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Abstract 
 

The role of cell-cycle phase in cytokine-induced lineage production has long 

been a point of debate. The main shortcomings in todays’ research are the lack of live 

cell-cycle observation in primitive primary cells and a fast yet robust read-out that 

allows detection of all lineages in vitro. Furthermore, a clonal ex vivo/in vitro culture 

would be favorable to current analyses that are mostly performed on a population 

scale since by doing so, a direct effect can be detected and potential influences and 

contaminations from other cells can be excluded.  

 

The data I present in this thesis provides answers to these questions by employing 

high-throughput methods that overcome all of these hurdles. Through use of a live 

cell-cycle reporter combined with time-lapse imaging at single-cell resolution, cell-

cycle durations and transitions were quantified in hematopoietic stem cells (HSCs) 

over multiple generations. I demonstrate a strongly heterogeneous behavior of highly 

purified primitive stem cells, allowing me to assess the influence of cell-cycle on 

lineage production upon cytokine administration by use of optimized culture 

conditions and live antibody staining.  

 

Here, evidence is provided that HSCs that produce all myeloid lineages not only 

are more frequently found in G1-phase upon cytokine administration but also have a 

longer G1-phase, which can be observed over multiple generations. Strikingly, when 

cytokines were administered to daughter cells the same phenomenon could be 

observed, showing the reoccurrence and reversibility of this feature. To test whether 

this is a cell-intrinsic effect rather than an effect of cytokine administration, HSCs 

were enriched for G1-phase using cell-cycle inhibitors. Indeed, this resulted in an 

overall higher yield of G1-phase cells that produced all myeloid lineages, despite 

increased toxicity. In contrast, further administration of GM-CSF resulted in a 

reduced clonal production of all myeloid lineages. Together with preliminary data that 

shows signaling pathway activity, these data form a stepping-stone to identify the 

molecular prerequisites for multlineage production and highlight the involvement of 

cell-cycle phase in multilineage production from hematopoietic stem cells. 
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Further in-depth analysis of cell lifetimes in HSC subsets was performed in 

NUP98-HOXA10homeodomain (NA10hd) overexpressing HSCs, known to increase 

HSC expansion in vitro. However, to date little is known about the behavior of these 

cells and the mechanism(s) underlying this effect remains elusive. The use of time-

lapse imaging resulted in the novel identification of HSC subsets with distinct cell 

lifetimes in NA10hd-overexpressing cells. Both slow- and fast-dividing cells were 

generated from the same ancestry, gradually leading to exhaustion of slow dividing 

NA10hd cells. Through co-culture with non-transduced HSCs NA10hd was 

unexpectedly found to have a paracrine effect, strongly affecting lineage marker 

expression and increasing the prevalence of a fetal liver phenotype in these cells, 

which could not be detected when co-cultured with mock-infected control cells. These 

phenomena require in-depth follow-up and could help understanding the mechanism 

of HSC expansion, with great impact on the clinical setting.  

 

Co-culture with stromal cells (PA6) that can maintain HSC stemness over 

multiple generations revealed an increase in motility and cell lifetime for NA10hd-

positive HSCs, which was dependent on cell-cell interactions. Indeed, it may well be 

the case that reduced NA10hd HSC proliferation upon transplantation is a direct 

effect of cell-cell signaling in the in vivo niche, yet this requires future work for 

further elucidation. Together, these results elicit new NA10hd-induced behavioral 

features, which could have implications in deciphering the mechanism behind HSC 

expansion.  

 

In summary, the data I present here sheds new light on the mechanisms of HSC 

expansion, self-renewal and multilineage production with important clinical 

applications.  
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1 Introduction 

 

1.1 Hematopoietic stem cells 
 

Were it not for the early 17th century Dutch pioneers, we probably would not 

be at our current state of knowledge of blood cells and their function. With the 

invention of the first compound microscope in the late 16th century, Jan 

Swammerdam and Antoni van Leeuwenhoek were the first naturalists who described 

and drew the structure of red blood cells, “red corpuscles”. Until then, blood was only 

seen from a holistic perspective, following Hippocrates’ and Aristotle’s antique and 

classic theorem. However, even today blood is considered one of the most complex 

tissues in the human body. Comprising growth factors, hormones and important 

nutrients such as fatty and amino acids, sugars and oxygen, it is simultaneously 

providing a gateway for metabolic waste products and carbon dioxide to ensure 

optimal physiologic homeostasis in our body.  

  

The blood cells involved in all these actions are originally derived from 

hematopoietic stem cells (HSCs). HSCs form a very rare subpopulation (~1 in 20,000 

bone marrow cells in young adult mice (Warr, Pietras et al. 2011)), and fulfill two 

characteristics: they can self-renew life-long and have the potential to differentiate 

into every blood lineage. The first experimental evidence of the existence of HSCs 

dates back to 1963, when Becker, Till and McCulloch discovered that a clonogenic, 

transplantable marrow cell that fulfilled these characteristics could form spleen 

colonies. (Becker, McCulloch et al. 1963). In homeostasis, HSCs on top of the 

hematopoietic hierarchy (Figure 1.1-1), are thought to be in a dormant state 

(quiescent) with a very low in vivo cell division rate, ranging from two to four months 

in mice (Chesier, Morrison et al. 1999; Sudo, Ema et al. 2000). Upon activation, 

HSCs transit into cell-cycle and can have either self-renewing divisions, e.g. 

providing progeny with the same HSC characteristics, differentiate into (committed) 

multipotent progenitors, or are often hypothesized to have asymmetric cell divisions 

that sustain HSC numbers whilst simultaneously providing fast proliferating 

multipotent progenitor cells that eventually differentiate and produce all blood 

lineages (Akashi, He et al. 2003; Takano, Ema et al. 2004; Giebel, Zhang et al. 2006; 
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Beckmann and Scheitza S 2007; Wu, Kwon et al. 2007; Knoblich 2008). 

 

 
Figure 1.1-1: Hematopoietic hierarchy 
Simplified overview of hematopoiesis, containing the key components of the hematopoietic system. 
HSC (hematopoietic stem cell), MPP (multipotent progenitor), CMP (common myeloid progenitor), 
CLP (common lymphoid progenitor), CMLP (common myeloid lymphoid progenitor), GMP 
(granulocyte-macrophage progenitor), MEP (megakaryocyte-erythrocyte progenitor), dendritic cells 
and osteoclasts are not shown. 
 

In recent years it has become evident that this long-accepted hierarchical 

system may have bypasses and even the existence of certain progenitor populations 

has been disputed. HSCs can also be biased towards specific lineages (Müller-

Sieburg, Cho et al. 2002; Sieburg, Cho et al. 2006; Dykstra, Kent et al. 2007; Challen, 

Boles et al. 2010; Benz, Copley et al. 2012), posing the question again: what really 

defines hematopoietic stem cells? 

 

The factors and mechanisms controlling cell fate have been extensively 

studied but are still poorly understood. The in vivo HSC pool is very small and not 

readily accessible due to its primary location in the bone marrow, a tissue that is in 

itself poorly understood in term of anatomical, cellular and molecular architecture. 
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Studies on HSC function furthermore struggle with classic in vivo read-outs that can 

take up to two years for completion. Ex vivo (e.g. in vitro) studies require cell culture 

techniques. Although ultimately only partially mimicking physiological conditions, 

they allow us to study the behavior of these cells, manipulate them and directly read-

out the effect of different conditions. For many progenitor types that are often found 

at different locations in the body, depending on the state of activity and 

developmental stage, this is common practice and has led to the discovery and 

characterization of many genetic and molecular fingerprints. 

 

HSCs cannot be kept in culture long-term. They either undergo apoptosis or 

lose their multipotency or self-renewal capacity after even short culture. Taking these 

cells out of their highly structured microenvironment, the so-called niche, signaling 

pathways are changed and disrupted and the physiologic conditions are altered, 

eventually leading to a loss of quiescence and activation of HSCs. It is for this reason 

that many studies are focusing on mimicking the in vivo niche by optimizing culture 

conditions with cytokines and growth factors, co-cultures and media perfusion in 

order to retain quiescence or induce self-renewal divisions.  

 

On the other hand, a great interest lies in the in vitro large-scale production of 

specific lineages. Many patients with blood disorders cope with a depletion of mature 

lineage subsets. Platelets that initiate wound healing are derived from megakaryocytes 

and pathological defects in their maturation cause severe bleeding. Erythrocytes are 

crucial for oxygen transport within the body and their differentiation and maturation 

are often impaired by leukemic cells or by genetic defects causing anemia. Both cell 

types are descendants of megakaryocyte-erythrocyte progenitor cells (MEPs), yet it 

remains unclear what exactly causes these cells to differentiate in either lineage. 

When foreign bodies enter our circulation, as is the case during e.g. injury or 

infection, granulocytes and macrophages act first to clear our system and together 

form our innate immune system. Although it has recently become clear that cytokines 

can instruct lineage choice in their common ancestor, granulocyte-macrophage 

progenitor (GMP) (Rieger, Hoppe et al. 2009), still little is known about the 

hierarchical level at which this decision can occur and the potential of lineage priming 

is still a point of debate (Luc, Buza-Vidas et al. 2008; Ng, Yoshida et al. 2009; 

Heffner, Clutter et al. 2011).  
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Together, GMPs, MEPs and their mature progeny form the myeloid 

compartment with the hematopoietic system. The lymphoid compartment, which 

contains T-cells, B-cells and natural killer cells (NKs) forms the adaptive immune 

system. These cells are much more effective and efficient in eradicating foreign 

bodies and cooperate through opsonization by the complement system. Although 

these cells require more time to develop, they are also long-term retained in the body 

in order to respond quickly during future relapse.  

 

Developing culture methods to boost the efficiency of this production not only 

satisfies this high clinical demand, but also provides deeper knowledge and 

understanding about the critical pathways that are involved. Cytokine function and 

pathway activation have been established for many progenitor populations (Rieger, 

Hoppe et al. 2009), but a direct effect or a direct targeting of specific lineage 

production at the HSC level is still difficult. For many cytokines, little is known about 

how they affect individual cell fates. Since most studies have been performed in bulk 

populations, important information about apoptosis, proliferation, differentiation and 

activation had been lost or could not be directly assessed. Furthermore, now that the 

existence and potential of different cell populations as common myeloid progenitors 

(CMP), common lymphoid progenitors (CLP) and even different stages of multipotent 

progenitors (MPP) are disputed due to recent findings that the hematopoietic system 

may have bypasses (Wilson, Laurenti et al. 2008; Gekas and Graf 2013; Yamamoto, 

Morita et al. 2013), more than ever, the effect of cytokines on the cell fate of more 

primitive HSCs needs to be assessed. In order to distinguish proliferation and 

apoptosis rates and prevent cross-contamination from cells with distinct potential, 

these read-outs are best performed continuously, clonally and at single-cell resolution 

to reveal individual cell fates caused by cytokine addition. 

  

1.2 The concept of the HSC niche 
 

During development, HSCs journey through different locations in the body. 

From the early yolk sac (Yoder, Hiatt et al. 1997) to the aorta-gonad-mesonephron 

(AGM) (Bertrand, Chi et al. 2010) and then fetal liver (Rebel, Miller et al. 1996), they 

eventually migrate towards the bone marrow shortly before birth (Moore and Metcalf 

1970). Whereas HSCs have a highly active cell-cycle state in the fetal liver, they are 
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deeply quiescent in the bone marrow (Bowie, McKnight et al. 2006; Bowie, Kent et 

al. 2007). There is substantial evidence that the microenvironment forms a highly 

specialized tissue controlling the state of the HSC (Schofield 1978; Calvi, Adams et 

al. 2003; Zhang, Niu et al. 2003). Inside the bone marrow, most of the HSCs are 

found at the endosteal niche, periosteal region or vascular niche, where they are in 

indirect contact with the blood circulation and are subjected to minimal oxidative 

stress by keeping them in a required hypoxic state (Kiel, Yilmaz et al. 2005; Jang and 

Sharkis 2007; Mendez-Ferrer, Michurina et al. 2010; Rehn, Olsson et al. 2011; Arai, 

Hosokawa et al. 2012; Ding, Saunders et al. 2012; Ding and Morrison 2013). The 

bone marrow niche comprises many cell types, most of them of osteoblastic and 

endothelial lineage, which secrete cytokines and extracellular matrix proteins (ECM) 

important for HSC function. 

 

Although still a matter of debate, many factors have been shown to play 

crucial roles in HSC function. The bone morphogenetic protein 4 (BMP4) is 

important for engraftment and stem cell activity and its transforming growth factor-β 

(TGF-β) related receptor mediates hibernation through lipid raft clustering and 

SMAD activation (Goldman, Bailey et al. 2009; Yamazaki, Iwama et al. 2009). TGF-

β has also been linked to HSC bias. After brief culture with TGF-β, HSCs show an in 

vivo bias towards the myeloid compartment. The concomitant up-regulation of p18 

and p19, both repressing cell-cycle progression (Latres, Malumbres et al. 2000; 

Larson, Singer et al. 2009; Challen, Boles et al. 2010), indicates the potential 

importance of cell-cycle regulators in cell fate regulation. 

 

Another factor derived from the osteogenic lineage is stromal derived factor-1 

(SDF-1 or CXCL12), a chemokine ligand involved in homing and recruitment of 

HSCs at the endosteal surface (Sugiyama, Kohara et al. 2006). Cells expressing its 

receptor, CXCR4, are found to be either directly at the endostium or surrounded by 

sinusoidal endothelial cells, which postulates heterogeneity within the HSC niche, 

possibly related to their function (Kiel, Yilmaz et al. 2005; Omatsu, Sugiyama et al. 

2010; Nagasawa, Omatsu et al. 2011; Ding and Morrison 2013; Greenbaum, Hsu et 

al. 2013). Furthermore, the adrenergic nerve system has been shown to be capable of 

reducing CXCL12 expression in target cells that are present in the HSC niche. Upon 
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ablation of neurotransmitters, HSCs were found to mobilize outside of their niche, 

implicating a role of the sympathetic nerve system in HSC regulation, to add to the 

already highly complex microstructure (Katayama, Battista et al. 2005; Mendez-

Ferrer, Battista et al. 2010). 

 

Other factors such as angiopoietin-1, Tie-2 and osteopontin have also been 

suggested to maintain quiescence of HSCs at the endosteal bone surface (Arai, Hirao 

et al. 2004; Nilsson, Johnston et al. 2005). Moreover, the extensively studied classical 

Wnt and Notch-1 signaling pathways have been shown to be indispensable at the 

endosteal niche for maintaining quiescence and self-renewal of HSCs (Stier, Cheng et 

al. 2002; Reya, Duncan et al. 2003; Fleming, Janzen et al. 2008; Schaniel, Sirabella et 

al. 2011). Taken together, all these tightly regulated interactions point towards a 

highly complex signaling network, rather than a sole master pathway regulating in 

vivo HSC fate. 

 

 Although much is known about the structure and function of the hematopoietic 

niche, many findings remain ambiguous. Ex vivo imaging has been employed to 

visualize HSC niche dynamics using real-time detection and has made a great step 

forward into functional characterization by tracking cell dynamics and kinetics (Xie, 

Yin et al. 2009). Former models that postulate HSC activity correlates with a dynamic 

cross-talk between different HSC niches (Wilson and Trumpp 2006) as well as future 

models can now be tested in a more reliable manner, providing answers to a field still 

coping with many unsolved questions and lacking a thorough understanding of what 

determines HSC fate. All these signaling pathways together form a very complex 

network of HSC extrinsic factors. The majority of this signaling is lost or disrupted 

upon HSC isolation. However, the great advantage of in vitro cultivation lies in the 

fact that this provides a controllable system. Not only can medium or stromal co-

culture conditions exactly be determined, their effect on cell fate can be directly read-

out in terms of e.g. survival, proliferation and differentiation and conditions can be 

adjusted as such. Combining this with further measurement of signaling pathway 

activation, essential mechanisms for survival or self-renewal as well as cell intrinsic 

mechanisms may be unraveled. Furthermore, lineage potential and multipotency can 

be measured and lineage production could be directed more effectively. Together, the 

signaling pathways that are activated in vivo can be selectively re-established or 
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manipulated. The effect of cell-cell or receptor-ligand signaling can be studied to 

explore the direct effect of many molecules on cell fate and determine whether these 

are sufficient or essential to establish or sustain known pathway activity and cell-

cycle progression. It is for this reason that simplified models are mostly preferred in 

in vitro cultures, using only one or few co-culture cell types and using minimal 

essential medium to reduce variables, providing a highly controllable factorial system 

while minimizing compensatory mechanisms that exist in vivo.  

 

1.3 HSC isolation methods 
 

HSCs are one of the best-characterized stem cell-types and can be isolated 

with high purity. The first achievement in the quest for HSC purification was in 1961 

by Becker, Till and McCulloch, where they developed the spleen colony assay to 

assess the potency of hematopoietic cells (see Table 1.3-1). In this assay different 

numbers of bone marrow cells were transplanted in lethally irradiated mouse 

recipients. The nodules that were formed in the spleen after 8 to 12 days were 

equivalent to the number of bone marrow cells transplanted and were derived from a 

single cell with self-renewal capacity although the majority were later found to be 

multipotent progenitors rather than HSCs. Hodgson and Bradley developed an 

improvement of this method in 1979, when 5-fluoroacil was used to ablate cycling 

cells and increase the yield of cells with more self-renewal and differentiation 

capacity through HSC mobilization (Hodgson and Bradley 1979). Although better 

results were obtained, this crude method still resulted in low purities of HSCs.   

Much better results were obtained after the discovery of Sca-1 (stem cell 

antigen, Ly6A/E) (Spangrude, Heimfeld et al. 1988; Okada, Nakauchi et al. 1992) and 

c-kit (CD117) (Okada, Nakauchi et al. 1991; Ikuta and Weissman 1992). This 

population of lineage marker negative, Sca-1/c-kit positive (LSK) cells comprises 

both HSCs and non-committed progenitor cells and transplantation of 100 LSKs was 

sufficient to repopulate a sublethally irradiated recipient mouse. Alternatively, similar 

results were obtained using dye efflux and the purification of a side-population (SP) at 

the low end of the distribution, following the theory that HSCs show a stronger dye 

efflux due to active ABC-transporter expression, providing a self-defense mechanism 

(Goodell, Brose et al. 1996).  
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It was long assumed from the human counterpart that murine HSCs had to be 

CD34 positive, until a CD34 monoclonal recombinant antibody showed that the HSC 

compartment was CD34 negative (Osawa, Hanada et al. 1996; Ogawa, Tajima et al.). 

The lineage hierarchy between HSC and common myeloid progenitors (CMP) was 

further characterized by use of Thy-1.1 and CD11b (Morrison, Wandycz et al. 1997), 

but even more so by the identification of Flk-2 as a MPP marker that provides higher 

HSC purity and a better classification of the MPP population and downstream 

progenitors (Adolfsson, Borge et al. 2001; Christensen and Weissman 2001). 

Following combined purification methods that led to increasing levels of 

purity (Matsuzaki, Kinjo et al. 2004), HSC purification in the 21st century has taken a 

leap further with many more antibodies to isolate both HSC and MPP subsets. Further 

addition of antibodies against a family of signaling lymphocytic activation molecules 

(SLAM), CD150 and CD48 increased HSC purity up to almost 60% (Kiel, Yilmaz et 

al. 2005). Similar results were obtained when substituting lineage depletion and c-kit 

for endothelial protein C receptor (EPCR, or CD201), drastically reducing effort and 

antibody requirement whilst maintaining efficiency and purity (Kent, Copley et al. 

2009). It is plausible that HSCs from different sorting regimes show similar co-

expression of marker subsets and combinations of these could further increase HSC 

purity and could provide a deeper understanding of functionality. With the current 

high isolation purities, it is also of interest to study the correlation between different 

sorting schemes and surface marker expression with a potential related functional 

difference. Such a direct comparison between different isolation methods and 

combinations has not yet been performed in vivo using single cell transplantations. 

Given that HSCs are in direct contact with their niche, the hypothesis that they 

would therefore express cell adhesion molecules such as integrins has been proposed. 

However, CD49b was shown not only to be exclusively expressed in short-term HSCs 

and progenitors, its expression also correlated with faster cell-cycle division rates in 

vitro (Benveniste, Frelin et al. 2010). Aside from providing new surface markers to 

further characterize and distinguish the HSC compartment, this also supported 

previous studies that found that a slow cell-cycle or late cell-cycle entry correlated 

with HSC purity when compared with MPPs (Nygren, D et al. 2006) and leads the 

way to assess the influence of other surface molecules and integrins in the future.  
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Although MPPs possess self-renewal potential and are multipotent, they do 

not have HSC potential. For this reason, optimizing HSCs purification methods have 

played a central role in studies aiming for higher HSC yield and expansion for clinical 

therapies. The potential to induce an HSC phenotype in multipotent progenitor cells 

has been poorly studied. Combining purification schemes with a time-lapse 

microscopy read-out therefore posed the question whether slow cell-cycle could not 

only be used as a method to assess overall HSC purity, but also whether this 

correlated with in vitro multipotency or lineage production. The slow cell-cycle or 

late cell-cycle entry could furthermore point to extended cell-cycle phase durations or 

heterogeneity thereof. Furthermore, it is unknown whether these phenomena exist 

during in vitro culture in subsequent generations, i.e. progeny after division, and 

whether lineage production can be directed or limited prior to reaching a multipotent 

progenitor stage. To date, these questions have not yet been answered due to the lack 

of tools that allow both continuous non-invasive assessment of cell-cycle phase and 

detection of lineage commitment without losing starting cell identity.  

Table 1.3.1. provides a chronological overview of improvements in HSC purification.  

Table 1.3.1: History of HSC purification  

Purification method Read-out HSC Purity Author Year 

Nucleated WBM CFU-S 0.01% Becker 1963 

5-fluoroacil CFU-S / CRU 0.02% Hodgson 1979 

Ly6A/E CFU-S / LDA 2.5% Spangrude 1988 

Ly6A/E, CD117 (LSK) CFU-S / CRU 2.5-12% Okada 1991 

Hoechst Rhodamine (SP) LDA 3% Goodell 1996 

LSK CD34 LDA 21% Osawa 1996 

LSK Thy-1.1 CD11b CD4 LDA / 2° 10-20% Morrison 1997 

LSK Flk-2 CRU 8-20% Christensen 2001 

LSK CD34 SP Single-cell > 90% Matsuzaki 2004 

LSK CD150 CD48 (SLAM) Single-cell 47% Kiel 2005 

EPCR SLAM (E-SLAM) Single-cell 56% Kent 2009 

LSK SLAM CD49b Sinlge-cell 29% Benveniste 2010 
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The development and improvement of different purification techniques. WBM (whole bone 
marrow), CFU-S (spleen colony forming unit), CRU (competitive repopulating unit), LDA 
(limiting dilution assay), LSK (lineage- Ly6A/E+ CD117+). Peripheral blood counts were used 
to determine donor contribution. 
 

1.4 HSC assays 
 

Following half a century of HSCs characterization and defining their 

phenotype, the conclusion must be drawn that despite large improvements, a uniform 

HSC marker or combination thereof has not yet been discovered. With purities 

ranging from 50 to potentially 90 percent (Matsuzaki, Kinjo et al. 2004), 

heterogeneity has been much reduced. However, stem cell potential, i.e. having both 

life-long self-renewal capacity and the potential to differentiate into every blood 

lineage, vary.  

 

The gold standard to measure potency is transplantation. While in early days 

the in vivo lineage contribution was assessed after 8 to 12 days, now 16 weeks to 32 

weeks or longer is required to prove HSC potency, including secondary and even 

tertiary transplants. Moreover, initially bulk bone marrow transplants were performed, 

in contrast to today where single-cell transplants are the norm. To date, an in vitro 

assay to read-out HSC potential unfortunately does not exist. However, many 

important questions regarding cell fate such as self-renewal, survival, apoptosis and 

even multipotency can be read-out in vitro. With recent studies proving the existence 

of HSCs that are biased towards specific lineages, which can also vary with age 

(Dykstra, Kent et al. 2007; Gekas and Graf 2013), more than ever assays are required 

to not only assess lineage potential but also to address the question of how these cells 

behave and how cell fate decision is orchestrated. This is difficult to attain in vivo. To 

define their behavior in terms of migration, division rate and survival, continuous 

observation and monitoring is required, which is limited in living and moving 

animals. Furthermore, in vivo imaging of HSCs requires deep-tissue penetration, 

which limits both temporal and spatial resolution for single-cell quantification. Other 

methods such as genetic manipulation and use of tissue sections, often leads to 

unwanted effects on both the microenvironment and hematopoietic hierarchy and 

leaves uncertainties about exact localization of other cell types in many cases, 

respectively.  Thus, an in vitro assay to read-out both cell fate and cellular behavior 
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would form a desirably faster, more robust and more controllable alternative for the 

laborious and time-consuming and complicated in vivo read-out. 

 

Colony assays have been performed in semi-solid media, with a mixture of 

cytokines and growth factors, for almost fifty years (Bradley and Metcalf 1966). They 

directly reveal the clonal potential of cells, but despite the detection of blast (non-

differentiated) cells and self-renewal through serial re-plating it cannot assess HSC 

potential.  However, this assay does serve the purpose of assessing multipotency by 

allowing detection of clonal lineage production. Since behavior cannot be defined due 

to the lack of single-cell resolution, early cell fate decisions cannot be measured and 

correlated.  

 

Methods not directly driving differentiation, such as co-culture techniques for 

long-term culture initiating cells (LTC-IC) (Sutherland, Lansdorp et al. 1990), cobble-

stone formation (Ploemacher, Sluijs et al. 1989; Song, Bahnson et al. 2010) or 

retention of HSC numbers using premature feeder layers (Moore, Ema et al. 1997; 

Nolta, Thiemann et al. 2002) also allow classification of multipotency while 

preserving clonal identity. Single-cells can still be distinguished and cell behavior 

such as motility or division rate can be measured. The remaining bottleneck of HSC 

visualization under stromal co-culture conditions, which impairs detection due to loss 

of optical clarity, focus and contrast, requires further improvements and can be 

overcome when further optimizing culture conditions by developing a stroma free 

liquid culture assay. 

