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1 EINLEITUNG 

Tinnitus beschreibt die konstante akustische Wahrnehmung von Pfeiftönen, 

Zischen, Rauschen, Brummen, Knacken oder Klopfen in Abwesenheit eines äußeren 

akustischen Reizes. Etwa 10-15 % der erwachsenen Bevölkerung sind von Tinnitus 

betroffen (Shargorodsky et al., 2010), während 35 % irgendwann einmal Ohrgeräusche 

wahrgenommen haben (Vio & Holme, 2005). Bei mehr als 95 % der Erkrankten liegt ein 

subjektiver Tinnitus vor, welcher nicht auf eine innere Schallquelle zurückzuführen ist 

und nicht durch einen externen Untersucher nachgewiesen werden kann (Londero et 

al., 2006a).  

Da der subjektive chronische Tinnitus oft einen erheblichen Leidensdruck 

erzeugt, die Betroffenen zuweilen sogar unter Depressionen, Angstzuständen, 

Schlafstörungen, Arbeitsunfähigkeit oder ähnlichen psychologischen Folge-

erscheinungen leiden (McKenna et al. 1991; Erlandsson & Holgers 2001), scheint die 

Entwicklung einer geeigneten Behandlungsmethode unabdingbar. Bisherige 

Behandlungsansätze – wie medikamentöse Behandlung, beispielsweise in Form einer 

Infusionstherapie oder mit Antidepressiva, oder invasivere Vorgehensweisen wie die 

Durchtrennung des Hörnervs – konnten keine zufriedenstellenden Erfolge verzeichnen 

(Dobie, 1999). Da Tinnitus als eine psychophysiologische Erkrankung gilt (Davison & 

Neale, 2002), werden den Betroffenen häufig psychotherapeutische Behandlungs-

methoden empfohlen. Die „Tinnitus-Retraining-Therapie“ (Jastreboff & Jastreboff, 2006) 

und die kognitiv-behaviorale Therapie (vgl. Andersson & Lyttkens, 1999) stellen häufig 

angewendete verhaltenstherapeutische Behandlungsweisen dar. Diese Methoden 

zielen auf die Steigerung der Habituation an den Tinnitus sowie die Generierung von 

Strategien für einen erfolgreichen Umgang mit dem Hörgeräusch ab. Jedoch 

vernachlässigen sie den neuronalen Ursprung des Ohrgeräusches. 

Mithilfe der repetitiven transkraniellen Magnetstimulation (rTMS) kann die 

kortikale Aktivität modifiziert, gesteigert oder gehemmt werden. Diverse Befunde weisen 

auf die Effektivität dieser Methode in der Behandlung unterschiedlicher neuronaler oder 

psychiatrischer Erkrankungen hin (Wassermann & Lisanby, 2001). Unter anderem 

zeigten sich Erfolge bei der Behandlung von Depressionen (Gershon et al., 2003) und 

akustischen Halluzinationen bei schizophrenen Patienten (Hoffman et al., 2000). Da 

bildgebende Verfahren auf eine Störung des auditorischen Kortex‘ bei Tinnitus 

hindeuten (vgl. Arnold et al., 1996; Eichhammer et al., 2003a; Kleinjung et al., 2005), 
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scheint rTMS eine geeignete Behandlungsmethode dieser Erkrankung zu sein und 

wurde bereits in diversen Studien nachgewiesen (vgl. Eichhammer et al., 2003a; 

Plewnia et al., 2003; Langguth et al., 2004; Kleinjung et al., 2005; Londero et al., 2006b; 

Langguth et al., 2006a; Khedr et al., 2008; Müller et al., 2013). 

Inwieweit bei Tinnituspatienten durch rTMS eine Normalisierung der neuronalen 

Oszillationen bewirkt werden kann, soll im Rahmen der hier vorgestellten 

Promotionsstudie mithilfe der Elektoenzephalographie (EEG) dargestellt werden. Zudem 

soll die Überlegenheit dieser Behandlungsmethode gegenüber einer Placebo-

behandlung mithilfe einer placebokontrollierten Vorgehensweise aufgezeigt werden. 
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2        THEORETISCHE GRUNDLAGEN 

2.1  Tinnitus 

Im folgenden Abschnitt wird Tinnitus zunächst definiert und hinsichtlich der 

Klassifikation und Epidemiologie beschrieben. Im Anschluss wird in einem Exkurs auf 

die Physiologie des Hörens eingegangen, um darauf basierend die Ätiologie und 

Pathophysiologie zu erläutern. Abschließend werden Behandlungsmethoden der 

Phantomwahrnehmung vorgestellt. 

 

2.1.1 Definition und Klassifikation 

Als Tinnitus aurium (lat. tinnire = klingen; lat. auris = Ohr) werden wahr-

genommene Geräuscheindrücke in Abwesenheit eines akustischen Reizes bezeichnet. 

Sie beruhen auf Funktionsstörungen im auditorischen System und enthalten keinen 

Informationsgehalt wie akustische Stimuli (Lenarz, 2001). 

Kategorisieren lässt sich Tinnitus aurium in der 10. Revision der International 

Statistical Classification of Diseases (ICD-10) im Unterkapitel „Sonstige Krankheiten des 

Ohres, anderenorts nicht klassifiziert“ (H93) durch die Kodierung H93.1 Tinnitus aurium 

(World Health Organisation, 2007), wie die Tabelle 1 darstellt. 

 

Tabelle 1: Klassifikation des Tinnitus aurium nach ICD-10 (World Health Organisation, 2007). 

Klassifikation nach ICD-10 

H60 - H95 Krankheiten des Ohres und des Warzenfortsatzes  

H90 - H95 Sonstige Krankheiten des Ohres, anderenorts nicht klassifiziert 

H93.1 Tinnitus aurium 

 

Da die Hörempfindung nicht als somatoforme Störung gilt, findet sie sich nicht in 

den Kategorien des Diagnostic and Statistical Manual of Mental Disorders V (DSM V, 

American Psychiatric Association, 2013) und kann nur unter somatischen Aspekten 

klassifiziert werden (Goebel, 2003). 

Aufgrund der interindividuellen, oft sogar intraindividuellen Variabilität der 

Tinnituswahrnehmung stellt sich die eindeutige Klassifikation als schwierig dar. In 
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Tabelle 2 werden einige Kriterien angeführt, hinsichtlich derer die akustische 

Wahrnehmung aufgegliedert werden kann.  

 

Tabelle 2: Merkmale zur Klassifikation von Tinnituserkrankungen (Dohrmann, 2007; Goebel, 2003, S. 3, 

nach Feldmann, 1998 und Lenarz, 2001). 

Dauer  - akut (< 3 Monate) 

 - subakut (3 bis 6 Monate) 

  - chronisch (>12 Monate) 

Lokalisation - unilateral 

 - bilateral mit dominanter Seite 

  - bilateral ohne dominante Seite 

Geräuschzusammensetzung - Ton 

 - Rauschen  

 - Kombination aus Ton und Rauschen 

 - andere 

Subjektive Lautheit Lautstärke des Tinnitus individuell auf einer Skala oder mittels 

  audiometrischen Anpassung an einen externer Ton einschätzbar

Nachweisbarkeit - subjektiv 

 - objektiv 

Präsenz - temporär 

  - intermittierend 

Psychische Komorbidität - kompensiert 

 - dekompensiert 

Tinnitusursachen:  objektiv - extrakranielle Störungen 

 - intrakranielle Störungen 

 - muskuläre Störungen 

 - Funktionstörung derTuba auditiva 

 - subjektiv - Innenohrerkrankungen  

  - neuralen Ursachen  

 - zentrale Ursachen 

 - zervikogene und stomatognathogene Ursachen 

 - infektiöse Erkrankungen 

 - Medikamente 

 

Die für die Diagnostizierung von Tinnitus vorgenommene Unterteilung in akut vs. 

chronisch basiert auf der Dauer der Wahrnehmung des Ohrgeräusches. Besteht der 

Tinnitus weniger als drei Monate, spricht man von akutem Tinnitus (Goebel, 2003). 

Nimmt der Tinnitus zwischen dem dritten und zwölften Monat ab, gilt er als subakut. Alle 

Tinnituserkrankungen mit einer Dauer von mehr als zwölf Monaten werden als 
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chronisch bezeichnet. Abhängig von der Tinnitusdauer variieren die Behandlungs-

methoden (Goebel, 2003). Nähere Erläuterungen werden im Abschnitt 2.1.7 gegeben.  

Betroffene nehmen die Ohrgeräusche unilateral (nur auf einem Ohr) oder bilateral 

wahr. Hierbei kann es vorkommen, dass die Empfindung auf einer Körperseite 

dominanter als auf der anderen ist (Dohrmann, 2007).  

Ferner kann die Geräuschzusammensetzung des Tinnitus variieren. Das 

Ohrgeräusch kann in Form von Rauschen, einzelner hoch- oder niedrigfrequenter Töne, 

einer Kombination von Ton und Rauschen (Dohrmann, 2007), konstant oder pulsierend, 

dauerhaft oder gelegentlich auftreten (Møller, 2010a). Grundsätzlich gilt, dass die 

Frequenzmuster des Ohrgeräusches den Frequenzen des individuellen Hörverlusts 

entsprechen (Norena et al., 2002). Im Abschnitt 2.1.5.2 wird hierauf näher eingegangen. 

Interindividuell lassen sich Unterschiede hinsichtlich der subjektiven Lautheit des 

Ohrgeräusches feststellen. Diese kann mithilfe einer visuellen Analogskala 

(beispielsweise 0-10; während 0 keiner und 10 einer sehr lauten Geräuchwahrnehmung 

entspricht) individuell eingeschätzt werden (Dohrmann, 2007). Alternativ kann im 

Rahmen einer audiometrischen Anpassung ein externer Ton in seiner Lautstärke an die 

Tinnitusintensität angepasst werden.  

Bei der Diagnose einer Tinnituserkrankung wird eine Differenzierung hinsichtlich 

eines subjektiven oder objektiven Tinnitus vorgenommen. Lässt sich das Ohrgeräusch 

von außen durch eine externe Person wahrnehmen oder messen, liegt ein objektiver 

Tinnitus vor. Der subjektive Tinnitus, welcher als Tinnitus aurium1 bezeichnet wird, lässt 

sich auf keine Schallquelle zurückführen und ist für einen externen Untersucher nicht 

nachweisbar.  

Die Präsenz des Ohrgeräusches stellt ein weiteres Klassifikationskriterium dar. 

Goebel (2003) nimmt an, dass etwa jeder Zweite temporär einen Tinnitus wahrnimmt – 

bedingt durch eine Dysfunktion der Cochlea oder des zentralen Nervensystems. Diese 

zeitweiligen Ohrgeräusche können durch Lärm, Medikamente oder andere schädigende 

Einwirkung von Giftstoffen auf den Organismus verursacht werden. Als intermittierend 

wird die Tinnituswahrnehmung beschrieben, sofern sie chronisch oder wiederholt 

                                                                                                 

1 Der Tinnitus aurium ist Gegenstand der vorliegenden Studie. Zur vereinfachten Lesbarkeit wird dieser im 
Folgenden lediglich als Tinnitus bezeichnet.  
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auftritt. Ursächlich können hierfür Erkrankungen wie beispielsweise Hyperakusis, 

Hörstürze oder Morbus Menière sein, welche in Abschnitt 2.1.4.1 detailliert beschrieben 

werden. Die unterschiedlichen Ursachen stellen ein weiteres Klassifikationskriterium 

dar. 

Mit der dichotomen Klassifizierung in kompensierten und dekompensierten 

Tinnitus wird auf den Leidensdruck Bezug genommen. Während einige 

Tinnituspatienten ihr Ohrgeräusch ignorieren oder daran habituieren können – hier wird 

von einem kompensierten Tinnitus gesprochen – empfinden andere die akustische 

Wahrnehmung als sehr störend und belastend (Goebel, 2003). In diesem Fall ist von 

einem dekompensierten Tinnitus die Rede. Die Stärke der Tinnitusbelastung ist laut 

Schlee et al. (2008a) abhängig von der Verbindung zwischen auditorischem Kortex und 

Frontalhirn: Je stärker diese Verbindung, umso stärker die subjektive Belastung durch 

das Ohrgeräusch (Schlee, 2008a).  

Beim dekompensierten Tinnitus können komorbid psychische Erkrankungen wie 

Depressionen, Angststörungen, somatoforme Störungen, Schlafstörungen, 

Arbeitsunfähigkeit oder ähnliche psychologische Folgeerscheinungen auftreten (vgl. 

McKenna et al. 1991; Erlandsson & Holgers 2001). Viele Betroffene beklagen 

tinnitusbedingte Schwierigkeiten bei Schlaf, Konzentration, Hören, sozialen 

Interaktionen und beruflicher Tätigkeit und machen das Ohrgeräusch daher für 

wachsende Ängste und depressive Verstimmungen verantwortlich (Greimel & Kröner-

Herwig, 2010; Oishi et al., 2011). Die hohe Komorbidität von dekompensiertem Tinnitus 

mit psychischen Erkrankungen oder anderen psychologischen Folgeerscheinung konnte 

auf neuronaler Ebene mithilfe bildgebender Verfahren begründet werden. Die mit dem 

Tinnitus-Fragebogen (Goebel& Hiller,1998)2 ermittelte Belastung durch das 

Ohrgeräusch korreliert mit der Aktivität im anterior-zingulären Kortex (Plewnia et al., 

2007a) und in der anterioren Insula (Lockwood et al.,1998). Jedoch konnte nur eine 

schwache Korrelation zwischen der subjektiv empfundenen Tinnituslautstärke und der 

empfundenen Belastung durch das Ohrgeräusch ermittelt werden (Coles & Baskill, 1995 

& Traserra, et al., 1995 zitiert nach Greimel & Kröner-Herwig, 2010). 

                                                                                                 

2 Es handelt sich hierbei um die validierte deutsche Version des von Hallam et al. (1988) entwickelten 
Tinnitus Questionaire (TQ). 
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Klinischen Beobachtungen zufolge ist der Tinnitus, der in Zeiten emotionaler 

Belastungen entsteht, häufig dekompensierter Art (de Ridder, 2010). De Ridder (2010) 

vermutet, dass durch Stress und Tinnitus ein allgemeines neuronales Stressnetzwerk 

aktiviert wird, welches auch bei Schmerz aktiviert ist und den anterior-zingulären Kortex 

(Price, 2000; de Ridder, 2010), den orbitofrontalen Kortex, die Amygdala, den 

Hypothalamus, den Lobus posterior insularis (de Ridder, 2010), den primären 

motorischen Kortex und den Polus frontalis (Kulkarni et al., 2005) umfasst. Ist dieses 

Stresssystem durch emotionale Belastungen bereits aktiv, verstärkt sich die Aktivität 

dieses Systems durch die Entstehung eines Tinnitus und es besteht eine erhöhte 

Vulnerabilität für die Entwicklung eines dekompensierten Ohrgeräusches. 

Differentialdiagnostisch ist es wichtig, akustische Wahrnehmungen im Rahmen 

einer Tinnituserkrankung von akustischen Halluzinationen als mögliche Symptome einer 

schizophrenen Erkrankung abzugrenzen (Goebel, 2003). Während die 

Hörempfindungen von Tinnituspatienten klarer umgrenzt zu sein scheinen – wie 

Pfeiftöne, Zischen, Brummen, Rauschen etc. – scheinen die Wahrnehmungen im 

Zusammenhang mit schizophrenen Erkrankungen komplexerer Art zu sein. Hier 

berichten die Betroffenen von auditiven Symptomen, deren Generierung mit „äußeren 

Einflüsse[n] wie Hochvoltlampen, Radiosendern oder anderen Strahlungsquellen“ 

(Goebel, 2003, S. 7) assoziiert wird. 

Die dichotome Klassifikation der Tinnituserkrankung hinsichtlich der psychischen 

Komorbidität und des durch die Ohrgeräusche ausgelösten Leidensdrucks wird dem 

individuellen Erscheinungsbild und dem individuellen Erleben des Patienten jedoch nicht 

gerecht. Angemessener erscheint die Skalierung der Beschwerdelast mithilfe von 

Fragebögen, wie beispielsweise dem “Tinnitus Fragebogen” (Goebel & Hiller, 1998) 

oder dem "Tinnitus Handicap Inventory” (Newman et al., 1996/ 1998). Insgesamt gilt, 

dass der dekompensierte Tinnitus meist mit einer psychischen Erkrankung einher geht. 

Für den objektiven und subjektiven Tinnitus lassen sich verschiedene Ursachen 

zur Erklärung heranziehen. Diese werden im Abschnitt 2.1.4 ausführlich beschrieben. 

Zunächst wird auf die Epidemiologie der Erkrankung (Abschnitt 2.1.2) sowie die 

Physiologie des Hörens eingegangen (Abschnitt 2.1.3). 
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2.1.2 Epidemiologie 

Gemäß einer epidemiologischen Studie von Shargorodsky et al. (2010) weisen 

10-15 % der Bevölkerung eine Tinnituserkrankung auf, während bei 1-2 % die Lebens-

qualität durch die Geräuschwahrnehmung so stark beeinträchtigt ist, dass die Betroffe-

nen zusätzlich Schlafstörungen, Depressionen oder Ängste entwickeln. In der Studie 

zeigt sich darüber hinaus ein Zusammenhang zwischen Alter und Tinnituserkrankung, 

der in einer maximalen Prävalenzrate von 14,3 % für Personen zwischen 60 und 69 

Jahren resultiert. Einige Studien liefern darüber hinaus Hinweise für einen Zusammen-

hang zwischen Geschlecht und Tinnitus, die in einer erhöhten Auftretenswahrschein-

lichkeit bei Männern resultiert (Hoffmann & Reed, 2004, zitiert nach Møller, 2010b). An-

dere Studien konnten hier jedoch keine signifikante Korrelation feststellen (Pilgramm et 

al., 1999; Shargorodsky et al. 2010). 

In einer in Deutschland durchgeführten repräsentativen epidemiologischen Studie 

mit etwa 3000 Probanden konnte eine Inzidenzrate von 0,33 % bestimmt werden. De-

mentsprechend kommt es zu 250.000 Neuerkrankungen pro Jahr (Pilgramm et al., 

1999). Während 24,9 % der Gesamtstichprobe angaben, irgendwann einmal Geräusch-

eindrücke wahrgenommen zu haben, überschritt die Dauer dieser Wahrnehmung bei 

etwa der Hälfte (13 % der Stichprobe) eine Zeitspanne von fünf Minuten. 

 

2.1.3 Exkurs: Physiologische Grundlagen des Hörens 

Bevor auf die Ätiologie und Pathophysiologie von Tinnituserkrankungen näher 

eingegangen wird, erscheint es sinnvoll, zunächst die Grundlagen des Hörens zu 

erläutern, um darauf basierend die gestörten Prozesse der auditiven Wahrnehmung bei 

Tinnituserkrankungen zu erläutern.  

Das Ohr lässt sich in drei Abschnitte untergliedern (Goebel, 2003). Während in 

Außen- und Mittelohr die Schallaufnahme und -weiterleitung geschieht, erfolgt im 

Innenohr die Transduktion, d. h. die Umwandlung des mechanischen Schalls in einen 

neuronalen Impuls, welcher vom Hörnerv in das zentrale-auditorische System 

weitergeleitet wird. 

Erreichen Schallwellen das äußere Ohr, gelangen sie – u. a. gebündelt von der 

Ohrmuschel – durch den Gehörgang zum Trommelfell. Der Hörvorgang beginnt durch 

die Aufnahme des Schalls durch das Trommelfell, das die Schallschwingungen auf die 

drei Gehörknöchelchen (Hammer, Amboss und Steigbügel) überträgt. Diese befinden 
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sich in der Paukenhöhle und grenzen sich als Mittelohr durch das Trommelfell und das 

ovale Fenster vom äußeren Ohr und Innenohr ab. Durch die Weiterleitung der 

Schwingungsenergie vom Steigbügel auf das ovale Fenster wird der akustische Reiz 

schließlich zu der im inneren Ohr befindlichen Cochlea transportiert.  

Die Hörschnecke umfasst drei übereinander liegende, flüssigkeitsgefüllte Gänge 

(Goebel, 2003), in denen die relevanten Nährstoffe des Innenohrs vorhanden sind 

(Biesinger, 2007)3. Die mit Perilymphe gefüllte Scala vestibuli ist durch die Reissner 

Membran von der mit Endolymphe gefüllte Scala media getrennt (Goebel, 2003). 

Zwischen letzterer und der ebenfalls mit Perilymphe gefüllten Scala tympani befindet 

sich die Basilarmembran, auf der sich das Kortische Organ befindet. 

Erreicht die schallbedingte Druckwelle das ovale Fenster, bewegen sich die 

Schwingungen in der Perilymphe der Scala vestibuli wellenförmig zur Spitze der 

Cochlea fort. Auf diese Weise wird eine Wanderwelle ausgelöst, die die Scala media 

zum Schwingen bringt und sich auf die Basilarmembran überträgt. An dieser Stelle 

entstehen tonotopisch strukturierte Schwingungen, wobei hohe Frequenzen 

mittelohrnah unweit des ovalen Fensters, tiefe Frequenzen nahe der Spitze der 

Cochlea, dem Helikotrema, zur maximalen Bewegung der Basilarmembran (Møller, 

1993; Klinke, 1994) führen. Es kommt folglich frequenzspezifisch an bestimmten Stellen 

der Membran zu einem Schwingungsmaximum.  

Auf der Basilarmembran sitzt das Kortische Organ, wo die Transduktion, d. die 

Umwandlung des mechanischen Reizes in ein bioelektrisches Signal im Sinne eines 

Rezeptorpotentials geschieht (Klinke, 1994). Das Kortische Organ stellt das eigentliche 

Hörorgan dar und umfasst ca. 48000 Haarzellen (Goebel, 2003). Diese werden durch 

das frequenzabhängige Schwingungsmaximum der Basilarmembran erregt und bilden 

somit direkt die Frequenz oder Tonfolge des akustischen Reizes ab (Møller, 2010c). 

Abhängig von ihrer Funktion lassen sich diese strukturell ähnlichen Rezeptorzellen in 

äußere Haarzellen (im Folgenden ÄHZ) und innere Haarzellen (im Folgenden IHZ) 

unterteilen (Merker, 1997). Die IHZ sind in einer, die ÄHZ in drei Reihen entlang der 

Windung der Cochlea angeordnet. Während die IHZ die Sinneszellen des Ohres 

darstellen, dienen die ÄHZ dazu, die Sensibilität der IHZ zu modulieren (Goebel, 2003). 

                                                                                                 

3 Im Innenohr befinden sich keine Blutgefäße, da der Puls für das menschliche Empfinden einen 
beträchtlichen Lärm verursachen würde (Biesinger, 2007). 
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Auf diese Weise kann sich das Innenohr an verschiedene Lautstärken anpassen. 

Efferente Nervenfasern enden an den ÄHZ und modulieren ihre Verstärkerfunktion 

(Merker, 1997). Auf diese Weise können leise Töne verstärkt und laute Töne gedämpft 

werden. Wenn die ÄHZ an den spezifischen Frequenzorten aufgrund der ankommenden 

Lymphwelle erregt werden, verstärken sie durch ihre Kontraktion das Schallsignal. 

Gleichzeitig werden die korrespondierenden IHZ erregt und es kommt zur 

Schalltransduktion (Klinke, 1994). Durch die Stimulation wird in den IHZ ein Ionenfluss 

ausgelöst, der ein Aktionspotential entstehen lässt. Über die Ausschüttung von 

Neurotransmittern in den synaptischen Spalt wird der elektrische Impuls an die 

afferenten Nervenfasern geleitet (Biesinger, 2007). Dieser wird über den Hörnerv zum 

auditorischen Kortex geleitet, wo die Erkennung und Bewertung des akustischen Reizes 

erfolgt.  

Bereits im Nervus acusticus erfolgt eine frequenzspezifische und entsprechend 

der Schalldauer spezifische Erregung der Nervenfasern (Merker, 1997). Anschließend 

werden die Signale beider Ohren über den Nucleus cochlearis ventralis ipsilateral sowie 

kontralateral zum Olivenkomplex weitergeleitet. Während die Neurone des Nucleus 

cochlearis ventralis durch Töne mit gleichbleibender Frequenz optimal erregt werden, 

reagieren die Neurone des dorsalen Kerns des Nucleus cochlearis optimal auf Laute mit 

variierender Frequenz. Gleichzeitig sind letztere Strukturen für das Erkennen der 

Zeitspanne des akustischen Reizes zuständig. Beide Hörkerne bewerten die Signale 

hinsichtlich ihrer Wichtigkeit, filtern wichtige Geräuscheindrücke heraus und leiten sie 

weiter (Biesinger, 2007).  

Im Olivenkomplex kommen die Informationen aus beiden Ohren erstmals 

zusammen, wodurch das räumliche Hören und die Raumorientierung vorbereitet werden 

kann (Merker, 1997). Im Anschluss daran gelangt das Signal über die Hörbahn im 

Lemniscus lateralis zum Colliculus inferior, dessen Schichten frequenzspezifisch 

aktiviert werden. Zudem werden hier die zeitlichen Informationen des Schallreizes 

ausgewertet und es erfolgt die reizspezifische Koordination verschiedener 

Sinnessysteme.  

Erreicht der Nervenimpuls den Corpus geniculatum mediale, den ventralen Tha-

lamuskern, erfolgt die endgültige Mustererkennung des akustischen Reizes (Klinke, 

1994). Die Informationen gelangen schließlich zum primären und sekundären auditori-

schen Kortex (Klinke, 1994), wo die endgültige Hörwahrnehmung geschieht. Der primä-

re auditorische Kortex ist für die Analyse der Tonfrequenz zuständig, die ca. 70 bis 
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100 ms nach der Reizdarbietung erfolgt (Merker, 1997). Der sekundäre auditorische 

Kortex unterstützt die Wahrnehmung von Sprachlauten. Akustische Reizen werden je-

doch immer nur dann bewusst wahrgenommen, wenn der dorsale Kortex cingularis an-

terior und die Insula anterioris aktiviert sind (Sadaghiani et al., 2009). Schließlich erfol-

gen das Sprachverständnis im Wernicke-Areal (Planum temporale) und die emotionale 

Bewertung des Gehörten in der Amygdala, bevor über den präfrontalen Kortex Hand-

lungen gesteuert werden. (Carter et al., 2009/2010). 

Insgesamt gilt bei der Wahrnehmung akustischer Reize: Je komplexer der 

akustische Reiz ist, umso neurophysiologisch höher liegen die Strukturen, die seiner 

Erkennung dienen. 

 

Bedeutsame Neurotransmitter der Verarbeitung akustischer Informationen sind 

GABA und Glutamat, die bekanntesten inhibitorischen und exzitatorischen 

Neurotransmitter im Gehirn. Sie können die Signalübertragung unterdrücken bzw. die 

Aufmerksamkeit für bestimmte Stimuli erhöhen (Schwarz et al., 2000). Zudem spielen 

sie eine wichtige Rolle in der Interaktion des Corpus geniculatum mediale mit dem 

Colliculus inferior sowie mit dem auditorischen Kortex (Schwarz et al., 2000). Auch 

Serotonin ist an der auditorischen Informationsverarbeitung beteilgt, indem es 

auditorische Neurone in der Reaktion auf akustische Reize beeinflusst und an kurz- wie 

auch langfristiger Neuroplastizität beteiligt ist (Santarelli et al., 2003; Fricker et al., 2005; 

Hurley & Hall, 2011). Serotonerge 5-HT1A-Rezeptoren lassen sich im auditorischen 

System, insbesondere im Colliculus inferior und dem auditorischen Kortex finden 

(Andorn et al., 1989). 

 

2.1.4 Ätiologie 

Bereits im Exkurs über die Physiologie des Hörens wurde die Komplexität des 

Hörsystems deutlich. Daher ist es nicht verwunderlich, dass eine Vielzahl von 

Tinnitusauslösern bei der Genese der Hörempfindung eine Rolle spielen können. Es sei 

darauf hingewiesen, dass die folgende Aufzählung somatischer und psychischer 

Einflüsse auf die Tinnitusgenerierung nicht den Anspruch der Vollständigkeit aufweist.  
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2.1.4.1 Einfluss somatischer Faktoren auf Tinnitus 

  Hinsichtlich möglicher Ursachen für objektiven Tinnitus unterscheidet Goebel 

(2003, S. 5) zwischen extrakraniellen (z. B. Stenosen, Klicken künstlicher Herzklappen 

oder fortgeleiteten Geräuschen einer Halsschlagader), intrakraniellen (z. B. 

Hämangiom, Hyperzirkulation bei Anämie oder Hyperämie bei akuter oder chronischer 

Mittelohrentzündung) und muskulären Störungen (Spasmen im Mittelohr oder Klonus 

der Schlundmuskulatur). Eine offene Tuba auditiva kann ein weiterer Ursprung für die 

pulsierenden, von außen wahrnehmbaren Ohrgeräusche sein. 

Bezogen auf den subjektiven Tinnitus wird über eine Vielzahl verursachender 

Erkrankungen diskutiert, obgleich die Ätiologie in fast 40 % der Fälle nicht hinreichend 

geklärt werden kann (Goebel, 2003). Goebel (2003) ordnet die ätiologischen Faktoren 

des subjektiven Tinnitus entsprechend ihres physiologischen Ursprungs den Ursachen 

von Innenohrerkrankungen, neuralen, zentralen sowie zervikogenen und 

stomatognathogenen Ursachen (S. 5) zu. Anschließend erläutert seien infektiöse 

Erkrankungen und Medikamente, als deren Nebenwirkung die Hörwahrnehmung 

auftreten kann (vgl. Dohrmann, 2007 nach Lockwood et al., 2002 und Goebel & Büttner, 

2004).  

Tinnitus kann als Symptom von Funktionsstörungen des Innenohres, wie 

Lärmschwerhörigkeit, Knalltraumata, Otosklerose, Morbus Menière und Hörsturz 

auftreten. Laut klinischen Studien (Lenarz, 2001) machen Innenohrschwerhörigkeit, 

Lärmschäden, Morbus Menière und Hörsturz mehr als zwei Drittel der Tinnitusursachen 

aus. Im Zusammenhang mit einem idiopathischem Hörsturz tritt bei 60 bis 80 % der 

Betroffenen Tinnitus als Begleitsymptom auf (Glaninger, 1982). Meist ist dies jedoch ein 

Anzeichen für die Remission des Hörverlusts. Im Rahmen der rezidivierenden 

Schwindelattacken des Morbus Menière tritt das Ohrgeräusch dagegen nach 

Erkrankungsbeginn nur zeitweilig auf, nimmt jedoch im Verlauf der Erkrankung zu und 

wird während des Vertigo als vorübergehend intensiver empfunden (Goebel, 2003). 

Als mögliche neurale Ursache der Hörempfindung wird das Akustikusneurinom 

diskutiert (Goebel, 2003). Bei lediglich 1 bis 2 % der Patienten stellt dieser gutartige 

Tumor den Auslöser des Ohrgeräusches dar. 

Hirnhautverletzungen, Tumore, Schädelverletzungen oder Multiple Sklerose 

(Goebel, 2003) gelten als zentralnervöse, Tinnitus verursachende Erkrankungen. 
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Kommt es durch Infektionen wie Borreliose zu Gewebezerstörungen im Bereich des 

zentralen-auditiven Systems, kann die Geräuschwahrnehmung gleichfalls entstehen.  

Sofern die Hörwahrnehmung durch Halsbewegungen beeinflussbar ist, liegt 

vermutlich ein zervikogener Tinnitus vor (Goebel, 2003). Traumen der Halswirbelsäule, 

Fehlstellungen der Wirbelsäule oder (möglicherweise stressbedingte) 

Muskelverspannungen des Nackens können hierfür ursächlich sein.  

Funktionsstörungen der Halswirbelsäule gehen häufig mit Störungen des 

Kiefergelenks einher. Lassen sich die Geräuscheindrücke durch ruckartiges Zubeißen, 

Verschieben des Unterkiefers oder starkes Gähnen manipulieren, wird von einem 

stomatognathogenen Tinnitus gesprochen. Psychische Faktoren können die Hypertonie 

der Kaumuskulatur sowie der Nackenmuskulatur mit bedingen. 

Bei infektiösen Erkrankungen, wie bakteriellen oder viralen Entzündungen des 

Innen- oder Mittelohres, kann Tinnitus als Folge oder Begleitsymptom auftreten 

(Dohrmann, 2007; Goebel, 2003). Da die Behandlung dieser Erkrankungen jedoch 

häufig mit Antibiotika erfolgt und Tinnitus als Nebenwirkung von Medikamenten 

auftreten kann, kann eine multifaktorielle Genese der Hörwahrnehmung laut Goebel 

(2003) nicht ausgeschlossen werden. Obgleich auf den Beipackzetteln diverser 

Medikamente davon berichtet wird, tritt Tinnitus nur in seltenen Fällen als 

Medikamentennebenwirkung auf (Dohrmann, 2007). Nach einer Untersuchung von 

Lenarz (1989) stellt die Einnahme von Medikamenten nur bei 2 % der Erkrankten den 

Auslöser der Ohrgeräusche dar. Unter anderem scheinen Salicylate (Cazals et al., 

1998; Eggermont & Kenmochi, 1998; Norena & Eggermont, 2003; Dohrmann, 2007), 

Quinin, Indometacin und Tetrazyklin relevante Wirkstoffe zu sein (Dohrmann, 2007). 

Aber auch andere Antibiotika, Chemotherapeutika, Tuberkulostatika und 

Psychopharmaka können die Hörempfindung verursachen (Goebel, 2003). In 

Tierstudien kann unter Verwendung dieser Substanzen die Pathophysiologie der 

Geräuschwahrnehung analysiert werden (Salvi et al., 2010).  

Die pathophysiologischen Prozesse, die den oben diskutierten Tinnitus-

auslösenden Ereignissen zugrunde liegen, sind nicht vollends bekannt. Bevor die 

Theorien und Erklärungsansätze hierzu näher erläutert werden, wird der Einfluss 

psychischer Aspekte auf die Tinnitusentstehung dargelegt. 
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2.1.4.2  Einfluss psychischer Aspekte auf Tinnitus 

   Die Annahme, dass Stress einen zentralen Einfluss auf die 

Tinnitusgenerierung, Hörsturz und Hyperakusis haben kann, ist weit verbreitet. 

Gelegentlich wird von Tinnitus als „Managerkrankheit“ (Biesinger, 2007, S. 105) 

gesprochen, die bei besonders hoher psychischer und physischer Belastung auftritt. Es 

gibt jedoch kaum methodisch überzeugende Studien, die diesen Zusammenhang 

belegen. 

Bereits in Abschnitt 2.1.1 wurde auf die Komorbidität des Tinnitus mit 

psychischen Erkrankungen eingegangen. Es kann jedoch nicht festgestellt werden, ob 

die Betroffenen bereits vor der Entstehung der Ohrgeräusche unter einer psychischen 

Störung litten oder diese reaktiv auf die akustische Wahrnehmung entwickeln (Hiller & 

Goebel, 2001). De Ridder (2010) und Kellerhals & Hemmeler (2003) geben als klinische 

Beobachtung an, dass bei Patienten mit chronischem Tinnitus gehäuft eine 

Lebensgeschichte mit vielen belastenden Ereignissen zu finden ist, die der 

Tinnituserkrankung vorausgehen. Es wird vermutet, dass Personen mit einer erhöhten 

psychischen Vulnerabilität im Verlauf der Tinnituserkrankung mit größerer 

Wahrscheinlichkeit eine psychische Störung und somit einen dekompensierten Tinnitus 

entwickeln als andere Tinnituspatienten (Hiller & Goebel, 2001). Unter diesem Aspekt 

erscheint eine psychotherapeutische Behandlungsmethode (siehe Abschnitt 2.1.7) 

möglicherweise additiv zu einer anderen Maßnahme sinnvoll, die primär auf die 

Habituation an das Ohrgeräusch und die Verbesserung von Stressbewältigungs-

kompetenzen abzielt. 

 

2.1.5 Pathophysiologie 

Es stellt sich die Frage nach den pathophysiologischen Prozessen, die den oben 

diskutierten Tinnitus-auslösenden Ereignissen zugrunde liegen. Bedingt durch struktu-

relle und funktionelle Hirnveränderungen gibt es hierzu verschiedene Theorien und Er-

klärungsansätze.  
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  2.1.5.1 Strukturelle und funktionelle Veränderungen im Gehirn 

  Es liegt nahe, die Ursache für die Tinnituswahrnehmung am Ort des Gesche-

hens, also im Innenohr oder dem Hörnerv selbst zu vermuten (Jastreboff, 1990). Hierzu 

gibt es jedoch weder aus Studien mit Tinnituspatienten noch aus Tierstudien ausrei-

chende Belege (Dohrmann, 2007). Es gibt viele Hinweise darauf, dass die Schädigung 

oder der Verlust der IHZ in der Cochlea die Hörwahrnehmung bedingt (vgl. Feldmann, 

1998; Lenarz, 2001; Goebel, 2003; Jastreboff & Jastreboff, 2006; Biesinger, 2007). Die-

se Theorie vermag es jedoch nicht, die Komplexität der Ohrgeräusche hinreichend zu 

erklären, da Tinnitus nicht bei allen Personen mit Schädigung der IHZ auftritt (Møller, 

2010c). Dies ist ein Hinweis auf die multifaktorielle Genese der Geräuschwahrnehmung 

(Møller, 2010d).  

Die meisten Studien legen eine wesentliche Beteiligung des zentralen auditori-

schen Systems nahe. Dafür spricht das Fortbestehen des Tinnitus nach Durchtrennung 

des Hörnervs (House & Brackmann, 1981; Matthies & Samii, 1997; Wazen et al., 1997), 

was eine Tinnitusgenerierung innerhalb der aufsteigenden Hörbahnen vermuten lässt. 

Die Annahme wird gestützt durch strukturelle, funktionell-bildgebende und elektrophy-

siologische Untersuchungen, mithilfe derer Funktionsveränderungen im Bereich des 

zentralen Nervensystems nachgewiesen werden konnten (Møller, 2003).  

Mithilfe der voxelbasierten Morphometrie (im Folgenden VBM) können strukturel-

le Hirnveränderungen bei Tinnituspatienten festgestellt werden. Mühlau et al. (2006) 

können eine Verringerung der grauen Substanz in subcallosalen Arealen, einschließlich 

des Nucleus accumbens sowie eine Zunahme der Dichte im Corpus geniculatum media-

le des Thalamus nachweisen. Unter Verwendung derselben Methode konnten Landgre-

be et al. (2009) eine Reduzierung der grauen Substanz im Colliculus inferior und dem 

Hippocampus aufzeigen. Langguth & Landgrebe (2010) vermuten hierin eine Kompen-

sation der Hyperaktivität in diesem Areal. Die Konzentrationszunahme der grauen Subs-

tanz des Thalamus interpretieren sie als Konsequenz der sensorischen Deprivation des 

auditorischen Systems. 

Die Befunde der VBM decken sich mit Ergebnissen bildgebender Verfahren, die 

ebenfalls auf eine Beteiligung dieser Strukturen an der Tinnituswahrnehmung hinwei-

sen. Mit Fluordesoxyglucose-Positronen-Emissions-Tomographie (im Folgenden FDG-

PET) kann eine verstärkte metabolische Aktivität im linken primären auditorischen Kor-

tex aufgezeigt werden, die unabhängig von der Tinnitus-Lateralität auftritt (Arnold et al., 
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1996; Wang et al., 2000; Eichhammer et al., 2003a; Kleinjung et al., 2005; Langguth et 

al., 2006a; Smith et al., 2007). Ähnliche Veränderungen im auditorischen Kortex zeigen 

auch schizophrene Patienten mit auditorischen Phantomwahrnehmungen (Dierks et al. 

1999) sowie Ratten mit Salicylate-induziertem Tinnitus (Lobarinas et al., 2008; Paul et 

al., 2009). Auch mithilfe von Einzelphotonen-Emissionscomputertomographie-Analysen 

(im Folgenden SPECT von engl. single photon emission computed tomography) (Shul-

man et al., 1995; Gardner et al., 2002) und funktioneller Magnetresonanztomographie 

(fMRT) können Anomalien in diesem Bereich dargestellt werden (Smits et al., 2007), 

wobei sich zusätzlich Auffälligkeiten im sekundären auditorischen Kortex zeigen (Giraud 

et al., 1999). Mit [(15)O]-H2O-PET kann eine mit Tinnitus assoziierte Verstärkung des 

regionalen zerebralen Blutflusses (im Folgenden rCBF von engl. regional cerebral blood 

flow) im temporoparietalen Kortex festgestellt werden (Giraud et al., 1999; Andersson et 

al., 2000; Plewnia et al., 2007b). Zudem gibt es diverse Hinweise auf eine Beteiligung 

des limbischen Systems bei der Tinnituswahrnehmung (u. a. Landgrebe et al., 2009; 

Schecklmann et al., 20114), was auf die emotionale Komponente der Tinnituswahrneh-

mung verweist. Vanneste et al. (2010a) sehen in der Aktivität limbischer Strukturen das 

Korrelat für die mit Tinnitus einhergehende Belastung.  

In fMRT-Studien und VBM-Studien kann zudem eine Mitwirkung des Colliculus 

inferior (Melcher et al., 2000; Mühlau et al., 2006; Smits et al., 2007; Lanting et al. 2008) 

sowie des Corpus geniculatum mediale (Smits et al., 2007; Landgrebe et al., 2009) an 

der Pathophysiologie von Tinnitus festgestellt werden. 

Weitere Studien zeigen Zusammenhänge zwischen einzelnen Aspekten der Tin-

nituswahrnehmung und erhöhter kortikaler Aktivität auf. Lockwood et al. (1998) weisen 

mit einer [(15)O]-H2O-PET-Untersuchung nach, dass ein positiver korrelativer Zusam-

menhang zwischen dem rCBF im auditorischen Kortex und der Tinnitusintensität be-

steht, der von Probanden mittels oralen oder fazialen Bewegungen beeinflusst werden 

kann. Schecklmann et al. (2011) zeigen, dass die Tinnitusdauer mit einer verstärkten 

Aktivität im rechts frontal-inferioren, dem rechts ventro-medialen präfrontalen und dem 

rechts posterior-zingulärem Kortex zusammenhängt.  

                                                                                                 

4 Weitere Quellen sind Lockwood et al., 1998; Mirz et al., 1999; Andersson et al., 2000; Gardner et al., 
2002; Mühlau et al., 2006; Plewnia et al., 2007b; Smits et al. 2007; Shulman et al., 2007. 
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Die dargestellten Befunde aus der Bildgebung mit der nachgewiesenen erhöhten 

kortikalen Aktivität in den zentralen Strukturen des auditorischen Systems lässt eine pa-

thologisch verstärkte Spontanaktivität im Collicullus inferior, dem Thalamus (Arnold et 

al., 1996; Reyes, et al. 2002; Kleinjung et al., 2005; Langguth et al., 2006a) und dem 

primär-auditorischen Kortex vermuten (Arnold et al., 1996; Kleinjung et al., 2005; Lang-

guth et al., 2006a). Die pathophysiologische Relevanz dieser Strukturen wird von Stu-

dien unterstrichen, in denen die Tinnitusintensität nach Magnetstimulation der genann-

ten Areale reduziert werden konnte. Bevor diese näher beschrieben werden, sollen die 

pathologischen Konzepte zur Tinnitusentstehung erläutert werden.  

