connected by a loop. The basic residues near the N-

terminus of each subunit contact the nucleotides of the core-HRE (adapted from Lisy and Peet 2008). 
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The recruitment and interaction with CBP/p300 occurs via the TAD domain of the HIF 

complex. This cofactor exerts intrinsic histone acetyl transferase activity, thus chang-

ing the chromatin structure and subsequently recruiting basal transcription machin-

ery. Eventually, the initiation of transcription of genes whose products are involved in 

triggering - amongst other processes - erythropoiesis, glycolysis and angiogenesis 

takes place (Kaelin and Ratcliffe 2008; Semenza 2009) (Figure 7). 

The expression of HIF-1α is described as ubiquitous, with HIF-1α/ARNT dimers be-

ing the primary factors regulating the hypoxic response (Ke and Costa 2006). How-

ever, recent studies indicate, that HIF-1α exerts its uniqueness in hypoxic response 

rather by target gene specificity than by tissue or cell selective expression (Hu et al. 

2003; Warnecke et al. 2004). HIF-1α regulates a variety of genes, amongst them 

PGK1, CA9 and EGLN3. The PGK1 encoded protein phosphoglycerate kinase 1  

catalyzes the production of 3-phosphoglycerate from 1,3-bisphosphoglycerate during 

glycolysis (Hu et al. 2003), while CA-IX, encoded by the gene CA9 (Grabmaier et al. 

2004) is a major factor in controlling pH homeostasis. EGLN3 encodes for PHD3 

thereby enabling an negative feedback loop in the HIF-1 activation (Marxsen et al. 

2004). HIF-1α was shown to be important not only in cellular homeostasis but also in 

development. Homozygous Hif1a knockout mice die at day E10.5 with vascular de-

fects and cardiac malfunction (Kotch et al. 1999), underlining the significance of 

HIF-1α as a component in hypoxic conditions like vascular diseases and cancer. The 

protein abundance of HIF-1α protein under hypoxic condition is also contributing to 

its function. Several studies suggest an immediate accumulation within a few minutes 

after the onset of hypoxia, with decay after several hours (Jewell et al. 2001; 

Holmquist-Mengelbier et al. 2006). This data provides evidence for HIF-1α being in-

volved in the fast response to hypoxia (meaning several minutes to few hours) and 

dealing with the acute effects of it (Holmquist-Mengelbier et al. 2006). 

1.2.3 HIF-2α 

HIF-2α was identified in 1997 by several independent groups (initially called endothe-

lial PAS protein 1 (EPAS1) (Tian et al. 1997), HIF-related factor (HRF) (Flamme et al. 

1997), HIF1α-like factor (HLF) (Ema et al. 1997), and member of PAS family 2 
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(MOP2) (Hogenesch et al. 1997). The description of HIF-2α extended the complexity 

of the HIF response. Hypoxia inducible factor 2 (HIF-2) consists, similarly to HIF-1, of 

the β-subunit ARNT and HIF-2α, a paralogue of HIF-1α. The regulation of its activity 

was shown to be comparable to that of HIF-1α, namely by destabilization of the 

α-subunit HIF-2α by 26S proteasome. The residues which get hydroxylated are P405, 

P531 and N847. Although it was shown, that HIF-1α protein levels are detectable in a 

huge variety of cells (hepatocytes, macrophages muscle cells (Wiesener et al. 

2003)), the overall expression on tissue level is nevertheless maximal in blood ves-

sels and therefore in highly vascularized organs like lung or placenta. 

While HIF-1α is ubiquitously expressed, HIF-2α is detected most prominently in hy-

poxic vascular endothelial cells during embryonic development (Tian et al. 1997; Hu 

et al. 2003). In addition to being present in endothelial cells, murine Hif2a mRNA has 

also been detected postnatally in different rat tissues, amongst them kidney fibro-

blasts, liver hepatocytes and heart myocytes (Wiesener et al. 2003; Hu et al. 2003). 

In contrast to in vivo restricted expression patterns, quite a few transformed human 

cell lines exhibit HIF-2α expression, amongst them HEK293, HeLa, HepG2, and 

Hep3B (Wiesener et al. 1998; Hu et al. 2003). Moreover, HIF-2α has been shown to 

be expressed in perinecrotic areas as well as vascular cell lines like HUVEC and 

HMEC-1 (Onita et al. 2002; Hu et al. 2003). These data indicate that HIF-2 might play 

an important role in a broad range of cells in addition to endothelial cells as well as in 

tumorigenesis.  

HIF-2 is known to regulate the expression of kinase insert domain receptor (KDR) 

(Elvert et al. 2003), and cadherin 5, type 2 (CDH5) (Le Bras et al. 2007), which sug-

gests an important role for HIF-2 in angiogenesis. Besides, other described target 

genes of HIF-2α are CCND1 (Cyclin D1) and POU5F1 (POU class 5 homeobox 1) 

(Raval et al. 2005; Covello et al. 2006) as well as CD82 (CD82 molecule) and PAI1 

(plasminogen activator inhibitor 1) (Hu et al. 2007; Nagao and Oka 2011). 

In contrast to HIF-1α, HIF-2α protein is reported to be induced more slowly, meaning 

in the range of several hours to a few days (Holmquist et al. 2005). Concomitantly, its 

presence under hypoxia is prolonged with protein levels detectable even after several 

days (Holmquist-Mengelbier et al. 2006). Thus, HIF-2α is rather involved on the long-
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term regulation of cellular homeostasis under hypoxic condition (Koh and Powis 

2012). 

HIF-1 and HIF-2 are closely related, especially when it comes to their preferential 

binding partner ARNT, the regulation of their activity, and their mechanism in activat-

ing HRE dependent gene expression (Loboda et al. 2010). However, HIF-1 and 

HIF-2 seem to be non-redundant as shown by studies with knockout mice and differ 

both in their expression pattern on tissue level and their prevalent target genes. In 

addition, several functional studies suggest distinct roles for HIF-1α and HIF-2α dur-

ing development and tumor progression. Whereas Covello et al. observed an in-

crease in size and proliferation of teratomas in Hif2a knock-in mice, another group 

described a reciprocal interaction between HIF-1α and HIF-2α levels in RCC4 cell 

line suggesting retarding and promoting functions, respectively (Covello et al. 2005; 

Raval et al. 2005). Yet, there are a vast number of hypoxia inducible genes which are 

described to be regulated by both HIF-1α and HIF-2α, amongst them VEGFA (vascu-

lar endothelial growth factor A) and GLUT1 (glucose transporter 1) (Hu et al. 2006).  

The underlying mechanism of target genes specificity is still not fully understood, with 

different properties regarding DNA binding or transactivation being discussed. By 

replacing the NTAD of HIF-2α with that of HIF-1α, Hu et al. (2007) could show that 

the N-terminal transactivation domain confers target gene specificity of HIF-1α and 

HIF-2α. It is worth to mention, that apart from hypoxia, several stimuli are described 

to induce HIF-1α and HIF-2α activity, amongst them iron chelators and divalent cati-

ons like Co2+ (Woo et al. 2006). 

1.2.4 HIF target genes 

The distinct assignment of hypoxia regulated genes to either HIF-1 or HIF-2 is a 

complex issue, as factors like cell type or tissue as well as duration and intensity of 

hypoxia contribute to which gene gets activated at a defined time point. Currently, 

many of the known HIF target genes are regarded as general target genes, like 

GLUT1, CA12 and VEGFA (Keith et al. 2012). Whereas the group of genes which 

are published to be selectively activated by HIF-1 is comparably huge, only a small 

subset of them are described to be specifically induced by HIF-2. Interestingly, Stiehl 
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et al. suggested that the HIF-α isoforms determine target gene kinetics rather than 

specificity (2011). Nevertheless, so far reported unique HIF-1 target genes comprise 

GAPDH (Denko 2008) and PGK1 ( (Hu et al. 2003) whose protein counterparts are 

involved in glycolysis) as well as EGLN3 (encodes for the prolyl hydroxylase PHD3) 

(Stiehl et al. 2011), whereas the identification of unique HIF-2 target genes brought 

up only few candidates, amongst them POU5F1 (encodes for Oct4, which is involved 

in the self-renewal of undifferentiated embryonic stem cells) (Covello et al. 2006), 

CD82 (its protein is a  membrane glycoprotein) (Nagao and Oka 2011) and PAI1 

(Hu et al. 2007). Whereas the alleged HIF-1α target genes are often involved in the 

immediate metabolic response (e.g. upregulation of glycolytic enzymes), some of the 

supposed HIF-2α unique genes are reported to be critical in the long term adaptation, 

like in the case of PAI1 in the regulation of angiogenesis. In general, the ability of 

HIF-1 and HIF-2 to activate specific target genes appears to be context dependent 

and therefore each target gene must be carefully defined in terms of HIF-1 and HIF-2 

responsiveness when examined within a specific context (Koh and Powis 2012). 

1.2.5 HIF-3α 

The third member of the HIF-alpha family HIF-3α was initially described by the report 

of the murine Hif3a locus based on sequence similarity of EST (expressed sequence 

tags) with known HIF alpha subunits (Gu et al. 1998). Concomitantly, Gu et al. 

mapped the human HIF3A gene locus on chromosome 19 and verified its alpha sub-

unit properties together with ARNT in a successful gel shift assay on HRE containing 

probes. Cloning and sequencing of rat Hif3a mRNA from cultured rat hepatocytes by 

Kietzmann et al. (2001) led to a more profound knowledge about domain architecture 

(35% identity with murine HIF-1α), transactivation (activation of episomal reporter 

constructs in rat hepatocytes) and localization (Hif3a predominantly occurs in the 

perivenous zone of the hepatic acinus and in endothelial cells of the central vein). 

Later on, Makino et al. described a splice variant of Hif3a in mice called inhibitory 

PAS domain protein (Ipas), giving rise to the N-terminal part of full length HIF-3α con-

taining only the bHLH-PAS domains. The protein IPAS was reported to exert an in-

hibitory effect on HIF-1, thereby abolishing hypoxia-induced Vegfa expression in 
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murine cornea (Makino et al. 2001). This report was the starting point for a still ongo-

ing controversial discussion about the corresponding human HIF-3α, its regulation, 

and function including underlying mechanism. Subsequently, it was reported that also 

human HIF-3α suppresses HIF-mediated gene expression, however only in vitro (Ha-

ra et al. 2001). Characterization of the human HIF3A locus showed, similar to the 

mouse locus, several splice variants (Maynard et al. 2003; Pasanen et al. 2010) 

(Figure 9). However, neither of its encoded proteins showed structural similarity to 

IPAS, although HIF-3α1 (RefSeq accession number: NM_152794) and HIF-3αBC 

(RefSeq accession number: BC_026308) were shown to have inhibitory effects on 

HIF driven gene assays (Hara et al. 2001; Maynard et al. 2005; Maynard et al. 2007; 

Heikkilä et al. 2011). With ARNT in excess, HIF-3α was proposed to be a weak tran-

scription factor (Hara et al. 2001; Heikkilä et al. 2011). Nevertheless, a role of HIF-3α 

as a suppressor of HIF-mediated gene expression was favored by numerous studies 

(Hara et al. 2001; Maynard et al. 2005; Maynard et al. 2007; Augstein et al. 2011; 

Heikkilä et al. 2011). The suggested underlying mechanism for HIF-3α inhibiting the 

classical HIF system is based on the observation of an interaction with the respective 

HIF-alpha subunit. However, the interaction was only observed with both interaction 

partners, HIF-3α and HIF-1α or HIF-2α overexpressed in different cell lines (Maynard 

et al. 2003; Maynard et al. 2005; Jang et al. 2005; Heikkilä et al. 2011). Similarly, the 

interaction of HIF-3α with ARNT was described by different groups (Maynard et al. 

2005; Heikkilä et al. 2011). Yet, the favored approach for the inhibitory role of HIF-3α 

is a competition with the respective alpha subunit. 
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Figure 9: Schematic representation of exonic arrangement of suggested human HIF-3α vari-

ants. 

This scheme represents the arrangement of exons of the so far published HIF3A isoforms. Areas cod-

ing for distinct domains are indicated in the upmost position. Coding regions are indicated in grey 

(adapted from Pasanen et al. 2010). 

The role of the human HIF-3α is also determined by the specific expression of HIF-3α 

in different tissues and cell types. Whereas the usage of different antibodies against 

the murine HIF-3α was reported (Makino et al. 2001), the unambiguous detection of 

any of the published variants of human HIF-3α on endogenous level has not yet been 

shown. Of note, Maynard et al. report that HIF-3α protein gets degraded by hypoxia 
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in vitro by binding to pVHL through proline residue at position 490, analogue to 

HIF-1α and HIF-2α (2003). However, the presence of an ODD and thus the regula-

tion of endogenous HIF-3α protein by oxygen is still controversly discussed, as en-

dogenous HIF-3α protein was so far not identified free of doubt. Thus, the detection 

of human HIF3A mRNA evolved as an index for the presence of its protein counter-

part HIF-3α. On this basis, Maynard et al. proposed HIF3A to be majorly expressed 

in heart, placenta and lung, as shown by multiple tissue northern blot (2003). These 

findings were extended by Pasanen et al. showing an expression also in fetal organs 

like liver and kidney (2010). The suggested expression patterns of HIF3A are linked 

with HIF3A being detected majorly in endothelial cells and vascular smooth muscle 

cells, as shown by Augstein et al., who also confirmed the absence of HIF3A in blood 

(2011). 

Another criterion that indicates the functional properties is the kinetics of HIF-3α upon 

hypoxic stimulation. Again, due to missing reliable antibodies, current knowledge 

about endogenous HIF-3α is mainly restricted to its regulation on transcriptional level. 

In contrast to HIF1A and HIF2A, HIF3A was suggested to be upregulated under sus-

tained hypoxia (Pasanen et al. 2010; Augstein et al. 2011), which qualifies it as a 

component in the adaptation to hypoxia. However, suggested HIF target genes that 

are modulated by HIF3A are so far rather elusive, especially as only few of them are 

characterized on endogenous level. 

In general, the HIF-system (maybe including HIF-3α) is not only known to trigger the 

already mentioned erythropoiesis under hypoxia but is also involved in the process of 

angiogenesis. 

1.3 Angiogenesis 

The distribution of gases, liquids and nutrients in vertebrates is achieved by the net-

work of blood vessels, contributing to homeostasis in the organism. The proper for-

mation of this network is vital in growth and development and is achieved by 

sprouting and branching of capillaries. Thereby new blood vessels are formed from 

preexisting blood vessels. This procedure named sprouting angiogenesis is closely 
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connected with hypoxia and comprises different biological processes like cell prolif-

eration, migration and differentiation, including remodeling.  

1.3.1 Endothelial cells 

Endothelial cells are key components of the angiogenic system, lining the interior 

surface of the vasculature. The starting point in the formation of new vessels are 

growth factors that activate its respective receptors in preexisting endothelial cells. 

The predominant angiogenic signal is VEGF-A, which can be secreted by many 

types of cells, but usually not endothelial cells themselves (McIlhenny et al. 2002). 

The paracrine stimulation leads to proliferation of selected endothelial cells, called tip 

cells. Concomitantly, the sprouting cells acquire invasive properties and secrete high-

ly efficient plasminogen activators in order to locally degrade the basement mem-

brane (Figure 10). To tightly control this process, their physiological inhibitor PAI-1, a 

serine protease inhibitor, is secreted in parallel. PAI-1 is involved in remodelling of 

the extracellular matrix, fibrinolysis, proliferation and angiogenesis (Bajou et al. 1998; 

Diebold et al. 2008).  
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Figure 10: Schematic representation of sprouting angiogenesis.  

The emergence of new blood vessels in response to a hypoxic area is schematically shown. Hypoxic 

cells do secrete VEGF-A in order to stimulate sprouting of migrating endothelial cells. The latter one 

as well as hypoxic cells secrete PAI-1 leading to a remodeling of the extracellular matrix thus further 

supporting the angiogenic process. Figure modified and adapted from Dorsam and Gutkind 2007; ten 

Dijke and Arthur 2007). 

Apart from inhibiting the ECM degradation, PAI-1 is suggested to also exert proangi-

ogenic properties by modulating cell migration. However, the exact mechanisms how 

PAI-1 can modulate vascular function are not fully understood (Diebold et al. 2008). 

Subsequent to ECM degradation, activated endothelial cells proliferate into the extra-

cellular matrix and form sprouts that extend in the direction of the stimulus.  

1.3.2 Angiogenesis in physiology and pathophysiology 

The above-described angiogenesis is a process that occurs both in physiological and 

pathophysiological conditions. The truly initial phase of life, the development of the 

embryo, is also the beginning of vascular network formation, which starts by vasculo-

genesis followed by angiogenesis to expand the preexisting blood vessels (Marcelo 

et al. 2013). Notably, the vasculature continues to remodel dynamically even as the 

organs function. But also in adults, physiological angiogenesis occurs during wound 

healing, skeletal growth, the menstrual cycle, and pregnancy (Hoeben et al. 2004). 
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The physiological control of angiogenesis is achieved by a tight balance between 

factors that induce the formation of blood vessels and those that inhibit the process. 

When this balance is disturbed, it can result in pathological angiogenesis which 

causes increased blood-vessel formation in diseases that depend on angiogenesis, 

amongst them arthritis, psoriasis and most notably tumorigenesis (Hoeben et al. 

2004). The transition of benign tumors to malignant ones is characterized by uncon-

trolled angiogenesis (Hanahan and Weinberg 2000). 

It is worth to mention, that a major difference between physiological and pathophysio-

logical angiogenesis is the state of vessel maturity, i.e. vascular perfusion will not be 

achieved in case of disease (Krock et al. 2011; Fakhrejahani and Toi 2012).  

1.3.3 Cancer and its hallmarks 

Induction of uncontrolled angiogenesis is one of the hallmarks of solid malignant tu-

mors. Together with sustaining proliferative signaling, evading growth suppressors, 

resisting cell death, enabling replicative immortality, and activating invasion and me-

tastasis, its one of the inevitable acquired properties of cancer (Hanahan and Wein-

berg 2000). The ability of triggering angiogenesis is closely linked to the hypoxic 

microenvironment, which occurs in the core solid tumors that are beyond the size of 

2-3 mm in diameter (Ribatti 2008). This is the critical distance when diffusion of oxy-

gen is limited and active transport of nutrients and gases is essential for cell survival 

(Hoeben et al. 2004). Thus, hypoxic areas in solid tumors do promote tumor progres-

sion via triggering angiogenesis, mainly by secretion of VEGF–A.  

Cancers are caused by both internal factors (such as inherited mutations, hormones, 

and immune conditions) and environmental/acquired factors (such as tobacco, diet, 

radiation, and infectious organisms) (Anand et al. 2008). The onset of cancer howev-

er is characterized by a transformation of a normal cell into a tumor cell, which is the 

effect of genetic alterations (Sarkar et al. 2013). Affected genes can be separated in 

oncogenes, which promote proliferation of cells, and tumor suppressor genes, which 

inhibit cell division (Sarkar et al. 2013). The transformation of a normal into a tumor 

cell usually requires several changes allowing the cell to escape the controls that limit 

normal tissue growth (Fearon and Vogelstein 1990). 
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1.3.4 Epigenetics 

In addition, also epigenetical alterations are reported to drive cancer (Jones and Bay-

lin 2002; Sarkar et al. 2013). These changes are not directly linked to the plain nu-

cleotide sequence level but rather above (epi- (ancient Greek): over, outside of, 

around). Thus, loss or gain of function is not necessarily linked to aberrant DNA se-

quence but is determined by epigenetical mechanisms (Baylin and Ohm 2006). 