 

Attributing cell behavior to lineage potential would not only provide a 

functional correlation to molecular and gene expression, but would ultimately allow 

to predict cell fate, lowering the need for long-term assays. Benveniste et al. showed 

that CD49b- and CD49b+ HSCs showed a significant difference in initial cell-cycle 

division rates. While both cell types developed chimerism in recipient mice, the 

former would sustain multilineage contribution much longer and this correlated with a 

profoundly longer cell-cycle in vitro (Benveniste, Frelin et al. 2010). CD49b is an 

integrin and as such is involved in cell adhesion. It is therefore quite possible that 

other features such as cell adherence, motility, cell size or morphology could further 

characterize this HSC subset. However, the difference in initial cell-cycle division 
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rates not only points to heterogeneity with respect to cell-cycle entry, but also to 

potential differences in cell-cycle phase durations. Since the in vivo long-term 

repopulation assays revealed marked distinctions in chimerism, it would be of key 

interest to assess whether in vitro lineage potential correlates with cell-cycle transit in 

early divisions. The lack of continuous cell-cycle data and the ability to continuously 

read-out cell fate on a single-cell resolution are the main problems that have made it 

yet impossible to prove this correlation. With the development of advanced 

technology such as continuous time-lapse imaging, many of these hurdles have been 

overcome, yet need to be adjusted to specific needs and cell types and is not yet 

readily available. 

 

1.5 Cell-cycle 
 

Cells have different fates they can adopt. They can e.g. differentiate, migrate, 

proliferate, be quiescent, senescent, necrotic or apoptotic. These states can occur 

during different active cell-cycle phases. Quiescence is the only state reserved for 

non-cycling cells, such as HSCs and post-mitotic differentiated cells. This phase is 

depicted as the G0-phase. From this resting phase, HSCs can be activated and transit 

into cell-cycle.  

 

During replication, two major checkpoints exist that secure DNA integrity and 

under normal conditions prevent tumorigenesis by controlling division rate. Hence, 

the first checkpoint is encountered before DNA is replicated, the so-called G1-phase 

(gap1) (Figure 1.5-1). The key factors that drive G1-phase progression are cyclin D 

and retinoblastoma (Rb). The cyclin family had been first identified in yeast by 

Hartwell in the 1970`s, after which Nurse and Hunt discovered analogs and further 

characterized their function in xenopus and human, for which they were awarded the 

NobelPrize in 2001 (Hartwell, J et al. 1970; Lee and P 1988; Hunt 1989). Cyclin D 

levels (1 from over 15 family proteins from cyclin A to Y) regulate the 

phosphorylation state of Rb. Upon binding its complementary cyclin-dependent 

kinases 4-6 (CDK4-6), it forms an active complex that phosphorylates Rb. p16 

(INK4a) and p18 (INK4c), G1-phase-specific cell-cycle inhibitors, can block this 

activity and since in HSCs levels of p18 in G0-phase are often found to be high and 

cyclin D levels are minimal, Rb resides in an unphosphorylated state. However, 
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during quiescence p130, part of the Rb family, and p18 have a more prominent role in 

retaining the quiescent state since p16 and p19 are actively repressed through bmi1 

(Lessard and Sauvageau 2003; Park, Qian et al. 2003; Passegue, Wagers et al. 2005). 

When homeostasis is disrupted, cyclin D levels can be triggered, overcoming this 

threshold and putting retinoblastoma in a hypophosphorylated state.  

 

In late G1-phase stage, cyclin E has a more prominent role and together with 

its complementary CDK2 it can further phosphorylate retinoblastoma. The cell-cycle 

inhibitors repressing CDK2 activation are p21 and p27, part of the Cip/Kip family. 

These inhibitors are also found in low levels on the active CDK4-6 complex, but are 

displaced and bind CDK2 upon increasing concentrations of cyclin D. Similarly, 

higher concentrations of p21 and p27 result in CDK2 inhibition. If levels of cyclin E 

are sufficiently high, CDK2 activation completes the phosphorylation state of 

retinoblastoma, which releases and activates the E2F transcription factors that 

orchestrate the DNA replication machinery.  

 

 
Figure 1.5-1: Cell-cycle 
Simplified cell-cycle progression. CDK (cyclin-dependent kinase), Rb (retinoblastoma), R (restriction 
point, Cdc (cell division cycle). 
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At this stage, synthesis (S-phase) has started and is further driven by cyclin A 

in early S-phase. Between synthesis and mitosis (M-phase), the G1-phase equivalent 

checkpoint is found in G2-phase (gap2). Up-regulation of Cdc25 by G2-phase specific 

cyclin B, activates mitosis promoting factor. However, when DNA damage occurs, 

Ataxia telangiectasia mutated (ATM) kinase degrades Cdc25 and therefor prevents 

transition into M-phase, leading to cell-cycle arrest or induced apoptosis and forming 

the second major checkpoint. The cell then continues mitosis by condensing the 

chromatin structure, building of the spindle and separation of the centrosomes 

(prophase), degradation of the nuclear membrane, chromosome alignment and 

polarization (metaphase), chromatin separation (anaphase) and eventually lengthening 

of the cell and nuclear membranes are established (telophase), after which the cell 

separates into two daughter cells (cytokinesis). This process is highly complex and 

occurs within a very short time frame, relative to the other phases of the cell-cycle. 

 

The name and function of retinoblastoma are derived from a type of cancer in 

children that arises when gene mutations in both alleles occur, causing defects in the 

retinoblastoma protein (Herwig and Strauss 1997). Furthermore, its importance in 

both embryo development and hematopoiesis has been supported by studies in which 

a Rb double knockout caused embryonic lethality through the absence of mature 

erythrocytes and impaired neuronal growth (Clarke, Maandag et al. 1992). Together 

this shows that Rb not only forms an important tumor suppressor in controlling cell 

proliferation, but also is essential for differentiation. This was further underlined in 

studies that showed modified Rb in tumor cells causes a differentiation block and fails 

to provide mature blood lineages (Santamarina, Hernandez et al. 2008). The 

differential Rb expression at distinct stages in hematopoietic lineage production 

(Szekely, Jiang et al. 1992) together with the fact that Rb mainly drives G1- to S-

phase progression, led to the hypothesis that cell-cycle phase may play an important 

role in lineage production i.e. posed the question whether different cell-cycle phases 

have opposing cell fates or lineage potential upon cytokine addition.  

 

Although not yet proven to date, this hypothesis does not seem farfetched 

since previous studies have shown a reversible differential gene expression pattern 

throughout different cell-cycle phases (Lambert, Liu et al. 2003). During replication, 

chromatin is modulated and access for different transcription factors is enabled. 
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However, despite evidence that shows diverging cell fates of daughter cells after one 

cell-cycle division (Suda, T et al. 1984), it is still unknown whether this yields a cell 

intrinsic or extrinsic mechanism.   

 

The binding of Rb to myeloid transcription factors as CEBP/a, is mostly found 

in a hypophosphorylated state, which supports a role of early G1-phase in providing a 

time-frame for differentiation. Furthermore, this indicates that the involved signaling 

pathways may be cell-cycle phase dependent (Herwig 1997; Lipinski 1999; Zhang 

1999). p16, known to repress phosphorylation of Rb by blocking cyclin D function, is 

expressed in undifferentiated cells but is rapidly downregulated during lineage 

maturation (Furukawa, Kikuchi et al. 2000). Overexpression of p16 reduces both 

proliferation and differentiation in hematopoietic stem and progenitor cells (Bergh 

2001) and indeed, a double knock-out of p16 leads to tumorigenesis (Sharpless, 

Bardeesy et al. 2001). However, a clear role of Rb could not be detected, probably 

due to in vivo compensatory mechanisms by the family pocket proteins p130 and 

p107 (Santamarina, Hernandez et al. 2008). Low-level expression of late G1-phase 

regulators of p21 and p27 have been shown to facilitate the production of erythroid 

lineages. Even lineage-specific expression of cell-cycle regulators could be revealed, 

however only in mature cell types (Furukawa, Kikuchi et al. 2000; Hsieh 2000; Tamir 

2000; Bergh 2001). This further supports the hypothesis that the key regulators of G1-

phase progression also form a crucial role in determining cell fate.  

 

To date, real evidence to prove a role of cell-cycle phase in determining cell 

fate in hematopoiesis is still missing. While most studies have been performed on cell 

lines or cultures of tumor cells, studies that have used primary cells are primarily 

based on bulk population assays that read-out total lineage production but not single 

cell fates. Furthermore, the existence of differential gene expression patterns and even 

cell-cycle regulators in distinct differentiated populations, does not prove the point 

that these cell-cycle phases and regulators play a role in lineage decision and cell fate 

in upstream cells, i.e. ancestor cells that did not yet express lineage specific 

differentiation markers. To add to the complexity, overexpression and genetic 

modification are tools that mostly possess an invasive character that could alter or 

influence the observed effect on cell fate. Together, a read-out is required that could 

prove the influence of cell-cycle phases in multipotent cells rather than lineage 
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restricted and differentiated cells. An in vitro read-out would provide a controllable 

system and allows clonal assessment of cell fate. By doing so, different cytokine 

combinations that are known to direct lineage production can be added during 

different cell-cycle phases in order to reveal a cell-cycle dependency in cell fate. 

 

The difficulty in studying the influence of cell-cycle in cytokine induced 

differentiation lies in (1) providing a clean read-out that allows quantification and 

determination of lineage commitment on a single-cell level and (2) providing a 

method that allows measuring cell-cycle phase whilst keeping the cells viable and 

without perturbing intracellular signaling pathways. The former has been achieved by 

both classic colony assays and LTC-IC assays and cell fate can be easily determined 

using a snapshot-based read-out at different time-points. Using lineage tracing or 

specific viral integration patterns (barcoding), culture and in vivo read-outs can be 

initiated with different starting cell numbers since lineage contribution can be 

assessed without loss of ontogeny (Lu, Neff et al. 2011; Kretzschmar and Watt 2012). 

The latter however is much more difficult to obtain since current methods to measure 

cell-cycle mostly require fixation and (immuno-) staining.  

 

In a 2007 study by Quesenberry et al. cell-cycle of quiescent hematopoietic 

stem and progenitor cells (HSPCs) was indirectly measured based on bulk population 

propidium iodide quantification using flow cytometry. Although cell-cycle phase 

prevalences at various time-points were reproducible, cell-cycle phases between cells 

were never fully synchronous. In addition, since genealogy was lost, uncertainties 

existed whether cells after 32 and 48 hours had yet divided in vitro. Nevertheless, 

building on this assumption, the influence of different cytokines was assessed, leading 

to the interesting hypothesis that certain cytokines may increase the yield of 

megakaryocytic lineages, when added in the right cell-cycle phase or at the right time 

(Colvin, Dooner et al. 2007). Indeed, despite generating data based on bulk culture 

and cell-cycle phase probabilities, they found that cytokine change during early S-

phase increased the total production of megakaryocytes, whereas cytokine addition 

during G1-phase increased the yield of granulocytes. However, when performing 

clonal analysis, their data showed inconsistencies. It might well be that in bulk culture 

cell-cell contact occurs with a higher frequency and secreted molecules are more 
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abundant, raising the question what formed the major component in orchestrating 

different lineage production? 

 

1.6 Cytokines in lineage production 
 

Since the emergence of in vitro culture of hematopoietic cells, medium 

optimization to promote maintenance, proliferation or differentiation has become of 

key interest. The following cytokines have been used to study the influence of cell-

cycle in cytokine induced lineage production and maintenance of multipotency. 

 

Stem cell factor 

Culture and maintenance of HSCs ex vivo is a complex and difficult 

procedure. After isolation they eventually undergo apoptosis without the proper 

growth factors. Found as one of the first crucial cytokines for ex vivo HSC 

maintenance stem cell factor (SCF), also known as steel factor or c-kit ligand, is 

indispensable for prolonging survival of HSCs in vitro. SCF binds its CD117 (c-kit) 

receptor and represses apoptosis through PI3K and Erk signaling and Wnt inhibition. 

However, culture of HSC in SCF alone does not yield self-renewal divisions but only 

transient survival and maintenance of multipotency can be achieved, as shown by 

studies on proliferation kinetics and colony assays (Li and Johnson 1994; Keller, 

Ortiz et al. 1995). Although this points to SCF involvement in G1-phase progression, 

other studies have shown that its target receptor CD117 is expressed through all cell-

cycle phases (Lambert, Liu et al. 2003; Passegue, Wagers et al. 2005; Dooner, Colvin 

et al. 2008). Since SCF is indispensible for in vitro HSC survival through all cell-

cycle phases (Zhang and Lodish 2008), its effect on lineage production with cell-cycle 

phase correlation has not yet been revealed. 

 

Thrombopoietin 

Known for its function in megakaryocyte production, thrombopoietin (TPO) 

not only helps maturation and development of proplatelets (Kaushansky 1995) but 

also and synergistically with SCF stimulates both survival and proliferation of in vitro 

cultivated HSCs (Matsunaga, Kato et al. 1998). Binding its receptor Mpl, TPO 

activates amongst other pathways PI3K signaling, which stimulates and directs the 

cell to transit into cell-cycle. In concert with SCF, addition of TPO in ex vivo cultures 
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can (to a limited extent) even induce self-renewal as well as multilineage 

differentiation of HSCs (Ku, Yonemura et al. 1996; Ramsfjell, Borge et al. 1996; 

Yagi, Ritchie et al. 1999; Ema, Takano et al. 2000). Its importance for HSC 

maintenance is further illustrated by the fact that in vivo TPO knock-out and Mpl 

receptor blocking through neutralizing antibodies show hematopoietic deficiencies 

(Kimura, Roberts et al. 1998; Fox, Priestley et al. 2002; Qian, Buza-Vidas et al. 2007; 

Yoshihara, Arai et al. 2007). In addition, CD34- HSCs show an increased expression 

of Mpl when compared with CD34+progenitors, which may point to the necessity of 

TPO signaling in both in vivo and in vitro of HCS function (Morita, Ema et al. 2010). 

A potential cell-cycle phase dependency of TPO with respect to lineage production 

was hypothesized after the discovery that TPO induces PI3K signaling which can 

stabilize cyclin D while simultaneously repressing transcriptional activity of p21 and 

p27 (Massague 2004). Indeed, in accordance, TPO signaling during G1-phase has 

been shown to increase the potency to produce megakaryocytes (Colvin, Dooner et al. 

2007). Taken together, the role of TPO in HSC fate remains ambiguous, being 

involved in survival, cell-cycle, self-renewal and differentiation. 

 

Interleukin-3 

Produced by activated T-cells and mast cells, interleukin-3 (IL-3) can not only 

suppress induced apoptosis but, upon binding its receptor, also orchestrate myeloid 

lineage development and stimulate proliferation (Miyajima, Mui et al. 1993; 

Kinoshita, T et al. 1995). In progenitors, increased levels of IL-3 can direct 

megakaryocyte differentiation and functions synergistically with the receptor 

homologue of granulocyte-macrophage colony-stimulating factor (GM-CSF) 

(Hoffman, R et al. 1990; Briddell and JE Brandt 1992). However, upon addition of 

interleukin-6, this co-stimulation leads to a loss of megakaryocytes and an increase in 

granulocyte macrophage progenitors (GMPs). For both, the exact mechanism 

including potential cell-cycle phase relevancy still needs to be elucidated. 

 

Granulocyte macrophage colony-stimulating factor 

Originally defined as a growth factor specific for neutrophils and 

macrophages, granulocyte macrophage colony-stimulating factor (GM-CSF) has been 

shown to be important for maturation and survival of committed progenitor cells in 

the myeloid lineage (Burgess and D 1980; Kinoshita, T et al. 1995).  It is also known 
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that GM-CSF can trigger immune responses, either directly or through up-regulation 

of interleukin-1, thereby activating the adaptive immune system (Khameneh, Isa et al. 

2011). In contrast to what its name originally suggested however, GM-CSF also has 

the potential to increase megakaryopoiesis, either directly (Briddell and JE Brandt 

1992) or in synergy with interleukin-3 (Robinson, McGrath et al. 1987; Hoffman, R et 

al. 1990). Furthermore, data based on bulk culture has shown a cell-cycle relevancy 

for GM-CSF, specifically increasing megakaryocyte production when added during 

early S-phase and increasing granulocyte production when added during G1-phase 

(Colvin, Dooner et al. 2007). In addition, leukemic cancer cell lines have been 

established that respond to this factor by differentiation into the megakaryocytic 

lineage. This makes it of particular interest in a clinical setting and for studies on the 

potential of directing lineage production from HSPCs by cytokines (Komatsu, H et al. 

1991). 

 

Erythropoietin 

The difficulties in obtaining erythroblasts in vitro have mainly been overcome 

by the addition of erythropoietin (EPO). With previous studies requiring adherent 

stromal layers for the production of mature erythrocytes, a stroma free culture 

technique was established using erythropoietin, allowing erythropoiesis without 

disturbing production of other blood lineages (Eliason, Testa et al. 1979; Estment and 

Ruscetti 1982). In 1996 it was shown with an EPO receptor double knock-out mouse 

that the EPO receptor, being expressed on different myeloid cell types, is essential for 

the development of full grown erythrocytes. Erythroid progenitors however could be 

produced but could not differentiate past the erythroblast state (Kotkow and Orkin 

1996). Through up-regulation of c-jun, EPO was found to be controlling cyclin D 

levels, necessary for hypophosphorylation of Rb and which points to a potential 

influence of G1-phase in erythroid lineage production (Lopez-Bergami, Huang et al. 

2007). EPO also affects cell-cycle progression through c-kit down-regulation, Erk1/2 

and STAT5 signaling (Fang, Menon et al. 2007; Wang, Akbarian et al. 2013). 

Together this indicates EPO can alter both cell-cycle phase progression and cell 

surface marker expression, but a direct influence on HSC level with respect to cell-

cycle phase and lineage production has not yet been elaborated.  
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Medium conditions that allow production of all myeloid lineages from 

multipotent progenitors (“permissive conditions”) 

To date it remains difficult to attain production of all myeloid lineage subsets 

from a single starting cell in vitro. Whilst purification may disrupt viability of 

primitive hematopoietic cells, the main problem is thought to be cytokine conditions 

that, when not mixed in optimal concentrations, do not allow production of all 

lineages. This major hurdle has been overcome with the establishment of optimized 

culture conditions by Takano et al., which revealed the highest yield of granulocytes 

(neutrophils), erythrocytes, macrophages and megakaryocytes (GemM) producing 

cells on a clonal basis (Takano, Ema et al. 2004). In addition to SCF and TPO, 

required for survival and proliferation of HSCs, these conditions comprise IL-3, EPO 

and fetal calf serum (FCS). Further media additions are 2-mercaptoethanol and L-

glutamine to ensure low oxidative stress (Das, Kar Mahapatra et al. 2007). 

 

Although the effect of many of these cytokines on lineage production does not 

necessarily require clonal culture, read-out of individual cell fates cannot be 

performed in bulk culture. If the effect on early cell fates is lost or unknown, clonal 

proliferation and apoptosis rates may mask the overall production of mature lineages 

and individual cell-cycle dependency cannot be assessed (Figure 1.6-1). Most of 

current published data regarding cell-cycle progression has been acquired with loss of 

single-cell clonal identity and therefore pose ambiguous outcome. To be able to 

conclusively identify the role of cell-cycle phase in cytokine induced lineage 

production, current data requires continuous observation rather than snapshot or 

endpoint analysis. 
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Figure 1.6-1: Cell fate detection requires continuous observation 
Cartoon representing cellular behavior including few of many possible cell fates. Depending on cell-
cycle different cell fates may occur leading to different lineage outcome and production. Black circles 
indicate nucleus, not on scale. 
 

1.7 Cell-cycle reporters 
 

In order to assess the influence of cell-cycle phase in lineage production upon 

cytokine addition, a non-invasive method needs to be applied to read-out both cell-

cycle state on a clonal level and allowing detection of lineage production without cell 

state interference. Furthermore, measurement of cell-cycle phase durations and cell 

cycle transit in order to read-out a potential effect of cytokines on cell fate and 

cellular behavior, requires continuous data on a singular level that is exclusively 

obtained in live time-lapse imaging. To date, live antibody staining does not provide 

such tools and other mechanisms to e.g. read-out DNA content through fluorescent 

labeling with Hoechst33342 could potentially interfere with intracellular signaling. 

For this reason, different knock-in mice have been generated that are based on a 

fluorescent reporter that is either directly bound or linked to cell-cycle specific 

expression of cell-cycle regulators. Unfortunately, only few cell-cycle reporter mice 

are available. Based on Cdt-1 (G1-phase accumulation) and Geminin (S/G2-phase 

accumulation), a double knock-in containing two different fluorescent proteins was 
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made allowing visualization of the G1 to S-phase transition by flow cytometry and 

microscopy using fluorescence (Sakaue-Sawano, Kurokawa et al. 2007). The 

limitations however lie in the fact that for optimal quantification, two fluorescent 

wavelengths are required and time-consuming quantification needs to be done post-

acquisition. Furthermore, the transition does not reveal differences within G1-phase 

and since the reporter is not-ubiquitously expressed in blood (detectable in ~1% of 

HSCs), usage of this reporter mouse may not prove beneficial for HSC studies.  

 

Another reporter mouse allows distinction between interphase and metaphase, 

which is based on a fluorescent biosensor with a nuclear localization sequence during 

interphase and a plasma membrane targeting sequence that shows membrane 

localization upon nuclear envelope breakdown during metaphase. Hence, this cell-

cycle biosensor unfortunately provides no distinction between G1, S and G2-phase. 

Combined with its non-ubiquitous expression, it is not a good candidate to follow-up 

the influence of cell-cycle phase in differentiation (Burney, Lee et al. 2007; Hesse, 

Raulf et al. 2012). 

 

A very powerful tool, yet not available as a reporter mouse, is a proliferating 

cell nuclear antigen-based (PCNA) biosensor. PCNA tethers DNA polymerase delta 

to the DNA upon DNA synthesis in S-phase specific replication and the replication 

foci that are formed consist of trimers. This biosensor links each monomer to a 

fluorescent protein, thereby visualizing S-phase progression (Bravo, R et al. 1987; 

Leonhardt 2000). Its nuclear localization throughout all cell-cycle phases requires 

continuous high magnification fluorescent microscopy in HSCs to read-out both cell-

cycle state and cell-cycle phase durations and the absence of these foci during G1 and 

G2-phase furthermore requires a high temporal resolution to distinguish these phases 

due to the gradual, yet fast transition of replication foci and provides cell-cycle data 

retrospectively. For expression in primitive primary blood cells, this requires viral 

transduction with relatively high multiplicity of infection (MOI) to allow visualization 

at early time-points. For specific questions that can be answered with short-term 

imaging, rather than high-throughput imaging, testing and optimization, this may 

prove a very powerful tool. 
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To date, one of the best candidates to continuously detect cell-cycle state is 

based on the C-terminus of human DNA helicase-B, active and with nuclear 

localization during G1-phase to allow DNA repair. This phosphorylation-dependent 

subcellular localization domain (PSLD) consists of a nuclear localization signal and 

seven cyclin-dependent phosphorylation sites. Upon expression of cyclin E and cyclin 

A in the late G1-phase, PSLD is phosphorylated and pumped out of the nucleus by 

activation of a nuclear export signal. From early S-phase its localization is then purely 

cytoplasmic. This transition allows the observation of G1 to S-phase transition as well 

as metaphase when the nuclear membrane is degraded (Gu, Xia et al. 2004; Stubbs 

2005; Hahn, JT et al. 2009) (Figure 1.7-1). 

 

 
Figure 1.7-1: a PSLD-based cell-cycle fluorescent reporter 
PSLD subcellular localization during cell-cycle transition. Simplified cartoon does not indicate true 
scaling. PSLD (phosphorylation-dependent subcellular localization domain), FP (fluorescent protein).  
 
 Using PSLD allows continuous quantification of cell-cycle phase transitions 

and furthermore fulfills the requirements to non-invasively study the effect of 

cytokines on cell fate in different cell-cycle phases. In addition, this would also allow 

further quantification of cytokine directed signaling pathway activation through e.g. 

immunofluorescence or by use of biosensors in a cell-cycle dependent manner to 

elicit underlying molecular mechanisms that orchestrate cell fate. 
 

1.8 Signaling pathways involved in lineage production 
 

With so many factors influencing the cell fate, it is ultimately the signaling 
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pathways that mediate the effects of cytokines. Activated receptors, either by ligand 

binding or stimuli such as shear stress, cause intracellular and sometimes also 

extracellular modifications and attract adaptor molecules to activate kinases. They 

phosphorylate other proteins that can either dimerize and translocate or are directly 

transported to the nucleus, where they act on regulatory proteins to induce or repress 

transcription factor activation. 

Several cytokine-induced signaling pathways that are known to play a role in 

survival also have been shown to be important for HSC regulation. SCF mediated 

signaling through the c-kit receptor activates different signaling pathways, perhaps the 

best established being p42/44 (extracellular signal-regulated kinase, ERK1/2) and 

phosphatidylinositide-3 kinase (PI3K). Kit signaling has been shown to be crucial to 

maintain quiescence of HSCs (Thorén, Liuba et al. 2008) and defects in its 

downstream signal transducer and activator of transcription 5 (STAT5) have revealed 

major hematopoietic deficiencies (Bradley and Hawley 2002; Wang, Li et al. 2009). 

In addition to their importance in Kit signaling during quiescence, ERK1/2 and PI3K 

can directly affect survival and proliferation through up regulation of cyclin D1/2 

levels, facilitating transit into cell-cycle (Blomen and Boonstra 2007).  

