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1. Summary 

 
Living organisms used zeitgebers to synchronize/entrain their biological clocks 

(Pittendrigh, 1993). This synchronization specifies expression of genes and proteins 

to specific times of a day. Disruption of circadian entrainment has been reported to 

increase susceptibility to several diseases including cardiovascular diseases, cancer, 

dementia-associated disorders, metabolic disorders, etc. (Ferrell and Chiang, 2015; 

Musiek, 2015; Stevens et al., 2014), possibly due to disruption of phase specific 

molecular expression patterns.   

 

In the present study, we investigated how temperature, a zeitgeber of the circadian 

clock, impacts a model of poly glutamine aggregation diseases. Clinical studies 

showed that patients with these diseases have a lower amplitude endogenous 

temperature rhythm (Pierangeli et al., 1997). Furthermore, endogenous temperature 

rhythms in healthy mice are sufficient to localize Heat Shock Factor-1 (HSF-1), a 

transcription factor that regulates expression of numerous heat shock genes, in the 

nucleus (Reinke et al., 2008). Heat shock proteins are suppressors of protein 

aggregation. 

 

We hypothesized that temperature entrainment might directly impact protein 

aggregation via heat shock protein expression. To test this hypothesis, a C. elegans 

strain carrying a transgene expression of 35 glutamines (polyQ) was incubated in 

either constant temperature or 24 h temperature cycles. The aggregation of polyQ was 

significantly reduced in temperature cycles compared to constant conditions. We 

further investigated the composition of protein aggregates in the two temperature 

conditions, revealing greater complexity of aggregates formed in temperature cycles. 

We also investigated the expression of a subset of genes encoding heat shock 

proteins. We found that heat shock genes encoding proteins that have chaperone 

function are rhythmically expressed in temperature cycles.  

 

Neurodegenerative pathologies can invoke metabolic stress. Unpublished data 

(Olmedo, Geibel, Merrow) shows that metabolic stress impedes development. We 

investigated the rate of development in poly glutamine transgenic worms. Our data 
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suggests that developmental timing is delayed in polyQ worms at all temperature 

conditions.  

 

The major finding of this work is that zeitgebers of circadian clock can decrease the 

load of protein aggregates in poly-glutamine model, apparently by structuring the 

expression of their suppressors. 
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2. Zusammenfassung 
 

Lebende Organismen brauchen Zeitgeber, um ihre innere Uhr zu synchronisieren 

(Pittendrigh, 1993). Diese Synchronisation konzentriert die Expression von Genen 

und Proteinen auf bestimmte Tageszeiten. Eine Störung des zirkadianen Entrainments 

erhöht die Anfälligkeit für etliche Krankheiten, unter anderem Herz-

Kreislauferkrankungen, Krebs, Demenz-assoziierte Störungen, Stoffwechselkrank-

heiten und viele weitere (Ferrell and Chiang, 2015; Musiek, 2015; Stevens et al., 

2014). Ursache hierfür ist möglicherweise eine Störung des phasenspezifischen 

molekularen Expressionsmusters. 

 

Einer der bekannten Zeitgeber für die innere Uhr ist Temperatur. In der vorliegenden 

Studie haben wir untersucht, welchen Einfluss diese auf ein Modell für Polyglutamin-

Aggregationserkrankungen hat. Klinische Studien haben gezeigt, dass der zirkadiane 

Körpertemperaturrhythmus von Patienten mit solchen Krankheiten eine niedrigere 

Amplitude hat (Pierangeli et al., 1997). Bei gesunden Mäusen reichen endogene 

Temperaturzyklen aus, um Hitzeschock-Faktor 1 (HSF-1) in den Zellkern zu 

lokalisieren (Reinke et al., 2008). HSF-1 ist ein Transkriptionsfaktor, der eine 

Vielzahl von Hitzeschockgenen reguliert. Diese sind wiederum Suppressoren der 

Proteinaggregation. 

 

Wir nehmen an, dass das Entrainment mit Temperaturzyklen durch die Expression 

von Hitzeschockproteinen einen direkten Einfluss auf die Proteinaggregation hat. Um 

diese Hypothese zu untersuchen, wurde ein transgener Stamm des Fadenwurms         

C. elegans verwendet, welcher eine Mutation aufweist, die zur Expression von 35 

Glutaminresten (PolyQ) führt. Die Würmer wurden entweder in konstanter 

Temperatur oder in Temperaturzyklen gehalten. Die PolyQ-Aggregation in 

Temperaturzyklen war im Vergleich zu konstanten Bedingungen signifikant geringer. 

Ferner untersuchten wir die Zusammensetzung der Aggregate in den beiden 

Temperaturregimes, wobei sich bei den Aggregaten aus den Temperaturzyklen eine 

deutlich größere Komplexität zeigte. Als Nächstes wurde die Expression einiger 

ausgewählter Gene untersucht, welche für Hitzeschockproteine kodieren. Dabei haben 
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wir herausgefunden, dass die Hitzeschockgene, die für Proteine mit Chaperon-

Funktion kodieren, in Temperaturzyklen rhythmisch exprimiert werden. 

 

Neurodegenerative Erkrankungen können zu metabolischer Belastung führen. Noch 

nicht veröffentlichte Daten aus unserem Labor (Olmedo, Geibel, Merrow) zeigen, 

dass dieser Stoffwechselstress die Entwicklung behindern kann. Wir haben daher die 

Geschwindigkeit der Entwicklung in transgenen PolyQ-Würmern untersucht. Unsere 

Daten deuten darauf hin, dass die Entwicklung dieser Tiere bei allen bisher 

untersuchten Temperaturen verzögert ist. 

 

Die Haupterkenntnis der vorliegenden Arbeit ist, dass physiologische Zeitgeberzyklen 

- scheinbar durch die zeitlich strukturierte Expression von Suppressoren - die Menge 

an Proteinaggregaten in einem Polyglutamin-Modell verringern können. 
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3. Introduction 
 

3.1. Biological Rhythms 

 

In nature, all living organisms have evolved to anticipate predictable cyclic 

environmental changes by using their biological clocks, which are endogenous and 

regulate biological rhythms from the molecular level to the behavioral level. 

Biological clocks are categorized based on their period length. A period of rhythm 

length of less than 24-hours is called ultradian; a rhythm length of approximately 24-

hours (earth rotation period) is circadian; one greater than 24-hours is infradian; and 

an approximate period of 1-year is circannual (Aschoff, 1981). In natural conditions, 

circadian rhythms are entrained by zeitgebers (environmental cues) and they also 

persist in constant conditions, thus confirming that the biological clock is endogenous 

(Aschoff, 1960; Merrow et al., 2005; Roenneberg and Merrow, 2005). There are 

many zeitgebers in the environment, but in chronobiology research the most 

commonly used zeitgebers are light-dark cycles and temperature cycles.  
 

In the field of chronobiology (chrono = time, bios = life, logos = study), circadian 

rhythms (circa = approximately, dies = day) are studied in subjects varying from the 

acquatic cyanobacteria and gut microbes (Paulose et al., 2016) to humans. In the 17th 

century, de Mairan observed the first circadian rhythms in plants. His studies revealed 

the periodic leaf movements of a sensitive plant or Mimosa pudica in constant 

conditions (constant dark and putatively constant temperature) irrespective of natural 

light-dark cycles (de Marian, 1729). Researchers in the 19th century proposed that 

these periodic movements in free-running conditions were due to inherited rhythms 

regulated by the alternation of zeitgebers (de Candolle, 1835; Dutrochet, 1835; 

Hofmeister, 1867; Sachs, 1857). By the end of the 19th century, circadian rhythms had 

been observed in animals. Arthropods showed a periodic pigmentation cycle in 

constant free-running conditions (Kiesel, 1894). 

	
  
The 20th century is considered the era of modern circadian biology, and Colin 

Pittendrigh and Jurgen Aschoff are considered the founders. In this period, circadian 

rhythms were observed in a range of subjects, from molecules to cells to organs to 
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physiological behavior in all six kingdoms of life. Richter first reported circadian 

rhythms in mammals by showing a circadian regulation of activity in rats (Richter, 

1922). In the 1960’s, Aschoff’s first experiments on humans showed the circadian 

regulation of rectal temperatures, sleep-wake cycles and urine excretion(Aschoff, 

1965). In addition to mammals, circadian rhythms have been identified in several 

genetic model organisms; for example, eclosion rhythms in Drosophila melanogaster 

(Bunning, 1935; Kalmus, 1935); release of fungal spores in Neurospora crassa 

(Pittendrigh et al., 1959); rhythmic leaf movement, photosynthesis, and the elongation 

of hypocotyl in Arabidopsis thaliana (Bunning, 1967; Dowson-Day and Millar, 1999) 

locomotion and olfaction behavior in C. elegans (Olmedo et al., 2012; Simonetta et 

al., 2009); locomotion activity in Danio rerio (Hurd et al., 1998); exogenous pH 

rhythms in Saccharomyces cerevisiae (Eelderink-Chen et al., 2010); and nitrogen 

fixation and photosynthesis in Synechococcus elongatus (Kondo and Ishiura, 2000). 

In addition to commonly used genetic models, cellular aggregation, bioluminescence 

and photosynthetic rhythms have also been shown in the unicellular Gonyaulax 

polyedra (Hastings et al., 1961; Roenneberg and Morse, 1993). 

 

3.2. General Characteristics of Circadian Rhythm 

 

Circadian rhythms are characterized based on the shared features observed in the 

circadian systems of different organisms. These characteristics were initially defined 

by Aschoff, Bünning and Pittendrigh and have been revisited in subsequent years 

(Aschoff, 1960; Merrow et al., 2005; Pittendrigh, 1960; Roenneberg and Merrow, 

1998). These properties include: 

 

• The period of a circadian rhythm is approximately that of the earth’s rotation 

(24 hours).  

• Circadian rhythms are endogenous and self sustained. 

• Circadian rhythms are entrained to zeitgebers (light, temperature, feeding, 

etc…). 

• Circadian rhythms are temperature compensated (The period of the free-

running rhythm is not significantly changed over a range of 10 °C or more). 
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• The phases of free-running rhythms are the result of zeitgeber strength and 

structure. 

 

3.3. Mechanism of the Circadian Clock 

 

Any circadian system has three important components, including input pathway 

(entrainment pathway), rhythm generator (oscillator) and output pathway (circadian 

rhythms). The rhythm generator receives time signals through the input pathway and 

synchronizes its phase and period to the frequency of environmental cycles 

(zeitgebers), a process referred to as circadian entrainment (Eskin, 1979; Roenneberg 

et al., 2003). In nature, all organisms entrain their biological clocks to zeitgebers, but 

when exposed to free-running conditions they gradually desynchronize their 

biological clocks from natural environmental cycles. Thus, entrainment is essential in 

order for organisms to maintain their phase and period relationship with natural 

cycles. The zeitgebers that entrain biological clocks can be divided into photic and 

non-photic zeitgebers. Photic zeitgebers are light-dark cycles; non-photic zeitgebers 

are temperature cycles, feeding cycles, socialization, life style, etc.  

 

 

 
 
Figure 3-1: An outline of the circadian system. Zeitgeber (light, temperature, etc.) signals are 
transferred to the rhythm generator through the input pathway. The rhythm generator 
produces the circadian rhythms and regulates the output pathways. The rhythm generator may 
give feedback to the input pathways, and the output pathway may also give feedback to the 
input pathway and rhythm generator. Modified from (Eskin, 1979; Golombek and Rosenstein, 
2010; Roenneberg and Merrow, 2000). 
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A clear example of how the entrainment pathway (input pathway) connects to the 

rhythm generator in mammals is the intrinsically photoreceptive retinal ganglion cells 

(ipRGCs), which express melanopsin and transmit light signals (For e.g. light-dark 

cycle) to the suprachiasmatic nucleus (Mohawk et al., 2012). The components 

involved in input pathways vary between organisms. For example, phytochromes and 

cryptochromes are involved in light sensing in Arabidopsis thaliana (Millar, 2004), 

WC-1, WC-2 and supposedly also cryptochromes  in Neurospora crassa (Froehlich et 

al., 2010; Lee et al., 2000; Merrow et al., 2001), cryptochrome and the 

neurotransmitters such as possibly histamine, dopamine and serotonin in Drosophila 

Melanogaster (Yoshii et al., 2016) and CikA in Synechococcus elongatus (Dong and 

Golden, 2008). 

 

An example of a cellular rhythm generator (oscillator) in mammals is the 

suprachiasmatic nucleus (SCN), the central pacemaker of the circadian system. The 

SCN is resistant to non-photic signals and largely entrained by photic zeitgebers 

(Buhr et al., 2010; Mohawk et al., 2012). However, every cell has its own oscillator, 

including the neuronal cells of SCN. The SCN is composed of 20,000 neurons, with 

an oscillation periods ranging from 22 to 30 hours. Intercellular coupling of all the 

neuronal cells in the SCN leads to a precise circadian period of its own tissue and its 

own activity rhythms (Herzog et al., 2004). The SCN not only regulates the activity 

rhythms but also regulates core body temperature, feeding, hormones, etc. (Lehman et 

al., 1987; Mohawk et al., 2012). In addition to the central pacemaker, mammals 

possess peripheral oscillators that regulate rhythms in physiological processes (blood 

pressure, heart rate, lipid metabolism, renal plasma flow and xenobiotic 

detoxification) in tissues. Peripheral oscillators are cell-autonomous, entrained by 

non-photic zeitgebers and the output of the SCN (Brown and Azzi, 2013; Schibler et 

al., 2003). 

 

At the molecular level, thousands of genes have shown circadian rhythms, thought to 

be regulated by a transcriptional and translational feedback oscillator (Buhr and 

Takahashi, 2013). A stepping-stone to the understanding of the molecular clock 

mechanism was the discovery of the period gene in Drosophila melanogaster by 

means of mutagenesis screens (Konopka and Benzer, 1971). The transcriptional 

feedback loop involves both positive and negative transcriptional regulatory elements. 
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The positive elements are mainly transcriptional activators of clock genes; the 

negative elements are inhibitors of positive elements. In mammals, transcriptional 

activators (BMAL1 and CLOCK/NPAS2) localize to the nucleus and promote the 

expression of Period (PER1, PER2) and Cryptochrome (CRY1, CRY2). The 

expressed PER and CRY proteins in the cytoplasm interact with each other, localize 

to the nucleus and inhibit the transcriptional activity of BMAL1 and CLOCK. The 

period of this transcriptional feedback loop is roughly 24 hours, and it plays an 

important role in the circadian behavior of mammals (Gekakis et al., 1998; Ko and 

Takahashi, 2006; Kume et al., 1999). Similar feedback loops have also been identified 

in other genetic models, despite the lack of conservation of their components at the 

sequence level. For example, in A. thaliana, TIMING OF CAB EXPRESSION 1 

(TOC1) is a positive element and negative elements are LATE ELONGATED 

HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) 

(McWatters and Devlin, 2011) in D. melanogaster, CLOCK (CLK) and CYCLE 

(CYC) are positive elements and negative elements are PERIOD (PER and 

TIMELESS (TIM) (Hardin, 2011); in N. crassa, WHITE COLLAR-1 (WC-1) and 

WHITE COLLAR-2 (WC-2) are positive elements and negative elements are 

FREQUENCY (FRQ) and VIVID (VVD) (Baker et al., 2012). 

 

The outputs of the circadian oscillator are circadian rhythms of molecules and 

physiological processes. These outputs can also feed back to the oscillator, as when 

melatonin secretion from the pineal gland is regulated by the SCN and eventually the 

pineal-released melatonin acts on the SCN (Kopp et al., 1997). Outputs can also 

become an input, called a zeitnehmer (Roenneberg and Merrow, 2000). In mammals, 

for example, the circadian rhythm of the core body temperature acts as zeitnehmer 

(input) to entrain the peripheral oscillators. Recent evidence from Schibler’s lab 

indicates that the circadian rhythm of heat shock factor-1 (HSF-1) binding to heat 

shock elements (HSE) is correlated with maximal core body temperature and food 

intake (Reinke et al., 2008). This suggests that physiological temperature fluctuations 

are sufficient for binding of HSF-1 to HSE elements and for the induction of heat 

shock protein (HSP) expression (Brown et al., 2002; Buhr et al., 2010). The phase of 

heat shock protein expression is similar to that of the mammalian clock gene Per2 

(Kornmann et al., 2007). Interestingly, heat shock elements have been identified in 

the promoter region of Per2, and mutations of these specific heat shock elements in 
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the Per2 promoter abolish circadian rhythms of Per2. Additionally, deficiency of 

HSF-1 affects the circadian expression of Per2 and the period of free-running 

locomotor activity in mammals. HSF-1 was also found to be an essential component 

for the resetting of Per2 rhythms through an interaction of HSF-1 and 

BMAL1:CLOCK (Tamaru et al., 2011). These observations suggest an association 

between the mammalian circadian clock and the heat shock response (HSR) system 

that includes heat shock factor-1 and heat shock proteins. 

 

3.4. Heat Shock Factor-1 (HSF-1) 

 

Some organisms, such as C. elegans, Drosophila and yeast, possess only one heat 

shock factor (HSF-1) (Akerfelt et al., 2007; Fujimoto et al., 2010). In vertebrates, 

HSF-1 is one of four different heat shock factors (HSF1 - 4).  Among them, HSF-1 is 

a highly conserved transcription-binding factor that regulates cellular proteotoxicity 

by induction of heat shock proteins. HSF-1 is involved in both physiological and 

stress response pathways that include development, metabolism, aging and 

transcriptional regulation (Vihervaara and Sistonen, 2014). The localization of HSF-1 

is associated with various cellular processes (e.g. transcriptional regulation, 

development, etc). Recent studies have shown that the amount of nuclear HSF-1 

correlates with cancer prognoses (Mendillo et al., 2012; Santagata et al., 2011). There 

are several contradictory studies associated with thermal stress and nuclear 

localization of HSF-1 in C. elegans, Drosophila and in humans (Baler et al., 1993; 

Chiang et al., 2012; Zandi et al., 1997). One study (Morton and Lamitina, 2013) 

reported that HSF-1 is predominantly a nuclear protein in C. elegans. However, under 

physiological condition, HSF-1 is an inactive monomer and is bound to Hsp70 and 

Hsp90. Under stress, trimirized HSF-1 binds to heat shock elements to induce 

expression of heat shock proteins, which prevent protein misfolding or aggregation 

(Vihervaara and Sistonen, 2014). In contrast, a recent study has shown that the 

localization of HSF-1 and binding of HSF-1 to DNA is associated with diurnal 

activity and physiological temperature cycles (Reinke et al., 2008). 
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3.5. The Chaperome  
	
  	
  

The chaperome is the collection of all chaperones, the central components of the 

proteostasis network that help to fold nascent and misfolded proteins to prevent the 

formation of non-functional aggregates. The chaperome was initially characterized by 

molecular weight, but recently the chaperome has been redefined based on function 

(ATP dependent or independent). Heat shock proteins (small Hsps, Hsp40s, Hsp60s, 

Hsp70s, Hsp90s and Hsp100s) share major parts of the chaperome as compared to 

other protein families (Brehme et al., 2014). These heat shock proteins are 

ubiquitously expressed in all organisms and in addition to daily clock regulated 

expression, are induced upon heat or cellular stress (Morimoto, 2011). Heat shock 

proteins are associated with different cellular processes, including protein folding by 

interacting with unfolded substrates in ATP dependent or independent manner. The 

ATP independent chaperones are called holdases (prefoldins, small Hsps, Hsp10s and 

Hsp40s) that can directly interact with nascent or denatured proteins. ATP dependent 

chaperones are foldases and disaggregases (Hsp60s, Hsp70s, Hsp90s and Hsp100s), 

which are further involved in folding mechanisms through ATP hydrolysis. Protein 

folding can be achieved only by co-ordination of holdases, foldases and disaggregases 

(Diaz-Villanueva et al., 2015). 

