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Abstract 

 Due to limited capacity for substrate storage and high metabolic rate of brain 

tissue, a precise regulation of cerebral blood flow (CBF) is critical for the 

maintenance of constant nutrient and oxygen supply to the brain. This thesis 

explores the function of pial and parenchymal microcirculation in nitric oxide-

dependent and neuronal activity-induced regulation, under physiological and 

pathological conditions using aged mice and mouse models for acute injury 

(subarachnoid hemorrhage—SAH) and small vessel disease (CADASIL and 

CARASIL). For this purpose, I established an experimental protocol using laser 

Doppler flowmetry as well as one- and two-photon in-vivo imaging, which allowed me 

to measure regional changes in CBF as well as individual artery diameter, 

respectively, in response to CO2 administration and forepaw stimulation. By visually 

examining pial arteries, my investigation found age-related impairments in nitric 

oxide-dependent response to CO2 at an earlier stage (8 months) than previous 

reports. My investigation of SAH revealed for the first time that intraparenchymal 

vessels show severe functional impairments after SAH. While reactivity to CO2 is 

completely blunted, vasodilation upon neuronal activation following forepaw 

stimulation remains unchanged for up to 3 hours after SAH, suggesting that SAH 

induces a significant and selective dysfunction of NO-mediated vasodilation. Small 

vessel diseases are inherited or sporadic angiopathies of the brain that lead to white 

matter lesions, lacunar infarcts and dementia. Cerebral autosomal dominant 

arteriopathy with subcortical infarcts and leukoencephalopathy, CADASIL, and its 

recessive counterpart, CARASIL, are the only available animal models to study small 

vessel diseases. A decrease CBF response to CO2 was found in 12-month old 

CADASIL mice, and decreases in vessel dilation and CBF response to CO2 

administration and neuronal activation were observed in CARASIL mice. Failures in 

the CADASIL and SAH models in NO-dependent regulation but not neuronal activity-

induced regulation suggest that these mechanisms run along separate biochemical 

pathways. These results elucidate cerebrovascular regulatory processes and further 

the knowledge base required for comprehensive and efficient therapy. 
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1 Introduction 

 The brain is one of the most complex organs in the body, known for its high 

specialization, structural and functional hierarchy, and large metabolic demand 

(Kalaria 1996). From the time the embryonic brain first develops, the brain never 

ceases to be active and hungry for energy sources (Grigg, Kelly et al. 1987; Prayer, 

Kasprian et al. 2006). Neuronal activity requires vast amounts of energy, larger than 

what neighboring glial cells may be able to deliver from their limited glycogen storage 

capabilities (Gruetter 2003; Brown and Ransom 2007). Therefore, the main energy 

substrates are continuously extracted from the blood stream: glucose at an average 

rate of 10% and oxygen at a rate between 50 and 70% (Ohta, Meyer et al. 1992). 

Due to constant neuronal activity, the average cerebral blood flow (CBF) required 

under normal resting metabolic conditions is of about 800 mL/min, or 57 mL/100g-

tissue/min, which corresponds to approximately 15% of total resting cardiac output 

(Ohta, Meyer et al. 1992). The brain accounts for 20% of total body oxygen 

consumption in adults despite contributing to just 2% of body weight (Kalaria 1996). 

However, different regions of the brain have different energy requirements, driven 

specifically by neuronal activity. Central white matter, constituted primarily by axonal 

tracts without synapses, consumes approximately one third of the energy used by 

gray matter (Sokoloff 1977), where synapses account for large portions of signaling 

energy use: 59% in the cortex and 30% in the cerebellum, in terms of glucose uptake 

(Attwell and Laughlin 2001; Howarth, Peppiatt-Wildman et al. 2010). In order to 

constantly match the brain's high energy demand under resting conditions as well as 

during activation, cerebral perfusion needs to be maintained at a high level 

independent of fluctuations of systemic blood pressure and to increase during 

neuronal activity through a homeostatic process known as autoregulation (Aaslid, 

Lindegaard et al. 1989). Additionally, to efficiently supply the precise amount of 

energy substrates required to satisfy specific metabolic needs, neurons, glial cells 

and blood vessels communicate with each other to regulate cerebral blood flow and 

vessel permeability as a function of location and neuronal activity in a process known 

as neurovascular coupling (NVC) (Gordon, Mulligan et al. 2007). 

 Any supply-and-demand imbalance between CBF and activity of the brain 

quickly affects cerebral function (Kimelberg 2004; Hawkins and Davis 2005; Zlokovic 
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2005). This is demonstrated by the fact that interruption of blood flow results in loss 

of consciousness within 5 to 10 seconds as a result of cerebral ischemia. If blood 

flow is not restored promptly, it may result in permanent brain damage (Iadecola 

2004). Thus, to prevent the devastating consequences of ischemia and satisfy the 

high metabolic demands of the brain, cerebral circulation is endowed with several 

specialized regulation features (Iadecola 1998). 

 

1.1 Regulation of CBF 

 CBF is determined by both cerebral perfusion pressure (CPP) and 

cerebrovascular resistance (CVR). CPP can be calculated from the difference 

between blood pressure and internal cerebral pressure. CVR is determined by the 

diameter of the intracranial arteries and blood viscosity (Markus 2004). Arterial 

pressure is a major determinant of CBF (Faraci and Heistad 1998), but it fluctuates 

widely during daily-life activities, which could induce dangerous increases or 

decreases in CBF (Cipolla 2007). To maintain stable blood flow, cerebral circulation 

has well-developed routes for collateral circulation, such as the communications 

between the basilar and internal carotid arteries at the circle of Willis, which play an 

important protective role providing means of irrigation that compensate for each 

other (Riggs and Rupp 1963). Collateral supply also occurs through anastomoses 

between the external carotid artery branches and intracerebral circulation (Vander 

Eecken and Adams 1953). In conditions were CPP remains constant, any change in 

CBF must result from a change in CVR (Markus 2004). Thus, under normal 

circumstances, there is a direct correlation between CBF and intracranial vessel 

diameter: CBF will increase as vessels dilate and decrease as vessels constrict. 

There are two major mechanisms that regulate CBF by adjusting vessel diameter, 

autoregulation and functional hyperemia. 

 

1.1.1 Autoregulation 

 Cerebral autoregulation is the homeostatic process whereby intracerebral 

arteries and arterioles maintain a constant CBF in the face of changing CPP by 
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changing their diameter to adjust CVR. It maintains a leveled CBF in physiological 

situations, such as exercise, and in pathological conditions, such as hypotension 

(Iadecola 1993). This protects the brain from fluctuations in arterial pressure, 

keeping a near constant blood flow within the range of 60–150 mmHg (Cipolla 2007). 

When the limits of autoregulation are reached, CBF passively complies with changes 

in perfusion pressure. Specifically, when CPP falls below the lower limit of 

autoregulation, the decrease in CBF results in hypoperfusion (Hossmann 1994) and 

needs to be compensated by an increase in oxygen extraction from the blood 

(Iadecola 1998). Clinical signs are not seen until the decrease in perfusion exceeds 

the ability of increased oxygen extraction to meet metabolic demands. At this stage, 

clinical signs of hypoperfusion occur, including dizziness, altered mental status, and 

may eventually result in irreversible tissue damage (Hossmann 1994; Iadecola 

2004). On the other hand, if mean arterial pressure increases beyond the upper limit 

of autoregulation, resistance arteries in the brain are not able to sustain 

vasoconstriction (Strandgaard and Paulson 1990) which leads to dilation along the 

entire length of the arterioles, and a passive increase in CBF. An early sign of 

functional disruption is the so called “sausage stringing” appearance, where the 

vessel is characterized by an alternating pattern of dilated segments, representing 

regions of passive dilation, and focal regions of constrictions (Markus 2004). These 

changes can be associated with damage of the cerebrovascular endothelium and 

disruption of the blood brain barrier (BBB). 

 The mechanisms of cerebral autoregulation are not completely understood. 

Myogenic, metabolic and neurogenic factors have been hypothesized to play a role. 

The myogenic hypothesis describes how smooth muscle in the resistance arteries 

responds directly to alteration in perfusion pressure by contracting during an 

increase in pressure (Kontos, Wei et al. 1978). Autoregulation of cerebral blood flow 

when pressure fluctuates beyond the upper limit of the autoregulatory curve is most 

likely due to myogenic behavior of cerebral smooth muscles, which constrict in 

response to elevated pressure and dilate in response to decreased pressure 

(Mellander 1989; Osol, Brekke et al. 2002). The metabolic hypothesis states that the 

reductions in cerebral blood flow stimulate the release of vasoactive substances from 

the brain, affecting arterial dilation. These vasoactive substances include hydrogen 

(H+), potassium (K+), oxygen (O2), and adenosine (Chillon, Ghoneim et al. 1997). A 
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neurogenic factor, neuronal nitric oxide, has also been shown to modulate cerebral 

blood flow autoregulation, suggesting that intrinsic innervation may play a role in the 

underlying mechanism (Talman and Nitschke Dragon 2007). 

 

1.1.2 Functional hyperemia 

 The high metabolic demand of neuronal tissue requires close coordination 

between neuronal activity and blood flow within the brain parenchyma (Hamel 2006; 

Drake and Iadecola 2007). Functional hyperemia, or neural activity coupling with 

CBF, is the mechanism by which blood flow is regulated at a local level. Hyperemia 

is activated in physiological situations, such as reading, calculating, or any other 

mental exercise (Gordon, Mulligan et al. 2007). It can also be triggered in 

pathological situations, such as seizures, when metabolic demand increases in a 

specific brain area (Itoh and Suzuki 2012). Vascular adjustments underlying 

increases in CBF involve relaxation of both local arterioles and upstream arteries 

supplying the activated area (Cox, Woolsey et al. 1993; Kleinfeld, Mitra et al. 1998; 

Takano, Tian et al. 2006). It has been estimated that nearly every neuron in the 

human brain is connected to its own capillary (Zlokovic 2005). Subcortical 

microvessels are innervated by neighboring principal neurons and interneurons from 

within the brain parenchyma and are unique in their apposition to astrocytic end-feet 

that surround arterioles (Kulik, Kusano et al. 2008). Upstream dilation prevents a 

drop in microvascular pressure in the dilated vessels of the activated region and 

avoids a blood ‘grab’ from adjacent vascular territories.(Faraci and Heistad 1998; 

Kulik, Kusano et al. 2008) Neurons whose cell bodies are located within the 

subcortical brain regions (e.g., nucleus basalis, locus ceruleus, raphe nucleus) 

project to cortical microvessels to control local blood flow through neurotransmitter 

release—e.g., Acetylcholine (ACh), norepinephrine (NE), serotonin (5-HT) (Hamel 

2006). Neurotransmitter release stimulates receptors on astrocytes, endothelium, or 

smooth-muscle cells (SMC) to constrict or dilate, thereby regulating local blood flow 

in concert with neuronal demand (Iadecola 2004; Hamel 2006; Drake and Iadecola 

2007). Hemodynamic neurovascular coupling ensures a strong increase in cerebral 

blood flow and an acute increase in neuronal glucose uptake upon increased neural 

activity. 
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1.2 Anatomy 

 The regulation of CBF through vasodilation and vasoconstriction is performed 

by a group of cells closely related to each other called neurovascular unit (NVU). 

Components of this NVU include neurons, astrocytes, blood vessels and 

extracellular matrix components. These cells, through their intimate anatomical and 

chemical relationship, monitor neuronal activity and metabolism and trigger 

necessary vascular responses to supply required substrates (Hawkins and Davis 

2005; Weiss, Miller et al. 2009). 

 

1.2.1 Neurons 

 Neurons are the building blocks of the electrical circuitry of the brain. As such, 

they possess sophisticated homeostatic mechanisms to regulate their intrinsic, 

synaptic and metabolic properties (Koehler, Gebremedhin et al. 2006; Banerjee and 

Bhat 2007). Intrinsic conductance is subject to activity dependent regulation in a 

negative feedback loop that maintains a basal level of electrical activity and prevents 

cell death due to excitotoxicity (Franklin, Fickbohm et al. 1992). Manipulations that 

either increase or decrease synaptic activity are accompanied by alterations in 

synaptic strength over the course of several hours that counteract the changes in 

activity (Kirov and Harris 1999). To regulate their energy supply, active synapses 

send signals to different segments of the cerebral vasculature through neuronal-

astrocytic-vascular apposition (Chedotal, Cozzari et al. 1994; Abounader and Hamel 

1997; Vaucher, Tong et al. 2000) either directly or through an interneuron, so as to 

elicit an increase in CBF as a function of neural activity within seconds and highly 

restricted to the activated region (Cox, Woolsey et al. 1993; Silva, Lee et al. 2000). 

 Interneurons constitute a class of neurons responsible for communication 

between larger, principal neurons in the central nervous system (CNS) acting as 

integrators of neuronal activity (Chedotal, Cozzari et al. 1994). In the context of 

neurovascular coupling, interneurons have been demonstrated to make direct 

contact with cortical microvessels and astrocytic processes (Cauli, Tong et al. 2004; 

Haydon and Carmignoto 2006; Cauli and Hamel 2010). Depending on the type and 

frequency of the stimulus, afferent signals in the cortex engage specific populations 
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of interneurons, which release vasoactive substances, namely neuropeptide Y 

(Abounader, Villemure et al. 1995; Cauli, Tong et al. 2004), and somatostatin (Long, 

Rigamonti et al. 1992), capable of directly dilating or constricting arterioles, as well 

as neurotransmitters that indirectly affect vascular tone through the modulation of 

excitatory neurons or astrocytes (Dunn and Nelson 2014). 

 

1.2.2 Astrocytes 

 Astrocytes are uniquely positioned to monitor and modify synaptic activity and 

contribute to the increase in CBF produced by neural activity (Harder, Zhang et al. 

2002). Anatomically, neurovascular communication takes place mainly through the 

astrocytic end-foot. The end-foot is a peculiar anatomical structure, consisting of a 

highly specialized astrocyte extension that is in contact with the surface of SMCs and 

pericytes (Kacem, Lacombe et al. 1998). The end-foot provides a broad contact 

surface with SMCs or pericytes, wrapping them and acting as a fast and efficient 

surface for the action of neurotransmitters and neuromodulators. The significance of 

these interactions to the regulation of CBF was first substantiated by the 

demonstration that astrocytes could synthesize vasodilatory messengers, particularly 

epoxyeicosatrienoic acids (EETs) generated from P450 arachidonic acid 

epoxygenase activity (Alkayed, Birks et al. 1996), that were involved in CBF 

response to glutamate (Alkayed, Birks et al. 1997; Harder, Roman et al. 1998). NVU 

astrocytes are able to detect neuronal levels of glutamate and gamma-aminobutyric 

acid (GABA), thanks to their metabotropic glutamate receptors (mGluRs), leading to 

increases in intracellular calcium (Ca2+) and cyclooxygenase (COX) activation. They 

are also able to convert those signals into vasomotor commands through arachidonic 

acid (AA) products such as prostaglandin E2 (PGE2) (Zonta, Angulo et al. 2003; 

Pelligrino, Vetri et al. 2011; Duchemin, Boily et al. 2012). Another pathway activated 

in astrocytic end-feet following Ca2+ increases is the large-conductance, Ca2+-

sensitive big potassium channels (BK) that induces K+ release, activation of smooth 

muscle inwardly rectifying potassium channels (Kir) and relaxation (Filosa, Bonev et 

al. 2006). Studies performed in brain slices show that direct electrical stimulation of 

neuronal processes raises calcium in astrocytic end-feet and causes dilation of 

nearby arterioles (Filosa, Bonev et al. 2004). However, whether dilation or 

constriction occurs seems to depend on the level of calcium and resting tone 



 

7 

(Mulligan and MacVicar 2004). Astrocytes have a great capacity for propagating 

calcium waves, forming extensive and specialized networks of intercommunication 

(Cornell-Bell, Finkbeiner et al. 1990). They communicate simultaneously with 

neurons and blood vessels (Lopez-Bayghen and Ortega 2011; Santello, Cali et al. 

2012), establishing connections that not only enable the interplay between neurons 

but also between capillaries and pericytes at a physical and chemical level through 

the release of gliotransmitters (Haydon and Carmignoto 2006; Petzold and Murthy 

2011). 

 

1.2.3 Blood vessels 

 Willis (1664) gave the first anatomical description of the arterial circle at the 

base of the brain, but no physiological study on this structure was performed until 

1912 when Kramer studied the distribution of blood to the brain in the living animal 

by injecting methylene blue directly into the carotid or vertebral arteries. Two pairs of 

large arteries provide the vascular supply of the brain: carotid and vertebral pairs. 

The vertebral arteries merge to form the basilar artery and the basilar artery together 

with the internal carotid arteries merge to form the circle of Willis at the base of the 

brain (Mc and Potter 1951). Large cerebral arteries arising from the circle of Willis 

branch out into smaller pial arteries that travel on the surface of the brain across the 

subarachnoid space (Iadecola and Nedergaard 2007). Pial vessels form an effective 

collateral network such that occlusion of one vessel does not significantly decrease 

cerebral blood flow. Pial arteries receive perivascular innervation from the peripheral 

nervous system, which forms a network of varicose fibers within the adventitial layer 

that decreases in density upon entering the Virchow–Robin space and then 

disappears in vessels within the brain parenchyma (Chedotal and Hamel 1990). 

Arteries have a continuous elastic membrane on which endothelial cells rest (internal 

elastic lamina) and several SMC layers—typically more than three. 

 Pial arteries give rise to penetrating arteries and arterioles that enter the brain 

parenchyma. Penetrating arterioles lie within the Virchow–Robin space, which is a 

continuation of the subarachnoid space and varies considerably in depth between 

species (Jones 1970). As penetrating arterioles extend deeper into the brain, the 

Virchow-Robin space disappears, and their basal lamina forms direct contact with 
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perivascular astrocytic processes (end-feet), becoming parenchymal arterioles 

(Palay 1991). Penetrating and parenchymal arterioles are long and largely 

unbranched such that occlusion of an individual arteriole results in significant 

reductions in flow and damage to the surrounding local tissue (Nishimura, Schaffer 

et al. 2007). Parenchymal arterioles receive innervations from within the brain tissue 

with nerve afferents from subcortical neurons or local cortical interneurons that 

project to the perivascular space surrounding the arteriole (Estrada, Mengual et al. 

1993). However, the targets of most terminals are astrocytes surrounding the 

arterioles in the brain neuropil (Estrada, Mengual et al. 1993; Cohen, Molinatti et al. 

1997). While parenchymal arterioles have only one layer of smooth muscle (Iadecola 

and Nedergaard 2007) they possess greater basal tone and are unresponsive to 

some neurotransmitters that can have large effects on upstream vessels, such as 

NE or 5-HT (Cipolla, Li et al. 2004). Arterioles give rise to capillaries, which are 

comprised of a layer of endothelial cells resting on the basal lamina and pericytes, 

perivascular cells containing contractile elements analogous to SMCs (Palay 1991). 

The total length of capillaries in human brain is about 400 miles, and the capillary 

surface area available for molecular transport is about 20 m2 (Begley and Brightman 

2003). The microvascular density in the CNS is associated with the rate of metabolic 

activity of different regions (Villringer and Dirnagl 1995; Malonek, Dirnagl et al. 

1997). Regions with the highest synaptic activity and metabolic demand are 

endowed with higher levels of vascularization, which is evident when comparing gray 

matter to white matter: capillaries constitute up to 0.5% of volume in the optic chiasm 

and up to 2% in areas of the sensory cortex (Lierse and Horstmann 1965). 

 

1.2.3.1 Endothelial cells 

 As in peripheral organs, endothelial cells are involved in regulation of vessel 

diameter, adhesion of inflammatory cells, regulation of ion and water transport, 

angiogenesis, and thrombus formation (Zlokovic 2008). Brain endothelial cells are, 

however, unique in that they are sealed by tight junctions—a feature that creates the 

blood brain barrier. Endothelial cells produce trophic and vasoactive mediators, 

including nitric oxide (NO), prostaglandin I2 (PGI2), and endothelium-derived 

hyperpolarizing factor (EDHF), all of which decrease vascular tone in order to 

increase cerebral blood flow (Furchgott and Zawadzki 1980; Faraci and Heistad 
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1998). Specifically, since NO synthase (NOS) is calcium–dependent,(Sobey and 

Faraci 1997) production of NO by endothelial NOS (eNOS) is primarily activated by 

calcium-dependent binding of calmodulin. Thus, many factors that increase 

intracellular calcium activate eNOS. Whether NO is produced basally or is induced, 

NO diffuses to vascular smooth muscle (VSM) where it causes vasodilation primarily 

by activating soluble guanylyl cyclase (sGC) (Sobey and Faraci 1997). Activation of 

sGC results in increased levels of cyclic guanine monophosphate (cGMP), which in 

turn activates protein kinase G (PKG), causing relaxation of SMC by opening BK 

channels and reducing intracellular calcium (Robertson, Schubert et al. 1993). PGI2 

is normally produced by COX-1 from AA and diffuses to VSM where it activates 

adenylyl cyclase (AC), causing increased production of cyclic adenosine 

monophosphate (cAMP) and thus relaxation. EDHF is a potential product of AA 

metabolism. EDHF diffuses to vascular muscle where it activates K+ channels and 

causes closure of Ca2+ channels. Increased activity of K+ channels produces 

hyperpolarization and relaxation of vascular muscle (Faraci and Heistad 1998) 

(Figure 1). 

 

1.2.3.2 Pericytes 

 Pericytes belong to the vascular smooth muscle cell lineage. They are located 

in capillaries between endothelial cells and astrocytic end-feet and might encircle 

30% to 70% of the capillary wall (Allt and Lawrenson 2001) at a pericyte to 

endothelia ratio in the brain of 1:3 compared to 1:100 in striated muscles (Armulik, 

Genove et al. 2010; Peppiatt, Howarth et al. 2006). They provide mechanical stability 

to microvessels by matrix deposition and by releasing and activating signals that 

promote the development and maturation of endothelial cells (Sa-Pereira, Brites et 

al. 2012). Recent studies have shown that pericytes are contractile cells with 

contractile proteins that, being juxtaposed to cerebral capillaries, regulate brain 

capillary blood flow through contraction and relaxation in response to neuronal 

activity (Peppiatt, Howarth et al. 2006). In this regard, pericytes may function 

similarly to SMC in arterioles and small pial arteries in the brain, which regulate CBF 

through vasoconstriction and vasodilation (Chow, Bell et al. 2007). It has been 

suggested that endothelial cells might aid in communication between pericytes, as 

they are connected by gap junctions, and have a large flow of adenosine 
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triphosphate (ATP), which is a well-known promoter of remote communication 

between neural syncytia even at long distances (Wu, Shen et al. 2006). 

 

 

Figure 1: Some mechanisms of endothelium-dependent relaxation of cerebral vascular muscle. 

NO is produced by NOS from amino acid L-arginine (L-Arg). NO diffuses to vascular muscle where it 

activates soluble guanylate cyclase, causing increased production of cGMP, which results in 

relaxation. PGI2, once produced, diffuses to vascular muscle increasing the production of cAMP which 

results in relaxation. EDHF Increases activity of potassium channels produces hyperpolarization and 

relaxation of vascular muscle (Kim and Filosa 2012). 