PI3K, also activated through TPO/Mpl signaling (Kirito, Watanabe et al. 

2002), can also activate beta catenin and mediate different signaling cascades, 

including p300/CBP, Myc, Notch1 and cell-cycle regulators. Hence, it is not 

surprising that PI3K is not only important for HSC survival and proliferation but is 

also involved in the maturation of different committed progenitors towards the 

megakaryocytic lineage, possibly through the downstream target mTOR (mammalian 

target of rapamycin) (Raslova, Baccini et al. 2006). 

Mitogen activated protein kinases, including p38 and ERK1/2, can be 

activated by Mpl-signaling and are important for both proliferation and maturation of 

megakaryocytic progenitors (Melemed, JW et al. 1997; Whalen, SC et al. 1997; 

Fichelson and Freyssinier JM 1999). Furthermore, there is strong evidence that their 

activation is crucial for endomitosis in the megakaryocytic lineage, whereas Src 

kinases form negative factors for megakaryopoiesis (Rouyez, C et al. 1997; 

Rojnuckarin, JG et al. 1999; Kaminska, Klimczak-Jajor et al. 2008; Severin, Ghevaert 

et al. 2010). Although often found present throughout different phases of the cell-
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cycle, it has been hypothesized that their nuclear translocation is transient and cell-

cycle specific, creating a time window for MAPK to act and facilitate maturation of 

megakaryocytic progenitors (Blomen and Boonstra 2007; Kaushansky 2008). With 

the prospect of defining cytokine-induced differentiation, it should therefore be of 

extra interest to further investigate the role of cell-cycle phase and its dependency in 

signaling pathway activation. 

 

1.9 Clinical relevance for ex vivo HSC expansion 
 

Despite all the medical advances in the blood field, there is no fully reliable 

cure for leukemia. Patients that are confronted with severe blood disorders often have 

poor chances of survival and high chances of relapse. Furthermore, the burden they 

are facing every day when treated for blood malignancies strongly reduces quality of 

life. The underlying reason for blood disorders such as acute myeloid leukemia 

(AML) can often be traced to the existence of a single gene mutation or chromosomal 

aberration in a single cell, often termed leukemia initiating stem cell (LISC). The 

existence of such a cell, or pool of cells, is the main target in therapies targeting 

leukemia. Independent of their position in the hematopoietic hierarchy, these cells 

have three things in common, they: (1) proliferate fast due to an increased rate of self-

renewal divisions, (2) are stuck in differentiation and do not fully mature, and (3) 

often have a mechanism that protects them from standard drugs that target 

proliferating cells. In addition, these fast proliferating cells are often found to inhibit 

production of certain lineage subsets and drastically change the architecture of the 

bone marrow. 

 

Current therapies are mostly comprised of a combination of chemotherapy, 

radiation therapy, hormone treatment and daily medication. Ultimately, ablation of 

autologous bone marrow is performed. With the microenvironment staying relatively 

intact but drastically changed after bone marrow irradiation, depletion of all blood 

cells including HSCs requires the patient to undergo HSC transplantation. The 

problem that arises is that previously taken biopsies may again contain LISC and 

relapse may occur. Furthermore, these cells contain both HSCs and mature cells to 

sustain hemopoiesis at long-term and short-term, respectively, often in too low 

numbers to be effective. Consequently, non-autologous, or allogeneic HSC 
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transplants are often performed with the risk of inducing host-versus-graft-disease 

(HVGD), but mostly increasing the risk of graft-versus-host-disease (GVHD), in 

which the donor immune system induces an immune response and attacks recipient 

tissues (Ferrara, Levine et al. 2009; Blazar, Murphy et al. 2012).  

 

Some studies focus on the relief of the burden associated with GVHD and 

facilitating the efficacy of HSC transplants, by for example co-injection of 

mesenchymal stromal cells (Tolar, Le Blanc et al. 2010). Other studies focus on 

improving ways to induce stem cell expansion. Considering the fact that HSCs are 

hard to maintain ex vivo in short-term culture, it is obviously a challenge to induce 

self-renewal divisions without losing the potential to differentiate into all blood 

lineages life-long. With the discovery that umbilical cord blood cells are not only 

enriched for HSCs but simultaneously have a much lower immune response upon 

stimulation with mismatched human leukocyte antigen (HLA) cells (and therefore are 

less susceptible to the recipients foreign body reaction to trigger GVHD) these cells 

have become a topic of interest (Harris, Schumacher et al. 1992; Rocha, Cornish et al. 

2001). Their better reconstitution potential and the fact that they do not require 

biopsies would further make this procedure highly effective and lower the patient’s 

burden in clinical setting. However, their low abundance and the high number of 

HSCs necessary per effective treatment still require ex vivo expansion. 

 

1.10 Expansion methods and limitations 
 

A net ex vivo expansion of murine HSCs has first been achieved in 1997, 

where freshly isolated HSCs were kept under different culture conditions for different 

periods of time, after which they were transplanted. Using limiting dilution assays, 

they found a ~4 fold increase after 10 day when cultured with interleukin-11, SCF and 

Flt-3. Similarly and by using the same conditions, a ~4 fold increase in HSC number 

was found by transplanting cells that had already divided, as determined by reduced 

levels of CFSE in flow cytometry (Miller and Eaves 1997; Oostendorp, Audet et al. 

2000). Using SCF and thrombopoietin, Ema et al. pointed to the existence of potential 

self-renewal divisions in vitro, although overall absolute numbers resulted in a net 

loss (Ema, Takano et al. 2000). These studies showed that without stroma co-culture 

it was possible to not only maintain HSCs but potentially even increase their ex vivo 
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numbers. Since then media additions have become popular to induce ex vivo HSC 

expansion.  

 

Addition of retinoic acid receptor agonists retains to some extent the 

repopulation activity of hematopoietic stem and progenitor cells after two weeks of 

culture (Purton, Bernstein et al. 2000). However, LSK cells were cultured in bulk and 

transplanted as such and HSC numbers were not determined through limiting dilution 

assay. This forms a problem since this could potentially point to an effect caused by 

repressed differentiation of MPPs rather than HSC maintenance. Moreover, 

repopulation activity, which was measured by peripheral blood contribution over 

several weeks, showed a strong decline which is characteristic for MPPs and did not 

reach the same contribution levels compared to freshly isolated, e.g. non-cultured and 

transplanted LSK cells. A more recent study found that the G0S2 protein, that is 

solely up-regulated through retinoic acid in the hematopoietic system, enhanced the 

quiescence of LSK SLAM HSCs (Yamada, Park et al. 2012). The exact mechanism is 

however still not known. 

 

Well known for their capacity to maintain stemness of HSCs are the AFT and 

PA6 stromal cell lines. AFT cells are a clonally expanded cell line that has been 

shown to maintain HSC numbers up to 4 weeks of ex vivo culture by a mechanism 

still unresolved (Nolta, Thiemann et al. 2002). Originating from fetal liver, these cells 

were thought to have the potential to induce self-renewal divisions since primary fetal 

liver HSCs rapidly expand in this environment during development. Although not 

observed in vitro, it might well be that AFT cells could still possess this capability but 

their immortalization, media conditions and potential changes in karyotype or a 

combination thereof are the cause of the loss of their potency to expand HSCs. 

Alternatively, PA6 cells (pre-adipocytes from mouse calvaria) have been shown to be 

able to maintain HSC numbers and potentially increase their numbers in short-term 

culture (Kodama, Sudo et al. 1984; Shimizu, Noda et al. 2008). However, stromal co-

cultures seem only capable to a limited extent to maintain HSC potency rather than 

inducing HSC expansion.  

 

Through genetic manipulation, further efforts in HSC expansion have been 

successful. Deletion of a G1-phase inhibitor, p18, in an in vivo mouse model has been 
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shown to increase self-renewal divisions in HSCs and facilitate engraftment upon 

transplantation (Yuan, Shen et al. 2004). Despite the increased cell-cycle entry, no 

long-term exhaustion of the HSC pool has been observed after deletion of p18 even to 

an extent of quaternary transplants, in contrast with previous studies that showed 

increased HSC cell-cycle activity (Yu, Yuan et al. 2006).  

 

From in vivo expression levels, it is known that Notch signaling plays an 

important role in maintaining quiescence of HSCs. Its overexpression in LSK cells 

results in the immortalization of cells with an undifferentiated, blast-like phenotype. 

By culturing them with specific cytokines, these cells were capable of long-term 

donor contribution upon transplantation, but showed lineage-bias in vitro and in vivo 

(Varnum-Finney, Xu et al. 2000). Immortalization of LSK Thy-1.1low cells by 

overexpression of the bcl-2 gene, an anti-apoptotic gene, resulted in a minimal 

increase in vivo. In vitro plating efficiencies were higher and chimerism was stronger 

even in competitive repopulating units with wild-type HSCs (Domen, Cheshier et al. 

2000). Although not present in younger mice, adult and aging mice showed an 

increased prevalence of myeloid and lymphoid leukemia. Its in vitro potential has not 

been reported to date. 

 

The limited expansion that was achieved through various HSC manipulations 

did not lead to improvements in a clinical setting and requires genetic engineering and 

modification. This not only should provide a more robust method but also shows a 

direct effect from gene up-regulation rather than a heterogeneous effect of extrinsic 

factors. Simultaneously, genetic engineering could not only be directed to expansion 

of existing HSCs but also to induction of an HSC phenotype in multipotent 

progenitors that have a much higher in vivo prevalence. Furthermore, in order to 

understand the underlying mechanism of HSC function and expansion as well as how 

they relate to leukemic cells, HSC behavior will need to be studied and compared to 

correlate with gene function. From gene expression profiling many hematopoietic 

regulators have been identified and through overexpression of various genes that are 

highly and/or exclusively expressed in HSCs, the potential for HSC expansion has 

been further explored. The exclusive expression of several of the homeobox genes at 

the HSC level made them of key interest in genetic engineering to induce HSC 

expansion. However, differences in their behavior towards non-expanding or 
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differentiating HSCs still need to be elucidated in order to understand the underlying 

mechanism. 

 

1.11 Homeobox genes 
 

During development, proliferation and differentiation as well as induced 

apoptosis are tightly controlled in order to form highly specialized tissues. Master 

regulators of these processes are a set of genes called homeobox genes (HOX), from 

homeosis, a process in which one body part transforms into another, which occurred 

in drosophila melanogaster upon mutations in these genes. Highly preserved during 

evolution and amongst species, they are found clustered on 4 chromosomes and are 

abbreviated HOXA-D, having a total of 39 genes in both mouse and human. Each 

cluster contains between 9 and 11 genes that are not only linked within each cluster 

but also have synergistic functions between parallel HOX clusters forming a total of 

13 functional groups that show large homology (Lappin, DG et al. 2006). Not only do 

their temporal expression correlate with their chromosomal location (3` to 5`), their 

expression is also spatially defined, occuring from the anterior to posterior region, 

respectively (Figure 1.11-1, (Lappin, DG et al. 2006).  
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Figure 1.11-1: Conservation between the HOM-C and HOX gene clusters 
Classification and organization of 39 HOX genes in 13 parallel functional clusters. The 3`genes are 
expressed more anteriorly and in earlier developmental stages than the 5`genes. With copyright 
permission from author (TRJ Lappin). 
 

The main functional parts of HOX proteins are the homeodomain (HD) at the 

C-terminus, the nuclear localization sequence and the TALE (three amino acid loop 

extension) region, both found at the N-terminus. The homeodomain consists of 60 

amino acids that define its DNA binding specificity. The N-terminus facilitates the 

DNA binding through binding of co-factors at the TALE region, such as Meis-1 and 

Pbx (Lappin, DG et al. 2006; Ohta, Sekulovic et al. 2007) (Figure 1.11-2).  

© The Ulster Medical Society, 2006.
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Fig 2. Conservation between the HOM-C and HOX gene clusters.
 The four Hox gene clusters found in mammals are conserved from the Drosophila Hom-C complex in terms of nucleotide 

sequence and colinear expression.  During embryonic development, the genes are expressed in a pattern that correlates 
with the chromosomal positioning, depicted here for human and mouse.  The 3` genes are expressed both earlier and 
more anteriorly than the 5` genes.
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Figure 1.11-2: Conserved homeobox gene and protein structure 
Schematic overview of HOX gene and HOX protein structure with different domains (not on scale). 
TALE (three amino acid loop extension) binding domain and variable domain are located at the N-
terminus whereas the homeodomain (DNA binding) is found at the C-terminus. 

 

In HSCs, HOX genes A, B and C are highly expressed. Upon differentiation, 

their expression is down-regulated, as during development, from 3`to 5`, suggesting 

that 3` HOX genes play a role in retaining multipotency or self-renewal capacity. The 

high expression level of HOXB3 and HOXB4 in HSCs (Sauvageau, Thorsteinsdottir 

et al. 1995; Lawrence, Sauvageau et al. 1996) has proven the plausibility of this 

hypothesis, since overexpression studies revealed a significant increase in HSC 

numbers in ex vivo culture (~80 fold), more comparable to the normal in vivo 

proliferation capacity upon transplantation (~100 fold) (Pawliuk, Eaves et al. 1996; 

Antonchuck, Sauvageau et al. 2002; Buske, Feuring-Buske et al. 2002; Sauvageau, 

Iscove et al. 2004). Moreover, HOXB4 overexpression leads to a much better 

engraftment potential compared with freshly isolated HSCs (Antonchuk, Sauvageau 

et al. 2001). This striking effect not only lies in the potency of HOXB4 to expand 

HSCs under culture conditions normally pushing myeloid differentiation, but 

similarly in the fact that this is reversible upon transplantation and homing into the in 

vivo HSC niche. 

 

On the other hand, overexpression or deregulation of other HOX genes leads 

to many blood disorders and malignancies, ranging from a perturbed lymphoid 

differentiation potential to the onset of latent leukemia (Thorsteinsdottir, Sauvageau et 

al. 1997; Buske, M et al. 2001; Thorsteinsdottir, Kroon et al. 2001; Owens and 

Hawley 2002; Thorsteinsdottir, Mamo et al. 2002; Sitwala, Dandekar et al. 2008). 

HOXA9 overexpression was found to further increase HSC expansion but resulted in 
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a latent leukemia onset. The fast proliferation of these cells and their blast-like 

phenotype, residing in an undifferentiated state in vitro, made it of key interest to 

further investigate the potential of different HOX gene-based engineered constructs 

that could further enhance HSC expansion but with leukemia exclusion. 

 

1.12 NA10HD 
 

About 5% of all AML cases are related to chromosomal rearrangements or 

translocations affecting HOX genes. The translocation t[(7;11)(p15;p15)]-  HOXA9, 

with nucleoporin 98 (NUP98)- results in rapid onset of AML and rapid proliferation 

(Borrow, Shearman et al. 1996). This was confirmed by overexpression of a construct 

containing this fusion gene in healthy primary HSCs, which indeed led to rapid 

leukemia onset upon transplantation (Kroon, Thorsteinsdottir et al. 2001; Calvo, 

Sykes et al. 2002). Other HOX fusions with NUP98 were found to increase HSC 

expansion with sometimes a very latent leukemia onset. The underlying mechanism is 

most likely the binding of CREB binding protein (CBP) and p300, both having a high 

affinity for the FG repeats at the N-terminus of NUP98 and acting as adapter 

molecules and co-activators (Kasper, PK et al. 1999; Ghannam, Takeda et al. 2004) 

(Figure 1.12-1). The question then was whether upon overexpression, different HOX 

genes are intrinsically oncogenic or became oncogenic upon fusion with NUP98 

(Abramovich, N et al. 2005). To test this, constructs were engineered containing 

fusions of NUP98-HOXB4 and NUP98-HOXA10, which were then transduced into 

HSCs and transplanted after ex vivo cultivation. While overexpression of NUP98-

HOXB4 further increased the HSC expansion potential without developing leukemia, 

NUP98-HOXA10 overexpression also resulted in a strong fold expansion of HSCs, 

albeit with a latent leukemia onset (Pineault, Abramovich et al. 2004).  

 

 
Figure 1.12-1: NUP98-HOXA10 fusion protein with protein complex partners 
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The TALE domain can bind adapter molecules PBX and Meis1, which can coactivate other down-
stream targets, whereas the NUP98 is often co-localized with CBP/p300. In NA10hd the TALE domain 
is missing. 
 

Interestingly, the leukemic potential of NUP98-HOXA10 seemed to be 

dependent on binding of Meis-1and independent of its DNA binding capacity. Thus, 

upon binding of CBP through NUP98 interaction, the flanking domains of the HOX 

gene containing the TALE domain seemed sufficient to induce leukemia (Pineault, 

Abramovich et al. 2005). By deletion of this TALE domain (NA10hd), Ohta et al. 

postulated the potential of HSC expansion could be maximized while the risk of latent 

leukemia was lost. Using limiting dilution assays in competitive repopulating assay, 

they showed a 1000 fold net increase in HSCs after 10 days of in vitro cultivation 

(Ohta, Sekulovic et al. 2007), in the range of the maximum in vivo HSC proliferation 

(~8400 fold, (Sauvageau, Iscove et al. 2004). Moreover, no leukemia was detectable 

and no in vivo lineage bias was observed, contrary to lymphoid bias upon HOXB4 

overexpression (Haddad, Pflumio et al. 2008). 

 

Due to their promising clinical potential, most studies now focus on further 

improving HSC expansion, using NA10hd or HOXB4 overexpression as a standard 

base line. Initially providing good results and potential genes of interest (Deneault, 

Cellot et al. 2009), these studies have recently been interpreted with care since the 

observed effect may come from an altered phenotype in overexpressing feeder lines, 

inducing different secreted molecules (Deneault, Wilhelm et al. 2013). Until now, 

NA10hd overexpression is therefore the most effective HSC expansion method. With 

recent advances in primate models, clinical applications may be the next step to 

proceed (Watts, Zhang et al. 2011). 

 

Despite the strong contrast from control HSCs that rapidly lost their self-

renewal potential due to myeloid differentiation, a NA10hd specific mechanism has 

yet to be defined. At first sight, no direct differences in proliferation rates were found. 

Although initially tested in bulk cultures with poor HSC purities by 5-fluoroacil 

treatment, a drug that ablates cycling cells and mobilizes quiescent cells such as 

HSCs, a recent paper could show similar results using clonal culture and higher HSC 

purity (Sekulovic, Gasparetto et al. 2011). In addition they showed that further 

addition of thrombopoietin fully diminishes HSC expansion. With data suggesting the 
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acquisition of a fetal liver HSC phenotype due to its high proliferation capacity, until 

now nothing is known about the mechanism of NA10hd induced HSC expansion, 

although preliminary comparisons have revealed multiple down-stream targets such 

as FLT3, HLF and JAG2 (Palmqvist, Pineault et al. 2007). 

 

Together this shows that recent gene profiling studies and further categorization 

and modification of NA10hd-induced expansion were still insufficient to elicit an 

underlying mechanism. Both the influence of extrinsic factors as well as behavioral 

differences are poorly understood. Furthermore, little is known about the in vivo 

reversibility and control of both self-renewal and differentiation. Since the majority of 

these studies were performed in bulk culture, large heterogeneity would mask the 

existence of distinct classes and behavioral subsets would not be detected. In addition, 

inheritance of daughter cells with respect to both marker expression and proliferation 

rate cannot be assessed since genealogy is lost, which furthermore leaves the question 

unanswered whether true HSCs are expanded or HSC potential is induced. For these 

reasons, a clonal in vitro read-out using continuous time-lapse imaging would prove 

an outcome in defining NA10hd behavior. Long-term imaging for more than 7 days 

has been difficult to implement due to either accumulation of high numbers of cells or 

following low density seeding. While the former results in loss of clonal identity, the 

latter has the consequence that larger surface areas need to be covered with the 

consequence of impairing temporal resolution. Further optimization of both culture 

conditions as well as software and imaging techniques should allow such read-outs 

with preservation of genealogy. Not only would this provide deeper insight in 

NA10hd behavior, combined with quantification of surface marker expression 

through live fluorescent antibody labeling, co-culture with stroma cells or control 

cells this would furthermore elicit cellular subsets and the influence of extrinsic 

factors such as cell-cell contact, respectively. 

 

1.13 Stroma co-culture 
 

PA6 cells are known to have the capacity to maintain HCSs stemness over 

multiple days under co-culture conditions. Their expression of SCF, Sca-1 and CD34 

as well as interleukin-6 indicates their importance for survival and HSC maintenance 

and differentiation, respectively (Satoh, Mioh et al. 1997; Satoh, Mioh et al. 1997). 
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The expression of chemokine ligand 5 (CXCL5) further functions as a 

chemoattractant (Shimizu, Noda et al. 2008), similar to the production of the related 

CXCL12 in the in vivo niche. For HSC maintenance it has been shown that cell-cell 

interaction of the HSCs with the stromal cell layer is indispensable (Kodama, Amagai 

et al. 1982). Although PA6 cells do not permit B lymphoid development, addition of 

interleukin-7 can fully reestablish this potential (Sudo, Ito et al. 1989). 

 

Due to their high optical clarity and their contact inhibition of growth upon 

confluence, these stromal cells form an excellent substrate to study HSC behavior. 

Mimicking in vivo cell-cell interactions with their niche or mimicking physiological 

conditions, HSCs can be observed long-time. With use of time-lapse imaging, HSCs 

can be tracked and factors as adherence, motility, apoptosis, and cell lifetime can be 

quantified in progeny of late generations and inheritance can be assessed, which to 

date has not been shown due to technical difficulties in both imaging and cultivation 

and cannot be detected in bulk culture or by snapshot analysis. Moreover, with use of 

fluorescent imaging and live antibody staining, marker expression can be accurately 

attributed on a clonal basis (Eilken, Nishikawa et al. 2009). Taken together, this 

method provides new insight and allows defining a signatorial behavior of HSCs 

during in vitro expansion. 

 

1.14 Conclusion 
 

There is evidence that cell-cycle phase may play a direct role in cytokine 

induced lineage production but HSC heterogeneity and technical challenges so far 

didn’t allow to make the point. The lack of live cell-cycle quantification and the fact 

that most studies are performed on a population level furthermore hampered the 

assessment of cell-cycle dynamics and the existence of behavioral subsets. In 

addition, cytokines are known to direct blood lineage production but to date the 

question remains whether the effect on cell fate can be dependent on the cell-cycle 

phase at the time-point of administration. Such an effect on HSCs has not yet been 

shown. Finding such a correlation and unraveling the underlying molecular 

mechanism would potentially improve lineage specific production in a clinical setting 

in vitro and in vivo. For this reason, a clonal read-out that allows live cell-cycle 
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quantification while assessing lineage commitment would be of key interest to answer 

these long-standing questions. 

 

Instead of directing lineage production to derive specific mature subsets, another 

focus lies in ex vivo expansion of HSCs to treat patients that require transplantation. 

The engineered fusion protein NA10hd has been shown to induce over a 1000-fold 

expansion in vitro within 1 week of culture. However, its mechanism is still unknown. 

To further understand what drives this expansion and how these cells differ from non-

manipulated HSCs that differentiate in vitro, the behavior of these NA10hd cells, in 

terms of cell division rate, apoptosis, marker expression, adherence and migration 

needs to be followed up. The in vivo reversion of the differentiation block found in 

vitro as well as the reduced proliferation kinetics furthermore require in-depth 

assessment how niche or cell-cell interactions are involved in altering NA10hd 

behavior. 
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2 Aims of the thesis 
 

It has long been an outstanding question whether cells receiving the same 

cytokine in different cell-cycle phases will have diverging cell fates. Moreover, it still 

remains unclear whether at the level of the most primitive HSCs, cytokines can 

already direct lineage decision. The aim of this thesis is to verify whether both 

phenomena exist using time-lapse imaging at single-cell resolution. For this purpose, 

live cell-cycle quantification first needs to be established in primary HSCs. This not 

only allows assessing and scoring of cell-cycle phase upon cytokine addition but also 

allows observing how HSCs transit through cell-cycle over multiple generations.   

 

End-point lineage production and thus multipotency can be correlated with both 

the initial cell-cycle phase and cell-cycle durations and transitions in subsequent 

generations, identifying a lineage-specific behavior so far not possible due to either 

loss of ontogeny or initial cell-cycle state. Using time-lapse imaging, cytokines can be 

also added after the first in vitro cell-cycle division to test whether cell-cycle specific 

cell fates are equally applicable to daughter cells and test for HSC specificity. With 

such a technique, the effect of specific additional cytokines can be directly measured. 

 

Focusing specifically on cells with multilineage potency, in-depth analysis of in 

vitro NA10hd HSC behavior will be completed by comparison of cell lifetimes of 

progeny and ancestry, which to date remained elusive. Finally, the effect of stromal 

co-culture will shed light on the effect of cell-cell contacts on NA10hd HSC behavior, 

mimicking the reduced proliferation found in the in vivo niche.  
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3 Materials, methods and experimental procedures 
 
 

3.1 Purification 

3.1.1 HSC isolation 

 Femurs, tibiae and pelvic bones were dissected from male 12 weeks old 

C57Bl/6 mice and excessive tissue was removed. Bones were crushed using a mortar 

and pestle, re-suspended in 2% fetal calf serum (FCS) (cat. no. A15-101, PAA) in 

Dulbecco’s phosphate buffered saline (PBS) (cat. no. 14190-094, Gibco, Life 

Technologies, Paisley, UK) and passed through a 100 µM cell strainer (cat. no. 