Concretely, epigenetic mechanisms comprise in the first instance DNA and histone 

modifications (e.g. methylation or acetylation). Methylated cytosines in CpG sites are 

considered as the fifth base and are associated with repressed transcriptional activity 

by recruitment of chromatin remodeling factors (Leonhardt and Cardoso 2000). Inter-

estingly, recent studies reported several on-top-modifications, namely 

5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC) and 5-carboxylcytosine (caC). 

These modifications are catalyzed by the TET protein family through oxidation of 

methylcytosine. Interestingly, this TET proteins are Fe(II)- and 2-oxoglutarate de-

pendent (Dickson et al. 2013) thus showing a remarkable overlap with PHDs regulat-

ing the stability of HIF-1α and HIF-2α. It is suggested that TET proteins prompt the 

demethylation of CpG sites (Spruijt et al. 2013; Müller et al. 2014). Modifications of 

histones are completing the classical understanding of epigenetic mechanisms. His-

tones were considered for a long time as inert packing material for eukaryotic nuclear 

DNA, when Turner described their regulating properties. Later on, their detailed func-

tion were specified (Turner 1998; Rea et al. 2000; Chi et al. 2010). Although it is ac-

cepted, that modifications of histone tails alter the interaction of DNA and histones 

and thereby the chromatin structure, the exact mechanism is still vague. Yet, there 

are some distinct changes, which are well described. One of the best-described mod-

ifications is the methylation of lysine 9 of histone 3. While mono-methylation of this 

residue is found in actively transcribed promoters, its triple methylation is connected 

with repression of transcription (Strahl and Allis 2000; Rea et al. 2000). The second 

modification that is extensively studied is acetylation, particularly that of lysine 9 and 

14 of histone 3. These modified residues are explicitly associated with an active tran-

scription of the respective gene (Turner 1998; Strahl and Allis 2000). 
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It is becoming increasingly apparent that epigenetics also plays a crucial role in the 

cellular response to hypoxia (Watson et al 2010). Amongst other effects, hypoxia 

provokes a decrease of general transcription that seems to rely in part on epigenetic 

changes (Perez-Perri et al 2011). In this process, epigenetic regulation may work 

hand in hand with the HIF family or may contribute to the maintenance of a hypoxia-

adapted cellular phenotype after HIF has initiated the immediate response pathways 

(Watson et al 2010). In this study, we sought to investigate the role of the youngest 

member of the human HIF protein family HIF-3α in the response to hypoxia by char-

acterization of its expression as well as its functional properties. 
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2 Aims of this study 

Hypoxia is an important trigger of development but is also known to contribute to the 

malignancy of tumors besides others by activation of uncontrolled angiogenesis. This 

is mainly based on the transactivation properties of HIF-1 and HIF-2. 

Whereas in mice the description of the Hif3a isoform Ipas apparently is linked with an 

inhibitory characteristic (Makino et al. 2001; Yamashita et al. 2008), an unambiguous 

role of HIF3A in human has yet to be identified. 

Hence, this study sought to deal with the following issues: 

 

1. Analyse the expression pattern of human HIF3A transcript variants in different 

human cell types.  

Differential expression of HIF3A has been reported not only on tissue levels, 

but also in several cell lines. Whereas transcripts of HIF3A were detected in 

the endothelial cell line HUVEC and human neuroblastoma cell line Kelly, they 

were absent in other cells like the cervical cancer cell line HeLa or the breast 

cancer cell line MCF7. We hypothesized, that the basal expression levels of 

HIF3A are differing due to epigenetic regulation in different cell lines. 

 

2. Analyse the mechanisms of HIF3A function under hypoxia. 

HIF-2α was initially described in endothelial cells and, in contrast to HIF-1α, 

shown to be sustained even after long term hypoxia. In line, we hypothesized, 

that HIF-3α may exert an inhibitory function on HIF-2α and its target genes in 

sustained hypoxia. 
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3 Materials and Methods 

3.1 Materials 

3.1.1 Cell-lines 

Cell lines HEK293T, HeLa and MCF7 were obtained from Leibniz Institute DSMZ-

German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. 

Cell line HMEC-1 was purchased from from the Center for Disease Control CDC, 

Atlanta, USA. Cell line PASMC was purchased from Lonza, Basel, Switzerland. Cell 

lines LNCaP and DU145 were a kind gift of Dr. Thomas Schwend. Preadipocyte cell 

line was a kind gift of Dr. Isabelle Mack. 

 

Table 1: Cell lines used in this study. 

Name Reference 
number 

Derived from morphology Ref 

HEK293T ATCC 
CRL-11268 

Human embryonic kidney  Monolayer, epithelial-
like 

(Graham et al. 
1977) 

HMEC-1 CDC E036-
91/0 

Human microvascular 
endothelium 

Cobblestone-like (Ades et al. 
1992) 

HeLa ATCC 
CCL-2 

Human cervix adenocar-
cinoma 

Monolayer, epithelial (Gey and 
Bang 1951) 

MCF7  ATCC 
HTB-22 

metastatic site of human 
mammary gland 

Monolayer, epithelial (Russo et al. 
1976) 

PASMC CC-2581 
(Lonza) 

Human pulmonary artery  Monolayer   

SGBS 

(preadipocytes) 

Not given patients with Simpson-
Golabi-Behmel syndrome 

monolayer (Wabitsch et 
al. 2001) 

LNCaP ATCC 
CRL-1740 

Prostate; derived from 
metastatic site of lymph 
node 

adherent, single cells 
and loosely attached 
clusters 

(Horoszewicz 
et al. 1980) 

DU145 ATCC® 
HTB-81 

prostate; derived from 
metastatic site in brain 

Monolayer, adherent (Stone et al. 
1978) 
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3.1.2 Instruments 

Table 2: Instruments used in this study. 

Device Product name Manufacturer, City, Country 

Analytical balance  BP 211D Sartorius, Goettingen, Germany 

Autoclave  KSG-116-2-ED KSG, Erlangen, Germany 

Balance LP5200P Sartorius, Goettingen, Germany 

Bunsen burner Vulcan Heraeus, Hanau, Germany 

Centrifuges Biofuge fresco Heraeus, Hanau, Germany 

 Biofuge pico Heraeus, Hanau, Germany 

 Biofuge stratos Heraeus, Hanau, Germany 

 Megafuge 1.OR Heraeus, Hanau, Germany 

 Varifuge 3.OR Heraeus, Hanau, Germany 

Deep-freezer (-70°) Hera freeze Heraeus, Hanau, Germany 

Fluorescence microscope IX50 Olympus, Tokio, Japan 

 Hg-Lamp U-RFL-T Olympus, Tokio, Japan 

 Camera Controller 
Hamamatsu Photonics, Hamamatsu, 
Japan 

 
Filtermodule improvi-
sion Orbit 

PerkinElmer, Waltham, USA 

 Hg-Lamp U-RFL-T Olympus, Tokio, Japan 

Liquid-N2-Dewar Locator 6 Plus Thermolyne, Dubuque, USA 

Freezer comfort Liebherr, Bulle, Switzerland 

Fridge profi line Liebherr, Bulle, Switzerland 

Fridge Premium Liebherr, Bulle, Switzerland 

Fridge-freezer   Liebherr, Bulle, Switzerland 

Gel documentation system  Gel Doc 2000 Bio-Rad, Munich, Germany 

Heating block Thermomixer comfort Eppendorf, Hamburg, Germany 

Heating plate CM1850 Leica, Solms, Germany 

Hypoxia worksation InVIVO400 
Ruskinn Technology, Bridgend, 
South Wales 

Incubator Hera Cell Heraeus, Hanau, Germany 

Incubator CB 210 Binder, Tuttlingen, Germany 

Isopropanol freezing box   

Laboratory dishwasher  G7783CD Mielabor Miele, Guetersloh, Germany 

Laminar airflow cabinet Hera Safe Heraeus, Hanau, Germany 

Luminometer AutoLumat plus 
Berthold Technologies, Bad Wildbad, 
Germany 
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Device Product name Manufacturer, City, Country 

Magnetic stirrer + heater MR3001 Heidolph, Schwabach, Germany 

Magnetic stirrer without heater MR3000 Heidolph, Schwabach, Germany 

Microscope Axiovert 25 Zeiss, Oberkochen, Germany 

Microwave   Whirlpool, Suttgart, Germany 

Millipore water supply Milli-Q synthesis Millipore, Darmstadt, Germany 

Mini-table-top-centrifuge Capsulefuge PMC-060 Tomtech, Carson, USA 

pH Meter pH 540 GLP WTW, Weilheim, Germany 

Photometer NanoDrop 2000c 
Thermo Fisher Scientific, Waltham, 
USA 

Platereader Safire Tecan, Maennerdorf, Switzerland 

Power supplies Power Pac 200 Bio-Rad, Munich, Germany 

 Power PAC 300 Bio-Rad, Munich, Germany 

 Power Pac 3000 Bio-Rad, Munich, Germany 

Pump CVC 2000 Vacuubrand, Wertheim, Germany 

Roller mixer RM5 Assistent 
Karl Hecht, Sondheim / Rhoen, Ger-
many 

Rotator   
Froebel Labortechnik, Lindau, Ger-
many 

Electrophoresis system Mini-Protean 3 Bio-Rad, Munich, Germany 

Shaker Duomax 1030 Heidolph, Schwabach, Germany 

 
IKA-Schüttler MTS2 
electronic 

IKA-Werke, Staufen, Germany 

 Polymax 1040 Heidolph, Schwabach, Germany 

Shaker-incubator  C24 Incubator Shaker Eppendorf, Enfield, USA 

Standdewar   KGW Isotherm, Karlsruhe, Germany 

Thermocycler PCR System 9700 
PE Applied Biosystems, Foster City, 
USA 

Thermocycler Rotor-Gene 6000 
Corbett Life Sciences, Sydney, Aus-
tralia 

UV-Stratalinker Stratalinker 1800 Stratagene, La Jolla , USA 

Vortexer Reax top Heidolph, Schwabach, Germany 

Water bath SUB Aqua Plus Grant Instruments, Cambridge, UK 

Imaging system Typhoon Trio 
GE Healthcare, Buckinghamshire, 
UK 

Water bath unknown  Memmert, Schwabach, Germany 
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3.1.3 Consumables 

Table 3: Consumables used in this study. 

Item Supplier, City, Country  

T25, T75 and T150 flasks Greiner Bio-One, Kremsmuenster, Austria 

10 and 6 cm dishes  Sarstedt, Nuembrecht, Germany 

6-, 24- and 96-well plates  Greiner Bio-One, Kremsmuenster, Austria 

2, 5, 10 and 25 ml pipettes  Sarstedt, Nuembrecht, Germany 

1.5 and 2 ml Eppendorf tubes  Sarstedt, Nuembrecht, Germany 

15 ml and 50 ml tubes  Sarstedt, Nuembrecht, Germany 

Cryovials  Greiner Bio-One, Kremsmuenster, Austria 

15-well µ-Slide  Ibidi, Planegg / Martinsried, Germany 

Nitrocellulose Protran Membrane (0.45 µM) GE Healthcare, Buckinghamshire, UK 

3.1.4 Chemicals 

Table 4: Chemicals used in this study. 

Name Supplier, City, Country 

Acetic acid  Carl Roth, Karslruhe, Germany 

Acrylamide/Bis-acrylamide, ratio 37:1 Sigma-Aldrich, St. Louis, USA 

Actinomycin D  Sigma-Aldrich, St. Louis, USA 

Adenosinetriphosphate (ATP) Sigma-Aldrich, St. Louis, USA 

Agar  Carl Roth, Karslruhe, Germany 

Agarose NEEO Ultra quality  Carl Roth, Karslruhe, Germany 

Alamar Blue  BioSource International, Camarillo, USA 

Amidoblack  Carl Roth, Karslruhe, Germany  

Ammonium persulfate (APS) Carl Roth, Karslruhe, Germany 

Ampicillin  Calbiochem, San Diego, USA 

Biotin Sigma-Aldrich, St. Louis, USA 

Bovine serum albumin  Sigma-Aldrich, St. Louis, USA 

Brilliant Blue G250 Carl Roth, Karslruhe, Germany  

Calcein AM  

(1mg/mL solution in anhydrous DMSO) 

BD Biosciences, Germany 

Calciumchlorid-Dihydrate Merck, Darmstadt, Germany 

Calcium pantothenate Sigma-Aldrich, St. Louis, USA 

Chloroform  Merck, Darmstadt, Germany  
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Name Supplier, City, Country 

Coumaric acid  Sigma-Aldrich, St. Louis, USA 

D-(+)-Glucose Sigma-Aldrich, St. Louis, USA 

DEPC  Carl Roth, Karslruhe, Germany  

Dimethylsulfoxide (DMSO) Carl Roth, Karslruhe, Germany  

Dithiothreitol (DTT) Carl Roth, Karslruhe, Germany  

Endothelial growth factor (EGF) 

(human, recombinant) 

Invitrogen, Carlsbad, USA 

Ethanol Merck, Darmstadt, Germany  

Ethidium bromide  Carl Roth, Karslruhe, Germany  

Ethylene diamine tetraacetic acid (EDTA) Carl Roth, Karslruhe, Germany 

Ethylene glycol tetraacetic acid (EGTA) Carl Roth, Karslruhe, Germany 

Formaldehyde 37%  Merck, Darmstadt, Germany  

FuGENE HD reagent Roche, Basel, Switzerland 

Glycerol  Carl Roth, Karslruhe, Germany 

Glycine Carl Roth, Karslruhe, Germany   

Hank’s balanced salt solution (HBSS) Life Technologies, Carlsbad, USA 

Hydrochloric acid  VWR, Radno, USA  

Hydrocortisone Life Technologies, Carlsbad, USA 

Hydrogen peroxide  Merck, Darmstadt, Germany  

Igepal CA-630 Sigma-Aldrich, St. Louis, USA 

Ionomycine Sigma-Aldrich, St. Louis, USA 

Isoamylalcohol  Merck, Darmstadt, Germany  

Isopropanol  VWR, Radno, USA  

Kanamycine Sulfate Calbiochem, San Diego, USA 

Lipofectamin RNAiMAX Life Technologies, Carlsbad, USA 

Lithium Chloride AppliChem, Darmstadt, Germany 

Lithium Iodide-hydrate Merck, Darmstadt, Germany 

Lucigenin Sigma-Aldrich, St. Louis, USA 

Luminol Sigma-Aldrich, St. Louis, USA 

Magnesium Carbonate Hydroxide Sigma-Aldrich, St. Louis, USA 

Magnesium Chloride-Hexahydrate Carl Roth, Karslruhe, Germany   

Magnesiumsulfat-heptahydrat AppliChem, Darmstadt, Germany 

Maleic Acid Sigma-Aldrich, St. Louis, USA 

Manganese-(II)-Chloride Merck, Darmstadt, Germany 

Matrigel, growth factor reduced  BD Biosciences, San Jose, USA 
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Name Supplier, City, Country 

N-Acetyl-Cysteine  Sigma-Aldrich, St. Louis, USA 

N-Lauryl-Sarcosine  Sigma-Aldrich, St. Louis, USA 

N-Nitro-L-Arginine  Calbiochem, San Diego, USA  

Non-fat dry milk powder  Merck, Darmstadt, Germany  

ortho-Nitrophenyl-β-galactoside (ONPG) Carl Roth, Karslruhe, Germany 

PBS-Tablettes Life Technologies, Carlsbad, USA 

Phenylmethanesulfonyl fluoride (PMSF) Sigma-Aldrich, St. Louis, USA 

Phorbol 12-Myristate 13 Acetate  Sigma-Aldrich, St. Louis, USA 

Poly-dIdC Roche, Basel, Switzerland 

Ponceau S  Carl Roth, Karslruhe, Germany 

Potassium Acetate Merck, Darmstadt, Germany 

Potassium Carbonate Merck, Darmstadt, Germany 

Potassium Chloride Merck, Darmstadt, Germany 

Potassium Dihydrogene Phosphate Merck, Darmstadt, Germany 

Potassium Hydrogencarbonate Merck, Darmstadt, Germany 

Potassium Hydroxide Carl Roth, Karslruhe, Germany   

Protease inhibitors “complete”  Roche, Basel, Switzerland 

Protein A agarose beads Roche, Basel, Switzerland 

Roti-Aqua-Phenol  Carl Roth, Karslruhe, Germany 

Rotiphorese Gel 30% Carl Roth, Karslruhe, Germany 

SDS ultra-pure  Carl Roth, Karslruhe, Germany 

Sodium acetate  Merck, Darmstadt, Germany  

Sodium chloride  Carl Roth, Karslruhe, Germany 

Sodium citrate  Carl Roth, Karslruhe, Germany 

Sodium deoxycholate Sigma-Aldrich, St. Louis, USA 

Sodium dihydrogen phosphate  Sigma-Aldrich, St. Louis, USA 

Sodium fluoride  Merck, Darmstadt, Germany  

Sodium orthovanadate  Merck, Darmstadt, Germany  

Sucrose Sigma-Aldrich, St. Louis, USA 

Sulfuric acid  Carl Roth, Karslruhe, Germany 

SYBR Green FastMix PerfeCTa  Quanta BioSciences 

TEMED  Carl Roth, Karslruhe, Germany 

Trifluoroacetic acid Sigma-Aldrich, St. Louis, USA 

TRIS ultra Carl Roth, Karslruhe, Germany   

Triton
 
X-100 Sigma-Aldrich, St. Louis, USA 
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Name Supplier, City, Country 

Trypan blue (C.I. 23850) Merck, Darmstadt, Germany 

Tryptone Carl Roth, Karslruhe, Germany   

TWEEN20 Sigma-Aldrich, St. Louis, USA 

Xylenecyanol  Carl Roth, Karslruhe, Germany 

Yeast extract  Carl Roth, Karslruhe, Germany 

β-Mercaptoethanol  Carl Roth, Karslruhe, Germany 

3.1.5 Buffers, solutions and media 

All solutions were prepared with double distilled water if not otherwise stated. 

3.1.5.1 Cell culture 

Table 5: Cell culture media and additives used in this study. 