 

2.1.5.2 Pathophysiologische Theorien und Erklärungsansätze 

  Wie bereits dargestellt, scheint die Schädigung der Haarzellen eine wesentliche 

Beteiligung an der Tinnitusentstehung zu haben. Die IHZ sind mit den afferenten Ner-

venfasen verbunden. Werden sie geschädigt oder verlieren vollständig ihre Funktions-

fähigkeit, können Informationen über die entsprechenden Frequenzen, die durch diese 

Rezeptorzellen verarbeitet werden, nicht mehr an höhere Areale weitergeleitet werden. 

Die Folge ist eine partielle Deafferenzierung (Llinás et al., 1999; Eggermont & Roberts, 

2004; Møller, 2010e). Damit wird die Ausschaltung oder Störung von Nervenimpulsen 

beschrieben, die über die afferenten Nervenfasern von der Peripherie in das zentrale-

auditorische System führen. Eggermont & Roberts (2004) weisen nach, dass die Tinni-

tuswahrnehmung unmittelbar nach der Deafferenzierung einsetzt. Somit bewirken peri-

phere Funktionsstörungen im Innenohr zentral-auditorische Funktionsveränderungen.  

Durch die Deafferenzierung der auditorischen Peripherie wird neuronale Plastizi-

tät in zentralen Strukturen induziert (Møller, 2010e), deren Relevanz für die Tinnitusent-

wicklung von vielen Wissenschaftlern betont wird (vgl. Lockwood et al., 1998; Mühlni-

ckel et al., 1998; Eggermont & Roberts, 2004; Kleinjung et al., 2005; Weisz et al. 2005; 

Mühlau et al., 2006; Langguth et al, 2007; May et al., 2007). Die verschiedenen patho-

physiologischen Veränderungen, die durch neuroplastische Vorgänge aktiviert werden 

und als Korrelat der Tinnituswahrnehmung diskutiert werden, sind eine tonotope Reor-

ganisation, eine Veränderung der Balance zwischen Inhibition und Exzitation, eine er-

höhte Spontanaktivität, eine gesteigerte Synchronizität der Nervenzellaktivität sowie ei-

ne gesteigerte temporale Kohärenz der Aktivität von Nervenzellpopulationen. 
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Aufgrund der Funktionsstörungen oder Verluste von IHZ erhalten die Neurone 

des frequenzspezifischen Repräsentationsfeldes im auditorischen Kortex keine sensori-

schen Informationen mehr. Im Rahmen einer plastischen Reorganisation adaptiert das 

Nervensystem an die Störung, indem die deafferenzierten Neurone die Frequenzen der 

angrenzenden Haarzellen repräsentieren, wodurch dieser Frequenzbereich in einem der 

Schädigung entsprechendem Ausmaß (Roberts, 2010) überrepräsentiert ist (Mühlnickel 

et al., 1998; Møller, 2010d; Roberts, 2010). Die Tinnitusfrequenzen entsprechen dann 

den Frequenzen des Hörverlustes (Norena et al., 2002). Mittels Magnetenzephalogra-

phie (im Folgenden MEG) konnte nachgewiesen werden, dass sich das rezeptive Feld 

der deafferenzierten Neuronen verschiebt und korikal von einem größeren Areal im au-

ditorischen Kortex repräsentiert wird (Mühlnickel et al., 1998). Dies erfolgt mit dem Ziel, 

eine nahezu unbeeinträchtigte Perzeption entsprechend des Ausgangszustands herzus-

tellen (Eggermont & Roberts, 2004). Es gilt, dass die Stärke der Reorganisation die 

Schwere der Tinnituserkrankung bestimmt (Mühlnickel et al., 1998). 

Die Reorganisation wird als Korrelat von Phantomschmerzen diskutiert. Die Be-

schreibung von Tinnitus als Phantomwahrnehmung liegt nahe, da die akustische Wahr-

nehmung ebenso wie Phantomschmerzen durch zentralnervöse Prozesse entsteht und 

ohne Beteiligung von äußeren Stimuli durch den Körper oder das Ohr aufrechterhalten 

wird (Møller, 2010d). Auch bei Phantomschmerzen kann kortikale Reorganisation fest-

gestellt werden. Die hier festzustellenden neuroplastischen Veränderungen führen 

ebenso wie bei Tinnitus zu Überrepräsentationen der zur geschädigten benachbarten 

Areale im somatosensorischen Kortex (Elbert et al., 1994; Flor et al., 1995). Die Schädi-

gung des Innenohres entspräche in diesem Vergleich der Amputation (Dohrmann, 

2007).  

Ob die tonotope Reorganisation die neuronale Ursache von Tinnitus darstellt  

oder aber korrelativ mit der Tinnituswahrnehmung auftritt, ist jedoch bislang ungeklärt 

(Dohrmann, 2007; Møller, 2010d). Nachgewiesen ist jedoch, dass die auf der Reorgani-

sation basierende Verschiebung des rezeptiven Feldes zu einem neuen Muster der Ge-

hirnaktivität führt (Eggermont & Roberts, 2004). Diese Veränderung in der neuronalen 

Aktivität könnte Auslöser für eine entstehende Inbalance zwischen exitatorischen und 

inhibitorischen Prozessen sein (Eggermont, 2005).  

Im Allgemeinen sind die hemmenden und erregenden Prozesse im Nervensys-

tem ausgewogen (Møller, 2003). Durch akustische Reize werden beide Prozessarten im 

zentralen Nervensystem ausgelöst (Møller, 2010e). Kommt es zu einer Störung im zen-
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tralen Nervensystem, beispielsweise aufgrund einer Dysfunktion der cochlearen Rezep-

toren (Eggermont & Roberts, 2004) oder einer Verletzung im Hörnerv (Møller, 2003), 

kann Neuroplastizität zur neuronalen Adaptation ausgelöst werden. Diese kann in einer 

Inbalance zu Lasten der Inhibition resultieren. Während die neurale Aktivität in der Peri-

pherie durch eine Störung, wie beispielsweise sensorische Deprivation reduziert wird, 

nimmt die kortikale Erregung zu (Syka et al., 1982; Syka et al., 1994; Schlee et al., 

2010). Dies betrifft vorwiegend den Colliculus inferior sowie den cerebralen Kortex 

(Møller, 2010d). Durch die verstärkte neuronale Aktivität kommt es zu Eigenschwingun-

gen, die als Tinnitus wahrgenommen werden (Møller, 2003). Die verstärkt erregten Neu-

ronen nehmen Geräusche ohne entsprechendes akustisches Korrelat wahr (Møller, 

2010d). 

Das Ungleichgewicht zwischen Inhibition und Exzitation entspricht einem Un-

gleichgewicht zwischen GABAergen und Glutamat-ergen Prozessen (Eggermont, 2005). 

Eine Studie an Ratten konnten eine verringerte GABAerge Hemmung im Colliculus infe-

rior nach Lärmschädigung nachweisen (Szczepaniak &Møller, 1995). 

Auch die in Abschnitt 2.1.2 erläuterte erhöhte Prävalenz von Tinnitus im höheren 

Lebensalter und bei Männern kann durch das verschobene Gleichgewicht zwischen 

hemmenden und erregenden Prozessen erklärt werden. Da die inhibitorischen Prozesse 

mit zunehmendem Alter abnehmen – wodurch sich die Balance zwischen Inhibition und 

Exzitation verschiebt – könnte dies eine Erklärung für die erhöhte Prävalenz von Tinni-

tus bei älteren Individuen sein (Caspary et al., 1990). Studien weisen darauf hin, dass 

die weiblichen Fortpflanzungshormone unter anderem die Anzahl GABAerger Rezepto-

ren erhöhenund damit die GABAerge Inhibition verstärken (Tremere et al., 2009, zitiert 

nach Møller, 2010e). 

Die in PET-Studien nachgewiesene Erhöhung des rCBF und die verstärkte 

Gammabandaktivität, welche in MEG- und EEG-Untersuchungen aufgezeigt wurde, 

weisen auf eine erhöhte Exzitabilität des auditorischen Kortex‘ bei Tinnitus hin (Schlee 

et al., 2010).  

Die Veränderungen in der Relation zwischen hemmenden und erregenden Pro-

zessen zugunsten der exzitatorischen Prozesse bewirken eine erhöhte neuronale Spon-

tanaktivität (Møller, 2010d). Daher können letztere als Folge von reduzierter sensori-

scher Stimulation aufgefasst werden.  
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Die erhöhte synchrone Feuerungsrate wird als weiteres neuronales Korrelat des 

Tinnitus diskutiert. Eggermont & Tass (2015) bieten einen Überblick über Theorien und 

Befunde zur maladaptiven neuronalen Synchronität bei Tinnitus. 

Grundsätzlich signalisiert eine erhöhte neuronale Synchronizität die Anwesenheit 

eines Geräusches, obgleich im Falle von Tinnitus dieser Eindruck fälschlicherweise ent-

steht (Møller, 2010e). Diverse Studien interpretieren die synchrone Feuerungsrate gro-

ßer Zellverbände als den neuronalen Ursprung der Tinnituswahrnehmung (Cazals et al., 

1998; Eggermont & Kenmochi, 1998; Eggermont & Roberts, 2004; Weisz et al., 2005; 

Dohrmann, 2007). Tierphysiologische Experimente, die auf der Verabreichung Tinnitus-

auslösender Mittel, wie z. B. Salicylate beruhen (Cazals et al., 1998; Eggermont & 

Kenmochi,1998; Norena & Eggermont, 2003), liefern hierzu Belege.  

Die synchrone Neuronenaktivität entsteht als Folge der Deafferenzierung zentral-

auditorischer Prozesse nach cochlearer Schädigung. Obgleich die periphere Schädi-

gung bewirkt, dass das entsprechende tonotope Areal des auditorischen Kortex‘ von 

thalamokortikalen Bahnen keinen Input erhält, feuern die betroffenen Neuronen ver-

stärkt synchron (Roberts, 2010). Eggermont (2007) sieht die korrelierte neuronale Aktivi-

tät als Ursache für alle funktionalen Veränderungen im auditorischen Kortex. Es konnte 

nachgewiesen werden, dass der Wegfall hemmender GABAerger Einflüsse zu verstärk-

ter synchroner Aktivierung von Neuronennetzwerken des auditorischen Systems führt, 

welche ebenso wie Tinnitus unmittelbar nach einer Lärmschädigung festzustellen ist 

(Norena & Eggermont, 2003). Die verstärkte Synchronisation der Nervenzellenaktivität 

könnte dann aufgrund Hebb’scher Mechanismen die tonotope Reorganisation bedingen 

(Eggermont & Roberts, 2004). Dohrmann (2007) vermutet, dass die verringerte Inhibiti-

on zu einer Enthemmung der Neuronen und ihren Verbindungen führt, was wiederum 

eine verstärkt synchrone Nervenzellenaktivität bedingt. Die verstärkte Synchronizität 

kann sich dann über die lateralen Verbindungen ausbreiten (Eggermont, 2007). Weisz 

et al. (2007a) entwickelten das „Synchronization by Loss of Inhibition Model“ (im Fol-

genden SLIM), welches die verstärkte Synchronisation auditorischer Aktivität, im Sinne 

einer verstärkten Gammabandaktivität auf eine Reduktion kortikaler Inhibition zurück-

führt, die mit reduzierten Alpharhythmen einhergeht. 

Ein Unterschied hinsichtlich der synchronen Aktivität in temporalen und frontalen 

Arealen zwischen gesunden Personen und Probanden mit chronischem Tinnitus konnte 

mittels MEG nachgewiesen werden (Weisz et al., 2005). Demnach ist Tinnitus mit einer 

erhöhten Delta- und reduzierten Alphabandaktivität, insbesondere in temporalen und 
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frontalen Arealen assoziiert. Aufgrund einer späteren Studie, in welcher sich neben re-

duzierten Alpha-Oszillationen erhöhte synchrone Gammabandaktivität nachweisen lies, 

vermuten Weisz et al. (2007b), dass aufgrund der Deafferenzierung die auditorischen 

Interneurone zu wenig Input erhalten.  

Schlee et al. (2008b) konnten in einer MEG-Studie Zusammenhänge hinsichtlich 

der EEG-Phasensynchronisation zwischen verschiedenen Hirnarealen und der mittels 

Fragebogen erfassten Tinnitusbelastung feststellen. Sie zeigen eine negative 

Korrelation zwischen der empfundenen Belastung und der phasenhaften EEG 

Synchronisation zwischen dem anterior-zingulären Kortex und dem rechten 

Frontallappen sowie einem positiven Zusammenhang zwischen dem anterior-zingulären 

Kortex und dem rechten Parietallappen. Je stärker die Neuronenaktivität zwischen den 

letztgenannten Strukturen synchron verläuft, umso mehr leidet der Betroffene unter der 

Tinnituswahrnehmung. 

Diverse Studien weisen einen korrelativen Zusammenhang zwischen der ver-

stärkten Synchronizität und einer erhöhten neuronalen Spontanaktivität nach (Norena & 

Eggermont, 2003; Seki & Eggermont, 2003; Eggermont & Roberts, 2004). Während die 

spontane Feuerungsrate der peripheren Neuronen und im Hörnerv nach cochlearer 

Schädigung verringert ist, steigt sie in kortikalen und subkortikalen Arealen an (Syka, 

2002; Eggermont & Roberts, 2004; Roberts, 2010). Sie kann im dorsalen Nucleus coch-

learis (Kaltenbach, 2006), im Colliculus inferior sowie im primären und sekundären audi-

torischen Kortex (Eggermont & Roberts, 2004) nachgewiesen werden. Im Hörnerv zei-

gen sich dagegen sehr unterschiedliche Veränderungen der neuronalen Spontanaktivi-

tät. Wird in Tierstudien Tinnitus experimentell induziert, kann im Hörnerv verstärkte, ver-

ringerte oder gleichbleibende Spontanaktivität festgestellt werden (Eggermont & Ro-

berts, 2004). 

Die Arbeitsgruppe um Weisz et al. (2005; 2007b) konnte ein verstärktes sponta-

nes Feuerungsverhalten (erhöhte Delta- und reduzierte Alphabandaktivität) besonders 

in temporalen und frontalen Arealen belegen. Auch Shulman et al. (2006) konnten 

Anomalitäten in der Spontanaktivität in diesen zentral-auditorischen Bereichen feststel-

len. Die erhöhte Aktivität in temporal-kortikalen Arealen konnte in diversen Studien rep-

liziert werden (Kahlbrock & Weisz, 2008; Lorenz et al., 2009).  

Auch die in Abschnitt 2.1.5.1 dargestellten Ergebnisse aus PET-Studien konnten 

eine erhöhte metabolische Aktivität im Sinne eines erhöhten spontanen Feuerungsver-
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haltens der Neuronen aufzeigen (Arnold et al., 1996; Lockwood et al., 1998; Wang et 

al., 2000; Eichhammer et al., 2003a; Kleinjung et al., 2005; Langguth et al., 2006a; 

Smith, 2007; Paul et al., 2009). 

In Tierstudien konnte unter Verabreichung von Salicylaten eine erhöhte spontane 

Feuerungsrate zentral-auditorischer Neuronen festgestellt werden (Evans et al., 1982; 

Jastreboff & Sasaki, 1986; Chen & Jastreboff, 1995; Ochi & Eggermont, 1996; 

Eggermont & Kenmochi, 1998; Eggermont & Komiya, 2000; Kaltenbach et al., 2000, 

Brozoski et al., 2002; Lobarinas et al., 2008; Paul et al., 2009).  

Norena & Eggermont (2003) zeigen in einer Untersuchung an Katzen, dass die 

Spontanaktivität der zentral-auditorischen Neuronen erst einige Stunden nach einem 

akustischen Trauma ansteigt, wohingegen die verstärkte Synchronizität als unmittelbare 

Folge des Knalltraumas festgestellt werden kann. Die Autoren sehen daher die syn-

chrone Neuronenaktivität als ursächlich für die Tinnitusperzeption. Obgleich die Verstär-

kung der Spontanaktivität eine bedeutsame Rolle für die Tinnitusgenerierung zu spielen 

scheint, wird sie nicht als hinreichend zur Erklärung der Geräuschwahrnehmung ange-

sehen (Norena & Eggermont, 2003; Roberts, 2010). Dies begründet Roberts (2010) 

damit, dass die erhöhte spontane Feuerungsrate innerhalb der tonotopen Regionen 

feststellbar ist, die vom Hörverlust betroffen sind (meist Regionen hoher Frequenzen) – 

was die Befunde von Seki & Eggermont (2003) bestätigen – jedoch auch in den weniger 

betroffenen (meist niedrig frequenten) Regionen. Es gibt insgesamt ausreichend Belege 

dafür, dass Tinnitus auf kortikaler Ebene mit einer erhöhten Spontanaktivität und einer 

verstärkten Synchronisation der Neuronentätigkeit – nachgewiesen durch eine erhöhte 

Gammabandaktivität – einhergeht (Eggermont & Roberts, 2004). Beide stellen Hinweise 

für eine erhöhte Exzitabilität des auditorischen Systems dar.  

Møller (2010f) vermutet, dass es aufgrund der veränderten Balance zwischen 

hemmenden und erregenden Prozessen, wie sie oben beschrieben wurde, auch zu 

einer erhöhten Kohärenz5 der neuronalen Aktivität kommt. Studien haben ergeben, dass 

                                                                                                 

5 Während in der Literatur mit synchronem und kohärentem Feuerungsverhalten gelegentlich das gleiche 
neuronale Aktivitätsmuster beschrieben wird, sei auf den Unterschied in der Bedeutung hingewiesen. 
Die Kohärenz neuronaler Aktivität nimmt Bezug auf die räumliche oder zeitliche Übereinstimmung von 
Oszillationen (Zschocke, 2009). Dagegen bezieht sich die Synchronizität von Nervenzellenaktivität auf 
den korrelativen Zusammenhang der sinusdalen Wellenfrequenz von Oszillationen. Dies kann auch als 
spektrale Kohärenz (Sanei & Chambers, (2007) bezeichnet werden. 
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das zeitlich kohärente Feuerungsverhalten von Nervenzellen wichtig für die 

Wahrnehmung von Geräuschen, also auch von Tinnitus ist (Møller, 1984; Eggermont & 

Roberts, 2004; Eggermont, 2007). Untersuchungen mit Tinnituspatienten konnten die 

Relevanz der temporal kohärenten Aktivität von Neuronen unterstreichen (Eggermont & 

Roberts, 2004; Eggermont, 2007). Diese kann ebenfalls durch neuronale Plastizität 

ausgelöst werden (Møller, 2010e). Einer nicht belegten Hypothese entsprechend könnte 

die gesteigerte temporale Kohärenz der Aktivität von Nervenzellpopulationen jedoch 

auch durch ephaptische Übertragungsprozesse zwischen zentral-auditorischen 

Neuronen oder Fasern des Hörnervs begünstigt werden, welche eine Geräusch 

bedingte Aktivierung vortäuschen (Møller, 2010e). Ephaptische Transmission entsteht 

häufig nach Verletzungen und Erkrankungen, wie dem Vestibular Schwannom, die mit 

Tinnitus assoziiert werden (Møller, 1984, Seltzer & Devor, 1979, Rasminsky, 1980, 

Cacace, 2003, zitiert nach Møller, 2010e). 

Llinás et al. (1999) entwickelten das Modell der thalamokortikalen Dysrhythmie, 

die als Folge gestörter zentralnervöser Prozesse ursächlich für Tinnitus und andere Po-

sitivsymptomatiken, wie Parkinson Erkrankung und Depression angesehen wird. Eine 

thalamokortikale Dysrythmie bezeichnet die Unregelmäßigkeit der neuronalen Oszilla-

tionen, die vom Thalamus zum Kortex führen (vgl. Review Artikel von De Ridder et al., 

2015). Vereinfacht formuliert, ist hierbei die elektrophysiologische Kommunikation zwi-

schen den beiden Hirnarealen gestört. Thalamokortikale Verbindungen haben oft eine 

hemmende Wirkung und tragen vor allem im hochfrequenten Modus (30–50Hz, Gam-

mabandaktivität) dazu bei, dass sich spezifische Areale nicht über weite Teile des Kor-

tex‘ ausbreiten. Diese hemmenden Verbindungen prägen das kortikale Aktivitätsmuster 

und es kann in der Folge zur Deafferenzierung kommen. Fehlt dieser sensorische Ein-

strom in das Zentralnervensystem, resultiert aus der fehlenden lateralen Inhibition eine 

Interaktion zwischen Thalamus und Kortex. Es kommt zur Hyperpolarisation, d. h. 

Hemmung einiger thalamischer Zellen, wodurch eine Überproduktion thalamokortikaler 

Rythmen in niedrigen EEG-Frequenzen (Thetabandaktivität) entsteht. Diese Oszillatio-

nen entsprechen niedrigschwelligen Kalzium-Spitzen-Landungssimpulse, die aufgrund 

der Hyperpolarisation thalamischer Zellen auf die Öffnung von Kalzium-Ionen-Kanälen 

(Ca+ -Kanäle) folgen und dadurch zu einer Verlangsamung des EEGs führen. 

  In Bereichen, in denen afferenzierter thalamischer Input auf deafferenzierten tha-

lamischen Input trifft, entsteht der „Edge Effect“ (Llinás et a., 1999, S. 15224). Zusätzlich 

kommt neben der Thetabandaktivität zu einer Überproduktion von Gammabandaktivität, 
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die laut Llinás et al. (1999) das Korrelat von Tinnitus sowie möglicherweise positive 

Symptome, wie bei der Parkinson Erkrankung und der Depression darstellt. Wenn be-

stimmte kortikale Strukturen im Gehirn dazu gezwungen sind, kontinuierlich Gamma-

Frequenzen hervorzubringen, generiert das Gehirn – auch bei fehlendem Zusammen-

hang mit der äußeren Umwelt und fehlender Intentionalität – kognitive Erfahrungen und 

motorisches Verhalten. Vor diesem Hintergrund vermuten Llinás et al. (1999) die Gam-

mabandaktivität als ursächlich für die Tinnituswahrnehmung. 

  Dohrmann (2007) kritisiert, dass das Modell unzureichend empirisch fundiert ist. 

Sie bemängelt unter anderem, dass Llinás et al. (2005, zitiert nach Dohrmann, 2007) ihr 

Modell an nur einem Tinnituspatienten überprüften und lediglich Veränderungen der 

Theta-, nicht jedoch der Gammabandaktivität angaben. Darüber hinaus beanstandet 

Dohrmann (2007), dass in dem Modell die emotionale Komponente des Tinnitus außer 

Acht gelassen und damit die nachgewiesene Beteiligung frontaler und limbischer Hirn-

areale nicht mit einbezogen wurden. Die Verbindung zwischen auditorischem Kortex 

und frontoparietalen Arealen wird als bedeutsam für die bewusste Wahrnehmung des 

Tinnitus‘ gesehen (Vanneste et al. 2010a). 

Anders verhält es sich in dem neurophysiologischen Tinnitusmodell von Jastre-

boff und Hazell (Jastreboff, 1990; Jastreboff & Hazell, 1993; Jastreboff & Hazell, 1994; 

Jastreboff & Hazell, 2004). Das Modell fundiert auf Tierstudien, die eine erhöhte Spon-

tanaktivität in zentral-auditorischen Arealen nach der Vergabe Tinnitus-auslösender 

Substanzen nachwiesen (Jastreboff & Sasaki, 1986; Chen & Jastreboff, 1995). Das Mo-

dell vereint unterschiedliche neuronale Ebenen mit unterschiedlichen Funktionen. Nach 

peripherem Ursprung, durch bspw. Cochleare Schädigung, erfolgt subkortikal die Sig-

nalentdeckung, bevor im auditorischen Kortex und anderen kortikalen Arealen die 

Wahrnehmung und Bewertung des akustischen Signals entsteht. Diese erfolgt im Aus-

tausch mit dem limbischen System, das emotionale Assoziationen liefert. Durch eine 

Verbindung subkortikaler mit limbischen Strukturen wird bereits auf der Ebene der Sig-

naldetektion unbewusst die Relevanz des Ohrgeräusches bestimmt, wodurch es zu ei-

ner Verstärkung oder Abschwächung, im Sinne einer Ignorierung des akustischen Rei-

zes kommt. Für diesen Ansatz spricht die schwache Korrelation zwischen der Tinnitu-

sintensität und der empfundenen Belastung durch das Ohrgeräusch (Hiller & Goebel, 

2006). Die Entwickler des Mehrebenenmodells verweisen auf den Befund von Heller & 

Bergman (1953), welche eine Tinnituswahrnehmung bei 94 % gesunder Probanden 

nachwiesen, die sich in einem schallisolierten Raum aufgehalten hatten. Dieser Befund 
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konnte von Del Bo et al. (2008) repliziert werden. Jastreboff und Hazell (1993) sehen in 

diesen Befunden die Bestätigung, dass Tinnitus einer für Menschen typischen Ge-

räuschwahrnehmung entspricht, die von manchen als relevant bewertet wird und daher 

verstärkt wahrgenommen wird und von anderen nicht. Auf der Basis dieses Modells 

entwickelten Jastreboff und Hazell (Jastreboff, 1990; Jastreboff, Hazell & Graham, 

1994) die „Tinnitus-Retraining-Therapy“, welche sich eben diese Bewertungsprozesse 

zu Nutze macht und zum Ziel hat, die Relevanz des Ohrgeräusches zu verringern und 

damit dessen Wahrnehmung zu mindern. Leider mangelt es an methodisch einwand-

freien Studien, welche die Effektivität der Therapiemethode und damit auch die Plausibi-

lität des Modells stützen. Dohrmann (2007) beklagt, dass die Untersuchungen keine 

Kontrollgruppen aufweisen und die Behandlungsmethode in ihrer Durchführung unklar 

bleibt. 

Anhand der Schilderungen zu pathophysiologischen Theorien und Erklärungsan-

sätzen wird deutlich, dass der erhöhten Gammabandaktivität eine hohe Relevanz zu-

kommt. Diese lässt sich mit dem Ansatz der fehlenden lateralen Hemmung sowie mit 

der Theorie der erhöhten Synchronizität erklären. Llinás‘ Modell des "Edge Effects“ legt 

die Überproduktion von Gammabandoszillationen als Produkt thalamokortikaler Dysr-

hythmie aus. Im Folgenden soll daher auf diese hochfrequenten Oszillationen als neu-

rophysiologisches Korrelat von Tinnitus näher eingegangen werden. 

 

Zunächst kann insgesamt festgehalten werden, dass die meisten Wissenschaftler 

eine wesentliche Beteiligung des zentralen-auditorischen Systems an der Tinnitusgene-

rierung vermuten, obgleich die genaue Pathophysiologie von Tinnitus bis heute ungek-

lärt ist. Die Annahme wird gestützt durch strukturelle und funktionell-bildgebende Unter-

suchungen, mithilfe derer bei Tinnituspatienten Funktionsveränderungen im Bereich des 

zentralen Nervensystem nachgewiesen werden konnten. Demzufolge scheint eine ge-

steigerte neuronale Aktivität innerhalb der zentralen Hörbahn ursächlich an der Entste-

hung akustischer Phantomwahrnehmungen wie beispielsweise akustischen Halluzina-

tionen oder auch dem chronischen Tinnitus beteiligt zu sein (Hoffman et al., 2005). Die 

verstärkte Desynchronisation von Alpharhythmen bei gesteigerter Synchronisation der 

Gammabandoszillationen in MEG oder EEG, ein erhöhter regionaler zerebraler Blutfluss 

(im Folgenden rCBF) im PET sowie eine erhöhte spontane Feuerungsrate der Neuro-

nen gelten als Indikatoren für eine gesteigerte Exzitabilität im auditorischen Kortex 

(Schlee et al., 2010).  
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2.1.6  Neurophysiologische Korrelate von Tinnitus dargestellt mit dem Elektro- 

 enzephalogramm 

Strukturelle und funktionell-bildgebende Daten belegen bei Patienten mit 

chronischem Tinnitus eine gesteigerte neuronale Aktivität, die als Folge 

neuroplastischer Prozesse zu interpretieren ist. Mithilfe von MEG (Llinás et al., 1999; 

Llinás et al., 2005; Weisz et al., 2005; Weisz et al., 2007b; Schlee et al., 2009) oder 

quantitaver EEG Untersuchungen (Ashton et al., 2007) konnten eine Korrelation 

zwischen Gammabandaktivität im auditorischen Kortex und der Wahrnehmung von 

Tinnitus nachgewiesen werden. Im Folgenden werden entsprechende Befunde 

dargestellt und mit den unter Abschnitt 2.1.5.2 aufgeführten pathophysiologischen 

Theorien und Erklärungsansätzen in Zusammenhang gestellt. Zuvor wird eine kurze 

Einführung zur Elektroenzephalografie gegeben. 

 

2.1.6.1 Exkurs: Elektroenzephalografie (EEG) 

Seit der Entdeckung der Elektroenzephalografie (im Folgenden EEG) durch Hans 

Berger 1929 kann die oszillatorische Hirnaktivität untersucht werden (Berger, 1929). 

Das Elektroenzephalogramm ermöglicht es, als nicht-invasive Methode die elektrischen 

Summeneffekte, die aus der simultanen Aktivität vieler Nervenzellen über teilweise 

große Flächen des Kortex‘ resultieren, als Hirnaktivität in Form eines Kurvenbildes zu 

erfassen (Sanei & Chambers, 2007). Dies bedingt die Interkonnektivität kortikaler 

Strukturen durch Rückwärts- und Vorwärtskopplungsschleifen, welche inhibitorische und 

exzitatorische Neuronen enthalten (zum Überblick siehe Lopez da Silva 1996).  

 

2.1.6.1.1 Frequenzenbänder im EEG 

Die Aufzeichnungen des EEG beruhen auf inhibitorischen und exitatorischen 

postsynaptischen Potentialen am Kortex (Homma & Ebe; 2002), die abhängig vom be-

havioralen Zustand des Menschen variieren. Während in Ruhe bei geschlossenen Au-

gen regelmäßige (synchronisierte) Grundaktivität im Alphafrequenzband (8-12Hz) auf-

tritt, führt Augenöffnen zu einer Desynchronisation des EEG-Alphabandes (Zschocke, 

2002). Vermehrt auftretende Synchronisation in unterschiedlichen, häufig den niedrig-

frequenten Frequenzbereichen ist ein häufiger Hinweis für eine Pathologie, so ist sie 
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beispielsweise in starkem Ausmaß bei epileptischer Erregungssteigerung anzufinden 

(Zschocke, 2002). 

Die Frequenzen im EEG werden in verschiedene Frequenzbänder eingeteilt, die 

verschiedene Amplituden zeigen und bei unterschiedlichen Vigilanzzuständen zu finden 

sind. Im EEG werden die Amplituden in der Einheit Mikrovolt oder Mikrovolt quadriert, 

d. h. absolute Power dargestellt. In verschiedenen Hirnarealen können maximale Aus-

prägungen der Frequenzen mit dem EEG abgeleitet werden. Einen Überblick bietet die 

Tabelle 3. 

 

Tabelle 3: Frequenzbänder im EEG von gesunden Erwachsenen nach Dohrmann (2007) und Lewine & 

Orrison (1995). 

Frequenzband Frequenz (Hz) Amplitude (μV) Auftreten im EEG Zustand (Erwachsener) 

Delta 0.5 – 4 5 – 250 Variabel Schlaf, Hinweis auf Störung 

Theta 4 – 7 20 – 100 frontal, temporal Schlaf; auch wach, affektiv 

Alpha 8 – 13 20 – 120 okzipital, parietal wach, entspannt bei ge-
schlossenen Augen 

Beta 14 – 30 5 – 50 frontal, zentral, 
temporal 

wach, bei Aufmerksamkeit 
(z. B. durch Augenöffnen, 
Schmerzen, Kopfrechnen, 
Anspannung) 

Gamma 30 – 45 0 – 10 frontal, präzentral wach, bei kognitiven 
Funktionen (z. B. 
assoziativem Lernen) 

 

Die langsamen Frequenzen werden in den Delta- (0,5-3,5 Hz) und Theta-Bereich 

(4-7 Hz) aufgeteilt (Homma & Ebe; 2002). Gewöhnlich treten diese Frequenzbereiche 

im Schlafzustand auf; es wird aber auch von einer Zunahme der Thetabandaktivität bei 

Vigilianzabnahme (Zschocke, 2002) und Angstreduktion (Panksepp, 1998, zitiert nach 

Schutter et al., 2001) berichtet. Im höheren Frequenzbereich werden Alpha- und Beta-

Wellen unterschieden (Sanei & Chambers, 2007). Die Frequenzen des Alphabandes, 

d. h. Frequenzen von 8-12 Hz, weisen die meisten gesunden Erwachsenen im Wachen 

und in Ruhe mit geschlossenen Augen auf (Homma & Ebe; 2002). Dies wird auch als 

Spontan- oder Ruhe-EEG bezeichnet und zeigt maximale Amplituden in posterioren 

Arealen (Lewine & Orrison, 1995). Die Verstärkung der Alphabandaktivität wird mit einer 

verstärkten Inhibition assoziiert; demgegenüber geht die Verringerung oder Desynchro-

nisation dieses Frequenzmusters mit reduzierter kortikaler Hemmung und entsprechend 

erhöhter Erregung einher (Klimesch et al., 2007). Eine Verringerung der Alpha-
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Frequenzen zeigt sich unter anderem bei der Wahrnehmung akustischer Reize (Weisz 

et al., 2011). Entsprechend werden verstärkte Alpha-Rhythmen als das neuronale Kor-

relat des Ruhezustandes im auditorischen System angesehen. 

Das Betafrequenzband wird gelegentlich in die Bereiche Beta 1 (12-15 Hz), Beta 

2 (15-18 Hz), Beta 3 (18-25 Hz) und High Beta (25-30 Hz) unterteilt. Diese Frequenzen 

kommen häufig im Frontal-, Zentral- und Temporalbereich vor und können sich mit 

Alpha vermischen. Bei Aufmerksamkeit durch Augenöffnen, Schmerzen, Kopfrechnen, 

Anspannung werden Alpha-Wellen gehemmt und die höheren Frequenzen nehmen zu. 

Aufgrund der unterschiedlichen Rhythmik der Frequenzen des Betabandes werden die 

Oszillationen in diesem Bereich häufig in langsame (13-21 Hz), schnelle (21-30 Hz) und 

Gamma-Wellen (30-45 Hz) aufgegliedert (Kropotov, 2008). Befunde zeigten, dass die 

Gammabandaktivität mit kognitiven Funktionen korreliert (Engel et al., 2001). So werden 

beispielsweise die Schwankungen des Gammabandes mit der Fähigkeit assoziiert, 

verschiedene Aspekte eines Objektes zu einem Ganzen zu vereinen bzw. die einzelnen 

kortikalen Repräsentationen eines Objekts zu einem neurophysiologischen Prozess 

zusammenzufügen (Keil et al., 1999; Tallon-Baudry & Bertrand, 1999; Kropotov, 2008). 

Es zeigte sich, dass eine erhöhte Gammabandaktivität auch bei assoziativem Lernen 

beteiligt ist (Miltner et al., 1999). Engel et al. (1992) konnten in einem Tierexperiment 

belegen, dass die Neuronen im Gammaband, welche verschiedene Merkmale 

desselben Objektes repräsentieren, synchron feuern und somit die Integration der 

Merkmale zu einem Ganzen ermöglichen. Die Synchronisation der Gammabandaktivität 

unterschiedlicher thalamokortikaler Areale entsteht, um beispielsweise bei akustischen 

Reizen unterschiedlich lokalisierte Aktivitäten dieser Frequenz zu einem auditorischen 

Perzeptiv zusammenzufügen (Tiitinen et al., 1993, zitiert nach de Ridder, 2010; Llinás et 

al., 1998; Ribary et al., 1991; Crone et al., 2001, zitiert nach de Ridder, 2010). Auch bei 

bewusst und unbewusst wahrgenommenen visuellen Reizen lässt sich eine Verstärkung 

und Synchronisation von Gammabandaktivität feststellen (Keil et al., 1999; Tallon-

Baudry et al., 2005; Melloni et al., 2007; Yuval-Greenberg & Deouell, 2007; Gaillard et 

al., 2009; Sedley & Cunningham, 2013). 

Kohärente Gammabandaktivität tritt in der Regel nur in eng umgrenzten 

kortikalen Regionen und lediglich für kurze Zeit auf (Menon et al., 1996; Steriade et al., 

1996; Crone et al., 2001, zitiert nach de Ridder, 2010; Llinás et al., 2005). Bei 

anhaltender Gammabandaktivität in einem Hirnareal muss daher von einem 

pathologischen Phänomen ausgegangen werden (de Ridder, 2010). Beispielsweise 
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konnte bei der Negativsymptomatik der Schizophrenie eine reduzierte, bei den positiven 

Symptomen eine verstärkte Gammabandaktivität nachgewiesen werden (Lee et al., 

2003). Bei Epileptikern lässt sich ebenfalls eine Erhöhung der Gamma-Oszillationen 

darstellen (Willoughby et al., 2003), die auch bei Patienten mit ADHS in jedoch deutlich 

geringerem Ausmaß zu finden ist (Yordanova et al., 2001). Zudem konnte bei Tinnitus 

eine Erhöhung der Gammabandaktivität nachgewiesen werden (Llinás et al., 1999; 

Llinás et al., 2005; Weisz et al., 2005; Weisz et al., 2007b; Schlee et al., 2009; van der 

Loo et al., 2009). 

Viele Studien belegen, dass Alpha- und Gammabandfrequenzen häufig gemein-

sam, wenn auch in inverser Beziehung auftreten (Osipova et al., 2008; Lorenz et al., 

2009; Schlee et al., 2009; Schlee et al., 2010; Weisz et al., 2011). Es konnte gezeigt 

werden, dass Frequenzen des Gammabereichs eng mit Alpha-Frequenzen verbunden 

sind und von diesen moduliert werden (Osipova et al., 2008). 

 

2.1.6.1.2 Evozierte Potentiale: N1, P2, P300 

Als evozierte oder ereigniskorrelierte Potentiale werden Potentialschwankungen 

der Amplitude bezeichnet, die mit bestimmten Latenzen im EEG als Reaktion auf eine 

visuelle, akustische oder somatosensorische Reizung erfasst werden können (Homma 

& Ebe; 2002) oder mit kognitiven Prozessen wie Aufmerksamkeit oder Sprachverarbei-

tung korreliert sind (vgl. Neundörfer, 2002). Abhängig von der Art des Reizes sowie Po-

sition der Reizung sind unterschiedliche Hirnareale aktiviert. Potentialschwankungen mit 

kurzer Latenz (0-10 ms) werden im Hirnstamm, mit mittlerer (bis 100 ms) im Thalamus 

und mit langsamer Reaktionszeit im Kortex lokalisiert. Sie werden benannt nach der 

Richtung der Potentialschwankung im Sinne einer positiven (P) oder negativen (N) Aus-

lenkung sowie der Latenz in Millisekunden, mit der sie in Folge des Reizes auftreten.  

Zu den evozierten Potentialen werden die N100-, P100-, P200-, N200- sowie 

P300-Wellen gezählt. Ihre Ausprägung wird durch das Ausmaß der selektiven Aufmerk-

samkeit beeinflusst. Da Inhalt der vorliegenden Promotionsstudie u. a. die N100-, P200- 

und P300-Komponenten sind, werden diese im Folgenden näher erläutert. 

Der N100-Negativierung (im Folgenden N1), welche nach ca. 100 ms auftritt, wird 

die automatische Reizbeachtung zugeschrieben. Als P200-Amplitude (im Folgenden 

P2) wird die positive Potentialschwankung nach ca. 200 ms bezeichnet. Dieses ereig-

niskorrelierte Potential wird mit der Erregungsweiterleitung bei nicht vorbereiteten, aber 



 

Christine Bremer                                                        30 
 

 
beachteten Reizen assoziiert. Die P300-Wellen (im Folgenden P300) sind oberflächen-

positive Amplituden, die überwiegend parietal-zentral und mit einer Durchschnittslatenz 

von 300 ms abzuleiten sind, wenn die dargebotenen Sinnesreize vom Patienten be-

wusst verarbeitet werden (Zschocke, 2002). Meist erfolgt die Analyse dieser evozierten 

Potentiale nach Darbietung akustischer Reize als Beginn einer Reaktion auf einen Reiz. 

In Abbildung 1 sind die beschriebenen Potentiale nach einer akustischen 

Evozierung dargestellt. 

 

Abbildung 1: Ableitung akustisch evozierter ereigniskorrelierter Potentiale von der Kopfoberfläche nach 

der Präsentation unterschiedlicher Töne; N1 = N100, Ausbildung einer Negativierung nach ca. 

100 ms; P2 = P200, positives Potential nach ca. 200 ms; N2 = N200, negatives Potential nach 

ca. 200 ms; P3 =positives P300-Potential ca. 300 ms nach akustischem Stimulus. 

 

2.1.6.2  EEG und Tinnitus 

EEG, quantitatives EEG und MEG liefern unmittelbare Nachweise neuronaler 

Aktivität und wurden in vielzähligen Studien bei der Erforschung von Tinnitus eingesetzt 

(vgl. Adjamian, 2014). Sie belegen, dass Tinnituspatienten gegenüber gesunden 

Kontrollgruppen eine verstärkte Delta- (Weisz et al., 2005; Moazami-Godarzi et al., 

2010), Theta- (Llinás et al., 2005; Weisz et al., 2005; Moazami-Godarzi et al., 2010) und 
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Gammabandaktivität (Schlee et al., 2010; Weisz et al., 2011; Vanneste et al., 2011a6) 

sowie eine reduzierte Alphabandaktivität (Weisz et al., 2005; Schlee et al., 2009; Lorenz 

et al., 2009; Schlee et al., 2010; Weisz et al., 2011; Müller et al., 2013) aufweisen. 

Moazami-Godarzi et al. (2010) belegen darüber hinaus eine Überproduktion von Alpha- 

und Beta-Oszillationen in temporoparietalen, anterior-zingulären und parahippo-

campalen kortikalen Arealen sowie der posterioren Inselrinde. 