352360, BD Falcon, Schubert & Weiss Ombilab GmbH, Munich, Germany) into a 50 

mL polypropylene (PP) tube (cat. no. 352070, BD Falcon, Schubert & Weiss Ombilab 

GmbH, Munich, Germany). After centrifugation (all centrifugation steps performed at 

240 RCF, 5 min 4°C, (cat. no. 5805, Rotanta 460R, Hettich Zentrifugen, Tuttlingen, 

Germany)), erythrocyte lysis was performed using ACK lysing buffer (cat. no. 10-

548E, Lonza, Walkersville, USA) for 2 min on ice at 2.5 µL/106 cells.  Cells were 

washed and resuspended in FACS buffer containing 5% FCS in PBS with 1 mM 

EDTA (cat. no. ED4SS-100G, Sigma-Aldrich, Steinheim, Germany) at 108 cells/mL 

and lineage depletion was performed using the following antibodies: 

 

Table 3.1-1: Lineage depletion for HSC purification 
Antibody Clone Cat. No. 

B220-biotin RA3-6B2 13-0452-86 

CD3-biotin 145-2C11 13-0033 

CD19-biotin 1D3 13-0193-85 

CD11b-biotin M1/70 13-0112-85 

Gr-1-biotin RB6-8C5 13-5931-85 

Ter119-biotin TER-119 13-5921-85 
Cells were stained at 50 ng/106 cells. All antibodies were obtained from eBioscience, San Diego, USA. 

 

After 20 min incubation on ice, cells were re-suspended in buffer and Roti-

MagBeads Streptavidin (cat. no. HP57.1, Carl Roth, Karlsruhe, Germany) was added 

at 0.4 µL/106 cells. After 10 min at room temperature (RT), cells were transferred into 

14 mL polypropylene tubes (cat. no. 352059, BD Falcon, Schubert & Weiss Ombilab 
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GmbH, Munich, Germany) and lineage depletion was performed for 7 min at RT 

using an Easy Sep magnetic assisted cell sorter (cat. no. 18001, Stem Cell 

Technologies, UK).  

Lineage negative (Lin-) cells were stained with fluorescent protein conjugated 

antibodies for further purification in 100 µL buffer: 

 

Table 3.1-2: HSC and MPP purification using fluorescence in flow cytometry 
Antibody Concentration Clone Company Cat. No. 

CD48 FITC 40 ng/106 cells HM48-1 Biolegend 103404 

CD150 PE 40 ng/106 cells TC15-12F12.2 Biolegend 115904 

CD135 PE Cy5 40 ng/106 cells A2-F10 eBioscience 15-1351-81 

CD117 PE Cy7 60 ng/106 cells 2B8 eBioscience 25-1171 

CD34 E660 100 ng/106 cells RAM34 eBioscience 50-0341-82 

SA APC E780 40 ng/106 cells  eBioscience 47-4317-82 

Ly6A/E PB 40 ng/106 cells D7 Biolegend 108120 
Fluorescence-conjugated antibodies were used for HSC enrichment. Used abbreviations: Fluorescein 
isothiocynate (FITC), phycoerythrin (PE), phycoerythrin cyanine 5 (PE Cy5), phycoerythrin cyanine 7 
(PE Cy7), eFluor660 (E660), streptavidin allophycocyanin eFluor 780 (SA APC E780), Pacific Blue 
(PB). 
 

Compensation tubes were prepared with Lin+ cells at 0.2 µg/50µL cell 

suspension with the above antibodies. Cells were incubated for 60-90 min at 4°C. 

Before cell sort, cells were strained through a 35 µM filter (cat. no. FALC352235, BD 

Falcon, Schubert & Weiss Ombilab GmbH, Munich, Germany) into a 5 mL PP tube. 

 

3.1.2 Flow cytometry 

All cell purifications and analyses were performed on a FACSAria III machine 

(Becton Dickinson, San Jose, USA) with FACSDiva software. Equipped with 4 

lasers, following filters were used for different fluorochromes and fluorescent 

proteins: 
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Table 3.1-3: Fluorescence activated cell sort 
Laser Filter Fluorochrome / 

fluorescent protein 
405 nm 450/40 PB 
488 nm 530/30 FITC, VENUS 

 695/40 PerCP E710 
561 nm 586/12 PE 

 610/20 PI, mCHERRY 

 670 PE Cy5 

 780/60 I PE Cy7 
633 nm 660/20 E660 

 730/45 Alexa700 

 780/60 II APC E780 
Multicolor flow cytometry allows usage and detection of up to 10 antibodies simultaneously and 
facilitates high purification of HSCs. Laser, excitation and emission settings for flow cytometry. 
 

Compensation was performed using biexponatial settings and single stain 

compensations. Gates were set using unstained control and contour plots. Before 

sorting, drop delay was performed using auto settings and accudrop fluorescent beads 

(cat. no. 345249, BD) and a test sort was performed. Purification was then performed 

using a 70 µM nozzle and a frequency of 87 kHz at an average of ~104 events/second 

into 5 mL PP tubes containing 2 mL of serum free essential medium (StemSpan 

SFEM, StemCell Technologies Inc.). Stream instabilities were prevented by cleaning 

the nozzle using a ultrasonic cleaner (cat. no. USC100T, VWR, Leuven, Belgium). 

3.2 Vector cloning 

3.2.1 Plasmids 
Plasmids were cloned according to standard digestion and ligation protocols 

(Fermentas). DNA was generated by reverse transcriptase polymerase chain reaction 

(RT-PCR, cat. no. 28104, Qiagen) when necessary and purified using gel 

electroporation and extraction kits (cat. no. 20021, Qiagen). Following vectors were 

used in the course of both projects: 

 

Table 3.2-1: Plasmids 
In-house # Domains 

442 pRRL.RRE.PPT.SFFV.IRES-VENUSnucmem.PRE.SIN 
638 pRRL.RRE.PPT.SFFV.FNA10HD.IRES-VENUSnucmem.PRE.SIN 
663 pRRL.RRE.PPT.SFFV.IRES-VENUSPSLD.PRE.SIN 
679 pRRL.RRE.PPT.SFFV.mCHERRYPSLD.PRE.SIN 
860 pRRL.RRE.PPT.SFFV.FNA10HD.IRES-mCHERRYPSLD.PRE.SIN 



! 41!

 The pRRL vector contains the promoter of the Rouse sarcoma virus (RSV), 

the 5´unique region (RU5), the primer binding site (PBS) for viral reverse 

transcriptase and the gag domain that provides core structural proteins. The rev 

(nuclear localization signal and for synthesis) responsive element (RRE) allows 

translation. The polypurine tract (PPT) facilitates initiation of the DNA plus strand, 

the post-transcriptional regulatory element (PRE) enhances levels of transcripts and 

the self-inactivating (SIN) domain provides further safety by leaving a defective 

promoter. All vectors contain ampicillin resistance. 

 

Expression of all proteins of interest (bold) is driven by the spleen focus-

forming virus (SFFV). Fluorescent proteins (VENUS or mCHERRY) were chosen for 

their strong emission, their low phototoxicity and their ease of combination with 

many live fluorescent antibodies. In co-expressing vectors, expression of fluorescent 

reporters was driven by an internal ribosome entry site (IRES). The nucmem domain 

stands for nuclear membrane localization and contains the human importin alpha 1 

domain. The PSLD domain is described in 1.7. The Nup98-HOXA10homeodomain 

(NA10hd) contains a Flag-tag (F) at the N-terminal end combined with a linker 

protein, thereby not hampering its functional domains. 

3.2.2 DNA preparation 

DNA was extracted using a QIAGEN Plasmid Kit (cat. no. 12125, Qiagen 

Sciences, Hilden, Germany). Briefly, DNA from ligation products was transformed 

into DH5 competent bacteria using heat-shock and incubated overnight on agar plates 

containing ampicillin.  

Single colonies were picked and inoculated overnight on a 37°C shaker in 4 

mL of ampicillin containing LB medium. DNA extraction was then performed 

according to protocol using a microcentrifuge (Mikro 200, cat. no. 2400, Hettich 

Zentrifugen, Tuttlingen, Germany) and DNA was eluted in 30 µL milli-Q water. Test 

digests were performed and DNA quantity was measured. DNA was stored at -20°C. 

3.2.3 Transfection 

Polyethylenimine (PEI) solution was prepared by dissolving 100 mg PEI (cat. 

no. 23966, Polysciences Inc., Warrington, USA) in 900 mL 150 mM NaCl (cat. no. 

32038-1EA, Sigma-Aldrich, Steinheim, Germany) at 80°C overnight. Solution was 

cooled and pH was adjusted to 7.8 using HCl. Volume was adjusted to 1 L using 150 
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mM NaCl and solution was filtered and stored at 4°C. 500 ng of plasmid DNA was 

then added to 66 µL polyetylenimine solution, vortexed for 10 s and incubated for 10 

min at RT. Solution was then carefully added to each well containing 500 µL medium 

on HEK 293 cells and gently mixed by shaking. Expression and localisation were 

assed after 24 to 48 hours by epifluorescent microscopy. 

3.3 Lentiviral production and transduction 

3.3.1 DNA preparation 

High quantities and concentrations of DNA were obtained using a QIAGEN 

Plasmid Kit (cat. no. 12165, Qiagen Sciences, Hilden, Germany). Briefly, 500 µL of 4 

mL DNA containing bacterial culture was pipetted or DNA containing bacteria from 

glycerol stocks was inoculated into 100 mL ampicillin containing LB and incubated 

overnight on a 37°C shaker. DNA was then extracted and purified according to 

protocol and eluted in 100 µL milli-Q water. DNA was stored at -20°C.  

3.3.2 HEK 293 culture 

Immortalised human embryonic kidney cells from the 293rd experiment 

(Lenti-X HEK 293 T, (cat. no. 632180, Clontech)) were kept in 24-well plates (cat. 

no. 353047, BD Falcon, Schubert & Weiss Omnilab, Munich, Germany) for 

maintenance and were seeded at ~105 cells per well in Dulbecco’s modified eagle 

medium (DMEM, cat. no. 31053-028, Invitrogen) containing 10% FCS. Cells were 

passaged every second day at a 1:8 to 1:10 ratio, using 0.05% trypsin (cat. no. 25300-

054, Gibco) and re-suspended in media without centrifugation. For up scaling for 

lentiviral production, 9-cm dishes were used (cat. no. 150350, Thermo Scientific, 

Roskilde, Denmark). HEK 293 cells were kept until passage number 40. 

3.3.3 Lentiviral production 

4 plates of HEK 293 cells were plated at 5x106 cells/60cm2 in DMEM 

containing 10% FCS. After 24 hours, media was aspirated and 10 mL of transfection 

media was added per plate (DMEM containing 2mM L-glutamine (cat. no. 25030-

081, Gibco) and 0.1 mM sodium pyruvate (cat. no. 41966-029, Invitrogen), 10% FCS 

1% penicillin/streptomycin, 100 U/mL and 0.1 mg/mL respectively (P/S, cat. no. 

15070063, Gibco, Life Technologies, Paisley, UK) 20 mM HEPES (cat. no. 15630-

056, Invitrogen). Then viral envelope vectors were added, diluted in 500 µL 0.25 M 

CaCl2 in H2O and mixed with 500 µL 2x HEPES buffered saline (50 mM HEPES, 
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280 mM NaCl, 1,5 mM Na2HPO4 (cat. no. P030.3, Carl Roth, Karlsruhe, Germany) in 

H2O (pH 7.1)) with added CaPO4 (cat. no. CAPHOS-1KT, Sigma-Aldrich, Steinheim, 

Germany) to 1M: 

 

Table 3.3-1: Viral envelope DNA used for transduction 

Plasmid 
Function Quantity 

pUC19.RSV.REV (392) 
Packaging 2 µg 

CMV.betaglobin.gag.pol.RRE.PolyA.pUC19 (393)   Packaging 5 µg 

pMD2-VSVG.IRES-Puromycin (495) 
Envelope 5 µg 

pAdVAntage (cat. no. E1711, Promega) 
Translation 6 µg 

Gene containing plasmid 
Expression 5-8 µg 

Abbreviations: Cytomegalo virus promotor (CMV), vesicular stromatitis Indiana virus 
(VSVG). For others see 3.2.1. 

 

Cells were incubated overnight. At 48 hours, media was aspirated, 4.5 mL of 

transfection media was added containing 50 mM sodium butyrate (cat. no. B5887, 

Sigma-Aldrich, Steinheim, Germany). 

At 72 hours, supernatant was collected and stored at 4°C. 4.5 mL of 

transfection media was added to all plates. At 96 hours, supernatant was again 

collected and pooled before centrifugation (200 RCF, 5 min at 4°C) in ultracentrifuge 

tubes (cat. no. 326823, Beckmann). Supernatant was filtered through a 0.22 µM filter 

into a new ultracentrifuge tube and centrifuged at 50000G for 1 hour at 4°C after 

calibration. Supernatant was removed and pellet was vortexed with 200 µL SFEM 

after 15 min incubation on ice. Virus was then aliquotted and stored at -80°C. 

Titer was calculated using dilution series and calculating the percentage of 

positive cells per cell number by FACS analysis on NIH 3T3 cells at day 2 after virus 

addition in DMEM 10% FCS. 

3.3.4 Lentiviral transduction 

Cells were washed and counted by spinning down (240 RCF, 1 min at 4°C) 5 

µL cell suspension into a well of a Nunc minitray (cat. no. 163118, Thermo Fisher 

Scientific, Roskilde, Denmark). The volume and amount of viral particles was 

calculated by dividing the cell number with the titer multiplied with the desired 

multiplicity of infection (MOI). For cell lines, a MOI between 1 and 10 was found 

sufficient, higher numbers were toxic in some cases. For primary cells, an optimum 
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was found at MOI 600, providing highest transduction efficiency (~80%) and no 

detectable increase in toxicity. Cells were transduced in 100 µL media in a 96-well 

Nunclon microwell plate (cat. no. 167008, Thermo Fisher Scientific, Roskilde, 

Denmark) and incubated for 24 to 48 hours before use. 

3.4 Cell-cycle reporter validation 

3.4.1 Propidium Iodide staining  

Cells were washed and resuspended in 1 mL PBS. 2.5 mL of absolute ethanol 

(cat. no. 1009831000, Merck) was added drop wise and cells were fixed on ice for 5 

min with repeated vortexing. Cells were centrifuged at 300 RCF for 5 min at 4°C and 

resuspended in 300 µL of 50 µg/mL propidium iodide (PI) (cat. no. P4170-25MG, 

Sigma-Aldrich, Steinheim, Germany) with 100ng/mL RNase A (Qiagen Sciences, 

Hilden, Germany) in PBS. After 1 hour of incubation at 37°C 5% CO2, cells were 

centrifuged and 200 µL of supernatant was pipetted off before analysis. 

Analysis was performed with FACSAria III using a 488 nm laser and 610 nm 

BP filter (see 3.1.2). Data was then processed with Flowjo software (Flowjo version 

X, Tree Star, Inc., OR, USA), using a Watson-Pragmatic or Dean-Jett-Fox model for 

distribution to set gates for different cell-cycle phases. 

Alternatively, PI signals were quantified in a 384-well plate (cat. no. 88401, 

IBIDI, Martinsried, Germany) using Lumencor 590 nm (Laser2000) and suiting 

mCHERRY filter (cat. no. F36-508, AHF, Germany). Images were quantified using 

AMTsingle software (unpublished). 

3.4.2 PSLD quantification  

To verify the validity of PSLD in determining cell-cycle phase, cells stained 

with PI were directly compared with cells that had been transduced with a 

mCHERRYPSLD expressing lentiviral vector (see 3.2 and 3.3). Cells were 

categorized using published descriptions and cell numbers were assessed using FIJI 

software (ImageJ 1.47k, NIH, USA). Comparison was then performed using MS 

Excel plotting and Graphpad Prism 5 (GraphPad Software, Inc., CA, USA).  
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3.5 Erythrocyte detection using fluorescent antibodies 
Granulocyte-macrophage progenitors (GMPs) and megakaryocyte-erythrocyte 

progenitors (MEP) were sorted by flow cytometry (Lin- Ly6A/E- CD117+ CD34+ 

CD16/CD32+ and Lin- Ly6A/E- CD117+ CD34- CD16/CD32-, respectively). GMPs 

were cultured for 5 days in SFEM with 10 ng/mL M-CSF, with live antibody staining 

using anti-F4/80-conjugated APC and CD71-conjugated FITC (See 5.7). MEPs were 

cultured in SFEM 100 ng/mL SCF 100 ng/mL TPO 10 ng/mL IL-3 2 U/mL 

erythropoietin (cat. no. C-60022, Promokine) 10% FCS 50 µM 2-mercaptoethanol 

(cat. no. M3148-25ML, Sigma-Aldrich, Steinheim, Germany) and 1% L-glutamine 

with anti-CD105-conjugated Alexa 555 and anti-CD71-conjugated FITC (see 3.7). 

Cultures were analyzed after 5 and 7 days and CD71 signals were quantified.  

As a comparison, freshly stained lineage subsets from whole bone marrow were 

compared for CD71 expression using flow cytometry.  

 

3.6 Cell culture 
Cells were incubated at 37°C, 5% CO2 and 99% humidity in a controlled 

incubator (CD210, Binder, Tuttlingen-Möhringen, Germany). Tips were obtained 

from Greiner Bio-one (cat. no. 710190 (2 mL), 606180 (5 mL), 607180 (10 mL) and 

760180 (25 mL), Frickenhausen, Germany) and Omnitip (cat. no. 81710 (10 µL), 

83710 (200 µL) and 85710 (1200 µL), Warsaw, Poland). 

3.6.1 Cell line maintenance 

Alpha minimal essential medium (aMEM, cat. no. 11900-016, Invitrogen, 

Germany) containing 10% FCS and 1% P/S was prepared and pre-heated at 37°C. 

Cells were taken out of liquid nitrogen tank and cryotube was put on ice to avoid 

thawing to complete. Cells were then transferred into a 37°C water bath (cat. no. 

1002, GFL, Burgwedel, Germany) to thaw.  Upon dissolving of last crystals, cell 

suspension was gently transferred into a 15 mL PP tube (cat. no. 352095, BD Falcon, 

Schubert & Weiss Omnilab GmbH, Munich, Germany) and 10 mL of pre-heated 

media was added drop wise while rolling the tube on an inclined angle to mix gently. 

Cells were centrifuged at 200 RCF for 5 min at 4°C. Supernatant was removed and 

cells were gently re-suspended in 3 mL media and transferred into a 6-well plate (cat. 

no. 140685, Thermo Fisher Scientific, Roskilde, Denmark). Media was refreshed after 



!46!

24 hours. Cells were grown as desired and re-frozen to maintain cell lines and to 

avoid batch depletion. Confluent cells were trypsinised with 1 mL 0.05% trypsin for 2 

min at 37°C 5% CO2. Trypsin was inactivated by adding 9 mL of media and cells 

were centrifuged at 200 RCF for 5 min at 4°C. Cells were re-suspended in 3 mL FCS 

10% dimethylsulfoxide (DMSO, cat. no. D2650, Sigma-Aldrich, Steinheim, 

Germany) and 1 mL of cell suspension was gently pipetted into each cryovial (cat. no. 

290174707, Neolab). Cryovials were stored at -80°C for 24 hours and then transferred 

to liquid nitrogen tanks. 

 

3.6.2 PA6 culture 

MC3T3-G2/PA6 cells were cultured in alpha minimal essential medium 

(aMEM, cat. no. 11900-016, Invitrogen, Germany) with 10% FCS and 1% 

penicillin/streptomycin, 100 U/mL and 0.1 mg/mL respectively (P/S, cat. no. 

15070063, Gibco, Life Technologies, Paisley, UK) in a 37°C incubator. Cells were 

passaged every 3 to 4 days, when reaching approximately 95% confluence, by 

trypsinisation for 2 min at 37°C and re-suspension in medium at a 1:4 ratio. For 

experiments, passage numbers from 3 to 15 were used. 

3.6.3 NA10HD culture 

NA10HD cells for time-lapse experiments and cells that were kept for long-

term culture, were incubated in a 37°C incubator. Media consisted of 100 ng/mL SCF 

(cat. no. 250-03), 3 ng/mL IL-3 (cat. no. 213-13), 10 ng/mL IL-6 (cat. no. 216-16), all 

obtained from Peprotech, 10% FCS and 1% PS in DMEM. Media was refreshed every 

third day and cells were serially diluted when reaching confluence (~106 cells/mL).  

3.6.4 Co-culture 

MC3T3-G2/PA6 cells were inoculated in 100 µL cell suspension at 5000 

cells/cm2 into a silicone culture insert (cat. no. 80209, IBIDI, Martinsried, Germany) 

and cultured for 2 days in aMEM 10% FCS 1% P/S. After reaching confluency at day 

2 of culture, media was aspirated and HSCs were inoculated in Iscove’s modified 

Dulbecco’s medium (IMDM, cat. no. P04-20451, PAN) containing 100 ng/mL SCF, 

10% FCS, 20% horse serum (cat. no. 16050-122, Invitrogen), 10-7 M hydrocortisone 

(cat. no. H0888-1G, Sigma Aldrich, Steinheim, Germany) and 1% P/S. Experiments 

were performed in either 25 mL tissue culture flasks (cat. no. 353018, BD Falcon, 
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Schubert & Weiss Ombilab GmbH, Munich, Germany) or 24-well Nunclon plates 

(cat. no. 167008, Thermo Fisher Scientific, Roskilde, Denmark). In both cases, pre-

incubated media was added (15 mL and 1.5 mL, respectively) after cells had set at the 

bottom (approximately 1 hour)). After additional 2 hours of CO2 saturation, flasks 

were screwed tight and multi-well plates were sealed using 15 mm Tesa film tape 

(cat. no. 57370-00002, Tesa SE, Hamburg, Germany) before conducting the 

experiment. 

3.6.5 Clonal analysis and media optimization 

Freshly isolated HSCs were virally transduced with a lentiviral vector 

expressing mCHERRYPSLD (see 3.1-2 and 3.3.4) in SFEM 100 ng/mL SCF and 100 

ng/mL TPO (MOI 600) for 24-44 hours. 

 

For media testing, limiting dilution was applied to obtain an average of 1 cell 

per 3 wells. Cells in media suspension were then pipetted into a 1536-well plate (cat. 

no. 783892, Greiner Bio-One, Frickenhausen, Germany) using a multi-pipette (Rainin 

Pipet-Lite (cat. no. L12-20, Mettler Toledo, Oakland, USA)) set at 10 µL and special 

Rainin tips (cat. no. RT-L10, Mettler Toledo, USA) and a 50 mL reagent reservoir 

(cat. no. 4870, Corning Incorporated, NY, USA). 

 

In experiments for media optimization, phenol red free SFEM was used with 

SCF and a combination of TPO, IL-3, erythropoietin (cat. no. C-60022, Promokine), 

GM-CSF (cat. no. 167315-03-B), G-CSF (cat. no. 167250-05-B, both Peprotech), 

FCS, 2-mercaptoethanol (cat. no. M3148-25ML, Sigma-Aldrich, Steinheim, 

Germany) and L-glutamine. Media was filtered using a 0.2 µM Minisart filter (cat. 

no. 16532, Sartorius, Goettingen, Germany) and a 20 mL injekt syringe (cat. no. 

4606205V, B.Braun, Carl Roth, Karlsruhe, Germany). 

 

For clonal analysis at 24 or 44 hours, cells were washed in 15 mL PP tubes and 

re-suspended in FACS buffer and single mCHERRYPSLD expressing cells were 

sorted into a 384-well plate (cat. no. 88401, IBIDI, Martinsried, Germany) using a 

single-cell sorting mode and gates set according to a non-transduced control. Wells 

were filled with 100 µL media, pipetted with a multi-pipette (Transferpipette-12 (cat. 

no. 0533267, Eppendorf)) and using a reagent reservoir. Wells were sealed using a 
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gas permeable membrane to prevent evaporation (Breathe Easy, cat. no. BEM-1, 

Diversified Biotech, USA).  

 

Small holes were drilled with needles in 2 opposite corners of each lid and bent 

needles (26G x 1”, cat. no. 4657863 and 23G x 1.25”, cat. 4657640, B.Braun, Carl 

Roth, Karlsruhe, Germany) were fixed with silicone for fixation (Aquasil, cat. no. 

6139100V00, JBL GmbH, Neuhofen, Germany) to allow gas perfusion. After cell 

seeding, plates were sealed using Tesa film to ensure optimal gas flow. 

 

3.7 Protein detection on living cells 
Cells were characterized according to marker expression, detected by 

fluorochrome conjugated antibody addition to culture medium. For both 

quantification using epifluorescent microscope imaging and for FACS analysis, 

different combinations of the following antibodies were used, depending on 

experiment: 
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Table 3.7-1: Live in culture antibody quantification 

Antibody Clone Fluorochrome Company Cat. No. 

CD11b 

 

       

CD16/CD32 

 

 

CD41        

CD43        

M1/70  

 

               

2.4G2 

93 

93 

MWReg30 

S7 

FITC 

A488 

PE             

A647 

A700 

PerCP Cy5 

PE 

FITC 

3.8 eBioscienc

e 

eBioscienc

e 

eBioscienc

e    BD 

Pharminge

n 

eBioscienc

e 

Biolegend 

BD Pharmingen 

BD Pharmingen 

11-0112-82 

53-0112-82 

12-0112-83 

553142 

56-0161-82 

45-0161-82 

558040 

561856 

CD48 

CD71 

CD105 

CD117 

HM48-1 

R17217 

MJ7/18 

2B8 

A647 

FITC 

A647 

PE Cy7 

Biolegend 

eBioscience 

eBioscience 

eBioscience 

103404 

111-0711-82 

14-1052-82 

25-1171 

CD150 TC15-12F12.2 PE Biolegend 115904 

CD135 A2-F10 PE eBioscience 12-1351-83 

CD34 

F4/80 

RAM34 

BM8 

E660 

A647 

eBioscience 

eBioscience 
50-0341-82 

16-4801-85 

Gr-1 RB6-8C5 PE eBioscience 12-5931-82 

Ly6A/E  

Ly6G 

Ter119 

D7 

1A8 

TER-119 

A647 

A555 

FITC 

Biolegend 

eBioscience 

eBioscience 

108120 

14-5981-82 

11-5921-81 

Fluorescent antibodies used for live detection of surface marker expression. Abbreviations: 
Fluorescein isothiocynate (FITC), phycoerythrin (PE), peridinin-chlorophyll cyanine 5 
(PerCP Cy5), phycoerythrin cyanine 7 (PE Cy7), eFluor660 (E660), Alexa dye (A). Used at 
final concentration of 25 ng/mL. 
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3.8.1 Antibody labeling  

Antibodies were conjugated according to manufacturer’s protocol. Briefly, 1 

mg of primary antibody was mixed with a succinimidyl ester conjugated fluorescent 

protein, which created a covalent bond at the primary amine group without interfering 

with the functional domains. Antibodies were filtered and aliquoted and stored at 4°C 

at a concentration of 0.2 µg/µL. Labeling kits were obtained from Invitrogen (Alexa 

488, cat. no. A10468, Alexa 555, cat. no. A20187, Alexa 647, cat. no. A20186). 