 

In the present study, we focused on small heat shock proteins called holdases. These 

proteins are highly conserved in organisms ranging form bacteria to higher 

vertebrates. High temperatures enhance the activation and binding of small heat shock 

proteins to unfolded or denatured protein substrates in ATP independent manner and 

is released for further processing by foldases and disaggregases (Zhang et al., 2015). 

Small Hsps possess N-terminal, C-terminal and α-crystalline domains. Their substrate 

binding efficiency is higher at the N-terminal domain than at the C-terminal and α-

crystalline domains. The number of small Hsps varies in different organisms. In        

C. elegans, 18 small HSPs have been reported to be encoded in their genome. In 

humans 10 small Hsps have been identified (Aevermann and Waters, 2008; Kappe et 

al., 2003) and several are associated with several diseases, including protein 

aggregation diseases, Williams Syndrome, early cataract, Desmin-related myopathy, 
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Charcot-Marie Tooth disease, multiple sclerosis, hereditary motor neuropathies, 

tauopathies and cancer. 

	
  

3.6. The C. elegans Small Heat Shock Proteins 
 

Small HSPs in C. elegans are so named based on their molecular weight (HSP12s, 

HSP16s, HSP17, HSP25, HSP43 and SIP1). Among them, HSP12s, HSP25 and 

HSP43 were observed in lab conditions (20°C) throughout the development of the 

worm. HSP16s are thought to be expressed only upon thermal stress and are thus 

called stress inducible chaperones (Jones et al., 1989; Jones et al., 1996; Stringham et 

al., 1992). The expression and function of HSP17 and HSP43 is not thoroughly 

understood, although recently these heat shock proteins have been regarded as 

molecular chaperones. 

 

3.6.1. HSP12s 
 

Heat shock proteins of the HSP12 family (HSP-12.1, HSP-12.2, HSP-12.3 and HSP-

12.6) have high similarity in their sequences. In general, both the N- and C- terminal 

regions of small heat shock proteins are involved in the substrate binding process. 

Interestingly, the family of HSP12 heat shock proteins possess a short N-terminal 

domain and lack the C-terminal domain. The overexpression of HSP-12.1 enhanced 

the cell survival rate in E. coli (Qin et al., 2007) and recent reports suggest that the 

aggregation of citrate synthase is reduced at high concentrations of HSP-12.1 (Krause, 

2013). This confirms that HSP-12.1 has a chaperone activity that other family 

members lack. The α-crystalline domain of HSP-12.6 is closely related to other small 

HSP’s, although this heat shock protein cannot prevent protein aggregation in vitro. 

The expression level of HSP-12.6 is unaltered by several stressors (heat shock, 

alcohol, cadmium chloride and capton), and it has been reported that the expression of 

HSP-12.6 is unaltered by stress (Leroux et al., 1997a). Recent reports suggest that 

HSP-12.6 expression is altered by oxidative and cold stress (Krause, 2013). 
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3.6.2. HSP16s 
 

C. elegans HSP16 family members are homologues to human α-crystallin (Johnson et 

al., 2016). Mutations of α-crystallins in the human eye can cause early cataracts that 

lead to blindness (Brady et al., 1997; Datskevich et al., 2012). In contrast to HSP12.2, 

HSP12.3 and HSP12.6 heat shock proteins, HSP16s are effective in the prevention of 

chemically- and thermally-induced citrate synthase aggregation in vitro. In addition, 

HSP16s have been reported as molecular chaperones (Jones et al., 1989; Leroux et al., 

1997b). Recent studies have shown that the overexpression of HSP-16.2 in vivo 

reduces the amyloid formation and the toxicity of a β-amyloid peptide (Fonte et al., 

2008). HSP16s are strongly associated with an increase in life span and the thermal 

tolerance of C. elegans (Walker and Lithgow, 2003). HSP16s are also essential for 

maintaining C. elegans immunity (Singh and Aballay, 2006). The expression levels of 

HSP16s are not detectable under laboratory conditions using northern blot and 

staining methods (Ding and Candido, 2000a; Jones et al., 1989). The expression 

levels of HSP16 family members increase upon heat shock, confirming that HSP16 

are associated with heat shock and HSF-1 (Kourtis et al., 2012; Morton and Lamitina, 

2013; Seo et al., 2013; Stringham et al., 1992). 

 

3.6.3. HSP25 
 

HSP25 is a constitutively expressed heat shock protein in the C. elegans development 

process. The expression of HSP25 in C. elegans is observed primarily in the M-lines 

of the muscle fiber and pharynx. Previous observations suggest that the HSP25 

protein is unaffected by heat shock (Ding and Candido, 2000b), and that mRNA 

expression of HSP25 is down-regulated upon different stressors such as heat, cold, 

heavy metal, oxidative,and osmotic stress. HSP25 was reported as not capable of 

preventing thermally induced protein aggregation (Merck et al., 1993). However, a 

recent study suggests that HSP25 acts as a molecular chaperone and reduces the 

citrate synthase aggregation in vitro (Krause, 2013). 
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3.6.4. HSP43 
 

HSP43 is also a constitutively expressed small heat shock protein in C. elegans. 

Immuno staining suggests that HSP43 is localized in the cells of the vulva and 

spermatheca. The importance of HSP43 in C. elegans is not yet known. Previous 

literature suggests that a knockdown of this heat shock protein has no effect on cell 

division or the developmental process. The expression level of HSP43 is not altered 

by heat shocks (Ding and Candido, 2000c) 

 

3.6.5. SIP-1 
 

SIP-1 is a stress-induced protein also known as SEC-1 (small embryonic chaperone), 

which plays an important role in embryonic development of C. elegans. Surprisingly, 

this protein is expressed only in C. elegans embryos and egg laying adults 

(Fleckenstein et al., 2015; Linder et al., 1996). SIP-1 was found in the insoluble 

protein fraction of day 12 adult wild type worms (Walther et al., 2015). Although 

closely related to HSP16s, the expression level of SIP-1 is not regulated by heat 

shock. Interestingly, the chaperone activity and structural conformation of SIP-1 are 

associated with pH. At acidic pH, SIP-1 suppresses citrate synthase aggregation in 

vitro. Under normal lab conditions, HSP16s have been reported in sip1 deletion 

worms (Fleckenstein et al., 2015). This further supports that the expression of HSP16s 

can be altered in physiological conditions. 

 

3.7. Protein Folding 
 

Protein folding is an essential cellular process. Once a polypeptide (a linear chain of 

amino acids) has been translated by the ribosome, it must acquire its three-

dimensional native conformation through a folding process. The steps of protein 

folding are defined by different structural elements. A chain of newly synthesized 

polypeptides is referred to as the primary structure of a protein. The secondary 

structure of a protein consists mainly of α-helices and β-sheets. The three-

dimensional organization of these secondary structure elements is referred to as the 

tertiary structure. Finally, the quaternary structure describes the formation of a 
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multimeric complex by association of three-dimensional complexes of several 

polypeptide chains. 

 

For decades, the concept of protein folding in the cell remained a puzzle. In 1973, 

based on in vitro experiments, Anfinsen proposed in his thermodynamic hypothesis 

on protein folding that the lowest Gibbs free energy of the system facilitates the 

native conformation of protein in given environmental conditions (solvents, ionic 

strength, pH, metal ions, prosthetic groups, temperature and other components). His 

in vitro experiments were helpful in understanding native structures inside the test 

tube, that the folding of a protein should follow a specific path, and that the duration 

of protein folding differs from one protein to another. Initially, a polypeptide can fold 

randomly within seconds or minutes, but if the entire folding process were based on 

the random search for a specific three-dimensional conformation, then folding of the 

protein would take longer than the age of the universe to achieve a native structure 

(Levinthal, 1968; Levinthal et al., 1962; Zwanzig et al., 1992). In a living cell, protein 

folding obviously must happen within a biologically relevant time period. Several 

models have been proposed to describe the rapid protein folding in vitro, such as the 

the framework model (Ptitsyn, 1973), diffusion-collision model (Karplus and Weaver, 

1976), hydrophobic collapse model (Go, 1984), and the nucleation condensation 

model (Fersht, 1997). Currently, the view of protein folding mechanisms has evolved 

based on an energy landscape perspective (folding funnel), which satisfies the 

hypothesis and paradox of Anfinsen and Levinthal (Bryngelson et al., 1995; Dill and 

Chan, 1997). This model represents different kinds of energy landscapes. Among 

these, the smooth surface energy landscape is used to describe the fast folding of 

proteins without complex barriers. However, often the polypeptide must pass through 

a rugged energy landscape with kinetic traps and energy barriers; so the process of 

folding is slow, and partially folded intermediates populate the kinetic traps 

(Brockwell and Radford, 2007; Dill and Chan, 1997). In a cell or organism these 

partially folded intermediates require the assistance of chaperones to reach the native 

state. Molecular crowding in the system can cause intermolecular aggregation that 

leads to the formation of amorphous aggregates, toxic oligomers and amyloid fibrils 

(Hartl et al., 2011).  
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3.8 Protein Misfolding and Aggregation 
 

Misfolding of proteins is a common molecular phenomenon in the protein folding 

process. Several factors accelerate the misfolding of proteins in the cell, such as stress 

conditions (thermal stress, extreme changes of pH, oxidative agents, equilibrium 

interface, high glucose levels, etc.), age and disease (Herczenik and Gebbink, 2008). 

The proteostasis network responds to the accumulation of misfolded proteins through 

the unfolded protein response (UPR) and heat shock response (HSR) and guides them 

to chaperones in order to achieve a native conformational state. Misfolded proteins 

that cannot be folded properly are degraded by the ERAD (Endoplasmic reticulum 

associate degradation), the proteasome and autophagy pathways (Amm et al., 2014; 

Hartl et al., 2011; Powers et al., 2009; Valastyan and Lindquist, 2014). 

 

The performance of the proteostasis network declines with age and disease, creating 

an imbalance between the quality control machinery and the amount of misfolded 

protein. A deficiency of the proteostasis network and crowding of misfolded proteins 

results in the formation of inclusion bodies or aggregates (Dobson, 2003; Hipp et al., 

2014). In this scenario, the proteostasis network is overloaded by misfolded proteins 

and the accumulated aggregates are deposited at specific cellular sites. Sequestration 

of protein aggregates may even protect the cell from toxicity. In bacteria, aggregate 

deposition is localized at the poles; in yeast, aggregates are deposited in two 

compartments: the JUNQ (Juxtanuclear quality control compartment) and IPOD 

(Insoluble protein deposit). Aggregation deposit centers present in yeast are also 

found in mammalian cells. In addition, mammalian cells possess aggresomes, which 

are not permanent but appear in conjunction with several disease states. The 

disaggregation process can reverse the process of aggregation. Several molecular 

chaperones and proteases are involved in the disaggregation process of prokaryotes 

and eukaryotes, such as ClpB or Hsp104, Hsp70, sHSPs, 26s proteasome, AAA+ 

proteases and valosin containing protein (Tyedmers et al., 2010). 

 

Several human diseases associated with protein misfolding and aggregation are listed 

in Table 1-1. The effect of one or more mutations in the polypeptide causes protein 

misfolding, improper degradation or improper localization, which leads to loss of 
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protein function, can subsequently cause disease (cancer, carbonic anhydrase II, cystic 

fibrosis, pulmonary emphysema, liver disease, etc.). In some diseases, mutations 

cause a gain of functional toxicity to the cell by forming complexes such as 

oligomers, amyloid fibrils or aggregates (Knowles et al., 2014; Valastyan and 

Lindquist, 2014; Winklhofer et al., 2008). Aberrant misfolded proteins in the cell 

have a high propensity to co-aggregate with similar proteins. In parallel, aggregated 

species have a tendency to influence the aggregation behavior of other proteins and 

co-aggregate with them, a process first observed with polyglutamine aggregates. 

Influencing and co-aggregating can be a possible reason for the association of toxicity 

with neurodegenerative disease (Gidalevitz et al., 2006; Tyedmers et al., 2010). 

Prevention of aberrant aggregates in the diseases is associated with the efficiency of 

protein quality control. 

 

Table 1-1: Diseases Associated with Protein Misfolding and Aggregation 

(Adapted from (Knowles et al., 2014; Valastyan and Lindquist, 2014). 

 

Human Disease Aggregated peptides or proteins 

Alzheimer’s disease β-amyloid; Tau 

Amyotrophic lateral sclerosis SOD-1; TDP-43 

Amyloid light chain amyloidosis Light chains of Immunoglobulin 

Amyloid A amyloidosis A1 serum amyloid protein fragments 

Apolipoprotein A1 amyloidosis Apo A-1 fragments 

Cataract Crystallins 

Familial amyloidotic polyneuropathy Transthyretin (Mutants) 

Hemodialysis related amyloidosis β2 –macroglobulin(s) 

Huntington’s disease Huntingtin with polyQ expansion 

Injection localized amyloidosis Insulin 

Lysosome amyloidosis Lysozyme (Mutants) 

Parkinson's disease α-synuclein 

Senile systemic amyloidosis Transthyretin (Wildtype) 

Spongiform encephalopathy Prion protein 

Type II diabetes Amylin 
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Neurodegenerative diseases such as Alzheimer’s disease, Amyotropic lateral 

sclerosis, Huntington’s disease, Parkinson’s disease and Spongiform 

encephalopathies, etc. are the major protein misfolding and aggregation diseases. In 

this study, we address the impact of zeitgeber conditions on protein aggregation in 

polyglutamine expansion disorders and in Parkinson’s diseases. 
 

3.8.1. Polyglutamine Disorders 
 

An abnormal repetition of glutamine (CAG) in the respective genes causes 

polyglutamine (polyQ) disorders, which includes mainly neurodegenerative diseases 

such as Huntington’s, Machado-Joseph’s, Kennedy’s, Spinal bulbar muscular 

atrophy, dentatorubral pallidoluysian atrophy and six types of spinocerebellar ataxia 

diseases (Fan et al., 2014). These are age-associated diseases, and they share a 

common molecular pathology of protein aggregation. For example, abnormally 

expanded polyQ stretch on the first exon of the huntingtin gene causes protein 

misfolding and aggregation. Such propensity of polyQ aggregation is associated with 

the length of polyQ stretch. A length of polyQ stretch ≥35 residues leads to polyQ 

aggregation, a hallmark of Huntington’s disease (MacDonald et al., 1993). 

Furthermore, six types of spinocerebellar ataxia are due to abnormal expansion of 

polyQ on their causative genes, including ataxins-1,2 and 7, CACNA1A and TBP 

(Holmberg et al., 1998; Huynh et al., 1999; Koide et al., 1997; Matilla-Duenas et al., 

2008; Zhuchenko et al., 1997). An expanded polyQ stretch in ataxin-3 causes 

Machado-Joseph’s disease (Bettencourt and Lima, 2011). In dentatorubral 

pallidoluysian atrophy, Atrophin-1 has an expanded poly-glutamine stretch (Sato et 

al., 2009) and in Spinal bulbar muscular atrophy the androgen receptor is similarly 

mutated (La Spada and Taylor, 2003). 

 

3.8.2. Parkinson’s Disease 
 

The molecular pathology of Parkinson’s disease is associated with a degeneration of 

dopaminergic neurons, which are essential for motor control. The loss of 

dopaminergic neurons was predicted as a consequence of genetic mutations, 

dysfunction of the ubiquitin proteome system, defects in autophagy pathways and 
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mitochondrial dysfunction, etc. (Jankovic, 2007; McNaught et al., 2006). The Lewy 

bodies (protein inclusions) at the cellular level have a high content of aggregated α-

synuclein (α-syn), which occurs due to mutations in the encoding gene. Several more 

mutations have been identified and associated with the progression of familial 

Parkinson’s disease. These mutations can occur in genes such as LRRK2, PARK2, 

PINK1, DJ-1 and ATP13A2. In clinical diagnosis, the symptoms of Parkinson’s 

disease are divided into non-motor and motor, which include sleep-wake cycles and 

behaviour (Dexter and Jenner, 2013; Markaki and Tavernarakis, 2010; Muzerengi et 

al., 2007).  
 

3.9. Circadian Biology and Protein Aggregation Diseases 

 

Several studies indicate an association of (protein aggregation) diseases and disrupted 

circadian rhythms, including cancer, type 2 diabetes, neurodegenerative diseases and 

many more (Hastings and Goedert, 2013; Knowles et al., 2014; Kurose et al., 2014; 

Musiek, 2015; Savvidis and Koutsilieris, 2012; Valastyan and Lindquist, 2014). P53 

is an essential protein involved in the regulation of the cell cycle and the circadian 

clock. A genetic mutation of p53 in cancer causes prion-like P53 aggregates, which 

are involved in cancer pathology (Silva et al., 2014). In parallel, a deficiency of p53 

has an effect on the circadian expression of Per2 and locomotor behavior (Miki et al., 

2013). One aspect of cancer pathology is a disrupted circadian clock through p53. 

Type 2 diabetes is also associated with protein aggregation and disruption of the 

circadian clock. High fat diets induce the amylin aggregate formation and β-cell 

dysfunction (Hull et al., 2003). Although the reason for the dysfunction of β-cells in 

type 2 diabetes remains unclear, recent studies have shown that chaperones improve 

β-cell function in type 2 diabetes, suggesting an association between aggregate 

formation and β-cell dysfunction (Cadavez et al., 2014). However, dysfunctional β-

cells also affect the circadian behavior of insulin secretion in type 2 diabetes (Kurose 

et al., 2014). Additionally, core body temperature rhythms were also disrupted in 

streptozotocin-induced diabetes (Ramos-Lobo et al., 2015). Because the chaperone 

induction is associated with circadian behavior of HSF-1, one can hypothesize that 

entrainment may play a role in the prognosis of type 2 diabetes. 
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In neurodegenerative diseases, circadian rhythms are disrupted from the molecular to 

the behavioral level. In Alzheimer’s, Huntington’s and in Parkinson’s diseases, daily 

rhythms of activity, melatonin secretion and sleep-wake cycles are commonly 

disrupted (Aziz et al., 2010; Breen et al., 2014; Coogan et al., 2013; Hu et al., 2009; 

Morton et al., 2005; Niwa et al., 2011; Skene and Swaab, 2003; Videnovic and 

Golombek, 2013; Witting et al., 1990; Wu et al., 2006). Additionally, the amplitudes 

of core body temperature rhythms are affected in several neurodegenerative diseases 

(Kudo et al., 2011b; Pierangeli et al., 1997; Zhong et al., 2013). The expression of 

vasoactive intestinal polypeptide (VIP), a protein essential for the circadian regulation 

of SCN, is disrupted in Alzheimer’s and in Huntington’s diseases (Aton et al., 2005; 

Zhou et al., 1995). At the molecular level, the amplitude of Per2 expression is 

reduced in the SCN of APP-PS1 transgenic mice (Duncan et al., 2012). Furthermore, 

the circadian behavior of the electrical output of the SCN was disrupted in mouse 

models for Parkinson and Huntington’s diseases (Kudo et al., 2011a; Kudo et al., 

2011b). Although it can be concluded that the circadian clock is disrupted in 

neurodegenerative diseases, the effect of circadian dysfunction on neurodegenerative 

diseases remains unclear. Several studies have reported effects of improving the 

circadian functions on the prognosis of neurodegenerative diseases. Inducing 

rhythmic sleep in a R6/2 mouse model for Huntington’s disease, for example, 

recovered Per2 rhythms in the SCN followed by cognitive improvement. Similarly, 

light entrainment, periodic melatonin treatment and scheduled feeding restored the 

circadian behavior in R6/2 mice (Maywood et al., 2010; Pallier et al., 2007), 

suggesting that entrainment can recover circadian functions in neurodegenerative 

diseases. 