Cell culture media and additives  Supplier, City, Country  

Dulbecco's Modified Eagle’s Medium (DMEM) 

          High glucose (4.5 mg/ml) 

          Low glucose (1.5 mg/ml) 

PAA, Pasching, Austria 

Dulbecco's Modified Eagle Medium: Nutrient Mixture 

F-12 (DMEM/F12) 

Life Technologies, Carlsbad, USA 

MCDB 131 PAA, Pasching, Austria 

RPMI 1640 PAA, Pasching, Austria 

SmGM-2 BulletKit Lonza, Basel, Switzerland 

Fetal calf serum (FCS) PAN Biotech, Aidenbach,  Germany 

Endothelial basal Medium PAA, Pasching, Austria 

Penicillin /Streptomycin  PAA, Pasching, Austria 

Trypsin-EDTA  PAA, Pasching, Austria 

PBS PAA, Pasching, Austria 

HBSS with Mg/Ca PAA, Pasching, Austria 

Cell lysis buffer  

Tris pH 7.5 50 mM 

NaCl 150 mM 

SDS 0.1% 

Igepal 1% 

Sodium-Deoxycholate 0.5% 

Protease Inhibitors 1 tablet per 50 ml 
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3.1.5.2 Luciferase assay solutions 

Luciferase lysis buffer 

Tris pH 7.8 5 mM 

trans-CDTA 0.4 mM 

Glycerol 50% 

DTT 2 mM 
Triton X-100 5% 
DTT and Triton X-100 are added freshly after autoclaving  

Luciferase substrate 

Tris pH 7.8 20 mM 

(MgCO3)4 Mg(OH)2 5H2O  1.07 mM 

MgSO4 2.67 mM 

EDTA  0.1 mM 

DTT  33.3 mM 

D-Luciferin  460 mM 

ATP  580 mM 

β-Galactosidase substrate 

MgCl2 1.1 mM 

ONPG 1 mg/ml 

Na2HPO4 82 mM 

NaH2PO4 18 mM 

β-Mercaptoethanol 50 mM 

3.1.5.3 Western Blot 

Separation gel 

 8%   10%  12% 

H2O 3.4 ml  2.8 ml  2.1 ml 

30% Acrylamid / 0.8% Bisacrylamid  2.7 ml  3.3 ml  4.0 ml 

1 M Tris HCl pH 8.8 3.7 ml  3.7 ml  3.7 ml 

10% SDS  100 µl  100 µl  100 µl 

10% Ammoniumpersulfate  80 µl  80 µl  80 µl 

TEMED 10 µl  10 µl  10 µl 

Stacking gel (5%) 

H2O  2.14 ml 

30% Acrylamide 488 µl 

1 M Tris/HCl pH 6.8  375 µl 

10% SDS 30 µl 

10% APS 15 µl 

TEMED  3 µl 
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Laemmli buffer (3x) 

Tris/HCl pH 6.8 187 mM 

SDS 6% 

Glycerol 30% 

Bromphenol blue 0.06% 

DTT 15 mM 

EDTA 60 mM 

Running buffer 

Tris 25 mM 

Glycin 200 mM 

SDS 0.5% 

Transfer buffer 

Tris 25 mM 

Glycin 200 mM 

Methanol 20% 

Stripping buffer 

SDS 2% 

Tris pH 6.8 62.5 mM 

β-Mercaptoethanol 0.07% 

TBS-T 

Tris 50 mM 

NaCl 150 mM 

HCl 0.3% 

Tween 0.3% 

pH was set to 7.5  

ECL-Chemoluminescence reagent 1 

Tris pH 8.8 100 mM 

Luminol 2,5 mM 

Cumaric acid 0,4 mM 

ECL-Chemoluminescence reagent 2 

Tris pH 8.8 100 mM 

H2O2 0.15% 
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3.1.5.4 Cultivation of E. coli 

TB medium 

HEPES 10 mM 

CaCl2 15 mM 

KCl2 250 mM 

The solution was adjusted to pH 6.7 with KOH and MnCl2 was added to a final concentra-

tion of 55 mM. The solution was then sterile filtered and stored at 4°C.  

SOC medium 

Yeast Extract  0.5% 

Trypton  2% 

NaCl  0.05% 

KCl 2.5 mM 

The solution was adjusted to pH 7.0 and then autoclaved with a subsequent addition of 

20 ml of glucose (1 M, final concentration 5 mM) and 5 ml MgCl2 (2 M, final concentration 

0.5 mM).  

LB Medium 

Yeast Extract 0.5% 

Trypton  1% 

NaCl  1% 

The solution was adjusted to pH 7.0 and then autoclaved 

LB Agar plates 

Agar  1.5% 

LB Medium 98.5% 

The solution was autoclaved and cooled down; required antibiotic was added at approxi-

mately 60°C (ampicillin 100 µg/ml, kanamycin 100 µg/ml). The solution was mixed and filled 

to appropriate dishes. 
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3.1.6 Plasmid preparation (mini) 

P1 

Tris 50 mM 

EDTA 10 mM 

The solution was adjusted to pH 8.0 

P2 

NaOH 200 mM 

SDS 1.0% 

P3 

Na-Acetate pH 5.5 3.1 M 

3.1.6.1 Agarose gel electrophoresis 

TAE buffer 

Tris 0.5 M 

Sodiumacetate 0.2 M 

EDTA 0.02 M 

The solution was adjusted to pH 7.0 using acetic acid 

Orange G loading buffer 

Glycerol 7.5% 

Orange G dye 0.2% 

 

3.1.6.2 Co-IP buffers 

Non-denaturating lysis buffer  

Tris-HCl pH 7.4 50 mM 

NaCl 300 mM 

EDTA 5 mM 

TritonX-100 1% 

complete protease inhibitors  

Washing buffer 

Tris-HCl, pH 7.4 50 mM 

NaCl 300 mM 

EDTA 5 mM 

TritonX-100 0.1% 
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3.1.6.3 EMSA reaction buffer 

Tris/HCl pH 7.5 10 mM 

KCl 50 mM 

NaCl 50 mM 

MgCl2 1 mM 

EDTA 1 mM 

Glycerol 5% 

 

3.1.7 Primers and probes 

Primers were designed either with the primer3 online algorithm or adapted from Uni-

versal Probe Library. Uniqueness in the human genome was rechecked by BLAT 

analysis against NCBI build 36.1. Oligonucleotides were purchased from metabion, 

Planegg, Germany. 

Table 6: Primers and probes used in this study. 

Name ID Sequence (5´-3´) 

PAIpro fw2 oFR003 CAGAGGGCAGAAAGGTCAAG 

PAIpro rev2 oFR004 CTCTCTGGGACTTGCTGAGG 

NMfw2 oFR005 GATGGCCCTTCAGCCAAC 

hPAI1-RT fw oFR079 CACAAATCAGACGGCAGCACT 

hPAI1-RT rev oFR080 CATCGGGCGTGGTGAACTC 

hHIF1A-RT fwd oFR083 GAAGACATCGCGGGGAC 

hHIF1A-RT rev oFR084 TGGCTGCATCTCGAGACTTT 

hHIF3A-RT rev1 oFR090 AGCACCTCGGTCTCCTGGCTGC 

hHIF3A1-RT fw2 oFR091 CCCACTCCTGAACCTGAATG 

hHIF3A1-RT rev2 oFR092 GGCAGATGGGGAGAGGAG 

hHIF3A3-RT fw oFR095 CTCAGCCTGGTGTGTTGGG 

hHIF3A3-RT rev oFR096 CCTGCCCCTCTCTGGTTTCC 

hHIF3A-RT fw1 oFR097 ACTGTGACGACAGGATTGCAG 

hHIF3ABC-RT rev oFR098 CATGTGGCAGCTGGCTTCGCAC 

hHIF3A-RT fw3 oFR100 GCCTGGACATGAAGTTCACC 

hHIF3A-RT rev3 oFR101 GTACTCGTAGGCGGAACAGC 

h18S-RT fw oFR118 GTAACCCGTTGAACCCCATT 

h18S-RT rev oFR119 CCATCCAATCGGTAGTAGCG 

hPGK1-RT fw oFR168 CTGTGGCTTCTGGCATACCT 

hPGK1-RT rev oFR169 CGAGTGACAGCCTCAGCATA 

hEPAS1-RT fw oFR170 GACATGAAGTTCACCTACTGTGATG 

hEPAS1-RT rev oFR171 GCGCATGGTAGAATTCATAGG 

hACTB-RT fw3 oFR174 GTTGTCGACGACGAGCG 
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Name ID Sequence (5´-3´) 

hACTB-RT rev3 oFR175 GCACAGAGCCTCGCCTT 

hEGLN3-RT fw oFR180 ATCGACAGGCTGGTCCTCTA 

hEGLN3-RT rev oFR181 GATAGCAAGCCACCATTGC 

hCD82-RT for oFR214 TGCACTGGTTTCGTGGAAG 

hCD82-RT rev oFR215 TGGTGACTTTGATACAGGCTGA 

hHIF3A 1c EpiQ fw oFR216 TGAGGGAAAAGGGCAGAGGAGGTGA 

hHIF3A 1c EpiQ rev oFR217 GTCTTGCCAGTCCATGGTGCCTCTG 

hHIF3Apro1aChIP fw oFR222 AGTACTGGCGTTGGCACTTC 

hHIF3Apro1aChIP rev oFR223 ACTTCCTCGGCAGTGTATCC 

hHIF3Apro1cChIP fw oFR224 CGAGTCACCACCAGTGAATG 

hHIF3Apro1cChIP rev oFR225 TGGTACAGCACCTCGGTCTC 

hHIF3A 1a EpiQ fw oFR226 GCGTTGGCACTTCAGAGGCTGGACT 

hHIF3A 1a EpiQ rev oFR227 GAGCCCTCGGAGGCCCCTAGCC 

hUntr4 fw oFR228 CTCCCTCCTGTGCTTCTCAG 

hUntr4 rev oFR229 AATGAACGTGTCTCCCAGAA 

PAI1-HREwt, sense  Cy5-TCTTACACACGTACACACA 

PAI1-HREmut, sense  Cy3-TCTTACACACGTACACACA 

RHO EpiQ fw  AGGTCACTTTATAAGGGTCTGGGGG 

RHO EpiQ rev  AGTTGATGGGGAAGCCCAGCACGAT 

GAPDH EpiQ fw  ACCTCCCATCGGGCCAATCTCAGTC 

GAPDH EpiQ rev  GGCTGACTGTCGAACAGGAGGAGCA 

hHIF3Apro1aBS fw  AGAGGTTGGATTAGAGAAGG 

hHIF3Apro1aBS rev  CAATTCCCAAAACTCCTACC 

hHIF3Apro1cBS-1 fw  AGAGGTTGGATTAGAGAAGG 

hHIF3Apro1cBS-1 rev  AAACCCTTCCTAACCCTAATTTT 

hHIF3Apro1cBS-2 fw  TAATATATTTATTGGGAGGTTG 

hHIF3Apro1cBS-2 fw  CAAAACCTCCCAAAAAATAAC 

3.1.8 Plasmids 

Table 7: Plasmids and vectors used in this study. 

Cloning vectors Function Reference 

pGL3-Basic Luciferase assay Promega, Mannheim, Germany 

pGL3-Promoter Luciferase assay Promega, Mannheim, Germany 

pSV-β-Galactosidase Control Vector 

plasmid  

Luciferase assay Promega, Mannheim, Germany 

pGL3-hPAI-796 Luciferase assay (Kietzmann et al. 2003) 

pGL3-EPO-HRE Luciferase assay (Görlach et al. 2001) 

pcDNA3.1- Cloning  Life Technologies, Carlsbad, USA 

pcDNA3.1D/ V5-His-hHIF-1α Overexpression (Klein et al. 2008) 
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Cloning vectors Function Reference 

pcDNA3.1-HIF-2α Overexpression Kind gift of Prof. T. Kietzmann 

pcDNA3.1-HIF-3α1 Overexpression PhD thesis Steve Bonello 

pcDNA3.1-HIF-3α1-V5 Overexpression PhD thesis Steve Bonello 

pcDNA3.1-ARNT Overexpression Kind gift of Prof. T. Kietzmann 

3.1.9 siRNA 

Table 8: siRNA used in this study. 

Target Company target-sequence 

None (control) Eurogentec gacuacuggucguugaagudTdT 

HIF1A Eurogentec ucaaguugcuggucaucagdTdT 
targeting 1543 to 1561 bp of the human HIF1A 
mRNA (NCBI accession number NM_001530) 

HIF2A Qiagen cggauagacuuauugccaadTdT 
targeting 4742 to 4760 bp of the human HIF2A 
mRNA (NCBI accession number NM_001430) 

HIF3A Invitrogen ccugugaccaagaggagcuucagga 
targeting 447 to 471 bp of the human HIF3A 
mRNA (NCBI accession number NM_152794) 

3.1.10 Bacterial strains 

Table 9: bacterial strains used in this study 

E.coli strain Supplier, City, Country 

DH5α Invitrogen, Carlsbad, USA 

XL-1 Blue Agilent Technologies, Santa Clara, USA 

JM109 Sigma-Aldrich, St. Louis, USA 

See manufacturer´s manuals for genotypes. 
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3.1.11 Kits 

Table 10: Kits used in this study 

Name Company , City, Country 

ABI PRISM BigDye Terminator v1.1 Cycle Sequencing 

Kit 

Applied Biosystems, Carlsbad, USA 

BrdU proliferation assay  Roche, Basel, Switzerland  

Nucleo Seq sequencing clean-up kit  Macherey-Nagel, Dueren, Germany  

RNeasy Mini Kit Qiagen, Hilden, Germany 

Qiagen Plasmid Maxi Kit  Qiagen, Hilden, Germany 

SuperScriptIII Reverse Transcriptase Invitrogen, Carlsbad, USA 

Phusion High-Fidelity DNA Polymerase New England Biolabs, Frankfurt am 
Main, Germany 

High Capacity cDNA Reverse Transcription Kit  Applied Biosystems, Carlsbad, USA 

TnT T7 Quick Coupled Transcription/Translation 

System 

Promega, Mannheim, Germany 

StrataClone PCR Cloning Kit Agilent Technologies, Santa Clara, USA 

EpiQ chromatin analysis kit Bio-Rad, Munich, Germany 

NucleoSpin Tissue kit  Macherey-Nagel, Germany, Dueren 

EZ DNA Methylation-Gold kit Zymo Research, Germany, Freiburg 

HotStarTaq Master Mix Kit Qiagen, Hilden, Germany 

Cancer Survey cDNA Array 96 - I OriGene, Rockville, USA 
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3.1.12 Antibodies 

Table 11: Antibodies used in this study. 

Antigen Host, isotyp, modifi-
cation 

Supplier, city, country Dilution 

β-Actin goat, IgG Santa Cruz Biotechnology, Heidel-
berg, Germany  

1:1000 

HIF-1α mouse, IgG BD Transduction Laboratories, Hei-
delberg, Germany  

1:1000 

HIF-2α mouse, IgG Merck Chemicals, Schwalbach, Ger-
many 

1:1000 

HIF-3α Rabbit IgG Abcam, Cambridge, UK 1:1000 

ARNT Rabbit IgG Abcam, Cambridge, UK 1:2000 

V5 mouse, IgG Invitrogen, Carlsbad, USA 1:5000 

PAI-1 Maus, IgG American Diagnostica, Pfungstadt, 
Germany 

1:200 

goat, IgG rabbit, IgG, Peroxidase Calbiochem, San Diego, USA 1:10000 

Mouse IgG Rabbit IgG, peroxidase Calbiochem, San Diego, USA 1:10000 

rabbit, IgG goat, IgG, Peroxidase Calbiochem, San Diego, USA 1:10000 

PAI-1  
(inhibitory) 

Mouse IgG MyBioSource, San Diego, USA 1 µg/ml 

unspecific mouse IgG1, monoclonal Abcam, Cambridge, UK 1 µg/ml 

H3Ac Rabbit, polyclonal Merck, Darmstadt, Germany Millipore  

H3K9me3 Mouse IgG2b, monoclo-
nal 

Active motif, La Hulpe, Belgium  

3.1.13 Software 

Table 12: Software used in this study. 

Software Version Manufacturer Used for 

Image J software 1.43b Wright Cell Imaging Facility, 
Toronto, Canada 

Analysis of tube formation 

Rotor-Gene 6000 

Application Software 

1.7  Corbett Life Sciences, Syd-
ney, Australia 

Analysis of qPCR data 

Openlab Modular 

Software  

4.0.4 
PerkinElmer, Waltham, USA 

Capturing images from micro-
scope 

BiQ Analyzer  Max-Planck-Institute for In-
formatics, Saarbruecken, 
Germany 

visualization and quality control 
for DNA methylation data from 
bisulfite sequencing 

Adobe Photoshop  CS2 Adobe Systems, Munich, 
Germany 

Editing of captured images from 
microscopy and western blot 

ApE (A plasmid  

Editor) 

2.0.36 M. Wayne Davis DNA sequence analysis soft-
ware 

Microsoft Office 2007 Microsoft, Unterschleissheim, 
Germany 

Documentation 

Nanodrop Software 3.2.1 PEQLAB Biotechnologie, 
Erlangen, Germany 

Determination of DNA and RNA 
concentration 
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Software Version Manufacturer Used for 

Image lab software 
 

Bio-Rad, Munich, Germany Capturing images from agarose 
gels on UV transluminator 

ImageQuantTL  GE Healthcare, Bucking-
hamshire, UK 

Analysis of images captured by 
Typhoon Trio instrument 

Inkscape 0.47 Open Source Software Creating vector images 

REST 2009 1 M. Pfaffl (Technical Universi-
ty Munich) and QIAGEN 

gene expression analysis 

GraphPad Prism 4 GraphPad Software, Inc. 2D graphing and statistics 

3.1.14 Online databases and algorithms 

Table 13: Online databases and algorithms used in this study. 

Name URL Reference 

Blast: the Basic Local 

Alignment Search Tool 

http://blast.ncbi.nlm.nih.gov/Blast.cgi (Altschul et al. 1990) 

BLAT (BLAST-like alignment 

tool) 

https://genome.ucsc.edu/cgi-
bin/hgBlat?command=start 

(Kent 2002) 

ClustalW2 http://www.ebi.ac.uk/Tools/msa/clustalw2/ (Thompson et al. 
2002) 

RefSeq: NCBI Reference 

Sequence Database 

http://www.ncbi.nlm.nih.gov/refseq/ (Pruitt et al. 2007) 

Primer3web (version 4.0.0) http://primer3.ut.ee/ (Rozen and 
Skaletsky 2000) 

UCSC Genome Browser http://genome.ucsc.edu/ (Kuhn et al. 2009) 

3.2 Methods 

3.2.1 Cell Culture 

 HMEC-1 (Human microvascular endothelial cells) cell line was obtained from the 

Center for Disease Control at passage 12, and used before passage 25. Cells were 

grown in Endothelial Basal Medium - MCDB 131 supplemented with 10% fetal calf 

serum, 100 U/ml penicillin, 100 µg/ml streptomycin, 1 µg/ml hydrocortisone and 

10 ng/ml human recombinant endothelial growth factor. Cells were cultivated accord-

ing to manufacturer’s instructions and placed with endothelial basal medium supple-

mented with 2% fetal calf serum 16 hours prior to stimulation.  

HeLa cells were cultured according to manufacturer’s instructions in Dulbecco's Mod-

ified Eagle's Medium (DMEM) supplemented with 4.5 g/l glucose, 10% fetal calf se-

rum, 100 U/ml penicillin, and 100 mg/ml streptomycin.  
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MCF7 cells were cultured according to manufacturer’s instructions in RPMI 1640 

medium supplemented with 10% fetal calf serum, 100 U/ml penicillin, and 100 mg/ml 

streptomycin.  

SGBS preadipocytes were cultured in DMEM/F-12 containing 10% fetal calf serum, 

33 µM biotin, 17 µM pantothenate, 100 U/ml penicillin and 100 µg/ml streptomycin. 

PASMC cells were cultured according to manufacturer’s instructions in SmGM-2 Bul-

letKit (SMBM plus SmGM-2 SingleQuots). 

DU145 and LNCaP cells were cultured in high glucose DMEM and RPMI 1640 medi-

um, respectively, which were supplemented with 10% fetal calf serum, 100 U/ml pen-

icillin, and 100 mg/ml streptomycin. 

For luciferase and coimmunoprecipitation assays human embryonic kidney cells 

(HEK293T) were used. HEK293T cells were cultured in Dulbecco's Modified Eagle's 

Medium - DMEM supplemented with 4.5 g/l glucose, 10% fetal calf serum, 100 U/ml 

penicillin, and 100 mg/ml streptomycin. All cells were grown at 37°C under an atmos-

phere of 5% carbon dioxide. If stated that hypoxic induction was carried out, cells 

were exposed to hypoxia (0.1-10% O2 and 5% CO2) in a Hypoxia work station. 

3.2.2 Reporter Gene Assays 

HEK293T cells grown to 50-70% confluency in 24-well plates were transiently co-

transfected with 400 ng of overexpression constructs, 50 ng of the reporter con-

structs and 50 ng of pSV-β-galactosidase control vector plasmid. Transfection with 

the host vector (pGL3basic or pGL3promoter) served as a control. The transfected 

cells were incubated for 16 hours either at 0.1 or 21% oxygen prior to lysis in Lucifer-

ase Lysis Buffer. Luciferase activities were measured in a luminometer and 

β-galactosidase activities were determined spectrophotometrically as described in 

the manufacturer’s protocol. Data are presented as relative light units (RLU) normal-

ized to β-galactosidase activities for the control of transfection efficiencies. 