3.9 Differentiation and proliferation assay 
HSCs were virally transduced at 600 MOI (see 3.3.4) for 48 hours with a 

lentiviral vector containing NA10HD with an IRES-driven nuclear membrane-bound 

VENUS reporter, or a mock-infect control without NA10HD in DMEM containing 

10% FCS, 100 ng/mL SCF, 10 ng/mL IL-6, 6 ng/mL IL-3 and 1% P/S. Cells were 

washed and re-suspended in media and triplicate wells were seeded with each well 

containing 100 cells. Cell numbers were assessed by imaging and cell counts using 

Fiji software for day 1 to 3, and 5 µL aliquots were used for counting in minitrays at 

later days. Cells were maintained as described (see 3.6.3). Expression of CD48 was 

quantified using live antibody staining (see 3.7) and both cell numbers and CD48 

expression were quantified for NA10HD cells, non-transduced cells (~40 percent) in 

NA10HD wells and mock-infected cells. Proliferation and differentiation curves were 

created using MS Excel. 

3.10 Immunohistochemistry 

3.10.1 NA10HD expression 

HSCs were virally transduced in DMEM containing 10% FCS, 100 ng/mL 

SCF, 10 ng/mL IL-6, 6 ng/mL IL-3 and 1% P/S with a lentiviral vector containing 

NA10HD with an IRES-driven nuclear membrane-bound VENUS reporter or a mock-

infect control without NA10HD at MOI 600 (see 3.1-2 and 3.3.4). Cells were washed 

and re-suspended in media. 30 µL of cell suspension was pipetted on a 18-well poly-l-

lysine coated IBIDI microslide (cat. no. 81806, IBIDI, Martinsried, Germany). Cells 

were allowed to set for 30 min in incubator after which media was gently aspirated.  

Cells were fixed with fresh 4% paraformaldehyde for 10 min at RT. Cells 

were carefully washed once with PBS and permeabilised with 0.1% Triton X 100 in 

PBS (cat. no. 3051.3, Carl Roth, Karlsruhe, Germany) for 5 min at RT. After washing 
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3 times with PBS, cells were blocked with 1% bovine serum albumin (BSA, cat. no. 

B4287-5G, Sigma-Aldrich, Steinheim, Germany) in PBS for 1 hour at 37°C. 

Rabbit@FLAG primary antibody (polyclonal, cat. no. F7425, Sigma-Aldrich, 

Steinheim, Germany) was then added at 2 µg/mL, 1% BSA in PBS and incubated 1 

hour at RT. After washing 3 times with PBS, A647@rabbit at 1 µg/mL in 1% BSA in 

PBS was added for 30 min at RT. 2 mg/mL Hoechst33342 in PBS was added for 20 

min at RT and specimen was washed 3 times with PBS before adding mounting 

solution (Aqua-Poly/Mount mounting solution, cat. no. 18606-20, Polysciences, 

USA) and mounting microscope slides (cat. no. J1800AMNZ, Thermo Fisher 

Scientific, Gerhard Menzel, Braunschweig, Germany). Images were obtained using 

confocal microscopy (see 3.9.3) and a 63x objective. 

3.10.2 Pathway activity 

Freshly isolated HSCs were virally transduced overnight with an 

mCHERRYPSLD overexpressing lentiviral vector (see 3.1 and 3.3.4) in media, 

SFEM containing 100 ng/mL SCF, 100 ng/mL TPO and 1% P/S at MOI 600. Cells 

were washed, re-suspended in media and 15 µL cell suspension was inoculated onto a 

cover slip containing silicone micro-wells (cat. no. 9850003, Interchim, France). Cells 

were allowed to set for 2 hours in incubator, after which media was carefully pipetted 

off and cells were fixed using 20 µL 10% formalin solution (cat. no. HT5014-120ML, 

Sigma-Aldrich, Steinheim, Germany) for 10 min at RT. After washing twice with 

PBS, 10 µL PBS was pipetted on each micro-well and cells were imaged using a 10x 

Fluar objective and 1.0x Tv adapter for brightfield and fluorescence using a mcherry 

filter.  

Cells were then permeabilised in 20 µL blocking buffer containing PBS, 1% 

BSA, 0.1% Triton X 100 and 10% donkey serum (cat. no. 017-000-121, Jackson 

ImmunoResearch Laboratories, Inc., USA) for 60 min at RT. Buffer was then 

carefully aspirated and 20 µL of primary antibodies (either rabbit@p-p38(Tyr182) 

(clone D3F9, cat. no. cat. no. 4511S, Cell Signaling) and mouse@p-Src(Tyr416) 

(clone 9A6, cat. no. 05-677, Upstate (Millipore)), or rabbit@p-p44/42 (clone 

D13.14.4E, cat. no. 4370, Cell Signaling) and mouse@p-Akt(Ser473) (clone D9E, 

cat. no. 4060, Cell Signaling)  (4 µg/mL in blocking buffer) were added and incubated 

overnight at 4°C. Cells were washed 3 times for 5 min in PBS 0.1% Triton X 100 

after which 20 µL 1 µg/mL biotin@mouse (cat. no. 200-002-211, Jackson 
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ImmunoResearch, USA) in blocking buffer was added for 1 hour at RT. Cells were 

washed again 3 times for 5 min in PBS 0.1% Triton X 100 and 20 µL 1 µg/mL 

Streptavidin-Alexa700 (cat. no. S-21383, Invitrogen) in blocking buffer was added 

and incubated for 1 hour at RT. After washing 3 times for 5 min, 1 drop (~20 µL) of 

Vectashield hard set mounting medium with DAPI was added and microscope slides 

were added. 

Cells were imaged with a 10x Fluar objective and 1.0x Tv adapter using 

epifluorescent microscopy. Lumencor excitation was used to obtain fluorescent 

images (450nm with DAPI filter for DAPI, 485nm with eGFP filter for p-p38 and p-

p44/42-Alexa488, 585nm with mCHERRYfilter for mCHERRYPSLD, 688nm with 

iRFP filter for p-AKT and p-Src-biotin-Alexa700). Images were processed and 

analysed using Fiji software. 

3.10.3 Confocal imaging 

Confocal microscopy was performed on a Leica SP5 spectral scanning confocal 

microscope with a five photomultiplier tube (PMT) detector array configuration and 

equipped with the following laser lines: 405 blue diode (405nm), Argon (458nm, 

476nm, 488nm, 496nm and 514nm), DPSS 561 (561nm) Helium Neon 1 (HeNe1, 

594nm) and HeNe2 (633nm). Images were acquired at 400Hz in the bidirectional 

mode with phase correction, 512x512 resolution, a pinhole size of 1 Airy unit, using a 

63x glycerol immersion lens giving a 0.863mm optical section thickness) in the xyz 

mode. 

3.11 G1 phase enrichment 

3.11.1 Cell-cycle prevalence optima 

Using pre-incubated HSCs that were virally transduced for 24 hours with a 

mCHERRYPSLD expressing lentiviral vector in SFEM with 100 ng/mL SCF 100 

ng/mL TPO 1% P/S, cell-cycle phases were quantified for multiple generations (see 

3.6.5 and 3.11) and distributions were plotted. The maximum percentage of G1-phase 

cells for generation 1 cells was calculated and used for experiments studying the 

influence of cytokine addition in G1-phase in subsequent generations. 

3.11.2 Cell-cycle inhibitors 

For cell-cycle phase synchronization, different chemical inhibitors were used 

for testing. Multipotent progenitors (LSK CD150- CD34+ CD48+) were sorted and 
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transduced as described in 3.1-2, 3.3.4 and 3.10.1.  During transduction, chemicals 

were added at different concentrations and for different incubation times. For G1-

phase enrichment, hydroxyurea (cat. no. H8627-1G) and L-Mimosine (cat. no. 

M0253-100MG) were used. Nocodazole (cat. no. M1404-2MG), a G2/M-phase 

inhibitor was used as a control together with a control without inhibitors. All 

inhibitors were obtained from Sigma-Aldrich, Steinheim, Germany. Cells were 

washed and plated in fresh medium and imaged (see 3.6.5 and 3.11) to assess cell-

cycle phase, cell-cycle transition and toxicity. As a control, PI staining was used and 

cell-cycle distribution was assessed as described in 3.4.1. 

3.11.3 Hypothermic culture 

Multipotent progenitor cells were sorted and transduced as described in 3.10.2. 

Cells were washed and plated in CO2 saturated fresh medium and plated into a 384-

well plate. Cells were imaged (see 3.6.5 and 3.11) whilst being kept in incubators at 

33°C or 37°C and cell-cycle distribution and transition were compared. 

3.12 Time-lapse imaging 
Imaging was performed on a Zeiss Axio Observer Z1 microscope (Zeiss, 

Munich, Germany) using a 10x FLUAR objective (440135-0000, Zeiss, Germany), 

0.5, 0.63 or 1.0x adapter and an AxioCamHRm camera (1388 x 1040 pixels, Zeiss, 

Germany). X-Y positioning was enabled using a motorized stage (cat. no. 0431478, 

Märzhäuser, Wetzlar-Steindorf, Germany) and a PECON heating system combined 

with a XL incubator (Erbach, Germany) were used to maintain 37°C incubation. CO2 

levels were maintained by either sealing of multi-well plates or culture flasks, both 

containing cells in pre-CO2-saturated medium, or by gas perfusion with 5% CO2 5% 

O2 using self-made incubation lids. Image acquisition was done with Axiovision 4.5 

using acquisition macros developed by the lab. All pictures were stored as PNG files 

with 50% compression. Brightfield images were taken with a focus shift to enhance 

contrast whilst retaining cellular morphology. Fluorescent images were taken using a 

HXP 120 (Zeiss, Germany) light source and a combination of following filter sets: 

 

Table 3.12-1: Detection of fluorescence in time-lapse microscopy 
Protein / 
fluorochrome 

Excitation Band pass Emission Company Cat. no. 

DAPI 387/11 409 447/60 AHF F36-513 
Hoechst33342 436/25 455 480/40 Zeiss 489047-9901-000 
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FITC 470/40 495 525/50 AHF F46-002 
VENUS 500/25 515 535/30 Zeiss 489046-9901-000 
Alexa 555 / PE 550/25 570 605/70 Zeiss 489043-9901-000  
mCHERRY 562/40 593 641/75 AHF F36-508 
APC 620/60 660 700/75 AHF F46-006 
Alexa 647 670/30 700 794/160 AHF F47-670 
 

Data was analyzed using TTT software (Eilken, Nishikawa et al. 2009; Rieger, 

Hoppe et al. 2009) developed by the lab on Fujitsu Celsius workstations with 48 GB 

of RAM, dual-core CPU and Windows 64-bit operating systems. Behavior, cell fate 

and fluorescence of single-cells was manually tracked using contrast enhancement 

and displayed and stored in pedigree format. The first picture taken in the time-lapse 

sequence indicated the time of movie start. Each starting cell at this point was 

considered generation 0 or mother cell and subsequent progeny were considered 

generation 1 (daughter cells), generation 2 (granddaughter cells) and so on. Cell 

lifetime was calculated from the first time point at movie start for generation 0 or 

from the first time point after division until occurrence of cell fate, either apoptosis or 

cell division. 

3.13 Quantification of fluorescent signal 

Fluorescence signals were measured using background correction using 

software developed by the lab, AMTsingle for static snapshots and QTFy for time-

lapse quantification.  

3.14 Statistics  

3.14.1 Data analysis  

Data and features obtained by creation of pedigrees or obtained from 

quantified images was processed with statistics software developed in the lab. Data 

was exported using CSV format and further processed in either Microsoft Excel for 

Mac 2011 (version 14.1.0, Microsoft Corporation) or Graphpad Prism 5. 

3.14.2 Graphical output  

Graphical representation and plots were created using either Graphpad prism 

or Microsoft Excel for Mac 2011. Mathlab was used to display cell-cycle transition 

for multiple trees and data sets. Flowjo was used to display FCS files and data 

obtained by flow cytometry. 
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3.14.3 Statistical tests  

Statistics were performed using Graphpad Prism 5. For data with normal 

distribution student’s t-test or Welsh’ test were applied, depending on sample size and 

using one-tailed hypotheses. For not normally distributed data non-parametric one-

tailed Mann-Whitney-U tests were applied, assuming unequal sample size. 

4 Results 
4.1 PSLD as a live cell-cycle reporter to quantify G1 to S-phase 

transition. 
 

It has long been hypothesized how cells transit through cell-cycle and whether 

cytokines can affect both cell fate and the cell-cycle state or cell-cycle phase durations 

in dividing cells. The current limitations mainly lie within the inability to obtain live 

cell-cycle quantification without losing clonal identity. To this extent, PSLD was 

validated as a live cell-cycle reporter (Figure 4.1-1 and (Hahn, JT et al. 2009). To 

verify whether PSLD allows detection of different cell-cycle phases, the construct 

was virally transduced in NIH-3T3 cells and imaged using continuous time-lapse 

microscopy. In Figure 4.1-1A, the G1-phase specific nuclear localization can be 

clearly visualized (i, vii-viii, xii) and the cyclin-dependent nuclear export into the 

cytoplasm can also be observed (ii-v, iv-x). During M-phase, upon nuclear membrane 

degradation, the PSLD signal also diffuses into this previous enclosure where it can 

be detected until cytokinesis (vi, xi). From these pictures, it can be said that the PSLD 

signal can be detected in distinct subcellular compartments over multiple generations 

in a cell-cycle dependent manner.  
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Figure 4.1-1: PSLD can be used to detect cell-cycle phase transitions 
PSLD allows quantification of cell-cycle phase durations. Example pedigree of a NIH-3T3 cell 
transduced with mCHERRYPSLD. Arabic numbers indicate cell hierarchy, Roman numbers indicate 
stages within cell-cycle. Time-scale in d:hh:mm. Scale bar 20 µm. 

Furthermore, it can be observed that cell lifetime of daughter cells can differ 

due to distinct cell-cycle phase durations (Figure 4.1-1 vii cell 2 and 3). Time-lapse 

example movies are provided in Supplemental Movie 1 and 2.  

Next, characterization was performed to test whether the observed PSLD localization 

correlates with the postulated cell-cycle phase in order to define the cell-cycle 

resolution (Figure 4.1-2A).  
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Figure 4.1-2: PSLD quantification provides a valid tool to detect G1- to S-phase 
transition 
A. Live PSLD scoring correlates with established invasive methods to quantify cell-cycle state. PI 
stained MPPs were gated for single-cells and analyzed for cell-cycle using Watson distribution (10.000 
events). A comparison was drawn with imaging (PI stained or PSLD transduced, 300 cells each) (from 
3 independent experiments). Green lines show G1-phase gate according to histogram distribution. B. 
Cell-cycle phase heterogeneity exists in common used cell lines. Cell-cycle distributions for NIH-3T3 
cells (generation 1,2 and 3) (n=120 cells). Scale bar 15 µm. 

 

For this, a classic method using propidium iodide (PI) labeling and detection 

by flow cytometry was compared with manually scored PSLD signal in multipotent 

blood progenitors (LSK CD150- CD34+ CD48+). To support the strength and 

resolution of microscopy PI labeled cells were also imaged, and quantified signals 
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were compared with signals obtained by flow cytometry. The lack of significant 

differences between all methods demonstrates the correlation between PSLD 

localization and the respective cell-cycle state. Using time-lapse imaging, cell-cycle 

phase durations were quantified over multiple generations (Figure 4.1-2B). Overall, 

NIH-3T3 cell-cycle transitions and durations in in vitro culture are homogeneous, 

although it becomes apparent that some heterogeneity exists, especially for G1-phase 

duration, showing even heterogeneity in common used cell lines.  
 

4.2 Hematopoietic stem and progenitor cells are sorted with high purities 
using established sorting schemes 
 
HSCs were enriched as shown in Figure 4.2-1. Since CD34 has been proposed 

to also be expressed on cycling HSCs, we use CD34lo to increase the prevalence of 

quiescent cells (Becker, Nilsson et al. 1999; Glimm, Oh et al. 2000; Orschell-

Traycoff, Hiatt et al. 2000; Nygren, D et al. 2006; Dooner, Colvin et al. 2008).  

Cells were cultured for 48 hours in SFEM 100 ng/mL SCF 100 ng/mL TPO 

after which they were re-stained to quantify marker expression (Figure 4.2-1B). 

Following FACS analysis, >95% of the cells did not down-regulate Ly6A/E or 

CD117 expression and did not up-regulate progenitor markers CD34 and 

CD16/CD32. According to this data, most cells still reside within a primitive state 

which confirms previous data that show HSCs can be retained after multiple days of 

culture using these culture conditions (Ema, Takano et al. 2000). Following these 

data, this likely allows a pre-incubation necessary for viral transduction without the 

loss of full multi-lineage potential. 
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Figure 4.2-1: Pre-incubation does not affect surface marker expression. 
A. HSPCs are sorted using 8 fluorescent antibodies. Example of sorting regime used to isolate HSCs 
(106 events from forward-/side scatter gate (top left) shown). Gates were drawn according to unstained 
controls (not shown). B. Short-term (48h) pre-incubation does not alter surface marker expression. Re-
analysis of re-stained sorted HSCs cultured in SFEM 100 ng/mL SCF and TPO for 48h (1000 events 
shown). 
 

4.3 HSCs go through cell-cycle in a non-synchronous fashion. 
 

To date, most data concerning cell-cycle transitions in primary cells is 

population-based or is obtained with methods that do not allow quantification in 

living cells and hence do not provide continuous data and cannot provide information 

about cell-cycle phase durations. Especially in the blood field, little is known about 

how HSCs go through cell-cycle over time since these cells are rare and with current 

methods clonal identity is lost. The PSLD reporter used in this work allows following 
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HSC cell-cycle over multiple generations, continuously and with single-cell 

resolution (Figure 4.3-1).  

 

First, HSCs (LSK CD34- CD150+ CD48-) and MPPs (LSK CD34+ CD150- 

CD48-) were isolated and time-lapse imaging was initiated directly after plating, 

approximately 2 hours after sorting. Previous studies have shown that these cells had 

not yet entered cell-cycle and can be considered quiescent (Nygren, D et al. 2006; 

Colvin, Dooner et al. 2007). The in vitro division rates were obtained after tracking 

the first two cell divisions (Figure 4.3-1A) (n=3, 100-120 cells). This data shows that 

HSCs have a late cell-cycle entry and have a longer initial cell-cycle compared with 

multipotent progenitors as described previously (Dykstra, Ramunas et al. 2006; 

Nygren, D et al. 2006; Benveniste, Frelin et al. 2010). At 24 hours, the majority of 

HSCs are still within their first in vitro cell-cycle, since only <5% of HSCs have 

divided. For the next generation, the same effect can be observed. This not only 

shows that HSCs can be distinguished from MPPs by cell division time, but 

furthermore underlines the purity of freshly isolated HSCs, since previous work has 

shown a strong correlation between HSC in vitro cell-cycle and long-term 

repopulation potential in vivo (Benveniste, Frelin et al. 2010).  

 

To further investigate HSC cell-cycle dynamics, HSCs were isolated and 

virally transduced with a mCHERRYPSLD-expressing vector (Figure 4.3-1B). While 

lentiviral transduction can occur instantly, in order to detect the signal in the majority 

of transduced cells in epifluorescent imaging, a minimum pre-incubation time of 24 

hours was required (not shown) in which >95% of the HSCs still reside within their 

first in vitro cell-cycle. Quantification of cell-cycle phase durations showed that 

indeed the majority of the cells were in S/G2 phase at the start of time-lapse imaging 

(Figure 4.3-1C) and cell-cycle transit did not occur in a synchronous fashion (n=3, 75 

cells). The peaks of G1 phase prevalence were found at 24 hours and 44-48 hours, in 

which the latter provided >95% cells that were no longer within their first in vitro 

cell-cycle.  
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Figure 4.3-1: HSCs transit through cell-cycle in a heterogeneous fashion 
A. HSCs show distinct in vitro division rates when compared with multipotent progenitors. Cell-cycle 
division rates (n=3, 100-120 cells). B. Experimental set-up for cell-cycle phase quantification in HSCs. 
C. HSPCs transit through cell-cycle asynchronously. Majority of HSPCs are in S/G2-phase at time of 
movie start, but progeny shows distinct cell-cycle phase durations. Continuous quantification and 
genealogy allows calculation of cell-cycle phase prevalence for different generations (n=3, 75 cells). 
Cells with lost identity were excluded. 
 
 

4.4 Optimized media conditions allow live detection of all myeloid 
lineages. 
 

To test which cytokine conditions allow lineage production without increasing 

apoptotic events, HSCs were freshly isolated, transduced with mCHERRYPSLD for 

24 hours and kept in culture under different cytokine conditions for a total of 14 days 

(Figure 4.4-1). Live antibody staining with anti-FcyR (CD16/CD32) enabled the 

detection of granulocytes and macrophages (Akashi, Traver et al. 2000) and 
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megakaryocytes were detected by morphology, multiple nuclei and the lack of FcyR 

expression (Figure 4.4-1 top and bottom, respectively).  

 

 
Figure 4.4-1: Lineage commitment can be live detected in culture 
A combination of antibody staining and morphological features detects myeloid progenitors. White 
arrowheads indicate macrophages (top, FcyR positive) and megakaryocytes (bottom, FcyR negative 
and polynucleated) after 14 days of in vitro culture. Scale bar 10 µm. 
 

In order to quantify clonal lineage production, HSCs were isolated and plated 

using limiting dilution with a Poisson statistic of 1:3 wells containing a single cell. 

This was confirmed by time-lapse microscopy during the first 24 hours (Figure 4.4-

2A). Lineage production was then assessed after 14 days by time-lapse imaging and 

quantification of PSLD signals and expression of CD16/CD32. Colonies without 

megakaryocytes and CD16/CD32 expression and wells with no or only apoptotic cells 

present, were counted as “none” and “apoptotic”, respectively. From 6 different 

media conditions, “permissive” conditions (Takano, Ema et al. 2004) (Figure 4.4-2B, 

far right) were least selective since multilineage production was observed and 

apoptotic events were low, the latter probably due to the addition of serum (n=4, 1340 

cells). Furthermore, the prevalence of colonies with no mature lineages was equally 

low, indicating a faster cytokine-induced lineage production. 
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Figure 4.4-2: Optimized media conditions allow live detection of all myeloid lineages 
A. Single-cell plating reliability using limiting dilutions (n=4, 1340 cells). B. Permissive conditions 
provide highest non-restricted lineage production and survival. HSC lineage production after 14 days 
culture (n=4, 1340 cells). Permissive conditions are marked with an asterisk. 
 
 

4.5 Live CD71 antibody staining can be used to detect erythroid 
production. 
 

Detection of myeloid lineages in situ in liquid cultures through automated 

high-throughput imaging greatly facilitates end-point analysis and eliminates the 

necessity of cumbersome techniques as semi-solid media-based colony assays or 

analysis using flow cytometry. The challenge however lies in finding appropriate 

markers that can simultaneously be detected using fluorescence imaging. For the 

purpose of this work, different fluorescent antibodies were combined with 

morphological characteristics and polynucleated structures. As described in Figure 

4.4-1, megakaryocytes and macrophages can be identified using an antibody against 

CD16/CD32 and features such as multiple nuclei and adherence. To further detect the 

existence of erythrocytes and erythroid progenitors, anti-CD71, a transferrin receptor 

highly expressed on erythroid cells, as previously reported (Fang, Menon et al. 2007; 
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Pronk, Rossi et al. 2007; Eilken, Nishikawa et al. 2009), was tested (Figure 4.5-1A). 

 

 
Figure 4.5-1: Live CD71 antibody staining specifically detects erythroid lineages 
A. CD71 expression only detects erythroid lineages and co-stain with CD105. Lin- CD117+ Ly6A/E- 
CD16/CD32+ CD34+ (GMP, top) and Lin- CD117+ Ly6A/E- CD16/CD32- CD34- (MEP, bottom) were 
freshly isolated and cultured for 7 days in SFEM containing 10 ng/mL M-CSF (top) or SFEM 
permissive medium including 2 U/mL EPO (bottom). B. CD71 quantification shows exclusive 
expression on erythroid cells. Data from day 7 imaging (n=3, 150 cells). *** p-value<0.001. Scale bar 
15 µm. 
 

To validate CD71 staining, granulocyte-macrophage progenitors (GMP) and 

megakaryocyte-erythrocyte progenitors (MEP) were sorted and cultured under 

instructive conditions for macrophages (SFEM + 10 ng/mL M-CSF) and permissive 

conditions (+ 2 U/mL EPO), respectively. As live antibodies, F4/80 (Alexa-555 

conjugated) was used to confirm a macrophage phenotype and CD105 (endoglin, PE 

conjugated) was used to detect early erythroid progenitors, as previously described 

(Buhring, Muller et al. 1991). In both cultures CD71 (FITC) was added for validation. 