 

1.3 Vasoactive factors 

 Communication between depolarized neurons and glia require vasoactive 

factors that act together to regulate CBF (Iadecola 2004). Cerebral endothelial cells, 

pericytes, and smooth-muscle cells are the target of these signals and transduce 

them into coordinated vascular adjustments that ultimately lead to an increase in 

CBF. Therefore, any regulation in CBF evoked by brain activity is accomplished by 

the coordinated action of multiple mediators that originate from different cells and act 

at different levels of the cerebral vasculature. 

 
1.3.1 Ions released 

 Extracellular K+ ion concentration increases following the outflow of K+ during 

neuronal membrane repolarization. Elevations in extracellular K+ up to 8–10 mM 

cause dilation of arterioles both in vitro and in vivo (Nguyen, Winn et al. 2000). This 
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effect is mediated by the opening of K+ channels, primarily of the inward rectifier 

type, on the membrane of arterial SMCs (Nguyen, Winn et al. 2000), leading to their 

hyperpolarization and subsequent relaxation. During sustained activation, ATP 

depletion could lead to opening of ATP-sensitive K+ channels (KATP) on vessels. 

Therefore, KATP channels have been implicated in the mechanisms of neurovascular 

coupling (Nguyen, Winn et al. 2000). Furthermore, KATP could also participate in 

neurovascular coupling by mediating vasodilation stimulated by agents that increase 

(cAMP), such as adenosine or PGI2 (Faraci and Sobey 1998). Extracellular 

acidification following neuronal activity is the result of CO2 and lactic acid metabolic 

production. The vasodilatory effect of increased concentrations of H+ is also 

mediated, at least in part, by the opening of pH sensitive K+ channels (Faraci and 

Sobey 1998). It has also been suggested that activity-induced reductions in 

extracellular Ca2+ may produce vasodilation (Heuser 1978). 

 

1.3.2 Products of neuronal activation 

 Vasoactive factors can also be secreted following activation of 

neurotransmitter receptors and the consequent cascade of intracellular signaling. A 

widely accepted hypothesis is that some vasodilators are primarily synthesized by 

distinct neuronal populations; these include COX2-derived prostanoids (Niwa, 

Maruyama et al. 2000) produced by some Layer II–III pyramidal cells (Yamagata, 

Andreasson et al. 1993), NO (Gotoh, Kuang et al. 2001) produced by subpopulations 

of cortical GABA interneurons (Kubota, Hattori et al. 1994), and VIP (Yaksh, Wang et 

al. 1987), Ach (Scremin, Rovere et al. 1973), and corticotropin-releasing factor (De 

Michele, Touzani et al. 2005) synthesized by bipolar/bitufted GABAergic 

interneurons (Chedotal, Cozzari et al. 1994). Synthesis of these vasoactive factors is 

triggered by changes in intracellular Ca2+ associated with glutamate receptor 

activation. The increase in Ca2+ activates Ca2+-dependent enzymes such as NOS, 

the enzyme responsible for the oxygen-dependent conversion of L-arginine to NO 

and L-citrulline.(Moncada 1992) Out of the three isoforms of NOS, two exist in the 

brain with neuronal (nNOS) and endothelial (eNOS), expressed in neurons and 

cerebral endothelium, respectively (Szabo, Hardebo et al. 1991). The increase in 

CBF in the somatosensory cortex induced by sensory stimulation is associated with 

NO release and attenuated by nNOS inhibitors (Lindauer, Megow et al. 1999). 
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Moreover, in the cerebral cortex, the effect of nNOS inhibition on functional 

hyperemia can be reversed by application of exogenous NO. This finding suggests 

that the presence of NO is required for vasodilation (Lindauer, Megow et al. 1999). 

NO produced by eNOS in vascular endothelial cells in response to muscarinic ACh 

receptors (mAChR) stimulated by neuronally released ACh may also contribute to 

the CBF response to neuronal activation (Elhusseiny and Hamel 2000). Increase in 

intracellular Ca2+ may also activate phospholipase A2, leading to production of AA. 

AA is then metabolized by the COX pathway, producing vasodilatory prostaglandins 

(PGI2, PGE2, PGD2) (Garavito and Mulichak 2003). Although there are several 

isoforms of COX (COX-1, -2, and -3) (Garavito and Mulichak 2003), COX-2 is the 

main isoform involved in functional hyperemia. COX-2 is present in axon terminals 

and dendritic processes, separated from penetrating arterioles and capillaries by glial 

processes (Wang, Hitron et al. 2005). Functionally, the CBF increase evoked by 

somatosensory stimulation is attenuated by COX-2 inhibitors or in COX-2 null mice, 

whereas COX-1 does not participate in the response (Niwa, Araki et al. 2000; Niwa, 

Haensel et al. 2001). The COX-2 metabolites responsible for the vasodilation may 

include vasodilatory prostaglandins. Specifically, PGI2 is synthesized from 

prostaglandin H2 (PGH2) by PGI2 synthase, which can activate adenylate cyclase 

and increase cAMP and protein kinase A (PKA) in smooth muscle, resulting in 

vasodilation (Smith, Garavito et al. 1996). Other AA products involved in functional 

hyperemia include metabolites of the P450 pathway, such as EETs (Peng, 

Carhuapoma et al. 2002). 

 

1.3.3 Products of energy metabolism 

 A sudden increase in energy demand during synaptic activity could result in a 

relative lack of O2 and glucose, which may in turn have a role in triggering the 

hemodynamic response (Attwell and Iadecola 2002). However, the reduction in brain 

O2 concentration at the site of activation is small and transient and cannot account 

for sustained increases in blood flow (Ances 2004). Furthermore, the CBF response 

to neuronal activation is not altered by hypoglycemia or hypoxia, suggesting that lack 

of glucose or O2 is not the primary factor triggering vasodilation (Attwell and Iadecola 

2002). On the other hand, adenosine, a potent vasodilator produced during ATP 

catabolism, is involved in neurovascular coupling in the cerebellum (Li and Iadecola 
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1994) and the cerebral cortex (Ko, Ngai et al. 1990). Lactate produced during brain 

activation could also be an important mediator of functional hyperemia by increasing 

H+ concentration and promoting vasodilation (Attwell and Iadecola 2002). However, 

the increase in lactate is small and transient, and cannot fully account for the 

increase in flow produced by neural activity (Attwell and Iadecola 2002). Carbon 

dioxide (CO2) has a profound but reversible effect on cerebral blood flow, such that 

hypercapnia causes marked dilation of cerebral arteries and arterioles and increased 

blood flow, whereas hypocapnia causes constriction and decreased blood 

flow(Reivich 1964). The potent vasodilatory effect of CO2 is demonstrated by the 

finding that in humans, 5% CO2 inhalation causes an increase in cerebral blood flow 

by 50% while 7% CO2 inhalation causes a 100% increase in cerebral blood flow 

(Kety and Schmidt 1948). Although several mechanisms involved in hypercapnic 

vasodilation have been proposed, the major mechanism appears to be related to a 

direct effect of extracellular H+ on vascular smooth muscle (Kontos, Wei et al. 1977). 

 None of the vasoactive messengers implicated in neurovascular coupling can 

individually account for the hemodynamic response, as shown by genetic invalidation 

(Iadecola 1992) or pharmacological inhibition (Lindauer, Megow et al. 1999; 

Hoffmeyer, Enager et al. 2007). Likely, the activated pathways operate in an 

integrated manner, and under specific circumstances, some may even act as 

modulators rather than mediators of the perfusion responses, as documented for NO 

in the somatosensory cortex (Lindauer, Megow et al. 1999). 
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Figure 2. Schematic of cerebral blood flow regulation. Neurons from the peripheral nervous 

system (PNS) deliver 5-HT and NE to SMCs of pial arteries, inducing vasodilation. Neurons from 

subcortical regions (dorsal raphe nucleus, nucleus ceruleus, etc.) deliver 5-HT, NE and ACh to SMCs 

of penetrating arterioles. Metabolic byproducts such as CO2 and lactate increase pH levels, and the 

resulting H+ trigger the opening of Kir channels. Intracellular increases in Ca2+ result in the opening of 

BK channels. Excess extracellular potassium enters through either variety of potassium channels and 

in turn repolarizes or hyperpolarizes and relaxes SMCs. An increase in intracellular Ca2+ in 

interneurons triggers both the calmodulin and COX-2 pathways. Calmodulin promotes nNOS and 

ultimately NO release to SMCs, where it binds to sGC to promote cGMP and thereby PKG activity to 

induce vasodilation. In some primary neurons, an increase in intracellular Ca2+ also activates the 

COX-2 pathway, which results in transformation of AA into PGs, which bind to AC in SMCs to promote 

cAMP and thereby PKA activity to dilate the blood vessel. A decrease in ATP due to neuronal activity 

results in the opening of KATP channels. Astrocytes innervate parenchymal arterioles, releasing 

vasodilatory factors such as prostaglandins (PGs) and EETs to SMCs or ACh to the endothelium 

where they bind to mAChR to activate both the EDHF pathway and the eNOS pathway, resulting in 

NO release into pericytes. 
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1.4 Neurovascular coupling in health and disease 

 Dysfunction of cerebral regulation as a result of increasing age, acute 

hemorrhagic events, or age-related structural and functional alterations in small 

cerebral blood vessels increases neuronal degeneration and susceptibility to hypoxia 

and ischemia. 

 

1.4.1 Healthy aging 

 Aging is associated with a reduction in resting CBF and a dysfunction of the 

mechanisms regulating the cerebral circulation (Farkas and Luiten 2001; Kalaria, 

Maestre et al. 2008), leading to an increased risk of stroke, cerebral white matter 

lesions, and cognitive decline (Poels, Steyerberg et al. 2012). Changes in systemic 

circulation and degenerative changes in extracerebral resistance arteries (Kalaria 

1996) may shift the lower and upper limits of the autoregulatory plateau to cause 

hypertensive encephalopathy or cerebral hypoperfusion, which lead to the disruption 

of microvascular flow, damage to the cerebral endothelium, breach of the BBB, and 

edema (Kalaria 1996). These alterations reduce cerebral perfusion, deplete 

cerebrovascular reserves, and increase the susceptibility of the brain to vascular 

insufficiency and ischemic injury (Farkas and Luiten 2001). In the cerebral cortex and 

hippocampus, cerebral capillaries are reduced in number and have thickened and 

fibrotic basement membranes (Farkas and Luiten 2001). White matter vessels 

(diameter: 100 μm) of aged individuals appear more tortuous—a phenomenon not 

observed in gray matter vessels (Kalaria 2009). Pericytes, which replace smooth-

muscle cells in capillaries, undergo a degenerative process, whereas endothelial 

cells appear elongated and exhibit a reduced number of mitochondria (Farkas and 

Luiten 2001). 

 

1.4.2 Subarachnoid hemorrhage 

 Subarachnoid hemorrhage (SAH) is characterized by the rupture of a cerebral 

aneurysm at the base of the skull with subsequent release of blood into the 

subarachnoid space—the cerebrospinal fluid-filled space between the pia and the 

arachnoid (Pobereskin 2001; Skrifvars and Parr 2012). SAH is a rare subtype of 
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stroke with an incidence of 10 cases per year per 100.000 people, or 5% of all first-

ever strokes (Cahill and Zhang 2009). Overall, 20-25% of patients die almost 

immediately after hemorrhage as a consequence of acute intracranial hypertension 

as the blood is released in the subarachnoid space with a pressure almost equal to 

systolic blood pressure (Pobereskin 2001). From the remaining 75% of patients, 15% 

die after several days, while the remaining 60% die within 48 h of the initial bleeding 

(Weir, Grace et al. 1978) due to rebleedings (25%) or subsequent events (35%) 

(Pobereskin 2001). From those patients reaching a hospital, less than 8% fully 

recover. Regardless of the incidence, SAH is the subtype of stroke with the worst 

prognosis considering the relative young age at which SAH occurs as life losses 

before the age of 65 are comparable that of ischemic stroke, which has an incidence 

of 240 cases per year per 100.000 people (20 times more frequent) (Johnston, 

Selvin et al. 1998). 

 The pathophysiology of SAH can be divided into two distinct phases, early 

and delayed. Early brain injury (EBI) occurs within the first few days after SAH, when 

large cerebral vessels are still fully functional. It is characterized by a severe 

reduction in CBF (Schubert, Seiz et al. 2009) and can cause cortical spreading 

depolarization (CSD), and ischemic brain damage (Adams, Kassell et al. 1981) 

under normal or almost normal CPP. Ischemia results from the constriction of 

vessels at the level of cerebral microcirculation as observed in experimental animals 

(Herz, Baez et al. 1975; Sehba, Friedrich et al. 2007) and in patients (Uhl, Lehmberg 

et al. 2003). The events leading to early microvascular constrictions start with an 

acute vasoconstriction of the internal carotid artery, anterior cerebral artery and their 

A2 branches, as early as 5 minutes after hemorrhage (Bederson, Levy et al. 1998). 

This is followed by an acute constriction of intraparenchymal and pial micro vessels 

(10 to 30 micrometers) up to 24 hours after SAH (Sehba, Friedrich et al. 2007). 

Within the first 3 hours after SAH, over 70% of arterioles deriving from the middle 

cerebral artery (MCA) show pearl string-like constrictions that persist for at least 3 

days after hemorrhage, suggesting that vessels are spastic. These events are 

associated with a loss of perfusion at the microcirculatory level indicating a much 

more severe microvascular deficit, namely microcirculatory stasis. The delayed 

phase of injury occurs later than four days after SAH and is associated with delayed 

spasms of large intracranial vessels (Macdonald and Weir 1991; Frontera, Rundek et 
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al. 2006). Vascular changes, such as subacute presence of microvasospasms and 

microthrombi (Sehba, Mostafa et al. 2005; Friedrich, Muller et al. 2012) along with 

the constriction of large intracranial vessels (Sehba, Friedrich et al. 2007) may 

prolong and exacerbate the perfusion deficits acutely caused by global ischemia and 

result in delayed focal cerebral ischemia. Despite the clinical relevance of these 

findings, the pathophysiology of SAH remains still unclear. We can still not account 

for presence of the global brain edema suffered by SAH patients (Helbok, Ko et al. 

2011) or why glutamate levels increase after SAH only to decrease immediately after 

(Westermaier, Jauss et al. 2011). Another peculiarity is that patients surviving SAH 

suffer from pronounced memory deficits (Feiler, Friedrich et al. 2010). These 

changes may be associated with global ischemia due to extremely high increase in 

intracranial pressure and the cessation of cerebral perfusion during the vessel 

rupture (Mendelow 1993). 

 Among the different animal models for SAH, the procedure that reproduces 

early pathophysiology of SAH most adequately is the intravascular perforation 

model, where the Circle of Willis is perforated by an endovascular approach (Strbian, 

Durukan et al. 2008; Titova, Ostrowski et al. 2009). When the endovascular 

perforation of the Circle of Willis is induced, blood is released into the subarachnoid 

space at the skull base where it forms a large clot. As a consequence of the clot 

growth, intracranial pressure (ICP) starts to rise immediately after hemorrhage to 

values around 100 mmHg triggering an increase of blood pressure, the so-called 

Cushing reflex, thereby aggravating the bleeding (Hockel, Trabold et al. 2012). 

Intracranial hypertension results in a pathological decrease of CPP for up to 5 

minutes, leading to a global reduction of cerebral blood flow for 2-3 minutes (Feiler, 

Plesnila et al. 2011; Hockel, Trabold et al. 2012). Local vasoconstriction along with 

activation of the coagulation cascade promote the formation of a blood clot at the 

bleeding site, which induces cessation of hemorrhage as indicated by a gradual 

decrease of ICP over the next 2-3 minutes to values around 30 mmHg. 

Consequently, CPP recovers to near normal values of 60 mmHg or more. Despite 

the recovery of CPP, CBF does not necessarily get back to baseline and may stay at 

low levels for up to 60 min after SAH (Hungerhuber, Zausinger et al. 2006; Hockel, 

Trabold et al. 2012). However, this early lack of CBF recovery after SAH is 

prevented when instead of anesthetics with a known blood pressure-lowering and 
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Cushing reflex-suppressive effect, such as halothane or isoflurane, anesthetic which 

maintain systemic blood pressure are used (Hockel, Trabold et al. 2012). This makes 

it difficult to understand whether the prolonged drop of CBF after SAH is a pure 

experimental phenomenon or indeed a component of the early pathophysiology of 

SAH. In vivo microdialysis shows that SAH results in metabolic changes in the brain 

parenchyma (Westermaier, Jauss et al. 2011) within 30 min after SAH, and the level 

of glutamate increases up to six fold and gradually returns to near baseline values 

within the next 1.5 hours. This increase in glutamate is paralleled by an increase in 

the lactate/pyruvate ratio, an indicator of tissue ischemia (Westermaier, Jauss et al. 

2011). The posthemorrhagic brain shows a slow increase in brain water content from 

between three to six hours until at least three days after SAH (Thal, Sporer et al. 

2009; Feiler, Friedrich et al. 2010), suggesting that the pathophysiology of SAH may 

be linked to opening of the BBB rather than to the initial posthemorrhagic global 

ischemia, given that brain edema formation following global ischemia is caused by 

ischemic cell swelling and thus disappears within minutes after reperfusion 

(Hossmann and Hossmann 1977). 

 

1.4.3 Small vessel disease 

 Ischemic cerebral small vessel disease (SVD) describes a group of 

pathological processes with various etiologies affecting the penetrating cerebral 

arterioles, capillaries and venules and resulting in brain damage in the cerebral white 

and deep gray matter (Pantoni 2010). Diffuse arteriopathy of smaller penetrating 

arteries result in multiple subcortical lacunar infarctions, areas of white matter lesions 

defined as leukoaraiosis, large hemorrhages, and microbleeds (Ringelstein and 

Nabavi 2005). Age-related and hypertension-related small vessel diseases and 

cerebral amyloid angiopathy are the most common forms. However, other forms of 

the disease have a genetic base: several single-gene disorders causing cerebral 

SVD have been discovered, including cerebral autosomal dominant arteriopathy with 

subcortical infarcts and leukoencephalopathy, CADASIL, and its recessive 

counterpart, CARASIL. 
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1.4.3.1 CADASIL 

 CADASIL is a hereditary non-hypertensive ischemic cerebral SVD leading to 

vascular dementia. It is the most common hereditable cause of stroke and vascular 

dementia in adults (Joutel, Corpechot et al. 1996; Dichgans 2007; Chabriat, Joutel et 

al. 2009), with a prevalence of 1 to 2 cases per 100.000 (Markus, Martin et al. 2002) 

and it has been reported in all ethnic groups (Razvi, Davidson et al. 2005). It causes 

a type of stroke and dementia whose key features include recurrent sub-cortical 

ischemic events and vascular dementia associated with diffuse white-matter 

abnormalities (Chabriat, Vahedi et al. 1995). Pathological examination reveals 

multiple small, deep cerebral infarcts, a leukoencephalopathy, and a non-

atherosclerotic, non-amyloid angiopathy involving mainly the small cerebral arteries 

(Baudrimont, Dubas et al. 1993). Severe alterations of vascular smooth-muscle cells 

are evident upon ultrastructural analysis (Ruchoux, Guerouaou et al. 1995). 

CADASIL is characterized by four cardinal manifestations. Migraine with aura occurs 

at an average age of 30 years. Ischemic events are present in 60-85% of patients, 

often preceded by transient ischemic attacks; the age of first ever strokes varies 

vastly between 40 and 60 years and are almost always subcortical and typically 

present as lacunar syndromes. Cognitive decline results in subcortical dementia 

between 50 and 60 years of age, and patients become bedridden and die around 65-

70 years of age (Dichgans, Mayer et al. 1998; Opherk, Peters et al. 2004). Lastly, 

20-30% of CADASIL patients suffer from mood disturbances (Chabriat, Vahedi et al. 

1995). 

 CADASIL patients carry highly stereotyped mutations in the 33-exon NOTCH3 

gene at 19p13.1-13.2., which alter the number of cysteine residues in the 

extracellular domain of the single pass transmembrane heterodimer receptor protein 

Notch3 (Joutel, Vahedi et al. 1997). Notch3 belongs to the Notch family, whose 

signaling pathways are indispensable during development of most organs (Joutel, 

Dodick et al. 2000). The postnatal expression of this protein is predominantly 

restricted to vascular smooth-muscle cells and pericytes (Joutel, Andreux et al. 

2000). This receptor is initially synthesized as an approximately 280-kDa precursor, 

which is then constitutively cleaved by a paired basic amino acid cleaving enzyme, 

Furin, and the bipartite molecule is inserted to the plasma membrane. Notch3 

consists of an extracellular domain (Notch3ECD) with 34 epidermal growth factor 



 

20 

(EGF)-like repeats followed by three notch/lin-12 repeats, a transmembrane domain, 

and an intracellular domain (Notch3ICD) which contains seven ankyrin repeats. The 

binding site of the ligand (in human Delta or Jagged) is at EGF repeats 10-11. Upon 

binding, Notch3ECD is cleaved external to the intramembranous domain. Thereafter 

intramembranous cleavage occurs and Notch3ICD enters the nucleus to release the 

repressor molecules CoR and HDAc and binds to a transcription regulator of the 

CSL family, RBP-Jk, activating transcription. CADASIL mutations are associated with 

vascular accumulation of Notch3ECD without associated Notch3ICD accumulation, 

at the plasma membrane of smooth-muscle cells and pericytes in close vicinity to or 

within granular osmiophilic material (GOM) deposits (Joutel, Andreux et al. 2000; 

Joutel, Favrole et al. 2001). Thickening and fibrosis of the arterial wall as well as 

transient but prominent alterations of smooth-muscle cells characterized this 

arteriopathy. 

 The earliest manifestation of CADASIL is leukoaraiosis: consistent magnetic 

resonance imaging (MRI) change preceding the onset of ischemic and cognitive 

symptoms by 10–15 years (Chabriat, Levy et al. 1998). Autopsy studies in patients 

with CADASIL demonstrated an arteriopathy that affected primarily the cerebral 

small penetrating and pial arteries. Distinct from other causes of SVD, vessels 

exhibit pathognomonic deposits of granular osmiophilic material of unknown 

composition (Kalimo, Viitanen et al. 1999; Miao, Paloneva et al. 2004). CADASIL 

patients have a predominant CBF reduction in cerebral white matter, and it becomes 

more apparent at ages above 30 years, when strokes begin to occur (Chabriat, 

Vahedi et al. 1995). Experimental studies have given similar results: transgenic mice 

expressing p.Arg90Cys-mutant human Notch3 showed reduced responses to 

hypercapnia, higher cerebrovascular resistance during hypertension and a lower limit 

of CBF autoregulation shifted towards higher blood pressure (Lacombe, Oligo et al. 