 

3.10. Caenorhabditis elegans (C. elegans) as a Model 
 

C. elegans is a microscopic and transparent nematode. In nature, these nematodes are 

found in organic rich soils, composts and rotting fruits, etc. The gender of C. elegans 

is either hermaphrodite or male. Hermaphrodites are self-fertile but can also breed 

with males. Each worm has around 1000 somatic cells, including 302 neuronal cells. 

Recently, a pair of additional neuronal cells was found in males, and have been 

termed MCMs (Sammut et al., 2015). In C. elegans, postembryonic development 
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starts with discrete larval stages (L1, L2, L3 and L4), separated by molts (M1, M2, 

M3 and M4) and followed by adult worms. During molts, worms display a quiescent 

behavior (lethargus) when the worms cannot eat food, and an increased arousal 

threshold (Cho and Sternberg, 2014; Raizen et al., 2008; Singh and Sulston, 1978). In 

the Merrow lab, Dr. Maria Olmedo has developed a high throughput method to detect 

larval stages and molts using bioluminescence tools (Olmedo et al., 2015). 

 

Fifty years ago, C. elegans was first used as a model organism to address biological 

questions in developmental biology, genetics and neurobiology, etc. This model was 

later extended to address questions in molecular biology. Around 83% of the 

sequences in the C. elegans proteome are homologous to those in humans (Lai et al., 

2000), leading scientists to recognize the utility of C. elegans in the study of age 

associated human disease, including cancer, diabetes and neurodegenerative diseases, 

etc. 

 

In our research, we used C. elegans to study the impact of zeitgebers on chaperone 

expression and protein aggregation in neurodegenerative diseases. Several studies 

have shown that C. elegans has circadian behaviors such as in stress tolerance, 

locomotion, defecation, rate of pharyngeal pumping, food consumption, oxygen 

consumption and olfaction (Kippert et al., 2002; Migliori et al., 2011; Olmedo et al., 

2012; Saigusa et al., 2002; Simonetta et al., 2008). At the molecular level, light and 

temperature entrained circadian transcripts have been found by genome-wide analysis 

(van der Linden et al., 2010). Circadian rhythms have been observed in the oxidative 

state of peroxiredoxins and RNA levels of GRK-2 protein in constant free-running 

conditions (Olmedo et al., 2012). These observations suggest that C. elegans 

possesses a circadian clock, although the molecular oscillators are still to be 

discovered. In parallel, C. elegans transgenic models were established to study protein 

aggregation in neurodegenerative diseases (Li and Le, 2013). Most of these models 

include a transgenically expressed disease-specific gene fused to a flourescence 

reporter. 

 

To address the prognosis of molecular pathology in polyglutamine expansion 

disorders, Morimoto’s lab generated transgenic C. elegans strains with the muscle and 

neuron specific expression of fluorescence tagged polyQ proteins with different 
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lengths (Q0, Q19, Q35, Q40, Q44, Q67 and Q86, etc.). In these models, length 

dependent polyQ aggregation and toxicity occurs at a threshold of 35-40 glutamine 

repeats. In muscle specific polyQ models, the rate of aggregation is inversely 

correlated with worm motility (Brignull et al., 2006; Morley et al., 2002). In addition 

to polyglutamine disorders, transgenic worms were generated for Alzheimer’s, 

Amyotrophic lateral sclerosis and Parkinson’s disease (Li and Le, 2013). Considering 

the chaperome network, the functional families are highly similar between C. elegans 

and humans (Brehme et al., 2014). Accordingly, C. elegans can be invoked as a 

model for understanding the impact of zeitgebers on chaperone expression and protein 

aggregation in neurodegenerative models. 
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4. Aim of this work 

 
Circadian clock disruption (e.g. disrupted sleep, activity, core body temperature, 

hormone secretion, etc.) in neurodegenerative diseases suggests a link between 

mechanisms of pathology and this pervasive timing program. The causes and effects 

of such a disrupted clock for patients is not known. Pharmacologically induced sleep, 

melatonin treatments and scheduled feeding restored circadian behavior in the 

Huntington’s disease model mice (R6/2) (Maywood et al., 2010; Pallier et al., 2007),  

and imposing high amplitude light entrainment on dementia patients slowed the 

decline in cognitive function (Riemersma-van der Lek et al., 2008). However, the 

molecular mechanisms associated with zeitgebers and neurodegeneration are unclear. 

One study has shown that endogenous temperature rhythms induce rhythmic binding 

of HSF-1 (Heat Shock Factor-1) to promoters with a heat shock element (Reinke et 

al., 2008). HSF-1 is a transcription factor that regulates expression of numerous heat 

shock genes, which are involved in prevention of protein misfolding/aggregation 

(molecular pathology) in neurodegenerative disease. Building on the literature, we 

found that endogenous temperature rhythms are associated with light entrainment, 

melatonin, sleep and feeding cycles. We hypothesize that endogenous temperature 

cycles may regulate the abundance of heat shock proteins and thus might impact 

protein folding and/or aggregate formation in neurodegenerative disease. 

 

The objectives covered in this thesis are as follows: 

 

• To establish novel methods to characterize polyQ aggregates both 

quantitatively and qualitatively.	
  

• Determine if and how temperature cycles impact Q35::YFP aggregate 

formation.	
  

• Characterise how temperature cycles impact proteostasis network components, 

primarily heat shock proteins or chaperones.	
  

• Determine developmental timing in C. elegans polyQ transgenic models.	
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5. Materials and Methods 
 

5.1. Chemical Reagents 
 
Chemicals used for preparing media and buffers are listed in table 5-1. 
 
Table 5-1 Chemicals 
 
Chemical Supplier Order No. 

3-morpholinopropane-1-sulfonic acid (MOPS) Roth G979.4 

Acetic acid (CH3COOH) AppliChem A2083 

Acrylamide30% Bis-AA 29:1 Biorad 161-0156 

Agarose QE MP AGAP0100 

Ammonium persulfate (APS) Sigma A3678 

Bacto Agar BD 214010 

Bacto Peptone BD 211677 

Bacto Tryptone  BD 211705 

Bacto Yeast Extract BD 212750 

Bis-Tris AppliChem A1025 

Blasticidin AppliChem 150477 

Bovine serum albumin (BSA) Sigma A7906 

Bromophemol blue USB US12370 

Calcium Chloride (CaCl2) AppliChem A4689 

Chloroform Sigma-

Aldrich 

C2434 

Cholesterol Sigma C3292 

Coomassie Blue G-250 Roche 1.15444 

Difco Agar, granulated BD 214530 

Dimethysulfoxide (DMSO) Merck 109678.01 

D-Luciferin PJK 102111 

Ethanol AppliChem A3678 

Ethylenediaminetetraacetate (EDTA) AppliChem A3145 

Formic acid Sigma 399388 
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Fluoro (5)-2-deoxyuridine (FUDR) Abcam Ab141270 

Glycerol 87% Applichem A3739 

Hydrochloric acid Standard 1M AppliChem A1434 

Igepal CA-630 Mol Bio Sigma I-8896 

Isopropanol AppliChem A1008 

Magnesium Sulfate (MgSO4) Sigma 230391 

Methanol Merck 1.06009.1000 

Milk powder, non fat AppliChem A0830 

Phenol AppliChem A1153 

Ponasterone A Sigma P3490 

Ponceau S Fluka 81460 

Potassium Chloride (KCl) AppliChem A3980 

Potassium Dihydrogen Phosphate (KH2PO4) Sigma P0662 

Potassium hydroxide (KOH) Sigma P1767 

Potassium Phosphate (KPO4) Sigma P-5379 

Sodium Chloride (NaCl) AppliChem A2942 

Sodium phosphate monobasic dihydrate (NaH2PO4) Sigma 71505 

Sodium dodecyl sulfate (SDS) AppliChem A1502 

Sodium hydrogen carbonate (NaHCO3) MERCK 6329 

Sodium hydroxide (NaOH) Roth G771.6 

Sodium hypochlorite (NaClO) Sigma S1898 

SYBR Safe Invitrogen S33102 

Tetramethylethylenediamine (TEMED) Sigma T-928 

Tris(hydroxymethyl)aminoethane (Tris) ultra pure AppliChem A1086 

Triton® X-100 Sigma T-8787 

TRIzol®Reagent Invitrogen 15596026 

Tween®-20 AppliChem A4974 

β-Mercaptoethanol Sigma M-3148 

di-sodium hydrogen phosphate dihydrate AppliChem A4732,1000 
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5.2. Consumables 
 
Consumables include materials and reagents used for the experiments are listed in 

table 5-2. 

 
Table 5-2 Consumables 
 
Consumables Suppliers 

100bp DNA ladder New England Bio Labs 

2-Log ladder New England Bio Labs 

Antibody of mouse actin Santa Cruz Biotechnology 

Antibody of mouse Green Fluorescent Protein 
(α-mouse-GFP) 

Roche 

Antibody of mouse Horseradish peroxidase (α-
mouse-HRP) 

Bio-Rad 

Cover Slips 18x18 mm Waldemer Knitter 

Cover Slips 24x60 mm Waldemer Knitter 

EDTA Free Protease inhibitor cocktail tablets Roche 

Gene loading dye New England Bio Labs 

Micro AMPTM Optical Adhesive Film Applied Biosystems 

MicroAMP R Optical 384 well Reaction Plates  Applied Biosystems 

Nunclon Delta Surface 96-well plates Thermo scientific 

NuPAGETM NovexTM 4-12% Invitrogen 

Precision Plus ProteinTM All Blue Standards Bio-Rad 

Protran Nirocellulose membrane 0.2uM Whatman 

9cm, 6cm, 3.5cm Petri dish Greiner bio one 

TC Flask T75, Standard  Sarstedt 

Transblot R turboTM transfer pack Biorad 

Cell Scraper 25 cm Sarstedt 

Sterile bacterial spreader VWR 

0.5 mm dia Zirconia/Silica beads Biospec 

Low Protein binding eppendorf tubes Eppendorf 
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5.3. Kits 
 
Kits used for the experiments are listed in table 5-3. 
 
Table 5-3 Kits 
 
Kits Supplier 

PierceTM BCA protein assay Thermofisher scientific 

TaqMan Reverse Transcription Reagents Applied Biosystems 

DnaseI amplification grade Invitrogen 

Page Silver TM Silver Staining Fermentas Life Sciences 

SuperSignal R West Femto Maximum 
sensitivity Substrate 

Thermo Scientific 

 
5.4. Laboratory Equipment 
 
Laboratory equipment used for the experiments are listed in table 5-4. 
 
Table 5-4 Laboratory equipment 
	
  
Equipment Company 

Autoclave Varioklav 

Bio fuge primo R Centrifuge Heraeus 

BioruptorTM UCD-200 Diogenode 

Centrifuge 5417 R Eppendorf 

ChemidocTM MP imaging system Bio-Rad 

Discovery.V8 SteREO microscope Zeiss 

Electrophoresis Power Supply- EPS601 Amersham pharmacia biotech 

Fluorescence microscope LEICA ICC50 HD Leica 

Freezer -20 °C Liebherr Premium NoFrost 

Freezer HFC 586 -80 °C Heraeus 

Incubator 37 °C Memmert 

Incubators MIR-153 Sanyo 

Laminar air flow Interflow 

Centro LB 960 Luminometer Berthold 

Membra Pure Astacus 
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Microwave Oven Privileg 

Mini bead beater oa60ap-22-1-WB Biospec products 

Mini rocker-shaker MR-1 Gkisker 

Mini spin plus Eppendorf 

MultiskanTM FC Microplate Photometer Thermo Scientific 

NanoDrop 1000 Spectrophotometer Peqlab, Erlangen 

NuPAGE Pre-cast system Invitrogen 

Optima MAX-XP Ultracentrifuge Beckmancoulter 

pH meter Mettler Toledo 

Pipettes (Reference autoclavable) Eppendorf 

Qik Spin QS7000 Edward Instrument Co. 

Real-Time PCR System Applied Biosystems 

Refrigerator 4 °C Bosch electronic no frost 

Rotina 420 Centrifuge Hettich 

Thermocycler Peqlab,Waldbuttelbrunn 

Thermomixer Comfort Eppendorf 

Transblot turbo transfer system Bio-Rad 

Vortex mixer VELP Scientifica 

Weighing machine TE1502S Sartorius 

Worm Incubator Liebherr  

	
  

5.5. Primers 
 
Primers used for quantitative RT-PCR are listed in table 5-5. 
 
Table 5-5 Primers 
 
Gene Forward Primer Reverse Primer 
act-4 5'-GGCATCACACCTTCTACAA 

CGA-3' 

5'-TGGATTGAGTGGAGCCTCAG 

T-3' 

ama-1 5'-CAATCAGCAGTTGCAGAG 

AAA-3' 

5'-CAGGCCCGGAATACAATTG-3' 

hsp-4 5'-TGCCGTCGAGAGAGCTATT 

GA-3' 

5'-GTTCCTTCTTTTGCTCCTTG 

TTTT-3' 
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hsp-12.6 5'-ACGAAGGAACCAAGTGGG-3' 5'-GGGCTTCTAGGCCTACTT-3' 

hsp-16.1 5'-CAGTTTGCAGAGGCTCTCCA 
T-3' 

5'-TTGTTCTCCTTGAATTGATAA 
TGTAT GTC-3' 

hsp-16.2 5'-GTTTTTGGTGATCTTATGAG 
AGATATGG-3' 

5'-GATGGCAAACTTTTGATCATT 
GTT-3' 

hsp-43 5'-GACCTGTGGCTCGACGAT 
TT-3' 

5'-TGTCGACGTCACGGGAGAA-3' 

unc-54 5'-GAAGGACCCAGGATGGCAA 
TA-3' 

5'-CCAGACGTTCTTCTTGGAGT 
CA-3' 

 

5.6. Strains 
 
Strains used for the experiments are listed in table 5-6. 
 
Table	
  5-­‐6	
  Strains	
  
	
  
Strain/Genotype Models Supplier 

N2; Wild type C. elegans Caenorhabditis Genetics Center 

AM140; rmIs132 [unc54p::Q35::YFP] C. elegans Caenorhabditis Genetics Center 

AM141; rmls133 [unc-54p::Q40::YFP] C. elegans Caenorhabditis Genetics Center 

AM134; rmls126 [unc-54p::Q0::YFP] C. elegans Caenorhabditis Genetics Center 

OW40; zgIs15 [unc54p::α-syn::YFP] C. elegans Gift from Ellen A.A. Nollen, 
Netherlands 

PE254; feIs4 [sur-5::luc+::gfp; rol-

6(su1006)] 

C. elegans Cristina Lagido Lab 

hsp-16.1::gfp C. elegans Gift from Dr. Juhno Lee, South 
Korea 

PE254 X AM134 C. elegans Strain of Cristina Lagido 

PE254 X AM141 C. elegans Strain of Cristina Lagido 

OP-50 E. coli Caenorhabditis Genetics Center 

 
5.7. Culture Media 
 
LB Medium 

1% (w/v) bacto-tryptone  

0.5% (w/v)  bacto-yeast  

1% (w/v) NaCl  

pH to 7.0 using 10 N NaOH                              
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LB-Agar 

1.5% (w/v) agar 

1% (w/v) bacto-tryptone  

0.5% (w/v)  bacto-yeast  

1% (w/v) NaCl  

pH to 7.0 using 10 N NaOH                              

 

NGM Agar 

1.7% (w/v) agar  

0.051 M NaCl  

0.25% (w/v) peptone  

• Autoclave solution 

• Cool down to 70°C 

0.0005 mM CaCl2 

0.001 M MgSO4 

0.005% (v/v) Cholesterol (solved in ethanol) 

0.025 M KPO4  

 

NGM-FUDR Agar 

1.7% (w/v) agar  

0.051 M NaCl  

0.25% (w/v) peptone  

• Autoclave solution 

• Cool down to 70°C 

0.0005 M CaCl2 

0.001 M MgSO4 

0.005% (v/v) Cholesterol (solved in ethanol) 

0.025 M KPO4  

0.012% (w/v) FUDR  

 
5.8. Buffers and Solutions 
 
S-Basal 

0.585% (w/v) NaCl 
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0.1% (w/v) K2HPO4 

0.6% (w/v) KH2PO4 and 1 ml/l of 5 mg/ml Cholesterol.  

 
M9 Buffer 

0.3% (w/v) KH2PO4 

0.6% (w/v) Na2HPO4 

0.5% (w/v) NaCl 

0.001 M MgSO4 

 

4x Native Sample Buffer 

0.0625 M Tris-Cl (pH 6.8) 

10% (v/v) glycerol 

0.1% (w/v) bromophenol blue 

 

1x SDS Sample Buffer 

0.06 M Tris (pH 6.8) 

10% (v/v) SDS 

10% (v/v) glycerol 

1.25% (v/v) β-Mercaptoethanol 

0.005% (w/v) bromophenol blue 

 

2x SDS Sample Buffer 

1.20 M Tris (pH 6.8) 

20% (v/v) SDS 

20% (v/v) glycerol 

2.5% (v/v) β-Mercaptoethanol 

0.01% (w/v) bromophenol blue 

	
  

4x SDS Sample Buffer  

2.40 M Tris-Cl (pH 6.8) 

40% (v/v) glycerol 

8% (v/v) SDS 

5% β-Mercaptoethanol 



 

	
   32	
  

0.04% (v/v) bromophenol blue 

 

SDD-AGE Sample Buffer 

2x TAE 

8% (v/v) SDS 

20% (v/v) glycerol 

0.01% (w/v) bromophenol blue 

 

NP40 Lysis Buffer-1 

0.05 M Tris-Cl (pH 8.0) 

0.5 M NaCl 

0.004 M EDTA 

1% (v/v) Igepal CA-630 

Protease inhibitor tablet Roche 2x (1tablet/10ml) 

 

NP40 Lysis Buffer-2 

0.05 M Tris-Cl (pH 8.0) 

1.5 M NaCl  

1% (v/v) Igepal CA-630  

Protease inhibitor tablet Roche 2x (1 tablet/10 ml) 

 

PBS (Phosphate Buffered Saline) 

1.37 M NaCl 

0.0027 M KCl  

0.01 M Na2HPO4  

0.0018 M KH2PO4 

 

SDD-AGE Lysis Buffer 

0.1 M Tris-Cl (pH 7.5) 

0.05 M NaCl 

0.01 M β-Mercaptoethanol 

one Protease inhibitor tablet /10ml 
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SDD-AGE Sample Buffer 

2x TAE 

8% (v/v) SDS 

20% (v/v) glycerol 

0.01% (w/v) bromophenol blue 

 

SDD-AGE Gel Running Buffer 

1x TAE  

0.1% (v/v) SDS 

 

2x TAE Buffer 

0.08 M Tris acetate  

0.002 M EDTA  

pH to 8.2-8.4 

 

1x Tris-Glycine Buffer 

0.025 M Tris-Cl 

0.19 M Glycine 

pH to 8.3 

 

TBS Buffer 

0.05 M Tris-Cl  

1.37 M NaCl  

0.0027 mM KCl 

 

TBS-T (TBST+ Tween20) Buffer 

0.1% (v/v) Tween 20 

TBS Buffer 

 

Luciferin Solution-1 

100 µM D-Luciferin 

S-basal 
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Reverse Transcription Reaction Mixture 

TaqMan reverse transcription reagents were used to prepare reaction mixture which 

contained 1x RT-Buffer, 5.5 mM MgCl2, 500 µM dNTP, 2.5 µM Random Hexamers, 

0.4 U/µl RNase inhibitors, 1.25 U/µl reverse transcriptase in RNase-free H2O. 

 

qPCR Reaction Mixture 

Reaction mixture consisted of 1x of SYBR Select with 500 nM of each primer in 

RNase-free H2O. 