The pGL3-hPAI-796 plasmid, containing the human PAI1 gene promoter 5′-flanking 

region from −796 to +13 as well as the pGL3-EPO-HRE plasmid have been de-

scribed previously (Görlach et al. 2001; Kietzmann et al. 2003). 
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3.2.3 Quantitative Reverse-Transcriptase Polymerase Chain Reaction  

Total RNA was isolated by the use of RNeasy Mini Kit according to the manufactur-

er’s protocol. First-strand cDNA synthesis was performed with 1 µg of total RNA us-

ing High Capacity cDNA Reverse Transcription Kit according to manufacturer’s 

instructions. Two percent of the volumes of the reaction products were used for 

quantitative real time PCR amplification with PerfeCTa SYBR Green FastMix. qPCR 

was performed in a Rotor-Gene 6000 Real-Time PCR System using gene-specific 

primers for the quantitative Reverse-Transcriptase Polymerase Chain Reaction (RT-

qPCR) listed as follows (detailed sequence information can be found in chapter 

3.1.7): HIF3A consensus (HIF3Atv1-4); HIF3Atv1 (NM_152794); HIF3Atv2 

(NM_022462); HIF3Atv3 (NM_152795); HIF3AtvBC (BC_026308); HIF1A 

(NM_001530); HIF2A (NM_001430); PGK1 (NM_000291); EGLN3 (NM_022073); 

CD82 (NM_002231); PAI1 (NM_ 000602); ACTB (NM_001101); 18S rRNA 

(X03205).The samples were loaded in triplicate for each primer pair, and the result of 

each sample was normalized to ACTB mRNA. Fold-change was calculated as a ratio 

of treatment over control (Ctr) with “comparative quantification” module of REST 

software. Agarose DNA gels were run and/or melting curve analysis was performed 

to verify the absence of non-specific products. A negative control without addition of 

reverse transcriptase was run in each assay to assess the overall specificity. All data 

was analyzed by the Corbett Rotor-Gene 6000 application software with subsequent 

calculation of relative change by REST software.  

3.2.4 Chromatin accessibility assay 

Chromatin accessibility assay was done using the EpiQ chromatin analysis kit ac-

cording to manufacturer’s instruction. In brief, chromatin was digested with DNaseI or 

not, before genomic DNA was prepared. Samples were analyzed using qPCR per-

formed in a Rotor-Gene 6000 Real-Time PCR System. Following primers were used 

(detailed sequence information can be found in chapter 3.1.7): Reference gene RHO; 

control gene GAPDH; HIF3A E1a; HIF3A E1c. By comparing the amount of digested 

versus undigested DNA material of two regions of the HIF3A promoter, the accessi-

bility of these areas was calculated. 
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3.2.5 Bisulfite sequencing 

DNA was extracted from HeLa, MCF7 and HMEC-1 cells using NucleoSpin Tissue 

kit. 1.5 µg of DNA was treated with bisulfite solution derived from EZ DNA Methyla-

tion-Gold kit under the following conditions: 98°C for 10 min, 64°C for 180 minutes, 

thereby converting cytosine residues to uracil, but leaving 5-methylcytosine residues 

unaffected. Converted DNA was purified according to the manufacturer's instructions 

and 1/20th was used per amplification of the regions covering exon 1a or exon 1c. 

PCRs were performed in PCR buffer with the addition of 200 µM betaine, 400 µM 

tetramethyl ammonium chloride 0.25 mM dNTPs, 0.1 unit/µl HotStarTaq DNA Poly-

merase, 0.6 µM each primer. Following primers were used: hHIF3Apro1cBS-1 fw and 

hHIF3Apro1aBS rev; hHIF3Apro1cBS-1 fw and hHIF3Apro1cBS-1 rev as well as 

hHIF3Apro1cBS-2 fw and hHIF3Apro1cBS-2 rev. Cycling parameters were 5 min at 

96°C, 55x (30 s at 96°C, 35 s at 54°C, 30 s at 72°C), 3 min at 72°C. PCR products 

were subcloned with StrataClone PCR Cloning Kit and the inserts were sequenced. 

Resulting sequences were analyzed with BiQ Analyzer (Bock et al. 2005). 

3.2.6 Plasmids and transfections 

The plasmid encoding V5-tagged HIF-1α (pcDNA3.1D/V5-His-hHIF-1α) and ARNT 

(pcDNA3.1-ARNT) were kindly provided by Prof. T. Kietzmann (Klein et al. 2008). 

pcDNA3.1-HIF-2α was also a kind gift of Prof. T. Kietzmann. pcDNA3.1-HIF-3α1 and 

pcDNA3.1-HIF-3α1-V5 expression vectors were previously described (PhD thesis 

Steve Bonello). The expression vector pcDNA3.1-ARNT was a kind donation from 

Prof. T. Kietzmann, Oulu, Finland. 

For transfection, cells were plated to a density of 50-70%, cultured for 24 hours and 

transfected by FuGENE HD reagent according to the manufacturer's protocol. In 

brief, cells were freshly plated one day before transfection. Plasmid DNA and 

FuGENE HD was mixed in serum free medium in a ratio of 2:6 and incubated for 15 

minutes at room temperature before added to the cells, which were incubated 16-72 

hours before starting the experiment. 

For gene silencing, following siRNAs were purchased from Eurogentec (Belgium): 

siHIF1A, siHIF2A and siHIF3A. As a negative control, we used siRNA with unspecific 
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sequence (labeled with siCtr). Cells were transfected with the siRNAs (10 nM final 

concentration) using Lipofectamin RNAiMAX according to the supplier’s protocol. In 

brief, cells were seeded to 50-70% 24 hours before transfection. Then, Lipofectamin 

and siRNA are diluted separately in serum free medium and mixed before incubated 

for 5 minutes at room temperature. With a final concentration of 20 nM siRNA, per 

pmol of siRNA 0.3 µl Lipofectamine was used. Efficiency was tested by qPCR and 

ranged from 65-95%.  

3.2.7 Immunoblot Analysis 

Proteins were isolated from total cellular lysates as previously described (Bonello et 

al. 2007). In brief, cells were washed with cold TBS, put on ice and 3x Laemmli buffer 

was added, before cells were collected and transferred to a reaction tube. Subse-

quently, tubes were put on heating block (95°C for 5 minutes) before protein concen-

tration of lysates were assessed by dot blot counterstained with amido black solution. 

Western blot analyses were performed as previously described (Görlach et al. 2001). 

In brief, 40 µg of isolated proteins was separated by SDS-PAGE and transferred to 

nitrocellulose membranes by tank blot. Next, membranes were blocked with 5% 

milk/TBS-T for 30 minutes on room temperature. For the subsequent immunodetec-

tion, following primary antibodies were used in the dilution 1:1000 in 5% milk/TBS-T: 

anti-HIF-1α, anti-HIF-2α, anti-HIF-3α antibody, anti-PAI-1 antibody, anti-ARNT, and 

anti-β-actin. Incubation with antibody was done for 16 hours at 4°C; afterwards, 

membranes were washed with TBS-T three times for 10 minutes. Incubation with a 

horseradish peroxidase–conjugated secondary antibody laster 30 minutes on room 

temperature before washed again three times for 10 minutes with TBS-T. Finally, 

membrane was rinsed with TBS and proteins were visualized applying luminol-

enhanced chemiluminescence technique monitored by X-ray film. Films were devel-

oped, scanned and analyzed by using Image J software. 

3.2.8 Angiogenesis Assay 

HMEC-1 were transfected with siRNA or scrambled RNA as specified, incubated un-

der normoxic or hypoxic conditions (21% and 0.1% oxygen, respectively) for 48 
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hours and supernatans were collected. Collected supernatants were used for stimu-

lation of HMEC-1, which were previously seeded (5000 cells/well) on growth factor 

reduced Matrigel in 15-well µ-Slide. As specified by experimental design, medium of 

one group of cells was incubated with 1 µg/ml of an inhibitory monoclonal mouse an-

ti-PAI-1 antibody or mouse IgG1 monoclonal antibody or not. Cells were then incu-

bated for 16 hours at 37°C and counterstained using Calcein AM (final concentration 

6.25 µg/ml) (BD Biosciences, Germany). The formation of capillary-like structures 

was assessed by fluorescence microscopy using the Openlab Modular Software for 

Scientific Imaging and was quantified using Image J software (Schneider et al. 2012).  

3.2.9 Co-Immunoprecipitation 

HEK293T or HMEC-1 cells were cotransfected with expression vectors endcoding for 

V5-tagged HIF-3α1 and either HIF-2α or ARNT and exposed to hypoxia (0.1% oxy-

gen). After lysis with nondenaturing lysis buffer, cells were precleared with protein A 

agarose beads, and subsequently incubated with protein A agarose beads bound to 

anti-V5 antibody, anti-ARNT antibody, or nonspecific purified mouse immunoglobu-

lin G (IgG) for overnight at 4°C. Antibody-protein complexes were washed four times 

with washing buffer and once with phosphate-buffered saline and eluted with SDS-

PAGE sample buffer. Precipitated proteins were detected by Western blot analysis 

using specific antibodies. 

3.2.10 In vitro Translation and Electrophoretic Mobility Shift Assay 

In vitro transcription/translation was carried out with TnT T7 Quick Coupled Tran-

scription/Translation System according to manufacturer´s protocol. Electrophoretic 

mobility shift assays (EMSA) were carried out with in vitro translated proteins, prein-

cubated with poly-dIdC and DTT for 10 minutes at room temperature in a 1x reaction 

buffer. Fluorescently labeled oligonucleotides were annealed by mixing sense and 

antisense primers, heating the mixture (5 minutes at 98°C) and slow cooling down to 

roomtemperature (simply by switching of the heat block, leaving the tubes in there). 

The annealed probe was added to the protein mixture and incubated at room tem-

perature for 20 minutes. The samples were run for 4 hours on a non-denaturing 0.4% 
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agarose gel at room temperature. Gels were subsequently scanned for fluorescence 

on a Typhoo Trio instrument. The following probes with the HIF response elements in 

the PAI1 promoter were used: PAI1-HREwt and PAI1-HREmut.  

3.2.11 Chromatin Immunoprecipitation 

HeLa, MCF7 and HMEC-1 cells were grown in 10 or 15 cm dishes to 70% confluency 

and either incubated at ambient conditions for 48 hours or exposed to hypoxia 

(0.1% oxygen) for 48 hours. Cells were fixed with formaldehyde, lysed, and sonicated 

to obtain DNA fragments majorly ranging from 500 to 1000 bp. Chromatin was then 

precipitated with an antibodies against acetylated histone 3 (H3Ac), trimethylateded 

lysine 9 of histone 3 (H3K9me3), HIF-2α, or ARNT for overnight at 4°C. Real-time 

PCR was performed using a Rotor-Gene 6000 Real-Time PCR System with following 

primers. HIF3A exon 1a: hHIF3Apro1aChIP fw and hHIF3Apro1aChIP rev; HIF3A 

exon 1c: hHIF3Apro1cChIP fw and hHIF3Apro1cChIP rev; PAI1 promoter (flanking 

the potential HRE -188/-193 bp): PAIpro fw2 and PAIpro rev2. A gene-deficient re-

gion on chromosome 4 (Untr4) served as a negative control (hUntr4 fw and hUntr4 

rev). As background control, chromatin immunoprecipitation (ChIP) with isotype con-

trol antibody (IgG) was performed. Quantification was performed using a standard 

curve of the input. H3Ac, H3K9me3, HIF-2α or ARNT binding to chromatin was re-

vealed after background subtraction as relative amount of the input used. 

3.3 Statistical Analysis 

If not otherwise stated, values are presented as means ± SD. Results from all exper-

iments except gene expression analysis via qPCR were compared by two-way 

ANOVA for repeated measurements followed by Student t test. p < 0.05 was consid-

ered statistically significant. The calculation was done with the GraphPad Prism soft-

ware. For relative gene expression, investigated transcripts are tested for 

significance by a Pair Wise Fixed Reallocation Randomisation Test and plotted using 

standard error (SE) estimation. This calculation was done with the REST (relative 

expression software tool) software. Again, p < 0.05 was considered statistically signif-

icant. 
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4 Results 

4.1 Regulation of HIF3A transcription at ambient conditions 

4.1.1 HIF3A expression levels differs in various cell lines 

In order to investigate the regulation of expression of the HIF3A gene, coding for 

HIF-3α protein, we analyzed basal transcription levels of expression of a consensus 

sequence in the following cell lines: HeLa (human epithelial cervix carcinoma cells), 

MCF7 (human epithelial adenocarcinoma cells), HMEC-1 (human immortalized mi-

crovascular endothelial cells), PASMC (human primary pulmonary artery smooth 

muscle cells), SGBS preadipocytes, LNCaP (human prostate adenocarcinoma cells), 

DU145 (human prostate cancer cells), and HEK293T (human embryonic kidney 

cells). In addition, we investigated the levels of different transcript variants (tv) of 

HIF3A as follows in HMEC-1, HeLa and MCF7 cells: HIF3Atv1 (RefSeq accession 

number: NM_152794); HIF3Atv2 (NM_022462); HIF3Atv3 (NM_152795) and 

HIF3AtvBC (GenBank accession number: BC_026308) (compare Figure 11A). Cells 

were analyzed for levels of HIF3A isoforms by RT-qPCR in unstimulated conditions 

48 hours after plating.  

The evaluation of HIF3A consensus levels revealed two groups of cell lines: one 

group with low basal expression (HeLa, MCF7, LNCaP, DU145, and HEK293T) and 

one group with high basal expression of HIF3A transcripts (HMEC-1, PASMC and 

SGBS) (Figure 11B). The relative difference in HIF3A transcripts between these 

groups was quantified with more than 1000-fold. 

Detailed analyses of specific transcript variants were carried out only in cell lines 

HeLa, MCF7 and HMEC-1, which were also used for all subsequent experiments. All 

four distinct transcripts (HIF3Atv1, HIF3Atv2, HIF3Atv3, and HIF3AtvBC) were highly 

expressed in HMEC-1 cells while overall HIF3A transcript levels were lower in the 

two tumor cell lines as already shown by RT-qPCR amplifying the HIF3A consensus 

sequence (Figure 11 B-F). Consistently, HeLa cells expressed lower levels of 

isoforms 1, 2 and BC when compared to endothelial cells while we were not able to 
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detect isoform 3 (Figure 11 B-F). Similarly, in MCF7 cells HIF3Atv1 and HIF3Atv2 

expression was lower compared to HMEC-1 cells while HIF3Atv3 and HIF3AtvBC 

levels were not detectable (Figure 11 B-F). Overall, our results indicate a different 

regulation of basal HIF3A transcription in different cell lines. 

Figure 11: Basal ex-

pression of HIF3A 

isoforms varies in dif-

ferent cell lines. 
(A) Schematic overview of 

HIF3A locus and tran-

scripts. Coding regions 

are indicated in light grey. 

Opposing arrows in 

schemes represent posi-

tion of sense and anti-

sense primers, 

respectively. (B-F) HeLa, 

MCF7, HMEC-1, PASMC. 

SGBS preadipocytes, 

LNCaP, DU145 and 

HEK293T cells were kept 

under ambient conditions 

for 48 hours, before RNA 

was isolated and ana-

lyzed by RT-qPCR. In 

addition to levels of HIF3A 

consensus sequence (B), 

also individual expression 

levels of HIF3Atv1 (C), 

HIF3Atv2 (D), HIF3Atv3 

(E) and HIF3AtvBC (F) in 

HeLa, MCF7 and 

HMEC-1 were assessed. 

Values are displayed as 

ratio to 18S rRNA. (n.d.: 

not detected, n = 4) 
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4.1.2 HIF3A promoter is inaccessible in MCF7  

Variations of transcript levels are often associated with differences in chromatin ac-

cessibility. Therefore, we determined the DNAseI sensitivity (and thus the accessibil-

ity) of the HIF3A promoter regions in the different cell lines giving rise to the different 

splice variants. Due to the proximity of exons 1a and 1b (distance 1300 bp), we only 

could distinguish between a distal region upstream of both, exon 1a and 1b, and a 

proximal region upstream of exon 1c, which is located more than 5 kb downstream of 

exon 1b. The accessibility of both HIF3A promoter regions was significantly higher in 

HMEC-1 cells compared to the tumor cell lines HeLa and MCF7. However, while 

HeLa cells still showed intermediate accessibility to both promoter regions (25% and 

39%), HIF3A promoter accessibility was lowest in MCF7 cells (14% and 7%) 

(Figure 12). As control we assessed promoter accessibility of both the highly acces-

sible housekeeping gene glycerol aldehyde phosphate dehydrogenase (GAPDH) and 

the commonly silenced gene encoding beta globin (HBB) in all three cell lines; we 

could observe full accessibility (> 95%) of GAPDH promoter and no accessibility of 

HBB promoter (Figure 12 B and C, respectively). Taken together, our results suggest 

a mechanism of chromatin remodeling for the distal promoter of HIF3A in MCF7 and 

HeLa cells. 
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Figure 12: Chromatin accessibility of distal (E1a & E1b) and proximal (E1c) HIF3A promoter 

regions are increased in HMEC-1 compared to HeLa and MCF7 cells.  

HeLa, MCF7 and HMEC-1 cells were treated with DNaseI or not, before genomic DNAs were isolated. 

(A) HIF3A promoter region upstream of exons 1a and 1b as well as region containing exon 1c were 

analyzed by qPCR. GAPDH (B) was used as a positive control and HBB (C) was used as a negative 

control (n = 3). Arrows on top of the exons in the genomic scheme indicate the beginning of the coding 

sequence (ATG) of different splice forms.  
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4.1.3 HIF3A promoter is hypermethylated in HeLa and MCF7 cells 

The degree of accessibility of DNA has been previously shown to be related to the 

level of methylation in CpG rich promoter areas (CpG islands) (Nguyen et al. 2001), 

of which we found two in the promoter of HIF3A, located around 7000 bp upstream of 

exon 1c (CpG island 1) and covering exons 1c and 2 (CpG island 2) (Figure 13). To 

assess the methylation status of the two HIF3A promoter regions, we performed bi-

sulfite sequencing with genomic DNA isolated from HMEC-1, HeLa and MCF7 cells. 

We could show that the CpG island 1 is extensively hypermethylated in HeLa and 

MCF7 cells (98,2% and 96,4%, respectively), while in HMEC-1 cells less CpG sites 

were found to be methylated (83,9%) (Figure 13). In contrast, CpG island 2 was hy-

permethylated in all tested cell lines, indicating a dependency of HIF3A expression 

by the epigenetical status of the distal region upstream of exons 1a and 1b. 

4.1.4 HIF3A promoter shows open chromatin in HMEC-1 cells 

Further epigenetic factors which can influence the accessibility of the DNA are his-

tone modifications such as acetylated histone 3, in particular lysine residues 9 and 14 

(H3Ac [H3K9/K14Ac]), which is considered as a marker for active open chromatin, 

and trimethylated lysine 9 of histone 3 (H3K9me3), which is a marker for inactive 

closed chromatin (Koch et al. 2007; Wang et al. 2008).  

We assessed the presence of these histone modifications in the distal HIF3A pro-

moter region in HeLa, HMEC-1 and MCF7 cells by chromatin immunoprecipitation 

using antibodies against H3Ac and H3K9me3. Co-precipitated DNA was analyzed by 

qPCR using primers specific for the region of the HIF3A promoter containing exon 

1a.  