2005). Moreover transgenic mice expressing rat p.R169C mutant Notch3 have 

shown cerebrovascular dysfunction with impaired neurovascular coupling and auto 

regulation of cerebral blood flow prior to the appearance of fibrosis and stenosis 

(Joutel, Monet-Lepretre et al. 2010). 
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1.4.3.2 CARASIL 

 The recessive counterpart of CADASIL, CARASIL, is a very rare disease with 

only 54 cases reported so far (Fukutake 2011). While most cases originated in Japan 

and China, there is a case report from the Caucasian population in the literature 

(Mendioroz, Fernandez-Cadenas et al. 2010). 50% of patients with CARASIL 

experience ischemic stroke, often of lacunar type and mainly in the basal ganglia or 

brainstem. This leads to progressive impairment of brain function and ultimately 

dementia, usually an age between 30 and 40 years. Patients first develop 

forgetfulness and gradually exhibit calculation disturbances, disorientation in time, 

personality changes including irritability and emotional lability. Prominent signs are 

premature diffuse baldness/alopecia, which predominantly affects male patients 

(Fukutake and Hirayama 1995; Fukutake 2011). and spondylosis. Alopecia is the 

most common initial symptom, present in 90% of patients. Hair loss is confined to the 

head; no obvious body hair loss is observed. Acute pain in the middle to lower back 

occurs in 80% of patients with CARASIL. MRI shows spondylotic deformations in the 

cervical spine. Onset of these deformations occurs generally in early adulthood 

(Fukutake and Hirayama 1995; Hara, Shiga et al. 2009). 

 High-temperature requirement A serine peptidase 1 (HTRA1) is the gene 

involved in the disease, with mutations reducing or eliminating the function of the 

HtrA1 enzyme. HtrA1 is ubiquitously expressed, plays an important physiological role 

in regulating the availability of insulin-like growth factors (IGFs), and is associated 

with diseases such as arthritis, cancer, age-related macular degeneration, and 

Alzheimer’s diseases (Truebestein, Tennstaedt et al. 2011). It is composed of nine 

exons which encode a protein member of the trypsin family of serine proteases. This 

protein consists of 480 residues and has four functional domains. Exons 3 through 6 

encode the main domain of a trypsin-like serine protease that represses signaling by 

the transforming growth factor-beta (TGF-) family members (Hara, Shiga et al. 

2009). This protein is a secreted enzyme that was proposed to regulate the 

availability of IGFs by cleaving IGF-binding proteins (Jacobo et al. 2013). The protein 

family participates in a variety of physiological processes, such as cell signaling and 

protein degradation, and is associated with the development of the musculoskeletal 

system (Hara, Shiga et al. 2009). 
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 CARASIL’s histopathology is characterized by arteriosclerosis of small 

penetrating arteries, without granular osmiophilic materials or amyloid deposition 

(Chabriat, Levy et al. 1998). Features of the disease are fibrous intimal proliferation, 

hyaline degeneration of the media, loss of vascular smooth-muscle cells, thickening 

and splitting of the internal elastic lamina, and concentric narrowing of the lumen. 

The small arterial changes are intense, leading to multifocal, confluent or diffuse 

ischemic changes. Experimental studies on circulatory disturbances in CARASIL 

have not been published. 
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2 Dysfunction of mouse cerebral arteries 

during early aging 

2.1 Summary 

 The timeframe for onset of age-related vascular dementia (AVD) and which 

vascular components and functions are first affected is currently unknown. 

Considering how critical it is to maintain regulation of cerebral blood flow, I decided 

to investigate age-related functional decay in terms of vascular endothelial reactivity 

and neurovascular coupling in mice. To do this, cerebral vessels were dilated by 

inhalation of 5 and 10% CO2 or by electrical stimulation of the forepaw. I measured 

regional changes in CBF by laser Doppler flowmetry and in individual artery diameter 

using two-photon and intravital microscopy. Regions of interest for intravital 

microscopy were selected on the criteria that they contain pial arterioles, venules 

and capillaries. CBF measurements did not reveal any vascular dysfunction up to 12 

months of age in response to 5% CO2, while only the 12-month-old group revealed a 

decreased response to 10% CO2. By visually examining pial arteries, my 

investigation revealed age-related impairments in nitric oxide-dependent response to 

5% CO2 earlier at 8 months of age. In terms of neurovascular coupling, young mice 

maintained a strong CBF response while in 8 and 12 month old mice the response 

became weaker the longer the stimulation lasted. Components of the neurovascular 

unit are not altered by aging, and there was no difference in both resting and evoked 

end-foot calcium concentration between control and aged mice. These results 

suggest that aging does not affect cerebral vessel function simultaneously, but starts 

in pial microvessels months before global changes in CBF are detectable  
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Aging leads to a gradual decline in the fidelity of cerebral blood flow (CBF) responses to neuronal activation, resulting in an
increased risk for stroke and dementia. However, it is currently unknown when age-related cerebrovascular dysfunction starts or
which vascular components and functions are first affected. The aim of this study was to examine the function of microcirculation
throughout aging in mice. Microcirculation was challenged by inhalation of 5% and 10% CO2 or by forepaw stimulation in 6-week,
8-month, and 12-month-old FVB/N mice. The resulting dilation of pial vessels and increase in CBF was measured by intravital
fluorescence microscopy and laser Doppler fluxmetry, respectively. Neurovascular coupling and astrocytic endfoot Ca2+ were
measured in acute brain slices from 18-month-old mice. We did not reveal any changes in CBF after CO2 reactivity up to an age of
12 months. However, direct visualization of pial vessels by in vivo microscopy showed a significant, age-dependent loss of CO2

reactivity starting at 8 months of age. At the same age neurovascular coupling was also significantly affected. These results suggest
that aging does not affect cerebral vessel function simultaneously, but starts in pial microvessels months before global changes in
CBF are detectable.
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INTRODUCTION
Owing to the high energy demands of membrane potential
repolarization, neuronal activation needs to be tightly matched to
cerebral blood flow (CBF). Therefore, neurons, glia, and vascular
cells of the neurovascular unit (NVU) interact to increase CBF in
response to neuronal activation through a mechanism known as
neurovascular coupling (NVC).1 The resultant functional hyperemia
ensures that neuronal energy demands are satisfied by the timely
delivery of oxygen and glucose.
Aging is known to have profound effects on NVC and CBF,

thereby contributing to an increased risk of stroke and possibly
dementia.2,3 Resting CBF and neuronal activity-mediated increases
in CBF have been reported to decrease with age,4,5 and decreases
in resting CBF and cerebrovascular reactivity to neuronal
activation are associated with an elevated risk of cerebrovascular
disease.6 Despite the importance of NVC for proper function of
the brain and the profound effects of aging on CBF regulation,
significant gaps remain in our knowledge of age-related
cerebrovascular dysfunction (ACD). For instance, it is unknown if
all cerebral vessels are affected by ACD simultaneously or if ACD
starts in pial vessels and proceeds down to parenchymal vessels at
a later stage as observed in animal models of small-vessel
disease.7 Therefore, the aim of the current study was to investigate
the effect of aging on CBF regulation and reactivity of the cerebral
microcirculation.

MATERIALS AND METHODS
Subjects
Animal breeding, housing, and all experimental procedures were con-
ducted according to institutional guidelines of the University of Munich
and were approved by the Ethical Review Board of the Government of
Upper Bavaria and the Institutional Animal Care and Use Committee of the
University of Vermont. In vivo experiments were conducted on 6-week, 8-
month, and 12-month-old male and female FVB/N mice bred at the Center
for Neuropathology, University of Munich (Munich, Germany) and are
reported according to the ARRIVE criteria.
Two- to three-month-old male C57BL/6 mice were purchased from

Jackson Laboratories (Bar Harbor, MA, USA) and 18-month-old male
C57BL/6 mice were obtained from the National Institutes of Aging (USA).
All animal cohorts were group housed and kept on a 12-hour light:dark
cycle with ad libitum access to food and water.

Anesthesia and Physiologic Monitoring
For in vivo experiments on CO2 reactivity, anesthesia was induced by intra-
peritoneal injection of midazolam (5 mg/kg; Braun, Melsungen, Germany),
fentanyl (0.05mg/kg; Janssen-Cilag, Neuss, Germany), and medetomidine
(0.5 mg/kg; Pfizer, Karlsruhe, Germany) and was maintained for up to
4 hours by hourly injections of one-quarter of the initial dose, as previously
described.8–11

For in vivo experiments on NVC mice were initially anesthetized with 2%
isoflurane in 70% N2O and 30% O2. Later on isoflurane was gradually
reduced over the course of 10minutes to a range of 0.5% to 0.9% in 70%
room air and 30% O2, and at the same time, a continuous intraarterial
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infusion of ketamine (30mg/kg/h, Inresa, Freiburg, Germany) was
administrated.
Mice were orotracheally intubated and mechanically ventilated

(Minivent, Hugo Sachs, Hugstetten, Germany). End-tidal pCO2 was
measured continuously with a microcapnometer (Capnograph, Hugo
Sachs, Hugstetten, Germany) and kept constant between 20 and 30
mmHg by respective adjustments to the ventilation frequency to obtain
arterial blood gas values physiologic for FVB/N mice, which are ~ 10
mmHg lower than in C57BL/6 mice.8,12 A thermostatically regulated,
feedback-controlled heating pad (FHC, Bowdoin, ME, USA) was used to
maintain body temperature at 37°C. The left femoral artery was cannulated
for continuous blood pressure monitoring and for infusion of 240 μL/h
physiologic saline solution to prevent dehydration of the mice. Regional
CBF (rCBF) was measured with a laser Doppler probe placed over the right
somatosensory cortex (NVC) or over the territory of the left middle cerebral
artery (CO2 reactivity).

Imaging of Cerebral Microvessels In Vivo
A cranial window (4 × 4 mm) was drilled under constant cooling above
the right parietal cortex leaving the dura mater intact as previously
described.11,13–16 Animals were placed under an epifluorescence micro-
scope (Axio Scope Vario, Zeiss, Oberkochen, Germany) and the exposed
dura mater was kept wet at all times with isotonic saline. The plasma was
stained by an intraarterial injection of fluorescein isothiocyanate (FITC–
dextran, molecular weight 150 kDa; 0.05ml of a 0.5% solution; Sigma-
Aldrich, Deisenhofen, Germany) and pial microvessels (diameter 20 to
40 μm) were visualized by epifluorescence imaging (excitation 470 nm;
emission 527 nm) using a × 10 W N-Achroplan objective (Zeiss; numerical
aperture (NA): 0.3). Four regions of interest containing arterioles, venules,
and capillaries were investigated (Supplementary Figure S1A). Vessel
diameters were quantified using a calibrated image analysis software (Zen,
Zeiss) and expressed in percentage of baseline.

Neurovascular Reactivity to CO2

Cerebral blood flow and diameter of pial vessels were examined for at least
10minutes under physiologic, stable conditions, and the mean values
obtained were taken as a baseline. Thereafter, CBF and vessel diameter
were observed during inhalation of 5% CO2 for 15minutes as previously
described.17,18 After a break of 15minutes the procedure was repeated
with 10% CO2 (Supplementary Figure S1B). The amount of inhaled CO2 was
measured by microcapnometry (Supplementary Figure S1C).

Forepaw-Evoked Neurovascular Coupling
The left forepaw was stimulated with two subdermally inserted needle
electrodes with a diameter of 0.2 mm (Hwato, Suzhou, China) at an
intensity of 2 mA for 0.3 ms (Digitimer, Hertfordshire, England). One
stimulation cycle contained 96 stimulations and lasted for 16 seconds
(6 Hz). The interval between two stimulation cycles was 40 seconds
(Figure 1A). To identify the exact location of the somatosensory cortex
representing the left forepaw, a train of 10 stimuli was applied and the
rCBF response (Figure 1D) was assessed at five different locations within
the somatosensory cortex. The region with the strongest synchronous
response to stimulation was used for analysis and further for assessment of
the microvascular response by in vivo microscopy.
To prove that our stimulation protocol indeed evoked neuronal activity,

neuronal activation was assessed 3 seconds after the onset (Figure 1B) and
3 seconds after the end of each pulse train (Figure 1C) using custom-built
cortical surface electrodes connected to an FE136 animal bioamplifier
(ADInstruments, Oxford, UK). Only the recordings corresponding to the
stimulus pulse trains showed the typical neuronal response to the single
stimulus pulses with intervals of 167ms.

Brain Slice Preparation and Imaging
Brain slices were prepared essentially as previously described.19 Briefly,
mice were killed by pentobarbital overdose and decapitated. The brain
was rapidly removed into ice-cold artificial cerebrospinal fluid (aCSF)
containing 124mmol/L NaCl, 3 mmol/L KCl, 2 mmol/L CaCl2, 2 mmol/L
MgCl2, 1.25mmol/L NaH2PO4, 26mmol/L NaHCO3, and 4mmol/L glucose;
the aCSF used during slice preparation also contained 0.4 mmol/L ascorbic
acid. Slices (160 μm) were prepared using a Leica VT1000 S vibratome
(Leica, Buffalo Grove, IL, USA) and stored in oxygenated aCSF. Slices were
then loaded with 10 μmol/L Fluo-4 AM (Invitrogen, Waltham, MA, USA) in

aCSF containing 2.5 μg/mL pluronic acid for 1.5 hours at 32°C, and
arteriolar diameter was measured and Ca2+ imaging was performed as
previously described. Experimental solutions—gassed with 20% O2, 5%
CO2, and balance N2—contained 125 nm of the thromboxane analog
U46619 to preconstrict arterioles (by 47%±4%, n=9) and mimic physio-
logic tone. To enable offline quantification of endfoot [Ca2+]i, we treated a
subgroup of slices with 10 μmol/L ionomycin and 20mmol/L [Ca2+]o to
saturate loaded Fluo-4 AM (Invitrogen) and obtain a maximal fluorescence
measurement. All other experiments were concluded by obtaining the
passive vessel diameter by perfusing the slice with aCSF containing 50
μmol/L diltiazem, 200 μmol/L papaverine, 0 CaCl2 and 5mmol/L EGTA (in
the absence of U46619) to allow assessment of arteriolar tone. The
intensity and pulse pattern of electrical field stimulation remained constant
throughout all experiments (a 3-second train delivering a 20 V, 50 Hz
alternating square pulse of 0.3 ms duration).

Immunofluorescence Staining
Anesthetized mice were injected intraarterially with 30 μL of FITC-labeled
tomato lectin, which stains vessels by direct binding to endothelial
glycoproteins. Five minutes thereafter mice were transcardially perfused
with sodium chloride and 4% paraformaldehyde. Brains were removed and
fixed overnight in 4% paraformaldehyde. Coronal sections (50 μm thick)
were made using a vibratome (Leica VS1200, Leica, Nussloch, Germany)
and collected in phosphate-buffered saline. Free-floating sections from the
rostral, medial, and dorsal brain were used for immunostaining. Sections
were blocked with 3% bovine serum albumin for 60minutes and
incubated overnight at 4°C with the primary antibody in blocking solution.
The following primary antibodies were used: for smooth muscle cells,
Cy3-conjugated antialpha smooth muscle actin (1:100; Sigma-Aldrich,
Taufkirchen, Germany, C6198); for pericytes, goat anti-platelet-derived
growth factor receptor β (PDGFRβ) (1:100, R&D Systems, Wiesbaden,
Germany, AF1042); for astrocytes, mouse anti-glial fibrillary acidic protein
(GFAP) (1:100; Sigma-Aldrich, G3893); and for plasma protein (albumin),
mouse antialbumin (1:100; Sigma-Aldrich, A6684). Sections were then
washed three times in phosphate-buffered saline, blocked with 3% bovine
serum albumin for 30minutes, and incubated with fluorophore-
conjugated secondary antibodies for 2 hours at room temperature. To
visualize PGDFRβ-positive pericytes, sections were incubated in secondary
Cy3-conjugated donkey antigoat antibody (1:100, Jackson ImmunoRe-
search, Suffolk, UK, 705165147); to visualize GFAP-positive astrocytes,
sections were incubated in secondary Cy3-conjugated donkey antimouse
antibody (1:100, Jackson ImmunoResearch, 715165150); and to visualize
albumin, sections were incubated in secondary Cy3-conjugated donkey
antimouse antibody (1:100, Jackson ImmunoResearch, 715165150). Sec-
tions were subsequently washed and mounted on slides using Fluor-
omount mounting medium (Sigma-Aldrich).

Imaging Acquisition and Analysis
All mounted sections were examined under a fluorescent (Axiovert 200M,
Zeiss) or a confocal microscope (Leica TCS SP5 II, Wetzlar, Germany).
Quantitative image analysis was performed by a blinded investigator using
the software ImageJ (National Institute of Health, Bethesda, MD, USA). In
each mouse, four regions of interests from the cortex were analyzed. This
analysis was performed in three nonadjacent sections 100 μm apart from
six animals per group. Capillaries were identified by positive FITC–lectin
labeling and capillary density was quantified by subtracting the background
and counting all FITC-positive pixels on maximum intensity projection
confocal images using ImageJ. Smooth muscle cell coverage was determined
by calculating the number of alpha-smooth muscle actin (α-sma)-positive
pixels as a percentage of FITC–lectin-positive pixels per field (410×410 μm).
Pericyte coverage was evaluated in the same way by the area occupancy of
PDGFβR and lectin signals, respectively. Pericyte number was obtained by
counting the number of PDGFβR-positive pericytes per mm2 of selected field
area. Astrocyte endfoot coverage was determined as a percentage of GFAP-
positive astrocyte surface area covering lectin-positive capillary surface area
per field. Extravascular albumin deposition was quantified on maximum
intensity projection confocal images using ImageJ.

Statistical Analysis
Depending on whether data were normally distributed or not results are
presented as mean± s.e.m. or as median± 75/25 percentile, respectively,
and respective statistical tests were used to test for differences between
groups/time points.
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For the in vivo study, statistical analysis was performed with a standard
statistical software package (SigmaPlot 12.5; Systat Software, Erkrath,
Germany). Differences across groups were evaluated using the Mann–
Whitney rank sum test with the Bonferroni correction.
For the in situ study and immunohistologic experiments, statistical

analyses were performed using Prism 5 (GraphPad Software, La Jolla, CA,
USA). Time courses were analyzed using two-way repeated measures
analysis of variance. Calcium concentration data were analyzed using one-
way analysis of variance with Sidak’s multiple-comparison test. Mean
diameter data were analyzed using Student’s unpaired t-test. Multiple
group comparisons were analyzed using a one-way analysis of variance
test followed by a Tukey's post hoc analysis. Data reported are mean± s.e.
m. A value of Po0.05 was considered to be statistically significant.

Randomization and Blinding
All animals were randomly assigned to the procedures; the surgical
preparation and data analysis were performed by a researcher masked
toward the treatment of the animals.

RESULTS
In Vivo Physiologic Parameters
Body temperature, systemic blood pressure, and blood gases—
factors shown to have strong effects on CBF20—were carefully

monitored in all investigated mice. Parameters did not differ
between groups and were within the physiologic range for FVB/N
mice (Supplementary Table 1). These mice have a significantly
lower pCO2 than C57BL/6 mice anesthetized under the same
conditions (Supplementary Figure S3) and a trend toward a lower
arterial pH.12 In keeping with this, we maintained endtidal pCO2 at
values ~ 20 to 30 mmHg, which correspond to an arterial pH of
~ 30 to 40 mmHg, i.e., the physiologic value for FVB/N mice.

Effect of Age on Neurovascular Response to CO2 In Vivo
Inhalation of 5% or 10% CO2 elicited the expected rCBF response
in young (6 weeks old) FVB/N mice (Figures 2A and 2D, white
symbols). In these animals, rCBF increased maximally by 20% and
by 70% during 5% and 10% CO2 inhalation, respectively. This
response was similar in 8-month (Figures 2A and 2D, gray
symbols) and 12-month-old mice (Figures 2A and 2D, dark gray
symbols), indicating that the response of the whole cerebro-
vascular tree to CO2 was not affected by age. In contrast to the
CO2-induced CBF response, dilation of pial vessels to CO2 was
significantly reduced in aged mice (Figure 3A). Although in young
mice pial arterioles dilated as expected by 20% and 40% on
inhalation of 5% and 10% CO2, respectively (Figures 3B and 3E,
white symbols), the increase in 8-month (P= 0.001 versus 6 weeks)
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and 12-month-old mice (P= 0.001 versus 6 weeks) was signifi-
cantly smaller (Figures 3B and 3E, gray symbols). In 12-month-old
mice, the response after application of 5% CO2 was almost
eliminated (Figure 3B, dark gray symbols) and analysis of
individual vessels revealed that arteries in some animals even
displayed an inverted response (Figure 3D, dark gray symbols), i.e.,
vasoconstriction instead of vasodilation. By doubling the concen-
tration of inhaled CO2 to 10%, we were able to dilate pial arterioles
in 12-month-old mice (Figure 3C, dark gray symbols); however, the
response was significantly attenuated (Po0.002) and still showed
an inverted response in some arteries (Figure 3E, dark gray
symbols). These results show that exposure to CO2, which results
in vasodilation in young mice, is dramatically reduced in pial
arterioles already at an age of 8 months.

Effect of Age on Neurovascular Coupling
Sensory stimulation of the forepaw with 10 consecutive stimula-
tion cycles resulted in an increase of CBF by up to 40% in young
mice (Figure 4A, white symbols). The first four stimuli had a
weaker effect (20% to 30%); the maximum effect of 40% increase
was reached only after the fifth stimulus. The response to the first
four stimuli was not different between young and 8- or 12-month-
old mice (Figures 4A and 4B), however, thereafter aged mice
showed a significantly (Po0.04 to 0.02) decreased response
(Figures 4A and 4C). After the seventh stimulus, the CBF increase
toward sensory stimulation in aged animals was completely

eliminated. Six animals even display a decrease in CBF (Figure 4C).
To ensure that sensation of the forepaw was not lost with age
thereby resulting in reduced neuronal stimulation and sub-
sequent NVC, we tested young and 7-month-old animals using a
hot plate paradigm. All animals showed the same response
(Supplementary Figure S4) suggesting not a loss of sensory input
but age was responsible for the decline of NVC in old mice.
Accordingly, these results point to a severe age-related neurovas-
cular dysfunction already present after one-third of the life span of
a mouse.21

Structural Changes of the Neurovascular Unit During Aging
To investigate whether structural changes of the NVU—e.g., loss
of pericytes or opening of the blood–brain barrier22—are
responsible for the observed functional deficits of aged cerebral
vessels, we assessed and quantified important components of the
NVU during aging by immunostaining (Figure 5A and
Supplementary Figure S2B ). We examined capillary density (lectin
staining), coverage of arterioles with smooth muscle cells (α-sma),
the coverage of capillaries with pericytes and the total number of
pericytes in the microcirculation (PDGFRβ expression), the cover-
age of capillaries with astrocytic endfeet (GFAP expression), and
leakage of the blood–brain barrier by assessing the presence of
blood plasma proteins in the brain parenchyma (antialbumin
staining). We did not observe any significant change in the
endothelium or in the structure of the NVU up to 12 months of
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age (Figure 5B and Supplementary Figure S2C), suggesting that
structural integrity of the NVU is not affected by aging.

Neurovascular Coupling is Impaired In Situ in Aged Mice
To investigate the effects of aging on the function of penetrating
arterioles, we used a brain slice model of NVC in which electrical
field stimulation was used to initiate neurovascular signaling. By

using this established paradigm,19,23,24 we observed that the
vasodilatory response to electrical field stimulation was abrogated
at 18 months (Figures 6A and 6B). In fact, the prevailing response
was a slight constriction in old mice (2- to 3-month-old: 30%±7%
dilation, n= 8 arterioles, four mice; 18 months: − 3%±8%
constriction, n= 10 arterioles, five mice). A key step in NVC is an
increase in concentration of astrocytic endfoot Ca2+, which leads
to the production or release of vasoactive factors onto the
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underlying pericytes or smooth muscle cells.25 We observed no
difference in either resting endfoot or the level of evoked endfoot
calcium between young and 18-month-old mice (control resting:
92 ± 15 nmol/L, control evoked: 435 ± 93 nmol/L, n= 6 endfeet,
four mice; aged resting: 98 ± 30 nmol/L; aged evoked 371± 70
nmol/L, n= 6 endfeet, four mice; Figures 6C and 6D).