Die verstärkten Oszillationen im Gamma-Frequenzbereich können bei 

Tinnituspatienten in temporalen (Llinás et al., 1999; Llinás et al., 2005; Weisz et al., 

2005; Ashton et al., 2007; Weisz et al., 2007b; Vanneste et al., 2011a), 

parahippocampalen (Vanneste et al., 2011a), frontalen, parietalen und zingulaten 

Arealen (Schlee et al., 2009) sowie am supplementär-motorischen Kortex, am dorsalen 

Kortex cingularis anterior, am rechten dorsolateralen präfrontalen Kortex (im Folgenden 

DLPFC) und an der Insula (Vanneste et al., 2011b) festgestellt werden. 

Es konnte demonstriert werden, dass die Gammabandoszillationen am 

auditorischen Kortex kontralateral zur Tinnituswahrnehmung verstärkt waren (Weisz et 

al., 2007b; van der Loo et al., 2009). Vanneste et al. (2011a) fanden in einer EEG-

Untersuchung unabhängig von der Seite der Tinnituswahrnehmung beidseitig eine 

erhöhte Gammabandaktivität sowie kontralateral zur Tinnituslokalisation im 

parahippocampalen Areal. 

Schlee et al. (2009) konnten zudem einen Zusammenhang zwischen der Dauer 

des Tinnitusleidens und der Lokalisation der verstärkten Gammabandaktivität 

feststellen: Während die hochfrequenten Oszillationen bei geringerer Dauer vorwiegend 

auf den links-temporalen Kortex beschränkt waren, zeigte sich bei Patienten mit 

längerer Tinnitusbelastung eine stärkere Ausbreitung dieser Frequenzen über den 

Kortex. Vanneste et al. (2011b) zeigten in einer EEG-Studie, dass mit zunehmender 

Tinnitusdauer die Aktivität am auditorischen Kortex, am supplementär-motorischen 

Kortex, am dorsalen Kortex cingularis anterior und an der Insula zunimmt, während die 

Konnektivität zwischen diesen Strukturen abnimmt. Lediglich die Gammabandaktivität 

zwischen dem linken primären und linken sekundären Kortex sowie der linken Insula 

                                                                                                 

6 Weitere Quellen sind Llinás et al., 1999; Llinás et al., 2005; Weisz et al., 2005; Ashton et al., 2007; 
Weisz et al., 2007b; Schlee et al., 2009; Lorenz et al., 2009; Müller et al., 2013. 
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kann eine Zunahme verzeichnen. Ebenso zeige sich auch die Gammabandaktivität 

zwischen den auditorischen Kortices und dem rechten DLPFC verstärkt. 

Gemäß Llinás et al. (1999) verursacht die abnorme, spontane und konstante 

Gammabandaktivität die Entstehung von Tinnitus und ist durch die Hyperpolarisation 

bestimmter thalamischer Kerne bedingt. Weisz et al. (2007b) vermuten, dass die 

Gammabandaktivität anfangs durch vorangehende Oszillationen im Theta-

Frequenzbereich ausgelöst wird. Die Autoren der genannten Studie stellen darüber 

hinaus die Hypothese auf, dass sich die Gammabandaktivität schließlich selbst aufrecht 

erhält, da nach einer gewissen Zeit eine Aktivierung dieser Oszillationen bereits durch 

eine geringe Anzahl von Neuronen möglich ist (Weisz et al., 2007b). Auf diese Weise 

versuchen sie die relative Therapieresistenz von Tinnitus zu erklären. Auch de Ridder et 

al. (2011a) konnten feststellen, dass bei diesem akustischen Phänomen eine Kopplung 

von pathologischer Theta- und Gammabandaktivität vorliegt. 

Diverse EEG- und MEG-Studien interpretieren die inverse Beziehung zwischen 

der verringerten Alpha- und erhöhten Gammabandaktivität im auditorischen Kortex als 

Zeichen für eine verringerte Inhibition (Lorenz et al., 2009; Schlee et al., 2009; Schlee et 

al., 2010; Weisz et al., 2011). Weisz et al. (2011) vermuten, dass die Verringerung der 

Alpha- und Verstärkung der Gammabandaktivität nicht nur das Korrelat der 

Wahrnehmung externer akustischer Stimuli darstellen, sondern sich bei der 

Wahrnehmung jeglicher akustischer, auch interner Reize wie Tinnitus zeigen.  

Van der Loo et al. (2009) führen die erhöhte EEG-Aktivität im auditorischen 

Kortex bei Tinnituspatienten auf eine erhöhte Grunderregung zurück. Möglicherweise 

sei die erhöhte Gammabandaktivität nicht durch die Tinnituswahrnehmung per se, 

sondern durch deren wahrgenommene Intensität bedingt, da zwischen 

Gammabandaktivität und empfundener Tinnitusintensität ein korrelativer 

Zusammenhang besteht (van der Loo et al., 2009).  

De Ridder (2010) fasst zusammen, dass die erhöhte Gammabandaktivität als 

Reaktion auf die verringerte akustische Stimulation bedingt durch die thalamokortikale 

Dysrhythmie entsteht. Diese wiederum resultiert in einer Minderung der lateralen 

Inhibition und verstärkt die Synchronizität, was die tonotope Reorganisation des 

auditorischen Kortex mit sich bringt. Die Reduktion der Gamma-Oszillationen stellt 

folglich ein wichtiges Ziel in der Behandlung von chronischem Tinnitus dar. Die 

verschiedenen Behandlungsmethoden für Tinnitus sollen nun vorgestellt werden. 
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Bei der Untersuchung evozierter Potentiale konnten im Vergleich zu gesunden 

Kontrollgruppen bei chronischen Tinnituspatienten niedrigere Amplituden der N1- und 

P2-Komponente (Attias et al., 1993) bestimmt werden. Es zeigten sich außerdem 

längere P2-Latenzen (Santos & Matas, 2010). Auch für die P300 konnte bei Probanden 

mit Tinnitus niedrigere P300-Amplituden (Attias et al., 1993; Attias et al., 1996) und 

längere –Latenzen (Attias et al., 1996; Santos & Matas, 2010; Gabr et al., 2011) 

nachgewiesen werden. Attias et al. (1993) interpretieren ihren Befund als Nachweis für 

die verminderte Signalverarbeitung im zentral-auditorischen System der betroffenen 

Tinnituspatienten. Sie sehen darin eine Adaptation an das dauerhafte Ohrgeräusch 

sowie die Beteiligung des zentral-auditorischen Systems bei Tinnitus. 

 

2.1.7  Behandlungsmethoden 

Die Behandlung von Tinnitus ist abhängig von der vermuteten Ursache, der 

Dauer sowie der subjektiv wahrgenommenen Beeinträchtigung des Betroffenen 

(kompensierter oder dekompensierter Tinnitus). Während der objektive Tinnitus 

insgesamt gut behandelbar ist und mit der Therapie der zugrunde liegenden Erkrankung 

das Ohrgeräusch regelmäßig beseitigt werden kann, gestaltet sich die Therapie von 

subjektivem Tinnitus als deutlich schwieriger (Goebel, 2003).  

Die Methoden zur Behandlung von Tinnitus setzen entweder an den 

physiologischen Prozessen und Grundlagen oder den psychischen Stressoren an. 

Sofern die Ursache bekannt ist, erleichtert dies die Wahl der Therapie. Ist 

beispielsweise die Geräuschwahrnehmung auf Funktionsstörungen der Halswirbelsäule 

oder Störungen des Kiefergelenks zurückzuführen, wird eine orthopädische oder 

occlusale Therapie empfohlen (Goebel, 2003). Tritt Tinnitus als Nebenwirkung von 

Medikamenten auf, ist das Absetzen des Arzneimittels die Methode der Wahl. 

Es gilt, dass mit der Dauer der Erkrankung die Wahrscheinlichkeit der 

Rekonvaleszenz abnimmt (Goebel, 2003). Die Akut- und Subakutbehandlung von 

Tinnitus erfolgt meist mit durchblutungsfördernden Medikamenten oder hyperbarer 

Sauerstofftherapie, für deren Erfolge die Datenlage jedoch unzureichend ist (vgl. 

Bennett et al., 2005). Da Tinnitus häufig mit plötzlichem Hörverlust auftritt und als 

„Hörsturzäquivalent“ (Goebel, 2003, S. 66) angesehen wird, wird in der Akutphase oft 

ebenfalls eine vasoaktiven Therapie gewählt (vgl. Goebel, 2003; Michel et al., 2000; 

Dohrmann, 2007). Die Behandlung mit GABA-Rezeptor-Agonisten (Johnson et al., 
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1993) bzw. N-Methyl-D-Aspartat- (im Folgenden NMDA-) Rezeptor-Blockern (Guitton et 

al., 2003) bewirkt eine Entlastung, da hierbei die Inbalance zwischen Inhibition und 

Exzitation zugunsten der eingeschränkten Hemmung ausgeglichen wird. Unterstützend 

können auch Antidepressiva wie z. B. Amitryptilin oder Nortriptylin für die Behandlung 

psychischer Folgeerkrankungen und komorbider psychischer Störungen verabreicht 

werden (Goebel, 2003) Die Wirksamkeit der medikamentösen Behandlung ist jedoch 

wegen oft erheblicher Nebenwirkungen (Hesse et al., 1999) oder unzureichend 

wissenschaftlicher Belege umstritten (Lockwood et al., 2002; Conlin & Parnes, 2007). 

Auch konnte bei den meisten Präparaten keine Überlegenheit gegenüber Placebos 

festgestellt werden.  

Abhängig vom medizinischen Befund können zudem operative Verfahren zur 

Anwendung kommen (Goebel, 2003). Diverse Befunde belegen die Wirksamkeit von 

Cochlear-Implantaten (Cazals et al., 1978; Portmann et al., 1979; Souliere et al., 1992; 

Kral & Majernik, 1996; Rubinstein et al., 2003; van de Heyning et al., 2008). Diese kön-

nen die sensorische Deprivation kompensieren, indem sie den Hörnerv direkt elektrisch 

stimulieren (Kleine Punte et al., 2010). Auf diese Weise kann bei bis zu 74 % der Betrof-

fenen eine Verminderung des Tinnitus‘ erreicht werden (Lenarz, 2001). Zeng et al. 

(2011) konnten im EEG am auditorischen Kortex eine Reduktion der auditorisch evo-

zierten Reaktionen in den N1-Amplitiden sowie eine Verstärkung der spontanen Alpha-

bandaktivitäten nachweisen. Frank et al. (2006) weisen jedoch auf das Risiko einer Ver-

schlechterung hin, welche nach anfänglicher Tinnitusreduktion durch Cochlear-

Implantate eintreten kann. 

Es wurde bereits darauf hingewiesen (Abschnitt 2.1.5.1), dass die früher bei 

schwerem chronischen Tinnitus durchgeführte Durchtrennung des Hörnervs keinen Er-

folg zeigte und daher als Behandlungsoption außerhalb der Diskussion steht. 

In Abschnitt 2.1.5.1 wurde die Relevanz eines kortikalen Netzwerks für die Pa-

thogenese der auditorischen Phantomwahrnemung erläutert. Hier sollten Behand-

lungsmethoden ansetzen und die plastischen Veränderungen rückgängig machen. Me-

thoden der Hirnstimulation können neuronale Aktivität in pathologisch relevanten Hirn-

regionen modulieren. Sie machen sich das Prinzip der Neuroplastizität zu Nutze und 

zielen darauf ab, mit einer erneuten plastischen Veränderung den Ausgangs- oder Nor-

malzustand der funktionellen Organisation des auditorischen Kortex wieder herzustel-

len.  
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Als intermittierende Stimulationsmethoden gelten die (repetitive) transkranielle 

Magnetstimulation ((r) TMS), die transkranielle Gleichstrom-Stimulation (im Folgenden 

tDCS von engl. transcranial direct current stimulation) sowie die Elektrokonvulsionsthe-

rapie (im Folgenden EKT). Da die rTMS zentraler Bestandteil der vorliegenden Arbeit 

ist, soll sie in Abschnitt 2.2 ausführlich dargestellt werden. 

Insgesamt existieren nur wenige Studien über die Wirksamkeit der tDCS in der 

Behandlung von Tinnitus. Die tDCS ist gegenüber der TMS weniger anfällig für Artefak-

te (durch Geräusche oder Muskelzuckungen) und die Ausrüstung ist günstiger und we-

niger umfangreich (Vanneste & de Ridder, 2010). Die niedrigfrequente elektrische Sti-

mulation kann eine Modulation des Ruhemembranpotentials erzeugen. Ebenso wie bei 

der TMS sind die Effekte nachhaltig und abhängig von Stimulationsdauer, -intensität, -

lokalität und –polatrität (Higgins & George, 2008). Während anodale Stimulation die kor-

tikale Exzitabilität verstärkt, kommt es durch kathodale Stimulation zu einer Erregungs-

minderung (Siever, 2010). Im Gegensatz zur kathodalen Stimulation, bewirkt anodale 

tDCS über dem linken temporoparietalen Kortex eine signifikante Tinnitusreduktion 

(Fregni et al., 2006a). Unifrontale (Garin et al., 2011) wie auch bifrontale anodale tDCS 

(Vanneste & de Ridder, 2011; Frank et al., 2012) am rechten DLPFC resultiert in einer 

Reduktion von Tinnitusintensität und –belastung.  

Die Studienlage zur EKT als weitere intermittierende Stimulationsmethode bei 

Tinnitus ist eher dürftig. Es existieren Einzelfallstudien über die erfolgreiche Anwendung 

von EKT bei schwerer Depression mit komorbid auftretendem Tinnitus (Salah et al., 

1995; Been et al., 2007). Die Stimulation erfolgt jedoch wenig fokal und ist mit diversen 

Nebenwirkungen, insbesondere kognitiver Art verbunden (Higgins & George, 2008). 

Aufgrund der weitgehenden Behandlungsresistenz des chronischen Tinnitus 

werden sogar sehr invasive Methoden hinsichtlich ihres Behandlungserfolges diskutiert. 

Diese sind zumeist aufgrund chirurgischer Eingriffe mit diversen Nebenwirkungen ver-

bunden (Higgins & George, 2008). Zu den invasiven Methoden gehören die kortikale 

sowie die Vagusnervstimulation (im Folgenden VNS) als kontinuierliche Stimulationsver-

fahren. Die VNS hat sich als wirkungsvoll in der Behandlung von Schmerzen erwiesen 

(vgl. Kirner et al., 2000), da sie eine Desynchronisierung von pathologischer neuronaler 

Synchronizität bewirken kann. Aufgrund der Parallelen zwischen Schmerz und Tinnitus 

scheint diese Methode auch als Behandlungsmethode von letzterem in Frage zu kom-

men, wozu u.a. Schnupp (2011) Hinweise gibt. Aufgrund des Risikos diverser Neben-

wirkungen (z.B. postoperative Schmerzen, Nebenwirkungen den Hals und die Stimme 
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betreffend (Higgins & George, 2008)) sollte bei aktuellem Forschungsstand zunächst 

anderen Methoden der Vorzug gegeben werden. 

Diverse Untersuchungen belegen die Wirksamkeit der Stimulation durch implan-

tierte Elektroden am Hirnstamm (Soussi & Otto, 1994) und dem auditorischen Kortex 

(de Ridder et al., 2004; de Ridder et al., 2006; de Ridder et al., 2007a; Friedland et al., 

2007; Seidmann et al., 2008; de Ridder et al., 2011a). Auf diese Weise kann die lokale 

Hirnaktivität gestört und pathologisch erhöhte Aktivität reduziert werden (Higgins & 

George, 2008). Es konnte gezeigte werden, dass fMRT-geleitete, d. h. neurnavigierte 

Stimulation am auditorischen Kortex zu einer Normalisierung der Theta- und Gamma-

bandoszillationen (de Ridder et al., 2011a) sowie zu einer monatelangen Reduktion des 

Tinnitus‘ führen kann (de Ridder et al., 2004; de Ridder et al., 2011a). Abgesehen von 

operationsbedingten Nebenwirkungen kann es bei dieser kortikalen Stimulation u. a. zu 

Sprachstörungen, Parästhesien sowie Störungen von Gedächtnis und Kognition kom-

men (Higgins & George, 2008). Insgesamt handelt es sich um eine sehr invasive Be-

handlungsmethode, die noch weiterer Erforschung bedarf. 

Nicht zuletzt seien verhaltenstherapeutische Behandlungsansätze erwähnt. Auf-

grund dessen, dass bisherige Ansätze in der Behandlung von chronischem Tinnitus kei-

ne zufriedenstellenden Erfolge verzeichnen konnten (Dobie, 1999) und die Geräusch-

wahrnehmung außerdem als eine psychophysiologische Erkrankung gilt (Davison & 

Neale, 2002), werden den Betroffenen häufig psychotherapeutische Behandlungsme-

thoden empfohlen. Die „Tinnitus-Retraining-Therapie“ (Jastreboff & Hazell, 1993; Jast-

reboff & Jastreboff, 2006) und die kognitiv-behaviorale Therapie (Andersson & Lyttkens, 

1999) stellen häufig angewendete, verhaltenstherapeutische Behandlungsweisen dar. 

Die Methoden zielen darauf ab, dass die Betroffenen ihre subjektive Bewertung des 

Ohrgeräusches verändern (Schlee et al., 2010) und das Ohrgeräusch akzeptieren. Die 

Akzeptanz mit der angestrebten Habituation an den Tinnitus sowie die Generierung von 

Coping-Strategien sollen auf diese Weise erreicht werden. Die Methoden zeigen signifi-

kante Erfolge (für Tinnitus-Retraining-Therapie vgl. Bartnik et al., 2001; Henry et al., 

2006; für kognitiv-behaviorale Therapie vgl. Kröner-Herwig et al., 2003; Robinson et al., 

2008), vernachlässigen jedoch den neuronalen Ursprung des Ohrgeräusches. 

Eine weitere erfolgreiche Behandlungsform stellt das Neurofeedback-Training dar 

(Gosepath et al., 2001; Schenk et al., 2005; Weisz et al. (2005; Dohrmann, 2007; 

Crocetti et al., 2011; Weisz et al., 2011). Dohrmann (2007) erzielte mithilfe eines 

Neurofeedback-Trainings eine Tinnitusreduktion und die Normalisierung neuronalen 
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Oszillationen, nachdem diese über ein EEG zurückgemeldet wurden. Zu einem 

vollständigen Verschwinden des Tinnitus kam es bei 2 von 27 untersuchten Probanden. 

Hartmann et al. (2014) konnten eine Zunahme von Alphabandaktivität durch Neuro-

feedback nachweisen. 

Insgesamt ist die Behandlungsmöglichkeit des chronifizierten Ohrgeräusches 

begrenzt und auch die oben genannten Methoden zeigen sich nur als bedingt 

erfolgreich. Hinzu kommt, dass mit zunehmender Dauer der Tinnituspathologie die 

auslösenden Strukturen immer irrelevanter und resistenter gegenüber Therapien 

werden, da sich die Pathologie der Geräuschwahrnehmung weiterentwickelt (Møller, 

2010e). Die Veränderungen des zentralen Nervensystems erreichen irgendwann eine 

pathologische Stabilität, weshalb konventionelle Therapieansätze nicht mehr 

ausreichen, da sie an den peripheren Ursachen des Tinnitus ansetzen. Eine Induktion 

neuronaler Plastizität, Störung der synchronen Aktivität und Wiederherstellung des 

Gleichgewichtes zwischen Inhibition und Exzitabilität sollte Ziel der Behandlung sein. 

Vielversprechend scheint die transkranielle Magnetstimulation zu sein, die im folgenden 

Abschnitt näher erläutert wird. 

 

2.2 Transkranielle Magnetstimulation (TMS) 

Die transkranielle (lat. trans = durch; lat. cranus = der Schädel) 

Magnetstimulation (im Folgenden TMS) stellt ein nicht-invasives und - bei Beachtung 

der Anwendungsrichtlinien und Kontraindikationen (vgl. Wassermann, 1998) - 

nebenwirkungsarmes Verfahren, mit dessen Hilfe Hirnareale direkt stimuliert und 

neuronale Überaktivität effektiv normalisiert werden kann (Siebner et al., 2003). Zudem 

können weiter entfernte Hirnregionen aufgrund der Interkonnektivität der neuronalen 

Netzwerke in ihrer Aktivität moduliert werden (Siebner et al., 2003; May et al. 2006; 

Wagner et al., 2007). 

Bei der TMS wird durch einzelne Magnetfeld-Pulse stimuliert, die seltener als 

einmal pro Sekunde ausgelöst werden (Wassermann, 1998). Bei der repetitiven TMS 

(im Folgenden rTMS) folgen mehrere Impulse (George et al., 2007a) aufeinander. Mit 

rTMS können nachhaltige Effekte erzielt werden, die über die Stimulationsdauer hinaus 

anhalten. 
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2.2.1 Historie derTMS 

Einen geschichtlichen Überblick über die Entwicklung der TMS geben George et 

al. (2007a). 1896 wandte der Arzt und Physiker d’Arsonval erstmals eine Magnetspule 

zur Neurostimulation an, die der heutigen TMS ähnelte, jedoch den ganzen Kopf des 

Probanden umschloss (d’Arsonval 1896, zitiert nach George et al., 2007a). So konnten 

Phosphene, Vertigo und Synkopen ausgelöst werden. Pollacsek & Beer unternahmen 

1902 (Beer, 1902, zitiert nach George et al., 2007a) die ersten Versuche, mithilfe einer 

elektromagnetischen Spule Depressionen und Neurosen zu behandeln. Kolin et al. 

(1959) konnten Muskelzuckungen nach peripherer Stimulation eines Frosches 

demonstrieren. Das erste, den heutigen ähnelnde, wenn auch technisch nicht 

einwandfreie TMS-Gerät wurde 1985 von Barker und Kollegen entwickelt (Barker et al., 

1985, zitiert nach George et al., 2007a). Mit diesem konnten motorisch evozierte 

Potenziale abgeleitet werden. Pascual-Leone et al. (1994) konnten erstmals die 

Wirkung von schnellen Impulsfolgen darstellen und setzten damit den Anfang der rTMS. 

Es folgte die Anwendung der TMS und rTMS bei der Diagnostik und Behandlung 

diverser neurologischer und neuropsychiatrischer Pathologien. 

Zur Optimierung des Erfolgs der Magnetstimulation wurden immer wieder neue 

Stimulationsprotokolle entwickelt, die der Vollständigkeit halber hier nur am Rande 

erwähnt seien, da sie nicht Gegegnstand der vorliegenden Promotionsarbeit sind. Im 

Gegensatz zur konventionellen (r)TMS, die regelmäßige Einzelpulse verwendet, weisen 

die neueren rTMS-Protokolle komplexere Stimulationsmuster auf. Dazu gehören u. a. 

die repetitive Doppelpulsstimulation (vgl. Lang & Siebner, 2007) und die Theta-Burst-

rTMS (Huang et al., 2005). Die Stimuli der Doppelpulse folgen bei erst genannter im 

Abstand von Millisekunden aufeinander. Die Zeitintervalle zwischen den Stimuli eines 

Pulspaares sowie zwischen aufeinander folgenden Pulspaaren bestimmen maßgeblich 

die Wirkung dieses Stimulationsprotokolls (Lang & Siebner, 2007). 

Bei der Theta-Burst-rTMS (TBS) folgen schnelle hochfrequente (50 Hz) Salven 

(engl. bursts) mit einer Wiederholungsfrequenz im Theta-Frequenzbereich (4-7 Hz) 

aufeinander, die entweder in einem kontinuierlichen (cTBS von engl. continuous) oder 

intermittierenden (iTBS) Modus verabreicht werden und dadurch inhibitorische oder 

exzitatorische Nacheffekte auslösen (Huang et al., 2005). 

Bevor ein Überblick über wichtige Forschungsarbeiten gegeben wird, soll die 

Wirkungsweise der Magnetstimulation dargestellt werden. 
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2.2.2 Wirkungsweise der TMS 

Die TMS macht sich das physikalische Prinzip der elektromagnetischen Indukti-

on, zurückgehend auf Faraday (1831/1965, zitiert nach George et al., 2007a) zu Nutze, 

bei der ein Magnetfeld in elektrische Energie umgewandelt wird (George et al., 2007a). 

Die am Schädel angelegte Magnetspule wird kurzfristig (etwa 250 μs) von einem Stark-

stromimpuls (bis 10.000 Ampere) durchflossen, wodurch innerhalb von etwa 100 μs 

(Kleinjung et al., 2010) ein Magnetfeld im Bereich von 1,5 bis 2 Tesla produziert wird, 

bevor es wieder auf 0 Tesla abfällt. Bei der Anwendung der Magnetstimulation können 

folgende Parameter variiert werden: Spulenart, Stimulationsort, repetitive Stimulation 

oder Stimulation mit Einzelpulsen, Intensität und Frequenz der Stimulation, Anzahl der 

Stimuli, d. h. der Pulse pro Sitzung sowie Anzahl der Sitzungen. Entsprechend allge-

mein gültiger methodischer Aspekte kann darüber hinaus natürlich das Studiendesign 

und die Verwendung beziehungsweise Art der Kontrollbedingung modifiziert werden. 

Es gibt zwei Arten von Magnetspulen. Während die Rundspule einen stärkeren 

und tiefer reichenden Effekt erzielt, kann mittels Schmetterlingsspule (auch Achter- oder 

Doppelspule genannt) fokaler stimuliert werden (Weyh & Siebner, 2007). In manchen 

Studien erscheint es darüber hinaus sinnvoll, eine Abschirmung zu verwenden, um das 

Stimulationsfeld zu fokussieren.  

Zur Bestimmung der bestmöglichen Position der Magnetspule bieten sich 

verschiedene Methoden an. Bildgebungsgestützte Navigation kann der optimalen 

fokalen Stimulation dienen (vgl. Eichhammer et al., 2003a; de Ridder et al., 2005; 

Kleinjung et al., 20057). Die Spulenpositionierung anhand des internationalen 10/20-

Systems für die Anordnung von EEG-Elektroden am Schädel (nach Jasper, 1958) ist 

eine weitere vielgenutzte Methode (Plewnia et al., 2003; Fregni et al., 2006a; Folmer et 

al., 2006; Langguth et al., 2006b; Khedr et al., 2008), da sie die individuelle Kopfgröße 

mitberücksichtigt. 

Das erzeugte Magnetfeld durchdringt die Schädeldecke und den Liquorraum fast 

verlustfrei (George et al, 2007a) und löst einen Stromfluss aus, der parallel, aber in ent-

                                                                                                 

7 Weitere Quellen sind Langguth et al., 2004; Londero et al., 2006b; Herwig & Schönfeldt-Lecuona, 2007; 
Kleinjung et al., 2007; Plewnia et al., 2007a; Plewnia et al., 2007b; Rossi et al., 2007; Smith et al., 2007. 
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gegengesetzter Richtung zum Magnetfeld verläuft (Weyh & Siebner, 2007). Der Strom-

fluss löst in den direkt stimulierten Neuronen oberflächlicher kortikaler Areale eine kurz-

fristige Abweichung des Ruhemembranpotentials8 aus (Higgins & George, 2008). Über-

schreitet die so induzierte Membrandepolarisation eine kritische Schwelle, kann ein Ak-

tionspotential ausgelöst werden (George et al., 2007a; Weyh & Siebner, 2007; de Rid-

der & Møller, 2010). Aufgrund der funktionalen Interkonnektivität der Neurone können 

sich die Aktionspotentiale transsynaptisch fortpflanzen und auch tiefer gelegene Hirn-

strukturen erreichen (Siebner et al., 2003; May et al., 2006; Kleinjung et al., 2010). Dies 

wird von PET-Studien belegt, die Veränderungen des Metabolismus‘ in vom Stimulati-

onsort entfernten Arealen aufzeigen (Wassermann et al., 1997; Kimbrell et al., 2002; 

Siebner et al., 2003; George et al., 2007a). Demzufolge kann unilaterale Stimulation bi-

laterale Veränderungen herbeiführen. Die TMS verändert folglich die neuronale Feue-

rungsrate und beeinflusst die kortikale Exzitabilität. Die entstehenden transsynaptischen 

Effekte sind jedoch abhängig von der Pulsfrequenz, der Stimulationsdauer, - intensität,   

- lokalität sowie der Stimulationsfrequenz.  

Im Gegensatz zur TMS kann mit der rTMS durch die schnelle Abfolge der Pulse 

eine nachhaltige Neuromodulation erzielt werden (Kleinjung et al., 2010; Chen et al., 

1997), welche mindestens 30 Minuten über die Stimulation hinaus andauern (Ziemann, 

2007), gelegentlich sogar noch 12 Monate nach der Stimulation nachzuweisen sind 

(Kleinjung et al., 2005; Khedr et al., 2008).  

Die Stimulationsintensität entspricht der motorischen Reizschwelle (im Folgenden 

MT von engl. motor threshold) in Ruhe und wird in Prozent angegeben (Wassermann, 

1998; Paulus & Siebner, 2007). Sie bezieht sich auf die minimale Intensität des TMS-

Stimulus‘, bei welcher mindestens fünf bis zehn aufeinander folgendende Stimuli moto-

risch evozierte Potentiale von minimal 50 μV im Zielmuskel auslösen. Zielmuskel ist 

meist der rechte Musculus abductor pollicis brevis (Rossini et al., 1994). Dabei besteht 

ein korrelativer Zusammenhang zwischen der Höhe der motorischen Reizschwelle und 

der Distanz zum motorischen Kortex (Kozel et al., 2000; McConnell et al., 2001). Folg-

                                                                                                 

8 Das Ruhemembranpotential von Neuronen beträgt etwa -70 mV (entstehend aus der Differenz des intra- 
und extrazellularen Potentials) und ist determiniert durch die intra- und extrazellulare Konzentration von 
Natrium-Ionen (Na+), Kalium-Ionen (K+) und Chlorid-Ionen (Cl-) (Greger, 1996). Bei einer 
Depolarisation von -70 mV auf etwa -40 mV öffnen sich die sonst sehr restriktiven Na+-Kanäle der 
Zellmembrane und durch eine impulsartige Ionenströmung erhöht sich das Membranpotential kurzzeitig 
auf +20 mV, bevor es wieder auf -75 mV zurücksinkt. 
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lich muss eine höhere Stimulationsintensität gewählt werden, je weiter der Stimulations-

ort von den motorischen Arealen entfernt ist. Obgleich sich interindividuelle Unterschie-

de hinsichtlich der MT zeigen (McConnell et al, 2001), werden oft festgelegte Intensitä-

ten bei der Stimulation verwendet. Hier ist auf Wassermann (1998) zu verweisen, der 

bei bestimmten Stimulationsfrequenzen und -intensitäten die maximale Dauer von 

rTMS-Reizzügen beschreibt, die als sicher eingestuft werden. Mit der Höhe der Fre-

quenz nimmt die Reizzugdauer ab.  

 

Die Wirkung der Magnetstimulation differiert abhängig von der Frequenzhöhe. Als 

niedrigfrequent gilt die TMS, wenn die Impulse mit einer Frequenz von 1 Hz, sprich ein-

mal pro Sekunde oder weniger ausgelöst werden (Higgins & George, 2008). Bei hoch-

frequenter TMS erfolgt die Stimulation mit einer Frequenz größer als 10 Hz. Insgesamt 

gilt, dass niedrigfrequente TMS erregungsmindernd (vgl. Chen, et al., 1997) und hoch-

frequente TMS erregungsfördernd wirkt (vgl. Pascual-Leone et al., 1994). Bevor zwi-

schen den Frequenzen hinsichtlich ihrer Wirkungen detailliert differenziert wird, werden 

die übrigen Stimulationsparameter erläutert. Hierzu gehören die Anzahl der Stimuli, d. h.  

d. h. Pulse pro Sitzung sowie die Anzahl der Sitzungen, die abhängig vom Ziel der Un-

tersuchung gewählt werden können. Es gilt, dass bei niedrigerer Stimulationsfrequenz 

mehr Stimuli pro Tag verwendet werden können, ohne ein Sicherheitsrisiko zu erzeugen 

(Wassermann et al., 1998). 

Es gibt verschiedene Möglichkeiten, Kontrollbedingungen von TMS-Studien zu 

gestalten. Zentral hierbei ist, dass die Probanden eine Verum-Behandlung vermuten, 

jedoch keine Wirkung des Magnetfeldes auf die pathologiebezogene Hirnaktivität er-

folgt. Entsprechend kann die TMS-Spule in einem 45°-Winkel (vgl. Smith et al., 2007; 

Lisanby et al., 2001; Lorenz et al., 2010; Marcondes et al., 2010; Weisz et al., 2011) 

oder 90°-Winkel (vgl. de Ridder et al., 2005) vom Schädel abgewinkelt werden. Alterna-

tiv können Areale stimuliert werden, die nachweislich mit der untersuchten Pathologie 

nicht in Verbindung stehen. Beispielsweise kann bei Tinnituspatienten in der Placebo-

Bedingung der okzipitale Kortex (Plewnia et al., 2007a; Plewnia et al., 2007b; Khedr et 

al., 2008) stimuliert werden. Schlussendlich kann auch die Verwendung einer Placebo-

Spule sinnvoll sein, welche oberflächliche, jedoch keine neurobiologisch relevante Sen-

sationen auslöst (Siebner & Ziemann, 2007) und von Probanden als Verum-Stimulation 

interpretiert wird (Rossi et al., 2007). 
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Wie bereits erwähnt, zeigen hochfrequente und niedrigfrequente 

Magnetstimulationen unterschiedliche Wirkungen auf die neuronale Erregung. 

Hochfrequente rTMS bewirkt eine anhaltende Veränderung der kortikalen Exzitabilität, 

indem das erregende glutamaterge System stimuliert wird. Durch die Verminderung der 

GABAergen Inhibition entwickelt sich eine Plastizität, die der Langzeitpotenzierung (im 

Folgenden LTP von engl. long-term potentiation) ähnelt (Koeneke & Jäncke, 2007). 

Demgegenüber erweckt niedrigfrequente rTMS die GABAerge Hemmung (Higgins & 

George, 2008) und ruft eine der Langzeitdepression (im Folgenden LTD von engl. long-

term depression) ähnliche Plastizität hervor (Chen et al., 1997; Koeneke & Jäncke, 

2007). Es kommt also zu einer nachhaltigen Verringerung der synaptischen 

Übertragung (Higgins & George, 2008). Abhängig vom Ausmaß der Aktivierung von 

NMDA-Rezeptoren wird eine LTP oder eine LTD induziert (Koeneke & Jäncke, 2007). 

Im Sinne des Modells von Llinás et al. (1999) kann daher mit nierdrigfrequenter 

rTMS durch eine Reduzierung der thalamischen Deafferenzierung die thalamokortikale 

Dysrythmie unterdrückt werden, welche als verantwortlich für die Tinnituswahrnehmung 

gesehen wird. Durch die Steigerung der inhibitorischen thalamischen Funktion kann die 

verstärkte neuronale Synchronizität aufgelöst und die(Kleinjung et al., 2010; Tabelle 

4hochfrequenter und niedrigfrequenter (r)TMS im Vergleich. 

 

Tabelle 4: Hochfrequente und niedrigfrequente (r)TMS im Vergleich. 

 hochfrequente (r)TMS niedrigfrequente (r)TMS 

Frequenz > 1 Hz (meist 5 - 20 Hz) ≤ 1 Hz 

Spontanaktivität erhöht (mehr Aktionspotentiale) verringert (weniger Aktionspotentiale) 

kortikale Aktivität erhöht (LTP) verringert (LTD) 

Metabolismus gesteigert verringert 

GABAerge Hemmung  verringert verstärkt 

rCBF verstärkt verringert 

 

Bildgebende Verfahren weisen darauf hin, dass der Stromfluss, der durch die 

rTMS hervorgerufen wird, die Transmitterausschüttung sowie den Metabolismus 

beeinflusst. PET- (Smith et al., 2007) und SPECT-Studien (Marcondes et al., 2010) 

konnten zeigen, dass niedrigfrequente rTMS den rCBF (Speer et al., 2000; Speer et al., 

2003) und die metabolische Aktivität (Wassermann et al., 1998; Kimbrell et al., 2002) 
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reduziert, während hochfrequente rTMS den Metabolismus (George et al., 1995; 

Siebner et al., 1998a) und den rCBF (Paus et al., 1997; Paus et al., 1998; Teneback et 

al., 1999; Speer et al., 2000; Speer et al., 2003) erhöht. Laut Stallings et al. (1997, zitiert 

nach Conca et al., 2003) korreliert die Anzahl der TMS-Impulse positiv mit der Zunahme 

der Durchblutung im SPECT. Im fMRT zeigt sich eine verstärkte Blutsauerstoffsättigung 

nach hochfrequenter rTMS (Tegenthoff et al., 2005). Welche Auswirkungen die rTMS 

auf die Hirnaktivität hat – abgebildet im EEG -, ist Gegenstand der vorliegenden Arbeit 

und wird in einem späteren Abschnitt (Abschnitt 2.2.3) ausführlich dargestellt. 

Die transkranielle Magnetstimulation induziert überdies die Ausschüttung von 

Neurotransmittern und verändert damit die Hirnphysiologie. So verändert die TMS den 

monoaminergen Umsatz (Ben-Shachar et al., 1997; Higgins & George, 2008). In 

Tierstudien konnte eine Reduktion der Beta-Adrenoreceptoren (Fleischmann et al., 

1996) sowie eine Zunahme der Genexpression von Astrogliazellen nachgewiesen 

werden (Fujiki & Steward, 1997). Zudem erhöht hochfrequente rTMS die striatale 

dopaminerge Aktivität am linken DLPFC (Strafella et al., 2001; Keck et al., 2002; Kanno 

et al., 2004; Pogarell et al., 2006; Pogarell et al., 2007) sowie im dorsalen Hippocampus 

und dem Nucleus accumbens (Keck et al., 2002).  

Hochfrequente rTMS am DLPFC führt überdies zu einer Verstärkung der 

serotonergen 5-HT(2A) Rezeptoraktivität beidseitiger DLPFC, jedoch zu einer Reduktion 

im linken Hippocampus (Baeken et al., 2010) und im frontalen Kortex (Ben-Shachar et 

al., 1999). Einmalige rTMS erhöht die Aktivität der serotonergen 5-HT1A-Rezeptoren 

des frontalen Kortex‘, des Kortex cingularis, und des anterior-olfaktorischen Nucleus‘ 

(Kole et al., 1999). Die nachgewiesene Beteiligung der 5-HT1A-Rezeptoren (Santarelli 

et al., 2003; Fricker et al., 2005) sowie die Wirkung von Serotonin (Hurley & Hall, 2011) 

an neuroplastischen Prozessen lässt die oben genannte Annahme der Neuromodulation 

durch TMS überzeugend erscheinen.  

Hochfrequente rTMS erhöht außerdem die Aktivität des Wachstumsfaktors BDNF 

(von engl. brain-derived neurotrophic factor) (Higgins & George, 2008; Gersner et al., 

2011; Wang et al., 2011). Der BDNF ist an neuroplastischen Prozessen (vgl. Jiang et 

al., 2003; Aicardi et al., 2004; Bramham & Messaoudi, 2005; Balaratnasingam & Janca, 

2012) sowie an der Induktion von LTP (vgl. Jiang et al., 2003; Aicardi et al., 2004; Barco 

et al., 2005) und Reduktion von LTD (vgl. Jiang et al., 2003; Aicardi et al., 2004; 

Martinowich et al., 2007) beteiligt.  
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Nicht verwunderlich ist in diesem Zusammenhang, dass rTMS die Aktivität des 

glutamatergen sowie des GABAergen Systems modifizieren kann, deren anhaltende 

Veränderungen mit der LTP und LTD verknüpft sind. Die Arbeitsgruppen um Destexhe 

et al. (1998) und Golshani et al. (2001) konnten zeigen, dass niedrigfrequente rTMS die 

GABAerge Hemmung im retikulären Nucleus des Thalamus‘ reduziert. Demgegenüber 

stärkt hochfrequente rTMS die GABAerge Hemmung (Lefaucheur et al., 2006). 

Die inhibitorischen und exzitatorischen Effekte der Magnetstimulation wurden in 

diversen Studien indirekt anhand der kortikalen Innervationsstille (im Folgenden CSP 

von engl. cortical silent period) untersucht (Hess, 2007). Es handelt sich dabei um eine 

durch TMS auslösbare Signalstille im Elektromyogramm, die je nach untersuchtem 

Muskel 40 bis 300 ms andauern kann. Es wird vermutet, dass die CSP durch 

inhibitorische kortikale Neuronen aktiviert wird (Ferbert et al., 1992; Davey et al., 1994). 

Durch die Gabe von GABA- oder Glutamat-Antagonisten oder -Agonisten ist die CSP in 

ihrer zeitlichen Dauer modifizierbar. Dies zeigen die Wirkungszusammenhänge 

zwischen TMS und durch GABA bzw. Glutamat ausgelöste inhibitorische bzw. 

exzitatorische Effekte. So kann die Gabe von GABAergen Medikamenten wie Baclofen 

(Siebner et al., 1998b), Lorazepam (Ziemann et al., 1996a), Gabapentin (Ziemann et al., 

1996b), Carbamazepin (Ziemann et al., 1996b), L-Dopa (Priori et al., 1994; Nakashima 

et al., 1995; Bäumer et al., 2009) oder auch Ethanol (Ziemann et al., 1995) zu einer 

Verlängerung der CSP führen. Daneben bewirken Neuroleptika eine Verkürzung der 

CSP (Priori et al., 1994; Daskalakis et al., 2002).  

In Abschnitt 2.1.3 wurde auf die Relevanz von Serotoninrezeptoren (Andorn et 

al., 1989) sowie von GABA und Glutamat (Schwarz et al., 2000) als Neurotransmitter 

des auditorischen Systems hingewiesen. 

 

Insgesamt gilt die TMS als nicht-invasive und nicht schmerzhafte 

Stimulationsmethode, die sich durch eine exzellente Verträglichkeit und hohe Akzeptanz 

auszeichnet (George et al., 2007a). Dennoch sei an dieser Stelle auf die 

Nebenwirkungen hingewiesen, die gelegentlich im Zusammenhang mit der Stimulation 

auftreten. Vorübergehende, leichte Kopfschmerzen gelten als die häufigste 

Nebenwirkung der TMS, welche in weniger als 10 % der Fälle auftreten (Higgins & 

George, 2008; Kleinjung et al., 2010). Gelegentlich kommt es an den 

Stimulationspunkten zu lokalen Schmerzphänomenen; manchmal treten 
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Muskelzuckungen während der Behandlung auf. Selten kommt es zu Krampfanfällen. 

Bislang wurde lediglich bei einem Patienten von einem epileptischen Anfall berichtet, 

nachdem dieser über längere Zeit mit hochfrequenter TMS behandelt wurde (Flitman et 

al. 1998; zitiert nach George et al., 2007a). Durch die Formulierung von 

Sicherheitsbestimmungen kann dieses Risiko jedoch weitgehend reduziert werden 

(Wassermann et al., 1998). Insgesamt wird die Behandlung durch TMS als sicher 

angesehen. Die unerwünschten Effekte entstehen lediglich vorübergehend, und bisher 

wurde von keinen andauernden neurologischen, kognitiven oder kardiovaskuläre 

Nebenwirkungen berichtet (Higgins & George, 2008).  