All macrophages were adherent and expressed F4/80, whereas erythroid progenitors 

were non-adherent and expressed CD105 (Figure 4.5-1A). Furthermore, only 

erythroid progenitors expressed detectable levels of CD71 (Figure 4.5-1A and B), 
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thereby validating the use of CD71 antibody to detect erythroid lineages, as 

previously described (Zhang, Socolovsky et al. 2003; Pronk, Rossi et al. 2007). 

Combining these antibodies with morphological and polynuclear features, all myeloid 

lineages can be detected to further measure clonal full myeloid lineage production. 

 
 

4.6 Cytokines induce cell-cycle specific lineage production. 
 

Much of previous work concerning the influence of cell-cycle in cytokine-

induced lineage production has been done either on a population level or based on 

cell-cycle distributions, losing clonal identity. To identify whether some of these 

hypotheses and correlations also exist on a single-cell level, single-cells expressing a 

cell-cycle reporter were imaged and followed using continuous time-lapse imaging 

(Figure 4.6.1). Single HSCs were re-sorted after 24 hour -lentiviral transduction to 

allow cell-cycle reporter expression in cytokine supplemented medium and time-lapse 

imaging was initiated immediately (Figure 4.6-1A, left). End-point analysis after 14 

days using live antibody staining revealed the clonal lineage production and was then 

correlated with the initial cell-cycle phase at the time of cytokine addition and movie 

start (Figure 4.6-1A, right).  

 

Control cells not receiving cytokine supplements (SCF, TPO only) did not 

survive over the course of the experiment (not shown). However, since these cells 

retained viability until at least 7 days of culture, cytokine addition to these cells was 

performed at day 7 in order to identify lineage potential and production. At this time-

point, it was assumed that the majority of these cells were no longer primitive HSCs 

and lineage priming or maturation had already occurred. From this data, it can be 

observed that none of the control cells produced all myeloid lineages, i.e. 

granulocytes (G), erythrocytes (e), macrophages (m) and megakaryocytes (M) 

(GemM) (Figure 4.6-1A, right, n=3). In contrast, HSCs that were cultured under 

permissive conditions (Permissive) did produce GemM lineage. Although the 

production of specific lineages was not exclusive for either initial cell-cycle phase, 

G1-phase cells produced significantly more GemM lineage than S/G2-phase cells 

(n=6).  
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Figure 4.6-1: Clonal GemM production is enhanced in G1-phase cells 
A. Experimental set-up and clonal lineage production showing an increased production of all myeloid 
lineages during G1-phase and exclusively under permissive conditions. Phases indicate initial starting 
phase in generation 0. AB. G=granulocytes, m=macrophages, M=megakaryocytes, e=erythrocytes. 
SCF TPO (n=3), Permissive (n=6). B. Correction for initial cell-cycle prevalence shows distinct 
lineage production that is cell-cycle dependent. ABC. * p-value<0.05, ** p-value<0.01, *** p-
value<0.001). Blue bars and asterisks indicate total levels, black and white asterisks show cell-cycle 
specific significance. C. Permissive cytokine conditions induce survival in generation 1 cells that is 
independent of initial cell-cycle phase upon cytokine administration (generation 0). 
 

To correct for the higher starting cell number being in S/G2-phase at the time 

of cytokine addition (see also Figure 4.3-1C), initial cell-cycle phase prevalence was 

compared per lineage (Figure 4.6-1B). This correction then revealed that single-cells 

producing lineages restricted to one cell type, i.e. granulocytes (G) or megakaryocytes 

(M), were more prevalent in starting cells that were in S/G2 phase at the moment of 

cytokine addition (n=6). This is in line with previous work claiming megakaryocytes 

are more likely to arise from early S-phase cells upon cytokine change (Colvin, 

Dooner et al. 2007). My results however demonstrate this occurs at a single-cell 

resolution rather than on a population level.  

 

To investigate whether a negative selection might occur, i.e. cells that would 

have produced other lineages would not survive, apoptosis rates during pre-incubation 
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or within early generations were assessed and correlated with initial cell-cycle phase 

upon cytokine addition and start of time-lapse imaging (Figure 4.6-1C). For both 

control cells and cells in permissive conditions, initial apoptosis rates were low (2-

5%) and can be explained by the potential toxicity of viral transduction and the stress 

of double-sorting within 24 hours. G1-phase cells under permissive conditions showed 

more sensitivity to medium change and had an increase in apoptosis levels, albeit with 

very low total levels. For generation 1 cells however, controls had a significantly 

higher apoptosis rate than cells cultured in permissive conditions. Thus, addition of 

permissive cytokines and serum rescues cells that would have otherwise undergone 

apoptosis. However, no effect could be observed with respect to initial cell-cycle 

phase. The very low apoptosis rate in subsequent generations under permissive 

conditions therefore does not affect selectivity with respect to lineage production, i.e. 

the higher prevalence of GemM lineage production from G1-phase starting cells is not 

caused by selective apoptosis. 
 
 

4.7 Increased multilineage production from G1 phase cells is reversible. 
 

The observed effect of increased GemM production from G1-phase cells poses 

the question whether subsequent generations are also more susceptible to produce 

GemM lineage when receiving permissive cytokines during G1-phase. To test this, 

HSCs were pre-incubated for 44 hours, a time-point at which >95% of cells are no 

longer in generation 0 but, instead, in generation 1. Furthermore, at this time-point a 

maximum was found for G1-phase prevalence, reaching ~50% of generation 1 cells 

(see Figure 4.3-1C). Following the same experimental set-up (Figure 4.6-1A), lineage 

production was again correlated with the cell-cycle phase upon cytokine addition and 

start of time-lapse imaging (Figure 4.7-1A, left). The data shows again that G1-phase 

cells are producing more GemM lineage compared with S/G2-phase cells. In addition, 

the amount of Gm lineage producing cells is increased for both cell-cycle phases 

when compared with permissive cytokine addition at 24 hours. This is consistent with 

the fact that control cells that receive permissive cytokine addition after 7 days 

produce higher numbers of clonal Gm lineage production, suggesting lineage-bias to 

occur early (generation 1). 
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Having lost the ontogeny and behavior of these cells during the prolonged 

incubation time, another approach was performed to ensure the observed effect can be 

attributed to generation 1 cells in culture. For this purpose, HSCs were again pre-

incubated in SFEM 100 ng/mL SCF 100 ng/mL TPO for 24 hours and re-suspended 

in fresh control medium without permissive cytokines. Single-cells were cultured and 

imaged during the next 20 hours after which permissive cytokines were added. By 

doing so, the effect of generation 0 and generation 2 cells on lineage production could 

be fully excluded (Figure 4.1.7A, right). This data again shows a higher prevalence in 

G1-phase cells to produce GemM lineage. Although not significantly different to 

either permissive cytokine addition at 24 or 44 hours, the lower tendency could be 

explained by repeated washing steps that could interrupt SCF and TPO signaling. 

However, equally apparent is the loss of restricted megakaryocyte production, again 

more pronounced in S/G2-phase cells.  

 

 
Figure 4.7-1: G1-phase susceptibility to produce GemM is reversible in later generations 
A. Enhanced clonal GemM production from G1-phase cells re-occurs in daughter cells. At 44h 
preincubation (left, n=4) >95% of cells have divided. Addition to 100% generation 1 cells through 
imaging during preincubation (right, n=3) shows reproducibility. AC. G=granulocytes, 
m=macrophages, M=megakaryocytes, e=erythrocytes. B. Prolonged preincubation increases apoptosis 
rates in generation 1 cells but is not dependent on initial cell-cycle state. Phases indicate initial starting 
phase in generation 0. * p-value<0.05, ** p-value<0.01, *** p-value<0.001). Blue bars and asterisks 
indicate total levels, black and white asterisks show cell-cycle specific significance. C. Correction for 
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initial cell-cycle prevalence shows higher prevalence of GemM producing cells in G1-phase to be 
consistent in daughter cells (44h preincubation). 
 

In accordance with cytokine addition at 24 hours, G1-phase cells are more prone 

for apoptosis when receiving permissive cytokines in generation 0 (Figure 4.7-1B). 

Total apoptosis rate, however, does not differ between incubation times. Yet, with 

increasing incubation time in control medium, generation 1 cells die significantly 

more even when receiving permissive cytokines. This increased apoptosis does not 

point towards a cell-cycle selective effect since when comparing starting cell-cycle 

states, no difference in prevalence is detectable (~50%). The observed rescue effect in 

generation 1 after 24 hours of pre-incubation is therefore not equally applicable for 

prolonged pre-incubation, although total apoptosis rates in generation 1 are still 

significantly less when compared with control conditions (Figure 4.6-1C). 

 

The higher number of S/G2-phase cells makes it difficult to compare absolute 

numbers of lineage producing cells for different cell-cycle phases. When correcting 

for this by looking at cell-cycle phase distribution per lineage, the increased 

production of GemM lineage from G1-phase cells becomes highly significant (Figure 

4.7-1C). In contrast, the increased susceptibility of S/G2-phase cells to produce either 

granulocytes or megakaryocytes is no longer present. Although the same tendency 

can be observed, the loss of significance is mainly caused by the high variation. GmM 

lineage production however is mainly derived from S/G2-phase cells, which could not 

be detected at 24 hours and is in strong contrast to GemM producing cells that in 

addition produce erythrocytes. These data are conflicting with previous findings that 

imply a continuous model for HSC susceptibility to induce lineage maturation by 

indicating that HSCs in culture may have a rather altered or restricted potency with 

increasing incubation time. 

 

4.8 Live cell-cycle quantification reveals lineage-specific cell-cycle 
behavior 
 

The strength of time-lapse microscopy lies in the fact that cell-cycle phases can 

not only be scored but also quantified continuously over time. With initial data 

suggesting differences in lineage production depending on during which initial cell-

cycle phase permissive cytokines were added, the next question was whether a direct 
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effect on cell-cycle progression could be observed (Figure 4.8-1). For this purpose, 

cell-cycle phase durations of generation 1 cells were quantified and correlated with 

their ultimate lineage production, assessed by end-point analysis (see also 4.6-1A, 

left). Generation 0 cells were excluded at first, since they were not synchronized at 

the time of movie start. It followed that generation 1 cells ultimately producing 

GemM lineage had a significantly longer G1-phase (Figure 4.8-1A, left). The lack of a 

significant difference between granulocyte colonies is due to the very low n-number 

for this population (see also Figure 4.6-1A, right). Not shown here is the fact that 

megakaryocyte restricted producing cells have a significantly shorter G1-phase (p-

value<0.01). Now when adding up total G1-phase durations of mother (generation 0) 

and daughter (generation 1) cells, it becomes apparent that the total time-window in 

which cytokines can act during G1-phase is more than 2 fold higher (Figure 4.8-1A, 

right) (data from three independent experiments). Since none of the control cells in 

SCF TPO produce GemM lineage after 14 days of culture, a direct comparison cannot 

be made. However, when comparing G1-phase durations from dividing GemM 

producing cells with all dividing SCF TPO cells, none of the control cells reach the 

median G1-phase duration of GemM producing cells, pointing to an induced effect. 

 

Testing whether the same observation could be made using longer pre-

incubation times, the same analysis was performed on dividing cells that had been 

pre-incubated for 44 hours (Figure 4.8-1B). For these cells, the GemM specific longer 

G1-phase during generation 1 was no longer apparent, except when comparing with 

granulocytes and/or macrophages (Figure 4.8-1B, left). When comparing medians for 

all lineages, an overall shorter G1-phase duration can be observed when compared 

with 24 hour pre-incubation, in line with the general observation that HSCs in in vitro 

culture gradually attain a shorter cell-cycle. For this reason, it is likely that G1-phase 

durations decrease in subsequent generations and indeed, that differences in later 

generations are no longer detectable. In contrast, when looking at the total time-

window in which cytokines act during G1-phase, i.e. when combining mother 

(generation 0) and daughter (generation 1) G1-phase durations, a significant longer 

G1-phase is again apparent for GemM lineage producing cells (Figure 4.8-1B, right). 

This indicates the higher prevalence of cells with longer G1-phases in generation 0. 

Taken together, these data show that the observed longer G1-phase durations for 

GemM lineage producing cells reoccurs and is reversible in subsequent generations. 
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When looking at S/G2-phase durations (Figure 4.8-1C), no differences can be 

observed for either pre-incubation time although granulocyte restricted lineages have 

a much shorter S/G2 phase (p-value<0.001). Considering S-phase to be relatively 

constant, this would imply G2-phases for all lineages to be similarly long except for 

granulocytes, which would have a shorter G2-phase duration. This shows G1-phase is 

contributing to a general longer cell-cycle division time for GemM producing cells. 

 

 
Figure 4.8-1: Clonal GemM production correlates with long G1-phase durations 
A-D. G=granulocytes, m=macrophages, M=megakaryocytes, e=erythrocytes, control (SCF TPO only). 
A. GemM producing cells have a longer G1-phase duration than cells with restricted lineage 
production. 24 hour pre-incubation (n=3) outcome of dividing generation 1 cells (left) and cumulative 
dividing generations (0+1, right). B. This is reproducible in daughter cells, although to a lower extent. 
44 hour pre-incubation (n=4) outcome of dividing generation 1 cells (left) and cumulative dividing 
generations (0+1, right). C. S/G2-phase durations for dividing generation 1 cells are not different. 24h 
(top) or 44h (bottom) pre-incubation. D. Kinship comparison of generation total cell lifetime shows 
increased synchronicity for megakaryocytes and asymmetry in granulocyte producing cells. Ratio cell 
lifetime daughter 1 (longer):daughter 2 (shorter) with 24 hour pre-incubation (n=6). * p-value<0.05, ** 
p-value<0.01, *** p-value<0.001). Blue bars indicate median value. 
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The use of time-lapse imaging not only allows one to track behavior and 

ontogeny but also allows a direct comparison of sister cells. To this purpose, cell 

lifetimes were directly compared between sister cells and the ratio was calculated 

(Figure 4.8-1D, data from 6 independent experiments). Although no clear pattern 

could be observed for cells producing GemM lineage, granulocyte producing cells 

have more asymmetry when compared with other lineages (p-value<0.01). In contrast, 

cells that are restricted towards the megakaryocyte lineage have an increased 

symmetry, i.e. dividing daughter cells have a similar cell lifetime. The reason for this 

is not yet clear and may require in-depth analysis of later generations, including live 

quantification of marker onset. 

 

4.9 GM-CSF alters cell fate in a cell-cycle dependent manner. 
 

Previous publications using population-based data have shown the capability 

of GM-CSF to induce megakaryocyte maturation within the first in vitro cell-cycle of 

HSCs (Robinson, McGrath et al. 1987; Colvin, Dooner et al. 2007). While in these 

studies total numbers in end-point analysis were indeed increased and correlated with 

pre-incubation time, it cannot be ruled out that G1-phase cells, also present at the time 

of cytokine change, were equally susceptible. Furthermore, a selective effect may 

have occurred, inducing apoptosis or reducing proliferation of other lineages. To 

address this question in more detail, the same experimental set-up was chosen as 

above (see Figure 4.6-1A, left) allowing direct cell-cycle assessment and correlation 

with end-point lineage production (Figure 4.9-1). Cells were either cultured using 

permissive culture media or with further addition of GM-CSF. This method was 

thought to be least selective, since overall apoptosis rates were low under permissive 

conditions and all lineages could be produced.  

 

After 24 hours of pre-incubation (data from 4 independent experiments), GM-

CSF induced higher apoptosis that was specific for G1-phase cells (Figure 4.9-1A, 

left). Although a similar trend could be observed for generation 1 cells, there was no 

significant difference between starting cell-cycle phases. After 44 hours of pre-

incubation (data from 3 independent experiments), no difference between control 

conditions and GM-CSF addition could be detected indicating that HSCs in early 
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generations are most sensitive to GM-CSF induced apoptosis during G1-phase (Figure 

4.9-1A, right). 

 

When looking at clonal lineage production, no cell-cycle specific effect of 

GM-CSF after 24 hours pre-incubation could be observed (Figure 4.9-1B, left), 

although total GemM lineage production was reduced. After 44 hours of pre-

incubation however, GemM lineage production was almost exclusively observed from 

G1-phase cells (Figure 4.9-1B, right). Furthermore, megakaryocyte production was 

significantly increased for S/G2-phase cells (p-value<0.05), which follows previously 

published data (Colvin, Dooner et al. 2007) and is also observed after 24 hours of pre-

incubation under control permissive conditions (Figure 4.6-1B). Although a direct 

comparison with published data cannot be drawn due to the presence of different 

cytokines that could bind competitively or could have either a synergistic or 

antagonistic effect, these data for the first time show the effect of GM-CSF on 

different cell-cycle phases on a single-cell resolution. 
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Figure 4.9-1: GM-CSF addition reduces GemM production and increases apoptosis 
A. GM-CSF addition increases apoptosis in generation 0 G1-phase cells. Cell-cycle phases indicate 
cell-cycle state in starting cells (generation 0) at the time of movie start and medium addition (24h n=4, 
44h n=3). B. GM-CSF reduces GemM production not cell-cycle specifically. G=granulocytes, 
m=macrophages, M=megakaryocytes, e=erythrocytes. C. Switching to GM-CSF increases apoptosis 
S/G2-phase specifically. Correlation of apoptosis in generation 1 cells with cell-cycle phase of 
generation 0 at time of cytokine addition. * p-value<0.05. Blue bars and asterisks indicate total levels, 
black asterisks show cell-cycle specific significance. 
 

To further verify whether a selective or apoptosis-inducing effect may exist 

upon GM-CSF addition, published methods (Colvin, Dooner et al. 2007; 

Quesenberry, Dooner et al. 2010) were adopted to the current single-cell resolution 
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time-lapse set-up (Figure 4.9-1C, left). Following 24 hours of pre-incubation in a 

basal control permissive medium containing both Flt-3 and thrombopoietin, cells were 

washed and re-suspended in medium with G-CSF and GM-CSF or in control 

permissive medium. Following time-lapse imaging (data from 3 independent 

experiments), a 3-4 fold increase in apoptosis could be observed in generation 1 cells 

when changing conditions to G-/GM-CSF, the majority having been in S/G2-phase in 

generation 0 at the time of medium change (Figure 4.9-1C, right). This could also 

imply that these cells had not yet seen these cytokines in G1-phase and apoptosis 

therefore was observed within G1-phase of the next generation. This assumption is 

supported by the fact that under permissive conditions, no cell-cycle specific effect on 

apoptosis can be detected (Figure 4.9-1A). 

 

4.10 HSC G1-phase enrichment can be obtained with hydroxyurea. 
 

The increased potency of G1-phase cells to produce GemM lineage under 

permissive conditions, led to the question whether this could be further enhanced by 

selective enrichment for G1-phase cells. Two different methods were used to increase 

prevalence of G1-phase cells (Figure 4.10-1). Using hypothermic culture at 33°C as 

previously established in progenitor cells (Enninga, Groenendijk et al. 1984; Mivechi 

and LI 1990), mCHERRYPSLD expressing MPPs (Lin- Ly6A/E+ CD117+ CD150- 

CD48+ CD34+ cells) were incubated and imaged using time-lapse microscopy. Due to 

cooling down and potential adaptation, cell-cycle was scored after 24 hours. This time 

period also coincides with the 24 hour time period required for viral transduction in 

HSCs. At this time point, no increase in G1-phase prevalence could be detected 

(Figure 4.10-1A, left) (data from 3 independent experiments). When looking at cell-

cycle transitions in generation 1, an increase in G1-phase could be detected (Figure 

4.10-1A, right). However, an even stronger elongation of S/G2-phase was observed 

(data from 3 independent experiments, 75 trees). The lack of G1-phase enrichment on 

the one hand and the unknown effect of increased daughter cell G1-phase and S/G2-

phase on cell fate or lineage production suggests this method is not suitable to test our 

hypothesis. 

 

Chemicals that inhibit cell-cycle progression at specific stages are well 

established for cell-cycle enrichment. However, although most inhibitors are known 
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to work in cell lines, little is known about their effect and usage in primary blood 

cells. For this purpose, MPPs (Lin- Ly6A/E+ CD117+ CD150- CD48+ CD34+ cells) 

were used and incubated with either hydroxyurea (G1-phase arrest), l-mimosine (G1-

phase arrest) or nocodazole (G2/M-phase arrest) as a negative control. Different 

incubation times and concentrations were tested. As a read-out, propidium iodide 

staining was used to detect cell-cycle distribution (data from 3 independent 

experiments, 10.000 events each) (Figure 4.10-1B, top, see also Figure 4.1-2A).  

 

 
Figure 4.10-1: Hydroxyurea treatment enriches for G1-phase cells 
A. Hypothermic culture does not increase yield of G1-phase cells and affects cell-cycle phase durations. 
Cell-cycle phase durations are depicted for dividing generation 1 cells (n=3). B. Incubation with 
hydroxyurea reduces prevalence of S/G2-phase cells. Cell-cycle distributions according to propidium 
iodide staining and FACS analysis. Percentages shown are standardized to surviving cells in control 
condition. * p-value<0.05, *** p-value<0.001. 
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From this, cell-cycle state was obtained (Figure 4.10-1B, bottom). Higher 

doses of hydroxyurea are strongly toxic, drastically reducing the number of live cells 

(not shown). An optimal G1-phase enrichment for hydroxyurea was found at 24 hours 

using 1 mM, retaining G1-phase cell numbers whilst reducing the presence of S/G2-

phase cells. The method of action for G1-phase enrichment remains unclear from this 

data. It may be that the case that S/G2-phase cells either die more or reside within G1-

phase upon their next cell-cycle, or the prolonged cell-cycle retention of G1-phase 

cells induces toxicity. However, initial experiments were performed in which cell-

cycle inhibitor-induced apoptosis was correlated with cell-cycle phase. No correlation 

or cell-cycle specific effect could be found (not shown). In contrast, l-mimosine had 

no effect on cell-cycle phase enrichment, not even when using high, non-cytotoxic 

concentrations. Nocodazole treatment on the other hand showed increased G2/M-

phase cells at the expense of G1-phase cells. For HSC G1-phase enrichment 24 hour 

pre-incubation with 1 mM hydroxyurea was chosen for further experiments. 

 

4.11 G1-phase enrichment increases multilineage production. 
 

To address the question whether G1-phase enrichment leads to an increase in 

multilineage production, clonal lineage production was again correlated with the cell-

cycle phase of generation 0 at the time of permissive cytokine addition (Figure 4.11-1, 

data from 3 independent experiments). Despite optimized hydroxyurea concentrations 

and incubation times, cytotoxicity still occurs. To verify whether cells in specific cell-

cycle phases are more prone to apoptosis, viability was assessed for both generation 0 

and generation 1 cells (Figure 4.11-1A). Both in generation 0 and generation 1, more 

cells die after being treated for 24 hours with 1mM hydroxyurea and after receiving 

permissive cytokine addition. Again, G1-phase cells are more prone to apoptosis, 

however this is not only the case in generation 0 cells but an inherited effect is also 

observed in generation 1 cells. However, since the majority of the cells were in G1-

phase after hydroxyurea treatment, this may form a bias when considering a 

correlation with apoptosis in generation 1.  
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Figure 4.11-1: G1-phase enrichment increases total GemM production 
A. Hydroxyurea treatment increases apoptosis in G1-phase cells. Cell-cycle phases indicate cell-cycle 
state in starting cells (generation 0) at the time of movie start and medium addition (n=3). B. G1-phase 
enrichment increases total yield of GemM producing cells but does not restrict lineage production. 
G=granulocytes, m=macrophages, M=megakaryocytes, e=erythrocytes. Cytokine addition in 
generation 1 occurred at 20h after movie start, giving a total of 44h. C. Correcting for cell-cycle 
prevalence and apoptosis shows increased yield of GemM producing cells after hydroxyurea treatment. 
D. Hydroxyurea prolongs G1-phase but does not affect daughter cells, G1-phase durations after 24h pre-
incubation. * p-value<0.05, ** p-value<0.01, *** p-value<0.001. Blue bars and asterisks indicate total 
levels, black asterisks show cell-cycle specific significance. 

 

Next, end-point lineage scoring was again correlated with initial cell-cycle 

phase at the time of cytokine addition (Figure 4.11-1B). Although the G1-phase 

enrichment (62% vs. 34% control) did not lead to an increase in the percentage of 

GemM lineage production, correction of the total absolute numbers (429 vs. 68, ~6.3 
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fold more) leads to a 2.2 fold increase of GemM producing cells from G1-phase cells 

after hydroxyurea enrichment even exceeding the ~1.1 fold increase in apoptosis 

(Figure 4.11-1C). As a control, S/G2-phase specific lineage production was not 

affected by hydroxyurea treatment. It may well be that the higher apoptosis in G1-

phase cells partly formed a lineage selection, causing total GemM lineage production 

to be lower. On the other hand, it has been postulated, that hydroxyurea-induced G1-

phase arrest may act too late, i.e. either late G1-phase or early S-phase, to increase 

cytokine-induced differentiation. 

 

For this reason, experiments were conducted where cells were imaged after 24 

hours and cytokines were added at 44 hours, a point at which the prevalence of G1-

phase generation 1 cells is at its peak (see also Figure 4.3-1C and Figure 4.7-1A). 

Using this technique, the effect of cytokine addition in generation 1 could be assessed 

(Figure 4.11-1B, right). By doing so, an increase of GemM lineage production from 

G1-phase cells could again be detected (data from 3 independent experiments). 

Furthermore, this was significantly higher when compared with non-enriched 

permissive control cells. In contrast, GemM lineage production from S/G2-cells was 

completely abolished. Together this points to the effective enrichment of G1-phase 

cells and the reoccurrence of GemM producing cells from G1-phase daughter cells. 

The observed longer G1-phase for GemM lineage producing cells in dividing 

generation 1 cells could not be detected for G1-phase enriched cells (Figure 4.11-1D, 

right), but a total time frame in which cytokines can act is increased by the extension 

of G1-phase in generation 0 (Figure 4.11-1D, left). 