DISCUSSION
The findings of the current study suggest that the function of
cerebral vessels is differentially altered by aging and that cerebral
vessels are structurally intact despite severe functional impair-
ment. In addition, direct visualization of the pial microcirculation
allowed us to detect neurovascular dysfunction to CO2 inhalation
much earlier that with regional measurements of CBF alone.
Consistent with this, rCBF in response to forepaw stimulation was
substantially reduced by 8 and 12 months, showing that the
cerebral vasculature in mice is already functionally impaired in
early adulthood.
An increase in CBF on neuronal activation, also termed

functional hyperemia, is essential for the brain's proper function.
Reduced hyperemia during brain activation limits the delivery of
energy substrates and oxygen to activated neurons thereby
resulting in mismatch of blood flow and metabolism, metabolic
stress, and eventually neuronal damage as shown in various
pathologic conditions, e.g., hypertension and Alzheimer’s
disease.26,27 However, in addition to cerebrovascular and neuro-
degenerative diseases, physiologic aging was also reported to
result in dysfunction of cerebral vessels. Aging is associated with a
decrease of resting CBF20 and aged vessels tend to display a
reduced response to endothelium-dependent vasodilators.28 It
was suggested that the main underlying mechanism is the
production of reactive oxygen species by reduced nicotinamide
adenine dinucleotide phosphate oxidase in the vessel wall, where
reactive oxygen species convert nitric oxide (NO) to peroxynitrite,
thereby reducing the bioavailability of NO and damaging vascular
structures.13,29

Despite these mechanistic insights, the spatiotemporal
dynamics of ACD and its cellular and molecular basis remain
poorly characterized. Functional hyperemia to whisker stimulation
is reduced by ~ 40% in 12-month-old mice suggesting dysfunction
of the neuron–astrocyte–pericyte/smooth muscle cell axis.13 The
results of the current study are in line with these findings, but
detect an impaired NVC already at an age of 8 months. This was
identified using trains of repetitive stimuli. By using this approach,
we identified that after the first stimulus 6-week and 8-month-old
mice reacted normally while 12-month-old mice showed a
reduced CBF response. When repeating the stimulation up to
ten times, however, it became apparent that vessels in 6-week-
young mice maintained their CBF response over time, while 8-
month and 12-month-old mice could not maintain their initial
response level and showed almost no functional hyperemia. To
the contrary, 6 of 16 of the old animals (38%) even showed inverse
NVC, i.e., a reduction rather than an increase in CBF. Accordingly,
NVC impairment seems to be a much earlier event than previously
anticipated since it occurs already at 8 months of age, i.e., in the
first third of a mouse's life.
Mechanistically, this vascular 'fatigue effect' could be explained

by a structural damage to the NVU, by impaired neuron–
astrocyte–vascular signaling, or by dysfunction within the vascular
wall itself. To assess these hypotheses, we first investigated the
NVU by quantifying capillary density, smooth muscle cell coverage
of cerebral arterioles, pericyte and astrocytic endfeet coverage
of capillaries, and leakage of the BBB by three-dimensional
immunohistochemistry. None of these parameters was altered up
to an age of 12 months suggesting that arterioles and capillaries
are structurally completely intact while NVC is already impaired. To
clarify whether neuron–astrocyte–vascular signaling might be
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Figure 4. Neurovascular coupling in young and aged mice. (A)
Response of cerebral blood flow (CBF) in somatosensory cortex to
10 consecutive stimulations of the contralateral forepaw. All mice
showed a normal response to the first four stimuli. Young mice were
able to maintain this response until the last stimulus, while in 8-
month and 12-month-old mice the response became weaker the
longer the stimulation lasted. In fact, 8-month and 12-month-old
mice did not respond at all to the last four stimuli; pial arteries of 12-
month-old mice even showed a tendency to constrict rather than
dilate to forepaw stimulation. Mean value± s.e.m. (B and C) Cerebral
blood flow response to forepaw stimulation induced by the first
four (B) and last six (C) stimuli. The increase in CBF was found
to be significantly smaller during the last six stimuli in 8-month
(P= 0.04) and 12-month-old mice (P= 0.02), compared with 6-week-
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Median± 75/25 percentile; Mann–Whitney rank sum test; n= 7 to 8
per group.
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impaired, we performed experiments on isolated brain slices from
aged mice. Vessels in control slices dilated robustly to neuronal
activation, while vessels in slices from aged mice showed a
response very similar to that observed in vivo at 12 months,
namely a complete loss of NVC with a tendency toward vaso-
constriction. However, the increase of astrocytic endfoot Ca2+ on
neuronal activation was very similar to the response observed in
slices from young mice. Accordingly, we conclude that aging
principally affects the functionality of cerebral vessels without
affecting neuronal–astrocytic signaling or the structure of the
NVU, as also discussed above and suggested by others.13,20,28,29

The absence of an alteration in astrocytic endfoot Ca2+ levels,
coupled with impairment of the reactivity of intracerebral
arterioles, suggests that mechanisms downstream of this signaling
step are affected by aging. One possible mechanism underlying
the disturbance of NVC in the current study might be the

impairment of potassium ion (K+) signaling.14,30 The Ca2+-driven
release of K+ release from astrocytic endfeet plays a critical role in
generating rapid vasodilation of cerebral parenchymal arterioles in
response to neural activity,23 through activation of smooth muscle
cell potassium inward rectifier channels, driving membrane potential
hyperpolarization and vasodilation.25,31 We have previously shown
that this mechanism is sensitive to disruption at the level of the SMC
KIR channel.

19 Future studies will need to explore the role of vascular
Kir channels in the ACD in more detail.
To further explore the time course and localization of vascular

dysfunction during aging, we used hypercapnia by inhalation of
CO2, which induces nitric-oxide dependent vasodilation.29,32,33

Examining the global increase of CBF after inhalation of 5% or 10%
CO2, we were not able to find any neurovascular dysfunction in
mice up to an age of 12 months as previously published by Park
et al.13 However, visualization of pial microvessels by in vivo

Figure 5. Quantification of the cellular components of the neurovascular unit in young and aged FVB/N mouse cortex. (A) Representative
photomicrographs of immunostainings for smooth muscle cells (α-smooth muscle actin (α-sma)), pericytes (PDGF receptor-β), astrocytic
endfeet (GFAP) together with endothelial staining with fluorescein isothiocyanate (FITC)–labeled tomato lectin. Scale bar represent 100 μm. (B)
Quantification of stainings shown in A. Components of the neurovascular unit are not altered by aging. Mean± s.e.m.; n= 6 per group. GFAP,
glial fibrillary acidic protein; PDGF, platelet-derived growth factor.
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microscopy allowed us to detect a significant lack of CO2-induced
vasodilation in pial arterioles already in 8-month-old mice. These
findings suggest that AVD starts in pial arteries and precipitates
down the neurovascular tree during aging. This is supported by
published data showing that aging affects the global increase of
CBF after inhalation of CO2 only in mice older than 1.5 years13 and
by experiments showing accelerated aging of pial arteries in a
mouse model small-vessel disease.7 Furthermore, since CO2-
induced vasodilation is mediated by constitutively expressed
endothelial and neuronal NO synthases, the current data also
suggest that AVD may be caused by disturbed NO signaling.
Taken together, our results show that age impairs neurovascular

coupling at an unexpectedly young age in mice (30% of the
mouse's mean life span). This dysfunction starts in pial vessels and
is not accompanied by any changes on the cellular composition of
the NVU or by impaired astrocytic Ca2+ reactivity. The lack of
vascular CO2 reactivity suggests that defective constitutive NO
signaling may represent a possible mechanism. The current study
identified the onset and location of age-related neurovascular
dysfunction and suggests a putative mechanism, thereby paving
the way for the development of novel strategies to maintain
neurovascular function during aging.
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3 Acute changes in neurovascular 

reactivity after subarachnoid 

hemorrhage in vivo 

3.1 Summary 

 Using the animaI model for subarachnoid hemorrhage, I investigated the 

reactivity of pial and parenchymal arterioles to CO2 and sensory stimulation using 

CBF measurements and two-photon microscopy. My investigation of SAH revealed 

for the first time that intraparenchymal vessels show severe functional impairments 

after SAH. Pial and parenchymal vessel dilated normally in response to inhalation of 

10% CO2 in sham operated mice, while no response was observed after SAH. 

Neurovascular coupling is not altered 3 hours after SAH. Artery dilation in response 

to a discrete electrical stimulation showed no difference between the experimental 

groups. CBF increase and artery dilation in response to continuous electrical 

stimulation showed no difference between sham-operated mice and mice subjected 

to SAH. Electrical field stimulation (EFS)-induced vasodilation was unaltered in brain 

slices 4 hours after SAH. These findings suggest that communication between 

neurons, astrocytes, and parenchymal arterioles is not affected in the first few hours 

after SAH, while CO2 reactivity, which is dependent on NO signaling, is completely 

lost. 
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Subarachnoid hemorrhage (SAH) causes acute and long-lasting constrictions of pial arterioles. Whether these vessels dilate normally to neuronal 

activity is of great interest since a mismatch between delivery and consumption of glucose and oxygen may cause additional neuronal damage. 

Therefore, we investigated neuro-vascular reactivity of pial and parenchymal arterioles after experimental SAH. C57BL/6 mice were subjected to 

SAH by filament perforation or sham surgery. Neuro-vascular reactivity was assessed three hours later by forepaw stimulation or inhalation of 10% 

CO2. Diameters of cerebral arterioles were assessed using two-photon microscopy. Neuro-vascular coupling (NVC) and astrocytic end-foot Ca2+ 

were measured in brain slices using two-photon and infrared-differential interference contrast (IR-DIC) microscopy. Vessels of sham operated 

mice dilated normally to CO2 and forepaw stimulation. Three hours after SAH, CO2 reactivity was completely lost in both pial and parenchymal 

arterioles while NVC was not affected. Brain slices studies also showed normal NVC and a normal increase in astrocytic end-foot Ca2+ acutely 

after SAH. These findings suggest that communication between neurons, astrocytes, and parenchymal arterioles is not affected in the first few 

hours after SAH, while CO2 reactivity, which is dependent on NO signaling, is completely lost. 
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INTRODUCTION 

Activation of specific regions of the brain induces a focal increase 

in cerebral blood flow (CBF) in order to match the delivery of 

oxygen and glucose to the increased metabolic demand of 

depolarized neurons.1 This process is called "neurovascular 

coupling" (NVC) and is mediated through a still not completely 

understood interplay between neurons, astrocytes, and cerebral 

vessels.2, 3 Disturbances of NVC, as observed after cerebral 

ischemia or brain trauma, may compromise the metabolic status 

of neurons and further aggravate brain damage. Accordingly, it is 

of great scientific and clinical interest to understand the 

mechanisms of NVC in the healthy and diseased brain.  

Subarachnoid hemorrhage (SAH) is a subtype of stoke which 

accounts for 5% of all first-ever strokes.4 Despite its relatively low 

incidence SAH is responsible for 20% of all cerebrovascular 

related deaths5 and only 10% of all SAH patients recover 

completely. In most cases, SAH is caused by the rupture of a 

cerebral aneurysm located at the base of the skull. Experimental 

data show that immediately after vessel rupture the subarachnoid 

space fills with blood and intracranial pressure (ICP) increases to 

levels that blunt cerebral perfusion pressure (CPP) and cause 

global cerebral ischemia. If patients survive this acute spike in 

ICP, lasting approximately five minutes, ICP decreases and CPP 

normalizes. Despite normal CPP, however, many SAH patients 

still suffer from severe and wide spread reductions in CBF.6 Since 

large brain surface arteries become spastic only after several 

days of exposure to subarachnoid blood, these early reductions 

in CBF are most likely caused by disturbances at the level of the 

cerebral microcirculation. Direct visualization of cerebral 

microvessels within the first few hours after SAH in patients and 

experimental animals indeed demonstrated microvasospasms of 

pial arterioles that reduced cerebral perfusion by 60-80%.7-9 

These reductions in CBF trigger a cascade of events resulting in 

brain edema formation, neuronal cell death, and unfavorable 

neurological outcome referred to as “early brain injury”.10-12  

Despite the importance of cerebral microvessels in the 

pathophysiology of SAH relatively little is known about the 

consequences of SAH on neurovascular function in vivo. 

Recently, we demonstrated that NVC is impaired 96 hours after 

SAH in rat brain slice preparations.13 This suggests that neuron 

activation may not dilate cerebral vessels after SAH to elicit an 

adequate increase in CBF, thereby significantly increasing the 

risk for further neuronal damage and loss of function. However, it 

is not known if NVC is impaired immediately after SAH in vivo. 

Therefore the aim of the current study was to subject mice to 

experimental SAH for three hours and use two-photon 

microscopy to investigate the reactivity of pial and parenchymal 

arterioles to sensory stimulation and CO2, two well established in 

vivo paradigms of neuro-vascular communication. 

 

MATERIALS AND METHODS 

Animal breeding, housing and all experimental procedures were 

conducted according to institutional guidelines and were 

approved by the Ethical Review Board of the Government of 

Upper Bavaria (protocol number 220-13) and the Institutional 

Animal Care and Use Committee at the University of Vermont. 



Male C57BL/6 mice (20 to 23 g body weight Charles River 

Laboratory, Sulzfeld, Germany and Charles River Laboratory, 

Saint Constant, Quebec, Canada) were used for this study. 

Experiments were planned, carried out, and reported according 

to the ARRIVE guidelines.14 

 

Animal preparation and monitoring 

Experimental animals had free access to food and water prior 

and after surgery. For induction of SAH, anesthesia was induced 

by intraperitoneal injection of midazolam (5 mg/kg; Braun, 

Melsungen, Germany), fentanyl (0.05 mg/kg; Jansen-Cilag, 

Neuss, Germany), and medetomidine (0.5 mg/kg; Pfizer, 

Karlsruhe, Germany) as previously described.15, 16 Mice were 

orotrachealy intubated and mechanically ventilated (Minivent, 

Hugo Sachs, Hugstetten, Germany). End-tidal pCO2 was 

measured with a microcapnometer (Capnograph, Hugo Sachs, 

Hugstetten, Germany) and kept constant between 30 and 40 

mmHg by respective adjustments to the ventilation.16 A 

thermostatically regulated, feedback-controlled heating pad 

(FHC, Bowdoin, ME, USA) was used to maintain body 

temperature at 37°C. Intracranial pressure (ICP) was measured 

in each animal for 15 minutes after SAH using a microsensor 

based ICP probe (Codman & Shurteff Inc, Raynham, MA) to 

prove successful induction of SAH as described before.17 For 

continuous monitoring of regional cerebral blood flow (rCBF) a 

flexible laser-Doppler probe (Periflux 4001 Master, Perimed, 

Stockholm, Sweden) was glued onto the skull above the territory 

of the left middle cerebral artery (MCA). Blood gases and 

electrolytes were determined at the end of each experiment. 

For experiments on neurovascular reactivity mice were 

initially anesthetized with 2% isoflurane in 70% N2O and 30% O2. 

Later on, isoflurane was gradually reduced over the course of 10 

minutes to a range of 0.5 to 0.9% in 70% room air and 30% O2. 

At the same time, a continuous intra-arterial infusion of ketamine 

(30 mg/kg/h, Inresa, Freiburg, Germany) was administrated.18  

 

Induction of subarachnoid hemorrhage  

SAH was induced using the filament perforation model as 

previously described.17, 19, 20 Briefly, a 5-0 monofilament was 

introduced via the left external carotid artery into the internal 

carotid artery and advanced intracranially. SAH induction was 

indicated by a sudden increase of ICP. Immediately after, the 

filament was withdrawn and the external carotid artery was 

ligated. Sham operated mice were treated at the same way with 

the only exception that the filament was not advanced far enough 

to induce hemorrhage. Anesthesia was terminated by 

intraperitoneal injection of atipamezole (2.5 mg/kg; Pfizer) 

naloxone (1.2 mg/kg; Inresa, Freiburg, Germany), and flumazenil 

(0.5mg/kg; Hoffmann-La-Roche, Grenzach-Wyhlen,Germany). 

Thereafter, mice were kept in an incubator at 33°C for 2.5 hours. 

Forepaw-evoked neurovascular coupling 

Mice were re-anesthetized 2.5 hours after SAH and the CBF 

response after neurovascular coupling was evaluated as 

previously described.18 Briefly, the left forepaw was stimulated 

with two subdermally inserted needle electrodes with a diameter 

of 0.2 mm (Hwato, Suzhou, China) at an intensity of 2 mA for 0.3 

ms (Digitimer Ltd, Hertfordshire, England). One stimulation cycle 

contained 96 stimulations and lasted for 16 seconds (6 Hz). The 

interval between two stimulation cycles was 40 seconds. CBF 

was assessed at five different locations covering the whole 

somatosensory cortex. The region with the strongest CBF 

response was also continuously stimulated (2 mA) for one minute 

in order to evaluate the response to a tonic stimulus. This region 

was then considered for analysis and further for assessment of 

the microvascular response by two-photon microscopy. A 

graphical representation of the experimental protocol is shown in 

figure 1A. 

 

Two-photon microscopy  

After assessing the CBF response to forepaw stimulation, i.e. 

fours after SAH, a cranial window (2 x 1 mm) was drilled under 

constant cooling above the area of the somatosensory cortex 

associated to the fore paw leaving the dura mater intact as 

previously described.21 Mice were placed under a two-photon 

microscope (Zeiss LSM-7 MP, Oberkochen, Germany) equipped 

with a Li:Ti laser (Chameleon, Coherent, USA) as described 

previously,22 and the exposed dura mater was kept wet with 

isotonic saline. The fluorescent plasma dye, fluorescein 

isothiocyanate (FITC-dextran; molecular weight 150 kDa) was 

given systematically via femoral artery injection (0.05 ml of a 

0.5% solution; Sigma, Deisenhofen, Germany) and all 

parenchymal (diameter: 5 - 20 μm; depth: 100 µm) and pial 

arterioles (diameter: 20 to 40 μm) in the region previously 

selected (see above) were visualized using 2-photon 

fluorescence microscopy and a 10x Zeiss EC Plan-NeoFluar 

objective. Pial arterioles were followed into the parenchyma along 

an axis normal to the brain surface. Arterioles were distinguished 

from venules on the basis of velocity and direction of the blood 

flow. 

 

Neurovascular reactivity to CO2 

Diameters of both parenchymal and pial arterioles were 

examined under physiological conditions in order to obtain 

baseline values. Thereafter, arteriolar diameter was observed 

during inhalation of 10% CO2 for 10 minutes. The amount of 

inhaled CO2 was measured by microcapnometry (Hugo-Sachs 

Elektronik, March-Hugstetten, Germany). Arteriolar diameters 

were quantified with a calibrated image analysis software (Zen, 

Zeiss, Oberkochen, Germany) and expressed in percentage of 

baseline as previously described.18  



 
Figure 1. SAH induction and experimental design. (A) Schematic representation of the experimental design for SAH (or sham) surgery 

and forepaw stimulation followed by 10% CO2 inhalation. (B) Intracranial pressure and (C) cerebral blood flow over time, starting five 

minutes before SAH induction until 20 minutes thereafter. A sudden increase in ICP and drop in CBF confirm vessel perforation. Mean 

+/- SD, n=10 each. 

 

Vessel diameter during forepaw-evoked neurovascular 

coupling 

For evaluation of changes in vessel diameter after forepaw 

stimulation the same protocol as for assessment of CBF was 

used. Briefly, the region yielding the most pronounced CBF 

response was stimulated with one stimulation cycle contained 96 

stimulations and lasted for 16 seconds (6 Hz). The interval 

between two stimulation cycles was 40 seconds. Thereafter the 

same region was also continuously stimulated (2 mA) for one 

minute in order to evaluate the response to a tonic stimulus.  

 

Ex vivo neurovascular coupling in freshly prepared brain 

slices 

To examine neurovascular coupling ex vivo, parenchymal 

arteriolar diameter and astrocytic endfoot Ca2+ were 

simultaneously measured in freshly prepared cortical brain slices 

using a combination of two-photon and infrared-differential 

interference contrast (IR-DIC) microscopy as described 

previously.13 Four hours after SAH induction mice were 

euthanized by decapitation under deep pentobarbital anesthesia 

(60 mg/kg). Coronal sections of somatosensory cortex (160 µm 

thick), prepared from the middle cerebral artery region using a 

vibratome (Leica VT1000S), were loaded with the Ca2+ indicator 

dye, fluo-4 (Invitrogen), for 1.5 hours at 29°C. Throughout the 

experiment, brain slices were superfused with artificial cerebral 

spinal fluid (aCSF; 125 mM NaCl, 3 mM KCl, 18 mM NaHCO3, 

1.25 mM NaH2PO4, 1 mM MgCl2, 2 mM CaCl2, and 5 mM glucose 

, aerated with 5% CO2/20% O2/75% N2, pH ~7.35, 35-37°C) 

containing 125 Nm U46619 (a thromboxane A2 analog, 

Calbiochem) and 0.4 Mm ascorbic acid. U46619 was added to 

establish a physiological level of arteriolar tone and ascorbic acid 

was used as a supplement to prevent swelling of brain slices13, 23  

The following criteria was used to a elect the recording region 

within brain slices for neurovascular coupling: 1) brain 

parenchymal arterioles encased by astrocyte endfeet (i.e. 

arterioles past the end of Virchow-Robin space, or at least  50 µm 

from the brain surface), 2) Arterioles that are no greater than 300 

µm from brain surface, and 3) Arterioles with adjacent astrocyte 

endfeet with detectable fluorescent Ca2+ indicator. Neurovascular 

coupling was initiated using electrical field stimulation (EFS, 50 

Hz, 0.3-msec alternating square pulse, 3 sec duration). IR-DIC 

and fluorescent (Ex 820 nm, Em 525/50 nm) images were 

simultaneously acquired at ~ 1 Hz using a Zeiss LSM-7 

multiphoton imaging system.  Custom software SparkAn (written 

by Dr. Bonev, Univeristy of Vermont) was used to measure 

arteriolar diameter at 3 points along the segment (~10 µm) of the 

arteriole exhibiting the largest response to EFS, and are 

expressed as percent diameter change compared to the first 

image of the recording (prior to EFS).  Estimated Ca2+ 

concentration in the astrocyte endfoot adjacent to the arteriolar 

segment of interest was obtained using the maximal fluorescent 

method.23 



 

 
Figure 2. Pial and parenchymal arteries do not dilate in response to hypercapnia after SAH. (A) Representative two-photon microscopy 

images of pial (top) and parenchymal arteries (bottom) of SAH (left) and sham operated (right) mice before and during 10% CO2 

inhalation. (B) Surface and (C) parenchymal artery diameter during hypercapnia of mice subjected to sham surgery (white symbols) or 

SAH (gray symbols). Pial and parenchymal vessel dilated normally in response to inhalation of 10% CO2 in sham operated mice (white 

symbols), while no response was observed after SAH (gray symbols).  Mean +/- SEM; Mann-Whitney Rank Sum test; 16 to 37 arteries 

(B) and 25 to 34 arteries (C) in n=6-7 mice per group. ** P < 0.01 *** P < 0.001 

 

Statistical Analysis 

For the in vivo study, statistical analysis was performed with a 

standard statistical software package (Sigma Plot 12.5; Systat 

Software, Erkrath, Germany). Results for CO2 reactivity 

experiments are presented as mean ± standard error of the mean 

(SEM). Results for somatosensory stimulation are presented as 

median ± 75/25 percentile. Differences across groups were 

evaluated using the Mann- Whitney Rank Sum test with the 

Bonferroni correction. 