Kontraindiziert ist die TMS bei Patienten mit Herzschrittmachern, 

Metallimplantaten im Gehirn, Gehörimplantaten, erhöhtem Hirndruck oder bekannten 

epileptischen Anfallsleiden (Padberg et al., 2007) sowie bei Kindern und Schwangeren 

(Wassermann, 1998).  

 

2.2.3 Veränderungen im EEG nach TMS 

Mithilfe von elektroenzephalografischen Aufzeichnungen kann die Wirkung der 

Magnetstimulation auf die Gehirnaktivität nachgewiesen werden. Dies gelang erstmals 

Ilmoniemi et al. (1997), die mit einer Kombination von hochauflösendem EEG und 

einzelnen TMS-Impulsen am motorischen und visuellen Kortex innerhalb von 

Millisekunden evozierte Potenziale aufzeichnen konnten. Gegenüber fMRT und PET 

zeigen sich in der Kombination des EEG mit der TMS überzeugende Vorteile. Im 

Gegensatz zu den anderen Methoden lassen sich durch die TMS erzielte 

Veränderungen in der Hirnaktivität innerhalb von Millisekunden mit dem EEG darstellen, 

wofür die anderen beiden Methoden Sekunden bis Minuten benötigen (Huber, 2007; 

Wagner et al., 2007). Zudem ermöglicht das EEG eine direkte Veränderungsmessung, 

während im fMRT und PET nur indirekt, z. B. über den rCBF, Rückschlüsse über 

neuronale Variationen gezogen werden können (Huber, 2007). Hinsichtlich der 

räumlichen Darstellung der Effekte ist das EEG den anderen bildgebenden Verfahren 

jedoch deutlich unterlegen. Zudem erzeugt die TMS aufgrund des Magnetfeldes bei der 

simultanen EEG-Ableitung Artefakte in den Frequenzbändern (George et al., 2007b; 

Wagner et al., 2007). 

Mit der Kombination von TMS und EEG können Hypothesen über funktionale 

Mechanismen, Reorganisationsmechanismen und Plasizität überprüft werden. 
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Ilmoniemi et al. (1997) konnten zudem nach einzelnen TMS-Impulsen mittels EEG 

kortikokortikale Verbindungen aufzeigen, über welche sich die ausgelöste Aktivität 

ausbreitete. Folglich sind mittels EEG und TMS Hypothesen über die funktionale 

Konnektivität überprüfbar. Es können Informationen über Funktionsveränderungen von 

Hirnarealen gewonnen werden, selbst wenn diese vom Stimulationsort räumlich entfernt 

liegen oder zeitlich nach der Stimulation auftreten. Das EEG vermag es darüber hinaus, 

abhängig von den aktiven Frequenzbändern, zwischen erregungsmindernden und 

erregungsfördernden Effekten zu unterscheiden (Wagner et al., 2007). Nach 

hochfrequenter rTMS kann im EEG eine Steigerung der kortikalen Aktivität 

nachgewiesen werden (Evers et al., 2001; Okamura et al., 2001; Bohotin et al., 2002; 

Olivero et al., 2003; Aydin-Abidin et al., 2006; Esser et al., 2006; Huber et al., 2007; 

Restuccia et al., 2007; Barr et al., 2009; Barr et al., 2011), während sich der Effekt nach 

niedrigfrequenter rTMS gegenläufig verhält (Rossi et al., 2000; Enomoto et al., 2001; 

Schutter et al., 20019). So zeigt sich nach niedrigfrequenter Stimulation eine Zunahme 

der Gehirnrhythmen, die bei Ruhe und Entspannung verstärkt auftreten sowie eine 

Reduktion hochfrequenter Oszillationen. Mit niedrigfrequente Stimulation des rechten 

DLPFC zeigt sich im EEG kontralateral eine Zunahme von Thetabandaktivität bei 

gleichzeitiger Angstreduktion (Schutter et al., 2001). Durch niedrigfrequente rTMS des 

linken Motorkortex‘ kann die interhemispherische Kohärenz zwischen motorischen 

Arealen im Alphaband erhöht werden (Strens et al., 2002), während hochfrequente 

Stimulation desselben Areals die Kohärenz der Alphabandaktivität über die 

Stimulationszeit hinaus reduzieren kann (Oliviero et al., 2003). Zudem zeigte sich, dass 

1-Hz-rTMS eine Reduktion von Beta- (Li et al., 2007; de Ridder et al., 2011c) und 

Gammabandoszillationen (Pastor et al., 2006; Li et al., 2007; Sokhadze et al., 2009; de 

Ridder et al., 2011c) bewirkt. 

Mit der Kombination von einzelnen TMS-Impulsen und EEG-Ableitungen am Mo-

torkortex konnte nachgewiesen werden, dass sowohl bei der Unterdrückung motori-

scher Tätigkeiten (Hummel et al., 2002) als auch in motorischen Ruhephasen (Sauseng 

et al., 2009) eine verstärkte Alphabandaktivität im Sinne einer verstärkten Inhibition auf-

                                                                                                 

9 Weitere Quellen sind Bohotin et al., 2002; Chen et al., 2003; Fumal et al., 2003; Satow et al., 2003; 
Schutter & van Honk, 2003; Thut et al., 2003; Hansenne et al., 2004; Fregni et al., 2005; Aydin-Abidin et 
al., 2006; Li et al., 2007; Restuccia et al., 2007; Brignani et al., 2008; Cooper et al., 2008; Santiago-
Rodríguez et al., 2008; Sokhadze et al., 2009; Sun et al., 2011. 
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tritt. Demgegenüber bewirkt eine hochfrequente Stimulation eine Verstärkung der Fre-

quenzen im EEG, die mit erhöhter Aktivierung einhergehen. Barr et al. (2009; 2011) zei-

gen eine Erhöhung der Gammabandaktivität nach einmaliger hochfrequenter rTMS des 

DLPFC. Olivero et al. (2003) belegen eine Reduktion der Alphabandoszillationen nach 

hochfrequenter Stimulation. 

Es existieren jedoch auch gegenteilige Befunde. Bei simultaner Messung der 

Effekte hochfrequenter Stimulation des primären Motorkortex‘ im EEG konnte eine 

verstärkte Synchronisation der Alpha- und Beta-Rhythmen in zentralen und parietalen 

Arealen festgestellt werden, wobei erstere auch über die Stimulationsdauer hinweg 

anhielten (Veniero et al., 2011). Plewnia et al. (2008) belegen eine erhöhte Kohärenz im 

Alpha- und Betaband nach gleichzeitiger hochfrequenter rTMS des primären 

Motorkortex‘ und des okzipitalen Kortex‘. Okamura et al. (2001) erzeugten unter 

Verwendung hochfrequenter rTMS des linken frontalen Kortex eine Steigerung der 

Aktivität im Alphaband, während Magnetstimulation von gleicher Frequenz am linken 

DLPFC eine Verstärkung der Oszillationen des Deltabandes bewirkte (Griskova et al., 

2007). Hingegen berichten Aydin-Abidin et al. (2006) von einer verstärkten 

Deltabandaktivität nach fünfminütiger hochfrequenter (3 Hz) wie auch niedrigfrequenter 

rTMS (1 Hz). Jandl et al. (2005) weisen nach fünftägiger hochfrequenter Stimulation 

(10 Hz) des linken DLPFC von schizophrenen Patienten eine Minderung der Delta- und 

Beta- sowie eine Zunahme der Alphabandaktivität am rechten frontotemporalen Kortex 

und eine Abnahme der Beta-Oszillationen in temporalen und parieto-okzipitalen 

Regionen nach. Jin et al. (2005) konnten die Zunahme der frontalen Alphabandaktivität 

nach mehrtägiger hochfrequenter rTMS am DLPFC für zehn Tage bestätigen. Schutter 

et al. (2003) belegen eine Verlagerung der Gammabandaktivität vom linken zum rechten 

präfrontalen Kortex nach hochfrequenter rTMS. 

Mit der Kombination von TMS und EEG können evozierte Potenziale im 

Subsekundenbereich aufgezeichnet werden (Ilmoniemi et al., 1997). Hinsichtlich der 

Wirkung der rTMS auf die evozierten Potentiale zeigen sich jedoch uneinheitliche 

Ergebnisse. Mit links-frontaler rTMS mit einer Frequenz von 10 Hz konnte ein Anstieg 

der P300-Latenz, eine Latenzverkürzung der P2 sowie ein Anstieg der N1-Amplitude 

erreicht werden (Jing et al., 2001a). Evers et al. (2001) konnten nach 20-Hz-rTMS über 

dem DLPFC eine Abnahme der P300-Latenz darstellen. Esser et al. (2006) konnten 

nachweisen, dass sich im EEG nach 1500 hochfrequenten rTMS Pulsen am 

Motorkortex eine verkürzte Reaktionszeit auf einzeln dargebotene TMS-Impulse zeigt. 
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Die Autoren interpretieren dies als langfristige Veränderung neuronaler Aktivität im 

Sinne einer LTP. 

Niedrigfrequente rTMS führt dagegen zu einer Erhöhung der taktilen 

Reizschwellen (Satow et al., 2003) und damit zu einer Verlängerung der 

Reaktionszeiten (Enomoto et al., 2001; Bohotin et al., 2002; Fumal et al., 2003; Thut et 

al., 2003; Hansenne et al., 2004). Hansenne et al. (2004) erzielten mit 15-minütiger 

niedrigfrequenter rTMS (1 Hz) einen Anstieg der P300-Latenz. Cooper et al. (2008) 

konnten mit 1-Hz-rTMS über dem rechten DLPFC keinen Effekt auf die P300-Latenz 

nachweisen. In der Studie von Schecklmann et al. (2011) zeigten sich keinerlei 

Auswirkungen der 1-Hz-rTMS auf die Amplituden der N1- und P2-Potentiale. 

Diverse Studien weisen daraufhin, dass sich im Wachzustand die von der TMS 

ausgelöste Hirnaktivität auch in Areale ausbreitet, die vom Stimulationsort entfernt 

liegen (vgl. Ilmoniemi et al., 1997; Strens et al., 2002; Plewnia et al., 2008; Veniero et 

al., 2011). Im Schlaf kommt es dagegen nur zu einer lokalen Aktivitätsveränderung. 

Huber et al. (2007) zeigen, dass mittels elfminütiger hochfrequenter rTMS des 

Motorkortex‘ zunächst die lokale kortikale Exzitabilität über die Stimulationsdauer hinaus 

erhöht war. In der anschließenden Schlafphase kam es lediglich lokal zu einer 

Erhöhung der Alphabandaktivität. Graf et al. (2001) konnten keinen Effekt einmaliger 

hochfrequenter Stimulation des linken DLPFC auf den Schlaf ihrer Probanden oder das 

Frequenzmuster im EEG nachweisen.  

Mit der TMS ist es möglich, gestörte neuronale Netzwerke, die sich bei neuropsy-

chiatrischer Erkrankungen zeigen, willentlich zu stören, in der Hoffnung, dass sie ihre 

ursprüngliche Funktionalität wieder übernehmen. Bei Epilepsie-Patienten kann nach 

mehrtägiger niedrigfrequenter rTMS im EEG eine Reduktion der pathologisch erhöhten 

Hirnaktiviät festgestellt werden (Steinhoff et al., 1993; Theodore et al., 2002; Fregni et 

al., 2005; Cantello et al., 2007; Santiago-Rodríguez et al., 2008; Sun et al., 2011). Barr 

et al. (2011) konnten nach Stimulation des DLPFC mit hochfrequenter rTMS während 

der Lösung einer kognitiv anspruchsvollen Aufgabe eine Reduktion der pathologisch er-

höhten Gammabandaktivität bei Schizophreniepatienten feststellen. Sokhadze et al. 

(2009) belegen nach dreiwöchiger 0.5-Hz-rTMS des DLPFC und zwei Sitzungen pro 

Woche eine signifikante Reduktion der patholgisch erhöhten Gammabandaktivität bei 

autistischen Patienten. Auch in einer Tierstudie konnte der inhibitierende Effekt niedrig-

frequenter rTMS auf die Gamma-, wie auch auf die Betabandoszillationen nachgewie-

sen werden (Li et al., 2007). Nach niedrigfrequenter Stimulation des dorsalen anterioren 
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Kortex cingularis konnte das Craving (von engl. für Verlangen) bei Alkoholabhängigen, 

das mit verstärkten Beta- und Gammabandoszillationen im EEG assoziiert ist, erfolg-

reich reduziert werden können (de Ridder et al., 2011c).  

 

Die genannten Befunde zur Kombination von (r)TMS und EEG liefern ein unein-

heitliches Bild hinsichtlich der Wirkung auf hohe und niedrige Frequenzbänder im EEG. 

Dennoch überwiegen die Ergebnisse, welche auf eine Verstärkung niedrigfrequenter 

Oszillationen bei gleichzeitiger Verringerung hochfrequenter Oszillationen nach niedrigf-

requenter Magnetstimulation und auf einen gegenläufigen Effekt nach hochfrequenter 

Stimulation hinweisen. 

Im Folgenden wird auf die Anwendung der rTMS zunächst allgemein und dann 

bei Tinnitus (Abschnitt 2.3) näher eingegangen. 

 

2.2.4 Anwendung der TMS 

Die TMS wird mit unterschiedlichen Zielsetzungen angewendet. Die Stimulation 

an verschiedenen Arealen des Motorkortex‘ kann unmittelbar Muskelzuckungen des 

Daumen (Classen et al., 1998), der Finger (Gentner & Classen, 2006), der Hand (Hess 

et al., 1986), des Beins (Booth et al., 1991) sowie der Gesichtsmuskulatur (Schriefer et 

al., 1988) auslösen. Demgegenüber können unter Verwendung von TMS Hirnareale in 

ihrer Aktivität blockiert und sogenannte virtuelle Läsionen erzeugt werden, wodurch die 

funktionellen Bedeutungen der entsprechenden Areale bestimmt werden können 

(Siebner & Ziemann, 2007). Hochfrequente rTMS am Okzipitallappen ruft Phosphene 

hervor (Barker et al., 1985; Tani et al., 2011), während niedrigfrequente okzipitale rTMS 

eine Hemmung induziert und die Auslösung von Phosphenen erschwert (Boroojerdi et 

al., 2000). Hochfrequente rTMS über dem Broca Areal kann eine vorübergehende 

Aphasie auslösen (Pascual-Leone et al., 1991). Die Stimulation des okzipitalen Kortex‘ 

kann, wenn sie zu einem bestimmten Zeitpunkt nach Reizdarbietung erfolgt, die visuelle 

Wahrnehmung erschweren (Amassian et al., 1989). Walsh et al. (1998) konnten nach-

weisen, dass die TMS des visuellen Areals die Wahrnehmungsleistung verbessern oder 

verschlechtern kann, abhängig davon, auf welche Reizeigenschaften eines sich bewe-

gendes Suchbildes sich der Proband konzentrieren sollte. Nach vier Pulsen hochfre-

quenter Stimulation (20 Hz) des rechten oder linken posterior-parietalen Kortex‘ verlän-

gert sich die Reaktionszeit in einer visumotorischen Aufgabe (Bestmann et al., 2002). 
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Seit über 15 Jahren wird die TMS bei Forschung und neurologischer Diagnostik 

zur Messung neuronaler Exzitabilität eingesetzt (George et al., 2007a). Zudem gewinnt 

sie zunehmend Bedeutung für die Behandlung neuropsychiatrischer Erkrankungen, bei 

denen pathologisch relevante Hirnregionen durch die TMS moduliert werden. Für die 

Pathologien, die mit fokaler kortikaler Hyperexzitabilität assoziiert sind (Hoffmann et al., 

2002), erscheint eine Behandlung mit niedrigfrequenter rTMS zur Induktion einer 

Neuroplastizität im Sinne einer LTD (Chen et al., 1997) sinnvoll. Zur Modifikation 

neuronaler Hypoaktivität erscheint die Behandlung mit hochfrequenter rTMS als 

wirkungsvoll.  

Daskalakis et al. (2002) konnten mittels rTMS bei Schizophreniepatienten Defizite 

in der kortikalen Inhibition nachweisen. Diverse Studien zeigen mittels niedrigfrequenter 

(1Hz) TMS am links-temporoparietalen Kortex eine erfolgreiche Behandlung 

therapieresistenter akustischer Halluzinationen (Hoffman et al., 2000; d'Alfonso et al., 

2002; Hoffman et al., 200310). Pathophysiologisch liegt diesen akustischen 

Wahrnehmungen eine gesteigerte neuronale Aktivität im Bereich des auditorischen 

Kortex‘ zugrunde. Hochfrequente rTMS (10 Hz) am DLPFC liefert eine Option zur 

Behandlung der schizophrenen Negativsymptomatik (Cohen et al., 1999; Hajak et al., 

2004; Jandl et al., 2004; Sachdev et al., 2005; Jin et al., 2005; Prikryl et al., 2007). 

Bickford et al. (1987) beschrieben erstmals Stimmungsänderungen nach TMS-

Behandlung. Erste Behandlungsversuche an depressiven Patienten mittels rTMS 

erfolgten durch Höflich (1993). Im PET kann bei Depressiven eine metabolische Hy-

poaktivität festgestellt werden (George et al., 1995; Kimbrell et al., 1999), die mittels 

präfrontaler hochfrequenter rTMS erfolgreich behandelt werden kann (vgl. George et al., 

1995; Pascual-Leone et al. 1996; Kimbrell et al., 1999; Loo et al. 1999; Padberg et al. 

1999; Padberg et al., 2002; Schüle et al., 2003). Es zeigten sich antidepressive Effekte 

hochfrequenter Stimulation (10 Hz) des linken präfrontalen Kortex‘, wenn zwei (Padberg 

et al., 2002; Schüle et al., 2003), drei (Eranti et al., 2007; Herwig et al., 2007; Fitzgerald 

et al., 2009; George et al., 2010) oder bis zu sechs Wochen (O'Reardon et al., 2007) am 

linken DLPFC stimuliert wird. Die Symptomreduktion durch die hochfrequente rTMS 

                                                                                                 

10 Weitere Quellen sind Schönfeldt-Lecuona et al., 2004; Chibbaro et al., 2005; Hoffman et al., 2005; 
Poulet et al., 2005; Brunelin et al., 2006; Cordes et al., 2006; Hoffman et al., 2007; Horacek et al., 2007; 
Sommer et al., 2007; Stanford et al., 2008. 
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geht einher mit einer Normalisierung des Metabolismus im PET (Kimbrell et al., 1999), 

der serotonergen Aktivität (Baeken et al., 2010) sowie einer Zunahme der im SPECT 

dargestellte Durchblutung (Tenneback et al., 1999). Auch präfrontal platzierte niedrigf-

requente rTMS zeigt sich erfolgreich in der Behandlung von Depressionen (Feinsod et 

al., 1998; Kimbrell et al., 1999; Klein et al. 1999; Menkes et al., 1999; Mantovani et al., 

2007; George et al., 2009; Padberg & George, 2009), da mit PET eine neuronale Hyper-

funktion in diesem Areal nachgewiesen werden kann (Kimbrell et al., 1999).  

In jüngster Vergangenheit erfolgte die Depressionsbehandlung zunehmend mit 

der neuartigen H-Spule, mit der eine direkte Stimulation tiefer Hirnregionen möglich ist 

(im Folgenden DTMS von engl. deep transcranial magnetic stimulation). Auf diese Wei-

se konnten depressive Symptome nach hochfrequenter (20 Hz) Stimulation über dem 

PFC gelindert werden (Levkovitz et al., 2009; Isserles et al., 2011).  

Darüber hinaus zeigen sich transiente Erfolge in der Behandlung anderer psy-

chiatrischer Erkrankungen mit rTMS. Hochfrequente rTMS am rechten DLPFC (Green-

berg et al., 1997; Sachdev et al., 2001) oder linken DLPFC (Sachdev et al., 2001) kann 

die kortikale Hyperaktivität bei Zwangserkrankungen mindern. Auch niedrigfrequente 

rTMS bewirkt eine Reduktion der Zwangssymptomatik, wenn sie über dem supplemen-

tär-motorischen Areal (Mantovani et al., 2006; Kumar & Chadda, 2011) oder dem orbi-

tofrontalen Kortex (Ruffini et al., 2009) platziert wird.  

Daneben ist die posttraumatische Belastungsstörung mit Magnetstimulation be-

einflussbar. Mittels hochfrequenter Stimulation des linken oder rechten DLPFC (Boggio 

et al., 2010) wie auch mittels niedrigfrequenter Stimulation des rechten DLPFC (Tillman 

et al., 2011; Watts et al., 2012) oder des Motorkortex‘ (Grisaru et al., 1998) können 

Kernsymptome abgeschwächt werden. Es zeigt sich eine Überlegenheit der hochfre-

quenten Stimulation des linken gegenüber dem rechten DLPFC (Boggio et al., 2010) 

und eine Überlegenheit der hochfrequenten gegenüber der niedrigfrequenten Stimulati-

on des rechten DLPFC (Cohen et al., 2004). 

Einzelne Studien liefern Hinweise über die erfolgreiche Symptomreduktion bei 

Panikstörungen mittels niedrigfrequenter rTMS am rechten DLPFC (Zwanzger et al., 

2002, zitiert nach Eichhammer & Hajak, 2007; Mantovani et al., 2007).  

Ebenso gibt es vereinzelte Studien, die nach hochfrequenter rTMS am linken 

DLPFC eine Reduktion des Cravings bei Bulimie-Patienten nach Essen (Uher et al., 

2005; Claudino et al., 2010; van den Eynde et al., 2010), bei Rauchern nach Zigaretten 
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(Eichhammer et al., 2003b) sowie bei Alkoholabhängigen nach erfolgreicher niedrigfre-

quenter Stimulation des dorsalen anterioren Kortex cingularis (de Ridder et al., 2011c) 

belegen konnten. 

In Tierstudien konnte ein antikonvulsiver Effekt der TMS nachgewiesen werden 

(Fleischmann et al., 1994), der auch beim Menschen wirkungsvoll erzeugt werden konn-

te. Unter einmaliger Anwendung niedrigfrequenter rTMS über der kortikalen Malformati-

on von Epilepsiepatienten konnte die Häufigkeit von Krampfanfällen für mindestens 30 

Tage reduziert werden (Fregni et al., 2005). Bei zehn Stimulationssitzungen war der Ef-

fekt noch vier Wochen (Sun et al., 2011) bzw. zwei Monate (Santiago-Rodríguez et al, 

2008), bei fünf Stimulationssitzungen bis zwei Monate nach Stimulation feststellbar 

(Fregni et al., 2006b). Mit hochfrequenter rTMS kann eine Anfallsreduktion erzielt wer-

den, die jedoch über die Dauer der Stimulation nicht hinaus ging (Brighina et al., 2006). 

In der Behandlung unterschiedlicher Schmerzen mit Magnetstimulation zeigen 

sich vorwiegend hohe Frequenzen erfolgreich, da so die pathologische Exzitabilitäts-

steigerung durch Wiederherstellung der intrakortikalen Inhibition reduziert werden kann 

(Schwenkreis et al., 2007). Hochfrequente rTMS am Motorkortex kann Schmerzsymp-

tome bei Patienten mit neuropathischen Schmerzen (Pleger et al., 2004; Hirayama et 

al., 2006; Lefaucheur et al., 2011), chronischen Handschmerzen (Lefaucheur et al., 

2006), Phantomschmerzen (Abmed et al., 2011), Trigeminaler Neuralgie und Schmerz-

syndrom nach Schlaganfall (Lefaucheur et al., 2004; Khedr et al., 2005; André-Obadia 

et al., 2006; Lefaucheur et al., 2011) oder anderen Läsionen (Lefaucheur et al., 2004) 

teilweise über die Stimulationsdauer hinaus mindern (Lefaucheur et al., 2001; Pleger et 

al., 2004; Khedr et al., 2005; Hirayama et al., 2006; Abmed et al., 2011). Es gibt verein-

zelte Hinweise über die wirkungsvolle hochfrequente Stimulation des präfrontalen Kor-

tex‘ bei Fibromyalgie (Short et al., 2011), des posterior-parietalen Kortex‘ bei zervikalem 

Wurzelausriss (Töpper et al., 2003), des linken DLPFC bei Migräne (Brighina et al., 

2004) sowie der kontralateralen niedrigfrequenten Stimulation bei zerviakalem Wurzel-

ausriss (Töpper et al., 2003) und Phantomschmerzen (Di Rollo & Pallanti, 2011). In ei-

ner Nachuntersuchung ihrer Studie stellten André-Obadia et al. (2006) eine Überlegen-

heit von hochfrequenter und Placebo-Stimulation gegenüber einer niedrigfrequenten 

Stimulation dar. Hirayama et al. (2006) wiesen eine stärkere Schmerzreduktion nach 

hochfrequenter Stimulation des Motorkortex‘ gegenüber der Stimulation anderer Areale, 

d. h.des primären sensomotorischen Kortex‘, des prämotorischen Kortex‘, des supple-

mentär motorischen Areals nach. 
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Schwenkreis et al. (2007) summieren auf der Basis bisheriger Studien, dass in 

der Schmerztherapie eine Stimulation am primären motorischen Kortex mit einer hohen 

Frequenz (größer als 1 Hz), einer fokalen Spule, hoher Stimuluszahl pro Sitzung und 

wiederholten Sitzungen die größten Erfolge verspricht.  

 

Es zeigt sich insgesamt eine uneinheitliche bzw. unzureichende Datenlage be-

züglich der Wirksamkeit der rTMS bei Zwangserkrankungen, posttraumatischen Belas-

tungsstörungen, Panikstörungen, Craving und Schmerz, weshalb hier weiterhin For-

schungsbedarf besteht. Grundsätzlich scheint der linke DLPFC bei vielen Erkrankungen 

als Stimulationsort von hoher Relevanz zu sein, da er direkt mit dem limbischen System 

verbunden ist (Paus et al., 2001). Cho & Strafella (2009) konnten zeigen, dass rTMS 

(10 Hz) am linken DLPFC die präfrontale Dopaminausschüttung modulieren kann, was 

eine wichtige Erkenntnis für die zukünftige Behandlung von neurologischen und psy-

chiatrischen Erkrankungen wie Parkinson, Schizophrenien und Substanzabhängigkeiten 

liefert. Welche Wirkung die rTMS auf die Tinnituswahrnehmung hat, soll in einem ge-

sonderten Abschnitt dargestellt werden. 

In einem Review weisen Slotema et al. (2010) darauf hin, dass aufgrund der ver-

zeichneten Erfolge die rTMS in den Katalog standardisierter klinischer Behandlungsme-

thode aufgenommen werden sollte, obgleich nach wie vor hoher Forschungsbedarf hin-

sichtlich der Anwendung dieser Methode besteht (George et al., 2009). 

 

2.3 TMS und Tinnitus 

Über die erfolgreiche Anwendung von rTMS zur Behandlung von Patienten mit 

chronischem Tinnitus liegen verschiedene Studien vor. Erstmals wendeten Eichhammer 

et al. (2003a), Langguth et al. (2003) und Plewnia et al. (2003) rTMS zur 

Tinnitusreduktion an. Plewnia et al. (2003) stimulierten für drei Sekunden einmalig den 

temporoparietalen Kortex mit hochfrequenter rTMS (10 Hz) und konnten somit das 

Ohrgeräusch reduzieren. Der Effekt hielt allerdings nur wenige Sekunden an. 

Eichhammer et al. (2003a) wiesen in einer placebo-kontrollierten Pilotstudie auf die 

Wirkung niedrigfrequenter rTMS auf die Tinnitussymptomatik hin. Nach der Stimulation 

des primären auditorischen Kortex an fünf aufeinanderfolgenden Tage konnte bei zwei 

von drei Patienten eine Verbesserung der Beschwerden erwirkt werden, die eine Woche 

anhielt. Eine weitere kontrollierte Pilotstudie wurde von Langguth et al. (2003) mit einem 
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Tinnituspatienten durchgeführt. Nachdem sie mittels FDG-PET eine verstärkte 

metabolische Aktivität im Bereich des linken primären auditorischen Kortex gemessen 

hatten, konnte 1-Hz-rTMS über diesem Areal angewendet werden. Im Anschluss an die 

Behandlung konnte eine Reduktion des Tinnitus‘ sowie der kortikalen Erregung 

festgestellt werden, die einige Wochen fortbestand.  

Da Tinnitus mit einer erhöhten kortikalen Exzitabilität im auditorischen Kortex 

assoziiert wird, ist die inhibitorische Wirkung der niedrigfrequenten TMS von Nutzen. 

Hier korreliert die Minderung des Tinnitusleidens mit der Zunahme subkortikaler 

inhibitorischer Prozesse (Langguth et al., 2007). Doch während niedrigfrequente TMS 

nach mehreren Sitzungen nachhaltigere Effekte auf die Tinnituswahrnehmung zeigt, 

zeigt sich hochfrequente TMS sofort wirksam in der Desynchronisierung der Hirnaktivität 

des linken auditorischen Kortex‘. Diverse Studien bestätigen, dass die Wirkung der 

hochfrequenten TMS (de Ridder et al., 2004; de Ridder et al., 2005) und rTMS (Plewnia 

et al., 2003; Folmer et al., 2006; Fregni et al., 2006a; Langguth et al. 2008) am 

temporalen Kortex auf die Behandlungsdauer beschränkt ist. Dies zeigte sich bei 

einzelnen Sitzungen hochfrequenter Stimulation (de Ridder et al., 2004; Plewnia et al., 

2003; Folmer et al., 2006; Langguth et al. 2008), jedoch auch bei mehreren Sitzungen 

mit jeweils verschiedenen Frequenzen (de Ridder et al., 2005; Fregni et al., 2006a). 

Demgegenüber kann niedrigfrequente rTMS über dem primären auditorischen Kortex 

chronischen Tinnitus über die Stimulationsdauer hinaus reduzieren (Eichhammer, et al., 

2003a; Langguth et al., 2003; Kleinjung et al., 200511). In einigen Fällen war die 

Tinnituslinderung noch drei (Langguth et al., 2006a; Langguth et al., 2006b; Kleinjung et 

al., 2007; Khedr et al., 2008; Anders et al., 2010; Frank et al., 2010; Khedr et al., 2010), 

vier (Khedr et al., 2008) oder bis zu sechs Monate nach Stimulation nachzuweisen 

(Langguth et al., 2004; Kleinjung et al., 2005; Marcondes et al., 2010). Es konnten sogar 

bis zu zwölf Monate anhaltende Effekte nachgewiesen werden (Kleinjung et al., 2005). 

Unterstützt werden diese Befunde von Londero et al. (2006b), die bereits nach 

einmaliger rTMS (20 Minuten mit einer Frequenz von 1 Hz) einen signifikanten und fünf 

                                                                                                 

11 Weitere Quellen sind Langguth et al., 2004;; Langguth et al., 2006a; Langguth et al., 2006b; Londero et 
al., 2006b; Kleinjung et al., 2007; Langguth et al., 2007; Plewnia et al., 2007b; Smith et al., 2007; Khedr 
et al., 2008; Kleinjung et al., 2008; Anders et al., 2010; Frank et al., 2010; Khedr et al., 2010; Lorenz et 
al., 2010; Marcondes et al., 2010; Kreuzer et al., 2011; Lefaucheur et al., 2012; Müller et al., 2013. 
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Tage andauernden Effekt erzielen konnten. Daher wird die Induktion einer LTD-

ähnlichen Neuroplastizität vermutet (Kleinjung et al., 2005). 

Es liegen auch auch Befunde vor, in denen mit niedrigfrequenter rTMS keine 

nachhaltige Wirkung erzielt werden konnte (Plewnia et al., 2007a; Smith et al., 2007). 

Zudem konnten Khedr et al. (2008) in einem Vergleich von rTMS mit 1 Hz, 10 Hz oder 

25 Hz keinen Unterschied hinsichtlich der Tinnitusreduktion feststellen, nachdem die 

Patienten über zwei Wochen in zehn Sitzungen behandelt wurden. Die Nachhaltigkeit 

der Effekte aller drei Frequenzen zeigte sich auch nach der letzten Nachuntersuchung 

nach drei Monaten. 

Viele Studien fügen ihrem Studiendesign Kontrollbedingungen im Sinne von Pla-

cebo-Behandlungen hinzu. In der Placebo-Bedingung wird die TMS-Spule in einem 45°-

Winkel (vgl. Smith et al., 2007; Lisanby et al., 2001; Lorenz et al., 2010; Marcondes et 

al., 2010; Weisz et al., 2011) oder 90°-Winkel (de Ridder et al., 2005) vom Schädel ab-

geneigt. Alternativ können Areale stimuliert werden, welche nachweislich in keinem Zu-

sammenhang mit der tinnitusbezogenen Hirnaktivität stehen, wie der okzipitale Kortex 

(Plewnia et al., 2007a; Plewnia et al., 2007b; Khedr et al., 2008).  

Obgleich Piccirillo et al. (2011) nach zweiwöchiger und nach vierwöchiger (Picci-

rillo et al., 2013) Behandlung von Tinnitus mit niedrigfrequenter rTMS am temporoparie-

talen Kortex keine Überlegenheit der Verum- gegenüber der Placebo-Bedingung zeig-

ten, gibt es ausreichend Belege dafür, dass die rTMS über eine Placebo-Behandlung 

erhaben ist (vgl. Eichhammer, et al., 2003a; Langguth et al., 2004; de Ridder et al., 

200512). Dennoch sei erwähnt, dass de Ridder et al. (2005) bei 33 % der Patienten mit 

Placebo-Behandlung eine Tinnitusreduktion aufzeigen, obgleich diese Anzahl gegenü-

ber 53 %, die positiv auf die Verum-Behandlung reagierten, deutlich geringer ist. Auch 

Folmer et al. (2006) und Londero et al (2006b) wiesen auf Effekte der Placebo-

Stimulation hin, die ebenfalls der Verum-Bedingung deutlich unterlegen waren. 

Die Erfolge der rTMS-Behandlung sind durch die Dauer der Tinnituserkrankung 

limitiert. Je länger der Tinnitus besteht, umso schwieriger ist die Beeinflussung durch die 

Magnetstimulation (de Ridder et al., 2004; de Ridder et al., 2005; Kleinjung et al., 2005; 

                                                                                                 

12 Weitere Quellen sind Kleinjung et al., 2005; Fregni et al., 2006a; Folmer et al., 2006; Langguth et al., 
2007; Plewnia et al., 2007a; Plewnia et al., 2007b; Rossi et al., 2007; Smith et al., 2007; Khedr et al., 
2008; Anders et al., 2010; Marcondes et al., 2010; Folmer et al., 2015. 
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Kleinjung et al., 2007; Plewnia et al., 2007b; Khedr et al., 2008; Frank et al., 2010; 

Khedr et al., 2010). Wie bereits in Abschnitt 2.1.7 erwähnt, gilt, dass bei einer Erkran-

kungsdauer von mehr als drei Jahren die Beeinflussbarkeit des Tinnitus sinkt. 

Von den meisten Untersuchungen wird der linke temporale oder temporoparietale 

Kortex unabhängig von der Lateralität der Tinnituswahrnehmung als Stimulationsort ge-

wählt (vgl. Langguth et al., 2003; Plewnia et al., 2003; Folmer et al., 200613). Bereits in 

Abschnitt 2.1.5.1 wurde bezüglich der Tinnitusgenerierung auf die Relevanz des neuro-

nalen Netzwerks hingewiesen, das den Colliculus inferior, den Thalamus und den pri-

mär-auditorischen Kortex umschließt. Es erscheint von großer Relevanz, dass die TMS 

an diesem Netzwerk angesetzt wird, eine Störung hervorruft und neben der Normalisie-

rung der Aktivität dieser Areale eine Reduktion des Tinnitus bewirkt. Die Befunde von 

Studien mit Einbeziehung bildgebender Verfahren (vgl. Arnold et al., 1996; Eichhammer 

et al., 2003a; Langguth et al., 2003; Langguth et al., 2004; Kleinjung et al., 2005; Londe-

ro et al., 2006b; Plewnia et al., 2007b) stützen die Wichtigkeit des auditorischen Kortex‘ 

der linken Hemisphäre für die Generierung der Tinnituswahrnehmung unabhängig von 

der Lateralität des Tinnitus. Diverse Studien konnten mittels FDG-PET (vgl. Eichham-

mer et al., 2003a; Kleinjung et al., 2005; Langguth et al., 2006a; Langguth et al., 2007) 

oder MRT (vgl. de Ridder et al., 2005; Londero et al., 2006b; Kleinjung et al., 2007; 

Langguth et al., 2008c) die höchste Aktivität im linken primären auditorischen Kortex bei 

Tinnituspatienten nachweisen und an diesem Areal erfolgreich mit rTMS stimulieren. 

Zudem konnten Marcondes et al. (2010) in einer SPECT-Analyse die stärkste Reduktion 

der metabolischen Aktivität im links-temporalen inferioren Kortex nach niedrigfrequenter 

rTMS aufzeigen.  

Rossi et al. (2007) stellten fest, dass sich die Erfolge von niedrigfrequenter links-

temporoparietaler rTMS unabhängig von der Tinnituslateralität zeigten. Demgegenüber 

behaupten Frank et al. (2010), dass es - im Gegensatz zu linksseitigem oder bilateralen 

Tinnitus - nach links-temporaler rTMS zu keiner Tinnitusreduktion kommt, wenn es sich 

um einen rechtsseitigen Tinnitus handelt. Auch Khedr et al. (2010) wiesen auf die Be-

                                                                                                 

13 Weitere Quellen sind Fregni et al., 2006a; Kleinjung et al., 2007; Rossi et al., 2007; Khedr et al., 2008; 
Kleinjung et al., 2008; Frank et al., 2010; Marcondes et al., 2010; Kreuzer et al., 2011; Piccirillo et al., 
2011; Piccirillo et al., 2013. 
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deutsamkeit der Spulenplatzierung relativ zur Tinnituswahrnehmung hin. In ihrer Studie 

zeigte sich die kontralaterale Stimulation der ipsilateralen deutlich überlegen. 

Die Anwendungen der rTMS bei Tinnituspatienten unterscheiden sich zudem hin-

sichtlich der Häufigkeit der Stimulation, der Impulsanzahl sowie der Methode der Verän-

derungsmessung. Die meisten Studien stimulieren an einem (de Ridder et al., 2004; de 

Ridder et al., 2005; Plewnia et al., 2003; Folmer et al., 2006), fünf (Eichhammer et al., 

2003a; Langguth et al., 2003; Kleinjung et al., 200514) oder zehn Tage (Langguth et al., 

2006a; Langguth et al., 2006b; Kleinjung et al., 2007; Plewnia et al., 2007a; Khedr et al., 

2008; Langguth et al., 2008c; Anders et al., 2010; Frank et al., 2010; Khedr et al., 2010; 

Kreuzer et al., 2011; Piccirillo et al., 2011; Weisz et al., 2011). Pro Sitzung verwenden 

sie zumeist wiederholte Reizserien von 1200 (Londero et al., 2006b; Rossi et al., 2007), 

1500 (Khedr et al., 2008), 1800 (Plewnia et al., 2007a) oder 2000 Impulsen (Eichham-

mer et al., 2003a; Langguth et al., 2003; Langguth et al., 2004; Kleinjung et al., 2005; 

Langguth et al., 2006a; Langguth et al., 2006b; Langguth et al., 2008c; Frank et al., 

2010; Khedr et al., 2010; Kreuzer et al., 2011). Plewnia et al. (2007b) stimulierten mit 1-

Hz-rTMS für 5, 15 oder 30 Minuten. Sie liefern mit ihrer Studie einen Beleg dafür, dass 

der Stimulationserfolg abhängig von der Anzahl der Stimulationsimpulse ist. Die Stimu-

lationsintensität variiert in den Untersuchungen zwischen 80 % MT (vgl. Poreisz et al., 

2009), 90 % MT (vgl. de Ridder et al., 2005; de Ridder et al., 2007b), 100 % MT (vgl. 

Folmer et al., 2006; Khedr et al., 2008), 110% MT (vgl. Eichhammer et al., 2003a; 

Langguth et al., 2004; Kleinjung et al., 200515). 

Zur Veränderungsmessung der Tinnitusstärke werden Fragebögen wie der Tinni-

tus Handicap Inventory (THI) von Newman et al. (1996/ 1998) (vgl. Londero et al. 

2006b; Khedr et al., 2008; Anders et al., 2010; Khedr et al., 2010; Marcondes et al., 

2010; Kreuzer et al., 2011; Piccirillo et al., 2011), der Tinnitus-Fragebogen (TF) von 

Goebel & Hiller (1998)16 (vgl. Eichhammer et al., 2003a; Kleinjung et al., 2005; Languth 

et al., 2006b; Kleinjung et al., 2007; Langguth et al., 2007; Plewnia et al., 2007a; Klein-

                                                                                                 

14 Weitere Quellen sind Langguth et al., 2004; Langguth et al., 2007; Rossi et al., 2007; Lorenz et al., 
2010; Marcondes et al., 2010).  

15 Weitere Quellen sind Langguth et al., 2006b; Langguth et al., 2006c; Kleinjung et al., 2007; Smith et al., 
2007; Langguth et al., 2008c; Lorenz et al., 2010; Kreuzer et al., 2011) und 120% MT (vgl. Plewnia et 
al., 2003; Fregni et al., 2006a; Londero et al., 2006; Plewnia et al., 2007b; Rossi et al., 2007. 

16 In englischsprachigen Studien wurde entsprechend der von Hallam et al. (1988) entwickelte Tinnitus 
Questionaire (TQ) verwendet. 



 

Christine Bremer                                                        58 
 

 
jung et al., 2008; Anders et al., 2010; Frank et al., 2010; Kreuzer et al., 2011), visuelle 

Analogskalen (z. B. 0 bis 100, wobei 0 Wohlbefinden ohne Tinnituswahrnehmung und 

100 dem schlimmsten Tinnituserleben entspricht) (vgl. de Ridder et al., 2005; Folmer et 

al., 2006; Fregni et al., 2006a; Rossi et al., 2007; Lorenz et al., 2010), bildgebende Ver-

fahren (vgl. Smith et al., 2007; Marcondes et al., 2010) oder elektrophysiologischen Ver-

fahren (Lorenz et al., 2010) verwendet. Nach niedrigfrequenter rTMS konnten Verände-

rungen im Metabolismus festgestellt werden (Smith et al., 2007; Marcondes et al., 

2010). Mit VBM konnten bereits nach einwöchiger Behandlung mit rTMS am temporalen 

Kortex strukturelle Veränderungen in der grauen Substanz des auditorischen Kortex‘ 

und des Thalamus‘ dargestellt werden (May et al., 2006). Langguth et al. (2007) konn-

ten die Veränderungen der kortikalen Exzitabilität nach niedrigfrequenter rTMS mit Ein-

zel- und Doppelpuls-TMS bestimmen und dabei unter anderem eine Verlängerung der 

CSP feststellen, welche sie als Hinweis für die Verstärkung inhibitorischer Prozesse 

deuten. Ähnlich interpretierten Lorenz et al. (2010) die im MEG festgestellte Zunahme 

von Alpha- und Reduktion von Gammabandfrequenzen nach einer Behandlung mit 

niedrigfrequenter rTMS (1 Hz). In ihrer placebo-kontrollierten Untersuchung konnten sie 

nach fünftägiger Stimulation anhand einer visuellen Analogskala eine deutliche Redukti-

on der Symptomatik feststellen, die über die Stimulationsdauer hinaus anhielt. 