Interestingly, in both tumor cell lines the amount of the repressive marker H3K9me3 

was approximately double the amount of the respective permissive marker H3Ac, 

while in HMEC-1 cells H3K9me3 levels were even lower than the levels of H3Ac, 

(Figure 14), suggesting a more active chromatin structure in HMEC-1 cells compared 

to the tumor cell lines.  
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Figure 13: Methylation of CpG island 1 is decreased in HMEC-1 cells compared to HeLa and 

MCF7.  

(A) Diagram of the region of HIF3A exons 1a/1b and exons 1c/2 showing the location of methylated 

CpGs (represented by vertical bars). Underneath, amplicons including the positions of the primers 

used for nested PCR are depicted. (B) Representation of the methylation pattern detected in four 

clones derived from the HeLa, MCF7 and HMEC-1. Cells were cultured under ambient conditions be-

fore genomic DNA was prepared. Genomic DNA was treated with bisulfite before amplification of the 

HIF3A promoter region covering exon 1a or exon 1c by PCR, fragments were subcloned and se-

quencing was performed. Open circles = unmethylated CpGs; filled circles = methylated CpGs. Fre-

quency of methylated CpGs is shown next to diagram of four clones as percentage. Values indicate 

the average of methylated CpG sites within the analysed region. Arrows on top of the exons in the 

genomic scheme indicate the beginning of the coding sequence (ATG) of different splice forms. 



Results 
 

 

 
56 

 

Figure 14: Marker for active chromatin (H3Ac) is increased in HMEC-1 cells in HIF3A promoter 

region containing exon 1a.  

HeLa, MCF7 and HMEC-1 cells were cultured under ambient conditions and subsequently fixed with 

formaldehyde for chromatin immunoprecipitation (ChIP) assay. After cell lysis, precipitation of H3Ac 

and H3K9me3 was performed. Co-precipitated DNA was analyzed by qPCR using primers specific for 

the HIF3A promoter region representing the distal promoter region, containing exon 1a and 1b. Values 

are presented as % of the input (left panel) or as the ratio of H3Ac/H3K9me3 (%) (n = 3). Arrows on 

top of the exons in the genomic scheme indicate the beginning of the coding sequence (ATG) of dif-

ferent splice forms. 

4.1.5 HIF3A expression inversely correlates with tumor stage in lung 

In order to test the association of HIF3A expression with tumor status, a comparison 

of normal and cancer tissues was done using a TissueScan Cancer and Normal Tis-

sue cDNA Array by OriGene Inc. The used array contained 96 samples covering 8 

different cancers from breast, colon, kidney, liver, lung, ovarian, prostate, and thyroid 

gland. For each tissue, 2-3 samples were present resembling normal tissue, taken 

from adjacent tumor biopsy. In addition, 1-3 samples from tumor stages I, II, III, and 

IV were present, respectively. The amount of provided cDNA was prenormalized by 

the manufacturer by β-actin. Thus, qPCR with primers for HIF3A consensus se-

quence was performed. Values given in Figure 15 are displayed as log2 with lowest 

value set to 1. We observed for all tissues heterogenous HIF3A expression with dif-

ferences of up to 50 fold within a distinct tissue and almost 300 fold overall 

(Figure 15A). The overall mean relative expression of HIF3A in normal tissue was 
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1.86 fold higher compared to cancer tissue, however not statistically significant. With-

in the different tissues, only in lung samples an inverse correlation of tumor stage 

and HIF3A transcript levels was detected (r2=0.9508) (Figure 15B). 

 

Figure 15: HIF3A expression varies in different tissues and inversely correlates with tumor 

stage in lung. 

TissueScan Cancer and Normal Tissue cDNA Array was used for gene expression analysis of con-

sensus HIF3A sequence either in all tissues (A) or specifically in lung tissues of different tumor stages 

(B), ranging from normal adjacent tissue (= N) over I, II and III to IV. Lowest Ct-value from qPCR was 

set arbitrarily to 1, either from all samples (A) or from lung tissue (B). Fold change of residual samples 

is given as log2-values. (B) Dashed grey line represents regression line with a correlation efficient of 

r2=0.9508. mRNA data is shown as log2 values compared to the lowest value in each graph respec-

tively (n = 3; *p < 0.05). 

4.1.6 HIF3A is induced by hypoxia in HMEC-1  

To gain more insight into the regulation of HIF3A expression, HMEC-1, HeLa and 

MCF7 cells were exposed to 1% O2 for 24 hours and mRNA levels of HIF3A consen-

sus sequence were analyzed by RT-qPCR. In HeLa and MCF7 cells, HIF3A was de-

tected under normoxic conditions; however no induction could be observed with 

hypoxic stimulus. In contrast, HIF3A was induced 2.4 fold by hypoxia in HMEC-1 

cells indicating a role of HIF-3α in the hypoxic response in these cells (Figure 16). 
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Figure 16: HIF3A expression is induced in HMEC-1 cells but not in HeLa or MCF7 cells.  

HeLa, MCF7 and HMEC-1 cells were exposed to 1% O2 for 24 hours before RNA was isolated and 

analyzed by RT-qPCR. Values were normalized to β-actin. Normoxic mRNA levels were set to 1. 

mRNA data are shown as relative increase to control (n = 4; *p < 0.05). 

4.2 HIF-3α inhibits HIF-2 activity in endothelial cells under 

hypoxia 

4.2.1 Time- and dose-dependent HIF3A induction 

We detected substantial HIF3A basal expression as well as its induction by hypoxia 

in HMEC-1 cells. Thus, we chose this cell line to investigate the role of HIF-3α in the 

context of HIF-1α and HIF-2α in the adaptation to hypoxia. mRNA and protein levels 

were analysed by RT-qPCR and Western blot, respectively. We started with expos-

ing HMEC-1 cells to different oxygen concentrations (0.1-21% O2) and increasing 

time periods (2-72 hours). Of note, HMEC-1 stained with Trypan blue showed no sig-

nificant change in vitality even after 48 hours of hypoxia (data not shown).  

HIF3A mRNA levels increased dependent on the oxygen concentration with a 1.8 

fold or 2.9 fold increase when exposed to 1% oxygen or 0.1% oxygen, respectively, 

for 24 hours (Figure 17A). A further analysis of the time dependence of HIF3A mRNA 

levels in response to severe hypoxia (0.1% O2) showed that HIF3A mRNA levels in-

creased at 8 hours (1.9 fold) and peaked at 48 hours of hypoxia (3.2 fold) 
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(Figure 17B). To test whether the observed induction of HIF3A is triggered by a tran-

scriptionally independent mechanism, we added an inhibitor of transcription, actino-

mycin D (5µg/ml), or not to the cells before exposing them to 0.1% O2 for 16 hours. 

The previously observed hypoxic induction of HIF3A was completely abolished by the 

use of actinomycin D compared to control (Figure 17C), indicating an active tran-

scriptional process. Differently, we found that HIF1A transcript levels decreased time 

dependently to 41% (Figure 17D). Concomitantly, HIF2A expression was unaffected 

by hypoxia (Figure 17E).  

Next we determined the levels of four known HIF target genes under severe hypoxia, 

amongst them two HIF-1 target genes, namely phosphoglycerate kinase 1 (PGK1) 

and egl-9 family hypoxia-inducible factor 3 (EGLN3) and two HIF-2 target genes, 

namely cluster of differentiation 82 (CD82) and plasminogen activator inhibitor-1 

(PAI1). mRNA levels of both, PGK1 and EGLN3, were increased after 8 hours (1.9 

and 1.6 fold, respectively), peaking at 24 hours (3.4 and 4.1 fold, respectively) with a 

decay at 48 hours (2.8 and 1.9 fold, respectively) (Figure 17F/G). Concomitantly, 

PAI1 mRNA levels showed the same pattern (2 fold, 2.3 fold and 1.8 fold) 

(Figure 17H). However, we could not detect a significant hypoxic induction of CD82 

levels at any time point (Figure 17J). Nevertheless, our results indicate an activation 

of the HIF pathway in HMEC-1 cells under severe hypoxia. 

In addition, we assessed protein levels of tested HIF subunits. In contrast to the cor-

responding mRNA, HIF-1α and HIF-2α protein levels peaked within the observation 

period at 8 hours and 24 hours of severe hypoxia, respectively (Figure 18A/B). Com-

pared to the rapidly decreased HIF-1α levels the decay of HIF-2α levels was delayed 

within 48 hours of hypoxia (Figure 18A/B). Despite various intense approaches, we 

could not analyze protein levels of HIF-3α due to ambiguous identification of the cor-

rect bands. 
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Figure 17: HIF3A is transcriptionally induced under hypoxia in a dose- and time-dependent 

manner.  

Expression of HIF3A mRNA in HMEC-1  cells is dose- and time dependently increased (A, B) which is 

a transcriptional process as shown by means of the inhibitor of transcription Actinomycin D (C). mRNA 

levels of HIF1A are decreased (D) whereas HIF2A mRNA is unaffected (E). HIF-1 target genes PGK1 

and EGLN3 peak after 24 hours of hypoxia (F, G). Also, HIF-2 target gene PAI1 is induced (H), 

whereas HIF-2 target gene CD82 is unchanged (J). RNA was analyzed by RT-qPCR. RT-qPCR val-

ues were normalized to β-actin. Normoxic mRNA levels were set to 1. mRNA data are shown as rela-

tive increase to control (n = 3; *p < 0.05 compared to control). 
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Figure 18: HIF-1α and HIF-2α proteins are induced by hypoxia in HMEC-1 cells.  

Human microvascular endothelial cells (HMEC-1) were exposed for increasing time periods to 0.1% 

oxygen. Both, HIF-1α (A) and HIF-2α (B) are induced under hypoxia, peaking at 8 and 24 hours re-

spectively. Western blot analyses were performed with antibodies against human HIF-1α and HIF-2α. 

β-actin served as a loading control. Western blot panels are representative for 3 independent experi-

ments. Fold changes indicated derive from densitometry and show fold change ± standard deviation 

(n/a: not available).  

4.2.2 HIF-3α inhibits HIF target gene expression 

Next, we sought to determine the involvement of HIF-3α in the regulation of HIF ac-

tivity. We assessed the effect of HIF-3α on a luciferase constructs driven either by 

three hypoxia response elements (HRE) from the enhancer of the erythropoietin 

gene EPO or a construct containing the proximal 800bp fragment of the PAI1 pro-

moter, including a previously described HRE site (HRE-2 (Fink et al. 2002)). Control 

of expression was monitored by Western Blot (Figure 19, respective panel on the 

right hand side).  

Compared to control cells, which showed significantly enhanced luciferase activity in 

response to hypoxia, HIF-3α overexpressing cells showed decreased luciferase ac-

tivity under hypoxic conditions (Figure 19A and E). Normoxic luciferase activity was 

not affected by overexpression of HIF-3α.  

In line, mimicking hypoxia by overexpression of HIF-1α and, to a larger extent 

HIF-2α, increased luciferase activity with both constructs (Figure 19B, F, C, and G). 

However, co-expression of HIF-3α decreased HIF-1α- and HIF-2α-driven PAI1 pro-

moter activity (Figure 19B, F, C, and G). Eventually, we analysed the effect of HIF-3α 
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absence under hypoxia on luciferase constructs by introduction of siRNA directed 

against HIF3A. We confirmed the hypoxic induction of luciferase activity with both 

constructs under control conditions. With silenced HIF3A however, we observed a 

non-significant increase of promoter activity under normoxic and hypoxic conditions. 

Although the effect of HIF3A knockdown was less pronounced than with overexpres-

sion, we further focused on the role of HIF-3α in the HIF-mediated response to hy-

poxia. 
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Figure 19: HIF-3α inhibits HIF-driven luciferase activity.  

HEK293T cells were cotransfected with the luciferase reporter constructs pGL-EPO-HRE (A-D) or 

pGL3-PAIpro-796 (E-H) and a vector encoding HIF-3α (A-C, E-G) or siRNA against HIF3A (D and H). 

In addition, cells were transfected either with HIF-1α (B and F) or with HIF-2α (C and G) and exposed 

to hypoxia (A, D, E, and H) or not (B-C and F-G). Luciferase assay was performed. Values ± SD rep-

resent the fold induction of luciferase activity (n = 3; *p < 0.05 vs. control; #p < 0.05 vs. Ctr under hy-

poxia (A and E), HIF-1α (B and F) and HIF-2α (C and G) respectively). Normoxic control was set to 1. 

On the right hand side, an expression control for respective proteins of each condition is given. Label-

ing on top of each panel indicates overexpressed proteins and/or stimulus. Labeling on the right hand 

side indicates antibodys used. 
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4.2.3 HIF-3α inhibits HIF-2 mediated PAI1 expression 

To further elucidate the mechanism underlying the inhibitory effect of HIF-3α on hy-

poxia or HIF-1α/HIF-2α induced PAI1 expression, we silenced the expression of 

HIF1A or HIF2A or HIF3A by RNAi and subsequently exposed HMEC-1 to severe 

hypoxia for increasing time periods. As expected, all RNAi decreased their respective 

target mRNAs (Figure 20A-C), as can be seen also on the protein level (Figure 21). 

Remarkably, silencing of HIF1A, but not HIF2A, also decreased HIF3A mRNA levels.  

The effect of silencing HIF-α subunits on target genes was variable. PGK1 showed a 

decreased to abolished induction when HIF1A was silenced. However no effect was 

observed with the silencing of HIF3A (Figure 20D). When analyzing potential HIF-2α 

target genes we observed that the hypoxic induction of PAI1 mRNA was abolished 

by silencing of HIF2A. However, silencing of HIF3A increased PAI1 expression in 

response to hypoxia (Figure 20E), suggesting that HIF-3α modulates the HIF-2-

driven induction of PAI1 expression in vascular endothelial cells. Interestingly, deple-

tion of HIF1A also increased PAI1 mRNA levels (Figure 20E). Similar effects were 

obtained with another set of RNAi (data not shown). 

Additionally we analyzed protein levels of HIF-1α, HIF-2α and of PAI-1 under severe 

hypoxia with distinct silencing of the HIF α-subunits. For PAI-1 protein levels, we ob-

served an enhanced hypoxic induction with silencing of HIF3A compared to control, 

similarly to the results seen with PAI1 mRNA. With the knockdown of HIF-2α hypoxic 

induction of PAI-1 was abolished while it was increased with HIF-1α being silenced 

(Figure 21). 

HIF-1α and HIF-2α showed decreased protein levels after silencing their respective 

gene. Intrestingly, silencing of HIF2A increased HIF-1α protein levels compared with 

the use of scrambled siRNA; vice versa we could not see any induction of HIF-2α by 

the knockdown of HIF1A (Figure 21). Our data extends the idea, that HIF-3α exerts a 

modulatory role on HIF-2 activity in the expression of PAI-1. 
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Figure 20: HIF-3α inhibits HIF-2-driven PAI1 expression.  

HMEC-1 were transfected with siRNA against either HIF1A or HIF2A or HIF3A or with scrambled RNA 

(siCtr) and exposed to hypoxia (0.1% O2) for increasing time periods. Total RNA was analyzed by RT-

qPCR. (A-C) Depletion of target gene was efficient with specific siRNA as shown by quantification of 

levels of HIF1A, HIF2A and HIF3A. (C) HIF3A levels were induced by prolonged hypoxia. Depletion of 

HIF1A diminished this induction. (D) PGK1 levels increased upon hypoxia and decreased with knock-

down of HIF1A but not with that of HIF2A or HIF3A. (E) PAI1 levels also increased after hypoxia, while 

depletion of HIF2A abolished this induction. Depletion of HIF1A or HIF3A led to an hyperinduction 

under hypoxic conditions. Values were normalized to β-actin. Normoxic mRNA levels were set to 1. 

Data is shown as relative increase to control (n=3; * p<0.05 compared to respective time point in siCtr 

transfected cells).  
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Figure 21: HIF-3α inhibits HIF-2-driven PAI-1 expression. 

Western blot analyses were performed with antibodies against: HIF-1α, HIF-2α and PAI-1. β-actin 

served as loading control. Western blot panels are representative for 3 independent experiments. Be-

low each panel the values from normalized densitometry analysis are given as fold change ± SD. 

(n=3; Shaded triangles resemble p < 0.05 compared to respective time point in siCtr transfected cells, 

indicating either statistically significant increase [up-pointing triangle] or decrease [down-pointing tri-

angle], respectively) (n/a: not available). 

4.2.4 HIF-3α inhibits PAI-1-mediated angiogenesis 

Since PAI-1 has been previously shown to promote endothelial proliferative process-

es, we examined the functional consequences of HIF-3α on PAI-1-mediated tube 

formation under hypoxic conditions. To this end, HIF1A, HIF2A or HIF3A were si-

lenced by RNAi and HMEC-1 were exposed to hypoxia for 48 hours. Since PAI-1 can 

be secreted and exerts paracrine functions including the induction of angiogenic pro-

cesses, the supernatants of the different endothelial cell cultures were collected and 

used to stimulate HMEC-1 plated on microslides coated with matrigel. While the su-

pernatant from hypoxic control cells stimulated tube formation, this effect was not 

observed from supernatants derived from hypoxic cells deficient in HIF2A 

(Figure 22). On the contrary, supernatants from hypoxic cells deficient from HIF3A 

showed increased tube formation, supporting the finding of HIF-3α acting modulatory 

on HIF-2 driven PAI1 expression Upon addition of an inhibitory antibody against 

PAI-1, the proangiogenic effect of supernatants derived from HIF-3α deficient cells 
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was abolished, indicating that the proangiogenic effect induced in HIF-3α deficient 

cells was mediated by PAI-1 (Figure 22). Interestingly, silencing of HIF1A also led to 

increased tube formation under hypoxic condition, supporting our previous results 

about HIF-1α driven HIF3A expression. 

Figure 22: HIF-3α inhibits PAI-1-

dependent angiogenesis.  

HMEC-1 were transfected with siRNA 

against either HIF1A or HIF2A or 

HIF3A or with scrambled RNA (siCtr) 

and exposed to hypoxia (0.1% O2) for 

48 hours or not and supernatant was 

collected. An aliquot of supernatant 

from cells silenced for HIF3A was 

mixed with an inhibitory PAI-1 antibody 

and incubated for 30 minutes at 37°C. 

Supernatants were used for stimulation 

of HMEC-1 plated on microslides coat-

ed with matrigel. Tube formation was 

monitored after 16 hours (A). Panels 

are representative for 3 independent 

experiments. Tube length was as-

sessed by image analysis (B). 

Normoxic control was set to 1 (n = 3; 

*p < 0.05 vs. siCtr; #p < 0.05 vs. siCtr 

Hx; §p < 0.05 vs. siHIF3A Hx). 
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4.2.5 HIF-3α interacts with HIF-2α and ARNT 

After having observed the modulatory effect of HIF-3α on the function of HIF-2, we 

aimed to investigate the underlying mechanisms. Based on the structural similarity of 

HIF subunits, we determined whether HIF-3α would be able to interact with the HIF-

subunits involved in the activation of PAI-1 expression, HIF-2α or ARNT, using co-

immunoprecipitation. Human embryonic kidney cells (HEK293T) were cotransfected 

with V5-tagged HIF-3α and either HIF-2α or ARNT. Western blot analysis showed 

that HIF-3α can bind to both, HIF-2α and ARNT, in vitro (Figure 23A).  