 

 

 

 

 

Figure 3. Neurovascular coupling is not altered 3 hours after SAH. (A-B) Box plots showing CBF increase in response to the first four 

(A) and last six (B) discrete electrical stimuli to the forepaw, in sham operated mice (white symbols) and after SAH (gray symbols). No 

significant effect was found between the experimental groups. Median +/- 75/25, n=10 each. (C) Artery dilation in response to a discrete 

electrical stimulation shows no difference between the experimental groups. Mean +/- SEM; 22 to 30 arteries from n=7-8 mice. (D) CBF 

increase in response to continuous electrical stimulation shows no difference between sham operated mice and mice subjected to SAH. 

Mean +/- SEM; Mann-Whitney Rank Sum test n=3 mice each. (E) Artery dilation in response to a continuous electrical stimulation 

shows no difference between SAH or sham operated mice. Mean +/- SEM; Mann-Whitney Rank Sum test; 9 to 13 arteries from n=3 

mice each 

 

For the ex vivo study, Origin 9.1 software (Origin Lab, 

Northampton, MA, USA) was used for statistical analysis.  EFS-

induced dilations (control vs SAH) were compared by unpaired t-

test.  Ca2+ concentrations in astrocyte endfoot (control vs SAH, 

before and after EFS) were analyzed by one-way ANOVA 

followed by post hoc comparison of means using the Tukey test. 

Data, in this case, are presented as mean ± SEM. 

Randomization and Blinding  

All animals were randomly assigned to the procedures; the 

surgical preparation and data analysis were performed by a 

researcher blinded towards the treatment of the animals. 



 

 
Figure 4. EFS-induced vasodilation is unaltered in brain slices 4 hours after SAH. (A-B upper panels) Infrared-differential interference 

contrast (IR-DIC) images of cortical brain slices from control and 4 hr SAH mice.  The time points corresponding to IR-DIC images (a-f) 

are indicated by alphabetically labeled arrows in the lower panels.  Red dashes outline the intraluminal diameter of parenchymal 

arterioles. Pseudocolor regions overlapping IR-DIC images depict estimated Ca2+ levels in astrocyte endfeet, which were imaged 

simultaneously with arteriolar diameter using the fluorescent Ca2+ indicator Fluo-4 and two-photon imaging. Scale bars, 10 μm. (A-B 

lower panels) EFS-induced changes in arteriolar diameter (black lines) and endfoot Ca2+ concentration (blue lines) obtained from brain 

slices depicted in upper images.  Regions of interest (ROI) used for endfoot Ca2+ calculation are shown in images A and D labeled 

“Before EFS”.  (C-D) Summary of EFS-evoked changes in arteriolar diameter (C) and astrocytic endfoot Ca2+ (D) in control and 4hr SAH 

animals (n=5 each).  Average diameters before EFS were 4.08 ± 0.44 µm (control) and 3.84 ± 0.50 µm (SAH 4hr), and were not 

significantly different between groups. NS: not significant. ** P < 0.01 vs endfoot Ca2+ before EFS in each group. 

 



RESULTS 

In vivo physiological parameters and mortality 

Body temperature, systemic blood pressure, blood pH, pCO2 and 

pO2 – factors shown to have strong effects on CBF24 – were 

carefully monitored in all investigated mice. Parameters did not 

differ between groups with the exception of the blood pressure 

which, as expected, was significantly increased in the SAH group 

(P=0.03) as a consequence of the Cushing reflex due to high ICP 

that results from the induction of SAH25 (Figure 1B and 

Supplementary Table S1). Despite this increase in systemic 

blood pressure the high ICP observed immediately after SAH 

caused a reduction in cerebral perfusion pressure that resulted in 

reduction of cerebral blood flow by almost 80%. After ICP 

decreased to values around 30 mmHg CBF normalized and 

remained at this level for the remaining observation period 

(Figure 1C). After SAH animals show reduced motor activity. 

Two mice from each group (4/24) died before imaging could be 

performed, i.e. within three hours after SAH. 

 

In vivo CO2 reactivity in cerebral pial arteries and 

parenchymal arterioles is abolished after SAH 

In sham-operated mice, pial arterioles dilated by 17-20% upon 

inhalation of 10% CO2 (Figure 2A and 2B white symbols). A 

similar, though stronger response was observed in parenchymal 

arterioles (Figure 2A and 2C white symbols). Following SAH 

pial vessels of a diameter of 20 to 40 μm were non-reactive to the 

increase in pCO2 as compared to the sham group (Figure 2A 

and Figure 2B, gray symbols). Given this lack of pial 

microvascular CO2 reactivity three hours after SAH, we also 

investigated the response of parenchymal arterioles. Following 

SAH parenchymal arterioles were also non-reactive to CO2 

(Figure 2A and Figure 2C, gray symbols). These results 

demonstrate that exposure to CO2, which results in vasodilation 

in healthy mice is dramatically abolished in pial and parenchymal 

arterioles after SAH. 

 

In vivo neurovascular coupling is maintained in acute SAH 

animals 

Three hours after hemorrhage sensory stimulation of the forepaw 

resulted in a comparable increase of CBF and vessel diameter in 

both sham-operated and SAH mice (Figure 3A-C). In response 

to the stimulation the increase in artery diameter of parenchymal 

vessels reached values of 20-25% in the sham-operated group 

(Figure 3C, white symbols) while after SAH arterioles dilated by 

30-40% (Figure 3C, gray symbols). Continuous sensory 

stimulation of the forepaw for one minute increased CBF by 15% 

(Figure 3D, white and gray symbols) and the diameter of 

parenchymal arteries by approximately 40% in sham and SAH 

mice (Figure 3E). These results point to a preserved 

neurovascular coupling early after SAH in vivo. 

 

Preserved ex vivo neurovascular coupling in brain slices 

from four hours SAH animals 

To examine the acute effects of SAH on ex vivo neurovascular 

coupling, two-photon imaging was performed on cortical brain 

slices prepared from mice four hours after induction of SAH via 

endovascular perforation. In brain slices from un-operated control 

animals, local neuronal activation by EFS caused the anticipated 

increase in astrocytic end-foot Ca2+ followed by vasodilation of 

the adjoining parenchymal arteriole (18 ± 1% increase in 

diameter, n=5; Figure 4A-C). EFS also induced vasodilation in 

brain slices obtained four hours after SAH (22 ± 2% increase in 

diameter, n=5; Figure 4B and C), similar to that observed in 

brain slices from control mice.  Further, basal end-foot Ca2+ 

concentration (control: 118 ± 11 nM, SAH 121 ± 16 nM, n=5 

each; Figure 4D) and end-foot Ca2+ concentration after EFS 

(control: 394 ± 32 nM, SAH 360 ± 29 nM n=5 each) were not 

significantly different between groups. These results demonstrate 

preserved neurovascular coupling in cortical brain slices four 

hours after SAH.  

 

DISCUSSION 

In this study, we have examined the acute effects, within the first 

3-4 hours, of SAH on in vivo CO2 reactivity and in vivo and ex 

vivo neurovascular coupling using endovascular perforation of 

mouse SAH model. Our data show that within three hours after 

SAH pial as well as intraparenchymal arterioles show a complete 

loss of reactivity to CO2, a specific cerebral vasodilator while 

neurovascular coupling, that is the dilatation of cerebral vessels 

upon neuronal activation, was completely preserved. Thus our 

data demonstrate that 1) after SAH not only pial vessels but also 

intraparenchymal vessels lost in vivo CO2 reactivity and 2) in vivo 

and ex vivo NVC remains unaffected in the acute phase of SAH. 

nce CO2 reactivity depends, among others, on proper function of 

constitutive nitric oxide synthases (NOS)26, 27 our data suggest 

that SAH may cause a rapid dysfunction of NO signaling 

throughout brain pial and parenchymal arterioles. 

Disturbances of the cerebral microcirculation after SAH were 

described for the first time in 1975 by Herz et al., when they 

observed acute vasoconstriction of pial vessels after vascular 

micropuncture in guinea pigs.28 Since then, little research has 

been done to understand the role of the cerebral microcirculation 

after SAH. The majority of studies investigating pial and 

parenchymal arterioles used in vitro systems29-35 which require 

experimental conditions not necessarily reflecting microvascular 

function in vivo. The few published in vivo studies investigating 

the cerebral microcirculation after SAH used conventional epi-

fluorescence microscopy and were due to the limited penetration 

depth of this technology limited to pial vessels.36-38 These vessels 

were of specific interest in the context of SAH since these are the 

only cerebral microvessels coming in direct contact with 

extravasated blood after subarachnoid bleeding. Indeed, pial 

vessels were shown to constrict after SAH in experimental 

animals models and in SAH patients thereby suggesting that 

spasms of cerebral microvessels are one of the main reasons for 

the cerebral ischemia observed after SAH.7-9 Pial microvessels, 

however, are morphologically distinct from parenchymal 



arterioles in that pial vessels have perivascular innervation and 

lack of astrocytic endfeet coverage.39 Most importantly, 

parenchymal, not pial, arterioles are in direct contact with the 

brain parenchyma, directly communicate with astrocytes and 

neurons, and increase their diameter upon neuronal activation. 

However, parenchymal arterioles within the brain beyond the 

range of conventional epi-fluorescence microscopy. Here, we 

applied the novel technology, i.e. two-photon microscopy in 

combination with neuronal stimulation paradigms, to provide the 

first measurements of parenchymal arteriolar functionality acutely 

after SAH.  

Using this approach our results show that SAH results in the 

loss of CO2 reactivity inparenchymal arterioles in addition to pial 

arteries at 3 hours after SAH, confirming our previous results on 

the lack of CO2 reactivity in pial arterioles at 3 and 24 hours after 

SAH.37 Our results show that not only microvessels located in the 

subarachnoid space and coming in direct contact with blood, but 

also arterioles in the parenchyma where blood is not present lose 

their ability to dilate in the face of increased levels of CO2. Thus 

the brain as a whole seems to lose its ability to regulate blood 

flow in response to metabolic stress and may thus become 

increasingly vulnerable to additional damage. Since CO2 

reactivity is at least partly mediated through the activation of 

constitutive NO synthases,26, 27  our results point towards a 

possible lack of proper NO signaling in this process in the acute 

phase of SAH. Further experiments need to clarify if targeting NO 

signaling or other signaling pathways downstream of CO2 have 

the potential to restore microvascular function and to improve 

outcome after SAH. 

Interestingly, neurovascular coupling, the process coupling 

neuronal activation to vasodilatation of neighboring vessels, was 

not affected in the first few hours after SAH, a time point 

associated with pial microvasospasms, pial microthrombosis, and 

decrease of cerebral blood flow in experimental SAH and in SAH 

patients.6, 7 Mechanistically this suggests that CO2 reactivity and 

NVC are at least partly mediated by different signaling pathways 

and that these pathways are differentially affected by SAH. 

Another important point is that SAH seems to affect in vivo CO2 

reactivity much earlier than NVC since ex vivo studies report a 

paradoxical inversion of NVC from dilation to constriction that 

emerges 24 to 96 hours after SAH.40 In the current study our in 

vivo and ex vivo data univocally demonstrate that NVC coupling 

is not impaired within the first few hours after SAH. Thus, 

targeting SAH-induced impairment of NVC, that develops with a 

delayed onset (i.e. longer therapeutic window), may also have 

clinical potential. The mechanisms underlying SAH-induced 

inversion of NVC are not fully understood but are likely to involve 

an increase in the amplitude of spontaneous Ca2+ release events 

in astrocyte endfeet leading to elevation of K+ in the restricted 

perivascular space around parenchymal arterioles13, 37. 

Taken together, the current study investigated for the first 

time the consequences of SAH on the functional integrity of 

parenchymal microvessels. Pial and parenchymal microvessels 

show a very early loss of CO2-induced vasodilation in vivo but 

display normal in vivo and ex vivo NVC within the first few hours 

after SAH. These results suggest an early dysfunction of NO 

signaling in cerebral vessels after SAH. Together with our 

previous results on delayed dysfunction of NVC later than 24 

hours after SAH we conclude that multiple molecular pathways 

seem to be involved in microvascular dysfunction after SAH. 

Thus multiple molecular pathways seem to be involved in 

microvascular dysfunction after SAH. Further research is needed 

to decipher these mechanisms thereby paving the way for novel 

therapeutic strategies for SAH patients who suffer from early and 

delayed cerebral ischemia. 
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4 Pericytes are involved in the 

pathogenesis of CADASIL 

4.1 Summary 

 As a next step I decided to analyze the burden of a chronic pathology such as 

small vessel disease on neurovascular reactivity. CADASIL is one of two animal 

models to study small vessel disease. Histological analysis to understand the role of 

pericytes in the progress of the disease revealed a decrease in number of pericytes 

and in their coverage of blood vessels. I took advantage of the classical CO2 

challenge to analyze the effects of CADASIL on CBF regulation and vascular 

endothelial reactivity, and I was able to detect impairment in CBF in response to 10% 

CO2 challenge in 12-month-old CADASIL mice. I decided to analyze the 

consequences of this impairment on neurovascular coupling using the forepaw 

stimulation paradigm. However, the reduction I found in neurovascular coupling was 

not due to the mutation, but the age of the mice. These data suggest that 

morphological changes to the cerebral microvasculature occur earlier than functional 

changes, and that NO-dependent vasodilatation is impaired at later stages in 

CADASIL mice. Therefore, targeting either pericytes or the NOS system could 

represent novel therapeutic strategies for CADASIL and small vessel disease. 
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Objective: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common inherited 

small-vessel disease, is associated with vascular aggregation of mutant Notch3 protein, dysfunction of cerebral vessels, and dementia. Pericyte, 

perivascular cells involved in microvascular function, express Notch3. Therefore we hypothesize that these cells may play a role in the 

pathogenesis of CADASIL. Methods: Two, seven, and 12 month old CADASIL mutant mice (TgNotch3R169C) and wild-type controls were 

examined regarding Notch3 aggregation in pericytes, the coverage of cerebral vessels by pericytes, pericyte numbers, capillary density, BBB 

integrity, astrocytic end-feet and the expression of astrocytic gap-junction and endothelial adherens-junction protein using immunostaining and 

western blot analysis. In addition, we examined cerebrovascular CO2 reactivity using laser Doppler fluxmetry and in vivo microscopy. 

Results: With increasing age, mutated Notch3 aggregated around pericytes and smooth muscle cells. Notch3 aggregation caused significant 

reduction of pericyte number and coverage of capillaries by pericyte processes (p<0.01). These changes were associated with detachment of 

astrocytic end-feet from cerebral microvessels, leakage of plasma proteins, reduction in expression of endothelial adherens-junction protein, and 

reduced microvascular reactivity to CO2. Smooth muscle cells were not affected by Notch3 accumulation. Interpretation: Our results show that 

pericytes are the first cells affected by Notch3 aggregation in CADASIL mice. Pericyte pathology causes opening of the BBB and microvascular 

dysfunction. Therefore, protecting pericytes may represent a novel therapeutic strategy for vascular dementia. 

 

INTRODUCTION 

Cerebral autosomal dominant arteriopathy with subcortical 

infarcts and leukoencephalopathy (CADASIL) is the most 

common cause of monogenic stroke and vascular dementia.1,2,3 

CADASIL is caused by mutations in the Notch3 gene that 

encodes a cell surface receptor on smooth muscle cells and 

pericytes.4 The mutated Notch3 receptor (Notch3ECD) 

accumulates in blood vessels of CADASIL patients and CADASIL 

mutant mice. These aggregates are associated with fibrosis of 

the arteries and arterioles, reduced blood flow, and ultimately 

white matter lesions, thinning of the cortex, and dementia.5-8 

At the cellular level, CADASIL is believed to arise from the 

damage and death of smooth muscle cells (SMCs) in the wall of 

cerebral vessels due to the accumulation of mutant Notch3ECD 

aggregates.3 However, it was previously shown that SMC viability 

was not affected in a CADASIL mouse model.5 Thus, the cell type 

which ultimately drives CADASIL pathology remains unclear. 

We and others revealed an important role for cerebral 

pericytes (perivascular cells located between the capillary 

endothelium and astrocytic end-feet) in the regulation of 

microvascular function and in maintaining the integrity of the 

blood-brain barrier (BBB).9-14 Because pericytes contain 

contractile elements, they may be an important regulator of 

cerebral blood flow at the capillary level under both physiological 

and pathological conditions.14,15 Pericytes express the PDGF 

receptor β (PDGFRβ) and are responsible for the function and 

survival of endothelial cells and for sufficient expression of tight 

junction proteins.16 Thus, pericytes play a central role in 

maintaining microvascular perfusion and in the proper functioning 

of the BBB.  

The Notch3 receptor is also expressed in capillary pericytes 

and recent electron microscopy studies found altered pericyte 

morphology in CADASIL mice.17,18 However, the functional 

relevance of these findings is unclear, and the role of pericytes in 

the initiation and progression of CADASIL is currently unknown. 

Therefore, the aim of this study was to examine whether 

pericytes play a role in the pathogenesis of CADASIL. 

 

MATERIALS AND METHODS 

Ethics statement 

Mice were bred at the Zentrum für Neuropathologie und 

Prionforschung animal facility (Munich, Germany) and 

experiments were approved by the Government of Upper Bavaria 

(protocol no. 220/30). 

 

Randomization and blinding 

All experiments were performed using a randomized and blinded 

protocol and data were analyzed by a researcher who was 

blinded with respect to the genotype of the mice. 

 



 

 
Figure 1. Increased Notch3 aggregation in CADASIL mouse. (A) Confocal microscopy image of the neurovascular unit in a wild-type 

mouse cerebral cortex. PDGFRβ-positive pericytes on brain capillaries are shown in blue, glial-fibrillar acidic protein (GFAP)-positive 

astrocytes are shown in red, and lectin-positive endothelial cells are shown in green. Inset: cross-section of a capillary, showing co-

localization of pericytes with capillary endothelial cells. (B-C). Increased Notch3 aggregation in the cortex of 12-month-old 

TgNotch3R169C mice compared to age-matched wild-type controls. Notch3 was stained using the 5E1 antibody (which recognizes an 

extracellular domain in Notch3; shown in red), and lectin-positive capillaries are shown in green. (D). Quantification of Notch3 coverage 

on vessels in TgNotch3R169C and wild-type mice at the indicated ages. Scale in A = 25µm, B&C = 100µm. D is presented as mean ± 

SEM (n = 6 mice/group). ***P≤0.001. 

  

Subjects 

CO2 reactivity was measured using 7-month-old and 12-month-

old FVB/N mice (n = 21 and 22 mice, respectively). The 

immunofluorescence staining and western blot experiments were 

performed using 2-month-old, 7-month-old, and 12-month-old 

FVB/N mice (n=6 mice/group, for a total of 54 mice). 

The following lines of mice used for this study: wild-type (non-

transgenic); TgNotch3WT mice, which overexpress the wild-type 

rat Notch3 protein; and TgNotch3R169C mice, which overexpress 

rat Notch3 with the R169C mutation. The TgNotch3R169C line is an 

established mouse model for CADASIL.5 

 

Surgical procedure for investigating in vivo microvascular 

reactivity 

The mice had free access to food and water before surgery. The 

surgical procedure was performed as previously described.19,20 In 

brief, animals were anesthetized with an intraperitoneal injection 

of midazolam (5 mg/kg; Braun, Melsungen, Germany), fentanyl 

(0.05 mg/kg; Jansen-Cilag, Neuss, Germany), and medetomidine 

(0.5 mg/kg; Pfizer, Karlsruhe, Germany), after which the mice 

were intubated with an endotracheal tube and mechanically 

ventilated. Body temperature and end-tidal pCO2 were monitored 

continuously. A cannula was placed in the left femoral artery and 

used to monitor blood pressure and measure blood gases; all 

values were within their respective normal range throughout the 

experiments. 

 

Intravital microscopy 

Intravital microscopy was performed as previously described.21 In 

brief, a 4 mm x 4 mm cranial window was drilled above the right 

parietal cortex, leaving the dura mater intact. The exposed dura 

mater was rinsed periodically with saline. The pial vessels were 

visualized by an arterial injection of fluorescein isothiocyanate 

(FITC-dextran) prior to the first measurement. Four regions of 

interest (ROIs) containing pial arterioles, venules, and capillaries 

were investigated. Cerebral blood flow (CBF) was measured 

using a laser Doppler probe positioned over the territory of the 

middle cerebral artery. 

Baseline values were measured after the physiological 

parameters were stable. CBF and vessel diameter were 

measured after fixing CO2 at 10% in the ventilator in order to 

increase arterial pCO2 for 15 minutes. After this time, pCO2 was 

returned to normal levels, and CBF and vessel diameter were 

recorded for an additional 15 minutes (i.e., 30 minutes in total). 

The response of pial arterioles to CO2 and the CBF response to 

CO2 were both integrated only during the time of CO2 inhalation, 

which is for 15 min. Images were recorded and analyzed at 10X 

magnification. Arterial blood pressure was monitored throughout 

the experiment to ensure that any changes in CBF were not due 

to a change in systemic blood pressure. 

 

Analysis of the pial microvasculature 

Vessel diameter was quantified using image analysis software 

(Zeiss). For graphical and statistical representations, the vessels 



 

 
Figure 2. Pericyte coverage and the number on cerebral capillaries in the cortex are reduced in CADASIL mice. (A) Representative 

confocal microscopy image of a 12-month-old wild-type mouse cortex, showing PDGFRβ-positive pericytes (red) with cell bodies and 

processes extended over lectin-positive capillaries (green). White arrows indicate the pericytes cell body and processes on the 

capillaries. (B) Confocal microscopy image of Notch3 aggregates (magenta) in the proximity of PDGFRβ-positive pericytes (red) on 

lectin-positive capillaries (green) in a 12-month-old TgNotch3R169Cmouse. White arrows indicate the pericytes cell body and processes 



with Notch3 aggregates on the capillaries. (C) Representative confocal microscopy image of a 12-month-old wild-type mouse cortex. 

PDGFRβ-positive pericytes are shown in red, and lectin-positive capillaries are shown in green. (D-F) Confocal microscopy of pericyte 

coverage in TgNotch3R169C mice at 2, 7, and 12 months of age, respectively. (G) Quantification of PDGFRβ-positive pericyte coverage 

on lectin-positive capillaries in TgNotch3R169C and wild-type mice at the indicated ages. (H) Quantification of PDGFRβ-positive pericytes 

in a 0.4-mm2 area in TgNotch3R169C and wild-type mice at the indicated ages. (I) Notch3 aggregation is negatively correlated with 

pericyte coverage of brain capillaries in the cerebral cortex. The dots represent mean of six mice in each group. Scale in (A) and (B) = 

25µm, C-F = 100µm. The data in panels (G) and (H) are presented as mean ± SEM (n = 6 mice/group). **P≤0.01; ***P≤0.001. R2 = 

pearson coefficient of determination. 