Lefaucheur et al. (2012) konnten bezüglich der Wirkung der 1-Hz-rTMS auf die 

evozierten Potentiale in einer Pilotstudie mit sechs Tinnituspatienten nachweisen, dass 

nach der Behandlung die N1-Amplitude signifikant verringert war. Die uneinheitlichen 

Ergebnisse hinsichtlich der P2-Amplitude sahen sie in Abhängigkeit von der Schwere 

des Tinnitus‘. So verringerte sich die P2-bei Patienten Amplitude mit starkem Tinnitus 

und nahm bei Probanden mit geringerem Ohrgeräusch zu. 

Ähnlich der vorliegenden Promotionsstudie wendeten Langguth et al. (2006b) 

und Khedr et al. (2008) niedrigfrequente rTMS am linken Temporallappen über zehn 

Tage an. Zur Bestimmung des Stimulationsortes verwendeten sie das 10/20-EEG-

System. Langguth et al. (2006b) stimulierten mit einer Intensität von 110 % MT und 

2000 Impulsen pro Sitzung. Bereits nach fünf Behandlungstagen wurde von den 28 

Probanden im TF eine Reduktion der Symptomatik angegeben, die nach der zweiten 

Stimulationswoche noch verstärkt auftrat. Signifikante Effekte konnten weiterhin bei der 

letzten Nachuntersuchung, 13 Wochen nach der letzten Stimulation mit dem TF nach-

gewiesen werden. Kritisch sei angemerkt, dass das Studiendesign der Autoren keine 

Kontrollbedingung aufwies.  
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In der Studie von Khedr et al. (2008) erfolgte in der Kontrollbedingung die Stimu-

lation des okzipitalen Kortex‘, der von der pathologischen Hirnaktivität des Tinnitus un-

beeinflusst ist. Die Autoren ließen die 16 Probanden, die mit niedrigfrequenter rTMS 

(100 % MT und 1500 Pulse pro Sitzung) behandelt wurden, die Veränderungen der 

Symptomatik mit dem THI bestimmen. Selbst bei der letzten Nachuntersuchung nach 

vier Monaten zeigten 75 %, d. h.zwölf Probanden noch eine partielle Symptomreduktion 

(21–80 %). Diese zeigte sich beim Vergleich der Ergebnisse im THI vor der Behandlung 

und vier Monate danach. Bei einem Tinnituspatienten war die Symptombelastung zu 

diesem Zeitpunkt sogar 80 % geringer als zum Zeitpunkt der Vormessung. Drei Patien-

ten zeigten nach vier Monaten keine bis 20 % reduzierte Symptome im Vergleich zur 

Baseline. Khedr et al. (2008) konnten in ihrer Studie jedoch keine Überlegenheit der 1-

Hz-Stimulation gegenüber der rTMS mit 10 oder 25 Hz zeigen, die ebenfalls in zehn Sit-

zungen angewendet wurde.  

Obgleich die Stimulationseffekte der bisherigen Untersuchungen eine gewisse 

Nachhaltigkeit aufwiesen, remittierte der Tinnitus nicht dauerhaft. Daher wurden die 

Modalitäten der Stimulation in vielen Studien auf unterschiedliche Weise variiert und 

kombiniert, um größtmögliche Behandlungserfolge zu erzielen. Entsprechend kann auch 

die Anwendung der TBS Erfolge in der Behandlung von Tinnitus verzeichnen (de Ridder 

et al., 2007a/2007b; Meeus et al., 2009; Poreisz et al., 2009; de Ridder et al., 2010; 

Vanneste et al., 2010b). Da die Wirksamkeit der TBS jedoch in Abhängigkeit von der 

Geräuschzusammensetzung (de Ridder et al., 2010) und Lateralität des Tinnitus‘ (Van-

neste et al., 2010b) variieren kann, besteht hier weiterer Forschungsbedarf. 

Kleinjung et al. (2008) konnten eine Überlegenheit der Kombination von hoch- 

und niedrigfrequenter rTMS (20 Hz am linken DLPFC und 1 Hz am temporalen Kortex) 

gegenüber niedrigfrequenter rTMS (1 Hz am temporalen Kortex) nachweisen. Zwar 

zeigten sich in beiden Stimulationsbedingungen unmittelbar nach der Behandlung signi-

fikante Symptomreduktionen im TF. Mit der kombinierten Methode konnten jedoch nach 

drei Monaten ausgeprägtere Langzeiteffekte nachgewiesen werden. Langguth et al. 

(2008c) kombinierten ebenfalls hoch- und niedrigfrequente rTMS (6 Hz und 1 Hz). Im 

Gegensatz zu der Untersuchung von Kleinjung et al. (2008) stimulierten Langguth et al. 

(2008c) nacheinander mit unterschiedlichen Frequenzen mit der Intention, durch die 

Vorbehandlung mit 6 Hz (90 % MT und 960 Stimuli) die inhibitorische Wirkung der nied-

rigfrequenten rTMS (110 % MT und 1040 Pulse pro Sitzung) zu verstärken. Es zeigten 
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sich signifikante Effekte bezüglich der Tinnitusreduktion im TF, und es konnte keine 

Überlegenheit gegenüber alleiniger niedrigfrequenter rTMS festgestellt werden. 

Kreuzer et al. (2011) kombinierten in ihrer Untersuchung die Stimulation des 

rechten DLPFC mit der Stimulation des links-temporalen Kortex‘, indem sie die Areale 

unmittelbar hintereinander mit niedrigfrequenter rTMS (jeweils mit 110 % MT und 1000 

Pulse) stimulierten. Sie konnten damit jedoch keine besseren Ergebnisse hinsichtlich 

der mit dem THI und TQ gemessenen Symptomreduktion erwirken als mit alleiniger 

niedrigfrequenter rTMS (110 % MT und 2000 Pulse) des linken auditorischen Kortex‘. In 

beiden Gruppen zeigten sich signifikante Verbesserungen der Symptome, die noch vier 

Wochen nach Behandlung feststellbar waren, sich jedoch nach zwölf Wochen kaum 

mehr von den Basismessungen unterschieden. 

Da die Ohrgeräuschwahrnehmung durch oberflächlich angesetzte rTMS nur vor-

übergehend reduziert werden kann, schlagen de Ridder et al. (2004) die Implantation 

von Elektroden am primären oder sekundären auditorischen Kortex vor, die eine per-

manente Stimulation und somit eine dauerhafte Tinnitusunterdrückung möglich machen. 

In einer Einzelfallstudie (de Ridder et al., 2011b) konnte in derselben Arbeitsgruppe eine 

bereits seit einem Jahr anhaltende Tinnitusreduktion aufgezeigt werden. Mit neuronavi-

gierter TMS konnte bei dem Patienten eine 50%ige Tinnitusunterdrückung bewirkt wer-

den. Durch die anschließende Stimulation über implantierte extradurale Elektroden am 

DLPFC konnte die Symptomreduktion auf 66.67 % erhöht und bereits auf ein Jahr ver-

längert werden. In einer größeren Untersuchung mit 43 Probanden, die zuvor von TBS 

profitiert hatten, zeigten sich ebenfalls Erfolge der Stimulation des auditorischen Kortex‘ 

über implantierte Elektroden (im Folgenden ACS von engl. Auditory Cortex Stimulation) 

(de Ridder et al., 2011d). Die TBS war der ACS in ihrer Wirkung jedoch deutlich überle-

gen. Die Effekte beider Behandlungsmethoden waren abhängig von der Geräuschzu-

sammensetzung des Tinnitus (nur Ton, nur Rauschen oder eine Kombination von Ton 

und Rauschen). Die durchschnittliche Symptomremission bei tonalem Tinnitus (71 %) 

war doppelt so stark wie die Reduktion der Symptomatik bei rauschendem Ohrgeräusch 

(37 %) beziehungsweise dem kombinierten Erscheinungsbild (29 %). 

 

Anhand der vorangegangenen Darstellungen wird die Vielzahl der empirischen 

Untersuchungen zu den neuropathologischen Grundlagen von Tinnitus sowie zur 

Wirksamkeit von rTMS als Behandlungsmethode von Tinnitus ersichtlich. Da die 
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Responder-Rate der Untersuchungen zur Behandlung von chronischem Tinnitus mit 

TMS zwischen 40 % (Folmer et al., 2006) und 83,3 % (Plewnia et al., 2007a) variierte, 

erscheinen entsprechende Studien zur Behandlung der Pathologie sinnvoll. In den 

meisten Studien reagierten 70 bis 80 % (vgl. Kleinjung et al., 2005; Languth et al., 

2006b; Plewnia et al., 2007b; Smith et al., 2007; Khedr et al., 2008) wie erwartet mit 

einer Reduktion der Symptomatik auf die Stimulation.  

Es sind jedoch keine Studien bekannt, welche bei Tinnituspatienten die 

Reduktion von Gammabandaktivität und Zunahme von Alphabandaktivität infolge einer 

mehrtägigen Behandlung mit niedrigfrequenter rTMS anhand von EEG-Aufzeichnungen 

nachweisen. Bereits in Abschnitt 2.1.6.2 wurde dargestellt, dass bei zunehmender 

Tinnitusdauer die pathologische Gammabandaktivität großflächiger nachzuweisen ist 

und nicht nur auf den links-temporalen Kortex begrenzt zu sein scheint. Dieser Umstand 

reduziert vermutlich die Wirksamkeitswahrscheinlichkeit von links-temporaler 

Stimulation bei Patienten mit längerer (>4 Jahre) Leidensgeschichte (Schlee et al., 

2009).  

Für die vorliegende Studie ist folglich entscheidend, dass bei den Probanden die 

Funktionsstörung im Bereich des Hörsystems eine Dauer von drei Jahren nicht 

überschreitet. Darüber hinaus ist ausschlaggebend, dass als Stimulationsort der 

temporoparitale Kortex gewählt wird. Des Weiteren gibt es Hinweise darauf, dass die 

Stimulation mit einer Frequenz von 1 Hz am effektivsten ist. Dies deckt sich mit den 

Vorschlägen von Langguth et al. (2006a), die für eine erfolgreiche Behandlung von 

chronischem Tinnitus mit rTMS zudem die Dauer der Behandlung sowie die 

Verwendung einer hohen Anzahl täglicher Stimulationen als relevant beschreiben. 

Bevor die Ein- und Ausschlusskriterien näher erläutert werden, die angesichts der 

dargestellte Befunden eine optimale Wirkung der Behandlung mit rTMS auf die 

Tinnituswahrnehmung vermuten lassen, werden die Hypothesen und das Ziel der 

Untersuchung vorgestellt. 
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3 HYPOTHESEN UND ZIEL DER UNTERSUCHUNG 

3.1 Ziel der Untersuchung 

Ziel der Promotionsstudie ist es, zwischen chronischen Tinnituspatienten und ei-

ner alters- und geschlechtsgepaarten gesunden Kontrollgruppe signifikante Unterschie-

de hinsichtlich der neurophysiologischen Aktivität im Ruhe-EEG und in den ereigniskor-

relierten Potentialen N1, P2 und P300 aufzuzeigen. In Bezug auf die Ruhe-EEG-

Aktivität sollten diese Unterschiede in einer gesteigerten Gammabandaktivität und ver-

ringerten Alphabandaktivität, insbesondere in links-temporalen Gehirnregionen auf Sei-

ten der Tinnituspatienten nachweisbar sein. Hinsichtlich der evozierten Potentiale soll-

ten sich bei den Probanden mit Ohrgeräusch niedrigere Amplituden der N1-, P2- und 

P300-Komponenten sowie längere Latenzen der P2- und P300-Wellen nachweisen las-

sen. 

Nachzuweisen ist, dass sich nach einer zweiwöchigen Behandlung mit links-

temporalen Stimulation (10 Behandlungssitzungen jeweils Montag bis Freitag mit Fre-

quenz 1 Hz, 2000 Stimuli pro Sitzung) die verstärkte Gammabandaktivität, insbesondere 

in links-temporalen Gehirnregionen im Gegensatz zu einer mit Placebo behandelten 

Kontrollgruppe abnimmt und die verringerte Alphabandaktivität zunimmt. Nach einer 

mehrtägigen Behandlung mit niedrigfrequenter rTMS (1Hz) sollen sich die Behand-

lungserfolge der Verum-Gruppe gegenüber der Placebo-Gruppe in Form einer Reduzie-

rung der Gammabandaktivität und eine Verstärkung der Alphabandaktivität anhand von 

Ruhe-EEG-Aufzeichnungen nachweisen lassen. Zudem ist die Zielsetzung, die Überle-

genheit der rTMS gegenüber einer Scheinbehandlung in einer Erhöhung der Amplituden 

und einer Verkürzung der Latenzen der N1-, P2- und P300-Potentiale zu belegen. Auch 

hinsichtlich einer Reduktion der subjektiv empfundenen Tinnitusbelastung soll der Be-

handlungserfolg der rTMS sichtbar werden. 

 

3.2  Hypothesen 

Hypothese 1: Es zeigen sich signifikante Unterschiede zwischen chronischen 

Tinnituspatienten und einer gesunden Kontrollgruppe hinsichtlich der neurophysiologi-

schen Aktivität im Ruhe-EEG und in den ereigniskorrelierten Potentialen N1, P2 und 

P300. 
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Hypothese 2: Der Behandlungserfolg mit rTMS äußert sich bei Patienten mit chroni-

schem Tinnitus in signifikanten Unterschieden gegenüber Patienten mit chronischem 

Tinnitus, die mit einem Placebo behandelt wurden, hinsichtlich 

2a) einer signifikanten Reduktion der EEG Ruhe-Aktivität im Gammaband oder einer 

Zunahme der Aktivität im Alphaband des Ruhe-EEGs, insbesondere in links-temporalen 

Gehirnregionen,  

2b) einer signifikanten Verstärkung der N1-, P2- und P300-Amplituden sowie einer signi-

fikanten Reduktion der N1-, P2- und P300-Latenzen, 

2c) einer Reduktion der subjektiv empfundenen Tinnitusbelastung. 
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4.  EMPIRISCHE ÜBERPRÜFUNG DER HYPOTHESEN 

4.1 Untersuchungsdesign 

Die hier dargestellte Studie ist eine randomisierte, placebo-kontrollierte, 

Parallelgruppenstudie mit einer zweiwöchigen links-temporal angesetzten rTMS-

Behandlung (Frequenz 1 Hz, 2000 Impulse pro Sitzung) und der Behandlung voran- und 

nachgestellten EEG-Messungen. 

Die Promotionsstudie ist angeregt durch eine multizentrische, placebo-

kontrollierte, randomisierte Studie unter Beteiligung der Universitäten Regensburg 

(koordinierendes Zentrum), München (Ludwig-Maximilians-Universität), Würzburg, 

Homburg/Saar, Ulm und Rostock. Zielsetzung dieses Studienprojektes ist die Untersu-

chung des therapeutischen Effektes der rTMS in der Behandlung des chronischen 

Tinnitus‘ an 138 Patienten (Alter 18–70 Jahre) mit chronischem Tinnitus (Dauer sechs 

Monate bis maximal vier Jahre). Die Promotionsstudie beschäftigt sich explizit mit der 

Auswertung und Beurteilung von EEG-Messungen von 20 chronischen 

Tinnituspatienten (10 mit Verum-Behandlung, 10 mit Placebo-Behandlung) vor und nach 

der rTMS-Behandlung sowie dem Vergleich dieser Daten mit denen einer alters- und 

geschlechtsgepaarten gesunden Kontrollgruppe. Die Promotionsstudie ist demnach von 

der Multizenter-Studie unabhängig. 

Die Studie wurde nach Antragstellung von Herrn PD Dr. Frank Padberg von der 

Ethikkommission der Medizinischen Fakultät der Ludwig-Maximilians-Universität 

München bewilligt. Alle Studienteilnehmer gaben nach ausführlicher Aufklärung über 

den Studienaufbau und -ablauf eine schriftliche Einverständniserklärung ab. 

 

4.2  Untersuchungsablauf und Erhebungsintervall 

Der Untersuchungsablauf entspricht dem von Landgrebe et al. (2008) 

dargestellten Vorgehen im Rahmen der erwähnten Multizenter-Studie. Angemerkt sei, 

dass die vorliegende Promotionsstudie nicht alle dort genannten Methoden einbezieht. 

Diese werden daher in den folgenden Beschreibungen vernachlässigt. 

Zunächst wurde in einer Screeningphase die potentielle Studienteilnahme der 

Tinnituspatienten überprüft. Diese Überpfürung erfolgte meist bei niedergelassenen 

HNO-Ärzten und beinhaltete unter anderem eine strukturierte Anamnese, eine 

Untersuchung mit Tonschwellenaudiometrie, das Ausfüllen des THI-Fragebogens zur 
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Überprüfung der Studientauglichkeit sowie die ausführliche Studienaufklärung. Nach 

dem Screening erfolgte neun bis elf Tage vor der Behandlungsphase in der 

Baselinephase die Überprüfung der Ein- und Ausschlusskriterien (vgl. Abschnitt 4.3). 

Zudem wurde mittels Tinnitusfragebögen (vgl. Abschnitt 4.4.3.1 und 4.4.3.2) ein 

Ausgangswert des Tinnitusschweregrads bestimmt. Dafür wurden in dieser 

Studienphase die Fragebögen von jedem Patienten dreimal beantwortet, um unter 

Berücksichtigung der Behandlungserwartung stabile Baseline-Werte ermitteln zu 

können. Anschließend wurden die Studienteilnehmer durch nicht-verblindetes 

Studienpersonal randomisiert einer der beiden Versuchsbedingungen (Verum- vs. 

Placebo-Behandlung) zugeordnet. In der zweiwöchigen Behandlungsphase mit zehn 

Behandlungssitzungen (jeweils Montag bis Freitag) erfolgte bei den Probanden der 

Verum-Bedingung die Therapie mit links-temporal angesetzter rTMS (Frequenz 1 Hz). 

Das Spulenzentrum sollte somit über dem primär auditorische Kortex liegen. In der 

Placebo-Bedingung wurde die Stimulationsspule um 45 Grad abgewinkelt. Am 5. und 

10. Behandlungstag sowie zu drei weiteren Zeitpunkten in der 24 Wochen andauernden 

Nachbeobachtungszeit (im Folgenden Follow-Up 1, Follow-Up 2 und Follow-Up 3) 

wurden die Veränderungen des Tinnitusschweregrads jeweils mit dem TF und dem THI 

erhoben. Über die Dauer der Behandlungsphase wurden die Probanden täglich 

hinsichtlich auftretender unerwünschter Ereignisse im Zusammenhang mit der rTMS 

befragt. 

Unabhängig von der Versuchsgruppenzuordnung wurden bei jedem 

Tinnituspatienten zwei EEG-Ableitungen vorgenommen. Zwischen den Messungen 

lagen mindestens elf Tage (erste Messung am ersten Behandlungstag vor der 

Anwendung der Stimulation, zweite Messung am letzten Behandlungstag im Anschluss 

an die Stimulation) und maximal drei Wochen (erste Messung in der Woche vor der 

Behandlung, zweite Messung in der Woche nach der Behandlung). Um etwaige 

Veränderungen im EEG zwischen den Messzeitpunkten der Magnetstimulation 

zuschreiben zu können, sollte ein größerer Zeitraum zwischen den Messungen 

vermieden werden. 

Zur Ermittlung etwaiger Placebo-Effekte wurde bei den Probanden der Placebo-

Bedingung dasselbe Vorgehen gewählt. 

Eine genaue Darstellung des Studienablaufs findet sich in Tabelle 5, welche dem 

Studienprotokoll der Multizenter-Studie entnommen wurde (Landgrebe et al., 2008). 

Nicht berücksichtigte Methoden wurden in der Tabelle markiert. Darüber hinaus wurden  
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die EEG-Messungen der Tabelle hinzugefügt, die einen zentralen Bestandteil der hier 

beschriebenen Studie ausmachen. 
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Tabelle 5: Studienablauf nach Landgrebe et al. (2008); V = Visite; R = Randomisierung; FU =Follow-Up. 

  Screening Baseline R Behandlungsphase Follow-Up 

Visite V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 (FU1) V13 (FU2) V1417(FU3) 

Woche Woche 0 Woche 1 Woche 2 Woche 3 Woche 10 Woche 26 

Tag -11 bis -9 1 2 3 4 5 8 9 10 11 12 17 – 19 66 – 68 180 - 182 

Einwilligungserklärung X 

HNO-Untersuchung / Audiologie X X 

Demographische Daten X 

Anamnese X 

Begleiterkrankungen X X 

Begleitmedikation X X X 

Körperliche Untersuchung X X X 

Vitalparameter (HF, RR) X X X X 

THI (X)18 X X X X X X 

TF, SF 1219 X X X X X X 

NAS X X X X X X X 

NEO FFI, RS-11 X 

BDI-II X X 

CGI X X X X X 

Ein-/ Ausschlusskriterien X 

Randomisierung X 

rTMS Behandlung X X X X X X X X X X 

Unerwünschte Ereignisse X X X X X X X X X X 

EEG-Ableitung X X 

 

                                                                                                 

17 Abschlussvisite  
18 Dient der Überprüfung der Studientauglichkeit und geht nicht in die statistische Auswertung mit ein 
19 Methoden, die nicht Gegenstand der vorliegenden Promotionsstudie sind 
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4.3  Selektionskriterien für die Aufnahme in die Untersuchungsgruppe 

Entsprechend des Studiendesigns der Multizenter-Studie (Landgrebe et al., 

2008) wurden diverse Ein- und Ausschlusskriterien für die Selektion von 

Tinnituspatienten festgelegt (vgl. Tabelle 6). Nur bei Bestätigung sämtlicher Einschluss- 

und Ablehnung aller Ausschlusskriterien erfolgte die Aufnahme eines Probanden in die 

Studie. 

 

Tabelle 6: Ein- und Ausschlusskriterien für die Aufnahme in die Untersuchungsgruppe. 

Einschlusskriterien 

1. Diagnose eines chronischen Tinnitus 

2. Alter: 18-70 Jahre 

3. männliche oder weibliche Patienten  

4. Tinnitusdauer von 6 Monaten bis 4 Jahren 

5. Beschwerdelast von mindestens 38 Punkten gemessen mit dem Tinnitus-Handicap-Inventory 
(Newman et al. 1996/ 1998) innerhalb von 12 Wochen vor Behandlungsbeginn 

6. der Patient wurde nie zuvor mit rTMS behandelt 

7. normales Hörvermögen innerhalb von 12 Wochen vor Behandlungsbeginn, festgestellt mithilfe ei-
nes Audiogramms: Hörvermögen von max. 5 dB unter der 10 % Perzentile (DIN EN ISO 7029) für 
das jeweilige Alter und Geschlecht in den gemessenen Standardfrequenzen sowie keine Schall-
leitungsstörung von mehr als 15 dB in irgendeiner Standardfrequenz 

Ausschlusskriterien 

1. objektiver Tinnitus  

2. gleichzeitige andere Tinnitusbehandlungsversuche 

3. Patienten mit Innenohrschwerhörigkeit, die die 0,25 Fraktile des Altersäquivalent übersteigt 

4. Patienten mit einer Schallleitungschwerhörigkeit von mehr als 15 dB 

5. klinisch relevante psychiatrische Komorbidität 

6. begleitende Einnahme psychotroper Medikamente (z. B. Antidepressiva, Neuroleptika, Benzodia-
zepine) 

7. Gehirnmalformationen, Kopfverletzungen, cerebrovaskuläre Ereignisse, neurodegenerative Er-
krankungen in der Anamnese oder Zustand nach schweren Kopfverletzungen oder Hirn-
operationen 

8. schwere, instabile somatische Komorbidität 

9. bekannte Epilepsie  

10. Herzschrittmacher oder implantierte ferromagnetische Metallteile in der Nähe des Stimulations-
ortes  

11. Schwangerschaft und Stillzeit 

12. Frauen im gebärfähigen Alter ohne Kontrazeption 

13. Patienten, die sich nicht selbstständig verständigen konnten oder bei denen Schwierigkeiten beim 
Einhalten des Studienprotokolls vermutet wurde 

14. Teilnahme an einer klinischen Studie innerhalb der letzten 30 Tage 
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4.4 Methoden 

4.4.1 rTMS 

Die rTMS wurde mit einem Magstim Rapid Stimulator (The Magstim Company 

Ltd., Whitland, UK) durchgeführt. Es wurde eine wassergekühlte, achterförmige 70-mm-

Spule verwendet.  

Vor der Stimulation wurde unter elektromyografischer Kontrolle des Aktionspoten-

tials des Musculus abductor pollicis brevis (Rossini et al., 1994) die individuelle MT der 

Studienteilnehmer bestimmt. Die motorisch evozierten Potentiale wurden dabei mithilfe 

eines Amplaid EMG 14 Elektromyogrammgerätes (Fa. Micromed, Freiburg, Deutsch-

land) aufgezeichnet. Die rTMS-Spule wurde tangential auf dem Schädel oberhalb des 

primären motorischen Kortex‘ positioniert. Bei der Erzeugung von Einzelstimuli wurde 

die Spule schrittweise versetzt, um den Punkt der optimalen Stimulation des rechten 

Musculus abductor pollicis brevis aufzudecken. Entsprechend des in Abschnitt 2.2.2 be-

schriebenen Vorgehens wurde die Stimulationsintensität so variiert, dass die MT er-

reicht wurde. 

 

Die rTMS erfolgte für die Patienten der Verum-Bedingung an zehn Tagen, unterb-

rochen von einem Wochenende (zweimal fünf Tage). Mit einer Frequenz von 1 Hz, einer 

Stimulationsintensität von 110 % der motorischen Ruheschwelle und 2000 Stimuli pro 

Sitzung wurde die rTMS am linken primär-audititorischen Kortex appliziert. Aus der An-

zahl der Stimuli und der Frequenz der rTMS ergibt sich eine Stimulationsdauer von 

2000 Sekunden, d. h. 33,33 Minuten. Die Spulenlokalisation orientierte sich an dem 

10/20-System (Jasper, 1958), um der individuellen Schädelform der Probanden Rech-

nung tragen zu können. Das Zentrum der Spule befand sich oberhalb der Position der 

Elektrode T3, parallel zu der T3-Cz-Linie, jedoch kaudal verschoben20. Um zu gewähr-

leisten, dass in jeder Sitzung die Spule über der identischen Position angebracht wer-

den konnte, erhielt jeder Proband eine enganliegende elastische Haube. Der Abstand 

des vorderen Haubenrandes zum Nasion wurde gemessen und das 10/20-System zur 

Bestimmung des linken primär-audititorischen Kortex‘ eingezeichnet. 

                                                                                                 

20 Eine genau Beschreibung der Spulenpositionierung mit Hilfe des 10-20-EEG-System findet sich bei 
Klupp (in Druck). 
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Bei den Studienteilnehmern der Placebo-Bedingung wurde die Spule zur Vermei-

dung von Stimulationseffekten um 45 Grad abgewinkelt, sodass die vorderen Spulen-

wicklung bei T3 am Kopf anlag. 

Tabelle 7 gibt einen Überblick über die verwendeten Stimulationsparameter. 

 

Tabelle 7: Übersicht über die in der Promotionsstudie verwendeten Stimulationsparameter der rTMS. 

Spulenart zirkuläre 70 mm Doppelspule  

Stimulationsort linker primär-auditive Cortex  

Frequenz 1 Hz 

Intensität (Prozent der motorischen Ruheschwelle) 110 % 

Stimuli pro Sitzung 2000 

Stimulationsdauer pro Sitzung 33,33 Minuten 

Häufigkeit (Verum-Bedingung) 2x 5 Tage 

 

4.4.2 EEG-Messung 

Vor der ersten und nach der letzten Behandlung mit rTMS wurde bei jedem 

Probanden eine zehnminütige EEG-Ruhemessung mit einem 32-Kanal-

Elektroenzephalograf der Firma Neuroscan (Model 5083 Syn-Amps) aufgezeichnet. 

Hierzu wurden die Studienteilnehmer instruiert, während der EEG-Ruhemessung die 

Augen geschlossen zu halten. Es wurde eine rTMS-kompatible Elektrodenhaube (Easy 

Caps, EasyCap GmbH, Deutschland) und ringförmige Silber/Silberchlorid-Elektroden 

verwendet. Die Elektrodenpositionierung orientierte sich an dem internationalen 10/20-

System von Jasper (1958). Cz wurde als Referenzelektrode, Fpz als Erdungselektrode 

verwendet. Um nach der Ableitung der EEG-Aufzeichnungen Augenartefakte korrigieren 

zu können, wurde ein Elektromyogramm (EOG) aufgezeichnet, welches 1 cm seitlich 

des Augenwinkels positioniert wurde. Als Ohrreferenzelektroden wurden A1 und A2 

verwendet. Unter Verwendung von chloridfreiem Elektrolyt (Abralyt 2000, FMS) wurde 

ein Elektrodenwiderstand von weniger als 5 kΩ sichergestellt. Die Aufnahmerate betrug 

1000 Hz.  

 

4.4.3 Fragebögen zu Tinnitus 

Im Folgenen werden der Tinnitus-Fragebogen (Goebel & Hiller, 1998) sowie das 

Tinnitus-Handicap-Inventory (Newman et al., 1996) beschrieben, die zur Erfassung der 
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tinnitusspezifischen Belastung zu sechs verschiedenen Zeitpunkten eingesetzt wurden. 

Im Einzelnen wurden sie vor der Behandlungsphase, am fünften und am letzten Be-

handlungstag sowie dreimal in der Nachbeobachtungsphase angewendet. Aufgrund der 

Veränderungssensitivität und dem regelmäßigen Einsatz beider Instrumente im 

deutschsprachigen Raum schienen sie für die vorliegende Promotionsstudie geeignet 

zu sein. 

 

4.4.3.1 Tinnitus-Fragebogen (TF) 

Der Tinnitus-Fragebogen (TF) von Goebel & Hiller (1998) ist die adaptierte 

deutschsprachige Version des englischen Tinnitus Questionaire von Hallman et al. 

(1988). Es handelt sich um eine Selbstbeurteilungsskala mit 52 Items zur Erfassung der 

psychosozialen Belastung und des Schweregrads von chronischem Tinnitus (Goebel & 

Hiller, 1998). Mit Hilfe von 42 Items, die sechs faktoranalytisch ermittelten Skalen zu-

geordnet sind, sollen unterschiedliche Aspekte der Tinnitusbelastung berücksichtigt 

werden. Diese beziehen sich auf die emotionale Belastung (im Folgenden E von engl. 

emotional distress,12 Items), die kognitive Belastung (im Folgenden C von engl. cogniti-

ve distress, 8 Items), die Penetranz des Tinnitus (im Folgenden I von engl. intrusivness, 

8 Items), Hörprobleme (im Folgenden A von engl. auditory perceptual difficulties, 7 

Items), Schlafstörungen (im Folgenden Sl von engl. sleep disturbances, 4 Items) sowie 

somatische Beschwerden (im Folgenden So von engl. somatic complaints, 3 Items), die 

mit dem Ohrgeräusch einhergehen. Die übrigen zehn Items beziehen sich auf indivi-

duelle Aspekte der Tinnitusbelastung. Alle Items sind dreistufig Likert-skaliert 

(2 = „stimmt“, 1 = „stimmt teilweise“, 0 = „stimmt nicht“). In Tabelle 8 finden sich Bei-

spiel-Items der einzelnen Skalen sowie die möglichen Punktwerte je Skala. 
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Tabelle 8: Beschreibung der Skalen des Tinnitus-Fragebogens nach Goebel & Hiller (1998). 

Skala Anzahl 
Items 

Beispiel-Item Punkt- 
werte 

emotionale Belastung (E)  12 „Wenn die Ohrgeräusche andauern, wird mein 
Leben nicht mehr lebenswert sein.“ 

0 - 24 

kognitive Belastung (C) 8 „Ich denke oft darüber nach, ob die Ohr-
geräusche jemals weggehen werden.“ 

0 - 16 

Penetranz des Tinnitus (I) 8 „Die Art, wie die Ohrgeräusche klingen, ist     
wirklich unangenehm.“ 

0 - 16 

Hörprobleme (A) 7 „Wegen der Ohrgeräusche fällt es mir schwerer 
zu telefonieren.“ 

0 - 14 

Schlafstörungen (Sl) 4 „Wegen der Ohrgeräusche wache ich morgens 
früher auf.“ 

0 - 8 

somatische Beschwerden (So) 3 „Aufgrund der Ohrgeräusche habe ich Muskel-
verspannungen an Kopf und Nacken.“ 

0 - 6 

TF-Gesamtscore                         
(E + C + I + A + Sl + So)  

    0 - 84 

 

Neben skalenspezifischen Werten kann aus der Summierung aller Itemwerte ein 

Gesamtwert (0 – 84 Punkte) als Ausdruck der Belastung durch die Geräuschwahrneh-

mung bestimmt werden. Basierend auf einer Stichprobe von ambulanten und stationä-

ren Tinnituspatienten (n = 673) (Goebel & Hiller, 1998) lassen sich für die Ausprägun-

gen des Gesamtwertes und entsprechend der subjektiv bewerteten Belastung durch das 

Ohrgeräusch Quartile bilden, woraus sich eine Einteilung in vier Schweregrade ergibt 

(Tabelle 9). Während Ausprägungen vom Schweregrad I oder II dem kompensierten 

Tinnitus zugeordnet werden, wird bei schwerem und schwerstem Tinnitus ab einem Ge-

samtwert von 47 Punkten von einem dekompensierten Tinnitus ausgegangen.  

 

Tabelle 9: Schweregradeinteilung des ermittelten Tinnitusgesamtwertes im Tinnitus-Fragebogen nach 

Goebel & Hiller (1998). 

  Schweregrad Beschreibung Gesamtwert 

kompensierter Tinnitus I leichtgradiger Tinnitus 0 – 30  

  II mittelgradiger Tinnitus 31 – 46 

dekompensierter Tinnitus III schwergradiger Tinnitus 47 – 59 

  IV schwerstgradiger Tinnitus 60 – 84 
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Die Reliabilität des TF ist gemäß der Werte von Goebel & Hiller (1998) sowohl für 

den Gesamtwert als auch für die einzelnen Skalen als sehr hoch einzuschätzen. Für die 

Test-Retest Reliabilität konnte ein Wert von r = .94 (r = .86 – .92 für die Subskalen) und 

für die interne Konsistenz von r = .94 (r = .74 – .92 für die Subskalen) bestimmt werden. 

Hinsichtlich der Kriteriumsvalidität zeigen sich Übereinstimmungen mit einem 

Fragebogen der Deutschen Tinnitus-Liga e. V. (Goebel & Hiller, 1998). Die Autoren wie-

sen zudem Korrelationen zwischen dem TF und der Symptom-Checkliste-90-R (SCL-

90-R) von Derogatis (1977, zitiert nach Goebel & Hiller, 1998) sowie dem Freiburger 

Persönlichkeitsinventar (FPI-R) von Fahrenberg et al. (1984, zitiert nach Goebel & Hil-

ler, 1998) nach. Diese Zusammenhänge lassen darauf schließen, dass der TF nicht 

ausschließlich tinnitusspezifische Belastungen, sondern auch allgemeine psychische 

Belastungen erfasst. 

 

4.4.3.2 Tinnitus-Handicap-Inventory (THI) 

Das Tinnitus Handicap Inventory (THI) von Newman et al. (1996) ist eine interna-

tional häufig verwendete, veränderungssensitive Selbstbeurteilungsskala zur Erfassung 

der subjektiven tinnitusspezifischen Belastung. Der Fragebogen besteht aus 25 Items, 

die alle dreistufig Likert-skaliert sind (4 = „ja“, 2 = „gelegentlich“, 0 = „nein“). Die Items 

lassen sich drei Subskalen zuordnen, welche sich auf emotionale (8 Items) und funktio-

nale Beeinträchtigungen (12 Items) beziehen und katastrophalen Effekten (5 Items) des 

Tinnitus‘ Rechnung tragen. Eine Übersicht über die Skalen und Beispiel-Items findet 

sich in Tabelle 10. 

 

Tabelle 10: Beschreibung der Skalen des Tinnitus-Handicap-Inventory nach Newman et al. (1996). 

Skala Anzahl 
Items 

Beispiel-Item Punkt- 
werte 

emotionale  

Beeinträchtigungen  

8 „Erzeugen die Ohrgeräusche bei Ihnen ein Gefühl 
der Unsicherheit?“ 

0 - 32 

funktionale  

Beeinträchtigungen 

12 „Fällt es Ihnen schwer, Ihre Aufmerksamkeit auf  

andere Dinge zu richten als auf die Ohrgeräusche?“ 

0 - 48 

katastrophale Effekte 5 „Haben Sie den Eindruck, dass Sie mit den Ohr-
geräuschen nicht länger umgehen können?“ 

0 - 20 

THI-Gesamtscore     0 - 100 
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Die Summe der Einzel-Items ergibt einen Gesamtwert, der einen Wert zwischen 

0 und 100 annehmen kann. Das Ausmaß der Beeinträchtigungen durch das Ohrge-

räusch lässt sich laut Newman et al. (1996) in fünf Schweregrade unterteilen (vgl. Tabel-

le 11)21.  

 

Tabelle 11: Schweregradeinteilung des ermittelten Tinnitusgesamtwertes im Tinnitus-Handicap-Inventory 

nach Newman et al. (1996). 

Schweregrad  Beschreibung  Gesamtwert 

I  geringfügige Belastung (engl. slight) 0 - 16 

II leichte Belastung (engl. mild) 18 - 36 

III moderate Belastung (engl. moderate) 38 - 56 

IV starke Belastung (engl. severe) 58 - 76 

V sehr starke Belastung (engl. catastrophic) 78 - 100 

 

Als Maß für die interne Konsistenz konnten Newmann et al. (1996) ein Cron-

bachs Alpha von α = .93 berechnen, was auf eine sehr gute Reliabilität des THI hin-

weist. Die konvergente Validität konnte u. a. mittels Korrelation des THI mit dem Tinni-

tus Handicap Questionnaire (Kuk et al., 1990, zitiert nach Newmann et al., 1996) be-

stimmt werden und kann mit r = .78 als zufriedenstellend angesehen werden. Dies kann 

als Hinweis für die Konstruktvalidität des THI gewertet werden.  

 

4.5 Beschreibung der Untersuchungsgruppe 

In die Gesamtstichprobe wurden 40 Studienteilnehmer eingeschlossen, davon 20 

Probanden mit chronischem Tinnitus (>6 Monate) und 20 gesunde, mit den Tinnituspa-

tienten alters- und geschlechtsgepaarte Probanden in der Kontrollgruppe. Die Tinnitus-

patienten wurden randomisiert und zu gleichen Teilen einer Verum-Bedingung und einer 

Placebo-Bedingung zugeordnet.  

                                                                                                 

21 Zur Beschreibung der mit dem THI ermittelten Schweregrade der Tinnitusbelastung wurden die 
englischen Bezeichnungen ins Deutsche übersetzt. Da die deutschsprachigen Begriffe, insbesondere 
die Übersetzung des 5. Schweregrades, den Sinngehalt der englischen Bezeichnungen nur 
unzureichend wiedergeben, wurden die Charakterisierungen des Originals hinzugefügt.  



 

Christine Bremer                                                        75 
 

 
Gesamtstichprobe:  N = 40 

Verum-Gruppe:   n = 10 Tinnituspatienten  

Placebo-Gruppe:   n = 10 Tinnituspatienten 

Kontrollgruppe:   n = 20 gesunde Probanden 

 

Insgesamt nahmen 13 weibliche und 27 männliche Probanden an der 

vorliegenden Promotionsstudie teil. Dies entspricht relativen Häufigkeiten von 32,5 % 

und 67,5 %. Zum Zeitpunkt V0 ergab sich für alle Probanden ein Altersdurchschnitt von 

47.23 Jahren mit minimal 20 Jahren und drei Monaten und maximal 71 Jahren und zwei 

Monaten (M = 47.25, SD = 14.37). 

Die Tinnituspatienten waren zum ersten Messzeitpunkt durchschnittlich 47.3 

Jahre alt, mit einem Minimum von 20 Jahren und sechs Monaten und einem Maximum 

von 70 Jahren und neun Monaten (M = 47.35, SD = 14.651). 

14 männliche und 6 weibliche Tinnituspatienten nahmen an der Studie teil, 

woraus sich relative Häufigkeiten von 70 % und 30 % ergeben. Der Verum-Gruppe 

wurden zwei Frauen und acht Männer, der Placebo-Gruppe vier Frauen und sechs 

Männer randomisiert zugewiesen.  

Von den 20 Studienteilnehmern der gesunden Kontrollgruppe waren 7 weiblich 

(35 %) und 13 männlich (65 %). Ihr Altersdurchschnitt lag bei 47.15 Jahren mit einem 

Minimum von 20 Jahren und drei Monaten und einem Maximum von 71 Jahren und 

zwei Monaten (M = 47.15, SD = 14.478).  

Von den EEG-Ableitungen der insgesamt 20 Tinnituspatienten konnten 18 

Datensätze in die Analyse vor Behandlungsbeginn einbezogen werden. Zwei EEG 

Aufzeichnungen enhielten zu viele Artefakte und mussten deshalb ausgeschlossen 

werden (je Tinnitusgruppe n = 9). Fünf Probanden erschienen nicht zur 2. EEG-

Messung, weshalb von diesen nur eine Messung vorliegt. Bei einem Probanden war die 

2. Aufzeichnung des Ruhe-EEGs beschädigt, so dass hier nur 14 Teilnehmer mit 

Tinnitusbelastung berücksichtigt wurden (Verum-Gruppe: n = 7; Placebo-Gruppe: n = 7). 

Folglich liegen für die Analyse der 2. Ruhe-EEG-Messung die Ableitungen von 14 bzw. 

bei der Analyse der N1 und P2 je 15 (Verum-Gruppe: n = 7; Placebo-Gruppe: n = 8) und 

der P300 16 Studienteilnehmern (Verum-Gruppe: n = 8; Placebo-Gruppe: n = 8) vor.  
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Aufgrund der fehlenden Rückgabe der Fragebögen eines Probanden, welcher 

der Verum-Gruppe zugeordnet war, konnten 19 Datensätze in die Analyse der tinnitus-

bezogenen Fragebögen einbezogen werden (Verum-Gruppe: n = 9; Placebo-Gruppe: 

n = 10). Tabelle 12 liefert einen Überblick über die einbezogenen Datensätze. 