 

Luciferin Solution-1 

100 µM D-Luciferin 

S-basal. 

 

Luciferin Solution-2 

100 µM D-Luciferin 

2% (w/v) E. coli OP50 (wet weight)  

S-basal. 

 

C. elegans Freezing Solution 

30% (v/v) Glycerin  

S-basal 
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5.9. C. elegans Physiological Methods 
 

The basic physiological methods for maintaining C. elegans in the current study was 

obtained from worm book (Eisenmann, 2005).  

 
5.9.1. C. elegans Culturing 
 

5.9.1.1. General Maintenance of C. elegans 

 
Worms were cultured in an incubator at 18 °C on NGM agar plates with E. coli 

(OP50). Animals were chunked or transferred to new NGM agar plates for routine 

maintenance. To preserve stocks, L1 and L2 stage worms were frozen at -80 °C using 

Freezing Solution. 

 
5.9.1.2. Synchronization of Worms 
 

To synchronize the worms, mixed stage worms were grown on NGM agar plates until 

they were gravid adult stage. At the gravid adult stage, worms were collected from 4-

5 NGM agar plates into falcon tubes using M9 buffer. Over 5 min, worms passively 

sedimented to the bottom of the tube and then supernatant was removed. 5 ml of 

hypochlorite solution was added to the sedimented worms, followed by vigorous 

shaking for 2 min. Worms were centrifuged at 5000 g for 1 minute and the 

supernatant was discarded. The worm pellet was then washed with 5 ml of M9 buffer 

and centrifuged at 5000 g for 1 minute. The supernatant was removed and 1 ml of M9 

buffer and 4 ml of hypochlorite solution were added to the worm pellet, followed by 

vigorous shaking. Immediately after the worm cuticles are not visualized the tube was 

centrifuged again at 5000 g for 1 minute and the supernatant was removed. This step 

was repeated 2 more times to wash the eggs from the hypochlorite solution. Eggs 

were resuspended in 2-3 ml of M9 buffer. Eggs were counted in 10 µl of the 

suspended buffer using microscope, estimated the approximate amount of eggs in 2-3 

ml solution. Incubated overnight at 18 °C to get synchronized L1 worms. For 

measurement of developmental timing, the eggs were resuspended at a concentration 

of 20 eggs/µl.  
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5.9.1.3. Culturing of Worms for the Analysis of PolyQ Aggregates 
 

Approximately 2000 Synchronized L1 worms were placed on NGM agar plates with 

E. coli (OP50). Worms were then grown in incubators programmed with one of 

several conditions: constant temperature (16.5 °C); lower amplitude zeitgeber 

(temperature) cycle (12 h at 15 °C and 12 h at 18 °C); or higher amplitude zeitgeber 

(temperature) cycle (12 h at 13 °C and 12 h at 20 °C). All incubations were performed 

in constant darkness. HOBO data loggers monitored light and temperatures in the 

incubators. At the L4 stage (day 0 adult), worms were collected from NGM plates, 

transferred to NGM-FUDR plates with 10x concentrated E. coli (OP50) and incubated 

at the same temperature conditions until day 8 of adulthood. 

 
5.9.1.4. Culturing of C. elegans for the Analysis of Gene and Protein Expression 
 

Synchronized populations of an approximately 1000 L1 worms were grown on NGM 

agar plates in constant (16.5 °C) and temperature cycle (13 °C for 12 h and 20 °C for 

12 h). To create 24 or 48-hour time courses in cycling temperatures, we used two 

incubators where the cycles were programmed in antiphase, allowing us to collect 

samples for 24 hours over only 12 hours of sampling. Once the worms reached the L4 

stage, worms were harvested at 2 h intervals for 48 h, in a dark room. 

 

5.9.1.5. Single Worm Culture for Real-time Measurement of Developmental 

Timing 

 

Single arrested L1-stage animals were transfered to each well of a white, 96-well 

plate containing 100 µl of Luciferin solution-1. After pipetting nematodes into each of 

the wells, 100 µl of Luciferin solution-2 was added to each well. This procedure 

helped to provide the food supply to all the worms in the plate at same time, so that 

development was synchronously resumed. The plate was then sealed with an air 

permeable membrane from Breathe EasierTM Diversified BiotechTM and placed in a 

luminometer to measure bioluminescence over larval development (Olmedo et al., 

2015).    
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5.9.2. Motility Assay 
 

Motility was assayed by counting body bends of C. elegans (Morley et al., 2002; van 

Ham et al., 2010). For this assay, approximately 100 synchronized L4 worms were 

grown under different conditions on NGM-FUDR agar plates. On the day of the 

assay, 200 µl of M9 buffer was added on top of the worms to induce swimming. After 

1 minute, the movement of the worms was recorded for 1 min using a CCD video 

camera module of the Discovery V8 SteREO microscope. Body bends were manually 

counted from the recorded movies, with the researcher blind to the experimental 

conditions.  

 

5.9.3. Microscopy Methods 
 

5.9.3.1. Fluorescence Microscopy 

 

To prepare worms for fluorescence microscopy, approximately 100 synchronized L4 

worms were grown on a NGM-FUDR agar plate. Worms were collected on specific 

days to an eppendorf tube using 1 ml of cold M9 buffer. After collecting the worms, 

eppendorf tubes were placed in ice for 1 minute to sediment the worms to the bottom 

of the tube. Approximately 50 worms from the eppendorf tube were placed on top of 

a 24x60 mm coverslip with a 3% agarose pad. Worms were immobilized by adding 

10 µl of 100% ice-cold ethanol and a small coverslip was placed on top of the worms 

to seal the pad. Fluorescence pictures were taken for a minimum of 10 animals using 

a Leica ICC50 HD fluorescence microscope through a 10x/0.22 numerical aperture 

objective. Fluorescence intensity was measured using ImageJ, and validated by 

manual counting by researchers blind to the conditions. For these experiments, 

pictures of Q35::YFP worms were taken at an exposure time of 5 ns to reduce the 

background signal. Since exposure times of 5 ns didn´t allow us to see the non-

aggregated protein in control worms, pictures of Q0::YFP worms were taken with an 

exposure time of 12 ns. 
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5.9.4. Harvesting Animals for Diverse Purposes 
 

5.9.4.1. Worm Harvesting for the Analysis of Aggregation 

 

To extract the proteins from PolyQ-expressing worms, approximately 2000 

synchronized L4 worms were grown on two 9 cm NGM-FUDR agar plates. On 

specific days between day 0 (L4 worms) and day 8, worms were collected into an 

eppendorf tube using cold M9 buffer. Worms were sedimented by centrifugation at 

2000 g for 60 sec at 4 °C using a 5417 R eppendorf centrifuge and the supernatant 

was removed. The worm pellet was washed with 1 ml of ddH2O to remove leftover 

bacteria. After centrifugation at 2000 g for 60 sec at 4 °C, the supernatant was 

removed; the worm pellet was frozen in liquid nitrogen and stored at -80 °C. 

 

5.9.4.2. Worm Harvesting for the Analysis of RNA and Protein expression 

 

At each time point, approximately 750-1000 worms were collected into an eppendorf 

tube using 2 ml of ice-cold M9 buffer. Worms were then sedimented at 5000 rpm for 

15 s using an Eppendorf™ MiniSpin™. The supernatant was subsequently removed 

from the worm pellet and 1 ml of M9 buffer was added to wash the bacteria from the 

surface of the worms. After washing, M9 buffer was removed by centrifugation at 

5000 rpm for 15 s. The worm pellet was transferred to a sterile mini bead-beater tube, 

rapidly frozen in liquid nitrogen and preserved at -80°C.   

 

5.10. Biochemistry Methods 
 
5.10.1. RNA Methods 
 
5.10.1.1. RNA Extraction from C. elegans 

 

RNA extraction was done by a Trizol based method. Frozen worm samples with 0.5 

mm diameter of Zirconia/Silica beads were transfered from -80 ºC to liquid nitrogen 

and then transferred to ice immediately before starting the extraction. 0.5 ml of Trizol 

was added to each sample and the worms were lysed by applying 2 pulses of 30 sec in 
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a mini bead beater, separated by 5 minutes of incubation on ice. Samples were then 

incubated for 5 min on ice. After incubation, the worm lysate was transferred to a 

clean RNase free eppendorf tube, leaving the beads in the mini bead-beater tube. 100 

µl of chloroform was added to each sample and the tubes were shaken manually for 

15 sec. The samples were then incubated at room temperature for 3 min and 

centrifuged at 12,000 g / 4 °C for 15 min to separate the DNA and RNA (top layer) 

from proteins (bottom layer). Approximately 300 µl of the top layer was collected 

from each sample and transferred to a new RNase free eppendorf tube. The addition 

of chloroform and the centrifugation steps was repeated to achieve a high-quality 

extraction. 150 µl of 2-propanol was then added to 300 µl of the DNA and RNA 

mixture followed by incubation at room temperature for 10 min. After incubation, 

samples were centrifuged at 7,600 g for 10 min at 4 °C to collect the DNA/RNA 

pellet. The supernatant was then discarded carefully, without touching the pellet, and 

the pellet was washed thrice by addition of 0.5 ml of 70% EtOH and centrifugation at 

7,600 g for 10 min at 4 °C. The supernatant was discarded, the pellet was air-dried, 

and subsequently dissolved by adding 20 µl of RNase free H2O. The purity of RNA 

relative to DNA was assessed by measurement of the ratio between the absorbance at 

260 and 280 nm and the purity of RNA relative to solvent contaminants was assessed 

by measuring the ratio between the absorbance at 260 and 230 nm using a 

NanoDrop 1000 Spectrophotometer. 

 

5.10.1.2. DNase Treatment 

 

A DNase treatment was performed to remove DNA from the RNA extracts. For this 

experiment, we used the DnaseI amplification grade Kit from Invitrogen and followed 

the manufacturer’s protocol. For a 25 µl reaction, 2.5 µg of RNA, 2.5 µl of 10x 

DNase I buffer and 2.5 µl of DNase I was added to RNase free H2O. The reaction 

mixture was incubated at room temperature for 15 min followed by the addition of 2.5 

µl of 25 mM EDTA solution and heated for 10 min at 65°C using thermo cycler from 

PeqLab. 
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5.10.1.3. cDNA Synthesis 

 

To prepare cDNA, we used the TaqMan reverse transcription reaction reagents from 

Applied Biosystems. 100 µl of reverse transcription reaction mixture can convert a 

maximum of 2 µg of RNA to cDNA. For this experiment, we used 19 µl of reaction 

reagent to convert 100 ng of RNA. RNA was mixed with TaqMan reaction reagents 

and incubated at 25 °C for 10 min then reverse transcribed at 48 °C for 30 min, 

enzymes were inactivated at 95 °C for 5 min and the samples were held at 4 °C  using 

thermocycler of PeqLab. 

 

5.10.1.4. Quantitative Real-Time Polymerase Chain Reaction (qPCR) 

 

We used the SYBR Select Master Mix to perform quantitative PCR using a ViiA7 

Real-Time PCR System from Applied Biosystems. For this experiment, 15 µl of q-

PCR reaction mixture was added to 50 ng of cDNA in a MicroAMPTM Optical 384-

well plate. The plate was then sealed with MicroAMPTM Optical adhesive film from 

Applied Biosystems and centrifuged for 30 sec at 500 g to make sure that the samples 

were settled in the wells. The plate was placed into the thermal cycler and 

amplification was carried out using the following conditions. Data was analyzed by 

the 2-ΔΔCT method (Livak and Schmittgen, 2001). 

 

  PCR (40 cycles) 
Step Activation Denature Anneal/Extend 
Time 10 min 15 Sec 1 min 
Temperature 95 °C 95 °C 60 °C 

 

 
5.10.2. Protein Methods 
 

5.10.2.1. Protein Extraction Using Bioruptor 

 

To extract proteins from the harvested animals, NP 40 lysis buffer-1 was added to the 

worm pellet at a 1:1 ratio and worms were lysed for 8 min with pauses of 30 sec at 

high current setting (320W), at 4°C using BioruptorTM UCD-200. After lysis, a 
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clarifying spin was performed at 2000 rpm for 2 min to remove worm debris. The 

supernatant was then transferred to new eppendorf tubes without touching the pelleted 

debris.  

 

5.10.2.2. Protein Extraction Using Bead Beater 

 

To extract the proteins for Blue native poly acrylamide gel electrophoresis (BN-

PAGE) and Native agarose gel electrophoresis (NAGE) a 1:1 ratio of 1X PBS buffer 

and protease inhibitor cocktail was added to the worm pellet and the protein samples 

were obtained by applying 2 pulses of 30 sec in the mini bead beater, separated by 

incubation on ice for 5 minutes. 

 

5.10.2.3. Protein Quantification 

   

Proteins were quantified using the PierceTM BCA protein assay kit (Product No: 

23225) from Thermofisher scientific, following the microplate procedure in the 

manufacturer’s protocol. Absorbance was measured at 562 nm using a MultiskanTM 

FC Microplate Photometer from Thermo Scientific. 

 

5.10.2.4. Protein Separation by Ultracentrifugation 

 

Ultracentrifugation was used to separate soluble proteins from high molecular weight 

aggregates and insoluble proteins. For this experiment, the protein concentration in 

the samples was quantified and adjusted to 1.0 µg/µl with NP40 lysis buffer-1 

(Walther et al., 2015). A second protein quantification was performed to make sure 

that the protein concentrations were as expected and another adjustment was made 

when necessary. 100 µg of protein was loaded into polycarbonate centrifuge tubes 

(Order no: 343778) from Beckman Coulter and the volumes were adjusted precisely 

for all the samples with NP40 lysis buffer-1. Tubes were then centrifuged at 500,000 

g for 25 min at 4 °C. After centrifugation, the supernatant was collected as a soluble 

protein and frozen at -80 °C. The pellet was washed adding 100 µl of NP40 lysis 

buffer-1 followed by centrifugation at 500,000 g for 25 min at 4 °C. The supernatant 

was then removed and the pellets were preserved at -80 °C 
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5.10.3. Agarose Gel Electrophoresis 
 

5.10.3.1. Native Agarose Gel Electrophoresis (NAGE) 

 

NAGE was tested as a method to separate proteins in their native state (monomers, 

oligomers and aggregates) from crude protein lysates (Kim, 2011; van Ham et al., 

2010). To perform NAGE, an agarose gel was prepared from 1% of Agarose in         

1x Tris-Glycine Buffer. After boiling, the agarose solution was poured into a casting 

tray and left at room temperature. Once the gel was solidified, the gel comb was 

removed carefully, and the gel was placed into an electrophoresis unit. The gel was 

rinsed with 1x Tris-Glycine Buffer and equilibrated at 50 V for 1 hr, at 4°C. 60 µg of 

protein lysates (from section 5.10.2.2) with 4x native sample buffer was loaded on the 

gel and electrophoresed at 50 V for 16 hr at 4°C. The YFP signal on the gel was 

imaged using the Cy3 emission filter of the Bio-rad ChemiDocTM MP imaging 

system. ImageJ was used to perform quantify separated forms of proteins. 

 

5.10.3.2. Semi Denaturing Detergent Agarose Gel Electrophoresis (SDD-AGE) 

 

SDD-AGE was performed to separate the SDS resistant polymers and aggregates 

from the crude protein samples. For this experiment, an equal volume of SDD-lysis 

buffer was added to the sedimented worm pellets (from section 5.9.4.1). The worms 

were lysed in semi-denaturing conditions using a BioruptorTM. Worm debris was 

separated from protein lysates at 2,500 g for 5 minutes. The supernatant was then 

collected and the concentration of protein in the samples was quantified using the 

Bradford assay (Bio-Rad) (Bradford, 1976). A 1.5% agarose gel was prepared with 

SDD-AGE running buffer as described in section 5.8. After it solidified, the gel was 

placed in an electrophoresis unit and rinsed with ice-cold SDD-AGE running buffer 

and equilibrated at 60 V for 60 min at 4 °C. Protein samples were then prepared by 

adding 4x SDD-AGE sample buffer to 15 µg of crude protein and different treatments 

were applied to observe high molecular weight SDS-resistant polymers (or 

=aggregates) and low molecular weight monomers. To observe the high molecular 

weight proteins, samples were incubated at room temperature for 10 min. To generate 

the negative control (monomers), the same protein samples were incubated with 
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sample buffer at 95 °C for 10 min. This method also serves to confirm that the high 

molecular weight species are not due to covalent bond modifications. All protein 

samples were loaded into the gel and resolved at 60 V for 4 h, at 4°C. The gel was 

further processed for transferring proteins to nitrocellulose member through capillary 

action (Kryndushkin et al., 2003; Shemesh et al., 2013). 

 

5.10.4. Poly Acrylamide Gel Electrophoresis (PAGE) 
 

5.10.4.1. Blue Native Poly Acrylamide Gel Electrophoresis (BN-PAGE) 

 

To separate native proteins with a high resolution, we performed Blue Native PAGE. 

For this experiment, we used pre-cast NativePAGETM NovexTM 4 - 16% gradient Bis-

Tris gel from Invitrogen. The experiments were performed using the manufacture’s 

protocol with minor modifications. Briefly, protein lysates were prepared from worms 

using a mini bead-beater (Section 5.10.2.2). Proteins concentrations were quantified 

by a Bradford assay and 10 µg of crude protein sample was loaded onto a gel with 4X 

NativePAGETM sample buffer. The gel was run according to manufacturer’s 

recommendations. Fluorescent bands on the gel, revealing the signal from the YFP 

reporter was imaged using a Cy3 filter (Bio-rad ChemiDocTM MP imaging system). 

The quantification of the bands was done using Bio-rad Image LabTM software. 

 

5.10.4.2. NuPAGE 

 

5.10.4.2.1. NuPAGE for Insoluble Proteins 

 

NuPAGE is the pre casted and discontinuous SDS-PAGE gel system, where the 

proteins can resolve with neutral pH (7.0) (Penna and Cahalan, 2007). To resolve 

insoluble proteins, 50 µl of 1x SDS sample buffer was added to the insoluble pellet 

(from section 5.9.4.1) and incubated at 37 °C for 10 min with 30 sec of vortexing 

every 5 min. After dissolving the pellet, the protein solution was transferred from the 

polycarbonate ultracentrifuge tubes to eppendorf tubes and boiled for 10 min in a 

boiling water bath. Samples were then loaded into the NuPAGETM NovexTM 4-12% 

gradient gel (Order no: WG1401BX10) and electrophoresed using MES buffer. 
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Proteins were resolved in the gel at 200V	
  constant	
  with	
  262mA	
  until	
  1/3rd	
  run	
  then	
  

changed	
  to	
  162mA	
  for	
  the	
  remaining	
  run.	
  

	
  

5.10.4.2.2. NuPAGE for Soluble Proteins 

 

For soluble proteins, 4x SDS Sample buffer was added to the 25 µl of soluble protein. 

Boiling, gel loading and resolving steps were performed as described for NuPAGE for 

Insoluble proteins in 5.10.4.2.1.  

 

5.10.4.2.3. NuPAGE for Total Proteins 

 

For the total protein, 12.5 µg of protein was suspended in 15 µl using NP40 lysis 

buffer–y1 then added the equal amount of 1x SDS Sample buffer. Further steps were 

performed as described for NuPAGE for Insoluble proteins in 5.10.4.2.1. 