 

were categorized by diameter as follows: <10µm; 10-20µm; 20 -

30 µm; 30-50µm; and >50µm). The average vessel diameter 

(expressed as a percentage of baseline) in each category was 

compared between groups of animals. Vessels 20-30µm in 

diameter were used for further analysis. 

 

Vibratome sectioning and immunofluorescence staining 

(Fluorescent lectin staining and tissue 

immunofluorescence staining) 

Mice were anesthetized and arterially perfused with lectin, after 

which they were sacrificed by transcardial perfusion with 0.9% 

sodium chloride (NaCl) and 4% paraformaldehyde (PFA). The 

brains were removed and post-fixed overnight in PFA. Coronal 

sections of the cerebral cortex (50-µm thick) were prepared using 

a VS1200vibratome (Leica). The free-floating sections were 

collected either in phosphate-buffered saline (PBS) for immediate 

use or in a cryoprotectant solution (for later use). The sections 

were then processed for immunostaining. Three sections per 

brain were used for immunostaining. Sections were blocked with 

3% BSA (w/v) for 60min, and then incubated with primary 

antibody diluted in blocking solution overnight at 4°C. The 

sections were then washed in PBS and were incubated in 

fluorophore-conjugated secondary antibodies for 2 hrs at room 

temperature. The sections were then washed and mounted using 

Fluoromount mounting medium (Sigma). The following primary 

antibodies were used: for smooth muscle cells: Cy3-conjugated 

anti-alpha smooth muscle actin (α-SMA;1:100, Sigma, C6198); 

for pericytes: goat anti-PDGFRβ (1:100, R&D Systems, AF1042), 

rabbit anti-desmin (1:100, Millipore, MAB3430), and rabbit anti-

aminopeptidase N (1:100, Antibodies Online, ABIN359551); for 

astrocytes: mouse anti-GFAP (1:100, Sigma, G3893) and rabbit 

anti-aquaporin-4 (1:100, Millipore, AB2218); for plasma protein: 

mouse anti-albumin (1:100, Sigma, A6684) and rabbit anti-

fibrinogen (1:100, Dako, A0080). To visualize PGDFRβ-positive 

pericytes, sections were incubated in secondary Cy3-conjugated 

donkey anti-goat antibody (1:100, Jackson Immuno Research, 

705165147). To visualize desmin-positive pericytes, fibrinogen 

extravasation, and aquaporin-4-positive astrocytes, sections were 

incubated in secondary Cy3-conjugated donkey anti-rabbit 

antibody (1:100, Jackson Immuno Research, 711165152). To 

visualize GFAP-positive astrocytes and albumin, sections were 

incubated in secondary Cy3-conjugated donkey anti-mouse 

antibody (1:100, Jackson Immuno Research, 715165150). For 

triple fluorescence measurements, the following secondary 

antibodies were also used: Alexa Fluor 680 goat anti-rabbit IgG 

(1:100, Invitrogen, A21109) or Alexa Fluor 680 goat anti-mouse 

IgG (1:100, Invitrogen, A21057). 

 

Fluorescence and confocal microscopy 

All tissue sections were imaged using a Zeiss Axiovert 200M 

inverted fluorescence microscope and a Leica TCS SP5 II 

confocal microscope. Quantitative image analysis was performed 

by an investigator who was blinded with respect to the genotype 

and treatment group (ImageJ software). 

 

a) Capillary density in the cortex 

To quantify capillary density, maximum projection z-stacks were 

reconstructed. The lectin-positive signal in the blood vessels was 

subjected to automated threshold processing after background 

correction, and the signal was quantified using the Area 

Measurement analysis tool in ImageJ. In each mouse, four 

regions of interests (ROIs) in the cortex were analyzed by 

randomly selecting four fields. These fields were analyzed in 

three nonadjacent sections (at ~100-µm intervals). Six animals 

per group were analyzed. 

 

b) Notch3 coverage, Smooth muscle cell coverage, 

Pericyte coverage and astrocytes endfeet coverage in the 

cortex 

For analysing coverage, maximum projection z-stacks were 

reconstructed. The Notch3 5E1, α-SMA, PDGFRβ, GFAP and 

lectin signals in the capillaries were subjected to automated 

threshold processing after background correction. The areas 

occupied by their respective signals were analyzed using the 

Area Measurement tool in ImageJ. Notch3, SMC, pericyte and 

astrocytes endfeet coverage was determined as the percentage 

of Notch3 5E1, α-SMA, PDGFRβ, GFAP  -positive  surface area 

covering lectin-positive capillary surface area per field (410 µm x 

410 µm) respectively. In each mouse, four ROIs in the cortex 

were analyzed by randomly selecting four fields. These fields 

were analyzed in three nonadjacent sections (at ~100-µm 

intervals). Six animals per group were analyzed. 

 

c) Pericyte numbers in the cortex 

The number of PDGFRβ-positive pericytes per mm2 of selected 

field area (410 µm x 410 µm) was analyzed. In each mouse, four 

ROIs in the cortex were analyzed by randomly selecting four  



 

 
Figure 3. Blood-brain barrier breakdown in CADASIL mice. (A) Representative confocal microscopy image of a 12-month-old wild-type 

mouse, showing a lack of extravascular albumin (red) leakage through lectin-positive capillaries (green). (B-D). Age-dependent increase 

in extravascular albumin (red) through lectin-positive capillaries (green) in the cortex of 2-, 7-, and 12–month-old TgNotch3R169C mice, 

respectively. (E) Quantification of extravascular albumin in TgNotch3R169C and wild-type mice at the indicated ages. (F) Representative 

confocal microscopy image of a 12-month-old wild-type mouse, showing a small amount of extravascular fibrinogen (magenta) leakage 

through lectin-positive capillaries (green). (G-I) Age-dependent increase in extravascular fibrinogen (magenta) through lectin-positive 

capillaries (green) in the cortex of 2-, 7-, and 12-month-old TgNotch3R169C mice, respectively. (J) Quantification of extravascular 

fibrinogen in TgNotch3R169C and wild-type mice at the indicated ages. Scale in (A-D) and (F-I) = 50µm. The data in (E) and (J) are 

presented as mean ± SEM (n = 6 mice/group). **P≤0.01; ***P≤0.001 

 

fields. These fields were analyzed in three nonadjacent sections 

(at ~100-µm intervals). Six animals per group were analyzed. 

 

d) Fluorescence intensity analysis of extravascular 

albumin and fibrinogen deposits 

Endogenous mouse albumin and fibrinogen were detected using 

the fluorescent anti-albumin signal and the fluorescent anti-

fibrinogen signal respectively. To quantify extravascular albumin 

and fibrinogen accumulation, maximum projection z-stacks were 

reconstructed. The albumin and fibrinogen positive signal outside 

of the blood vessels was subjected to threshold processing after 

background correction, and the signal was quantified using the 

Integrated Density analysis tool in ImageJ. In each mouse, four 

ROIs in the cortex were analyzed by randomly selecting four 

fields. These fields were analyzed in three nonadjacent sections 

(at ~100-µm intervals). Six animals per group were analyzed. 



 

 
Figure 4. Astrocytic end-foot coverage is reduced and polarization defects appear in the astrocytic end-feet in the cortex of CADASIL 

mice. (A) Representative confocal microscopy image of a 12-month-old wild-type mouse, showing GFAP-positive astrocytic end-feet 

(magenta) on lectin-positive capillaries (green). White arrows indicate the astrocytic end-feet on the vessels.Inset: high magnification of 

the vessel with end feet. (B) Confocal microscopy image of a 12-month-old TgNotch3R169C mouse, showing GFAP-positive retracting 

astrocytes (magenta) on lectin-positive capillaries (green). White arrows indicate the retracting astrocytes and vessels without astrocytic 

end-feet. Inset: high magnification of the vessel devoid of end feet. (C) Quantification of GFAP-positive astrocytic end-foot coverage in 

the cortex of TgNotch3R169C and wild-type mice at the indicated ages. (D) Representative confocal microscopy image of a 12-month-old 

wild-type mouse, showing aquaporin-4-positive astrocytic end-feet (magenta) around lectin-positive capillaries (green). Inset: high 

magnification of the vessel with uniform end feet. (E) Aquaporin-4 staining of cortical vessels reveals irregular, hazy staining (indicated 

by yellow arrow) and characteristic bridge-like projections (indicated by white arrow) to adjacent vessels in the cortex of a TgNotch3R169C 

mouse. Inset: high magnification of the vessel with non uniform end feet.  (F) Representative confocal microscopy image of a 12-month-

old TgNotch3R169C mouse cortex, showing GFAP-positive retracting astrocytes (magenta) (indicated by yellow arrow) in the proximity of 

extravascular fibrinogen extravasation (red) (indicated by white arrow) around lectin-positive capillaries (green). Small boxes: in (A,B,D 

and E) show the part maginified in the respective insets. Scale in (A-D) = 100µm and F= 25µm. The data in (C) are presented as mean 

± SEM (n = 6 mice/group). ***P≤0.001. 

 

Western blot analysis 

The cerebral cortex was homogenized and lysed in RIPA buffer 

containing 50mM Tris (pH 8.0), 150mM NaCl, 0.1% SDS, 1.0% 

NP-40, 0.5% sodium deoxycholate, and protease inhibitor 

cocktail (Roche). The lysates were then separated using SDS-

PAGE and transferred to a nitrocellulose membrane. The 

membranes were blocked with 4% powdered milk (w/v). The 

membranes were then incubated in the primary antibody, 

followed by the appropriate HRP-conjugated secondary antibody. 

Bands were detected using the Immobilon Western ECL 

detection reagent (Millipore), exposed to a Fusion Fx7 imager 

equipped with 4.2/10 mio pixel CCD camera (Peqlab), and 

imaged using Fusion software (Peqlab). 

The following primary antibodies were used for the western 

blot analysis: rabbit anti-VE-cadherin antibody (1:1000, Abcam, 

ab33168) and rabbit anti-connexin43/GJA1 antibody (1:1000, 

Abcam, ab11370).The mouse anti-β-tubulin antibody (1:1000, 

Sigma, T8328) was used as a loading control. The following 

secondary antibodies were used: HRP-conjugated goat anti-

rabbit antibody (1:10000, Pierce, 31464) and HRP-conjugated 

goat anti-mouse (1:10000, Pierce, 31432).  

Relative protein abundance: The protein bands were 

analyzed for densitometry using the Gel Analysis tool in ImageJ. 

The signal intensity of each protein band was normalized to the 

respective β-actin band to adjust for any minor differences in total 

protein loading. 



 

 
Figure 5. Endothelial adherens-junction protein levels decrease in the cortex of CADASIL mice. (A) Western blot analysis of lysates 

prepared from the cortex of TgNotch3R169C and wild-type mice at the indicated ages. (B) Quantification of relative VE-cadherin levels in 

TgNotch3R169C and wild-type mice at the indicated ages. (C) Western blot analysis of lysates prepared from the cortex of TgNotch3R169C 

and wild-type mice at the indicated ages. (D) Quantification of connexin-43 levels in TgNotch3R169C and wild-type mice at the indicated 

ages. The data in (B) and (D) are presented as mean ± SEM (n = 6 mice/group). ***P≤0.001. 

 

 

Statistical analysis 

For the in vivo study, the data were analyzed using Sigma Plot 

12.5 (Systat Software, Erkrath, Germany). The results for the 

CO2 reactivity experiments are presented as the mean ± SEM or 

as the median r the soth/25th percentiles. Differences between 

groups were analyzed using the Mann-Whitney rank-sum test 

with Bonferroni correction. Differences with a p-value <0.05 were 

considered statistically significant.  

All other analyses were performed using GraphPad Prism 4 

(GraphPad Software Inc., La Jolla, CA). All data were analyzed 

using the D’Agostino-Pearson omnibus test for normality and 

were found to be distributed normally. Accordingly, multiple group 

comparisons were analyzed using a one-way ANOVA followed by 

a Tukey´s post hoc analysis. Correlation was tested using 

Pearson´s correlation analysis. Two-group comparisons were 

analyzed using the Student´s t-test. Data are reported as the 

mean ± SEM. Differences with a p-value <0.05 were considered 

statistically significant. 

RESULTS 

Increased Notch3 aggregation in CADASIL mice 

To study the location of pericytes within the neurovascular unit, 

we first examined the intimate relationship between glial-fibrillar 

acidic protein (GFAP)-positive astrocytes (labeled in red), 

PDGFRβ-positive pericytes (labeled in blue), and lectin-positive 

brain endothelial cells (labeled in green) in the mouse cortex 

(Figure 1A). As shown in the figure inset, in wild-type mice, 

pericyte processes cover most of the abluminal side of the brain 

capillary endothelial cells, and astrocytic end-foot processes 

sheath the microvessel wall (composed of endothelial cells and 

pericytes). 

We next investigated the vascular changes in transgenic 

CADASIL mice (TgNotch3R169C) at 2, 7, and 12 months of age; 

these changes were compared with age-matched wild-type (non-

transgenic) mice. The accumulation of Notch3 protein is a 

hallmark feature of CADASIL; consistent with this feature, we 

found an age-dependent increase in the accumulation of mutant 

Notch3 proteins in the cortical vessels of TgNotch3R169C mice 

(representative brain sections at 12 months of age are shown in 

Figure 1B & 1C). Age-dependent quantification of Notch3 



ag 

Figure 6. No change in smooth muscle cells coverage and 

capillary density in CADASIL mice. (A-B) SMC coverage in the 

cortex of 12-month-old TgNotch3R169C and wild-type mice; alpha 

smooth muscle actin (α-SMA) is shown in red, and lectin-positive 

capillaries are shown in green. (C-D). Capillary morphology and 

density was measured in 12-month-old TgNotch3R169C and wild-

type mice; lectin-positive capillaries are shown in green. (E) 

Quantification of smooth muscle cell coverage on vessels 

TgNotch3R169C and wild-type mice at the indicated ages. (F) 

Quantification of capillary density in TgNotch3R169C and wild-type 

mice in given area of 0.4 mm2 at the indicated ages. Scale in A-D 

= 100µm. E-F are presented as mean ± SEM (n = 6 mice/group). 

 

agregation in TgNotch3R169C mice compared to age-matched wild-

type littermates show a 2-fold and 3-fold increase at 7 and 12 

months of age, respectively (Figure 1D). 

 

Decreased pericyte coverage and pericyte number in 

CADASIL mice 

As Notch3 is also expressed in pericytes we examined the 

microvasculature at the capillary level. Using dual 

immunostaining for PDGFRβ (to label pericytes) and FITC-

labeled tomato lectin (to stain endothelial cells), we examined the 

morphology and profile of pericytes in the TgNotch3R169Cand wild-

type mice. Consistent with previous reports,15,22 at 7 months of 

age wild-type pericytes had typical fusiform and protruding cell 

bodies with extended, finger-tip like processes on the vessel 

(Figure 2A). Pericytes were also identified on the basis of their 

expression of the marker proteins aminopeptidase-N and desmin 

(data not shown) by immunostaining. We then examined the 

proximity of the Notch3 deposits to the pericytes by performing 

triple immunostaining in 12-month-old TgNotch3R169C mice. Our 

analysis shows that the Notch3 aggregates co-localize with the 

pericyte’s cell body and processes on the capillaries (Figure 2B). 

We also found an age-dependent progressive loss of pericyte 

coverage in the capillaries of TgNotch3R169C mice compared with 

age-matched wild-type littermates (Figure 2C-F). Age-dependent 

quantification of pericyte coverage in TgNotch3R169C mice 

compared to age-matched wild-type littermates show a loss of 

30% and 50% at 7 and 12 months of age, respectively (Figure 

2G). This observation was also reconfirmed by age-dependent 

quantification of desmin-positive pericyte coverage in 

TgNotch3R169C mice (data not shown). While counting PDGFRß-

positive cell bodies of pericytes, we also found a significant and 

age-dependent decrease in TgNotch3R169C mice compared with 

age-matched wild-type littermates in 12 month old mice (around 

15%) (Figure 2H). Interestingly, the reduction of pericyte cell 

numbers was smaller than the overall loss of pericyte coverage of 

microvessels over time, which may indicate a stronger and early 

adverse effect of Notch3 aggregation on pericyte processes than 

on the cell survival itself. In addition, there was a negative 

correlation between age-dependent loss in pericyte coverage and 

Notch3 aggregation, indicating that progressive pericyte 

degeneration is associated with progressive age-dependent 

Notch3 accumulation (Figure 2I). 

 

Loss of pericytes is associated with BBB dysfunction 

The function and integrity of the BBB is regulated by pericytes; 
9,13,23 therefore, we examined the impact of pericyte loss on BBB 

integrity in TgNotch3R169C mice. To test whether the progressive 

degeneration of pericytes in aged CADASIL mice affects the 

BBB, we measured the extravasation of albumin and fibrinogen, 

two plasma proteins that are not present in the brain parenchyma 

under normal conditions. Immunostaining revealed significant 

age-dependent extravasation and accumulation of albumin in the 

cortex of TgNotch3R169C mice compared with wild-type littermates 

(Figure 3A-D). Age-dependent quantification of extravascular 



 



 
Figure 7.  In vivo measurement of cerebrovascular reactivity in 7 month and 12-month-old mice. (A-D) Vessels were measured in 12-

month-old TgNotch3R169C and wild-type mice before (baseline) and during inhalation with 10% CO2. (E) Summary of the time course of 

arterial diameter (normalized to baseline) in TgNotch3R169C and wild-type during inhalation with 10% CO2 in 7 month old mice. (F) 

Quantification of pial vessel diameter (measured from 8-17 arterioles/mouse, 7-8 mice/group) in TgNotch3R169C and wild-type mice after 

inhalation with 10% CO2 in 7 month old mice. (G) Summary of the time course of cerebral blood flow (CBF) in TgNotch3R169C and wild-

type mice during and after inhalation with 10% CO2in 7 month old mice. (H) Quantification of CBF in 7-month-old TgNotch3R169C and 

wild-type mice after inhalation with 10% CO2. The data in E and G are presented as mean ± SEM; the data in F and H are presented as 

median ± the 75th and 25th percentiles. (I) Summary of the time course of arterial diameter (normalized to baseline) in TgNotch3R169C and 

wild-type during inhalation with 10% CO2 in 12 month old mice. (J) Quantification of pial vessel diameter (measured from 11-18 

arterioles/mouse, 7-9 mice/group) in TgNotch3R169C and wild-type mice after inhalation with 10% CO2 in 12 month old mice. (K) 

Summary of the time course of cerebral blood flow (CBF) in TgNotch3R169C and wild-type mice during and after inhalation with 10% CO2 

in 12 month old mice. (L) Quantification of CBF in 12-month-old TgNotch3R169C and wild-type mice after inhalation with 10% CO2. The 

data in E and G are presented as mean ± SEM; the data in F and H are presented as median ± the 75th and 25th percentiles.  *P≤0.1 

 

albumin deposits in TgNotch3R169C mice compared to age-

matched wild-type littermates show approximately a 3-fold and 4-

fold increase at 7 and 12 months of age, respectively (Figure 3E). 

Moreover, we also observed increased levels of extravascular 

fibrinogen deposits in the cortex of TgNotch3R169C mice compared 

with wild-type littermates (Figure 3F-I). Age-dependent 

quantification of extravascular fibrinogen deposits in 

TgNotch3R169C mice show approximately 2-fold and 3-fold 

increase at 7 and 12 months of age, respectively (Figure 3J). 

This increase in albumin and fibrinogen extravasation developed 

in parallel with the age-dependent loss of pericytes, suggesting 

that pericyte loss is associated with the breakdown in the BBB in 

CADASIL mice 

 

Loss of astrocytic end-foot coverage and redistribution of 

astrocyte polarized markers in CADASIL mice 

In addition to pericytes, astrocytes are also an integral 

component of the neurovascular unit; specifically, astrocytic end-

feet are in close contact with the vasculature.13,24,25 We therefore 

investigated whether astrocytes are altered in CADASIL mice. 

GFAP immunostaining in wild-type mice showed a distinct 

protoplastic population of astrocytes in the cortex, with the 

astrocytic end-feet in contact with microvessels (Figure 4A). 

GFAP is expressed   in the processes, cell bodies and end-feet of 



 

 
Figure 8. Model of microvascular changes in the cortex of CADASIL mice due to the progressive loss of pericytes and astrocytic end-

feet. In the CADASIL mouse model (right), major changes occur in the neurovascular unit. These changes include a significant increase 

in Notch3 aggregation, significant pericyte loss, reduced pericyte coverage of the vessel, reduced astrocyte polarization, a loss of 

astrocytic end-foot coverage, a loss of endothelial junction proteins, and leakage of proteins through the BBB. In contrast, gap-junction 

proteins are not affected. 

 

stellate astrocytes.26,27 In 12-month-old TgNotch3R169C mice, we 

found significantly reduced levels of astrocytic end-feet staining 

around the microvessels; this effect was observed throughout the 

cortex and was accompanied by a retraction of their end-feet 

(Figure 4B). Age-dependent quantification of astrocytic end-feet 

coverage in TgNotch3R169C mice compared to age-matched wild-

type littermates show approximately 50% and 70% reduction at 7 

and 12 months of age, respectively (Figure 4C). 

We also examined the expression of aquaporin-4, a specific 

marker for polarized astrocytic end-feet. Unlike GFAP, which 

predominantly stains astrocytic processes, end-feet and cell 

bodies, aquaporin-4 show uniform labeling of astrocytic end-feet 

around blood vessels (Figure 4D). Using aquaporin-4 staining, 

we found that the astrocytic end-feet are organized abnormally in 

TgNotch3R169C mice. Specifically, aquaporin-4 staining was 

irregular in 12-month-old TgNotch3R169C mice and we saw 

presence of the characteristic aquaporin-4-positive bridge-like 

projections13 between adjacent lectin-positive vessels (Figure 4E). 

Using triple immunostaining for fibrinogen (labeled in magenta), 

GFAP (labeled in red), and lectin (labeled in green), we found 

that fibrinogen extravasation occurred in close proximity to 

retracted astrocytic end-feet near the blood vessels, indicating 

that the BBB is compromised at the site of pathology (Figure 4F). 

 

Decreased endothelial adherens-junction proteins in 

CADASIL mice 

Endothelial adherens junction proteins form a barrier that controls 

the passage of molecules from the blood to the brain and their 

expression is markedly reduced when the BBB is 

compromised.13,16 We therefore investigated whether expression 

of the adherens junction protein VE-cadherin is altered in 

TgNotch3R169C mice. Using western blot analysis, we found a 

significant progressive decrease in VE-cadherin levels in the 

cortex of TgNotch3R169C mice compared to age-matched wild-type 

littermates (Figure 5A & B). We also measured the levels of 

connexin-43, an astrocytic gap junction protein 28-30, in our 

CADASIL model; however, we found no change in connexin-43 

expression in the cortex of TgNotch3R169C mice (Figure 5C & D). 

 

No change in smooth muscle cells coverage and capillary 

density in CADASIL mice 

CADASIL is also known as a SMC degenerative disease. 3,5 We 

therefore examined the coverage of SMC on cortical arterioles by 

performing staining for alpha smooth muscle actin (α-SMA). 