Next, we investigated whether both HIF-3α/ARNT and HIF-3α/HIF-2α complexes can 

bind to HRE sequences on DNA. To this end, we performed an electromobility shift 

assay (EMSA). In brief, in vitro translated HIF-subunits (HIF-2α, ARNT and HIF-3α) 

were mixed with fluorescence labeled DNA probes containing either the wildtype 

HRE sequence of the human PAI1 promoter (PAI1-HREwt) (Fink et al. 2002) or a 

mutated and therefore defective HRE sequence (PAI1-HREmut). The mixture was 

separated on an agarose gel and formation of DNA-protein complexes were detected 

by a fluorescence scanner. While the HIF-3α/ARNT complex bound to the wildtype 

HRE sequence, but not to the mutated sequence (Figure 23B), the HIF-2α/HIF-3α 

complex did not bind to either sequence (Figure 23B), suggesting two pontential 

ways for HIF-3α of modulating HIF-2 activity. 
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Figure 23: HIF-3α binds to DNA in complex with ARNT but not with HIF-2α.  

HEK293T cells were cotransfected with V5-tagged HIF-3α1 and either HIF-2α or ARNT. After lysis, 

proteins were immunoprecipitated with V5 antibody and detected by Western blot analysis using anti-

bodies specific for HIF-2α or ARNT (A). Western blot panels are representative for 3 independent 

experiments. In vitro translated HIF-subunits (HIF-2α, ARNT and HIF-3α) were mixed in combinations 

according to labeling with Cy5-labeled DNA probe containing the published HRE sequence located at 

-197/-188 base pairs of the PAI1 promoter. The mixture was separated on an agarose gel and for-

mation of DNA-protein complexes was identified by scanning the gel for fluorescence (B). Gel is rep-

resentative for 3 independent experiments. In vitro translated HIF subunits were identified by Western 

blot analysis with antibodies against: HIF-2α, HIF-3α and ARNT (C). 

 



Results 
 

 

 
70 

4.2.6 HIF-3α/ARNT binds to PAI1 promoter 

Based on our results, HIF-3α modulates HIF-2 activity by preventing HIF-2α from 

binding to the HRE of the target gene promoter either by interacting with HIF-2α it-

self, forming a α/α-dimer, or by the interaction with the β-subunit ARNT with a subse-

quent occupation of the HRE by the HIF-3α/ARNT complex. 

To further examine these two scenarios, HMEC-1 cells were depleted from HIF2A or 

HIF3A, exposed to hypoxia for 48 hours, a time point at which HIF-3α is presumably 

expressed and active (Figure 17). Cells were subsequently fixed with formaldehyde 

for chromatin immunoprecipitation (ChIP) assay. After cell lysis, precipitation of 

HIF-2α and ARNT was performed. Co-precipitated DNA was analyzed by qPCR us-

ing primers specific for the region of the PAI1 promoter containing the HRE-2 se-

quence.  

Occupation of the analyzed PAI1 promoter region by HIF-2α was only marginally in-

creased in control cells by hypoxia, but was significantly increased in HIF-3α deficient 

cells under hypoxia (Figure 24A) indicating that HIF-3α limits HIF-2α occupation of 

the PAI-1 promoter under hypoxic conditions. In line, when HIF2A and HIF3A were 

simultaneously depleted, HIF-2α binding to the PAI1 promoter was abolished. Next, 

we determined ARNT occupation of the same PAI1 promoter region. Under hypoxic 

conditions, ARNT occupation of the PAI1 promoter was enhanced as expected.  De-

pletion of HIF-3α did not affect normoxic or hypoxic PAI1 promoter occupancy by 

ARNT (Figure 24B). However, binding of ARNT to the PAI1 promoter was abolished 

in response to hypoxia when both, HIF2A and HIF3A were silenced suggesting that 

at sustained hypoxia HIF-2α or HIF-3α would be the preferential interaction partners 

for ARNT to bind to PAI1 promoter region (Figure 24B). Our results suggest two pos-

sible mechanisms for the observed inhibition of HIF-2α activity by HIF-3α: either by 

competition of HIF-2α and HIF-3α for ARNT or, assuming an excess of ARNT, by 

competition of the complexes HIF-2α/ARNT and HIF-3α/ARNT for binding to DNA. 

To evaluate both possibilities, HMEC-1 cells were exposed to hypoxia for increasing 

time periods and co-immunoprecipitation of HIF-2α with ARNT was performed. While 

ARNT interacted with HIF-2α when cells were exposed to hypoxia for 8 hours, this 

interaction diminished at longer time points (Figure 24C) suggesting that at prolonged 
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hypoxia HIF-3α outcompeted HIF-2α in binding for ARNT thereby controlling PAI1 

expression. 

 

Figure 24: HIF-3α inhibits HIF-2 by out-

competing HIF-2α for the interaction 

with ARNT subsequently binding to 

DNA.  

HMEC-1 were transfected with siRNA 

against either HIF1A or HIF2A or HIF3A or 

with scrambled RNA (siCtr) and exposed 

to hypoxia (0.1% O2) for 48 hours or not 

and subsequently fixed with formaldehyde 

for chromatin immunoprecipitation (ChIP) 

assay. After cell lysis, precipitation of 

HIF-2α (A) and ARNT (B) was performed. 

Co-precipitated DNA was analyzed by 

qPCR using primers specific for the region 

of the PAI1 promoter containing the HRE 

sequence and is presented as percent     

of the input (n = 3, *p < 0.05 vs. normoxic 

siCtr, #p < 0.05 vs. hypoxic siHIF3A). (C) 

HMEC-1 were exposed to hypoxia (0.1% 

O2) for increasing time periods. After lysis, 

proteins were immunoprecipitated with 

ARNT antibody and detected by Western 

blot analysis using antibodies specific for 

HIF-2α or ARNT. Western blot panels are 

representative for 3 independent experi-

ments. 
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4.2.7 Exogenous HIF-3α/ARNT induces PAI1 expression 

Besides the postulation of an inhibitory role of HIF-3α in the response to hypoxia, it 

was also shown before, that co-expression of the HIF-3α/ARNT complex exerts a 

mild transactivation effect on selected HIF target genes (Heikkilä et al. 2011). We 

could show that endogenous HIF-3α/ARNT complex does bind to genomic PAI1 

promoter, which resulted in intermediate PAI1 expression levels under sustained hy-

poxia rather than completely blocking it. Hence, we tested the transactivatory proper-

ties of HIF-3α including the effect of exogenous HIF-3α/ARNT on PAI1 expression in 

our system. First, we provided evidence, that the C-terminally located TAD domain of 

HIF-3α exerts moderate transactivation characteristics. This result was achieved by a 

luciferase assay with a GAL4-DNA binding domain/HIF-3α-NTAD fusion protein 

which activated a GAL4-upstream activation sequence 2.89 fold (SD ±0.33) com-

pared to control (Figure 25A). In addition, we analysed exogenous coexpression of 

HIF-3α and ARNT on a PAI1 promoter containing luciferase reporter construct by 

transfecting HEK293T cells with the respective plasmids. While expression of HIF-3α 

or ARNT alone did not show significant activation (Figure 25B), coexpressing HIF-3α 

and ARNT clearly increased PAI1 promoter activity (8.41 ± 1.07). HIF-2α alone or 

coexpressed with ARNT led to a more than 50 fold increase compared to control vec-

tor (50.3 fold and 76.1 fold, respectively). For assessing the effect of coexpressed 

HIF-3α/ARNT on endogenous PAI1 gene expression, HMEC-1 cells were either 

transfected with solely HIF-2α, HIF-3α or ARNT, or cotransfected with HIF-2α/ARNT 

or HIF-3α/ARNT. Cells were kept under ambient conditions for 48 hours before PAI1 

mRNA levels were analysed by RT-qPCR. Whereas coexpression of HIF-2α/ARNT 

clearly increased mRNA levels of PAI1 (2.58 ± 0.33) (Figure 25C), expression of the 

single HIF-subunits did not significantly change PAI1 expression, probably by limited 

availability of ARNT. Interestingly, we found a mild increase of PAI1 mRNA levels in 

cells overexpressing HIF-3α/ARNT (1.71 ± 0.15) (Figure 25C), indicating that in the 

presence of ARNT HIF-3α can, although to a lower extent than HIF-2α, induce trans-

activation of PAI1. 
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Figure 25: HIF-3α exerts transactivatory 

properties on PAI1 when coexpressed with 

ARNT.  

HEK293T cells were cotransfected with (A) a 

plasmid coding for a GAL4 DNA binding do-

main/ HIF-3α TAD fusion protein and a GAL4 

upstream activation sequence (UAS) contain-

ing luciferase reporter plasmid or (B) with 

solely HIF-2α, HIF-3α or ARNT, or contrans-

fected with HIF-2α/ARNT or HIF-3α/ARNT 

together with a PAI1 promoter containing lu-

ciferase reporter plasmid. Subsequently lucif-

erase assay was performed. Values ± SD 

represent the fold induction of luciferase activi-

ty (n = 4; *p < 0.05 vs. control). (C) HMEC-1 

cells were either transfected with solely 

HIF-2α, HIF-3α or ARNT, or contransfected 

with HIF-2α/ARNT or HIF-3α/ARNT. Cells 

were kept under ambient conditions for 48 

hours before endogenous PAI1 mRNA levels 

were analysed by RT-qPCR. RT-qPCR values 

were normalized to β-actin. Cells transfected 

with control construct mRNA levels were set to 

1. mRNA data are shown as relative increase 

to control (n = 3; *p < 0.05). 
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5  Discussion 

In the present study, we investigated the molecular mechanism determining the basal 

transcription of HIF3A in cell lines HMEC-1, HeLa and MCF7. We showed that HIF3A 

abundance differs between cell t ypes, which is dependent on epigenetic mecha-

nisms, such as genomic DNA methylation and histone modifications at the distal 

promoter region of HIF3A. Moreover, we found that HIF-3α protein negatively regu-

lates HIF-2-driven PAI-1 expression in HMEC-1 cells, resulting in a moderate PAI-1-

mediated angiogenesis in endothelial cells under prolonged hypoxia. Moreover, we 

show that HIF-3α exerts its modulatory properties by outcompeting HIF-2α for the 

interaction with ARNT resulting in binding of the HIF-3α/ARNT complex to DNA, ex-

erting moderate transactivatory properties. Taken together, our data suggest an im-

portant role of HIF-3α in fine-tuning of the HIF system in sustained hypoxia. Given its 

absence in some tumor cell lines and its modulating properties regarding angiogenic 

processes, HIF3A might be involved in tumor suppression or at least serve as a tu-

mor marker. 

5.1 HIF3A expression in different cell lines 

The description of human HIF3A by Gu et al. brought up a new HIF subunit which 

was, based on luciferase assays, characterized as potentially regulating the classical 

HIF system (Gu et al. 1998; Hara et al. 2001). It also led to a controversial discussion 

about its endogenous expression levels, as others (based on personal communica-

tion) and we could not unambiguously identify endogenous HIF-3α protein. Thus, we 

determined transcript levels of HIF3A in different cell lines as a potential surrogate of 

its function. In the present study we showed differential basal expression of transcript 

variants in different cell lines as shown by gene expression analysis. We chose dif-

ferent tumor cell lines (HeLa, MCF7, LNCaP, DU145, and HEK293T), which are 

widely used in cancer research, thereby representing degenerated and unphysiologi-

cal cellular properties. Representing primary cell lines with physiologic morphology 

and functionality, PASMC and SGBS preadipocytes were chosen. In addition, immor-

talized HMEC-1 cell line was selected due to its similarity with normal human micro-
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vascular endothelial cells with retained morphologic, phenotypic, and functional char-

acteristics of normal human microvascular endothelial cells (Ades et al. 1992). The 

initial investigation of consensus HIF3A transcripts revealed an interesting grouping. 

Whereas sensitivity of qPCR was hardly high enough for detecting HIF3A in tumor 

cell lines, the basal expression of HIF3A in primary and primary-like cells was around 

1000 times higher. Despite this striking difference, the number of different cell lines 

used does not allow a conclusive connection between HIF3A levels and tumor status. 

For our downstream analyses including the detailed quantification of different tran-

script variants, HeLa, MCF7 and HMEC-1 cells were chosen. Primary cell lines were 

not included due to their limited life span for subsequent experiments.  

In order to investigate all ten described and suggested transcript variants (tv) 

(Maynard et al. 2003; Pasanen et al. 2010), we exemplarily chose the first three Ref-

Seq annotated mRNAs of HIF3A in the nucleotide database of NCBI, each represent-

ing a transcript with an alternative first exon: HIF3Atv1 (RefSeq accession number: 

NM_152794) originating from exon 1c, HIF3Atv2 (NM_022462) originating from exon 

1b and HIF3Atv3 (NM_152795) originating from exon 1a (compare Figure 11A). For 

our analysis, we also included the detection of transcript variant BC (GenBank ac-

cession number: BC_026308) due to its structural similarity (but not identity) to the 

murine IPAS, which was described and characterized as an inhibitory isoform of 

Hif3a. Similarly to our findings on HIF3A consensus transcripts, we detected for each 

analysed transcript highly diverging basal expression levels in the tested cell lines, 

with low (HIF3Atv1 and HIF3Atv2) to undetectable (HIF3Atv3 and HIF3AtvBC) levels 

in HeLa and MCF7 cells. In HMEC-1 cells, expression of all variants was detected 

and was 2-3 orders of magnitudes higher compared to detectable variants in HeLa 

and MCF7 cells. Thereby we confirmed recent findings of Pasanen et al. (2010) 

showing low to undetectable levels of transcripts originating from exon 1a, 1b and 1c 

of the HIF3A locus in various cancer cell lines. We also extended their findings of 

higher basal expression levels of HIF3A transcripts in cDNA from fetal and adult tis-

sues by showing increased basal expression of HIF3A in non-tumor HMEC-1 cell 

line. Although several reports show that detection of HIF3A is highly variable in dif-

ferent tissues (Maynard et al. 2005; Pasanen et al. 2010), a detailed characterization 
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of HIF3A expression clearly indicating its function is still not published. Our results 

are adding another piece of puzzle by showing differential HIF3A expression be-

tween different cell lines, representing tumor and non-tumor cells. It remains unclear, 

whether the presence of a distinct isoform alone or the levels of different transcripts 

reflects diverging physiological functions, thus meriting further investigation.  

5.2 DNA accessibility and chromatin remodeling 

As shown previously by Weis and colleagues, besides modification or degradation of 

mRNA, the accessibility of the respective promoter is closely linked to the expression 

levels of a distinct gene (Zabel et al. 2000). When we assessed the accessibility of 

two regions (a distal region close to exons 1a and 1b and a proximal region around 

exon 1c) in the HIF3A promoter by DNaseI digestion and a subsequent quantification 

of distinct DNA fragments by qPCR, we found in HMEC-1 a high accessibility in both 

regions, whereas in HeLa and MCF7 cells the accessibility was low. We thereby 

could correlate the expression levels with accessibility of two regions within the pro-

moter of HIF3A. A recent report of Druliner et al. (2013) developed a model linking 

the general and locus-specific roles of chromatin structure to lung cancer progres-

sion. In this context, our results of HIF3A promoter being highly accessible in non-

tumor HMEC-1 cells and low accessible in tumor cell lines HeLa and MCF7 support 

this model indicating tumor related regulation of HIF3A expression.  

It has been described by Cedar and Bergman, that accessibility of genomic DNA is 

mainly determined by chromatin remodeling (Cedar and Bergman 2009). This dy-

namic process of chromatin structure modification tightly controls gene expression by 

providing or denying access for the transcription machinery to DNA. Essentially, two 

mechanisms contribute to the repositioning of histones within the chromatin, namely 

a covalent bonding of functional groups (e.g. by histone acetyl transferases and his-

tone methyl transferases) and an ATP-driven nucleosome movement (e.g. by 

SWI/SNF) (Clapier and Cairns 2009). These epigenetic mechanisms were shown to 

be involved in cancer-associated silencing of known tumor suppressor genes (Jones 

and Baylin 2002; Oshiro et al. 2003); thus we investigated whether genomic DNA 



Discussion 
 

 

 
77 

methylation is associated with the downregulation/inactivation of HIF3A in tumor cell 

lines.  

5.3 DNA methylation 

Analysis of DNA methylation by genomic bisulfite sequencing showed a correlation of 

HIF3A expression with the extent of methylation of specific CpG dinucleotides locat-

ed in CpG island 1 spanning exon 1a. Interestingly, the degree of hypomethylation 

observed in HMEC-1 cells was less profound than we expected based on the differ-

ences in mRNA levels. We found only 12-15% less methylated CpGs in HMEC-1 

compared to MCF7 and HeLa, which could be attributed to the immortalized status of 

HMEC-1 compared to classical primary cell lines.  

In contrast, CpG island 2 spanning exons 1c and 2 was extensively hypermethylated 

in all tested cell lines, suggesting a regulatory role of only CpG island 1 but not CpG 

island 2 in the transcription of HIF3A. We thereby extended recent findings of Maha-

patra et al. (2012) who suggested HIF3A as a biomarker for prostate cancer. Their 

suggestion is based on a hypermethylation CpG island 1 in the HIF3A promoter in 

prostate cancer samples with hypomethylation of adjacent non tumor tissue. It is in-

teresting to note that none of the CpG sites within CpG island 2 itself is differentially 

methylated in tested cell lines. In contrast, such a difference is observed for sites 

NM_152794.3:c.1-6627 and NM_152794.3:c.1-6751 in CpG island 1. Whereas these 

sites are fully methylated in MCF7 and HeLa cells, in HMEC-1 methylation of the 

aforementioned CpG sites is aberrant. These positions might represent distinct bind-

ing sites for chromatin remodeling proteins such as the methyl CpG binding protein 2 

(MeCP2) which serves as a cofactor in the chromatin remodeling by binding to meth-

ylated DNA with a subsequent recruitment of histone deacetylases. Minor changes in 

DNA methylation might also contribute to the regulation of the expression of HIF3A 

transcripts including those originating from downstream located alternative transcrip-

tion start sites. It should still be noted, that the differences in methylation within tested 

cell lines does not fully account to the observed huge differences in mRNA levels, as 

current studies consider unmethylated CpG islands to be linked with active transcrip-

tion of the respective gene (Weber et al. 2007). However, a recent study by 
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Buck et al. (2013) on clear cell renal cell carcinoma found a decreased chromatin 

accessibility while the level of DNA-methylation remained unchanged. Moreover, an-

other study revealed that a cluster of methylated CpG sites instead of CpG islands 

resulted in silencing of certain genes. (Zou et al. 2006). Thus, an analysis containing 

a larger number of specimens might elucidate whether hypomethylation of particular 

sites contribute to the observed increased HIF3A transcription or whether it is rather 

a DNA-methylation independent mechanism.  

Interestingly, a recent publication by Dick and colleagues revealed that increased 

body-mass index (BMI) is associated with increased CpG methylation at the HIF3A 

locus in blood cells and adipose tissue (2014). The three probes, which showed a 

statistically highly significant association, are located in intron 1. Thus, they are out-

side of the two described CpG islands in the 5´ region of the HIF3A locus, which 

were analyzed in the present study. Meta-analyses performed in the above men-

tioned BMI study suggest that increased CpG methylation of the HIF3A locus is not 

causing higher BMI but rather is the result of it (Dick et al. 2014). However, they ob-

served an inverse association between CpG methylation and expression of HIF3A, 

which we also found in our studies. Although neither they nor we did reveal the un-

derlying mechanism for the correlation of methylation and expression of HIF3A, it 

does show the importance of HIF signaling and its regulation by DNA methylation. 

Further work needs to be done to decipher the association of HIF3A methylation and 

its pathophysiological meaning not only in obesity, but also in cancer. 