 

5.10.5. Capillary Transfer 
 

Capillary transfer was performed to transfer the proteins from an SDD agarose gel to 

a 0.2µm Whatman ProTran® nitrocellulose membrane. To perform the capillary 

transfer, 10 pieces of chromatographic paper (17 x 10 cm) from Roth were placed on 

top of the flat tray. 15 pieces of gel blotting paper (17 x 10 cm) were then placed on 

top of the chromatographic papers and a nitrocellulose membrane of the same size 

was placed on top of the blotting paper. The SDD-agarose gel was washed with 

ddH2O and placed on top of the nitrocellulose membrane, removing any air bubbles 

that might have formed between them. Two blotting papers of 30 x 10 cm were 

equilibrated in 1X TBS buffer and placed on top of the agarose gel, with the ends 

immersed in a 1X TBS buffer tank, acting as a wick for the transfer. 15 Blotting and 

10 chromatographic papers of 17 x 10 cm were placed on top of the wet blotting 

paper bridge. A ½ kg weight block was placed on top to make sure membranes were 

in contact without any air gaps. This setup was left at room temperature overnight. 

The following day, the nitrocellulose membrane was washed with 1X TBS and used 

for the detection of the tagged proteins with a α-GFP antibody by western blotting. 

 



 

	
   45	
  

5.10.6. Quantification Methods 
 

5.10.6.1. Commasie G250 Staining of the NuPAGE Gel 

 

After electrophoresis, NuPAGE gradient gel (4-12%) was placed in a microwave 

resistant plastic box and the gel was washed three times with ddH2O. After washing, 

the gel was placed with ddH2O until properly rinsed and followed microwave at the 

high level for 30-60sec without boiling for three times. Commasie G-250 solution was 

then added to the membrane and microwaved for 30sec at the high level. The staining 

container was placed on an orbital shaker for gentle shaking at room temperature for 

20min. After gentle shaking, the gel was washed three times as described before and 

rinsed the gel in ddH2O for 60min to remove the background and pictures were taken 

using Bio-rad ChemiDocTM using manufacture’s instructions. 

 

5.10.6.2. Silver Staining of the NuPAGE gel 

 

Silver staining was performed to the NuPAGE gradient gel (4-12%) using Page 

SilverTM Silver Staining kit (Product no: #K0681) of Fermantas. For silver staining, 

we followed the manufacture’s maximum sensitivity staining protocol. This protocol 

was slightly modulated at the developing step and the developing time was fixed to 2-

3 min. 

 

5.10.6.3. Western Blotting 

 

Western blotting was performed to transfer proteins from poly acrylamide gel to 

nitrocellulose membrane (Burnette, 1981). The protein gel was transferred to a 0.2 

µM nitrocellulose membrane of Transblot® turboTM transfer pack at a constant 

electrical power of 25 V and 2.5 A for 7 min using the Bio-rad trans-blot turbo 

transfer system. The nitrocellulose membrane was washed with ddH2O and stained 

with 0.2% Ponceau by agitating the membrane for 1 min at room temperature to 

confirm the protein transfer. The membrane was then washed with TBS-T buffer for 5 

min and blocked for 60 min with blocking solution (5% non-fat dried milk powder in 

TBS-T). After blocking, the membrane was washed for 60 sec using TBS-T buffer 
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and incubated with mouse α-GFP (1:5,000 in blocking solution), overnight at 4°C. 

The membrane was then washed with TBS-T buffer for 15 min by changing the 

buffer every 5 min. The membrane was then incubated with HRP-conjugated α-

mouse antibody (1:10,000 in blocking solution) for 60 min at room temperature. 

Incubation was followed by three washes of the membrane for 15 min in TBS-T 

buffer. Incubating 3 min with 2 ml of ECL reagents mixture then developed the 

membrane. The chemiluminescence signal was observed using the Bio-rad 

ChemidocTM. Pictures were taken at 5 sec intervals until the signal showed saturation. 

 

5.10.6.4. Quantification of Protein Bands from Gel Pictures and Nitrocellulose 

Membrane	
  

 

Protein bands were quantified using Image Lab Version 5.1 build 8. To quantify the 

proteins, on the gels and blots, pictures were taken using a Bio-rad ChemiDocTM and 

uploaded to Image Lab. Protein bands were selected using the lane-band tool and 

quantified using the quantity tool, accordingly to the manufacturer´s instructions. 

Calculations were performed using Microsoft Excel® for Mac 2011. 

 
 
5.10.7. Proteomics 
 

These protocols were performed by Dr. Maria Robles. 

 

5.10.7.1 Sample Preparation for LC-MS 

 
Insoluble pellets were processed for mass spectrometry analysis as in Hops et al. in 

preparation. Briefly, pellets from the ultracentrifugation were resuspended in 100 ul 

of 2% sodium dodecyl sulfate (SDS) and incubated at 95 °C for 10 min prior to 

centrifugation for 10 min at 16,000 g. Supernatants were discarded and pellets were 

washed twice in 2% SDS by shaking at 1,000 rpm for 5 min, prior to centrifugation at 

16,000 g for 10 min. The pellets were again washed twice in PBS for 5 min with 

shaking at 1,000 rpm, centrifuged at 16,000 g for 10 min and the supernatant was 

discarded. Then, pellets were re-solubilized with 100 µl of 90% formic acid and 

incubated at 37 °C for 45 min under shaking at 1,000 rpm prior to snap-freezing of 
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samples in liquid nitrogen and then evaporating them in a speed-vac with a cold-trap 

overnight (RVC 2-25 Martin Chirst GmbH). The next day, 50 µl of denaturation 

buffer (6M urea/2M thiourea/10mM dithiothreitol (DTT)) was added to the samples 

and sonicated for 15 min in a water bath before adding 5 µl of 0.55M Iodoacetamide 

(IAA) and incubating in the dark at R/T for 10 min with shaking at 1,000 rpm. After 

that 1:100 (enzyme:protein) LysC was added and samples were incubated at R/T for 

at least 3 hours with shaking at 1,000 rpm. Samples were then diluted with 150 µl of 

ammonium bicarbonate prior to the addition of 1:100 (enzyme:protein) trypsin. 

Digestion was performed by incubating at R/T overnight with shaking at 1,000 rpm. 

The next day digestion was stopped by adding 10 µl of 10% TFA. Peptides were 

purified in styrenedivinylbenzene–reversed phase sulfonated (SDB-RPS; 3M Empore) 

StageTips.  

 
5.10.7.2. LC-MS/MS Analysis and Data Processing  
 
Prior to MS, peptide mixtures were separated on a 50 cm reversed phase column 

(diameter of 75 mm packed in-house-with ReproSil-Pur C18-AQ3-9	
  mm 1.9 µm resin 

(Dr. Maisch GmbH) over a 60 min gradient of 5% - 50% buffer B (0.1% formic 10	
  

acid and 80% ACN) using the Proxeon EASY-nLC system with a flow rate of 300 

nl/min. The nLC system was coupled to a Q Exactive HF mass spectrometer (Thermo 

Fisher Scientific), acquiring full scans (300–1,650 m/z, R = 60,000 at 200 m/z) at a 

target of 3e6 ions. The ten most intense ions were isolated to a target of 1e5 with 

maximum injection time 120 ms and fragmented	
   with higher-energy collisional 

dissociation (HCD) (isolation window 1,4 m/z, normalized collision energy 27), 

underfill ratio 10%) and detected in the Orbitrap (R=15,000). Raw mass spectrometry 

files were processed within the MaxQuant environment (version 1.5.2.17) using the 

integrated Andromeda search engine with a false-discovery rate (FDR) is 0.1 at the 

protein, peptide and modification level. The search included variable modifications 

for oxidized methionine (M), acetylation (protein N-term) and phospho (STY) and 

fixed modifications for carbamidomethyl (C). Peptides with at least six amino acids 

were considered for identification,	
   and “match between runs” was enabled with a 

matching time window of 0.7 min to transfer MS1 identifications between runs. 

Peptides and proteins were identified using a UniProt FASTA database from C. 

elegans (from 2012). 
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5.11.1. Fluorescence Signal Analysis 
 

Fluorescence from microscopy was measured using the ImageJ open source program. 

To analyze aggregation, the pictures taken from the fluorescence microscope (from 

section 5.9.3.1) were converted into the 8-bit grey scale and the threshold was fixed to 

remove background signals. Afterwards, watershed image processing was performed 

for a pixel-based segmentation of nearby aggregates. In each worm, number and size 

of fluorescent aggregates were calculated using the particle analysis tool. 

 

5.11.2. Data Analysis for Larval Development  
 

To study developmental timing in Q0 and Q35 transgenic C. elegans, data was 

analyzed based on a published algorithm (Olmedo et al., 2015). The raw data acquired 

from the luminometer was analyzed using R software.  To measure the duration of the 

molts and larval stages, raw data was trend-corrected by dividing with centered 

moving average. 75% of the moving average value was used as a threshold for 

generating a binary file to evaluate the molting time of the worm. The onset and offset 

of the molt was detected by the transition of values from 1 to 0 and 0 to 1 

respectively.  Stabilizing the transition of values in the binary file for an hour-

prevented noise from the luminescence signal of the worm; molts and larval stages 

were then calculated and plotted using GraphPad PRISM v6.0c. The Student’s  t-test 

was used for statistical analysis. 
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6. Results 
 
6.1 Analysis of Protein Aggregation in C. elegans 

Neurodegeneration Models at Different Zeitgeber 

Conditions 
 

6.1.1. Optimization of Methods for the Analysis of Protein 

Aggregation in C. elegans Neurodegeneration Models 
 

6.1.1.1. Analysis of Q35::YFP and α-synuclein::YFP in Blue Native Poly 

Acrylamide Gel Electrophoresis (BN-PAGE) 

 

To study the impact of zeitgeber conditions on the aggregation of Q35::YFP and             

α-synuclein::YFP in C. elegans, the aggregation was quantified by biochemical 

methods and fluorescence microscopy. 

 

In the process of establishing a robust biochemical method for the quantification of 

soluble and insoluble Q35::YFP and α-synuclein::YFP, protein lysates were resolved 

in blue native polyacrylamide gels (BN-PAGE) (Fiala et al., 2011; Nucifora et al., 

2012) followed by fluorescence imaging. Interestingly, five different protein bands 

were observed from Day 2 to 6 in all Q35::YFP protein samples acquired from 

different zeitgeber conditions (Fig. 6-1a). We suspected that band-1 corresponded to 

high molecular weight insoluble aggregates of Q35::YFP, which remained unresolved 

on the gel. The signal of band-1 was not visualized at Day 0 samples and had very 

low signal at Day 2 samples.  

 

As a control, we resolved crude proteins of α-synuclein::YFP in blue native gels 

followed by fluorescence imaging. A strong fluorescent band (Band-1) was observed 

in Day 2 and Day 4 samples compared to Day 0 and Day 6 samples in all conditions. 

Low intensity bands were also observed on the gel (Fig. 6-1b). However, 

identification of these protein bands from blue native gels of Q35::YFP and               

α-synuclein::YFP was not possible due to a lack of suitable protein markers. The 
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results suggest that the quantification of insoluble and soluble Q35::YFP and             

α-synuclein::YFP proteins may not be possible by BN-PAGE. However, the 

observation of Q35::YFP insoluble aggregates in the wells suggested another 

approach to analyze aggregation by using gels with larger pore size. 

 

 
 
Fig. 6-1: Blue native polyacrylamide gel of Q35::YFP and α-synuclein::YFP. Samples were 
collected over time (Day 0-6) from worms held in constant temperature (16.5°C), lower 
amplitude temperature cycle (12 h at 15 °C and 12 h at 18 °C) and higher amplitude 
temperature cycle (12 h at 13 °C and 12 h at 20 °C). Bands are represented with numbers. a) 
Blue native gel of Q35::YFP protein samples. b) Blue native gel of α-synuclein::YFP 
samples. 
 

6.1.1.2. Analysis of Q35::YFP by Native Agarose Gel Electrophoresis (NAGE) 

 

Based on the observations from BN-PAGE, we hypothesized that high molecular 

weight native protein aggregates of Q35::YFP may enter into those agarose gels that 

have a larger pore size. Native agarose gel electrophoresis (NAGE) (Kim, 2011; van 

Ham et al., 2010) was used to resolve the crude proteins of Q35 worms under 

different zeitgeber conditions. Some protein species of Q35::YFP migrated into the 

gel and were visualized as a single fluorescent band (Band-2 of Fig. 6-2). Despite the 

larger pore size, fluorescent species were still found in the wells; these were suspected 

to be Q35::YFP aggregates (Band-1 of Fig. 6-2). The intensity of the fluorescent band 

on the gel was strong at Day 2 and Day 4 in all zeitgeber conditions, compared to Day 

0 and Day 6, suggesting that these low molecular weight forms appear in adult worms 
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and then disappear again, possibly due to their aggregation. However, Q35 protein 

species in the wells and on the gel were difficult to quantify and identify due to the 

lack of loading controls and protein markers. Additionally, we identified that proteins 

resolve poorly in NAGE compared to Blue native PAGE. We conclude that Native 

Agarose Gel Electrophoresis (NAGE) may not be sufficient for the separation of 

totally insoluble species from soluble species of Q35::YFP. 

 

 
 
Fig. 6-2: Native agarose gel for analysis of Q35::YFP. Protein samples of Q35::YFP worms 
with age Day 0-6 in different zeitgeber conditions. Constant temperature is 16.5 °C; lower 
amplitude temperature cycle (12 h at 15°C and 12 h at 18°C) and higher amplitude 
temperature cycle (12 h at 13 °C and 12 h at 20 °C). Protein bands are indicated by numbers 
(1 and 2).  
 

6.1.1.3. Analysis of Q35::YFP by Semi Denaturing Detergent Agarose Gel 

Electrophoresis (SDD-AGE) 

 

Our previous experiments suggested that native aggregates cannot be resolved by   

BN-PAGE and NAGE. Further, we approached semi-denaturing methods (SDD-

AGE) for protein lysates in order to visualize high molecular weight polymers and 

monomers (Kryndushkin et al., 2003; Shemesh et al., 2013). We resolved crude 

protein samples extracted over time from different zeitgeber conditions into SDD 

agarose gels with and without boiling. As per the literature, boiling treatment 

dissolves the polymers to Q35::YFP monomers. In our results, we observed two 

different bands from each protein sample, both with and without boiling treatment. 
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Band-1 from all protein samples were suspected to be high molecular weight 

polymers (intermediate aggregates) and band-2 as monomers (Fig. 6-3). The 

visualized signals of band-1 (high molecular weight polymer) at Day 2 and Day 4 

from the higher amplitude temperature cycle were weaker than those from the 

constant conditions and lower amplitude temperature cycles. This suggests that the 

formation of high molecular weight polymers may be slower in higher amplitude 

temperature cycles compared to other conditions. However, because identification of 

Q35::YFP protein species is difficult without a suitable protein marker and because 

the quantification of proteins bands is a challenging process given a lack of loading 

controls, we conclude cautiously that SDD-AGE is not a robust method for precise 

quantification of protein aggregation. 
 

 
 
Fig. 6-3: Semi denaturing detergent agarose gel for analysis of Q35::YFP. Days represents 
age with respective zeitgeber conditions; Constant temperature (16.5 °C), lower amplitude 
temperature cycle (15 °C for 12 h and 18 °C for 12 h), higher amplitude temperature cycles 
(13 °C for 12 h and 20 °C for 12 h); - and + symbols represent absence or presence of heat 
treatment (at 95 °C). Numbers represent protein bands. Band-1 and Band-2 are YFP signals 
from heat-treated and non-heat treated samples, respectively.  
 

6.1.1.4. Analysis of Q35::YFP and α-synuclein::YFP in Protein Lysates using 

SDS-PAGE and Western Blot  

 

We further analyzed Q35::YFP and α-synuclein::YFP protein lysates using standard 

SDS-PAGE (Laemmli, 1970). We resolved denatured protein extracts that had been 

denatured using Laemmli buffer in a Bio-rad 4-15% CriterionTM TGX Stain-FreeTM 

gradient gel. Western blotting (Burnette, 1981) was used for detection of YFP. A time 
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course experiment in different zeitgeber conditions for Q35::YFP and α-

synuclein::YFP proteins is shown in figure 6-4. The Q35 western blot suggests that 

the YFP signal decreases with age in all zeitgeber conditions. We observed, however, 

that the amount of Q35::YFP is higher at all time points in a higher amplitude 

temperature cycle compared a lower one and also in comparison with constant 

conditions. Some high molecular-weight Q35::YFP species were observed in the 

wells, possibly corresponding to insoluble aggregates (Figs. 6-4 a, e).  

 

 
 
Fig. 6-4: Analysis of Q35::YFP and α-synuclein::YFP in crude protein extract by western 
blot. Constant temperature (16.5 °C; Open circles), lower amplitude temperature cycle (15 °C 
for 12 h and 18 °C for 12 h; Crossed circles) and higher amplitude temperature cycle (13 °C 
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for 12 h and 20 °C for 12 h; Closed circles). Protein samples were collected over time from 
the three-zeitgeber conditions. a) Immunoblotting of Q35::YFP; b) Immunoblotting of α-
synuclein: YFP; c) Stain free gel of total proteins from Q35::YFP worms; d) Stain free gel of 
protein samples from α-synuclein::YFP worms; e) Quantitative analysis of Q35::YFP. The 
amount of protein decreases with age in all zeitgeber conditions of ± SEM of three 
experiments; f) Quantitative analysis of α-synuclein::YFP from three independent 
experiments. The amount of protein decreases with age in all zeitgeber conditions of ± SEM 
of three experiments. 
 

After quantitation of α-synuclein::YFP signal from three independent experiments, we 

observed similar trends as for Q35::YFP, with higher amplitude temperature cycles 

having more α-synuclein::YFP at Day 2 and Day 4 compared to lower amplitude 

temperature cycles and constant conditions (Figs. 6-4 b, e). However, from this data it 

was difficult to predict the effect of higher amplitude temperature cycles on 

aggregation of Q35::YFP and α-synuclein::YFP.  

 

We suspect that the specific bands observed in SDS-PAGE may be a mixture of SDS-

soluble components (coming from native SDS-soluble polymers and intermediate 

aggregates), which are involved in the formation of high molecular weight compact 

insoluble aggregates. In this experiment, we observed more SDS-soluble forms in 

higher amplitude temperature cycles. We hypothesize that higher amplitude 

temperature cycles have less aggregation compared to other conditions. However, this 

method was unable to provide enough information on insoluble and soluble proteins. 

 

6.1.1.5. Summarized Results of BN-PAGE, NAGE, SDD-AGE and SDS-PAGE 

for Quantifying Q35::YFP and α-synuclein::YFP aggregation 

 

The biochemical methods tested to quantify insoluble and soluble proteins from 

native or denatured crude protein samples did not provide sufficient information on 

insoluble and soluble protein species from Q35::YFP and α-synuclein::YFP.           

BN-PAGE is a good method to separate different protein species in a high-resolution 

manner, but it does not identify those species because it lacks a suitable protein 

marker because proteins do not run true to their molecular weight in native gels. 

Based on the published papers from van Ham et al., 2010 and Shemesh et al., 2013, 

we experimented with NAGE and SDD-AGE methods. Even though we found that 

some protein species do enter these gels, the protein nevertheless cannot be reliably 

characterised due to the lack of loading controls and suitable protein markers. 
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Furthermore, characteristic pattern of protein bands were not observed using these 

methods. We further performed SDS-PAGE (Laemmli, 1970), a protocol calling for 

rigorous denaturation of protein extracts. Treatment of extracts for SDS-PAGE 

dissolves the SDS soluble forms that include native monomers, polymers and 

intermediate aggregates, leading to a Q35::YFP band of a precise molecular weight. 

The SDS-resistant aggregates do not enter on the gel due to their high molecular 

weight. Although these results were inconclusive due to the limited tools available, 

they help to show the trend of SDS-resistant aggregation. We eventually seperated 

native soluble protein species from insoluble proteins by ultracentrifugation followed 

by an SDS-treatment of insoluble species for the quantification of SDS-solubilized 

insoluble forms (see below, section 6.1.2.2). 