However, we found no α-SMA-positive cells in the capillaries. 

Moreover, although CADASIL is generally believed to be 

primarily a disease of vascular smooth muscle cells, we found no 

difference in SMC coverage of cortical vessels in TgNotch3R169C 

mice compared to age-matched wild-type littermates 

(representative brain sections at 12 months of age are shown in 

Figure 6A & B). To determine whether the increased Notch3 

accumulation in the TgNotch3R169C mice is accompanied by a 

change in capillary morphology and/or density, we measured the 

lectin-positive capillary profiles in the TgNotch3R169C and wild-type 

mice; we found no difference between the mouse lines at any 

age (representative brain sections at 12 months age are shown in 

Figure 6C & D). Age-dependent no change in SMCs coverage 

and capillary density in TgNotch3R169C mice were respectively 



seen in Figure 6E & F. 

TgNotch3WT transgenic mice were also analyzed for Notch3 

aggregation, SMCs coverage, capillary density, pericyte 

coverage and albumin extravasation. Similar results (data not 

shown) as wild-type mice were obtained. This showed that 

overexpression itself did not induce any pathological 

characteristics. 

 

Morphological changes in the cortex precede functional 

vascular impairment in CADASIL mice 

To examine the consequences of pericyte loss at a functional 

level, we measured the vascular response to inhaled CO2 in 7- 

and 12-month-old TgNotch3R169C mice; inhalation of CO2 induces 

vasodilatation via relaxation of the smooth muscle cells by a 

process that is dependent on the basal activity of nitric oxide 

synthase and soluble guanylate cyclase. We measured the 

increase in pial vessel diameter and cerebral blood flow (CBF) in 

response to inhalation of 10% CO2. In 7-month-old mice (8 to 17 

arterioles per group were analysed) and 12-month-old mice (11 

to 18 arterioles per group were analysed), inhalation of 10% CO2 

caused a similar increase in vessel diameter in TgNotch3R169Cand 

wild-type mice (Figure 7A-D) showing viability and vasoreactivity 

of the vessels. At 7 months of age, 10% CO2 induced a small 

increase in vessel diameter  (not significant) and also no 

significant change in CBF in the TgNotch3R169Cand wild-type mice 

(Figure 7E-H ); however, at 12 months of age, inhalation of 10% 

CO2 caused a similar increase in vessel diameter in 

TgNotch3R169Cand wild-type mice as seen in 7 months aged mice 

but the TgNotch3R169C mice had a significant increase in CBF in 

response to 10% CO2 compared to age-matched wild-type 

littermates (Figure 7I-L). Hence, at 7 months there was no 

significant reduction in reactive hyperemia at the time when 

pericyte pathology was already present and that pericyte, 

astrocyte, and BBB pathology precedes functional vascular 

impairment in CADASIL mice.  

 

DISCUSSION 

Using a mouse model of CADASIL, we report that mutant Notch3 

accumulates in pericytes; moreover, we report that progressive 

pericyte loss and BBB leakage in the cerebral cortex precede the 

functional impairments in cerebral vessels. These findings 

suggest that pericyte dysfunction and loss occur early in the 

pathogenesis of CADASIL, and pericyte dysfunction causes a 

disruption of the neurovascular unit and leakage of the blood-

brain barrier (Figure 8). 

Consistent with previous studies, we found an age-

dependent increase in Notch3 aggregation, but no loss of SMCs.5 

The preservation of smooth muscle cell integrity in contrast to the 

pericyte is one of the most important findings of our study. In 

addition, we found no reduction in capillary density in 

TgNotch3R169C mice. However, while investigating PDGFRβ in 12-

month-old TgNotch3R169C mice, we observed a significant 

reduction in the number of cortical pericytes, as well as a 

decrease in pericyte coverage around the endothelial wall of 

cortical microvessels, compared with aged-matched wild-type 

controls. Moreover, the age-dependent decrease in pericytes was 

proportional to the increase of Notch3 aggregates. These findings 

re-confirm previous observations by other groups who used 

electron microscopy to detect ultrastructural changes in pericytes 

in postmortem tissue samples from CADASIL patients.17,18 To 

rule out the possibility that overexpressing mutant Notch3 merely 

caused a down-regulation of PDGFRβ in well-preserved pericyte 

processes, we used a second pericyte-specific marker, desmin, 

confirming that pericyte coverage of the microvasculature 

decreases with age. In contrast to previous reports using 

PDGFRβ-knockout mice,9,13 the age-dependent loss of 

microvascular pericyte coverage in our CADASIL mouse model 

was not accompanied by a decrease in capillary density or 

vascular diameter. This difference in results may be due to the 

earlier, more severe loss of pericytes in PDGFRβ-knockout mice 

and may suggest that pericytes play a more important role in 

vascular formation during embryonic development than in 

microvascular maintenance in the adult brain. 

The reduction in neurovascular pericyte coverage and the 

loss of pericytes were correlated with the extent of BBB 

breakdown in the cerebral cortex as measured by the 

extravasations of two intrinsic plasma-proteins, albumin and 

fibrinogen. In addition, we observed a decrease in astrocytic end-

foot coverage on microvessels; this decrease was confirmed 

using GFAP staining. Conformational changes in the 

neurovascular unit were also confirmed by the reorganization of 

polarized markers of astrocytic end-feet and by presence of the 

characteristic bridges. We also provide the first evidence that 

pericytes directly communicate with astrocytes in order to 

maintain the BBB. We found a significant reduction in the 

endothelial adherens junction protein VE-cadherin in 

TgNotch3R169C mice, but we found no reduction in the gap 

junction protein connexin-43. These results are consistent with 

reports that BBB breakdown does not involve a reduction in 

connexins.31 Other groups reported the reorganization of 

connexin-43 in astrocytic gap junctions but no change in 

connexin-43 protein levels in response to injury.32,33 Therefore, 

connexin-43 may be reorganized in CADASIL mice, which would 

correlate nicely with the reorganization of polarized markers of 

astrocytic end-feet. Using in vivo imaging, we also found that 

cerebral flood flow is not altered in TgNotch3R169C mice at 7 

months of age, despite significant changes in microvascular 

morphology changes at this age. Consistent with previous 

reports, at 12 months of age, the CO2-induced response in CBF 

was significantly reduced in TgNotch3R169C mice.5 Experiments on 

somatosensory stimulation show no difference between 7 and 12 

month old CADASIL mutant mice and respective controls 

(unpublished data). Also, our data may suggest a selective 

dysfunction of pial versus intra-parenchymal arterioles. However, 

CBF integrates the response of the whole neurovascular tree. 

Therefore, a normal (or even augmented) response of pial 

arterioles in CADASIL mutant mice together with a significantly 

reduced CBF response clearly points towards dysfunction of 



parenchymal arterioles and/or capillaries. This interpretation is 

well in line with our findings that CADASIL mutant mice show 

reduced pericyte coverage and opening of the BBB in intra-

parenchymal arterioles. Taken together, these results confirm 

that changes in cortical morphology precede functional vascular 

dysfunction in CADASIL. 

Our results provide important clues regarding the 

mechanisms that underlie the changes in cortical morphology 

that occur during the progression of CADASIL. Specifically, 

progressive pericyte loss causes progressive changes in 

microvascular structure and a disruption in the BBB. BBB 

damage has been implicated in many neurological disorders, 

including Alzheimer´s disease, multiple sclerosis, and AIDS 

dementia complex.16 Understanding the mechanisms underlying 

BBB dysfunction in such neurological disorders can reveal 

therapies designed to reverse and/or reduce neuronal damage 

that occurs secondary to is accelerated by BBB damage. Here, 

we show that early changes in cortical morphology are followed 

by late-onset vascular functional impairment. Several vascular 

defects have been reported to occur in several types of 

neurodegenerative disorders; however, whether these defects 

are the cause or the consequence of the disease remains largely 

unknown.23,33 Consistent with a previous report in which pericyte 

loss mediates BBB disruption and vascular dysfunction precedes 

neuronal degeneration in Alzheimer’s disease,9 we found that 

pericyte loss mediates BBB disruption in our CADASIL mouse 

model, and this effect precedes functional vascular impairment. 

Another important hallmark of CADASIL are white matter lesions 
3,5. The opening of the BBB and neurovascular dysfunction are 

features of the disease which precede white matter damage5 by 

several months in this model. This also suggest that blood brain 

barrier permeability could be an important trigger for white matter 

lesions and progression, as also suggested by others.34 Taken 

together, these results provide an important clue suggesting that 

vascular defects are the cause rather than the consequence of 

neurodegenerative diseases, including CADASIL. Based on 

these findings, we conclude that CADASIL is initiated by pericyte 

dysfunction and disruption of the BBB, which subsequently may 

lead to neuronal dysfunction, eventually giving rise to dementia 

and other CADASIL-related symptoms. However, the precise 

sequence of events is a matter of debate and requires further 

study. Nevertheless, our results open new avenues for studying 

other vascular components, including endothelial cells, the basal 

membrane, and various signaling cascades. Finally, aging has a 

well-documented effect on the progression of cerebral small-

vessel disease;24,35 consistent with this effect, we found that aging 

significantly affects both the onset and course of CADASIL in our 

TgNotch3R169C mouse model. So far CADASIL mutant mice were 

not evaluated regarding their behavior because they were 

generated in the genetic FVB/N background and behavior is 

difficult to assess in these mice due to their well-known 

hyperactivity and visual impairments.36 

Therefore, our results suggest that Notch3 accumulation and 

the subsequent dysfunction of pericytes are early steps in the 

pathogenesis of CADASIL. Therefore, pericytes may represent a 

novel therapeutic target in CADASIL. Moreover, this vascular 

view of CADASIL pathogenesis could have profound implications 

with respect to our understanding of neurological disorders and 

other forms of vascular-related dementia. 
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5 Characterization of cerebrovascular 

function in a mouse model of small 

vessel disease – CARASIL 

5.1 Summary 

 CARASIL is a rare form of familial small vessel disease and the recessive 

counterpart to CADASIL, yet this is the first study characterizing the vascular function 

in this genetically determined small vessel disease animal model. Endothelium-

dependent response to CO2 inhalation resulted in an increased dilation in 

parenchymal vessels of 24-month-old CARASIL mice compared to healthy, age-

matched controls, with no difference in response visible in pial vessels. Forepaw 

stimulation using repetitive stimuli (16s on, 40s off) resulted in impaired 

neurovascular coupling in terms of parenchymal vessel dilation but not regional CBF 

(rCBF) response. Continuous forepaw stimulation for 1 minute proofed enough to 

expose neurovascular impairment in the rCBF response. These mutation-related 

disruptions in neurovascular coupling may be the result of impaired TGF- signaling 

in fibroblasts, lower levels of CTGF or of the contractile protein alphaSMA, all 

consequences of the HtrA1 deficiency characteristic of the CARASIL mutation. These 

results reveal a need to analyze contractile elements of parenchymal and pial vessels 

to probe for histological basis for impairments in neurovascular function. 
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CARASIL is a rare form of inherited cerebral small vessel disease. Disturbances in neurovascular reactivity have been observed in one other 

model of small vessel disease and as a result of healthy aging, which may compromise the metabolic status of neurons and result in brain 

damage. This study aims to characterize the functional vascular reactivity in small vessel disease in order to clarify the pathophysiology and 

progression over time of the condition and may lead to identifying targets for potential therapeutic strategies. Neurovascular function was found 

impaired in terms of parenchymal vessel dilation in response to CO2 inhalation.  Parenchymal vessel dilation as well as CBF response were 

impaired in neurovascular coupling. The findings of the current study suggest for the first time that the HtrA1 loss of function leads to alterations in 

cerebral vessels. 
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INTRODUCTION 

Cerebral autosomal-recessive arteriopathy with subcortical 

infarcts and leukoencephalopathy (CARASIL) is a rare form of 

inherited cerebral small vessel disease—only 12 families 

identified—1, 2 caused by a loss-of-function mutation in the high 

temperature requirement serine peptidase A1 gene (HTRA1). 

Patients with CARASIL suffer from early adult–onset dementia, 

gait disturbance, alopecia, and low back pain.2 The diagnosis is 

confirmed if diffuse symmetrical white matter lesions are noticed 

on neuroradiological examination together with respective 

mutations in the HTRA1 gene. Studies have shown that loss of 

HtrA1 activity leads to an increase in transforming growth factor ß 

(TGF-ß) signaling.3 TGF-ß is a cytokine that promotes cell 

differentiation and has an important role in angiogenesis and 

vascular homeostasis.4, 5 The increased TGF-ß signaling 

consequent to loss of HtrA1 function leads to accumulation of the 

extra domain A of fibronectin and versican in the intima of 

cerebral small arteries, potentially leading to structural and/or 

functional vessel damage.1  

Disturbances in neurovascular reactivity have been observed 

in one other model of small vessel disease and as a result of 

healthy aging, which may compromise the metabolic status of 

neurons and result in brain damage.6 In order to determine 

whether mutations in the HTRA1 gene associated with CARASIL 

affect neurovascular reactivity, we used HtrA1 deficient mice and 

investigated neurovascular function assessing endothelium-

dependent response to hypercapnia and neuronal-activity-driven 

response to somatosensory stimulation. These responses ensure 

a balance of supply and demand of metabolic substrates, critical 

for neuronal activity and survival. An increase in CO2 

concentration in the blood triggers an endothelium-dependent 

dilation of blood vessels. This results in an increase cerebral 

blood flow (CBF), thus restoring required levels of oxygen supply. 

Neuronal activity elicits similar vessel dilation in order to replenish 

energy substrates metabolized during neuronal firing.7 This 

"neurovascular coupling" (NVC) occurs through complex 

interactions between neurons, astrocytes, and cerebral vessels 

that are not yet fully understood.8, 9  

The characterization of functional vascular reactivity in small 

vessel disease is necessary to clarify the pathophysiology and 

progression over time of the condition and may lead to identifying 

targets for potential therapeutic strategies. 

 

MATERIALS AND METHODS 

Subjects 

Animal breeding, housing and all experimental procedures were 

conducted according to institutional guidelines of the University of 

Munich and were approved by the Ethical Review Board of the 

Government of Upper Bavaria. In vivo experiments were 

conducted on 24 month-old male and female C57BL/6 mice 

bread at the Center for Neuropathology, University of Munich 

(Munich, Germany) and are reported according to the ARRIVE 

criteria. The following lines of mice used for this study: wild-type; 

homozygous HTRA1 -/- mice (strain HTRA1tm1Ybf) generated by 

Yingbin Fu. 10 

 

Anesthesia and physiological monitoring 

The mice had free access to food and water before surgery. The 

surgical procedure was performed as previously described.6  

Shortly mice were initially anesthetized with 2% isoflurane in 70% 

N2O and 30% O2. Later on isoflurane was gradually reduced, 

and a continuous intra-arterial infusion of ketamine (30 mg/Kg/h,  



 

 
Figure 1. Pial and parenchymal arteries in response to hypercapnia in CARASIL mice. (A) Representative two-photon microscopy 

images of pial (left) and parenchymal arteries (right) of 2 year-old WT and CARASIL mice before and during 10% CO2 inhalation. (B) 

Surface and (C) parenchymal artery diameter during hypercapnia of WT mice (white symbols) or CARASIL (gray symbols) and (D) 

quantification. Mean +/- SEM; Mann-Whitney Rank Sum test; 7 to 15 arteries (B) and 11 to 18 arteries (C) in n=6-8 mice per group. 



 
Figure 2. Neurovascular coupling in CARASIL mice. (A-B) Box plots showing CBF increase in response to the first four (A) and last six 

(B) discrete electrical stimuli to the forepaw, in WTC mice (white symbols) and CARASIL (gray symbols). No significant effect was found 

between the experimental groups. Median +/- 75/25, n=8 each. (C) Artery dilation and (D) integral vessel diameter in response to a 

discrete electrical stimulation show difference between experimental groups. Mean +/- SEM; 20 to 26 arteries from n=6-8 mice. 

 

Inresa,Freiburg,Germany) was administrated. Mice were 

orotrachealy intubated and mechanically ventilated (Minivent, 

Hugo Sachs, Hugstetten, Germany). End-tidal pCO2 was 

measured with a microcapnometer (Capnograph, Hugo Sachs, 

Hugstetten, Germany) and kept constant between 30 and 40 

mmHg by respective adjustments to the ventilation.16sah A 

thermostatically regulated, feedback-controlled heating pad 

(FHC, Bowdoin, ME, USA) was used to maintain body 

temperature at 37°C. The left femoral artery was cannulated for 

continuous blood pressure monitoring and for infusion of 240 μl/h 

physiological saline solution to prevent dehydration of the mice. 

Regional cerebral blood flow (rCBF) was measured with a laser 

Doppler probe placed over the right somatosensory cortex area. 

 

Two-photon microscopy 

A cranial window (2 x 1 mm) was drilled under constant cooling 

above the area of the somatosensory cortex associated to the 

fore paw leaving the dura mater intact as previously described.6 

Mice were placed under a two-photon microscope (Zeiss LSM-7 

MP, Oberkochen, Germany) equipped with a Li:Ti laser 

(Chameleon, Coherent, USA) as described previously,11 and the 

exposed dura mater was kept wet with isotonic saline. The 

fluorescent dye, fluorescein isothiocyanate (FITC-dextran; 

molecular weight 150 kDa) was introduced into the blood via 

intra-arterial injection (0.05 ml of a 0.5% solution; Sigma, 

Deisenhofen, Germany) and both parenchymal (diameter: up to 

20 μm; depth: 100 µm) and pial vessels (diameter: 20 to 40 μm) 

were visualized using a 10x Zeiss EC Plan-NeoFluar objective. 

 

Neurovascular reactivity to CO2 

Diameters of both parenchymal and pial arterioles were 

examined under physiological conditions in order to obtain 

baseline values. Thereafter, arteriolar diameter was observed 

during inhalation of 10% CO2 for 10 minutes. The amount of 

inhaled CO2 was measured by microcapnometry (Hugo-Sachs 

Elektronik, March-Hugstetten, Germany). Arteriolar diameters 

were quantified with calibrated image analysis software (Zen, 

Zeiss, Oberkochen, Germany) and expressed in percentage of 

baseline as previously described.6 

 

Forepaw-evoked neurovascular coupling 

Neurovascular coupling was evaluated as previously described.6, 

12 Briefly, The left forepaw was stimulated with two subdermally 

inserted needle electrodes with a diameter of 0.2 mm  



 

 
Figure 3. Neurovascular coupling in CARASIL mice (A) CBF increase in response to continuous electrical stimulation shows difference 

between WT mice and mice carrying the CARASIL mutation, as also showed in the quantification (B) Mean +/- SEM; Mann-Whitney 

Rank Sum test n=7 to 8 mice. (E) Artery dilation in response to a continuous electrical stimulation shows a significant difference 

between WT or CARASIL mice. Mean +/- SEM; Mann-Whitney Rank Sum test; 15 to 17 arteries from n=6 to 8 mice. 

 

(Hwato,Suzho,China) at an intensity of 2mA for 0.3 ms (Digitimer 

Ltd, Hertfordshire, England). One stimulation cycle contained 96 

stimulations and lasted 16 seconds (6Hz). The interval between 

two stimulation cycles was 40 seconds. CBF was assessed over 

five different locations within the cranial window placed over the 

somatosensory cortex in order to identify the exact location of the 

somatosensory cortex representing the left forepaw. The region 

with the strongest CBF response was then considered for 

analysis and further for assessment of the microvascular 

response by intravital microscopy. 

 

Statistical analysis 

Statistical analysis was performed with a standard statistical 

software package (Sigma Plot 12.5; Systat Software, Erkrath, 

Germany). Results are presented as median ± standard error of 

the mean (SEM). 

 

Randomization and blinding 

All animals were randomly assigned to the procedures; the 

surgical preparation and data analysis were performed by a 

researcher blinded towards the treatment of the animals. 

RESULTS 

In vivo physiological parameters 

Body temperature, systemic blood pressure, blood pH, pCO2 and 

pO2 – factors with a strong impact on CBF 13 – were monitored in 

all investigated mice and did not differ between groups. 

(Supplementary table 1) 

 

Neurovascular response to CO2 in vivo 
Inhalation of 10% CO2 induces a delayed increase in pial artery 

diameter of WT and HTRA1-/- mice. A weak dilation of 5-10% was 

observed only 5 minutes after CO2 administration and without 

differences between the two groups, indicating an affected 

reactivity of pial arteries related more to the age of these mice 

than the mutation itself (Figure 1B). On the other hand, 

parenchymal arteries retained their capacity to promptly dilate in 

response to CO2. WT mice showed a maximal increase in artery 

diameter of 13-14%, which was significantly smaller than the 

response in arteries of HTRA1-/- mice that reached a maximal 

dilation of 20%. (Figure 1C and D). These results demonstrate 



that reaction to CO2 exposure is dramatically reduced in pial 

arterioles of all 24 month-old mice. Conversely, parenchymal 

vessels continue to respond to the stimulus, and mutated mice 

show a significant increase in vessel diameter compared to the 

WT group. 

 

Effects of the mutation on neurovascular coupling 

Sensory stimulation of the forepaw with ten consecutive 

stimulation cycles resulted in an increase in CBF in WT and 

HTRA1-/- mice (Figure 2A-B). In response to stimulation, increase 

in artery diameter of parenchymal vessels reached values of 15% 

in the WT group, (Figure 2C, white symbols) while in the 

mutated group this response is dramatically abolished (Figure 

2C, black symbols) as evidenced by the quantification (Figure 

2D). Continuous sensory stimulation of the forepaw for one 

minute increased CBF by 27-30% in the WT group, but showed a 

complete loss of response in HTRA1-/- mice, as illustrated in the 

quantification (Figure 3A-B). The diameter of parenchymal 

arteries in response to continuous sensory stimulation increased 

by 25% in WT mice (Figure 3C, white symbols) and 

approximately 7% in mutated mice (Figure 3C, black symbols). 

Box plots quantify the significant decrease in vessel diameter of 

HTRA1-/- mice. These results point to an impaired neurovascular 

coupling in mice carrying the CARASIL mutation. 

 

DISCUSSION 

Cerebral small vessel disease is a major cause of stroke and 

dementia. Hereditary forms such as CARASIL are of great 

interest as models to gain insight into the mechanisms underlying 

the disease. The findings of the current study suggest for the first 

time that the HtrA1 loss of function leads to alterations in cerebral 

vessels. 

A significant difference in intraparenchymal artery diameter in 

response to CO2 inhalation – a specific cerebral vasodilator – 

exposes vessel over-reactivity in HtrA1 deficient mice. By 

contrast, investigation of pial vessels showed only a very small 

response in all mice and therefore did not show any difference 

between groups. These results are well in line with our previous 

studies on aged mice, demonstrating that the dysfunctions 

induced by aging starts in pial arteries and precipitates down the 

neurovascular tree.6 At the same time, neurovascular coupling, 

which refers to a function essential to proper brain functionality 

characterized by changes in CBF and vessel diameter in 

response to neuronal activation, is impaired in HtrA1 deficient 

mice. The decrease in cerebral blood flow upon neuronal 

activation limits the delivery of energy substrates and oxygen to 

activated neurons, inducing metabolic alterations and eventually 

neuronal damage, as reported in conditions like Alzheimer’s 

disease.14  

Using trains of repetitive stimuli, we could identify a reduction 

in artery diameter in CARASIL mice but we couldn’t detect 

alterations in the CBF response. This discontinuous way to elicit 

neuronal activation, where a 16-second stimulus was followed by 

a 40-second pause, may not have been sufficient to bring to light 

any alteration in global, integrated response of the entire 

neurovascular tree, quantified as the CBF measurment. With 

continuous stimulation to the forepaw for a period of 1 minute, 

CBF alterations became evident in the corresponding area of the 

somatosensory cortex. 