 

Tabelle 12: Umfänge der einbezogenen Datensätze von Kontroll-, Verum- und Placebo-Gruppe vor und 

nach der Behandlung in die Analyse von Ruhe-EEG, N1, P2, P300, TF und THI. 

  Prä post 

Kontrollgruppe Verum Placebo Verum Placebo 

Ruhe-EEG 9 9 7 7 17 

N1 9 9 7 8 20 

P2 9 9 7 8 20 

P300 9 9 8 8 20 

TF 9 10 9 10 - 

THI 9 10 9 10 - 

 

4.5.1 Beschreibung der Tinnituswahrnehmung 

Von den 20 Tinnituspatienten machten 19 Probanden Angaben zu ihrem 

Ohrgeräusch und füllten vor, während und nach der Behandlung Fragebögen zur 

subjektiven Wahrnehmung ihres Ohrgeräusches aus. In der Screening-Visite wurden 

zudem soziodemographische und anamnestische Daten erhoben. Ein männlicher 

Patient der Verum-Gruppe brachte auch nach mehrfacher Aufforderung die Fragebögen 

nicht zurück. Somit beruhen die folgenden Angaben auf einer Stichprobe von 19 

Patienten, von denen zwei Frauen und sieben Männer (d. h. 22,22 % und 77,78 %) der 

Verum-Gruppe und vier Frauen und sechs Männer (d. h. 40 % und 60 %) der Placebo-

Gruppe zugeteilt waren. 

Zum Zeitpunkt der Screening-Visite betrug die durchschnittliche Dauer des 

Tinnitus 80,53 Monate, d. h. ca. sechseinhalb Jahre (M = 80.53, SD = 58.66). Die 

Patienten berichteten minimal von einer 9-monatigen und maximal von einer 185-

monatigen Dauer ihrer Geräuschempfindung. Es zeigte sich kein signifikanter 

Unterschied zwischen den beiden Behandlungsgruppen (Mann-Whitney-U-Test; 

p = .838). 
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Bezogen auf eine Skala von 0 bis 100 berichteten die Patienten im Durchschnitt 

von einer Lautstärke des Ohrgeräusches von 58,68 mit einem Minimum von 10 und 

einem Maximum von 100.  

Insgesamt 12 der 19 Tinnituspatienten, d. h. sechs (66,67 %) der Verum- und 

sechs (60 %) der Placebo-Bedingung lebten zum Zeitpunkt der Screening-Visite mit 

ihrem Partner oder ihrer Familie zusammen. Zwei Probanden (22,22 %) mit Verum-

Behandlung gaben an alleine zu lelben, während dies 30 % (drei Patienten) mit Place-

bo-Behandlung berichteten. Jeweils ein Patient (11,11 % in der Verum- und 10 % in der 

Placebo-Gruppe) machte keine genauen Angaben zu seiner sozialen Situation. 

Die Hälfte, d. h. zehn der befragten Probanden gaben an, beruflich vollbeschäftigt 

zu sein. Dies entsprach sechs Patienten (66,67 %) der Verum- und vier Patienten 

(40 %) der Placebo-Bedingung. Jeweils ein Patient beider Gruppen (d. h. 11,11 % in der 

Verum- und 10 % in der Placebo-Gruppe) erklärte, in Teilzeit beruflich tätig zu sein. In 

der Verum-Gruppe berichteten je weitere 11,11 % (je ein Patient) vorzeitig berentet bzw. 

in Altersruhestand zu sein. Demgegenüber befanden sich 40 % (vier Studienteilnehmer) 

der Placebo-Behandlung im Altersruhestand. Ein Proband (10 %) dieser Gruppe war 

Schüler, Student oder in Ausbildung. 

Aus der Verum-Gruppe berichtete ein Studienteilnehmer (11,11 %) keinen 

Schulabschluss zu haben. In beiden Untersuchungsgruppen erklärten jeweils drei 

Patienten (d. h. 33,33 % der Verum-, 30 % der Placebo-Gruppe), die Schulbildung mit 

dem Realschulabschluss beendet zu haben. Je fünf Patienten (d. h. 55,56 % der 

Verum-, 50 % der Placebo-Gruppe), gaben hier Abitur an. 20 % der Probanden (d. h. 

zwei Tinnituspatienten), die der Placebo-Gruppe zugeordenet waren, schlossen ihre 

Schulbildung mit dem Hauptschulabschluss ab.  

Insgesamt 16 der 19 Patienten, d. h. acht Patienten und somit 88,89 % der 

Verum-Gruppe und acht Patienten bzw. 80 % der Placebo-Gruppe, gaben an 

Rechtshänder zu sein. Jeweils ein Proband (11,11 % der Verum- und 10 % der Place-

bo-Gruppe) gab eine linke Händigkeit an. Ein Studienteilnehmer (10 %) mit Placebo-

Behandlung berichtete von einer beidseitigen Händigkeit. 

Hinsichtlich der Familienanamnese negierten 77,78 % (sieben Patienten) der 

Verum- und 100 % (zehn Patienten) der Placebo-Bedingung Tinnitusbeschwerden in 

ihrer Familie. Lediglich zwei Patienten (22,22 %) der Verum-Gruppe bestätigten das 

Auftreten des Ohreräusches in ihrer Familie. 
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Befragt nach der Ätiologie ihrer Geräuschwahrnehmung gaben in der Verum-

Gruppe sechs Patienten (66,67 %) an, in Stress die Ursache zu sehen. Zwei Probanden 

(22,22 %) gaben „Sonstiges“ bei der Frage nach der Ursache für ihren Tinnitus an. Ein 

Patient sah ein Knalltrauma als ursächlich an. Sieben Patienten (70 %) der Placebo-

Bedingung führten ihr Ohrgeräusch auf Stress zurück. Jeweils ein Patient (10 %) 

machte Veränderungen des Hörvermögens, ein Knalltrauma bzw. sonstiges dafür 

verantwortlich. 

Jeweils 33,33 %, d. h. drei Probanden der Verum-Gruppe lokalisierten ihr 

Ohrgeräusch in beiden Ohren, jedoch stärker im linken bzw. rechten Ohr. Zwei Proban-

den (22,22 %) nahmen es in beiden Ohren gleich stark wahr, während ein Patient 

(11,11 %) den Tinnitus im Inneren des Kopfes lokalisierte. Ein Großteil der Probanden 

der Placebo-Gruppe (vier Patienten, d. h. 40 %) es im linken Ohr angab zu hören, 

machte es nur ein Patient (10 %) im rechten Ohr aus. Jeweils 20 % (zwei Patienten) 

hörten das Ohrgeräusch in beiden Ohren mit Dominanz im linken bzw. rechten Ohr. Ein 

Patient (10 %) gab an, den Tinnitus in beiden Ohren gleich stark zu hören. 

Zudem wurde die Präsenz des Tinnitus‘ erfasst, welcher bei sieben Patienten 

(77,78 %) aus der Verum- und allen Probanden (100 %) der Placebo-Gruppe als 

ständig vorhanden beschrieben wurde. Lediglich zwei Patienten (22,22 %) der Verum-

Bedingung berichteten, dass sich die Phasen mit und ohne Tonwahrnehmung 

abwechselten.  

Eine Variabilität der Tinnituslautstärke gaben 66,67 % (sechs Patienten) der 

Verum- und 90 % (neun Patienten) der Placebo-Bedingung an. Dagegen stellte sich die 

Lautstärke bei drei Patienten (33,33 %) der Verum- und einem Patienten (10 %) der 

Placebo-Gruppe als konstant dar. 

Bei der Beschreibung des Höreindrucks berichteten insgesamt zwölf Patienten, 

d. h. fünf Patienten (55,56 %) aus der Verum- und sieben Patienten (70 %) aus der 

Placebo-Gruppe, dass ihnen der Tinnitus wie ein einzelner Ton erscheine. In der Ve-

rum-Gruppe verglichen ihn zwei Probanden (22,22 %) mit Lärm, ein Proband (11,11 %) 

mit Grillen. Ein Patient (11,11 %) konnte keine genauen Angaben machen. In der 

Placebo-Gruppe erschien das Geräusch einem Patient (10 %) wie ein Grillen, während 

zwei Probanden (20 %) sonstige, nicht näher beschreibbare Empfindungen angaben. 

Die Tinnituspatienten wurden ebenfalls gebeten, die Frequenz ihres Tinnitus‘ 

einzuordnen. Diese wurde von vier Studienteilnehmern (44,44 %) mit Verum- und drei 
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Probanden (30 %) mit Placebo-Behandlung als sehr hoch dargestellt. Während 

ebenfalls 4 (44,44 %) Probanden der erst genannten Studienbedingung die 

Tinnitusfrequenz als hoch und ein Patient (11,11 %) als tief wahrnahmen, wurde sie von 

fünf Patienten (50 %) aus der Placebo-Bedingung als hoch- und von zwei Patienten 

(20 %) als mittelfrequent beschrieben. 

Auf die Frage nach etwaigen Vorbehandlungen erklärten drei (33,33 %) Proban-

den aus der Verum-Gruppe, dass sie sich zuvor nie wegen ihres Ohrgeräusches in 

Behandlung begeben haben. Ein Patient (11,11 %) aus der Verum- und zwei Patienten 

(20 %) aus der Placebo-Gruppe gaben an, eine Behandlung hinter sich zu haben, 

während ein Proband (11,11 %) der Verum-, jedoch sieben Probanden (70 %) der 

Placebo-Gruppe von zwei bis vier zuvorigen Behandlungen berichteten. Der Großteil 

der Verum-Gruppe (d. h. vier Probanden, 44,44 %) und ein Proband (10 %) der Place-

bo-Gruppe berichteten, sich bereits mehr als fünf Behandlungen unterzogen zu haben. 

Weiter wurde nach der Verbindung von Stress und Tinnitus sowie Nachtschlaf 

und dem Ohrgeräusch gefragt. Der Großteil beider Behandlungsgruppen, d. h. sieben 

Patienten (77,78 %) der Verum- sowie sechs Patienten (60 %) der Placebo-Gruppe 

interpretierten Stress als verstärkende Bedingung ihrer Tonwahrnehmung. Ein Patient 

(11,11 %) mit Verum-Behandlung schrieb Stress keinen Einfluss auf das Ohrgeräusch 

zu im Gegensatz zu drei Patienten (30 %) mit Placebo-Behandlung. Jeweils ein Patient 

(11,11 % der Verum- und 10 % der PlaceboGruppe) konnte die Frage nicht eindeutig 

beantworten. 

In beiden Gruppen wurde von je sechs Patienten (66,67 % der Verum- und 60 % 

der Placebo-Behandlungsgruppe) eine Verbindung zwischen dem Nachtschlaf und 

Tinnitus verneint. Diese Verbindung wurde von drei Studienteilnehmern der Verum-

Gruppe (33,33 %) und vier Teilnehmern der Placebo-Gruppe bestätigt. 

Abschließend wurden die Tinnituspatienten nach Schwindel, Kopf- und 

Nackenschmerzen neben dem Ohrgeräusch befragt. Jeweils zwei Patienten der Verum-

Gruppe (22,22 %) bestätigten die gelegentliche Anwesenheit dieser Symptome, 

während sie von je sieben (77,78 %) negiert wurde. In der Placebo-Gruppe zeigte sich 

ein uneinheitlicheres Bild, obgleich auch hier der Großteil der Probanden die drei 

Symptome wahrnahm. Neun Patienten (90 %) gegenüber einem Patient (10 %) 

berichteten von gelegentlichem Schwindel, während sechs (60 %) der zehn Probanden 
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hin und wieder unter Kopfschmerzen und acht (80 %) in der Placebo-Gruppe unter 

Nackenschmerzen litten.  

 

4.6 Datenanalyse 

4.6.1 Analyse der EEG-Daten  

Die Analyse der EEG-Daten erfolgte mit der Software Brain Vision Analyzer© 

(Brain Products; Version 2.03). Zunächst wurden die Referenzelektroden EOG, A1 und 

A2 ausgeschlossen. Für die Referenzierung wurden alle Kanäle gegen Cz als 

Durchschnittsreferenz verwendet. Anschließend erfolgte die Filterung. 

Für die Analyse des Ruhe-EEGs sowie der N1 und P2 wurde ein High-Pass Filter 

von 70 Hz, ein Low-Pass Filter von 0,16Hz, Slope 24dB/oct und ein Notch-Filter von 

50 Hz verwendet. Bei der Datenanalyse der P300 lag der High-Pass Filter bei 70 Hz, 

der Low-Pass Filter bei 0,9947 Hz, Slope 24 dB/oct. Die Aufnahmerate von 1000 Hz 

wurde auf 250 Hz umgerechnet.  

Im Rahmen der Segmentierung des EEGs wurden Segmente von mindestens 

100 ms gebildet und eine Baseline-Korrektur vorgenommen (Länge: 1000 ms; Prä 

Stimulus: 200 ms, Post Stimulus: 800 ms). Für die Artefaktkorrektur des Ruhe-EEGs 

wurden alle Segmente mit einer Aktivität von +/- 50 μV ausgeschlossen.  

In die Datenanalyse der Ruhe-EEG-Aktivität wurden die Elektroden FP1, FP2, 

F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz sowie Pz einbezogen. 

Die Peak-Analyse der N1, P2 und P300 wurde semiautomatisch durchgeführt. 

Die N1-Amplitude wurde definiert als der negativste Wert im Zeitraum von 60-160 ms, 

die P2-Amplitude als positivster Wert im Bereich 160 und 260 ms. Als P300-Peak wurde 

der positivste Wert im Zeitraum 280 bis 450 ms Post Stimulus festgelegt. Entsprechend 

wurden die Amplituden und Latenzen für die Elektroden Fz, Pz und Cz bestimmt. 

 

4.6.2 Analyse der Fragebögen zu Tinnitus 

Zur Vorbereitung der statistischen Analyse der Ergebnisse im TF und Thi wurde 

für jeden Proband und jede Skale Summenwerte berechnet.  
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5  ERGEBNISSE 

Die Ableitungen des Ruhe-EEGs, der evozierten Potentiale sowie die Fragebo-

genergebnisse wurden grundlegenden statistischen Analysen unterzogen, welche im 

Folgenden vorgestellt werden. Anschließend werden die weiteren Ergebnisse den Hy-

pothesen der vorliegenden Promotionsstudie zugeordnet. 

 

5.1 EEG 

5.1.1 Ruhe EEG 

Die Ruhe-EEGs von jeweils neun Tinnituspatienten wurden in die Analyse der 

Verum- (n = 9) bzw. Placebo-Gruppe (n = 9) vor der Behandlung einbezogen. Nach der 

Behandlung waren beide Gruppenumfänge um zwei Probanden reduziert und 

umfassten sieben Probanden (Verum-Gruppe nach der Behandlung n = 7; Placebo-

Gruppe nach der Behandlung n = 7). Es wurden Ruhe-EEGs von 17 Probanden der 

gesunden Kontrollgruppe (n = 17) in die Studie einbezogen. Die Mittelwerte, und 

Standardabweichungen für die verschiedenen Studienbedingungen und die Elektroden 

Fz, Cz und Pz sind im Anhang in Tabelle 25 dargestellt. Zur vereinfachten Lesbarkeit 

wurden die Elektroden zu frontal (FP1, FP2, F3, F4, F7, F8, Fz), zentral (C3, C4, Cz, 

T3, T4) und posterior (T5, T6, P3, P4, Pz, O1, O2) zusammengefasst. 

 

5.1.2  N1 

In die Studie konnten für die N1-Ableitungen für die beiden Versuchsgruppen vor 

der Behandlung jeweils neun Probanden (n = 9) einbezogen werden, was einem 

Gesamtumfang der Tinnituspatienten von 18 (n = 18) entspricht. Nach der Behandlung 

konnten sieben Probanden der Verum-Gruppe (n = 7) sowie acht Probanden der 

Placebo-Gruppe (n = 8) berücksichtigt werden. Die Kontrollgruppe umfasste 20 

gesunde Studienteilnehmer. Die Mittelwerte, Standardabweichungen, Standardfehler 

sowie die Minimal- und Maximalwerte für die verschiedenen Studienbedingungen und 

die Elektroden Fz, Cz und Pz sind im Anhang in Tabelle 26 dargestellt. 

In der einfaktoriellen ANOVA zwischen den Gruppen ergaben sich für die N1-

Amplituden (in μV) und -Latenzen (in ms) keine signifikanten Unterschiede. Tabelle 13 

liefert einen Überblick über diese Ergebnisse. 
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Tabelle 13: Einfaktorielle ANOVA der Versuchsgruppen für die N1-Amplituden (μV) und -Latenzen (ms) 

der Elektroden Fz, Pz und Cz. 

    
Quadrat-
summe 

Mittel der 
Quadrate df F α = 5 % 

Fz-Latenz zwischen den Gruppen 582.669 116.534 5 0.466 0.800 

innerhalb der Gruppen 16270.514 250.316 65   

gesamt 16853.183 70   

Fz-Amplitude zwischen den Gruppen 48.569 9.714 5 1.632 0.164 

innerhalb der Gruppen 386.866 5.952 65   

  gesamt 435.435   70     

Pz-Latenz zwischen den Gruppen 729.820 145.964 5 0.642 0.668 

innerhalb der Gruppen 14770.800 227.243 65   

  gesamt 15500.620 70   

Pz-Amplitude zwischen den Gruppen 9.846 1.969 5 0.612 0.691 

innerhalb der Gruppen 209.032 3.216 65   

gesamt 218.878   70     

Cz-Latenz zwischen den Gruppen 72.047 14.409 5 0.083 0.995 

innerhalb der Gruppen 11341.137 174.479 65   

  gesamt 11413.183 70   

Cz-Amplitude zwischen den Gruppen 39.306 7.861 5 1.199 0.320 

innerhalb der Gruppen 426.092 6.555 65   

  gesamt 465.398   70     

 

Der Student-Newman-Keuls-Test (p < .05) wurde Post-Hoc berechnet. Das 

harmonische Mittel von 10.073 wurde für die N1-Amplituden und Latenzen bei 

ungleichen Gruppengrößen über Fz, Pz und Cz bestimmt. 

 

5.1.3 P2 

In die Analyse der P2-Ableitungen konnten für beide Versuchsgruppen vor der 

Behandlung jeweils neun Probanden (n = 9) einbezogen werden. Damit wurden die 

Ableitungen von insgesamt 18 Tinnituspatienten (n = 18) vor der Behandlung betrachtet. 

Nach der Behandlung konnten sieben Probanden der Verum-Gruppe (n = 7) und acht 

Probanden der Placebo-Gruppe (n = 8) berücksichtigt werden. Die Kontrollgruppe 

umfasste 20 gesunde Studienteilnehmer. Die Mittelwerte, Standardabweichungen, 

Standardfehler sowie die Minimal- und Maximalwerte für die verschiedenen 

Studienbedingungen und die Elektroden Fz, Cz und Pz sind im Anhang in Tabelle 37 

dargestellt. 
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 Mittels einfaktorieller ANOVA ergaben sich zwischen den Gruppen keine 

signifikanten Unterschiede für die P2-Amplituden (in μV) und -Latenzen (in ms). Tabelle 

14 liefert einen Überblick über diese Ergebnisse. 

 

Tabelle 14: Einfaktorielle ANOVA der Versuchsgruppen für die P2-Amplituden (μV) und -Latenzen (ms) 

der Elektroden Fz, Pz und Cz. 

    
Quadrat-
summe 

Mittel der 
Quadrate Df F α = 5% 

Fz-Latenz zwischen den Gruppen 388.036 77.607 5 0.274 0.926 

innerhalb der Gruppen 18405.429 283.160 65 

gesamt 18793.465 70 

Fz-Amplitude zwischen den Gruppen 16.886 3.377 5 0.405 0.844 

innerhalb der Gruppen 542.147 8.341 65 

  gesamt 559.033 70 

Pz-Latenz zwischen den Gruppen 2703.982 540.796 5 0.541 0.744 

innerhalb der Gruppen 64940.413 999.083 65 

  gesamt 67644.394 70 

Pz-Amplitude zwischen den Gruppen 9.599 1.920 5 0.359 0.874 

innerhalb der Gruppen 347.179 5.341 65 

gesamt 356.778 70 

Cz-Latenz zwischen den Gruppen 3217.677 643.535 5 1.157 0.340 

innerhalb der Gruppen 36168.914 556.445 65 

  gesamt 39386.592 70 

Cz-Amplitude zwischen den Gruppen 33.329 6.666 5 0.965 0.446 

innerhalb der Gruppen 449.225 6.911 65 

  gesamt 482.555 70 

 

Als Post-Hoc-Test wurde der Student-Newman-Keuls-Test (p < .05) angewendet. 

Wegen ungleicher Gruppengröße ergab sich für die P2-Amplituden und Latenzen über 

Fz, Pz und Cz ein harmonische Mittel von 10.073. 

 

5.1.4 P300 

Für die P300-Ableitungen konnten für die beiden Versuchsgruppen vor der 

Behandlung jeweils neun (n = 9) und nach der Behandlung acht Probanden (n = 8) 

einbezogen werden. Die Kontrollgruppe umfasste 20 gesunde Studienteilnehmer. Die 

Mittelwerte, Standardabweichungen, Standardfehler sowie die Minimal- und 

Maximalwerte für die verschiedenen Studienbedingungen und die Elektroden Fz, Cz 

und Pz sind im Anhang in Tabelle 37 dargestellt. 
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In der einfaktoriellen ANOVA zwischen den Gruppen ergaben sich für die P300-

Amplituden (in μV) und -Latenzen (in ms) signifikante Unterschiede für die Latenz an 

der Pz-Elektrode (F = 4.098, df = 4, p = .006) und der Cz-Elektrode (F = 8.297, df = 4, 

p = .000) sowie für die Amplitude an Cz (F = 2.616, df = 4, p = .046). Tabelle 15 liefert 

einen Überblick über diese Ergebnisse. 

 

Tabelle 15: Einfaktorielle ANOVA der Versuchsgruppen für die P300-Amplituden (μV) und -Latenzen (ms) 

der Elektroden Fz, Pz und Cz. 

    
Quadrat-
summe 

Mittel der 
Quadrate df F α = 5% 

Fz-Latenz zwischen den Gruppen 12153.918 2430.784 5 0.997 0.426 

innerhalb der Gruppen 158405.181 2437.003 65 

gesamt 170559.099 70 

Fz-Amplitude zwischen den Gruppen 44.728 8.946 5 0.931 0.467 

innerhalb der Gruppen 624.548 9.608 65 

  gesamt 669.277 70 

Pz-Latenz zwischen den Gruppen 38125.981 7625.196 5 2.983 0.017 

innerhalb der Gruppen 166128.667 2555.826 65 

  gesamt 204254.648 70 

Pz-Amplitude zwischen den Gruppen 41.832 8.366 5 1.251 0.296 

innerhalb der Gruppen 434.745 6.688 65 

gesamt 476.576 70 

Cz-Latenz zwischen den Gruppen 104939.742 20987.948 5 5.392 0.000 

innerhalb der Gruppen 253000.990 3892.323 65 

  gesamt 357940.732 70 

Cz-Amplitude zwischen den Gruppen 123.747 24.749 5 2.329 0.052 

innerhalb der Gruppen 690.743 10.627 65 

  gesamt 814.490 70 

 

Post-Hoc wurde der Student-Newman-Keuls-Test (p < .05) angewendet. Wegen 

ungleicher Gruppengröße wurde für die P300-Amplituden und Latenzen über Fz, Pz und 

Cz das harmonische Mittel von 10.073 angewendet. 

 

5.2 Fragebogenergebnisse 

Abgesehen von der fehlenden Rückgabe der Fragebögen eines Probanden gab 

es keine weiteren fehlenden Werte, und es konnten 19 Datensätze in die Analyse der 

tinnitusbezogenen Fragebögen einbezogen werden. 
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Im Folgenden werden zunächst die Ergebnisse zum TF und anschließend zum 

THI dargestellt. 

 

5.2.1 TF 

Zum Zeitpunkt der Baseline-Untersuchung zeigte sich für die neun Probanden 

der Verum-Gruppe hinsichtlich des Gesamtwertes ein Mittelwert von M = 40.78 

(SD = 17.167) im TF. Am 5. Behandlungstag mit rTMS lag dieser bei M = 40.00 

(SD = 18.908) und verringerte sich bis zum 12. Behandlungstag auf M = 39.78 

(SD = 19.123). In der Nachbeobachtungsphase konnte bei den Patienten der Verum-

Behandlung während der ersten Follow-Up-Untersuchung ein Mittelwert M = 38.44 

(SD = 19.603), während Follow-Up 2 ein Wert von M = 38.11 (SD = 22.206) und zuletzt 

(Follow-Up 3) ein Mittel von M = 39.00 (SD = 20.911) bestimmt werden.  

Für die zehn Probanden der Placebo-Gruppe lässt sich für die Baseline-

Untersuchung ein Mittelwert des Gesamtwertes im TF von M = 40.50 (SD = 14.74) fest-

stellen. Nach fünf Scheinbehandlungstagen lag dieser bei M = 45.50 (SD = 22.59) und 

sank zum 12. Behandlungstag auf M = 42.30 (SD = 20.18). In der Nachbeobachtungs-

phase lag der Summenmittelwert bei M = 41.10 (SD = 19.56). Für die 2. Follow-Up-

Untersuchung konnte ein Wert von M = 41.40 (SD = 23.35) bestimmt werden, der sich 

bis zur letzten Nachbeobachtung (Follow-Up 3) auf M = 40.70 (SD = 22.11) veränderte.  

 

5.2.2  THI 

Für die Verum-Gruppe ließ sich für die Baseline-Untersuchung ein mittlerer Ge-

samtwert von M = 60.22 (SD = 21.44) ermitteln. Bis zum 5. Behandlungstag sank dieser 

auf M = 47.11 (SD = 30.63) und lag an Behandlungstag 12 bei M = 47.56 (SD = 28.98). 

In der Nachbeobachtungsphase lag der Mittelwert zum Zeitpunkt des Follow-Up 1 bei 

M = 46.00 (SD = 28.50), bei Follow-Up 2 bei M = 46.67 (SD = 30.74) und veränderte 

sich schließlich bei Follow-Up 3 auf einen Wert von M = 48.67 (SD = 29.12).  

Für die Tinnituspatienten mit Placebo-Behandlung konnte bei der Baseline-

Messung im THI ein mittlerer Gesamtwert von M = 62.40 (SD = 22.60) berechnet wer-

den. Bei der zweiten Messung (5. Behandlungstag) lag der Mittelwert bei M = 55.80 

(SD = 27.83) und sank zum 12. Behandlungstag auf M = 52.80 (SD = 27.12). Zum ers-

ten Zeitpunkt der Nachbeobachtungsphase (Follow-Up 1) konnte ein mittlerer Summen-
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score von M = 54.60 (SD = 27.42) bestimmt werden. Dieser veränderte sich zur Follow-

Up-2-Untersuchung auf M = 52.20 (SD = 29.76) und schließlich auf M = 51.00 Punkte 

(SD = 29.56) bei Follow-Up 3.  

 

5.3 Hypothesen 

5.3.1 Hypothese 1: Es zeigen sich signifikante Unterschiede zwischen 

chronischen Tinnituspatienten und einer gesunden Kontrollgruppe 

hinsichtlich der neurophysiologischen Aktivität im Ruhe-EEG und in den 

ereigniskorrelierten Potentialen N1, P2 und P300. 

 

5.3.1.1 Ruhe EEG 

Für das Ruhe-EEG konnte mit einem unabhängigen T-Test zwischen den Tinni-

tuspatienten und der Kontrollgruppe rechtshemisphärisch im Thetaband ein signifikanter 

Unterschied reduzierter absoluter Power (μV²) an der Elektrode T4 festgestellt werden 

(p = .032). Die Betrachtung der Mittelwerte zeigt eine Verringerung der absoluten Power 

bei den Tinnituspatienten (Tinnituspatienten vor der Behandlung: M = 1.486, 

SD = 0.547; Kontrollgruppe M = 1.947, SD = 0.661).  

Abbildung 2 zeigt Skalp-Darstellungen dieser Unterschiede für das gesamte The-

ta-Frequenzband sowie für die einzelnen Frequenzen des Thetabandes. Demnach la-

gen die signifikanten Unterschiede speziell im Bereich von 5 Hz.  
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Abbildung 2: Die Skalp-Darstellungen zeigen farblich markiert die mit unabhängigen T-Tests ermittelten 

signifikanten Unterschiede zwischen den Tinnituspatienten (vor der Behandlung) und der Kont-

rollgruppe für die absolute Power (μV²) für p = 0.00–0.06 (im Farbverlauf rot bis blau). Die Un-

terschiede erreichen im Thetaband (4.0-8.0 Hz) für die Einzelfrequenz 5 Hz an der Elektrode T4 

signifikantes Niveau. 

 

Für die gleichen Gruppen konnten signifikante Unterschiede erhöhter absoluter 

Power (μV²) der Elektroden Fz (p = .024) und Cz (p = .029) im Frequenzband High 

Gamma bestimmt werden. An Fz zeigte der Mittelwertwergleich eine Verringerung bei 

den Tinnituspatienten vor der Behandlung (Tinnituspatienten vor der Behandlung: 

M = 0.1230, SD = 0.056; Kontrollgruppe M = 0.1232, SD = 0.199) während für Cz auf 

diese Weise keine Unterschiede erkennbar sind (Tinnituspatienten vor der Behandlung: 

M = 0.082, SD = 0.041; Kontrollgruppe M = 0.082, SD = 0.037). 

Die Unterschiede werden in Abbildung 3 mit einer Skalp-Darstellung für das ge-

samte Frequenzband sowie für die einzelnen Frequenzen verbildlicht. Es zeigt sich, 

dass die Unterschiede über das gesamte Frequenzband zu finden sind, jedoch vorwie-

gend bei 46-49 Hz.  
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Abbildung 3: Die Skalp-Darstellungen zeigen farblich markiert die mit unabhängigen T-Tests ermittelten 

signifikanten Unterschiede zwischen den Tinnituspatienten (vor der Behandlung) und der Kont-

rollgruppe für die absolute Power (μV²) für p = 0.00–0.06 (im Farbverlauf rot bis blau). Die Un-

terschiede erreichen im High Gammaband (40.0-50.0 Hz) für die Einzelfrequenz 46-49 Hz an 

den Elektroden Fz und Cz signifikantes Niveau. 

 

In der relativen Power (%) zeigte sich kein Unterschied zwischen den Tinnituspa-

tienten und den gesunden Probanden. 

Tabelle 16 fasst die signifikanten Unterschiede zwischen den Tinnituspatienten 

und den gesunden Probanden zur Übersicht zusammen. 
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Tabelle 16: Unabhängige T-Tests zwischen den Tinnituspatienten vor der Behandlung und der gesunden 

Kontrollgruppe in der Ruhe-EEG-Aktivität: Signifikante Unterschiede. 

Mikrovolt Frequenzband Elektrode α = 5 % 

reduzierte absolute Power (μV²)  Theta (4-8 Hz)  T4 .032 

verstärkte absolute Power (μV²)  High Gamma (40-50 Hz) Fz .024 

    Cz .029 

 

Aufgrund der kleinen Stichprobe und der nicht durchgängigen Varianzhomogeni-

tät (siehe Tabelle 27) wurde zusätzlich ein nicht-parametrischer Test durchgeführt. Mit 

dem Mann-Whitney U-Test konnten keine Unterschiede zwischen den Tinnituspatienten 

und der gesunden Kontrollgruppe ermittelt werden. 

 

5.3.1.2 N1 

Mit einem unabhängigen T-Test zwischen den Tinnituspatienten vor der Behand-

lung und der Kontrollgruppe konnte für die N1-Ableitungen ein signifikanter Unterschied 

hinsichtlich der Amplitude an der Elektrode Fz (p = .030) ermittelt werden (Tinnituspa-

tienten vor der Behandlung: M = -4.488, SD = 2.069; Kontrollgruppe M = -6.248, 

SD = 2.946). Dieser Unterschied wies nach Bonferroni-Korrektur (p‘ < .05) kein signifi-

kantes Nieveau auf. Ebenso wies der signifikante Unterschied hinsichtlich der Cz-

Amplitude zwischen den genannten Gruppen (p = .043) nach Bonferroni-Korrektur (p‘ < 

.05) kein signifikantes Ergebnis auf. 

Bei nicht durchgängiger Varianzhomogenität (Pz-Latenz: p = .003 im Levene-

Test) konnten in der nicht-parametrischen Testung ebenfalls keine signifikanten Unter-

schiede ermittelt werden. Die Ergebnisse sind im Anhang in Tabelle 28 dargestellt. 

 

5.3.1.3 P2 

Für die P2-Ableitungen konnten mit unabhängigen T-Tests keine signifikanten 

Unterschiede zwischen den Tinnituspatienten vor der Behandlung und der Kontrollgrup-

pe ermittelt werden. Bei der Überprüfung der Varianzhomogenität wies der Levene-Test 

bezüglich der Latenzen an der Elektrode Fz (p = .025) und der Amplitude an Cz 

(p = .031) auf Inhomogenitäten hin. Eine daher nachgesetzte nicht-parametrische Tes-

tung bestätigte die Ergebnisse aus den T-Tests (siehe Anhang, Tabelle 33). 
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5.3.1.4 P300 

Beim Vergleich der Tinnituspatienten vor der Behandlung mit der gesunden 

Kontrollgruppe mittels unabhängiger T-Tests konnte ein signifikanter Unterschied 

hinsichtlich der Latenz an der Pz-Elektrode (p = .025) festgestellt werden 

(Tinnituspatienten vor der Behandlung: M = 359.78, SD = 62.051; Kontrollgruppe 

M = 322.00, SD = 38.268). Nach Bonferroni-Korrektur (p‘ <.05) zeigte sich dieser als 

nicht mehr signifikant. Gleichermaßen verhielt es sich beim Vergleich der genannten 

Gruppen für die CZ-Latenz (Tinnituspatienten vor der Behandlung: M = 366.22, 

SD = 78.865; Kontrollgruppe M = 308.40, SD = 29.591). Der zunächst berechnete 

signifikante Unterschied (p = .006) konnte nach Bonferroni-Korrektur (p‘ <.05) nicht 

festgestellt werden. 

Aufgrund der kleinen Stichprobe und der nicht durchgängigen 

Varianzhomogenität (Levene-Test: Fz-Latenz mit p = .021 und Cz-Latenz mit p = .000) 

wurde eine nicht-parametrische-Testung durchgeführt. Diese zeigte signifikante 

Unterschiede zwischen den Tinnituspatienten und den gesunden Probanden hinsichtlich 

der Fz-Amplitude mit Mann-Whitney U = 111 (z = -2.017, p = 0.044 bei Tinnituspatienten 

vor der Behandlung: M = 4.351, SD = 3.318; Kontrollgruppe M = 6.091, SD = 2.894) 

sowie der Latenz an Pz mit U = 100 (z = -2.341, p = 0.019) und an Cz mit U = 83 (z = -

2.844, p = 0.004). Die Ergebnisse sind im Anhang in Tabelle 38 aufgeführt. 

 

In Abbildung 4 sind die Mittelwerte (μV) des Vergleichs der Tinnituspatienten vor 

der Behandlung mit der gesunden Kontrollgruppe für die Elektroden Fz, Cz und Pz 

dargestellt. Es lassen sich Unterschiede hinsichtlich der eingezeichneten evozierten 

Potentialen N1, P2 und P300 erkennen, die gemäß der statistischen Berechnung kein 

signifikantes Niveau aufweisen. 
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Abbildung 4: Darstellung der Mittelwerte (μV) mit den eingezeichneten evozierten Potentialen N1, P2 

und P300; X – Achse: Zeit in ms; Y- Achse: Amplitudenwerte in μV; grün: Tinnituspatienten vor 

der Behandlung; schwarz: Kontrollgruppe bei Fz, Cz und Pz. 
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5.3.2 Hypothese 2: Der Behandlungserfolg mit rTMS äußert sich bei Patienten 

mit chronischem Tinnitus in signifikanten Unterschieden gegenüber 

Patienten mit chronischem Tinnitus, die mit einem Placebo behandelt 

wurden, hinsichtlich 

  2a) einer signifikanten Reduktion der EEG Ruhe-Aktivität im 

Gammaband oder einer Zunahme der Aktivität im Alphaband des Ruhe-

EEGs, insbesondere in links-temporalen Gehirnregionen 

 

Mit unabhängigen T-Tests wurden die Ruhe-EEGs der Verum-Gruppe vor und 

nach der Behandlung auf Unterschiede untersucht. Hinsichtlich der absoluten Power la-

gen keine Unterschiede von signifikantem Niveau vor.  

Es zeigte sich linkshemisphärisch ein signifikanter Unterschied von verstärkter re-

lativer Power (%) des Alphabandes an der Elektrode F7 (p = .038). Die Betrachtung der 

Mittelwerte zeigt eine Verringerung der relativen Power bei der Verum-Gruppe vor der 

Behandlung (Verum-Gruppe vor der Behandlung: M = 19.429, SD = 8.809; Verum-

Gruppe nach der Behandlung: M = 28.616, SD = 28.616). Der Unterschied lässt sich in 

der Abbildung 5 des Gesamtfrequenzbandes, jedoch nicht in den Einzelfrequenzen er-

kennen. 
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Abbildung 5: Die Skalp-Darstellungen zeigen farblich markiert die mit unabhängigen T-Tests ermittelten 

signifikanten Unterschiede zwischen der Verum-Gruppe vor und nach der Behandlung für die 

relative Power (%) für p = 0.00–0.06 (im Farbverlauf rot bis blau). Die Unterschiede erreichen im 

Alphaband (8-12 Hz) an der Elektrode F7 signifikantes Niveau. 

 

Tabelle 17 gibt einen zusammenfassenden Überblick über die signifikanten Un-

terschiede zwischen der Verum-Gruppe nach und vor der Behandlung in der Ruhe-

Aktivität. 

 

Tabelle 17: Unabhängige T-Tests zwischen der Verumgruppe vor und nach der Behandlung in der Ruhe-

EEG-Aktivität: Signifikante Unterschiede. 

Mikrovolt Frequenzband Elektrode α = 5 % 

verstärkte relative Power (%) Alpha (8-12 Hz) F7 .038 

 

Die nachgesetzte nicht-parametrische Berechnung mit dem Wilcoxon Rangsum-

men-Test ergab für den Vergleich der beiden Ableitungszeitpunkte bei Verum-
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Behandlung eine signifikante Verringerung der Aktivität im High Betaband an der Elekt-

rode F4 (z = -1.992, p = 0.046 bei Verum-Gruppe vor der Behandlung: M = 0.592, 

SD = 0.404; Verum-Gruppe nach der Behandlung: M = 0.509, SD = 0.442). 

Für das Gammaband konnte eine Verstärkung der Hirnaktivität an der Elektrode 

F3 (z = -1.992, p = 0.046 bei Verum-Gruppe vor der Behandlung: M = 0.485, 

SD = 0.252; Verum-Gruppe nach der Behandlung: M = 0.336, SD = 0.192) sowie eine 

Verringerung an F4 (z = -1.992, p = 0.046 bei Verum-Gruppe vor der Behandlung: 

M = 0.537, SD = 0.491; Verum-Gruppe nach der Behandlung: M = 0.434, SD = 0.464) 

festgestellt werden. Im Frequenzbereich von High Gamma ergab sich eine Verringerung 

an T6 (z = -2.201, p = 0.028 bei Verum-Gruppe vor der Behandlung: M = 0.179, 

SD = 0.076; Verum-Gruppe nach der Behandlung: M = 0.131, SD = 0.055). 

 

Im Vergleich der EEG-Ruhe-Aktivitäten der Placebo-Gruppe nach und vor der 

Behandlung mit unabhängigen T-Tests ließen sich keine Unterschiede hinsichtlich der 

absoluten Power (μV²) ermitteln.  

Rechts temporal konnte ein signifikanter Unterschied der reduzierten relativen 

Power (%) im Betaband an T4 (p = .023) festgestellt werden. Abbildung 6 verdeutlicht, 

dass dieser Unterschied für das gesamte Frequenzband, jedoch nicht für die einzelnen 

Frequenzen sichtbar wurde. 
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Abbildung 6: Die Skalp-Darstellungen zeigen farblich markiert die mit unabhängigen T-Tests ermittelten 

signifikanten Unterschiede zwischen der Placebo-Gruppe vor und nach der Behandlung für die 

relative Power (%) für p = 0.00–0.06 (im Farbverlauf rot bis blau). Die Unterschiede erreichen im 

Betaband (12-25 Hz) an der Elektrode T4 signifikantes Niveau. 
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In Tabelle 18 werden die signifikanten Ergebnisse der Vergleiche der Ruhe-EEG-

Aktivitäten der Placebo-Gruppe nach und vor der Behandlung zusammengefasst.  

 

Tabelle 18: Unabhängige T-Tests zwischen der Placebo-Gruppe vor und nach der Behandlung in der 

Ruhe-EEG-Aktivität: Signifikante Unterschiede. 

Mikrovolt Frequenzband Elektrode α = 5 % 

reduzierte relative Power (%) Beta (12-25 Hz) T4 .023 

 

Nicht-parametrisch konnten für die Placebo-Gruppe im Vergleich der beiden Ab-

leitungszeitpunkte keine signifikanten Veränderungen ermittelt werden. 

 

Zwischen der Verum-Gruppe und der Placebo-Gruppe jeweils nach der Behand-

lung ergaben sich keine signifikanten Unterschiede hinsichtlich absoluter Power (μV²) 

oder relativer Power (%). Die nicht-parametrische Testung bestätigte diese Ergebnisse. 

 

Hypothese 2: Der Behandlungserfolg mit rTMS äußert sich bei Patienten mit 

chronischem Tinnitus in signifikanten Unterschieden gegenüber Patienten 

mit chronischem Tinnitus, die mit einem Placebo behandelt wurden, 

hinsichtlich 

 2b) einer signifikanten Verstärkung der N1-, P2- und P300-Amplituden 

sowie einer signifikanten Reduktion der N1-, P2- und P300-Latenzen 

Mit unabhängigen T-Tests wurden die evozierten Potentiale beider Versuchs-

gruppen auf Unterschiede hinsichtlich der Amplituden und Latenzen vor und nach der 

rTMS-Behandlung untersucht. 

 

5.3.2.1 N1 

Hinsichtlich N1-Ableitungen konnten weder beim Vergleich der Ergebnisse der 

Verum-Gruppe, noch der Placebo-Gruppe zu den zwei Ableitungszeitpunkten signifikan-

ten Unterschiede berechnet werden. Die nicht-parametrische Überprüfung bestätigte die 
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Ergebnisse der Vazianzanalysen. Die Ergebnisse finden sich im Anhang in Tabelle 29 

für die Verum-Gruppe und in Tabelle 30 für die Placebo-Gruppe.  