5.4 Histone modification 

Although DNA methylation represents a major mechanism of epigenetic regulation, it 

has also been described that gene expression is controlled by both, DNA methylation 

and histone modifications (Cedar and Bergman 2009). While DNA hypermethylation 

is invariably associated with gene silencing (Jaenisch and Bird 2003), H3 acetylation 

is a typical feature of active genes (Koch et al. 2007). Conversely, H3K9me3 is a his-

tone modification consistently associated with gene repression (Wang et al. 2008). In 

the present study, we sought to investigate these associations on the HIF3A promot-

er. This choice was based on the consideration that the observed difference in DNA 
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methylation status of the distal HIF3A promoter is limited to two CpGs. Our results 

show that association of the activating histone marks H3Ac to the distal HIF3A pro-

moter is increased in HMEC-1 cells compared to HeLa and MCF7 cells. It is therefore 

likely that reduced H3Ac association to the distal HIF3A promoter, along with an in-

creased frequency of DNA hypermethylation at specific CpG dinucleotides, contrib-

utes to the lower expression of HIF3A transcripts seen in HeLa and MCF7 cells. Of 

note, the enrichment of HIF3A promoter fragments differed substantially amongst the 

three tested cell lines (compare Figure 14). This observation was steady throughout 

several experiments and might be linked to the cell physiology ending up in different 

absolute amounts of precipitated DNA. 

Although we found a potential reason for the presence and absence of HIF3A tran-

scripts in different cell lines, there are certain limitations, which should be addressed 

in further investigations. 

One interesting aspect is the dynamics of the epigenetical status under hypoxic con-

ditions. Recently, Baugh and colleagues could show a hypoxia induced hypermethyl-

ation of the THY1 promoter but rather on long (days) than short (hours) term hypoxia 

(Robinson et al. 2012). Also Shahrzad and colleagues observed a change in methyl-

ation pattern upon hypoxic stimulation, however they observed a general hypometh-

ylation. Nevertheless, the reported effect was again linked with pronounced chronic 

hypoxia (Shahrzad et al. 2007). Although our results underline a pronounced silenc-

ing of HIF3A in selected cell lines, we cannot exclude the transcription of HIF3A un-

der sustained hypoxic stress conditions. 

Another aspect is for sure the mechanism how distinct genes, in particular genes that 

are associated with tumor suppression (maybe including HIF3A) are being shut off by 

chromatin remodelling. Currently, only the factors involved in that process are known; 

but how the selection of the respective gene is established and how the cells sense 

the negative feedback loop is only at the beginning of its elucidation.  

In summary, our results demonstrate that basal expression of HIF3A is controlled on 

an epigenetic level in HMEC-1, HeLa and MCF7. DNA methylation of a region 

around exon 1a was shown to be involved in the control of HIF3A expression, since 

local hypermethylation leads to HIF3A silencing in HeLa and MCF7 cells, while the 
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absence of methylation of particular CpG sites is associated with abundant HIF3A 

expression observed in HMEC-1. More importantly, the fraction of acetylated his-

tone 3 is markedly increased over H3K9me3 in HMEC-1 cells. Our data raise the 

possibility that previously described differences in the abundance of HIF3A tran-

scripts in different cells and tissues (Pasanen et al. 2010) may be generally related to 

differential patterns of DNA methylation and histone modifications thereby regulating 

the function of HIF-3α protein. Nevertheless, the observed epigenetic differences in 

the regulatory regions of HIF3A do not fully account for its differential basal expres-

sion. 

When we observed an inverse correlation of HIF3A expression and epigenetic mark-

ers for inactive chromatin in various cell lines, we were assuming a correlation with 

retained physiologic properties. To get an idea about the relationship of substantial 

expression of HIF3A and cellular degeneration, cDNA from 8 tissues with different 

tumor stages were analyzed. The samples were taken either from adjacent tissue 

with normal appearance or from tumor tissue stages I to IV (in total 12 samples per 

tissue). We observed HIF3A levels spreading up to 50 fold within single tissues and 

almost 300 fold overall. The detected 1.86 fold elevated HIF3A levels in normal tis-

sue compared to cancer tissue did not turn out to be statistically significant. Although 

we observed an inverse correlation of tumor stage and HIF3A transcript levels in lung 

tissue, the sample size was far to low to perform high quality statistics and to get a 

profound result. However, this experiment was thought to get an initial idea about an 

inverse association of HIF3A expression and tumor status thus it can be considered 

as a starting point for an analysis of HIF3A transcript levels in larger cohorts.  

However, when looking for published data pointing towards a role for an association 

of HIF3A with tumor status, only few are available. Amongst it the results from “The 

Human Protein Atlas” showing profound immunostaining of cancer and normal tissue 

(Uhlen et al. 2010). Importantly, they state that protein reliability is uncertain as re-

sults are based on one antibody, which is in line with our own experience. In addition, 

data available from the database GENT (Gene Expression across Normal and Tumor 

tissue) indicates a difference in HIF3A mRNA levels in normal and tumor tissue (Shin 

et al. 2011). However, although the mean expression in normal tissue tends to be 
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slightly increased over mean expression in cancer tissue, this data from Affymetrix 

U133A or U133plus2 platforms also differs amongst different types of tissues and 

seems not to be significant. In addition, the results for HIF3A expression in normal 

tissues pancreas and liver are contradictory with database results from “Expression 

Atlas”, where HIF3A is described to be low to absent in pancreas and liver (Petryszak 

et al. 2014). 

5.5 Induction of HIF3A 

Concomitantly with the description of HIF-3α, the speculation about its distinct role 

began. In fact, already Gu et al. started to enlight the properties of HIF-3α especially 

in the context of hypoxia (1998). IPAS, an isoform of the murine HIF-3α, was charac-

terized as a negative regulator of HIF-1α (Makino et al. 2001). In addition, as func-

tional counterparts of IPAS, human HIF-3α1 and HIF-3αBC were described (Hara et 

al. 2001; Maynard et al. 2005; Maynard et al. 2007; Heikkilä et al. 2011). Two fea-

tures of HIF-3α qualify it to act dominant negatively on the HIF system under sus-

tained hypoxia: not containing a C-terminal transactivation domain, and being 

upregulated in the later phase of hypoxia (Hara et al. 2001; Pasanen et al. 2010; 

Augstein et al. 2011). Maynard et al. suggested on the basis of the differences in the 

domain structure a modulatory role of HIF-3α towards the classical HIF-subunits 

HIF-1α and HIF-2α in response to hypoxia (2005). Although it was shown that human 

HIF-3α decreased both hypoxia- and HIF-induced transactivation, these results were 

essentially all achieved by using exogenous HIF-3α on reporter gene assays (Gu et 

al. 1998; Hara et al. 2001; Pasanen et al. 2010). Although these outcomes pointed to 

an inhibitory role of HIF-3α, they nevertheless lack a physiological connection. As 

spatiotemporal properties of HIF-3α under hypoxic conditions are virtually unknown, 

an exogenous overexpression of any of the HIF-3α isoforms might does not reflect its 

endogenous function. 

In this study we demonstrated that in human microvascular endothelial cells 

(HMEC-1), HIF3A mRNA levels were induced up to 72 hours of sustained hypoxia 

(Figure 17), extending the previous finding of Pasanen et al. (2010), who showed 

HIF3A mRNA levels induced in hepatoma cells (Hep3B) and neuroblastoma cells 
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(Kelly) after 24 hours of hypoxia. We found the strongest induction of HIF3A mRNA 

levels at 0.1% oxygen, suggesting a role in the adaptation to severe hypoxic condi-

tions. These findings are in support with Forristal et al. whose study proposes that 

HIF3A is upregulated under sustained hypoxic conditions, may taking over the initial, 

transient role of HIF-1α (Forristal et al. 2010). Of note, they were using a 5 % envi-

ronmental oxygen tension in human embryonic stem cell line Hues-7, thus a direct 

comparison with the 0.1% O2 in standard cell lines is not reliable. 

Our data also shows that induction of HIF-1α and HIF-2α protein under prolonged 

hypoxia is independent of their gene transcription. Particularly the significant decay of 

HIF1A mRNA over the time seemingly contradicts the concomitantly induced protein 

levels. Recently, Kračun et al. suggested that this effect is mediated by β-3 integrin 

inhibiting NFκB triggered HIF1A induction (Kračun et al. 2014). 

Furthermore, we chose exemplarily two HIF-1 and HIF-2 target genes in each case 

to analyse the effects of HIF-3α silencing. For both HIF-1 target genes (PGK1 and 

EGLN3) we found a profound induction under hypoxic condition, which is in line with 

previous reports (Pescador et al. 2005; Dayan et al. 2006). From the very few pub-

lished HIF-2 target genes, we analysed PAI1 and CD82. Whereas the latter did not 

change upon hypoxic stimulation, PAI1 was found to be upregulated in hypoxia. We 

speculate that the discrepancy of published CD82 expression via HIF-2 in HUVECs 

and our results is based both on cell line and oxygen tension differences. 

5.6 Limitations of the reporter gene assay 

Here we show that exogenous HIF-3α inhibits hypoxia-driven luciferase activity, 

thereby extending findings, that overexpression of HIF-3α diminished HIF-1 induced 

luciferase levels (Hara et al. 2001; Maynard et al. 2005; Maynard et al. 2007). Alt-

hough several studies reported the inhibitory effect of exogenous HIF-3α in a lucifer-

ase assay (Hara et al. 2001; Maynard et al. 2005; Maynard et al. 2007), the effects of 

HIF-3α on endogenous HIF target genes are still controversial, ranging from moder-

ate activation to clear inhibition (Hara et al. 2001; Maynard et al. 2005; Augstein et al. 

2011; Heikkilä et al. 2011). 
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Reporter gene assays are a powerful instrument for getting a first idea about a spe-

cific transcriptional mechanism, especially if a proper normalization and standardiza-

tion is carried out. However, the results of others and ours regarding functional role of 

HIF3A can be easily misinterpreted due to two major limitations. The first shortcom-

ing is the status of the reporter gene containing plasmid, which is episomal and 

moreover histone free. Thus, the conditions for the endogenous regulatory element 

and its counterpart within the vector are different regarding cellular localization and 

accessibility. The second disadvantage is the unknown spatiotemporal behavior of 

the studied transcription factor. Especially in the case of HIF-3α, when neither the 

presence itself nor the appearance nor the concentration is well known, an often car-

ried out exogenous overexpression of a HIF-3α variant might lead to artificial effects. 

Considering the affiliation of HIF-3α with the PAS protein superfamily, a massive 

flooding of the cell with highly unphysiological levels of HIF-3α protein may end up in 

artificial interactions with other PAS proteins and thus in hard to interpret results. 

Taking into account that we and others found HIF3A expression upregulated in the 

later phase of hypoxia (Hara et al. 2001; Pasanen et al. 2010; Augstein et al. 2011) 

concomitantly with an early HIF-1α appearance, the proclaimed inhibition of HIF-1α 

by HIF-3α is theoretically possible but might not biologically relevant due to their 

asynchronous appearance. Due to the above-mentioned drawbacks of a reporter 

gene assay, we aimed for the characterization of endogenous HIF-3α. Nevertheless, 

the results obtained with HIF-3α in reporter gene assay can be interpreted as a hint 

towards the involvement in the hypoxic response. In particular, reports about HIF-3α 

being an activating transcription factor with ARNT in excess (Gu et al. 1998; Hara et 

al. 2001) point out a complex function of HIF-3α. 

5.7 Heterogeneous effect of HIF subunit knockdown 

We started the analysis of endogenous HIF-3α by verifying our siRNAs directed 

against the different HIF-alpha subunits. Besides the confirmation of an efficient 

knockdown of its respective target, we observed a compensatory increase of HIF-1α 

protein after HIF2A depletion, which appeared not on mRNA level. The underlying 

mechanism of this effect has recently been described by Schulz et al. (2012) when 
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they found a RNA binding protein that mediated enhanced translation of HIF-1α con-

comitantly with the depletion of HIF2A. In addition, we were able to confirm a recent 

finding that HIF3A is a HIF-1 target gene (Pasanen et al. 2010); whether this finding 

exerts a regulatory negative feedback loop on HIF-1α activity or the activation of a 

secondary HIF-member not involved in the HIF-1α regulation remains elusive. 

Tested HIF target genes showed different responses after depletion of HIF1A or 

HIF2A. As expected, HIF-1α target gene PGK1 exerted decreased or no hypoxic in-

duction upon HIF1A depletion, respectively. With depletion of HIF2A, a hypoxic in-

duction of PGK1 was not be observed, suggesting that only a subset of HIF-1 target 

genes is susceptible for compensation by HIF-2. In contrast, HIF2A silencing com-

pletely abolished the hypoxic induction of PAI1.  

When silencing HIF3A no alteration of PGK1 levels could be observed. Although 

these findings may point to a dispensable role of HIF3A in the inhibition of HIF-1α, we 

cannot exclude an effect of HIF-3α also on HIF-1 activity under different conditions. 

Eventually, we found that plasminogen activator inhibitor 1 (PAI1) is a HIF-2 target 

gene in vascular endothelial cells, which is in line with previous reports (Sato et al. 

2004; Diebold et al. 2010; Stiehl et al. 2011). Notably, the effects of HIF-α subunit 

depletion observed on mRNA level could also be monitored on protein level, particu-

larly the depletion of HIF3A increased PAI-1 protein levels.  

5.8 Functional effects of HIF3A depletion 

After we demonstrated that at sustained hypoxia HIF-2-driven PAI1 expression is 

inhibited by HIF-3α, we confirmed our observation on functional level by the inhibitory 

effect of HIF-3α on PAI-1-mediated tube formation. By using supernatants of HIF 

subunit depleted and hypoxia-stimulated cells for the stimulation of cells in ambient 

conditions, we were mimicking the paracrine cell cell communication observed in 

vasculature. In addition, we minimized side effects of hypoxia on the cells. Whereas 

supernatant of hypoxic control cells increased tube formation, supernatant from 

HIF2A depleted hypoxic cells showed no change in tube formation clearly pointing to 

an indispensable role of HIF-2α in the angiogenic process. In line with our previous 

results, supernatant of cells depleted of HIF3A and to a lesser extent HIF1A in-
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creased tube formation compared to supernatant of hypoxic control cells, suggesting 

a pivotal role of PAI-1 in tube formation. This idea was strongly supported by the use 

of an inhibitory antibody against human PAI-1, which was mixed with the supernatant 

of HIF3A depleted hypoxic cells resulting in abandoned tube formation. 

When discussing about angiogenesis, it is also necessary to mention the role of 

VEGF-A. In our setup however, paracrine signaling by VEGF-A seems to be less im-

portant, as the depletion of HIF1A and thus also of HIF–1α target gene VEGFA has 

minor effects compared to the increased PAI-1 signaling in these cells. Our results 

support the idea that under physiological conditions endothelial cells are highly sensi-

tive to VEGF-A secreted by many cell types, but usually not by endothelial cells 

themselves. In contrast to previous reports, our study provides a description about a 

functional effect of endogenous human HIF-3α. 

5.9 Revealing the modulatory mechanism of HIF-3α by in-

teraction studies 

We next focused on the investigation of the underlying mechanism of modulatory 

properties of human HIF-3α. While the murine HIF-3α isoform Ipas was found to in-

teract with HIF-1α but not with ARNT (Makino et al. 2001), protein-protein interac-

tions of all human HIF-3α splice variants with HIF-1α, HIF-2α and ARNT were 

described in an in vitro system (Pasanen et al. 2010), of which we confirmed the in-

teraction of HIF-3α with HIF-2α and of HIF-3α with ARNT in the present study.  

It is well known that heterodimerization of different HIF subunits occur via their 

N-terminally located bHLH-PAS domains. Considering the presence of 19 mammali-

an bHLH–PAS genes and the similarity of PAS domains amongst their transcripts 

(Bersten et al. 2013), it is not surprising to observe an interaction between members 

of the respective protein family when overexpressed. However, the tool of co-

immunoprecipitation of exogenous proteins provides a first insight to potential en-

dogenous interactions.  

Subsequently to the protein-protein interactions, we showed that HIF-3α is binding in 

a complex with ARNT to the HRE-2 sequence in the PAI1 promoter in human endo-



Discussion 
 

 

 
86 

thelial cells by using a cell free electromobility shift assay. In addition, both 

HIF-2α/ARNT and HIF-3α/ARNT did not bind to a mutated HRE probe, indicating that 

both dimers do bind to the core HRE sequence. Among human HIF-3α isoforms, so 

far only HIF-3αBC, the structural analogue to IPAS, was reported to bind in vitro to a 

HIF response element in a complex with HIF-1α and HIF-2α, but not with ARNT 

(Maynard et al. 2005; Maynard et al. 2007). However, due to the limited length of the 

probe and the histone free status, the observed binding properties of HIF-3α can only 

be regarded as another hint about a possible physiological mechanism. The potential 

of HIF dimers for HRE binding in vitro might be dependent on the isoform and the 

chosen HRE and may not reflect endogenous situation. Nevertheless, our findings 

indicate two potential mechanisms, how HIF-3α interferes in the HIF-2α/ARNT driven 

transactivation of PAI1: either HIF-3α interacts with HIF-2α, thus preventing the for-

mation of an active HIF-2α/ARNT complex or HIF-3α interacts with ARNT subse-

quently binding to the HRE in the promoter thereby sterically blocking the binding site 

for a HIF-2α/ARNT complex. Thus we aimed for analysing the properties of endoge-

nous HIF-3α. 

5.10 HIF-3α is modulating HIF-2α activity by competing for 

ARNT 

The detection and identification of human endogenous HIF-3α is still ambigous, so 

we designed experiments, which indirectly demonstrate the impact and role of en-

dogenous HIF-3α protein. In a chromatin immunoprecipitation assay we found only 

little HIF-2α bound to the PAI1 promoter region under prolonged hypoxia, which is in 

accordance with our previous results showing an intermediate transactivation of 

PAI1. We hypothesize, that with prolonged hypoxia HIF-3α already started to exert its 

modulatory properties. Thus, with a knockdown of HIF3A, PAI1 promoter occupation 

by HIF-2α increased significantly clearly suggesting a direct impact of HIF-3α pres-

ence on HIF-2α activity. Concomitantly, occupation of the same promoter region by 

ARNT under hypoxia was already profound under control conditions and did not 

change with the knockdown of HIF3A. We therefore concluded, that in hypoxic con-
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trol cells HIF-3α is complexed with ARNT and bound to the PAI1 promoter region 

containing the HRE-2 site. With depletion of HIF3A, HIF-2α/ARNT complex is un-

hamperedly binding to the PAI1 promoter, which can be seen in HIF-2α occupation 

but not in ARNT occupation. Only with depletion of both, HIF2A and HIF3A, the frac-

tion of promoter-bound ARNT under hypoxic conditions clearly decreased, excluding 

other interaction partners for ARNT in this setup. Thereby we demonstrated, that un-

der sustained hypoxia also endogenous HIF-3α binds in complex with ARNT to the 

HRE in the PAI1 promoter (Figure 24A/B), thus elucidating the mechanism of modu-

lating HIF-2α activity and additionally confirming the physiological relevance of 

HIF-3α/ARNT dimerization. However, it is not yet clear, whether the dimerization of 

HIF-3α and ARNT occurs in parallel to a HIF-2α/ARNT dimerization or as a competi-

tive dimerization of HIF-3α and HIF-2α for ARNT.  

To address this issue we performed a co-immunoprecipitation in which the hypoxia 

induced interaction of HIF-2α and ARNT is abolished at 24 hours concomitant to still 

elevated HIF-2α protein levels. Based on our observations of HIF3A mRNA levels, 

we assumed an induction of HIF-3α protein upon prolonged hypoxic stimulation. 