The alterations to vascular reactivity found in this study 

expose a functional consequence of HtrA1 deficiency. HtrA1 has 

been proposed to release transforming growth factor β (TGF−β), 

a well-defined regulator of angiogenesis and vascular 

homeostasis,4,5 from the extracellular matrix, thus promoting 

TGF-β activity.15 Accordigly, TGF-β signaling was strongly 

impaired in fibroblasts and brain tissue from HtrA1 deficient 

mice.15 Furthermore, previous studies have shown a strong 

reduction in levels of the contractile protein alphaSMA in the 

cerebral vessels of CARASIL and CADASIL patients.16 Both of 

these mechanisms might contribute to structural alterations in 

blood vessels, and affect neurovascular reactivity. Further 

research into the TGF-β pathway and status of contractile 

proteins may elucidate their contribution to small vessel disease. 

Taken together, our results demonstrate for the first time that 

CARASIL mutation leads to an impaired neurovascular coupling 

accompained by alterations in the CO2 reactivity. 
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6 Summary and conclusion 

 This work investigated cerebral vascular function under normal and 

pathological conditions. Endothelium-dependent response to hypercapnia and 

neuronal activity-dependent response to electrical stimulation of the forepaw were 

assessed using one- and two-photon intravital microscopy to gauge vessel dilation 

and laser Doppler fluxmetry to measure changes in CBF. First, I analyzed the effects 

of aging on the reactivity of the cerebral vasculature of mice. At 8 months, 

neurovascular coupling resulted in a blunted age-related response in terms of rCBF 

and vessel dilation. I was also able to detect an age-related impairment in 

endothelium-dependent vessel dilation that was not observed in the CBF response. 

These results point to differential effects of aging in neurovascular function, and 

breakdown in endothelial function in pial arteries before parenchymal arterioles. 

Next, I studied the effects of an acute event, namely subarachnoid hemorrhage, on 

vascular reactivity. While endothelium-dependent responses were completely 

blunted three hours after SAH was induced, activity-dependent responses remained 

unaffected in this time frame. This indicates that SAH initiates biochemical pathways 

that interfere with the endothelial response before they interfere with neurovascular 

coupling. Next, I used a model of small vessel disease, CADASIL, to study how the 

progression of the disease affects vessel functionality. At 12 months, hypercapnia 

resulted in a blunted response in terms of CBF, but an increased dilatory response in 

pial arteries. No discernible differences were observed in vascular function during 

neurovascular coupling. Finally, I looked at another model of small vessel disease, 

CARASIL. In 24-month-old mice, hypercapnia resulted in an increased dilatory 

response in parenchymal arteries and no discernible difference in pial arteries. 

Neurovascular coupling elicited blunted responses in terms of both parenchymal 

dilation and rCBF. 

 Functional hyperemia or the ability to supply nervous tissue with energy 

substrates via the blood flow proportional to their energy consumption is a vital 

function of the brain that has been found to be reduced by approximately 40% 

already in 12-month-old mice using the whisker stimulation paradigm (Park et al. 

2007), suggesting a dysfunction in the neuron-astrocyte-pericyte/smooth muscle cell 

axis. My study reports impairment in neurovascular coupling starting at 8 months of 
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age. Under trains of repetitive stimuli, 6-week- and 8-month-old mice showed a 

normal reaction after the first stimulus in, while in 12-month-old mice presented a 

reduced CBF response. However, upon repeating the stimulation up to ten times, it 

became apparent that vessels in 6-week-old mice maintained their CBF response 

over time while vessels in 8 month and 12-month-old mice could not maintain their 

initial response level and showed almost no functional hyperemia. Furthermore, 6 of 

16 of the old animals (38%) showed reductions in CBF as a result of NVC. Thus, 

NVC impairment seems to be a much earlier event than previously anticipated, as it 

occurs at as early as 8 months of age, the first third of a mouse's life. The vascular 

'fatigue effect' observed could be explained by a structural damage to the NVU, 

impaired neuron–astrocyte–vascular signaling, or dysfunction within the vascular 

wall itself. To assess these hypotheses, capillary density, smooth muscle cell 

coverage of cerebral arterioles, pericyte and astrocytic end-foot coverage of 

capillaries and leakage of the BBB were quantified by three-dimensional 

immunohistochemistry. None of these parameters was altered up to an age of 12 

months, suggesting that the structure of arterioles and capillaries plays no role in 

NVC breakdown. To clarify whether neuron–astrocyte–vascular signaling might be 

impaired, experiments were performed on isolated brain slices from aged mice. 

Vessels in control slices from young mice dilated robustly to neuronal activation 

induced by electrical field stimulation, while vessels in slices from aged mice showed 

a complete loss of NVC with a tendency toward vasoconstriction, similar to in vivo 

observations at 12 months. However, the increase of astrocytic end-foot Ca2+ upon 

neuronal activation was not significantly distinct across age groups. Accordingly, it 

may be concluded that aging principally affects the functionality of cerebral vessels 

without affecting neuronal–astrocytic signaling or the structure of the NVU, as 

previously suggested by others (Park et al. 2007; Faraci and Heistad 1998). 

Additionally, my results suggest that the mechanisms involved in NVC affected by 

aging are found downstream of astrocytic end-foot Ca2+ signaling. One such 

mechanism might be Ca2+-driven release of K+ from astrocytic end-feet plays a 

critical role in generating rapid vasodilation of cerebral parenchymal arterioles in 

response to neural activity (Filosa et al. 2006 ) through activation of smooth muscle 

cell potassium Kir, driving membrane potential hyperpolarization and vasodilation 

(Straub et al. 2007). It has been previously shown that this mechanism is sensitive to 
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disruption at the level of the SMC Kir channel (Longden et al. 2014). Future studies 

will need to explore the role of vascular Kir channels in AVD in more detail. 

An increase in CO2 concentration in the blood induces nitric-oxide dependent 

vasodilation. Aging is associated with a decrease in resting CBF (Faraci and Heistad 

1998) and a reduced response to endothelium-dependent vasodilators such as CO2 

(Mayhan et al. 1990). Until now, deficiencies in this pathway have only been 

detected in mice starting at 12 months of age, but previous studies have only 

measured CBF, a parameter which integrates the response of the whole neuro-

vascular tree. Therefore, the response of individual subpopulations of cerebral 

vessels to hypercapnia remained unclear. Accordingly, my study took a different 

approach to detecting age related impairments: direct inspection of vessels on the 

brain surface—pial arteries—using intravital microscopy, and examining the global 

increase of CBF after inhalation of 5% or 10% CO2. Visualization of pial vessels 

allowed me to detect neurovascular dysfunction at the earlier stage of 8 months. No 

global neurovascular dysfunction—CBF—in mice up to an age of 12 months was 

observed, consistent with findings by Park et al. (Park et al. 2007). This suggests 

that AVD starts in pial arteries and continues down the neurovascular tree during 

aging. This is supported by previous data showing that aging affects the global 

increase of CBF after inhalation of CO2 only in mice older than 1.5 years (Park et al. 

2007), and showing accelerated aging of pial arteries in a mouse model small-vessel 

disease (Joutel et al. 2010). Furthermore, since hypercapnia-induced vasodilation is 

mediated by endothelial NO synthases, the current data also suggest that AVD may 

be linked with disturbed NO signaling. It has been suggested that the main 

underlying mechanism is the production of reactive oxygen species (ROS) by 

NADPH oxidase in the vessel wall, where ROS convert NO to peroxynitrite, thereby 

reducing the bioavailability of NO and damaging vascular structures. (Park et al. 

2007; Girouard et al. 2007) Taken together, results from aged mice show that age 

impairs neurovascular coupling at an unexpectedly young age in mice. The lack of 

vascular CO2 reactivity suggests that defective constitutive NO signaling may 

represent a possible mechanism. Dysfunctions are not accompanied by any changes 

on the cellular composition of the NVU or by impaired astrocytic Ca2+ reactivity. My 

investigation identified the onset and location of age-related neurovascular 
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dysfunctions and suggests putative mechanisms, thereby paving the way for the 

development of novel strategies to maintain neurovascular function during aging. 

 The majority of studies investigating pial and parenchymal arterioles used in 

vitro systems (Kajita et al. 1996; Park et al. 2001; Koide et al. 2013) that require 

experimental conditions that do not necessarily reflect microvascular function in vivo. 

The few published studies investigating the cerebral microcirculation after SAH in 

vivo used conventional epi-fluorescence microscopy and were only able to explore 

pial vessels due to the limited penetration depth of this technology (Sun et al. 2009; 

Ishikawa et al. 2009; Friedrich et al. 2014). These vessels are of particular interest in 

the context of SAH given that these are the only cerebral microvessels coming into 

direct contact with extravasated blood after subarachnoid bleeding. Indeed, pial 

vessels were shown to constrict after SAH in experimental animals models and in 

SAH patients thereby suggesting that spasms of cerebral microvessels are one of 

the main reasons for the cerebral ischemia observed after SAH (Uhl et al. 2003; 

Friedrich et al. 2012). Pial microvessels, however, are morphologically distinct from 

parenchymal arterioles in that pial vessels have perivascular innervation and lack of 

astrocytic end-foot coverage (Cipolla 2009). Most importantly, parenchymal, not pial, 

arterioles are in direct contact with the brain parenchyma and communicate directly 

with astrocytes and neurons. However, parenchymal arterioles within the brain lie 

beyond the range of conventional epi-fluorescence microscopy. 

 Given that in the first five days following subarachnoid hemorrhage patients 

suffer persistent cerebral ischemia (Sun et al. 2009), this work focused on 

investigating the state of vascular function at this early stage. Previous data has 

shown that pial vessel reactivity to hypercapnia is impaired 3 hours after SAH 

(Friedrich et al. 2012). Mine is the first study investigating neurovascular coupling 

after SAH in vivo. SAH was induced using the intraluminal perforation model, a well-

established model that mimics elevated ICP, cerebral ischemia, hippocampal 

damage, mortality and cerebral edema, all acute and long term processes induced 

by the rupture of an intracranial aneurysm (Feiler et al. 2010). SAH induction was 

verified in each animal by an increase in intracranial pressure following the post-

hemorrhagic event. Considering the importance of this regulation for brain 

functionality, the attention brought on the topic by ex vivo studies reporting that, 

paradoxically, neuronal activity may lead to parenchymal arteriolar constriction 
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(Koide et al. 2014) and the shift in neurovascular coupling from vasodilation to 

vasoconstriction at 24 to 96 hours after SAH (Koide et al. 2014), I investigated in vivo 

early effects of SAH on neurovascular coupling. Neither repeated nor continuous 

sensory stimulation to the forepaw shows any impairment of the neurovascular 

coupling three hours after SAH induction; both sham-operated and SAH mice have a 

comparable increase in rCBF response as well as an increase in artery diameter. 

These data were also confirmed in ex vivo brain slices investigated four hours after 

SAH. In these experiments, electrical field stimulation evoked local neuronal 

activation which in turn induced a rise in astrocytic end-foot Ca2+ followed by 

vasodilation of the adjoining parenchymal arteriole in both sham-operated and SAH 

mice four hours after the hemorrhagic event. 24 to 96 hours after SAH the already 

increased basal perivascular potassium reaches excessive levels above 20 mM 

which causes smooth muscle depolarization and parenchymal arteriolar constriction 

in rat cortical brain slices (Koide et al. 2014). This inverted neurovascular coupling 

leads to a pathological hypoperfusion of the brain tissue after SAH which results in 

glucose and oxygen deprivation. The mechanisms underlying SAH-induced inversion 

of NVC are not fully understood, but are likely to involve an increase in the 

magnitude of spontaneous Ca2+ release events in astrocytic end-feet leading to 

elevation of K+ in the restricted perivascular space around parenchymal arterioles 

(Koide et al. 2012). Seen that neurovascular coupling functionality does not show 

any sign of impairment during the first few hours point to a potential time window for 

viable intervention. 

 Results from these experiments show a complete loss of reactivity to CO2 in 

pial arteries three hours after SAH. These data corroborated previous findings where 

cerebral arterioles covered in blood and affected by post-hemorrhagic 

microvasospasms lacked CO2 reactivity (Friedrich et al. 2011). This loss in reactivity 

indicates an inability of the brain to increase blood flow in response to a stimulus, 

suggesting a severe inability of cerebral autoregulation to maintain adequate and 

stable cerebral blood flow after SAH. Given this lack of CO2 reactivity in pial arteries 

and the fact that cerebral vessel reactivity had only been investigated in pial vessels, 

we decided to investigate deep parenchymal vessels using in vivo two-photon 

microscopy. The results show that not only microvessels located in the subarachnoid 

space and coming in direct contact with blood, but also arterioles in the parenchyma, 
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where blood is not present, lose their ability to dilate in the face of increased levels of 

CO2. Thus the brain as a whole seems to lose its ability to regulate blood flow in 

response to metabolic stress and may thus become increasingly vulnerable to 

additional damage. Thus, the NOS signaling pathway may be a mechanism involved 

and therefore a novel target for potential therapeutic strategies after SAH. The 

differences in impairment of the endothelium-dependent and neural activity-

dependent responses three hours after SAH induction suggest that CO2 reactivity 

and NVC are at least partly mediated by different signaling pathways (Figure 3) and 

that these pathways are differentially affected by SAH. Further research is needed to 

decipher these pathways and pave the way for novel therapeutic strategies for SAH 

patients with both early and delayed cerebral ischemia. 

 

Figure 3. Vasoregulatory pathways. Endothelium dependent vasodilation in response to 

hypercapnia and neural-activity-dependent vasodilation are mediated by separate biochemical 

pathways and differentially affected by aging and SAH. 

  

My investigation on CADASIL provides significant evidence implicating brain 

capillaries early on in the pathophysiology of CADASIL and possibly other small 

vessel disorders in the brain. We report that mutant Notch3 accumulates in 

pericytes; moreover, we report that progressive pericyte loss and BBB leakage in the 

cerebral cortex precede the functional impairments in cerebral vessels. These 
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findings suggest that pericyte dysfunction and loss occur early in the pathogenesis of 

CADASIL, and pericyte dysfunction causes a disruption of the neurovascular unit 

and leakage of the blood-brain barrier. The current study demonstrates that mutated 

Notch3 accumulates in pericytes and that evolving pericyte loss and BBB leakage in 

the cerebral cortex precede functional impairments of cerebral vessels in a mouse 

model of inherited small vessel disease. The study found age-dependent increase in 

Notch3 aggregation, but no SMCs degeneration, consistent with previous studies 

(Joutel et al. 2010). The preservation of smooth muscle cell integrity at this stage in 

contrast to pericyte integrity is one of the most important findings of our study. 

Additionally, no reduction in capillary density was observed in mice carrying the 

mutation. However, while investigating beta-type platelet-derived growth factor 

receptor (PDGF-R, a pericyte marker, in 12-month-old CADASIL specimens, we 

observed a significant reduction in the number of cortical pericytes as well as 

pericyte coverage around the endothelial wall of cortical micro vessels in 12-month-

old CADASIL mice compared to age-matched controls. Moreover, age-dependent 

reduction in pericyte population was inversely proportional to Notch3 aggregation. 

These findings corroborate previous observations using electron microscopy to 

detect structural abnormalities of pericytes in human postmortem CADASIL tissue 

samples (Dziewulska et al. 2012; Gu et al. 2012). In contrast to previous reports from 

PDGF-R-knockout mice (Bell et al. 2010; Armuilik et al. 2010), age dependent loss 

of microvascular pericyte coverage in our CADASIL mouse model does not go along 

with a reduction in capillary density or vascular diameter. This difference in results 

may be due to the earlier, more severe loss of pericytes in PDGF-R-knockout mice 

and may suggest that pericytes play a more important role in vascular formation 

during embryonic development than in the maintenance of microvessels in the adult 

brain. Reduced neurovascular pericyte coverage and loss of pericytes strongly 

correlated with extent of BBB breakdown in the cortex in terms of extravasation of 

two intrinsic plasma-proteins, albumin and fibrinogen. In addition, we observed a 

decrease in astrocytic end-foot coverage on microvessels; this decrease was 

confirmed using GFAP staining. Conformational changes in the neurovascular unit 

were also confirmed by the reorganization of polarized markers of astrocytic end-feet 

and by presence of the characteristic bridges. We also provide the first evidence that 

pericytes directly communicate with astrocytes in order to maintain the BBB. We 
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found a significant reduction in the endothelial adherens junction protein VE-cadherin 

in CADASIL mice, but we found no reduction in the gap junction protein connexin-43. 

These results are consistent with reports that BBB breakdown does not involve a 

reduction in connexins (Hossain et al. 1994). Other groups reported the 

reorganization of connexin-43 in astrocytic gap junctions but no change in connexin-

43 protein levels in response to injury (Alonso et al. 2010; Quaegebeur et al. 2010). 

Therefore, connexin-43 may be reorganized in CADASIL mice, which would 

correlate nicely with the reorganization of polarized markers of astrocytic end-feet. 

 The finding of structural alterations to the microvasculature prompted the 

investigation of functional implications of these mutation-related deficiencies using in 

vivo imaging. No impairment to rCBF regulation was found in 7 months old aged 

CADASIL mice despite significant changes to the microvascular morphology and 

pericyte loss at this age. However, it was found that at 12 months, hypercapnia 

results in a significantly lower increase in rCBF as a result of the mutation, consistent 

with previous studies (Joutel et al. 2010). On the other hand, direct visualization of 

pial arteries found significantly stronger vasodilation in response to hypercapnia in 

CADASIL mice. Given that a decreased rCBF response points to a weaker perfusion 

across the entire neurovascular tree, resulting in a decrease in overall vessel 

diameter, and that pial arteries show an increase in vessel diameter, we may infer 

that parenchymal vessels decrease in vessel diameter in response to hypercapnia. 

This may be verified via two-photon microscopy analysis of parenchymal vessels. 

This interpretation is well in line with our findings that CADASIL mutant mice show 

reduced pericyte coverage and opening of the BBB in intra-parenchymal arterioles. 

Experiments on somatosensory stimulation show no difference between 7 and 12 

month old CADASIL mice and respective controls (unpublished data). Taken 

together, these results confirm that early changes in cortical morphology are followed 

by late-onset vascular functional impairment. Our results provide important clues 

regarding the mechanisms that underlie the changes in cortical morphology that 

occur during the progression of CADASIL. Specifically, progressive pericyte loss 

causes progressive changes in microvascular structure and a disruption in the BBB. 

This is consistent with a previous report in which pericyte loss mediates BBB 

disruption and vascular dysfunction precedes neuronal degeneration in Alzheimer’s 

disease (Bell et al. 2013). Understanding the mechanisms underlying BBB 
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dysfunction in such neurological disorders can reveal therapies designed to reverse 

and/or reduce neuronal damage accelerated by BBB damage. Based on these 

findings, we conclude that CADASIL is initiated by pericyte dysfunction and 

disruption of the BBB, which subsequently may lead to neuronal dysfunction, 

eventually giving rise to dementia and other CADASIL-related symptoms. However, 

the precise sequence of events is a matter of debate and requires further study. 

Finally, aging has a well-documented effect on the progression of cerebral small-

vessel disease. (Iadecola et al. 2013; Tucsek et al. 2014) Accordingly, we found that 

aging significantly affects both the onset and course of CADASIL in our mouse 

model. These results provide novel insight into the pathobiology of cerebral small 

vessels in CADASIL, which are expected to also relate to other types of cerebral 

small vessel disease.  

 To date, there are no studies characterizing the vascular function in the 

mouse model of CARASIL, a recessively inherited small vessel disease 

characterized by mutations in the HTRA1 gene. The findings of my investigation 

suggest that the functionality of cerebral vessels is altered by the HTRA1 mutation. 

Similar to what was found in the CADASIL model, CO2 stimulation resulted in an 

overreaction in terms of artery dilation. While in the dominant form of the disease pial 

artery response resulted in over-dilation, in the recessive form only parenchymal 

arteries responded with over-dilation. However, it is crucial to note for comparative 

analysis that observations in mice carrying the CARASIL mutation were performed at 

24 months of age, and at 12 months of age in mice carrying the CADASIL mutation. 

It is also important to keep in mind that previous findings demonstrate that age-

related dysfunctions start in pial arteries and precipitates down the neurovascular 

tree. Additionally, neurovascular coupling was found to be impaired in HTRA1-/- mice. 

This decrease in cerebral blood flow upon neuronal activation limits the delivery of 

energy substrates and oxygen to activated neurons, inducing metabolic alterations 

and neuronal damage as reported in conditions like Alzheimer’s disease (Niwa et al. 

2000). Using trains of repetitive stimuli, only a reduction in artery diameter in 

CARASIL mice was visible but not alterations in the rCBF response. Given that this 

discontinuous way to elicit neuronal activation may not have been sufficient to 

expose an alteration in the integrated response of the neurovascular tree, we 

stimulated the forepaw continuously for one minute. This mode of stimulation 
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revealed alterations in rCBF responses and parenchymal vessel dilation in the 

corresponding area of the somatosensory cortex. The alterations to vascular 

reactivity found in this study expose a functional consequence of the HTRA1-/- 

mutation. Mutant HtrA1 fails to cleave binding sites of TGF- to the extracellular 

matrix of smooth muscle cells, resulting in a decrease of TGF-activity (Beaufort et 

al. 2014) in animals carrying the mutation. Furthermore, studies have shown that a 

loss of HtrA1 function results in a 50% reduction in levels of connective tissue growth 

factor (CTGF). Reduced action of these growth factors, which are well-defined 

regulators of angiogenesis and vascular homeostasis (ten Dijke et al. 2007; 

Goumans et al. 2009), may lead to structural alterations in blood vessels and poor 

angiogenesis and thus explain the alterations observed in neurovascular reactivity. 

Further research into this pathway may elucidate the role of these growth factors in 

small vessel disease. Taken together, our results demonstrate for the first time that 

loss of function of HtrA1 as observed in CARASIL results in disruptions to neural-

activity-dependent and endothelium-dependent vasodilation. Further analysis of 

contractile elements of parenchymal vessels would help elucidate mechanisms 

involved in these impairments. 

 This thesis explored neurovascular deficits in healthy aging, after SAH and in 

two models of small vessel disease. My data demonstrated previously conceived 

notions such as the progression of functional decay from pial arteries down the 

neurovascular tree in chronic conditions, lack of reactivity to hypercapnia after SAH, 

and early changes to vessel structure and morphology in CADASIL mice. 

Additionally, these results may help design novel therapeutic strategies such as 

targeting Kir channels and the NO pathway in aging, intervening within an early time 

window following SAH, and addressing pericyte deficiencies in small vessel 

diseases. This together with a thorough characterization of cerebrovascular function 

at various levels in each of these conditions provides a comprehensive 

understanding and outlook for the cerebral regulation of blood flow in health and 

disease. 
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