 

6.1.2. Analysis of Q35::YFP Protein Aggregation using Optimized 

Methods 
 

6.1.2.1. Analysis of Q35::YFP using Fluorescence Microscopy 

 

The results of SDD-AGE and SDS-PAGE suggest that higher amplitude temperature 

cycles enable interesting conditions that may influence aggregate formation, which is 

a key aspect of our working hypothesis. We analyzed Q35::YFP aggregation in 

worms held at constant temperature (16.5 °C) and at temperature cycle (13 °C for 12 

h and 20 °C for 12 h) using fluorescence microscopy. 

 

Fluorescent signals from Q35::YFP aggregates were captured by fluorescence 

microscopy and then quantified using imageJ (Fig. 6-5c). PolyQ proteins were 

soluble/non-aggregated in the muscle cells of Q35 worms until they reached 

adulthood. The aggregation started in adults and increased with age. We did not 

identify fluorescent aggregates using microscopy at Day 0 (L4) adults in any of the 

zeitgeber conditions. The onset of aggregation was observed in Day 2 adults; 

thereafter, aggregation increased with age in both constant and cyclic conditions. 

Interestingly, at Day 2 and Day 4 the number of aggregates was significantly lower in 

cyclic conditions than in constant conditions. In older worms, at Day 6 and 8 of 

adulthood, the number of aggregates was not significantly different between the two 
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zeitgeber conditions. However, the experimental replicates at Day 8 showed a trend 

that worms have a lower number of aggregates in cyclic compared to constant 

conditions (Figs. 6-5 a, d). The control Q0::YFP, did not form aggregates with aging, 

at least until Day 8, and in either constant or cyclic conditions (Fig. 6-5b). Thus, 

fluorescence microscopy of Q35::YFP worms in zeitgeber conditions suggests that 

temperature cycles impact the formation of aggregates. 
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Fig. 6-5: Microscopic analysis of number of aggregates in Q35::YFP and Q0::YFP worms in 
zeitgeber conditions with age (Day 2-8 adults). a) The right and left panels show the 
visualization of fluorescent aggregates in Q35::YFP worms at constant (16.5 °C) and cyclic 
conditions (13 °C for 12 h and 20 °C for 12 h) respectively; b) Day 8 adults of Q0::YFP 
worms in constant and cyclic conditions show no aggregates; c) Left panel is an example of 
the fluorescence aggregates of Q35::YFP worms. Right panel represents the aggregates from 
the same worm using imageJ; d) Quantification of the number of aggregates by age in 
constant and cyclic conditions of Q35::YFP worms. Open and closed circles represent 
constant and cyclic conditions, respectively. Each data point represents the ± SEM of three 
independent experiments. Aggregates were analyzed from ≥ 10 worms from each experiment.  
The number of Q35 aggregates from cyclic temperatures is significantly lower compared to 
constant temperature at Day 2 and 4 adults when comparing three independent experiments 
(Mann-Whitney U-Test, ****p< 0.001). 
 

6.1.2.2. Analysis of Q35::YFP using Ultracentrifugation, NuPAGE and Western 

Blot 

 

The results of BN-PAGE, NAGE, SDD-AGE and SDS-PAGE with crude proteins did 

not enable identification and quantification of the insoluble and soluble Q35::YFP 

protein species. We used ultracentrifugation to separate soluble and insoluble species 

(pelleted proetins) and subjected the samples to NuPAGE 4-12% Bis-Tris gel in MES 

running buffer (Penna and Cahalan, 2007) and western blot (Burnette, 1981) analysis. 

Q35::YFP was detected using an α-GFP antibody. The amount of soluble and SDS-
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soluble Q35::YFP aggregates were quantified by age in constant and cyclic 

conditions. The western blot suggests that SDS soluble aggregates from the protein 

pellet were resolved on the gel with some polyQ species. SDS-reisistant polyQ 

aggregates were still found in the wells (Fig. 6-6a). The YFP Signal from the blot was 

normalized to total protein (Fig. 6-6e). We found that the amount of soluble 

Q35::YFP decreased with age by increasing insoluble Q35::YFP (Fig. 6-6a-d). 

Furthermore, we observed that the age-dependent increase of SDS soluble Q35::YFP 

proteins from the insoluble proteins is quantitatively different in extracts from animals 

held in constant conditions versus temperature cycles. We observed that the amount 

of insoluble Q35::YFP is lower at Day 6 and Day 8 of the samples acquired from 

temperature cycles compared to the constant conditions.  
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Fig. 6-6: Quantification of insoluble and soluble Q35::YFP by age (Day 0-8) from constant 
(16.5 °C) and cyclic temperatures (13 °C for 12 h and 20 °C for 12 h) of three independent 
experiments. a) Representative western blot of solubilized Q35::YFP from pelleted proteins. 
Age at harvest is indicated for the samples from worms held in constant (left) or 24 h 
temperature cycles (right). b) Western blot of soluble Q35::YFP from animals held in 
constant (left) and 24h temperature cycles (right). c) Quantitation of Q35::YFP from pelleted 
proteins from animals cultivated in constant (open circles) and temperature cycles (closed 
circles) The amount of pelleted YFP was significantly different between the cultivation 
conditions on day 6 (Mann-Whitney U-Test, p< 0.05). d) Quantitation of soluble Q35::YFP 
from supernatants. Constant conditions are graphed as open circles and temperature cycles as 
closed circles. Soluble YFP decreases with age in both constant and cyclic temperatures. e) 
An example of the gels used for quantitation of total protein: coomassie stained NuPAGE 
gradient gel (4-12%). Data for panel b and d are from three independent experiments. 
 

Particularly at Day 6, we observed that insoluble Q35::YFP is significantly lower in 

the three independent experiments (Fig. 6-6b). Following the observation of the 

significant difference at Day 6, we became interested in understanding the 

composition of proteins in Q35 aggregate formation in animals held in either at 

constant conditions or 24h temperature cycles. 

 

This is a highly robust method for the quantification of both insoluble and soluble 

Q35::YFP from protein lysates. The results support the hypothesis that age-dependent 

aggregate formation is delayed in temperature cycles compared to constant 

conditions. The results obtained with this method show the same trend as those 

obtained from the analysis of the number of aggregates by fluorescence microscopy. 

 

6.1.2.3. Analysis of Cellular Proteins in Q35::YFP Aggregates by NuPAGE and 

Silver Staining 

 

Based on the observations from Figure 4-6, I hypothesized that the protein 

composition of Q35::YFP aggregates would also show differences. We collected 

samples from Day 6 and 8 from the worms held in constant conditions and 

temperature cycles. After ultracentrifugation, retention of the pellets (the soluble 

fraction was not used here) and SDS treatment of the pellets, the solubilized proteins 

were resolved on a gradient gel and visualized with silver staining. We compared 

lanes of these gels to understand the gross differences in the pelleted proteins. In 

general, protein bands were observed as very compact and closely spaced on the gel. 

There was a strong band closed to 37 kDa, which may correspond to be Q35::YFP. 

Furthermore, we used the silver stained gels to estimate the collection of proteins 
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involved in Q35 aggregation, but no significant differences were observed in the 

amount of insoluble protein between zeitgeber conditions at Day 6 and Day 8       

(Fig. 6-7 a, b). We also report here that the quantity of the band that runs at the same 

molecular weight as Q35::YFP is low in cycling conditions compared to constant 

conditions at Day 6 and Day 8 (Figs. 6-7 a, c). Our silver staining results suggest that 

highly sensitive protein analysis tools such as proteomics may be required in order to 

identify the quantitative changes of cellular proteins involved in polyQ aggregation. 

 
 
Fig. 6-7: Silver staining for analysis of cellular proteins in Q35 aggregates with age in 
Zeitgeber conditions of three independent experiments. Open circles represent constant 
condition (16.5 °C). Closed circles represent cyclic condition (13 °C for 12 h and 20 °C for 12 
h). a) Silver stained NuPAGE gel of insoluble proteins samples were collected from Day 6 
and Day 8; b) Quantitative analysis of insoluble proteins from constant and cyclic conditions. 
No significant differences in the amount of insoluble proteins between the zeitgeber 
conditions; c) Quantitative analysis of the bands running at the same molecular weight 
consistent with Q35::YFP is less dense in cyclic compared to constant conditions. 
 

6.1.2.4. Analysis of Cellular Proteins in Q35::YFP aggregates using LC-MS 

 

To better understand the impact of temperature cycles on Q35::YFP aggregation, we 

further analyzed the proteins involved with polyQ aggregation using LC-MS (Peng et 
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al., 2003). We focused on Day 6 samples and compared the proteins present in 

samples from constant conditions with those from temperature cycles. We found 

around 60 proteins are significantly more abundant in cyclic conditions compared to 

constant conditions. Interestingly, RME-8, RAN-1, CCT-6 and RPL-1 are more 

abundant in cyclic conditions. RNAi screens by Ellen Nollen suggest that these 

candidate proteins are suppressors of polyQ aggregation (Nollen et al., 2004). 

 

In addition to aggregation suppressors, we identified proteins involved in proteostasis 

mechanisms (CYN-7 and RPL-41). CYN-7, also known as CYP-7, is involved in the 

protein folding process (Page et al., 1996). We were also able to identify a small 

number of proteins that were significantly more abundant in constant conditions   

(16.5 °C). Among this sub-group, the only protein has been reported as a polyQ 

aggregation suppressor (Nollen et al., 2004), is RPS-26 (Fig. 6-8). 
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Fig. 6-8 Volcano plot displaying the t-test result of three replicate proteomes (label 
free intensities) analysis of protein aggregates from Q35::YFP worms held in cycling 
and constant conditions. X-axis shows fold-change of the intensities between the 
conditions and the Y-axis the p value of the t-test. Proteins statistically more abundant 
in one of the conditions are colored, pink in constant and blue in cycling condition. 
 
Therefore, we suggest that expression of proteins that suppress poly-glutamine 

aggregation and components of the proteostasis network depends on zeitgeber 

structures. Zeitgebers therefore may play a role in polyQ aggregation (rates and/or 

amounts) during the lifetime of Q35::YFP transgenic worms. 

 

6.2. Motility Analysis of Q35::YFP, α-synuclein::YFP 

Worms in Zeitgeber Conditions 
 

Expression of Q35::YFP and α-synuclein::YFP in muscle cells of C. elegans has 

shown motility defects in aging worms (Morley et al., 2002; van Ham et al., 2010). In 

this study, we measured the number of body bends by age from Day 0 to Day 8 adults 

of Q35::YFP and α-synuclein::YFP worms held in both constant temperatures and 

temperature cycles. PolyQ::YFP is soluble in muscle cells until worms reach Day 2 

adulthood, then they start to show aggregation by multiple measures. We previously 

observed slower aggregate formation in worms at temperature cycles (Figs. 6-6, 7), 

and now we investigated how these temperature cycles affect the motility of Q35 and 

α-synuclein transgenic worms. Our results from three independent experiments show 

that the motility decreases with age in both worm strains held in both zeitgeber 

conditions (Fig. 6-9).  
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Fig. 6-9: Motility analysis of Q35::YFP worms in contrasting zeitgeber conditions. The 
number of body bends per minute of a synchronized population of worms from three 
independent experiments. Body bends were counted for ≥ 10 worms from each experiment. 
Open circles represent constant temperature (16.5 °C) and Closed circles represent cyclic    
(13 °C for 12 h and 20 °C for 12 h) conditions. The number of body bends in Q35::YFP 
worms were significantly decreased with age (Mann-Whitney U-Test, p<0.01) in both 
zeitgeber conditions.  
 
The largest decline in the number of body bends was observed at day 6 in Q35 

worms, but there was no significant change in motility between zeitgeber conditions 

in both polyQ and α-synuclein strains. We concluded that the motility assay shows 

less sensitive than biochemistry or microsopy methods. 

 
6.3. Expression Analysis of C. elegans Heat Shock Proteins 

and unc-54 in Zeitgeber Conditions 
 

Due to the delayed aggregation of poly-glutamine in temperature cycles, we were 

interested in the regulation of heat shock proteins (HSPs) in different zeitgeber 

conditions. There are certain classes of heat shock proteins can prevent the protein 

aggregation by direct interaction with unfolded substrates, small heat shock proteins 

are one among them (Haslbeck and Vierling, 2015). In humans, mutations of small 

heat shock proteins causes cataracts, myopathies and neuropathies (Bakthisaran et al., 

2015). Therefore, in the present study, we focused on impact of entraining conditions 

on small heat shock proteins. As their name implies, heat shock conditions have been 

used to study regulation of small heat shock protein genes. We employed a 

temperature range (13 ºC to 20 ºC) normally experienced by the nematodes in their 

natural habitat and thus do not represent heat- or cold-shock conditions. Schibler’s lab 

showed that binding of HSF-1 to heat shock elements in mammals is rhythmic at 

physiological temperature cycles (Reinke et al., 2008). Therefore, the regulation of 

the small heat shock proteins in C. elegans was investigated with our entrained 

conditions. RNA expression of small heat shock proteins (hsp-16.1, hsp-16.2, hsp-43, 

hsp-12.6), hsp-4 (Hsp70 homolog) and unc-54 in adult animals was determined over a 

period of 48 hours in either constant conditions (16.5 °C) or in temperature cycles of 

12 h at 13 °C and 12 h at 20 °C. Expression levels of these genes are normalized to 

act-4 and ama-1 levels. 
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6.3.1. Rhythmic mRNA Expression of hsp-16’s (hsp-16.1 and hsp-

16.2) Regulated by Temperature Cycles 
 

We measured the expression of hsp-16.1 and hsp-16.2 over 48 hours in order to 

investigate their regulation in constant conditions and temperature cycles. hsp-16.1 

and hsp-16.2 expression is induced by heat shock (Jones et al., 1989) and suppress the 

protein aggregation and toxicity (Leroux et al., 1997; Fonte et al., 2008). We 

measured the levels of RNA in zeitgeber conditions over time and observed an 

increase in the abundance of hsp-16s in the warm phase of the temperature cycle, and 

that the expression of hsp-16s was significantly rhythmic over the period of 24 h for 2 

days in a temperature cycle (Figs. 6-10 a, c). In constant conditions, the signal showed 

no significant changes over the 48 hours of the experiment (Figs. 6-10 b, d). These 

observations suggest that RNA levels of hsp-16s are regulated by temperature cycles 

in the absence of heat stress. 

 

 
 
Fig. 6-10: mRNA expression of hsp-16.1 and hsp-16.2 over two days in different zeitgeber 
conditions. Each data point represents the average ± SEM of three independent experiments. 
RNA levels of hsp-16.1 and hsp-16.2 were normalized to act-4 and ama-1. a, c) RNA levels 
of hsp16 s in temperature cycles. Blue panels represent cold temperature (13 °C) and pink 
panels represent warm temperature (20 °C). A sinusoidal curve was fitted to the data using 
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circwave (p<0.001 for hsp-16.1 and hsp-16.2). mRNA expression is rhythmic in temperature 
cycles RNA abundance is changed significantly (ANOVA, p<0.001 for hsp-16.1; p<0.001 for 
hsp-16.2); b, d) mRNA levels of hsp 16 s in constant temperature of 16.5 °C. mRNA 
expression is not rhythmic and data cannot be significantly correlated to a sinusoidal curve 
using circwave (p=0.32 for hsp-16.1; p=0.28 for hsp-16.2). 
 

6.3.2. Rhythmic mRNA Expression of hsp-43 Regulated by 

Temperature Cycles 
 

We also studied the impact of temperature cycles on heat shock proteins that are not 

regulated by heat shock and are constitutively expressed throughout development 

(Ding and Candido, 2000c). We chose hsp-43, and tested its expression levels in both 

cyclic and constant temperatures. Interestingly, our preliminary results showed that 

RNA levels are low in the cold phase compared to the warm phase of the temperature 

cycle. To test rhythmicity, a sinusoidal curve was fitted to the data of constant and 

cyclic conditions. We observed a rhythmic expression in temperature cycles         

(Fig. 6-11a) but not in constant conditions (Fig. 6-11b). Experimental replicates are 

required to support this observation, but our preliminary results suggest that the 

expression of hsp-43, which is not regulated by heat shock, is regulated by 

temperature cycles. 
 

 
 
Fig. 4-11: Expression of hsp-43 mRNA in the different zeitgeber conditions. Open and close 
circles represents data points constant and temperature cycles respectively. a) RNA 
expression of hsp-43 in temperature cycles. The blue and pink panels are representing cold 
(13 °C for 12 h) and warm (20 °C for 12 h) phases, respectively. RNA levels are high during 
the warm phase compared to the cold phase. Data was fitted with a sinusoidal curve using 
circwave (p<0.001); b) Expression of hsp-43 in constant temperature 16.5 °C. Expression 
levels are not rhythmic and the data did not fit to a sinusoidal curve (p=0.77). 
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6.3.3. Rhythmic mRNA Expression of hsp-4 Regulated by 

Temperature Cycles 
 

The heat shock protein hsp-4 acts as an endoplasmic reticulum (ER) chaperone and is 

regulated by ER stress and heat shock. We measured expression of hsp-4 in constant 

and cycling conditions and observed that hsp-4 mRNA levels increased during the 

warm phase of the temperature cycle. Using circwave, a sinusoidal curve was fitted to 

the data of RNA expression in temperature cycles (Fig. 6-12a) but could not be used 

in constant temperature (Fig. 6-12b). Our preliminary results suggest that expression 

of hsp-4 is rhythmic and regulated by temperature cycles. However, induced 

expression of hsp-4 was observed only at several time points in the warm phase of 

temperature cycle. Experimental replicates are necessary to confirm these results and 

to test the statistical significance. 

 

 
 

Fig. 6-12: mRNA levels of hsp-4 in zeitgeber conditions. hsp-4 RNA expression is 
normalized to act-4 and ama-1. Open and closed circles are data points of constant and cyclic 
conditions respectively. a) Expression of hsp-4 RNA in temperature cycles. Blue and pink 
panels represent cold (13 °C for 12 h) and warm phase (20 °C for 12 h) respectively. 
Expression of hsp-4 RNA is increased at several time points of the warm phase but not in the 
cold phase. A sinusoidal fit to the data using circwave is significant (p=0.03); b) RNA levels 
of hsp-4 in constant temperature (16.5 ºC). Expression levels do not change over time and 
data could not be fitted with a sinusoidal curve (p=0.24). 
 

6.3.4. mRNA Expression of hsp-12.6 is not Regulated by 

Temperature Cycles 
 

We chose hsp-12.6 in order to investigate the impact of temperature cycles on a heat 

shock protein that does not respond to heat shock and is not involved in suppression 
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of protein aggregation (Krause, 2013; Leroux et al., 1997a). We observed an increase 

in hsp-12.6 RNA levels in the warm phase of (ZT12-24) compared to the cold phase 

(ZT2-10) of the first temperature cycle. However, the expression levels did not 

change in the cold to warm transition phase of 2nd temperature cycle. The expression 

levels of hsp-12.6 did not change significantly over time, either in temperature cycles 

or in constant temperatures (Figs. 6-13 a, b). A sinusoidal fit of the RNA levels in 

temperature cycles was slightly significant, with a p-value of 0.04. Statistical testing 

with ANOVA failed to show significant changes in expression levels over time. Data 

from constant conditions could not be fitted to a sinusoidal curve. Our results suggest 

that zetigeber cycles do not influence on the expression levels of hsp-12.6. 