 

4.12 p38 signaling pathway activity is reduced during G1-phase. 
 

To explore the potential signaling pathways involved with G1-phase induced 

lineage commitment, staining was performed for four different signaling pathways 

and tested for correlation with either G1-phase or S/G2-phase (Figure 4.12-1). Here 

imaging was chosen as an alternative to Western blots due to the low abundance of 

HSCs in bone marrow and correct localization was confirmed by confocal imaging 

(Figure 4.12-1A). 
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Correlation with cell-cycle was performed by scoring the amount of positive 

cells per cell-cycle phase for each signaling pathway. Scoring was performed using 

epifluorescence pictures, signals again being corrected for with controls consisting of 

only secondary antibodies. Data from three independent replicates revealed large 

variation and no cell-cycle specific activity (Figure 4.12-1B-C).  

 



! 81!

Figure 4.12-1: Src and p38 signaling pathway activity are reduced during G1-phase 
A. Activated signaling pathways show correct localization. Confocal images of p-p38 and p-Src (top), 
p-Akt and p-p44/p42 (middle) displayed according to secondary control (bottom). B. Background 
correction allowed for quantification of fluorescent staining for signaling pathway activity. C. G1-phase 
cells show reduced signaling pathway activity (ON/OFF) for Src and p38 compared with Akt. PSLD 
cell-cycle marker was imaged after fixation. D. G1-phase signaling intensity is weaker for P-Src P-Akt 
and P-p44. * p-value<0.05, ** p-value<0.01, *** p-value<0.001. Scale bar: A. 1 µm, B. 40 µm. 
 

Akt signaling was observed in either cell-cycle phase in almost every cell. 

Since Akt can be activated by both SCF and TPO signaling and is thought to function 

downstream of phosphoinotiside 3-kinase, which is necessary for cell-cycle 

progression, its signaling pathway activity can also be seen as a positive control. Both 

p38 and Src showed significantly reduced levels during G1-phase when compared 

with activated Akt signaling. For S/G2-phase no such effect could be observed. 

However, signaling pathway intensities were mostly found to be lower during G1-

phase (Figure 4.12-1D). 
 

4.13 NUP98-HOXA10hd represses progenitor marker expression. 
 

Ever since the groundbreaking HSC expansion through NUP89-HOXA10hd 

(NA10hd) overexpression was first published, an outstanding question has been how 

this phenomenon occurs. With recent advances using time-lapse microscopy and 

phenotyping of in vitro cultured NA10hd cells first insights have been acquired yet a 

NA10hd signatory behavior has not yet been observed or defined (Palmqvist, Pineault 

et al. 2007; Even, Bennett et al. 2011; Sekulovic, Gasparetto et al. 2011; Watts, Zhang 

et al. 2011; Sloma, Imren et al. 2013).  

 

To further understand the mechanism that drives multipotent HSCs to expand, 

NA10hd behavior was first defined on a population level (Figure 4.13-1). To ascertain 

correct expression of the NA10hd construct, the linked FLAG-domain at the N-

terminus of NA10hd was stained and imaged using confocal microscopy. With 

acquisition set to unstained controls, NA10hd cells showed nuclear expression, 

whereas mock-infected cells only expressed the nuclear membrane-tagged VENUS 

signal (not shown). Simultaneously SCA-1 was highly expressed in NA10hd cells but 

rapidly down-regulated in mock-infected cells (not shown). 
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With the proposed HSC expansion model (Sekulovic, Imren et al. 2008), 

NA10hd positive cells will expand over ~1000 fold within 6 days of culture, meaning 

a minimum of 10 divisions leading to an average cell division time of ~12-14 hours. 

For this reason, a faster proliferation and thus higher fold expansion was assumed for 

NA10hd cells when compared with mock-infected cells. When looking at early time-

points (day 1-7), total cell numbers are actually lower than mock-infected control 

cells (data from 3 independent experiments). However, in long-term culture, mock-

infected cells are depleted, whereas NA10hd cells retain the potential to proliferate 

(Figure 4.13-1A, left). Underlying reasons for this can vary from increased short-term 

apoptosis to slow-cycling subpopulations, which cannot be assessed when looking on 

a population scale. The strong repression of the progenitor marker CD48 (Figure 

4.13-1A, right) by NA10hd supports the hypothesis that NA10hd cells have not 

attained a fast proliferation rate, characteristic of multipotent progenitor cells that 

undergo lineage maturation (data from 3 independent experiments). However, a 

recent study has shown that NA10hd can introduce a fetal liver HSC phenotype 

instead, which supports the active cell-cycle while retaining multipotency. 

 

 
Figure 4.13-1: NUP98-HOXA10hd represses expression of progenitor surface markers 
A. NA10hd cells show reduced expression of CD48 in bulk population. Average of fold expansion 
standardized to day 1 (100 cells) and percentage of cells expressing CD48 (n=3). * p-value<0.05, ** p-
value<0.01. 
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4.14 NA10hd fetal liver HSC phenotype is exclusively produced by HSCs. 
 

Next, the susceptibility of different hematopoietic stem and progenitor cells to 

attain a NA10hd-induced fetal liver phenotype (Lin- Ly6A/E+ CD43+ CD11bdim) was 

assessed by sorting HSCs (LSK CD150+ CD48- CD34lo), early MPPs (LSK CD150- 

CD48- CD34+) and late MPPs (LSK CD150- CD48+ CD34+), transducing them with 

NA10hd, followed by phenotypical analysis for surface markers 12 days later (Figure 

4.14-1). At first sight, one can immediately see the strong repression of lineage 

marker expression, since ~70% of the NA10hd cells are not positive for these 

markers. This in contrast to mock-infected cells, in which the majority (>90%) lose 

their differentiation potential and express mature lineage markers (Figure 4.14-1A, 

left). This is in line with previous publications that indicate a repression of full 

maturation by NA10hd. It is conceivable that the addition of interleukin-3 and 

interleukin-6 and fetal calf serum quickly leads to loss of stemness and indeed 

acquisition of a mature phenotype, present in control cells. NA10hd cells, however, 

do not seem to be affected when it comes to lineage marker expression. 
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Figure 4.14-1: NA10hd induces a fetal liver HSC phenotype exclusively in HSCs 
A. NA10hd represses expression of surface markers for lineage commitment in HSPCs while inducing 
a fetal liver HSC phenotype only in HSCs. Rectangles and arrows indicate subsequent gating schemes. 
Analysis performed after 12 days (n=3). Fetal liver HSC phenotype is Lin- CD43+ Ly6A/E+ (CD117+) 
Cd11bdim. B. Phenotype of non-transduced cells is affected by NA10hd expressing cells in co-culture 
(n=3). * p-value<0.05, ** p-value<0.01, *** p-value<0.001). 

 

Their fast, apparently symmetric self-renewing proliferation posed the 

question whether these cells attain a fetal liver phenotype, since HSCs are quickly 

expanded within the fetal liver. To confirm transplantation data that indicated the 

presence of such a phenotype on the majority of NA10hd cells that had repopulation 

potential, presence of these cells was again assessed using flow cytometry (Figure 

4.14-1A, right). These NA10hd+ Lineage- Ly6A/E+ CD117+ CD43+ CD11bdim cells 
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were indeed present after 12 days of in vitro culture, whereas none of the control cells 

showed such a phenotype (below 1% error). Furthermore, acquisition of such a 

NA10hd phenotype was exclusive for HSCs, since early MPPs and late MPPs did not 

produce this phenotype (from 3 independent experiments). Although this does not 

imply that these cells cannot form competitive repopulating units in in vivo 

transplantations, the lack of such a phenotype caused further experiments to be 

conducted with HSCs only. 

 

After transduction, about 50% of the HSCs were successfully expressing 

NA10hd, observed through VENUSnucmem co-expression. Although for a more 

efficient workflow higher transduction rates were desirable, this allowed testing 

whether NA10hd cells can have an effect on non-transduced cells. Indeed, when 

looking at repression of lineage maturation, non-transduced showed the same effect 

(Figure 4.14-1B, left). Furthermore, the acquisition of a fetal liver HSC phenotype 

was lower than NA10hd+ cells, yet significantly distinct from control cells (p<0.01), 

in which this phenotype was barely detectable (Figure 4.14-1B, right). Together this 

shows that NA10hd can indeed have cell non-autonomous effect when it comes to 

lineage repression and marker expression. Its implications for repopulation potential 

still require further investigation. The observed NA10hd paracrine effect however is 

more likely to be accredited to secreted molecules than cell-cell contact since these 

cells were cultured in suspension with concentrations not exceeding 106 cells per mL. 

 

4.15 NA10hd retains an inheritable slow cycling cell population. 
 

NA10hd behavior was next compared with mock-infected cells and lifetimes 

for dividing cells over multiple generations were quantified (Figure 4.15-1). The 

gradual reduction of time needed for cell division over multiple generations indeed 

approaches the 12-14 hour cell-cycle, hypothesized to be required for maximal 

expansion (Figure 4.15-1A). However, NA10hd cells retain a population of slow 

cycling cells within generation 1 and 2, dividing significantly slower than mock-

infected cells (p-value<0.05 and <0.001, respectively). 
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Figure 4.15-1: NA10hd cells retain a slow-cycling compartment that is inheritable 
A. NA10hd population contains cells that have a slower cell-cycle in early generations (n=3). B. These 
slow cycling cells are derived from slow cycling ancestors. Dashed line indicates median value for 
NA10hd generation 2 dividing cells. Data points were gated accordingly (“fast” or “slow”, lower or 
higher than medium, respectively). Ratios were then calculated by dividing generation 2 lifetime by 
generation 1 lifetime for dividing cells (n=3). AB. Thick lines indicate median value. C. Expression of 
CD48 is repressed in early generations also at a clonal level. CD48 expression of all cells by live 
antibody detection in time-lapse imaging (n=3). * p-value<0.05, ** p-value<0.01, *** p-value<0.001). 

 

Although these cells also persist in generation 3, the majority of the NA10hd 

cells actually attain a faster cell-cycle when compared with mock-infected control 

cells (p-value<0.05) (from 3 independent experiments).  To verify whether slow 

cycling cells produce slow cycling progeny, lifetimes of generation 2 dividing 
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daughter cells were compared with their generation 1 dividing mothers (Figure 4.15-

1B, left).  These data points were subdivided according to the NA10hd median value 

for generation 2, leading to a “fast” and “slow” cycling compartment.  When now 

comparing their cell lifetime ratios with their generation 1 lifetime, one finds that 

slow dividing NA10hd cells indeed give rise to slow dividing progeny (p-

value<0.05). The same phenomenon is true for fast dividing NA10hd cells that 

produce faster dividing progeny (from 3 independent experiments). This leads to an 

overall gradual dilution of the slow cycling compartment, therefore absent in later 

generations. Mock-infected control cells did not show a significant difference albeit 

the majority of the cells are derived from already fast dividing cells.    

The absence of CD48 expression on NA10hd cells reported by others was also 

confirmed in time-lapse imaging (Figure 4.15-1C). 

 

4.16 Thrombopoietin alters the NA10hd-induced phenotype 
 

Addition of thrombopoietin (TPO) abolishes NA10hd-induced HSC expansion 

(Sekulovic, Gasparetto et al. 2011). To test whether this has an effect on marker 

expression, NA10hd HSCs were cultured with or without TPO addition and were 

analyzed after 12 days of culture (Figure 4.16-1, data from 3 independent 

experiments).  Indeed, the percentage of cells with a fetal liver HSC phenotype was 

greatly reduced after TPO addition (p-value<0.05) (Figure 4.16-1A). However, one 

cannot exclude that TPO addition alters marker expression whilst retaining 

repopulation potential or indeed, cells with repopulation potential adopt a different 

phenotype when cultured with TPO addition.  

 

To explore potential differences in NA10hd behavior, cell lifetimes were again 

compared over multiple generations (Figure 4.16-1B). TPO strongly increases 

lifetime of NA10hd dividing cells (p-value<0.001). This could imply that the 

previously found dividing cellular subsets with longer cell lifetime are cells that are 

no longer or not yet having induced self-renewal divisions. To support this 

hypothesis, further transplantations are required with isolated cells from time-lapse 

imaging. 
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Figure 4.16-1: Thrombopoietin addition reduces fetal liver HSC phenotype in NA10hd 
cells 
A. TPO addition reduces NA10hd fetal liver HSC phenotype. B. NA10hd cell-cycle is altered upon 
TPO addition. Thick lines indicate median value. Cells were imaged after 24h pre-incubation. 
TPO=thrombopoietin, * p-value<0.05, ** p-value<0.01, *** p-value<0.001). 
 

4.17 Stroma interactions increase NA10hd lifetime and motility 
 

The loss of the highly proliferative character of in vitro NA10hd cells upon 

transplantation in vivo as well as the in vivo establishment of mature lineage subsets 

derived from NA10hd cells is of great clinical interest, yet its method of action has 

not yet been unraveled. When HSCs home into their in vivo niche, cell-cell 

interactions are re-established. This interaction has been shown to be crucial for 

maintenance of quiescence and simultaneously controls differentiation. Here, a PA6 

stromal co-culture was established to identify whether NA10hd behavior is distinct 

from mock-infected cells when cell-cell interactions are introduced with stroma 
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capable of short-term stem cell maintenance (Figure 4.17-1, data from 5 independent 

experiments).  

 

 
Figure 4.17-1: NA10hd cells have longer cell lifetimes in PA6 co-culture 
NA10hd cell lifetimes for dividing cells are longer in late generations. n=5, * p-value<0.05, ** p-
value<0.01, *** p-value<0.001. Thick horizontal lines indicate median value. 
 

When comparing generations, initial cell lifetimes (generation 1-3) are highly 

heterogeneous. In later generations (i.e. 4 and 5), it becomes apparent that NA10hd 

have a much longer (~1.5 fold) lifetime when compared with mock-infected control 

cells. To check whether this correlates with cell-cell interactions, determined by 

adherence underneath the stroma, the percentage of adherence per cell lifetime was 

measured (Figure 4.17-2A, left). Large heterogeneity exists in early generations (1-3), 

in which cells are frequently free floating and do not fully reside underneath the 

stroma during their lifetime. Although NA10hd cells have subsets that have less 

stroma residency during generation 3 and 4, the majority of these cells are more than 

90% of their lifetime underneath the stroma. Indeed, for generation 5, in which 

NA10hd cells have a longer cell lifetime, all cells were underneath the stroma for the 

complete duration of their cell-cycle.  
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Figure 4.17-2: NA10hd specific behavior correlates with cell-cell contact 
A. NA10hd adherent cells have longer cell lifetimes than non-adherent and control cells in early 
generations. Cell lifetimes for generation 1-3 were pooled and subsets were created depending on 
percentage of stroma residency. B. NA10hd cells show increased motility and repress CD48 expression 
in co-culture with PA6 stroma. Motility of dividing cells with 100% stroma residency was compared. 
n=5, * p-value<0.05, ** p-value<0.01, *** p-value<0.001. Thick horizontal lines indicate median 
value. 
 

For more in-depth analysis of earlier generations, cells were subdivided 

according to their stroma residency. For this purpose, cells were pooled from 

generation 1-3 and subsets containing >90% of stroma residency were compared with 

subsets containing <90% of stroma residency. By doing so, NA10hd cells with higher 

stroma residency were found to have longer lifetimes, compared both with NA10hd 

cells with less stroma residency and mock-infected control cells, independent of 

stroma residency (Figure 4.17-2A, right). This shows, that the longer lifetime found 

for NA10hd cells is either cell-contact specific and not caused by soluble factors or 

slow dividing NA10hd cells have a better adherence. Together this shows that through 

all generations, NA10hd have a longer lifetime when in direct contact with PA6 cells.  

 

Not only does PA6 co-culture allow quantification of adherent state, other 

attributes such as cell-size, nucleus size and migration can be measured as well. 



! 91!

Perhaps most interesting is the ability to quantify motility, which under liquid culture 

conditions difficult to measure due to high variations, gradient differences and flux of 

cells towards certain areas of culture plates due to tilting, motorized stage movement 

or non-uniform heating. To reduce heterogeneity, cell motility was quantified for cells 

that were underneath the stroma for the full duration of their cell-cycle (Figure 4.17-

2B, left). NA10hd cells in generation 4 and 5 show an almost 2-fold increase in 

motility when compared to mock-infected control cells.  

 

The NA10hd-induced repression of CD48 also occurs in stroma co-culture 

(Figure 4.17-2B, right). Further experiments are required to test whether the 

expression of CD48 on mock-infected control cells correlates with their reduced 

motility and cell lifetime.  
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5 Discussion 
 

5.1 Optimization of a clonal read-out  

 

Despite the tremendous amount of work in the last decades on optimization of 

HSCs purification schemes and defining their phenotypical identity, a uniform 

consensus or methodology has not yet been achieved. In this work, a sorting scheme 

using expression of surface markers was adapted (Kiel, Yilmaz et al. 2005; Raval, 

Kusler et al. 2012) and used for HSC purification. Previous work on HSCs that 

explored the susceptibility of different cell-cycle phases to induce lineage production 

upon cytokine addition has also been performed using purification methods based on 

dye efflux (Goodell, Brose et al. 1996; Matsuzaki, Kinjo et al. 2004). Although dye 

efflux has been proven useful to increase the yield of quiescent cells, the addition of 

CD34 to SLAM markers in order to further distinguish quiescent cells from activated 

cycling cells (Sato, Laver et al. 1999; Tajima, Sato et al. 2000; Ogawa, Tajima et al. 

2001) also results in highly efficient retrieval of quiescent HSC populations. The HSC 

populations used in this work, however, may differ from other published work in 

terms of pre-sorting lineage bias or quiescent state and comparison of results thereof 

need to be interpreted with care. Although single-cell transplantations were not 

performed in the course of this work, preliminary experiments using limiting dilution 

assays in c-kit deficient mice were performed, confirming high HSC purification 

levels of the isolated cells (not shown). Furthermore, the purity and quiescent state of 

these cells was confirmed by the time necessary for the first in vitro cell division and 

comparison with multipotent progenitors, which correlates with the in vivo 

repopulation capacity as previously described (Dykstra, Ramunas et al. 2006; Nygren, 

D et al. 2006; Benveniste, Frelin et al. 2010).  

 

The lack of robust and reliable live cell-cycle markers made continuous cell-

cycle quantification difficult to perform. With the coming of a cell-cycle reporter 

mouse expressing FUCCI, S/G2 phase can be visualized by onset of fluorescence. 

However, the signal was not always detectable and cumbersome post-processing was 

required in order to quantify cell-cycle state. The combination with another 

fluorescent protein knock-in to visualize G1-phase made this process more reliable 
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and workable in in vivo setting, yet still required post-processing and the use of 

another fluorescent protein reduced the potential use of fluorescent antibody 

combinations or demanded even higher optical resolution thereby challenging 

temporal resolution. Furthermore, FUCCI expression was found to be non-ubiquitous 

and indeed time-lapse imaging of isolated in vitro cultivated HSCs showed too low 

expression to conduct any further experiments (not shown). Very recently the authors 

confirmed this observation and developed different mouse lines for this purpose 

(Sakaue-Sawano, Hoshida et al. 2013). To circumvent this problem, PSLD was virally 

transduced into HSCs resulting in a robust expression of a valid cell-cycle reporter. 

During 24 hour pre-incubation, >95% of the cells still reside within their first in vitro 

cell-cycle and although cells may have lost their HSC potential, the majority of the 

cells had not lost their multipotency, due to their cultivation in a previously described 

medium that can maintain HSCs (Ema, Takano et al. 2000). This is in line with other 

purification methods and the late cell-cycle entry found in population-based data 

(Reddy, CY et al. 1997; Colvin, Dooner et al. 2007). With this system, it was possible 

to quantify and show how HSCs transit through different cell-cycle phases over 

multiple generations in a heterogeneous fashion for the first time, while 

simultaneously assessing their in vitro lineage production. Future work, however, 

should profit from new robust methods allowing live continuous cell-cycle 

assessment directly after isolation without applying invasive techniques. 

 

The problem with many published population-based data is the loss of cellular 

genealogy. To be able to identify cell-specific behavior and compare kinship not only 

requires continuous time-lapse imaging on a single-cell resolution, but in order to 

exclude a direct (e.g. cell-cell) or indirect (e.g. secreted molecules) interaction 

potentially influencing cell fate, such an analysis must be performed clonally, e.g. 1 

well containing 1 cell. Of course, one could argue that once cells proliferate, cell 

density increases accordingly, especially in static cultures where cells only reside on 

the bottom surface area. Soluble and secreted molecules produced may then again 

affect the fate of other cells, however since all cells are ultimately derived from one 

starting cell the decision to do so consequently has been made up in the hierarchy. In 

addition, analysis of bulk populations leaves uncertainties about the existing of 

subpopulations that may mask the overall observed effect. As is the case with many in 

vivo studies, bulk culture could furthermore provide compensatory mechanisms, e.g. 
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the large amount of different secreted molecules by various cells may lead to variable, 

even false conclusions. Clonal assays abolish most of these problems. Today such 

clonal assays have been optimized with help of lab-on-a-chip microfluidic culture 

devices that allow continuous observation (Faley, Copland et al. 2009; Wlodkowic, 

Skommer et al. 2009; Lecault, Vaninsberghe et al. 2011) yet the number of off-the-

shelve products is limited.  

 

The problem with many scaled-down bioreactors lies in the fact that upon 

proliferation cell density increases. This not only prevents long-term single-cell 

tracking but may also influence cell fate as known for many primary cell types 

(Baksh, Zandstra et al. 2007; Kirouac, Madlambayan et al. 2009; Lee, Kim et al. 

2013; Vaquette, Ivanovski et al. 2013). For this project a gas-perfusable clonal read-

out was established that provided both high-throughput imaging on single-cell 

resolution and long-term cultivation without reaching confluence. However, in order 

to study cell-cell interactions, culture devices still require improvement. Perfusion 

culture by membrane separation (Lecault, Vaninsberghe et al. 2011; Ratcliffe, Glen et 

al. 2012) ensures continuous availability of fresh media and other than static 

conditions or serial dilutions reduces accumulation of cytokines and medium 

degradation products that may selectively affect cell fate. The rather static conditions 

used in this work therefore could show different results when compared with dynamic 

culture conditions. Such work is required to rule out cell extrinsic factors produced by 

other cells and simultaneously study the effect of self-produced cytokines or 

extracellular matrix proteins to create a local environment.  

 

On the other hand, increasing cell density is another problem, which needs 

further strategic development in order to study the influence of cell-cell interactions in 

suspension culture. The fact that clinical studies focusing on human HSPC expansion 

showed a positive correlation of HSPC expansion with increasing cell density 

(Zandstra, Eaves et al. 1994), shows low density suspension culture and can even 

prove beneficial. The accompanied reduction of oxidative stress may also play a role 

in selective apoptosis or lineage production. Recent developments in protein stamping 

(Rottgermann, Alberola et al. 2014) and microwell structures by soft lithography 

(Chen, Li et al. 2011) could be of interest in studying cell-cell interactions, permitting 

or inducing migration with their effect on maturation and specialization. Combining 
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this with titrated perfusion and cytokine addition would encompass many 

requirements to study both cell intrinsic and extrinsic factors. Such a device has 

recently been developed and not only enables these features but also could be used to 

follow up development of genealogy and perform daughter separation by cell trapping 

(Frank and Tay 2013). Although so far no work on primary cells has been published, 

preliminary results obtained with cell lines show robust methodology and should be 

of interest to study HSC fate and function. 

 

Different media conditions allow for different lineage production and 

maturation. Testing of different media conditions in this work led to different 

outcome in terms of apoptosis, survival and lineage production. Although not the 

main focus in this thesis, these results proved reproducible and could be of future 

interest to study potential selective effects of cytokines. However, to increase 

efficiency in high-throughput screening, reduction of high numbers of apoptotic 

events was desirable. Simultaneously, high apoptosis rates as well as exclusion of 

development of certain lineage subsets could indicate a selective mechanism (Enver, 

Heyworth et al. 1998; Josefsen, Blomhoff et al. 1999; Rieger, Hoppe et al. 2009; 

Mossadegh-Keller, Sarrazin et al. 2013) and the development of pre-biased cells 

would not be read out. To reduce this occurrence and its complexity when it comes to 

cell-cycle specific lineage production, medium supplements were chosen that were 

permissive for the development of all mature lineage subsets and had an overall low 

occurrence of apoptosis. Furthermore, media conditions that resulted in early 

detection of lineage subsets were favored because 1) this drastically reduced workload 

by avoiding media refreshment, which on itself could also affect lineage production 

and 2) an earlier observed effect on differentiation could be better correlated with 

initial cell-cycle phase. For these reasons, media supplements were chosen, based on 

previously published methods that allowed high and early prevalence of all mature 

myeloid lineage subsets (Takano, Ema et al. 2004). Again, comparison of results in 

perfusion culture to ensure optimal medium conditions will need to be performed and 

used concentrations require further titrations to point out efficiency and validity of 

cytokine function. 

  

 Culture conditions without co-culture with stromal cells were chosen to 1) 

relate lineage production to added rather than secreted cytokines and molecules and 2) 
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improve optical quality and ability to follow HSC behavior and cell-cycle durations 

over time. However, the lack of lymphoid maturation poses the question whether 

culture conditions could be further optimized to read-out lineage potential. Addition 

of interleukin-7 would most likely ensure that lymphoid cells could be produced. 

However, lymphoid cells require much longer developing and detection of these cells 

only occurs at later stages, similar to in vivo repopulation kinetics. The strong 

proliferation observed under these media conditions in in vitro culture (104 to 105 

cells after 14 days), points to the necessity of multiple instances of media refreshment 

and usage of large incubation devices. Since the aim was to explore multilineage 

production in relation to cell-cycle, lymphoid reconstitution was omitted from the 

scope of this thesis. Nevertheless, the detection of all myeloid lineage subsets in vitro 

has been correlated with in vivo multilineage (including lymphoid) reconstitution 

potential (Takano, Ema et al. 2004), allowing a bridge to HSC functionality, although 

ultimately transplants would be required to prove this point. 