Bei der Betrachtung der in Tabelle 26 dargestellten Mittelwerte der N1-

Amplituden und -Latenzen werden jedoch Unterschiede zwischen den Messzeitpunkten 

entsprechend der Hypothesen deutlich, obgleich diese kein signifikantes Niveau errei-

chen. Für die Verum-Gruppe zeigt sich nach der rTMS eine Zunahme der N1-

Amplituden über Fz, Pz und Cz sowie eine Reaktionszeitverkürzung über Pz. Es zeigen 

sich jedoch auch Placebo-Effekte im Sinne einer reduzierten Latenz über Fz, Pz und Cz 

sowie einer Verstärkung der Amplitude über Cz. 

Zwischen den beiden Versuchsgruppen konnten nach der Behandlung keine sta-

tistisch signifikanten Unterschiede mittels Varianzanalyse ermittelt werden. Mittels nicht-

parametrischer Testungen konnten diese Befunde bestätigt werden. Die Ergebnisse 

sind im Anhang in Tabelle 31 dargestellt. 

 

5.3.2.2 P2 

Die Varianzanalyse ergab, dass es weder bei der Verum- noch bei der Placebo-

Gruppe zu signifikanten Veränderungen hinsichtlich der P2-Amplituden oder  

-Latenzen kam. Die nicht-parametrische Überprüfung mittels Wilcoxon Rangsummen-

Test bestätigte die Ergebnisse hinsichtlich der Placebo-Gruppe. Beim Vergleich der bei-

den P2-Ableitungen der Verum-Gruppe konnte für die Latenz an der Elektrode Cz die 

Tendenz einer Verkürzung ermittelt werden (z = -1,892, p = 0.058 bei Verum-Gruppe 

vor der Behandlung: M = 168.44, SD = 29.288; Verum-Gruppe nach der Behandlung: 

M = 152.57, SD = 12.528). Bei der Betrachtung der in Tabelle 32 abgebildeten Mittel-

werte zeigen sich auch Reduktionen der P2-Reaktionszeiten über Fz nach rTMS und 

über Pz nach Placebo-Behandlung feststellen. Diese Unterschiede erreichen allerdings 

kein signifikantes Niveau.  

 

Auch der varianzanalytische Vergleich der Placebo- und Verum-Gruppe nach der 

Behandlung zeigte kein signifikantes Ergebnis. Im nicht-parametrischen Mann-Whitney 

U-Test wurde ein signifikanter Unterschied hinsichtlich der Latenz an der Elektrode Cz 

festgestellt mit U = 11,5 (z = -1.916, p = 0.055 bei Verum-Gruppe nach der Behandlung: 

M = 152.57, SD = 12.528; Placebo-Gruppe nach der Behandlung: M = 171.00, 

SD = 21.354). Die Ergebnisse sind im Anhang in Tabelle 36 dargestellt.  
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5.3.2.3 P300 

Die Unterschiede hinsichtlich der P300-Amplituden und -Latenzen vor und nach 

der Verum-Behandlung erreichten in der ANOVA kein signifikantes Niveau. Nicht-

parametrisch ergaben sich ebenfalls keine signifikanten Unterschiede (siehe Tabelle 39 

im Anhang).  

Bei den Patienten, die mit einem Placebo behandelt wurden, zeigten sich im 

Vergleich der beiden Ableitungszeitpunkte der P300-Latenzen und -Amplituden in der 

ANOVA keine signifikanten Unterschiede für die Elektroden Fz, Cz und Pz. Die 

nachgesetzte nicht-parametrischen Berechnung mit dem Wilcoxon Rangsummen-Test 

ergab eine signifikante Verkürzung der Latenz an der Elektrode Fz (z = -1.961, 

p = 0.050 bei Placebo-Gruppe vor der Behandlung: M = 345.33, SD = 77.227; Placebo-

Gruppe nach der Behandlung: M = 331.00, SD = 66.065). Die Ergebnisse sind im 

Anhang in Tabelle 40 zusammengefasst. Bei der Betrachtung der in Tabelle 37 darges-

tellten Mittelwerte zeigt sich für die Placebo-Gruppe zudem eine P300-

Reaktionszeitverkürzung über Pz sowie eine Verstärkung der Fz-, Pz- und Cz-

Amplituden nach der Scheinbehandlung. Für die Verum-Gruppe zeigt sich bei der 

Mittelwertbetrachtung nach der rTMS eine höhere Cz-Amplitude. 

 

Beim Vergleich der beiden Tinnitusgruppen nach der Behandlung konnte ein 

signifikanter Unterschied hinsichtlich der P300-Latenz an der Cz-Elektrode festgestellt 

werden (p = .009). Dieser zeigte sich nach Bonferroni-Korrektur (p‘ <.05) als nicht mehr 

signifikant. Die Betrachtung der Mittelwerte der beiden Tinnitusgruppen (siehe Anhang, 

Tabelle 32) veranschaulicht, dass sich die P300-Latenz der Verum-Gruppe nach rTMS 

erhöhte (Verum-Gruppe vor der Behandlung: M = 324.00, SD = 28.071; Verum-Gruppe 

nach der Behandlung: M = 333.38, SD = 32.763), während die Latenz der Placebo-

Gruppe gleich blieb (Placebo-Gruppe vor der Behandlung: M = 408.44, SD = 91.748; 

Placebogruppe nach der Behandlung: M = 408.00, SD = 84.068). Der anschließend 

durchgeführte nicht-parametrischen Mann-Whitney U-Test konnte keinen Unterschied 

zwischen den beiden Gruppen hinsichtlich der Cz-Latenz belegen. Es ergab sich 

lediglich beim Vergleich der Placebo- und Verum-Gruppe nach der Behandlung ein 

signifikanter Unterschied hinsichtlich der Amplitude an der Elektrode Cz mit U = 9 (z = -

2.199, p = 0.028). Bei beiden Gruppen kam es durch die Behandlung zu einer 

Verstärkung der P300-Amplitude über Cz, die jedoch in keiner Gruppe ein signifikantes 



 

Christine Bremer                                                        99 
 

 
Niveau annahm (Verum-Gruppe vor der Behandlung: M = 6.449, SD = 1.957; Verum-

Gruppe nach der Behandlung: M = 6.921, SD = 1.763 und Placebo-Gruppe vor der 

Behandlung: M = 3.571, SD = 3.507; Placebo-Gruppe nach der Behandlung: M = 3.759, 

SD = 2.956).  

 

Nachfolgend sind die Mittelwerte (μV) der erläuterten Vergleiche für die 

Elektroden Fz, Cz und Pz mit den eingezeichneten evozierten Potentialen N1, P2 und 

P300 dargestellt. Abbildung 7 zeigt die mittleren Verläufe der Verum-Gruppe jeweils vor 

und nach der Behandlung. In Abbildung 8 ist der Vergleich der Mittelwerte der Placebo-

Gruppe zu beiden Ableitungszeitpunkten dargestellt. Abbildung 9 veranschaulicht die 

Unterschiede zwischen den beiden Tinnitusgruppen jeweils nach der Behandlung. 
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Abbildung 7: Darstellung der Mittelwerte (μV) mit den eingezeichneten evozierten Potentialen N1, P2 

und P300; X-Achse: Zeit in ms; Y-Achse: Amplitudenwerte in μV; orange: Verum-Gruppe vor der 

Behandlung; rot: Verum-Gruppe nach der Behandlung bei Fz, Cz und Pz. 
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Abbildung 8: Darstellung der Mittelwerte (μV) mit den eingezeichneten evozierten Potentialen N1, P2 

und P300; X-Achse: Zeit in ms; Y-Achse: Amplitudenwerte in μV; hellblau: Placebo-Gruppe vor 

der Behandlung; dunkelblau: Placebo-Ggruppe nach der Behandlung bei Fz, Cz und Pz. 
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Abbildung 9: Darstellung der Mittelwerte (μV) mit den eingezeichneten evozierten Potentialen N1, P2 

und P300; X-Achse: Zeit in ms; Y-Achse: Amplitudenwerte in μV; rot: Verum-Gruppe nach der 

Behandlung; dunkelblau: Placebo-Gruppe nach der Behandlung bei Fz, Cz und Pz. 
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Hypothese 2: Der Behandlungserfolg mit rTMS äußert sich bei Patienten mit 

chronischem Tinnitus in signifikanten Unterschieden gegenüber Patienten 

mit chronischem Tinnitus, die mit einem Placebo behandelt wurden, 

hinsichtlich 

 2c) einer Reduktion der subjektiv empfundenen Tinnitusbelastung 

Im Vergleich der Mittelwerte der Verum-Gruppe im TF konnte von der Vor- bis zur 

Abschlussuntersuchung eine Reduktion des Gesamtwerts im TF um 4.37 % berechnet 

werden. Im Friedman-Test zeigte sich, dass sich die Mittelwerte der Verum-Gruppe im 

TF zu den einzelnen Messzeitpunkten nicht signifikant voneinander unterscheiden 

(X2 = 2.794, df = 5, p = .732). Tabelle 19 zeigt die Mittelwerte und Standardabweichun-

gen der TF-Gesamtwerte zu den einzelnen Messzeitpunkten.  

 

Tabelle 19: Mittelwerte, Standardabweichungen und Ergebnisse des Friedman-Test der TF-Gesamtwerte 

der Verum-Gruppe zu den einzelnen Messzeitpunkten 

                          

Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3 

Friedman-Test 

(Bl – FU 3; 

α = 5 %) 

M SD M SD M SD M SD M SD M SD X2 Df p 

40.78 17.17 40.00 18.91 39.78 19.12 38.44 19.60 38.11 22.21 39.00 20.91 2.794 5 .732 

 

Für die Placebo-Gruppe zeigte sich von der ersten zur letzten Messung eine Zu-

nahme des TF-Gesamtwerts um 0.59 %. Auch hier wies der Friedman-Test auf fehlende 

signifikante Unterschiede zwischen den einzelnen Messzeitpunkten hin (X2 = 2.948, 

df = 5, p = .708). In Tabelle 20 sind die Mittelwerte und die Ergebnisse des Friedman-

Tests noch einmal dargestellt. 

 

Tabelle 20: Mittelwerte, Standardabweichungen und Ergebnisse des Friedman-Tests der TF-Gesamt    

                 werte der Placebo-Gruppe zu den einzelnen Messzeitpunkten 

Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3 

Friedman-Test 

(Bl – FU 3; 

α = 5 %) 

M SD M SD M SD M SD M SD M SD X2 Df p 

40.50 14.74 45.50 22.59 42.30 20.18 41.10 19.56 41.40 23.35 40.70 22.11 2.948 5 .708 
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Abbildung 10 zeigt die Verläufe der Mittelwerte der TF-Gesamtwerte von Verum- 

und Placebo-Gruppe. 

 

 

Abbildung 10: Darstellung der Mittelwerte der TF-Gesamtwerte zu den sechs verschiedenen Messzeit-

punkten; rot: Verum-Gruppe; blau: Placebo-Gruppe. 

 

Auch bezüglich der sechs Skalen des TF, emotionale Belastung, kognitive Belas-

tung, Penetranz des Tinnitus‘, Hörprobleme, Schlafstörungen sowie somatische Be-

schwerden wurden die Unterschiede zwischen den einzelnen Messzeitpunkten für jede 

Tinnitusgruppe mit dem Friedman-Test untersucht.  

In der Verum-Gruppe ergaben sich keine signifikanten Unterschiede zwischen 

den einzelnen Skalenwerten des TF und den verschiedenen Messzeitpunkten. Für die 

emotionale Belastung konnte ein Unterschied von X2 = 3.521 (df = 5, p = .620), für die 

kognitive Belastung von X2 = 4.649 (df = 5, p = .460) und für die Penetranz des Tinnitus‘ 

von X2 = 6.292 (df = 5, p = .279) bestimmt werden. Desweiteren lagen die nicht signifi-

kanten Unterschiede der übrigen Skalen des TF in der Verum-Gruppe für die Hörprob-

leme bei X2 = 4,145 (df = 5, p = .529), für die Schlafstörungen bei X2 = 2,484 (df = 5, 

p = .779) und für die somatischen Beschwerden bei X2 = 4,286 (df = 5, p = .509). 
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Für die Patienten mit Placebo-Behandlung konnten mittels Friedman-Test eben-

falls keine signifikanten Unterschiede hinsichtlich der Skalenwerte des TF zwischen den 

einzelnen Messzeitpunkten festgestellt werden. Für die emotionale Belastung ließ sich 

ein Wert von X2 = 4.315 (df = 5, p = .505), für die kognitive Belastung von X2 = 4.482 

(df = 5, p = .482) und für die Penetranz des Tinnitus‘ von X2 = 3.976 (df = 5, p = .553) 

bestimmen. Für die Hörprobleme ergab der Friedman-Test im Vergleich der einzelnen 

Beobachtungszeitpunkte X2 = 2.531 (df = 5, p = .772), für die Schlafstörungen 

X2 = 8.326 (df = 5, p = .139) sowie für die somatische Beschwerden X2 = 7.047 (df = 5, 

p = .217). 

Eine ausführliche Darstellung der Skalenmittelwerte und der Ergebnisse des 

Friedman-Tests beider Behandlungsgruppen finden sich im Anhang Tabelle 42 und Ta-

belle 43. 

Mit dem Mann-Whitney-U-Test konnten keine signifikanten Unterschiede zwi-

schen der Verum- und der Placebo-Gruppe hinsichtlich der mittleren TF-Gesamtwerte 

für die sechs Beobachtungszeitpunkte nachgewiesen werden. Es ergab sich für die Ba-

seline-Untersuchung U = 43.5 (z = -0.123, p = .902), für Tag 5 U = 38 (z = -0.572, 

p = .567) und für Tag 12 U = 38 (z = -0.573, p = .567). Für die Nachbeobachtungsphase 

ließen sich für Follow-Up 1 U = 41.5 (z = -0.287, p = .774), Follow-Up 2 U = 43 (z = -

0.164, p = .870) sowie für Follow-Up 3 U = 41 (z = -0.327, p = .744) bestimmen. Eine 

Übersicht gibt Tabelle 21. 

 

Tabelle 21: Ergebnisse des Mann-Whitney-U-Tests für die Verum- und Placebo-Gruppe hinsichtlich der 

mittleren TF-Gesamtwerte für die sechs Beobachtungszeitpunkte 

Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3 

Mann-Whitney U 43,5 38 38 41,5 43 41 

Z -0,123 -0,572 -0,573 -0,287 -0,164 -0,327 

α = 5 % 0,902 0,567 0,567 0,774 0,870 0,744 

 

Hinsichtlich der sechs Skalen des TF (emotionale Belastung, kognitive Belastung, 

Penetranz des Tinnitus‘, Hörprobleme, Schlafstörungen, somatische Beschwerden) 

konnten mit dem Mann-Whitney-U-Test ebenfalls keine signifikanten Unterschiede zwi-

schen den beiden Behandlungsgruppen für die einzelnen Untersuchungszeitpunkte 

festgestellt werden. Diese sind im Anhang in Tabelle 44 detailliert dargestellt. 
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Bei der Analyse der Ergebnisse der Verum-Gruppe im THI zeigte sich von der 

Baseline- bis zur Abschlussuntersuchung eine Reduktion des Gesamtwertes um 

19,18 %. Mit dem Friedman-Test konnten keine signifikanten Unterschiede zwischen 

den sechs Messzeitpunkten festgestellt werden (X2 = 5.798, df = 5, p = .326). Tabelle 22 

gibt einen Überblick über die mittleren Gesamtwerte und die Ergebnisse des Friedman-

Tests für die Verum-Gruppe. 

 

Tabelle 22: Mittelwerte, Standardabweichungen und Ergebnisse des Friedman-Tests der THI-

Gesamtwerte der Verum-Gruppe zu den einzelnen Messzeitpunkten 

Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3 

Friedman-Test 

(Bl – FU 3; 

α = 5 %) 

M SD M SD M SD M SD M SD M SD X2 df P 

60.22 21.44 47.11 30.63 47.56 28.98 46.00 28.50 46.67 30.74 48.67 29.12 5.798 5 .326 

 

In der Placebo-Gruppe reduzierte sich der mittlere THI-Gesamtwert vom ersten 

bis zum letzten Messzeitpunkt um 18.27 %. Auch für die Untersuchungsgruppe mit Pla-

cebo-Behandlung konnten im Friedman-Test keine signifikanten Unterschiede zwischen 

den unterschiedlichen Beobachtungszeitpunkten festgestellt werden (X2 = 7.347, df = 5, 

p = .196). In Tabelle 23 sind die Mittelwerte sowie die Ergebnisse des Friedman-Tests 

der Placebo-Gruppe für den THI dargestellt. 

 

Tabelle 23: Mittelwerte, Standardabweichungen und Ergebnisse des Friedman-Tests der THI-

Gesamtwerte der Placebo-Gruppe zu den einzelnen Messzeitpunkten 

Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3 

Friedman-Test 

(Bl – FU 3; 

α = 5 %) 

M SD M SD M SD M SD M SD M SD X2 df P 

62.40 22.60 55.80 27.83 52.80 27.12 54.60 27.42 52.20 29.76 51.00 29.56 7.347 5 .196 

 

In Abbildung 11 sind die THI-Geamtwerte der Patienten unter Verum- und Place-

bo-Bedingung zum Vergleich grafisch dargestellt. 
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Abbildung 11: Darstellung der Mittelwerte der THI-Gesamtwerte zu den sechs verschiedenen Messzeit-

punkten; rot: Verum-Gruppe; blau: Placebo-Gruppe. 

 

Wie schon beim TF beschrieben, wurden auch die Skalen des THI für die einzel-

nen Messzeitpunkte und die zwei Behandlungsgruppen auf signifikante Unterschiede 

untersucht. Unter Anwendung des Friedman-Tests konnten in der Verum-Gruppe keine 

signifikanten Unterschiede zwischen den Beobachtungszeitpunkten der Skalen emotio-

nale Beeinträchtigungen (X2 = 7.395, df = 5, p = .193), funktionale Beeinträchtigungen 

(X2 = 4.870, df = 5, p = .432) und katastrophale Effekten nachgewiesen werden 

(X2 = 10.698, df = 5, p = .058). 

Für die Placebo-Gruppe ergaben sich ebenfalls keine signifikanten Unterschiede. 

Im Friedman-Test konnte für die emotionalen Beeinträchtigungen X2 = 7.837 (df = 5, 

p = .165), für die funktionalen Beeinträchtigungen X2 = 6.067 (df = 5, p = .300) und für 

die katastrophale Effekte X2 = 1.584 (df = 5, p = .903) bestimmt werden. Im Anhang in 

Tabelle 45 und Tabelle 46 finden sich Aufstellungen der Skalenmittelwerte und der Er-

gebnisse des Friedman-Tests beider Behandlungsgruppen. 

Zur Analyse der Unterschiede zwischen den Tinnitusgruppen hinsichtlich der mitt-

leren Gesamtwerte des THI wurde der Mann-Whitney-U-Test für die sechs Beobach-

tungszeitpunkte durchgeführt. Es konnten keine signifikanten Unterschiede festgestellt 
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werden. Für die Baseline-Untersuchung ergab sich U = 42.5 (z = -0.205, p = .837), für 

Tag 5 U = 37 (z = -0.653, p = .513) und für den letzten Tag der Behandlung, Tag 12 

U = 42 (z = -0.245, p = .806). Für die Nachuntersuchungsphase ließ sich für Follow-Up 

1 U = 38 (z = -0.573, p = .567), für Follow-Up 2 U = 44.5 (z = -0.041, p = .967) und für 

Follow-Up 3 U = 44.5 (z = -0.041, p = .967) ermitteln. Eine Übersicht über die Ergebnis-

se des Mann-Whitney-U-Tests bietet Tabelle 24. 

 

Tabelle 24: Ergebnisse des Mann-Whitney-U-Tests für die Verum- und Placebo-Gruppe hinsichtlich der 

mittleren THI-Gesamtwerte für die sechs Beobachtungszeitpunkte 

Gesamtwert THI 

Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3 

Mann-Whitney U 42.5 37 42 38 44.5 44.5 

Z -0.205 -0.653 -0.245 -0.573 -0.041 -0.041 

α = 5 % .837 .513 .806 .567 .967 .967 

 

Im Vergleich der beiden Tinnitusgruppen hinsichtlich der Mittelwerte der einzel-

nen Skalen des THI für die sechs Beobachtungszeitpunkte ergaben sich keine Unter-

schiede von signifikantem Niveau. Die Ergebnisse finden sich im Anhang in Tabelle 47. 
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6 DISKUSSION DER ERGEBNISSE 

6.1  Methodendiskussion 

Die hier dargestellte Studie entsprach einem randomisierten, Placebo-

kontrollierten, Parallelgruppendesign mit einer zweiwöchigen rTMS-Behandlung 

(Frequenz 1 Hz, 2000 Impulse pro Sitzung) und der Behandlung voran- und 

nachgestellte EEG-Messungen und Fragebogenerhebungen. Die Gesamtstichprobe 

umfasste 40 Probanden mit 20 Tinnituspatienten mit mittel- bis schwergradigem 

chronischen Tinnitus und 20 Studienteilnehmern in der gesunden Kontrollgruppe. 

Jeweils 10 Tinnituspatienten wurden doppelverblindet einer Verum- und einer Placebo-

Gruppe zugeordnet.  

Die Stichprobengröße entsprach einer üblichen Stichprobengröße für eine 

neurophysiologische Pilotstudie. Diese ist aber dennoch klein und muss in größeren 

randomisierten Studien repliziert werden, wenngleich sie denen vergleichbarer 

Untersuchungen entspricht (vgl. Kleinjung et al., 2005; Rossi et al., 2007; Marcondes et 

al., 2010; Piccirillo et al., 2011). Es liegen diverse Studien vor, die kleinere Fallzahlen 

verzeichneten (Plewnia et al., 2007; Smith et al., 2007; Lee et al., 2008).  

Die Positionierung der Magnetspule mithilfe des standarisierten 10/20-Systems 

bewirkte, dass eine gezielte Stimulation erwünschter Hirnareale ermöglicht wurde. Zu-

dem trägt die Methode dem individuellen Schädelumfang der Probanden Rechnung. 

Die Verwendung der genannten Stimulationsparameter mit einer Frequenz von 

1 Hz, 2000 Pulsen und 110 % MT entspricht denen diverser Studien mit nachhaltig 

tinnituslindernden Ergebnissen (vgl. Langguth et al., 2004; Kleinjung et al., 2005; 

Langguth et al., 2006a; Langguth et al., 2006b; Kleinjung et al., 2007; Khedr et al., 2008; 

Anders et al., 2010; Frank et al., 2010; Khedr et al., 2010; Marcondes et al., 2010). Es 

sei jedoch erwähnt, dass andere Studien keine Überlegenheit der niedrigfrequenten 

rTMS gegenüber hochfrequenter Stimulation nachweisen konnten (Khedr et al., 2008). 

Zudem existieren Studien, die der niedrigfrequenten rTMS keine nachhaltige Wirkung 

zuschreiben konnte (Plewnia et al., 2007a; Smith et al., 2007).  
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Die Stimulationsdauer von zwei Wochen, d. h. zehn Sitzungen stimmt ebenfalls 

mit einer Vielzahl von Untersuchungen überein (vgl. Langguth et al., 2006a; Kleinjung et 

al., 2007; Plewnia et al., 2007a; Weisz et al., 201122). 

 

In diversen Studien hat sich der linke temporale Kortex unabhängig von der 

Tinnituslateralität als Stimulationsort bewährt. Mittels bildgebender und 

neurophysiologischer Verfahren lässt sich hier eine erhöhte Hirnaktivität bei 

Tinnituspatienten nachweisen (vgl. Eichhammer et al., 2003a; Kleinjung et al., 2005; de 

Ridder et al., 2005; Langguth et al., 2006a; Londero et al., 2006b; Kleinjung et al., 2007; 

Langguth et al., 2007 und 2008c). Es konnte gezeigt werden, dass die Aktivität in 

diesem Areal nach der rTMS deutlich reduziert ist (vgl. Rossi et al., 2007; Marcondes et 

al., 2010). Der links temporale Kortex erschien daher im Rahmen der hier dargestellten 

Studie ein geeigneter Stimulationsort zu sein. Es muss erwähnt werden, dass andere 

Studien die Bedeutsamkeit der Lateralität des Tinnitus‘ für den Stimulationsort 

nachweisen und die links-temporale Stimulation bei rechtsseitigem Tinnitus als erfolglos 

(Frank et al., 2010) beziehungsweise die kontralaterale Stimulation der ipsilateralen 

deutlich überlegen befanden (Khedr et al., 2010). 

Die hier durchgeführte Placebo-Behandlung durch Abwinkeln der TMS-Spule um 

45 Grad ist eine übliche Methode zur Durchführung einer Scheinbehandlung (vgl. Smith 

et al., 2007; Lisanby et al., 2001; Lorenz et al., 2010; Marcondes et al., 2010; Weisz et 

al., 2011). Problematisch an der Wahl dieser Placebo-Variante ist jedoch, dass der 

Proband während der Behandlung keinerlei Wirkung der Stimulation, sondern lediglich 

das Stimulationsgeräusch wahrnimmt. Es ist zu befürchten, dass er hierbei eine 

Scheinbehandlung vermutet. Diese Methode scheint jedoch sinnvoller zu sein, als die 

Stimulation eines vom Tinnitus unabhängigen Hirnareals, welche ergebnisverfälschende 

Effekte mit sich bringen kann. Zudem erscheint es unwahrscheinlich, dass die 

Probanden Vorerfahrungen mit rTMS haben.  

Eine mögliche Alternative zur Abwinklung der Spule scheint der Einsatz einer 

Placebo-Spule zu sein, die von den Probanden für eine reale Stimulation gehalten wird 

(Rossi et al., 2007).  

                                                                                                 

22 Weitere Quellen sind Langguth et al., 2006b; Khedr et al., 2008; Langguth et al., 2008c; Anders et al., 
2010; Frank et al., 2010; Khedr et al., 2010; Kreuzer et al., 2011; Piccirillo et al., 2011. 
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Lisanby et al. (2001) warnen bezüglich der Placebo-Behandlung durch eine um 

45 Grad abgewinkelte Magnetspule vor der auch hierbei entstehenden kortikalen Stimu-

lation. Dies ist jedoch eine vielfach verwendete Methode der Scheinbehandlung (vgl. 

Smith et al., 2007; Lisanby et al., 2001; Lorenz et al., 2010; Marcondes et al., 2010; 

Weisz et al., 2011). Es wurde bereits nachgewiesen, dass die rTMS über diese Place-

bo-Behandlung erhaben ist (vgl. Smith et al., 2007; Marcondes et al., 2010). Dennoch 

ist auch zukünftig die sorgfältige Auswahl und Überprüfung der Scheinbehandlung für 

klinische Studien unabdingbar. 

 

Das EEG stellt eine geeignete Methode zur direkten und objektiven 

Veränderungsmessung von Effekten durch die rTMS dar. Es lassen sich Hypothesen 

über funktionale Mechanismen überprüfen und innerhalb von Millisekunden darstellen. 

Die Betrachtung der Ruhe-EEG-Aktivität ermöglichte, behandlungsabhängige 

Veränderungen in der Grund-Hirnaktivität im Ruhezustand zu ermitteln. Mit der 

Untersuchung evozierter Potentiale kann beurteilt werden, ob die bewusste 

Verarbeitung von Reizen durch die TMS-Behandlung beeinflusst wird. 

Bei der Interpretation von EEGs stellt der Ausschluss von Artefakten eine 

wichtige Voraussetzung dar. Sensationen im EEG können leicht durch Augen- oder 

Muskelbewegungen hervorgerufen werden. Daher wurde in der vorliegenden Arbeit viel 

Wert auf das Erkennen und Ausschließen von Artefakten gelegt.  

Allerdings entbehrt das EEG die Möglichkeit der genaueren räumlichen 

Darstellung von Behandlungseffekten. Darüber hinaus lassen sich bei simultaner EEG-

Ableitung Artefakte in den Frequenzbändern, bedingt durch das durch die TMS erzeugte 

Magnetfeld nicht ausschließen (George et al., 2007b; Wagner et al., 2007; Adjamian, 

2014). 

 

Die hier verwendeten Fragebögen zur Erfassung der subjektiv wahrgenommen 

Tinnitusbelastung stellen standardisierte und vielfach eingesetzte Verfahren in diesem 

Bereich dar. Wie unter 4.5.1.1 erwähnt, ist die Reliabilität des TF, bestimmt durch die 

Test-Retest Reliabilität und interne Konsistenz, als sehr hoch einzuschätzen. Die 

Kriteriumsvalidität weißt jedoch Mängel auf. Es ist nicht auszuschließen, dass der 

Fragebogen statt tinnitusspezifischer Belastungen allgemeine psychische Belastungen 

erfasst. Dennoch wird er häufig in tinniusbezogenen Untersuchungen und zur Erfassung 

der Wirkung von Magnetstimulation eingesetzt (vgl. Eichhammer et al., 2003a; Kleinjung 
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et al., 2005; Languth et al., 2006b; Kleinjung et al., 2007; Langguth et al., 2007; Plewnia 

et al., 2007a; Kleinjung et al., 2008; Anders et al., 2010; Frank et al., 2010; Kreuzer et 

al., 2011).  

Der THI findet in diesem Zusammenhang ebenfalls häufig Anwendung (vgl. 

Londero et al. 2006b; Khedr et al., 2008; Anders et al., 2010; Khedr et al., 2010; 

Marcondes et al., 2010; Kreuzer et al., 2011; Piccirillo et al., 2011; Piccirillo et al., 2013). 

Der Fragebogen weist eine sehr gute Reliabilität auf. Die konvergente Validität ist 

zufriedenstellend. Da jedoch Angaben zur diskriminanten und faktoriellen Validität 

fehlen, können keine Rückschlüsse über die Konstruktvalidität des THI gezogen 

werden. 

 

6.2 Ergebnisdiskussion 

Die Intention dieser Arbeit war es zu überprüfen, ob durch rTMS eine Normalisie-

rung der neuronalen Oszillationen bei Tinnituspatienten bewirkt werden kann. Im Prä-

Post-Vergleich, dem Vergleich zu einer gesunden Kontrollgruppe sowie zu einer Place-

bo-Gruppe stellten das Ruhe-EEG und die evozierten Potentiale N1, P2 und P300 die 

zentralen Bezugsgrößen dar. Das Ruhe-EEG wurde auf Unterschiedlichkeiten hinsich-

tlich der relativen und absoluten Power geprüft. Die evozierten Potentiale wurden be-

züglich Amplituden und Latenzen untersucht.  

 

Hinsichtlich der in Hypothese 1 vermuteten Unterschiede zwischen Tinnituspa-

tienten und einer gesunden Kontrollgruppe bezüglich der Aktivität im Ruhe-EEG zeigte 

sich bei der Tinnitusgruppe eine verstärkte absolute Gammagesamtaktivität in fronto-

zentralen Bereichen. Dieser Befund deckt sich mit den Ergebnissen diverser Studien 

(vgl. Llinás et al., 1999; Llinás et al., 2005; Weisz et al., 2005; Ashton et al., 2007; Weisz 

et al., 2007b; Schlee et al., 2009; Lorenz et al., 2009; Schlee et al., 2010; Weisz et al., 

2011; Vanneste et al., 2011a). Schlee et al. (2009) lokalisierten diese ebenfalls im fron-

talen Bereich.  

 

Die vorliegende Studie konnte den Befund niedriger Amplituden der N1-

Komponente bei chronischen Tinnituspatienten von Attias et al. (1993) bestätigen (Er-

gebnis nicht gültig bei Anwendung der Bonferroni-Korrektur sowie nicht-parametrischer 

Testung). 
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Hinsichtlich der P300-Reaktionszeit ließen sich entsprechend der Hypothese 1 

zentral und parietal signifikante Unterschiede zwischen den Tinnituspatienten und den 

gesunden Probanden feststellen. Die längere Latenz der Tinnituspatienten entspricht 

den Befunden von Attias et al. (1996), Santos Filha & Matas (2010) sowie Gabr et al. 

(2011). Die in früheren Studien ermittelten niedrigeren P300-Amplituden bei Tinnituspa-

tienten (Attias et al., 1993; Attias et al., 1996) konnten frontal bestätigt werden. 

 

Der Erfolg der rTMS-Behandlung zeigte sich in der EEG Ruhe-Aktivität in Form 

einer frontalen sowie rechts-temporalen Verringerung der (High-) Gammabandaktivität 

(Hypothese 2a). Zudem konnte eine frontale Zunahme des relativen Anteils der Alpha-

bandfrequenzen nachgewiesen werden (Hypothese 2a).  

Zusammen mit dem Befund der verstärkten Gammabandaktivität in frontozentra-

len Bereichen bei den Tinnituspatienten vor der Behandlung gegenüber den gesunden 

Probanden (Hypothese 1) kann dies als Beleg für die Wiederherstellung der kortikalen 

Hemmung gesehen werden. Die Befunde decken sich mit den Ergebnissen von Lorenz 

et al. (2010) und Müller et al. (2013), welche im MEG nach niedrigfrequenter rTMS eine 

Wiederherstellung der kortikalen Hemmung durch eine Reduktion der Gamma- und Zu-

nahme der Alphabandaktivität festellten. 

Die frontale Verringerung der Aktivität im High Betaband entsprechend der Er-

gebnisse von Li et al. (2007) und de Ridder et al. (2011c) unterstreicht den inhibieren-

den Effekt der niedrigfrequenten rTMS. 

Eine Überlegenheit der rTMS gegenüber einer Placebo-Behandlung konnte bei 

Betrachtung des Ruhe-EEGs nicht eindeutig festgestellt werden. Bei der Überprüfung 

potentieller Placebo-Effekte wurde festgestellt, dass es nach der Scheinbehandlung zu 

einer rechtstemporalen Reduktion der Beta-Oszillationen im Ruhe-EEG kam. Jedoch 

blieben die Hirnaktivitäten in Gamma- und Alphaband unverändert. 

 

Obgleich die statistische Überprüfung der N1 keine signifikanten Ergebnisse er-

gab, lassen die Vergleiche der Mittelwerte dennoch Effekte der rTMS vermuten (Hypo-

these 2b). Es kann eine Verkürzung der Reaktionszeit über Pz sowie eine frontale, pa-

rietale und zentrale Zunahme der N1-Amplituden festgestellt werden. Dies könnte ein 

Hinweis darauf sein, dass die niedrigfrequente rTMS die Amplituden verstärken kann. 
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Da Tinnitus mit niedrigeren Amplituden der N1-Komponente (Attias ez al., 1993) einher-

geht, was sich schon bei der Überprüfung der Hypothese 1 zeigte, könnte dieser Befund 

ein Hinweis auf eine Normalisierung des ereigniskorrelierten Potentials durch rTMS 

sein. Eine Replikation der vorliegenden Studie mit größerer Stichprobe wäre zur Über-

prüfung dieser Vermutung sinnvoll. 

Die Mittelwertbetrachtung lässt auch Placebo-Effekte im Sinne einer frontal, pa-

rietal und zentral reduzierten Latenz sowie einer zentralen Verstärkung der Amplitude 

vermuten. Dies deckt sich mit den von de Ridder et al. (2005), Folmer et al. (2006) und 

Londero et al (2006b) ermittelten Effekten der Scheinbehandlung. 

 

In der ereigniskorrelierten Ableitung P2 zeigte sich nach der Behandlung mit 

rTMS eine zentrale Verkürzung der Reaktionszeit. Der Befund wird gestützt durch eine 

Überlegenheit der Verum- gegenüber der Placebo-Behandlung im Sinne einer zentralen 

Latenzreduktion. Zudem lassen die Mittelwertbetrachtungen weiterhin eine frontale La-

tenzreduktion, jedoch nur parietal eine Reduktion der P2-Reaktionszeiten nach Placebo-

Behandlung vermuten. Mit diesen Befunden kann bestätigt werden, dass auch niedrigf-

requente rTMS eine Verkürzung der P2-Reaktionszeit bewirken kann. Jing et al. (2001a) 

wiesen diese mit 10-Hz-rTMS nach. Der Befund der vorliegenden Promotionsstudie 

könnte ein Hinweis auf die Reduktion der pathologisch längeren P2-Latenzen bei Tinni-

tus sein, wie sie Santos & Matas (2010) nachwiesen. 

 

Es wurde untersucht, ob sich der Behandlungserfolg der rTMS bei Patienten mit 

chronischem Tinnitus in einer signifikanten Verstärkung der P300-Amplituden sowie 

einer signifikanten Reduktion der P300-Latenzen äußert. Die mit Tinnitus 

einhergehenden längeren P300-Latenzen (Attias et al., 1996; Santos Filha & Matas, 

2010; Gabr et al., 2011) konnten durch die rTMS nicht verkürzt werden, die 

Mittelwertbetrachtung lässt jedoch eine zentrale Erhöhung der Amplitude vermuten.  

Es konnte ein Placebo-Effekt im Sinne einer Verkürzung der frontozentralen 

P300-Latenz ermittelt werden. Die Betrachtung der Mittelwerte lässt zudem eine 

parietale Reaktionszeitverkürzung sowie eine frontale, parietale und zentrale 

Verstärkung der Amplituden nach der Scheinbehandlung erahnen. Die Effekte durch 

Scheinbehandlung decken sich mit den Vermutungen von de Ridder et al. (2005), 

Folmer et al. (2006) und Londero et al (2006b). 
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Hinsichtlich der Reduktion der subjektiv empfundenen Tinnitusbelastung konnten 

keine signifikanten Unterschiede zwischen den Untersuchungszeitpunkten und damit 

auch kein Behandlungserfolg der rTMS nachgewiesen werden. Auch zwischen den bei-

den Versuchsgruppen ließen sich keine Unterschiede von signifikantem Niveau feststel-

len. Es zeigte sich zwischen Studienbeginn und -ende eine deutliche prozentuale Ver-

ringerung der mittleren THI-Gesamtwerte in der Verum- und Placebo-Gruppe, obgleich 

es sich in beiden Behandlungsgruppen nicht um signifikante Reduktionen der subjekti-

ven Tinnitusbelastung handelte. Die prozentuale Veränderung fiel im TF deutlich gerin-

ger aus. Möglicherweise sind die Unterschiede zwischen den Fragebögen von etwa 

15 % in der Veränderungssensitivität der Fragebögen begründet.  

 

Insgesamt lassen sich sowohl für die Verum- als auch für die Placebo-

Behandlung Effekte im EEG darstellen. Es kann hierbei nicht von einer klaren Überle-

genheit der Verum-Bedingung gesprochen werden, was die statistische Auswertung der 

Fragebogenergebnisse bestätigt. Diese Befunde decken sich mit den Ergebnissen von 

Piccirillo et al. (2011; 2013), die nach zweiwöchiger Behandlung mit niedrigfrequenter 

rTMS die gleiche Schlussfolgerung zogen. Auch de Ridder et al. (2005), Folmer et al. 

(2006) und Londero et al (2006b) wiesen auf Effekte der Placebo-Stimulation hin, die 

jedoch der Verum-Bedingung unterlegen waren. 

 

Obgleich der Erfolg der niedrigfrequenten rTMS begrenzt war, kam es gemäß TF 

und THI dennoch zu einer vier- beziehungsweise neunzehnprozentigen Reduktion der 

subjektiv empfundenen Tinnitusbelastung. Das grundlegende Ziel in der Behandlung 

von Tinnitus sollte sein, das Ohrgeräusch zu beseitigen. Da sich die Suche nach einer 

optimalen Behandlungsstrategie als schwierig erweist, geht es, wie Langguth et al. 

(2010) beschreiben, zunächst um die bestmögliche Reduktion des Ohrgeräusches und 

der begleitenden Symptome, um die Lebensqualität der Betroffenen zu verbessern. 

Trotz weiteren Forschungsbedarfs scheint die 1-Hz-rTMS vielversprechend, einen ent-

scheidenden Beitrag leisten zu können. 
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7  AUSBLICK 

Die vorliegende Promotionsstudie weist einige grundsätzliche Ansatzpunkte für 

eine kritische Würdigung auf, welche in zukünftigen Studien Berücksichtigung finden 

sollten.  

Die Stichprobengröße der Untersuchungsgruppe sowie der einzelnen 

Versuchsgruppen unterscheidet sich, wodurch die Interpretationswürdigkeit der 

Ergebnisse einschränkt ist. Die Versuchsgruppen sind mit nur jeweils zehn Probanden 

sehr klein. Der Umfang der Stichprobe sowie die nicht durchgängige 

Varianzhomogenität sprachen gegen die ausschließliche Durchführung parametrische 

Testungen. Bei einer Replikation der Studie sollte daher eine größere Stichprobe 

gewählt werden. Da sich die Promotionsstudie jedoch als explorative Studie zur 

weiteren Hypothesengenerierung versteht, entspricht der Stichprobenumfang der 

gängigen Praxis.  

Ein ausgewogenes Geschlechterverhältnis der Probanden wäre der 

Repräsentativität ebenfalls zuträglich. In der vorliegenden Studie machen die 

männlichen Tinnituspatienten mehr als zwei Drittel der Untersuchungsgruppe aus. Auch 

die beiden Versuchsgruppen sind hinsichtlich der Geschlechterverteilung nicht optimal 

vergleichbar. In der Verum-Bedingung finden sich nur 20 % weibliche Probanden, 

während dieses Geschlecht 40 % der Placebo-Bedingung ausmacht. Durch den Drop-

Out von vier Probanden nähern sich die prozentualen Geschlechterverhältnisse bei der 

Betrachtung der zweiten EEG-Messungen an (25 % Frauen und 75 % Männer in der 

Verum-Gruppe gegenüber 37,5 % Fauen und 62,5 % Männer in der Placebo-Gruppe), 

weisen jedoch nach wie vor keine ausreichende Vergleichbarkeit auf. Auch auf die 

Vergleichbarkeit und Repräsentativität hinsichtlich der Altersverteilung sollte bei 

weiteren Studien stärker beachtet werden. 

Die geschilderten Aspekte weisen auf eine fehlende Strukturgleichheit zwischen 

den beiden Gruppen hin, welche eine Voraussetzung für die Vergleichbarkeit zweier 

Versuchsgruppen darstellt. Dies muss bei der Interpretation der diskutierten Ergebnisse 

berücksichtigt werden. In kommenden Studien sollte diesem Aspekt mehr Beachtung 

geschenkt werden. 

 



 

Christine Bremer                                                        117 
 

 
In diversen Untersuchungen zeigte sich, dass die Erfolge bei der Verwendung 

von rTMS als Behandlungsmethode - wie auch bei tDCS oder Neurofeedback - zeitlich 

begrenzt sind. Demgegenüber könnten letztgenannte Methoden hinsichtlich der 

Nachhaltigkeit ihrer Effekte im Vorteil sein, die über Implantate dauerhaft stimulieren 

können. Hierzu sollte die Wirkung der ACS näher überprüft werden. 