 

 
 
Fig. 6-13: RNA analysis of hsp-12.6 in zeitgeber conditions. Closed and Open circles 
represent the average ± SEM of three independent experiments from constant and temperature 
cycles. RNA levels of hsp-12.6 were normalized to act-4 and ama-1. a) RNA levels of hsp-
12.6 in temperature cycles. The blue panel indicates cold temperature (13 °C) and pink panel 
represent the warm phase (20 °C). RNA expression does not change significantly over time in 
temperature cycles (ANOVA, p=0.31) and the data was fitted by to a sinusoidal curve using 
circwave with just significant value (p=0.04); b) Expression levels of RNA over time in 
constant condition of 16.5 °C are not significantly changed (ANOVA, p=0.93) and data could 
not be fitted with sinusoidal curve using circwave (p=0.57).     
 

6.3.5. unc-54 mRNA Expression is not Regulated by Temperature 

Cycles 
 

In the transgenic C. elegans models of protein aggregation disease from Section 6.1, 

the expression of the poly Q stretches and of α-synuclein fused to YFP is driven by 

the promoter of unc-54 (Morley et al., 2002; van Ham et al., 2010). Because we used 

these strains to investigate the accumulation of YFP in different zeitgeber conditions, 

we wanted to confirm that the expression of unc-54 was not regulated by zeitgeber 
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cycles. Therefore, we analyzed RNA abundance of unc-54 in cyclic and constant 

temperatures. Expression of unc-54 RNA levels did not change significantly over 

time, in both constant and cyclic conditions (Figs. 6-14 a, b). To test the rhythmicity, 

we checked the correlation between a sinusoidal curve and the experimental data 

using circwave. There was no significant correlation in either of the zeitgeber 

conditions. 

 

 
 
Fig. 6-14: Expression analysis of unc-54 mRNA in zeitgeber conditions. RNA levels ± SEM 
of three independent experiments are represented by closed and open circles. RNA levels are 
normalized to act-4 and ama-1 in both conditions. a) RNA levels in temperature cycles with 
zeitgeber time. Blue and pink panels represent the cold (13 °C for 12 h) and warm phases    
(20 °C for 12 h) of the temperature cycle for 2 days. Expression levels of unc-54 RNA are not 
significantly changed with time (ANOVA, p=0.91). A Sine wave could be fitted with circwave 
(p=0.16); b) RNA levels of unc-54 in constant temperature with time. mRNA expression of 
unc-54 in the worms held at constant temperature (16.5 °C). RNA expression is not changed 
significantly with zeitgeber time (ANOVA, p=0.94) and sinusoidal curve could be fitted using 
circwave (p=0.60).  
 

Expression levels of unc-54 are not regulated by temperature cycles, which suggests 

that the differential expression of YFP in different zeitgeber condition is not a factor, 

a conclusion based on the fact that unc-54 did not affect polyQ expression and 

aggregation in the C. elegans Huntington models used in the current study. 

 

6.3.6. Protein levels of HSP16.1::GFP is Rhythmic and Regulated by 

Temperature Cycles 
 

We analyzed the impact of zeitgeber conditions on RNA levels of hsp-16 s in section 

6.3.1 and observed that temperature cycles regulate the rhythmic expression of       

hsp-16s. We performed further experiments using a GFP translational reporter of 
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HSP-16.1 in order to understand the impact of zeitgeber cycles on protein expression 

of HSP-16.1.  

 

Proteins levels of HSP-16.1::GFP transgenic worms in zeitgeber conditions (5.9.1.2) 

were measured by western blot and detected with α-GFP antibody.  In temperature 

cycles, the GFP signal of HSP16.1::GFP worms was reduced between ZT6 and 12 of 

the cold phase and in ZT14 of the warm phase. An increased signal was observed 

from ZT16 to 24 during the warm phase and between ZT2 and 4 of the cold phase. 

After normalization to actin, HSP-16.1::GFP expression significantly changes with 

time in temperature cycles. The expression in temperature cycles is rhythmic and 

significantly increased, to a maximum of 2 fold during the warm phase compared to 

the cold phase (Figs. 6-16 a, b).  After normalization of the GFP signal with loading 

control we observed that the expression levels of HSP16.1::GFP are not significantly 

different over time (Figs 6-16 a, b) in constant condition. Expression analysis of HSP-

16.1::GFP in zeitgeber conditions suggests that temperature cycles regulate the 

expression of HSP-16.1 in the absence of heat stress.	
  	
  

 

 
 
Fig. 6-16: Analysis of HSP-16.1::GFP protein expression in adult C. elegans held in 24-hour 
zeitgeber conditions. a) The top panel shows the visualization of HSP-16.1::GFP and ACTIN 
probed with α-GFP and α-actin from the protein samples harvested from the worms held in 
temperature cycle (13 °C for 12 h and 20 °C for 12 h). Lower panel shows HSP-16.1::GFP 
and ACTIN in western blot from the protein samples harvested from constant temperature 
conditions (16.5 °C). After probing with α-GFP, the same blot was probed with α-actin as a 
loading control; b) Quantification of HSP16.1::GFP from constant and cycling temperatures. 
The closed and open circles represent the average protein expression ±SEM of three 
independent experiments of temperature cycle and constant temperature respectively. An 
abundance of HSP16.1::GFP expression is significantly different from cold phase to warm 
phase in temperature cycles (ANOVA, p<0.01) but not in constant temperature. Significantly, 
a sinusoidal curve was fitted to the data points of temperature cycles using Circwave 
(p<0.001) but not to constant temperature. 
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6.4. Analysis of Developmental Timing in C. elegans        

poly-glutamine Models 
 

To study the effect of polyQ on C. elegans development, we used a novel method 

based on bioluminescence (Olmedo et al., 2015). The developmental process was 

analyzed from the starved L1’s to young adults of poly-glutamine models. We used 

strains that expressed the luciferase protein under the promoter of sur-5 (AM 

141(Q40); PE254) and  (AM 134 (Q0); PE254), and we analyzed the development at 

constant temperatures (20 °C and 16.5 °C) and temperature cycle (13 °C for 12 h and 

20 °C for 12 h). 

 

6.4.1. Analysis of Development Time of Q0 and Q40 Worms at 

General Lab Conditions 
 

The bioluminescence signal was measured from Q0 and Q40 worms at 20 °C (general 

lab conditions) from starved L1 to young adult. The overall luminescence signal was 

lower in Q40 worms than in Q0 throughout the development process                    

(Figs. 6-17 a, b). 

 

The developmental program of Q40 worms was delayed for an average of 28.3 h 

compared to Q0 worms (Fig. 6-17g). The average time of development in Q0 and 

Q40 worms was 50.11 h and 78.41 h, respectively. The length of each larval stage 

from L1 to L4 is significantly longer in Q40 worms compared to Q0 (Figs. 6-17 c, e). 

Duration of L3 larval stage is prolonged (increased 2 fold) in Q40 worms compared to 

Q0 (Fig. 6-17e). Molting periods were also reported as significantly longer in Q40 

worms compared to Q0 (Figs. 6-17 d, f). The results suggest that the increased 

glutamine repeats in transgenic worms delay the developmental process in C. elegans. 
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Fig. 6-17: Analysis of development in C. elegans polyQ model at 20 °C. Brown represents 
Q0 and light blue represents Q40. a, b) Bioluminescence of single (AM134 (Q0); PE254) and 
(AM141(Q40); PE254) worm with time on food; c) Duration of larval stages (L1-L4). Each 
dot represents a single worm. Larval stages (L1-L4) of Q40 are significantly different from 
Q0  (Student t-test, ****p<0.001, N ≥20 worms); d) Duration of molts (M1-M4). The molting 
period of Q40 worms is significantly longer than that of Q0 worms (Student t-test, 
****p<0.001, **p<0.05). e) Ratio between the duration of Q40 and Q0 larval stages; f) Ratio 
of Q40 and Q0 Molts duration; g) Quantitative analysis of development showing the average 
of ≥ 20 worms of Q0 and Q40. Molting periods are represented in blue. 
 

6.4.2. Analysis of Development Time of Q0 and Q40 Worms at        

16.5 °C 

 

We further analyzed Q0 and Q40 worms at a constant temperature of 16.5 °C. In this 

condition, the duration of development from starved L1 to M4 was an average of 

71.87 h for Q0 and 108.59 h for Q40 worms (Fig. 4-18g), suggesting that Q40 was 
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delayed in development for 36.72 h compared to Q0. Each larval stage was 

significantly longer in Q40 compared to Q0 worms (Figs. 4-18 a, b, c). Development 

of L3 larval stage is prolonged in Q40 worms compared to Q0 (Fig. 4-18e). 

 

The period of all molts except the first molt (M1) was significantly longer in Q40 

worms (Figs. 4-18 a, b, d). Duration M4 (molt) was prolonged in Q40 worms. 

Additionally, the developmental time of both Q0 and Q40 worms was delayed at this 

condition compared to the worms grown at 20°C. Because we know that 

developmental time is regulated by temperature, we conclude that glutamine repeats 

in transgenic polyQ models of C. elegans delay the developmental program. 

 

 
 
Fig. 6-18: Development analysis of C. elegans polyQ models at 16.5 °C. Q0 and Q40 worms 
are represented with brown and light blue, respectively. a, b) Bioluminescence signal of 
single Q0 and Q40 worm expressing luciferase under the promoter of sur-5; c) Quantitative 
analysis of larval duration (L1-L4). The larval stages were significantly longer in Q40 than 
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Q0 worms (student t-test, ****p<0.001); d) Quantitative analysis of molts duration (M1-M4). 
Molting duration is significantly longer in M2, M3 and M4 of Q40 but not in M1 (student t-
test, p<****0.001, **p<0.05); e) Ratio between the duration of Q40 and Q0 larval stages; f) 
Ratio of Q40 and Q0 Molts duration; g) Average duration of development in ≥ 20 worms of 
Q0 and Q40. Molting is represented with blue. 
 

6.4.3. Analysis of Development Time of Q0 and Q40 Worms at         

13-20 °C 

 

To understand the developmental process in polyQ models at temperature cycles, 

bioluminescence signal was measured in both Q0 and Q40 models held in 

temperature cycle.  

 
 
Fig. 6-19: Analysis of development in PolyQ models of C. elegans held in temperature 
cycles. The blue and pink panels represent cold (13 °C) and warm (20 °C) temperatures The 
brown and blue points represent Q0 and Q40 worms, respectively; a, b) Luciferase signal of 
single Q0 and Q40 worms; c) Duration of larval stages of Q0 and Q40 worms. All larval 

��

  Time on food (h)�

Q0�

 Q40�

a� b�

c� d�

g�

0 10 20 30 40 50 60 70 80 90 100 110 120

  L1�   L2� L3�   L4�

    L1�       L2�   L3 �    L4 �

f�e�

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

Time on food (h)

Lu
m

in
is

ce
nc

e 
(A

U
)

0 10 20 30 40 50 60 70 80 90 100 110 120
0

500

1000

1500

2000

Time on food (h)

Lu
m

in
is

ce
nc

e 
(A

U
)

L1 L2 L3 L4
0

10

20

30

40

50

Larval stages

D
ur

at
io

n 
(h

)

**** **** ********

M1 M2 M3 M4
0

2

4

6

8

10

Molts

D
ur

at
io

n 
(h

)

**** **** ***

L1 L2 L3 L4
0

1

2

3

Larval stages

Q
40

/Q
0

M1 M2 M3 M4
0

1

2

3

Molts

Q
40
/Q
0



 

	
   74	
  

stages are significantly long in Q40 then Q0 worms (Student t-test, ****p<0.001); d) 
Duration of molts in Q0 and Q40 worms. M1, M2 and M4 molts are significantly different 
(student t-test, p<****0.001, ***p<0.01), but not as significant M3 between Q0 and Q40 
worms; e) Ratio between the duration of Q40 and Q0 larval stages; f) Ratio of Q40 and Q0 
Molts duration; g) Developmental timing of both strains. Molting is represented in blue. 
Development is delayed in Q40 compared to Q0.  
 
Thus, the results suggest that the duration of Q40 development is delayed 41.15 h in 

average compared to Q0 worms. The duration of each larval stage in Q40 is 

significantly longer than in Q0 worms (Figs. 6-19 a, b, c). Duration of fourth larval 

stage is prolonged in Q40 worms compared to Q0 (Fig. 6-19e). Interestingly, we also 

observed that the first and third molts of Q0 worms were significantly longer than 

second and fourth molt, which may be due to the onset of molting in particular phase 

of temperature cycle (Figs. 6-19 a, b, d). Duration of second molt was prolonged in 

Q40 worms (Fig. 6-19f). 

 

The luminescence signal increased during the warm phase compared to the cold phase 

in both Q0 and Q40 worms. We observed that the duration of development is of 72.71 

h in average in Q0 and 113.86 h in Q40 worms (Fig. 6-19e). The developmental 

analysis of polyQ models at temperature cycles suggests that developmental timing is 

affected by temperature and by the number of poly-glutamine repeats. 
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7. Discussion 
 

The circadian system is a pervasive temporal program. The properties of a circadian 

clock include temperature compensation and a free running circa 24h rhythm that is – 

in the natural state - entrained. Circadian entrainment synchronizes the biological 

clock to 24-hour zeitgeber cycles. Zeitgebers include light and dark, warm and cold 

temperature, etc. In humans, entrainment conditions have changed in recent history – 

we live in a weak light environment. This tends to result in entrainment to a later 

phase, a condition that can lead to a mismatch between internal and social time 

(Roenneberg et al., 2013). This mismatch is most commonly associated with regular 

work schedules, but may also include shift work. Several diseases are associated with 

shift work, and with disrupted circadian rhythms, such as cardiovascular diseases, 

cancer, and metabolic diseases (Ferrell and Chiang, 2015; Musiek, 2015).  To date, 

few studies have reported on the importance of circadian entrainment in modulating 

symptoms of existing diseases. Although one study has reported that entrainment with 

high amplitude light dark cycles improved cognitive function in dementia patients 

(Riemersma-van der Lek et al., 2008), the impact of circadian entrainment on 

molecular pathology in several diseases including dementia-associated disorders is 

unclear. In this study, we focused on understanding the impact of circadian 

entrainment on molecular mechanisms of poly-glutamine aggregation diseases. 

 

Protein aggregation is a hallmark of several diseases, including neurodegenerative 

diseases, type 2 diabetes and cancer, all of which are also, through different 

experimental paradigms, associated with a disrupted circadian clock (Hastings and 

Goedert, 2013; Knowles et al., 2014; Kurose et al., 2014; Musiek, 2015; Savvidis and 

Koutsilieris, 2012; Valastyan and Lindquist, 2014). In a cell, protein aggregation is 

regulated by the proteostasis network, which includes protein synthesis, folding, 

trafficking, aggregation, degradation and autophagy. The co-ordination between these 

components is essential in order to maintain protein homeostasis (Douglas and Dillin, 

2010). The efficiency of the proteostasis network declines with age and disease, 

subsequently effecting cellular function and possibly leading to cell death (Hipp et al., 

2014). Current literature suggests that the circadian clock regulates protein synthesis, 

degradation and autophagy (Cornelius et al., 1985; Lipton et al., 2015). In addition, 

recent evidence suggests that induction of heat shock proteins is associated with 



 

	
   76	
  

circadian entrainment. In mammals, light-dark cycles synchronize SCN, which 

regulates several physiological processes including body temperature. Body 

temperature entrains the peripheral oscillators through HSF-1 mediated transcription 

(Buhr et al., 2010). HSF-1 is a transcription factor, which regulates the expression of 

heat shock proteins and binding of HSF-1 to heat shock elements is rhythmic (Reinke 

et al., 2008). Therefore, we hypothesized that circadian entrainment impacts the 

expression of chaperones or heat shock proteins, which subsequently impacts the 

protein folding process (Fig. 7-1). 

 

 
 
Fig. 7-1: Cartoon of a model for the role of zeitgebers in protein aggregation-associated 
disorders. Zeitgebers (light-dark cycles) synchronize the biological clock to the external 
environmental cycles and regulate several behavioural and physiological processes include 
feeding, endogenous temperature etc. Endogenous temperature may entrain/regulate daily 
expression of a set of genes via HSF-1. These heat shock proteins suppress protein misfolding 
or aggregation (molecular symptoms) in neurodegenerative diseases. Imposing zeitgebers 
improved cognitive performance, which suggest that molecular and behavioral symptoms 
might impact on each other through zeitgebers. 
 

 

    Zeitgebers 

Demen%a/(Neurodegenera%ve(Diseases(

•  Sleep Disturbances 
•  Disrupted activity 
•  Hormone Secretion 
•  Disrupted endogenous 

temperature rhythm 
•     Impaired Cognition 

      Improved Cognition 

Behavioral Symptoms Molecular Symptoms 

•  Protein misfolding  
                            or 
                     aggregation 

SCN HSF-1 HSE Endogenous 
Temperature 

hsp 

Feeding 
 
Activity 

Clock in 
peripheral 
tissues 

Clock gene 
expression 

Heat Shock 
Proteins  

or  
Chaperones 

Native Proteins 

Protein Motif 



 

	
   77	
  

7.1. Establishing a Novel Biochemistry Method for 

Quantification of poly-glutamine (polyQ) Aggregation 
 

Aggregation can result from an abnormal expansion of poly-glutamine repeats, which 

occur due to mutation of specific gene loci associated with Huntington’s Disease, 

Machado-Joseph’s, Kennedy’s, etc. (Fan et al., 2014). To study polyQ aggregation, 

fluorescently tagged polyQ transgenic models were generated for C. elegans, 

zebrafish, Drosophila, mice, etc. (Calamini et al., 2013). These models were used to 

visualize molecular and behavioral hallmarks of polyQ diseases such as aggregation, 

motility defects etc (Brignull et al., 2006; Morley et al., 2002). In our study,               

C. elegans was used as a model for studying the impact of zeitgber (temperature) 

cycles on polyQ aggregation formation. Many studies have used fluorescence 

microscopy to capture the polyQ::YFP aggregates in C. elegans and then counted the 

number of fluorescent aggregates (Morley et al., 2002; van Ham et al., 2010; Shemesh 

et al., 2013). In an effort to make this method more objective (manual counting is not 

highly accurate) we quantified fluorescence aggregates using ImageJ. We then 

validated the ImageJ results by manual counting (see section 6.1.2.1).  

 

In order to characterize the progression of aggregate formation both quantitatively and 

qualitatively, we turned to protein gel electrophoresis. The	
   ideal	
   protocol	
   should	
  

yield	
   characteristic	
  patterns	
  of	
   bands	
   as	
   the	
   animal	
   aged,	
   that	
  we	
   could	
  use	
   to	
  

compare	
   progression	
   of	
   aggregation	
   between	
   conditions.	
   We attempted to 

quantify the native Q35::YFP aggregation using published biochemical methods, such 

as blue native poly acrylamide gel electrophoresis (BN-PAGE) and native agarose gel 

electrophoresis (NAGE).  

 

Protein lysates of Q35::YFP and α-synuclein::YFP were resolved in BN-PAGE 

(Nucifora et al., 2012), and the protein bands were resolved to different molecular 

weights. However, these bands could not be definitively identified due to the lack of 

suitable molecular weight markers for non-denaturing gels (Fig. 6-1). Thus, soluble 

and insoluble protein species could not be identified and analysed using BN-PAGE. 
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I attempted to resolve protein lysates using NAGE (van Ham et al., 2010) in order to 

quantify Q35::YFP aggregates. After separating protein lysates in the NAGE, we 

identified some protein species inside the gel, and other proteins species were found 

in the wells (Fig. 6-2). Due to the lack of suitable molecular weight markers and 

loading controls, these protein species could not be precisely quantified and 

identified. Furthermore, we cannot identify the characteristic protein band pattern 

with the protein lysates of aging worms using these methods. Therefore, we suggest 

that soluble and insoluble aggregates of native proteins cannot be measured using 

BN-PAGE and NAGE. 