 

 The data presented in this thesis shows lower clonal multilineage production 

when compared with published data. On one hand, this could be explained by the fact 

that certain media supplements such as insulin or transferrin were not added since this 

reduced the amount of variables that could influence cell fate. On the other hand, in 

this work cells were pre-incubated for 24 hours and cytokines were added then rather 

than immediately after isolation. Although the pre-incubation medium should 

maintain multipotency for the majority of the cells, it could well be that this affected 

lineage potential after further addition of permissive cytokines. Taking into 

consideration however that the majority of the cells at 24 hours no longer reside 

within G1-phase (>70%), cytokine addition may have different effects when compared 

to freshly isolated cells that all pass G1-phase when receiving permissive cytokines. 

Together, this might explain the reduced potential but for the scope of this work this 

effect was less relevant since comparisons were made with control cells not receiving 

permissive cytokine addition. Furthermore, the megakaryocyte producing potential 

was not undermined by pre-incubation. 

 

 The time-point at which end-point lineage production was assessed is derived 

from LTC-IC data, both published (Kerst, Slaper-Cortenbach et al. 1992; Verfaillie 

1992; Smith, Bender et al. 1993; Verfaillie 1993; Henschler, Brugger et al. 1994; 
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Petzer, Hogge et al. 1996) and established in this lab. Considering the in vivo 

longevity of lineage subsets (~5-6 days for neutrophils/granulocytes, 100-120 days for 

erythrocytes, ~60 days for macrophages and 7-10 days for megakaryocytes) this 

however does not mean that in vitro lifespan compare. Optimal detection for all 

lineages including erythrocytes was found between day 12 and 14 for freshly isolated 

HSCs. Including pre-incubation time of 24 hours, cells were therefore analyzed 13 

days after permissive cytokine addition, i.e. 14 days after isolation. This work offers a 

comparison after 14 days of culture. It must be said that earlier lineage commitment, 

maturation and even apoptosis of different lineage subsets cannot be excluded, as well 

as lineage production after this time-point. Ideally, multiple time-points or continuous 

time-lapse imaging would provide such more in-depth information about proliferation 

kinetics and dynamics of lineage production. This would also shed light on lineage 

potency at different stages in genealogy, yet the exact point of lineage decision was 

beyond the scope of this thesis. 

 

5.2 Cell-cycle and its role in lineage production 
 

The quest of inducing specific lineage subsets has been an equal struggle as the 

quest to understand how it occurs. Indeed, with in-depth knowledge about the 

mechanism, lineage decision can be orchestrated with higher efficiency. For a long 

time it has been hypothesized and assumed that cytokines can induce different cell 

fates, depending on the cell-cycle phase they act on. Moreover, it has been postulated 

that certain cytokines might only function within certain cell-cycle phases. This thesis 

provides evidence that such relations indeed exist and simultaneously provides a 

robust method for future research that allows direct quantitation of cytokine-specific 

and cell-cycle phase-specific effects. 

 

Many cells that undergo differentiation reside within G1 phase, based upon their 

DNA content. Furthermore, forced cell-cycle inhibition through ectopic expression of 

CKI, was found to not only lead to up-regulation of differentiation markers but also 

induce differentiation into muscle cells (Shih, Tevosian et al. 1998), shown to 

enhance nerve growth (Erhardt and Pittman 1998) and was shown to be essential for 

erythroid differentiation (Tamir 2000). In these studies, however, cells were already 
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within a mature, less potent stage and thereby could not show that cytokine induced 

lineage production was related to cell-cycle phase earlier in genealogy and hierarchy. 

To be able to link lineage production to cell-cycle, clonal identity needs to be 

preserved and visualization of cell-cycle is required. This is challenging in many 

vertebrate systems, in which in vivo imaging resolution is limited and the number of 

possible serial time-points is often restricted. Recently, the successful FUCCI-based 

mouse model has been translated to zebrafish, which due to its optical clarity may 

facilitate continuous cell-cycle quantification in vivo (Sugiyama, Sakaue-Sawano et 

al. 2009). 

 

Studies on astrocyte function, proliferation and function have revealed that 

niche-specific interaction and location during cell-cycle are essential for future cell 

fate in terms of differentiation (Pilz, Shitamukai et al. 2013). In addition, cell-cycle 

specific up-regulation of different genes were found to be correlating with and 

directing differentiation (Robel, Bardehle et al. 2011; Bardehle, Kruger et al. 2013). 

Yet the in vivo abundance of extracellular signaling pathways often form 

compensatory mechanisms that make it hard to relate cytokine function and cell-cycle 

to cell fate. For most of these cell types, controlled cultivation in an in vitro setting is 

difficult and results are often skeptically interpreted as artifacts. Since the majority of 

the in vivo hematopoietic system has a non-adherent character, in vitro cultivation has 

been very well established and media supplements such as cytokine concentrations 

have been optimized to ensure optimal culture conditions. Despite studies on gene 

profiling during proliferation in HSPCs (Passegue, Wagers et al. 2005), to date still 

little is known about cytokine function in various cell-cycle phases and how this 

relates to cell fate. 

 

The observation described in this thesis that GemM lineage production is 

mainly derived from G1-phase cells at the time of permissive cytokine addition 

whereas megakaryocytes are mostly produced from S/G2-phase cells is the first direct 

evidence on a clonal basis that cytokines added at different cell-cycle phases can 

induce diverging cell fates. However, this does not occur with 100% penetrance, i.e. 

lineage production is not cell-cycle exclusive. One reason previous work could not 

show the same results on a clonal basis, might be that cell-cycle phases were based on 

population-based distributions and could not be assessed live on a single-cell 
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resolution (Colvin, Dooner et al. 2007). S/G2-phase cells also produce granulocytes, 

macrophages and indeed full GemM lineage albeit to a much lower extent. Hence the 

question arises whether these occurrences are really cytokine and cell-cycle 

dependent or if they are cell-intrinsic features, e.g. cells with a longer G1-phase have a 

higher probability of receiving permissive cytokine addition in G1-phase whilst 

having an increased intrinsic potential to develop full GemM lineage. Quantification 

of G1 phase duration during which the cells received cytokine signaling, an advantage 

of using time-lapse imaging, did not reveal a dependency on G1 phase duration and 

excluded such an effect to be caused by probability. The fact that the same effect can 

be observed when adding cytokines to daughter (generation 1) cells, independent of 

mother (generation 0) cell-cycle durations shows that this is a reversible feature that is 

maintained in progeny, yet does not prove or disprove a cell-intrinsic effect. To 

further explore this possibility, cells were forcefully pushed or retained in G1-phase 

using cell-cycle inhibitors. Although percentages of GemM production from G1-phase 

cells were not increased, strikingly, the absolute number of GemM colonies was 

indeed found higher after G1-phase enrichment, since the number of G1-phase cells 

was increased (~2 fold more) and G1-phase specific apoptosis was found to be only 

slightly higher (~10%). As a negative control, S/G2-phase cells show no effect of G1-

phase enrichment.  

 

The general higher occurrence of apoptosis in cells in G1-phase in generation 0 

could point to a potential selective lineage production, i.e. certain HSC subsets in G1-

phase that could be primed for specific lineages would not survive and hence the 

percentage of GemM lineage production could be an artifact. However, since GemM 

lineage production is actually increased for G1-phase cells, the loss of G1-phase cells 

could simultaneously indicate a loss of GemM lineage production. To circumvent this 

problem and study this theory, experiments should be performed in which apoptosis is 

abolished. Further directions could therefore be pointed towards use of purified HSCs 

from constitutively active bcl-2+/+ mice as a control, in which cells are no longer 

undergoing apoptosis. Furthermore, the stressful isolation steps and re-sorting of 

HSCs after 24 hours do not allow thorough adaptation to change of environment and 

it may be that G0 or G1 phase HSCs are more sensitive to signaling disruption. This 

has been shown in leukemic cell lines (Jedema, Barge et al. 2003) but remains 

inconclusive for primary HSCs. 
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When cytokines were added to daughter cells (generation 1) derived from G1-

phase enriched mother cells (generation 0), GemM production was again increased 

for G1-phase daughter cells. Although the observed effect is even stronger when 

compared with non-enriched control cells, the occurrence of apoptosis in generation 1 

is also increased, which could again point to potential selectivity. This data supports 

the hypothesis that indeed hydroxyurea treatment may push the cells in G1-phase, but 

the actual effect takes place during its next cell-cycle where it passes the G1-phase 

related different retinoblastoma phosphorylation stages. Previous studies have 

postulated that hydroxyurea arrests cell-cycle transition at a later G1-phase stage or 

indeed when early S-phase has already begun (Murciano, Zamora et al. 2002). If this 

is true, it could be that the G1-phase specific restriction point had already been passed, 

resulting in a potential lower frequency of GemM lineage production. After division 

of these cells their daughter cells can receive cytokine addition in G1-phase, which 

may occur at other stages that were no longer accessible due to hydroxyurea 

treatment. This is supported by data showing that protein-DNA interactions are lost 

upon S-phase specific dissociation and are re-established during G1-phase in which 

transcription factors and proteins controlling epigenetic mechanisms are re-associated 

(Blomen and Boonstra 2011). On the other hand, clinical studies that use hydroxyurea 

to induce erythroid differentiation have also shown that subpopulations undergoing 

stress response adaptation are less prone for apoptosis while having a higher potential 

to develop mature erythrocytes (Pourfarzad, von Lindern et al. 2013). GemM lineage 

production would still be more efficient when using hydroxyurea for G1-phase 

enrichment but experiments with use of a constitutively active bcl-2+/+ mouse model, 

which would reduce the hydroxyurea induced apoptosis (Liu, Aiello et al. 2012), are 

required to study a potential selective effect. 

 

G1-phase transition is mainly controlled by the phosphorylation state of 

retinoblastoma in which p18 and to a lower extent p16 are normally involved in 

inhibition of the cyclin D / CDK4-6 activity. First experiments with a p16 double 

knockout model in C57Bl/6 mice yielded no ablation of GemM lineage production, in 

fact no effect on lineage detection could be observed (not shown). This again 

demonstrates that the G1-phase stage in which cytokines are received and act upon in 

order to make lineage decision may not be within early G1-phase in which cell-cycle 

entry takes place. In line with this is the fact that multipotent progenitor cells are also 
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capable of producing GemM lineage, albeit to a lower extent. Since these cells 

generally have a faster cell-cycle, it does not seem farfetched that the time-frame in 

which the cytokines can act is shorter and this causes a lower yield of GemM 

colonies.   

 

An in vitro read-out that could predict lineage production and multipotency 

would facilitate both clinical therapies as well as many other scientific approaches 

such as daughter cell comparison, studying stem cell maintenance and expansion, 

asymmetric cell divisions and gene profiling. Current read-outs such as cobblestone 

formation or colony assays provide end-point information about potency but do not 

allow usage of cells before lineage commitment. To date many models exist; 

however, a prediction model on the HSC level has not yet been succeeded (Glauche, 

Cross et al. 2007; Loose, Swiers et al. 2007; Kirouac, Madlambayan et al. 2009; Marr, 

Strasser et al. 2012; Teles, Pina et al. 2013). Prediction of cell fate through cell-cycle 

phase progression has been successful in pluripotent cell lines that could show a 

correlation of G1-phase elongation with development into neural stem- and progenitor 

cells (Roccio, Schmitter et al. 2013) or G2-phase elongation to be essential for in vivo 

neurulation (Ogura, Sakaue-Sawano et al. 2011). In general differentiation and 

purification of pluripotent stem cells can be achieved by selection and manipulation 

of G1-phase durations (Calder, Roth-Albin et al. 2013; Coronado, Godet et al. 2013; 

Pauklin and Vallier 2013). Although differentiation into specific lineages in the 

hematopoietic system has also been correlated with G1-phase elongation (Furukawa, 

Kikuchi et al. 2000; Hsieh 2000; Tamir 2000; Munoz-Alonso, Ceballos et al. 2012), 

this has never been shown in multipotent cells upstream in the hierarchy. In this study 

not only does initial cell-cycle phase seem to correlate with end-point lineage output, 

continuous time-lapse imaging also revealed lineage-specific cell-cycle phase 

durations and cell division times. Although not providing a prediction model on itself, 

when combining different features, lineage-specific behavior could in the future prove 

to be mutually exclusive. The GemM specific longer G1-phase in daughter cells 

(generation 1) together with the overall symmetric division times for kinship and the 

higher prevalence of G1-phase in their ancestry (generation 0) would with the current 

status already exclude the development of granulocytes which ancestors have an 

overall shorter G1-phase and S/G2-phase while having a higher occurrence of 

asymmetric daughter cell lifetimes. Megakaryocytes on the other hand have highly 
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symmetric daughter cell lifetimes while having significantly shorter G1-phase 

durations and are more prevalent in S/G2 phase during generation 0. With more in-

depth cell-cycle analysis of these characteristics, e.g. with another cell-cycle reporter 

such as PCNA that allows a more qualitative cell-cycle analysis, combined with 

morphological features and with higher temporal resolution, these results provide 

future directions that could ultimately predict lineage commitment in early in vitro 

cell divisions.  

 

The effect of GM-CSF on megakaryocyte development has been contradictory. 

Here, addition of GM-CSF reduced GemM lineage production whilst increasing 

megakaryocyte production from S/G2-phase cells. However, apoptosis was 

significantly increased for G1-phase cells when compared to control cells without 

GM-CSF addition. The fact that changing of media conditions towards GM-CSF 

resulted in much higher apoptosis indicates the beneficial permissive conditions, 

albeit even under these culture conditions selective apoptosis cannot be excluded. 

Furthermore, GM-CSF on itself increased apoptosis in S/G2-phase cells, in contrast to 

addition to permissive conditions. Together this hints towards a potential synergistic 

effect with other cytokines. The mixture of cytokines present in permissive conditions 

could provide stronger competition when considering binding affinity and could 

potentially have a conflicting effect in signaling pathway activation. More work is 

still required to unravel the complex signaling network topology involved. 

 

Following in vivo studies (Asami, Pilz et al. 2011) and work on leukemic cell 

lines (Matsumura, Ishikawa et al. 1997) that correlated cell-cycle specific gene up-

regulation to be essential for differentiation in progeny, signaling pathway activation 

in in vitro cultivated HSCs was quantified. Initial experiments showed cell-cycle 

phase heterogeneity in the activity of four different signaling pathways. PI3K had 

been previously described to be necessary to transit through cell-cycle and indeed was 

found to be active in >90% of the cells. With the prospect of exploring cell-cycle 

specific activity, mCHERRYPSLD expressing cells were fixed and imaged before 

staining with antibodies specific for phosphorylated signaling pathways. This 

experimental setup was not ideal since fixation caused a significant drop in cell-cycle 

reporter levels, which hampered clear detection and quantification. Imaging of cells 

prior to fixation led to loss of cell identity after staining of activated signaling 
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pathways. Although ambiguous cells and cell-cycle states were not counted, future 

work should further improve this method, preferably using live biosensors. Such work 

has already been performed in cell lines and progenitor populations but not in HSCs 

and is further complicated by the need of serum starvation (Haugh, Codazzi et al. 

2000). Live methods would furthermore facilitate correlation with future cell fate. 

Overall, none of the signaling pathways showed cell-cycle phase-specific activity. 

When comparing absolute levels however, both p38 and Src had reduced activity in 

G1-phase when compared with PI3K. p38 is known to be important for 

megakaryocyte development, whereas Src has been implied to be essential for 

macrophage development (Melemed, JW et al. 1997; Whalen, SC et al. 1997; 

Fichelson and Freyssinier JM 1999; Jacquel, Herrant et al. 2006; Bourgin-Hierle, 

Gobert-Gosse et al. 2008; Kaminska, Klimczak-Jajor et al. 2008; Severin, Ghevaert et 

al. 2010). Despite these first hints for correlation with potential lineage commitment, 

no clear pattern could be observed yet.  

 
The capacity to induce more than a 10,000 fold increase in HSC numbers within 

2 weeks of culture without a potential risk of leukemia made NA10hd revolutionary 

in the field of blood stem cell biology. Both the necessary proliferation rate as well as 

the co-localization of NA10hd with p300 led to the hypothesis that NA10hd may have 

an impact on cell-cycle and cell lifetime. To date, little is known about the in vitro 

NA10hd-specific behavior, and even proliferation rates on a clonal level did not shed 

light onto the potential mechanism of NA10hd-induced in vitro HSC expansion. Here, 

evidence is presented for the first time that different subsets within the NA10hd+ 

compartment exist and can be separated according to cell lifetime: cells with longer 

lifetimes are more abundant in NA10hd+ populations compared with mock-infected 

control cells. Furthermore, by comparing progeny with ancestry over multiple 

generations, these features were shown to be inheritable. Simultaneously however, 

NA10hd+ cells with a faster cell-cycle were equally derived from mother cells with a 

faster cell cycle, together pointing to the gradual exhaustion of slow cycling 

NA10hd+ cells. Indeed, after several days, these differences are no longer detectable. 

This shows again the strength of single-cell continuous time-lapse observation and 

that read-out of created pedigree-based data provides much more information when 

compared with bulk population-derived data.  
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Recently, NA10hd has been found to induce a fetal liver HSC phenotype. This 

lineage- Ly6A/E+ CD117+ CD43+ CD11bdim population contained the majority (25-

50%) of in vitro expanded HSCs with in vivo repopulation capacity. Since original 

studies were performed with bulk populations containing ~1% HSCs and recent 

published data has shown a higher number of CRU containing wells than initially 

purified and clonally seeded, the potential of early multipotent progenitor cells to 

induce such a phenotype was assessed in this study. Surprisingly, only HSCs were 

susceptible to acquire such a phenotype. This however does not mean that none of the 

multipotent progenitors were capable of forming in vivo CRUs; it may well be the 

case that they attain a different phenotype. Indeed, not all cells possessing a fetal liver 

phenotype were capable of in vivo repopulation, neither did all HSCs express such a 

phenotype (Sekulovic, Gasparetto et al. 2011). Furthermore, suggested by their data, 

the NA10hd mechanism to induce HSC expansion may even be caused by an induced 

self-renewing and repressed differentiation onset in multipotent progenitors. The fact 

that addition of thrombopoietin drastically reduces such a phenotype whilst 

simultaneously abolishing repopulation potential makes it of future interest to 

compare these populations and quantify their dynamics of marker expression, ideally 

through time-lapse imaging, in order to define their behavior. 

So far, only Sca-1 was observed to be strongly retained on NA10hd+ cells in 

comparison with mock-infected control cells. Nevertheless, expression levels through 

quantification did not show any correlation with NA10hd expression nor with cell 

lifetime of these cells (not shown). 

 

This data is derived from liquid culture in which many cells were not 

effectively transduced with NA10hd. The lineage marker repression and the 

acquisition of a fetal liver phenotype in many of the non-transduced cells points to a 

paracrine effect, either through cell-cell signaling or by secretion of extracellular 

proteins and soluble molecules. This effect has not been previously described, 

possibly due to the different and highly efficient transduction protocols used by other 

labs that reach >95% transduction efficiency. Although this paracrine effect can be of 

interest on itself, one may not exclude the effect of non-transduced cells on NA10hd+ 

cells: HSC expansion may be effectively altered by cells producing mature lineage 

subsets or secreting and expressing different molecules than NA10hd+ cells. Initial 

colony assays after 2 weeks of in vitro culture however showed a high prevalence of 
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blast and GemM lineage producing cells, indicating their immature nature and 

multipotency, respectively (not shown).  

 

To further investigate the influence of environment and cell-cell contact as well 

as to mimic the in vivo niche influence on NA10hd cells, a stromal co-culture was 

established with PA6 cells. These cells are known to be able to maintain stemness in a 

proportion of cells (Kodama, Amagai et al. 1982; Kodama, Nose et al. 1992) and due 

to their optical clarity and contact inhibition, offer a good platform to study NA10hd+ 

cells behavior. Interestingly, NA10hd cells were shown to have a much longer cell 

lifetime for dividing cells in both early and late generations which was dependent on 

their adherent state: cells that were underneath the stroma had a longer cell-cycle 

when compared with cells that had a shorter stromal residency. This indicates that a 

NA10hd+ cell-PA6 interaction rather than secreted molecules causes the extension of 

cell lifetime. Whereas mock-infected control cells contain a subpopulation retaining 

this long lifetime in early generations, these are no longer present in later generations. 

Since PA6 cells can maintain stemness over multiple days, it could well be that this 

property is lost after multiple days of culture. This is supported with the faster onset 

of CD48, an in vitro progenitor marker in mock-infected control cells when compared 

with NA10hd cells. In later generations, however, a proportion of NA10hd+ cells also 

expresses CD48.  

 

PA6 cells express CXCL5 ligand, which functions as a chemoattractant. 

CXCL5 binding is known to repress megakaryocyte development. After 6-7 days of 

PA6 co-culture, mock-infected control cells produce megakaryocytes (Supplemental 

movie 3 and 4). After 7 days of culture, NA10hd cells had not developed any 

megakaryocytes. If their increased motility when underneath PA6 stroma is indeed 

caused by increased binding of the chemoattractant CXCL5, this would support this 

finding and is in line with improved homing of HSCs in vivo (Yoon, Cho et al. 2012). 

Preliminary marker screens performed prior to these observations indicated an 

increased expression of CXCR4, which belongs to the same family of proteins. 

Further experiments to support and test this hypothesis will need to be performed in 

future work as well as transplantations to correlate to HSC functionality. On the same 

line this could imply that these cells favor stroma residency whilst up-regulating 

integrin expression that allows for the higher motility found in NA10hd cells. On the 
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other hand, these cells may in fact seek ways to exit cell-cell contact. This, however, 

is unlikely since all cells gradually favor to be underneath stroma, even when cultured 

in lower stroma co-culture densities. 

 

The two different environments covered by this thesis thus provide two 

different read-outs. Whereas longer cell lifetime for dividing cells in liquid culture 

could indicate a less active NA10hd-induced fetal liver HSC cycling, the longer 

lifetime found when cultured on PA6 stroma could indicate retention of stemness or 

repression of differentiation. Transplantations after clonal PA6 stromal co-culture 

combined with time-lapse imaging could test these hypotheses.  

 

5.3 Scientific contribution 

 
In this thesis, I have provided new discoveries on two different subjects that 

both involve definition of in vitro HSC behavior. Live quantification of cell-cycle 

phase duration in HSCs showed that even highly purified stem cells transit through 

cell-cycle in a highly heterogeneous fashion over multiple generations when receiving 

the same media supplements. Furthermore, the discovery of lineage-choice behavior 

with respect to cell-cycle stage on a single-cell resolution had not yet been achieved 

and here I showed concrete evidence that such a correlation can exist. This could have 

both clinical and scientific implications when HSC expansion without multilineage 

potential loss is required. On one hand HLA competent cells could be more 

specifically directed to increase specific lineages ex vivo or purification could be 

enhanced through selection in short-term culture. This could be of interest for 

potential clinical applications where patients are depleted with certain mature lineage 

subsets or require long-term contribution for all lineages, as is the case with HSC 

transplantations. With future work still required, this would also provide new insight 

in the underlying mechanisms and factors that influence cell fate decisions and could 

be useful for therapies that cope with disruption of these mechanisms in 

hematological diseases. On the other hand, scientific research could benefit from the 

results provided in this thesis, not only because HSC and lineage-specific behavior 

could be determined but also because this assists future predictive models regarding 

lineage potential that, when functional, could reduce workload and necessity of long-
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term in vitro assays. In fact, the robust read-out provided, using continuous cell-cycle 

quantification and clonal multilineage production, can easily be translated to other 

long outstanding questions such as asymmetric cell division, cell type specific 

morphological and behavioral characteristics, HSC maintenance under co-culture or 

cytokine instructed differentiation, allowing a deeper in-sight towards cell-cycle 

dynamics of these cells and provide a stepping stone to fully understand HSC biology.  

 

The results I’ve provided here from the NA10hd project show for the first time 

that different NA10hd+ subsets exist with respect to cell lifetime and that to a certain 

extent these properties are inheritable, yet only become visible when using time-lapse 

imaging that allows following their cellular genealogy and inferring inheritable 

properties and their relation to their ancestry. The improved motility of these cells as 

well as the influence of NA10h cell-PA6 cell interactions furthermore provide new 

insights in NA10hd behavior and forms first steps towards in vivo translation and a 

deeper understanding of the requirements of HSC expansion. 
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7 Supplemental movie legends 
 

 
Supplemental movie 1. Live cell-cycle time-lapse imaging in transduced NIH3T3 cells 
after 48 hour pre-incubation. 10x Fluar objective and 0.63x Tv adapter. 
 
Supplemental movie 2. Live cell-cycle time-lapse imaging in transduced primary 
HSCs after 24 hour pre-incubation. 10x Fluar objective and 0.63x Tv adapter. 
 
Supplemental movie 3. Live cell-cycle time-lapse imaging in transduced primary 
HSCs after 24 hour pre-incubation in PA6 stroma co-culture. Zoomed in to single-cell 
resolution in slow-motion and using fast-forward to indicate colony formation during 
1 week of in vitro culture. Wavelength 1 (middle) shows VENUSnucmem signal and 
Wavelength 2 (right) shows onset and detection of CD48 by antibody staining. 10x 
Fluar objective and 0.63x Tv adapter. 
 
Supplemental movie 4. Live cell-cycle time-lapse imaging in transduced primary 
HSCs after 24 hour pre-incubation in PA6 stroma co-culture. Zoomed in to single-cell 
resolution showing megakaryopoiesis during 1 week of in vitro culture. Wavelength 1 
(middle) shows VENUSnucmem signal and Wavelength 2 (right) shows onset and 
detection of CD48 by antibody staining (negative). 10x Fluar objective and 0.63x Tv 
adapter. 
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