Positiv ist zu bewerten, dass mit dem EEG objektive Veränderungsmessungen 

möglich sind, wohingegen Ergebnisse von Fragebögen wie dem TF und dem THI stets 

vom subjektiven Erleben der Probanden abhängig sind. Letztere sind damit deutlich an-

fälliger für Placebo-Effekte. Dennoch sollte auch in zukünftigen Studien die subjektive 

Einschätzung des Ohrgeräusches Teil des Studiendesigns sein, da bei Tinnitus als sub-

jektiv wahrgenommenes Phänomen die von den Betroffenen empfundene Belastung ei-

ne große Relevanz hat.  

Möglicherweise wäre eine Kombination von rTMS und Psychotherapie zur 

Behandlung des chronischen Tinnitus sinnvoll, um die Nachhaltigkeit der Effekte zu 

gewährleisten. Bisher konnte mit rTMS die Geräuschwahrnehmung nur vorübergehend 

reduziert werden. Kombiniert mit verhaltenstherapeutischer Psychotherapie könnten 

diese Effekte möglicherweise längerfristig stabilisiert werden. Durch die rTMS könnten 

neuroplastische Veränderungen erzeugt werden. Mit dem psychotherapeutischen 

Ansatz wäre zusätzlich eine Veränderung der subjektiven Bewertung des 

Ohrgeräusches sowie eine Habituation an den Tinnitus möglich. 
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8 ZUSAMMENFASSUNG 

Hintergrund: Chronischer Tinnitus beschreibt eine mindestens sechs Monate 

andauernde, konstante Wahrnehmung eines Geräusches ohne akustisches Korrelat. 

Funktionell-bildgebende und neurophysiologische Verfahren weisen auf neuroplastische 

Veränderungen u. a. im primär-auditorischen Kortex hin. EEG-Untersuchungen konnten 

eine erhöhte Gamma- sowie eine verringerte Alphabandaktivität feststellen. Ereignis-

korrelierte Potentiale zeigten niedrigere Amplituden und größere Latenzen. Bisherige 

Behandlungsansätze konnten keine zufriedenstellenden Erfolge verzeichnen. Die repeti-

tive transkranielle Magnetstimulation (rTMS) hat sich als wirksames Verfahren zur 

Veränderung neuronaler Aktivität durch Induktion von Neuroplastizität etabliert und 

wurde bereits zur Behandlung von Tinnitus angewendet.  

Ziel der vorliegenden Promotionsstudie war es, die Überlegenheit der rTMS 

gegenüber einer Scheinbehandlung nachzuweisen. Zudem sollten Unterschiede 

zwischen chronischen Tinnituspatienten und einer gesunden Kontrollgruppe hinsichtlich 

der neurophysiologischen Aktivität im Ruhe-EEG und in den ereigniskorrelierten 

Potentialen N1, P2 und P300 aufgezeigt werden.  

Methode: In die Stichprobe wurden 40 Studienteilnehmer eingeschlossen, 20 

Probanden mit chronischem Tinnitus und 20 Probanden in der Kontrollgruppe. Die 

Tinnituspatienten wurden einer Verum- und einer Placebo-Bedingung zugeordnet.        

1) Über den Vergleich des Ruhe-EEGs und der ereigniskorrelierten Potentiale N1, P2 

und P300 wurden Unterschiede zwischen den Tinnituspatienten und der Kontrollgruppe 

ermittelt.  

Nach einer zweiwöchigen Behandlung mit links-temporaler rTMS (mit 1 Hz-

Frequenz, 2000 Stimuli pro Sitzung) erfolgte der Vergleich von Verum- und Placebo-

Gruppe hinsichtlich Veränderungen in 2a) Ruhe-EEG, 2b) N1-, P2- und P300-

Amplituden und Latenzen sowie 2c) der subjektiv empfundenen Tinnitusbelastung, be-

stimmt mit dem Tinnitus-Fragebogen (TF) und dem Tinnitus-Handicap-Inventory (THI).  

Ergebnisse: 1) Im Ruhe-EEG zeigte sich bei der Tinnitusgruppe eine verstärkte 

absolute Gammagesamtaktivität in frontalen (p = .024) und zentralen (p = .029) Berei-

chen. Zentral (p = 0.004) und parietal (p = 0.019) ließen sich längere P300-Latenzen 

feststellen. Frontal (p = 0.044) konnten niedrigere P300-Amplituden ermittelt werden. 

2a) In der EEG Ruhe-Aktivität zeigte sich nach rTMS frontal (p = 0.046) sowie rechts-
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temporal (p = 0.028) eine Verringerung der (High-) Gammabandaktivität. Auch konnte 

eine frontale Zunahme der Alphabandfrequenzen nachgewiesen werden (p = .038).   

2b) Zentral zeigte sich eine Verkürzung der P2-Latenz (p = 0.058). Die Mittelwertver-

gleiche der N1 und P300 lassen Effekte der rTMS vermuten. 

Eine Überlegenheit der rTMS gegenüber der Placebo-Behandlung konnte nicht 

eindeutig festgestellt werden.  

2c) Hinsichtlich der Reduktion der subjektiv empfundenen Tinnitusbelastung zeig-

te sich eine prozentuale Verringerung der mittleren THI-Gesamtwerte in der Verum- und 

Placebo-Gruppe.  

Diskussion: Die Ergebnisse lassen eine Normalisierung der EEG-Ruheaktivität 

und der ereigniskorrelierten Potentiale durch rTMS möglich erscheinen. Die reduzierten 

Gammaband- und verstärkten Alphaband-Oszillationen lassen eine neuroplastische 

Reorganisation durch rTMS vermuten. Möglicherweise kann auf diese Weise die korti-

kale Hemmung wiederhergestellt und Tinnitus reduziert werden.  

Die nachgewiesenen Placebo-Effekte bestätigen die Befunde anderer Studien zu 

Placebo-Effekten. Es bedarf jedoch einer Replikation der hier verwendeten 

Studienbedingungen mit einer größeren Stichprobe, um die Überlegenheit der Verum-

Behandlung zu belegen und jegliche statistisch signifikanten Effekte der rTMS 

aufzudecken. 
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ANHANG 

Tabelle 25: Stichprobenumfänge, Mittelwerte und der einzelnen Versuchsgruppen für die absolute Power im Ruhe-EEG (μV²) frontal (für die Elektroden FP1, FP2, F3, F4, 

F7, F8, Fz), zentral (für die Elektroden C3, C4, Cz, T3, T4) und posterior (für die Elektroden T5, T6, P3, P4, Pz, O1, O2); prä = vor der Behandlung, post = nach der 

Behandlung. 

      Delta  Theta  Alpha  Alpha 1  Alpha 2 

  (1.0 - 4.0 Hz) (4.0 - 8.0 Hz) (8.0 - 12.0 Hz) (8.0 - 10.0 Hz)  (10.0 - 12.0 Hz) 

N M SD M SD M SD M SD M SD 

frontal   Verum prä 6 4.074 0.990 1.827 0.295 4.324 2.264 1.613 0.548 2.711 1.768 

(FP1, FP2, F3, F4, F7, F8, Fz) Placebo prä 8 2.907 1.705 1.606 1.056 2.684 2.854 1.465 1.798 1.219 1.150 

Verum post 6 4.977 2.850 1.800 0.642 4.822 3.819 1.999 1.710 2.824 2.241 

Placebo post 8 3.832 1.552 1.748 0.904 2.974 3.096 1.539 1.786 1.435 1.404 

Tinnituspatienten prä 14 3.490 1.347 1.717 0.676 3.504 2.559 1.539 1.173 1.965 1.459 

Kontrollgruppe 20 3.121 0.797 1.799 0.629 3.174 2.296 1.847 1.716 1.329 0.740 

  Gesamtstichprobe 62 3.733 1.540 1.749 0.700 3.581 2.815 1.667 1.455 1.914 1.460 

zentral  Verum prä 6 2.193 0.437 1.376 0.276 3.257 1.033 1.317 0.375 1.940 0.761 

(C3, C4, Cz, T3, T4) Placebo prä 8 1.674 0.763 1.163 0.619 2.330 2.255 1.206 1.289 1.124 1.049 

Verum post 6 2.272 0.944 1.415 0.623 3.854 2.432 1.666 1.213 2.188 1.366 

Placebo post 8 1.895 0.809 1.252 0.658 2.794 2.999 1.408 1.636 1.387 1.440 

Tinnituspatienten prä 14 1.933 0.600 1.270 0.448 2.793 1.644 1.261 0.832 1.532 0.905 

Kontrollgruppe 20 2.215 0.776 1.616 0.738 2.849 2.056 1.572 1.389 1.277 0.751 

Gesamtstichprobe 62 2.030 0.721 1.349 0.560 2.979 2.070 1.405 1.123 1.575 1.045 

posterior  Verum prä 6 3.179 0.355 2.097 0.323 11.864 6.535 4.297 2.246 7.567 4.534 

(T5, T6, P3, P4, Pz, O1, O2) Placebo prä 8 2.480 1.305 1.686 1.088 6.907 10.335 3.861 6.800 3.046 3.815 

Verum post 6 3.090 1.282 2.192 1.223 12.986 9.211 4.655 3.517 8.331 6.339 

Placebo post 8 2.867 1.728 1.857 1.421 8.726 14.284 4.693 8.815 4.032 5.757 

Tinnituspatienten prä 14 2.829 0.830 1.891 0.706 9.386 8.435 4.079 4.523 5.306 4.175 

Kontrollgruppe 20 2.465 0.867 2.218 1.279 7.478 7.593 4.510 5.731 2.968 2.263 

  Gesamtstichprobe 62 2.818 1.061 1.990 1.007 9.558 9.399 4.349 5.272 5.208 4.480 
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Fortsetzung von Tabelle 25. 

      Beta  Beta 1  Beta 2  Beta 3  High Beta 

  (12.0 - 25.0 Hz) (12.0 - 15.0 Hz) (15.0 - 18.0 Hz) (18.0 - 25.0 Hz)  (25.0 - 30.0 Hz) 

N M SD M SD M SD M SD M SD 

frontal   Verum prä 6 3.808 2.233 1.077 0.527 0.869 0.586 1.861 1.152 0.680 0.368 

(FP1, FP2, F3, F4, F7, F8, Fz) Placebo prä 8 2.489 1.280 0.815 0.584 0.512 0.254 1.163 0.531 0.555 0.255 

Verum post 6 3.497 2.590 1.137 0.673 0.765 0.625 1.595 1.371 0.541 0.326 

Placebo post 8 2.550 1.047 0.802 0.442 0.549 0.223 1.199 0.451 0.573 0.219 

Tinnituspatienten prä 14 3.149 1.757 0.946 0.556 0.690 0.420 1.512 0.842 0.617 0.311 

Kontrollgruppe 20 3.364 1.499 1.067 0.552 0.769 0.342 1.529 0.724 0.715 0.303 

  Gesamtstichprobe 62 3.143 1.734 0.974 0.555 0.692 0.408 1.477 0.845 0.613 0.297 

zentral  Verum prä 6 4.374 2.605 1.276 0.699 1.118 0.811 1.980 1.208 0.681 0.405 

(C3, C4, Cz, T3, T4) Placebo prä 8 4.015 2.482 1.034 0.679 1.026 0.933 1.955 1.250 0.854 0.742 

Verum post 6 4.911 3.656 1.366 0.983 1.138 1.019 2.406 1.985 0.857 0.932 

Placebo post 8 3.003 1.201 0.962 0.519 0.682 0.274 1.359 0.509 0.634 0.326 

Tinnituspatienten prä 14 4.194 2.544 1.155 0.689 1.072 0.872 1.967 1.229 0.767 0.573 

Kontrollgruppe 20 3.725 1.962 1.155 0.636 0.944 0.540 1.628 0.919 0.647 0.345 

Gesamtstichprobe 62 4.037 2.408 1.158 0.701 0.997 0.741 1.882 1.184 0.740 0.554 

posterior  Verum prä 6 6.055 4.165 2.300 1.351 1.544 1.312 2.212 1.600 0.456 0.215 

(T5, T6, P3, P4, Pz, O1, O2) Placebo prä 8 3.250 2.027 1.386 1.160 0.683 0.372 1.181 0.584 0.382 0.192 

Verum post 6 7.162 6.322 2.947 2.215 1.732 1.788 2.483 2.500 0.424 0.276 

Placebo post 8 3.323 2.036 1.309 1.018 0.730 0.371 1.284 0.671 0.377 0.172 

Tinnituspatienten prä 14 4.653 3.096 1.843 1.256 1.113 0.842 1.697 1.092 0.419 0.203 

Kontrollgruppe 20 4.843 2.504 1.816 0.914 1.182 0.706 1.846 1.215 0.498 0.253 

  Gesamtstichprobe 62 4.881 3.358 1.933 1.319 1.164 0.899 1.784 1.277 0.426 0.218 
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Fortsetzung von Tabelle 25. 

      Gamma  Gamma 1  Gamma 2  High Gamma  

  (30.0 - 40.0 Hz) (30.0 - 35.0 Hz) (35.0 - 40.0 Hz) (40.0 - 50.0 Hz) 

N M SD M SD M SD M SD 

frontal   Verum prä 6 0.858 0.670 0.483 0.345 0.375 0.333 0.459 0.405 

(FP1, FP2, F3, F4, F7, F8, Fz) Placebo prä 8 0.537 0.245 0.339 0.177 0.198 0.070 0.204 0.056 

Verum post 6 0.595 0.441 0.366 0.273 0.229 0.169 0.263 0.185 

Placebo post 8 0.526 0.219 0.316 0.129 0.210 0.091 0.255 0.099 

Tinnituspatienten prä 14 0.698 0.457 0.411 0.261 0.287 0.201 0.332 0.230 

Kontrollgruppe 20 0.767 0.387 0.468 0.228 0.299 0.166 0.330 0.185 

  Gesamtstichprobe 62 0.664 0.403 0.397 0.235 0.266 0.172 0.307 0.193 

zentral  Verum prä 6 0.675 0.612 0.399 0.317 0.277 0.304 0.337 0.397 

(C3, C4, Cz, T3, T4) Placebo prä 8 1.338 1.856 0.748 1.070 0.590 0.794 0.660 0.876 

Verum post 6 0.747 0.849 0.444 0.477 0.303 0.374 0.354 0.475 

Placebo post 8 0.712 0.508 0.406 0.272 0.306 0.242 0.336 0.283 

Tinnituspatienten prä 14 1.007 1.234 0.573 0.694 0.433 0.549 0.498 0.637 

Kontrollgruppe 20 0.647 0.427 0.387 0.232 0.272 0.225 0.298 0.269 

Gesamtstichprobe 62 0.854 0.915 0.493 0.510 0.364 0.415 0.414 0.489 

posterior  Verum prä 6 0.386 0.103 0.240 0.070 0.145 0.039 0.149 0.046 

(T5, T6, P3, P4, Pz, O1, O2) Placebo prä 8 0.336 0.157 0.211 0.106 0.125 0.052 0.117 0.041 

Verum post 6 0.333 0.164 0.217 0.114 0.116 0.051 0.117 0.043 

Placebo post 8 0.316 0.140 0.199 0.094 0.117 0.049 0.117 0.042 

Tinnituspatienten prä 14 0.361 0.130 0.226 0.088 0.135 0.046 0.133 0.043 

Kontrollgruppe 20 0.407 0.214 0.255 0.121 0.152 0.096 0.142 0.071 

  Gesamtstichprobe 62 0.356 0.151 0.225 0.099 0.132 0.056 0.129 0.047 
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Tabelle 26: Stichprobenumfänge, Minimal- und Maximalwerte, Mittelwerte, Standardabweichungen und 

Standardfehler der einzelnen Versuchsgruppen für die N1-Amplituden (μV) und -Latenzen (ms) der Elekt-

roden Fz, Pz und Cz; prä = vor der Behandlung, post = nach der Behandlung. 

    N Min. Max. Mittelwert 
Standard-

abweichung 
Standard-

fehler 

Fz-Latenz Verum prä 9 84 124 96.00   12.490 4.163 

Placebo prä 9 88 128 104.00   14.000 4.667 

Verum post 7 80 124 100.57   17.653 6.672 

Placebo post 8 80 128 103.00   16.665 5.892 

Tinnituspatienten prä 18 84 128 100.00   13.513 3.185 

Kontrollgruppe 20 76 140 104.60   18.548 4.148 

  Gesamtstichprobe 71 76 140 101.69   15.516 1.841 

Fz-Amplitude Verum prä 9 -8.199 -1.831 -4.594 2.122 0.707 

Placebo prä 9 -7.590 -2.020 -4.382 2.138 0.713 

Verum post 7 -10.775 -2.540 -5.483 2.604 0.984 

Placebo post 8 -7.584 -1.595 -4.114 2.264 0.801 

Tinnituspatienten prä 18 -8.199 -1.831 -4.488 2.069 0.488 

Kontrollgruppe 20 -13.210 -2.795 -6.248 2.946 0.659 

Gesamtstichprobe 71 -13.210 -1.595 -5.039 2.494 0.296 

Pz-Latenz Verum prä 9 80 148 105.33   25.377 8.459 

Placebo prä 9 72 116 95.11   11.274 3.758 

Verum post 7 92 112 100.00   8.327 3.147 

Placebo post 8 80 112 94.50   9.055 3.202 

Tinnituspatienten prä 18 72 148 100.22   19.762 4.658 

Kontrollgruppe 20 88 112 97.60   7.155 1.600 

  Gesamtstichprobe 71 72 148 98.82   14.881 1.766 

Pz-Amplitude Verum prä 9 -4.881 -1.015 -2.299 1.225 0.408 

Placebo prä 9 -6.637 -1.371 -3.116 1.775 0.592 

Verum post 7 -5.723 -1.025 -2.863 1.573 0.595 

Placebo post 8 -5.679 -1.326 -2.968 1.506 0.533 

Tinnituspatienten prä 18 -6.637 -1.015 -2.707 1.538 0.362 

Kontrollgruppe 20 -7.610 0.108 -3.433 2.304 0.515 

Gesamtstichprobe 71 -7.610 0.108 -2.956 1.768 0.210 

Cz-Latenz Verum prä 9 84 136 100.44   16.303 5.434 

Placebo prä 9 92 116 103.11   7.944 2.648 

Verum post 7 88 132 103.43   14.501 5.481 

Placebo post 8 92 116 101.50   10.240 3.620 

Tinnituspatienten prä 18 84 136 101.78   12.516 2.950 

Kontrollgruppe 20 84 136 103.20   14.602 3.265 

  Gesamtstichprobe 71 84 136 102.31   12.769 1.515 

Cz-Amplitude Verum prä 9 -7.238 -2.195 -5.508 1.938 0.646 

Placebo prä 9 -9.494 -2.083 -5.394 2.343 0.781 

Verum post 7 -9.143 -3.026 -6.205 2.072 0.783 

Placebo post 8 -9.133 -3.305 -5.689 1.853 0.655 

Tinnituspatienten prä 18 -9.494 -2.083 -5.451 2.087 0.492 

Kontrollgruppe 20 -15.464 -1.523 -7.171 3.466 0.775 

  Gesamtstichprobe 71 -15.464 -1.523 -6.037 2.578 0.306 
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Tabelle 27: Signifikanten Ergebnisse des Levene-Tests zur Varianzhomogenität für die Tinnituspatienten 

(N = 15) vor der Behandlung. 

Frequenzband Elektrode Levene Statistic df 1 df 2 α = 5% 

Delta (1.0-4.0 Hz)  F3 6.465 1 12 0.026 

 C3 8.780 1 12 0.012 

 P3 16.751 1 12 0.001 

 P4 33.241 1 12 0.000 

 T5 6.960 1 12 0.022 

Theta (4.0-8.0  Hz) C3 5.195 1 12 0.042 

P4 5.217 1 12 0.041 

  Pz 6.198 1 12 0.028 

Beta (12.0-25.0 Hz) FP2 5.587 1 12 0.036 

F4 6.326 1 12 0.027 

C4 6.203 1 12 0.028 

O1 7.393 1 12 0.019 

T5 6.437 1 12 0.026 

T6 9.383 1 12 0.010 

Pz 5.387 1 12 0.039 

Beta 2 (15.0-18.0 Hz) FP1 5.510 1 12 0.037 

FP2 7.672 1 12 0.017 

F4 6.470 1 12 0.026 

C3 6.325 1 12 0.027 

C4 10.955 1 12 0.006 

P3 8.491 1 12 0.013 

P4 13.440 1 12 0.003 

O1 19.509 1 12 0.001 

O2 6.948 1 12 0.022 

F7 10.553 1 12 0.007 

T5 9.873 1 12 0.008 

T6 14.622 1 12 0.002 

Fz 9.716 1 12 0.009 

Cz 9.697 1 12 0.009 

  Pz 15.100 1 12 0.002 

Beta 3 (18.0-25.0 Hz) FP2 8.419 1 12 0.013 

F4 9.247 1 12 0.010 

C3 4.619 1 12 0.053 

C4 7.036 1 12 0.021 

P3 7.702 1 12 0.017 

P4 8.462 1 12 0.013 

O1 6.591 1 12 0.025 

O2 5.914 1 12 0.032 

F7 6.110 1 12 0.029 

T3 8.248 1 12 0.014 

T5 5.499 1 12 0.037 

T6 13.823 1 12 0.003 

Fz 4.880 1 12 0.047 
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Fortsetzung von Tabelle 27 

Frequenzband Elektrode Levene Statistic df 1 df 2 α = 5% 

Beta 3 (18.0-25.0 Hz) Pz 12.871 1 12 0.004 

High Beta (25.0-30.0 Hz) C4 5.666 1 12 0.035 

F7 6.467 1 12 0.026 

  Pz 6.143 1 12 0.029 

Gamma (30.0-40.0 Hz) C3 4.901 1 12 0.047 

F7 7.187 1 12 0.020 

F8 6.451 1 12 0.026 

T3 4.842 1 12 0.048 

Gamma 1 (30.0-35.0 Hz) F7 6.725 1 12 0.024 

  FP2 4.794 1 12 0.049 

Gamma 2 (35.0-40.0 Hz) F7 7.487 1 12 0.018 

F8 10.269 1 12 0.008 

T3 6.135 1 12 0.029 

T5 6.596 1 12 0.025 

High Gamma (40.0-50.0 Hz) FP2 9.601 1 12 0.009 

C4 5.374 1 12 0.039 

F7 7.911 1 12 0.016 

F8 16.734 1 12 0.001 

T3 7.258 1 12 0.020 

  T5 12.784 1 12 0.004 
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Tabelle 28: Ergebnisse des Mann-Whitney-U-Tests für die Tinnituspatienten (n = 18) vor der Behandlung 

und die gesunde Kontrollgruppe (n = 20) hinsichtlich der Mittelwerte der Amplituden und Latenzen an den 

Elektroden Fz, Pz und Cz im N1. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Mann-Whitney U 155.5 120 171 146 176.5 121 

Z -0.719 -1.754 -0.268 -0.994 -0.104 -1.725 

α = 5 % 0.472 0.079 0.789 0.320 0.917 0.085 

 

Tabelle 29: Ergebnisse des Wilcoxon Rangsummen-Tests für die Verum-Gruppe nach der Behandlung 

(n = 7) hinsichtlich der Mittelwerte der Amplituden und Latenzen an den Elektroden Fz, Pz und Cz im N1. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Z -1.000 -0.169 -0.512 -0.845 -0.647 -0.169 

α = 5 % 0.317 0.866 0.609 0.398 0.518 0.866 

 

Tabelle 30: Ergebnisse des Wilcoxon Rangsummen-Tests für die Placebo-Gruppe nach der Behandlung 

(n = 8) hinsichtlich der Mittelwerte der Amplituden und Latenzen an den Elektroden Fz, Pz und Cz im N1. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Z -0.276 -0.280 -1.228 -0.420 -1.518 -0.980 

α = 5% 0.783 0.779 0.219 0.674 0.129 0.327 

 

Tabelle 31: Ergebnisse des Mann-Whitney-U-Tests für die Verum- und Placebo-Gruppe (n = 7 und n = 8) 

nach der Behandlung hinsichtlich der Mittelwerte der Amplituden und Latenzen an den Elektroden Fz, Pz 

und Cz im N1. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Mann-Whitney U 25.5 20 16 26 26.5 25 

Z -0.292 -0.926 -1.447 -0.231 -0.180 -0.347 

α = 5 % 0.770 0.355 0.148 0.817 0.857 0.728 
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Tabelle 32: Stichprobenumfänge, Minimal- und Maximalwerte, Mittelwerte, Standardabweichungen und 

Standardfehler der einzelnen Versuchsgruppen für die P2-Amplituden (μV) und -Latenzen (ms) der Elekt-

roden Fz, Pz und Cz; prä = vor der Behandlung, post = nach der Behandlung. 

    N Min. Max. Mittelwert
Standard-

abweichung 
Standard-

fehler 

Fz-Latenz Verum prä 9 156 216 182.67 19.183 6.394 

Placebo prä 9 164 184 175.56 6.146 2.049 

Verum post 7 160 216 177.71 19.163 7.243 

Placebo post 8 176 204 183.50 9.181 3.246 

Tinnituspatienten prä 18 156 216 179.11 14.295 3.369 

Kontrollgruppe 20 132 216 179.00 21.633 4.837 

  Gesamtstichprobe 71 132 216 179.44 16.385 1.945 

Fz-Amplitude Verum prä 9 0.101 4.642 1.899 1.711 0.570 

Placebo prä 9 -0.653 6.088 2.924 2.374 0.791 

Verum post 7 -4.900 3.379 1.171 2.934 1.109 

Placebo post 8 -2.396 6.231 2.735 2.952 1.044 

Tinnituspatienten prä 18 -0.653 6.088 2.411 2.075 0.489 

Kontrollgruppe 20 -3.198 10.240 2.589 3.892 0.870 

Gesamtstichprobe 71 -4.900 10.240 2.376 2.826 0.335 

Pz-Latenz Verum prä 9 132 216 176.44 28.597 9.532 

Placebo prä 9 132 216 169.78 34.878 11.626 

Verum post 7 132 216 177.14 34.849 13.172 

Placebo post 8 132 216 167.50 31.163 11.018 

Tinnituspatienten prä 18 132 216 173.11 31.129 7.337 

Kontrollgruppe 20 132 216 185.00 30.872 6.903 

  Gesamtstichprobe 71 132 216 176.23 31.086 3.689 

Pz-Amplitude Verum prä 9 -2.251 3.463 1.344 1.889 0.630 

Placebo prä 9 -2.037 3.579 1.585 1.777 0.592 

Verum post 7 -2.301 3.773 0.960 2.152 0.813 

Placebo post 8 -1.698 3.149 0.870 1.793 0.634 

Tinnituspatienten prä 18 -2.251 3.579 1.464 1.784 0.420 

Kontrollgruppe 20 -3.213 12.684 1.952 3.154 0.705 

Gesamtstichprobe 71 -3.213 12.684 1.485 2.258 0.268 

Cz-Latenz Verum prä 9 132 216 168.44 29.288 9.763 

Placebo prä 9 148 216 169.33 20.000 6.667 

Verum post 7 132 168 152.57 12.528 4.735 

Placebo post 8 144 216 171.00 21.354 7.550 

Tinnituspatienten prä 18 132 216 168.89 24.333 5.735 

Kontrollgruppe 20 132 216 177.20 25.034 5.598 

  Gesamtstichprobe 71 132 216 169.86 23.721 2.815 

Cz-Amplitude Verum prä 9 -1.797 3.677 1.122 1.843 0.614 

Placebo prä 9 -2.183 4.050 1.046 2.224 0.741 

Verum post 7 -6.671 1.722 -0.464 3.091 1.168 

Placebo post 8 -2.068 2.992 0.363 2.268 0.802 

Tinnituspatienten prä 18 -2.183 4.050 1.084 1.982 0.467 

Kontrollgruppe 20 -2.760 9.118 1.871 3.421 0.765 

  Gesamtstichprobe 71 -6.671 9.118 1.072 2.626 0.312 
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Tabelle 33: Ergebnisse des Mann-Whitney-U-Tests für die Tinnituspatienten (n = 18) vor der Behandlung 

und die gesunde Kontrollgruppe (n = 20) hinsichtlich der Mittelwerte der Amplituden und Laten-

zen an den Elektroden Fz, Pz und Cz im P2. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Mann-Whitney U 175.5 174 137.5 180 143.5 156 

Z -0.132 -0.175 -1.255 0.000 -1.073 -0.702 

α = 5 % 0.895 0.861 0.210 1.000 0.283 0.483 

 

Tabelle 34: Ergebnisse des Wilcoxon Rangsummen-Tests für die Verum-Gruppe nach der Behandlung 

(n = 7) hinsichtlich der Mittelwerte der Amplituden und Latenzen an den Elektroden Fz, Pz und Cz im P2. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Z -0.604 -0.676 -0.632 -0.507 -1.892 -1.352 

α = 5 % 0.546 0.499 0.527 0.612 0.058 0.176 

 

Tabelle 35: Ergebnisse des Wilcoxon Rangsummen-Tests für die Placebo-Gruppe nach der Behandlung 

(n = 8) hinsichtlich der Mittelwerte der Amplituden und Latenzen an den Elektroden Fz, Pz und Cz im P2. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Z -1.355 -0.280 -0.848 -1.540 -0.557 -1.192 

α = 5 % 0.176 0.779 0.396 0.123 0.577 0.233 

 

Tabelle 36: Ergebnisse des Mann-Whitney-U-Tests für die Verum- und Placebo-Gruppe (n = 7 und n = 8) 

nach der Behandlung hinsichtlich der Mittelwerte der Amplituden und Latenzen an den Elektro-

den Fz, Pz und Cz im P2. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Mann-Whitney U 15.5 20 23.5 27 11.5 22 

Z -1.458 -0.926 -0.523 -0.116 -1.916 -0.694 

α = 5 % 0.145 0.355 0.601 0.908 0.055 0.487 
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Tabelle 37: Stichprobenumfänge, Minimal- und Maximalwerte, Mittelwerte, Standardabweichungen und 

Standardfehler der einzelnen Versuchsgruppen für die P300-Amplituden (μV) und -Latenzen (ms) der 

Elektroden Fz, Pz und Cz; prä = vor der Behandlung, post = nach der Behandlung. 

    N Min. - Max. Mittelwert 
Standard-

abweichung 
Standard-

fehler 

Fz-Latenz Verum prä 9 252 - 348 318.22 29.537 9.846 

Placebo prä 9 256 - 492 345.33 77.227 25.742 

Verum post 8 316 - 354 330.75 11.659 4.122 

Placebo post 8 252 - 480 331.00 66.065 23.357 

Tinnituspatienten prä 18 252 - 492 331.78 58.41 13.767 

Kontrollgruppe 20 252 - 344 306.40 27.937 6.247 

  Gesamtstichprobe 54 252 - 492 322.11 46.006 6.261 

Fz-Amplitude Verum prä 9 0.712 - 11.839 4.516 3.122 1.041 

Placebo prä 9 0.487 - 12.092 4.296 3.541 1.180 

Verum post 8 1.172 - 5.602 4.226 1.442 0.510 

Placebo post 8 1.092 - 10.787 4.330 3.320 1.174 

Tinnituspatienten prä 18  -0.497 - 12.092 4.351 3.318 0.782 

Kontrollgruppe 20 0.775 - 10.395 6.091 2.894 0.647 

Gesamtstichprobe 54 0.487 - 12.092 4.992 2.971 0.404 

Pz-Latenz Verum prä 9 256 - 408 330.22 50.284 16.761 

Placebo prä 9 300 - 496 389.33 60.729 20.243 

Verum post 8 268 - 372 334.88 31.602 11.173 

Placebo post 8 292 - 436 364.50 48.683 17.212 

Tinnituspatienten prä 18 256 - 496 359.78 62.051 14.626 

Kontrollgruppe 20 280 - 452 322.00 38.268 8.557 

  Gesamtstichprobe 54 256 - 496 342.80 50.464 6.867 

Pz-Amplitude Verum prä 9 4.908 - 11.441 7.753 1.949 0.650 

Placebo prä 9 1.324 - 9.604 5.278 2.986 0.995 

Verum post 8 3.687 - 9.068 7.036 1.868 0.660 

Placebo post 8 1.761 - 10.699 6.199 2.547 0.900 

Tinnituspatienten prä 18 1.325 - 11.441 6.516 2.758 0.650 

Kontrollgruppe 20 2.403 - 14.307 7.433 2.655 0.594 

Gesamtstichprobe 54 1.324 - 14.307 6.885 2.553 0.347 

Cz-Latenz Verum prä 9 256 - 352 324.00 28.071 9.357 

Placebo prä 9 268 - 496 408.44 91.748 30.583 

Verum post 8 268 - 388 333.38 32.763 11.583 

Placebo post 8 288 - 492 408.00 84.068 29.723 

Tinnituspatienten prä 18 256 - 496 366.22 78.865 18.589 

Kontrollgruppe 20 252 - 352 308.40 29.591 6.617 

  Gesamtstichprobe 54 252 - 496 346.13 68.27 9.290 

Cz-Amplitude Verum prä 9 3.975 - 10.605 6.449 1.957 0.652 

Placebo prä 9 0.373 - 10.589 3.571 3.507 1.169 

Verum post 8 5.068 - 10.714 6.921 1.763 0.623 

Placebo post 8 0.317 - 8.273 3.759 2.956 1.045 

Tinnituspatienten prä 18 -0.573 - 10.605 4.905 3.299 0.778 

Kontrollgruppe 20 0.003 - 13.864 6.639 3.855 0.862 

  Gesamtstichprobe 54 -0.317 - 13.864 5.711 3.364 0.458 
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Tabelle 38: Ergebnisse des Mann-Whitney-U-Tests für die Tinnituspatienten (n = 18) vor der Behandlung 

und die gesunde Kontrollgruppe (n = 20) hinsichtlich der Mittelwerte der Amplituden und Latenzen an den 

Elektroden Fz, Pz und Cz im P300. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Mann-Whitney U 126.5 111 100 153 83 136 

Z -1.567 -2.017 -2.341 -0.789 -2.844 -1.286 

α = 5 % 0.117 0.044 0.019 0.430 0.004 0.198 

 

Tabelle 39: Ergebnisse des Wilcoxon Rangsummen-Tests für die Verum-Gruppe nach der Behandlung 

(n = 7) hinsichtlich der Mittelwerte der Amplituden und Latenzen an den Elektroden Fz, Pz und Cz im 

P300. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Z -0.271 -0.507 -0.933 -0.507 -1.153 -0.676 

α = 5 % 0.786 0.612 0.351 0.612 0.249 0.499 

 

Tabelle 40: Ergebnisse des Wilcoxon Rangsummen-Tests für die Placebo-Gruppe nach der Behandlung 

(n = 8) hinsichtlich der Mittelwerte der Amplituden und Latenzen an den Elektroden Fz, Pz und Cz im 

P300. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Z -1.961 -0.560 -1.014 -0.840 -0.141 -0.280 

α = 5 % 0.050 0.575 0.310 0.401 0.888 0.779 

 

Tabelle 41: Ergebnisse des Mann-Whitney-U-Tests für die Verum- und Placebo-Gruppe (n = 8 und n = 8) 

nach der Behandlung hinsichtlich der Mittelwerte der Amplituden und Latenzen an den Elektroden Fz, Pz 

und Cz im P300. 

Fz-Latenz Fz-Amplitude Pz-Latenz Pz-Amplitude Cz-Latenz Cz-Amplitude 

Mann-Whitney U 22.5 26 17 21 17 9 

Z -0.644 -0.231 -1.274 -0.810 -1.274 -2.199 

α = 5 % 0.520 0.817 0.203 0.418 0.203 0.028 
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Tabelle 42: Mittelwerte, Standardabweichungen und Ergebnisse des Friedman-Tests der Verum-Gruppe (n = 9) der einzelnen Skalen des TF für die einzelnen Messzeitpunkte. 

  

Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3 

Friedman-Test 

  (Bl – FU 3; 

  α = 5 %) 

  M SD M SD M SD M SD M SD M SD X2 Df p 

emotionale Belastung 11.56 5.27 10.89 5.71 10.78 6.10 10.44 6.73 10.89 7.64 11.33 7.25 3.521 5 .620 

kognitive Belastung 8.33 3.87 8.22 3.93 8.22 3.87 7.33 3.87 8.00 4.18 8.22 3.35 4.649 5 .460 

Penetranz des Tinnitus‘ 10.56 3.24 10.44 2.96 10.56 2.96 10.56 2.83 9.67 3.24 9.89 3.66 6.292 5 .279 

Hörprobleme 6.11 4.59 5.89 4.76 5.67 4.74 5.56 4.67 5.33 4.42 5.22 4.55 4.145 5 .529 

Schlafstörungen 3.11 3.18 3.44 3.40 3.22 3.11 3.33 3.16 2.78 3.03 2.89 2.80 2.484 5 .779 

somatische Beschwerden 1.11 1.36 1.11 1.54 1.33 2.06 1.22 1.48 1.44 2.01 1.44 2.01 4.286 5 .509 

 

Tabelle 43:Mittelwerte, Standardabweichungen und Ergebnisse des Friedman-Tests der Placebo-Gruppe (n = 10) der einzelnen Skalen des TF für die einzelnen Messzeitpunkte. 

  

Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3 

Friedman-Test 

  (Bl – FU 3; 

  α = 5 %) 

  M SD M SD M SD M SD M SD M SD X2 df P 

emotionale Belastung 11.50 5.52 12.10 6.61 11.70 6.77 11.10 6.76 11.60 6.92 12.20 6.97 4.315 5 .505 

kognitive Belastung 7.60 3.84 10.70 9.03 8.10 4.58 7.70 5.10 7.80 5.20 7.40 4.67 4.482 5 .482 

Penetranz des Tinnitus‘ 10.70 2.95 10.50 3.34 10.10 4.20 10.20 3.74 9.40 4.53 9.80 3.91 3.976 5 .553 

Hörprobleme 5.30 2.98 6.20 4.24 6.60 4.53 6.60 4.27 6.60 4.90 6.30 4.50 2.531 5 .772 

Schlafstörungen 3.90 1.79 4.10 2.18 4.50 2.27 4.30 2.21 4.20 3.01 3.60 2.59 8.326 5 .139 

somatische Beschwerden 1.50 1.27 1.90 1.52 1.30 1.25 1.20 1.23 1.80 1.62 1.40 1.90 7.047 5 .217 
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Tabelle 44: Ergebnisse des Mann-Whitney-U-Tests für die Verum- und Placebo-Gruppe (n = 9 und n = 10) hinsichtlich der Mittelwerte der einzelnen Skalen des TF für die 

sechs Beobachtungszeitpunkte. 

    Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3

emotionale Belastung Mann-Whitney U 42 40.5 42.5 44 44 43 

  Z -0.247 -0.370 -0.205 -0.082 -0.082 -0.164 

  α = 5 %  .825  .712  .837  .935  .935  .870  

kognitive Belastung Mann-Whitney U 44.5 41 44 44.5 40 37.5 

  Z -0.041 -0.329 -0.083 -0.041 -0.412 -0.617 

  α = 5 %  .967  .742  .934  .967  .681  .537 

Penetranz des Tinnitus‘ Mann-Whitney U 44.5 45 45 44.5 44 43 

  Z -0.041 0.000 0.000 -0.041 -0.083 -0.166 

  α = 5 %  .967 1.000 1.000  .967  .934  .868 

Hörprobleme Mann-Whitney U 40 42 39.5 39 38 38.5 

  Z -0.411 -0.246 -0.450 -0.492 -0.575 -0.533 

  α = 5 %  .681  .805  .653  .623  .565  .594 

Schlafstörungen Mann-Whitney U 35.5 38 32.5 37 31.5 38 

  Z -0.784 -0.577 -1.030 -0.658 -1.117 -0.577 

  α = 5 %  .433  .564  .303  .511  .264  .564 

somatische Beschwerden Mann-Whitney U 35.5 30.5 40 44 36.5 42.5 

  Z -0.805 -1.224 -0.435 -0.086 -0.718 -0.222 

  α = 5 %  .421  .221  .664  .932  .473  .824 
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Tabelle 45: Mittelwerte, Standardabweichungen und Ergebnisse des Friedman-Tests der Verum-Gruppe (n = 9) der einzelnen Skalen des THI für die einzelnen Messzeitpunkte 

  

Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3 

Friedman-Test 

  (Bl – FU 3; 

  α = 5 %) 

  M SD M SD M SD M SD M SD M SD X2 Df p 

emotionale Beeinträchtigungen 17.56 7.26 12.89 10.49 12.67 9.00 12.44 9.79 12.89 9.60 14.22 8.39 7.395 5 .193 

funktionale Beeinträchtigungen 29.56 12.80 24.00 15.49 24.89 16.44 24.00 14.73 23.78 15.51 23.33 16.55 4.870 5 .432 

katastrophale Effekte 13.11 3.33 10.22 6.28 10.00 5.20 9.56 5.64 10.00 6.63 11.11 5.30 10.698 5 .058 

 

Tabelle 46: Mittelwerte, Standardabweichungen und Ergebnisse des Friedman-Tests der Placebo-Gruppe (n = 10) der einzelnen Skalen des THI für die einzelnen Messzeitpunkte 

  

Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3 

Friedman-Test 

  (Bl – FU 3; 

  α = 5 %) 

  M SD M SD M SD M SD M SD M SD X2 Df p 

emotionale Beeinträchtigungen 20.20 10.04 17.00 9.44 14.80 9.15 15.40 9.52 15.60 10.62 14.20 10.85 7.837 5 .165 

funktionale Beeinträchtigungen 28.80 9.39 27.60 13.02 26.60 13.27 27.80 12.16 25.80 13.74 25.60 13.39 6.067 5 .300 

katastrophale Effekte 13.40 4.99 11.20 6.48 11.40 5.82 11.40 6.93 10.80 6.68 11.20 6.34 1.584 5 .903 
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Tabelle 47:Ergebnisse des Mann-Whitney-U-Tests für die Verum- und Placebo-Gruppe (n = 9 und n = 10) hinsichtlich der Mittelwerte der einzelnen Skalen des THI für die 

sechs Beobachtungszeitpunkte. 

funktionale Beeinträchtigungen   Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3

  Mann-Whitney U 43.5 41 44 39.5 44.5 38 

  Z -0.123 -0.329 -0.082 -0.451 -0.041 -0.574 

  α = 5 % .902 .742 .935 .652 .967 .566 

emotionale Beeinträchtigungen   Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3

  Mann-Whitney U 36.5 35 39.5 37 38.5 41.5 

  Z -0.700 -0.820 -0.452 -0.656 -0.533 -0.287 

  α = 5 % .484 .412 .651 .512 .594 .774 

katastrophale Effekte   Baseline Tag 5 Tag 12 Follow-Up 1 Follow-Up 2 Follow-Up 3

  Mann-Whitney U 44.5 39 39 38 42.5 43.5 

  Z -0.041 -0.496 -0.494 -0.577 -0.206 -0.124 

  α = 5 % .967 .620 .621 .564 .837 .901 
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