	
  

Because the native gels were unsuited to quantify the protein aggregates, we decided 

to use a semi-denaturing approach (Shemesh et al., 2013) for quantification of high 

molecular weight Q35::YFP aggregates by semi-denaturing detergent agarose gel 

electrophoresis (SDD-AGE). Using this method, each protein sample split and treated 

with and without heat treatment. The heated protein sample, considered a fully 

denatured protein, apparently forms monomers, while the non-heated protein sample 

is semi-denatured, and stays as high molecular weight proteins (Kryndushkin et al., 

2003). Heated and non-heated protein lysates from Q35::YFP worms were resolved 

into SDD-AGE, followed by western blot. A high molecular weight protein band was 

identified in non-heat treated samples and a low molecular weight band in heat-

treated samples (Fig. 6-3). Due to the lack of suitable protein markers and loading 

controls, especially the aggregated proteins could not be precisely quantified. We 

concluded that SDD-AGE is not a robust method for comparing soluble and insoluble 

proteins. 

 

Recent literature suggests that soluble Q35::YFP can be resolved in a 10% 

polyacrylamide SDS gel, but that insoluble aggregates cannot because they are 

retained in the wells (Silva et al., 2011). We used Bio-rad 4-15% CriterionTM TGX 

Stain-FreeTM gradient SDS-PAGE gel to resolve the Q35::YFP protein lysates. The 

soluble Q35::YFP monomers in the gradient gel were resolved inside the gel, but the 

insoluble aggregates were not (Fig. 6-4). This observation compares to the results 

published by Morimoto’s lab (Silva et al., 2011). Interestingly, the amount of soluble 

proteins quantified from the gradient gel suggests that soluble proteins are more 

abundant in zeitgeber cycles than in constant conditions. However, because total 
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protein lysates were used for SDS-PAGE, we suspected that soluble Q35::YFP may 

have been contaminated with SDS-solubilized aggregate species. We concluded that 

this method cannot be used for quantifying the insoluble and soluble Q35::YFP. 

 

Following several unsuccessful attempts with published methods (as described 

above), we developed a novel method for quantifying Q35::YFP using 

ultracentrifugation followed by gradient NuPAGE (Penna and Cahalan, 2007) and 

western blotting (Burnette, 1981). In developing our method, we relied in part on 

methods from published papers of the Hartl and Morimoto labs (Silva et al., 2011; 

Walther et al., 2015). In our method, native proteins of soluble and insoluble species 

(aggregates) were separated using ultracentrifugation. After ultracentrifugation, we 

dissolved insoluble pellets in 5% (v/v) SDS sample buffer (Laemmli, 1970) and 

resolved the proteins in a NuPAGE 4-12% Bis-Tris gel in MES running buffer and 

performed western blot. High SDS concentrations contribute to solubilizing SDS-

soluble fractions of the aggregates, which are more toxic than SDS-resistant 

aggregates (Hoffner and Djian, 2014; Tonoki et al., 2011). This novel protocol helped 

us to characterise the (putatively) toxic SDS-soluble composition of poly-glutamine 

aggregates. In parallel, we quantified soluble proteins (those found in the supernatant) 

using NuPAGE 4-12% Bis-Tris gel in MES running buffer followed by western blot. 

For these types of gels (essentially, SDS-PAGE) there are suitable molecular markers 

and normalization tools, allowing quantification of the insoluble and soluble 

Q35::YFP using this method. 

 

7.2. 24-hour Temperature Cycles Reduce the poly-glutamine 

(polyQ) Aggregation 
 

Deficient or overwhelmed proteostasis will eventually impact on protein folding 

mechanisms, causing protein misfolding and leading to protein aggregation (Labbadia 

and Morimoto, 2015), a phenomenon commonly observed in the aging process and in 

disease (Knowles et al., 2014; Labbadia and Morimoto, 2015). In this study, we 

focused on polyQ aggregation, which is commonly found in polyQ expansion 

disorders, including Huntington’s Disease (Fan et al., 2014). Disrupted circadian 

rhythms, including core-body temperature rhythms, have been identified in 
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mammalian Huntington’s disease models (Kudo et al., 2011b; Musiek, 2015). 

However, it has been reported that food and light entrainment restored the peripheral 

oscillations and cognitive functions in dementia associated diseases (Maywood et al., 

2010; Riemersma-van der Lek et al., 2008). Formally, one could ask which came first 

in certain human diseases, a disrupted circadian rhythm or the neurodgeneration 

(Hastings and Goedert, 2013; Musiek, 2015). At least entrainment with light is 

predicted to have an impact on the amplitude of the temperature cycle (Baehr et al., 

2000). Endogenous temperature rhythms and the induction of heat shock proteins are 

associated with the light–dark cycles (Kornmann et al., 2007; Reinke et al., 2008).       

By extension, a higher amplitude light-dark cycle may lead to higher amplitude       

HSF-1 activity. Since the heat shock proteins are essential for the protein folding 

process (Fig. 7-1), we hypothesis that entrainment may impact the molecular 

pathology (protein misfolding or aggregation) of these diseases. Since the temperature 

is associated with the prevention of aggregates (Morimoto, 2011; Wu et al., 2010), we 

proposed that polyQ aggregation could be reduced by normal, physiological 

temperature entrainment. C. elegans is found both in the soil and above ground, 

where, in both environments, it is exposed to temperature cycles. Our lab used 

temperature cycles to reveal a circadian clock in the nematode (Olmedo et al., 2012). 

In addition, C. elegans is a powerful model system for protein aggregation diseases, 

having been used for mutant screens to reveal suppressors and generally for the cell 

biology of aggregate formation (Li and Le, 2013).  

 

In our study, the C. elegans Q35::YFP model was used to investigate  the impact of a 

temperature cycle on polyQ aggregation. The expression of polyQ in this model was 

driven by the muscle specific promoter, unc-54 (Morley et al., 2002). Our basic 

protocol called for comparison of constant temperature and temperature cycles for 

progression of aggregate formation. As a first, control experiment, we checked the 

impact of temperature cycles on the mRNA expression of unc-54 gene and found no 

difference in the expression levels of unc-54 between temperature cycles and constant 

temperature (Fig. 6-14). This control experiment suggests that constant and cyclic 

temperatures can be used for aggregation studies without directly impacting 

production of the transgene. 
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The next question focused on measuring the number of Q35::YFP fluorescent 

aggregates with microscopy according to age in constant and temperature cycles. We 

found that aggregates increase with age. The observations correlate with published 

studies of Q35::YFP aggregation in C. elegans (Morley et al., 2002; Shemesh et al., 

2013). However, the numbers of aggregates were different between constant and 

temperature cycles. In cyclic conditions, number of aggregates was lower at day 2, 4 

and 8 compared to constant conditions (Fig. 6-5). 

 

We then used our biochemical method (described above) to compare the amount of 

soluble and insoluble proteins of Q35::YFP in constant vs. cyclic conditions. Here, we 

found that the formation of SDS-soluble aggregates is lower at day 6 and 8 adult 

worms in cyclic conditions as compared to constant conditions (Fig. 6-6). Since the 

SDS-soluble aggregates are considered as highly toxic species (Tonoki et al., 2011) in 

Huntington’s disease, we suggest that exposing patients with polyQ disorders to 

entrainment conditions can reduce the toxicity of disease. However, it remains unclear 

why poly-glutamine aggregation is decreased in cyclic conditions. 

 

Although we found a change in the amount of aggregates depending on zeitgeber 

conditions, we were surprised at the (small) size of this effect. We therefore wondered 

if there were qualitative differences in the aggregates. This is an important aspect, as 

recent reports from the Hartl, Mann and Morimoto labs indicate that enrichment of 

chaperones in aggregates can be protective (Walther et al., 2015). In this study, we 

investigated the aggregate composition in constant and temperature cycles using 

proteomics tools (mass spectrometry). Our data show that several known poly-

glutamine suppressors (RME-8, RAN-1, CCT-6, and RPL-1) and proteostastic 

components such as CYN-7 and RPL-41 (Kazemi-Esfarjani and Benzer, 2000; Nollen 

et al., 2004; Page et al., 1996; Silva et al., 2011; Zhang et al., 2010) are enriched in 

the aggregates in worms held in temperature cycles as compared to constant 

conditions (Fig. 6-8). We suggest, therefore, that a lower polyQ aggregation in 

temperature cycles may be a result of the increase in abundance and efficiency of 

proteostasis components (Chaperones, ubiquitin proteome system, etc.) or to a 

decrease in aggregate suppressors in constant conditions. 
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Precisely how the abundance and efficiency of proteostasis components increases in 

entrainment conditions is not known. Several studies have shown that protein 

synthesis, autophagy and degradation are clock regulated (Cornelius et al., 1985; 

Lipton et al., 2015), but how the protein folding machinery is regulated in entrainment 

conditions is poorly understood. In the following section 7.3, we will discuss the 

details of heat shock protein expression in entrained conditions. 

 

In addition to aggregate quantification, we analyzed the motility of Q35::YFP worms 

with age in zeitgeber conditions. An increase in amount of aggregation effects the 

declining motility of Q35::YFP, α-synuclein::YFP worms with age (Morley et al., 

2002; van Ham et al., 2010). Therefore, we tested the impact of zeitgeber conditons 

on motility of Q35::YFP, α-synuclein::YFP worms. Our observations were similar to 

the published papers that motility is decreasing with age. However, we did not 

observe significant differences between the conditions until Day8 worms. Therefore, 

we summarize that motility assay shows less sensitive than biochemistry or 

microscopy methods. We also speculate that aggregate suppression may impact on 

life span of animals held in different zeitgeber conditions. 
 

7.3. 24-hour Temperature Cycles Induce the Rhythmic 

Expression of Some Heat Shock Proteins 

 

Chaperones or heat shock proteins are the key regulators of protein folding. We 

hypothesized that a possible mechanism for the reduction of toxic species in the 

aggregates in entrainment conditions would be that the temperature cycles induce the 

expression of heat shock proteins. Schibler’s lab has reported the rhythmic mRNA 

expression of Hsp70, Hsp90 and Hsp105 homologs in entrainment conditions 

(Kornmann et al., 2007). These heat shock proteins are classified as ATP dependent 

chaperones. This class is unable to interact with unfolded substrates (misfolded 

proteins or aberrant aggregates) without ATP independent chaperones such as small 

heat shock proteins or Hsp40’s (Brehme et al., 2014; Haslbeck and Vierling, 2015). 

The basic function of small heat shock proteins is binding to unfolded substrate to 

prevent protein aggregation (Bakthisaran et al., 2015). The expression of several 

mammalian heat shock genes (HSPB1, HSPB2, HSPB3, HSPB6, HSPB7, HSPB8) 
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found to be rhythmic in free running conditions of several microarray datasets. 

Among them, HSPB1 found to be rhythmic in several tissues such as aorta, colon, 

lung, cerebellum, kidney, pituitary and liver. HSPB2 is rhythmic in distal colon, 

HSPB3 is rhythmic in distal colon and heart, HSPB6 is rhythmic in SCN, HSPB7 is 

rhythmic in lung and HSPB8 is rhythmic in brown adipose, lung and liver. 

(Hoogerwerf et al., 2008; Hughes et al., 2009; Panda et al., 2002; Rudic et al., 2004; 

Rudic et al., 2005). In the present study, we focused on the impact of physiological 

temperature cycles on expression of genes for small heat shock proteins in C. elegans. 

We selected heat shock proteins that have chaperone properties, such as HSP-16.1 

and HSP-16.2. As a control, we chose HSP-12.6, a small heat shock protein that lacks 

a chaperone function (Leroux et al., 1997a; Leroux et al., 1997b). 

 

mRNA and protein of hsp-16s was detected using Northern blots and fluorescent 

imaging, but only is worms exposed to stressors, mainly heat shock. In constant 20°C 

lab conditions, hsp-16 is not detectable by Northern blot (Ding and Candido, 2000a; 

Jones et al., 1989; Leroux et al., 1997b; Stringham et al., 1992). In contrast, we easliy 

detected the mRNA expression of hsp-16.1 and hsp-16.2 at constant 16.5°C (without 

heat shock exposure or other stress conditions; Figs. 6-10 b, d) using quantitative RT-

PCR. Obviously, the increased sensitivity of the method (qPCR vs. Northern blot) 

allowed detection of this gene expression in constant (physiological temprature) 

conditions. Furthermore, we also measured the protein levels of HSP-16.1 using a 

fluorescence reporter. The expression of HSP-16.1::GFP was detected in the worms 

held at a constant temperature of 16.5°C (Figs. 6-16 b, c), suggesting that the mRNA 

and protein expression of hsp-16s can occur independent of stress conditions. 

Recently published data from Hartl’s lab showed the presence of HSP16’s in the 

insoluble fractions of aging worms grown at lab conditions without stress conditions 

(Walther et al., 2015). This finding supports our observations that the basal levels of 

hsp-16 s can be found in the cell even in the absence of thermal stress. 

 

Based on previous studies, we know that the expression levels of hsp-16 s are 

modulated by heat shock (Stringham et al., 1992). Our experiments call for 

temperature entrainment cycles in the physiological range. We asked if these would 

support expression of the small heat shock protein genes. Specifically, we used 
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zeitgeber conditions as described above for the poly-glutamine aggregation studies. In 

this study, we observed that mRNA expression of the genes hsp-16.1 and hsp-16.2 is 

rhythmic in the worms held in temperature cycles (Figs. 6-10 a, c) but not in constant 

conditions. We observed a two-fold increase in the abundance of hsp-16 genes mRNA 

in the warm phase as compared to the cold phase of the temperature cycle and the 

expression levels are significantly rhythmic over the period of 24 h for 2 days in a 

temperature cycle. Following measurement of the relative expression between 

constant and cyclic conditions, our data showed that mRNA levels of hsp-16.1 and 

hsp-16.2 are more abundant in temperature cycles as compared to constant 

temperature (Fig. 6-10). we further analyzed the protein expression of fluorescently 

tagged HSP 16.1 in zeitgeber conditions. We observed the protein expression of HSP-

16.1::GFP is significantly rhythmic in temperature cycles (Figs. 6-16 a, c) but not in 

constant conditions, and an increase in the abundance of HSP-16.1::GFP in 

temperature cycles as compared to constant conditions. We suggest therefore that 

entrainment conditions within the physiological range are sufficient to increase the 

expression levels of hsp-16 genes. Interestingly, a study from the Link lab has 

reported that the overexpression of HSP-16.2 suppresses the β-amyloid aggregation 

and toxicity in C. elegans Alzheimer’s model (Fonte et al., 2008). Based on this 

observation and on our data, we suggest that entrainment conditions can increase the 

abundance of several proteins, including HSP-16.1 in the cell, which might reduce the 

aberrant protein aggregation and toxicity. 

 

We also measured the expression of the small heat shock protein hsp-12.6, which 

cannot suppress the aggregation and is unaltered by stress (Leroux et al., 1997a). The 

mRNA expression of hsp-12.6 is not rhythmic either in temperature cycle or constant 

conditions (Fig. 6-13). This observation suggests that the heat shock proteins, which 

lack chaperone function, might be not rhythmic in entrainment conditions. 

 

In addition, we studied the impact of entrainment conditions on a small heat shock 

protein, HSP-43, whose function is not well defined (Ding and Candido, 2000c). 

Recent studies have indicated that HSP-43 is associated with natural aggregates, in 

cases where the HSP-12 family was not (Walther et al., 2015). We speculated that 

HSP-43 might have a chaperone property similar to HSP-16s. We therefore measured 
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mRNA expression of hsp-43 in constant and temperature cycles and found that the 

mRNA expression is rhythmic and its abundance increased in temperature cycles 

relative to constant conditions (Fig. 6-11). This result represents a single experiment, 

thus replicate experiments are required to further support this conclusion. 

 

The mammalian homologs of Hsp70, Hsp90 and Hsp105 are rhythmic in 24h light-

dark cycles (Kornmann et al., 2007). We studied the impact of 24h temperature cycle 

on hsp-4 in C. elegans, a homolog of Hsp70 in mammals (Heschl and Baillie, 1989). 

With temperature entrainment, the mRNA expression of hsp-4 is rhythmic and 

abundant. In constant temperature, the Hsp70 homolog is not rhythmic. This suggests 

that this gene is regulated by circadian clock entrainment in mammals and C. elegans. 

There is no evidence that light-dark cycles directly regulate heat shock protein 

expression. Since the C. elegans is an ectothermic animal, we suggest that 

temperature cycles can directly regulate the heat shock protein expression. In 

mammals, however, light-dark cycles regulate endogenous temperature rhythms 

through the circadian oscillator, and the endogenous temperature rhythms are, in turn, 

associated with induction of heat shock proteins (Reinke et al., 2008). We propose 

that the rhythmic expression of Hsp70 homologs is more closely associated with 

temperature entrainment than with light entrainment, a speculation that can be applied 

for all rhythmic heat shock proteins under entrainment conditions. 

 

7.4. Delayed Developmental Timing in C. elegans polyQ 

Model 
 
The C. elegans life cycle has four discrete larval stages (L1, L2, L3 and L4) separated 

by molts (M1, M2, M3 and M4) and followed by the adult stage. The speed of 

development in C. elegans can be controlled by several environmental factors, 

primarily food and temperature conditions (Cassada and Russell, 1975). Recently, a 

high-throughput method showed that developmental timing is delayed in the mutants 

of daf-2, lin-42, etc. (Monsalve et al., 2011; Ruaud et al., 2011). We have also shown 

that metabolic stress can delay development (M. Olmedo, M. Geibel, unpublished 

data). 
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Given that neurodegenerative processes invoke metabolic stress, we asked if 

development would be impacted in our transgenic animals.  Consequently, we studied 

the developmental timing in poly-glutamine expressed transgenic worms (Q40::YFP). 

As a control, we used control (Q0::YFP) worms. These worms were crossed with a 

LUC::GFP strain (PE254), and the developmental timing was measured at constant 20 

°C and also 16.5 °C and further in a temperature cycle (13 °C for 12 h and 20 °C for 

12 h) using published methods (Olmedo et al., 2015). Interestingly, the duration of 

larval development was lengthened at all larval stages in poly-glutamine expressing 

worms as compared to controls. This observation was consistent in all temperature 

conditions (Figs. 6-17e, 18e, 19e). In addition, the duration of molting stages M1 to 

M4 was extended in the Q40 worms held at constant conditions (Figs. 6-17e, 18e). 

However, the longer molting was observed only in M2 and M4 stages in the poly-

glutamine worms held in temperature cycle, but not with M1 and M3 (Fig. 6-19e). We 

further analyzed the delay of the entire developmental program using the data 

acquired from larval development and molting. This data suggest that the average 

developmental delay of Q40 worms at 20 °C is about 28 h; at 16.5 °C it is about 36 h; 

and in the temperature cycle the lengthening is about 41 h. The reason for such 

developmental delay of poly-glutamine expressed worms is unclear, although one 

may speculate that the delay could be due to an increase in misfolding or aggregation 

in the poly-glutamine model. However, because there are several pathways associated 

with the developmental process, the explanation might be more complicated. Given 

that polyQ glutamine expansion is apparently causative for several polyQ disorders 

including Huntington’s disease (Fan et al., 2014),we also speculate that transgenic 

expression of other genes associated with neurodegenerative diseases may have an 

impact on development and aging in C. elegans. 

 

The implications for this observation are far-ranging. Several studies have reported 

the comparison of aging associated phenotypes between Q0 and Q40 worms (Adamla 

and Ignatova, 2015; Beam et al., 2012; Morley et al., 2002; Nollen et al., 2004). Our 

results imply that aging can be delayed in Q40 worms compared to Q0. Given that 

animals will reach adulthood at least a day later, this would have to be taken into 

account when calculating the age of the animal. 
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