Thus, we suggest that HIF-3α outcompeted HIF-2α in binding for ARNT. Although 

ARNT is known as a ubiquitous protein involved in different cellular processes, our 

results suggest that under sustained hypoxia ARNT is a limiting factor for dimeriza-

tion with HIF-α subunits. Considering that HIF-3α cannot only interact with HIF-1α but 

also with HIF-2α or ARNT in vitro (Pasanen et al. 2010), we assume that the ob-

served dimerization of HIF-1α/HIF-3α and HIF-2α/HIF-3α could be endogenously at-

tributed to the restricted pool of ARNT, thereby enabling also the dimerization of 

alpha subunits in between themselves and thus negatively regulating HIF-mediated 

gene expression. To address the question whether dimerization of HIF-3α with other 

HIF-α subunits occurs endogenously under hypoxic conditions, a reliable and highly 

sensitive antibody against HIF-3α would be necessary, which is to our knowledge 

currently not in sight. 
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5.11 Transactivatory properties of HIF-3α  

In addition to the occupation of the HRE by HIF-3α/ARNT, we were wondering about 

the transactivatory function of this complex. Thus, we performed luciferase assays 

with either the isolated HIF-3α TAD domain fused to a GAL4 DNA binding domain or 

with the full-length HIF subunits. We observed not only a transactivation of an up-

stream activation sequence by the GAL4-HIF-3α-TAD construct but also an induction 

of PAI1 promoter activity by HIF-3α/ARNT complex, while both proteins showed not 

substantial changes when overexpressed alone. Besides a strong transcriptional up-

regulation of endogenous PAI1 mRNA level by HIF-2α/ARNT, we observed mildly 

increased PAI1 levels after coexpressing HIF-3α and ARNT. Thereby, we confirmed 

a recent finding of Heikkilä et al. showing that coexpression of HIF-3α and ARNT re-

sulted in mild transcriptional upregulation of certain HIF target genes (2011). Where-

as in our setup HIF-3α alone did not significantly alter PAI1 mRNA levels, in their 

report overexpression of HIF-3α without the coexpression of ARNT did not show up-

regulation of transcription but rather downregulation of respective target genes (Heik-

kilä et al. 2011). The observed differences might be attributed to the differences in 

exogenous HIF-3α and ARNT protein levels, as their overexpression is rather uncon-

trolled.  

5.12 Perspectives 

Based on our results we propose a model in which HIF-3α is upregulated with pro-

gression of hypoxia, and interacts with HIF-2α, thereby preventing further high-level 

transcription from its respective target genes. The impact of HIF-3α on the HIF sys-

tem might be dependent on the amount of HIF-3α protein present in the cell. At the 

onset of hypoxia, HIF-3α levels are low and HIF-1 and HIF-2 target genes are trans-

activated by HIF-1α/ARNT or HIF-2α/ARNT. However, with progression of hypoxia, 

HIF-1 induced HIF-3α levels increase and modulate HIF-2-mediated gene expres-

sion. An additional modulating effect might be the interaction with HIF-α subunits 

thereby preventing dimerization with ARNT and the subsequent activation of HIF tar-

get genes. However, due to technical limitations, this point remains elusive. Accord-
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ing to our findings, the predominant modulatory effect is based on the interaction of 

HIF-3α with ARNT, thus subsequently maintaining basal transcription necessary for 

coping with chronic hypoxic conditions.  

To summarize, we suggest that the so far described and published effects of HIF-3α, 

inhibitory or activating, are both correct, depending on the time point of withdrawal or 

introduction of HIF-3α in the respective cellular context. 

 

Figure 26: Suggested mechanism of modulatory action of HIF-3α on HIF-2α under hypoxia. 

Upon hypoxic conditions HIF-1α and ARNT dimerize and activate the respective target genes, 

amongst others HIF3A. Consecutively, HIF-2α/ARNT dimers are active with prolonged hypoxia and 

trigger besides others genes participating in the regulation of angiogenic processes. With sustained 

hypoxia, the HIF-1 mediated HIF-3α expression is competing with HIF-2α for the binding with ARNT 

thereby blocking HIF-2 from binding, preventing immoderate transactivation and maintaining interme-

diate expression levels of target genes. 

Although few studies reported an inhibitory role of HIF-3α in angiogenic processes by 

modulating VEGFA (Makino et al. 2001; Augstein et al. 2011), both, identification of 

the inhibited factor as well as the mechanistic background were discussed ever 
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since. The distinct structures of human and murine HIF-3α variants adds another lev-

el of complexity to the sustainable understanding of their individual physiological or 

pathophysiologigcal role. The initial description of the HIF3A gene in both organisms 

suggested profound overlap in structure and function (Gu et al. 1998; Hara et al. 

2001). However, with the report about the inhibitory murine IPAS and its unique exon 

4a by Makino and colleagues, the search for a structural equivalent in human started 

(Makino et al. 2001; Makino et al. 2002). Due to only partial overlap of human splic-

ing variants of human HIF3A with murine Ipas mRNA, only functional but not struc-

tural counterparts of murine IPAS were suggested. While Maynard and colleagues 

suggested HIF-3α4 as a dominant negative variant towards the HIF system, the 

group around Augstein proposed HIF-3α2 and HIF-3α3 to exert inhibitory properties 

on HIF (Maynard et al. 2005; Augstein et al. 2011). Considering the limited compara-

bility of murine and human orthologs and the varying description about human HIF3A 

variants, comprehensive studies are necessary to elucidate the function of HIF-3α in 

the respective organism.  

In addition, more “HIF-3α target genes” remain to be revealed in further studies. 

Based on our findings of HIF3A being induced at prolonged hypoxia, we expect a 

significant overlap with HIF-2 target genes rather than HIF-1 target genes. 

Our data give a good insight in the relevance of HIF-3α for proliferative responses of 

vascular endothelial cells. Bearing in mind, that HIF-3α exerts modulatory properties 

in endothelial cells, its pathophysiological significance is subject to speculations. 

Proper endothelial function is inevitable in vascular biology, assuring barrier purpos-

es, homeostasis of blood pressure and vascular tone as well as angiogenesis (Vita 

2011). However, disordered endothelial cell proliferation along with concurrent exu-

berant neoangiogenesis results in the formation of glomeruloid structures known as 

the plexiform lesions, which are common pathological features of the pulmonary ves-

sels of patients with pulmonary arterial hypertension (PAH) (Budhiraja et al. 2004). In 

addition, HIF-2α seems to be contributing to pulmonary hypertension as shown by a 

gain of function mutation HIF-2α in mice (Tan et al. 2013). Thus, it is tempting to 

speculate, that a missing modulation of HIF-2α by HIF-3α is contributing to the de-

velopment of pulmonary hypertension and thus might exert a therapeutical value. 
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In addition, angiogenesis is also an important step in the transition of tumors from a 

confined to malignant state (Carmeliet 2000). Anti-angiogenic therapy targets vascu-

lar growth within tumors, with the aim of suppressing tumor growth and metastasis 

(Kubota 2012). It is known that anti-angiogenic treatment e.g. by VEGF blockade 

damages not only tumor vessels but also healthy vessels and results in severe prob-

lems such as hemorrhagic and thrombotic event (Verheul and Pinedo 2007; Kubota 

2012). To overcome the mentioned drawbacks, HIF-3α might be considered a candi-

date for preventing excessive angiogenesis towards a moderate and controlled neo-

vascularization. 

However, more direct insight in the role of HIF-3α in regulation of proliferative pathol-

ogies developing under sustained hypoxia requires good and translatable models. 

Thus, confirming and extending our results by a multidimensional approach, including 

clinical and molecular parameters might have therapeutical implications.  
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6 Summary 

The evolutionary conserved hypoxia-inducible factor (HIF) system plays a key role in 

an appropriate adaptation to decreased oxygen tension, ranging from systemic ef-

fects like triggering EPO secretion and angiogenic processes to cellular effects like 

switching pathways of energy production. In its active form, HIF is a heterodimer 

consisting of a constitutively expressed β-subunit (ARNT) and a regulated α-subunit. 

While the function of human HIF-1α and HIF-2α has been well characterized, the 

functional role of human HIF-3α is less understood.  

The thesis aimed at the characterization of the transcriptional regulation of human 

HIF3A gene and the modulatory function of human HIF-3α protein. A special focus 

was put on its effect under hypoxia on HIF-2 driven gene expression. 

When analyzing the transcription of HIF3A, we found that its basal expression is pro-

found in human endothelial microvascular cells (HMEC-1), a cell line with retained 

physiological features. In contrast, in degenerated cervical and breast cancer cell 

lines (HeLa and MCF-7, respectively) HIF3A transcripts are low to undetectable. A 

comparative DNaseI assay revealed high accessibility of the HIF3A promoter in 

HMEC-1, in HeLa and MCF-7 cells however the accessibility was intermediate and 

low, respectively, indicating differential regulation of basal HIF3A transcription. Sub-

sequently, we performed bisulfite sequencing of the HIF3A promoter region to assess 

its epigenetical status. We found a strong hypermethylation of tested CpG sites in 

HeLa and MCF-7 cells. In contrast methylation of the same region in HMEC-1 cells 

was less severe. Last, we analysed the chromatin status of the HIF3A promoter re-

gion by chromatin immune precipitation of modified histones. Whereas we found en-

riched levels of acetylated histone 3 (H3Ac), a marker for active chromatin, in 

HMEC-1 cells, a marker for inactive chromatin, trimethylated lysine 9 of histone 3 

(H3K9me3), was decreased. Compared to HMEC-1 cells, the ratio of H3Ac and 

H3K9me3 was clearly lower in HeLa and MCF-7 cells. The analysis of regulation of 

human HIF3A in different cell lines revealed an epigenetic dependency of its basal 

transcription and give rise to speculations about its role in tumor cells.  

When we analysed the functional role of HIF-3α, we found that exposure of HMEC-1 

to severe hypoxia (0.1% oxygen) increased HIF3A mRNA levels around 8 to 16 
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hours, and this response was diminished by depletion of HIF-1α. In a luciferase as-

say, over-expressed HIF-3α decreased hypoxia-stimulated promoter activity of the 

HIF-target gene plasminogen activator-inhibitor-1 (PAI1), compared to control. Oppo-

sitely, depletion of HIF3A by RNAi further enhanced the hypoxia-driven PAI1 promot-

er activity supporting the hypothesis of HIF-3α acting inhibitory on the HIF system. 

Consequently, depletion of HIF3A by RNAi increased expression of PAI1 at later time 

points of hypoxia (>24h). In line, we could demonstrate that knockdown of HIF2A but 

not HIF1A abolished PAI1 expression in HMEC-1 under hypoxia.  

Co-immunoprecipitation assays revealed that HIF-3α is able to interact with HIF-1α 

and HIF-2α as well as with ARNT. By gel shift assays, we could demonstrate that 

HIF-3α/ARNT but not α/α dimers can bind to HIF-response elements on DNA. Chro-

matin immunoprecipitation analysis showed that HIF-2α binding to the PAI1 promoter 

was maximal at 24h of hypoxia, but declined after 48h. Knockdown of HIF3A did not 

affect HIF-2α binding to the PAI1 promoter at 24h but increased HIF-2α occupation of 

the PAI1 promoter at 48h. In contrast, ARNT occupation of the PAI1 promoter was 

stable at 24h and 48h. However, depletion of both, HIF-2α and HIF-3α, abolished 

ARNT binding to the PAI1 promoter. These findings indicate that a HIF-3α/ARNT 

complex competes with DNA binding of HIF-2α after prolonged hypoxia. Additional 

studies showed weak transactivatory properties of overexpressed HIF-3α/ARNT 

complexes in luciferase assay as well as on endogenous PAI1 expression level. 

Considering these results, HIF-3α seems to play a rather modulatory than inhibitory 

role under hypoxia. This effect was also found in a functional angiogenesis assay. 

With depleted HIF-3α, tube formation was increased compared to control conditions, 

whereas knockdown of HIF-2α resulted in decreased formation of tube like struc-

tures. Taken together, this study shows a diverging epigenetic regulation of basal 

HIF3A expression in different cell lines. In addition, we showed that HIF-3α modu-

lates HIF-2 activity by interacting with ARNT and a subsequent binding to the PAI1 

promoter under prolonged hypoxia. Considering suggested proangiogenic role of 

HIF-2α in hypoxic regions of many solid tumors, our findings of an epigenetic regula-

tion of HIF3A expression and the modulatory role of HIF-3α under hypoxic conditions 

could be of potential therapeutical value. 
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7 Zusammenfassung 

Die Verfügbarkeit von Sauerstoff spielt eine zentrale Rolle bei oxidativer Phosphory-

lierung und damit der Energieversorgung in eukaryotischen Zellen. Bei zellulärer 

Sauerstoffunterversorgung (Hypoxie) koordinieren die evolutionär konservierten Hy-

poxie-induzierbaren Faktoren (HIFs) die Anpassung durch systemische sowie zellu-

läre Prozesse. In seiner aktiven Form besteht der Transkriptionsfaktor HIF aus einem 

Heterodimer aus konstitutiv exprimierter β-Untereinheit ARNT und einer regulierten 

α-Untereinheit. Während HIF-1α und HIF-2α gut untersucht und charakterisiert sind, 

werden Regulation und Funktion des humanen HIF-3α bisher kontrovers diskutiert. 

In dieser Arbeit wurde sowohl die transkriptionelle Regulation des HIF3A Gens als 

auch die modulierende Funktion des HIF-3α Proteins näher untersucht. Im Besonde-

ren wurde der Effekt von HIF-3α auf die durch HIF-2 induzierte Genexpression ana-

lysiert. 

Die Expression des HIF3A Gens unter basalen Bedingungen war in den untersuch-

ten Zelllinien sehr heterogen. Während in der primär-ähnlichen Zelllinie HMEC-1 ho-

he Spiegel von HIF3A Transkripten nachgewiesen wurden, konnte in verschiedenen 

Tumorzelllinien, darunter HeLa und MCF7, nur sehr geringe HIF3A Expression fest-

gestellt werden. Dies korrelierte mit der Zugänglichkeit des HIF3A Promotors, welche 

in HMEC-1 als hoch, in HeLa und MCF7 dagegen nur als niedrig bis intermediär ein-

gestuft wurde. Die Methylierungsanalyse des HIF3A Promotors in den verschiedenen 

Zelllinien durch Bisulfitsequenzierung ergab eine nahezu vollständige Hypermethylie-

rung der CpG-Stellen bei HeLa und MCF7, während in HMEC-1 Zellen der gleiche 

Bereich weniger ausgeprägt methyliert war. Bei der Analyse der Histonmodifikatio-

nen in der Promotorregion mittels Chromatinimmunpräzipitation zeigte sich einer An-

reicherung von azetyliertem Histon 3 in HMEC-1 Zellen. In HeLa und MCF7 Zellen 

wurde dieser Marker für aktives Chromatin in deutlich geringerem Maße nachgewie-

sen. Dagegen war die Anreicherung des Markers für inaktives Chromatin, trimethyl-

iertes Lysin 9 in Histon 3, in HeLa und MCF7 Zellen deutlich stärker als in HMEC-1 

Zellen. Unsere Ergebnisse deuten auf eine epigenetische Regulation des HIF3A-

Gens hin, die in verschiedenen Zelllinien zu einer unterschiedlichen basalen Regula-
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tion führen und damit zu Spekulationen hinsichtlich der Rolle von HIF-3α bei Tumor-

zellen führen. 

Zusätzlich zur Untersuchung der Transkription von HIF3A analysierten wir die Funk-

tion von HIF-3α in der zellulären Reaktion auf Hypoxie. Dazu wurden HMEC-1 Zellen 

bei 0,1% Sauerstoff kultiviert und in Ermangelung zuverlässiger Antikörper die Spie-

gel von HIF3A mRNA gemessen. Wir konnten zeigen, dass der deutliche Anstieg der 

HIF3A Transkriptionsrate zwischen 8 und 16 Stunden Hypoxie HIF-1 abhängig ist. 

Anschließend konnte mittels Luciferase-Assay die inhibitorische Eigenschaften von 

HIF-3α auf die Hypoxie-induzierte Aktivität des Promotors des HIF-Zielgens PAI1 

(Plasminogen-Aktivator-Inhibitor 1) gezeigt werden. Eine Abreicherung von HIF-3α 

durch siRNA führte dagegen zu einer verstärkten Aktivität des PAI1-Promotors und 

parallel dazu auch zu einer erhöhten Expression von endogenem PAI1 in HMEC-1 

Zellen unter hypoxischen Bedingungen. Dabei konnte gezeigt werden, dass die hy-

poxische Expression von PAI1 in HMEC-1 Zellen HIF-2 und nicht HIF-1-abhängig ist. 

Die Charakterisierung von HIF-3α mittels Coimmunopräzipitation ergab mögliche 

Proteininteraktionen sowohl mit HIF-1α als auch HIF-2α und ARNT. Beim folgenden 

Gel shift assay zeigte sich, dass nur HIF-3α/ARNT, nicht jedoch α/α-Dimere an HIF 

reaktive Elemente der DNA binden können. Mit Hilfe von Chromatinimmunopräzipita-

tion konnte nachgewiesen werden, dass die Bindung von HIF-2α am endogenen 

PAI1 Promotor nach 24 Stunden Hypoxie am höchsten war, nach 48 Stunden jedoch 

wieder geringer wurde. Die Abreicherung von HIF3A durch siRNA führte zu einer 

erhöhten Bindung des PAI1 Promotors durch HIF-2α nach 48 Stunden Hypoxie, wäh-

rend bei 24 Stunden keine Änderung beobachtet wurde. Der Anteil durch ARNT ge-

bundene PAI1 Promotor DNA blieb bei 24 und 48 Stunden Hypoxie sowohl unter 

Kontrollbedingungen als auch nach Abreicherung von HIF3A stabil. Die gleichzeitige 

Abreicherung von HIF2A und HIF3A jedoch führte zu einer vollständigen Aufhebung 

der ARNT-Bindung an den Promotor. Unsere Ergebnisse zeigen, dass unter anhal-

tednder Hypoxie der HIF-3α/ARNT Komplex mit HIF-2α um die Bindung an die DNA 

konkurriert und damit die Expression des Zielgens reguliert. Zusätzlich konnte ge-

zeigt werden, dass überexpremierte HIF-3α/ARNT Komplexe sowohl im Luciferase 

assay als auch bei der Expression des endogenen PAI1 moderate transaktivatori-
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sche Eigenschaften aufweisen. Vor diesem Hintergrund scheint HIF-3α eher eine 

modulierende als inhibierende Wirkung auf das HIF-System zu besitzen. Der modu-

liernde Effekt von HIF-3α konnte in einem sogenannten tube formation assay bestä-

tigt werden, in dem unter hypoxischen Bedingungen die Abreicherung von HIF3A zu 

einer verstärkten Aussprossung von endothelartigen Strukturen führt. Demgegenüber 

führte eine Abreicherung von HIF2A zu einer abgeschwächten Bildung dieser Struk-

turen. 

Zusammengefasst zeigt diese Studie eine unterschiedliche epigenetische Regulation 

der basalen Transkription von HIF3A in verschiedenen Zelllinien. Zusätzlich konnten 

wir bei anhaltender Hypoxie in HMEC-1 Zellen eine modulierende Funktion von 

HIF-3α auf die Aktivität von HIF-2α am PAI1 Promotor zeigen. Dies basiert auf einer 

kompetitiven Interaktion von HIF-3α und HIF-2α mit ARNT und einer anschließenden 

Bindung eines HIF-3α/ARNT-Komplexes an die entsprechende Bindungsstelle. Die-

ser Komplex zeigt schwache transaktivatorische Eigenschaften, so dass HIF-3α als 

modulierender und nicht inhibierender Faktor bei Hypoxie zu beschreiben ist. 

Unter Berücksichtigung der proangiogenen Eigenschaften von HIF-2α in hypoxischen 

Arealen solider Tumoren sind nach weiterer Charakterisierung von HIF-3α vielfältige 

therapeutische Möglichkeiten denkbar. 
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